Texture-adaptive hyperspectral video acquisition system with a spatial light modulator
NASA Astrophysics Data System (ADS)
Fang, Xiaojing; Feng, Jiao; Wang, Yongjin
2014-10-01
We present a new hybrid camera system based on spatial light modulator (SLM) to capture texture-adaptive high-resolution hyperspectral video. The hybrid camera system records a hyperspectral video with low spatial resolution using a gray camera and a high-spatial resolution video using a RGB camera. The hyperspectral video is subsampled by the SLM. The subsampled points can be adaptively selected according to the texture characteristic of the scene by combining with digital imaging analysis and computational processing. In this paper, we propose an adaptive sampling method utilizing texture segmentation and wavelet transform (WT). We also demonstrate the effectiveness of the sampled pattern on the SLM with the proposed method.
Fast and compact internal scanning CMOS-based hyperspectral camera: the Snapscan
NASA Astrophysics Data System (ADS)
Pichette, Julien; Charle, Wouter; Lambrechts, Andy
2017-02-01
Imec has developed a process for the monolithic integration of optical filters on top of CMOS image sensors, leading to compact, cost-efficient and faster hyperspectral cameras. Linescan cameras are typically used in remote sensing or for conveyor belt applications. Translation of the target is not always possible for large objects or in many medical applications. Therefore, we introduce a novel camera, the Snapscan (patent pending), exploiting internal movement of a linescan sensor enabling fast and convenient acquisition of high-resolution hyperspectral cubes (up to 2048x3652x150 in spectral range 475-925 nm). The Snapscan combines the spectral and spatial resolutions of a linescan system with the convenience of a snapshot camera.
Hyperspectral imaging for food processing automation
NASA Astrophysics Data System (ADS)
Park, Bosoon; Lawrence, Kurt C.; Windham, William R.; Smith, Doug P.; Feldner, Peggy W.
2002-11-01
This paper presents the research results that demonstrates hyperspectral imaging could be used effectively for detecting feces (from duodenum, ceca, and colon) and ingesta on the surface of poultry carcasses, and potential application for real-time, on-line processing of poultry for automatic safety inspection. The hyperspectral imaging system included a line scan camera with prism-grating-prism spectrograph, fiber optic line lighting, motorized lens control, and hyperspectral image processing software. Hyperspectral image processing algorithms, specifically band ratio of dual-wavelength (565/517) images and thresholding were effective on the identification of fecal and ingesta contamination of poultry carcasses. A multispectral imaging system including a common aperture camera with three optical trim filters (515.4 nm with 8.6- nm FWHM), 566.4 nm with 8.8-nm FWHM, and 631 nm with 10.2-nm FWHM), which were selected and validated by a hyperspectral imaging system, was developed for a real-time, on-line application. A total image processing time required to perform the current multispectral images captured by a common aperture camera was approximately 251 msec or 3.99 frames/sec. A preliminary test shows that the accuracy of real-time multispectral imaging system to detect feces and ingesta on corn/soybean fed poultry carcasses was 96%. However, many false positive spots that cause system errors were also detected.
High-resolution hyperspectral ground mapping for robotic vision
NASA Astrophysics Data System (ADS)
Neuhaus, Frank; Fuchs, Christian; Paulus, Dietrich
2018-04-01
Recently released hyperspectral cameras use large, mosaiced filter patterns to capture different ranges of the light's spectrum in each of the camera's pixels. Spectral information is sparse, as it is not fully available in each location. We propose an online method that avoids explicit demosaicing of camera images by fusing raw, unprocessed, hyperspectral camera frames inside an ego-centric ground surface map. It is represented as a multilayer heightmap data structure, whose geometry is estimated by combining a visual odometry system with either dense 3D reconstruction or 3D laser data. We use a publicly available dataset to show that our approach is capable of constructing an accurate hyperspectral representation of the surface surrounding the vehicle. We show that in many cases our approach increases spatial resolution over a demosaicing approach, while providing the same amount of spectral information.
NASA Astrophysics Data System (ADS)
Saari, H.; Akujärvi, A.; Holmlund, C.; Ojanen, H.; Kaivosoja, J.; Nissinen, A.; Niemeläinen, O.
2017-10-01
The accurate determination of the quality parameters of crops requires a spectral range from 400 nm to 2500 nm (Kawamura et al., 2010, Thenkabail et al., 2002). Presently the hyperspectral imaging systems that cover this wavelength range consist of several separate hyperspectral imagers and the system weight is from 5 to 15 kg. In addition the cost of the Short Wave Infrared (SWIR) cameras is high ( 50 k€). VTT has previously developed compact hyperspectral imagers for drones and Cubesats for Visible and Very near Infrared (VNIR) spectral ranges (Saari et al., 2013, Mannila et al., 2013, Näsilä et al., 2016). Recently VTT has started to develop a hyperspectral imaging system that will enable imaging simultaneously in the Visible, VNIR, and SWIR spectral bands. The system can be operated from a drone, on a camera stand, or attached to a tractor. The targeted main applications of the DroneKnowledge hyperspectral system are grass, peas, and cereals. In this paper the characteristics of the built system are shortly described. The system was used for spectral measurements of wheat, several grass species and pea plants fixed to the camera mount in the test fields in Southern Finland and in the green house. The wheat, grass and pea field measurements were also carried out using the system mounted on the tractor. The work is part of the Finnish nationally funded DroneKnowledge - Towards knowledge based export of small UAS remote sensing technology project.
NASA Astrophysics Data System (ADS)
Suomalainen, Juha; Franke, Jappe; Anders, Niels; Iqbal, Shahzad; Wenting, Philip; Becker, Rolf; Kooistra, Lammert
2014-05-01
We have developed a lightweight Hyperspectral Mapping System (HYMSY) and a novel processing chain for UAV based mapping. The HYMSY consists of a custom pushbroom spectrometer (range 450-950nm, FWHM 9nm, ~20 lines/s, 328 pixels/line), a consumer camera (collecting 16MPix raw image every 2 seconds), a GPS-Inertia Navigation System (GPS-INS), and synchronization and data storage units. The weight of the system at take-off is 2.0kg allowing us to mount it on a relatively small octocopter. The novel processing chain exploits photogrammetry in the georectification process of the hyperspectral data. At first stage the photos are processed in a photogrammetric software producing a high-resolution RGB orthomosaic, a Digital Surface Model (DSM), and photogrammetric UAV/camera position and attitude at the moment of each photo. These photogrammetric camera positions are then used to enhance the internal accuracy of GPS-INS data. These enhanced GPS-INS data are then used to project the hyperspectral data over the photogrammetric DSM, producing a georectified end product. The presented photogrammetric processing chain allows fully automated georectification of hyperspectral data using a compact GPS-INS unit while still producingin UAV use higher georeferencing accuracy than would be possible using the traditional processing method. During 2013, we have operated HYMSY on 150+ octocopter flights at 60+ sites or days. On typical flight we have produced for a 2-10ha area: a RGB orthoimagemosaic at 1-5cm resolution, a DSM in 5-10cm resolution, and hyperspectral datacube at 10-50cm resolution. The targets have mostly consisted of vegetated targets including potatoes, wheat, sugar beets, onions, tulips, coral reefs, and heathlands,. In this poster we present the Hyperspectral Mapping System and the photogrammetric processing chain with some of our first mapping results.
Small real time detection satellites for MDA using hyperspectral imaging
NASA Astrophysics Data System (ADS)
Nakaya, Daiki; Yanagida, Hiroki; Shin, Satori; Ito, Tomonori; Takeuchi, Yusuke
2017-10-01
Hyperspectral Images are now used in the field of agriculture, cosmetics, and space exploring. Behind this fact, there is a result of efforts to contrive miniaturization and decrease in costs. This paper describes low-cost and small Hyperspectral Camera (HSC) under development and a method of utilizing it. Real Time Detection System for MDA is that government agencies put those cameras in small satellites and use them for MDA (Maritime Domain Awareness). We assume early detection of unidentified floating objects to find out disguised fishing ships and submarines.
a Spatio-Spectral Camera for High Resolution Hyperspectral Imaging
NASA Astrophysics Data System (ADS)
Livens, S.; Pauly, K.; Baeck, P.; Blommaert, J.; Nuyts, D.; Zender, J.; Delauré, B.
2017-08-01
Imaging with a conventional frame camera from a moving remotely piloted aircraft system (RPAS) is by design very inefficient. Less than 1 % of the flying time is used for collecting light. This unused potential can be utilized by an innovative imaging concept, the spatio-spectral camera. The core of the camera is a frame sensor with a large number of hyperspectral filters arranged on the sensor in stepwise lines. It combines the advantages of frame cameras with those of pushbroom cameras. By acquiring images in rapid succession, such a camera can collect detailed hyperspectral information, while retaining the high spatial resolution offered by the sensor. We have developed two versions of a spatio-spectral camera and used them in a variety of conditions. In this paper, we present a summary of three missions with the in-house developed COSI prototype camera (600-900 nm) in the domains of precision agriculture (fungus infection monitoring in experimental wheat plots), horticulture (crop status monitoring to evaluate irrigation management in strawberry fields) and geology (meteorite detection on a grassland field). Additionally, we describe the characteristics of the 2nd generation, commercially available ButterflEYE camera offering extended spectral range (475-925 nm), and we discuss future work.
NASA Astrophysics Data System (ADS)
Olweny, Ephrem O.; Tan, Yung K.; Faddegon, Stephen; Jackson, Neil; Wehner, Eleanor F.; Best, Sara L.; Park, Samuel K.; Thapa, Abhas; Cadeddu, Jeffrey A.; Zuzak, Karel J.
2012-03-01
Digital light processing hyperspectral imaging (DLP® HSI) was adapted for use during laparoscopic surgery by coupling a conventional laparoscopic light guide with a DLP-based Agile Light source (OL 490, Optronic Laboratories, Orlando, FL), incorporating a 0° laparoscope, and a customized digital CCD camera (DVC, Austin, TX). The system was used to characterize renal ischemia in a porcine model.
Høye, Gudrun; Fridman, Andrei
2013-05-06
Current high-resolution push-broom hyperspectral cameras introduce keystone errors to the captured data. Efforts to correct these errors in hardware severely limit the optical design, in particular with respect to light throughput and spatial resolution, while at the same time the residual keystone often remains large. The mixel camera solves this problem by combining a hardware component--an array of light mixing chambers--with a mathematical method that restores the hyperspectral data to its keystone-free form, based on the data that was recorded onto the sensor with large keystone. A Virtual Camera software, that was developed specifically for this purpose, was used to compare the performance of the mixel camera to traditional cameras that correct keystone in hardware. The mixel camera can collect at least four times more light than most current high-resolution hyperspectral cameras, and simulations have shown that the mixel camera will be photon-noise limited--even in bright light--with a significantly improved signal-to-noise ratio compared to traditional cameras. A prototype has been built and is being tested.
Snapshot hyperspectral fovea vision system (HyperVideo)
NASA Astrophysics Data System (ADS)
Kriesel, Jason; Scriven, Gordon; Gat, Nahum; Nagaraj, Sheela; Willson, Paul; Swaminathan, V.
2012-06-01
The development and demonstration of a new snapshot hyperspectral sensor is described. The system is a significant extension of the four dimensional imaging spectrometer (4DIS) concept, which resolves all four dimensions of hyperspectral imaging data (2D spatial, spectral, and temporal) in real-time. The new sensor, dubbed "4×4DIS" uses a single fiber optic reformatter that feeds into four separate, miniature visible to near-infrared (VNIR) imaging spectrometers, providing significantly better spatial resolution than previous systems. Full data cubes are captured in each frame period without scanning, i.e., "HyperVideo". The current system operates up to 30 Hz (i.e., 30 cubes/s), has 300 spectral bands from 400 to 1100 nm (~2.4 nm resolution), and a spatial resolution of 44×40 pixels. An additional 1.4 Megapixel video camera provides scene context and effectively sharpens the spatial resolution of the hyperspectral data. Essentially, the 4×4DIS provides a 2D spatially resolved grid of 44×40 = 1760 separate spectral measurements every 33 ms, which is overlaid on the detailed spatial information provided by the context camera. The system can use a wide range of off-the-shelf lenses and can either be operated so that the fields of view match, or in a "spectral fovea" mode, in which the 4×4DIS system uses narrow field of view optics, and is cued by a wider field of view context camera. Unlike other hyperspectral snapshot schemes, which require intensive computations to deconvolve the data (e.g., Computed Tomographic Imaging Spectrometer), the 4×4DIS requires only a linear remapping, enabling real-time display and analysis. The system concept has a range of applications including biomedical imaging, missile defense, infrared counter measure (IRCM) threat characterization, and ground based remote sensing.
Use of hyperspectral imaging technology to develop a diagnostic support system for gastric cancer
NASA Astrophysics Data System (ADS)
Goto, Atsushi; Nishikawa, Jun; Kiyotoki, Shu; Nakamura, Munetaka; Nishimura, Junichi; Okamoto, Takeshi; Ogihara, Hiroyuki; Fujita, Yusuke; Hamamoto, Yoshihiko; Sakaida, Isao
2015-01-01
Hyperspectral imaging (HSI) is a new technology that obtains spectroscopic information and renders it in image form. This study examined the difference in the spectral reflectance (SR) of gastric tumors and normal mucosa recorded with a hyperspectral camera equipped with HSI technology and attempted to determine the specific wavelength that is useful for the diagnosis of gastric cancer. A total of 104 gastric tumors removed by endoscopic submucosal dissection from 96 patients at Yamaguchi University Hospital were recorded using a hyperspectral camera. We determined the optimal wavelength and the cut-off value for differentiating tumors from normal mucosa to establish a diagnostic algorithm. We also attempted to highlight tumors by image processing using the hyperspectral camera's analysis software. A wavelength of 770 nm and a cut-off value of 1/4 the corrected SR were selected as the respective optimal wavelength and cut-off values. The rates of sensitivity, specificity, and accuracy of the algorithm's diagnostic capability were 71%, 98%, and 85%, respectively. It was possible to enhance tumors by image processing at the 770-nm wavelength. HSI can be used to measure the SR in gastric tumors and to differentiate between tumorous and normal mucosa.
Goyal, Anish; Myers, Travis; Wang, Christine A; Kelly, Michael; Tyrrell, Brian; Gokden, B; Sanchez, Antonio; Turner, George; Capasso, Federico
2014-06-16
We demonstrate active hyperspectral imaging using a quantum-cascade laser (QCL) array as the illumination source and a digital-pixel focal-plane-array (DFPA) camera as the receiver. The multi-wavelength QCL array used in this work comprises 15 individually addressable QCLs in which the beams from all lasers are spatially overlapped using wavelength beam combining (WBC). The DFPA camera was configured to integrate the laser light reflected from the sample and to perform on-chip subtraction of the passive thermal background. A 27-frame hyperspectral image was acquired of a liquid contaminant on a diffuse gold surface at a range of 5 meters. The measured spectral reflectance closely matches the calculated reflectance. Furthermore, the high-speed capabilities of the system were demonstrated by capturing differential reflectance images of sand and KClO3 particles that were moving at speeds of up to 10 m/s.
USDA-ARS?s Scientific Manuscript database
This research developed a multispectral algorithm derived from hyperspectral line-scan fluorescence imaging under violet/blue LED excitation for detection of fecal contamination on Golden Delicious apples. Using a hyperspectral line-scan imaging system consisting of an EMCCD camera, spectrograph, an...
Multipurpose Hyperspectral Imaging System
NASA Technical Reports Server (NTRS)
Mao, Chengye; Smith, David; Lanoue, Mark A.; Poole, Gavin H.; Heitschmidt, Jerry; Martinez, Luis; Windham, William A.; Lawrence, Kurt C.; Park, Bosoon
2005-01-01
A hyperspectral imaging system of high spectral and spatial resolution that incorporates several innovative features has been developed to incorporate a focal plane scanner (U.S. Patent 6,166,373). This feature enables the system to be used for both airborne/spaceborne and laboratory hyperspectral imaging with or without relative movement of the imaging system, and it can be used to scan a target of any size as long as the target can be imaged at the focal plane; for example, automated inspection of food items and identification of single-celled organisms. The spectral resolution of this system is greater than that of prior terrestrial multispectral imaging systems. Moreover, unlike prior high-spectral resolution airborne and spaceborne hyperspectral imaging systems, this system does not rely on relative movement of the target and the imaging system to sweep an imaging line across a scene. This compact system (see figure) consists of a front objective mounted at a translation stage with a motorized actuator, and a line-slit imaging spectrograph mounted within a rotary assembly with a rear adaptor to a charged-coupled-device (CCD) camera. Push-broom scanning is carried out by the motorized actuator which can be controlled either manually by an operator or automatically by a computer to drive the line-slit across an image at a focal plane of the front objective. To reduce the cost, the system has been designed to integrate as many as possible off-the-shelf components including the CCD camera and spectrograph. The system has achieved high spectral and spatial resolutions by using a high-quality CCD camera, spectrograph, and front objective lens. Fixtures for attachment of the system to a microscope (U.S. Patent 6,495,818 B1) make it possible to acquire multispectral images of single cells and other microscopic objects.
A target detection multi-layer matched filter for color and hyperspectral cameras
NASA Astrophysics Data System (ADS)
Miyanishi, Tomoya; Preece, Bradley L.; Reynolds, Joseph P.
2018-05-01
In this article, a method for applying matched filters to a 3-dimentional hyperspectral data cube is discussed. In many applications, color visible cameras or hyperspectral cameras are used for target detection where the color or spectral optical properties of the imaged materials are partially known in advance. Therefore, the use of matched filtering with spectral data along with shape data is an effective method for detecting certain targets. Since many methods for 2D image filtering have been researched, we propose a multi-layer filter where ordinary spatially matched filters are used before the spectral filters. We discuss a way to layer the spectral filters for a 3D hyperspectral data cube, accompanied by a detectability metric for calculating the SNR of the filter. This method is appropriate for visible color cameras and hyperspectral cameras. We also demonstrate an analysis using the Night Vision Integrated Performance Model (NV-IPM) and a Monte Carlo simulation in order to confirm the effectiveness of the filtering in providing a higher output SNR and a lower false alarm rate.
NASA Astrophysics Data System (ADS)
Sima, A. A.; Baeck, P.; Nuyts, D.; Delalieux, S.; Livens, S.; Blommaert, J.; Delauré, B.; Boonen, M.
2016-06-01
This paper gives an overview of the new COmpact hyperSpectral Imaging (COSI) system recently developed at the Flemish Institute for Technological Research (VITO, Belgium) and suitable for remotely piloted aircraft systems. A hyperspectral dataset captured from a multirotor platform over a strawberry field is presented and explored in order to assess spectral bands co-registration quality. Thanks to application of line based interference filters deposited directly on the detector wafer the COSI camera is compact and lightweight (total mass of 500g), and captures 72 narrow (FWHM: 5nm to 10 nm) bands in the spectral range of 600-900 nm. Covering the region of red edge (680 nm to 730 nm) allows for deriving plant chlorophyll content, biomass and hydric status indicators, making the camera suitable for agriculture purposes. Additionally to the orthorectified hypercube digital terrain model can be derived enabling various analyses requiring object height, e.g. plant height in vegetation growth monitoring. Geometric data quality assessment proves that the COSI camera and the dedicated data processing chain are capable to deliver very high resolution data (centimetre level) where spectral information can be correctly derived. Obtained results are comparable or better than results reported in similar studies for an alternative system based on the Fabry-Pérot interferometer.
NASA Astrophysics Data System (ADS)
Cucci, Costanza; Casini, Andrea; Stefani, Lorenzo; Picollo, Marcello; Jussila, Jouni
2017-07-01
For more than a decade, a number of studies and research projects have been devoted to customize hyperspectral imaging techniques to the specific needs of conservation and applications in museum context. A growing scientific literature definitely demonstrated the effectiveness of reflectance hyperspectral imaging for non-invasive diagnostics and highquality documentation of 2D artworks. Additional published studies tackle the problems of data-processing, with a focus on the development of algorithms and software platforms optimised for visualisation and exploitation of hyperspectral bigdata sets acquired on paintings. This scenario proves that, also in the field of Cultural Heritage (CH), reflectance hyperspectral imaging has nowadays reached the stage of mature technology, and is ready for the transition from the R&D phase to the large-scale applications. In view of that, a novel concept of hyperspectral camera - featuring compactness, lightness and good usability - has been developed by SPECIM, Spectral Imaging Ltd. (Oulu, Finland), a company in manufacturing products for hyperspectral imaging. The camera is proposed as new tool for novel applications in the field of Cultural Heritage. The novelty of this device relies in its reduced dimensions and weight and in its user-friendly interface, which make this camera much more manageable and affordable than conventional hyperspectral instrumentation. The camera operates in the 400-1000nm spectral range and can be mounted on a tripod. It can operate from short-distance (tens of cm) to long distances (tens of meters) with different spatial resolutions. The first release of the prototype underwent a preliminary in-depth experimentation at the IFAC-CNR laboratories. This paper illustrates the feasibility study carried out on the new SPECIM hyperspectral camera, tested under different conditions on laboratory targets and artworks with the specific aim of defining its potentialities and weaknesses in its use in the Cultural Heritage field.
Imaging of blood cells based on snapshot Hyper-Spectral Imaging systems
NASA Astrophysics Data System (ADS)
Robison, Christopher J.; Kolanko, Christopher; Bourlai, Thirimachos; Dawson, Jeremy M.
2015-05-01
Snapshot Hyper-Spectral imaging systems are capable of capturing several spectral bands simultaneously, offering coregistered images of a target. With appropriate optics, these systems are potentially able to image blood cells in vivo as they flow through a vessel, eliminating the need for a blood draw and sample staining. Our group has evaluated the capability of a commercial Snapshot Hyper-Spectral imaging system, the Arrow system from Rebellion Photonics, in differentiating between white and red blood cells on unstained blood smear slides. We evaluated the imaging capabilities of this hyperspectral camera; attached to a microscope at varying objective powers and illumination intensity. Hyperspectral data consisting of 25, 443x313 hyperspectral bands with ~3nm spacing were captured over the range of 419 to 494nm. Open-source hyper-spectral data cube analysis tools, used primarily in Geographic Information Systems (GIS) applications, indicate that white blood cells features are most prominent in the 428-442nm band for blood samples viewed under 20x and 50x magnification over a varying range of illumination intensities. These images could potentially be used in subsequent automated white blood cell segmentation and counting algorithms for performing in vivo white blood cell counting.
Lee, Hoonsoo; Kim, Moon S; Lohumi, Santosh; Cho, Byoung-Kwan
2018-06-05
Extensive research has been conducted on non-destructive and rapid detection of melamine in powdered foods in the last decade. While Raman and near-infrared hyperspectral imaging techniques have been successful in terms of non-destructive and rapid measurement, they have limitations with respect to measurement time and detection capability, respectively. Therefore, the objective of this study was to develop a mercury cadmium telluride (MCT)-based short-wave infrared (SWIR) hyperspectral imaging system and algorithm to detect melamine quantitatively in milk powder. The SWIR hyperspectral imaging system consisted of a custom-designed illumination system, a SWIR hyperspectral camera, a data acquisition module and a sample transfer table. SWIR hyperspectral images were obtained for melamine-milk samples with different melamine concentrations, pure melamine and pure milk powder. Analysis of variance and the partial least squares regression method over the 1000-2500 nm wavelength region were used to develop an optimal model for detection. The results showed that a melamine concentration as low as 50 ppm in melamine-milk powder samples could be detected. Thus, the MCT-based SWIR hyperspectral imaging system has the potential for quantitative and qualitative detection of adulterants in powder samples.
A data-management system using sensor technology and wireless devices for port security
NASA Astrophysics Data System (ADS)
Saldaña, Manuel; Rivera, Javier; Oyola, Jose; Manian, Vidya
2014-05-01
Sensor technologies such as infrared sensors and hyperspectral imaging, video camera surveillance are proven to be viable in port security. Drawing from sources such as infrared sensor data, digital camera images and processed hyperspectral images, this article explores the implementation of a real-time data delivery system. In an effort to improve the manner in which anomaly detection data is delivered to interested parties in port security, this system explores how a client-server architecture can provide protected access to data, reports, and device status. Sensor data and hyperspectral image data will be kept in a monitored directory, where the system will link it to existing users in the database. Since this system will render processed hyperspectral images that are dynamically added to the server - which often occupy a large amount of space - the resolution of these images is trimmed down to around 1024×768 pixels. Changes that occur in any image or data modification that originates from any sensor will trigger a message to all users that have a relation with the aforementioned. These messages will be sent to the corresponding users through automatic email generation and through a push notification using Google Cloud Messaging for Android. Moreover, this paper presents the complete architecture for data reception from the sensors, processing, storage and discusses how users of this system such as port security personnel can use benefit from the use of this service to receive secure real-time notifications if their designated sensors have detected anomalies and/or have remote access to results from processed hyperspectral imagery relevant to their assigned posts.
3D surface scan of biological samples with a Push-broom Imaging Spectrometer
NASA Astrophysics Data System (ADS)
Yao, Haibo; Kincaid, Russell; Hruska, Zuzana; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.
2013-08-01
The food industry is always on the lookout for sensing technologies for rapid and nondestructive inspection of food products. Hyperspectral imaging technology integrates both imaging and spectroscopy into unique imaging sensors. Its application for food safety and quality inspection has made significant progress in recent years. Specifically, hyperspectral imaging has shown its potential for surface contamination detection in many food related applications. Most existing hyperspectral imaging systems use pushbroom scanning which is generally used for flat surface inspection. In some applications it is desirable to be able to acquire hyperspectral images on circular objects such as corn ears, apples, and cucumbers. Past research describes inspection systems that examine all surfaces of individual objects. Most of these systems did not employ hyperspectral imaging. These systems typically utilized a roller to rotate an object, such as an apple. During apple rotation, the camera took multiple images in order to cover the complete surface of the apple. The acquired image data lacked the spectral component present in a hyperspectral image. This paper discusses the development of a hyperspectral imaging system for a 3-D surface scan of biological samples. The new instrument is based on a pushbroom hyperspectral line scanner using a rotational stage to turn the sample. The system is suitable for whole surface hyperspectral imaging of circular objects. In addition to its value to the food industry, the system could be useful for other applications involving 3-D surface inspection.
High-emulation mask recognition with high-resolution hyperspectral video capture system
NASA Astrophysics Data System (ADS)
Feng, Jiao; Fang, Xiaojing; Li, Shoufeng; Wang, Yongjin
2014-11-01
We present a method for distinguishing human face from high-emulation mask, which is increasingly used by criminals for activities such as stealing card numbers and passwords on ATM. Traditional facial recognition technique is difficult to detect such camouflaged criminals. In this paper, we use the high-resolution hyperspectral video capture system to detect high-emulation mask. A RGB camera is used for traditional facial recognition. A prism and a gray scale camera are used to capture spectral information of the observed face. Experiments show that mask made of silica gel has different spectral reflectance compared with the human skin. As multispectral image offers additional spectral information about physical characteristics, high-emulation mask can be easily recognized.
Multiview hyperspectral topography of tissue structural and functional characteristics
NASA Astrophysics Data System (ADS)
Zhang, Shiwu; Liu, Peng; Huang, Jiwei; Xu, Ronald
2012-12-01
Accurate and in vivo characterization of structural, functional, and molecular characteristics of biological tissue will facilitate quantitative diagnosis, therapeutic guidance, and outcome assessment in many clinical applications, such as wound healing, cancer surgery, and organ transplantation. However, many clinical imaging systems have limitations and fail to provide noninvasive, real time, and quantitative assessment of biological tissue in an operation room. To overcome these limitations, we developed and tested a multiview hyperspectral imaging system. The multiview hyperspectral imaging system integrated the multiview and the hyperspectral imaging techniques in a single portable unit. Four plane mirrors are cohered together as a multiview reflective mirror set with a rectangular cross section. The multiview reflective mirror set was placed between a hyperspectral camera and the measured biological tissue. For a single image acquisition task, a hyperspectral data cube with five views was obtained. The five-view hyperspectral image consisted of a main objective image and four reflective images. Three-dimensional topography of the scene was achieved by correlating the matching pixels between the objective image and the reflective images. Three-dimensional mapping of tissue oxygenation was achieved using a hyperspectral oxygenation algorithm. The multiview hyperspectral imaging technique is currently under quantitative validation in a wound model, a tissue-simulating blood phantom, and an in vivo biological tissue model. The preliminary results have demonstrated the technical feasibility of using multiview hyperspectral imaging for three-dimensional topography of tissue functional properties.
Concept and integration of an on-line quasi-operational airborne hyperspectral remote sensing system
NASA Astrophysics Data System (ADS)
Schilling, Hendrik; Lenz, Andreas; Gross, Wolfgang; Perpeet, Dominik; Wuttke, Sebastian; Middelmann, Wolfgang
2013-10-01
Modern mission characteristics require the use of advanced imaging sensors in reconnaissance. In particular, high spatial and high spectral resolution imaging provides promising data for many tasks such as classification and detecting objects of military relevance, such as camouflaged units or improvised explosive devices (IEDs). Especially in asymmetric warfare with highly mobile forces, intelligence, surveillance and reconnaissance (ISR) needs to be available close to real-time. This demands the use of unmanned aerial vehicles (UAVs) in combination with downlink capability. The system described in this contribution is integrated in a wing pod for ease of installation and calibration. It is designed for the real-time acquisition and analysis of hyperspectral data. The main component is a Specim AISA Eagle II hyperspectral sensor, covering the visible and near-infrared (VNIR) spectral range with a spectral resolution up to 1.2 nm and 1024 pixel across track, leading to a ground sampling distance below 1 m at typical altitudes. The push broom characteristic of the hyperspectral sensor demands an inertial navigation system (INS) for rectification and georeferencing of the image data. Additional sensors are a high resolution RGB (HR-RGB) frame camera and a thermal imaging camera. For on-line application, the data is preselected, compressed and transmitted to the ground control station (GCS) by an existing system in a second wing pod. The final result after data processing in the GCS is a hyperspectral orthorectified GeoTIFF, which is filed in the ERDAS APOLLO geographical information system. APOLLO allows remote access to the data and offers web-based analysis tools. The system is quasi-operational and was successfully tested in May 2013 in Bremerhaven, Germany.
Hyperspectral imaging using a color camera and its application for pathogen detection
USDA-ARS?s Scientific Manuscript database
This paper reports the results of a feasibility study for the development of a hyperspectral image recovery (reconstruction) technique using a RGB color camera and regression analysis in order to detect and classify colonies of foodborne pathogens. The target bacterial pathogens were the six represe...
NASA Astrophysics Data System (ADS)
Meola, Joseph; Absi, Anthony; Islam, Mohammed N.; Peterson, Lauren M.; Ke, Kevin; Freeman, Michael J.; Ifaraguerri, Agustin I.
2014-06-01
Hyperspectral imaging systems are currently used for numerous activities related to spectral identification of materials. These passive imaging systems rely on naturally reflected/emitted radiation as the source of the signal. Thermal infrared systems measure radiation emitted from objects in the scene. As such, they can operate at both day and night. However, visible through shortwave infrared systems measure solar illumination reflected from objects. As a result, their use is limited to daytime applications. Omni Sciences has produced high powered broadband shortwave infrared super-continuum laser illuminators. A 64-watt breadboard system was recently packaged and tested at Wright-Patterson Air Force Base to gauge beam quality and to serve as a proof-of-concept for potential use as an illuminator for a hyperspectral receiver. The laser illuminator was placed in a tower and directed along a 1.4km slant path to various target materials with reflected radiation measured with both a broadband camera and a hyperspectral imaging system to gauge performance.
Next generation miniature simultaneous multi-hyperspectral imaging systems
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele; Gupta, Neelam
2014-03-01
The concept for a hyperspectral imaging system using a Fabry-Perot tunable filter (FPTF) array that is fabricated using "miniature optical electrical mechanical system" (MOEMS) technology. [1] Using an array of FPTF as an approach to hyperspectral imaging relaxes wavelength tuning requirements considerably because of the reduced portion of the spectrum that is covered by each element in the array. In this paper, Pacific Advanced Technology and ARL present the results of a concept design and performed analysis of a MOEMS based tunable Fabry-Perot array (FPTF) to perform simultaneous multispectral and hyperspectral imaging with relatively high spatial resolution. The concept design was developed with support of an Army SBIR Phase I program The Fabry-Perot tunable MOEMS filter array was combined with a miniature optics array and a focal plane array of 1024 x 1024 pixels to produce 16 colors every frame of the camera. Each color image has a spatial resolution of 256 x 256 pixels with an IFOV of 1.7 mrads and FOV of 25 degrees. The spectral images are collected simultaneously allowing high resolution spectral-spatial-temporal information in each frame of the camera, thus enabling the implementation of spectral-temporal-spatial algorithms in real-time to provide high sensitivity for the detection of weak signals in a high clutter background environment with low sensitivity to camera motion. The challenge in the design was the independent actuation of each Fabry Perot element in the array allowing for individual tuning. An additional challenge was the need to maximize the fill factor to improve the spatial coverage with minimal dead space. This paper will only address the concept design and analysis of the Fabry-Perot tunable filter array. A previous paper presented at SPIE DSS in 2012 explained the design of the optical array.
Hakala, Teemu; Markelin, Lauri; Honkavaara, Eija; Scott, Barry; Theocharous, Theo; Nevalainen, Olli; Näsi, Roope; Suomalainen, Juha; Viljanen, Niko; Greenwell, Claire; Fox, Nigel
2018-05-03
Drone-based remote sensing has evolved rapidly in recent years. Miniaturized hyperspectral imaging sensors are becoming more common as they provide more abundant information of the object compared to traditional cameras. Reflectance is a physically defined object property and therefore often preferred output of the remote sensing data capture to be used in the further processes. Absolute calibration of the sensor provides a possibility for physical modelling of the imaging process and enables efficient procedures for reflectance correction. Our objective is to develop a method for direct reflectance measurements for drone-based remote sensing. It is based on an imaging spectrometer and irradiance spectrometer. This approach is highly attractive for many practical applications as it does not require in situ reflectance panels for converting the sensor radiance to ground reflectance factors. We performed SI-traceable spectral and radiance calibration of a tuneable Fabry-Pérot Interferometer -based (FPI) hyperspectral camera at the National Physical Laboratory NPL (Teddington, UK). The camera represents novel technology by collecting 2D format hyperspectral image cubes using time sequential spectral scanning principle. The radiance accuracy of different channels varied between ±4% when evaluated using independent test data, and linearity of the camera response was on average 0.9994. The spectral response calibration showed side peaks on several channels that were due to the multiple orders of interference of the FPI. The drone-based direct reflectance measurement system showed promising results with imagery collected over Wytham Forest (Oxford, UK).
Hakala, Teemu; Scott, Barry; Theocharous, Theo; Näsi, Roope; Suomalainen, Juha; Greenwell, Claire; Fox, Nigel
2018-01-01
Drone-based remote sensing has evolved rapidly in recent years. Miniaturized hyperspectral imaging sensors are becoming more common as they provide more abundant information of the object compared to traditional cameras. Reflectance is a physically defined object property and therefore often preferred output of the remote sensing data capture to be used in the further processes. Absolute calibration of the sensor provides a possibility for physical modelling of the imaging process and enables efficient procedures for reflectance correction. Our objective is to develop a method for direct reflectance measurements for drone-based remote sensing. It is based on an imaging spectrometer and irradiance spectrometer. This approach is highly attractive for many practical applications as it does not require in situ reflectance panels for converting the sensor radiance to ground reflectance factors. We performed SI-traceable spectral and radiance calibration of a tuneable Fabry-Pérot Interferometer -based (FPI) hyperspectral camera at the National Physical Laboratory NPL (Teddington, UK). The camera represents novel technology by collecting 2D format hyperspectral image cubes using time sequential spectral scanning principle. The radiance accuracy of different channels varied between ±4% when evaluated using independent test data, and linearity of the camera response was on average 0.9994. The spectral response calibration showed side peaks on several channels that were due to the multiple orders of interference of the FPI. The drone-based direct reflectance measurement system showed promising results with imagery collected over Wytham Forest (Oxford, UK). PMID:29751560
NASA Technical Reports Server (NTRS)
1999-01-01
A survey is presented of NASA-developed technologies and systems that were reaching commercial application in the course of 1999. Attention is given to the contributions of each major NASA Research Center. Representative 'spinoff' technologies include the predictive AI engine monitoring system EMPAS, the GPS-based Wide Area Augmentation System for aircraft navigation, a CMOS-Active Pixel Sensor camera-on-a-chip, a marine spectroradiometer, portable fuel cells, hyperspectral camera technology, and a rapid-prototyping process for ceramic components.
Excitation-scanning hyperspectral imaging system for microscopic and endoscopic applications
NASA Astrophysics Data System (ADS)
Mayes, Sam A.; Leavesley, Silas J.; Rich, Thomas C.
2016-04-01
Current microscopic and endoscopic technologies for cancer screening utilize white-light illumination sources. Hyper-spectral imaging has been shown to improve sensitivity while retaining specificity when compared to white-light imaging in both microscopy and in vivo imaging. However, hyperspectral imaging methods have historically suffered from slow acquisition times due to the narrow bandwidth of spectral filters. Often minutes are required to gather a full image stack. We have developed a novel approach called excitation-scanning hyperspectral imaging that provides 2-3 orders of magnitude increased signal strength. This reduces acquisition times significantly, allowing for live video acquisition. Here, we describe a preliminary prototype excitation-scanning hyperspectral imaging system that can be coupled with endoscopes or microscopes for hyperspectral imaging of tissues and cells. Our system is comprised of three subsystems: illumination, transmission, and imaging. The illumination subsystem employs light-emitting diode arrays to illuminate at different wavelengths. The transmission subsystem utilizes a unique geometry of optics and a liquid light guide. Software controls allow us to interface with and control the subsystems and components. Digital and analog signals are used to coordinate wavelength intensity, cycling and camera triggering. Testing of the system shows it can cycle 16 wavelengths at as fast as 1 ms per cycle. Additionally, more than 18% of the light transmits through the system. Our setup should allow for hyperspectral imaging of tissue and cells in real time.
NASA Astrophysics Data System (ADS)
Cabib, Dario; Lavi, Moshe; Gil, Amir; Milman, Uri
2011-06-01
Since the early '90's CI has been involved in the development of FTIR hyperspectral imagers based on a Sagnac or similar type of interferometer. CI also pioneered the commercialization of such hyperspectral imagers in those years. After having developed a visible version based on a CCD in the early '90's (taken on by a spin-off company for biomedical applications) and a 3 to 5 micron infrared version based on a cooled InSb camera in 2008, it is now developing an LWIR version based on an uncooled camera for the 8 to 14 microns range. In this paper we will present design features and expected performance of the system. The instrument is designed to be rugged for field use, yield a relatively high spectral resolution of 8 cm-1, an IFOV of 0.5 mrad., a 640x480 pixel spectral cube in less than a minute and a noise equivalent spectral radiance of 40 nW/cm2/sr/cm-1 at 10μ. The actually measured performance will be presented in a future paper.
Hyperspectral imaging from space: Warfighter-1
NASA Astrophysics Data System (ADS)
Cooley, Thomas; Seigel, Gary; Thorsos, Ivan
1999-01-01
The Air Force Research Laboratory Integrated Space Technology Demonstrations (ISTD) Program Office has partnered with Orbital Sciences Corporation (OSC) to complement the commercial satellite's high-resolution panchromatic imaging and Multispectral imaging (MSI) systems with a moderate resolution Hyperspectral imaging (HSI) spectrometer camera. The program is an advanced technology demonstration utilizing a commercially based space capability to provide unique functionality in remote sensing technology. This leveraging of commercial industry to enhance the value of the Warfighter-1 program utilizes the precepts of acquisition reform and is a significant departure from the old-school method of contracting for government managed large demonstration satellites with long development times and technology obsolescence concerns. The HSI system will be able to detect targets from the spectral signature measured by the hyperspectral camera. The Warfighter-1 program will also demonstrate the utility of the spectral information to theater military commanders and intelligence analysts by transmitting HSI data directly to a mobile ground station that receives and processes the data. After a brief history of the project origins, this paper will present the details of the Warfighter-1 system and expected results from exploitation of HSI data as well as the benefits realized by this collaboration between the Air Force and commercial industry.
Hyperspectral imaging using a color camera and its application for pathogen detection
NASA Astrophysics Data System (ADS)
Yoon, Seung-Chul; Shin, Tae-Sung; Heitschmidt, Gerald W.; Lawrence, Kurt C.; Park, Bosoon; Gamble, Gary
2015-02-01
This paper reports the results of a feasibility study for the development of a hyperspectral image recovery (reconstruction) technique using a RGB color camera and regression analysis in order to detect and classify colonies of foodborne pathogens. The target bacterial pathogens were the six representative non-O157 Shiga-toxin producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145) grown in Petri dishes of Rainbow agar. The purpose of the feasibility study was to evaluate whether a DSLR camera (Nikon D700) could be used to predict hyperspectral images in the wavelength range from 400 to 1,000 nm and even to predict the types of pathogens using a hyperspectral STEC classification algorithm that was previously developed. Unlike many other studies using color charts with known and noise-free spectra for training reconstruction models, this work used hyperspectral and color images, separately measured by a hyperspectral imaging spectrometer and the DSLR color camera. The color images were calibrated (i.e. normalized) to relative reflectance, subsampled and spatially registered to match with counterpart pixels in hyperspectral images that were also calibrated to relative reflectance. Polynomial multivariate least-squares regression (PMLR) was previously developed with simulated color images. In this study, partial least squares regression (PLSR) was also evaluated as a spectral recovery technique to minimize multicollinearity and overfitting. The two spectral recovery models (PMLR and PLSR) and their parameters were evaluated by cross-validation. The QR decomposition was used to find a numerically more stable solution of the regression equation. The preliminary results showed that PLSR was more effective especially with higher order polynomial regressions than PMLR. The best classification accuracy measured with an independent test set was about 90%. The results suggest the potential of cost-effective color imaging using hyperspectral image classification algorithms for rapidly differentiating pathogens in agar plates.
Garcia, Jair E.; Girard, Madeline B.; Kasumovic, Michael; Petersen, Phred; Wilksch, Philip A.; Dyer, Adrian G.
2015-01-01
Background The ability to discriminate between two similar or progressively dissimilar colours is important for many animals as it allows for accurately interpreting visual signals produced by key target stimuli or distractor information. Spectrophotometry objectively measures the spectral characteristics of these signals, but is often limited to point samples that could underestimate spectral variability within a single sample. Algorithms for RGB images and digital imaging devices with many more than three channels, hyperspectral cameras, have been recently developed to produce image spectrophotometers to recover reflectance spectra at individual pixel locations. We compare a linearised RGB and a hyperspectral camera in terms of their individual capacities to discriminate between colour targets of varying perceptual similarity for a human observer. Main Findings (1) The colour discrimination power of the RGB device is dependent on colour similarity between the samples whilst the hyperspectral device enables the reconstruction of a unique spectrum for each sampled pixel location independently from their chromatic appearance. (2) Uncertainty associated with spectral reconstruction from RGB responses results from the joint effect of metamerism and spectral variability within a single sample. Conclusion (1) RGB devices give a valuable insight into the limitations of colour discrimination with a low number of photoreceptors, as the principles involved in the interpretation of photoreceptor signals in trichromatic animals also apply to RGB camera responses. (2) The hyperspectral camera architecture provides means to explore other important aspects of colour vision like the perception of certain types of camouflage and colour constancy where multiple, narrow-band sensors increase resolution. PMID:25965264
Innovative R.E.A. tools for integrated bathymetric survey
NASA Astrophysics Data System (ADS)
Demarte, Maurizio; Ivaldi, Roberta; Sinapi, Luigi; Bruzzone, Gabriele; Caccia, Massimo; Odetti, Angelo; Fontanelli, Giacomo; Masini, Andrea; Simeone, Emilio
2017-04-01
The REA (Rapid Environmental Assessment) concept is a methodology finalized to acquire environmental information, process them and return in standard paper-chart or standard digital format. Acquired data become thus available for the ingestion or the valorization of the Civilian Protection Emergency Organization or the Rapid Response Forces. The use of Remotely Piloted Aircraft Systems (RPAS) with the miniaturization of multispectral camera or Hyperspectral camera gives to the operator the capability to react in a short time jointly with the capacity to collect a big amount of different data and to deliver a very large number of products. The proposed methodology incorporates data collected from remote and autonomous sensors that acquire data over areas in a cost-effective manner. The hyperspectral sensors are able to map seafloor morphology, seabed structure, depth of bottom surface and an estimate of sediment development. The considerable spectral portions are selected using an appropriate configuration of hyperspectral cameras to maximize the spectral resolution. Data acquired by hyperspectral camera are geo-referenced synchronously to an Attitude and Heading Reference Systems (AHRS) sensor. The data can be subjected to a first step on-board processing of the unmanned vehicle before be transferred through the Ground Control Station (GCS) to a Processing Exploitation Dissemination (PED) system. The recent introduction of Data Distribution Systems (DDS) capabilities in PED allow a cooperative distributed approach to modern decision making. Two platforms are used in our project, a Remote Piloted Aircraft (RPAS) and an Unmanned Surface Vehicle (USV). The two platforms mutually interact to cover a surveyed area wider than the ones that could be covered by the single vehicles. The USV, especially designed to work in very shallow water, has a modular structure and an open hardware and software architecture allowing for an easy installation and integration of various sensors useful for seabed analysis. The very stable platform located on the top of the USV allows for taking-off and landing of the RPAS. By exploiting its higher power autonomy and load capability, the USV will be used as a mothership for the RPAS. In particular, during the missions the USV will be able to furnish recharging possibility for the RPAS and it will be able to function as a bridge for the communication between the RPAS and its control station. The main advantage of the system is the remote acquisition of high-resolution bathymetric data from RPAS in areas where the possibility to have a systematic and traditional survey are few or none. These tools (USV carrying an RPAS with Hyperspectral camera) constitute an innovative and powerful system that gives to the Emergency Response Unit the right instruments to react quickly. The developing of this support could be solve the classical conflict between resolution, needed to capture the fine scale variability and coverage, needed for the large environmental phenomena, with very high variability over a wide range of spatial and temporal scales as the coastal environment.
Imaging spectroscopy using embedded diffractive optical arrays
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele; Hinnrichs, Bradford
2017-09-01
Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera based on diffractive optic arrays. This approach to hyperspectral imaging has been demonstrated in all three infrared bands SWIR, MWIR and LWIR. The hyperspectral optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of this infrared hyperspectral sensor. This new and innovative approach to an infrared hyperspectral imaging spectrometer uses micro-optics that are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a small satellite, mini-UAV, commercial quadcopter or man portable. Also, an application of how this spectral imaging technology can easily be used to quantify the mass and volume flow rates of hydrocarbon gases. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. The detector array is divided into sub-images covered by each lenslet. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the number of simultaneous different spectral images collected each frame of the camera. A 2 x 2 lenslet array will image four different spectral images of the scene each frame and when coupled with a 512 x 512 focal plane array will give spatial resolution of 256 x 256 pixel each spectral image. Another system that we developed uses a 4 x 4 lenslet array on a 1024 x 1024 pixel element focal plane array which gives 16 spectral images of 256 x 256 pixel resolution each frame. This system spans the SWIR and MWIR bands with a single optical array and focal plane array.
A New Hyperspectral Designed for Small UAS Tested in Real World Applications
NASA Astrophysics Data System (ADS)
Marcucci, E.; Saiet, E., II; Hatfield, M. C.
2014-12-01
The ability to investigate landscape and vegetation from airborne instruments offers many advantages, including high resolution data, ability to deploy instruments over a specific area, and repeat measurements. The Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) has recently integrated a hyperspectral imaging camera onto their Ptarmigan hexacopter. The Rikola Hyperspectral Camera manufactured by VTT and Rikola, Ltd. is capable of obtaining data within the 400-950 nm range with an accuracy of ~1 nm. Using the compact flash on the UAV limits the maximum number of channels to 24 this summer. The camera uses a single frame to sequentially record the spectral bands of interest in a 37° field-of-view. Because the camera collects data as single frames it takes a finite amount of time to compile the complete spectral. Although each frame takes only 5 nanoseconds, co-registration of frames is still required. The hovering ability of the hexacopter helps eliminate frame shift. GPS records data for incorporation into a larger dataset. Conservatively, the Ptarmigan can fly at an altitude of 400 feet, for 15 minutes, and 7000 feet away from the operator. The airborne hyperspectral instrument will be extremely useful to scientists as a platform that can provide data on-request. Since the spectral range of the camera is ideal for the study of vegetation, this study 1) examines seasonal changes of vegetation of the Fairbanks area, 2) ground-truths satellite measurements, and 3) ties vegetation conditions around a weather tower to the tower readings. Through this proof of concept, ACUASI provides a means for scientists to request the most up-to-date and location-specific data for their field sites. Additionally, the resolution of the airborne instruments is much higher than that of satellite data, these may be readily tasked, and they have the advantage over manned flights in terms of manpower and cost.
Ivorra, Eugenio; Verdu, Samuel; Sánchez, Antonio J; Grau, Raúl; Barat, José M
2016-10-19
A technique that combines the spatial resolution of a 3D structured-light (SL) imaging system with the spectral analysis of a hyperspectral short-wave near infrared system was developed for freshness predictions of gilthead sea bream on the first storage days (Days 0-6). This novel approach allows the hyperspectral analysis of very specific fish areas, which provides more information for freshness estimations. The SL system obtains a 3D reconstruction of fish, and an automatic method locates gilthead's pupils and irises. Once these regions are positioned, the hyperspectral camera acquires spectral information and a multivariate statistical study is done. The best region is the pupil with an R² of 0.92 and an RMSE of 0.651 for predictions. We conclude that the combination of 3D technology with the hyperspectral analysis offers plenty of potential and is a very promising technique to non destructively predict gilthead freshness.
Ivorra, Eugenio; Verdu, Samuel; Sánchez, Antonio J.; Grau, Raúl; Barat, José M.
2016-01-01
A technique that combines the spatial resolution of a 3D structured-light (SL) imaging system with the spectral analysis of a hyperspectral short-wave near infrared system was developed for freshness predictions of gilthead sea bream on the first storage days (Days 0–6). This novel approach allows the hyperspectral analysis of very specific fish areas, which provides more information for freshness estimations. The SL system obtains a 3D reconstruction of fish, and an automatic method locates gilthead’s pupils and irises. Once these regions are positioned, the hyperspectral camera acquires spectral information and a multivariate statistical study is done. The best region is the pupil with an R2 of 0.92 and an RMSE of 0.651 for predictions. We conclude that the combination of 3D technology with the hyperspectral analysis offers plenty of potential and is a very promising technique to non destructively predict gilthead freshness. PMID:27775556
NASA Astrophysics Data System (ADS)
Torabzadeh, Mohammad; Stockton, Patrick; Kennedy, Gordon T.; Saager, Rolf B.; Durkin, Anthony J.; Bartels, Randy A.; Tromberg, Bruce J.
2018-02-01
Hyperspectral Imaging (HSI) is a growing field in tissue optics due to its ability to collect continuous spectral features of a sample without a contact probe. Spatial Frequency Domain Imaging (SFDI) is a non-contact wide-field spectral imaging technique that is used to quantitatively characterize tissue structure and chromophore concentration. In this study, we designed a Hyperspectral SFDI (H-SFDI) instrument which integrated a supercontinuum laser source to a wavelength tuning optical configuration and a sCMOS camera to extract spatial (Field of View: 2cm×2cm) and broadband spectral features (580nm-950nm). A preliminary experiment was also performed to integrate the hyperspectral projection unit to a compressed single pixel camera and Light Labeling (LiLa) technique.
NASA Astrophysics Data System (ADS)
Turner, D.; Lucieer, A.; McCabe, M.; Parkes, S.; Clarke, I.
2017-08-01
In this study, we assess two push broom hyperspectral sensors as carried by small (10-15 kg) multi-rotor Unmanned Aircraft Systems (UAS). We used a Headwall Photonics micro-Hyperspec push broom sensor with 324 spectral bands (4-5 nm FWHM) and a Headwall Photonics nano-Hyperspec sensor with 270 spectral bands (6 nm FWHM) both in the VNIR spectral range (400-1000 nm). A gimbal was used to stabilise the sensors in relation to the aircraft flight dynamics, and for the micro-Hyperspec a tightly coupled dual frequency Global Navigation Satellite System (GNSS) receiver, an Inertial Measurement Unit (IMU), and Machine Vision Camera (MVC) were used for attitude and position determination. For the nano-Hyperspec, a navigation grade GNSS system and IMU provided position and attitude data. This study presents the geometric results of one flight over a grass oval on which a dense Ground Control Point (GCP) network was deployed. The aim being to ascertain the geometric accuracy achievable with the system. Using the PARGE software package (ReSe - Remote Sensing Applications) we ortho-rectify the push broom hyperspectral image strips and then quantify the accuracy of the ortho-rectification by using the GCPs as check points. The orientation (roll, pitch, and yaw) of the sensor is measured by the IMU. Alternatively imagery from a MVC running at 15 Hz, with accurate camera position data can be processed with Structure from Motion (SfM) software to obtain an estimated camera orientation. In this study, we look at which of these data sources will yield a flight strip with the highest geometric accuracy.
Spatial-scanning hyperspectral imaging probe for bio-imaging applications
NASA Astrophysics Data System (ADS)
Lim, Hoong-Ta; Murukeshan, Vadakke Matham
2016-03-01
The three common methods to perform hyperspectral imaging are the spatial-scanning, spectral-scanning, and snapshot methods. However, only the spectral-scanning and snapshot methods have been configured to a hyperspectral imaging probe as of today. This paper presents a spatial-scanning (pushbroom) hyperspectral imaging probe, which is realized by integrating a pushbroom hyperspectral imager with an imaging probe. The proposed hyperspectral imaging probe can also function as an endoscopic probe by integrating a custom fabricated image fiber bundle unit. The imaging probe is configured by incorporating a gradient-index lens at the end face of an image fiber bundle that consists of about 50 000 individual fiberlets. The necessary simulations, methodology, and detailed instrumentation aspects that are carried out are explained followed by assessing the developed probe's performance. Resolution test targets such as United States Air Force chart as well as bio-samples such as chicken breast tissue with blood clot are used as test samples for resolution analysis and for performance validation. This system is built on a pushbroom hyperspectral imaging system with a video camera and has the advantage of acquiring information from a large number of spectral bands with selectable region of interest. The advantages of this spatial-scanning hyperspectral imaging probe can be extended to test samples or tissues residing in regions that are difficult to access with potential diagnostic bio-imaging applications.
USDA-ARS?s Scientific Manuscript database
An Unmanned Agricultural Robotics System (UARS) is acquired, rebuilt with desired hardware, and operated in both classrooms and field. The UARS includes crop height sensor, crop canopy analyzer, normalized difference vegetative index (NDVI) sensor, multispectral camera, and hyperspectral radiometer...
In vivo and in vitro hyperspectral imaging of cervical neoplasia
NASA Astrophysics Data System (ADS)
Wang, Chaojian; Zheng, Wenli; Bu, Yanggao; Chang, Shufang; Tong, Qingping; Zhang, Shiwu; Xu, Ronald X.
2014-02-01
Cervical cancer is a prevalent disease in many developing countries. Colposcopy is the most common approach for screening cervical intraepithelial neoplasia (CIN). However, its clinical efficacy heavily relies on the examiner's experience. Spectroscopy is a potentially effective method for noninvasive diagnosis of cervical neoplasia. In this paper, we introduce a hyperspectral imaging technique for noninvasive detection and quantitative analysis of cervical neoplasia. A hyperspectral camera is used to collect the reflectance images of the entire cervix under xenon lamp illumination, followed by standard colposcopy examination and cervical tissue biopsy at both normal and abnormal sites in different quadrants. The collected reflectance data are calibrated and the hyperspectral signals are extracted. Further spectral analysis and image processing works are carried out to classify tissue into different types based on the spectral characteristics at different stages of cervical intraepithelial neoplasia. The hyperspectral camera is also coupled with a lab microscope to acquire the hyperspectral transmittance images of the pathological slides. The in vivo and the in vitro imaging results are compared with clinical findings to assess the accuracy and efficacy of the method.
Novel hyperspectral prediction method and apparatus
NASA Astrophysics Data System (ADS)
Kemeny, Gabor J.; Crothers, Natalie A.; Groth, Gard A.; Speck, Kathy A.; Marbach, Ralf
2009-05-01
Both the power and the challenge of hyperspectral technologies is the very large amount of data produced by spectral cameras. While off-line methodologies allow the collection of gigabytes of data, extended data analysis sessions are required to convert the data into useful information. In contrast, real-time monitoring, such as on-line process control, requires that compression of spectral data and analysis occur at a sustained full camera data rate. Efficient, high-speed practical methods for calibration and prediction are therefore sought to optimize the value of hyperspectral imaging. A novel method of matched filtering known as science based multivariate calibration (SBC) was developed for hyperspectral calibration. Classical (MLR) and inverse (PLS, PCR) methods are combined by spectroscopically measuring the spectral "signal" and by statistically estimating the spectral "noise." The accuracy of the inverse model is thus combined with the easy interpretability of the classical model. The SBC method is optimized for hyperspectral data in the Hyper-CalTM software used for the present work. The prediction algorithms can then be downloaded into a dedicated FPGA based High-Speed Prediction EngineTM module. Spectral pretreatments and calibration coefficients are stored on interchangeable SD memory cards, and predicted compositions are produced on a USB interface at real-time camera output rates. Applications include minerals, pharmaceuticals, food processing and remote sensing.
NASA Astrophysics Data System (ADS)
Laurence, Audrey; Pichette, Julien; Angulo-Rodríguez, Leticia M.; Saint Pierre, Catherine; Lesage, Frédéric; Bouthillier, Alain; Nguyen, Dang Khoa; Leblond, Frédéric
2016-03-01
Following normal neuronal activity, there is an increase in cerebral blood flow and cerebral blood volume to provide oxygenated hemoglobin to active neurons. For abnormal activity such as epileptiform discharges, this hemodynamic response may be inadequate to meet the high metabolic demands. To verify this hypothesis, we developed a novel hyperspectral imaging system able to monitor real-time cortical hemodynamic changes during brain surgery. The imaging system is directly integrated into a surgical microscope, using the white-light source for illumination. A snapshot hyperspectral camera is used for detection (4x4 mosaic filter array detecting 16 wavelengths simultaneously). We present calibration experiments where phantoms made of intralipid and food dyes were imaged. Relative concentrations of three dyes were recovered at a video rate of 30 frames per second. We also present hyperspectral recordings during brain surgery of epileptic patients with concurrent electrocorticography recordings. Relative concentration maps of oxygenated and deoxygenated hemoglobin were extracted from the data, allowing real-time studies of hemodynamic changes with a good spatial resolution. Finally, we present preliminary results on phantoms obtained with an integrated spatial frequency domain imaging system to recover tissue optical properties. This additional module, used together with the hyperspectral imaging system, will allow quantification of hemoglobin concentrations maps. Our hyperspectral imaging system offers a new tool to analyze hemodynamic changes, especially in the case of epileptiform discharges. It also offers an opportunity to study brain connectivity by analyzing correlations between hemodynamic responses of different tissue regions.
Lensless Photoluminescence Hyperspectral Camera Employing Random Speckle Patterns.
Žídek, Karel; Denk, Ondřej; Hlubuček, Jiří
2017-11-10
We propose and demonstrate a spectrally-resolved photoluminescence imaging setup based on the so-called single pixel camera - a technique of compressive sensing, which enables imaging by using a single-pixel photodetector. The method relies on encoding an image by a series of random patterns. In our approach, the image encoding was maintained via laser speckle patterns generated by an excitation laser beam scattered on a diffusor. By using a spectrometer as the single-pixel detector we attained a realization of a spectrally-resolved photoluminescence camera with unmatched simplicity. We present reconstructed hyperspectral images of several model scenes. We also discuss parameters affecting the imaging quality, such as the correlation degree of speckle patterns, pattern fineness, and number of datapoints. Finally, we compare the presented technique to hyperspectral imaging using sample scanning. The presented method enables photoluminescence imaging for a broad range of coherent excitation sources and detection spectral areas.
Detection of mechanical injury on pickling cucumbers using near-infrared hyperspectral imaging
NASA Astrophysics Data System (ADS)
Ariana, D.; Lu, R.; Guyer, D.
2005-11-01
Automated detection of defects on freshly harvested pickling cucumbers will help the pickle industry provide higher quality pickle products and reduce potential economic losses. Research was conducted on using a hyperspectral imaging system for detecting defects on pickling cucumbers caused by mechanical stress. A near-infrared hyperspectral imaging system was used to capture both spatial and spectral information from cucumbers in the spectral region of 900 - 1700 nm. The system consisted of an imaging spectrograph attached to an InGaAs camera with line-light fiber bundles as an illumination source. Cucumber samples were subjected to two forms of mechanical loading, dropping and rolling, to simulate stress caused by mechanical harvesting. Hyperspectral images were acquired from the cucumbers over time periods of 0, 1, 2, 3, and 6 days after mechanical stress. Hyperspectral image processing methods, including principal component analysis and wavelength selection, were developed to separate normal and mechanically injured cucumbers. Results showed that reflectance from normal or non-bruised cucumbers was consistently higher than that from bruised cucumbers. The spectral region between 950 and 1350 nm was found to be most effective for bruise detection. The hyperspectral imaging system detected all mechanically injured cucumbers immediately after they were bruised. The overall detection accuracy was 97% within two hours of bruising and it was lower as time progressed. Lower detection accuracies for the prolonged times after bruising were attributed to the self- healing of the bruised tissue after mechanical injury. This research demonstrated that hyperspectral imaging is useful for detecting mechanical injury on pickling cucumbers.
Kim, Taehoon; Visbal-Onufrak, Michelle A.; Konger, Raymond L.; Kim, Young L.
2017-01-01
Sensitive and accurate assessment of dermatologic inflammatory hyperemia in otherwise grossly normal-appearing skin conditions is beneficial to laypeople for monitoring their own skin health on a regular basis, to patients for looking for timely clinical examination, and to primary care physicians or dermatologists for delivering effective treatments. We propose that mathematical hyperspectral reconstruction from RGB images in a simple imaging setup can provide reliable visualization of hemoglobin content in a large skin area. Without relying on a complicated, expensive, and slow hyperspectral imaging system, we demonstrate the feasibility of determining heterogeneous or multifocal areas of inflammatory hyperemia associated with experimental photocarcinogenesis in mice. We envision that RGB-based reconstructed hyperspectral imaging of subclinical inflammatory hyperemic foci could potentially be integrated with the built-in camera (RGB sensor) of a smartphone to develop a simple imaging device that could offer affordable monitoring of dermatologic health. PMID:29188120
Hyperspectral image analysis for plant stress detection
USDA-ARS?s Scientific Manuscript database
Abiotic and disease-induced stress significantly reduces plant productivity. Automated on-the-go mapping of plant stress allows timely intervention and mitigating of the problem before critical thresholds are exceeded, thereby, maximizing productivity. A hyperspectral camera analyzed the spectral ...
Multispectral imaging system for contaminant detection
NASA Technical Reports Server (NTRS)
Poole, Gavin H. (Inventor)
2003-01-01
An automated inspection system for detecting digestive contaminants on food items as they are being processed for consumption includes a conveyor for transporting the food items, a light sealed enclosure which surrounds a portion of the conveyor, with a light source and a multispectral or hyperspectral digital imaging camera disposed within the enclosure. Operation of the conveyor, light source and camera are controlled by a central computer unit. Light reflected by the food items within the enclosure is detected in predetermined wavelength bands, and detected intensity values are analyzed to detect the presence of digestive contamination.
Polarized hyperspectral imaging system for in vivo detection of vulvar lichen sclerosis
NASA Astrophysics Data System (ADS)
Qu, Yingjie; Ren, Wenqi; Liu, Songde; Liu, Peng; Xie, Lan; Zhang, Xiaoyuan; Zhang, Shiwu; Chang, Shufang; Xu, Ronald
2016-03-01
Vulvar lichen sclerosis (VLS) is a chronic, inflammatory and mucocutaneous disease of extragenital skin, which often goes undetected for years. The underlying causes are associated with the decrease of VEGF that reduces the blood oxygenation of vulva and the structural changes in the collagen fibrils, which can lead to scarring of the affected area. However, few methods are available for quantitative detection of VLS. Clinician's examinations are subjective and may lead to misdiagnosis. Spectroscopy is a potentially effective method for noninvasive detection of VLS. In this paper, we developed a polarized, hyperspectral imaging system for quantitative assessment. The system utilized a hyperspectral camera to collect the reflectance images of the entire vulva under Xenon lamp illumination with and without a polarizer in front of the fiber. One image (Ipar) acquired with the AOTF parallel to the polarization of illumination and the other image (Iper) acquired with the AOTF perpendicular to the illumination. This paper compares polarized images of VLS in a pilot clinical study. The collected reflectance data under Xenon lamp illumination without a polarizer are calibrated and the hyperspectral signals are extracted. An IRB approved clinical trial was carried out to evaluate the clinical utility for VLS detection. Our pilot study has demonstrated the technical potential of using this polarized hyperspectral imaging system for in vivo detection of vulvar lichen sclerosis.
Construction of a small and lightweight hyperspectral imaging system
NASA Astrophysics Data System (ADS)
Vogel, Britta; Hünniger, Dirk; Bastian, Georg
2014-05-01
The analysis of the reflected sunlight offers great opportunity to gain information about the environment, including vegetation and soil. In the case of plants the wavelength ratio of the reflected light usually undergoes a change if the state of growth or state of health changes. So the measurement of the reflected light allows drawing conclusions about the state of, amongst others, vegetation. Using a hyperspectral imaging system for data acquisition leads to a large dataset, which can be evaluated with respect to several different questions to obtain various information by one measurement. Based on commercially available plain optical components we developed a small and lightweight hyperspectral imaging system within the INTERREG IV A-Project SMART INSPECTORS. The project SMART INSPECTORS [Smart Aerial Test Rigs with Infrared Spectrometers and Radar] deals with the fusion of airborne visible and infrared imaging remote sensing instruments and wireless sensor networks for precision agriculture and environmental research. A high performance camera was required in terms of good signal, good wavelength resolution and good spatial resolution, while severe constraints of size, proportions and mass had to be met due to the intended use on small unmanned aerial vehicles. The detector was chosen to operate without additional cooling. The refractive and focusing optical components were identified by supporting works with an optical raytracing software and a self-developed program. We present details of design and construction of our camera system, test results to confirm the optical simulation predictions as well as our first measurements.
A hyperspectral imaging system for the evaluation of the human iris spectral reflectance
NASA Astrophysics Data System (ADS)
Di Cecilia, Luca; Marazzi, Francesco; Rovati, Luigi
2017-02-01
According to previous studies, the measurement of the human iris pigmentation can be exploited to detect certain eye pathological conditions in their early stage. In this paper, we propose an instrument and a method to perform hyperspectral quantitative measurements of the iris spectral reflectance. The system is based on a simple imaging setup, which includes a monochrome camera mounted on a standard ophthalmic microscope movement controller, a monochromator, and a flashing LED-based slit lamp. To assure quantitative measurements, the system is properly calibrated against a NIST reflectance standard. Iris reflectance images can be obtained in the spectral range 495-795 nm with a resolution of 25 nm. Each image consists of 1280 x 1024 pixels having a spatial resolution of 18 μm. Reflectance spectra can be calculated both from discrete areas of the iris and as the average of the whole iris surface. Preliminary results suggest that hyperspectral imaging of the iris can provide much more morphological and spectral information with respect to conventional qualitative colorimetric methods.
Spectral-Spatial Scale Invariant Feature Transform for Hyperspectral Images.
Al-Khafaji, Suhad Lateef; Jun Zhou; Zia, Ali; Liew, Alan Wee-Chung
2018-02-01
Spectral-spatial feature extraction is an important task in hyperspectral image processing. In this paper we propose a novel method to extract distinctive invariant features from hyperspectral images for registration of hyperspectral images with different spectral conditions. Spectral condition means images are captured with different incident lights, viewing angles, or using different hyperspectral cameras. In addition, spectral condition includes images of objects with the same shape but different materials. This method, which is named spectral-spatial scale invariant feature transform (SS-SIFT), explores both spectral and spatial dimensions simultaneously to extract spectral and geometric transformation invariant features. Similar to the classic SIFT algorithm, SS-SIFT consists of keypoint detection and descriptor construction steps. Keypoints are extracted from spectral-spatial scale space and are detected from extrema after 3D difference of Gaussian is applied to the data cube. Two descriptors are proposed for each keypoint by exploring the distribution of spectral-spatial gradient magnitude in its local 3D neighborhood. The effectiveness of the SS-SIFT approach is validated on images collected in different light conditions, different geometric projections, and using two hyperspectral cameras with different spectral wavelength ranges and resolutions. The experimental results show that our method generates robust invariant features for spectral-spatial image matching.
Bayer Filter Snapshot Hyperspectral Fundus Camera for Human Retinal Imaging
Liu, Wenzhong; Nesper, Peter; Park, Justin; Zhang, Hao F.; Fawzi, Amani A.
2016-01-01
Purpose To demonstrate the versatility and performance of a compact Bayer filter snapshot hyperspectral fundus camera for in-vivo clinical applications including retinal oximetry and macular pigment optical density measurements. Methods 12 healthy volunteers were recruited under an Institutional Review Board (IRB) approved protocol. Fundus images were taken with a custom hyperspectral camera with a spectral range of 460–630 nm. We determined retinal vascular oxygen saturation (sO2) for the healthy population using the captured spectra by least squares curve fitting. Additionally, macular pigment optical density was localized and visualized using multispectral reflectometry from selected wavelengths. Results We successfully determined the mean sO2 of arteries and veins of each subject (ages 21–80) with excellent intrasubject repeatability (1.4% standard deviation). The mean arterial sO2 for all subjects was 90.9% ± 2.5%, whereas the mean venous sO2 for all subjects was 64.5% ± 3.5%. The mean artery–vein (A–V) difference in sO2 varied between 20.5% and 31.9%. In addition, we were able to reveal and quantify macular pigment optical density. Conclusions We demonstrated a single imaging tool capable of oxygen saturation and macular pigment density measurements in vivo. The unique combination of broad spectral range, high spectral–spatial resolution, rapid and robust imaging capability, and compact design make this system a valuable tool for multifunction spectral imaging that can be easily performed in a clinic setting. PMID:27767345
Habib, Ayman; Han, Youkyung; Xiong, Weifeng; ...
2016-09-24
Low-cost Unmanned Airborne Vehicles (UAVs) equipped with consumer-grade imaging systems have emerged as a potential remote sensing platform that could satisfy the needs of a wide range of civilian applications. Among these applications, UAV-based agricultural mapping and monitoring have attracted significant attention from both the research and professional communities. The interest in UAV-based remote sensing for agricultural management is motivated by the need to maximize crop yield. Remote sensing-based crop yield prediction and estimation are primarily based on imaging systems with different spectral coverage and resolution (e.g., RGB and hyperspectral imaging systems). Due to the data volume, RGB imaging ismore » based on frame cameras, while hyperspectral sensors are primarily push-broom scanners. To cope with the limited endurance and payload constraints of low-cost UAVs, the agricultural research and professional communities have to rely on consumer-grade and light-weight sensors. However, the geometric fidelity of derived information from push-broom hyperspectral scanners is quite sensitive to the available position and orientation established through a direct geo-referencing unit onboard the imaging platform (i.e., an integrated Global Navigation Satellite System (GNSS) and Inertial Navigation System (INS). This paper presents an automated framework for the integration of frame RGB images, push-broom hyperspectral scanner data and consumer-grade GNSS/INS navigation data for accurate geometric rectification of the hyperspectral scenes. The approach relies on utilizing the navigation data, together with a modified Speeded-Up Robust Feature (SURF) detector and descriptor, for automating the identification of conjugate features in the RGB and hyperspectral imagery. The SURF modification takes into consideration the available direct geo-referencing information to improve the reliability of the matching procedure in the presence of repetitive texture within a mechanized agricultural field. Identified features are then used to improve the geometric fidelity of the previously ortho-rectified hyperspectral data. Lastly, experimental results from two real datasets show that the geometric rectification of the hyperspectral data was improved by almost one order of magnitude.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habib, Ayman; Han, Youkyung; Xiong, Weifeng
Low-cost Unmanned Airborne Vehicles (UAVs) equipped with consumer-grade imaging systems have emerged as a potential remote sensing platform that could satisfy the needs of a wide range of civilian applications. Among these applications, UAV-based agricultural mapping and monitoring have attracted significant attention from both the research and professional communities. The interest in UAV-based remote sensing for agricultural management is motivated by the need to maximize crop yield. Remote sensing-based crop yield prediction and estimation are primarily based on imaging systems with different spectral coverage and resolution (e.g., RGB and hyperspectral imaging systems). Due to the data volume, RGB imaging ismore » based on frame cameras, while hyperspectral sensors are primarily push-broom scanners. To cope with the limited endurance and payload constraints of low-cost UAVs, the agricultural research and professional communities have to rely on consumer-grade and light-weight sensors. However, the geometric fidelity of derived information from push-broom hyperspectral scanners is quite sensitive to the available position and orientation established through a direct geo-referencing unit onboard the imaging platform (i.e., an integrated Global Navigation Satellite System (GNSS) and Inertial Navigation System (INS). This paper presents an automated framework for the integration of frame RGB images, push-broom hyperspectral scanner data and consumer-grade GNSS/INS navigation data for accurate geometric rectification of the hyperspectral scenes. The approach relies on utilizing the navigation data, together with a modified Speeded-Up Robust Feature (SURF) detector and descriptor, for automating the identification of conjugate features in the RGB and hyperspectral imagery. The SURF modification takes into consideration the available direct geo-referencing information to improve the reliability of the matching procedure in the presence of repetitive texture within a mechanized agricultural field. Identified features are then used to improve the geometric fidelity of the previously ortho-rectified hyperspectral data. Lastly, experimental results from two real datasets show that the geometric rectification of the hyperspectral data was improved by almost one order of magnitude.« less
Gyrocopter-Based Remote Sensing Platform
NASA Astrophysics Data System (ADS)
Weber, I.; Jenal, A.; Kneer, C.; Bongartz, J.
2015-04-01
In this paper the development of a lightweight and highly modularized airborne sensor platform for remote sensing applications utilizing a gyrocopter as a carrier platform is described. The current sensor configuration consists of a high resolution DSLR camera for VIS-RGB recordings. As a second sensor modality, a snapshot hyperspectral camera was integrated in the aircraft. Moreover a custom-developed thermal imaging system composed of a VIS-PAN camera and a LWIR-camera is used for aerial recordings in the thermal infrared range. Furthermore another custom-developed highly flexible imaging system for high resolution multispectral image acquisition with up to six spectral bands in the VIS-NIR range is presented. The performance of the overall system was tested during several flights with all sensor modalities and the precalculated demands with respect to spatial resolution and reliability were validated. The collected data sets were georeferenced, georectified, orthorectified and then stitched to mosaics.
NASA Astrophysics Data System (ADS)
Truitt, Paul W.; Soliz, Peter; Meigs, Andrew D.; Otten, Leonard John, III
2000-11-01
A Fourier Transform hyperspectral imager was integrated onto a standard clinical fundus camera, a Zeiss FF3, for the purposes of spectrally characterizing normal anatomical and pathological features in the human ocular fundus. To develop this instrument an existing FDA approved retinal camera was selected to avoid the difficulties of obtaining new FDA approval. Because of this, several unusual design constraints were imposed on the optical configuration. Techniques to calibrate the sensor and to define where the hyperspectral pushbroom stripe was located on the retina were developed, including the manufacturing of an artificial eye with calibration features suitable for a spectral imager. In this implementation the Fourier transform hyperspectral imager can collect over a hundred 86 cm-1 spectrally resolved bands with 12 micro meter/pixel spatial resolution within the 1050 nm to 450 nm band. This equates to 2 nm to 8 nm spectral resolution depending on the wavelength. For retinal observations the band of interest tends to lie between 475 nm and 790 nm. The instrument has been in use over the last year successfully collecting hyperspectral images of the optic disc, retinal vessels, choroidal vessels, retinal backgrounds, and macula diabetic macular edema, and lesions of age-related macular degeneration.
Near-infrared hyperspectral imaging of atherosclerotic tissue phantom
NASA Astrophysics Data System (ADS)
Ishii, K.; Nagao, R.; Kitayabu, A.; Awazu, K.
2013-06-01
A method to identify vulnerable plaques that are likely to cause acute coronary events has been required. The object of this study is identifying vulnerable plaques by hyperspectral imaging in near-infrared range (NIR-HSI) for an angioscopic application. In this study, NIR-HSI of atherosclerotic tissue phantoms was demonstrated under simulated angioscopic conditions. NIR-HSI system was constructed by a NIR super continuum light and a mercury-cadmium-telluride camera. Spectral absorbance values were obtained in the wavelength range from 1150 to 2400 nm at 10 nm intervals. The hyperspectral images were constructed with spectral angle mapper algorithm. As a result, detections of the lipid area in the atherosclerotic tissue phantom under angioscopic observation conditions were achieved especially in the wavelength around 1200 nm, which corresponds to the second overtone of CH stretching vibration mode.
Kim, Heekang; Kwon, Soon; Kim, Sungho
2016-07-08
This paper proposes a vehicle light detection method using a hyperspectral camera instead of a Charge-Coupled Device (CCD) or Complementary metal-Oxide-Semiconductor (CMOS) camera for adaptive car headlamp control. To apply Intelligent Headlight Control (IHC), the vehicle headlights need to be detected. Headlights are comprised from a variety of lighting sources, such as Light Emitting Diodes (LEDs), High-intensity discharge (HID), and halogen lamps. In addition, rear lamps are made of LED and halogen lamp. This paper refers to the recent research in IHC. Some problems exist in the detection of headlights, such as erroneous detection of street lights or sign lights and the reflection plate of ego-car from CCD or CMOS images. To solve these problems, this study uses hyperspectral images because they have hundreds of bands and provide more information than a CCD or CMOS camera. Recent methods to detect headlights used the Spectral Angle Mapper (SAM), Spectral Correlation Mapper (SCM), and Euclidean Distance Mapper (EDM). The experimental results highlight the feasibility of the proposed method in three types of lights (LED, HID, and halogen).
Uncooled long-wave infrared hyperspectral imaging
NASA Technical Reports Server (NTRS)
Lucey, Paul G. (Inventor)
2006-01-01
A long-wave infrared hyperspectral sensor device employs a combination of an interferometer with an uncooled microbolometer array camera to produce hyperspectral images without the use of bulky, power-hungry motorized components, making it suitable for UAV vehicles, small mobile platforms, or in extraterrestrial environments. The sensor device can provide signal-to-noise ratios near 200 for ambient temperature scenes with 33 wavenumber resolution at a frame rate of 50 Hz, with higher results indicated by ongoing component improvements.
High Resolution Temperature Measurement of Liquid Stainless Steel Using Hyperspectral Imaging
Devesse, Wim; De Baere, Dieter; Guillaume, Patrick
2017-01-01
A contactless temperature measurement system is presented based on a hyperspectral line camera that captures the spectra in the visible and near infrared (VNIR) region of a large set of closely spaced points. The measured spectra are used in a nonlinear least squares optimization routine to calculate a one-dimensional temperature profile with high spatial resolution. Measurements of a liquid melt pool of AISI 316L stainless steel show that the system is able to determine the absolute temperatures with an accuracy of 10%. The measurements are made with a spatial resolution of 12 µm/pixel, justifying its use in applications where high temperature measurements with high spatial detail are desired, such as in the laser material processing and additive manufacturing fields. PMID:28067764
Pixelated camouflage patterns from the perspective of hyperspectral imaging
NASA Astrophysics Data System (ADS)
Racek, František; Jobánek, Adam; Baláž, Teodor; Krejčí, Jaroslav
2016-10-01
Pixelated camouflage patterns fulfill the role of both principles the matching and the disrupting that are exploited for blending the target into the background. It means that pixelated pattern should respect natural background in spectral and spatial characteristics embodied in micro and macro patterns. The HS imaging plays the similar, however the reverse role in the field of reconnaissance systems. The HS camera fundamentally records and extracts both the spectral and spatial information belonging to the recorded scenery. Therefore, the article deals with problems of hyperspectral (HS) imaging and subsequent processing of HS images of pixelated camouflage patterns which are among others characterized by their specific spatial frequency heterogeneity.
Progress in the hyperspectral payload for PRISMA programme
NASA Astrophysics Data System (ADS)
Meini, Marco; Battazza, Fabrizio; Formaro, Roberto; Bini, Alessandro
2013-10-01
The PRISMA (PRecursore IperSpettrale della Missione Applicativa) Programme is an ASI (Agenzia Spaziale Italiana) hyperspectral mission for Earth observation based on a mono-payload single satellite: an Italian Consortium is in charge to realize the mission; Selex ES has the full responsibility of the hyperspectral payload composed by a high spectral resolution spectrometer optically integrated with a medium resolution panchromatic camera. The optical design permits to cover the wavelength range from 400 to 2500 nm and it is based on high transmittance optical assemblies, including a reflective common telescope in Three-Mirror Anastigmat (TMA) configuration, a single slit aperture, a panchromatic camera (700-900 nm) and a spectrometer having two channels (VNIR and SWIR), each one using an suitable prism configuration and spectrally separated by a beam splitter, conceived to minimize the number of optical elements. High performance MCT-based detectors represent the core of the instrument. To provide the required data quality for the entire mission lifetime (5 years), an accurate and stable calibration unit (radiometric and spectral) is integrated, for the in-flight instrument calibration. The thermal design has been based on a passive cooling system: a double stage radiator, suitable oriented and protected from unwanted heat fluxes, high performance heat pipes and an operational heaters network represent the solution adopted to achieve the required thermal stability.
Visible hyperspectral imaging evaluating the cutaneous response to ultraviolet radiation
NASA Astrophysics Data System (ADS)
Ilias, Michail A.; Häggblad, Erik; Anderson, Chris; Salerud, E. Göran
2007-02-01
In vivo diagnostics of skin diseases as well as understanding of the skin biology constitute a field demanding characterization of physiological and anatomical parameters. Biomedical optics has been successfully used, to qualitatively and quantitatively estimate the microcirculatory conditions of superficial skin. Capillaroscopy, laser Doppler techniques and spectroscopy, all elucidate different aspects of microcirculation, e.g. capillary anatomy and distribution, tissue perfusion and hemoglobin oxygenation. We demonstrate the use of a diffuse reflectance hyperspectral imaging system for spatial and temporal characterization of tissue oxygenation, important to skin viability. The system comprises: light source, liquid crystal tunable filter, camera objective, CCD camera, and the decomposition of the spectral signature into relative amounts of oxy- and deoxygenized hemoglobin as well as melanin in every pixel resulting in tissue chromophore images. To validate the system, we used a phototesting model, creating a graded inflammatory response of a known geometry, in order to evaluate the ability to register spatially resolved reflectance spectra. The obtained results demonstrate the possibility to describe the UV inflammatory response by calculating the change in tissue oxygen level, intimately connected to a tissue's metabolism. Preliminary results on the estimation of melanin content are also presented.
An Intraoperative Visualization System Using Hyperspectral Imaging to Aid in Brain Tumor Delineation
Ortega, Samuel; M. Callicó, Gustavo; Juárez, Eduardo; Bulters, Diederik; Szolna, Adam; Piñeiro, Juan F.; Sosa, Coralia; J. O’Shanahan, Aruma; Bisshopp, Sara; Hernández, María; Morera, Jesús; Ravi, Daniele; Kiran, B. Ravi; Vega, Aurelio; Báez-Quevedo, Abelardo; Yang, Guang-Zhong; Stanciulescu, Bogdan; Sarmiento, Roberto
2018-01-01
Hyperspectral imaging (HSI) allows for the acquisition of large numbers of spectral bands throughout the electromagnetic spectrum (within and beyond the visual range) with respect to the surface of scenes captured by sensors. Using this information and a set of complex classification algorithms, it is possible to determine which material or substance is located in each pixel. The work presented in this paper aims to exploit the characteristics of HSI to develop a demonstrator capable of delineating tumor tissue from brain tissue during neurosurgical operations. Improved delineation of tumor boundaries is expected to improve the results of surgery. The developed demonstrator is composed of two hyperspectral cameras covering a spectral range of 400–1700 nm. Furthermore, a hardware accelerator connected to a control unit is used to speed up the hyperspectral brain cancer detection algorithm to achieve processing during the time of surgery. A labeled dataset comprised of more than 300,000 spectral signatures is used as the training dataset for the supervised stage of the classification algorithm. In this preliminary study, thematic maps obtained from a validation database of seven hyperspectral images of in vivo brain tissue captured and processed during neurosurgical operations demonstrate that the system is able to discriminate between normal and tumor tissue in the brain. The results can be provided during the surgical procedure (~1 min), making it a practical system for neurosurgeons to use in the near future to improve excision and potentially improve patient outcomes. PMID:29389893
Fabelo, Himar; Ortega, Samuel; Lazcano, Raquel; Madroñal, Daniel; M Callicó, Gustavo; Juárez, Eduardo; Salvador, Rubén; Bulters, Diederik; Bulstrode, Harry; Szolna, Adam; Piñeiro, Juan F; Sosa, Coralia; J O'Shanahan, Aruma; Bisshopp, Sara; Hernández, María; Morera, Jesús; Ravi, Daniele; Kiran, B Ravi; Vega, Aurelio; Báez-Quevedo, Abelardo; Yang, Guang-Zhong; Stanciulescu, Bogdan; Sarmiento, Roberto
2018-02-01
Hyperspectral imaging (HSI) allows for the acquisition of large numbers of spectral bands throughout the electromagnetic spectrum (within and beyond the visual range) with respect to the surface of scenes captured by sensors. Using this information and a set of complex classification algorithms, it is possible to determine which material or substance is located in each pixel. The work presented in this paper aims to exploit the characteristics of HSI to develop a demonstrator capable of delineating tumor tissue from brain tissue during neurosurgical operations. Improved delineation of tumor boundaries is expected to improve the results of surgery. The developed demonstrator is composed of two hyperspectral cameras covering a spectral range of 400-1700 nm. Furthermore, a hardware accelerator connected to a control unit is used to speed up the hyperspectral brain cancer detection algorithm to achieve processing during the time of surgery. A labeled dataset comprised of more than 300,000 spectral signatures is used as the training dataset for the supervised stage of the classification algorithm. In this preliminary study, thematic maps obtained from a validation database of seven hyperspectral images of in vivo brain tissue captured and processed during neurosurgical operations demonstrate that the system is able to discriminate between normal and tumor tissue in the brain. The results can be provided during the surgical procedure (~1 min), making it a practical system for neurosurgeons to use in the near future to improve excision and potentially improve patient outcomes.
High-speed mid-infrared hyperspectral imaging using quantum cascade lasers
NASA Astrophysics Data System (ADS)
Kelley, David B.; Goyal, Anish K.; Zhu, Ninghui; Wood, Derek A.; Myers, Travis R.; Kotidis, Petros; Murphy, Cara; Georgan, Chelsea; Raz, Gil; Maulini, Richard; Müller, Antoine
2017-05-01
We report on a standoff chemical detection system using widely tunable external-cavity quantum cascade lasers (ECQCLs) to illuminate target surfaces in the mid infrared (λ = 7.4 - 10.5 μm). Hyperspectral images (hypercubes) are acquired by synchronously operating the EC-QCLs with a LN2-cooled HgCdTe camera. The use of rapidly tunable lasers and a high-frame-rate camera enables the capture of hypercubes with 128 x 128 pixels and >100 wavelengths in <0.1 s. Furthermore, raster scanning of the laser illumination allowed imaging of a 100-cm2 area at 5-m standoff. Raw hypercubes are post-processed to generate a hypercube that represents the surface reflectance relative to that of a diffuse reflectance standard. Results will be shown for liquids (e.g., silicone oil) and solid particles (e.g., caffeine, acetaminophen) on a variety of surfaces (e.g., aluminum, plastic, glass). Signature spectra are obtained for particulate loadings of RDX on glass of <1 μg/cm2.
Evaluation of a hyperspectral image database for demosaicking purposes
NASA Astrophysics Data System (ADS)
Larabi, Mohamed-Chaker; Süsstrunk, Sabine
2011-01-01
We present a study on the the applicability of hyperspectral images to evaluate color filter array (CFA) design and the performance of demosaicking algorithms. The aim is to simulate a typical digital still camera processing pipe-line and to compare two different scenarios: evaluate the performance of demosaicking algorithms applied to raw camera RGB values before color rendering to sRGB, and evaluate the performance of demosaicking algorithms applied on the final sRGB color rendered image. The second scenario is the most frequently used one in literature because CFA design and algorithms are usually tested on a set of existing images that are already rendered, such as the Kodak Photo CD set containing the well-known lighthouse image. We simulate the camera processing pipe-line with measured spectral sensitivity functions of a real camera. Modeling a Bayer CFA, we select three linear demosaicking techniques in order to perform the tests. The evaluation is done using CMSE, CPSNR, s-CIELAB and MSSIM metrics to compare demosaicking results. We find that the performance, and especially the difference between demosaicking algorithms, is indeed significant depending if the mosaicking/demosaicking is applied to camera raw values as opposed to already rendered sRGB images. We argue that evaluating the former gives a better indication how a CFA/demosaicking combination will work in practice, and that it is in the interest of the community to create a hyperspectral image dataset dedicated to that effect.
The Prisma Hyperspectra Mission
NASA Astrophysics Data System (ADS)
Loizzo, R.; Ananasso, C.; Guarini, R.; Lopinto, E.; Candela, L.; Pisani, A. R.
2016-08-01
PRISMA (PRecursore IperSpettrale della Missione Applicativa) is an Italian Space Agency (ASI) hyperspectral mission currently scheduled for the lunch in 2018. PRISMA is a single satellite placed on a sun- synchronous Low Earth Orbit (620 km altitude) with an expected operational lifetime of 5 years. The hyperspectral payload consists of a high spectral resolution (VNIR-SWIR) imaging spectrometer, optically integrated with a medium resolution Panchromatic camera. PRISMA will acquire data on areas of 30 km Swath width and with a Ground Sampling Distance (GSD) of 30 m (hyperspectral) and of 5 m Panchromatic (PAN). The PRISMA Ground Segment will be geographically distributed between Fucino station and ASI Matera Space Geodesy Centre and will include the Mission Control Centre, the Satellite Control Centre and the Instrument Data Handling System. The science community supports the overall lifecycle of the mission, being involved in algorithms definition, calibration and validation activities, research and applications development.
Hyperspectral imaging spectro radiometer improves radiometric accuracy
NASA Astrophysics Data System (ADS)
Prel, Florent; Moreau, Louis; Bouchard, Robert; Bullis, Ritchie D.; Roy, Claude; Vallières, Christian; Levesque, Luc
2013-06-01
Reliable and accurate infrared characterization is necessary to measure the specific spectral signatures of aircrafts and associated infrared counter-measures protections (i.e. flares). Infrared characterization is essential to improve counter measures efficiency, improve friend-foe identification and reduce the risk of friendly fire. Typical infrared characterization measurement setups include a variety of panchromatic cameras and spectroradiometers. Each instrument brings essential information; cameras measure the spatial distribution of targets and spectroradiometers provide the spectral distribution of the emitted energy. However, the combination of separate instruments brings out possible radiometric errors and uncertainties that can be reduced with Hyperspectral imagers. These instruments combine both spectral and spatial information into the same data. These instruments measure both the spectral and spatial distribution of the energy at the same time ensuring the temporal and spatial cohesion of collected information. This paper presents a quantitative analysis of the main contributors of radiometric uncertainties and shows how a hyperspectral imager can reduce these uncertainties.
NASA Astrophysics Data System (ADS)
Serranti, S.; Bonifazi, G.; Luciani, V.; D'Aniello, L.
2017-05-01
The present work explores the possible utilization of hyperspectral devices, following a proximity based approach, for the diagnosis of Peronospora infection in the vineyards. It compares the performance of two hyperspectral cameras, characterized by different spectral acquisition ranges, in the identification of different levels of infection as detectable from the analysis of the leaf surface. For this purpose, healthy grapevine leaves and leaves affected by a different grade of Peronospora infection have been acquired in laboratory conditions using two different sensing devices: a Specim Imspector V10™ and a Specim Spectral Camera N17™ working in the region between 400-1000 nm and 1000-1700 nm, respectively. A Partial Least Squares Discriminant Analysis (PLS-DA) model has been built to perform the classification of healthy, infected and necrotic leaves.
Near-infrared hyperspectral imaging of atherosclerotic plaque in WHHLMI rabbit artery
NASA Astrophysics Data System (ADS)
Ishii, Katsunori; Kitayabu, Akiko; Omiya, Kota; Honda, Norihiro; Awazu, Kunio
2013-03-01
Hyperspectral imaging (HSI) of rabbit atherosclerotic plaque in near-infrared (NIR) range from 1150 to 2400 nm was demonstrated. A method to identify vulnerable plaques that are likely to cause acute coronary events has been required. The object of this study is identifying vulnerable plaques by NIR-HSI for an angioscopic application. In this study, we observed the hyperspectral images of the atherosclerotic plaque in WHHLMI rabbit (atherosclerotic rabbit) artery under simulated angioscopic conditions by NIR-HSI. NIR-HSI system was constructed by a NIR super continuum light and a mercury-cadmium-telluride camera. Spectral absorbance values (log (1/R) data) were obtained in the wavelength range from 1150 to 2400 nm at 10 nm intervals. The hyperspectral images were constructed with spectral angle mapper algorithm. As a result, the detections of atherosclerotic plaque under angioscopic observation conditions were achieved especially in the wavelength around 1200 nm, which corresponds to the second overtone of CH stretching vibration mode. The NIR-HSI was considered to serve as an angioscopic diagnosis technique to identify vulnerable plaques without clamping and saline injection.
Tunable thin-film optical filters for hyperspectral microscopy
NASA Astrophysics Data System (ADS)
Favreau, Peter F.; Rich, Thomas C.; Prabhat, Prashant; Leavesley, Silas J.
2013-02-01
Hyperspectral imaging was originally developed for use in remote sensing applications. More recently, it has been applied to biological imaging systems, such as fluorescence microscopes. The ability to distinguish molecules based on spectral differences has been especially advantageous for identifying fluorophores in highly autofluorescent tissues. A key component of hyperspectral imaging systems is wavelength filtering. Each filtering technology used for hyperspectral imaging has corresponding advantages and disadvantages. Recently, a new optical filtering technology has been developed that uses multi-layered thin-film optical filters that can be rotated, with respect to incident light, to control the center wavelength of the pass-band. Compared to the majority of tunable filter technologies, these filters have superior optical performance including greater than 90% transmission, steep spectral edges and high out-of-band blocking. Hence, tunable thin-film optical filters present optical characteristics that may make them well-suited for many biological spectral imaging applications. An array of tunable thin-film filters was implemented on an inverted fluorescence microscope (TE 2000, Nikon Instruments) to cover the full visible wavelength range. Images of a previously published model, GFP-expressing endothelial cells in the lung, were acquired using a charge-coupled device camera (Rolera EM-C2, Q-Imaging). This model sample presents fluorescently-labeled cells in a highly autofluorescent environment. Linear unmixing of hyperspectral images indicates that thin-film tunable filters provide equivalent spectral discrimination to our previous acousto-optic tunable filter-based approach, with increased signal-to-noise characteristics. Hence, tunable multi-layered thin film optical filters may provide greatly improved spectral filtering characteristics and therefore enable wider acceptance of hyperspectral widefield microscopy.
Kim, Heekang; Kwon, Soon; Kim, Sungho
2016-01-01
This paper proposes a vehicle light detection method using a hyperspectral camera instead of a Charge-Coupled Device (CCD) or Complementary metal-Oxide-Semiconductor (CMOS) camera for adaptive car headlamp control. To apply Intelligent Headlight Control (IHC), the vehicle headlights need to be detected. Headlights are comprised from a variety of lighting sources, such as Light Emitting Diodes (LEDs), High-intensity discharge (HID), and halogen lamps. In addition, rear lamps are made of LED and halogen lamp. This paper refers to the recent research in IHC. Some problems exist in the detection of headlights, such as erroneous detection of street lights or sign lights and the reflection plate of ego-car from CCD or CMOS images. To solve these problems, this study uses hyperspectral images because they have hundreds of bands and provide more information than a CCD or CMOS camera. Recent methods to detect headlights used the Spectral Angle Mapper (SAM), Spectral Correlation Mapper (SCM), and Euclidean Distance Mapper (EDM). The experimental results highlight the feasibility of the proposed method in three types of lights (LED, HID, and halogen). PMID:27399720
MEMS FPI-based smartphone hyperspectral imager
NASA Astrophysics Data System (ADS)
Rissanen, Anna; Saari, Heikki; Rainio, Kari; Stuns, Ingmar; Viherkanto, Kai; Holmlund, Christer; Näkki, Ismo; Ojanen, Harri
2016-05-01
This paper demonstrates a mobile phone- compatible hyperspectral imager based on a tunable MEMS Fabry-Perot interferometer. The realized iPhone 5s hyperspectral imager (HSI) demonstrator utilizes MEMS FPI tunable filter for visible-range, which consist of atomic layer deposited (ALD) Al2O3/TiO2-thin film Bragg reflectors. Characterization results for the mobile phone hyperspectral imager utilizing MEMS FPI chip optimized for 500 nm is presented; the operation range is λ = 450 - 550 nm with FWHM between 8 - 15 nm. Also a configuration of two cascaded FPIs (λ = 500 nm and λ = 650 nm) combined with an RGB colour camera is presented. With this tandem configuration, the overall wavelength tuning range of MEMS hyperspectral imagers can be extended to cover a larger range than with a single FPI chip. The potential applications of mobile hyperspectral imagers in the vis-NIR range include authentication, counterfeit detection and potential health/wellness and food sensing applications.
NASA Astrophysics Data System (ADS)
Lefcourt, Alan M.; Kistler, Ross; Gadsden, S. Andrew
2016-05-01
The goal of this project was to construct a cart and a mounting system that would allow a hyperspectral laser-induced fluorescence imaging system (HLIFIS) to be used to detect fecal material in produce fields. Fecal contaminated produce is a recognized food safety risk. Previous research demonstrated the HLIFIS could detect fecal contamination in a laboratory setting. A cart was designed and built, and then tested to demonstrate that the cart was capable of moving at constant speeds or at precise intervals. A mounting system was designed and built to facilitate the critical alignment of the camera's imaging and the laser's illumination fields, and to allow the HLIFIS to be used in both field and laboratory settings without changing alignments. A hardened mount for the Powell lens that is used to produce the appropriate illumination profile was also designed, built, and tested.
Airborne camera and spectrometer experiments and data evaluation
NASA Astrophysics Data System (ADS)
Lehmann, F. F.; Bucher, T.; Pless, S.; Wohlfeil, J.; Hirschmüller, H.
2009-09-01
New stereo push broom camera systems have been developed at German Aerospace Centre (DLR). The new small multispectral systems (Multi Functional Camerahead - MFC, Advanced Multispectral Scanner - AMS) are light weight, compact and display three or five RGB stereo lines of 8000, 10 000 or 14 000 pixels, which are used for stereo processing and the generation of Digital Surface Models (DSM) and near True Orthoimage Mosaics (TOM). Simultaneous acquisition of different types of MFC-cameras for infrared and RGB data has been successfully tested. All spectral channels record the image data in full resolution, pan-sharpening is not necessary. Analogue to the line scanner data an automatic processing chain for UltraCamD and UltraCamX exists. The different systems have been flown for different types of applications; main fields of interest among others are environmental applications (flooding simulations, monitoring tasks, classification) and 3D-modelling (e.g. city mapping). From the DSM and TOM data Digital Terrain Models (DTM) and 3D city models are derived. Textures for the facades are taken from oblique orthoimages, which are created from the same input data as the TOM and the DOM. The resulting models are characterised by high geometric accuracy and the perfect fit of image data and DSM. The DLR is permanently developing and testing a wide range of sensor types and imaging platforms for terrestrial and space applications. The MFC-sensors have been flown in combination with laser systems and imaging spectrometers and special data fusion products have been developed. These products include hyperspectral orthoimages and 3D hyperspectral data.
Online hyperspectral imaging system for evaluating quality of agricultural products
NASA Astrophysics Data System (ADS)
Mo, Changyeun; Kim, Giyoung; Lim, Jongguk
2017-06-01
The consumption of fresh-cut agricultural produce in Korea has been growing. The browning of fresh-cut vegetables that occurs during storage and foreign substances such as worms and slugs are some of the main causes of consumers' concerns with respect to safety and hygiene. The purpose of this study is to develop an on-line system for evaluating quality of agricultural products using hyperspectral imaging technology. The online evaluation system with single visible-near infrared hyperspectral camera in the range of 400 nm to 1000 nm that can assess quality of both surfaces of agricultural products such as fresh-cut lettuce was designed. Algorithms to detect browning surface were developed for this system. The optimal wavebands for discriminating between browning and sound lettuce as well as between browning lettuce and the conveyor belt were investigated using the correlation analysis and the one-way analysis of variance method. The imaging algorithms to discriminate the browning lettuces were developed using the optimal wavebands. The ratio image (RI) algorithm of the 533 nm and 697 nm images (RI533/697) for abaxial surface lettuce and the ratio image algorithm (RI533/697) and subtraction image (SI) algorithm (SI538-697) for adaxial surface lettuce had the highest classification accuracies. The classification accuracy of browning and sound lettuce was 100.0% and above 96.0%, respectively, for the both surfaces. The overall results show that the online hyperspectral imaging system could potentially be used to assess quality of agricultural products.
A new COmpact hyperSpectral Imaging system (COSI) for UAS
NASA Astrophysics Data System (ADS)
Sima, Aleksandra; Baeck, Pieter-Jan; Delalieux, Stephanie; Livens, Stefan; Blommaert, Joris; Delauré, Bavo; Boonen, Miet
2016-04-01
This presentation gives an overview of the new COmpact hyperSpectral Imaging (COSI) system recently developed at the Flemish Institute for Technological Research (VITO, Belgium) and suitable for multirotor Remotely Piloted Aircraft Systems (RPAS) platforms. The camera is compact and lightweight, with a total mass of less than 500g including: an embedded computer, storage and power distribution unit. Such device miniaturization was possible thanks to the application of linear variable filters technology, in which image lines in the across flight direction correspond to different spectral bands as well as a different location on the ground (frame camera). The scanning motion is required to retrieve the complete spectrum for every point on the ground. The COSI camera captures data in 72 narrow (FWHM: 5nm to 10 nm) bands in the spectral range of 600-900 nm. Such spectral information is highly favourable for vegetation studies, since the main chlorophyll absorption feature centred around 680 nm is measured, as well as, the red-edge region (680 nm to 730 nm) which is often linked to plant stress. The NIR region furthermore reflects the internal plant structure, and is often linked to leaf area index and plant biomass. Next to the high spectral resolution, the COSI imager also provides a very high spatial data resolution i.e. images captured with a 9mm lens at 40m altitude cover a swath of ~40m with a ~2cm ground sampling distance. A dedicated data processing chain transforms the raw images into various information and action maps representing the status of the vegetation health and thus allowing for optimization of the management decisions within agricultural fields. In a number of test flights, hyperspectral COSI imager data were acquired covering diverse environments, e.g.: strawberry fields, natural grassland or pear orchards. Next to the COSI system overview, examples of collected data will be presented together with the results of the spectral data analysis. Lessons learned and an outlook on further improvements will be also shared with the audience.
Testing a high-power LED based light source for hyperspectral imaging microscopy
NASA Astrophysics Data System (ADS)
Klomkaew, Phiwat; Mayes, Sam A.; Rich, Thomas C.; Leavesley, Silas J.
2017-02-01
Our lab has worked to develop high-speed hyperspectral imaging systems that scan the fluorescence excitation spectrum for biomedical imaging applications. Hyperspectral imaging can be used in remote sensing, medical imaging, reaction analysis, and other applications. Here, we describe the development of a hyperspectral imaging system that comprised an inverted Nikon Eclipse microscope, sCMOS camera, and a custom light source that utilized a series of high-power LEDs. LED selection was performed to achieve wavelengths of 350-590 nm. To reduce scattering, LEDs with low viewing angles were selected. LEDs were surface-mount soldered and powered by an RCD. We utilized 3D printed mounting brackets to assemble all circuit components. Spectraradiometric calibration was performed using a spectrometer (QE65000, Ocean Optics) and integrating sphere (FOIS-1, Ocean Optics). Optical output and LED driving current were measured over a range of illumination intensities. A normalization algorithm was used to calibrate and optimize the intensity of the light source. The highest illumination power was at 375 nm (3300 mW/cm2), while the lowest illumination power was at 515, 525, and 590 nm (5200 mW/cm2). Comparing the intensities supplied by each LED to the intensities measured at the microscope stage, we found there was a great loss in power output. Future work will focus on using two of the same LEDs to double the power and finding more LED and/or laser diodes and chips around the range. This custom hyperspectral imaging system could be used for the detection of cancer and the identification of biomolecules.
NASA Astrophysics Data System (ADS)
Smekens, J. F.; Mathieu, G.
2015-12-01
Scientific imaging techniques have progressed at a fast pace in the recent years, thanks in part to great improvements in detector technology, and through our ability to process large amounts of complex data using sophisticated software. Broadband thermal cameras are ubiquitously used for permanent monitoring of volcanic activity, and have been used in a multitude of scientific applications, from tracking ballistics to studying the thermal evolution lava flow fields and volcanic plumes. In parallel, UV cameras are now used at several volcano observatories to quantify daytime sulfur dioxide (SO2) emissions at very high frequency. In this work we present the results the first deployment of a ground-based Thermal Infrared (TIR) Hyperspectral Imaging System (Telops Hyper-Cam LW) for the study of passive and explosive volcanic activity at Stromboli volcano, Italy. The instrument uses a Michelson spectrometer and Fourier Transform Infrared Spectrometry to produce hyperspectral datacubes of a scene (320x256 pixels) in the range 7.7-11.8 μm, with a spectral resolution of up to 0.25 cm-1 and at frequencies of ~10 Hz. The activity at Stromboli is characterized by explosions of small magnitude, often containing significant amounts of gas and ash, separated by periods of quiescent degassing of 10-60 minutes. With our dataset, spanning about 5 days of monitoring, we are able to detect and track temporal variations of SO2 and ash emissions during both daytime and nighttime. It ultimately allows for the quantification of the mass of gas and ash ejected during and between explosive events. Although the high price and power consumption of the instrument are obstacles to its deployment as a monitoring tool, this type of data sets offers unprecedented insight into the dynamic processes taking place at Stromboli, and could lead to a better understanding of the eruptive mechanisms at persistently active systems in general.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leary, T.J.; Lamb, A.
The Department of Energy`s Office of Arms Control and Non-Proliferation (NN-20) has developed a suite of airborne remote sensing systems that simultaneously collect coincident data from a US Navy P-3 aircraft. The primary objective of the Airborne Multisensor Pod System (AMPS) Program is {open_quotes}to collect multisensor data that can be used for data research, both to reduce interpretation problems associated with data overload and to develop information products more complete than can be obtained from any single sensor.{close_quotes} The sensors are housed in wing-mounted pods and include: a Ku-Band Synthetic Aperture Radar; a CASI Hyperspectral Imager; a Daedalus 3600 Airbornemore » Multispectral Scanner; a Wild Heerbrugg RC-30 motion compensated large format camera; various high resolution, light intensified and thermal video cameras; and several experimental sensors (e.g. the Portable Hyperspectral Imager of Low-Light Spectroscopy (PHILLS)). Over the past year or so, the Coastal Marine Resource Assessment (CAMRA) group at the Florida Department of Environmental Protection`s Marine Research Institute (FMRI) has been working with the Department of Energy through the Naval Research Laboratory to develop applications and products from existing data. Considerable effort has been spent identifying image formats integration parameters. 2 refs., 3 figs., 2 tabs.« less
Hyperspectral imaging and multivariate analysis in the dried blood spots investigations
NASA Astrophysics Data System (ADS)
Majda, Alicja; Wietecha-Posłuszny, Renata; Mendys, Agata; Wójtowicz, Anna; Łydżba-Kopczyńska, Barbara
2018-04-01
The aim of this study was to apply a new methodology using the combination of the hyperspectral imaging and the dry blood spot (DBS) collecting. Application of the hyperspectral imaging is fast and non-destructive. DBS method offers the advantage also on the micro-invasive blood collecting and low volume of required sample. During experimental step, the reflected light was recorded by two hyperspectral systems. The collection of 776 spectral bands in the VIS-NIR range (400-1000 nm) and 256 spectral bands in the SWIR range (970-2500 nm) was applied. Pixel has the size of 8 × 8 and 30 × 30 µm for VIS-NIR and SWIR camera, respectively. The obtained data in the form of hyperspectral cubes were treated with chemometric methods, i.e., minimum noise fraction and principal component analysis. It has been shown that the application of these methods on this type of data, by analyzing the scatter plots, allows a rapid analysis of the homogeneity of DBS, and the selection of representative areas for further analysis. It also gives the possibility of tracking the dynamics of changes occurring in biological traces applied on the surface. For the analyzed 28 blood samples, described method allowed to distinguish those blood stains because of time of apply.
Compact full-motion video hyperspectral cameras: development, image processing, and applications
NASA Astrophysics Data System (ADS)
Kanaev, A. V.
2015-10-01
Emergence of spectral pixel-level color filters has enabled development of hyper-spectral Full Motion Video (FMV) sensors operating in visible (EO) and infrared (IR) wavelengths. The new class of hyper-spectral cameras opens broad possibilities of its utilization for military and industry purposes. Indeed, such cameras are able to classify materials as well as detect and track spectral signatures continuously in real time while simultaneously providing an operator the benefit of enhanced-discrimination-color video. Supporting these extensive capabilities requires significant computational processing of the collected spectral data. In general, two processing streams are envisioned for mosaic array cameras. The first is spectral computation that provides essential spectral content analysis e.g. detection or classification. The second is presentation of the video to an operator that can offer the best display of the content depending on the performed task e.g. providing spatial resolution enhancement or color coding of the spectral analysis. These processing streams can be executed in parallel or they can utilize each other's results. The spectral analysis algorithms have been developed extensively, however demosaicking of more than three equally-sampled spectral bands has been explored scarcely. We present unique approach to demosaicking based on multi-band super-resolution and show the trade-off between spatial resolution and spectral content. Using imagery collected with developed 9-band SWIR camera we demonstrate several of its concepts of operation including detection and tracking. We also compare the demosaicking results to the results of multi-frame super-resolution as well as to the combined multi-frame and multiband processing.
Miniature infrared hyperspectral imaging sensor for airborne applications
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele; Hinnrichs, Bradford; McCutchen, Earl
2017-05-01
Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera, both MWIR and LWIR, small enough to serve as a payload on a miniature unmanned aerial vehicles. The optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of the sensor. This new and innovative approach to infrared hyperspectral imaging spectrometer uses micro-optics and will be explained in this paper. The micro-optics are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a mini-UAV or commercial quadcopter. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the spatial resolution. A 2 x 2 lenslet array will image four different spectral images of the scene each frame and when coupled with a 512 x 512 focal plane array will give spatial resolution of 256 x 256 pixel each spectral image. Another system that we developed uses a 4 x 4 lenslet array on a 1024 x 1024 pixel element focal plane array which gives 16 spectral images of 256 x 256 pixel resolution each frame.
Infrared hyperspectral imaging miniaturized for UAV applications
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele; Hinnrichs, Bradford; McCutchen, Earl
2017-02-01
Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera, both MWIR and LWIR, small enough to serve as a payload on a miniature unmanned aerial vehicles. The optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of the sensor. This new and innovative approach to infrared hyperspectral imaging spectrometer uses micro-optics and will be explained in this paper. The micro-optics are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a mini-UAV or commercial quadcopter. Also, an example of how this technology can easily be used to quantify a hydrocarbon gas leak's volume and mass flowrates. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the spatial resolution. A 2 x 2 lenslet array will image four different spectral images of the scene each frame and when coupled with a 512 x 512 focal plane array will give spatial resolution of 256 x 256 pixel each spectral image. Another system that we developed uses a 4 x 4 lenslet array on a 1024 x 1024 pixel element focal plane array which gives 16 spectral images of 256 x 256 pixel resolution each frame.
Lin, Jianyu; Clancy, Neil T; Qi, Ji; Hu, Yang; Tatla, Taran; Stoyanov, Danail; Maier-Hein, Lena; Elson, Daniel S
2018-06-15
Surgical guidance and decision making could be improved with accurate and real-time measurement of intra-operative data including shape and spectral information of the tissue surface. In this work, a dual-modality endoscopic system has been proposed to enable tissue surface shape reconstruction and hyperspectral imaging (HSI). This system centers around a probe comprised of an incoherent fiber bundle, whose fiber arrangement is different at the two ends, and miniature imaging optics. For 3D reconstruction with structured light (SL), a light pattern formed of randomly distributed spots with different colors is projected onto the tissue surface, creating artificial texture. Pattern decoding with a Convolutional Neural Network (CNN) model and a customized feature descriptor enables real-time 3D surface reconstruction at approximately 12 frames per second (FPS). In HSI mode, spatially sparse hyperspectral signals from the tissue surface can be captured with a slit hyperspectral imager in a single snapshot. A CNN based super-resolution model, namely "super-spectral-resolution" network (SSRNet), has also been developed to estimate pixel-level dense hypercubes from the endoscope cameras standard RGB images and the sparse hyperspectral signals, at approximately 2 FPS. The probe, with a 2.1 mm diameter, enables the system to be used with endoscope working channels. Furthermore, since data acquisition in both modes can be accomplished in one snapshot, operation of this system in clinical applications is minimally affected by tissue surface movement and deformation. The whole apparatus has been validated on phantoms and tissue (ex vivo and in vivo), while initial measurements on patients during laryngeal surgery show its potential in real-world clinical applications. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bareth, G.; Bolten, A.; Gnyp, M. L.; Reusch, S.; Jasper, J.
2016-06-01
The development of UAV-based sensing systems for agronomic applications serves the improvement of crop management. The latter is in the focus of precision agriculture which intends to optimize yield, fertilizer input, and crop protection. Besides, in some cropping systems vehicle-based sensing devices are less suitable because fields cannot be entered from certain growing stages onwards. This is true for rice, maize, sorghum, and many more crops. Consequently, UAV-based sensing approaches fill a niche of very high resolution data acquisition on the field scale in space and time. While mounting RGB digital compact cameras to low-weight UAVs (< 5 kg) is well established, the miniaturization of sensors in the last years also enables hyperspectral data acquisition from those platforms. From both, RGB and hyperspectral data, vegetation indices (VIs) are computed to estimate crop growth parameters. In this contribution, we compare two different sensing approaches from a low-weight UAV platform (< 5 kg) for monitoring a nitrogen field experiment of winter wheat and a corresponding farmers' field in Western Germany. (i) A standard digital compact camera was flown to acquire RGB images which are used to compute the RGBVI and (ii) NDVI is computed from a newly modified version of the Yara N-Sensor. The latter is a well-established tractor-based hyperspectral sensor for crop management and is available on the market since a decade. It was modified for this study to fit the requirements of UAV-based data acquisition. Consequently, we focus on three objectives in this contribution: (1) to evaluate the potential of the uncalibrated RGBVI for monitoring nitrogen status in winter wheat, (2) investigate the UAV-based performance of the modified Yara N-Sensor, and (3) compare the results of the two different UAV-based sensing approaches for winter wheat.
Fluorescence hyperspectral imaging (fHSI) using a spectrally resolved detector array
Luthman, Anna Siri; Dumitru, Sebastian; Quiros‐Gonzalez, Isabel; Joseph, James
2017-01-01
Abstract The ability to resolve multiple fluorescent emissions from different biological targets in video rate applications, such as endoscopy and intraoperative imaging, has traditionally been limited by the use of filter‐based imaging systems. Hyperspectral imaging (HSI) facilitates the detection of both spatial and spectral information in a single data acquisition, however, instrumentation for HSI is typically complex, bulky and expensive. We sought to overcome these limitations using a novel robust and low cost HSI camera based on a spectrally resolved detector array (SRDA). We integrated this HSI camera into a wide‐field reflectance‐based imaging system operating in the near‐infrared range to assess the suitability for in vivo imaging of exogenous fluorescent contrast agents. Using this fluorescence HSI (fHSI) system, we were able to accurately resolve the presence and concentration of at least 7 fluorescent dyes in solution. We also demonstrate high spectral unmixing precision, signal linearity with dye concentration and at depth in tissue mimicking phantoms, and delineate 4 fluorescent dyes in vivo. Our approach, including statistical background removal, could be directly generalised to broader spectral ranges, for example, to resolve tissue reflectance or autofluorescence and in future be tailored to video rate applications requiring snapshot HSI data acquisition. PMID:28485130
D Reconstruction from Uav-Based Hyperspectral Images
NASA Astrophysics Data System (ADS)
Liu, L.; Xu, L.; Peng, J.
2018-04-01
Reconstructing the 3D profile from a set of UAV-based images can obtain hyperspectral information, as well as the 3D coordinate of any point on the profile. Our images are captured from the Cubert UHD185 (UHD) hyperspectral camera, which is a new type of high-speed onboard imaging spectrometer. And it can get both hyperspectral image and panchromatic image simultaneously. The panchromatic image have a higher spatial resolution than hyperspectral image, but each hyperspectral image provides considerable information on the spatial spectral distribution of the object. Thus there is an opportunity to derive a high quality 3D point cloud from panchromatic image and considerable spectral information from hyperspectral image. The purpose of this paper is to introduce our processing chain that derives a database which can provide hyperspectral information and 3D position of each point. First, We adopt a free and open-source software, Visual SFM which is based on structure from motion (SFM) algorithm, to recover 3D point cloud from panchromatic image. And then get spectral information of each point from hyperspectral image by a self-developed program written in MATLAB. The production can be used to support further research and applications.
Multiview hyperspectral topography of tissue structural and functional characteristics
NASA Astrophysics Data System (ADS)
Liu, Peng; Huang, Jiwei; Zhang, Shiwu; Xu, Ronald X.
2016-01-01
Accurate and in vivo characterization of structural, functional, and molecular characteristics of biological tissue will facilitate quantitative diagnosis, therapeutic guidance, and outcome assessment in many clinical applications, such as wound healing, cancer surgery, and organ transplantation. We introduced and tested a multiview hyperspectral imaging technique for noninvasive topographic imaging of cutaneous wound oxygenation. The technique integrated a multiview module and a hyperspectral module in a single portable unit. Four plane mirrors were cohered to form a multiview reflective mirror set with a rectangular cross section. The mirror set was placed between a hyperspectral camera and the target biological tissue. For a single image acquisition task, a hyperspectral data cube with five views was obtained. The five-view hyperspectral image consisted of a main objective image and four reflective images. Three-dimensional (3-D) topography of the scene was achieved by correlating the matching pixels between the objective image and the reflective images. 3-D mapping of tissue oxygenation was achieved using a hyperspectral oxygenation algorithm. The multiview hyperspectral imaging technique was validated in a wound model, a tissue-simulating blood phantom, and in vivo biological tissue. The experimental results demonstrated the technical feasibility of using multiview hyperspectral imaging for 3-D topography of tissue functional properties.
Band registration of tuneable frame format hyperspectral UAV imagers in complex scenes
NASA Astrophysics Data System (ADS)
Honkavaara, Eija; Rosnell, Tomi; Oliveira, Raquel; Tommaselli, Antonio
2017-12-01
A recent revolution in miniaturised sensor technology has provided markets with novel hyperspectral imagers operating in the frame format principle. In the case of unmanned aerial vehicle (UAV) based remote sensing, the frame format technology is highly attractive in comparison to the commonly utilised pushbroom scanning technology, because it offers better stability and the possibility to capture stereoscopic data sets, bringing an opportunity for 3D hyperspectral object reconstruction. Tuneable filters are one of the approaches for capturing multi- or hyperspectral frame images. The individual bands are not aligned when operating a sensor based on tuneable filters from a mobile platform, such as UAV, because the full spectrum recording is carried out in the time-sequential principle. The objective of this investigation was to study the aspects of band registration of an imager based on tuneable filters and to develop a rigorous and efficient approach for band registration in complex 3D scenes, such as forests. The method first determines the orientations of selected reference bands and reconstructs the 3D scene using structure-from-motion and dense image matching technologies. The bands, without orientation, are then matched to the oriented bands accounting the 3D scene to provide exterior orientations, and afterwards, hyperspectral orthomosaics, or hyperspectral point clouds, are calculated. The uncertainty aspects of the novel approach were studied. An empirical assessment was carried out in a forested environment using hyperspectral images captured with a hyperspectral 2D frame format camera, based on a tuneable Fabry-Pérot interferometer (FPI) on board a multicopter and supported by a high spatial resolution consumer colour camera. A theoretical assessment showed that the method was capable of providing band registration accuracy better than 0.5-pixel size. The empirical assessment proved the performance and showed that, with the novel method, most parts of the band misalignments were less than the pixel size. Furthermore, it was shown that the performance of the band alignment was dependent on the spatial distance from the reference band.
Wageningen UR Unmanned Aerial Remote Sensing Facility - Overview of activities
NASA Astrophysics Data System (ADS)
Bartholomeus, Harm; Keesstra, Saskia; Kooistra, Lammert; Suomalainen, Juha; Mucher, Sander; Kramer, Henk; Franke, Jappe
2016-04-01
To support environmental management there is an increasing need for timely, accurate and detailed information on our land. Unmanned Aerial Systems (UAS) are increasingly used to monitor agricultural crop development, habitat quality or urban heat efficiency. An important reason is that UAS technology is maturing quickly while the flexible capabilities of UAS fill a gap between satellite based and ground based geo-sensing systems. In 2012, different groups within Wageningen University and Research Centre have established an Unmanned Airborne Remote Sensing Facility. The objective of this facility is threefold: a) To develop innovation in the field of remote sensing science by providing a platform for dedicated and high-quality experiments; b) To support high quality UAS services by providing calibration facilities and disseminating processing procedures to the UAS user community; and c) To promote and test the use of UAS in a broad range of application fields like habitat monitoring, precision agriculture and land degradation assessment. The facility is hosted by the Laboratory of Geo-Information Science and Remote Sensing (GRS) and the Department of Soil Physics and Land Management (SLM) of Wageningen University together with the team Earth Informatics (EI) of Alterra. The added value of the Unmanned Aerial Remote Sensing Facility is that compared to for example satellite based remote sensing more dedicated science experiments can be prepared. This includes for example higher frequent observations in time (e.g., diurnal observations), observations of an object under different observation angles for characterization of BRDF and flexibility in use of camera's and sensors types. In this way, laboratory type of set ups can be tested in a field situation and effects of up-scaling can be tested. In the last years we developed and implemented different camera systems (e.g. a hyperspectral pushbroom system, and multispectral frame cameras) which we operated in projects all around the world, while new camera systems are being planned such as LiDAR and a full frame hyperspectral camera. In the presentation we will give an overview of our activities, ranging from erosion studies, decision support for precision agriculture, determining leaf biochemistry and canopy structure in tropical forests to the mapping of coastal zones.
Vermeulen, Ph; Fernández Pierna, J A; van Egmond, H P; Zegers, J; Dardenne, P; Baeten, V
2013-09-01
In recent years, near-infrared (NIR) hyperspectral imaging has proved its suitability for quality and safety control in the cereal sector by allowing spectroscopic images to be collected at single-kernel level, which is of great interest to cereal control laboratories. Contaminants in cereals include, inter alia, impurities such as straw, grains from other crops, and insects, as well as undesirable substances such as ergot (sclerotium of Claviceps purpurea). For the cereal sector, the presence of ergot creates a high toxicity risk for animals and humans because of its alkaloid content. A study was undertaken, in which a complete procedure for detecting ergot bodies in cereals was developed, based on their NIR spectral characteristics. These were used to build relevant decision rules based on chemometric tools and on the morphological information obtained from the NIR images. The study sought to transfer this procedure from a pilot online NIR hyperspectral imaging system at laboratory level to a NIR hyperspectral imaging system at industrial level and to validate the latter. All the analyses performed showed that the results obtained using both NIR hyperspectral imaging cameras were quite stable and repeatable. In addition, a correlation higher than 0.94 was obtained between the predicted values obtained by NIR hyperspectral imaging and those supplied by the stereo-microscopic method which is the reference method. The validation of the transferred protocol on blind samples showed that the method could identify and quantify ergot contamination, demonstrating the transferability of the method. These results were obtained on samples with an ergot concentration of 0.02% which is less than the EC limit for cereals (intervention grains) destined for humans fixed at 0.05%.
Pichette, Julien; Laurence, Audrey; Angulo, Leticia; Lesage, Frederic; Bouthillier, Alain; Nguyen, Dang Khoa; Leblond, Frederic
2016-01-01
Abstract. Using light, we are able to visualize the hemodynamic behavior of the brain to better understand neurovascular coupling and cerebral metabolism. In vivo optical imaging of tissue using endogenous chromophores necessitates spectroscopic detection to ensure molecular specificity as well as sufficiently high imaging speed and signal-to-noise ratio, to allow dynamic physiological changes to be captured, isolated, and used as surrogate of pathophysiological processes. An optical imaging system is introduced using a 16-bands on-chip hyperspectral camera. Using this system, we show that up to three dyes can be imaged and quantified in a tissue phantom at video-rate through the optics of a surgical microscope. In vivo human patient data are presented demonstrating brain hemodynamic response can be measured intraoperatively with molecular specificity at high speed. PMID:27752519
Snapshot hyperspectral retinal imaging using compact spectral resolving detector array.
Li, Hao; Liu, Wenzhong; Dong, Biqin; Kaluzny, Joel V; Fawzi, Amani A; Zhang, Hao F
2017-06-01
Hyperspectral retinal imaging captures the light spectrum from each imaging pixel. It provides spectrally encoded retinal physiological and morphological information, which could potentially benefit diagnosis and therapeutic monitoring of retinal diseases. The key challenges in hyperspectral retinal imaging are how to achieve snapshot imaging to avoid motions between the images from multiple spectral bands, and how to design a compact snapshot imager suitable for clinical use. Here, we developed a compact, snapshot hyperspectral fundus camera for rodents using a novel spectral resolving detector array (SRDA), on which a thin-film Fabry-Perot cavity filter was monolithically fabricated on each imaging pixel. We achieved hyperspectral retinal imaging with 16 wavelength bands (460 to 630 nm) at 20 fps. We also demonstrated false-color vessel contrast enhancement and retinal oxygen saturation (sO 2 ) measurement through spectral analysis. This work could potentially bring hyperspectral retinal imaging from bench to bedside. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nonnegative Matrix Factorization for Efficient Hyperspectral Image Projection
NASA Technical Reports Server (NTRS)
Iacchetta, Alexander S.; Fienup, James R.; Leisawitz, David T.; Bolcar, Matthew R.
2015-01-01
Hyperspectral imaging for remote sensing has prompted development of hyperspectral image projectors that can be used to characterize hyperspectral imaging cameras and techniques in the lab. One such emerging astronomical hyperspectral imaging technique is wide-field double-Fourier interferometry. NASA's current, state-of-the-art, Wide-field Imaging Interferometry Testbed (WIIT) uses a Calibrated Hyperspectral Image Projector (CHIP) to generate test scenes and provide a more complete understanding of wide-field double-Fourier interferometry. Given enough time, the CHIP is capable of projecting scenes with astronomically realistic spatial and spectral complexity. However, this would require a very lengthy data collection process. For accurate but time-efficient projection of complicated hyperspectral images with the CHIP, the field must be decomposed both spectrally and spatially in a way that provides a favorable trade-off between accurately projecting the hyperspectral image and the time required for data collection. We apply nonnegative matrix factorization (NMF) to decompose hyperspectral astronomical datacubes into eigenspectra and eigenimages that allow time-efficient projection with the CHIP. Included is a brief analysis of NMF parameters that affect accuracy, including the number of eigenspectra and eigenimages used to approximate the hyperspectral image to be projected. For the chosen field, the normalized mean squared synthesis error is under 0.01 with just 8 eigenspectra. NMF of hyperspectral astronomical fields better utilizes the CHIP's capabilities, providing time-efficient and accurate representations of astronomical scenes to be imaged with the WIIT.
UAV-based NDVI calculation over grassland: An alternative approach
NASA Astrophysics Data System (ADS)
Mejia-Aguilar, Abraham; Tomelleri, Enrico; Asam, Sarah; Zebisch, Marc
2016-04-01
The Normalised Difference Vegetation Index (NDVI) is one of the most widely used indicators for monitoring and assessing vegetation in remote sensing. The index relies on the reflectance difference between the near infrared (NIR) and red light and is thus able to track variations of structural, phenological, and biophysical parameters for seasonal and long-term monitoring. Conventionally, NDVI is inferred from space-borne spectroradiometers, such as MODIS, with moderate resolution up to 250 m ground resolution. In recent years, a new generation of miniaturized radiometers and integrated hyperspectral sensors with high resolution became available. Such small and light instruments are particularly adequate to be mounted on airborne unmanned aerial vehicles (UAV) used for monitoring services reaching ground sampling resolution in the order of centimetres. Nevertheless, such miniaturized radiometers and hyperspectral sensors are still very expensive and require high upfront capital costs. Therefore, we propose an alternative, mainly cheaper method to calculate NDVI using a camera constellation consisting of two conventional consumer-grade cameras: (i) a Ricoh GR modified camera that acquires the NIR spectrum by removing the internal infrared filter. A mounted optical filter additionally obstructs all wavelengths below 700 nm. (ii) A Ricoh GR in RGB configuration using two optical filters for blocking wavelengths below 600 nm as well as NIR and ultraviolet (UV) light. To assess the merit of the proposed method, we carry out two comparisons: First, reflectance maps generated by the consumer-grade camera constellation are compared to reflectance maps produced with a hyperspectral camera (Rikola). All imaging data and reflectance maps are processed using the PIX4D software. In the second test, the NDVI at specific points of interest (POI) generated by the consumer-grade camera constellation is compared to NDVI values obtained by ground spectral measurements using a portable spectroradiometer (Spectravista SVC HR-1024i). All data were collected on a dry alpine mountain grassland site in the Matsch valley, Italy, during the vegetation period of 2015. Data acquisition for the first comparison followed a pre-programmed flight plan in which the hyperspectral and alternative dual-camera constellation were mounted separately on an octocopter-UAV during two consecutive flight campaigns. Ground spectral measurements collection took place on the same site and on the same dates (three in total) of the flight campaigns. The proposed technique achieves promising results and therewith constitutes a cheap and simple way of collecting spatially explicit information on vegetated areas even in challenging terrain.
Identification of spectral phenotypes in age-related macular degeneration patients
NASA Astrophysics Data System (ADS)
Davis, Bert; Russell, Steven; Abramoff, Michael; Nemeth, Sheila C.; Barriga, E. Simon; Soliz, Peter
2007-02-01
The purpose of this study is to show that there exists a spectral characteristic that differentiates normal macular tissue from various types of genetic-based macular diseases. This paper demonstrates statistically that hyperspectral images of macular and other retinal tissue can be used to spectrally differentiate different forms of age-related macular degeneration. A hyperspectral fundus imaging device has been developed and tested for the purpose of collecting hyperspectral images of the human retina. A methodology based on partial least squares and ANOVA has been applied to determine the hyperspectral representation of individual spectral characteristics of retinal features. Each discrete tissue type in the retina has an identifiable spectral shape or signature which, when combined with spatial context, aids in detection of pathological features. Variations in the amount and distribution of various ocular pigments or the inclusion of additional biochemical substances will allow detection of pathological conditions prior to traditional histological presentation. Fundus imaging cameras are ubiquitous and are one of the most common imaging modalities used in documenting a patient's retinal state for diagnosis, e.g. remotely, or for monitoring the progression of an ocular disease. The added diagnostic information obtained with only a minor retro-fit of a specialized spectral camera will lead to new diagnostic information to the clinical ophthalmologist or eye-care specialist.
The French proposal for a high spatial resolution Hyperspectral mission
NASA Astrophysics Data System (ADS)
Carrère, Véronique; Briottet, Xavier; Jacquemoud, Stéphane; Marion, Rodolphe; Bourguignon, Anne; Chami, Malik; Chanussot, Jocelyn; Chevrel, Stéphane; Deliot, Philippe; Dumont, Marie; Foucher, Pierre-Yves; Gomez, Cécile; Roman-Minghelli, Audrey; Sheeren, David; Weber, Christiane; Lefèvre, Marie-José; Mandea, Mioara
2014-05-01
More than 25 years of airborne imaging spectroscopy and spaceborne sensors such as Hyperion or HICO have clearly demonstrated the ability of such a remote sensing technique to produce value added information regarding surface composition and physical properties for a large variety of applications. Scheduled missions such as EnMAP and PRISMA prove the increased interest of the scientific community for such a type of remote sensing data. In France, a group of Science and Defence users of imaging spectrometry data (Groupe de Synthèse Hyperspectral, GSH) established an up-to-date review of possible applications, define instrument specifications required for accurate, quantitative retrieval of diagnostic parameters, and identify fields of application where imaging spectrometry is a major contribution. From these conclusions, CNES (French Space Agency) decided a phase 0 study for an hyperspectral mission concept, named at this time HYPXIM (HYPerspectral-X IMagery), the main fields of applications are vegetation biodiversity, coastal and inland waters, geosciences, urban environment, atmospheric sciences, cryosphere and Defence. Results pointed out applications where high spatial resolution was necessary and would not be covered by the other foreseen hyperspectral missions. The phase A started at the beginning of 2013 based on the following HYPXIM characteristics: a hyperspectral camera covering the [0.4 - 2.5 µm] spectral range with a 8 m ground sampling distance (GSD) and a PAN camera with a 1.85 m GSD, onboard a mini-satellite platform. This phase A is currently stopped due to budget constraints. Nevertheless, the Science team is currently focusing on the preparation for the next CNES prospective meeting (March, 2014), an important step for the future of the mission. This paper will provide an update of the status of this mission and of new results obtained by the Science team.
NASA Astrophysics Data System (ADS)
Farries, Mark; Ward, Jon; Valle, Stefano; Stephens, Gary; Moselund, Peter; van der Zanden, Koen; Napier, Bruce
2015-06-01
Mid-IR imaging spectroscopy has the potential to offer an effective tool for early cancer diagnosis. Current development of bright super-continuum sources, narrow band acousto-optic tunable filters and fast cameras have made feasible a system that can be used for fast diagnosis of cancer in vivo at point of care. The performance of a proto system that has been developed under the Minerva project is described.
NASA Astrophysics Data System (ADS)
Näsi, R.; Viljanen, N.; Kaivosoja, J.; Hakala, T.; Pandžić, M.; Markelin, L.; Honkavaara, E.
2017-10-01
Multispectral and hyperspectral imaging is usually acquired by satellite and aircraft platforms. Recently, miniaturized hyperspectral 2D frame cameras have showed great potential to precise agriculture estimations and they are feasible to combine with lightweight platforms, such as drones. Drone platform is a flexible tool for remote sensing applications with environment and agriculture. The assessment and comparison of different platforms such as satellite, aircraft and drones with different sensors, such as hyperspectral and RGB cameras is an important task in order to understand the potential of the data provided by these equipment and to select the most appropriate according to the user applications and requirements. In this context, open and permanent test fields are very significant and helpful experimental environment, since they provide a comparative data for different platforms, sensors and users, allowing multi-temporal analyses as well. Objective of this work was to investigate the feasibility of an open permanent test field in context of precision agriculture. Satellite (Sentinel-2), aircraft and drones with hyperspectral and RGB cameras were assessed in this study to estimate biomass, using linear regression models and in-situ samples. Spectral data and 3D information were used and compared in different combinations to investigate the quality of the models. The biomass estimation accuracies using linear regression models were better than 90 % for the drone based datasets. The results showed that the use of spectral and 3D features together improved the estimation model. However, estimation of nitrogen content was less accurate with the evaluated remote sensing sensors. The open and permanent test field showed to be suitable to provide an accurate and reliable reference data for the commercial users and farmers.
A custom hardware classifier for bruised apple detection in hyperspectral images
NASA Astrophysics Data System (ADS)
Cárdenas, Javier; Figueroa, Miguel; Pezoa, Jorge E.
2015-09-01
We present a custom digital architecture for bruised apple classification using hyperspectral images in the near infrared (NIR) spectrum. The algorithm classifies each pixel in an image into one of three classes: bruised, non-bruised, and background. We extract two 5-element feature vectors for each pixel using only 10 out of the 236 spectral bands provided by the hyperspectral camera, thereby greatly reducing both the requirements of the imager and the computational complexity of the algorithm. We then use two linear-kernel support vector machine (SVM) to classify each pixel. Each SVM was trained with 504 windows of size 17×17-pixel taken from 14 hyperspectral images of 320×320 pixels each, for each class. The architecture then computes the percentage of bruised pixels in each apple in order to adequately classify the fruit. We implemented the architecture on a Xilinx Zynq Z-7010 field-programmable gate array (FPGA) and tested it on images from a NIR N17E push-broom camera with a frame rate of 25 fps, a band-pixel rate of 1.888 MHz, and 236 spectral bands between 900 and 1700 nanometers in laboratory conditions. Using 28-bit fixed-point arithmetic, the circuit accurately discriminates 95.2% of the pixels corresponding to an apple, 81% of the pixels corresponding to a bruised apple, and 96.4% of the background. With the default threshold settings, the highest false positive (FP) for a bruised apple is 18.7%. The circuit operates at the native frame rate of the camera, consumes 67 mW of dynamic power, and uses less than 10% of the logic resources on the FPGA.
Infrared hyperspectral imaging sensor for gas detection
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele
2000-11-01
A small light weight man portable imaging spectrometer has many applications; gas leak detection, flare analysis, threat warning, chemical agent detection, just to name a few. With support from the US Air Force and Navy, Pacific Advanced Technology has developed a small man portable hyperspectral imaging sensor with an embedded DSP processor for real time processing that is capable of remotely imaging various targets such as gas plums, flames and camouflaged targets. Based upon their spectral signature the species and concentration of gases can be determined. This system has been field tested at numerous places including White Mountain, CA, Edwards AFB, and Vandenberg AFB. Recently evaluation of the system for gas detection has been performed. This paper presents these results. The system uses a conventional infrared camera fitted with a diffractive optic that images as well as disperses the incident radiation to form spectral images that are collected in band sequential mode. Because the diffractive optic performs both imaging and spectral filtering, the lens system consists of only a single element that is small, light weight and robust, thus allowing man portability. The number of spectral bands are programmable such that only those bands of interest need to be collected. The system is entirely passive, therefore, easily used in a covert operation. Currently Pacific Advanced Technology is working on the next generation of this camera system that will have both an embedded processor as well as an embedded digital signal processor in a small hand held camera configuration. This will allow the implementation of signal and image processing algorithms for gas detection and identification in real time. This paper presents field test data on gas detection and identification as well as discuss the signal and image processing used to enhance the gas visibility. Flow rates as low as 0.01 cubic feet per minute have been imaged with this system.
Geographical classification of apple based on hyperspectral imaging
NASA Astrophysics Data System (ADS)
Guo, Zhiming; Huang, Wenqian; Chen, Liping; Zhao, Chunjiang; Peng, Yankun
2013-05-01
Attribute of apple according to geographical origin is often recognized and appreciated by the consumers. It is usually an important factor to determine the price of a commercial product. Hyperspectral imaging technology and supervised pattern recognition was attempted to discriminate apple according to geographical origins in this work. Hyperspectral images of 207 Fuji apple samples were collected by hyperspectral camera (400-1000nm). Principal component analysis (PCA) was performed on hyperspectral imaging data to determine main efficient wavelength images, and then characteristic variables were extracted by texture analysis based on gray level co-occurrence matrix (GLCM) from dominant waveband image. All characteristic variables were obtained by fusing the data of images in efficient spectra. Support vector machine (SVM) was used to construct the classification model, and showed excellent performance in classification results. The total classification rate had the high classify accuracy of 92.75% in the training set and 89.86% in the prediction sets, respectively. The overall results demonstrated that the hyperspectral imaging technique coupled with SVM classifier can be efficiently utilized to discriminate Fuji apple according to geographical origins.
Secure and Efficient Transmission of Hyperspectral Images for Geosciences Applications
NASA Astrophysics Data System (ADS)
Carpentieri, Bruno; Pizzolante, Raffaele
2017-12-01
Hyperspectral images are acquired through air-borne or space-borne special cameras (sensors) that collect information coming from the electromagnetic spectrum of the observed terrains. Hyperspectral remote sensing and hyperspectral images are used for a wide range of purposes: originally, they were developed for mining applications and for geology because of the capability of this kind of images to correctly identify various types of underground minerals by analysing the reflected spectrums, but their usage has spread in other application fields, such as ecology, military and surveillance, historical research and even archaeology. The large amount of data obtained by the hyperspectral sensors, the fact that these images are acquired at a high cost by air-borne sensors and that they are generally transmitted to a base, makes it necessary to provide an efficient and secure transmission protocol. In this paper, we propose a novel framework that allows secure and efficient transmission of hyperspectral images, by combining a reversible invisible watermarking scheme, used in conjunction with digital signature techniques, and a state-of-art predictive-based lossless compression algorithm.
NASA Astrophysics Data System (ADS)
Suomalainen, Juha; Mucher, Sander; Kooistra, Lammert; Meesters, Erik
2014-05-01
The Dutch Caribbean island of Bonaire is one of the world's top diving holiday destinations much due to its clear waters and healthy coral reefs. The coral reefs surround the western side of the island as an approximately 50-150m wide band. However, the general consensus is that the extent and biodiversity of the Bonarian coral reef is constantly decreasing due to anthropogenic pressures. The last extensive study of the health of the reef ecosystem was performed in 1985 by Van Duyl creating an underwater atlas. In order to update this atlas of Bonaire's coral reefs, in October 2013, a hyperspectral mapping campaign was performed using the WUR Hyperspectral Mapping System (HYMSY). A dive validation campaign has been planned for early 2014. The HYMSY consists of a custom pushbroom spectrometer (range 450-950nm, FWHM 9nm, ~20 lines/s, 328 pixels/line), a consumer camera (collecting 16MPix raw image every 2 seconds), a GPS-Inertia Navigation System (GPS-INS), and synchronization and data storage units. The weight of the system at take-off is 2.0kg allowing it to be mounted on varying platforms. In Bonaire the system was flown on two platforms. (1) on a Cessna airplane to provide a coverage for whole west side of the island with a hyperspectral map in 2-4m resolution and a RGB orthomosaic in 15cm resolution, and (2) on a kite pulled by boat and car to provide a subset coverage in higher resolution. In this presentation we will present our mapping technique and first results including a preliminary underwater atlas and conclusions on reef development.
UAV-Based Hyperspectral Remote Sensing for Precision Agriculture: Challenges and Opportunities
NASA Astrophysics Data System (ADS)
Angel, Y.; Parkes, S. D.; Turner, D.; Houborg, R.; Lucieer, A.; McCabe, M.
2017-12-01
Modern agricultural production relies on monitoring crop status by observing and measuring variables such as soil condition, plant health, fertilizer and pesticide effect, irrigation and crop yield. Managing all of these factors is a considerable challenge for crop producers. As such, providing integrated technological solutions that enable improved diagnostics of field condition to maximize profits, while minimizing environmental impacts, would be of much interest. Such challenges can be addressed by implementing remote sensing systems such as hyperspectral imaging to produce precise biophysical indicator maps across the various cycles of crop development. Recent progress in unmanned aerial vehicles (UAVs) have advanced traditional satellite-based capabilities, providing a capacity for high-spatial, spectral and temporal response. However, while some hyperspectral sensors have been developed for use onboard UAVs, significant investment is required to develop a system and data processing workflow that retrieves accurately georeferenced mosaics. Here we explore the use of a pushbroom hyperspectral camera that is integrated on-board a multi-rotor UAV system to measure the surface reflectance in 272 distinct spectral bands across a wavelengths range spanning 400-1000 nm, and outline the requirement for sensor calibration, integration onto a stable UAV platform enabling accurate positional data, flight planning, and development of data post-processing workflows for georeferenced mosaics. The provision of high-quality and geo-corrected imagery facilitates the development of metrics of vegetation health that can be used to identify potential problems such as production inefficiencies, diseases and nutrient deficiencies and other data-streams to enable improved crop management. Immense opportunities remain to be exploited in the implementation of UAV-based hyperspectral sensing (and its combination with other imaging systems) to provide a transferable and scalable integrated framework for crop growth monitoring and yield prediction. Here we explore some of the challenges and issues in translating the available technological capacity into a useful and useable image collection and processing flow-path that enables these potential applications to be better realized.
Hyperspectral imaging polarimeter in the infrared
NASA Astrophysics Data System (ADS)
Jensen, Gary L.; Peterson, James Q.
1998-11-01
The Space Dynamics Laboratory at Utah State University is building an infrared Hyperspectral Imaging Polarimeter (HIP). Designed for high spatial and spectral resolution polarimetry of backscattered sunlight from cloud tops in the 2.7 micrometer water band, it will fly aboard the Flying Infrared Signatures Technology Aircraft (FISTA), an Air Force KC-135. It is a proof-of-concept sensor, combining hyperspectral pushbroom imaging with high speed, solid state polarimetry, using as many off-the-shelf components as possible, and utilizing an optical breadboard design for rapid prototyping. It is based around a 256 X 320 window selectable InSb camera, a solid-state Ferro-electric Liquid Crystal (FLC) polarimeter, and a transmissive diffraction grating.
Handheld hyperspectral imager system for chemical/biological and environmental applications
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele; Piatek, Bob
2004-08-01
A small, hand held, battery operated imaging infrared spectrometer, Sherlock, has been developed by Pacific Advanced Technology and was field tested in early 2003. The Sherlock spectral imaging camera has been designed for remote gas leak detection, however, the architecture of the camera is versatile enough that it can be applied to numerous other applications such as homeland security, chemical/biological agent detection, medical and pharmaceutical applications as well as standard research and development. This paper describes the Sherlock camera, theory of operations, shows current applications and touches on potential future applications for the camera. The Sherlock has an embedded Power PC and performs real-time-image processing function in an embedded FPGA. The camera has a built in LCD display as well as output to a standard monitor, or NTSC display. It has several I/O ports, ethernet, firewire, RS232 and thus can be easily controlled from a remote location. In addition, software upgrades can be performed over the ethernet eliminating the need to send the camera back to the factory for a retrofit. Using the USB port a mouse and key board can be connected and the camera can be used in a laboratory environment as a stand alone imaging spectrometer.
Hyperspectral retinal imaging with a spectrally tunable light source
NASA Astrophysics Data System (ADS)
Francis, Robert P.; Zuzak, Karel J.; Ufret-Vincenty, Rafael
2011-03-01
Hyperspectral retinal imaging can measure oxygenation and identify areas of ischemia in human patients, but the devices used by current researchers are inflexible in spatial and spectral resolution. We have developed a flexible research prototype consisting of a DLP®-based spectrally tunable light source coupled to a fundus camera to quickly explore the effects of spatial resolution, spectral resolution, and spectral range on hyperspectral imaging of the retina. The goal of this prototype is to (1) identify spectral and spatial regions of interest for early diagnosis of diseases such as glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR); and (2) define required specifications for commercial products. In this paper, we describe the challenges and advantages of using a spectrally tunable light source for hyperspectral retinal imaging, present clinical results of initial imaging sessions, and describe how this research can be leveraged into specifying a commercial product.
Spatial and temporal variability of hyperspectral signatures of terrain
NASA Astrophysics Data System (ADS)
Jones, K. F.; Perovich, D. K.; Koenig, G. G.
2008-04-01
Electromagnetic signatures of terrain exhibit significant spatial heterogeneity on a range of scales as well as considerable temporal variability. A statistical characterization of the spatial heterogeneity and spatial scaling algorithms of terrain electromagnetic signatures are required to extrapolate measurements to larger scales. Basic terrain elements including bare soil, grass, deciduous, and coniferous trees were studied in a quasi-laboratory setting using instrumented test sites in Hanover, NH and Yuma, AZ. Observations were made using a visible and near infrared spectroradiometer (350 - 2500 nm) and hyperspectral camera (400 - 1100 nm). Results are reported illustrating: i) several difference scenes; ii) a terrain scene time series sampled over an annual cycle; and iii) the detection of artifacts in scenes. A principal component analysis indicated that the first three principal components typically explained between 90 and 99% of the variance of the 30 to 40-channel hyperspectral images. Higher order principal components of hyperspectral images are useful for detecting artifacts in scenes.
2009-10-06
NASA Conducts Airborne Science Aboard Zeppelin Airship: equipped with two imaging instruments enabling remote sensing and atmospheric science measurements not previously practical. Hyperspectral imager and large format camera mounted inside the Zeppelin nose fairing.
High Resolution Airborne Laser Scanning and Hyperspectral Imaging with a Small Uav Platform
NASA Astrophysics Data System (ADS)
Gallay, Michal; Eck, Christoph; Zgraggen, Carlo; Kaňuk, Ján; Dvorný, Eduard
2016-06-01
The capabilities of unmanned airborne systems (UAS) have become diverse with the recent development of lightweight remote sensing instruments. In this paper, we demonstrate our custom integration of the state-of-the-art technologies within an unmanned aerial platform capable of high-resolution and high-accuracy laser scanning, hyperspectral imaging, and photographic imaging. The technological solution comprises the latest development of a completely autonomous, unmanned helicopter by Aeroscout, the Scout B1-100 UAV helicopter. The helicopter is powered by a gasoline two-stroke engine and it allows for integrating 18 kg of a customized payload unit. The whole system is modular providing flexibility of payload options, which comprises the main advantage of the UAS. The UAS integrates two kinds of payloads which can be altered. Both payloads integrate a GPS/IMU with a dual GPS antenna configuration provided by OXTS for accurate navigation and position measurements during the data acquisition. The first payload comprises a VUX-1 laser scanner by RIEGL and a Sony A6000 E-Mount photo camera. The second payload for hyperspectral scanning integrates a push-broom imager AISA KESTREL 10 by SPECIM. The UAS was designed for research of various aspects of landscape dynamics (landslides, erosion, flooding, or phenology) in high spectral and spatial resolution.
Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring.
Allison, Robert S; Johnston, Joshua M; Craig, Gregory; Jennings, Sion
2016-08-18
For decades detection and monitoring of forest and other wildland fires has relied heavily on aircraft (and satellites). Technical advances and improved affordability of both sensors and sensor platforms promise to revolutionize the way aircraft detect, monitor and help suppress wildfires. Sensor systems like hyperspectral cameras, image intensifiers and thermal cameras that have previously been limited in use due to cost or technology considerations are now becoming widely available and affordable. Similarly, new airborne sensor platforms, particularly small, unmanned aircraft or drones, are enabling new applications for airborne fire sensing. In this review we outline the state of the art in direct, semi-automated and automated fire detection from both manned and unmanned aerial platforms. We discuss the operational constraints and opportunities provided by these sensor systems including a discussion of the objective evaluation of these systems in a realistic context.
Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring
Allison, Robert S.; Johnston, Joshua M.; Craig, Gregory; Jennings, Sion
2016-01-01
For decades detection and monitoring of forest and other wildland fires has relied heavily on aircraft (and satellites). Technical advances and improved affordability of both sensors and sensor platforms promise to revolutionize the way aircraft detect, monitor and help suppress wildfires. Sensor systems like hyperspectral cameras, image intensifiers and thermal cameras that have previously been limited in use due to cost or technology considerations are now becoming widely available and affordable. Similarly, new airborne sensor platforms, particularly small, unmanned aircraft or drones, are enabling new applications for airborne fire sensing. In this review we outline the state of the art in direct, semi-automated and automated fire detection from both manned and unmanned aerial platforms. We discuss the operational constraints and opportunities provided by these sensor systems including a discussion of the objective evaluation of these systems in a realistic context. PMID:27548174
Optimization of spectral bands for hyperspectral remote sensing of forest vegetation
NASA Astrophysics Data System (ADS)
Dmitriev, Egor V.; Kozoderov, Vladimir V.
2013-10-01
Optimization principles of accounting for the most informative spectral channels in hyperspectral remote sensing data processing serve to enhance the efficiency of the employed high-productive computers. The problem of pattern recognition of the remotely sensed land surface objects with the accent on the forests is outlined from the point of view of the spectral channels optimization on the processed hyperspectral images. The relevant computational procedures are tested using the images obtained by the produced in Russia hyperspectral camera that was installed on a gyro-stabilized platform to conduct the airborne flight campaigns. The Bayesian classifier is used for the pattern recognition of the forests with different tree species and age. The probabilistically optimal algorithm constructed on the basis of the maximum likelihood principle is described to minimize the probability of misclassification given by this classifier. The classification error is the major category to estimate the accuracy of the applied algorithm by the known holdout cross-validation method. Details of the related techniques are presented. Results are shown of selecting the spectral channels of the camera while processing the images having in mind radiometric distortions that diminish the classification accuracy. The spectral channels are selected of the obtained subclasses extracted from the proposed validation techniques and the confusion matrices are constructed that characterize the age composition of the classified pine species as well as the broad age-class recognition for the pine and birch species with the fully illuminated parts of their crowns.
Security inspection in ports by anomaly detection using hyperspectral imaging technology
NASA Astrophysics Data System (ADS)
Rivera, Javier; Valverde, Fernando; Saldaña, Manuel; Manian, Vidya
2013-05-01
Applying hyperspectral imaging technology in port security is crucial for the detection of possible threats or illegal activities. One of the most common problems that cargo suffers is tampering. This represents a danger to society because it creates a channel to smuggle illegal and hazardous products. If a cargo is altered, security inspections on that cargo should contain anomalies that reveal the nature of the tampering. Hyperspectral images can detect anomalies by gathering information through multiple electromagnetic bands. The spectrums extracted from these bands can be used to detect surface anomalies from different materials. Based on this technology, a scenario was built in which a hyperspectral camera was used to inspect the cargo for any surface anomalies and a user interface shows the results. The spectrum of items, altered by different materials that can be used to conceal illegal products, is analyzed and classified in order to provide information about the tampered cargo. The image is analyzed with a variety of techniques such as multiple features extracting algorithms, autonomous anomaly detection, and target spectrum detection. The results will be exported to a workstation or mobile device in order to show them in an easy -to-use interface. This process could enhance the current capabilities of security systems that are already implemented, providing a more complete approach to detect threats and illegal cargo.
NASA Astrophysics Data System (ADS)
Fabelo, Himar; Ortega, Samuel; Kabwama, Silvester; Callico, Gustavo M.; Bulters, Diederik; Szolna, Adam; Pineiro, Juan F.; Sarmiento, Roberto
2016-05-01
Hyperspectral images allow obtaining large amounts of information about the surface of the scene that is captured by the sensor. Using this information and a set of complex classification algorithms is possible to determine which material or substance is located in each pixel. The HELICoiD (HypErspectraL Imaging Cancer Detection) project is a European FET project that has the goal to develop a demonstrator capable to discriminate, with high precision, between normal and tumour tissues, operating in real-time, during neurosurgical operations. This demonstrator could help the neurosurgeons in the process of brain tumour resection, avoiding the excessive extraction of normal tissue and unintentionally leaving small remnants of tumour. Such precise delimitation of the tumour boundaries will improve the results of the surgery. The HELICoiD demonstrator is composed of two hyperspectral cameras obtained from Headwall. The first one in the spectral range from 400 to 1000 nm (visible and near infrared) and the second one in the spectral range from 900 to 1700 nm (near infrared). The demonstrator also includes an illumination system that covers the spectral range from 400 nm to 2200 nm. A data processing unit is in charge of managing all the parts of the demonstrator, and a high performance platform aims to accelerate the hyperspectral image classification process. Each one of these elements is installed in a customized structure specially designed for surgical environments. Preliminary results of the classification algorithms offer high accuracy (over 95%) in the discrimination between normal and tumour tissues.
NASA Astrophysics Data System (ADS)
Usenik, Peter; Bürmen, Miran; Vrtovec, Tomaž; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan
2011-03-01
Despite major improvements in dental healthcare and technology, dental caries remains one of the most prevalent chronic diseases of modern society. The initial stages of dental caries are characterized by demineralization of enamel crystals, commonly known as white spots which are difficult to diagnose. If detected early enough, such demineralization can be arrested and reversed by non-surgical means through well established dental treatments (fluoride therapy, anti-bacterial therapy, low intensity laser irradiation). Near-infrared (NIR) hyper-spectral imaging is a new promising technique for early detection of demineralization based on distinct spectral features of healthy and pathological dental tissues. In this study, we apply NIR hyper-spectral imaging to classify and visualize healthy and pathological dental tissues including enamel, dentin, calculus, dentin caries, enamel caries and demineralized areas. For this purpose, a standardized teeth database was constructed consisting of 12 extracted human teeth with different degrees of natural dental lesions imaged by NIR hyper-spectral system, X-ray and digital color camera. The color and X-ray images of teeth were presented to a clinical expert for localization and classification of the dental tissues, thereby obtaining the gold standard. Principal component analysis was used for multivariate local modeling of healthy and pathological dental tissues. Finally, the dental tissues were classified by employing multiple discriminant analysis. High agreement was observed between the resulting classification and the gold standard with the classification sensitivity and specificity exceeding 85 % and 97 %, respectively. This study demonstrates that NIR hyper-spectral imaging has considerable diagnostic potential for imaging hard dental tissues.
Pinto, Francisco; Mielewczik, Michael; Liebisch, Frank; Walter, Achim; Greven, Hartmut; Rascher, Uwe
2013-01-01
Most spectral data for the amphibian integument are limited to the visible spectrum of light and have been collected using point measurements with low spatial resolution. In the present study a dual camera setup consisting of two push broom hyperspectral imaging systems was employed, which produces reflectance images between 400 and 2500 nm with high spectral and spatial resolution and a high dynamic range. We briefly introduce the system and document the high efficiency of this technique analyzing exemplarily the spectral reflectivity of the integument of three arboreal anuran species (Litoria caerulea, Agalychnis callidryas and Hyla arborea), all of which appear green to the human eye. The imaging setup generates a high number of spectral bands within seconds and allows non-invasive characterization of spectral characteristics with relatively high working distance. Despite the comparatively uniform coloration, spectral reflectivity between 700 and 1100 nm differed markedly among the species. In contrast to H. arborea, L. caerulea and A. callidryas showed reflection in this range. For all three species, reflectivity above 1100 nm is primarily defined by water absorption. Furthermore, the high resolution allowed examining even small structures such as fingers and toes, which in A. callidryas showed an increased reflectivity in the near infrared part of the spectrum. Hyperspectral imaging was found to be a very useful alternative technique combining the spectral resolution of spectrometric measurements with a higher spatial resolution. In addition, we used Digital Infrared/Red-Edge Photography as new simple method to roughly determine the near infrared reflectivity of frog specimens in field, where hyperspectral imaging is typically difficult.
Vierling, L.A.; Fersdahl, M.; Chen, X.; Li, Z.; Zimmerman, P.
2006-01-01
We describe a new remote sensing system called the Short Wave Aerostat-Mounted Imager (SWAMI). The SWAMI is designed to acquire co-located video imagery and hyperspectral data to study basic remote sensing questions and to link landscape level trace gas fluxes with spatially and temporally appropriate spectral observations. The SWAMI can fly at altitudes up to 2 km above ground level to bridge the spatial gap between radiometric measurements collected near the surface and those acquired by other aircraft or satellites. The SWAMI platform consists of a dual channel hyperspectral spectroradiometer, video camera, GPS, thermal infrared sensor, and several meteorological and control sensors. All SWAMI functions (e.g. data acquisition and sensor pointing) can be controlled from the ground via wireless transmission. Sample data from the sampling platform are presented, along with several potential scientific applications of SWAMI data.
NASA Technical Reports Server (NTRS)
Barry, R. K.; Satyapal, S.; Greenhouse, M. A.; Barclay, R.; Amato, D.; Arritt, B.; Brown, G.; Harvey, V.; Holt, C.; Kuhn, J.
2000-01-01
We discuss work in progress on a near-infrared tunable bandpass filter for the Goddard baseline wide field camera concept of the Next Generation Space Telescope (NGST) Integrated Science Instrument Module (ISIM). This filter, the Demonstration Unit for Low Order Cryogenic Etalon (DULCE), is designed to demonstrate a high efficiency scanning Fabry-Perot etalon operating in interference orders 1 - 4 at 30K with a high stability DSP based servo control system. DULCE is currently the only available tunable filter for lower order cryogenic operation in the near infrared. In this application, scanning etalons will illuminate the focal plane arrays with a single order of interference to enable wide field lower resolution hyperspectral imaging over a wide range of redshifts. We discuss why tunable filters are an important instrument component in future space-based observatories.
Improved Scanners for Microscopic Hyperspectral Imaging
NASA Technical Reports Server (NTRS)
Mao, Chengye
2009-01-01
Improved scanners to be incorporated into hyperspectral microscope-based imaging systems have been invented. Heretofore, in microscopic imaging, including spectral imaging, it has been customary to either move the specimen relative to the optical assembly that includes the microscope or else move the entire assembly relative to the specimen. It becomes extremely difficult to control such scanning when submicron translation increments are required, because the high magnification of the microscope enlarges all movements in the specimen image on the focal plane. To overcome this difficulty, in a system based on this invention, no attempt would be made to move either the specimen or the optical assembly. Instead, an objective lens would be moved within the assembly so as to cause translation of the image at the focal plane: the effect would be equivalent to scanning in the focal plane. The upper part of the figure depicts a generic proposed microscope-based hyperspectral imaging system incorporating the invention. The optical assembly of this system would include an objective lens (normally, a microscope objective lens) and a charge-coupled-device (CCD) camera. The objective lens would be mounted on a servomotor-driven translation stage, which would be capable of moving the lens in precisely controlled increments, relative to the camera, parallel to the focal-plane scan axis. The output of the CCD camera would be digitized and fed to a frame grabber in a computer. The computer would store the frame-grabber output for subsequent viewing and/or processing of images. The computer would contain a position-control interface board, through which it would control the servomotor. There are several versions of the invention. An essential feature common to all versions is that the stationary optical subassembly containing the camera would also contain a spatial window, at the focal plane of the objective lens, that would pass only a selected portion of the image. In one version, the window would be a slit, the CCD would contain a one-dimensional array of pixels, and the objective lens would be moved along an axis perpendicular to the slit to spatially scan the image of the specimen in pushbroom fashion. The image built up by scanning in this case would be an ordinary (non-spectral) image. In another version, the optics of which are depicted in the lower part of the figure, the spatial window would be a slit, the CCD would contain a two-dimensional array of pixels, the slit image would be refocused onto the CCD by a relay-lens pair consisting of a collimating and a focusing lens, and a prism-gratingprism optical spectrometer would be placed between the collimating and focusing lenses. Consequently, the image on the CCD would be spatially resolved along the slit axis and spectrally resolved along the axis perpendicular to the slit. As in the first-mentioned version, the objective lens would be moved along an axis perpendicular to the slit to spatially scan the image of the specimen in pushbroom fashion.
Accurate reconstruction of hyperspectral images from compressive sensing measurements
NASA Astrophysics Data System (ADS)
Greer, John B.; Flake, J. C.
2013-05-01
The emerging field of Compressive Sensing (CS) provides a new way to capture data by shifting the heaviest burden of data collection from the sensor to the computer on the user-end. This new means of sensing requires fewer measurements for a given amount of information than traditional sensors. We investigate the efficacy of CS for capturing HyperSpectral Imagery (HSI) remotely. We also introduce a new family of algorithms for constructing HSI from CS measurements with Split Bregman Iteration [Goldstein and Osher,2009]. These algorithms combine spatial Total Variation (TV) with smoothing in the spectral dimension. We examine models for three different CS sensors: the Coded Aperture Snapshot Spectral Imager-Single Disperser (CASSI-SD) [Wagadarikar et al.,2008] and Dual Disperser (CASSI-DD) [Gehm et al.,2007] cameras, and a hypothetical random sensing model closer to CS theory, but not necessarily implementable with existing technology. We simulate the capture of remotely sensed images by applying the sensor forward models to well-known HSI scenes - an AVIRIS image of Cuprite, Nevada and the HYMAP Urban image. To measure accuracy of the CS models, we compare the scenes constructed with our new algorithm to the original AVIRIS and HYMAP cubes. The results demonstrate the possibility of accurately sensing HSI remotely with significantly fewer measurements than standard hyperspectral cameras.
Image quality measures to assess hyperspectral compression techniques
NASA Astrophysics Data System (ADS)
Lurie, Joan B.; Evans, Bruce W.; Ringer, Brian; Yeates, Mathew
1994-12-01
The term 'multispectral' is used to describe imagery with anywhere from three to about 20 bands of data. The images acquired by Landsat and similar earth sensing satellites including the French Spot platform are typical examples of multispectral data sets. Applications range from crop observation and yield estimation, to forestry, to sensing of the environment. The wave bands typically range from the visible to thermal infrared and are fractions of a micron wide. They may or may not be contiguous. Thus each pixel will have several spectral intensities associated with it but detailed spectra are not obtained. The term 'hyperspectral' is typically used for spectral data encompassing hundreds of samples of a spectrum. Hyperspectral, electro-optical sensors typically operate in the visible and near infrared bands. Their characteristic property is the ability to resolve a large number (typically hundreds) of contiguous spectral bands, thus producing a detailed profile of the electromagnetic spectrum. Like multispectral sensors, recently developed hyperspectral sensors are often also imaging sensors, measuring spectral over a two dimensional spatial array of picture elements of pixels. The resulting data is thus inherently three dimensional - an array of samples in which two dimensions correspond to spatial position and the third to wavelength. The data sets, commonly referred to as image cubes or datacubes (although technically they are often rectangular solids), are very rich in information but quickly become unwieldy in size, generating formidable torrents of data. Both spaceborne and airborne hyperspectral cameras exist and are in use today. The data is unique in its ability to provide high spatial and spectral resolution simultaneously, and shows great promise in both military and civilian applications. A data analysis system has been built at TRW under a series of Internal Research and Development projects. This development has been prompted by the business opportunities, by the series of instruments built here and by the availability of data from other instruments. The products of the processing system has been used to process data produced by TRW sensors and other instruments. Figure 1 provides an overview of the TRW hyperspectral collection, data handling and exploitation capability. The Analysis and Exploitation functions deal with the digitized image cubes. The analysis system was designed to handle various types of data but the emphasis was on the data acquired by the TRW instruments.
Hyperspectral microscopic analysis of normal, benign and carcinoma microarray tissue sections
NASA Astrophysics Data System (ADS)
Maggioni, Mauro; Davis, Gustave L.; Warner, Frederick J.; Geshwind, Frank B.; Coppi, Andreas C.; DeVerse, Richard A.; Coifman, Ronald R.
2006-02-01
We apply a unique micro-optoelectromechanical tuned light source and new algorithms to the hyper-spectral microscopic analysis of human colon biopsies. The tuned light prototype (Plain Sight Systems Inc.) transmits any combination of light frequencies, range 440nm 700nm, trans-illuminating H and E stained tissue sections of normal (N), benign adenoma (B) and malignant carcinoma (M) colon biopsies, through a Nikon Biophot microscope. Hyper-spectral photomicrographs, randomly collected 400X magnication, are obtained with a CCD camera (Sensovation) from 59 different patient biopsies (20 N, 19 B, 20 M) mounted as a microarray on a single glass slide. The spectra of each pixel are normalized and analyzed to discriminate among tissue features: gland nuclei, gland cytoplasm and lamina propria/lumens. Spectral features permit the automatic extraction of 3298 nuclei with classification as N, B or M. When nuclei are extracted from each of the 59 biopsies the average classification among N, B and M nuclei is 97.1%; classification of the biopsies, based on the average nuclei classification, is 100%. However, when the nuclei are extracted from a subset of biopsies, and the prediction is made on nuclei in the remaining biopsies, there is a marked decrement in performance to 60% across the 3 classes. Similarly the biopsy classification drops to 54%. In spite of these classification differences, which we believe are due to instrument and biopsy normalization issues, hyper-spectral analysis has the potential to achieve diagnostic efficiency needed for objective microscopic diagnosis.
Hyperspectral laser-induced autofluorescence imaging of dental caries
NASA Astrophysics Data System (ADS)
Bürmen, Miran; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan
2012-01-01
Dental caries is a disease characterized by demineralization of enamel crystals leading to the penetration of bacteria into the dentine and pulp. Early detection of enamel demineralization resulting in increased enamel porosity, commonly known as white spots, is a difficult diagnostic task. Laser induced autofluorescence was shown to be a useful method for early detection of demineralization. The existing studies involved either a single point spectroscopic measurements or imaging at a single spectral band. In the case of spectroscopic measurements, very little or no spatial information is acquired and the measured autofluorescence signal strongly depends on the position and orientation of the probe. On the other hand, single-band spectral imaging can be substantially affected by local spectral artefacts. Such effects can significantly interfere with automated methods for detection of early caries lesions. In contrast, hyperspectral imaging effectively combines the spatial information of imaging methods with the spectral information of spectroscopic methods providing excellent basis for development of robust and reliable algorithms for automated classification and analysis of hard dental tissues. In this paper, we employ 405 nm laser excitation of natural caries lesions. The fluorescence signal is acquired by a state-of-the-art hyperspectral imaging system consisting of a high-resolution acousto-optic tunable filter (AOTF) and a highly sensitive Scientific CMOS camera in the spectral range from 550 nm to 800 nm. The results are compared to the contrast obtained by near-infrared hyperspectral imaging technique employed in the existing studies on early detection of dental caries.
Liebisch, Frank; Walter, Achim; Greven, Hartmut; Rascher, Uwe
2013-01-01
Background Most spectral data for the amphibian integument are limited to the visible spectrum of light and have been collected using point measurements with low spatial resolution. In the present study a dual camera setup consisting of two push broom hyperspectral imaging systems was employed, which produces reflectance images between 400 and 2500 nm with high spectral and spatial resolution and a high dynamic range. Methodology/Principal Findings We briefly introduce the system and document the high efficiency of this technique analyzing exemplarily the spectral reflectivity of the integument of three arboreal anuran species (Litoria caerulea, Agalychnis callidryas and Hyla arborea), all of which appear green to the human eye. The imaging setup generates a high number of spectral bands within seconds and allows non-invasive characterization of spectral characteristics with relatively high working distance. Despite the comparatively uniform coloration, spectral reflectivity between 700 and 1100 nm differed markedly among the species. In contrast to H. arborea, L. caerulea and A. callidryas showed reflection in this range. For all three species, reflectivity above 1100 nm is primarily defined by water absorption. Furthermore, the high resolution allowed examining even small structures such as fingers and toes, which in A. callidryas showed an increased reflectivity in the near infrared part of the spectrum. Conclusion/Significance Hyperspectral imaging was found to be a very useful alternative technique combining the spectral resolution of spectrometric measurements with a higher spatial resolution. In addition, we used Digital Infrared/Red-Edge Photography as new simple method to roughly determine the near infrared reflectivity of frog specimens in field, where hyperspectral imaging is typically difficult. PMID:24058464
Status and Directions of Insect Resistance Monitoring Project
EPA has conducted research since 2004 to investigate the use of remote images to detect pest infestation from a hyperspectral airborne camera. Results from the 2008 field research have shown that pest infestation effects can be detected without foreknowledge of field assessed con...
Handheld hyperspectral imager for standoff detection of chemical and biological aerosols
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele; Jensen, James O.; McAnally, Gerard
2004-08-01
Pacific Advanced Technology has developed a small hand held imaging spectrometer, Sherlock, for gas leak and aerosol detection and imaging. The system is based on a patented technique, (IMSS Image Multi-spectral Sensing), that uses diffractive optics and image processing algorithms to detect spectral information about objects in the scene of the camera. This cameras technology has been tested at Dugway Proving Ground and Dstl Porton Down facilities looking at Chemical and Biological agent simulants. In addition to Chemical and Biological detection, the camera has been used for environmental monitoring of green house gases and is currently undergoing extensive laboratory and field testing by the Gas Technology Institute, British Petroleum and Shell Oil for applications for gas leak detection and repair. In this paper we will present some of the results from the data collection at the TRE test at Dugway Proving Ground during the summer of 2002 and laboratory testing at the Dstl facility at Porton Down in the UK in the fall of 2002.
NASA Astrophysics Data System (ADS)
Torkildsen, H. E.; Hovland, H.; Opsahl, T.; Haavardsholm, T. V.; Nicolas, S.; Skauli, T.
2014-06-01
In some applications of multi- or hyperspectral imaging, it is important to have a compact sensor. The most compact spectral imaging sensors are based on spectral filtering in the focal plane. For hyperspectral imaging, it has been proposed to use a "linearly variable" bandpass filter in the focal plane, combined with scanning of the field of view. As the image of a given object in the scene moves across the field of view, it is observed through parts of the filter with varying center wavelength, and a complete spectrum can be assembled. However if the radiance received from the object varies with viewing angle, or with time, then the reconstructed spectrum will be distorted. We describe a camera design where this hyperspectral functionality is traded for multispectral imaging with better spectral integrity. Spectral distortion is minimized by using a patterned filter with 6 bands arranged close together, so that a scene object is seen by each spectral band in rapid succession and with minimal change in viewing angle. The set of 6 bands is repeated 4 times so that the spectral data can be checked for internal consistency. Still the total extent of the filter in the scan direction is small. Therefore the remainder of the image sensor can be used for conventional imaging with potential for using motion tracking and 3D reconstruction to support the spectral imaging function. We show detailed characterization of the point spread function of the camera, demonstrating the importance of such characterization as a basis for image reconstruction. A simplified image reconstruction based on feature-based image coregistration is shown to yield reasonable results. Elimination of spectral artifacts due to scene motion is demonstrated.
Hyperspectral techniques in analysis of oral dosage forms.
Hamilton, Sara J; Lowell, Amanda E; Lodder, Robert A
2002-10-01
Pharmaceutical oral dosage forms are used in this paper to test the sensitivity and spatial resolution of hyperspectral imaging instruments. The first experiment tested the hypothesis that a near-infrared (IR) tunable diode-based remote sensing system is capable of monitoring degradation of hard gelatin capsules at a relatively long distance (0.5 km). Spectra from the capsules were used to differentiate among capsules exposed to an atmosphere containing 150 ppb formaldehyde for 0, 2, 4, and 8 h. Robust median-based principal component regression with Bayesian inference was employed for outlier detection. The second experiment tested the hypothesis that near-IR imaging spectrometry of tablets permits the identification and composition of multiple individual tablets to be determined simultaneously. A near-IR camera was used to collect thousands of spectra simultaneously from a field of blister-packaged tablets. The number of tablets that a typical near-IR camera can currently analyze simultaneously was estimated to be approximately 1300. The bootstrap error-adjusted single-sample technique chemometric-imaging algorithm was used to draw probability-density contour plots that revealed tablet composition. The single-capsule analysis provides an indication of how far apart the sample and instrumentation can be and still maintain adequate signal-to-noise ratio (S/N), while the multiple-tablet imaging experiment gives an indication of how many samples can be analyzed simultaneously while maintaining an adequate S/N and pixel coverage on each sample.
Human-Automation Collaboration: Support for Lunar and Planetary Exploration
2007-02-01
example, providing thermal regulation, but they limit mobility and senses, e.g., sound, vision, smell and touch. In addition, there is a limited supply...planning capabilities for the MER. Scientists and engineers have access to imagery that includes panoramas , camera views, and hyperspectral
Advances in hyperspectral LWIR pushbroom imagers
NASA Astrophysics Data System (ADS)
Holma, Hannu; Mattila, Antti-Jussi; Hyvärinen, Timo; Weatherbee, Oliver
2011-06-01
Two long-wave infrared (LWIR) hyperspectral imagers have been under extensive development. The first one utilizes a microbolometer focal plane array (FPA) and the second one is based on an Mercury Cadmium Telluride (MCT) FPA. Both imagers employ a pushbroom imaging spectrograph with a transmission grating and on-axis optics. The main target has been to develop high performance instruments with good image quality and compact size for various industrial and remote sensing application requirements. A big challenge in realizing these goals without considerable cooling of the whole instrument is to control the instrument radiation. The challenge is much bigger in a hyperspectral instrument than in a broadband camera, because the optical signal from the target is spread spectrally, but the instrument radiation is not dispersed. Without any suppression, the instrument radiation can overwhelm the radiation from the target even by 1000 times. The means to handle the instrument radiation in the MCT imager include precise instrument temperature stabilization (but not cooling), efficient optical background suppression and the use of background-monitoring-on-chip (BMC) method. This approach has made possible the implementation of a high performance, extremely compact spectral imager in the 7.7 to 12.4 μm spectral range. The imager performance with 84 spectral bands and 384 spatial pixels has been experimentally verified and an excellent NESR of 14 mW/(m2srμm) at 10 μm wavelength with a 300 K target has been achieved. This results in SNR of more than 700. The LWIR imager based on a microbolometer detector array, first time introduced in 2009, has been upgraded. The sensitivity of the imager has improved drastically by a factor of 3 and SNR by about 15 %. It provides a rugged hyperspectral camera for chemical imaging applications in reflection mode in laboratory and industry.
NASA Astrophysics Data System (ADS)
Yamamoto, Naoyuki; Saito, Tsubasa; Ogawa, Satoru; Ishimaru, Ichiro
2016-05-01
We developed the palm size (optical unit: 73[mm]×102[mm]×66[mm]) and light weight (total weight with electrical controller: 1.7[kg]) middle infrared (wavelength range: 8[μm]-14[μm]) 2-dimensional spectroscopy for UAV (Unmanned Air Vehicle) like drone. And we successfully demonstrated the flights with the developed hyperspectral camera mounted on the multi-copter so-called drone in 15/Sep./2015 at Kagawa prefecture in Japan. We had proposed 2 dimensional imaging type Fourier spectroscopy that was the near-common path temporal phase-shift interferometer. We install the variable phase shifter onto optical Fourier transform plane of infinity corrected imaging optical systems. The variable phase shifter was configured with a movable mirror and a fixed mirror. The movable mirror was actuated by the impact drive piezo-electric device (stroke: 4.5[mm], resolution: 0.01[μm], maker: Technohands Co.,Ltd., type:XDT50-45, price: around 1,000USD). We realized the wavefront division type and near common path interferometry that has strong robustness against mechanical vibrations. Without anti-mechanical vibration systems, the palm-size Fourier spectroscopy was realized. And we were able to utilize the small and low-cost middle infrared camera that was the micro borometer array (un-cooled VOxMicroborometer, pixel array: 336×256, pixel pitch: 17[μm], frame rate 60[Hz], maker: FLIR, type: Quark 336, price: around 5,000USD). And this apparatus was able to be operated by single board computer (Raspberry Pi.). Thus, total cost was less than 10,000 USD. We joined with KAMOME-PJ (Kanagawa Advanced MOdule for Material Evaluation Project) with DRONE FACTORY Corp., KUUSATSU Corp., Fuji Imvac Inc. And we successfully obtained the middle infrared spectroscopic imaging with multi-copter drone.
NASA Astrophysics Data System (ADS)
Scopatz, Stephen D.; Mendez, Michael; Trent, Randall
2015-05-01
The projection of controlled moving targets is key to the quantitative testing of video capture and post processing for Motion Imagery. This presentation will discuss several implementations of target projectors with moving targets or apparent moving targets creating motion to be captured by the camera under test. The targets presented are broadband (UV-VIS-IR) and move in a predictable, repeatable and programmable way; several short videos will be included in the presentation. Among the technical approaches will be targets that move independently in the camera's field of view, as well targets that change size and shape. The development of a rotating IR and VIS 4 bar target projector with programmable rotational velocity and acceleration control for testing hyperspectral cameras is discussed. A related issue for motion imagery is evaluated by simulating a blinding flash which is an impulse of broadband photons in fewer than 2 milliseconds to assess the camera's reaction to a large, fast change in signal. A traditional approach of gimbal mounting the camera in combination with the moving target projector is discussed as an alternative to high priced flight simulators. Based on the use of the moving target projector several standard tests are proposed to provide a corresponding test to MTF (resolution), SNR and minimum detectable signal at velocity. Several unique metrics are suggested for Motion Imagery including Maximum Velocity Resolved (the measure of the greatest velocity that is accurately tracked by the camera system) and Missing Object Tolerance (measurement of tracking ability when target is obscured in the images). These metrics are applicable to UV-VIS-IR wavelengths and can be used to assist in camera and algorithm development as well as comparing various systems by presenting the exact scenes to the cameras in a repeatable way.
Imaging standoff trace detection of explosives using IR-laser based backscattering
NASA Astrophysics Data System (ADS)
Fuchs, F.; Hugger, S.; Jarvis, J.; Yang, Q. K.; Ostendorf, R.; Schilling, Ch.; Bronner, W.; Driad, R.; Aidam, R.; Wagner, J.
2016-05-01
We perform active hyperspectral imaging using tunable mid-infrared (MIR) quantum cascade lasers for contactless identification of solid and liquid contaminations on surfaces. By collecting the backscattered laser radiation with a camera, a hyperspectral data cube, containing the spatially resolved spectral information of the scene is obtained. Data is analyzed using appropriate algorithms to find the target substances even on substrates with a priori unknown spectra. Eye-save standoff detection of residues of explosives and precursors over extended distances is demonstrated and the main purpose of our system. Using a MIR EC-QCL with a tuning range from 7.5 μm to 10 μm, detection of a large variety of explosives, e.g. TNT, PETN and RDX and precursor materials such as Ammonium Nitrate could be demonstrated. In a real world scenario stand-off detection over distances of up to 20 m could be successfully performed. This includes measurements in a post blast scenario demonstrating the potential of the technique for forensic investigations.
NASA Astrophysics Data System (ADS)
Hong, Hyundae; Benac, Jasenka; Riggsbee, Daniel; Koutsky, Keith
2014-03-01
High throughput (HT) phenotyping of crops is essential to increase yield in environments deteriorated by climate change. The controlled environment of a greenhouse offers an ideal platform to study the genotype to phenotype linkages for crop screening. Advanced imaging technologies are used to study plants' responses to resource limitations such as water and nutrient deficiency. Advanced imaging technologies coupled with automation make HT phenotyping in the greenhouse not only feasible, but practical. Monsanto has a state of the art automated greenhouse (AGH) facility. Handling of the soil, pots water and nutrients are all completely automated. Images of the plants are acquired by multiple hyperspectral and broadband cameras. The hyperspectral cameras cover wavelengths from visible light through short wave infra-red (SWIR). Inhouse developed software analyzes the images to measure plant morphological and biochemical properties. We measure phenotypic metrics like plant area, height, and width as well as biomass. Hyperspectral imaging allows us to measure biochemcical metrics such as chlorophyll, anthocyanin, and foliar water content. The last 4 years of AGH operations on crops like corn, soybean, and cotton have demonstrated successful application of imaging and analysis technologies for high throughput plant phenotyping. Using HT phenotyping, scientists have been showing strong correlations to environmental conditions, such as water and nutrient deficits, as well as the ability to tease apart distinct differences in the genetic backgrounds of crops.
Hyperspectral imaging for detection of black tip damage in wheat kernels
NASA Astrophysics Data System (ADS)
Delwiche, Stephen R.; Yang, I.-Chang; Kim, Moon S.
2009-05-01
A feasibility study was conducted on the use of hyperspectral imaging to differentiate sound wheat kernels from those with the fungal condition called black point or black tip. Individual kernels of hard red spring wheat were loaded in indented slots on a blackened machined aluminum plate. Damage conditions, determined by official (USDA) inspection, were either sound (no damage) or damaged by the black tip condition alone. Hyperspectral imaging was separately performed under modes of reflectance from white light illumination and fluorescence from UV light (~380 nm) illumination. By cursory inspection of wavelength images, one fluorescence wavelength (531 nm) was selected for image processing and classification analysis. Results indicated that with this one wavelength alone, classification accuracy can be as high as 95% when kernels are oriented with their dorsal side toward the camera. It is suggested that improvement in classification can be made through the inclusion of multiple wavelength images.
NASA Astrophysics Data System (ADS)
Dmitriev, Yegor V.; Kozoderov, Vladimir V.; Sokolov, Anton A.
2016-04-01
Collecting and updating forest inventory data play an important part in the forest management. The data can be obtained directly by using exact enough but low efficient ground based methods as well as from the remote sensing measurements. We present applications of airborne hyperspectral remote sensing for the retrieval of such important inventory parameters as the forest species and age composition. The hyperspectral images of the test region were obtained from the airplane equipped by the produced in Russia light-weight airborne video-spectrometer of visible and near infrared spectral range and high resolution photo-camera on the same gyro-stabilized platform. The quality of the thematic processing depends on many factors such as the atmospheric conditions, characteristics of measuring instruments, corrections and preprocessing methods, etc. An important role plays the construction of the classifier together with methods of the reduction of the feature space. The performance of different spectral classification methods is analyzed for the problem of hyperspectral remote sensing of soil and vegetation. For the reduction of the feature space we used the earlier proposed stable feature selection method. The results of the classification of hyperspectral airborne images by using the Multiclass Support Vector Machine method with Gaussian kernel and the parametric Bayesian classifier based on the Gaussian mixture model and their comparative analysis are demonstrated.
Identification of inflammation sites in arthritic joints using hyperspectral imaging
NASA Astrophysics Data System (ADS)
Paluchowski, Lukasz A.; Milanic, Matija; Bjorgan, Asgeir; Grandaunet, Berit; Dhainaut, Alvilde; Hoff, Mari; Randeberg, Lise L.
2014-03-01
Inflammatory arthritic diseases have prevalence between 2 and 3% and may lead to joint destruction and deformation resulting in a loss of function. Patient's quality of life is often severely affected as the disease attacks hands and finger joints. Pathology involved in arthritis includes angiogenesis, hyper-vascularization, hyper-metabolism and relative hypoxia. We have employed hyperspectral imaging to study the hemodynamics of affected- and non-affected joints and tissue. Two hyperspectral, push-broom cameras were used (VNIR-1600, SWIR-320i, Norsk Elektro Optikk AS, Norway). Optical spectra (400nm - 1700nm) of high spectral resolution were collected from 15 patients with visible symptoms of arthritic rheumatic diseases in at least one joint. The control group consisted of 10 healthy individuals. Concentrations of dominant chromophores were calculated based on analytical calculations of light transport in tissue. Image processing was used to analyze hyperspectral data and retrieve information, e.g. blood concentration and tissue oxygenation maps. The obtained results indicate that hyperspectral imaging can be used to quantify changes within affected joints and surrounding tissue. Further improvement of this method will have positive impact on diagnosis of arthritic joints at an early stage. Moreover it will enable development of fast, noninvasive and noncontact diagnostic tool of arthritic joints
Robust and adaptive band-to-band image transform of UAS miniature multi-lens multispectral camera
NASA Astrophysics Data System (ADS)
Jhan, Jyun-Ping; Rau, Jiann-Yeou; Haala, Norbert
2018-03-01
Utilizing miniature multispectral (MS) or hyperspectral (HS) cameras by mounting them on an Unmanned Aerial System (UAS) has the benefits of convenience and flexibility to collect remote sensing imagery for precision agriculture, vegetation monitoring, and environment investigation applications. Most miniature MS cameras adopt a multi-lens structure to record discrete MS bands of visible and invisible information. The differences in lens distortion, mounting positions, and viewing angles among lenses mean that the acquired original MS images have significant band misregistration errors. We have developed a Robust and Adaptive Band-to-Band Image Transform (RABBIT) method for dealing with the band co-registration of various types of miniature multi-lens multispectral cameras (Mini-MSCs) to obtain band co-registered MS imagery for remote sensing applications. The RABBIT utilizes modified projective transformation (MPT) to transfer the multiple image geometry of a multi-lens imaging system to one sensor geometry, and combines this with a robust and adaptive correction (RAC) procedure to correct several systematic errors and to obtain sub-pixel accuracy. This study applies three state-of-the-art Mini-MSCs to evaluate the RABBIT method's performance, specifically the Tetracam Miniature Multiple Camera Array (MiniMCA), Micasense RedEdge, and Parrot Sequoia. Six MS datasets acquired at different target distances and dates, and locations are also applied to prove its reliability and applicability. Results prove that RABBIT is feasible for different types of Mini-MSCs with accurate, robust, and rapid image processing efficiency.
A novel spectral imaging system for use during pancreatic cancer surgery
NASA Astrophysics Data System (ADS)
Peller, Joseph; Shipley, A. E.; Trammell, Susan R.; Abolbashari, Mehrdad; Farahi, Faramarz
2015-03-01
Pancreatic cancer is the fourth leading cause of cancer death in the United States. Most pancreatic cancer patients will die within the first year of diagnosis, and just 6% will survive five years. Currently, surgery is the only treatment that offers a chance of cure for pancreatic cancer patients. Accurately identifying the tumors margins in real time is a significant difficulty during pancreatic cancer surgery and contributes to the low 5-year survival rate. We are developing a hyperspectral imaging system based on compressive sampling for real-time tumor margin detection to facilitate more effective removal of diseased tissue and result in better patient outcomes. Recent research has shown that optical spectroscopy can be used to distinguish between healthy and diseased tissue and will likely become an important minimally invasive diagnostic tool for a range of diseases. Reflectance spectroscopy provides information about tissue morphology, while laser-induced autofluorescence spectra give accurate information about the content and molecular structure of the emitting tissue. We are developing a spectral imaging system that targets emission from collagen and NAD(P)H as diagnostics for differentiating healthy and diseased pancreatic tissue. In this study, we demonstrate the ability of our camera system to acquire hyperspectral images and its potential application for imaging autofluorescent emission from pancreatic tissue.
Towards automated spectroscopic tissue classification in thyroid and parathyroid surgery.
Schols, Rutger M; Alic, Lejla; Wieringa, Fokko P; Bouvy, Nicole D; Stassen, Laurents P S
2017-03-01
In (para-)thyroid surgery iatrogenic parathyroid injury should be prevented. To aid the surgeons' eye, a camera system enabling parathyroid-specific image enhancement would be useful. Hyperspectral camera technology might work, provided that the spectral signature of parathyroid tissue offers enough specific features to be reliably and automatically distinguished from surrounding tissues. As a first step to investigate this, we examined the feasibility of wide band diffuse reflectance spectroscopy (DRS) for automated spectroscopic tissue classification, using silicon (Si) and indium-gallium-arsenide (InGaAs) sensors. DRS (350-1830 nm) was performed during (para-)thyroid resections. From the acquired spectra 36 features at predefined wavelengths were extracted. The best features for classification of parathyroid from adipose or thyroid were assessed by binary logistic regression for Si- and InGaAs-sensor ranges. Classification performance was evaluated by leave-one-out cross-validation. In 19 patients 299 spectra were recorded (62 tissue sites: thyroid = 23, parathyroid = 21, adipose = 18). Classification accuracy of parathyroid-adipose was, respectively, 79% (Si), 82% (InGaAs) and 97% (Si/InGaAs combined). Parathyroid-thyroid classification accuracies were 80% (Si), 75% (InGaAs), 82% (Si/InGaAs combined). Si and InGaAs sensors are fairly accurate for automated spectroscopic classification of parathyroid, adipose and thyroid tissues. Combination of both sensor technologies improves accuracy. Follow-up research, aimed towards hyperspectral imaging seems justified. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Comparison of algorithms for blood stain detection applied to forensic hyperspectral imagery
NASA Astrophysics Data System (ADS)
Yang, Jie; Messinger, David W.; Mathew, Jobin J.; Dube, Roger R.
2016-05-01
Blood stains are among the most important types of evidence for forensic investigation. They contain valuable DNA information, and the pattern of the stains can suggest specifics about the nature of the violence that transpired at the scene. Early detection of blood stains is particularly important since the blood reacts physically and chemically with air and materials over time. Accurate identification of blood remnants, including regions that might have been intentionally cleaned, is an important aspect of forensic investigation. Hyperspectral imaging might be a potential method to detect blood stains because it is non-contact and provides substantial spectral information that can be used to identify regions in a scene with trace amounts of blood. The potential complexity of scenes in which such vast violence occurs can be high when the range of scene material types and conditions containing blood stains at a crime scene are considered. Some stains are hard to detect by the unaided eye, especially if a conscious effort to clean the scene has occurred (we refer to these as "latent" blood stains). In this paper we present the initial results of a study of the use of hyperspectral imaging algorithms for blood detection in complex scenes. We describe a hyperspectral imaging system which generates images covering 400 nm - 700 nm visible range with a spectral resolution of 10 nm. Three image sets of 31 wavelength bands were generated using this camera for a simulated indoor crime scene in which blood stains were placed on a T-shirt and walls. To detect blood stains in the scene, Principal Component Analysis (PCA), Subspace Reed Xiaoli Detection (SRXD), and Topological Anomaly Detection (TAD) algorithms were used. Comparison of the three hyperspectral image analysis techniques shows that TAD is most suitable for detecting blood stains and discovering latent blood stains.
Early Results from the Odyssey THEMIS Investigation
NASA Technical Reports Server (NTRS)
Christensen, Philip R.; Bandfield, Joshua L.; Bell, James F., III; Hamilton, Victoria E.; Ivanov, Anton; Jakosky, Bruce M.; Kieffer, Hugh H.; Lane, Melissa D.; Malin, Michael C.; McConnochie, Timothy
2003-01-01
The Thermal Emission Imaging System (THEMIS) began studying the surface and atmosphere of Mars in February, 2002 using thermal infrared (IR) multi-spectral imaging between 6.5 and 15 m, and visible/near-IR images from 450 to 850 nm. The infrared observations continue a long series of spacecraft observations of Mars, including the Mariner 6/7 Infrared Spectrometer, the Mariner 9 Infrared Interferometer Spectrometer (IRIS), the Viking Infrared Thermal Mapper (IRTM) investigations, the Phobos Termoscan, and the Mars Global Surveyor Thermal Emission Spectrometer (MGS TES). The THEMIS investigation's specific objectives are to: (1) determine the mineralogy of localized deposits associated with hydrothermal or sub-aqueous environments, and to identify future landing sites likely to represent these environments; (2) search for thermal anomalies associated with active sub-surface hydrothermal systems; (3) study small-scale geologic processes and landing site characteristics using morphologic and thermophysical properties; (4) investigate polar cap processes at all seasons; and (5) provide a high spatial resolution link to the global hyperspectral mineral mapping from the TES investigation. THEMIS provides substantially higher spatial resolution IR multi-spectral images to complement TES hyperspectral (143-band) global mapping, and regional visible imaging at scales intermediate between the Viking and MGS cameras.
NASA Astrophysics Data System (ADS)
Fuchs, Eran; Tuell, Grady
2010-04-01
The CZMIL system is a new generation airborne bathymetric and topographic remote sensing platform composed of an active lidar, passive hyperspectral imager, high resolution frame camera, navigation system, and storage media running on a linux-based Gigabit Ethernet network. The lidar is a hybrid scanned-flash system employing a 10 KHz green laser and novel circular scanner, with a large aperture receiver (0.20m) having multiple channels. A PMT-based segmented detector is used on one channel to support simultaneous topographic and bathymetric data collection, and multiple fields-of- view are measured to support bathymetric measurements. The measured laser returns are digitized at 1 GHz to produce the waveforms required for ranging measurements, and unique data compression and storage techniques are used to address the large data volume. Simulated results demonstrate CZMIL's capability to discriminate bottom and surface returns in very shallow water conditions without compromising performance in deep water. Simulated waveforms are compared with measured data from the SHOALS system and show promising expected results. The system's prototype is expected to be completed by end of 2010, and ready for initial calibration tests in the spring of 2010.
NASA Astrophysics Data System (ADS)
Delaney, John K.; Zeibel, Jason G.; Thoury, Mathieu; Littleton, Roy; Morales, Kathryn M.; Palmer, Michael; de la Rie, E. René
2009-07-01
Reflectance imaging spectroscopy, the collection of images in narrow spectral bands, has been developed for remote sensing of the Earth. In this paper we present findings on the use of imaging spectroscopy to identify and map artist pigments as well as to improve the visualization of preparatory sketches. Two novel hyperspectral cameras, one operating from the visible to near-infrared (VNIR) and the other in the shortwave infrared (SWIR), have been used to collect diffuse reflectance spectral image cubes on a variety of paintings. The resulting image cubes (VNIR 417 to 973 nm, 240 bands, and SWIR 970 to 1650 nm, 85 bands) were calibrated to reflectance and the resulting spectra compared with results from a fiber optics reflectance spectrometer (350 to 2500 nm). The results show good agreement between the spectra acquired with the hyperspectral cameras and those from the fiber reflectance spectrometer. For example, the primary blue pigments and their distribution in Picasso's Harlequin Musician (1924) are identified from the reflectance spectra and agree with results from X-ray fluorescence data and dispersed sample analysis. False color infrared reflectograms, obtained from the SWIR hyperspectral images, of extensively reworked paintings such as Picasso's The Tragedy (1903) are found to give improved visualization of changes made by the artist. These results show that including the NIR and SWIR spectral regions along with the visible provides for a more robust identification and mapping of artist pigments than using visible imaging spectroscopy alone.
The challenges of analysing blood stains with hyperspectral imaging
NASA Astrophysics Data System (ADS)
Kuula, J.; Puupponen, H.-H.; Rinta, H.; Pölönen, I.
2014-06-01
Hyperspectral imaging is a potential noninvasive technology for detecting, separating and identifying various substances. In the forensic and military medicine and other CBRNE related use it could be a potential method for analyzing blood and for scanning other human based fluids. For example, it would be valuable to easily detect whether some traces of blood are from one or more persons or if there are some irrelevant substances or anomalies in the blood. This article represents an experiment of separating four persons' blood stains on a white cotton fabric with a SWIR hyperspectral camera and FT-NIR spectrometer. Each tested sample includes standardized 75 _l of 100 % blood. The results suggest that on the basis of the amount of erythrocytes in the blood, different people's blood might be separable by hyperspectral analysis. And, referring to the indication given by erythrocytes, there might be a possibility to find some other traces in the blood as well. However, these assumptions need to be verified with wider tests, as the number of samples in the study was small. According to the study there also seems to be several biological, chemical and physical factors which affect alone and together on the hyperspectral analyzing results of blood on fabric textures, and these factors need to be considered before making any further conclusions on the analysis of blood on various materials.
NASA Astrophysics Data System (ADS)
Mehl, Patrick M.; Chao, Kevin; Kim, Moon S.; Chen, Yud-Ren
2001-03-01
Presence of natural or exogenous contaminations on apple cultivars is a food safety and quality concern touching the general public and strongly affecting this commodity market. Accumulations of human pathogens are usually observed on surface lesions of commodities. Detections of either lesions or directly of the pathogens are essential for assuring the quality and safety of commodities. We are presenting the application of hyperspectral image analysis towards the development of multispectral techniques for the detection of defects on chosen apple cultivars, such as Golden Delicious, Red Delicious, and Gala apples. Separate apple cultivars possess different spectral characteristics leading to different approaches for analysis. General preprocessing analysis with morphological treatments is followed by different image treatments and condition analysis for highlighting lesions and contaminations on the apple cultivars. Good isolations of scabs, fungal and soil contaminations and bruises are observed with hyperspectral imaging processing either using principal component analysis or utilizing the chlorophyll absorption peak. Applications of hyperspectral results to a multispectral detection are limited by the spectral capabilities of our RGB camera using either specific band pass filters and using direct neutral filters. Good separations of defects are obtained for Golden Delicious apples. It is however limited for the other cultivars. Having an extra near infrared channel will increase the detection level utilizing the chlorophyll absorption band for detection as demonstrated by the present hyperspectral imaging analysis
LWIR hyperspectral change detection for target acquisition and situation awareness in urban areas
NASA Astrophysics Data System (ADS)
Dekker, Rob J.; Schwering, Piet B. W.; Benoist, Koen W.; Pignatti, Stefano; Santini, Federico; Friman, Ola
2013-05-01
This paper studies change detection of LWIR (Long Wave Infrared) hyperspectral imagery. Goal is to improve target acquisition and situation awareness in urban areas with respect to conventional techniques. Hyperspectral and conventional broadband high-spatial-resolution data were collected during the DUCAS trials in Zeebrugge, Belgium, in June 2011. LWIR data were acquired using the ITRES Thermal Airborne Spectrographic Imager TASI-600 that operates in the spectral range of 8.0-11.5 μm (32 band configuration). Broadband data were acquired using two aeroplanemounted FLIR SC7000 MWIR cameras. Acquisition of the images was around noon. To limit the number of false alarms due to atmospheric changes, the time interval between the images is less than 2 hours. Local co-registration adjustment was applied to compensate for misregistration errors in the order of a few pixels. The targets in the data that will be analysed in this paper are different kinds of vehicles. Change detection algorithms that were applied and evaluated are Euclidean distance, Mahalanobis distance, Chronochrome (CC), Covariance Equalisation (CE), and Hyperbolic Anomalous Change Detection (HACD). Based on Receiver Operating Characteristics (ROC) we conclude that LWIR hyperspectral has an advantage over MWIR broadband change detection. The best hyperspectral detector is HACD because it is most robust to noise. MWIR high spatial-resolution broadband results show that it helps to apply a false alarm reduction strategy based on spatial processing.
NASA Astrophysics Data System (ADS)
Hulslander, D.; Warren, J. N.; Weintraub, S. R.
2017-12-01
Hyperspectral imaging systems can be used to produce spectral reflectance curves giving rich information about composition, relative abundances of materials, mixes and combinations. Indices based on just a few spectral bands have been used for over 40 years to study vegetation health, mineral abundance, and more. These indices are much simpler to visualize and use than a full hyperspectral data set which may contain over 400 bands. Yet historically, it has been difficult to directly relate remotely sensed spectral indices to quantitative biophysical properties significant to forest ecology such as canopy nitrogen, lignin, and chlorophyll. This linkage is a critical piece in enabling the detection of high value ecological information, usually only available from labor-intensive canopy foliar chemistry sampling, to the geographic and temporal coverage available via remote sensing. Previous studies have shown some promising results linking ground-based data and remotely sensed indices, but are consistently limited in time, geographic extent, and land cover type. Moreover, previous studies are often focused on tuning linkage algorithms for the purpose of achieving good results for only one study site or one type of vegetation, precluding development of more generalized algorithms. The National Ecological Observatory Network (NEON) is a unique system of 47 terrestrial sites covering all of the major eco-climatic domains of the US, including AK, HI, and Puerto Rico. These sites are regularly monitored and sampled using uniform instrumentation and protocols, including both foliar chemistry sampling and remote sensing flights for high resolution hyperspectral, LiDAR, and digital camera data acquisition. In this study we compare the results of foliar chemistry analysis to the remote sensing vegetation indices and investigate possible sources for variance and difference through the use of the larger hyperspectral dataset as well as ground based spectrometer measurements of samples subsequently analyzed for foliar chemistry.
Real-Time and Post-Processed Georeferencing for Hyperpspectral Drone Remote Sensing
NASA Astrophysics Data System (ADS)
Oliveira, R. A.; Khoramshahi, E.; Suomalainen, J.; Hakala, T.; Viljanen, N.; Honkavaara, E.
2018-05-01
The use of drones and photogrammetric technologies are increasing rapidly in different applications. Currently, drone processing workflow is in most cases based on sequential image acquisition and post-processing, but there are great interests towards real-time solutions. Fast and reliable real-time drone data processing can benefit, for instance, environmental monitoring tasks in precision agriculture and in forest. Recent developments in miniaturized and low-cost inertial measurement systems and GNSS sensors, and Real-time kinematic (RTK) position data are offering new perspectives for the comprehensive remote sensing applications. The combination of these sensors and light-weight and low-cost multi- or hyperspectral frame sensors in drones provides the opportunity of creating near real-time or real-time remote sensing data of target object. We have developed a system with direct georeferencing onboard drone to be used combined with hyperspectral frame cameras in real-time remote sensing applications. The objective of this study is to evaluate the real-time georeferencing comparing with post-processing solutions. Experimental data sets were captured in agricultural and forested test sites using the system. The accuracy of onboard georeferencing data were better than 0.5 m. The results showed that the real-time remote sensing is promising and feasible in both test sites.
Compact LWIR sensors using spatial interferometric technology (Conference Presentation)
NASA Astrophysics Data System (ADS)
Bingham, Adam L.; Lucey, Paul G.; Knobbe, Edward T.
2017-05-01
Recent developments in reducing the cost and mass of hyperspectral sensors have enabled more widespread use for short range compositional imaging applications. HSI in the long wave infrared (LWIR) is of interest because it is sensitive to spectral phenomena not accessible to other wavelengths, and because of its inherent thermal imaging capability. At Spectrum Photonics we have pursued compact LWIR hyperspectral sensors both using microbolometer arrays and compact cryogenic detector cameras. Our microbolometer-based systems are principally aimed at short standoff applications, currently weigh 10-15 lbs and feature sizes approximately 20x20x10 cm, with sensitivity in the 1-2 microflick range, and imaging times on the order of 30 seconds. Our systems that employ cryogenic arrays are aimed at medium standoff ranges such as nadir looking missions from UAVs. Recent work with cooled sensors has focused on Strained Layer Superlattice (SLS) technology, as these detector arrays are undergoing rapid improvements, and have some advantages compared to HgCdTe detectors in terms of calibration stability. These sensors include full on-board processing sensor stabilization so are somewhat larger than the microbolometer systems, but could be adapted to much more compact form factors. We will review our recent progress in both these application areas.
Food quality assessment by NIR hyperspectral imaging
NASA Astrophysics Data System (ADS)
Whitworth, Martin B.; Millar, Samuel J.; Chau, Astor
2010-04-01
Near infrared reflectance (NIR) spectroscopy is well established in the food industry for rapid compositional analysis of bulk samples. NIR hyperspectral imaging provides new opportunities to measure the spatial distribution of components such as moisture and fat, and to identify and measure specific regions of composite samples. An NIR hyperspectral imaging system has been constructed for food research applications, incorporating a SWIR camera with a cooled 14 bit HgCdTe detector and N25E spectrograph (Specim Ltd, Finland). Samples are scanned in a pushbroom mode using a motorised stage. The system has a spectral resolution of 256 pixels covering a range of 970-2500 nm and a spatial resolution of 320 pixels covering a swathe adjustable from 8 to 300 mm. Images are acquired at a rate of up to 100 lines s-1, enabling samples to be scanned within a few seconds. Data are captured using SpectralCube software (Specim) and analysed using ENVI and IDL (ITT Visual Information Solutions). Several food applications are presented. The strength of individual absorbance bands enables the distribution of particular components to be assessed. Examples are shown for detection of added gluten in wheat flour and to study the effect of processing conditions on fat distribution in chips/French fries. More detailed quantitative calibrations have been developed to study evolution of the moisture distribution in baguettes during storage at different humidities, to assess freshness of fish using measurements of whole cod and fillets, and for prediction of beef quality by identification and separate measurement of lean and fat regions.
Handheld hyperspectral imager for standoff detection of chemical and biological aerosols
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele; Jensen, James O.; McAnally, Gerard
2004-02-01
Pacific Advanced Technology has developed a small hand held imaging spectrometer, Sherlock, for gas leak and aerosol detection and imaging. The system is based on a patent technique that uses diffractive optics and image processing algorithms to detect spectral information about objects in the scene of the camera (IMSS Image Multi-spectral Sensing). This camera has been tested at Dugway Proving Ground and Dstl Porton Down facility looking at Chemical and Biological agent simulants. The camera has been used to investigate surfaces contaminated with chemical agent simulants. In addition to Chemical and Biological detection the camera has been used for environmental monitoring of green house gases and is currently undergoing extensive laboratory and field testing by the Gas Technology Institute, British Petroleum and Shell Oil for applications for gas leak detection and repair. The camera contains an embedded Power PC and a real time image processor for performing image processing algorithms to assist in the detection and identification of gas phase species in real time. In this paper we will present an over view of the technology and show how it has performed for different applications, such as gas leak detection, surface contamination, remote sensing and surveillance applications. In addition a sampling of the results form TRE field testing at Dugway in July of 2002 and Dstl at Porton Down in September of 2002 will be given.
Hyperspectral imaging flow cytometer
Sinclair, Michael B.; Jones, Howland D. T.
2017-10-25
A hyperspectral imaging flow cytometer can acquire high-resolution hyperspectral images of particles, such as biological cells, flowing through a microfluidic system. The hyperspectral imaging flow cytometer can provide detailed spatial maps of multiple emitting species, cell morphology information, and state of health. An optimized system can image about 20 cells per second. The hyperspectral imaging flow cytometer enables many thousands of cells to be characterized in a single session.
Hyperspectral microscopic imaging by multiplex coherent anti-Stokes Raman scattering (CARS)
NASA Astrophysics Data System (ADS)
Khmaladze, Alexander; Jasensky, Joshua; Zhang, Chi; Han, Xiaofeng; Ding, Jun; Seeley, Emily; Liu, Xinran; Smith, Gary D.; Chen, Zhan
2011-10-01
Coherent anti-Stokes Raman scattering (CARS) microscopy is a powerful technique to image the chemical composition of complex samples in biophysics, biology and materials science. CARS is a four-wave mixing process. The application of a spectrally narrow pump beam and a spectrally wide Stokes beam excites multiple Raman transitions, which are probed by a probe beam. This generates a coherent directional CARS signal with several orders of magnitude higher intensity relative to spontaneous Raman scattering. Recent advances in the development of ultrafast lasers, as well as photonic crystal fibers (PCF), enable multiplex CARS. In this study, we employed two scanning imaging methods. In one, the detection is performed by a photo-multiplier tube (PMT) attached to the spectrometer. The acquisition of a series of images, while tuning the wavelengths between images, allows for subsequent reconstruction of spectra at each image point. The second method detects CARS spectrum in each point by a cooled coupled charged detector (CCD) camera. Coupled with point-by-point scanning, it allows for a hyperspectral microscopic imaging. We applied this CARS imaging system to study biological samples such as oocytes.
NASA Astrophysics Data System (ADS)
Morton, V.; Gagnon, M. A.; Marcotte, F.; Gouhier, M.; Smekens, J. F.
2017-12-01
Many urban areas are located near active volcanoes around the world. Therefore, scientific research on different indicators of imminent eruptions is carried out on an ongoing basis. Due to the hazardous and unpredictable behavior of volcanoes, remote sensing technologies are normally preferred for investigations. Over the years, the Telops Hyper-Cam, a high-performance infrared hyperspectral camera, has established itself as a reference tool for investigating gas clouds over large distances. In order to illustrate the benefits of standoff infrared hyperspectral imaging for characterizing volcanic processes, many different measurements were carried out from an elevated point ( 800 m) of the Stromboli volcano (Italy) by researchers from the Université Blaise-Pascal (Clermont-Ferrand, France). The Stromboli volcano is well known for its periodic eruptions of small magnitude containing various proportions of ash, lava and gases. Imaging was carried out at a relatively high spectral and spatial resolution before and during eruptions from the North-East (NE) craters. Both sulfur dioxide (SO2) and sulfur tetrafluoride (SiF4) could be successfully identified within the volcano's plume from their distinct spectral features. During the passive degassing phase, a total amount of 3.3 kg of SO2 and 0.8 g of SiF4 were estimated. A violent eruption from NE1 crater was then observed and a total of 45 g and and 7 g of SO2 and SiF4 were estimated respectively. These results are in good agreement with previous work using a UV-SO2 camera. Finally, a smaller eruption from NE2 crater was observed. Total amounts of 3 kg and 17 g of SO2 and SiF4 were estimated respectively. Quantitative chemical maps for both gases will be presented. The results show that standoff thermal infrared hyperspectral imaging provides unique insights for a better understanding of volcanic eruptions.
Remote sensing and implications for variable-rate application using agricultural aircraft
NASA Astrophysics Data System (ADS)
Thomson, Steven J.; Smith, Lowrey A.; Ray, Jeffrey D.; Zimba, Paul V.
2004-01-01
Aircraft routinely used for agricultural spray application are finding utility for remote sensing. Data obtained from remote sensing can be used for prescription application of pesticides, fertilizers, cotton growth regulators, and water (the latter with the assistance of hyperspectral indices and thermal imaging). Digital video was used to detect weeds in early cotton, and preliminary data were obtained to see if nitrogen status could be detected in early soybeans. Weeds were differentiable from early cotton at very low altitudes (65-m), with the aid of supervised classification algorithms in the ENVI image analysis software. The camera was flown at very low altitude for acceptable pixel resolution. Nitrogen status was not detectable by statistical analysis of digital numbers (DNs) obtained from images, but soybean cultivar differences were statistically discernable (F=26, p=0.01). Spectroradiometer data are being analyzed to identify narrow spectral bands that might aid in selecting camera filters for determination of plant nitrogen status. Multiple camera configurations are proposed to allow vegetative indices to be developed more readily. Both remotely sensed field images and ground data are to be used for decision-making in a proposed variable-rate application system for agricultural aircraft. For this system, prescriptions generated from digital imagery and data will be coupled with GPS-based swath guidance and programmable flow control.
2016-05-24
ISS047e132751 (05/24/2016) --- Russian cosmonaut Oleg Skripochka readies a high power camera for the DUBRAVA experiment, which is testing methods for tracking natural and man-made impacts on forest cover from the International Space Station. It will use both visual and spectrometric tools to monitor at first with the potential for adding hyperspectral and infrared equipment in the future.
Spectral imaging spreads into new industrial and on-field applications
NASA Astrophysics Data System (ADS)
Bouyé, Clémentine; Robin, Thierry; d'Humières, Benoît
2018-02-01
Numerous recent innovative developments have led to a high reduction of hyperspectral and multispectral cameras cost and size. The achieved products - compact, reliable, low-cot, easy-to-use - meet end-user requirements in major fields: agriculture, food and beverages, pharmaceutics, machine vision, health. The booming of this technology in industrial and on-field applications is getting closer. Indeed, the Spectral Imaging market is at a turning point. A high growth rate of 20% is expected in the next 5 years. The number of cameras sold will increase from 3 600 in 2017 to more than 9 000 in 2022.
Detection of cracks on tomatoes using hyperspectral near-infrared reflectance imaging system
USDA-ARS?s Scientific Manuscript database
The objective of this study was to evaluate the use of hyperspectral near-infrared (NIR) reflectance imaging techniques for detection of cuticle cracks on tomatoes. A hyperspectral near-infrared reflectance imaging system in the region of 1000-1700 nm was used to obtain hyperspectral reflectance ima...
Development of infrared scene projectors for testing fire-fighter cameras
NASA Astrophysics Data System (ADS)
Neira, Jorge E.; Rice, Joseph P.; Amon, Francine K.
2008-04-01
We have developed two types of infrared scene projectors for hardware-in-the-loop testing of thermal imaging cameras such as those used by fire-fighters. In one, direct projection, images are projected directly into the camera. In the other, indirect projection, images are projected onto a diffuse screen, which is then viewed by the camera. Both projectors use a digital micromirror array as the spatial light modulator, in the form of a Micromirror Array Projection System (MAPS) engine having resolution of 800 x 600 with mirrors on a 17 micrometer pitch, aluminum-coated mirrors, and a ZnSe protective window. Fire-fighter cameras are often based upon uncooled microbolometer arrays and typically have resolutions of 320 x 240 or lower. For direct projection, we use an argon-arc source, which provides spectral radiance equivalent to a 10,000 Kelvin blackbody over the 7 micrometer to 14 micrometer wavelength range, to illuminate the micromirror array. For indirect projection, an expanded 4 watt CO II laser beam at a wavelength of 10.6 micrometers illuminates the micromirror array and the scene formed by the first-order diffracted light from the array is projected onto a diffuse aluminum screen. In both projectors, a well-calibrated reference camera is used to provide non-uniformity correction and brightness calibration of the projected scenes, and the fire-fighter cameras alternately view the same scenes. In this paper, we compare the two methods for this application and report on our quantitative results. Indirect projection has an advantage of being able to more easily fill the wide field of view of the fire-fighter cameras, which typically is about 50 degrees. Direct projection more efficiently utilizes the available light, which will become important in emerging multispectral and hyperspectral applications.
New Airborne Sensors and Platforms for Solving Specific Tasks in Remote Sensing
NASA Astrophysics Data System (ADS)
Kemper, G.
2012-07-01
A huge number of small and medium sized sensors entered the market. Today's mid format sensors reach 80 MPix and allow to run projects of medium size, comparable with the first big format digital cameras about 6 years ago. New high quality lenses and new developments in the integration prepared the market for photogrammetric work. Companies as Phase One or Hasselblad and producers or integrators as Trimble, Optec, and others utilized these cameras for professional image production. In combination with small camera stabilizers they can be used also in small aircraft and make the equipment small and easy transportable e.g. for rapid assessment purposes. The combination of different camera sensors enables multi or hyper-spectral installations e.g. useful for agricultural or environmental projects. Arrays of oblique viewing cameras are in the market as well, in many cases these are small and medium format sensors combined as rotating or shifting devices or just as a fixed setup. Beside the proper camera installation and integration, also the software that controls the hardware and guides the pilot has to solve much more tasks than a normal FMS did in the past. Small and relatively cheap Laser Scanners (e.g. Riegl) are in the market and a proper combination with MS Cameras and an integrated planning and navigation is a challenge that has been solved by different softwares. Turnkey solutions are available e.g. for monitoring power line corridors where taking images is just a part of the job. Integration of thermal camera systems with laser scanner and video capturing must be combined with specific information of the objects stored in a database and linked when approaching the navigation point.
NASA Astrophysics Data System (ADS)
Sojasi, Saeed; Yousefi, Bardia; Liaigre, Kévin; Ibarra-Castanedo, Clemente; Beaudoin, Georges; Maldague, Xavier P. V.; Huot, François; Chamberland, Martin
2017-05-01
Hyperspectral imaging (HSI) in the long-wave infrared spectrum (LWIR) provides spectral and spatial information concerning the emissivity of the surface of materials, which can be used for mineral identification. For this, an endmember, which is the purest form of a mineral, is used as reference. All pure minerals have specific spectral profiles in the electromagnetic wavelength, which can be thought of as the mineral's fingerprint. The main goal of this paper is the identification of minerals by LWIR hyperspectral imaging using a machine learning scheme. The information of hyperspectral imaging has been recorded from the energy emitted from the mineral's surface. Solar energy is the source of energy in remote sensing, while a heating element is the energy source employed in laboratory experiments. Our work contains three main steps where the first step involves obtaining the spectral signatures of pure (single) minerals with a hyperspectral camera, in the long-wave infrared (7.7 to 11.8 μm), which measures the emitted radiance from the minerals' surface. The second step concerns feature extraction by applying the continuous wavelet transform (CWT) and finally we use support vector machine classifier with radial basis functions (SVM-RBF) for classification/identification of minerals. The overall accuracy of classification in our work is 90.23+/- 2.66%. In conclusion, based on CWT's ability to capture the information of signals can be used as a good marker for classification and identification the minerals substance.
Phenoliner: A New Field Phenotyping Platform for Grapevine Research
Kicherer, Anna; Herzog, Katja; Bendel, Nele; Klück, Hans-Christian; Backhaus, Andreas; Wieland, Markus; Klingbeil, Lasse; Läbe, Thomas; Hohl, Christian; Petry, Willi; Kuhlmann, Heiner; Seiffert, Udo; Töpfer, Reinhard
2017-01-01
In grapevine research the acquisition of phenotypic data is largely restricted to the field due to its perennial nature and size. The methodologies used to assess morphological traits and phenology are mainly limited to visual scoring. Some measurements for biotic and abiotic stress, as well as for quality assessments, are done by invasive measures. The new evolving sensor technologies provide the opportunity to perform non-destructive evaluations of phenotypic traits using different field phenotyping platforms. One of the biggest technical challenges for field phenotyping of grapevines are the varying light conditions and the background. In the present study the Phenoliner is presented, which represents a novel type of a robust field phenotyping platform. The vehicle is based on a grape harvester following the concept of a moveable tunnel. The tunnel it is equipped with different sensor systems (RGB and NIR camera system, hyperspectral camera, RTK-GPS, orientation sensor) and an artificial broadband light source. It is independent from external light conditions and in combination with artificial background, the Phenoliner enables standardised acquisition of high-quality, geo-referenced sensor data. PMID:28708080
Phenoliner: A New Field Phenotyping Platform for Grapevine Research.
Kicherer, Anna; Herzog, Katja; Bendel, Nele; Klück, Hans-Christian; Backhaus, Andreas; Wieland, Markus; Rose, Johann Christian; Klingbeil, Lasse; Läbe, Thomas; Hohl, Christian; Petry, Willi; Kuhlmann, Heiner; Seiffert, Udo; Töpfer, Reinhard
2017-07-14
In grapevine research the acquisition of phenotypic data is largely restricted to the field due to its perennial nature and size. The methodologies used to assess morphological traits and phenology are mainly limited to visual scoring. Some measurements for biotic and abiotic stress, as well as for quality assessments, are done by invasive measures. The new evolving sensor technologies provide the opportunity to perform non-destructive evaluations of phenotypic traits using different field phenotyping platforms. One of the biggest technical challenges for field phenotyping of grapevines are the varying light conditions and the background. In the present study the Phenoliner is presented, which represents a novel type of a robust field phenotyping platform. The vehicle is based on a grape harvester following the concept of a moveable tunnel. The tunnel it is equipped with different sensor systems (RGB and NIR camera system, hyperspectral camera, RTK-GPS, orientation sensor) and an artificial broadband light source. It is independent from external light conditions and in combination with artificial background, the Phenoliner enables standardised acquisition of high-quality, geo-referenced sensor data.
Hyperspectral Analysis of Rice Phenological Stages in Northeast China
NASA Astrophysics Data System (ADS)
Gnyp, M. L.; Yao, Y.; Yu, K.; Huang, S.; Aasen, H.; Lenz-Wiedemann, V. I. S.; Miao, Y.; Bareth, G.
2012-07-01
The objective of this contribution is to monitor rice (Oryza sativa L., irrigated lowland rice) growth with multitemporal hyperspectral data during different phenological stages in Northeast China (Sanjiang Plain). Multitemporal hyperspectral data were measured with field spectroradiometers (ASD Inc.: QualitySpec and FieldSpec3) for two field experiments and nine farmers' fields. The field measurements were carried out together with corresponding measurements of agronomic data (aboveground biomass [AGB], Leaf Area Index [LAI], number of tillers). Eight selected standard hyperspectral vegetation indices (VIs), proved in several studies to be highly correlated with AGB or LAI, were calculated on the measured experimental field data. Additionally, the best two-band combinations for the Normalized Ratio Index (NRI) were determined. The results indicate that the NRI performed better than the selected standard VIs at the stages of stem elongation, booting and heading and also across all stages. Especially during the stem elongation stage (R2 = 0.76) and across all stages (R2 = 0.70), the NRI performed best. When applying the NRI on the farmers' field data, the performance was lower (R2 < 0.60). Overall, the sensitive individual wavelengths (±10 nm) for the best two-band combinations were detected at 711 and 799 nm (for tillering stage), 1575 and 1678 nm (for stem elongation stage), 515 and 695 nm (for booting stage), and 533 and 713 nm (for all stages). The results suggest that hyperspectral-based methods can estimate paddy rice AGB with a satisfying accuracy. In the context of precision agriculture, the findings are useful for future development of new hyperspectral devices such as scanners or cameras which could be fixed on tractors or unmanned aerial vehicles (UAVs).
NASA Astrophysics Data System (ADS)
Liu, Chanjuan; van Netten, Jaap J.; Klein, Marvin E.; van Baal, Jeff G.; Bus, Sicco A.; van der Heijden, Ferdi
2013-12-01
Early detection of (pre-)signs of ulceration on a diabetic foot is valuable for clinical practice. Hyperspectral imaging is a promising technique for detection and classification of such (pre-)signs. However, the number of the spectral bands should be limited to avoid overfitting, which is critical for pixel classification with hyperspectral image data. The goal was to design a detector/classifier based on spectral imaging (SI) with a small number of optical bandpass filters. The performance and stability of the design were also investigated. The selection of the bandpass filters boils down to a feature selection problem. A dataset was built, containing reflectance spectra of 227 skin spots from 64 patients, measured with a spectrometer. Each skin spot was annotated manually by clinicians as "healthy" or a specific (pre-)sign of ulceration. Statistical analysis on the data set showed the number of required filters is between 3 and 7, depending on additional constraints on the filter set. The stability analysis revealed that shot noise was the most critical factor affecting the classification performance. It indicated that this impact could be avoided in future SI systems with a camera sensor whose saturation level is higher than 106, or by postimage processing.
NASA Astrophysics Data System (ADS)
Nawn, Corinne D.; Souhan, Brian E.; Carter, Robert; Kneapler, Caitlin; Fell, Nicholas; Ye, Jing Yong
2016-03-01
During emergency medical situations where the patient has an obstructed airway or necessitates respiratory support, endotracheal intubation (ETI) is the medical technique of placing a tube into the trachea in order to facilitate adequate ventilation of the lungs. In particular, the anatomical, visual and time-sensitive challenges presented in these scenarios, such as in trauma, require a skilled provider in order to successfully place the tube into the trachea. Complications during ETI such as repeated attempts, failed intubation or accidental intubation of the esophagus can lead to severe consequences or ultimately death. Consequently, a need exists for a feedback mechanism to aid providers in performing successful ETI. To investigate potential characteristics to exploit as a feedback mechanism, our study examined the spectral properties of the trachea tissue to determine whether a unique spectral profile exists. In this work, hyperspectral cameras and fiber optic sensors were used to capture and analyze the reflectance profiles of tracheal and esophageal tissues illuminated with UV and white light. Our results show consistent and specific spectral characteristics of the trachea, providing foundational support for using spectral properties to detect features of the trachea.
Multipurpose hyperspectral imaging system
USDA-ARS?s Scientific Manuscript database
A hyperspectral imaging system of high spectral and spatial resolution that incorporates several innovative features has been developed to incorporate a focal plane scanner (U.S. Patent 6,166,373). This feature enables the system to be used for both airborne/spaceborne and laboratory hyperspectral i...
NASA Astrophysics Data System (ADS)
Keresztes, Janos C.; Henrottin, Anne; Goodarzi, Mohammad; Wouters, Niels; van Roy, Jeroen; Saeys, Wouter
2015-09-01
Visible-near infrared (Vis-NIR) and short wave infrared (SWIR) hyperspectral imaging (HSI) are gaining interest in the food sorting industry. As for traditional machine vision (MV), spectral image registration is an important step which affects the quality of the sorting system. Unfortunately, it currently still remains challenging to accurately register the images acquired with the different imagers as this requires a reference with good contrast over the full spectral range. Therefore, the objective of this work was to develop an accurate high contrast checkerboard over the full spectral range. From the investigated white and dark materials, Teflon and Acktar were found to present very good contrast over the full spectral range from 400 to 2500 nm, with a minimal contrast ratio of 60% in the Vis-NIR and 98 % in the SWIR. The Metal Velvet self-adhesive coating from Acktar was selected as it also provides low specular reflectance. This was taped onto a near-Lambertian polished Teflon plate and one out of two squares were removed after laser cutting the dark coating with an accuracy below 0.1 mm. As standard technologies such as nano-second pulsed lasers generated unwanted damages on both materials, a pulsed femto-second laser setup from Lasea with 60µm accuracy was used to manufacture the checkerboard. This pattern was monitored with an Imec Vis-NIR and a Headwall SWIR HSI pushbroom hyperspectral camera. Good contrast was obtained over the full range of both HSI systems and the estimated effective focal length for the Vis-NIR HSI was determined with computer vision to be 0.5 mm, close to the lens model at high contrast.
Hyperspectral Remote Sensing of Atmospheric Profiles from Satellites and Aircraft
NASA Technical Reports Server (NTRS)
Smith, W. L.; Zhou, D. K.; Harrison, F. W.; Revercomb, H. E.; Larar, A. M.; Huang, H. L.; Huang, B.
2001-01-01
A future hyperspectral resolution remote imaging and sounding system, called the GIFTS (Geostationary Imaging Fourier Transform Spectrometer), is described. An airborne system, which produces the type of hyperspectral resolution sounding data to be achieved with the GIFTS, has been flown on high altitude aircraft. Results from simulations and from the airborne measurements are presented to demonstrate the revolutionary remote sounding capabilities to be realized with future satellite hyperspectral remote imaging/sounding systems.
Mapping Soil Organic Matter with Hyperspectral Imaging
NASA Astrophysics Data System (ADS)
Moni, Christophe; Burud, Ingunn; Flø, Andreas; Rasse, Daniel
2014-05-01
Soil organic matter (SOM) plays a central role for both food security and the global environment. Soil organic matter is the 'glue' that binds soil particles together, leading to positive effects on soil water and nutrient availability for plant growth and helping to counteract the effects of erosion, runoff, compaction and crusting. Hyperspectral measurements of samples of soil profiles have been conducted with the aim of mapping soil organic matter on a macroscopic scale (millimeters and centimeters). Two soil profiles have been selected from the same experimental site, one from a plot amended with biochar and another one from a control plot, with the specific objective to quantify and map the distribution of biochar in the amended profile. The soil profiles were of size (30 x 10 x 10) cm3 and were scanned with two pushbroomtype hyperspectral cameras, one which is sensitive in the visible wavelength region (400 - 1000 nm) and one in the near infrared region (1000 - 2500 nm). The images from the two detectors were merged together into one full dataset covering the whole wavelength region. Layers of 15 mm were removed from the 10 cm high sample such that a total of 7 hyperspectral images were obtained from the samples. Each layer was analyzed with multivariate statistical techniques in order to map the different components in the soil profile. Moreover, a 3-dimensional visalization of the components through the depth of the sample was also obtained by combining the hyperspectral images from all the layers. Mid-infrared spectroscopy of selected samples of the measured soil profiles was conducted in order to correlate the chemical constituents with the hyperspectral results. The results show that hyperspectral imaging is a fast, non-destructive technique, well suited to characterize soil profiles on a macroscopic scale and hence to map elements and different organic matter quality present in a complete pedon. As such, we were able to map and quantify biochar in our profile. Smaller interesting regions can also easily be selected from the hyperspectral images for more detailed study at microscopic scale.
Hyperspectral remote sensing image retrieval system using spectral and texture features.
Zhang, Jing; Geng, Wenhao; Liang, Xi; Li, Jiafeng; Zhuo, Li; Zhou, Qianlan
2017-06-01
Although many content-based image retrieval systems have been developed, few studies have focused on hyperspectral remote sensing images. In this paper, a hyperspectral remote sensing image retrieval system based on spectral and texture features is proposed. The main contributions are fourfold: (1) considering the "mixed pixel" in the hyperspectral image, endmembers as spectral features are extracted by an improved automatic pixel purity index algorithm, then the texture features are extracted with the gray level co-occurrence matrix; (2) similarity measurement is designed for the hyperspectral remote sensing image retrieval system, in which the similarity of spectral features is measured with the spectral information divergence and spectral angle match mixed measurement and in which the similarity of textural features is measured with Euclidean distance; (3) considering the limited ability of the human visual system, the retrieval results are returned after synthesizing true color images based on the hyperspectral image characteristics; (4) the retrieval results are optimized by adjusting the feature weights of similarity measurements according to the user's relevance feedback. The experimental results on NASA data sets can show that our system can achieve comparable superior retrieval performance to existing hyperspectral analysis schemes.
Thin-film tunable filters for hyperspectral fluorescence microscopy
Favreau, Peter; Hernandez, Clarissa; Lindsey, Ashley Stringfellow; Alvarez, Diego F.; Rich, Thomas; Prabhat, Prashant
2013-01-01
Abstract. Hyperspectral imaging is a powerful tool that acquires data from many spectral bands, forming a contiguous spectrum. Hyperspectral imaging was originally developed for remote sensing applications; however, hyperspectral techniques have since been applied to biological fluorescence imaging applications, such as fluorescence microscopy and small animal fluorescence imaging. The spectral filtering method largely determines the sensitivity and specificity of any hyperspectral imaging system. There are several types of spectral filtering hardware available for microscopy systems, most commonly acousto-optic tunable filters (AOTFs) and liquid crystal tunable filters (LCTFs). These filtering technologies have advantages and disadvantages. Here, we present a novel tunable filter for hyperspectral imaging—the thin-film tunable filter (TFTF). The TFTF presents several advantages over AOTFs and LCTFs, most notably, a high percentage transmission and a high out-of-band optical density (OD). We present a comparison of a TFTF-based hyperspectral microscopy system and a commercially available AOTF-based system. We have characterized the light transmission, wavelength calibration, and OD of both systems, and have then evaluated the capability of each system for discriminating between green fluorescent protein and highly autofluorescent lung tissue. Our results suggest that TFTFs are an alternative approach for hyperspectral filtering that offers improved transmission and out-of-band blocking. These characteristics make TFTFs well suited for other biomedical imaging devices, such as ophthalmoscopes or endoscopes. PMID:24077519
Detection of explosives by differential hyperspectral imaging
NASA Astrophysics Data System (ADS)
Dubroca, Thierry; Brown, Gregory; Hummel, Rolf E.
2014-02-01
Our team has pioneered an explosives detection technique based on hyperspectral imaging of surfaces. Briefly, differential reflectometry (DR) shines ultraviolet (UV) and blue light on two close-by areas on a surface (for example, a piece of luggage on a moving conveyer belt). Upon reflection, the light is collected with a spectrometer combined with a charge coupled device (CCD) camera. A computer processes the data and produces in turn differential reflection spectra taken from these two adjacent areas on the surface. This differential technique is highly sensitive and provides spectroscopic data of materials, particularly of explosives. As an example, 2,4,6-trinitrotoluene displays strong and distinct features in differential reflectograms near 420 and 250 nm, that is, in the near-UV region. Similar, but distinctly different features are observed for other explosives. Finally, a custom algorithm classifies the collected spectral data and outputs an acoustic signal if a threat is detected. This paper presents the complete DR hyperspectral imager which we have designed and built from the hardware to the software, complete with an analysis of the device specifications.
Hand-held hyperspectral imager for chemical/biological and environmental applications
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele; Piatek, Bob
2004-03-01
A small, hand held, battery operated imaging infrared spectrometer, Sherlock, has been developed by Pacific Advanced Technology and was field tested in early 2003. The Sherlock spectral imaging camera has been designed for remote gas leak detection, however, the architecture of the camera is versatile enough that it can be applied to numerous other applications such as homeland security, chemical/biological agent detection, medical and pharmaceutical applications as well as standard research and development. This paper describes the Sherlock camera, theory of operations, shows current applications and touches on potential future applications for the camera. The Sherlock has an embedded Power PC and performs real-time-image processing function in an embedded FPGA. The camera has a built in LCD display as well as output to a standard monitor, or NTSC display. It has several I/O ports, ethernet, firewire, RS232 and thus can be easily controlled from a remote location. In addition, software upgrades can be performed over the ethernet eliminating the need to send the camera back to the factory for a retrofit. Using the USB port a mouse and key board can be connected and the camera can be used in a laboratory environment as a stand alone imaging spectrometer.
Study of carbonate concretions using imaging spectroscopy in the Frontier Formation, Wyoming
NASA Astrophysics Data System (ADS)
de Linaje, Virginia Alonso; Khan, Shuhab D.; Bhattacharya, Janok
2018-04-01
Imaging spectroscopy is applied to study diagenetic processes of the Wall Creek Member of the Cretaceous Frontier Formation, Wyoming. Visible Near-Infrared and Shortwave-Infrared hyperspectral cameras were used to scan near vertical and well-exposed outcrop walls to analyze lateral and vertical geochemical variations. Reflectance spectra were analyzed and compared with high-resolution laboratory spectral and hyperspectral imaging data. Spectral Angle Mapper (SAM) and Mixture Tuned Matched Filtering (MTMF) classification algorithms were applied to quantify facies and mineral abundances in the Frontier Formation. MTMF is the most effective and reliable technique when studying spectrally similar materials. Classification results show that calcite cement in concretions associated with the channel facies is homogeneously distributed, whereas the bar facies was shown to be interbedded with layers of non-calcite-cemented sandstone.
MCT-based SWIR hyperspectral imaging system for evaluation of biological samples
USDA-ARS?s Scientific Manuscript database
Hyperspectral imaging has been shown to be a powerful tool for nondestructive evaluation of biological samples. We recently developed a new line-scan-based shortwave infrared (SWIR) hyperspectral imaging system. Critical sensing components of the system include a SWIR spectrograph, an MCT (HgCdTe) a...
Hyperspectral imaging as a diagnostic tool for chronic skin ulcers
NASA Astrophysics Data System (ADS)
Denstedt, Martin; Pukstad, Brita S.; Paluchowski, Lukasz A.; Hernandez-Palacios, Julio E.; Randeberg, Lise L.
2013-03-01
The healing process of chronic wounds is complex, and the complete pathogenesis is not known. Diagnosis is currently based on visual inspection, biopsies and collection of samples from the wound surface. This is often time consuming, expensive and to some extent subjective procedures. Hyperspectral imaging has been shown to be a promising modality for optical diagnostics. The main objective of this study was to identify a suitable technique for reproducible classification of hyperspectral data from a wound and the surrounding tissue. Two statistical classification methods have been tested and compared to the performance of a dermatologist. Hyperspectral images (400-1000 nm) were collected from patients with venous leg ulcers using a pushbroom-scanning camera (VNIR 1600, Norsk Elektro Optikk AS).Wounds were examined regularly over 4 - 6 weeks. The patients were evaluated by a dermatologist at every appointment. One patient has been selected for presentation in this paper (female, age 53 years). The oxygen saturation of the wound area was determined by wavelength ratio metrics. Spectral angle mapping (SAM) and k-means clustering were used for classification. Automatic extraction of endmember spectra was employed to minimize human interaction. A comparison of the methods shows that k-means clustering is the most stable method over time, and shows the best overlap with the dermatologist's assessment of the wound border. The results are assumed to be affected by the data preprocessing and chosen endmember extraction algorithm. Results indicate that it is possible to develop an automated method for reliable classification of wounds based on hyperspectral data.
Hyperspectral imaging for detection of cholesterol in human skin
NASA Astrophysics Data System (ADS)
Milanič, Matija; Bjorgan, Asgeir; Larsson, Marcus; Marraccini, Paolo; Strömberg, Tomas; Randeberg, Lise L.
2015-03-01
Hypercholesterolemia is characterized by high levels of cholesterol in the blood and is associated with an increased risk of atherosclerosis and coronary heart disease. Early detection of hypercholesterolemia is necessary to prevent onset and progress of cardiovascular disease. Optical imaging techniques might have a potential for early diagnosis and monitoring of hypercholesterolemia. In this study, hyperspectral imaging was investigated for this application. The main aim of the study was to identify spectral and spatial characteristics that can aid identification of hypercholesterolemia in facial skin. The first part of the study involved a numerical simulation of human skin affected by hypercholesterolemia. A literature survey was performed to identify characteristic morphological and physiological parameters. Realistic models were prepared and Monte Carlo simulations were performed to obtain hyperspectral images. Based on the simulations optimal wavelength regions for differentiation between normal and cholesterol rich skin were identified. Minimum Noise Fraction transformation (MNF) was used for analysis. In the second part of the study, the simulations were verified by a clinical study involving volunteers with elevated and normal levels of cholesterol. The faces of the volunteers were scanned by a hyperspectral camera covering the spectral range between 400 nm and 720 nm, and characteristic spectral features of the affected skin were identified. Processing of the images was done after conversion to reflectance and masking of the images. The identified features were compared to the known cholesterol levels of the subjects. The results of this study demonstrate that hyperspectral imaging of facial skin can be a promising, rapid modality for detection of hypercholesterolemia.
NASA Astrophysics Data System (ADS)
Peller, Joseph A.; Ceja, Nancy K.; Wawak, Amanda J.; Trammell, Susan R.
2018-02-01
Polarized light imaging and optical spectroscopy can be used to distinguish between healthy and diseased tissue. In this study, the design and testing of a single-pixel hyperspectral imaging system that uses differences in the polarization of light reflected from tissue to differentiate between healthy and thermally damaged tissue is discussed. Thermal lesions were created in porcine skin (n = 8) samples using an IR laser. The damaged regions were clearly visible in the polarized light hyperspectral images. Reflectance hyperspectral and white light imaging was also obtained for all tissue samples. Sizes of the thermally damaged regions as measured via polarized light hyperspectral imaging are compared to sizes of these regions as measured in the reflectance hyperspectral images and white light images. Good agreement between the sizes measured by all three imaging modalities was found. Hyperspectral polarized light imaging can differentiate between healthy and damaged tissue. Possible applications of this imaging system include determination of tumor margins during cancer surgery or pre-surgical biopsy.
NASA Astrophysics Data System (ADS)
Hartzell, P. J.; Glennie, C. L.; Hauser, D. L.; Okyay, U.; Khan, S.; Finnegan, D. C.
2016-12-01
Recent advances in remote sensing technology have expanded the acquisition and fusion of active lidar and passive hyperspectral imagery (HSI) from an exclusively airborne technique to terrestrial modalities. This enables high resolution 3D spatial and spectral quantification of vertical geologic structures for applications such as virtual 3D rock outcrop models for hydrocarbon reservoir analog analysis and mineral quantification in open pit mining environments. In contrast to airborne observation geometry, the vertical surfaces observed by horizontal-viewing terrestrial HSI sensors are prone to extensive topography-induced solar shadowing, which leads to reduced pixel classification accuracy or outright removal of shadowed pixels from analysis tasks. Using a precisely calibrated and registered offset cylindrical linear array camera model, we demonstrate the use of 3D lidar data for sub-pixel HSI shadow detection and the restoration of the shadowed pixel spectra via empirical methods that utilize illuminated and shadowed pixels of similar material composition. We further introduce a new HSI shadow restoration technique that leverages collocated backscattered lidar intensity, which is resistant to solar conditions, obtained by projecting the 3D lidar points through the HSI camera model into HSI pixel space. Using ratios derived from the overlapping lidar laser and HSI wavelengths, restored shadow pixel spectra are approximated using a simple scale factor. Simulations of multiple lidar wavelengths, i.e., multi-spectral lidar, indicate the potential for robust HSI spectral restoration that is independent of the complexity and costs associated with rigorous radiometric transfer models, which have yet to be developed for horizontal-viewing terrestrial HSI sensors. The spectral restoration performance is quantified through HSI pixel classification consistency between full sun and partial sun exposures of a single geologic outcrop.
Geometrical calibration of an AOTF hyper-spectral imaging system
NASA Astrophysics Data System (ADS)
Špiclin, Žiga; Katrašnik, Jaka; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan
2010-02-01
Optical aberrations present an important problem in optical measurements. Geometrical calibration of an imaging system is therefore of the utmost importance for achieving accurate optical measurements. In hyper-spectral imaging systems, the problem of optical aberrations is even more pronounced because optical aberrations are wavelength dependent. Geometrical calibration must therefore be performed over the entire spectral range of the hyper-spectral imaging system, which is usually far greater than that of the visible light spectrum. This problem is especially adverse in AOTF (Acousto- Optic Tunable Filter) hyper-spectral imaging systems, as the diffraction of light in AOTF filters is dependent on both wavelength and angle of incidence. Geometrical calibration of hyper-spectral imaging system was performed by stable caliber of known dimensions, which was imaged at different wavelengths over the entire spectral range. The acquired images were then automatically registered to the caliber model by both parametric and nonparametric transformation based on B-splines and by minimizing normalized correlation coefficient. The calibration method was tested on an AOTF hyper-spectral imaging system in the near infrared spectral range. The results indicated substantial wavelength dependent optical aberration that is especially pronounced in the spectral range closer to the infrared part of the spectrum. The calibration method was able to accurately characterize the aberrations and produce transformations for efficient sub-pixel geometrical calibration over the entire spectral range, finally yielding better spatial resolution of hyperspectral imaging system.
NASA Astrophysics Data System (ADS)
Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan
2010-02-01
Near-infrared spectroscopy is a promising, rapidly developing, reliable and noninvasive technique, used extensively in the biomedicine and in pharmaceutical industry. With the introduction of acousto-optic tunable filters (AOTF) and highly sensitive InGaAs focal plane sensor arrays, real-time high resolution hyper-spectral imaging has become feasible for a number of new biomedical in vivo applications. However, due to the specificity of the AOTF technology and lack of spectral calibration standardization, maintaining long-term stability and compatibility of the acquired hyper-spectral images across different systems is still a challenging problem. Efficiently solving both is essential as the majority of methods for analysis of hyper-spectral images relay on a priori knowledge extracted from large spectral databases, serving as the basis for reliable qualitative or quantitative analysis of various biological samples. In this study, we propose and evaluate fast and reliable spectral calibration of hyper-spectral imaging systems in the short wavelength infrared spectral region. The proposed spectral calibration method is based on light sources or materials, exhibiting distinct spectral features, which enable robust non-rigid registration of the acquired spectra. The calibration accounts for all of the components of a typical hyper-spectral imaging system such as AOTF, light source, lens and optical fibers. The obtained results indicated that practical, fast and reliable spectral calibration of hyper-spectral imaging systems is possible, thereby assuring long-term stability and inter-system compatibility of the acquired hyper-spectral images.
Point-and-stare operation and high-speed image acquisition in real-time hyperspectral imaging
NASA Astrophysics Data System (ADS)
Driver, Richard D.; Bannon, David P.; Ciccone, Domenic; Hill, Sam L.
2010-04-01
The design and optical performance of a small-footprint, low-power, turnkey, Point-And-Stare hyperspectral analyzer, capable of fully automated field deployment in remote and harsh environments, is described. The unit is packaged for outdoor operation in an IP56 protected air-conditioned enclosure and includes a mechanically ruggedized fully reflective, aberration-corrected hyperspectral VNIR (400-1000 nm) spectrometer with a board-level detector optimized for point and stare operation, an on-board computer capable of full system data-acquisition and control, and a fully functioning internal hyperspectral calibration system for in-situ system spectral calibration and verification. Performance data on the unit under extremes of real-time survey operation and high spatial and high spectral resolution will be discussed. Hyperspectral acquisition including full parameter tracking is achieved by the addition of a fiber-optic based downwelling spectral channel for solar illumination tracking during hyperspectral acquisition and the use of other sensors for spatial and directional tracking to pinpoint view location. The system is mounted on a Pan-And-Tilt device, automatically controlled from the analyzer's on-board computer, making the HyperspecTM particularly adaptable for base security, border protection and remote deployments. A hyperspectral macro library has been developed to control hyperspectral image acquisition, system calibration and scene location control. The software allows the system to be operated in a fully automatic mode or under direct operator control through a GigE interface.
A Wide-Angle Camera for the Mobile Asteroid Surface Scout (MASCOT) on Hayabusa-2
NASA Astrophysics Data System (ADS)
Schmitz, N.; Koncz, A.; Jaumann, R.; Hoffmann, H.; Jobs, D.; Kachlicki, J.; Michaelis, H.; Mottola, S.; Pforte, B.; Schroeder, S.; Terzer, R.; Trauthan, F.; Tschentscher, M.; Weisse, S.; Ho, T.-M.; Biele, J.; Ulamec, S.; Broll, B.; Kruselburger, A.; Perez-Prieto, L.
2014-04-01
JAXA's Hayabusa-2 mission, an asteroid sample return mission, is scheduled for launch in December 2014, for a rendezvous with the C-type asteroid 1999 JU3 in 2018. MASCOT, the Mobile Asteroid Surface Scout [1], is a small lander, designed to deliver ground truth for the orbiter remote measurements, support the selection of sampling sites, and provide context for the returned samples.MASCOT's main objective is to investigate the landing site's geomorphology, the internal structure, texture and composition of the regolith (dust, soil and rocks), and the thermal, mechanical, and magnetic properties of the surface. MASCOT comprises a payload of four scientific instruments: camera, radiometer, magnetometer and hyper-spectral microscope. The camera (MASCOT CAM) was designed and built by DLR's Institute of Planetary Research, together with Airbus DS Germany.
Hyperspectral stimulated emission depletion microscopy and methods of use thereof
Timlin, Jerilyn A; Aaron, Jesse S
2014-04-01
A hyperspectral stimulated emission depletion ("STED") microscope system for high-resolution imaging of samples labeled with multiple fluorophores (e.g., two to ten fluorophores). The hyperspectral STED microscope includes a light source, optical systems configured for generating an excitation light beam and a depletion light beam, optical systems configured for focusing the excitation and depletion light beams on a sample, and systems for collecting and processing data generated by interaction of the excitation and depletion light beams with the sample. Hyperspectral STED data may be analyzed using multivariate curve resolution analysis techniques to deconvolute emission from the multiple fluorophores. The hyperspectral STED microscope described herein can be used for multi-color, subdiffraction imaging of samples (e.g., materials and biological materials) and for analyzing a tissue by Forster Resonance Energy Transfer ("FRET").
Recent progress of push-broom infrared hyper-spectral imager in SITP
NASA Astrophysics Data System (ADS)
Wang, Yueming; Hu, Weida; Shu, Rong; Li, Chunlai; Yuan, Liyin; Wang, Jianyu
2017-02-01
In the past decades, hyper-spectral imaging technologies were well developed in SITP, CAS. Many innovations for system design and key parts of hyper-spectral imager were finished. First airborne hyper-spectral imager operating from VNIR to TIR in the world was emerged in SITP. It is well known as OMIS(Operational Modular Imaging Spectrometer). Some new technologies were introduced to improve the performance of hyper-spectral imaging system in these years. A high spatial space-borne hyper-spectral imager aboard Tiangong-1 spacecraft was launched on Sep.29, 2011. Thanks for ground motion compensation and high optical efficiency prismatic spectrometer, a large amount of hyper-spectral imagery with high sensitivity and good quality were acquired in the past years. Some important phenomena were observed. To diminish spectral distortion and expand field of view, new type of prismatic imaging spectrometer based curved prism were proposed by SITP. A prototype of hyper-spectral imager based spherical fused silica prism were manufactured, which can operate from 400nm 2500nm. We also made progress in the development of LWIR hyper-spectral imaging technology. Compact and low F number LWIR imaging spectrometer was designed, manufactured and integrated. The spectrometer operated in a cryogenically-cooled vacuum box for background radiation restraint. The system performed well during flight experiment in an airborne platform. Thanks high sensitivity FPA and high performance optics, spatial resolution and spectral resolution and SNR of system are improved enormously. However, more work should be done for high radiometric accuracy in the future.
Hyperspectral image analysis using artificial color
NASA Astrophysics Data System (ADS)
Fu, Jian; Caulfield, H. John; Wu, Dongsheng; Tadesse, Wubishet
2010-03-01
By definition, HSC (HyperSpectral Camera) images are much richer in spectral data than, say, a COTS (Commercial-Off-The-Shelf) color camera. But data are not information. If we do the task right, useful information can be derived from the data in HSC images. Nature faced essentially the identical problem. The incident light is so complex spectrally that measuring it with high resolution would provide far more data than animals can handle in real time. Nature's solution was to do irreversible POCS (Projections Onto Convex Sets) to achieve huge reductions in data with minimal reduction in information. Thus we can arrange for our manmade systems to do what nature did - project the HSC image onto two or more broad, overlapping curves. The task we have undertaken in the last few years is to develop this idea that we call Artificial Color. What we report here is the use of the measured HSC image data projected onto two or three convex, overlapping, broad curves in analogy with the sensitivity curves of human cone cells. Testing two quite different HSC images in that manner produced the desired result: good discrimination or segmentation that can be done very simply and hence are likely to be doable in real time with specialized computers. Using POCS on the HSC data to reduce the processing complexity produced excellent discrimination in those two cases. For technical reasons discussed here, the figures of merit for the kind of pattern recognition we use is incommensurate with the figures of merit of conventional pattern recognition. We used some force fitting to make a comparison nevertheless, because it shows what is also obvious qualitatively. In our tasks our method works better.
Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging.
Chaudhari, Abhijit J; Darvas, Felix; Bading, James R; Moats, Rex A; Conti, Peter S; Smith, Desmond J; Cherry, Simon R; Leahy, Richard M
2005-12-07
For bioluminescence imaging studies in small animals, it is important to be able to accurately localize the three-dimensional (3D) distribution of the underlying bioluminescent source. The spectrum of light produced by the source that escapes the subject varies with the depth of the emission source because of the wavelength-dependence of the optical properties of tissue. Consequently, multispectral or hyperspectral data acquisition should help in the 3D localization of deep sources. In this paper, we describe a framework for fully 3D bioluminescence tomographic image acquisition and reconstruction that exploits spectral information. We describe regularized tomographic reconstruction techniques that use semi-infinite slab or FEM-based diffusion approximations of photon transport through turbid media. Singular value decomposition analysis was used for data dimensionality reduction and to illustrate the advantage of using hyperspectral rather than achromatic data. Simulation studies in an atlas-mouse geometry indicated that sub-millimeter resolution may be attainable given accurate knowledge of the optical properties of the animal. A fixed arrangement of mirrors and a single CCD camera were used for simultaneous acquisition of multispectral imaging data over most of the surface of the animal. Phantom studies conducted using this system demonstrated our ability to accurately localize deep point-like sources and show that a resolution of 1.5 to 2.2 mm for depths up to 6 mm can be achieved. We also include an in vivo study of a mouse with a brain tumour expressing firefly luciferase. Co-registration of the reconstructed 3D bioluminescent image with magnetic resonance images indicated good anatomical localization of the tumour.
NASA Astrophysics Data System (ADS)
Gedalin, Daniel; Oiknine, Yaniv; August, Isaac; Blumberg, Dan G.; Rotman, Stanley R.; Stern, Adrian
2017-04-01
Compressive sensing theory was proposed to deal with the high quantity of measurements demanded by traditional hyperspectral systems. Recently, a compressive spectral imaging technique dubbed compressive sensing miniature ultraspectral imaging (CS-MUSI) was presented. This system uses a voltage controlled liquid crystal device to create multiplexed hyperspectral cubes. We evaluate the utility of the data captured using the CS-MUSI system for the task of target detection. Specifically, we compare the performance of the matched filter target detection algorithm in traditional hyperspectral systems and in CS-MUSI multiplexed hyperspectral cubes. We found that the target detection algorithm performs similarly in both cases, despite the fact that the CS-MUSI data is up to an order of magnitude less than that in conventional hyperspectral cubes. Moreover, the target detection is approximately an order of magnitude faster in CS-MUSI data.
NASA Astrophysics Data System (ADS)
Lussem, U.; Hollberg, J.; Menne, J.; Schellberg, J.; Bareth, G.
2017-08-01
Monitoring the spectral response of intensively managed grassland throughout the growing season allows optimizing fertilizer inputs by monitoring plant growth. For example, site-specific fertilizer application as part of precision agriculture (PA) management requires information within short time. But, this requires field-based measurements with hyper- or multispectral sensors, which may not be feasible on a day to day farming practice. Exploiting the information of RGB images from consumer grade cameras mounted on unmanned aerial vehicles (UAV) can offer cost-efficient as well as near-real time analysis of grasslands with high temporal and spatial resolution. The potential of RGB imagery-based vegetation indices (VI) from consumer grade cameras mounted on UAVs has been explored recently in several. However, for multitemporal analyses it is desirable to calibrate the digital numbers (DN) of RGB-images to physical units. In this study, we explored the comparability of the RGBVI from a consumer grade camera mounted on a low-cost UAV to well established vegetation indices from hyperspectral field measurements for applications in grassland. The study was conducted in 2014 on the Rengen Grassland Experiment (RGE) in Germany. Image DN values were calibrated into reflectance by using the Empirical Line Method (Smith & Milton 1999). Depending on sampling date and VI the correlation between the UAV-based RGBVI and VIs such as the NDVI resulted in varying R2 values from no correlation to up to 0.9. These results indicate, that calibrated RGB-based VIs have the potential to support or substitute hyperspectral field measurements to facilitate management decisions on grasslands.
Analysis of hyperspectral scattering images using a moment method for apple firmness prediction
USDA-ARS?s Scientific Manuscript database
This article reports on using a moment method to extract features from the hyperspectral scattering profiles for apple fruit firmness prediction. Hyperspectral scattering images between 500 nm and 1000 nm were acquired online, using a hyperspectral scattering system, for ‘Golden Delicious’, ’Jonagol...
NASA Astrophysics Data System (ADS)
Yang, Xue; Hu, Yajia; Li, Gang; Lin, Ling
2018-02-01
This paper proposes an optimized lighting method of applying a shaped-function signal for increasing the dynamic range of light emitting diode (LED)-multispectral imaging system. The optimized lighting method is based on the linear response zone of the analog-to-digital conversion (ADC) and the spectral response of the camera. The auxiliary light at a higher sensitivity-camera area is introduced to increase the A/D quantization levels that are within the linear response zone of ADC and improve the signal-to-noise ratio. The active light is modulated by the shaped-function signal to improve the gray-scale resolution of the image. And the auxiliary light is modulated by the constant intensity signal, which is easy to acquire the images under the active light irradiation. The least square method is employed to precisely extract the desired images. One wavelength in multispectral imaging based on LED illumination was taken as an example. It has been proven by experiments that the gray-scale resolution and the accuracy of information of the images acquired by the proposed method were both significantly improved. The optimum method opens up avenues for the hyperspectral imaging of biological tissue.
Yang, Xue; Hu, Yajia; Li, Gang; Lin, Ling
2018-02-01
This paper proposes an optimized lighting method of applying a shaped-function signal for increasing the dynamic range of light emitting diode (LED)-multispectral imaging system. The optimized lighting method is based on the linear response zone of the analog-to-digital conversion (ADC) and the spectral response of the camera. The auxiliary light at a higher sensitivity-camera area is introduced to increase the A/D quantization levels that are within the linear response zone of ADC and improve the signal-to-noise ratio. The active light is modulated by the shaped-function signal to improve the gray-scale resolution of the image. And the auxiliary light is modulated by the constant intensity signal, which is easy to acquire the images under the active light irradiation. The least square method is employed to precisely extract the desired images. One wavelength in multispectral imaging based on LED illumination was taken as an example. It has been proven by experiments that the gray-scale resolution and the accuracy of information of the images acquired by the proposed method were both significantly improved. The optimum method opens up avenues for the hyperspectral imaging of biological tissue.
Development of Critical Technologies for the COSMO/SkyMed Hyperspectral Camera
2000-10-01
Carbide (SiC) material (SiC or lightweighted Zerodur mirrors , carbon fiber technology. structures). - development of electronics blocks at high - High...investigation was Kcarried out to get the highest lightening factors on the Zerodur mirror substrates. Several samples of the TMA Fig. 5 - Prototypes of...implementation of state-of-the-art - manufacturing of very light mirrors with special manufacturing techniques for light components emphasis on Silicon
Compressive Sensing for Background Subtraction
2009-12-20
i) reconstructing an image using only a single optical pho- todiode (infrared, hyperspectral, etc.) along with a digital micromirror device (DMD... curves , we use the full images, run the background subtraction algorithm proposed in [19], and obtain baseline background subtracted images. We then...the images to generate the ROC curve . 5.5 Silhouettes vs. Difference Images We have used a multi camera set up for a 3D voxel reconstruction using the
False alarm recognition in hyperspectral gas plume identification
Conger, James L [San Ramon, CA; Lawson, Janice K [Tracy, CA; Aimonetti, William D [Livermore, CA
2011-03-29
According to one embodiment, a method for analyzing hyperspectral data includes collecting first hyperspectral data of a scene using a hyperspectral imager during a no-gas period and analyzing the first hyperspectral data using one or more gas plume detection logics. The gas plume detection logic is executed using a low detection threshold, and detects each occurrence of an observed hyperspectral signature. The method also includes generating a histogram for all occurrences of each observed hyperspectral signature which is detected using the gas plume detection logic, and determining a probability of false alarm (PFA) for all occurrences of each observed hyperspectral signature based on the histogram. Possibly at some other time, the method includes collecting second hyperspectral data, and analyzing the second hyperspectral data using the one or more gas plume detection logics and the PFA to determine if any gas is present. Other systems and methods are also included.
Sub-parcel terroir mapping supported by UAV-based hyperspectral imagery
NASA Astrophysics Data System (ADS)
Takács, Katalin; Árvai, Mátyás; Koós, Sándor; Deák, Márton; Bakacsi, Zsófia; László, Péter; Pásztor, László
2017-04-01
There is a greater need to better understand the regional-to-parcel variations in viticultural potential. The differentiation and mapping of the variability of grape and wine quality require comprehensive spatial modelling of climatic, topographic and soil properties and a "terroir-based approach". Using remote and proximal sensing sensors and instruments are the most effective way for surveying vineyard status, such as geomorphologic and soil conditions, plant water and nutrient availability, plant health. UAV (Unmanned Aerial Vechicle) platforms are ideal for the remote monitoring of small and medium size vineyards, because flight planning is flexible and very high spatial ground resolution (even centimeters) can be achieved. Using hyperspectral remote sensing techniques the spectral response of the vegetation and the bare soil surface can be analyzed in very high spectral resolution, which can support terroir mapping on a sub-parcel level. Our study area is located in Hungary, in the Tokaj Wine Region, which is a historical region for botrityzed dessert wine making. The area of Tokaj Wine Region was formed mostly by Miocene volcanic activity, where andesite, rhyolite lavas and tuffs are characteristic and loess cover also occurs in some regions. The various geology and morphology of this area result diversity in soil types and soil properties as well. The study site was surveyed by a Cubert UHD-185 hyperspectral camera set on a Cortex Octocopter platform. The hyperspectral images were acquired in VIS-NIR (visible and near-infrared; 450-950 nm), with 4 nm sampling interval. The image acquisition was carried out at bare soil conditions, therefore the most important soil properties, which has dominant role by the delineation of terroir, can be predicted. In our paper we will present the first results of the hyperspectral survey.
Hyperspectral imaging utility for transportation systems
NASA Astrophysics Data System (ADS)
Bridgelall, Raj; Rafert, J. Bruce; Tolliver, Denver
2015-03-01
The global transportation system is massive, open, and dynamic. Existing performance and condition assessments of the complex interacting networks of roadways, bridges, railroads, pipelines, waterways, airways, and intermodal ports are expensive. Hyperspectral imaging is an emerging remote sensing technique for the non-destructive evaluation of multimodal transportation infrastructure. Unlike panchromatic, color, and infrared imaging, each layer of a hyperspectral image pixel records reflectance intensity from one of dozens or hundreds of relatively narrow wavelength bands that span a broad range of the electromagnetic spectrum. Hence, every pixel of a hyperspectral scene provides a unique spectral signature that offers new opportunities for informed decision-making in transportation systems development, operations, and maintenance. Spaceborne systems capture images of vast areas in a short period but provide lower spatial resolution than airborne systems. Practitioners use manned aircraft to achieve higher spatial and spectral resolution, but at the price of custom missions and narrow focus. The rapid size and cost reduction of unmanned aircraft systems promise a third alternative that offers hybrid benefits at affordable prices by conducting multiple parallel missions. This research formulates a theoretical framework for a pushbroom type of hyperspectral imaging system on each type of data acquisition platform. The study then applies the framework to assess the relative potential utility of hyperspectral imaging for previously proposed remote sensing applications in transportation. The authors also introduce and suggest new potential applications of hyperspectral imaging in transportation asset management, network performance evaluation, and risk assessments to enable effective and objective decision- and policy-making.
Hyperspectral Systems Increase Imaging Capabilities
NASA Technical Reports Server (NTRS)
2010-01-01
In 1983, NASA started developing hyperspectral systems to image in the ultraviolet and infrared wavelengths. In 2001, the first on-orbit hyperspectral imager, Hyperion, was launched aboard the Earth Observing-1 spacecraft. Based on the hyperspectral imaging sensors used in Earth observation satellites, Stennis Space Center engineers and Institute for Technology Development researchers collaborated on a new design that was smaller and used an improved scanner. Featured in Spinoff 2007, the technology is now exclusively licensed by Themis Vision Systems LLC, of Richmond, Virginia, and is widely used in medical and life sciences, defense and security, forensics, and microscopy.
NASA Astrophysics Data System (ADS)
Tchernykh, Valerij; Dyblenko, Sergej; Janschek, Klaus; Seifart, Klaus; Harnisch, Bernd
2005-08-01
The cameras commonly used for Earth observation from satellites require high attitude stability during the image acquisition. For some types of cameras (high-resolution "pushbroom" scanners in particular), instantaneous attitude changes of even less than one arcsecond result in significant image distortion and blurring. Especially problematic are the effects of high-frequency attitude variations originating from micro-shocks and vibrations produced by the momentum and reaction wheels, mechanically activated coolers, and steering and deployment mechanisms on board. The resulting high attitude-stability requirements for Earth-observation satellites are one of the main reasons for their complexity and high cost. The novel SmartScan imaging concept, based on an opto-electronic system with no moving parts, offers the promise of high-quality imaging with only moderate satellite attitude stability. SmartScan uses real-time recording of the actual image motion in the focal plane of the camera during frame acquisition to correct the distortions in the image. Exceptional real-time performances with subpixel-accuracy image-motion measurement are provided by an innovative high-speed onboard opto-electronic correlation processor. SmartScan will therefore allow pushbroom scanners to be used for hyper-spectral imaging from satellites and other space platforms not primarily intended for imaging missions, such as micro- and nano-satellites with simplified attitude control, low-orbiting communications satellites, and manned space stations.
Spectral measurements of muzzle flash with multispectral and hyperspectral sensor
NASA Astrophysics Data System (ADS)
Kastek, M.; Dulski, R.; Trzaskawka, P.; Piątkowski, T.; Polakowski, H.
2011-08-01
The paper presents some practical aspects of the measurements of muzzle flash signatures. Selected signatures of sniper shot in typical scenarios has been presented. Signatures registered during all phases of muzzle flash were analyzed. High precision laboratory measurements were made in a special ballistic laboratory and as a result several flash patterns were registered. The field measurements of a muzzle flash were also performed. During the tests several infrared cameras were used, including the measurement class devices with high accuracy and frame rates. The registrations were made in NWIR, SWIR and LWIR spectral bands simultaneously. An ultra fast visual camera was also used for visible spectra registration. Some typical infrared shot signatures were presented. Beside the cameras, the LWIR imaging spectroradiometer HyperCam was also used during the laboratory experiments and the field tests. The signatures collected by the HyperCam device were useful for the determination of spectral characteristics of the muzzle flash, whereas the analysis of thermal images registered during the tests provided the data on temperature distribution in the flash area. As a result of the measurement session the signatures of several types handguns, machine guns and sniper rifles were obtained which will be used in the development of passive infrared systems for sniper detection.
2012-02-09
The calibrated data are then sent to NRL Stennis Space Center (NRL-SSC) for further processing using the NRL SSC Automated Processing System (APS...hyperspectral sensor in space we have not previously developed automated processing for hyperspectral ocean color data. The hyperspectral processing branch
2017-07-11
Commercial businesses and scientific researchers have a new capability to capture digital imagery of Earth, thanks to MUSES: the Multiple User System for Earth Sensing facility. This platform on the outside of the International Space Station is capable of holding four different payloads, ranging from high-resolution digital cameras to hyperspectral imagers, which will support Earth science observations in agricultural awareness, air quality, disaster response, fire detection, and many other research topics. MUSES program manager Mike Soutullo explains the system and its unique features including the ability to change and upgrade payloads using the space station’s Canadarm2 and Special Purpose Dexterous Manipulator. For more information about MUSES, please visit: https://www.nasa.gov/mission_pages/station/research/news/MUSES For more on ISS science, https://www.nasa.gov/mission_pages/station/research/index.html or follow us on Twitter @ISS_research
System and method for progressive band selection for hyperspectral images
NASA Technical Reports Server (NTRS)
Fisher, Kevin (Inventor)
2013-01-01
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for progressive band selection for hyperspectral images. A system having module configured to control a processor to practice the method calculates a virtual dimensionality of a hyperspectral image having multiple bands to determine a quantity Q of how many bands are needed for a threshold level of information, ranks each band based on a statistical measure, selects Q bands from the multiple bands to generate a subset of bands based on the virtual dimensionality, and generates a reduced image based on the subset of bands. This approach can create reduced datasets of full hyperspectral images tailored for individual applications. The system uses a metric specific to a target application to rank the image bands, and then selects the most useful bands. The number of bands selected can be specified manually or calculated from the hyperspectral image's virtual dimensionality.
Multispectral and hyperspectral measurements of soldier's camouflage equipment
NASA Astrophysics Data System (ADS)
Kastek, Mariusz; Piątkowski, Tadeusz; Dulski, Rafal; Chamberland, Martin; Lagueux, Philippe; Farley, Vincent
2012-06-01
In today's electro-optic warfare era, it is more than vital for one nation's defense to possess the most advanced measurement and signature intelligence (MASINT) capabilities. This is critical to gain a strategic advantage in the planning of the military operations and deployments. The thermal infrared region of the electromagnetic spectrum is a key region that is exploited for infrared reconnaissance and surveillance missions. The Military University of Technology has conducted an intensive measurement campaign of various soldier's camouflage devices in the scope of building a database of infrared signatures. One of today's key technologies required to perform signature measurements has become infrared hyperspectral and broadband/multispectral imaging sensors. The Telops Hyper-Cam LW product represents a unique commercial offering with outstanding performances and versatility for the collection of hyperspectral infrared images. The Hyper-Cam allows for the infrared imagery of a target (320 × 256 pixels) at a very high spectral resolution (down to 0.25 cm-1). Moreover, the Military University of Technology has made use of a suite of scientific grade commercial infrared cameras to further measure and assess the targets from a broadband/multispectral perspective. The experiment concept and measurement results are presented in this paper.
Modified algorithm for mineral identification in LWIR hyperspectral imagery
NASA Astrophysics Data System (ADS)
Yousefi, Bardia; Sojasi, Saeed; Liaigre, Kévin; Ibarra Castanedo, Clemente; Beaudoin, Georges; Huot, François; Maldague, Xavier P. V.; Chamberland, Martin
2017-05-01
The applications of hyperspectral infrared imagery in the different fields of research are significant and growing. It is mainly used in remote sensing for target detection, vegetation detection, urban area categorization, astronomy and geological applications. The geological applications of this technology mainly consist in mineral identification using in airborne or satellite imagery. We address a quantitative and qualitative assessment of mineral identification in the laboratory conditions. We strive to identify nine different mineral grains (Biotite, Diopside, Epidote, Goethite, Kyanite, Scheelite, Smithsonite, Tourmaline, Quartz). A hyperspectral camera in the Long Wave Infrared (LWIR, 7.7-11.8 ) with a LW-macro lens providing a spatial resolution of 100 μm, an infragold plate, and a heating source are the instruments used in the experiment. The proposed algorithm clusters all the pixel-spectra in different categories. Then the best representatives of each cluster are chosen and compared with the ASTER spectral library of JPL/NASA through spectral comparison techniques, such as Spectral angle mapper (SAM) and Normalized Cross Correlation (NCC). The results of the algorithm indicate significant computational efficiency (more than 20 times faster) as compared to previous algorithms and have shown a promising performance for mineral identification.
Oil spill characterization thanks to optical airborne imagery during the NOFO campaign 2015
NASA Astrophysics Data System (ADS)
Viallefont-Robinet, F.; Ceamanos, X.; Angelliaume, S.; Miegebielle, V.
2017-10-01
One of the objectives of the NAOMI (New Advanced Observation Method Integration) research project, fruit of a partnership between Total and ONERA, is to work on the detection, the quantification and the characterization of offshore hydrocarbon at the sea surface using airborne remote sensing. In this framework, work has been done to characterize the spectral signature of hydrocarbons in lab in order to build a database of oil spectral signatures. The main objective of this database is to provide spectral libraries for data processing algorithms to be applied to airborne VNIRSWIR hyperspectral images. A campaign run by the NOFO institute (Norwegian Clean Seas Association for Operating Companies) took place in 2015 to test anti-pollution equipment. During this campaign, several hydrocarbon products, including an oil emulsion, were released into the sea, off the Norwegian coast. The NOFO team allowed the NAOMI project to acquire data over the resulting oil slicks using the SETHI system, which is an airborne remote sensing imaging system developed by ONERA. SETHI integrates a new generation of optoelectronic and radar payloads and can operate over a wide range of frequency bands. SETHI is a pod-based system operating onboard a Falcon 20 Dassault aircraft, which is owned by AvDEF. For these experiments, imaging sensors were constituted by 2 synthetic aperture radar (SAR), working at X and L bands in a full polarimetric mode (HH, HV, VH, VV) and 2 HySpex hyperspectral cameras working in the VNIR (0,4 to 1 μm) and SWIR (1 to 2,5 μm) spectral ranges. A sample of the oil emulsion that was used during the campaign was sent to our laboratory for analysis. Measurements of its transmission and of its reflectance in the VNIR and SWIR spectral domains have been performed at ONERA with a Perkin Elmer spectroradiometer and a spectrogoniometer. Several samples of the oil emulsion were prepared in order to measure spectral variations according to oil thickness, illumination angle and aging. These measurements have been used to build spectral libraries. Spectral matching techniques, relying on these libraries have been applied to the airborne hyperspectral acquisitions. These data processing approaches enable to characterize the oil emulsion by estimating the properties taken into account to build the spectral library, thus going further than unsupervised spectral indices that are able to detect the presence of oil. The paper will describe the airborne hyperspectral data, the measurements performed in the laboratory, and the processing of the optical images with spectral indices for oil detection and with spectral matching techniques for oil characterization. Furthermore, the issue of mixed oil-water pixels in the hyperspectral images due to limited spatial resolution will be addressed by estimating the areal fraction of each.
Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination
NASA Astrophysics Data System (ADS)
Spigulis, Janis; Oshina, Ilze; Berzina, Anna; Bykov, Alexander
2017-09-01
Chromophore distribution maps are useful tools for skin malformation severity assessment and for monitoring of skin recovery after burns, surgeries, and other interactions. The chromophore maps can be obtained by processing several spectral images of skin, e.g., captured by hyperspectral or multispectral cameras during seconds or even minutes. To avoid motion artifacts and simplify the procedure, a single-snapshot technique for mapping melanin, oxyhemoglobin, and deoxyhemoglobin of in-vivo skin by a smartphone under simultaneous three-wavelength (448-532-659 nm) laser illumination is proposed and examined. Three monochromatic spectral images related to the illumination wavelengths were extracted from the smartphone camera RGB image data set with respect to crosstalk between the RGB detection bands. Spectral images were further processed accordingly to Beer's law in a three chromophore approximation. Photon absorption path lengths in skin at the exploited wavelengths were estimated by means of Monte Carlo simulations. The technique was validated clinically on three kinds of skin lesions: nevi, hemangiomas, and seborrheic keratosis. Design of the developed add-on laser illumination system, image-processing details, and the results of clinical measurements are presented and discussed.
Oxygen saturation in optic nerve head structures by hyperspectral image analysis.
Beach, James; Ning, Jinfeng; Khoobehi, Bahram
2007-02-01
A method is presented for the calculation and visualization of percent blood oxygen saturation from specific tissue structures in hyperspectral images of the optic nerve head (ONH). Trans-pupillary images of the primate optic nerve head and overlying retinal blood vessels were obtained with a hyperspectral imaging (HSI) system attached to a fundus camera. Images were recorded during normal blood flow and after partially interrupting flow to the ONH and retinal circulation by elevation of the intraocular pressure (IOP) from 10 mmHg to 55 mmHg in steps. Percent oxygen saturation was calculated from groups of pixels associated with separate tissue structures, using a linear least-squares curve fit of the recorded hemoglobin spectrum to reference spectra obtained from fully oxygenated and deoxygenated red cell suspensions. Color maps of saturation were obtained from a new algorithm that enables comparison of oxygen saturation from large vessels and tissue areas in hyperspectral images. Percent saturation in retinal vessels and from the average over ONH structures (IOP = 10 mmHg) was (mean +/- SE): artery 81.8 +/- 0.4%, vein 42.6 +/- 0.9%, average ONH 68.3 +/- 0.4%. Raising IOP from 10 mmHg to 55 mmHg for 5 min caused blood oxygen saturation to decrease (mean +/- SE): artery 46.1 +/- 6.2%, vein 36.1 +/- 1.6%, average ONH 41.9 +/- 1.6%. The temporal cup showed the highest saturation at low and high IOP (77.3 +/- 1.0% and 60.1 +/- 4.0%) and the least reduction in saturation at high IOP (22.3%) compared with that of the average ONH (38.6%). A linear relationship was found between saturation indices obtained from the algorithm and percent saturation values obtained by spectral curve fits to calibrated red cell samples. Percent oxygen saturation was determined from hyperspectral images of the ONH tissue and retinal vessels overlying the ONH at normal and elevated IOP. Pressure elevation was shown to reduce blood oxygen saturation in vessels and ONH structures, with the smallest reduction in the ONH observed in the temporal cup. IOP-induced saturation changes were visualized in color maps using an algorithm that follows saturation-dependent changes in the blood spectrum and blood volume differences across tissue. Reduced arterial saturation at high IOP may have resulted from a flow-dependent mechanism.
3D printed biomimetic vascular phantoms for assessment of hyperspectral imaging systems
NASA Astrophysics Data System (ADS)
Wang, Jianting; Ghassemi, Pejhman; Melchiorri, Anthony; Ramella-Roman, Jessica; Mathews, Scott A.; Coburn, James; Sorg, Brian; Chen, Yu; Pfefer, Joshua
2015-03-01
The emerging technique of three-dimensional (3D) printing provides a revolutionary way to fabricate objects with biologically realistic geometries. Previously we have performed optical and morphological characterization of basic 3D printed tissue-simulating phantoms and found them suitable for use in evaluating biophotonic imaging systems. In this study we assess the potential for printing phantoms with irregular, image-defined vascular networks that can be used to provide clinically-relevant insights into device performance. A previously acquired fundus camera image of the human retina was segmented, embedded into a 3D matrix, edited to incorporate the tubular shape of vessels and converted into a digital format suitable for printing. A polymer with biologically realistic optical properties was identified by spectrophotometer measurements of several commercially available samples. Phantoms were printed with the retinal vascular network reproduced as ~1.0 mm diameter channels at a range of depths up to ~3 mm. The morphology of the printed vessels was verified by volumetric imaging with μ-CT. Channels were filled with hemoglobin solutions at controlled oxygenation levels, and the phantoms were imaged by a near-infrared hyperspectral reflectance imaging system. The effect of vessel depth on hemoglobin saturation estimates was studied. Additionally, a phantom incorporating the vascular network at two depths was printed and filled with hemoglobin solution at two different saturation levels. Overall, results indicated that 3D printed phantoms are useful for assessing biophotonic system performance and have the potential to form the basis of clinically-relevant standardized test methods for assessment of medical imaging modalities.
Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan
2011-04-01
In this study, we propose and evaluate a method for spectral characterization of acousto-optic tunable filter (AOTF) hyperspectral imaging systems in the near-infrared (NIR) spectral region from 900 nm to 1700 nm. The proposed spectral characterization method is based on the SRM-2035 standard reference material, exhibiting distinct spectral features, which enables robust non-rigid matching of the acquired and reference spectra. The matching is performed by simultaneously optimizing the parameters of the AOTF tuning curve, spectral resolution, baseline, and multiplicative effects. In this way, the tuning curve (frequency-wavelength characteristics) and the corresponding spectral resolution of the AOTF hyperspectral imaging system can be characterized simultaneously. Also, the method enables simple spectral characterization of the entire imaging plane of hyperspectral imaging systems. The results indicate that the method is accurate and efficient and can easily be integrated with systems operating in diffuse reflection or transmission modes. Therefore, the proposed method is suitable for characterization, calibration, or validation of AOTF hyperspectral imaging systems. © 2011 Society for Applied Spectroscopy
NASA Astrophysics Data System (ADS)
Pahlavani, Parham; Bigdeli, Behnaz
2017-12-01
Hyperspectral images contain extremely rich spectral information that offer great potential to discriminate between various land cover classes. However, these images are usually composed of tens or hundreds of spectrally close bands, which result in high redundancy and great amount of computation time in hyperspectral classification. Furthermore, in the presence of mixed coverage pixels, crisp classifiers produced errors, omission and commission. This paper presents a mutual information-Dempster-Shafer system through an ensemble classification approach for classification of hyperspectral data. First, mutual information is applied to split data into a few independent partitions to overcome high dimensionality. Then, a fuzzy maximum likelihood classifies each band subset. Finally, Dempster-Shafer is applied to fuse the results of the fuzzy classifiers. In order to assess the proposed method, a crisp ensemble system based on a support vector machine as the crisp classifier and weighted majority voting as the crisp fusion method are applied on hyperspectral data. Furthermore, a dimension reduction system is utilized to assess the effectiveness of mutual information band splitting of the proposed method. The proposed methodology provides interesting conclusions on the effectiveness and potentiality of mutual information-Dempster-Shafer based classification of hyperspectral data.
Design and operation of SUCHI: the space ultra-compact hyperspectral imager for a small satellite
NASA Astrophysics Data System (ADS)
Crites, S. T.; Lucey, P. G.; Wright, R.; Chan, J.; Garbeil, H.; Horton, K. A.; Imai, A.; Pilger, E. J.; Wood, M.; Yoneshige, Lance
2014-06-01
The primary payload on the University of Hawaii-built `HiakaSat' micro-satellite will be the Space Ultra Compact Hyperspectral Imager (SUCHI). SUCHI is a low-mass (<9kg), low-volume (10x10x36 cm3) long wave infrared hyperspectral imager designed and built at the University of Hawaii. SUCHI is based on a variable-gap Fabry-Perot interferometer employed as a Fourier transform spectrometer with images collected by a commercial 320x256 microbolometer array. The microbolometer camera and vacuum-sensitive electronics are contained within a sealed vessel at 1 atm. SUCHI will collect spectral radiance data from 8 to 14 microns and demonstrate the potential of this instrument for geological studies from orbit (e.g. mapping of major rock-forming minerals) and volcanic hazard observation and assessment (e.g. quantification of volcanic sulfur dioxide pollution and lava flow cooling rates). The sensor has been integrated with the satellite which will launch on the Office of Responsive Space ORS-4 mission scheduled for 2014. The primary mission will last 6 months, with extended operations anticipated for approximately 2 years. A follow-on mission has been proposed to perform imaging of Earth's surface in the 3-5 micron range with a field of view of 5 km with 5.25 m sampling (from a 350 km orbit). The 19-kg proposed instrument will be a prototype sensor for a constellation of small satellites for Earth imaging. The integrated satellite properties will be incorporated into the Hawaii Space Flight Laboratory's constellation maintenance software environment COSMOS (Comprehensive Openarchitecture Space Mission Operations System) to ease future implementation of the instrument as part of a constellation.
ultra-Stable Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (5STAR)
NASA Astrophysics Data System (ADS)
Dunagan, S. E.; Johnson, R. R.; Redemann, J.; Holben, B. N.; Schmid, B.; Flynn, C. J.; Fahey, L.; LeBlanc, S. E.; Liss, J.; Kacenelenbogen, M. S.; Segal-Rosenhaimer, M.; Shinozuka, Y.; Dahlgren, R. P.; Pistone, K.; Karol, Y.
2017-12-01
The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to air pollution and climate. Direct beam hyperspectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. Hyperspectral cloud-transmitted radiance measurements enable the retrieval of cloud properties from below clouds. These measurements tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/ sky-scanning optical head with optical fiber signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical tracking head, and future detector evolution. 4STAR has supported a broad range of flight experiments since it was first flown in 2010. This experience provides the basis for a series of improvements directed toward reducing measurement uncertainty and calibration complexity, and expanding future measurement capabilities, to be incorporated into a new 5STAR instrument. A 9-channel photodiode radiometer with AERONET-matched bandpass filters will be incorporated to improve calibration stability. A wide dynamic range tracking camera will provide a high precision solar position tracking signal as well as an image of sky conditions around the solar axis. An ultrasonic window cleaning system design will be tested. A UV spectrometer tailored for formaldehyde and SO2 gas retrievals will be added to the spectrometer enclosure. Finally, expansion capability for a 4 channel polarized radiometer to measure the Stokes polarization vector of sky light will be incorporated. This paper presents initial progress on this next-generation 5STAR instrument. Keywords: atmosphere; climate; pollution; radiometry; technology; hyperspectral; fiber optic, polarimetry
Feature-Based Approach for the Registration of Pushbroom Imagery with Existing Orthophotos
NASA Astrophysics Data System (ADS)
Xiong, Weifeng
Low-cost Unmanned Airborne Vehicles (UAVs) are rapidly becoming suitable platforms for acquiring remote sensing data for a wide range of applications. For example, a UAV-based mobile mapping system (MMS) is emerging as a novel phenotyping tool that delivers several advantages to alleviate the drawbacks of conventional manual plant trait measurements. Moreover, UAVs equipped with direct geo-referenced frame cameras and pushbroom scanners can acquire geospatial data for comprehensive high-throughput phenotyping. UAVs for mobile mapping platforms are low-cost and easy to use, can fly closer to the objects, and are filling an important gap between ground wheel-based and traditional manned-airborne platforms. However, consumer-grade UAVs are capable of carrying only equipment with a relatively light payload and their flying time is determined by a limited battery life. These restrictions of UAVs unfortunately force potential users to adopt lower-quality direct geo-referencing and imaging systems that may negatively impact the quality of the deliverables. Recent advances in sensor calibration and automated triangulation have made it feasible to obtain accurate mapping using low-cost camera systems equipped with consumer-grade GNSS/INS units. However, ortho-rectification of the data from a linear-array scanner is challenging for low-cost UAV systems, because the derived geo-location information from pushbroom sensors is quite sensitive to the performance of the implemented direct geo-referencing unit. This thesis presents a novel approach for improving the ortho-rectification of hyperspectral pushbroom scanner imagery with the aid of orthophotos generated from frame cameras through the identification of conjugate features while modeling the impact of residual artifacts in the direct geo-referencing information. The experimental results qualitatively and quantitatively proved the feasibility of the proposed methodology in improving the geo-referencing accuracy of real datasets collected over an agricultural field.
International Space Station Instmments Collect Imagery of Natural Disasters
NASA Technical Reports Server (NTRS)
Evans, C. A.; Stefanov, W. L.
2013-01-01
A new focus for utilization of the International Space Station (ISS) is conducting basic and applied research that directly benefits Earth's citizenry. In the Earth Sciences, one such activity is collecting remotely sensed imagery of disaster areas and making those data immediately available through the USGS Hazards Data Distribution System, especially in response to activations of the International Charter for Space and Major Disasters (known informally as the "International Disaster Charter", or IDC). The ISS, together with other NASA orbital sensor assets, responds to IDC activations following notification by the USGS. Most of the activations are due to natural hazard events, including large floods, impacts of tropical systems, major fires, and volcanic eruptions and earthquakes. Through the ISS Program Science Office, we coordinate with ISS instrument teams for image acquisition using several imaging systems. As of 1 August 2013, we have successfully contributed imagery data in support of 14 Disaster Charter Activations, including regions in both Haiti and the east coast of the US impacted by Hurricane Sandy; flooding events in Russia, Mozambique, India, Germany and western Africa; and forest fires in Algeria and Ecuador. ISS-based sensors contributing data include the Hyperspectral Imager for the Coastal Ocean (HICO), the ISERV (ISS SERVIR Environmental Research and Visualization System) Pathfinder camera mounted in the US Window Observational Research Facility (WORF), the ISS Agricultural Camera (ISSAC), formerly operating from the WORF, and high resolution handheld camera photography collected by crew members (Crew Earth Observations). When orbital parameters and operations support data collection, ISS-based imagery adds to the resources available to disaster response teams and contributes to the publicdomain record of these events for later analyses.
Portable Hyperspectral Imaging Broadens Sensing Horizons
NASA Technical Reports Server (NTRS)
2007-01-01
Broadband multispectral imaging can be very helpful in showing differences in energy being radiated and is often employed by NASA satellites to monitor temperature and climate changes. In addition, hyperspectral imaging is ideal for advanced laboratory uses, biomedical imaging, forensics, counter-terrorism, skin health, food safety, and Earth imaging. Lextel Intelligence Systems, LLC, of Jackson, Mississippi purchased Photon Industries Inc., a spinoff company of NASA's Stennis Space Center and the Institute for Technology Development dedicated to developing new hyperspectral imaging technologies. Lextel has added new features to and expanded the applicability of the hyperspectral imaging systems. It has made advances in the size, usability, and cost of the instruments. The company now offers a suite of turnkey hyperspectral imaging systems based on the original NASA groundwork. It currently has four lines of hyperspectral imaging products: the EagleEye VNIR 100E, the EagleEye SWIR 100E, the EagleEye SWIR 200E, and the EagleEye UV 100E. These Lextel instruments are used worldwide for a wide variety of applications including medical, military, forensics, and food safety.
Lee, Hoonsoo; Kim, Moon S; Song, Yu-Rim; Oh, Chang-Sik; Lim, Hyoun-Sub; Lee, Wang-Hee; Kang, Jum-Soon; Cho, Byoung-Kwan
2017-03-01
There is a need to minimize economic damage by sorting infected seeds from healthy seeds before seeding. However, current methods of detecting infected seeds, such as seedling grow-out, enzyme-linked immunosorbent assays, the polymerase chain reaction (PCR) and the real-time PCR have a critical drawbacks in that they are time-consuming, labor-intensive and destructive procedures. The present study aimed to evaluate the potential of visible/near-infrared (Vis/NIR) hyperspectral imaging system for detecting bacteria-infected watermelon seeds. A hyperspectral Vis/NIR reflectance imaging system (spectral region of 400-1000 nm) was constructed to obtain hyperspectral reflectance images for 336 bacteria-infected watermelon seeds, which were then subjected to partial least square discriminant analysis (PLS-DA) and a least-squares support vector machine (LS-SVM) to classify bacteria-infected watermelon seeds from healthy watermelon seeds. The developed system detected bacteria-infected watermelon seeds with an accuracy > 90% (PLS-DA: 91.7%, LS-SVM: 90.5%), suggesting that the Vis/NIR hyperspectral imaging system is effective for quarantining bacteria-infected watermelon seeds. The results of the present study show that it is possible to use the Vis/NIR hyperspectral imaging system for detecting bacteria-infected watermelon seeds. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Geometrical distortion calibration of the stereo camera for the BepiColombo mission to Mercury
NASA Astrophysics Data System (ADS)
Simioni, Emanuele; Da Deppo, Vania; Re, Cristina; Naletto, Giampiero; Martellato, Elena; Borrelli, Donato; Dami, Michele; Aroldi, Gianluca; Ficai Veltroni, Iacopo; Cremonese, Gabriele
2016-07-01
The ESA-JAXA mission BepiColombo that will be launched in 2018 is devoted to the observation of Mercury, the innermost planet of the Solar System. SIMBIOSYS is its remote sensing suite, which consists of three instruments: the High Resolution Imaging Channel (HRIC), the Visible and Infrared Hyperspectral Imager (VIHI), and the Stereo Imaging Channel (STC). The latter will provide the global three dimensional reconstruction of the Mercury surface, and it represents the first push-frame stereo camera on board of a space satellite. Based on a new telescope design, STC combines the advantages of a compact single detector camera to the convenience of a double direction acquisition system; this solution allows to minimize mass and volume performing a push-frame imaging acquisition. The shared camera sensor is divided in six portions: four are covered with suitable filters; the others, one looking forward and one backwards with respect to nadir direction, are covered with a panchromatic filter supplying stereo image pairs of the planet surface. The main STC scientific requirements are to reconstruct in 3D the Mercury surface with a vertical accuracy better than 80 m and performing a global imaging with a grid size of 65 m along-track at the periherm. Scope of this work is to present the on-ground geometric calibration pipeline for this original instrument. The selected STC off-axis configuration forced to develop a new distortion map model. Additional considerations are connected to the detector, a Si-Pin hybrid CMOS, which is characterized by a high fixed pattern noise. This had a great impact in pre-calibration phases compelling to use a not common approach to the definition of the spot centroids in the distortion calibration process. This work presents the results obtained during the calibration of STC concerning the distortion analysis for three different temperatures. These results are then used to define the corresponding distortion model of the camera.
Hyperspectral imaging for nondestructive evaluation of tomatoes
USDA-ARS?s Scientific Manuscript database
Machine vision methods for quality and defect evaluation of tomatoes have been studied for online sorting and robotic harvesting applications. We investigated the use of a hyperspectral imaging system for quality evaluation and defect detection for tomatoes. Hyperspectral reflectance images were a...
Spectral imaging using consumer-level devices and kernel-based regression.
Heikkinen, Ville; Cámara, Clara; Hirvonen, Tapani; Penttinen, Niko
2016-06-01
Hyperspectral reflectance factor image estimations were performed in the 400-700 nm wavelength range using a portable consumer-level laptop display as an adjustable light source for a trichromatic camera. Targets of interest were ColorChecker Classic samples, Munsell Matte samples, geometrically challenging tempera icon paintings from the turn of the 20th century, and human hands. Measurements and simulations were performed using Nikon D80 RGB camera and Dell Vostro 2520 laptop screen as a light source. Estimations were performed without spectral characteristics of the devices and by emphasizing simplicity for training sets and estimation model optimization. Spectral and color error images are shown for the estimations using line-scanned hyperspectral images as the ground truth. Estimations were performed using kernel-based regression models via a first-degree inhomogeneous polynomial kernel and a Matérn kernel, where in the latter case the median heuristic approach for model optimization and link function for bounded estimation were evaluated. Results suggest modest requirements for a training set and show that all estimation models have markedly improved accuracy with respect to the DE00 color distance (up to 99% for paintings and hands) and the Pearson distance (up to 98% for paintings and 99% for hands) from a weak training set (Digital ColorChecker SG) case when small representative training data were used in the estimation.
HICO and RAIDS Experiment Payload - Hyperspectral Imager for the Coastal Ocean
NASA Technical Reports Server (NTRS)
Corson, Mike
2009-01-01
HICO and RAIDS Experiment Payload - Hyperspectral Imager For The Coastal Ocean (HREP-HICO) will operate a visible and near-infrared (VNIR) Maritime Hyperspectral Imaging (MHSI) system, to detect, identify and quantify coastal geophysical features from the International Space Station.
Coastal Zone Mapping and Imaging Lidar (CZMIL): first flights and system validation
NASA Astrophysics Data System (ADS)
Feygels, Viktor I.; Park, Joong Yong; Aitken, Jennifer; Kim, Minsu; Payment, Andy; Ramnath, Vinod
2012-09-01
CZMIL is an integrated lidar-imagery sensor system and software suite designed for the highly automated generation of physical and environmental information products for mapping the coastal zone. This paper presents the results of CZMIL system validation in turbid water conditions on the Gulf Coast of Mississippi and in relatively clear water conditions in Florida in late spring 2012. The system performance test shows that CZMIL successfully achieved 7-8m depth in Kd =0.46m-1 (Kd is the diffuse attenuation coefficient) in Mississippi and up to 41m when Kd=0.11m-1 in Florida. With a seven segment array for topographic mode and the shallow water zone, CZMIL generated high resolution products with a maximum pulse rate of 70 kHz, and with 10 kHz in the deep water zone. Diffuse attenuation coefficient, bottom reflectance and other environmental parameters for the whole multi km2 area were estimated based on fusion of lidar and CASI-1500 hyperspectral camera data.
New spectral imaging techniques for blood oximetry in the retina
NASA Astrophysics Data System (ADS)
Alabboud, Ied; Muyo, Gonzalo; Gorman, Alistair; Mordant, David; McNaught, Andrew; Petres, Clement; Petillot, Yvan R.; Harvey, Andrew R.
2007-07-01
Hyperspectral imaging of the retina presents a unique opportunity for direct and quantitative mapping of retinal biochemistry - particularly of the vasculature where blood oximetry is enabled by the strong variation of absorption spectra with oxygenation. This is particularly pertinent both to research and to clinical investigation and diagnosis of retinal diseases such as diabetes, glaucoma and age-related macular degeneration. The optimal exploitation of hyperspectral imaging however, presents a set of challenging problems, including; the poorly characterised and controlled optical environment of structures within the retina to be imaged; the erratic motion of the eye ball; and the compounding effects of the optical sensitivity of the retina and the low numerical aperture of the eye. We have developed two spectral imaging techniques to address these issues. We describe first a system in which a liquid crystal tuneable filter is integrated into the illumination system of a conventional fundus camera to enable time-sequential, random access recording of narrow-band spectral images. Image processing techniques are described to eradicate the artefacts that may be introduced by time-sequential imaging. In addition we describe a unique snapshot spectral imaging technique dubbed IRIS that employs polarising interferometry and Wollaston prism beam splitters to simultaneously replicate and spectrally filter images of the retina into multiple spectral bands onto a single detector array. Results of early clinical trials acquired with these two techniques together with a physical model which enables oximetry map are reported.
NASA Astrophysics Data System (ADS)
Katrašnik, Jaka; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan
2009-02-01
Visualization of subcutaneous veins is very difficult with the naked eye, but important for diagnosis of medical conditions and different medical procedures such as catheter insertion and blood withdrawal. Moreover, recent studies showed that the images of subcutaneous veins could be used for biometric identification. The majority of methods used for enhancing the contrast between the subcutaneous veins and surrounding tissue are based on simple imaging systems utilizing CMOS or CCD cameras with LED illumination capable of acquiring images from the near infrared spectral region, usually near 900 nm. However, such simplified imaging methods cannot exploit the full potential of the spectral information. In this paper, a new highly versatile method for enhancing the contrast of subcutaneous veins based on state-of-the-art high-resolution hyper-spectral imaging system utilizing the spectral region from 550 to 1700 nm is presented. First, a detailed analysis of the contrast between the subcutaneous veins and the surrounding tissue as a function of wavelength, for several different positions on the human arm, was performed in order to extract the spectral regions with the highest contrast. The highest contrast images were acquired at 1100 nm, however, combining the individual images from the extracted spectral regions by the proposed contrast enhancement method resulted in a single image with up to ten-fold better contrast. Therefore, the proposed method has proved to be a useful tool for visualization of subcutaneous veins.
International Space Station Data Collection for Disaster Response
NASA Technical Reports Server (NTRS)
Stefanov, William L.; Evans, Cynthia A.
2015-01-01
Remotely sensed data acquired by orbital sensor systems has emerged as a vital tool to identify the extent of damage resulting from a natural disaster, as well as providing near-real time mapping support to response efforts on the ground and humanitarian aid efforts. The International Space Station (ISS) is a unique terrestrial remote sensing platform for acquiring disaster response imagery. Unlike automated remote-sensing platforms it has a human crew; is equipped with both internal and externally-mounted remote sensing instruments; and has an inclined, low-Earth orbit that provides variable views and lighting (day and night) over 95 percent of the inhabited surface of the Earth. As such, it provides a useful complement to autonomous sensor systems in higher altitude polar orbits. NASA remote sensing assets on the station began collecting International Disaster Charter (IDC) response data in May 2012. The initial NASA ISS sensor systems responding to IDC activations included the ISS Agricultural Camera (ISSAC), mounted in the Window Observational Research Facility (WORF); the Crew Earth Observations (CEO) Facility, where the crew collects imagery using off-the-shelf handheld digital cameras; and the Hyperspectral Imager for the Coastal Ocean (HICO), a visible to near-infrared system mounted externally on the Japan Experiment Module Exposed Facility. The ISSAC completed its primary mission in January 2013. It was replaced by the very high resolution ISS SERVIR Environmental Research and Visualization System (ISERV) Pathfinder, a visible-wavelength digital camera, telescope, and pointing system. Since the start of IDC response in 2012 there have been 108 IDC activations; NASA sensor systems have collected data for thirty-two of these events. Of the successful data collections, eight involved two or more ISS sensor systems responding to the same event. Data has also been collected by International Partners in response to natural disasters, most notably JAXA and Roscosmos/Energia through the Urugan program.
An advanced scanning method for space-borne hyper-spectral imaging system
NASA Astrophysics Data System (ADS)
Wang, Yue-ming; Lang, Jun-Wei; Wang, Jian-Yu; Jiang, Zi-Qing
2011-08-01
Space-borne hyper-spectral imagery is an important means for the studies and applications of earth science. High cost efficiency could be acquired by optimized system design. In this paper, an advanced scanning method is proposed, which contributes to implement both high temporal and spatial resolution imaging system. Revisit frequency and effective working time of space-borne hyper-spectral imagers could be greatly improved by adopting two-axis scanning system if spatial resolution and radiometric accuracy are not harshly demanded. In order to avoid the quality degradation caused by image rotation, an idea of two-axis rotation has been presented based on the analysis and simulation of two-dimensional scanning motion path and features. Further improvement of the imagers' detection ability under the conditions of small solar altitude angle and low surface reflectance can be realized by the Ground Motion Compensation on pitch axis. The structure and control performance are also described. An intelligent integration technology of two-dimensional scanning and image motion compensation is elaborated in this paper. With this technology, sun-synchronous hyper-spectral imagers are able to pay quick visit to hot spots, acquiring both high spatial and temporal resolution hyper-spectral images, which enables rapid response of emergencies. The result has reference value for developing operational space-borne hyper-spectral imagers.
Development, characterization, and modeling of a tunable filter camera
NASA Astrophysics Data System (ADS)
Sartor, Mark Alan
1999-10-01
This paper describes the development, characterization, and modeling of a Tunable Filter Camera (TFC). The TFC is a new multispectral instrument with electronically tuned spectral filtering and low-light-level sensitivity. It represents a hybrid between hyperspectral and multispectral imaging spectrometers that incorporates advantages from each, addressing issues such as complexity, cost, lack of sensitivity, and adaptability. These capabilities allow the TFC to be applied to low- altitude video surveillance for real-time spectral and spatial target detection and image exploitation. Described herein are the theory and principles of operation for the TFC, which includes a liquid crystal tunable filter, an intensified CCD, and a custom apochromatic lens. The results of proof-of-concept testing, and characterization of two prototype cameras are included, along with a summary of the design analyses for the development of a multiple-channel system. A significant result of this effort was the creation of a system-level model, which was used to facilitate development and predict performance. It includes models for the liquid crystal tunable filter and intensified CCD. Such modeling was necessary in the design of the system and is useful for evaluation of the system in remote-sensing applications. Also presented are characterization data from component testing, which included quantitative results for linearity, signal to noise ratio (SNR), linearity, and radiometric response. These data were used to help refine and validate the model. For a pre-defined source, the spatial and spectral response, and the noise of the camera, system can now be predicted. The innovation that sets this development apart is the fact that this instrument has been designed for integrated, multi-channel operation for the express purpose of real-time detection/identification in low- light-level conditions. Many of the requirements for the TFC were derived from this mission. In order to provide background for the design requirements for the TFC development, the mission and principles of operation behind the multi-channel system will be reviewed. Given the combination of the flexibility, simplicity, and sensitivity, the TFC and its multiple-channel extension can play a significant role in the next generation of remote-sensing instruments.
What’s Wrong with the Murals at the Mogao Grottoes: A Near-Infrared Hyperspectral Imaging Method
Sun, Meijun; Zhang, Dong; Wang, Zheng; Ren, Jinchang; Chai, Bolong; Sun, Jizhou
2015-01-01
Although a significant amount of work has been performed to preserve the ancient murals in the Mogao Grottoes by Dunhuang Cultural Research, non-contact methods need to be developed to effectively evaluate the degree of flaking of the murals. In this study, we propose to evaluate the flaking by automatically analyzing hyperspectral images that were scanned at the site. Murals with various degrees of flaking were scanned in the 126th cave using a near-infrared (NIR) hyperspectral camera with a spectral range of approximately 900 to 1700 nm. The regions of interest (ROIs) of the murals were manually labeled and grouped into four levels: normal, slight, moderate, and severe. The average spectral data from each ROI and its group label were used to train our classification model. To predict the degree of flaking, we adopted four algorithms: deep belief networks (DBNs), partial least squares regression (PLSR), principal component analysis with a support vector machine (PCA + SVM) and principal component analysis with an artificial neural network (PCA + ANN). The experimental results show the effectiveness of our method. In particular, better results are obtained using DBNs when the training data contain a significant amount of striping noise. PMID:26394926
Terrestrial hyperspectral image shadow restoration through fusion with terrestrial lidar
NASA Astrophysics Data System (ADS)
Hartzell, Preston J.; Glennie, Craig L.; Finnegan, David C.; Hauser, Darren L.
2017-05-01
Recent advances in remote sensing technology have expanded the acquisition and fusion of active lidar and passive hyperspectral imagery (HSI) from exclusively airborne observations to include terrestrial modalities. In contrast to airborne collection geometry, hyperspectral imagery captured from terrestrial cameras is prone to extensive solar shadowing on vertical surfaces leading to reductions in pixel classification accuracies or outright removal of shadowed areas from subsequent analysis tasks. We demonstrate the use of lidar spatial information for sub-pixel HSI shadow detection and the restoration of shadowed pixel spectra via empirical methods that utilize sunlit and shadowed pixels of similar material composition. We examine the effectiveness of radiometrically calibrated lidar intensity in identifying these similar materials in sun and shade conditions and further evaluate a restoration technique that leverages ratios derived from the overlapping lidar laser and HSI wavelengths. Simulations of multiple lidar wavelengths, i.e., multispectral lidar, indicate the potential for HSI spectral restoration that is independent of the complexity and costs associated with rigorous radiometric transfer models, which have yet to be developed for horizontal-viewing terrestrial HSI sensors. The spectral restoration performance of shadowed HSI pixels is quantified for imagery of a geologic outcrop through improvements in spectral shape, spectral scale, and HSI band correlation.
New method for detection of gastric cancer by hyperspectral imaging: a pilot study
NASA Astrophysics Data System (ADS)
Kiyotoki, Shu; Nishikawa, Jun; Okamoto, Takeshi; Hamabe, Kouichi; Saito, Mari; Goto, Atsushi; Fujita, Yusuke; Hamamoto, Yoshihiko; Takeuchi, Yusuke; Satori, Shin; Sakaida, Isao
2013-02-01
We developed a new, easy, and objective method to detect gastric cancer using hyperspectral imaging (HSI) technology combining spectroscopy and imaging A total of 16 gastroduodenal tumors removed by endoscopic resection or surgery from 14 patients at Yamaguchi University Hospital, Japan, were recorded using a hyperspectral camera (HSC) equipped with HSI technology Corrected spectral reflectance was obtained from 10 samples of normal mucosa and 10 samples of tumors for each case The 16 cases were divided into eight training cases (160 training samples) and eight test cases (160 test samples) We established a diagnostic algorithm with training samples and evaluated it with test samples Diagnostic capability of the algorithm for each tumor was validated, and enhancement of tumors by image processing using the HSC was evaluated The diagnostic algorithm used the 726-nm wavelength, with a cutoff point established from training samples The sensitivity, specificity, and accuracy rates of the algorithm's diagnostic capability in the test samples were 78.8% (63/80), 92.5% (74/80), and 85.6% (137/160), respectively Tumors in HSC images of 13 (81.3%) cases were well enhanced by image processing Differences in spectral reflectance between tumors and normal mucosa suggested that tumors can be clearly distinguished from background mucosa with HSI technology.
Juliano da Silva, Carlos; Pasquini, Celio
2015-01-21
Conventional reflectance spectroscopy (NIRS) and hyperspectral imaging (HI) in the near-infrared region (1000-2500 nm) are evaluated and compared, using, as the case study, the determination of relevant properties related to the quality of natural rubber. Mooney viscosity (MV) and plasticity indices (PI) (PI0 - original plasticity, PI30 - plasticity after accelerated aging, and PRI - the plasticity retention index after accelerated aging) of rubber were determined using multivariate regression models. Two hundred and eighty six samples of rubber were measured using conventional and hyperspectral near-infrared imaging reflectance instruments in the range of 1000-2500 nm. The sample set was split into regression (n = 191) and external validation (n = 95) sub-sets. Three instruments were employed for data acquisition: a line scanning hyperspectral camera and two conventional FT-NIR spectrometers. Sample heterogeneity was evaluated using hyperspectral images obtained with a resolution of 150 × 150 μm and principal component analysis. The probed sample area (5 cm(2); 24,000 pixels) to achieve representativeness was found to be equivalent to the average of 6 spectra for a 1 cm diameter probing circular window of one FT-NIR instrument. The other spectrophotometer can probe the whole sample in only one measurement. The results show that the rubber properties can be determined with very similar accuracy and precision by Partial Least Square (PLS) regression models regardless of whether HI-NIR or conventional FT-NIR produce the spectral datasets. The best Root Mean Square Errors of Prediction (RMSEPs) of external validation for MV, PI0, PI30, and PRI were 4.3, 1.8, 3.4, and 5.3%, respectively. Though the quantitative results provided by the three instruments can be considered equivalent, the hyperspectral imaging instrument presents a number of advantages, being about 6 times faster than conventional bulk spectrometers, producing robust spectral data by ensuring sample representativeness, and minimizing the effect of the presence of contaminants.
USDA-ARS?s Scientific Manuscript database
Hyperspectral microscope imaging is presented as a rapid and efficient tool to classify foodborne bacteria species. The spectral data were obtained from five different species of Staphylococcus spp. with a hyperspectral microscope imaging system that provided a maximum of 89 contiguous spectral imag...
Onboard Classification of Hyperspectral Data on the Earth Observing One Mission
NASA Technical Reports Server (NTRS)
Chien, Steve; Tran, Daniel; Schaffer, Steve; Rabideau, Gregg; Davies, Ashley Gerard; Doggett, Thomas; Greeley, Ronald; Ip, Felipe; Baker, Victor; Doubleday, Joshua;
2009-01-01
Remote-sensed hyperspectral data represents significant challenges in downlink due to its large data volumes. This paper describes a research program designed to process hyperspectral data products onboard spacecraft to (a) reduce data downlink volumes and (b) decrease latency to provide key data products (often by enabling use of lower data rate communications systems). We describe efforts to develop onboard processing to study volcanoes, floods, and cryosphere, using the Hyperion hyperspectral imager and onboard processing for the Earth Observing One (EO-1) mission as well as preliminary work targeting the Hyperspectral Infrared Imager (HyspIRI) mission.
Development of a Hyperspectral Imaging System for Online Quality Inspection of Pickling Cucumbers
USDA-ARS?s Scientific Manuscript database
This paper reports on the development of a hyperspectral imaging prototype for evaluation of external and internal quality of pickling cucumbers. The prototype consisted of a two-lane round belt conveyor, two illumination sources (one for reflectance and one for transmittance), and a hyperspectral i...
Application of hyperspectral imaging for characterization of intramuscular fat distribution in beef
USDA-ARS?s Scientific Manuscript database
In this study, a hyperspectral imaging system in the spectral region of 400–1000 nm was used for visualization and determination of intramuscular fat concentration in beef samples. Hyperspectral images were acquired for beef samples, and spectral information was then extracted from each single sampl...
2010-04-01
NRL Stennis Space Center (NRL-SSC) for further processing using the NRL SSC Automated Processing System (APS). APS was developed for processing...have not previously developed automated processing for 73 hyperspectral ocean color data. The hyperspectral processing branch includes several
NASA Astrophysics Data System (ADS)
Lawrence, Kurt C.; Park, Bosoon; Windham, William R.; Mao, Chengye; Poole, Gavin H.
2003-03-01
A method to calibrate a pushbroom hyperspectral imaging system for "near-field" applications in agricultural and food safety has been demonstrated. The method consists of a modified geometric control point correction applied to a focal plane array to remove smile and keystone distortion from the system. Once a FPA correction was applied, single wavelength and distance calibrations were used to describe all points on the FPA. Finally, a percent reflectance calibration, applied on a pixel-by-pixel basis, was used for accurate measurements for the hyperspectral imaging system. The method was demonstrated with a stationary prism-grating-prism, pushbroom hyperspectral imaging system. For the system described, wavelength and distance calibrations were used to reduce the wavelength errors to <0.5 nm and distance errors to <0.01mm (across the entrance slit width). The pixel-by-pixel percent reflectance calibration, which was performed at all wavelengths with dark current and 99% reflectance calibration-panel measurements, was verified with measurements on a certified gradient Spectralon panel with values ranging from about 14% reflectance to 99% reflectance with errors generally less than 5% at the mid-wavelength measurements. Results from the calibration method, indicate the hyperspectral imaging system has a usable range between 420 nm and 840 nm. Outside this range, errors increase significantly.
Combining hyperspectral imaging and Raman spectroscopy for remote chemical sensing
NASA Astrophysics Data System (ADS)
Ingram, John M.; Lo, Edsanter
2008-04-01
The Photonics Research Center at the United States Military Academy is conducting research to demonstrate the feasibility of combining hyperspectral imaging and Raman spectroscopy for remote chemical detection over a broad area of interest. One limitation of future trace detection systems is their ability to analyze large areas of view. Hyperspectral imaging provides a balance between fast spectral analysis and scanning area. Integration of a hyperspectral system capable of remote chemical detection will greatly enhance our soldiers' ability to see the battlefield to make threat related decisions. It can also queue the trace detection systems onto the correct interrogation area saving time and reconnaissance/surveillance resources. This research develops both the sensor design and the detection/discrimination algorithms. The one meter remote detection without background radiation is a simple proof of concept.
Pre-Juno Optical Analysis of Jupiter's Atmosphere with the NMSU Acousto-optic Imaging Camera
NASA Astrophysics Data System (ADS)
Dahl, Emma; Chanover, Nancy J.; Voelz, David; Kuehn, David M.; Strycker, Paul D.
2016-10-01
Jupiter's upper atmosphere is a highly dynamic system in which clouds and storms change color, shape, and size on variable timescales. The exact mechanism by which the deep atmosphere affects these changes in the uppermost cloud deck is still unknown. With Juno's arrival at Jupiter in July 2016, the thermal radiation from the deep atmosphere will be measurable with the spacecraft's Microwave Radiometer. By taking detailed optical measurements of Jupiter's uppermost cloud deck in conjunction with Juno's microwave observations, we can provide a context in which to better understand these observations. This data will also provide a complement to the near-IR sensitivity of the Jovian InfraRed Auroral Mapper and will expand on the limited spectral coverage of JunoCam. Ultimately, we can utilize the two complementary datasets in order to thoroughly characterize Jupiter's atmosphere in terms of its vertical cloud structure, color distribution, and dynamical state throughout the Juno era. In order to obtain high spectral resolution images of Jupiter's atmosphere in the optical regime, we use the New Mexico State University Acousto-optic Imaging Camera (NAIC). NAIC contains an acousto-optic tunable filter, which allows us to take hyperspectral image cubes of Jupiter from 450-950 nm at an average spectral resolution (λ/dλ) of 242. We present an analysis of our pre-Juno dataset obtained with NAIC at the Apache Point Observatory 3.5-m telescope during the night of March 28, 2016. Under primarily photometric conditions, we obtained 6 hyperspectral image cubes of Jupiter over the course of the night, totaling approximately 2,960 images. From these data we derive low-resolution optical spectra of the Great Red Spot and a representative belt and zone to compare with previous work and laboratory measurements of candidate chromophore materials. Future work will focus on radiative transfer modeling to elucidate the Jovian cloud structure during the Juno era. This work was supported by NASA through award number NNX15AP34A.
NASA Astrophysics Data System (ADS)
Kawashima, Natsumi; Hosono, Satsuki; Ishimaru, Ichiro
2016-05-01
We proposed the snapshot-type Fourier spectroscopic imaging for smartphone that was mentioned in 1st. report in this conference. For spectroscopic components analysis, such as non-invasive blood glucose sensors, the diffuse reflection lights from internal human skins are very weak for conventional hyperspectral cameras, such as AOTF (Acousto-Optic Tunable Filter) type. Furthermore, it is well known that the spectral absorption of mid-infrared lights or Raman spectroscopy especially in long wavelength region is effective to distinguish specific biomedical components quantitatively, such as glucose concentration. But the main issue was that photon energies of middle infrared lights and light intensities of Raman scattering are extremely weak. For improving sensitivity of our spectroscopic imager, the wide-field-stop & beam-expansion method was proposed. Our line spectroscopic imager introduced a single slit for field stop on the conjugate objective plane. Obviously to increase detected light intensities, the wider slit width of the field stop makes light intensities higher, regardless of deterioration of spatial resolutions. Because our method is based on wavefront-division interferometry, it becomes problems that the wider width of single slit makes the diffraction angle narrower. This means that the narrower diameter of collimated objective beams deteriorates visibilities of interferograms. By installing the relative inclined phaseshifter onto optical Fourier transform plane of infinity corrected optical systems, the collimated half flux of objective beams derived from single-bright points on objective surface penetrate through the wedge prism and the cuboid glass respectively. These two beams interfere each other and form the infererogram as spatial fringe patterns. Thus, we installed concave-cylindrical lens between the wider slit and objective lens as a beam expander. We successfully obtained the spectroscopic characters of hemoglobin from reflected lights from human fingers.
NASA Astrophysics Data System (ADS)
Park, Joong Yong; Tuell, Grady
2010-04-01
The Data Processing System (DPS) of the Coastal Zone Mapping and Imaging Lidar (CZMIL) has been designed to automatically produce a number of novel environmental products through the fusion of Lidar, spectrometer, and camera data in a single software package. These new products significantly transcend use of the system as a bathymeter, and support use of CZMIL as a complete coastal and benthic mapping tool. The DPS provides a spinning globe capability for accessing data files; automated generation of combined topographic and bathymetric point clouds; a fully-integrated manual editor and data analysis tool; automated generation of orthophoto mosaics; automated generation of reflectance data cubes from the imaging spectrometer; a coupled air-ocean spectral optimization model producing images of chlorophyll and CDOM concentrations; and a fusion based capability to produce images and classifications of the shallow water seafloor. Adopting a multitasking approach, we expect to achieve computation of the point clouds, DEMs, and reflectance images at a 1:1 processing to acquisition ratio.
Dental caries imaging using hyperspectral stimulated Raman scattering microscopy
NASA Astrophysics Data System (ADS)
Wang, Zi; Zheng, Wei; Jian, Lin; Huang, Zhiwei
2016-03-01
We report the development of a polarization-resolved hyperspectral stimulated Raman scattering (SRS) imaging technique based on a picosecond (ps) laser-pumped optical parametric oscillator system for label-free imaging of dental caries. In our imaging system, hyperspectral SRS images (512×512 pixels) in both fingerprint region (800-1800 cm-1) and high-wavenumber region (2800-3600 cm-1) are acquired in minutes by scanning the wavelength of OPO output, which is a thousand times faster than conventional confocal micro Raman imaging. SRS spectra variations from normal enamel to caries obtained from the hyperspectral SRS images show the loss of phosphate and carbonate in the carious region. While polarization-resolved SRS images at 959 cm-1 demonstrate that the caries has higher depolarization ratio. Our results demonstrate that the polarization resolved-hyperspectral SRS imaging technique developed allows for rapid identification of the biochemical and structural changes of dental caries.
Portable, stand-off spectral imaging camera for detection of effluents and residues
NASA Astrophysics Data System (ADS)
Goldstein, Neil; St. Peter, Benjamin; Grot, Jonathan; Kogan, Michael; Fox, Marsha; Vujkovic-Cvijin, Pajo; Penny, Ryan; Cline, Jason
2015-06-01
A new, compact and portable spectral imaging camera, employing a MEMs-based encoded imaging approach, has been built and demonstrated for detection of hazardous contaminants including gaseous effluents and solid-liquid residues on surfaces. The camera is called the Thermal infrared Reconfigurable Analysis Camera for Effluents and Residues (TRACER). TRACER operates in the long wave infrared and has the potential to detect a wide variety of materials with characteristic spectral signatures in that region. The 30 lb. camera is tripod mounted and battery powered. A touch screen control panel provides a simple user interface for most operations. The MEMS spatial light modulator is a Texas Instruments Digital Microarray Array with custom electronics and firmware control. Simultaneous 1D-spatial and 1Dspectral dimensions are collected, with the second spatial dimension obtained by scanning the internal spectrometer slit. The sensor can be configured to collect data in several modes including full hyperspectral imagery using Hadamard multiplexing, panchromatic thermal imagery, and chemical-specific contrast imagery, switched with simple user commands. Matched filters and other analog filters can be generated internally on-the-fly and applied in hardware, substantially reducing detection time and improving SNR over HSI software processing, while reducing storage requirements. Results of preliminary instrument evaluation and measurements of flame exhaust are presented.
Along-track calibration of SWIR push-broom hyperspectral imaging system
NASA Astrophysics Data System (ADS)
Jemec, Jurij; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran
2016-05-01
Push-broom hyperspectral imaging systems are increasingly used for various medical, agricultural and military purposes. The acquired images contain spectral information in every pixel of the imaged scene collecting additional information about the imaged scene compared to the classical RGB color imaging. Due to the misalignment and imperfections in the optical components comprising the push-broom hyperspectral imaging system, variable spectral and spatial misalignments and blur are present in the acquired images. To capture these distortions, a spatially and spectrally variant response function must be identified at each spatial and spectral position. In this study, we propose a procedure to characterize the variant response function of Short-Wavelength Infrared (SWIR) push-broom hyperspectral imaging systems in the across-track and along-track direction and remove its effect from the acquired images. A custom laser-machined spatial calibration targets are used for the characterization. The spatial and spectral variability of the response function in the across-track and along-track direction is modeled by a parametrized basis function. Finally, the characterization results are used to restore the distorted hyperspectral images in the across-track and along-track direction by a Richardson-Lucy deconvolution-based algorithm. The proposed calibration method in the across-track and along-track direction is thoroughly evaluated on images of targets with well-defined geometric properties. The results suggest that the proposed procedure is well suited for fast and accurate spatial calibration of push-broom hyperspectral imaging systems.
Design of light guide sleeve on hyperspectral imaging system for skin diagnosis
NASA Astrophysics Data System (ADS)
Yan, Yung-Jhe; Chang, Chao-Hsin; Huang, Ting-Wei; Chiang, Hou-Chi; Wu, Jeng-Fu; Ou-Yang, Mang
2017-08-01
A hyperspectral imaging system is proposed for early study of skin diagnosis. A stable and high hyperspectral image quality is important for analysis. Therefore, a light guide sleeve (LGS) was designed for the embedded on a hyperspectral imaging system. It provides a uniform light source on the object plane with the determined distance. Furthermore, it can shield the ambient light from entering the system and increasing noise. For the purpose of producing a uniform light source, the LGS device was designed in the symmetrical double-layered structure. It has light cut structures to adjust distribution of rays between two layers and has the Lambertian surface in the front-end to promote output uniformity. In the simulation of the design, the uniformity of illuminance was about 91.7%. In the measurement of the actual light guide sleeve, the uniformity of illuminance was about 92.5%.
A mobile laboratory for surface and subsurface imaging in geo-hazard monitoring activity
NASA Astrophysics Data System (ADS)
Cornacchia, Carmela; Bavusi, Massimo; Loperte, Antonio; Pergola, Nicola; Pignatti, Stefano; Ponzo, Felice; Lapenna, Vincenzo
2010-05-01
A new research infrastructure for supporting ground-based remote sensing observations in the different phases of georisk management cycle is presented. This instrumental facility has been designed and realised by TeRN, a public-private consortium on Earth Observations and Natural Risks, in the frame of the project "ImpresAmbiente" funded by Italian Ministry of Research and University. The new infrastructure is equipped with ground-based sensors (hyperspectral cameras, thermal cameras, laser scanning and electromagnetic antennae) able to remotely map physical parameters and/or earth-surface properties (temperature, soil moisture, land cover, etc…) and to illuminate near-surface geological structures (fault, groundwater tables, landslide bodies etc...). Furthermore, the system can be used for non-invasive investigations of architectonic buildings and civil infrastructures (bridges, tunnel, road pavements, etc...) interested by natural and man-made hazards. The hyperspectral cameras can acquire high resolution images of earth-surface and cultural objects. They are operating in the Visible Near InfraRed (0.4÷1.0μm) with 1600 spatial pixel and 3.7nm of spectral sampling and in the Short Wave InfraRed (1.3÷2.5µm) spectral region with 320 spatial pixel and 5nm of spectral sampling. The IR cameras are operating in the Medium Wavelength InfraRed (3÷5µm; 640x512; NETD< 20 mK) and in the Very Long Wavelength InfraRed region (7.7÷11.5 µm; 320x256; NETD<25 mK) with a frame rate higher than 100Hz and are both equipped with a set of optical filters in order to operate in multi-spectral configuration. The technological innovation of ground-based laser scanning equipment has led to an increased resolution performances of surveys with applications in several field, as geology, architecture, environmental monitoring and cultural heritage. As a consequence, laser data can be useful integrated with traditional monitoring techniques. The Laser Scanner is characterized by very high data acquisition repetition rate up to 500.000 pxl/sec with a range resolution of 0.1 mm, vertical and horizontal FoV of 310° and 360° respectively with a resolution of 0.0018°. The system is also equipped with a metric camera allows to georeference the high resolution images acquired. The electromagnetic sensors allow to obtain in near real time high-resolution 2D and 3D subsurface tomographic images. The main components are a fully automatic resistivity meter for DC electrical surveys (resistivity) and Induced Polarization, a Ground Penetrating Radar with antennas covering range for 400 MHz to 1.5 GHz and a gradiometric magnetometric system. All the sensors can be installed on a mobile van and remotely controlled using wi-fi technologies. An all-time network connection capability is guaranteed by a self-configurable satellite link for data communication, which allows to transmit in near-real time experimental data coming from the field surveys and to share other geospatial information. This ICT facility is well suited for emergency response activities during and after catastrophic events. Sensor synergy, multi-temporal and multi-scale resolutions of surface and sub-surface imaging are the key technical features of this instrumental facility. Finally, in this work we shortly present some first preliminary results obtained during the emergence phase of Abruzzo earthquake (Central Italy).
Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination.
Spigulis, Janis; Oshina, Ilze; Berzina, Anna; Bykov, Alexander
2017-09-01
Chromophore distribution maps are useful tools for skin malformation severity assessment and for monitoring of skin recovery after burns, surgeries, and other interactions. The chromophore maps can be obtained by processing several spectral images of skin, e.g., captured by hyperspectral or multispectral cameras during seconds or even minutes. To avoid motion artifacts and simplify the procedure, a single-snapshot technique for mapping melanin, oxyhemoglobin, and deoxyhemoglobin of in-vivo skin by a smartphone under simultaneous three-wavelength (448–532–659 nm) laser illumination is proposed and examined. Three monochromatic spectral images related to the illumination wavelengths were extracted from the smartphone camera RGB image data set with respect to crosstalk between the RGB detection bands. Spectral images were further processed accordingly to Beer’s law in a three chromophore approximation. Photon absorption path lengths in skin at the exploited wavelengths were estimated by means of Monte Carlo simulations. The technique was validated clinically on three kinds of skin lesions: nevi, hemangiomas, and seborrheic keratosis. Design of the developed add-on laser illumination system, image-processing details, and the results of clinical measurements are presented and discussed.
Development of a translation stage for in situ noninvasive analysis and high-resolution imaging
NASA Astrophysics Data System (ADS)
Strivay, David; Clar, Mathieu; Rakkaa, Said; Hocquet, Francois-Philippe; Defeyt, Catherine
2016-11-01
Noninvasive imaging techniques and analytical instrumentation for cultural heritage object studies have undergone a tremendous development over the last years. Many new miniature and/or handheld systems have been developed and optimized. Nonetheless, these instruments are usually used with a tripod or a manual position system. This is very time consuming when performing point analysis or 2D scanning of a surface. The Centre Européen d'Archéométrie has built a translation system made of pluggable rails of 1 m long with a maximum length and height of 3 m. Three motors embedded in the system allow the platform to be moved along these axis, toward and backward from the sample. The rails hold a displacement system, providing a continuous movement. Any position can be reached with a reproducibility of 0.1 mm. The displacements are controlled by an Ethernet connection through a laptop computer running a multiplatform custom-made software written in JAVA. This software allows a complete control over the positioning using a simple, unique, and concise interface. Automatic scanning can be performed over a large surface of 3 m on 3 m. The Ethernet wires provide also the power for the different motors and, if necessary, the detection head. The platform has been originally designed for a XRF detection head (with its full power alimentation) but now can accommodate many different systems like IR reflectography, digital camera, hyperspectral camera, and Raman probes. The positioning system can be modified to combine the acquisition software of the imaging or analytical techniques and the positioning software.
Design of a concise Féry-prism hyperspectral imaging system based on multi-configuration
NASA Astrophysics Data System (ADS)
Dong, Wei; Nie, Yun-feng; Zhou, Jin-song
2013-08-01
In order to meet the needs of space borne and airborne hyperspectral imaging system for light weight, simplification and high spatial resolution, a novel design of Féry-prism hyperspectral imaging system based on Zemax multi-configuration method is presented. The novel structure is well arranged by analyzing optical monochromatic aberrations theoretically, and the optical structure of this design is concise. The fundamental of this design is Offner relay configuration, whereas the secondary mirror is replaced by Féry-prism with curved surfaces and a reflective front face. By reflection, the light beam passes through the Féry-prism twice, which promotes spectral resolution and enhances image quality at the same time. The result shows that the system can achieve light weight and simplification, compared to other hyperspectral imaging systems. Composed of merely two spherical mirrors and one achromatized Féry-prism to perform both dispersion and imaging functions, this structure is concise and compact. The average spectral resolution is 6.2nm; The MTFs for 0.45~1.00um spectral range are greater than 0.75, RMSs are less than 2.4um; The maximal smile is less than 10% pixel, while the keystones is less than 2.8% pixel; image quality approximates the diffraction limit. The design result shows that hyperspectral imaging system with one modified Féry-prism substituting the secondary mirror of Offner relay configuration is feasible from the perspective of both theory and practice, and possesses the merits of simple structure, convenient optical alignment, and good image quality, high resolution in space and spectra, adjustable dispersive nonlinearity. The system satisfies the requirements of airborne or space borne hyperspectral imaging system.
Hyperspectral Infrared Imaging of Flames Using a Spectrally Scanning Fabry-Perot Filter
NASA Technical Reports Server (NTRS)
Rawlins, W. T.; Lawrence, W. G.; Marinelli, W. J.; Allen, M. G.; Piltch, N. (Technical Monitor)
2001-01-01
The temperatures and compositions of gases in and around flames can be diagnosed using infrared emission spectroscopy to observe molecular band shapes and intensities. We have combined this approach with a low-order scanning Fabry-Perot filter and an infrared camera to obtain spectrally scanned infrared emission images of a laboratory flame and exhaust plume from 3.7 to 5.0 micrometers, at a spectral resolution of 0.043 micrometers, and a spatial resolution of 1 mm. The scanning filter or AIRIS (Adaptive Infrared Imaging Spectroradiometer) is a Fabry-Perot etalon operating in low order (mirror spacing = wavelength) such that the central spot, containing a monochromatic image of the scene, is viewed by the detector array. The detection system is a 128 x 128 liquid-nitrogen-cooled InSb focal plane array. The field of view is controlled by a 50 mm focal length multielement lens and an V4.8 aperture, resulting in an image 6.4 x 6.4 cm in extent at the flame and a depth of field of approximately 4 cm. Hyperspectral images above a laboratory CH4/air flame show primarily the strong emission from CO2 at 4.3 micrometers, and weaker emissions from CO and H2O. We discuss techniques to analyze the spectra, and plans to use this instrument in microgravity flame spread experiments.
Spectroscopic imaging using acousto-optic tunable filters
NASA Astrophysics Data System (ADS)
Bouhifd, Mounir; Whelan, Maurice
2007-07-01
We report on novel hyper-spectral imaging filter-modules based on acousto-optic tuneable filters (AOTF). The AOTF functions as a full-field tuneable bandpass filter which offers fast continuous or random access tuning with high filtering efficiency. Due to the diffractive nature of the device, the unfiltered zero-order and the filtered first-order images are geometrically separated. The modules developed exploit this feature to simultaneously route both the transmitted white-light image and the filtered fluorescence image to two separate cameras. Incorporation of prisms in the optical paths and careful design of the relay optics in the filter module have overcome a number of aberrations inherent to imaging through AOTFs, leading to excellent spatial resolution. A number of practical uses of this technique, both for in vivo auto-fluorescence endoscopy and in vitro fluorescence microscopy were demonstrated. We describe the operational principle and design of recently improved prototype instruments for fluorescence-based diagnostics and demonstrate their performance by presenting challenging hyper-spectral fluorescence imaging applications.
NASA Astrophysics Data System (ADS)
Ishihara, Miya; Sato, Masato; Kutsuna, Toshiharu; Ishihara, Masayuki; Mochida, Joji; Kikuchi, Makoto
2008-02-01
There is a demand in the field of regenerative medicine for measurement technology that enables determination of functions and components of engineered tissue. To meet this demand, we developed a method for extracellular matrix characterization using time-resolved autofluorescence spectroscopy, which enabled simultaneous measurements with mechanical properties using relaxation of laser-induced stress wave. In this study, in addition to time-resolved fluorescent spectroscopy, hyperspectral sensor, which enables to capture both spectral and spatial information, was used for evaluation of biochemical characterization of tissue-engineered cartilage. Hyperspectral imaging system provides spectral resolution of 1.2 nm and image rate of 100 images/sec. The imaging system consisted of the hyperspectral sensor, a scanner for x-y plane imaging, magnifying optics and Xenon lamp for transmmissive lighting. Cellular imaging using the hyperspectral image system has been achieved by improvement in spatial resolution up to 9 micrometer. The spectroscopic cellular imaging could be observed using cultured chondrocytes as sample. At early stage of culture, the hyperspectral imaging offered information about cellular function associated with endogeneous fluorescent biomolecules.
NASA Astrophysics Data System (ADS)
Demro, James C.; Hartshorne, Richard; Woody, Loren M.; Levine, Peter A.; Tower, John R.
1995-06-01
The next generation Wedge Imaging Spectrometer (WIS) instruments currently in integration at Hughes SBRD incorporate advanced features to increase operation flexibility for remotely sensed hyperspectral imagery collection and use. These features include: a) multiple linear wedge filters to tailor the spectral bands to the scene phenomenology; b) simple, replaceable fore-optics to allow different spatial resolutions and coverages; c) data acquisition system (DAS) that collects the full data stream simultaneously from both WIS instruments (VNIR and SWIR/MWIR), stores the data in a RAID storage, and provides for down-loading of the data to MO disks; the WIS DAS also allows selection of the spectral band sets to be stored; d) high-performance VNIR camera subsystem based upon a 512 X 512 CCD area array and associated electronics.
NASA Astrophysics Data System (ADS)
Haakenaasen, Randi; Lovold, Stian
2003-01-01
Infrared technology in Norway started at the Norwegian Defense Research Establishment (FFI) in the 1960s, and has since then spread to universities, other research institutes and industry. FFI has a large, integrated IR activity that includes research and development in IR detectors, optics design, optical coatings, advanced dewar design, modelling/simulation of IR scenes, and image analysis. Part of the integrated activity is a laboratory for more basic research in materials science and semiconductor physics, in which thin films of CdHgTe are grown by molecular beam epitaxy and processed into IR detectors by various techniques. FFI also has a lot of experience in research and development of tunable infrared lasers for various applications. Norwegian industrial activities include production of infrared homing anti-ship missiles, laser rangefinders, various infrared gas sensors, hyperspectral cameras, and fiberoptic sensor systems for structural health monitoring and offshore oil well diagnostics.
Naval Research Laboratory Fact Book 2012
2012-11-01
Distributed network-based battle management High performance computing supporting uniform and nonuniform memory access with single and multithreaded...hyperspectral systems VNIR, MWIR, and LWIR high-resolution systems Wideband SAR systems RF and laser data links High-speed, high-power...hyperspectral imaging system Long-wave infrared ( LWIR ) quantum well IR photodetector (QWIP) imaging system Research and Development Services Divi- sion
Flight model performances of HISUI hyperspectral sensor onboard ISS (International Space Station)
NASA Astrophysics Data System (ADS)
Tanii, Jun; Kashimura, Osamu; Ito, Yoshiyuki; Iwasaki, Akira
2016-10-01
Hyperspectral Imager Suite (HISUI) is a next-generation Japanese sensor that will be mounted on Japanese Experiment Module (JEM) of ISS (International Space Station) in 2019 as timeframe. HISUI hyperspectral sensor obtains spectral images of 185 bands with the ground sampling distance of 20x31 meter from the visible to shortwave-infrared region. The sensor system is the follow-on mission of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) in the visible to shortwave infrared region. The critical design review of the instrument was accomplished in 2014. Integration and tests of an flight model of HISUI hyperspectral sensor is being carried out. Simultaneously, the development of JEM-External Facility (EF) Payload system for the instrument started. The system includes the structure, the thermal control system, the electrical system and the pointing mechanism. The development status and the performances including some of the tests results of Instrument flight model, such as optical performance, optical distortion and radiometric performance are reported.
On-line fresh-cut lettuce quality measurement system using hyperspectral imaging
USDA-ARS?s Scientific Manuscript database
Lettuce, which is a main type of fresh-cut vegetable, has been used in various fresh-cut products. In this study, an online quality measurement system for detecting foreign substances on the fresh-cut lettuce was developed using hyperspectral reflectance imaging. The online detection system with a s...
2002-09-30
integrated observation system that is being coupled to a data assimilative hydrodynamic bio-optical ecosystem model. The system was used adaptively to develop hyperspectral remote sensing techniques in optically complex nearshore coastal waters.
Characterizing pigments with hyperspectral imaging variable false-color composites
NASA Astrophysics Data System (ADS)
Hayem-Ghez, Anita; Ravaud, Elisabeth; Boust, Clotilde; Bastian, Gilles; Menu, Michel; Brodie-Linder, Nancy
2015-11-01
Hyperspectral imaging has been used for pigment characterization on paintings for the last 10 years. It is a noninvasive technique, which mixes the power of spectrophotometry and that of imaging technologies. We have access to a visible and near-infrared hyperspectral camera, ranging from 400 to 1000 nm in 80-160 spectral bands. In order to treat the large amount of data that this imaging technique generates, one can use statistical tools such as principal component analysis (PCA). To conduct the characterization of pigments, researchers mostly use PCA, convex geometry algorithms and the comparison of resulting clusters to database spectra with a specific tolerance (like the Spectral Angle Mapper tool on the dedicated software ENVI). Our approach originates from false-color photography and aims at providing a simple tool to identify pigments thanks to imaging spectroscopy. It can be considered as a quick first analysis to see the principal pigments of a painting, before using a more complete multivariate statistical tool. We study pigment spectra, for each kind of hue (blue, green, red and yellow) to identify the wavelength maximizing spectral differences. The case of red pigments is most interesting because our methodology can discriminate the red pigments very well—even red lakes, which are always difficult to identify. As for the yellow and blue categories, it represents a good progress of IRFC photography for pigment discrimination. We apply our methodology to study the pigments on a painting by Eustache Le Sueur, a French painter of the seventeenth century. We compare the results to other noninvasive analysis like X-ray fluorescence and optical microscopy. Finally, we draw conclusions about the advantages and limits of the variable false-color image method using hyperspectral imaging.
Single aflatoxin contaminated corn kernel analysis with fluorescence hyperspectral image
NASA Astrophysics Data System (ADS)
Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Ononye, Ambrose; Brown, Robert L.; Cleveland, Thomas E.
2010-04-01
Aflatoxins are toxic secondary metabolites of the fungi Aspergillus flavus and Aspergillus parasiticus, among others. Aflatoxin contaminated corn is toxic to domestic animals when ingested in feed and is a known carcinogen associated with liver and lung cancer in humans. Consequently, aflatoxin levels in food and feed are regulated by the Food and Drug Administration (FDA) in the US, allowing 20 ppb (parts per billion) limits in food and 100 ppb in feed for interstate commerce. Currently, aflatoxin detection and quantification methods are based on analytical tests including thin-layer chromatography (TCL) and high performance liquid chromatography (HPLC). These analytical tests require the destruction of samples, and are costly and time consuming. Thus, the ability to detect aflatoxin in a rapid, nondestructive way is crucial to the grain industry, particularly to corn industry. Hyperspectral imaging technology offers a non-invasive approach toward screening for food safety inspection and quality control based on its spectral signature. The focus of this paper is to classify aflatoxin contaminated single corn kernels using fluorescence hyperspectral imagery. Field inoculated corn kernels were used in the study. Contaminated and control kernels under long wavelength ultraviolet excitation were imaged using a visible near-infrared (VNIR) hyperspectral camera. The imaged kernels were chemically analyzed to provide reference information for image analysis. This paper describes a procedure to process corn kernels located in different images for statistical training and classification. Two classification algorithms, Maximum Likelihood and Binary Encoding, were used to classify each corn kernel into "control" or "contaminated" through pixel classification. The Binary Encoding approach had a slightly better performance with accuracy equals to 87% or 88% when 20 ppb or 100 ppb was used as classification threshold, respectively.
Tunable electro-optic filter stack
Fontecchio, Adam K.; Shriyan, Sameet K.; Bellingham, Alyssa
2017-09-05
A holographic polymer dispersed liquid crystal (HPDLC) tunable filter exhibits switching times of no more than 20 microseconds. The HPDLC tunable filter can be utilized in a variety of applications. An HPDLC tunable filter stack can be utilized in a hyperspectral imaging system capable of spectrally multiplexing hyperspectral imaging data acquired while the hyperspectral imaging system is airborne. HPDLC tunable filter stacks can be utilized in high speed switchable optical shielding systems, for example as a coating for a visor or an aircraft canopy. These HPDLC tunable filter stacks can be fabricated using a spin coating apparatus and associated fabrication methods.
[Application of hyper-spectral remote sensing technology in environmental protection].
Zhao, Shao-Hua; Zhang, Feng; Wang, Qiao; Yao, Yun-Jun; Wang, Zhong-Ting; You, Dai-An
2013-12-01
Hyper-spectral remote sensing (RS) technology has been widely used in environmental protection. The present work introduces its recent application in the RS monitoring of pollution gas, green-house gas, algal bloom, water quality of catch water environment, safety of drinking water sources, biodiversity, vegetation classification, soil pollution, and so on. Finally, issues such as scarce hyper-spectral satellites, the limits of data processing and information extract are related. Some proposals are also presented, including developing subsequent satellites of HJ-1 satellite with differential optical absorption spectroscopy, greenhouse gas spectroscopy and hyper-spectral imager, strengthening the study of hyper-spectral data processing and information extraction, and promoting the construction of environmental application system.
Development of an Infrared Remote Sensing System for Continuous Monitoring of Stromboli Volcano
NASA Astrophysics Data System (ADS)
Harig, R.; Burton, M.; Rausch, P.; Jordan, M.; Gorgas, J.; Gerhard, J.
2009-04-01
In order to monitor gases emitted by Stromboli volcano in the Eolian archipelago, Italy, a remote sensing system based on Fourier-transform infrared spectroscopy has been developed and installed on the summit of Stromboli volcano. Hot rocks and lava are used as sources of infrared radiation. The system is based on an interferometer with a single detector element in combination with an azimuth-elevation scanning mirror system. The mirror system is used to align the field of view of the instrument. In addition, the system is equipped with an infrared camera. Two basic modes of operation have been implemented: The user may use the infrared image to align the system to a vent that is to be examined. In addition, the scanning system may be used for (hyperspectral) imaging of the scene. In this mode, the scanning mirror is set sequentially move to all positions within a region of interest which is defined by the operator using the image generated from the infrared camera. The spectral range used for the measurements is 1600 - 4200 cm-1 allowing the quantification of many gases such as CO, CO2, SO2, and HCl. The spectral resolution is 0.5 cm-1. In order to protect the optical, mechanical and electrical parts of the system from the volcanic gases, all components are contained in a gas-tight aluminium housing. The system is controlled via TCP/IP (data transfer by WLAN), allowing the user to operate it from a remote PC. The infrared image of the scene and measured spectra are transferred to and displayed by a remote PC at INGV or TUHH in real-time. However, the system is capable of autonomous operation on the volcano, once a measurement has been started. Measurements are stored by an internal embedded PC.
Remote sensing of soil moisture using airborne hyperspectral data
USDA-ARS?s Scientific Manuscript database
The Institute for Technology Development (ITD) has developed an airborne hyperspectral sensor system that collects electromagnetic reflectance data of the terrain. The system consists of sensors for three different sections of the electromagnetic spectrum; the Ultra-Violet (UV), Visible/Near Infrare...
Technical Report: Unmanned Helicopter Solution for Survey-Grade Lidar and Hyperspectral Mapping
NASA Astrophysics Data System (ADS)
Kaňuk, Ján; Gallay, Michal; Eck, Christoph; Zgraggen, Carlo; Dvorný, Eduard
2018-05-01
Recent development of light-weight unmanned airborne vehicles (UAV) and miniaturization of sensors provide new possibilities for remote sensing and high-resolution mapping. Mini-UAV platforms are emerging, but powerful UAV platforms of higher payload capacity are required to carry the sensors for survey-grade mapping. In this paper, we demonstrate a technological solution and application of two different payloads for highly accurate and detailed mapping. The unmanned airborne system (UAS) comprises a Scout B1-100 autonomously operating UAV helicopter powered by a gasoline two-stroke engine with maximum take-off weight of 75 kg. The UAV allows for integrating of up to 18 kg of a customized payload. Our technological solution comprises two types of payload completely independent of the platform. The first payload contains a VUX-1 laser scanner (Riegl, Austria) and a Sony A6000 E-Mount photo camera. The second payload integrates a hyperspectral push-broom scanner AISA Kestrel 10 (Specim, Finland). The two payloads need to be alternated if mapping with both is required. Both payloads include an inertial navigation system xNAV550 (Oxford Technical Solutions Ltd., United Kingdom), a separate data link, and a power supply unit. Such a constellation allowed for achieving high accuracy of the flight line post-processing in two test missions. The standard deviation was 0.02 m (XY) and 0.025 m (Z), respectively. The intended application of the UAS was for high-resolution mapping and monitoring of landscape dynamics (landslides, erosion, flooding, or crops growth). The legal regulations for such UAV applications in Switzerland and Slovakia are also discussed.
Evaluating carotenoid changes in tomatoes during postharvest ripening using Raman chemical imaging
NASA Astrophysics Data System (ADS)
Qin, Jianwei; Chao, Kuanglin; Kim, Moon S.
2011-06-01
Lycopene is a major carotenoid in tomatoes and its content varies considerably during postharvest ripening. Hence evaluating lycopene changes can be used to monitor the ripening of tomatoes. Raman chemical imaging technique is promising for mapping constituents of interest in complex food matrices. In this study, a benchtop point-scanning Raman chemical imaging system was developed to evaluate lycopene content in tomatoes at different maturity stages. The system consists of a 785 nm laser, a fiber optic probe, a dispersive imaging spectrometer, a spectroscopic CCD camera, and a two-axis positioning table. Tomato samples at different ripeness stages (i.e., green, breaker, turning, pink, light red, and red) were selected and cut before imaging. Hyperspectral Raman images were acquired from cross sections of the fruits in the wavenumber range of 200 to 2500 cm-1 with a spatial resolution of 1 mm. The Raman spectrum of pure lycopene was measured as reference for spectral matching. A polynomial curve-fitting method was used to correct for the underlying fluorescence background in the Raman spectra of the tomatoes. A hyperspectral image classification method was developed based on spectral information divergence to identify lycopene in the tomatoes. Raman chemical images were created to visualize quantity and spatial distribution of the lycopene at different ripeness stages. The lycopene patterns revealed the mechanism of lycopene generation during the postharvest development of the tomatoes. The method and findings of this study form a basis for the future development of a Raman-based nondestructive approach for monitoring internal maturity of the tomatoes.
2008-01-01
Distributed network-based battle management High performance computing supporting uniform and nonuniform memory access with single and multithreaded...pallet Airborne EO/IR and radar sensors VNIR through SWIR hyperspectral systems VNIR, MWIR, and LWIR high-resolution sys- tems Wideband SAR systems...meteorological sensors Hyperspectral sensor systems (PHILLS) Mid-wave infrared (MWIR) Indium Antimonide (InSb) imaging system Long-wave infrared ( LWIR
NASA Astrophysics Data System (ADS)
Kim, Moon S.; Cho, Byoung-Kwan; Yang, Chun-Chieh; Chao, Kaunglin; Lefcourt, Alan M.; Chen, Yud-Ren
2006-10-01
We have developed nondestructive opto-electronic imaging techniques for rapid assessment of safety and wholesomeness of foods. A recently developed fast hyperspectral line-scan imaging system integrated with a commercial apple-sorting machine was evaluated for rapid detection of animal feces matter on apples. Apples obtained from a local orchard were artificially contaminated with cow feces. For the online trial, hyperspectral images with 60 spectral channels, reflectance in the visible to near infrared regions and fluorescence emissions with UV-A excitation, were acquired from apples moving at a processing sorting-line speed of three apples per second. Reflectance and fluorescence imaging required a passive light source, and each method used independent continuous wave (CW) light sources. In this paper, integration of the hyperspectral imaging system with the commercial applesorting machine and preliminary results for detection of fecal contamination on apples, mainly based on the fluorescence method, are presented.
NASA Astrophysics Data System (ADS)
Zhou, Xiaohu; Neubauer, Franz; Zhao, Dong; Xu, Shichao
2015-01-01
The high-precision geometric correction of airborne hyperspectral remote sensing image processing was a hard nut to crack, and conventional methods of remote sensing image processing by selecting ground control points to correct the images are not suitable in the correction process of airborne hyperspectral image. The optical scanning system of an inertial measurement unit combined with differential global positioning system (IMU/DGPS) is introduced to correct the synchronous scanned Operational Modular Imaging Spectrometer II (OMIS II) hyperspectral remote sensing images. Posture parameters, which were synchronized with the OMIS II, were first obtained from the IMU/DGPS. Second, coordinate conversion and flight attitude parameters' calculations were conducted. Third, according to the imaging principle of OMIS II, mathematical correction was applied and the corrected image pixels were resampled. Then, better image processing results were achieved.
Designing manufacturable filters for a 16-band plenoptic camera using differential evolution
NASA Astrophysics Data System (ADS)
Doster, Timothy; Olson, Colin C.; Fleet, Erin; Yetzbacher, Michael; Kanaev, Andrey; Lebow, Paul; Leathers, Robert
2017-05-01
A 16-band plenoptic camera allows for the rapid exchange of filter sets via a 4x4 filter array on the lens's front aperture. This ability to change out filters allows for an operator to quickly adapt to different locales or threat intelligence. Typically, such a system incorporates a default set of 16 equally spaced at-topped filters. Knowing the operating theater or the likely targets of interest it becomes advantageous to tune the filters. We propose using a modified beta distribution to parameterize the different possible filters and differential evolution (DE) to search over the space of possible filter designs. The modified beta distribution allows us to jointly optimize the width, taper and wavelength center of each single- or multi-pass filter in the set over a number of evolutionary steps. Further, by constraining the function parameters we can develop solutions which are not just theoretical but manufacturable. We examine two independent tasks: general spectral sensing and target detection. In the general spectral sensing task we utilize the theory of compressive sensing (CS) and find filters that generate codings which minimize the CS reconstruction error based on a fixed spectral dictionary of endmembers. For the target detection task and a set of known targets, we train the filters to optimize the separation of the background and target signature. We compare our results to the default 16 at-topped non-overlapping filter set which comes with the plenoptic camera and full hyperspectral resolution data which was previously acquired.
Compact opto-electronic engine for high-speed compressive sensing
NASA Astrophysics Data System (ADS)
Tidman, James; Weston, Tyler; Hewitt, Donna; Herman, Matthew A.; McMackin, Lenore
2013-09-01
The measurement efficiency of Compressive Sensing (CS) enables the computational construction of images from far fewer measurements than what is usually considered necessary by the Nyquist- Shannon sampling theorem. There is now a vast literature around CS mathematics and applications since the development of its theoretical principles about a decade ago. Applications include quantum information to optical microscopy to seismic and hyper-spectral imaging. In the application of shortwave infrared imaging, InView has developed cameras based on the CS single-pixel camera architecture. This architecture is comprised of an objective lens to image the scene onto a Texas Instruments DLP® Micromirror Device (DMD), which by using its individually controllable mirrors, modulates the image with a selected basis set. The intensity of the modulated image is then recorded by a single detector. While the design of a CS camera is straightforward conceptually, its commercial implementation requires significant development effort in optics, electronics, hardware and software, particularly if high efficiency and high-speed operation are required. In this paper, we describe the development of a high-speed CS engine as implemented in a lab-ready workstation. In this engine, configurable measurement patterns are loaded into the DMD at speeds up to 31.5 kHz. The engine supports custom reconstruction algorithms that can be quickly implemented. Our work includes optical path design, Field programmable Gate Arrays for DMD pattern generation, and circuit boards for front end data acquisition, ADC and system control, all packaged in a compact workstation.
NASA Astrophysics Data System (ADS)
Ewerlöf, Maria; Larsson, Marcus; Salerud, E. Göran
2017-02-01
Hyperspectral imaging (HSI) can estimate the spatial distribution of skin blood oxygenation, using visible to near-infrared light. HSI oximeters often use a liquid-crystal tunable filter, an acousto-optic tunable filter or mechanically adjustable filter wheels, which has too long response/switching times to monitor tissue hemodynamics. This work aims to evaluate a multispectral snapshot imaging system to estimate skin blood volume and oxygen saturation with high temporal and spatial resolution. We use a snapshot imager, the xiSpec camera (MQ022HG-IM-SM4X4-VIS, XIMEA), having 16 wavelength-specific Fabry-Perot filters overlaid on the custom CMOS-chip. The spectral distribution of the bands is however substantially overlapping, which needs to be taken into account for an accurate analysis. An inverse Monte Carlo analysis is performed using a two-layered skin tissue model, defined by epidermal thickness, haemoglobin concentration and oxygen saturation, melanin concentration and spectrally dependent reduced-scattering coefficient, all parameters relevant for human skin. The analysis takes into account the spectral detector response of the xiSpec camera. At each spatial location in the field-of-view, we compare the simulated output to the detected diffusively backscattered spectra to find the best fit. The imager is evaluated for spatial and temporal variations during arterial and venous occlusion protocols applied to the forearm. Estimated blood volume changes and oxygenation maps at 512x272 pixels show values that are comparable to reference measurements performed in contact with the skin tissue. We conclude that the snapshot xiSpec camera, paired with an inverse Monte Carlo algorithm, permits us to use this sensor for spatial and temporal measurement of varying physiological parameters, such as skin tissue blood volume and oxygenation.
Target Detection Using an AOTF Hyperspectral Imager
NASA Technical Reports Server (NTRS)
Cheng, L-J.; Mahoney, J.; Reyes, F.; Suiter, H.
1994-01-01
This paper reports results of a recent field experiment using a prototype system to evaluate the acousto-optic tunable filter polarimetric hyperspectral imaging technology for target detection applications.
Flight model of HISUI hyperspectral sensor onboard ISS (International Space Station)
NASA Astrophysics Data System (ADS)
Tanii, Jun; Kashimura, Osamu; Ito, Yoshiyuki; Iwasaki, Akira
2017-09-01
Hyperspectral Imager Suite (HISUI) is a next-generation Japanese sensor that will be mounted on Japanese Experiment Module (JEM) of ISS (International Space Station) in 2019 as timeframe. HISUI hyperspectral sensor obtains spectral images of 185 bands with the ground sampling distance of 20x31 meter from the visible to shortwave-infrared wavelength region. The sensor is the follow-on mission of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) in the visible to shortwave infrared region. The critical design review of the instrument was accomplished in 2014. Integration and tests of a Flight Model (FM) of HISUI hyperspectral sensor have been completed in the beginning of 2017. Simultaneously, the development of JEMExternal Facility (EF) Payload system for the instrument is being carried out. The system includes the structure, the thermal control sub-system and the electrical sub-system. The tests results of flight model, such as optical performance, optical distortion and radiometric performance are reported.
Optimisation and evaluation of hyperspectral imaging system using machine learning algorithm
NASA Astrophysics Data System (ADS)
Suthar, Gajendra; Huang, Jung Y.; Chidangil, Santhosh
2017-10-01
Hyperspectral imaging (HSI), also called imaging spectrometer, originated from remote sensing. Hyperspectral imaging is an emerging imaging modality for medical applications, especially in disease diagnosis and image-guided surgery. HSI acquires a three-dimensional dataset called hypercube, with two spatial dimensions and one spectral dimension. Spatially resolved spectral imaging obtained by HSI provides diagnostic information about the objects physiology, morphology, and composition. The present work involves testing and evaluating the performance of the hyperspectral imaging system. The methodology involved manually taking reflectance of the object in many images or scan of the object. The object used for the evaluation of the system was cabbage and tomato. The data is further converted to the required format and the analysis is done using machine learning algorithm. The machine learning algorithms applied were able to distinguish between the object present in the hypercube obtain by the scan. It was concluded from the results that system was working as expected. This was observed by the different spectra obtained by using the machine-learning algorithm.
A FPGA implementation for linearly unmixing a hyperspectral image using OpenCL
NASA Astrophysics Data System (ADS)
Guerra, Raúl; López, Sebastián.; Sarmiento, Roberto
2017-10-01
Hyperspectral imaging systems provide images in which single pixels have information from across the electromagnetic spectrum of the scene under analysis. These systems divide the spectrum into many contiguos channels, which may be even out of the visible part of the spectra. The main advantage of the hyperspectral imaging technology is that certain objects leave unique fingerprints in the electromagnetic spectrum, known as spectral signatures, which allow to distinguish between different materials that may look like the same in a traditional RGB image. Accordingly, the most important hyperspectral imaging applications are related with distinguishing or identifying materials in a particular scene. In hyperspectral imaging applications under real-time constraints, the huge amount of information provided by the hyperspectral sensors has to be rapidly processed and analysed. For such purpose, parallel hardware devices, such as Field Programmable Gate Arrays (FPGAs) are typically used. However, developing hardware applications typically requires expertise in the specific targeted device, as well as in the tools and methodologies which can be used to perform the implementation of the desired algorithms in the specific device. In this scenario, the Open Computing Language (OpenCL) emerges as a very interesting solution in which a single high-level synthesis design language can be used to efficiently develop applications in multiple and different hardware devices. In this work, the Fast Algorithm for Linearly Unmixing Hyperspectral Images (FUN) has been implemented into a Bitware Stratix V Altera FPGA using OpenCL. The obtained results demonstrate the suitability of OpenCL as a viable design methodology for quickly creating efficient FPGAs designs for real-time hyperspectral imaging applications.
Using hyperspectral imaging technology to identify diseased tomato leaves
NASA Astrophysics Data System (ADS)
Li, Cuiling; Wang, Xiu; Zhao, Xueguan; Meng, Zhijun; Zou, Wei
2016-11-01
In the process of tomato plants growth, due to the effect of plants genetic factors, poor environment factors, or disoperation of parasites, there will generate a series of unusual symptoms on tomato plants from physiology, organization structure and external form, as a result, they cannot grow normally, and further to influence the tomato yield and economic benefits. Hyperspectral image usually has high spectral resolution, not only contains spectral information, but also contains the image information, so this study adopted hyperspectral imaging technology to identify diseased tomato leaves, and developed a simple hyperspectral imaging system, including a halogen lamp light source unit, a hyperspectral image acquisition unit and a data processing unit. Spectrometer detection wavelength ranged from 400nm to 1000nm. After hyperspectral images of tomato leaves being captured, it was needed to calibrate hyperspectral images. This research used spectrum angle matching method and spectral red edge parameters discriminant method respectively to identify diseased tomato leaves. Using spectral red edge parameters discriminant method produced higher recognition accuracy, the accuracy was higher than 90%. Research results have shown that using hyperspectral imaging technology to identify diseased tomato leaves is feasible, and provides the discriminant basis for subsequent disease control of tomato plants.
High-throughput Raman chemical imaging for evaluating food safety and quality
NASA Astrophysics Data System (ADS)
Qin, Jianwei; Chao, Kuanglin; Kim, Moon S.
2014-05-01
A line-scan hyperspectral system was developed to enable Raman chemical imaging for large sample areas. A custom-designed 785 nm line-laser based on a scanning mirror serves as an excitation source. A 45° dichroic beamsplitter reflects the laser light to form a 24 cm x 1 mm excitation line normally incident on the sample surface. Raman signals along the laser line are collected by a detection module consisting of a dispersive imaging spectrograph and a CCD camera. A hypercube is accumulated line by line as a motorized table moves the samples transversely through the laser line. The system covers a Raman shift range of -648.7-2889.0 cm-1 and a 23 cm wide area. An example application, for authenticating milk powder, was presented to demonstrate the system performance. In four minutes, the system acquired a 512x110x1024 hypercube (56,320 spectra) from four 47-mm-diameter Petri dishes containing four powder samples. Chemical images were created for detecting two adulterants (melamine and dicyandiamide) that had been mixed into the milk powder.
NASA Astrophysics Data System (ADS)
Li, Jingwei; Cai, Fuhong; Dong, Yongjiang; Zhu, Zhenfeng; Sun, Xianhe; Zhang, Hequn; He, Sailing
2017-06-01
In this study, a portable confocal hyperspectral microscope is developed. In traditional confocal laser scanning microscopes, scan lens and tube lens are utilized to achieve a conjugate relationship between the galvanometer and the back focal plane of the objective, in order to achieve a better resolution. However, these lenses make it difficult to scale down the volume of the system. In our portable confocal hyperspectral microscope (PCHM), the objective is placed directly next to the galvomirror. Thus, scan lens and tube lens are not included in our system and the size of this system is greatly reduced. Furthermore, the resolution is also acceptable in many biomedical and food-safety applications. Through reducing the optical length of the system, the signal detection efficiency is enhanced. This is conducive to realizing both the fluorescence and Raman hyperspectral imaging. With a multimode fiber as a pinhole, an improved image contrast is also achieved. Fluorescent spectral images for HeLa cells/fingers and Raman spectral images of kumquat pericarp are present. The spectral resolution and spatial resolutions are about 0.4 nm and 2.19 μm, respectively. These results demonstrate that this portable hyperspectral microscope can be used in in-vivo fluorescence imaging and in situ Raman spectral imaging.
GPU Lossless Hyperspectral Data Compression System
NASA Technical Reports Server (NTRS)
Aranki, Nazeeh I.; Keymeulen, Didier; Kiely, Aaron B.; Klimesh, Matthew A.
2014-01-01
Hyperspectral imaging systems onboard aircraft or spacecraft can acquire large amounts of data, putting a strain on limited downlink and storage resources. Onboard data compression can mitigate this problem but may require a system capable of a high throughput. In order to achieve a high throughput with a software compressor, a graphics processing unit (GPU) implementation of a compressor was developed targeting the current state-of-the-art GPUs from NVIDIA(R). The implementation is based on the fast lossless (FL) compression algorithm reported in "Fast Lossless Compression of Multispectral-Image Data" (NPO- 42517), NASA Tech Briefs, Vol. 30, No. 8 (August 2006), page 26, which operates on hyperspectral data and achieves excellent compression performance while having low complexity. The FL compressor uses an adaptive filtering method and achieves state-of-the-art performance in both compression effectiveness and low complexity. The new Consultative Committee for Space Data Systems (CCSDS) Standard for Lossless Multispectral & Hyperspectral image compression (CCSDS 123) is based on the FL compressor. The software makes use of the highly-parallel processing capability of GPUs to achieve a throughput at least six times higher than that of a software implementation running on a single-core CPU. This implementation provides a practical real-time solution for compression of data from airborne hyperspectral instruments.
Design of a novel Hyper-spectral riflescope system
NASA Astrophysics Data System (ADS)
Huang, YunHan; Fu, YueGang
2016-10-01
Hyper-spectral imaging involves many research areas, such as optics, spectroscopy, mechanical, microelectronics, and computers, etc. Hyper-spectral imaging system has an irreplaceable role in the detection field. At present, due to the improvement of camouflage technology, characteristic of target in battlefield becomes more complex and the targets became more and more difficult to be detected, According to this phenomenon the author designed a novel hyper-spectral riflescope optical system. In general, the riflescope optical system is composed of two parts front object lens and zoom relay system. Firstly, dispersion characteristics of the typical optical glasses varies during band 400nm 1 000nm, the author derived apochromatic theory that suitable to the front system and relay system without using special glass, and make a example to testify its correctness. In general, the zoom mode of relay system lens is different from the objective lens system, so we should take consideration of them separately. Secondly, based on the above theory, the articles designed a hyper-spectral riflescope system, which has a continuous zoom curve, zoom ratio is 4 times and the F number of the system is 4.8;Full field of view varies during 1.8° 7.2°.Structure of the system is relatively compact, and has not used special glass, eventually the article give the schematic of system MTF and zoom curves of relay movable parts. the curve is smooth and can be applied to practical engineering. The author adopt ZEMAX design software to analyses the results .Design result shows that, in the visible and near-infrared wavelengths, the MTF of imaging system at 60lp / mm during all bands are greater than 0.3, which prove the correctness of the design theory and good performance of system.
Hyperspectral imaging using the single-pixel Fourier transform technique
NASA Astrophysics Data System (ADS)
Jin, Senlin; Hui, Wangwei; Wang, Yunlong; Huang, Kaicheng; Shi, Qiushuai; Ying, Cuifeng; Liu, Dongqi; Ye, Qing; Zhou, Wenyuan; Tian, Jianguo
2017-03-01
Hyperspectral imaging technology is playing an increasingly important role in the fields of food analysis, medicine and biotechnology. To improve the speed of operation and increase the light throughput in a compact equipment structure, a Fourier transform hyperspectral imaging system based on a single-pixel technique is proposed in this study. Compared with current imaging spectrometry approaches, the proposed system has a wider spectral range (400-1100 nm), a better spectral resolution (1 nm) and requires fewer measurement data (a sample rate of 6.25%). The performance of this system was verified by its application to the non-destructive testing of potatoes.
Analyzing RCD30 Oblique Performance in a Production Environment
NASA Astrophysics Data System (ADS)
Soler, M. E.; Kornus, W.; Magariños, A.; Pla, M.
2016-06-01
In 2014 the Institut Cartogràfic i Geològic de Catalunya (ICGC) decided to incorporate digital oblique imagery in its portfolio in response to the growing demand for this product. The reason can be attributed to its useful applications in a wide variety of fields and, most recently, to an increasing interest in 3d modeling. The selection phase for a digital oblique camera led to the purchase of the Leica RCD30 Oblique system, an 80MPixel multispectral medium-format camera which consists of one Nadir camera and four oblique viewing cameras acquiring images at an off-Nadir angle of 35º. The system also has a multi-directional motion compensation on-board system to deliver the highest image quality. The emergence of airborne oblique cameras has run in parallel to the inclusion of computer vision algorithms into the traditional photogrammetric workflows. Such algorithms rely on having multiple views of the same area of interest and take advantage of the image redundancy for automatic feature extraction. The multiview capability is highly fostered by the use of oblique systems which capture simultaneously different points of view for each camera shot. Different companies and NMAs have started pilot projects to assess the capabilities of the 3D mesh that can be obtained using correlation techniques. Beyond a software prototyping phase, and taking into account the currently immature state of several components of the oblique imagery workflow, the ICGC has focused on deploying a real production environment with special interest on matching the performance and quality of the existing production lines based on classical Nadir images. This paper introduces different test scenarios and layouts to analyze the impact of different variables on the geometric and radiometric performance. Different variables such as flight altitude, side and forward overlap and ground control point measurements and location have been considered for the evaluation of aerial triangulation and stereo plotting. Furthermore, two different flight configurations have been designed to measure the quality of the absolute radiometric calibration and the resolving power of the system. To quantify the effective resolution power of RCD30 Oblique images, a tool based on the computation of the Line Spread Function has been developed. The tool processes a region of interest that contains a single contour in order to extract a numerical measure of edge smoothness for a same flight session. The ICGC is highly devoted to derive information from satellite and airborne multispectral remote sensing imagery. A seamless Normalized Difference Vegetation Index (NDVI) retrieved from Digital Metric Camera (DMC) reflectance imagery is one of the products of ICGC's portfolio. As an evolution of this well-defined product, this paper presents an evaluation of the absolute radiometric calibration of the RCD30 Oblique sensor. To assess the quality of the measure, the ICGC has developed a procedure based on simultaneous acquisition of RCD30 Oblique imagery and radiometric calibrated AISA (Airborne Hyperspectral Imaging System) imagery.
Using VIS/NIR and IR spectral cameras for detecting and separating crime scene details
NASA Astrophysics Data System (ADS)
Kuula, Jaana; Pölönen, Ilkka; Puupponen, Hannu-Heikki; Selander, Tuomas; Reinikainen, Tapani; Kalenius, Tapani; Saari, Heikki
2012-06-01
Detecting invisible details and separating mixed evidence is critical for forensic inspection. If this can be done reliably and fast at the crime scene, irrelevant objects do not require further examination at the laboratory. This will speed up the inspection process and release resources for other critical tasks. This article reports on tests which have been carried out at the University of Jyväskylä in Finland together with the Central Finland Police Department and the National Bureau of Investigation for detecting and separating forensic details with hyperspectral technology. In the tests evidence was sought after at an assumed violent burglary scene with the use of VTT's 500-900 nm wavelength VNIR camera, Specim's 400- 1000 nm VNIR camera, and Specim's 1000-2500 nm SWIR camera. The tested details were dried blood on a ceramic plate, a stain of four types of mixed and absorbed blood, and blood which had been washed off a table. Other examined details included untreated latent fingerprints, gunshot residue, primer residue, and layered paint on small pieces of wood. All cameras could detect visible details and separate mixed paint. The SWIR camera could also separate four types of human and animal blood which were mixed in the same stain and absorbed into a fabric. None of the cameras could however detect primer residue, untreated latent fingerprints, or blood that had been washed off. The results are encouraging and indicate the need for further studies. The results also emphasize the importance of creating optimal imaging conditions into the crime scene for each kind of subjects and backgrounds.
A hyperspectral image projector for hyperspectral imagers
NASA Astrophysics Data System (ADS)
Rice, Joseph P.; Brown, Steven W.; Neira, Jorge E.; Bousquet, Robert R.
2007-04-01
We have developed and demonstrated a Hyperspectral Image Projector (HIP) intended for system-level validation testing of hyperspectral imagers, including the instrument and any associated spectral unmixing algorithms. HIP, based on the same digital micromirror arrays used in commercial digital light processing (DLP*) displays, is capable of projecting any combination of many different arbitrarily programmable basis spectra into each image pixel at up to video frame rates. We use a scheme whereby one micromirror array is used to produce light having the spectra of endmembers (i.e. vegetation, water, minerals, etc.), and a second micromirror array, optically in series with the first, projects any combination of these arbitrarily-programmable spectra into the pixels of a 1024 x 768 element spatial image, thereby producing temporally-integrated images having spectrally mixed pixels. HIP goes beyond conventional DLP projectors in that each spatial pixel can have an arbitrary spectrum, not just arbitrary color. As such, the resulting spectral and spatial content of the projected image can simulate realistic scenes that a hyperspectral imager will measure during its use. Also, the spectral radiance of the projected scenes can be measured with a calibrated spectroradiometer, such that the spectral radiance projected into each pixel of the hyperspectral imager can be accurately known. Use of such projected scenes in a controlled laboratory setting would alleviate expensive field testing of instruments, allow better separation of environmental effects from instrument effects, and enable system-level performance testing and validation of hyperspectral imagers as used with analysis algorithms. For example, known mixtures of relevant endmember spectra could be projected into arbitrary spatial pixels in a hyperspectral imager, enabling tests of how well a full system, consisting of the instrument + calibration + analysis algorithm, performs in unmixing (i.e. de-convolving) the spectra in all pixels. We discuss here the performance of a visible prototype HIP. The technology is readily extendable to the ultraviolet and infrared spectral ranges, and the scenes can be static or dynamic.
NASA Astrophysics Data System (ADS)
Gagnon, M. T.; Rock, B. N.; Jahnke, L. S.; Lee, T. D.
2008-12-01
Determination of leaf chlorophyll content is a common and important procedure for plant scientists. There are many multispectral techniques for non destructive in-vivo, estimation of chlorophyll in foliage. Although much has been done to explore the estimation of foliar pigments using remote sensing, very little work has been done exploring the potential that basic, affordable, digital cameras may have for such analysis. This study utilizes a combination of digital photography, hyperspectral laboratory remote sensing, and chlorophyll extractions to determine if digital photographs can be used to accurately predict foliar chlorophyll concentrations as well to compare this digital approach with several common spectral indices used for estimating foliar chlorophyll content. Foliar materials for this study come from three sources. A large collection of samples were collected (60) from 9 common temperate forest species in July and late September over a 1 kilometer area at the Bartlett Experimental Forest in northern New Hampshire. Secondly, 15 trees were selected in a forested setting near the University of New Hampshire for more intensive phenological analysis. These samples consist of 5 white pine (Pinus strobus), 5 black oak (Quercus velutina) and 5 sugar maple (Acer saccharum). Finally, dozens of samples of white pine utilized in Forest Watch, a successful K-12 science outreach which assesses the impact of tropospheric ozone on forest health in New England, were also analyzed for this study. For all samples in this study, chlorophyll extractions were conducted to determine chlorophyll a, chlorophyll b, and total chlorophyll concentrations. Laboratory spectral analysis was performed using a GER 2600 Spectroradiometer to determine hyperspectral estimates of chlorophyll content using a Red Edge Inflection Point (REIP) approach, as well as a Transformed Chlorophyll Absorption Reflectance Index/Optimized Soil Adjusted Vegetation Index (TCARI/OSAVI) approach. These measures of chlorophyll estimation were utilized to determine whether red, green and blue spectral data from digital images taken with a Kodak C713 model camera could be used to estimate foliar chlorophyll concentrations in forest foliage. Preliminary results of this study will be presented.
USDA-ARS?s Scientific Manuscript database
The goal of this project was to construct a cart and a mounting system that would allow a hyperspectral laser-induced fluorescence imaging system (HLIFIS) to be used to detect fecal material in produce fields. Fecal contaminated produce is a recognized food safety risk. Previous research demonstrate...
RVC-CAL library for endmember and abundance estimation in hyperspectral image analysis
NASA Astrophysics Data System (ADS)
Lazcano López, R.; Madroñal Quintín, D.; Juárez Martínez, E.; Sanz Álvaro, C.
2015-10-01
Hyperspectral imaging (HI) collects information from across the electromagnetic spectrum, covering a wide range of wavelengths. Although this technology was initially developed for remote sensing and earth observation, its multiple advantages - such as high spectral resolution - led to its application in other fields, as cancer detection. However, this new field has shown specific requirements; for instance, it needs to accomplish strong time specifications, since all the potential applications - like surgical guidance or in vivo tumor detection - imply real-time requisites. Achieving this time requirements is a great challenge, as hyperspectral images generate extremely high volumes of data to process. Thus, some new research lines are studying new processing techniques, and the most relevant ones are related to system parallelization. In that line, this paper describes the construction of a new hyperspectral processing library for RVC-CAL language, which is specifically designed for multimedia applications and allows multithreading compilation and system parallelization. This paper presents the development of the required library functions to implement two of the four stages of the hyperspectral imaging processing chain--endmember and abundances estimation. The results obtained show that the library achieves speedups of 30%, approximately, comparing to an existing software of hyperspectral images analysis; concretely, the endmember estimation step reaches an average speedup of 27.6%, which saves almost 8 seconds in the execution time. It also shows the existence of some bottlenecks, as the communication interfaces among the different actors due to the volume of data to transfer. Finally, it is shown that the library considerably simplifies the implementation process. Thus, experimental results show the potential of a RVC-CAL library for analyzing hyperspectral images in real-time, as it provides enough resources to study the system performance.
Automated cart with VIS/NIR hyperspectral reflectance and fluorescence imaging capabilities
USDA-ARS?s Scientific Manuscript database
A system to take high-resolution VIS/NIR hyperspectral reflectance and fluorescence images in outdoor fields using ambient lighting or a pulsed laser (355 nm), respectively, for illumination was designed, built, and tested. Components of the system include a semi-autonomous cart, a gated-intensified...
Biological sample evaluation using a line-scan based SWIR hyperspectral imaging system
USDA-ARS?s Scientific Manuscript database
A new line-scan hyperspectral imaging system was developed to enable short wavelength infrared (SWIR) imagery for biological sample evaluation. Critical sensing components include a SWIR imaging spectrograph and an HgCdTe (MCT) focal plane array detector. To date, agricultural applications of infra...
USDA-ARS?s Scientific Manuscript database
The U. S. Department of Agriculture, Agricultural Research Service has been developing a method and system to detect fecal contamination on processed poultry carcasses with hyperspectral and multispectral imaging systems. The patented method utilizes a three step approach to contaminant detection. S...
Egg embryo development detection with hyperspectral imaging
NASA Astrophysics Data System (ADS)
Lawrence, Kurt C.; Smith, Douglas P.; Windham, William R.; Heitschmidt, Gerald W.; Park, Bosoon
2006-10-01
In the U. S. egg industry, anywhere from 130 million to over one billion infertile eggs are incubated each year. Some of these infertile eggs explode in the hatching cabinet and can potentially spread molds or bacteria to all the eggs in the cabinet. A method to detect the embryo development of incubated eggs was developed. Twelve brown-shell hatching eggs from two replicates (n=24) were incubated and imaged to identify embryo development. A hyperspectral imaging system was used to collect transmission images from 420 to 840 nm of brown-shell eggs positioned with the air cell vertical and normal to the camera lens. Raw transmission images from about 400 to 900 nm were collected for every egg on days 0, 1, 2, and 3 of incubation. A total of 96 images were collected and eggs were broken out on day 6 to determine fertility. After breakout, all eggs were found to be fertile. Therefore, this paper presents results for egg embryo development, not fertility. The original hyperspectral data and spectral means for each egg were both used to create embryo development models. With the hyperspectral data range reduced to about 500 to 700 nm, a minimum noise fraction transformation was used, along with a Mahalanobis Distance classification model, to predict development. Days 2 and 3 were all correctly classified (100%), while day 0 and day 1 were classified at 95.8% and 91.7%, respectively. Alternatively, the mean spectra from each egg were used to develop a partial least squares regression (PLSR) model. First, a PLSR model was developed with all eggs and all days. The data were multiplicative scatter corrected, spectrally smoothed, and the wavelength range was reduced to 539 - 770 nm. With a one-out cross validation, all eggs for all days were correctly classified (100%). Second, a PLSR model was developed with data from day 0 and day 3, and the model was validated with data from day 1 and 2. For day 1, 22 of 24 eggs were correctly classified (91.7%) and for day 2, all eggs were correctly classified (100%). Although the results are based on relatively small sample sizes, they are encouraging. However, larger sample sizes, from multiple flocks, will be needed to fully validate and verify these models. Additionally, future experiments must also include non-fertile eggs so the fertile / non-fertile effect can be determined.
NASA Technical Reports Server (NTRS)
2010-01-01
Topics covered include: Burnishing Techniques Strengthen Hip Implants; Signal Processing Methods Monitor Cranial Pressure; Ultraviolet-Blocking Lenses Protect, Enhance Vision; Hyperspectral Systems Increase Imaging Capabilities; Programs Model the Future of Air Traffic Management; Tail Rotor Airfoils Stabilize Helicopters, Reduce Noise; Personal Aircraft Point to the Future of Transportation; Ducted Fan Designs Lead to Potential New Vehicles; Winglets Save Billions of Dollars in Fuel Costs; Sensor Systems Collect Critical Aerodynamics Data; Coatings Extend Life of Engines and Infrastructure; Radiometers Optimize Local Weather Prediction; Energy-Efficient Systems Eliminate Icing Danger for UAVs; Rocket-Powered Parachutes Rescue Entire Planes; Technologies Advance UAVs for Science, Military; Inflatable Antennas Support Emergency Communication; Smart Sensors Assess Structural Health; Hand-Held Devices Detect Explosives and Chemical Agents; Terahertz Tools Advance Imaging for Security, Industry; LED Systems Target Plant Growth; Aerogels Insulate Against Extreme Temperatures; Image Sensors Enhance Camera Technologies; Lightweight Material Patches Allow for Quick Repairs; Nanomaterials Transform Hairstyling Tools; Do-It-Yourself Additives Recharge Auto Air Conditioning; Systems Analyze Water Quality in Real Time; Compact Radiometers Expand Climate Knowledge; Energy Servers Deliver Clean, Affordable Power; Solutions Remediate Contaminated Groundwater; Bacteria Provide Cleanup of Oil Spills, Wastewater; Reflective Coatings Protect People and Animals; Innovative Techniques Simplify Vibration Analysis; Modeling Tools Predict Flow in Fluid Dynamics; Verification Tools Secure Online Shopping, Banking; Toolsets Maintain Health of Complex Systems; Framework Resources Multiply Computing Power; Tools Automate Spacecraft Testing, Operation; GPS Software Packages Deliver Positioning Solutions; Solid-State Recorders Enhance Scientific Data Collection; Computer Models Simulate Fine Particle Dispersion; Composite Sandwich Technologies Lighten Components; Cameras Reveal Elements in the Short Wave Infrared; Deformable Mirrors Correct Optical Distortions; Stitching Techniques Advance Optics Manufacturing; Compact, Robust Chips Integrate Optical Functions; Fuel Cell Stations Automate Processes, Catalyst Testing; Onboard Systems Record Unique Videos of Space Missions; Space Research Results Purify Semiconductor Materials; and Toolkits Control Motion of Complex Robotics.
Approach to the problem of the parameters optimization of the shooting system
NASA Astrophysics Data System (ADS)
Demidova, L. A.; Sablina, V. A.; Sokolova, Y. S.
2018-02-01
The problem of the objects identification on the base of their hyperspectral features has been considered. It is offered to use the SVM classifiers’ ensembles, adapted to specifics of the problem of the objects identification on the base of their hyperspectral features. The results of the objects identification on the base of their hyperspectral features with using of the SVM classifiers have been presented.
Design and Analysis of a Hyperspectral Microwave Receiver Subsystem
NASA Technical Reports Server (NTRS)
Blackwell, W.; Galbraith, C.; Hancock, T.; Leslie, R.; Osaretin, I.; Shields, M.; Racette, P.; Hillard, L.
2012-01-01
Hyperspectral microwave (HM) sounding has been proposed to achieve unprecedented performance. HM operation is achieved using multiple banks of RF spectrometers with large aggregate bandwidth. A principal challenge is Size/Weight/Power scaling. Objectives of this work: 1) Demonstrate ultra-compact (100 cm3) 52-channel IF processor (enabler); 2) Demonstrate a hyperspectral microwave receiver subsystem; and 3) Deliver a flight-ready system to validate HM sounding.
Mineral Mapping with AVIRIS and EO-1 Hyperion
NASA Technical Reports Server (NTRS)
Kruse, Fred A.
2004-01-01
Imaging Spectrometry data or Hyperspectral Imagery (HSI) acquired using airborne systems have been used in the geologic community since the early 1980 s and represent a mature technology (Goetz et al., 1985; Kruse et al., 1999). The solar spectral range, 0.4 to 2.5 m, provides abundant information about many important Earth-surface minerals (Clark et al., 1990). In particular, the 2.0 to 2.5 m (SWIR) spectral range covers spectral features of hydroxyl-bearing minerals, sulfates, and carbonates common to many geologic units and hydrothermal alteration assemblages. Previous research has proven the ability of airborne and spaceborne hyperspectral systems to uniquely identify and map these and other minerals, even in sub-pixel abundances (Kruse and Lefkoff, 1993; Boardman and Kruse, 1994; Boardman et al., 1995; Kruse, et al., 1999). This paper describes a case history for a site in northern Death Valley, California and Nevada along with selected SNR calculations/results for other sites around the world. Various hyperspectral mineral mapping results for this site have previously been presented and published (Kruse, 1988; Kruse et al., 1993, 1999, 2001, 2002, 2003), however, this paper presents a condensed summary of key details for hyperspectral data from 2000 and 2001 and the results of accuracy assessment for satellite hyperspectral data compared to airborne hyperspectral data used as ground truth.
Quantification of Water Quality Parameters for the Wabash River Using Hyperspectral Remote Sensing
NASA Astrophysics Data System (ADS)
Tan, J.; Cherkauer, K. A.; Chaubey, I.
2011-12-01
Increasingly impaired water bodies in the agriculturally dominated Midwestern United States pose a risk to water supplies, aquatic ecology and contribute to the eutrophication of the Gulf of Mexico. Improving regional water quality calls for new techniques for monitoring and managing water quality over large river systems. Optical indicators of water quality enable a timely and cost-effective method for observing and quantifying water quality conditions by remote sensing. Compared to broad spectral sensors such as Landsat, which observe reflectance over limited spectral bands, hyperspectral sensors should have significant advantages in their ability to estimate water quality parameters because they are designed to split the spectral signature into hundreds of very narrow spectral bands increasing their ability to resolve optically sensitive water quality indicators. Two airborne hyperspectral images were acquired over the Wabash River using a ProSpecTIR-VS2 sensor system on May 15th, 2010. These images were analyzed together with concurrent in-stream water quality data collected to assess our ability to extract optically sensitive constituents. Utilizing the correlation between in-stream data and reflectance from the hyperspectral images, models were developed to estimate the concentrations of chlorophyll a, dissolved organic carbon and total suspended solids. Models were developed using the full array of hyperspectral bands, as well as Landsat bands synthesized by averaging hyperspectral bands within the Landsat spectral range. Higher R2 and lower RMSE values were found for the models taking full advantage of the hyperspectral sensor, supporting the conclusion that the hyperspectral sensor was better at predicting the in-stream concentrations of chlorophyll a, dissolved organic carbon and total suspended solids in the Wabash River. Results also suggest that predictive models may not be the same for the Wabash River as for its tributaries.
High Angular Resolution Measurements of the Anisotropy of Reflectance of Sea Ice and Snow
NASA Astrophysics Data System (ADS)
Goyens, C.; Marty, S.; Leymarie, E.; Antoine, D.; Babin, M.; Bélanger, S.
2018-01-01
We introduce a new method to determine the anisotropy of reflectance of sea ice and snow at spatial scales from 1 m2 to 80 m2 using a multispectral circular fish-eye radiance camera (CE600). The CE600 allows measuring radiance simultaneously in all directions of a hemisphere at a 1° angular resolution. The spectral characteristics of the reflectance and its dependency on illumination conditions obtained from the camera are compared to those obtained with a hyperspectral field spectroradiometer manufactured by Analytical Spectral Device, Inc. (ASD). Results confirm the potential of the CE600, with the suggested measurement setup and data processing, to measure commensurable sea ice and snow hemispherical-directional reflectance factor, HDRF, values. Compared to the ASD, the reflectance anisotropy measured with the CE600 provides much higher resolution in terms of directional reflectance (N = 16,020). The hyperangular resolution allows detecting features that were overlooked using the ASD due to its limited number of measurement angles (N = 25). This data set of HDRF further documents variations in the anisotropy of the reflectance of snow and ice with the geometry of observation and illumination conditions and its spectral and spatial scale dependency. Finally, in order to reproduce the hyperangular CE600 reflectance measurements over the entire 400-900 nm spectral range, a regression-based method is proposed to combine the ASD and CE600 measurements. Results confirm that both instruments may be used in synergy to construct a hyperangular and hyperspectral snow and ice reflectance anisotropy data set.
NASA Astrophysics Data System (ADS)
Kho, Esther; de Boer, Lisanne L.; Van de Vijver, Koen K.; Sterenborg, Henricus J. C. M.; Ruers, Theo J. M.
2017-02-01
Worldwide, up to 40% of the breast conserving surgeries require additional operations due to positive resection margins. We propose to reduce this percentage by using hyperspectral imaging for resection margin assessment during surgery. Spectral hypercubes were collected from 26 freshly excised breast specimens with a pushbroom camera (900-1700nm). Computer simulations of the penetration depth in breast tissue suggest a strong variation in sampling depth ( 0.5-10 mm) over this wavelength range. This was confirmed with a breast tissue mimicking phantom study. Smaller penetration depths are observed in wavelength regions with high water and/or fat absorption. Consequently, tissue classification based on spectral analysis over the whole wavelength range becomes complicated. This is especially a problem in highly inhomogeneous human tissue. We developed a method, called derivative imaging, which allows accurate tissue analysis, without the impediment of dissimilar sampling volumes. A few assumptions were made based on previous research. First, the spectra acquired with our camera from breast tissue are mainly shaped by fat and water absorption. Second, tumor tissue contains less fat and more water than healthy tissue. Third, scattering slopes of different tissue types are assumed to be alike. In derivative imaging, the derivatives are calculated of wavelengths a few nanometers apart; ensuring similar penetration depths. The wavelength choice determines the accuracy of the method and the resolution. Preliminary results on 3 breast specimens indicate a classification accuracy of 93% when using wavelength regions characterized by water and fat absorption. The sampling depths at these regions are 1mm and 5mm.
Bathymetry from fusion of airborne hyperspectral and laser data
NASA Astrophysics Data System (ADS)
Kappus, Mary E.; Davis, Curtiss O.; Rhea, W. Joseph
1998-10-01
Airborne hyperspectral and nadir-viewing laser data can be combined to ascertain shallow water bathymetry. The combination emphasizes the advances and overcomes the disadvantages of each method used alone. For laser systems, both the hardware and software for obtaining off-nadir measurement are complicated and expensive, while for the nadir view the conversion of laser pulse travel time to depth is straightforward. The hyperspectral systems can easily collect data in a full swath, but interpretation for water depth requires careful calibration and correction for transmittance through the atmosphere and water. Relative depths are apparent in displays of several subsets of hyperspectral data, for example, single blue-green wavelengths, endmembers that represent the pure water component of the data, or ratios of deep to shallow water endmembers. A relationship between one of these values and the depth measured by the aligned nadir laser can be determined, and then applied to the rest of the swath to obtain depth in physical units for the entire area covered. We demonstrate this technique using bathymetric charts as a proxy for laser data, and hyperspectral data taken by AVIRIS over Lake Tahoe and Key West.
NASA Astrophysics Data System (ADS)
de Moura, Yhasmin Mendes; Galvão, Lênio Soares; Hilker, Thomas; Wu, Jin; Saleska, Scott; do Amaral, Cibele Hummel; Nelson, Bruce Walker; Lopes, Aline Pontes; Wiedeman, Kenia K.; Prohaska, Neill; de Oliveira, Raimundo Cosme; Machado, Carolyne Bueno; Aragão, Luiz E. O. C.
2017-09-01
The association between spectral reflectance and canopy processes remains challenging for quantifying large-scale canopy phenological cycles in tropical forests. In this study, we used a tower-mounted hyperspectral camera in an eastern Amazon forest to assess how canopy spectral signals of three species are linked with phenological processes in the 2012 dry season. We explored different approaches to disentangle the spectral components of canopy phenology processes and analyze their variations over time using 17 images acquired by the camera. The methods included linear spectral mixture analysis (SMA); principal component analysis (PCA); continuum removal (CR); and first-order derivative analysis. In addition, three vegetation indices potentially sensitive to leaf flushing, leaf loss and leaf area index (LAI) were calculated: the Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI) and the entitled Green-Red Normalized Difference (GRND) index. We inspected also the consistency of the camera observations using Moderate Resolution Imaging Spectroradiometer (MODIS) and available phenological data on new leaf production and LAI of young, mature and old leaves simulated by a leaf demography-ontogeny model. The results showed a diversity of phenological responses during the 2012 dry season with related changes in canopy structure and greenness values. Because of the differences in timing and intensity of leaf flushing and leaf shedding, Erisma uncinatum, Manilkara huberi and Chamaecrista xinguensis presented different green vegetation (GV) and non-photosynthetic vegetation (NPV) SMA fractions; distinct PCA scores; changes in depth, width and area of the 681-nm chlorophyll absorption band; and variations over time in the EVI, GRND and NDVI. At the end of dry season, GV increased for Erisma uncinatum, while NPV increased for Chamaecrista xinguensis. For Manilkara huberi, the NPV first increased in the beginning of August and then decreased toward September with new foliage. Variations in red-edge position were not statistically significant between the species and across dates at the 95% confidence level. The camera data were affected by view-illumination effects, which reduced the SMA shade fraction over time. When MODIS data were corrected for these effects using the Multi-Angle Implementation of Atmospheric Correction Algorithm (MAIAC), we observed an EVI increase toward September that closely tracked the modeled LAI of mature leaves (3-5 months). Compared to the EVI, the GRND was a better indicator of leaf flushing because the modeled production of new leaves peaked in August and then declined in September following the GRND closely. While the EVI was more related to changes in mature leaf area, the GRND was more associated with new leaf flushing.
William, David J; Rybicki, Nancy B; Lombana, Alfonso V; O'Brien, Tim M; Gomez, Richard B
2003-01-01
The use of airborne hyperspectral remote sensing imagery for automated mapping of submerged aquatic vegetation (SAV) in the tidal Potomac River was investigated for near to real-time resource assessment and monitoring. Airborne hyperspectral imagery and field spectrometer measurements were obtained in October of 2000. A spectral library database containing selected ground-based and airborne sensor spectra was developed for use in image processing. The spectral library is used to automate the processing of hyperspectral imagery for potential real-time material identification and mapping. Field based spectra were compared to the airborne imagery using the database to identify and map two species of SAV (Myriophyllum spicatum and Vallisneria americana). Overall accuracy of the vegetation maps derived from hyperspectral imagery was determined by comparison to a product that combined aerial photography and field based sampling at the end of the SAV growing season. The algorithms and databases developed in this study will be useful with the current and forthcoming space-based hyperspectral remote sensing systems.
Airborne hyperspectral remote sensing in Italy
NASA Astrophysics Data System (ADS)
Bianchi, Remo; Marino, Carlo M.; Pignatti, Stefano
1994-12-01
The Italian National Research Council (CNR) in the framework of its `Strategic Project for Climate and Environment in Southern Italy' established a new laboratory for airborne hyperspectral imaging devoted to environmental problems. Since the end of June 1994, the LARA (Laboratorio Aereo per Ricerche Ambientali -- Airborne Laboratory for Environmental Studies) Project is fully operative to provide hyperspectral data to the national and international scientific community by means of deployments of its CASA-212 aircraft carrying the Daedalus AA5000 MIVIS (multispectral infrared and visible imaging spectrometer) system. MIVIS is a modular instrument consisting of 102 spectral channels that use independent optical sensors simultaneously sampled and recorded onto a compact computer compatible magnetic tape medium with a data capacity of 10.2 Gbytes. To support the preprocessing and production pipeline of the large hyperspectral data sets CNR housed in Pomezia, a town close to Rome, a ground based computer system with a software designed to handle MIVIS data. The software (MIDAS-Multispectral Interactive Data Analysis System), besides the data production management, gives to users a powerful and highly extensible hyperspectral analysis system. The Pomezia's ground station is designed to maintain and check the MIVIS instrument performance through the evaluation of data quality (like spectral accuracy, signal to noise performance, signal variations, etc.), and to produce, archive, and diffuse MIVIS data in the form of geometrically and radiometrically corrected data sets on low cost and easy access CC media.
NASA Astrophysics Data System (ADS)
Liu, Lei; Feng, Jilu; Rivard, Benoit; Xu, Xinliang; Zhou, Jun; Han, Ling; Yang, Junlu; Ren, Guangli
2018-02-01
The Tiangong-1 Hyperspectral Imager (HSI) is a relatively new spaceborne hyperspectral remote sensing system that was launched by the Chinese government on September 29th 2011. The system has 64 shortwave infrared (SWIR) spectral bands (1000-2500 nm) and imagery is at a spatial resolution of 20 m. This study represents an evaluation of Tiangong-1 data for the production of alteration mineral maps. Alteration mineral maps resulting from the analysis of Tiangong-1 HSI data and airborne SASI (Shortwave infrared Airborne Spectrographic Imager) data are compared for the Jintanzi area, Beishan, Gansu province, northwest China where gold bearing veins are documented. The results illustrate the detection of muscovite, kaolinite, chlorite, epidote, calcite and dolomite from Tiangong-1 HSI data and most anomalies seen in the airborne SASI data are captured. The Tiangong-1 data appears to be well suited for the detection of surface mineralogy in support of regional mapping and exploration. The data complements that which will be offered by the Chinese GF-5 Hyperspectral Imager and the German EnMAP system, both scheduled for launch in 2018.
2003-09-30
Physical Modeling for Processing Geosynchronous Imaging Fourier Transform Spectrometer ( GIFTS ) Hyperspectral Data Dr. Allen H.-L. Huang...ssec.wisc.edu Award Number: N000140110850 Grant Number: 144KE70 http://www.ssec.wisc.edu/ gifts /navy/ LONG-TERM GOALS This Office of Naval...objective of this DoD research effort is to develop and demonstrate a fully functional GIFTS hyperspectral data processing system with the potential for a
Khouj, Yasser; Dawson, Jeremy; Coad, James; Vona-Davis, Linda
2018-01-01
Hyperspectral imaging (HSI) is a non-invasive optical imaging modality that shows the potential to aid pathologists in breast cancer diagnoses cases. In this study, breast cancer tissues from different patients were imaged by a hyperspectral system to detect spectral differences between normal and breast cancer tissues. Tissue samples mounted on slides were identified from 10 different patients. Samples from each patient included both normal and ductal carcinoma tissue, both stained with hematoxylin and eosin stain and unstained. Slides were imaged using a snapshot HSI system, and the spectral reflectance differences were evaluated. Analysis of the spectral reflectance values indicated that wavelengths near 550 nm showed the best differentiation between tissue types. This information was used to train image processing algorithms using supervised and unsupervised data. The K-means method was applied to the hyperspectral data cubes, and successfully detected spectral tissue differences with sensitivity of 85.45%, and specificity of 94.64% with true negative rate of 95.8%, and false positive rate of 4.2%. These results were verified by ground-truth marking of the tissue samples by a pathologist. In the hyperspectral image analysis, the image processing algorithm, K-means, shows the greatest potential for building a semi-automated system that could identify and sort between normal and ductal carcinoma in situ tissues.
Chromotomosynthesis for high speed hyperspectral imagery
NASA Astrophysics Data System (ADS)
Bostick, Randall L.; Perram, Glen P.
2012-09-01
A rotating direct vision prism, chromotomosynthetic imaging (CTI) system operating in the visible creates hyperspectral imagery by collecting a set of 2D images with each spectrally projected at a different rotation angle of the prism. Mathematical reconstruction techniques that have been well tested in the field of medical physics are used to reconstruct the data to produce the 3D hyperspectral image. The instrument operates with a 100 mm focusing lens in the spectral range of 400-900 nm with a field of view of 71.6 mrad and angular resolution of 0.8-1.6 μrad. The spectral resolution is 0.6 nm at the shortest wavelengths, degrading to over 10 nm at the longest wavelengths. Measurements using a pointlike target show that performance is limited by chromatic aberration. The accuracy and utility of the instrument is assessed by comparing the CTI results to spatial data collected by a wideband image and hyperspectral data collected using a liquid crystal tunable filter (LCTF). The wide-band spatial content of the scene reconstructed from the CTI data is of same or better quality as a single frame collected by the undispersed imaging system with projections taken at every 1°. Performance is dependent on the number of projections used, with projections at 5° producing adequate results in terms of target characterization. The data collected by the CTI system can provide spatial information of equal quality as a comparable imaging system, provide high-frame rate slitless 1-D spectra, and generate 3-D hyperspectral imagery which can be exploited to provide the same results as a traditional multi-band spectral imaging system. While this prototype does not operate at high speeds, components exist which will allow for CTI systems to generate hyperspectral video imagery at rates greater than 100 Hz. The instrument has considerable potential for characterizing bomb detonations, muzzle flashes, and other battlefield combustion events.
Raman hyperspectral imaging of iron transport across membranes in cells
NASA Astrophysics Data System (ADS)
Das, Anupam; Costa, Xavier Felipe; Khmaladze, Alexander; Barroso, Margarida; Sharikova, Anna
2016-09-01
Raman scattering microscopy is a powerful imaging technique used to identify chemical composition, structural and conformational state of molecules of complex samples in biology, biophysics, medicine and materials science. In this work, we have shown that Raman techniques allow the measurement of the iron content in protein mixtures and cells. Since the mechanisms of iron acquisition, storage, and excretion by cells are not completely understood, improved knowledge of iron metabolism can offer insight into many diseases in which iron plays a role in the pathogenic process, such as diabetes, neurodegenerative diseases, cancer, and metabolic syndrome. Understanding of the processes involved in cellular iron metabolism will improve our knowledge of cell functioning. It will also have a big impact on treatment of diseases caused by iron deficiency (anemias) and iron overload (hereditary hemochromatosis). Previously, Raman studies have shown substantial differences in spectra of transferrin with and without bound iron, thus proving that it is an appropriate technique to determine the levels of bound iron in the protein mixture. We have extended these studies to obtain hyperspectral images of transferrin in cells. By employing a Raman scanning microscope together with spectral detection by a highly sensitive back-illuminated cooled CCD camera, we were able to rapidly acquire and process images of fixed cells with chemical selectivity. We discuss and compare various methods of hyperspectral Raman image analysis and demonstrate the use of these methods to characterize cellular iron content without the need for dye labeling.
NASA Technical Reports Server (NTRS)
Malak, H.; Mahtani, H.; Herman, P.; Vecer, J.; Lu, X.; Chang, T. Y.; Richmond, Robert C.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
A high-performance hyperspectral imaging module with high throughput of light suitable for low-intensity fluorescence microscopic imaging and subsequent analysis, including single-pixel-defined emission spectroscopy, was tested on Sf21 insect cells expressing green fluorescence associated with recombinant green fluorescent protein linked or not with the membrane protein acyl-CoA:cholesterol acyltransferase. The imager utilized the phenomenon of optical activity as a new technique providing information over a spectral range of 220-1400 nm, and was inserted between the microscope and an 8-bit CCD video-rate camera. The resulting fluorescence image did not introduce observable image aberrations. The images provided parallel acquisition of well resolved concurrent spatial and spectral information such that fluorescence associated with green fluorescent protein alone was demonstrated to be diffuse within the Sf21 insect cell, and that green fluorescence associated with the membrane protein was shown to be specifically concentrated within regions of the cell cytoplasm. Emission spectra analyzed from different regions of the fluorescence image showed blue shift specific for the regions of concentration associated with the membrane protein.
Passive thermal infrared hyperspectral imaging for quantitative imaging of shale gas leaks
NASA Astrophysics Data System (ADS)
Gagnon, Marc-André; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Guyot, Éric; Lagueux, Philippe; Morton, Vince; Giroux, Jean; Chamberland, Martin
2017-10-01
There are many types of natural gas fields including shale formations that are common especially in the St-Lawrence Valley (Canada). Since methane (CH4), the major component of shale gas, is odorless, colorless and highly flammable, in addition to being a greenhouse gas, methane emanations and/or leaks are important to consider for both safety and environmental reasons. Telops recently launched on the market the Hyper-Cam Methane, a field-deployable thermal infrared hyperspectral camera specially tuned for detecting methane infrared spectral features under ambient conditions and over large distances. In order to illustrate the benefits of this novel research instrument for natural gas imaging, the instrument was brought on a site where shale gas leaks unexpectedly happened during a geological survey near the Enfant-Jesus hospital in Quebec City, Canada, during December 2014. Quantitative methane imaging was carried out based on methane's unique infrared spectral signature. Optical flow analysis was also carried out on the data to estimate the methane mass flow rate. The results show how this novel technique could be used for advanced research on shale gases.
Classification and Recognition of Tomb Information in Hyperspectral Image
NASA Astrophysics Data System (ADS)
Gu, M.; Lyu, S.; Hou, M.; Ma, S.; Gao, Z.; Bai, S.; Zhou, P.
2018-04-01
There are a large number of materials with important historical information in ancient tombs. However, in many cases, these substances could become obscure and indistinguishable by human naked eye or true colour camera. In order to classify and identify materials in ancient tomb effectively, this paper applied hyperspectral imaging technology to archaeological research of ancient tomb in Shanxi province. Firstly, the feature bands including the main information at the bottom of the ancient tomb are selected by the Principal Component Analysis (PCA) transformation to realize the data dimension. Then, the image classification was performed using Support Vector Machine (SVM) based on feature bands. Finally, the material at the bottom of ancient tomb is identified by spectral analysis and spectral matching. The results show that SVM based on feature bands can not only ensure the classification accuracy, but also shorten the data processing time and improve the classification efficiency. In the material identification, it is found that the same matter identified in the visible light is actually two different substances. This research result provides a new reference and research idea for archaeological work.
Hyperspectral Data Processing and Mapping of Soil Parameters: Preliminary Data from Tuscany (Italy)
NASA Astrophysics Data System (ADS)
Garfagnoli, F.; Moretti, S.; Catani, F.; Innocenti, L.; Chiarantini, L.
2010-12-01
Hyperspectral imaging has become a very powerful remote sensing tool for its capability of performing chemical and physical analysis of the observed areas. The objective of this study is to retrieve and characterize clay mineral content of the cultivated layer of soils, from both airborne hyperspectral and field spectrometry surveys in the 400-2500 nm spectral range. Correlation analysis is used to examine the possibility to predict the selected property using high-resolution reflectance spectra and images. The study area is located in the Mugello basin, about 30 km north of Firenze (Tuscany, Italy). Agriculturally suitable terrains are assigned mainly to annual crops, marginally to olive groves, vineyards and orchards. Soils mostly belong to Regosols and Cambisols orders. About 80 topsoil samples scattered all over the area were collected simultaneously with the flight of SIM.GA hyperspectral camera from Selex Galileo. The quantitative determination of clay minerals content in soil samples was performed by means of XRD and Rietveld refinement. An ASD FieldSpec spectroradiometer was used to obtain reflectance spectra from dried, crushed and sieved samples under controlled laboratory conditions. Different chemometric techniques (multiple linear regression, vertex component analysis, partial least squares regression and band depth analysis) were preliminarily tested to correlate mineralogical records with reflectance data. A one component partial least squares regression model yielded a preliminary R2 value of 0.65. A similar result was achieved by plotting the absorption peak depth at 2210 versus total clay mineral content (band-depth analysis). A complete hyperspectral geocoded reflectance dataset was collected using SIM.GA hyperspectral image sensor from Selex-Galileo, mounted on board of the University of Firenze ultra light aircraft. The approximate pixel resolution was 0.6 m (VNIR) and 1.2 m (SWIR). Airborne SIM.GA row data were firstly transformed into at-sensor radiance values, where calibration coefficients and parameters from laboratory measurements are applied to non-georeferred VNIR/SWIR DN values. Then, geocoded products are retrieved for each flight line by using a procedure developed in IDL Language and PARGE (PARametric Geocoding) software. When all compensation parameters are applied to hyperspectral data or to the final thematic map, orthorectified, georeferred and coregistered VNIR to SWIR images or maps are available for GIS application and 3D view. Airborne imagery has to be corrected for the influence of the atmosphere, solar illumination, sensor viewing geometry and terrain geometry information, for the retrieval of inherent surface reflectance properties. Then, different geophysical parameters can be investigated and retrieved by means of inversion algorithms. The experimental fitting of laboratory data on mineral content is used for airborne data inversion, whose results are in agreement with laboratory records, demonstrating the possibility to use this methodology for digital mapping of soil properties.
Development and implementation of software systems for imaging spectroscopy
Boardman, J.W.; Clark, R.N.; Mazer, A.S.; Biehl, L.L.; Kruse, F.A.; Torson, J.; Staenz, K.
2006-01-01
Specialized software systems have played a crucial role throughout the twenty-five year course of the development of the new technology of imaging spectroscopy, or hyperspectral remote sensing. By their very nature, hyperspectral data place unique and demanding requirements on the computer software used to visualize, analyze, process and interpret them. Often described as a marriage of the two technologies of reflectance spectroscopy and airborne/spaceborne remote sensing, imaging spectroscopy, in fact, produces data sets with unique qualities, unlike previous remote sensing or spectrometer data. Because of these unique spatial and spectral properties hyperspectral data are not readily processed or exploited with legacy software systems inherited from either of the two parent fields of study. This paper provides brief reviews of seven important software systems developed specifically for imaging spectroscopy.
Demonstration of a Corner-cube-interferometer LWIR Hyperspectral Imager
NASA Astrophysics Data System (ADS)
Renhorn, Ingmar G. E.; Svensson, Thomas; Cronström, Staffan; Hallberg, Tomas; Persson, Rolf; Lindell, Roland; Boreman, Glenn D.
2010-01-01
An interferometric long-wavelength infrared (LWIR) hyperspectral imager is demonstrated, based on a Michelson corner-cube interferometer. This class of system is inherently mechanically robust, and should have advantages over Sagnac-interferometer systems in terms of relaxed beamsplitter-coating specifications, and wider unvignetted field of view. Preliminary performance data from the laboratory prototype system are provided regarding imaging, spectral resolution, and fidelity of acquired spectra.
Toward Improved Hyperspectral Analysis in Semiarid Systems
NASA Astrophysics Data System (ADS)
Glenn, N. F.; Mitchell, J.
2012-12-01
Idaho State University's Boise Center Aerospace Laboratory (BCAL) has processed and applied hyperspectral data for a variety of biophysical sciences in semiarid systems over the past 10 years. HyMap hyperspectral data have been used in most of these studies, along with AVIRIS, CASI, and PIKA-II data. Our studies began with the detection of individual weed species, such as leafy spurge, corroborated with extensive field analysis, including spectrometer data. Early contributions to the field of hyperspectral analysis included the use of: time-series datasets and classification threshold methods for target detection, and subpixel analysis for characterizing weed invasions and post-fire vegetation and soil conditions. Subsequent studies optimized subpixel unmixing performance using spectral subsetting and vegetation abundance investigations. More recent studies have extended the application of hyperspectral data from individual plant species detection to identification of biochemical constituents. We demonstrated field and airborne hyperspectral Nitrogen absorption in sagebrush using combinations of data reduction and spectral transformation techniques (i.e., continuum removal, derivative analysis, partial least squares regression). In spite of these and many other successful demonstrations, gaps still exist in effective species level discrimination due to the high complexity of soil and nonlinear mixing in semiarid shrubland. BCAL studies are currently focusing on complimenting narrowband vegetation indices with LiDAR (light detection and ranging, both airborne and ground-based) derivatives to improve vegetation cover predictions. Future combinations of LiDAR and hyperspectral data will involve exploring the full range spectral information and serve as an integral step in scaling shrub biomass estimates from plot to landscape and regional scales.
NASA Astrophysics Data System (ADS)
Hatala, J.; Sonnentag, O.; Detto, M.; Runkle, B.; Vargas, R.; Kelly, M.; Baldocchi, D. D.
2009-12-01
Ground-based, visible light imagery has been used for different purposes in agricultural and ecological research. A series of recent studies explored the utilization of networked digital cameras to continuously monitor vegetation by taking oblique canopy images at fixed view angles and time intervals. In our contribution we combine high temporal resolution digital camera imagery, eddy-covariance, and meteorological measurements with weekly field-based hyperspectral and LAI measurements to gain new insights on temporal changes in canopy structure and functioning of two managed ecosystems in California’s Sacramento-San Joaquin River Delta: a pasture infested by the invasive perennial pepperweed (Lepidium latifolium) and a rice plantation (Oryza sativa). Specific questions we address are: a) how does year-round grazing affect pepperweed canopy development, b) is it possible to identify phenological key events of managed ecosystems (pepperweed: flowering; rice: heading) from the limited spectral information of digital camera imagery, c) is a simple greenness index derived from digital camera imagery sufficient to track leaf area index and canopy development of managed ecosystems, and d) what are the scales of temporal correlation between digital camera signals and carbon and water fluxes of managed ecosystems? Preliminary results for the pasture-pepperweed ecosystem show that year-round grazing inhibits the accumulation of dead stalks causing earlier green-up and that digital camera imagery is well suited to capture the onset of flowering and the associated decrease in photosynthetic CO2 uptake. Results from our analyses are of great relevance from both a global environmental change and land management perspective.
High Throughput System for Plant Height and Hyperspectral Measurement
NASA Astrophysics Data System (ADS)
Zhao, H.; Xu, L.; Jiang, H.; Shi, S.; Chen, D.
2018-04-01
Hyperspectral and three-dimensional measurement can obtain the intrinsic physicochemical properties and external geometrical characteristics of objects, respectively. Currently, a variety of sensors are integrated into a system to collect spectral and morphological information in agriculture. However, previous experiments were usually performed with several commercial devices on a single platform. Inadequate registration and synchronization among instruments often resulted in mismatch between spectral and 3D information of the same target. And narrow field of view (FOV) extends the working hours in farms. Therefore, we propose a high throughput prototype that combines stereo vision and grating dispersion to simultaneously acquire hyperspectral and 3D information.
NASA Technical Reports Server (NTRS)
Blonksi, Slawomir; Gasser, Gerald; Russell, Jeffrey; Ryan, Robert; Terrie, Greg; Zanoni, Vicki
2001-01-01
Multispectral data requirements for Earth science applications are not always studied rigorously studied before a new remote sensing system is designed. A study of the spatial resolution, spectral bandpasses, and radiometric sensitivity requirements of real-world applications would focus the design onto providing maximum benefits to the end-user community. To support systematic studies of multispectral data requirements, the Applications Research Toolbox (ART) has been developed at NASA's Stennis Space Center. The ART software allows users to create and assess simulated datasets while varying a wide range of system parameters. The simulations are based on data acquired by existing multispectral and hyperspectral instruments. The produced datasets can be further evaluated for specific end-user applications. Spectral synthesis of multispectral images from hyperspectral data is a key part of the ART software. In this process, hyperspectral image cubes are transformed into multispectral imagery without changes in spatial sampling and resolution. The transformation algorithm takes into account spectral responses of both the synthesized, broad, multispectral bands and the utilized, narrow, hyperspectral bands. To validate the spectral synthesis algorithm, simulated multispectral images are compared with images collected near-coincidentally by the Landsat 7 ETM+ and the EO-1 ALI instruments. Hyperspectral images acquired with the airborne AVIRIS instrument and with the Hyperion instrument onboard the EO-1 satellite were used as input data to the presented simulations.
Detection of azo dyes in curry powder using a 1064-nm dispersive hyperspectral Raman imaging system
USDA-ARS?s Scientific Manuscript database
Curry powder is extensively used in Southeast Asian dishes. It has been subject to adulteration by azo dyes. This study used a newly developed 1064 nm dispersive hyperspectral Raman imaging system for detection of metanil yellow and Sudan-I contamination in curry powder. Curry powder was mixed with ...
Research on hyperspectral dynamic scene and image sequence simulation
NASA Astrophysics Data System (ADS)
Sun, Dandan; Liu, Fang; Gao, Jiaobo; Sun, Kefeng; Hu, Yu; Li, Yu; Xie, Junhu; Zhang, Lei
2016-10-01
This paper presents a simulation method of hyperspectral dynamic scene and image sequence for hyperspectral equipment evaluation and target detection algorithm. Because of high spectral resolution, strong band continuity, anti-interference and other advantages, in recent years, hyperspectral imaging technology has been rapidly developed and is widely used in many areas such as optoelectronic target detection, military defense and remote sensing systems. Digital imaging simulation, as a crucial part of hardware in loop simulation, can be applied to testing and evaluation hyperspectral imaging equipment with lower development cost and shorter development period. Meanwhile, visual simulation can produce a lot of original image data under various conditions for hyperspectral image feature extraction and classification algorithm. Based on radiation physic model and material characteristic parameters this paper proposes a generation method of digital scene. By building multiple sensor models under different bands and different bandwidths, hyperspectral scenes in visible, MWIR, LWIR band, with spectral resolution 0.01μm, 0.05μm and 0.1μm have been simulated in this paper. The final dynamic scenes have high real-time and realistic, with frequency up to 100 HZ. By means of saving all the scene gray data in the same viewpoint image sequence is obtained. The analysis results show whether in the infrared band or the visible band, the grayscale variations of simulated hyperspectral images are consistent with the theoretical analysis results.
Comparing methods for analysis of biomedical hyperspectral image data
NASA Astrophysics Data System (ADS)
Leavesley, Silas J.; Sweat, Brenner; Abbott, Caitlyn; Favreau, Peter F.; Annamdevula, Naga S.; Rich, Thomas C.
2017-02-01
Over the past 2 decades, hyperspectral imaging technologies have been adapted to address the need for molecule-specific identification in the biomedical imaging field. Applications have ranged from single-cell microscopy to whole-animal in vivo imaging and from basic research to clinical systems. Enabling this growth has been the availability of faster, more effective hyperspectral filtering technologies and more sensitive detectors. Hence, the potential for growth of biomedical hyperspectral imaging is high, and many hyperspectral imaging options are already commercially available. However, despite the growth in hyperspectral technologies for biomedical imaging, little work has been done to aid users of hyperspectral imaging instruments in selecting appropriate analysis algorithms. Here, we present an approach for comparing the effectiveness of spectral analysis algorithms by combining experimental image data with a theoretical "what if" scenario. This approach allows us to quantify several key outcomes that characterize a hyperspectral imaging study: linearity of sensitivity, positive detection cut-off slope, dynamic range, and false positive events. We present results of using this approach for comparing the effectiveness of several common spectral analysis algorithms for detecting weak fluorescent protein emission in the midst of strong tissue autofluorescence. Results indicate that this approach should be applicable to a very wide range of applications, allowing a quantitative assessment of the effectiveness of the combined biology, hardware, and computational analysis for detecting a specific molecular signature.
Kokaly, R.F.; King, T.V.V.; Hoefen, T.M.
2011-01-01
Identifying materials by measuring and analyzing their reflectance spectra has been an important method in analytical chemistry for decades. Airborne and space-based imaging spectrometers allow scientists to detect materials and map their distributions across the landscape. With new satellite-borne hyperspectral sensors planned for the future, for example, HYSPIRI (HYPerspectral InfraRed Imager), robust methods are needed to fully exploit the information content of hyperspectral remote sensing data. A method of identifying and mapping materials using spectral-feature based analysis of reflectance data in an expert-system framework called MICA (Material Identification and Characterization Algorithm) is described in this paper. The core concepts and calculations of MICA are presented. A MICA command file has been developed and applied to map minerals in the full-country coverage of the 2007 Afghanistan HyMap hyperspectral data. ?? 2011 IEEE.
Lin, Junfang; Lee, Zhongping; Ondrusek, Michael; Liu, Xiaohan
2018-01-22
Absorption (a) and backscattering (bb) coefficients play a key role in determining the light field; they also serve as the link between remote sensing and concentrations of optically active water constituents. Here we present an updated scheme to derive hyperspectral a and bb with hyperspectral remote-sensing reflectance (Rrs) and diffuse attenuation coefficient (Kd) as the inputs. Results show that the system works very well from clear open oceans to highly turbid inland waters, with an overall difference less than 25% between these retrievals and those from instrument measurements. This updated scheme advocates the measurement and generation of hyperspectral a and bb from hyperspectral Rrs and Kd, as an independent data source for cross-evaluation of in situ measurements of a and bb and for the development and/or evaluation of remote sensing algorithms for such optical properties.
Visibility through the gaseous smoke in airborne remote sensing using a DSLR camera
NASA Astrophysics Data System (ADS)
Chabok, Mirahmad; Millington, Andrew; Hacker, Jorg M.; McGrath, Andrew J.
2016-08-01
Visibility and clarity of remotely sensed images acquired by consumer grade DSLR cameras, mounted on an unmanned aerial vehicle or a manned aircraft, are critical factors in obtaining accurate and detailed information from any area of interest. The presence of substantial haze, fog or gaseous smoke particles; caused, for example, by an active bushfire at the time of data capture, will dramatically reduce image visibility and quality. Although most modern hyperspectral imaging sensors are capable of capturing a large number of narrow range bands of the shortwave and thermal infrared spectral range, which have the potential to penetrate smoke and haze, the resulting images do not contain sufficient spatial detail to enable locating important objects or assist search and rescue or similar applications which require high resolution information. We introduce a new method for penetrating gaseous smoke without compromising spatial resolution using a single modified DSLR camera in conjunction with image processing techniques which effectively improves the visibility of objects in the captured images. This is achieved by modifying a DSLR camera and adding a custom optical filter to enable it to capture wavelengths from 480-1200nm (R, G and Near Infrared) instead of the standard RGB bands (400-700nm). With this modified camera mounted on an aircraft, images were acquired over an area polluted by gaseous smoke from an active bushfire. Processed data using our proposed method shows significant visibility improvements compared with other existing solutions.
NASA Astrophysics Data System (ADS)
Hilker, Thomas; Galvão, Lênio Soares; Aragão, Luiz E. O. C.; de Moura, Yhasmin M.; do Amaral, Cibele H.; Lyapustin, Alexei I.; Wu, Jin; Albert, Loren P.; Ferreira, Marciel José; Anderson, Liana O.; dos Santos, Victor A. H. F.; Prohaska, Neill; Tribuzy, Edgard; Barbosa Ceron, João Vitor; Saleska, Scott R.; Wang, Yujie; de Carvalho Gonçalves, José Francisco; de Oliveira Junior, Raimundo Cosme; Cardoso Rodrigues, João Victor Figueiredo; Garcia, Maquelle Neves
2017-06-01
As a preparatory study for future hyperspectral missions that can measure canopy chemistry, we introduce a novel approach to investigate whether multi-angle Moderate Resolution Imaging Spectroradiometer (MODIS) data can be used to generate a preliminary database with long-term estimates of chlorophyll. MODIS monthly chlorophyll estimates between 2000 and 2015, derived from a fully coupled canopy reflectance model (ProSAIL), were inspected for consistency with eddy covariance fluxes, tower-based hyperspectral images and chlorophyll measurements. MODIS chlorophyll estimates from the inverse model showed strong seasonal variations across two flux-tower sites in central and eastern Amazon. Marked increases in chlorophyll concentrations were observed during the early dry season. Remotely sensed chlorophyll concentrations were correlated to field measurements (r2 = 0.73 and r2 = 0.98) but the data deviated from the 1:1 line with root mean square errors (RMSE) ranging from 0.355 μg cm-2 (Tapajós tower) to 0.470 μg cm-2 (Manaus tower). The chlorophyll estimates were consistent with flux tower measurements of photosynthetically active radiation (PAR) and net ecosystem productivity (NEP). We also applied ProSAIL to mono-angle hyperspectral observations from a camera installed on a tower to scale modeled chlorophyll pigments to MODIS observations (r2 = 0.73). Chlorophyll pigment concentrations (ChlA+B) were correlated to changes in the amount of young and mature leaf area per month (0.59 ≤ r2 ≤ 0.64). Increases in MODIS observed ChlA+B were preceded by increased PAR during the dry season (0.61 ≤ r2 ≤ 0.62) and followed by changes in net carbon uptake. We conclude that, at these two sites, changes in LAI, coupled with changes in leaf chlorophyll, are comparable with seasonality of plant productivity. Our results allowed the preliminary development of a 15-year time series of chlorophyll estimates over the Amazon to support canopy chemistry studies using future hyperspectral sensors.
Development of online lines-scan imaging system for chicken inspection and differentiation
NASA Astrophysics Data System (ADS)
Yang, Chun-Chieh; Chan, Diane E.; Chao, Kuanglin; Chen, Yud-Ren; Kim, Moon S.
2006-10-01
An online line-scan imaging system was developed for differentiation of wholesome and systemically diseased chickens. The hyperspectral imaging system used in this research can be directly converted to multispectral operation and would provide the ideal implementation of essential features for data-efficient high-speed multispectral classification algorithms. The imaging system consisted of an electron-multiplying charge-coupled-device (EMCCD) camera and an imaging spectrograph for line-scan images. The system scanned the surfaces of chicken carcasses on an eviscerating line at a poultry processing plant in December 2005. A method was created to recognize birds entering and exiting the field of view, and to locate a Region of Interest on the chicken images from which useful spectra were extracted for analysis. From analysis of the difference spectra between wholesome and systemically diseased chickens, four wavelengths of 468 nm, 501 nm, 582 nm and 629 nm were selected as key wavelengths for differentiation. The method of locating the Region of Interest will also have practical application in multispectral operation of the line-scan imaging system for online chicken inspection. This line-scan imaging system makes possible the implementation of multispectral inspection using the key wavelengths determined in this study with minimal software adaptations and without the need for cross-system calibration.
NASA Astrophysics Data System (ADS)
Yang, Chun-Chieh; Kim, Moon S.; Chuang, Yung-Kun; Lee, Hoyoung
2013-05-01
This paper reports the development of a multispectral algorithm, using the line-scan hyperspectral imaging system, to detect fecal contamination on leafy greens. Fresh bovine feces were applied to the surfaces of washed loose baby spinach leaves. A hyperspectral line-scan imaging system was used to acquire hyperspectral fluorescence images of the contaminated leaves. Hyperspectral image analysis resulted in the selection of the 666 nm and 688 nm wavebands for a multispectral algorithm to rapidly detect feces on leafy greens, by use of the ratio of fluorescence intensities measured at those two wavebands (666 nm over 688 nm). The algorithm successfully distinguished most of the lowly diluted fecal spots (0.05 g feces/ml water and 0.025 g feces/ml water) and some of the highly diluted spots (0.0125 g feces/ml water and 0.00625 g feces/ml water) from the clean spinach leaves. The results showed the potential of the multispectral algorithm with line-scan imaging system for application to automated food processing lines for food safety inspection of leafy green vegetables.
A bench-top hyperspectral imaging system to classify beef from Nellore cattle based on tenderness
NASA Astrophysics Data System (ADS)
Nubiato, Keni Eduardo Zanoni; Mazon, Madeline Rezende; Antonelo, Daniel Silva; Calkins, Chris R.; Naganathan, Govindarajan Konda; Subbiah, Jeyamkondan; da Luz e Silva, Saulo
2018-03-01
The aim of this study was to evaluate the accuracy of classification of Nellore beef aged for 0, 7, 14, or 21 days and classification based on tenderness and aging period using a bench-top hyperspectral imaging system. A hyperspectral imaging system (λ = 928-2524 nm) was used to collect hyperspectral images of the Longissimus thoracis et lumborum (aging n = 376 and tenderness n = 345) of Nellore cattle. The image processing steps included selection of region of interest, extraction of spectra, and indentification and evalution of selected wavelengths for classification. Six linear discriminant models were developed to classify samples based on tenderness and aging period. The model using the first derivative of partial absorbance spectra (give wavelength range spectra) was able to classify steaks based on the tenderness with an overall accuracy of 89.8%. The model using the first derivative of full absorbance spectra was able to classify steaks based on aging period with an overall accuracy of 84.8%. The results demonstrate that the HIS may be a viable technology for classifying beef based on tenderness and aging period.
Polarimetric Hyperspectral Imaging Systems and Applications
NASA Technical Reports Server (NTRS)
Cheng, Li-Jen; Mahoney, Colin; Reyes, George; Baw, Clayton La; Li, G. P.
1996-01-01
This paper reports activities in the development of AOTF Polarimetric Hyperspectral Imaging (PHI) Systems at JPL along with field observation results for illustrating the technology capabilities and advantages in remote sensing. In addition, the technology was also used to measure thickness distribution and structural imperfections of silicon-on-silicon wafers using white light interference phenomenon for demonstrating the potential in scientific and industrial applications.
NASA Astrophysics Data System (ADS)
van der Meer, Freek; Kopačková, Veronika; Koucká, Lucie; van der Werff, Harald M. A.; van Ruitenbeek, Frank J. A.; Bakker, Wim H.
2018-02-01
The final product of a geologic remote sensing data analysis using multi spectral and hyperspectral images is a mineral (abundance) map. Multispectral data, such as ASTER, Landsat, SPOT, Sentinel-2, typically allow to determine qualitative estimates of what minerals are in a pixel, while hyperspectral data allow to quantify this. As input to most image classification or spectral processing approach, endmembers are required. An alternative approach to classification is to derive absorption feature characteristics such as the wavelength position of the deepest absorption, depth of the absorption and symmetry of the absorption feature from hyperspectral data. Two approaches are presented, tested and compared in this paper: the 'Wavelength Mapper' and the 'QuanTools'. Although these algorithms use a different mathematical solution to derive absorption feature wavelength and depth, and use different image post-processing, the results are consistent, comparable and reproducible. The wavelength images can be directly linked to mineral type and abundance, but more importantly also to mineral chemical composition and subtle changes thereof. This in turn allows to interpret hyperspectral data in terms of mineral chemistry changes which is a proxy to pressure-temperature of formation of minerals. We show the case of the Rodalquilar epithermal system of the southern Spanish Gabo de Gata volcanic area using HyMAP airborne hyperspectral images.
NASA Astrophysics Data System (ADS)
Yang, Guiyan; Wang, Qingyan; Liu, Chen; Wang, Xiaobin; Fan, Shuxiang; Huang, Wenqian
2018-07-01
Rapid and visual detection of the chemical compositions of plant seeds is important but difficult for a traditional seed quality analysis system. In this study, a custom-designed line-scan Raman hyperspectral imaging system was applied for detecting and displaying the main chemical compositions in a heterogeneous maize seed. Raman hyperspectral images collected from the endosperm and embryo of maize seed were acquired and preprocessed by Savitzky-Golay (SG) filter and adaptive iteratively reweighted Penalized Least Squares (airPLS). Three varieties of maize seeds were analyzed, and the characteristics of the spectral and spatial information were extracted from each hyperspectral image. The Raman characteristic peaks, identified at 477, 1443, 1522, 1596 and 1654 cm-1 from 380 to 1800 cm-1 Raman spectra, were related to corn starch, mixture of oil and starch, zeaxanthin, lignin and oil in maize seeds, respectively. Each single-band image corresponding to the characteristic band characterized the spatial distribution of the chemical composition in a seed successfully. The embryo was distinguished from the endosperm by band operation of the single-band images at 477, 1443, and 1596 cm-1 for each variety. Results showed that Raman hyperspectral imaging system could be used for on-line quality control of maize seeds based on the rapid and visual detection of the chemical compositions in maize seeds.
Hyperspectral imaging fluorescence excitation scanning for colon cancer detection
NASA Astrophysics Data System (ADS)
Leavesley, Silas J.; Walters, Mikayla; Lopez, Carmen; Baker, Thomas; Favreau, Peter F.; Rich, Thomas C.; Rider, Paul F.; Boudreaux, Carole W.
2016-10-01
Optical spectroscopy and hyperspectral imaging have shown the potential to discriminate between cancerous and noncancerous tissue with high sensitivity and specificity. However, to date, these techniques have not been effectively translated to real-time endoscope platforms. Hyperspectral imaging of the fluorescence excitation spectrum represents new technology that may be well suited for endoscopic implementation. However, the feasibility of detecting differences between normal and cancerous mucosa using fluorescence excitation-scanning hyperspectral imaging has not been evaluated. The goal of this study was to evaluate the initial feasibility of using fluorescence excitation-scanning hyperspectral imaging for measuring changes in fluorescence excitation spectrum concurrent with colonic adenocarcinoma using a small pre-pilot-scale sample size. Ex vivo analysis was performed using resected pairs of colorectal adenocarcinoma and normal mucosa. Adenocarcinoma was confirmed by histologic evaluation of hematoxylin and eosin (H&E) permanent sections. Specimens were imaged using a custom hyperspectral imaging fluorescence excitation-scanning microscope system. Results demonstrated consistent spectral differences between normal and cancerous tissues over the fluorescence excitation range of 390 to 450 nm that could be the basis for wavelength-dependent detection of colorectal cancers. Hence, excitation-scanning hyperspectral imaging may offer an alternative approach for discriminating adenocarcinoma from surrounding normal colonic mucosa, but further studies will be required to evaluate the accuracy of this approach using a larger patient cohort.
NASA Astrophysics Data System (ADS)
Plaza, Antonio; Plaza, Javier; Paz, Abel
2010-10-01
Latest generation remote sensing instruments (called hyperspectral imagers) are now able to generate hundreds of images, corresponding to different wavelength channels, for the same area on the surface of the Earth. In previous work, we have reported that the scalability of parallel processing algorithms dealing with these high-dimensional data volumes is affected by the amount of data to be exchanged through the communication network of the system. However, large messages are common in hyperspectral imaging applications since processing algorithms are pixel-based, and each pixel vector to be exchanged through the communication network is made up of hundreds of spectral values. Thus, decreasing the amount of data to be exchanged could improve the scalability and parallel performance. In this paper, we propose a new framework based on intelligent utilization of wavelet-based data compression techniques for improving the scalability of a standard hyperspectral image processing chain on heterogeneous networks of workstations. This type of parallel platform is quickly becoming a standard in hyperspectral image processing due to the distributed nature of collected hyperspectral data as well as its flexibility and low cost. Our experimental results indicate that adaptive lossy compression can lead to improvements in the scalability of the hyperspectral processing chain without sacrificing analysis accuracy, even at sub-pixel precision levels.
Spectral characterization and calibration of AOTF spectrometers and hyper-spectral imaging system
NASA Astrophysics Data System (ADS)
Katrašnik, Jaka; Pernuš, Franjo; Likar, Boštjan
2010-02-01
The goal of this article is to present a novel method for spectral characterization and calibration of spectrometers and hyper-spectral imaging systems based on non-collinear acousto-optical tunable filters. The method characterizes the spectral tuning curve (frequency-wavelength characteristic) of the AOTF (Acousto-Optic Tunable Filter) filter by matching the acquired and modeled spectra of the HgAr calibration lamp, which emits line spectrum that can be well modeled via AOTF transfer function. In this way, not only tuning curve characterization and corresponding spectral calibration but also spectral resolution assessment is performed. The obtained results indicated that the proposed method is efficient, accurate and feasible for routine calibration of AOTF spectrometers and hyper-spectral imaging systems and thereby a highly competitive alternative to the existing calibration methods.
Earth Observations from the International Space Station: Benefits for Humanity
NASA Technical Reports Server (NTRS)
Stefanov, William L.
2015-01-01
The International Space Station (ISS) is a unique terrestrial remote sensing platform for observation of the Earth's land surface, oceans, and atmosphere. Unlike automated remote-sensing platforms it has a human crew; is equipped with both internal and externally-mounted active and passive remote sensing instruments; and has an inclined, low-Earth orbit that provides variable views and lighting (day and night) over 95 percent of the inhabited surface of the Earth. As such, it provides a useful complement to autonomous, sun-synchronous sensor systems in higher altitude polar orbits. Beginning in May 2012, NASA ISS sensor systems have been available to respond to requests for data through the International Charter, Space and Major Disasters, also known as the "International Disaster Charter" or IDC. Data from digital handheld cameras, multispectral, and hyperspectral imaging systems has been acquired in response to IDC activations and delivered to requesting agencies through the United States Geological Survey. The characteristics of the ISS for Earth observation will be presented, including past, current, and planned NASA, International Partner, and commercial remote sensing systems. The role and capabilities of the ISS for humanitarian benefit, specifically collection of remotely sensed disaster response data, will be discussed.
NASA Astrophysics Data System (ADS)
Chen, Hai-Wen; McGurr, Michael; Brickhouse, Mark
2015-05-01
We present new results from our ongoing research activity for chemical threat detection using hyper-spectral imager (HSI) detection techniques by detecting nontraditional threat spectral signatures of agent usage, such as protective equipment, coatings, paints, spills, and stains that are worn by human or on trucks or other objects. We have applied several current state-of-the-art HSI target detection methods such as Matched Filter (MF), Adaptive Coherence Estimator (ACE), Constrained Energy Minimization (CEM), and Spectral Angle Mapper (SAM). We are interested in detecting several chemical related materials: (a) Tyvek clothing is chemical resistance and Tyvek coveralls are one-piece garments for protecting human body from harmful chemicals, and (b) ammonium salts from background could be representative of spills from scrubbers or related to other chemical activities. The HSI dataset that we used for detection covers a chemical test field with more than 50 different kinds of chemicals, protective materials, coatings, and paints. Among them, there are four different kinds of Tyvek material, three types of ammonium salts, and one yellow jugs. The imagery cube data were collected by a HSI sensor with a spectral range of 400-2,500nm. Preliminary testing results are promising, and very high probability of detection (Pd) and low probability of false detection are achieved with the usage of full spectral range (400- 2,500nm). In the second part of this paper, we present our newly developed HSI sharpening technique. A new Band Interpolation and Local Scaling (BILS) method has been developed to improve HSI spatial resolution by 4-16 times with a low-cost high-resolution pen-chromatic camera and a RGB camera. Preliminary results indicate that this new technique is promising.
Research on hyperspectral dynamic scene and image sequence simulation
NASA Astrophysics Data System (ADS)
Sun, Dandan; Gao, Jiaobo; Sun, Kefeng; Hu, Yu; Li, Yu; Xie, Junhu; Zhang, Lei
2016-10-01
This paper presents a simulation method of hyper-spectral dynamic scene and image sequence for hyper-spectral equipment evaluation and target detection algorithm. Because of high spectral resolution, strong band continuity, anti-interference and other advantages, in recent years, hyper-spectral imaging technology has been rapidly developed and is widely used in many areas such as optoelectronic target detection, military defense and remote sensing systems. Digital imaging simulation, as a crucial part of hardware in loop simulation, can be applied to testing and evaluation hyper-spectral imaging equipment with lower development cost and shorter development period. Meanwhile, visual simulation can produce a lot of original image data under various conditions for hyper-spectral image feature extraction and classification algorithm. Based on radiation physic model and material characteristic parameters this paper proposes a generation method of digital scene. By building multiple sensor models under different bands and different bandwidths, hyper-spectral scenes in visible, MWIR, LWIR band, with spectral resolution 0.01μm, 0.05μm and 0.1μm have been simulated in this paper. The final dynamic scenes have high real-time and realistic, with frequency up to 100 HZ. By means of saving all the scene gray data in the same viewpoint image sequence is obtained. The analysis results show whether in the infrared band or the visible band, the grayscale variations of simulated hyper-spectral images are consistent with the theoretical analysis results.
Pavurala, Naresh; Xu, Xiaoming; Krishnaiah, Yellela S R
2017-05-15
Hyperspectral imaging using near infrared spectroscopy (NIRS) integrates spectroscopy and conventional imaging to obtain both spectral and spatial information of materials. The non-invasive and rapid nature of hyperspectral imaging using NIRS makes it a valuable process analytical technology (PAT) tool for in-process monitoring and control of the manufacturing process for transdermal drug delivery systems (TDS). The focus of this investigation was to develop and validate the use of Near Infra-red (NIR) hyperspectral imaging to monitor coat thickness uniformity, a critical quality attribute (CQA) for TDS. Chemometric analysis was used to process the hyperspectral image and a partial least square (PLS) model was developed to predict the coat thickness of the TDS. The goodness of model fit and prediction were 0.9933 and 0.9933, respectively, indicating an excellent fit to the training data and also good predictability. The % Prediction Error (%PE) for internal and external validation samples was less than 5% confirming the accuracy of the PLS model developed in the present study. The feasibility of the hyperspectral imaging as a real-time process analytical tool for continuous processing was also investigated. When the PLS model was applied to detect deliberate variation in coating thickness, it was able to predict both the small and large variations as well as identify coating defects such as non-uniform regions and presence of air bubbles. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Jolliff, B. L.
2017-12-01
Exploring the South Pole-Aitken basin (SPA), one of the key unsampled geologic terranes on the Moon, is a high priority for Solar System science. As the largest and oldest recognizable impact basin on the Moon, it anchors the heavy bombardment chronology. It is thus a key target for sample return to better understand the impact flux in the Solar System between formation of the Moon and 3.9 Ga when Imbrium, one of the last of the great lunar impact basins, formed. Exploration of SPA has implications for understanding early habitable environments on the terrestrial planets. Global mineralogical and compositional data exist from the Clementine UV-VIS camera, the Lunar Prospector Gamma Ray Spectrometer, the Moon Mineralogy Mapper (M3) on Chandrayaan-1, the Chang'E-1 Imaging Interferometer, the spectral suite on SELENE, and the Lunar Reconnaissance Orbiter Cameras (LROC) Wide Angle Camera (WAC) and Diviner thermal radiometer. Integration of data sets enables synergistic assessment of geology and distribution of units across multiple spatial scales. Mineralogical assessment using hyperspectral data indicates spatial relationships with mineralogical signatures, e.g., central peaks of complex craters, consistent with inferred SPA basin structure and melt differentiation (Moriarty & Pieters, 2015, JGR-P 118). Delineation of mare, cryptomare, and nonmare surfaces is key to interpreting compositional mixing in the formation of SPA regolith to interpret remotely sensed data, and for scientific assessment of landing sites. LROC Narrow Angle Camera (NAC) images show the location and distribution of >0.5 m boulders and fresh craters that constitute the main threats to automated landers and thus provide critical information for landing site assessment and planning. NAC images suitable for geometric stereo derivation and digital terrain models so derived, controlled with Lunar Orbiter Laser Altimeter (LOLA) data, and oblique NAC images made with large slews of the spacecraft, are crucial to both scientific and landing-site assessments. These images, however, require favorable illumination and significant spacecraft resources. Thus they make up only a small percentage of all of the images taken. It is essential for future exploration to support LRO continued operation for these critical datasets.
Multi-mode Observations of Cloud-to-Ground Lightning Strokes
NASA Astrophysics Data System (ADS)
Smith, M. W.; Smith, B. J.; Clemenson, M. D.; Zollweg, J. D.
2015-12-01
We present hyper-temporal and hyper-spectral data collected using a suite of three Phantom high-speed cameras configured to observe cloud-to-ground lightning strokes. The first camera functioned as a contextual imager to show the location and structure of the strokes. The other two cameras were operated as slit-less spectrometers, with resolutions of 0.2 to 1.0 nm. The imaging camera was operated at a readout rate of 48,000 frames per second and provided an image-based trigger mechanism for the spectrometers. Each spectrometer operated at a readout rate of 400,000 frames per second. The sensors were deployed on the southern edge of Albuquerque, New Mexico and collected data over a 4 week period during the thunderstorm season in the summer of 2015. Strikes observed by the sensor suite were correlated to specific strikes recorded by the National Lightning Data Network (NLDN) and thereby geo-located. Sensor calibration factors, distance to each strike, and calculated values of atmospheric transmission were used to estimate absolute radiometric intensities for the spectral-temporal data. The data that we present show the intensity and time evolution of broadband and line emission features for both leader and return strokes. We highlight several key features and overall statistics of the observations. A companion poster describes a lightning model that is being developed at Sandia National Laboratories.
Jiang, Yu; Li, Changying
2015-01-01
Cotton quality, a major factor determining both cotton profitability and marketability, is affected by not only the overall quantity of but also the type of the foreign matter. Although current commercial instruments can measure the overall amount of the foreign matter, no instrument can differentiate various types of foreign matter. The goal of this study was to develop a hyperspectral imaging system to discriminate major types of foreign matter in cotton lint. A push-broom based hyperspectral imaging system with a custom-built multi-thread software was developed to acquire hyperspectral images of cotton fiber with 15 types of foreign matter commonly found in the U.S. cotton lint. A total of 450 (30 replicates for each foreign matter) foreign matter samples were cut into 1 by 1 cm2 pieces and imaged on the lint surface using reflectance mode in the spectral range from 400-1000 nm. The mean spectra of the foreign matter and lint were extracted from the user-defined region-of-interests in the hyperspectral images. The principal component analysis was performed on the mean spectra to reduce the feature dimension from the original 256 bands to the top 3 principal components. The score plots of the 3 principal components were used to examine clusterization patterns for classifying the foreign matter. These patterns were further validated by statistical tests. The experimental results showed that the mean spectra of all 15 types of cotton foreign matter were different from that of the lint. Nine types of cotton foreign matter formed distinct clusters in the score plots. Additionally, all of them were significantly different from each other at the significance level of 0.05 except brown leaf and bract. The developed hyperspectral imaging system is effective to detect and classify cotton foreign matter on the lint surface and has the potential to be implemented in commercial cotton classing offices.
NASA Astrophysics Data System (ADS)
Bürmen, Miran; Usenik, Peter; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan
2011-03-01
Dental caries is a disease characterized by demineralization of enamel crystals leading to the penetration of bacteria into the dentin and pulp. If left untreated, the disease can lead to pain, infection and tooth loss. Early detection of enamel demineralization resulting in increased enamel porosity, commonly known as white spots, is a difficult diagnostic task. Several papers reported on near infrared (NIR) spectroscopy to be a potentially useful noninvasive spectroscopic technique for early detection of caries lesions. However, the conducted studies were mostly qualitative and did not include the critical assessment of the spectral variability of the sound and carious dental tissues and influence of the water content. Such assessment is essential for development and validation of reliable qualitative and especially quantitative diagnostic tools based on NIR spectroscopy. In order to characterize the described spectral variability, a standardized diffuse reflectance hyper-spectral database was constructed by imaging 12 extracted human teeth with natural lesions of various degrees in the spectral range from 900 to 1700 nm with spectral resolution of 10 nm. Additionally, all the teeth were imaged by digital color camera. The influence of water content on the acquired spectra was characterized by monitoring the teeth during the drying process. The images were assessed by an expert, thereby obtaining the gold standard. By analyzing the acquired spectra we were able to accurately model the spectral variability of the sound dental tissues and identify the advantages and limitations of NIR hyper-spectral imaging.
Thermal hyperspectral chemical imaging
NASA Astrophysics Data System (ADS)
Holma, Hannu; Hyvärinen, Timo; Mattila, Antti-Jussi; Kormano, Ilkka
2012-06-01
Several chemical compounds have their strongest spectral signatures in the thermal region. This paper presents three push-broom thermal hyperspectral imagers. The first operates in MWIR (2.8-5 μm) with 35 nm spectral resolution. It consists of uncooled imaging spectrograph and cryogenically cooled InSb camera, with spatial resolution of 320/640 pixels and image rate to 400 Hz. The second imager covers LWIR in 7.6-12 μm with 32 spectral bands. It employs an uncooled microbolometer array and spectrograph. These imagers have been designed for chemical mapping in reflection mode in industry and laboratory. An efficient line-illumination source has been developed, and it makes possible thermal hyperspectral imaging in reflection with much higher signal and SNR than is obtained from room temperature emission. Application demonstrations including sorting of dark plastics and mineralogical mapping of drill cores are presented. The third imager utilizes a cryo-cooled MCT array with precisely temperature stabilized optics. The optics is not cooled, but instrument radiation is suppressed by special filtering and corrected by BMC (Background-Monitoring-on-Chip) method. The approach provides excellent sensitivity in an instrument which is portable and compact enough for installation in UAVs. The imager has been verified in 7.6 to 12.3 μm to provide NESR of 18 mW/(m2 sr μm) at 10 μm for 300 K target with 100 spectral bands and 384 spatial samples. It results in SNR of higher than 500. The performance makes possible various applications from gas detection to mineral exploration and vegetation surveys. Results from outdoor and airborne experiments are shown.
NASA Astrophysics Data System (ADS)
Liu, Songde; Smith, Zach; Xu, Ronald X.
2016-10-01
There is a pressing need for a phantom standard to calibrate medical optical devices. However, 3D printing of tissue-simulating phantom standard is challenged by lacking of appropriate methods to characterize and reproduce surface topography and optical properties accurately. We have developed a structured light imaging system to characterize surface topography and optical properties (absorption coefficient and reduced scattering coefficient) of 3D tissue-simulating phantoms. The system consisted of a hyperspectral light source, a digital light projector (DLP), a CMOS camera, two polarizers, a rotational stage, a translation stage, a motion controller, and a personal computer. Tissue-simulating phantoms with different structural and optical properties were characterized by the proposed imaging system and validated by a standard integrating sphere system. The experimental results showed that the proposed system was able to achieve pixel-level optical properties with a percentage error of less than 11% for absorption coefficient and less than 7% for reduced scattering coefficient for phantoms without surface curvature. In the meanwhile, 3D topographic profile of the phantom can be effectively reconstructed with an accuracy of less than 1% deviation error. Our study demonstrated that the proposed structured light imaging system has the potential to characterize structural profile and optical properties of 3D tissue-simulating phantoms.
A long-wave infrared hyperspectral sensor for Shadow class UAVs
NASA Astrophysics Data System (ADS)
Lucey, P. G.; Akagi, Jason T.; Hinrichs, John L.; Crites, S. T.; Wright, R.
2013-05-01
The University of Hawaii has developed a concept to ruggedize an existing thermal infrared hyperspectral system for use in the NASA SIERRA UAV. The Hawaii Institute of Geophysics and Planetology has developed a suite of instruments that acquire high spectral resolution thermal infrared image data with low mass and power consumption by combining microbolometers with stationary interferometers, allowing us to achieve hyperspectral resolution (20 wavenumbers between 8 and 14 micrometers), with signal to noise ratios as high as 1500:1. Several similar instruments have been developed and flown by our research group. One recent iteration, developed under NASA EPSCoR funding and designed for inclusion on a microsatellite (Thermal Hyperspectral Imager; THI), has a mass of 11 kg. Making THI ready for deployment on the SIERRA will involve incorporating improvements made in building nine thermal interferometric hyperspectral systems for commercial and government sponsors as part of HIGP's wider program. This includes: a) hardening the system for operation in the SIERRA environment, b) compact design for the calibration system, c) reconfiguring software for autonomous operation, d) incorporating HIGP-developed detectors with increased responsiveness at the 8 micron end of the TIR range, and e) an improved interferometer to increase SNR for imaging at the SIERRA's air speed. UAVs provide a unique platform for science investigations that the proposed instrument, UAVTHI, will be well placed to facilitate (e.g. very high temporal resolution measurements of temporally dynamic phenomena, such as wildfires and volcanic ash clouds). Its spectral range is suited to measuring gas plumes, including sulfur dioxide and carbon dioxide, which exhibit absorption features in the 8 to 14 micron range.
LED lighting for use in multispectral and hyperspectral imaging
USDA-ARS?s Scientific Manuscript database
Lighting for machine vision and hyperspectral imaging is an important component for collecting high quality imagery. However, it is often given minimal consideration in the overall design of an imaging system. Tungsten-halogens lamps are the most common source of illumination for broad spectrum appl...
USDA-ARS?s Scientific Manuscript database
We used a portable hyperspectral fluorescence imaging system to evaluate biofilm formations on four types of food processing surface materials including stainless steel, polypropylene used for cutting boards, and household counter top materials such as formica and granite. The objective of this inve...
Classification of fecal contamination on leafy greens by hyperspectral imaging
USDA-ARS?s Scientific Manuscript database
A hyperspectral fluorescence imaging system was developed and used to obtain several two-waveband spectral ratios on leafy green vegetables, represented by romaine lettuce and baby spinach in this study. The ratios were analyzed to determine the proper one for detecting bovine fecal contamination on...
Classification of Fecal Contamination on Leafy Greens by Hyperspectral Imaging
USDA-ARS?s Scientific Manuscript database
A hyperspectral fluorescence imaging system was developed and used to obtain several two-waveband spectral ratios on leafy green vegetables, represented by romaine lettuce and baby spinach in this study. The ratios were analyzed to determine the proper one for detecting bovine fecal contamination on...
USDA-ARS?s Scientific Manuscript database
Optical method with hyperspectral microscope imaging (HMI) has potential for identification of foodborne pathogenic bacteria from microcolonies rapidly with a cell level. A HMI system that provides both spatial and spectral information could be an effective tool for analyzing spectral characteristic...
Spectral mixture analyses of hyperspectral data acquired using a tethered balloon
Chen, Xuexia; Vierling, Lee
2006-01-01
Tethered balloon remote sensing platforms can be used to study radiometric issues in terrestrial ecosystems by effectively bridging the spatial gap between measurements made on the ground and those acquired via airplane or satellite. In this study, the Short Wave Aerostat-Mounted Imager (SWAMI) tethered balloon-mounted platform was utilized to evaluate linear and nonlinear spectral mixture analysis (SMA) for a grassland-conifer forest ecotone during the summer of 2003. Hyperspectral measurement of a 74-m diameter ground instantaneous field of view (GIFOV) attained by the SWAMI was studied. Hyperspectral spectra of four common endmembers, bare soil, grass, tree, and shadow, were collected in situ, and images captured via video camera were interpreted into accurate areal ground cover fractions for evaluating the mixture models. The comparison between the SWAMI spectrum and the spectrum derived by combining in situ spectral data with video-derived areal fractions indicated that nonlinear effects occurred in the near infrared (NIR) region, while nonlinear influences were minimal in the visible region. The evaluation of hyperspectral and multispectral mixture models indicated that nonlinear mixture model-derived areal fractions were sensitive to the model input data, while the linear mixture model performed more stably. Areal fractions of bare soil were overestimated in all models due to the increased radiance of bare soil resulting from side scattering of NIR radiation by adjacent grass and trees. Unmixing errors occurred mainly due to multiple scattering as well as close endmember spectral correlation. In addition, though an apparent endmember assemblage could be derived using linear approaches to yield low residual error, the tree and shade endmember fractions calculated using this technique were erroneous and therefore separate treatment of endmembers subject to high amounts of multiple scattering (i.e. shadows and trees) must be done with caution. Including the short wave infrared (SWIR) region in the hyperspectral and multispectral endmember data significantly reduced the Pearson correlation coefficient values among endmember spectra. Therefore, combination of visible, NIR, and SWIR information is likely to further improve the utility of SMA in understanding ecosystem structure and function and may help narrow uncertainties when utilizing remotely sensed data to extrapolate trace glas flux measurements from the canopy scale to the landscape scale.
How Strong is the Case for Geostationary Hyperspectral Sounders?
NASA Astrophysics Data System (ADS)
Kirk-Davidoff, D. B.; Liu, Z.; Jensen, S.; Housley, E.
2014-12-01
The NASA GIFTS program designed and constructed a flight-ready hyperspectral infrared sounder for geostationary orbit. Efforts are now underway to launch a constellation of similar instruments. Salient characteristics included 4 km spatial resolution at nadir and 0.6 cm-1 spectral resolution in two infrared bands. Observing system experiments have demonstrated the success of assimilated hyperspectral infrared radiances from IASI and AIRS in improving weather forecast skill. These results provide circumstantial evidence that additional observations at higher spatial and temporal resolution would likely improve forecast skill further. However, there is only limited work investigating the magnitude of this skill improvement in the literature. Here we present a systematic program to quantify the additional skill of a constellation of geostationary hyperspectral sounders through observing system simulation experiments (OSSEs) using the WRF model and the WRFDA data assimilation system. The OSSEs will focus first on high-impact events, such as the forecast for Typhoon Haiyun, but will also address quotidian synoptic forecast skill. The focus will be on short-term forecast skill (<24 hours lead time), in accord with WRF's mesoscale design, and with the view that high time frequency observations are likely to make the biggest impact on the skill of short-range forecasts. The experiments will use as their starting point the full existing observational suite, so that additionality can be addressed, but will also consider contingencies, such as the loss of particular elements of the existing system, as well as the degree to which a stand-alone system of hyperspectral sounds would be able to successfully initialize a regional forecast model. A variety of settings, tropical and extratropical, marine and continental will be considered.
NASA Astrophysics Data System (ADS)
Peller, Joseph; Thompson, Kyle J.; Siddiqui, Imran; Martinie, John; Iannitti, David A.; Trammell, Susan R.
2017-02-01
Pancreatic cancer is the fourth leading cause of cancer death in the US. Currently, surgery is the only treatment that offers a chance of cure, however, accurately identifying tumor margins in real-time is difficult. Research has demonstrated that optical spectroscopy can be used to distinguish between healthy and diseased tissue. The design of a single-pixel imaging system for cancer detection is discussed. The system differentiates between healthy and diseased tissue based on differences in the optical reflectance spectra of these regions. In this study, pancreatic tissue samples from 6 patients undergoing Whipple procedures are imaged with the system (total number of tissue sample imaged was N=11). Regions of healthy and unhealthy tissue are determined based on SAM analysis of these spectral images. Hyperspectral imaging results are then compared to white light imaging and histological analysis. Cancerous regions were clearly visible in the hyperspectral images. Margins determined via spectral imaging were in good agreement with margins identified by histology, indicating that hyperspectral imaging system can differentiate between healthy and diseased tissue. After imaging the system was able to detect cancerous regions with a sensitivity of 74.50±5.89% and a specificity of 75.53±10.81%. Possible applications of this imaging system include determination of tumor margins during surgery/biopsy and assistance with cancer diagnosis and staging.
NASA Astrophysics Data System (ADS)
Zhao, Fusheng; Zenasni, Oussama; Li, Jingting; Shih, Wei-Chuan
2017-02-01
Localized surface plasmon resonance (LSPR) arises from the interaction of light with noble metal nanoparticles, which induces a collective oscillation in the free electrons. The size and shape of the metallic nanostructure significantly impact LSPR frequency and strength. Nanoplasmonic sensor has become a recent research focus due to its significant signal enhancement and robust signal transduction measured by extinction spectroscopy, fluorescence, Raman scattering, and absorption spectroscopy. Dark-field microscopy, in contrast, reports the scattered photons after light-matter interactions. In this case, the nanoparticles can be understood as dipole radiators whose free electrons oscillate in concert. Coupled with spectroscopy, this platform allows the collection of plasmonically scattered spectra from gold nanoparticles. Plasmonic coupling between electron-beam lithography patterned gold nanodisks (AuND) and colloidal gold nanoparticles (AuNP) can change the plasmonic resonance of the original entities, and can be effectively studied by dark-field hyperspectral microscopy. Typically, a pronounced redshift can be observed when plasmonic coupling occurs. When these nano-entities are functionalized with interactive surface moieties, biochemistry and molecular processes can be studied. In this paper, we will present the capability of assessing the process of immobilizing streptavidin-functionalized AuNPs on an array of biotin-terminated AuNDs. By monitoring changes in the LSPR band of AuNDs, we are able to evaluate similar processes in other molecular systems. In addition, plasmon coupling induced scattering intensity variations can be measured by an electron-multiplied charge-coupled device camera for rapid in situ monitoring. This method can potentially be useful in studying dynamic biophysical and biochemical processes in situ.
Ultra-Stable Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (5STAR)
NASA Technical Reports Server (NTRS)
Dunagan, Stephen E.; Johnson, Roy R.; Redemann, Jens; Holben, Brent N.; Schmidt, Beat; Flynn, Connor Joseph; Fahey, Lauren; LeBlanc, Samuel; Liss, Jordan; Kacenelenbogen, Meloe S.;
2017-01-01
The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to airpollution and climate. Direct beam hyperspectral measurement of optical depth improves retrievals of gas constituentsand determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution.Hyperspectral cloud-transmitted radiance measurements enable the retrieval of cloud properties from below clouds.These measurements tighten the closure between satellite and ground-based measurements. 4STAR incorporates amodular sun-tracking sky-scanning optical head with optical fiber signal transmission to rack mounted spectrometers,permitting miniaturization of the external optical tracking head, and future detector evolution.4STAR has supported a broad range of flight experiments since it was first flown in 2010. This experience provides thebasis for a series of improvements directed toward reducing measurement uncertainty and calibration complexity, andexpanding future measurement capabilities, to be incorporated into a new 5STAR instrument. A 9-channel photodioderadiometer with AERONET-matched bandpass filters will be incorporated to improve calibration stability. A wide dynamic range tracking camera will provide a high precision solar position tracking signal as well as an image of sky conditions around the solar axis. An ultrasonic window cleaning system design will be tested. A UV spectrometer tailored for formaldehyde and SO2 gas retrievals will be added to the spectrometer enclosure. Finally, expansion capability for a 4 channel polarized radiometer to measure the Stokes polarization vector of sky light will be incorporated. This paper presents initial progress on this next-generation 5STAR instrument.
NASA Astrophysics Data System (ADS)
Qin, Jianwei; Lu, Renfu
2005-11-01
Absorption and reduced scattering coefficients are two fundamental optical properties for turbid biological materials. This paper presents the technique and method of using hyperspectral diffuse reflectance for fast determination of the optical properties of fruit and vegetable juices and milks. A hyperspectral imaging system was used to acquire spatially resolved steady-state diffuse reflectance over the spectral region between 530 and 900 nm from a variety of fruit and vegetable juices (citrus, grapefruit, orange, and vegetable) and milks with different fat levels (full, skim and mixed). The system collected diffuse reflectance in the source-detector separation range from 1.1 to 10.0 mm. The hyperspectral reflectance data were analyzed by using a diffusion theory model for semi-infinite homogeneous media. The absorption and reduced scattering coefficients of the fruit and vegetable juices and milks were extracted by inverse algorithms from the scattering profiles for wavelengths of 530-900 nm. Values of the absorption and reduced scattering coefficient at 650 nm were highly correlated to the fat content of the milk samples with the correlation coefficient of 0.990 and 0.989, respectively. The hyperspectral imaging technique can be extended to the measurement of other liquid and solid foods in which light scattering is dominant.
NASA Astrophysics Data System (ADS)
Wei, Liqing; Xiao, Xizhong; Wang, Yueming; Zhuang, Xiaoqiong; Wang, Jianyu
2017-11-01
Space-borne hyperspectral imagery is an important tool for earth sciences and industrial applications. Higher spatial and spectral resolutions have been sought persistently, although this results in more power, larger volume and weight during a space-borne spectral imager design. For miniaturization of hyperspectral imager and optimization of spectral splitting methods, several methods are compared in this paper. Spectral time delay integration (TDI) method with high transmittance Integrated Stepwise Filter (ISF) is proposed.With the method, an ISF imaging spectrometer with TDI could achieve higher system sensitivity than the traditional prism/grating imaging spectrometer. In addition, the ISF imaging spectrometer performs well in suppressing infrared background radiation produced by instrument. A compact shortwave infrared (SWIR) hyperspectral imager prototype based on HgCdTe covering the spectral range of 2.0-2.5 μm with 6 TDI stages was designed and integrated. To investigate the performance of ISF spectrometer, a method to derive the optimal blocking band curve of the ISF is introduced, along with known error characteristics. To assess spectral performance of the ISF system, a new spectral calibration based on blackbody radiation with temperature scanning is proposed. The results of the imaging experiment showed the merits of ISF. ISF has great application prospects in the field of high sensitivity and high resolution space-borne hyperspectral imagery.
NASA Astrophysics Data System (ADS)
Li, Qingli; Liu, Hongying; Wang, Yiting; Sun, Zhen; Guo, Fangmin; Zhu, Jianzhong
2014-12-01
Histological observation of dual-stained colon sections is usually performed by visual observation under a light microscope, or by viewing on a computer screen with the assistance of image processing software in both research and clinical settings. These traditional methods are usually not sufficient to reliably differentiate spatially overlapping chromogens generated by different dyes. Hyperspectral microscopic imaging technology offers a solution for these constraints as the hyperspectral microscopic images contain information that allows differentiation between spatially co-located chromogens with similar but different spectra. In this paper, a hyperspectral microscopic imaging (HMI) system is used to identify methyl green and nitrotetrazolium blue chloride in dual-stained colon sections. Hyperspectral microscopic images are captured and the normalized score algorithm is proposed to identify the stains and generate the co-expression results. Experimental results show that the proposed normalized score algorithm can generate more accurate co-localization results than the spectral angle mapper algorithm. The hyperspectral microscopic imaging technology can enhance the visualization of dual-stained colon sections, improve the contrast and legibility of each stain using their spectral signatures, which is helpful for pathologist performing histological analyses.
Parallel hyperspectral image reconstruction using random projections
NASA Astrophysics Data System (ADS)
Sevilla, Jorge; Martín, Gabriel; Nascimento, José M. P.
2016-10-01
Spaceborne sensors systems are characterized by scarce onboard computing and storage resources and by communication links with reduced bandwidth. Random projections techniques have been demonstrated as an effective and very light way to reduce the number of measurements in hyperspectral data, thus, the data to be transmitted to the Earth station is reduced. However, the reconstruction of the original data from the random projections may be computationally expensive. SpeCA is a blind hyperspectral reconstruction technique that exploits the fact that hyperspectral vectors often belong to a low dimensional subspace. SpeCA has shown promising results in the task of recovering hyperspectral data from a reduced number of random measurements. In this manuscript we focus on the implementation of the SpeCA algorithm for graphics processing units (GPU) using the compute unified device architecture (CUDA). Experimental results conducted using synthetic and real hyperspectral datasets on the GPU architecture by NVIDIA: GeForce GTX 980, reveal that the use of GPUs can provide real-time reconstruction. The achieved speedup is up to 22 times when compared with the processing time of SpeCA running on one core of the Intel i7-4790K CPU (3.4GHz), with 32 Gbyte memory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Moura, Yhasmin Mendes; Galvão, Lênio Soares; Hilker, Thomas
The association between spectral reflectance and canopy processes remains challenging for quantifying large-scale canopy phenological cycles in tropical forests. In this paper, we used a tower-mounted hyperspectral camera in an eastern Amazon forest to assess how canopy spectral signals of three species are linked with phenological processes in the 2012 dry season. We explored different approaches to disentangle the spectral components of canopy phenology processes and analyze their variations over time using 17 images acquired by the camera. The methods included linear spectral mixture analysis (SMA); principal component analysis (PCA); continuum removal (CR); and first-order derivative analysis. In addition, threemore » vegetation indices potentially sensitive to leaf flushing, leaf loss and leaf area index (LAI) were calculated: the Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI) and the entitled Green-Red Normalized Difference (GRND) index. We inspected also the consistency of the camera observations using Moderate Resolution Imaging Spectroradiometer (MODIS) and available phenological data on new leaf production and LAI of young, mature and old leaves simulated by a leaf demography-ontogeny model. The results showed a diversity of phenological responses during the 2012 dry season with related changes in canopy structure and greenness values. Because of the differences in timing and intensity of leaf flushing and leaf shedding, Erisma uncinatum, Manilkara huberi and Chamaecrista xinguensis presented different green vegetation (GV) and non-photosynthetic vegetation (NPV) SMA fractions; distinct PCA scores; changes in depth, width and area of the 681-nm chlorophyll absorption band; and variations over time in the EVI, GRND and NDVI. At the end of dry season, GV increased for Erisma uncinatum, while NPV increased for Chamaecrista xinguensis. For Manilkara huberi, the NPV first increased in the beginning of August and then decreased toward September with new foliage. Variations in red-edge position were not statistically significant between the species and across dates at the 95% confidence level. The camera data were affected by view-illumination effects, which reduced the SMA shade fraction over time. When MODIS data were corrected for these effects using the Multi-Angle Implementation of Atmospheric Correction Algorithm (MAIAC), we observed an EVI increase toward September that closely tracked the modeled LAI of mature leaves (3–5 months). Compared to the EVI, the GRND was a better indicator of leaf flushing because the modeled production of new leaves peaked in August and then declined in September following the GRND closely. Finally, while the EVI was more related to changes in mature leaf area, the GRND was more associated with new leaf flushing.« less
de Moura, Yhasmin Mendes; Galvão, Lênio Soares; Hilker, Thomas; ...
2017-09-01
The association between spectral reflectance and canopy processes remains challenging for quantifying large-scale canopy phenological cycles in tropical forests. In this paper, we used a tower-mounted hyperspectral camera in an eastern Amazon forest to assess how canopy spectral signals of three species are linked with phenological processes in the 2012 dry season. We explored different approaches to disentangle the spectral components of canopy phenology processes and analyze their variations over time using 17 images acquired by the camera. The methods included linear spectral mixture analysis (SMA); principal component analysis (PCA); continuum removal (CR); and first-order derivative analysis. In addition, threemore » vegetation indices potentially sensitive to leaf flushing, leaf loss and leaf area index (LAI) were calculated: the Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI) and the entitled Green-Red Normalized Difference (GRND) index. We inspected also the consistency of the camera observations using Moderate Resolution Imaging Spectroradiometer (MODIS) and available phenological data on new leaf production and LAI of young, mature and old leaves simulated by a leaf demography-ontogeny model. The results showed a diversity of phenological responses during the 2012 dry season with related changes in canopy structure and greenness values. Because of the differences in timing and intensity of leaf flushing and leaf shedding, Erisma uncinatum, Manilkara huberi and Chamaecrista xinguensis presented different green vegetation (GV) and non-photosynthetic vegetation (NPV) SMA fractions; distinct PCA scores; changes in depth, width and area of the 681-nm chlorophyll absorption band; and variations over time in the EVI, GRND and NDVI. At the end of dry season, GV increased for Erisma uncinatum, while NPV increased for Chamaecrista xinguensis. For Manilkara huberi, the NPV first increased in the beginning of August and then decreased toward September with new foliage. Variations in red-edge position were not statistically significant between the species and across dates at the 95% confidence level. The camera data were affected by view-illumination effects, which reduced the SMA shade fraction over time. When MODIS data were corrected for these effects using the Multi-Angle Implementation of Atmospheric Correction Algorithm (MAIAC), we observed an EVI increase toward September that closely tracked the modeled LAI of mature leaves (3–5 months). Compared to the EVI, the GRND was a better indicator of leaf flushing because the modeled production of new leaves peaked in August and then declined in September following the GRND closely. Finally, while the EVI was more related to changes in mature leaf area, the GRND was more associated with new leaf flushing.« less
Hyperspectral imaging fluorescence excitation scanning for colon cancer detection
Leavesley, Silas J.; Walters, Mikayla; Lopez, Carmen; Baker, Thomas; Favreau, Peter F.; Rich, Thomas C.; Rider, Paul F.; Boudreaux, Carole W.
2016-01-01
Abstract. Optical spectroscopy and hyperspectral imaging have shown the potential to discriminate between cancerous and noncancerous tissue with high sensitivity and specificity. However, to date, these techniques have not been effectively translated to real-time endoscope platforms. Hyperspectral imaging of the fluorescence excitation spectrum represents new technology that may be well suited for endoscopic implementation. However, the feasibility of detecting differences between normal and cancerous mucosa using fluorescence excitation-scanning hyperspectral imaging has not been evaluated. The goal of this study was to evaluate the initial feasibility of using fluorescence excitation-scanning hyperspectral imaging for measuring changes in fluorescence excitation spectrum concurrent with colonic adenocarcinoma using a small pre-pilot-scale sample size. Ex vivo analysis was performed using resected pairs of colorectal adenocarcinoma and normal mucosa. Adenocarcinoma was confirmed by histologic evaluation of hematoxylin and eosin (H&E) permanent sections. Specimens were imaged using a custom hyperspectral imaging fluorescence excitation-scanning microscope system. Results demonstrated consistent spectral differences between normal and cancerous tissues over the fluorescence excitation range of 390 to 450 nm that could be the basis for wavelength-dependent detection of colorectal cancers. Hence, excitation-scanning hyperspectral imaging may offer an alternative approach for discriminating adenocarcinoma from surrounding normal colonic mucosa, but further studies will be required to evaluate the accuracy of this approach using a larger patient cohort. PMID:27792808
Hyperspectral imaging system for whole corn ear surface inspection
NASA Astrophysics Data System (ADS)
Yao, Haibo; Kincaid, Russell; Hruska, Zuzana; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.
2013-05-01
Aflatoxin is a mycotoxin produced mainly by Aspergillus flavus (A.flavus) and Aspergillus parasitiucus fungi that grow naturally in corn. Very serious health problems such as liver damage and lung cancer can result from exposure to high toxin levels in grain. Consequently, many countries have established strict guidelines for permissible levels in consumables. Conventional chemical-based analytical methods used to screen for aflatoxin such as thin-layer chromatography (TLC) and high performance liquid chromatography (HPLC) are time consuming, expensive, and require the destruction of samples as well as proper training for data interpretation. Thus, it has been a continuing effort within the research community to find a way to rapidly and non-destructively detect and possibly quantify aflatoxin contamination in corn. One of the more recent developments in this area is the use of spectral technology. Specifically, fluorescence hyperspectral imaging offers a potential rapid, and non-invasive method for contamination detection in corn infected with toxigenic A.flavus spores. The current hyperspectral image system is designed for scanning flat surfaces, which is suitable for imaging single or a group of corn kernels. In the case of a whole corn cob, it is preferred to be able to scan the circumference of the corn ear, appropriate for whole ear inspection. This paper discusses the development of a hyperspectral imaging system for whole corn ear imaging. The new instrument is based on a hyperspectral line scanner using a rotational stage to turn the corn ear.
Compressive hyperspectral sensor for LWIR gas detection
NASA Astrophysics Data System (ADS)
Russell, Thomas A.; McMackin, Lenore; Bridge, Bob; Baraniuk, Richard
2012-06-01
Focal plane arrays with associated electronics and cooling are a substantial portion of the cost, complexity, size, weight, and power requirements of Long-Wave IR (LWIR) imagers. Hyperspectral LWIR imagers add significant data volume burden as they collect a high-resolution spectrum at each pixel. We report here on a LWIR Hyperspectral Sensor that applies Compressive Sensing (CS) in order to achieve benefits in these areas. The sensor applies single-pixel detection technology demonstrated by Rice University. The single-pixel approach uses a Digital Micro-mirror Device (DMD) to reflect and multiplex the light from a random assortment of pixels onto the detector. This is repeated for a number of measurements much less than the total number of scene pixels. We have extended this architecture to hyperspectral LWIR sensing by inserting a Fabry-Perot spectrometer in the optical path. This compressive hyperspectral imager collects all three dimensions on a single detection element, greatly reducing the size, weight and power requirements of the system relative to traditional approaches, while also reducing data volume. The CS architecture also supports innovative adaptive approaches to sensing, as the DMD device allows control over the selection of spatial scene pixels to be multiplexed on the detector. We are applying this advantage to the detection of plume gases, by adaptively locating and concentrating target energy. A key challenge in this system is the diffraction loss produce by the DMD in the LWIR. We report the results of testing DMD operation in the LWIR, as well as system spatial and spectral performance.
NASA Astrophysics Data System (ADS)
Wang, Xicheng; Gao, Jiaobo; Wu, Jianghui; Li, Jianjun; Cheng, Hongliang
2017-02-01
Recently, hyperspectral image projectors (HIP) have been developed in the field of remote sensing. For the advanced performance of system-level validation, target detection and hyperspectral image calibration, HIP has great possibility of development in military, medicine, commercial and so on. HIP is based on the digital micro-mirror device (DMD) and projection technology, which is capable to project arbitrary programmable spectra (controlled by PC) into the each pixel of the IUT1 (instrument under test), such that the projected image could simulate realistic scenes that hyperspectral image could be measured during its use and enable system-level performance testing and validation. In this paper, we built a visible hyperspectral image projector also called the visible target simulator with double DMDs, which the first DMD is used to product the selected monochromatic light from the wavelength of 410 to 720 um, and the light come to the other one. Then we use computer to load image of realistic scenes to the second DMD, so that the target condition and background could be project by the second DMD with the selected monochromatic light. The target condition can be simulated and the experiment could be controlled and repeated in the lab, making the detector instrument could be tested in the lab. For the moment, we make the focus on the spectral engine design include the optical system, research of DMD programmable spectrum and the spectral resolution of the selected spectrum. The detail is shown.
Analytical design of a hyper-spectral imaging spectrometer utilizing a convex grating
NASA Astrophysics Data System (ADS)
Kim, Seo H.; Kong, Hong J.; Ku, Hana; Lee, Jun H.
2012-09-01
This paper describes about the new design method for hyper-spectral Imaging spectrometers utilizing convex grating. Hyper-spectral imaging systems are power tools in the field of remote sensing. HSI systems collect at least 100 spectral bands of 10~20 nm width. Because the spectral signature is different and induced unique for each material, it should be possible to discriminate between one material and another based on difference in spectral signature of material. I mathematically analyzed parameters for the intellectual initial design. Main concept of this is the derivative of "ring of minimum aberration without vignetting". This work is a kind of analytical design of an Offner imaging spectrometer. Also, several experiment methods will be contrived to evaluate the performance of imaging spectrometer.
NASA Astrophysics Data System (ADS)
Meola, Joseph; Absi, Anthony; Leonard, James D.; Ifarraguerri, Agustin I.; Islam, Mohammed N.; Alexander, Vinay V.; Zadnik, Jerome A.
2013-05-01
A fundamental limitation of current visible through shortwave infrared hyperspectral imaging systems is the dependence on solar illumination. This reliance limits the operability of such systems to small windows during which the sun provides enough solar radiation to achieve adequate signal levels. Similarly, nighttime collection is infeasible. This work discusses the development and testing of a high-powered super-continuum laser for potential use as an on-board illumination source coupled with a hyperspectral receiver to allow for day/night operability. A 5-watt shortwave infrared supercontinuum laser was developed, characterized in the lab, and tower-tested along a 1.6km slant path to demonstrate propagation capability as a spectral light source.
Mahlein, Anne-Katrin; Hammersley, Simon; Oerke, Erich-Christian; Dehne, Heinz-Wilhelm; Goldbach, Heiner; Grieve, Bruce
2015-06-01
Hyperspectral imaging systems used in plant science or agriculture often have suboptimal signal-to-noise ratio in the blue region (400-500 nm) of the electromagnetic spectrum. Typically there are two principal reasons for this effect, the low sensitivity of the imaging sensor and the low amount of light available from the illuminating source. In plant science, the blue region contains relevant information about the physiology and the health status of a plant. We report on the improvement in sensitivity of a hyperspectral imaging system in the blue region of the spectrum by using supplemental illumination provided by an array of high brightness light emitting diodes (LEDs) with an emission peak at 470 nm.
Supervised Classification Techniques for Hyperspectral Data
NASA Technical Reports Server (NTRS)
Jimenez, Luis O.
1997-01-01
The recent development of more sophisticated remote sensing systems enables the measurement of radiation in many mm-e spectral intervals than previous possible. An example of this technology is the AVIRIS system, which collects image data in 220 bands. The increased dimensionality of such hyperspectral data provides a challenge to the current techniques for analyzing such data. Human experience in three dimensional space tends to mislead one's intuition of geometrical and statistical properties in high dimensional space, properties which must guide our choices in the data analysis process. In this paper high dimensional space properties are mentioned with their implication for high dimensional data analysis in order to illuminate the next steps that need to be taken for the next generation of hyperspectral data classifiers.
Near-surface Thermal Infrared Imaging of a Mixed Forest
NASA Astrophysics Data System (ADS)
Aubrecht, D. M.; Helliker, B. R.; Richardson, A. D.
2014-12-01
Measurement of an organism's temperature is of basic physiological importance and therefore necessary for ecosystem modeling, yet most models derive leaf temperature from energy balance arguments or assume it is equal to air temperature. This is because continuous, direct measurement of leaf temperature outside of a controlled environment is difficult and rarely done. Of even greater challenge is measuring leaf temperature with the resolution required to understand the underlying energy balance and regulation of plant processes. To measure leaf temperature through the year, we have mounted a high-resolution, thermal infrared camera overlooking the canopy of a temperate deciduous forest. The camera is co-located with an eddy covariance system and a suite of radiometric sensors. Our camera measures longwave thermal infrared (λ = 7.5-14 microns) using a microbolometer array. Suspended in the canopy within the camera FOV is a matte black copper plate instrumented with fine wire thermocouples that acts as a thermal reference for each image. In this presentation, I will discuss the challenges of continuous, long-term field operation of the camera, as well as measurement sensitivity to physical and environmental parameters. Based on this analysis, I will show that the uncertainties in converting radiometric signal to leaf temperature are well constrained. The key parameter for minimizing uncertainty is the emissivity of the objects being imaged: measuring the emissivity to within 0.01 enables leaf temperature to be calculated to within 0.5°C. Finally, I will present differences in leaf temperature observed amongst species. From our two-year record, we characterize high frequency, daily, and seasonal thermal signatures of leaves and crowns, in relation to environmental conditions. Our images are taken with sufficient spatial and temporal resolution to quantify the preferential heating of sunlit portions of the canopy and the cooling effect of wind gusts. Future work will be focused on correlations between hyperspectral vegetation indices, fluxes, and thermal signatures to characterize vegetation stress. As water stress increases, causing photosynthesis and transpiration to shutdown, heat fluxes, leaf temperature, and narrow band vegetation indices should report signatures of the affected processes.
USDA-ARS?s Scientific Manuscript database
Line-scan-based hyperspectral imaging techniques have often served as a research tool to develop rapid multispectral methods based on only a few spectral bands for rapid online applications. With continuing technological advances and greater accessibility to and availability of optoelectronic imagin...
USDA-ARS?s Scientific Manuscript database
Palmer amaranth (Amaranthus palmeri S. Wats.) invasion negatively impacts cotton (Gossypium hirsutum L.) production systems throughout the United States. The objective of this study was to evaluate canopy hyperspectral narrowband data as input into the random forest machine learning algorithm to dis...
A Novel Hyperspectral Microscopic Imaging System for Evaluating Fresh Degree of Pork.
Xu, Yi; Chen, Quansheng; Liu, Yan; Sun, Xin; Huang, Qiping; Ouyang, Qin; Zhao, Jiewen
2018-04-01
This study proposed a rapid microscopic examination method for pork freshness evaluation by using the self-assembled hyperspectral microscopic imaging (HMI) system with the help of feature extraction algorithm and pattern recognition methods. Pork samples were stored for different days ranging from 0 to 5 days and the freshness of samples was divided into three levels which were determined by total volatile basic nitrogen (TVB-N) content. Meanwhile, hyperspectral microscopic images of samples were acquired by HMI system and processed by the following steps for the further analysis. Firstly, characteristic hyperspectral microscopic images were extracted by using principal component analysis (PCA) and then texture features were selected based on the gray level co-occurrence matrix (GLCM). Next, features data were reduced dimensionality by fisher discriminant analysis (FDA) for further building classification model. Finally, compared with linear discriminant analysis (LDA) model and support vector machine (SVM) model, good back propagation artificial neural network (BP-ANN) model obtained the best freshness classification with a 100 % accuracy rating based on the extracted data. The results confirm that the fabricated HMI system combined with multivariate algorithms has ability to evaluate the fresh degree of pork accurately in the microscopic level, which plays an important role in animal food quality control.
A Novel Hyperspectral Microscopic Imaging System for Evaluating Fresh Degree of Pork
Xu, Yi; Chen, Quansheng; Liu, Yan; Sun, Xin; Huang, Qiping; Ouyang, Qin; Zhao, Jiewen
2018-01-01
Abstract This study proposed a rapid microscopic examination method for pork freshness evaluation by using the self-assembled hyperspectral microscopic imaging (HMI) system with the help of feature extraction algorithm and pattern recognition methods. Pork samples were stored for different days ranging from 0 to 5 days and the freshness of samples was divided into three levels which were determined by total volatile basic nitrogen (TVB-N) content. Meanwhile, hyperspectral microscopic images of samples were acquired by HMI system and processed by the following steps for the further analysis. Firstly, characteristic hyperspectral microscopic images were extracted by using principal component analysis (PCA) and then texture features were selected based on the gray level co-occurrence matrix (GLCM). Next, features data were reduced dimensionality by fisher discriminant analysis (FDA) for further building classification model. Finally, compared with linear discriminant analysis (LDA) model and support vector machine (SVM) model, good back propagation artificial neural network (BP-ANN) model obtained the best freshness classification with a 100 % accuracy rating based on the extracted data. The results confirm that the fabricated HMI system combined with multivariate algorithms has ability to evaluate the fresh degree of pork accurately in the microscopic level, which plays an important role in animal food quality control. PMID:29805285
NASA Astrophysics Data System (ADS)
Lim, Hoong-Ta; Murukeshan, Vadakke Matham
2017-06-01
Hyperspectral imaging combines imaging and spectroscopy to provide detailed spectral information for each spatial point in the image. This gives a three-dimensional spatial-spatial-spectral datacube with hundreds of spectral images. Probe-based hyperspectral imaging systems have been developed so that they can be used in regions where conventional table-top platforms would find it difficult to access. A fiber bundle, which is made up of specially-arranged optical fibers, has recently been developed and integrated with a spectrograph-based hyperspectral imager. This forms a snapshot hyperspectral imaging probe, which is able to form a datacube using the information from each scan. Compared to the other configurations, which require sequential scanning to form a datacube, the snapshot configuration is preferred in real-time applications where motion artifacts and pixel misregistration can be minimized. Principal component analysis is a dimension-reducing technique that can be applied in hyperspectral imaging to convert the spectral information into uncorrelated variables known as principal components. A confidence ellipse can be used to define the region of each class in the principal component feature space and for classification. This paper demonstrates the use of the snapshot hyperspectral imaging probe to acquire data from samples of different colors. The spectral library of each sample was acquired and then analyzed using principal component analysis. Confidence ellipse was then applied to the principal components of each sample and used as the classification criteria. The results show that the applied analysis can be used to perform classification of the spectral data acquired using the snapshot hyperspectral imaging probe.
Hyperspectral imaging-based credit card verifier structure with adaptive learning.
Sumriddetchkajorn, Sarun; Intaravanne, Yuttana
2008-12-10
We propose and experimentally demonstrate a hyperspectral imaging-based optical structure for verifying a credit card. Our key idea comes from the fact that the fine detail of the embossed hologram stamped on the credit card is hard to duplicate, and therefore its key color features can be used for distinguishing between the real and counterfeit ones. As the embossed hologram is a diffractive optical element, we shine a number of broadband light sources one at a time, each at a different incident angle, on the embossed hologram of the credit card in such a way that different color spectra per incident angle beam are diffracted and separated in space. In this way, the center of mass of the histogram on each color plane is investigated by using a feed-forward backpropagation neural-network configuration. Our experimental demonstration using two off-the-shelf broadband white light emitting diodes, one digital camera, and a three-layer neural network can effectively identify 38 genuine and 109 counterfeit credit cards with false rejection rates of 5.26% and 0.92%, respectively. Key features include low cost, simplicity, no moving parts, no need of an additional decoding key, and adaptive learning.
Distinguishing tracheal and esophageal tissues with hyperspectral imaging and fiber-optic sensing
NASA Astrophysics Data System (ADS)
Nawn, Corinne D.; Souhan, Brian E.; Carter, Robert, III; Kneapler, Caitlin; Fell, Nicholas; Ye, Jing Yong
2016-11-01
During emergency medical situations, where the patient has an obstructed airway or necessitates respiratory support, endotracheal intubation (ETI) is the medical technique of placing a tube into the trachea in order to facilitate adequate ventilation of the lungs. Complications during ETI, such as repeated attempts, failed intubation, or accidental intubation of the esophagus, can lead to severe consequences or ultimately death. Consequently, a need exists for a feedback mechanism to aid providers in performing successful ETI. Our study examined the spectral reflectance properties of the tracheal and esophageal tissue to determine whether a unique spectral profile exists for either tissue for the purpose of detection. The study began by using a hyperspectral camera to image excised pig tissue samples exposed to white and UV light in order to capture the spectral reflectance properties with high fidelity. After identifying a unique spectral characteristic of the trachea that significantly differed from esophageal tissue, a follow-up investigation used a fiber optic probe to confirm the detectability and consistency of the different reflectance characteristics in a pig model. Our results characterize the unique and consistent spectral reflectance characteristic of tracheal tissue, thereby providing foundational support for exploiting spectral properties to detect the trachea during medical procedures.
2003-09-30
We are developing an integrated rapid environmental assessment capability that will be used to feed an ocean nowcast/forecast system. The goal is to develop a capacity for predicting the dynamics in inherent optical properties in coastal waters. This is being accomplished by developing an integrated observation system that is being coupled to a data assimilative hydrodynamic bio-optical ecosystem model. The system was used adaptively to calibrate hyperspectral remote sensing sensors in optically complex nearshore coastal waters.
ISS Benefits for Humanity: Eye on the Tide
2015-04-22
Published on Apr 22, 2015 The vantage point of space not only contributes to a better understanding of our home planet, it helps improve lives around the world. Onboard the International Space Station, the Hyperspectral Imager for the Coastal Ocean (HICO) instrument gave scientists an exceptional new view of the coastal ocean and the Great Lakes. Using a special camera that separates light into hundreds of wavelength channels, HICO was used to identify potentially harmful algae blooms in Lake Erie and other lakes and reservoirs that provide critical drinking water for millions of users. The EPA is developing an early warning indicator system using historical and current satellite data to detect algal blooms. For more information, visit: http://www.epa.gov The International Space Station is a blueprint for global cooperation and scientific advancements, a destination for a growing commercial marketplace in low-Earth orbit and a test bed for demonstrating new technologies. The space station is the springboard to NASA’s next great leap in exploration, including future missions to an asteroid and Mars.
NASA Astrophysics Data System (ADS)
Anders, Niels; Suomalainen, Juha; Seeger, Manuel; Keesstra, Saskia; Bartholomeus, Harm; Paron, Paolo
2014-05-01
The recent increase of performance and endurance of electronically controlled flying platforms, such as multi-copters and fixed-wing airplanes, and decreasing size and weight of different sensors and batteries leads to increasing popularity of Unmanned Aerial Systems (UAS) for scientific purposes. Modern workflows that implement UAS include guided flight plan generation, 3D GPS navigation for fully automated piloting, and automated processing with new techniques such as "Structure from Motion" photogrammetry. UAS are often equipped with normal RGB cameras, multi- and hyperspectral sensors, radar, or other sensors, and provide a cheap and flexible solution for creating multi-temporal data sets. UAS revolutionized multi-temporal research allowing new applications related to change analysis and process monitoring. The EGU General Assembly 2014 is hosting a session on platforms, sensors and applications with UAS in soil science and geomorphology. This presentation briefly summarizes the outcome of this session, addressing the current state and future challenges of small-platform data acquisition in soil science and geomorphology.
NASA Astrophysics Data System (ADS)
Lenain, L.; Clark, D. B.; Guza, R. T.; Hally-Rosendahl, K.; Statom, N.; Feddersen, F.
2012-12-01
The transport and evolution of temperature, sediment, chlorophyll, fluorescent dye, and other tracers is of significant oceanographic interest, particularly in complex coastal environments such as the nearshore, river mouths, and tidal inlets. Remote sensing improves spatial coverage over in situ observations, and ground truthing remote sensed observations is critical for its use. Here, we present remotely sensed observations of Rhodamine WT dye and Sea Surface Temperature (SST) using the SIO Modular Aerial Sensing System (MASS) and compare them with in situ observations from the IB09 (0-300 m seaward of the surfzone, Imperial Beach, CA, October 2009) and RIVET (New River Inlet, NC, May 2012) field experiments. Dye concentrations are estimated from a unique multispectral camera system that measures the emission and absorption wavelengths of Rhodamine WT dye. During RIVET, dye is also characterized using a pushbroom hyperspectral imaging system (SPECIM AISAEagle VNIR 400-990 nm) while SST is estimated using a long-wave infrared camera (FLIR SC6000HS) coupled with an infrared pyrometer (Heitronics KT19.85II). Repeated flight passes over the dye plume were conducted approximately every 5 min for up to 4.5 hr in duration with a swath width ranging from 400 to 2000 m (altitude dependent), and provided a unique spatio-temporal depiction of the plume. A dye proxy is developed using the measured radiance at the emission and absorption wavelengths of the Rhodamine WT dye. During IB09 and RIVET, in situ dye and temperature were measured with two GPS-tracked jet skis, a small boat, and moored observations. The in situ observations are compared with the remotely sensed data in these two complex coastal environments. Funding was provided by the Office of Naval Research.
NASA Astrophysics Data System (ADS)
Nebiker, S.; Lack, N.; Abächerli, M.; Läderach, S.
2016-06-01
In this paper we investigate the performance of new light-weight multispectral sensors for micro UAV and their application to selected tasks in agronomical research and agricultural practice. The investigations are based on a series of flight campaigns in 2014 and 2015 covering a number of agronomical test sites with experiments on rape, barley, onion, potato and other crops. In our sensor comparison we included a high-end multispectral multiSPEC 4C camera with bandpass colour filters and reference channel in zenith direction and a low-cost, consumer-grade Canon S110 NIR camera with Bayer pattern colour filters. Ground-based reference measurements were obtained using a terrestrial hyperspectral field spectrometer. The investigations show that measurements with the high-end system consistently match very well with ground-based field spectrometer measurements with a mean deviation of just 0.01-0.04 NDVI values. The low-cost system, while delivering better spatial resolutions, expressed significant biases. The sensors were subsequently used to address selected agronomical questions. These included crop yield estimation in rape and barley and plant disease detection in potato and onion cultivations. High levels of correlation between different vegetation indices and reference yield measurements were obtained for rape and barley. In case of barley, the NDRE index shows an average correlation of 87% with reference yield, when species are taken into account. With high geometric resolutions and respective GSDs of down to 2.5 cm the effects of a thrips infestation in onion could be analysed and potato blight was successfully detected at an early stage of infestation.
Radiometric and geometric analysis of hyperspectral imagery acquired from an unmanned aerial vehicle
Hruska, Ryan; Mitchell, Jessica; Anderson, Matthew; ...
2012-09-17
During the summer of 2010, an Unmanned Aerial Vehicle (UAV) hyperspectral in-flight calibration and characterization experiment of the Resonon PIKA II imaging spectrometer was conducted at the U.S. Department of Energy’s Idaho National Laboratory (INL) UAV Research Park. The purpose of the experiment was to validate the radiometric calibration of the spectrometer and determine the georegistration accuracy achievable from the on-board global positioning system (GPS) and inertial navigation sensors (INS) under operational conditions. In order for low-cost hyperspectral systems to compete with larger systems flown on manned aircraft, they must be able to collect data suitable for quantitative scientific analysis.more » The results of the in-flight calibration experiment indicate an absolute average agreement of 96.3%, 93.7% and 85.7% for calibration tarps of 56%, 24%, and 2.5% reflectivity, respectively. The achieved planimetric accuracy was 4.6 meters (based on RMSE).« less
A LWIR hyperspectral imager using a Sagnac interferometer and cooled HgCdTe detector array
NASA Astrophysics Data System (ADS)
Lucey, Paul G.; Wood, Mark; Crites, Sarah T.; Akagi, Jason
2012-06-01
LWIR hyperspectral imaging has a wide range of civil and military applications with its ability to sense chemical compositions at standoff ranges. Most recent implementations of this technology use spectrographs employing varying degrees of cryogenic cooling to reduce sensor self-emission that can severely limit sensitivity. We have taken an interferometric approach that promises to reduce the need for cooling while preserving high resolution. Reduced cooling has multiple benefits including faster system readiness from a power off state, lower mass, and potentially lower cost owing to lower system complexity. We coupled an uncooled Sagnac interferometer with a 256x320 mercury cadmium telluride array with an 11 micron cutoff to produce a spatial interferometric LWIR hyperspectral imaging system operating from 7.5 to 11 microns. The sensor was tested in ground-ground applications, and from a small aircraft producing spectral imagery including detection of gas emission from high vapor pressure liquids.
Hyperspectral Technique for Detecting Soil Parameters
NASA Astrophysics Data System (ADS)
Garfagnoli, F.; Ciampalini, A.; Moretti, S.; Chiarantini, L.
2011-12-01
In satellite and airborne remote sensing, hyperspectral technique has become a very powerful tool, due to the possibility of rapidly realizing chemical/mineralogical maps of the studied areas. Many studies are trying to customize the algorithms to identify several geo-physical soil properties. The specific objective of this study is to investigate those soil characteristics, such as clay mineral content, influencing degradation processes (soil erosion and shallow landslides), by means of correlation analysis, in order to examine the possibility of predicting the selected property using high-resolution reflectance spectra and images. The study area is located in the Mugello basin, about 30 km north of Firenze (Tuscany, Italy). Agriculturally suitable terrains are assigned mainly to annual crops, marginally to olive groves, vineyards and orchards. Soils mostly belong to Regosols and Cambisols orders. An ASD FieldSpec spectroradiometer was used to obtain reflectance spectra from about 80 dried, crushed and sieved samples under controlled laboratory conditions. Samples were collected simultaneously with the flight of SIM.GA hyperspectral camera from Selex Galileo, over an area of about 5 km2 and their positions were recorded with a differential GPS. The quantitative determination of clay minerals content was performed by means of XRD and Rietveld refinement. Different chemometric techniques were preliminarily tested to correlate mineralogical records with reflectance data. A one component partial least squares regression model yielded a preliminary R2 value of 0.65. A slightly better result was achieved by plotting the absorption peak depth at 2210 versus total clay content (band-depth analysis). The complete SIM.GA hyperspectral geocoded row dataset, with an approximate pixel resolution of 0.6 m (VNIR) and 1.2 m (SWIR), was firstly transformed into at sensor radiance values, by applying calibration coefficients and parameters from laboratory measurements to non-georeferred VNIR/SWIR DN values. Then, airborne imagery needed to be corrected for the influence of the atmosphere, solar illumination, sensor viewing geometry and terrain geometry information, for the retrieval of inherent surface reflectance properties. The geocoded products were obtained for each flight line by using a procedure developed in IDL Language and PARGE (PARametric Geocoding) software. When all compensation parameters were applied to hyperspectral data or to the final thematic map, orthorectified, georeferred and coregistered VNIR to SWIR images or maps were available for GIS application and 3D view as well as for the retrieval of different geophysical parameters by means of inversion algorithms. The experimental fitting of laboratory data on mineral content is used for airborne data inversion, whose results are in agreement with laboratory records, demonstrating the possibility to use this methodology for digital mapping of soil properties. In this study, we established a complete procedure for mapping clay content areal variations in agricultural soils starting form airborne hyperspectral imagery.
High resolution spectral data from the ISS Hyperspectral Imager of the Coastal Ocean (HICO) system has been used to map the spatial distribution of selected water quality indicators for four Florida Gulf Coast estuaries from 2010-2012. HICO is the first hyperspectral imager speci...
Feng, Lei; Zhu, Susu; Lin, Fucheng; Su, Zhenzhu; Yuan, Kangpei; Zhao, Yiying; He, Yong; Zhang, Chu
2018-06-15
Mildew damage is a major reason for chestnut poor quality and yield loss. In this study, a near-infrared hyperspectral imaging system in the 874⁻1734 nm spectral range was applied to detect the mildew damage to chestnuts caused by blue mold. Principal component analysis (PCA) scored images were firstly employed to qualitatively and intuitively distinguish moldy chestnuts from healthy chestnuts. Spectral data were extracted from the hyperspectral images. A successive projections algorithm (SPA) was used to select 12 optimal wavelengths. Artificial neural networks, including back propagation neural network (BPNN), evolutionary neural network (ENN), extreme learning machine (ELM), general regression neural network (GRNN) and radial basis neural network (RBNN) were used to build models using the full spectra and optimal wavelengths to distinguish moldy chestnuts. BPNN and ENN models using full spectra and optimal wavelengths obtained satisfactory performances, with classification accuracies all surpassing 99%. The results indicate the potential for the rapid and non-destructive detection of moldy chestnuts by hyperspectral imaging, which would help to develop online detection system for healthy and blue mold infected chestnuts.
Advanced Systems Map, Monitor, and Manage Earth's Resources
NASA Technical Reports Server (NTRS)
2007-01-01
SpecTIR LLC, headquartered in Reno, Nevada, is recognized for innovative sensor design, on-demand hyperspectral data collection, and image-generating products for business, academia, and national and international governments. SpecTIR's current vice president of business development has brought a wealth of NASA-related research experience to the company, as the former principal investigator on a NASA-sponsored hyperspectral crop-imaging project. This project, made possible through a Small Business Technology Transfer (STTR) contract with Goddard Space Flight Center, aimed to enhance airborne hyperspectral sensing and ground-truthing means for crop inspection in the Mid-Atlantic region of the United States. Areas of application for such technology include precision farming and irrigation; oil, gas, and mineral exploration; pollution and contamination monitoring; wetland and forestry characterization; water quality assessment; and submerged aquatic vegetation mapping. Today, SpecTIR maintains its relationship with Goddard through programs at the University of Maryland in College Park, Maryland, and at the U.S. Department of Agriculture campus in Beltsville, Maryland. Additionally, work continues on the integration of hyperspectral data with LIDAR systems and other commercial-off-the-shelf technologies.
Hyperspectral Microwave Atmospheric Sounder (HyMas) - New Capability in the CoSMIR-CoSSIR Scanhead
NASA Technical Reports Server (NTRS)
Hilliard, L. M.; Racette, P. E.; Blackwell, W.; Galbraith, C.; Thompson, E.
2015-01-01
Lincoln Laboratory and NASA's Goddard Space Flight Center have teamed to re-use an existing instrument platform, the CoSMIRCoSSIR system for atmospheric sounding, to develop a new capability in hyperspectral filtering, data collection, and display. The volume of the scanhead accomodated an intermediate frequency processor(IFP), that provides the filtering and digitization of the raw data and the interoperable remote component (IRC) adapted to CoSMIR, CoSSIR, and HyMAS that stores and archives the data with time tagged calibration and navigation data.The first element of the work is the demonstration of a hyperspectral microwave receiver subsystem that was recently shown using a comprehensive simulation study to yield performance that substantially exceeds current state-of-the-art. Hyperspectral microwave sounders with 100 channels offer temperature and humidity sounding improvements similar to those obtained when infrared sensors became hyperspectral, but with the relative insensitivity to clouds that characterizes microwave sensors. Hyperspectral microwave operation is achieved using independent RF antennareceiver arrays that sample the same areavolume of the Earths surfaceatmosphere at slightly different frequencies and therefore synthesize a set of dense, finely spaced vertical weighting functions. The second, enabling element of the proposal is the development of a compact 52-channel Intermediate Frequency processor module. A principal challenge in the development of a hyperspectral microwave system is the size of the IF filter bank required for channelization. Large bandwidths are simultaneously processed, thus complicating the use of digital back-ends with associated high complexities, costs, and power requirements. Our approach involves passive filters implemented using low-temperature co-fired ceramic (LTCC) technology to achieve an ultra-compact module that can be easily integrated with existing RF front-end technology. This IF processor is universally applicable to other microwave sensing missions requiring compact IF spectrometry.The data include 52 operational channels with low IF module volume (100cm3) and mass (300g) and linearity better than 0.3 over a 330K dynamic range.
An adaptive band selection method for dimension reduction of hyper-spectral remote sensing image
NASA Astrophysics Data System (ADS)
Yu, Zhijie; Yu, Hui; Wang, Chen-sheng
2014-11-01
Hyper-spectral remote sensing data can be acquired by imaging the same area with multiple wavelengths, and it normally consists of hundreds of band-images. Hyper-spectral images can not only provide spatial information but also high resolution spectral information, and it has been widely used in environment monitoring, mineral investigation and military reconnaissance. However, because of the corresponding large data volume, it is very difficult to transmit and store Hyper-spectral images. Hyper-spectral image dimensional reduction technique is desired to resolve this problem. Because of the High relation and high redundancy of the hyper-spectral bands, it is very feasible that applying the dimensional reduction method to compress the data volume. This paper proposed a novel band selection-based dimension reduction method which can adaptively select the bands which contain more information and details. The proposed method is based on the principal component analysis (PCA), and then computes the index corresponding to every band. The indexes obtained are then ranked in order of magnitude from large to small. Based on the threshold, system can adaptively and reasonably select the bands. The proposed method can overcome the shortcomings induced by transform-based dimension reduction method and prevent the original spectral information from being lost. The performance of the proposed method has been validated by implementing several experiments. The experimental results show that the proposed algorithm can reduce the dimensions of hyper-spectral image with little information loss by adaptively selecting the band images.
Multimodal hyperspectral optical microscopy
Novikova, Irina V.; Smallwood, Chuck R.; Gong, Yu; ...
2017-09-02
We describe a unique and convenient approach to multimodal hyperspectral optical microscopy, herein achieved by coupling a portable and transferable hyperspectral imager to various optical microscopes. The experimental and data analysis schemes involved in recording spectrally and spatially resolved fluorescence, dark field, and optical absorption micrographs are illustrated through prototypical measurements targeting selected model systems. Namely, hyperspectral fluorescence micrographs of isolated fluorescent beads are employed to ensure spectral calibration of our detector and to gauge the attainable spatial resolution of our measurements; the recorded images are diffraction-limited. Moreover, spatially over-sampled absorption spectroscopy of a single lipid (18:1 Liss Rhod PE)more » layer reveals that optical densities on the order of 10-3 may be resolved by spatially averaging the recorded optical signatures. We also briefly illustrate two applications of our setup in the general areas of plasmonics and cell biology. Most notably, we deploy hyperspectral optical absorption microscopy to identify and image algal pigments within a single live Tisochrysis lutea cell. Overall, this work paves the way for multimodal multidimensional spectral imaging measurements spanning the realms of several scientific disciples.« less
Multimodal hyperspectral optical microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novikova, Irina V.; Smallwood, Chuck R.; Gong, Yu
We describe a unique and convenient approach to multimodal hyperspectral optical microscopy, herein achieved by coupling a portable and transferable hyperspectral imager to various optical microscopes. The experimental and data analysis schemes involved in recording spectrally and spatially resolved fluorescence, dark field, and optical absorption micrographs are illustrated through prototypical measurements targeting selected model systems. Namely, hyperspectral fluorescence micrographs of isolated fluorescent beads are employed to ensure spectral calibration of our detector and to gauge the attainable spatial resolution of our measurements; the recorded images are diffraction-limited. Moreover, spatially over-sampled absorption spectroscopy of a single lipid (18:1 Liss Rhod PE)more » layer reveals that optical densities on the order of 10-3 may be resolved by spatially averaging the recorded optical signatures. We also briefly illustrate two applications of our setup in the general areas of plasmonics and cell biology. Most notably, we deploy hyperspectral optical absorption microscopy to identify and image algal pigments within a single live Tisochrysis lutea cell. Overall, this work paves the way for multimodal multidimensional spectral imaging measurements spanning the realms of several scientific disciples.« less
NASA Astrophysics Data System (ADS)
Bruce, L. M.; Ball, J. E.; Evangilista, P.; Stohlgren, T. J.
2006-12-01
Nonnative invasive species adversely impact ecosystems, causing loss of native plant diversity, species extinction, and impairment of wildlife habitats. As a result, over the past decade federal and state agencies and nongovernmental organizations have begun to work more closely together to address the management of invasive species. In 2005, approximately 500M dollars was budgeted by U.S. Federal Agencies for the management of invasive species. Despite extensive expenditures, most of the methods used to detect and quantify the distribution of these invaders are ad hoc, at best. Likewise, decisions on the type of management techniques to be used or evaluation of the success of these methods are typically non-systematic. More efficient methods to detect or predict the occurrence of these species, as well as the incorporation of this knowledge into decision support systems, are greatly needed. In this project, rapid prototyping capabilities (RPC) are utilized for an invasive species application. More precisely, our recently developed analysis techniques for hyperspectral imagery are being prototyped for inclusion in the national Invasive Species Forecasting System (ISFS). The current ecological forecasting tools in ISFS will be compared to our hyperspectral-based invasives prediction algorithms to determine if/how the newer algorithms enhance the performance of ISFS. The PIs have researched the use of remotely sensed multispectral and hyperspectral reflectance data for the detection of invasive vegetative species. As a result, the PI has designed, implemented, and benchmarked various target detection systems that utilize remotely sensed data. These systems have been designed to make decisions based on a variety of remotely sensed data, including high spectral/spatial resolution hyperspectral signatures (1000's of spectral bands, such as those measured using ASD handheld devices), moderate spectral/spatial resolution hyperspectral images (100's of spectral bands, such as Hyperion imagery), and low spectral/spatial resolution images (such as MODIS imagery). These algorithms include hyperspectral exploitation methods such as stepwise-LDA band selection, optimized spectral band grouping, and stepwise PCA component selection. The PIs have extensive experience with combining these recently- developed methods with conventional classifiers to form an end-to-end automated target recognition (ATR) system for detecting invasive species. The outputs of these systems can be invasive prediction maps, as well as quantitative accuracy assessments like confusion matrices, user accuracies, and producer accuracies. For all of these research endeavors, the PIs have developed numerous advanced signal and image processing methodologies, as well a suite of associated software modules. However, the use of the prototype software modules has been primarily contained to Mississippi State University. The project described in this presentation and paper will enable future systematic inclusion of these software modules into a DSS with national scope.
USDA-ARS?s Scientific Manuscript database
Foodborne diseases are of serious concern for public health. It is necessary to develop fast and reliable non-destructive detection methods to improve food product monitoring for the food industry. This research was conducted to investigate hyperspectral fluorescence imaging using violet/blue LED ex...
USDA-ARS?s Scientific Manuscript database
The feasibility of using a visible/near-infrared hyperspectral imaging system with a wavelength range between 400 and 1000 nm to detect and differentiate different levels of aflatoxin B1 (AFB1) artificially titrated on maize kernel surface was examined. To reduce the color effects of maize kernels, ...
Adaptive hyperspectral imager: design, modeling, and control
NASA Astrophysics Data System (ADS)
McGregor, Scot; Lacroix, Simon; Monmayrant, Antoine
2015-08-01
An adaptive, hyperspectral imager is presented. We propose a system with easily adaptable spectral resolution, adjustable acquisition time, and high spatial resolution which is independent of spectral resolution. The system yields the possibility to define a variety of acquisition schemes, and in particular near snapshot acquisitions that may be used to measure the spectral content of given or automatically detected regions of interest. The proposed system is modelled and simulated, and tests on a first prototype validate the approach to achieve near snapshot spectral acquisitions without resorting to any computationally heavy post-processing, nor cumbersome calibration
Design of the compact high-resolution imaging spectrometer (CHRIS), and future developments
NASA Astrophysics Data System (ADS)
Cutter, Mike; Lobb, Dan
2017-11-01
The CHRIS instrument was launched on ESA's PROBA platform in October 2001, and is providing hyperspectral images of selected ground areas at 17m ground sampling distance, in the spectral range 415nm to 1050nm. Platform agility allows image sets to be taken at multiple view angles in each overpass. The design of the instrument is briefly outlined, including design of optics, structures, detection and in-flight calibration system. Lessons learnt from construction and operation of the experimental system, and possible design directions for future hyperspectral systems, are discussed.
NASA Astrophysics Data System (ADS)
Butz, Christoph; Grosjean, Martin; Enters, Dirk; Tylmann, Wojciech
2014-05-01
Varved lake sediments have successfully been used to make inferences about past environmental and climate conditions from annual to multi-millennial scales. Among other proxies, concentrations of sedimentary photopigments have been used for temperature reconstructions. However, obtaining well calibrated annually resolved records from sediments still remains challenging. Most laboratory methods used to analyse lake sediments require physical subsampling and are destructive in the process. Hence, temporal resolution and number of data are limited by the amount of material available in the core. Furthermore, for very low sediment accumulation rates annual subsampling is often very difficult or even impossible. To address these problems we explore hyper-spectral imaging as a new method to analyse lake sediments based on their reflectance spectra in the visible and near infrared spectrum. In contrast to other fast and non-destructive methods like X-ray fluorescence, VIS/NIR reflectance spectrometry distinguishes between biogeochemical substances rather than single elements. Rein (2003) has shown that VIS-RS can be used to detect relative concentrations of sedimentary photopigments (e.g. chlorins, carotenoids) and clay minerals. This study presents an advanced approach using a hyper-spectral camera and remote sensing techniques to infer climate proxy data from reflectance spectra of varved lake sediments. Hyper-spectral imaging allows analysing an entire sediment core in a single measurement, producing a spectral dataset with very high spatial (30x30µm/pixel) and spectral resolutions (~1nm) and a higher spectral range (400-1000nm) compared to previously used spectrophotometers. This allows the analysis of data time series at sub-varve scales or spatial mapping of sedimentary substances (e.g. chlorophyll-a and diagenetic products) at very high resolution. The method is demonstrated on varved lake sediments from northern Poland showing the change of the relative concentrations of chlorin pigments within individual varve years. In a next step absolute concentrations of chlorins derived from HPLC measurements have been calibrated to the spectral data using a linear regression model. This results in a very high-resolution dataset of absolute sedimentary pigment concentrations. In a second example µXRF measurements are used to validate a spectral index for clay mineral detection.
2D stepping drive for hyperspectral systems
NASA Astrophysics Data System (ADS)
Endrödy, Csaba; Mehner, Hannes; Grewe, Adrian; Sinzinger, Stefan; Hoffmann, Martin
2015-07-01
We present the design, fabrication and characterization of a compact 2D stepping microdrive for pinhole array positioning. The miniaturized solution enables a highly integrated compact hyperspectral imaging system. Based on the geometry of the pinhole array, an inch-worm drive with electrostatic actuators was designed resulting in a compact (1 cm2) positioning system featuring a step size of about 15 µm in a 170 µm displacement range. The high payload (20 mg) as required for the pinhole array and the compact system design exceed the known electrostatic inch-worm-based microdrives.
Hyperspectral Imaging and Related Field Methods: Building the Science
NASA Technical Reports Server (NTRS)
Goetz, Alexander F. H.; Steffen, Konrad; Wessman, Carol
1999-01-01
The proposal requested funds for the computing power to bring hyperspectral image processing into undergraduate and graduate remote sensing courses. This upgrade made it possible to handle more students in these oversubscribed courses and to enhance CSES' summer short course entitled "Hyperspectral Imaging and Data Analysis" provided for government, industry, university and military. Funds were also requested to build field measurement capabilities through the purchase of spectroradiometers, canopy radiation sensors and a differential GPS system. These instruments provided systematic and complete sets of field data for the analysis of hyperspectral data with the appropriate radiometric and wavelength calibration as well as atmospheric data needed for application of radiative transfer models. The proposed field equipment made it possible to team-teach a new field methods course, unique in the country, that took advantage of the expertise of the investigators rostered in three different departments, Geology, Geography and Biology.
Classification of Korla fragrant pears using NIR hyperspectral imaging analysis
NASA Astrophysics Data System (ADS)
Rao, Xiuqin; Yang, Chun-Chieh; Ying, Yibin; Kim, Moon S.; Chao, Kuanglin
2012-05-01
Korla fragrant pears are small oval pears characterized by light green skin, crisp texture, and a pleasant perfume for which they are named. Anatomically, the calyx of a fragrant pear may be either persistent or deciduous; the deciduouscalyx fruits are considered more desirable due to taste and texture attributes. Chinese packaging standards require that packed cases of fragrant pears contain 5% or less of the persistent-calyx type. Near-infrared hyperspectral imaging was investigated as a potential means for automated sorting of pears according to calyx type. Hyperspectral images spanning the 992-1681 nm region were acquired using an EMCCD-based laboratory line-scan imaging system. Analysis of the hyperspectral images was performed to select wavebands useful for identifying persistent-calyx fruits and for identifying deciduous-calyx fruits. Based on the selected wavebands, an image-processing algorithm was developed that targets automated classification of Korla fragrant pears into the two categories for packaging purposes.
Image enhancement based on in vivo hyperspectral gastroscopic images: a case study
NASA Astrophysics Data System (ADS)
Gu, Xiaozhou; Han, Zhimin; Yao, Liqing; Zhong, Yunshi; Shi, Qiang; Fu, Ye; Liu, Changsheng; Wang, Xiguang; Xie, Tianyu
2016-10-01
Hyperspectral imaging (HSI) has been recognized as a powerful tool for noninvasive disease detection in the gastrointestinal field. However, most of the studies on HSI in this field have involved ex vivo biopsies or resected tissues. We proposed an image enhancement method based on in vivo hyperspectral gastroscopic images. First, we developed a flexible gastroscopy system capable of obtaining in vivo hyperspectral images of different types of stomach disease mucosa. Then, depending on a specific object, an appropriate band selection algorithm based on dependence of information was employed to determine a subset of spectral bands that would yield useful spatial information. Finally, these bands were assigned to be the color components of an enhanced image of the object. A gastric ulcer case study demonstrated that our method yields higher color tone contrast, which enhanced the displays of the gastric ulcer regions, and that it will be valuable in clinical applications.
Cucci, Costanza; Delaney, John K; Picollo, Marcello
2016-10-18
Diffuse reflectance hyperspectral imaging, or reflectance imaging spectroscopy, is a sophisticated technique that enables the capture of hundreds of images in contiguous narrow spectral bands (bandwidth < 10 nm), typically in the visible (Vis, 400-750 nm) and the near-infrared (NIR, 750-2500 nm) regions. This sequence of images provides a data set that is called an image-cube or file-cube. Two dimensions of the image-cube are the spatial dimensions of the scene, and the third dimension is the wavelength. In this way, each spatial pixel in the image has an associated reflectance spectrum. This "big data" image-cube allows for the mining of artists' materials and mapping their distribution across the surface of a work of art. Reflectance hyperspectral imaging, introduced in the 1980s by Goetz and co-workers, led to a revolution in the field of remote sensing of the earth and near planets ( Goetz, F. H.; Vane, G.; Solomon, B. N.; Rock, N. Imaging Spectrometry for Earth Remote Sensing . Science , 1985 , 228 , 1147 - 1152 ). In the subsequent decades, thanks to rapid advances in solid-state sensor technology, reflectance hyperspectral imaging, once only available to large government laboratories, was extended to new fields of application, such as monitoring agri-foods, pharmaceutical products, the environment, and cultural heritage. In the 2000s, the potential of this noninvasive technology for the study of artworks became evident and, consequently, the methodology is becoming more widely used in the art conservation science field. Typically hyperspectral reflectance image-cubes contain millions of spectra. Many of these spectra are similar, making the reduction of the data set size an important first step. Thus, image-processing tools based on multivariate techniques, such as principal component analysis (PCA), automated classification methods, or expert knowledge systems, that search for known spectral features are often applied. These algorithms seek to reduce the large number of high-quality spectra to a common subset, which allow identifying and mapping artists' materials and alteration products. Hence, reflectance hyperspectral imaging is finding its place as the starting point to find sites on polychrome surfaces for spot analytical techniques, such as X-ray fluorescence, Raman spectroscopy, and Fourier transform infrared spectroscopy. Reflectance hyperspectral imaging can also provide image products that are a mainstay in the art conservation field, such as color-accurate images, broadband near-infrared images, and false-color products. This Account reports on the research activity carried out by two research groups, one at the "Nello Carrara" Institute of Applied Physics of the Italian National Research Council (IFAC-CNR) in Florence and the other at the National Gallery of Art (NGA) in Washington, D.C. Both groups have conducted parallel research, with frequent interchanges, to develop multispectral and hyperspectral imaging systems to study works of art. In the past decade, they have designed and experimented with some of the earliest spectral imaging prototypes for museum applications. In this Account, a brief presentation of the hyperspectral sensor systems is given with case studies showing how reflectance hyperspectral imaging is answering key questions in cultural heritage.
Rapid calibrated high-resolution hyperspectral imaging using tunable laser source
NASA Astrophysics Data System (ADS)
Nguyen, Lam K.; Margalith, Eli
2009-05-01
We present a novel hyperspectral imaging technique based on tunable laser technology. By replacing the broadband source and tunable filters of a typical NIR imaging instrument, several advantages are realized, including: high spectral resolution, highly variable field-of-views, fast scan-rates, high signal-to-noise ratio, and the ability to use optical fiber for efficient and flexible sample illumination. With this technique, high-resolution, calibrated hyperspectral images over the NIR range can be acquired in seconds. The performance of system features will be demonstrated on two example applications: detecting melamine contamination in wheat gluten and separating bovine protein from wheat protein in cattle feed.
Sousa, Daniel; Small, Christopher
2018-02-14
Planned hyperspectral satellite missions and the decreased revisit time of multispectral imaging offer the potential for data fusion to leverage both the spectral resolution of hyperspectral sensors and the temporal resolution of multispectral constellations. Hyperspectral imagery can also be used to better understand fundamental properties of multispectral data. In this analysis, we use five flight lines from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) archive with coincident Landsat 8 acquisitions over a spectrally diverse region of California to address the following questions: (1) How much of the spectral dimensionality of hyperspectral data is captured in multispectral data?; (2) Is the characteristic pyramidal structure of the multispectral feature space also present in the low order dimensions of the hyperspectral feature space at comparable spatial scales?; (3) How much variability in rock and soil substrate endmembers (EMs) present in hyperspectral data is captured by multispectral sensors? We find nearly identical partitions of variance, low-order feature space topologies, and EM spectra for hyperspectral and multispectral image composites. The resulting feature spaces and EMs are also very similar to those from previous global multispectral analyses, implying that the fundamental structure of the global feature space is present in our relatively small spatial subset of California. Finally, we find that the multispectral dataset well represents the substrate EM variability present in the study area - despite its inability to resolve narrow band absorptions. We observe a tentative but consistent physical relationship between the gradation of substrate reflectance in the feature space and the gradation of sand versus clay content in the soil classification system.
Small, Christopher
2018-01-01
Planned hyperspectral satellite missions and the decreased revisit time of multispectral imaging offer the potential for data fusion to leverage both the spectral resolution of hyperspectral sensors and the temporal resolution of multispectral constellations. Hyperspectral imagery can also be used to better understand fundamental properties of multispectral data. In this analysis, we use five flight lines from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) archive with coincident Landsat 8 acquisitions over a spectrally diverse region of California to address the following questions: (1) How much of the spectral dimensionality of hyperspectral data is captured in multispectral data?; (2) Is the characteristic pyramidal structure of the multispectral feature space also present in the low order dimensions of the hyperspectral feature space at comparable spatial scales?; (3) How much variability in rock and soil substrate endmembers (EMs) present in hyperspectral data is captured by multispectral sensors? We find nearly identical partitions of variance, low-order feature space topologies, and EM spectra for hyperspectral and multispectral image composites. The resulting feature spaces and EMs are also very similar to those from previous global multispectral analyses, implying that the fundamental structure of the global feature space is present in our relatively small spatial subset of California. Finally, we find that the multispectral dataset well represents the substrate EM variability present in the study area – despite its inability to resolve narrow band absorptions. We observe a tentative but consistent physical relationship between the gradation of substrate reflectance in the feature space and the gradation of sand versus clay content in the soil classification system. PMID:29443900
Prasad, Dilip K; Agarwal, Krishna
2016-03-22
We propose a method for classifying radiometric oceanic color data measured by hyperspectral satellite sensors into known spectral classes, irrespective of the downwelling irradiance of the particular day, i.e., the illumination conditions. The focus is not on retrieving the inherent optical properties but to classify the pixels according to the known spectral classes of the reflectances from the ocean. The method compensates for the unknown downwelling irradiance by white balancing the radiometric data at the ocean pixels using the radiometric data of bright pixels (typically from clouds). The white-balanced data is compared with the entries in a pre-calibrated lookup table in which each entry represents the spectral properties of one class. The proposed approach is tested on two datasets of in situ measurements and 26 different daylight illumination spectra for medium resolution imaging spectrometer (MERIS), moderate-resolution imaging spectroradiometer (MODIS), sea-viewing wide field-of-view sensor (SeaWiFS), coastal zone color scanner (CZCS), ocean and land colour instrument (OLCI), and visible infrared imaging radiometer suite (VIIRS) sensors. Results are also shown for CIMEL's SeaPRISM sun photometer sensor used on-board field trips. Accuracy of more than 92% is observed on the validation dataset and more than 86% is observed on the other dataset for all satellite sensors. The potential of applying the algorithms to non-satellite and non-multi-spectral sensors mountable on airborne systems is demonstrated by showing classification results for two consumer cameras. Classification on actual MERIS data is also shown. Additional results comparing the spectra of remote sensing reflectance with level 2 MERIS data and chlorophyll concentration estimates of the data are included.
NASA Astrophysics Data System (ADS)
Pande-Chhetri, Roshan
High resolution hyperspectral imagery (airborne or ground-based) is gaining momentum as a useful analytical tool in various fields including agriculture and aquatic systems. These images are often contaminated with stripes and noise resulting in lower signal-to-noise ratio, especially in aquatic regions where signal is naturally low. This research investigates effective methods for filtering high spatial resolution hyperspectral imagery and use of the imagery in water quality parameter estimation and aquatic vegetation classification. The striping pattern of the hyperspectral imagery is non-parametric and difficult to filter. In this research, a de-striping algorithm based on wavelet analysis and adaptive Fourier domain normalization was examined. The result of this algorithm was found superior to other available algorithms and yielded highest Peak Signal to Noise Ratio improvement. The algorithm was implemented on individual image bands and on selected bands of the Maximum Noise Fraction (MNF) transformed images. The results showed that image filtering in the MNF domain was efficient and produced best results. The study investigated methods of analyzing hyperspectral imagery to estimate water quality parameters and to map aquatic vegetation in case-2 waters. Ground-based hyperspectral imagery was analyzed to determine chlorophyll-a (Chl-a) concentrations in aquaculture ponds. Two-band and three-band indices were implemented and the effect of using submerged reflectance targets was evaluated. Laboratory measured values were found to be in strong correlation with two-band and three-band spectral indices computed from the hyperspectral image. Coefficients of determination (R2) values were found to be 0.833 and 0.862 without submerged targets and stronger values of 0.975 and 0.982 were obtained using submerged targets. Airborne hyperspectral images were used to detect and classify aquatic vegetation in a black river estuarine system. Image normalization for water surface reflectance and water depths was conducted and non-parametric classifiers such as ANN, SVM and SAM were tested and compared. Quality assessment indicated better classification and detection when non-parametric classifiers were applied to normalized or depth invariant transform images. Best classification accuracy of 73% was achieved when ANN is applied on normalized image and best detection accuracy of around 92% was obtained when SVM or SAM was applied on depth invariant images.
A hyperspectral image optimizing method based on sub-pixel MTF analysis
NASA Astrophysics Data System (ADS)
Wang, Yun; Li, Kai; Wang, Jinqiang; Zhu, Yajie
2015-04-01
Hyperspectral imaging is used to collect tens or hundreds of images continuously divided across electromagnetic spectrum so that the details under different wavelengths could be represented. A popular hyperspectral imaging methods uses a tunable optical band-pass filter settled in front of the focal plane to acquire images of different wavelengths. In order to alleviate the influence of chromatic aberration in some segments in a hyperspectral series, in this paper, a hyperspectral optimizing method uses sub-pixel MTF to evaluate image blurring quality was provided. This method acquired the edge feature in the target window by means of the line spread function (LSF) to calculate the reliable position of the edge feature, then the evaluation grid in each line was interpolated by the real pixel value based on its relative position to the optimal edge and the sub-pixel MTF was used to analyze the image in frequency domain, by which MTF calculation dimension was increased. The sub-pixel MTF evaluation was reliable, since no image rotation and pixel value estimation was needed, and no artificial information was introduced. With theoretical analysis, the method proposed in this paper is reliable and efficient when evaluation the common images with edges of small tilt angle in real scene. It also provided a direction for the following hyperspectral image blurring evaluation and the real-time focal plane adjustment in real time in related imaging system.
Development of a Micro-UAV Hyperspectral Imaging Platform for Assessing Hydrogeological Hazards
NASA Astrophysics Data System (ADS)
Chen, Z.; Alabsi, M.
2015-12-01
The exacerbating global weather changes have cast significant impacts upon the proportion of water supplied to agriculture. Therefore, one of the 21stCentury Grant Challenges faced by global population is securing water for food. However, the soil-water behavior in an agricultural environment is complex; among others, one of the key properties we recognize is water repellence or hydrophobicity, which affects many hydrogeological and hazardous conditions such as excessive water infiltration, runoff, and soil erosion. Under a US-Israel research program funded by USDA and BARD at Israel, we have proposed the development of a novel micro-unmanned aerial vehicle (micro-UAV or drone) based hyperspectral imaging platform for identifying and assessing soil repellence at low altitudes with enhanced flexibility, much reduced cost, and ultimately easy use. This aerial imaging system consists of a generic micro-UAV, hyperspectral sensor aided by GPS/IMU, on-board computing units, and a ground station. The target benefits of this system include: (1) programmable waypoint navigation and robotic control for multi-view imaging; (2) ability of two- or three-dimensional scene reconstruction for complex terrains; and (3) fusion with other sensors to realize real-time diagnosis (e.g., humidity and solar irradiation that may affect soil-water sensing). In this talk we present our methodology and processes in integration of hyperspectral imaging, on-board sensing and computing, hyperspectral data modeling, and preliminary field demonstration and verification of the developed prototype.
Imaging Beyond What Man Can See
NASA Technical Reports Server (NTRS)
May, George; Mitchell, Brian
2004-01-01
Three lightweight, portable hyperspectral sensor systems have been built that capture energy from 200 to 1700 nanometers (ultravio1et to shortwave infrared). The sensors incorporate a line scanning technique that requires no relative movement between the target and the sensor. This unique capability, combined with portability, opens up new uses of hyperspectral imaging for laboratory and field environments. Each system has a GUI-based software package that allows the user to communicate with the imaging device for setting spatial resolution, spectral bands and other parameters. NASA's Space Partnership Development has sponsored these innovative developments and their application to human problems on Earth and in space. Hyperspectral datasets have been captured and analyzed in numerous areas including precision agriculture, food safety, biomedical imaging, and forensics. Discussion on research results will include realtime detection of food contaminants, molds and toxin research on corn, identifying counterfeit documents, non-invasive wound monitoring and aircraft applications. Future research will include development of a thermal infrared hyperspectral sensor that will support natural resource applications on Earth and thermal analyses during long duration space flight. This paper incorporates a variety of disciplines and imaging technologies that have been linked together to allow the expansion of remote sensing across both traditional and non-traditional boundaries.
Kashani, Amir H.; Kirkman, Erlinda; Martin, Gabriel; Humayun, Mark S.
2011-01-01
Diagnosis of retinal vascular diseases depends on ophthalmoscopic findings that most often occur after severe visual loss (as in vein occlusions) or chronic changes that are irreversible (as in diabetic retinopathy). Despite recent advances, diagnostic imaging currently reveals very little about the vascular function and local oxygen delivery. One potentially useful measure of vascular function is measurement of hemoglobin oxygen content. In this paper, we demonstrate a novel method of accurately, rapidly and easily measuring oxygen saturation within retinal vessels using in vivo imaging spectroscopy. This method uses a commercially available fundus camera coupled to two-dimensional diffracting optics that scatter the incident light onto a focal plane array in a calibrated pattern. Computed tomographic algorithms are used to reconstruct the diffracted spectral patterns into wavelength components of the original image. In this paper the spectral components of oxy- and deoxyhemoglobin are analyzed from the vessels within the image. Up to 76 spectral measurements can be made in only a few milliseconds and used to quantify the oxygen saturation within the retinal vessels over a 10–15 degree field. The method described here can acquire 10-fold more spectral data in much less time than conventional oximetry systems (while utilizing the commonly accepted fundus camera platform). Application of this method to animal models of retinal vascular disease and clinical subjects will provide useful and novel information about retinal vascular disease and physiology. PMID:21931729
High spatial sampling light-guide snapshot spectrometer
Wang, Ye; Pawlowski, Michal E.; Tkaczyk, Tomasz S.
2017-01-01
A prototype fiber-based imaging spectrometer was developed to provide snapshot hyperspectral imaging tuned for biomedical applications. The system is designed for imaging in the visible spectral range from 400 to 700 nm for compatibility with molecular imaging applications as well as satellite and remote sensing. An 81 × 96 pixel spatial sampling density is achieved by using a custom-made fiber-optic bundle. The design considerations and fabrication aspects of the fiber bundle and imaging spectrometer are described in detail. Through the custom fiber bundle, the image of a scene of interest is collected and divided into discrete spatial groups, with spaces generated in between groups for spectral dispersion. This reorganized image is scaled down by an image taper for compatibility with following optical elements, dispersed by a prism, and is finally acquired by a CCD camera. To obtain an (x, y, λ) datacube from the snapshot measurement, a spectral calibration algorithm is executed for reconstruction of the spatial–spectral signatures of the observed scene. System characterization of throughput, resolution, and crosstalk was performed. Preliminary results illustrating changes in oxygen-saturation in an occluded human finger are presented to demonstrate the system’s capabilities. PMID:29238115
Analysis of hyperspectral fluorescence images for poultry skin tumor inspection
NASA Astrophysics Data System (ADS)
Kong, Seong G.; Chen, Yud-Ren; Kim, Intaek; Kim, Moon S.
2004-02-01
We present a hyperspectral fluorescence imaging system with a fuzzy inference scheme for detecting skin tumors on poultry carcasses. Hyperspectral images reveal spatial and spectral information useful for finding pathological lesions or contaminants on agricultural products. Skin tumors are not obvious because the visual signature appears as a shape distortion rather than a discoloration. Fluorescence imaging allows the visualization of poultry skin tumors more easily than reflectance. The hyperspectral image samples obtained for this poultry tumor inspection contain 65 spectral bands of fluorescence in the visible region of the spectrum at wavelengths ranging from 425 to 711 nm. The large amount of hyperspectral image data is compressed by use of a discrete wavelet transform in the spatial domain. Principal-component analysis provides an effective compressed representation of the spectral signal of each pixel in the spectral domain. A small number of significant features are extracted from two major spectral peaks of relative fluorescence intensity that have been identified as meaningful spectral bands for detecting tumors. A fuzzy inference scheme that uses a small number of fuzzy rules and Gaussian membership functions successfully detects skin tumors on poultry carcasses. Spatial-filtering techniques are used to significantly reduce false positives.
Advances in Spectral-Spatial Classification of Hyperspectral Images
NASA Technical Reports Server (NTRS)
Fauvel, Mathieu; Tarabalka, Yuliya; Benediktsson, Jon Atli; Chanussot, Jocelyn; Tilton, James C.
2012-01-01
Recent advances in spectral-spatial classification of hyperspectral images are presented in this paper. Several techniques are investigated for combining both spatial and spectral information. Spatial information is extracted at the object (set of pixels) level rather than at the conventional pixel level. Mathematical morphology is first used to derive the morphological profile of the image, which includes characteristics about the size, orientation and contrast of the spatial structures present in the image. Then the morphological neighborhood is defined and used to derive additional features for classification. Classification is performed with support vector machines using the available spectral information and the extracted spatial information. Spatial post-processing is next investigated to build more homogeneous and spatially consistent thematic maps. To that end, three presegmentation techniques are applied to define regions that are used to regularize the preliminary pixel-wise thematic map. Finally, a multiple classifier system is defined to produce relevant markers that are exploited to segment the hyperspectral image with the minimum spanning forest algorithm. Experimental results conducted on three real hyperspectral images with different spatial and spectral resolutions and corresponding to various contexts are presented. They highlight the importance of spectral-spatial strategies for the accurate classification of hyperspectral images and validate the proposed methods.
Hyperspectral Imaging of Forest Resources: The Malaysian Experience
NASA Astrophysics Data System (ADS)
Mohd Hasmadi, I.; Kamaruzaman, J.
2008-08-01
Remote sensing using satellite and aircraft images are well established technology. Remote sensing application of hyperspectral imaging, however, is relatively new to Malaysian forestry. Through a wide range of wavelengths hyperspectral data are precisely capable to capture narrow bands of spectra. Airborne sensors typically offer greatly enhanced spatial and spectral resolution over their satellite counterparts, and able to control experimental design closely during image acquisition. The first study using hyperspectral imaging for forest inventory in Malaysia were conducted by Professor Hj. Kamaruzaman from the Faculty of Forestry, Universiti Putra Malaysia in 2002 using the AISA sensor manufactured by Specim Ltd, Finland. The main objective has been to develop methods that are directly suited for practical tropical forestry application at the high level of accuracy. Forest inventory and tree classification including development of single spectral signatures have been the most important interest at the current practices. Experiences from the studies showed that retrieval of timber volume and tree discrimination using this system is well and some or rather is better than other remote sensing methods. This article reviews the research and application of airborne hyperspectral remote sensing for forest survey and assessment in Malaysia.
Models of formation and some algorithms of hyperspectral image processing
NASA Astrophysics Data System (ADS)
Achmetov, R. N.; Stratilatov, N. R.; Yudakov, A. A.; Vezenov, V. I.; Eremeev, V. V.
2014-12-01
Algorithms and information technologies for processing Earth hyperspectral imagery are presented. Several new approaches are discussed. Peculiar properties of processing the hyperspectral imagery, such as multifold signal-to-noise reduction, atmospheric distortions, access to spectral characteristics of every image point, and high dimensionality of data, were studied. Different measures of similarity between individual hyperspectral image points and the effect of additive uncorrelated noise on these measures were analyzed. It was shown that these measures are substantially affected by noise, and a new measure free of this disadvantage was proposed. The problem of detecting the observed scene object boundaries, based on comparing the spectral characteristics of image points, is considered. It was shown that contours are processed much better when spectral characteristics are used instead of energy brightness. A statistical approach to the correction of atmospheric distortions, which makes it possible to solve the stated problem based on analysis of a distorted image in contrast to analytical multiparametric models, was proposed. Several algorithms used to integrate spectral zonal images with data from other survey systems, which make it possible to image observed scene objects with a higher quality, are considered. Quality characteristics of hyperspectral data processing were proposed and studied.
Mesosiderites on Vesta: A Hyperspectral VIS-NIR Investigation
NASA Technical Reports Server (NTRS)
Palomba, E.; Longobardo, A.; DeSanctis, M. C.; Mittlefehldt, D. W.; Ammannito, E.; Capaccioni, F.; Capria, M. T.; Frigeri, A.; Tosi, F.; Zambon, F.;
2013-01-01
The discussion about the mesosiderite origin is an open issue since several years. Mesosiderites are mixtures of silicate mineral fragments or clasts, embedded in a FeNi metal matrix. Silicates are very similar in mineralogy and texture to howardites [1]. This led some scientists to conclude that mesosiderites could come from the same parent parent asteroid of the howardite, eucrite and diogenite (HED) meteorites [2, 3]. Other studies found a number of differences between HEDs and mesosiderite silicates that could be explained only by separate parent asteroids [4]. Recently, high precision oxygen isotope measurements of m esosiderites silicate fraction were found to be isotopically identical to the HEDs, requiring common parent body, i.e. 4 Vesta [5]. Another important element in favor of a common origin was given by the identification of a centimeter-sized mesosiderite clast in a howardite (Dar al Gani 779): a metal-rich inclusion with fragments of olivine, anorthite, and orthopyroxene plus minor amounts of chromite, tridymite, and troilite [6]. The Dawn mission with its instruments, the Infrared Mapping Spectrometer (VIR) [7], the Framing Camera [8] and the Gamma-Ray and Neutron Detector (GRaND) [9] confirmed that Vesta has a composition fully compatible with HED meteorites [10]. We investigate here the possibility to discern mesosiderite rich locations on the surface of Vesta by means of hyperspectral IR images.
Hyperspectral Microwave Atmospheric Sounder (HyMAS) - New Capability in the CoSMIR-CoSSIR Scanhead
NASA Technical Reports Server (NTRS)
Hilliard, Lawrence; Racette, Paul; Blackwell, William; Galbraith, Christopher; Thompson, Erik
2015-01-01
Lincoln Laboratory and NASA's Goddard Space Flight Center have teamed to re-use an existing instrument platform, the CoSMIR/CoSSIR system for atmospheric sounding, to develop a new capability in hyperspectral filtering, data collection, and display. The volume of the scanhead accomodated an intermediate frequency processor(IFP), that provides the filtering and digitization of the raw data and the interoperable remote component (IRC) adapted to CoSMIR, CoSSIR, and HyMAS that stores and archives the data with time tagged calibration and navigation data. The first element of the work is the demonstration of a hyperspectral microwave receiver subsystem that was recently shown using a comprehensive simulation study to yield performance that substantially exceeds current state-of-the-art. Hyperspectral microwave sounders with approximately 100 channels offer temperature and humidity sounding improvements similar to those obtained when infrared sensors became hyperspectral, but with the relative insensitivity to clouds that characterizes microwave sensors. Hyperspectral microwave operation is achieved using independent RF antenna/receiver arrays that sample the same area/volume of the Earth's surface/atmosphere at slightly different frequencies and therefore synthesize a set of dense, finely spaced vertical weighting functions. The second, enabling element of the proposal is the development of a compact 52-channel Intermediate Frequency processor module. A principal challenge in the development of a hyperspectral microwave system is the size of the IF filter bank required for channelization. Large bandwidths are simultaneously processed, thus complicating the use of digital back-ends with associated high complexities, costs, and power requirements. Our approach involves passive filters implemented using low-temperature co-fired ceramic (LTCC) technology to achieve an ultra-compact module that can be easily integrated with existing radio frequency front-end technology. This IF processor is universally applicable to other microwave sensing missions requiring compact IF spectrometry. The data include 52 operational channels with low IF module volume (less than 100 cubic centimeters) and mass (less than 300 grams) and linearity better than 0.3 percent over a 330,000 dynamic range.
Hyperspectral and in situ data fusion for the steering of plant production systems
NASA Astrophysics Data System (ADS)
Verstraeten, W. W.; Coppin, P.
2009-04-01
Plant production systems are governed by biotic and a-biotic factors and by management practices. Some of the relevant parameters have already been identified and incorporated as inputs into existing models for production assessment, early-warning, and process management. These parameters originate nowadays primarily from in-situ measurements and observations. Non-invasive remotely sensed data, the diagnostic tools of excellence where it concerns the interaction of solar energy with biomass, have seldom been included and if so, mostly to support yield assessment and harvest monitoring only. The availability of new-generation hyperspectral/hypertemporal signatures will greatly facilitate their integration into full-fledged plant production model either via direct use, forcing, assimilation or re-initialization strategies. The main objective of IS-HS (Integration of In Situ data and HyperSpectral remote sensing for plant production modeling) is to set up a multidisciplinary research platform to deepen our system understanding and to develop production-oriented schemes to steer capital-intensive vegetation scenarios. Real-time steering in a 10-15 year timeframe is envisaged, where current system state is monitored, and steered towards an ideal state in terms of production quantity and quality. IS-HS focuses on hyperspectral sensor design, time series analysis tools for remote sensing data of vegetation systems, on the establishment of two stream communication between satellite and ground sensors, on the development of citrus plant production systems, and on the design of in-situ data sensor networks. The general framework of this system approach will be presented. In time, this integration should allow to cross the bridge from post-harvest assessment to near real-time potential and actual yield monitoring in terms of crop.
Towards collaboration between unmanned aerial and ground vehicles for precision agriculture
NASA Astrophysics Data System (ADS)
Bhandari, Subodh; Raheja, Amar; Green, Robert L.; Do, Dat
2017-05-01
This paper presents the work being conducted at Cal Poly Pomona on the collaboration between unmanned aerial and ground vehicles for precision agriculture. The unmanned aerial vehicles (UAVs), equipped with multispectral/hyperspectral cameras and RGB cameras, take images of the crops while flying autonomously. The images are post processed or can be processed onboard. The processed images are used in the detection of unhealthy plants. Aerial data can be used by the UAVs and unmanned ground vehicles (UGVs) for various purposes including care of crops, harvest estimation, etc. The images can also be useful for optimized harvesting by isolating low yielding plants. These vehicles can be operated autonomously with limited or no human intervention, thereby reducing cost and limiting human exposure to agricultural chemicals. The paper discuss the autonomous UAV and UGV platforms used for the research, sensor integration, and experimental testing. Methods for ground truthing the results obtained from the UAVs will be used. The paper will also discuss equipping the UGV with a robotic arm for removing the unhealthy plants and/or weeds.
NASA Astrophysics Data System (ADS)
Ramirez, Andres; Rahnemoonfar, Maryam
2017-04-01
A hyperspectral image provides multidimensional figure rich in data consisting of hundreds of spectral dimensions. Analyzing the spectral and spatial information of such image with linear and non-linear algorithms will result in high computational time. In order to overcome this problem, this research presents a system using a MapReduce-Graphics Processing Unit (GPU) model that can help analyzing a hyperspectral image through the usage of parallel hardware and a parallel programming model, which will be simpler to handle compared to other low-level parallel programming models. Additionally, Hadoop was used as an open-source version of the MapReduce parallel programming model. This research compared classification accuracy results and timing results between the Hadoop and GPU system and tested it against the following test cases: the CPU and GPU test case, a CPU test case and a test case where no dimensional reduction was applied.
Ground-based Observation System Development for the Moon Hyper-spectral Imaging
NASA Astrophysics Data System (ADS)
Wang, Yang; Huang, Yu; Wang, Shurong; Li, Zhanfeng; Zhang, Zihui; Hu, Xiuqing; Zhang, Peng
2017-05-01
The Moon provides a suitable radiance source for on-orbit calibration of space-borne optical instruments. A ground-based observation system dedicated to the hyper-spectral radiometry of the Moon has been developed for improving and validating the current lunar model. The observation instrument using a dispersive imaging spectrometer is particularly designed for high-accuracy observations of the lunar radiance. The simulation and analysis of the push-broom mechanism is made in detail for lunar observations, and the automated tracking and scanning is well accomplished in different observational condition. A three-month series of hyper-spectral imaging experiments of the Moon have been performed in the wavelength range from 400 to 1000 nm near Lijiang Observatory (Yunnan, China) at phase angles -83°-87°. Preliminary results and data comparison are presented, and it shows the instrument performance and lunar observation capability of this system are well validated. Beyond previous measurements, this observation system provides the entire lunar disk images of continuous spectral coverage by adopting the push-broom mode with special scanning scheme and leads to the further research of lunar photometric model.
Candiani, Gabriele; Picone, Nicoletta; Pompilio, Loredana; Pepe, Monica; Colledani, Marcello
2017-01-01
Waste of electric and electronic equipment (WEEE) is the fastest-growing waste stream in Europe. The large amount of electric and electronic products introduced every year in the market makes WEEE disposal a relevant problem. On the other hand, the high abundance of key metals included in WEEE has increased the industrial interest in WEEE recycling. However, the high variability of materials used to produce electric and electronic equipment makes key metals’ recovery a complex task: the separation process requires flexible systems, which are not currently implemented in recycling plants. In this context, hyperspectral sensors and imaging systems represent a suitable technology to improve WEEE recycling rates and the quality of the output products. This work introduces the preliminary tests using a hyperspectral system, integrated in an automatic WEEE recycling pilot plant, for the characterization of mixtures of fine particles derived from WEEE shredding. Several combinations of classification algorithms and techniques for signal enhancement of reflectance spectra were implemented and compared. The methodology introduced in this study has shown characterization accuracies greater than 95%. PMID:28505070
NASA Astrophysics Data System (ADS)
Hestir, E. L.; Schoellhamer, D. H.; Santos, M. J.; Greenberg, J. A.; Morgan-King, T.; Khanna, S.; Ustin, S.
2016-02-01
Estuarine ecosystems and their biogeochemical processes are extremely vulnerable to climate and environmental changes, and are threatened by sea level rise and upstream activities such as land use/land cover and hydrological changes. Despite the recognized threat to estuaries, most aspects of how change will affect estuaries are not well understood due to the poorly resolved understanding of the complex physical, chemical and biological processes and their interactions in estuarine systems. Remote sensing technologies such as high spectral resolution optical systems enable measurements of key environmental parameters needed to establish baseline conditions and improve modeling efforts. The San Francisco Bay-Delta is a highly modified estuary system in a state of ecological crisis due to the numerous threats to its sustainability. In this study, we used a combination of hyperspectral remote sensing and long-term in situ monitoring records to investigate how water clarity has been responding to extreme climatic events, anthropogenic watershed disturbances, and submerged aquatic vegetation (SAV) invasions. From the long-term turbidity monitoring record, we found that water clarity underwent significant increasing step changes associated with sediment depletion and El Nino-extreme run-off events. Hyperspectral remote sensing data revealed that invasive submerged aquatic pant species have facultative C3 and C4-like photosynthetic pathways that give them a competitive advantage under the changing water clarity conditions of the Bay-Delta system. We postulate that this adaptation facilitated the rapid expansion of SAV following the significant step changes in increasing water clarity caused by watershed disturbances and the 1982-1983 El Nino events. Using SAV maps from hyperspectral remote sensing, we estimate that SAV-water clarity feedbacks were responsible for 20-70% of the increasing water clarity trend in the Bay-Delta. Ongoing and future developments in airborne and global mapping hyperspectral satellite missions will enable full canopy-to-benthos characterization of estuarine ecosystems. When coupled with synoptic watershed measurements, these will improve understanding of watershed-estuary interactions for improved sustainable management.
Predicting grain yield using canopy hyperspectral reflectance in wheat breeding data.
Montesinos-López, Osval A; Montesinos-López, Abelardo; Crossa, José; de Los Campos, Gustavo; Alvarado, Gregorio; Suchismita, Mondal; Rutkoski, Jessica; González-Pérez, Lorena; Burgueño, Juan
2017-01-01
Modern agriculture uses hyperspectral cameras to obtain hundreds of reflectance data measured at discrete narrow bands to cover the whole visible light spectrum and part of the infrared and ultraviolet light spectra, depending on the camera. This information is used to construct vegetation indices (VI) (e.g., green normalized difference vegetation index or GNDVI, simple ratio or SRa, etc.) which are used for the prediction of primary traits (e.g., biomass). However, these indices only use some bands and are cultivar-specific; therefore they lose considerable information and are not robust for all cultivars. This study proposes models that use all available bands as predictors to increase prediction accuracy; we compared these approaches with eight conventional vegetation indexes (VIs) constructed using only some bands. The data set we used comes from CIMMYT's global wheat program and comprises 1170 genotypes evaluated for grain yield (ton/ha) in five environments (Drought, Irrigated, EarlyHeat, Melgas and Reduced Irrigated); the reflectance data were measured in 250 discrete narrow bands ranging between 392 and 851 nm. The proposed models for the simultaneous analysis of all the bands were ordinal least square (OLS), Bayes B, principal components with Bayes B, functional B-spline, functional Fourier and functional partial least square. The results of these models were compared with the OLS performed using as predictors each of the eight VIs individually and combined. We found that using all bands simultaneously increased prediction accuracy more than using VI alone. The Splines and Fourier models had the best prediction accuracy for each of the nine time-points under study. Combining image data collected at different time-points led to a small increase in prediction accuracy relative to models that use data from a single time-point. Also, using bands with heritabilities larger than 0.5 only in Drought as predictor variables showed improvements in prediction accuracy.
Large size MOEMS Fabry-Perot interferometer filter for focal plane array hyperspectral imaging
NASA Astrophysics Data System (ADS)
Chee, J.; Hwu, J.; Kim, T. S.; Kubby, J.; Velicu, S.; Gupta, N.
2015-02-01
Focal plane array (FPA) technology is mature and is widely used for imaging applications. However, FPAs have broadband responses which limit their ability to provide high performance in hyperspectral applications such as detection of buried explosives, and identifying the presence of explosive chemicals and their concentrations. EPIR is currently developing Micro-Opto-Electro-Mechanical System (MOEMS) Fabry-Perot interferometer filter (FPF) devices for FPAs. In this paper, we present our approach to MOEMS FPF design and fabrication that will meet the size requirements for large format FPA hyperspectral imaging. We also report the performance of our FPF resonance cavity, capable of up to 3 μm change gap in tens of nanometer increments.
Towards real-time medical diagnostics using hyperspectral imaging technology
NASA Astrophysics Data System (ADS)
Bjorgan, Asgeir; Randeberg, Lise L.
2015-07-01
Hyperspectral imaging provides non-contact, high resolution spectral images which has a substantial diagnostic potential. This can be used for e.g. diagnosis and early detection of arthritis in finger joints. Processing speed is currently a limitation for clinical use of the technique. A real-time system for analysis and visualization using GPU processing and threaded CPU processing is presented. Images showing blood oxygenation, blood volume fraction and vessel enhanced images are among the data calculated in real-time. This study shows the potential of real-time processing in this context. A combination of the processing modules will be used in detection of arthritic finger joints from hyperspectral reflectance and transmittance data.
Diffusion Geometry Based Nonlinear Methods for Hyperspectral Change Detection
2010-05-12
for matching biological spectra across a data base of hyperspectral pathology slides acquires with different instruments in different conditions, as...generalizing wavelets and similar scaling mechanisms. Plain Sight Systems, Inc. -7- Proprietary and Confidential To be specific, let the bi-Markov...remarkably well. Conventional nearest neighbor search , compared with a diffusion search. The data is a pathology slide ,each pixel is a digital
NASA Astrophysics Data System (ADS)
Zheng, Xiaochun; Peng, Yankun; Li, Yongyu; Chao, Kuanglin; Qin, Jianwei
2017-05-01
The plate count method is commonly used to detect the total viable count (TVC) of bacteria in pork, which is timeconsuming and destructive. It has also been used to study the changes of the TVC in pork under different storage conditions. In recent years, many scholars have explored the non-destructive methods on detecting TVC by using visible near infrared (VIS/NIR) technology and hyperspectral technology. The TVC in chilled pork was monitored under high oxygen condition in this study by using hyperspectral technology in order to evaluate the changes of total bacterial count during storage, and then evaluate advantages and disadvantages of the storage condition. The VIS/NIR hyperspectral images of samples stored in high oxygen condition was acquired by a hyperspectral system in range of 400 1100nm. The actual reference value of total bacteria was measured by standard plate count method, and the results were obtained in 48 hours. The reflection spectra of the samples are extracted and used for the establishment of prediction model for TVC. The spectral preprocessing methods of standard normal variate transformation (SNV), multiple scatter correction (MSC) and derivation was conducted to the original reflectance spectra of samples. Partial least squares regression (PLSR) of TVC was performed and optimized to be the prediction model. The results show that the near infrared hyperspectral technology based on 400-1100nm combined with PLSR model can describe the growth pattern of the total bacteria count of the chilled pork under the condition of high oxygen very vividly and rapidly. The results obtained in this study demonstrate that the nondestructive method of TVC based on NIR hyperspectral has great potential in monitoring of edible safety in processing and storage of meat.
Hyperspectral Cubesat Constellation for Rapid Natural Hazard Response
NASA Astrophysics Data System (ADS)
Mandl, D.; Huemmrich, K. F.; Ly, V. T.; Handy, M.; Ong, L.; Crum, G.
2015-12-01
With the advent of high performance space networks that provide total coverage for Cubesats, the paradigm for low cost, high temporal coverage with hyperspectral instruments becomes more feasible. The combination of ground cloud computing resources, high performance with low power consumption onboard processing, total coverage for the cubesats and social media provide an opprotunity for an architecture that provides cost-effective hyperspectral data products for natural hazard response and decision support. This paper provides a series of pathfinder efforts to create a scalable Intelligent Payload Module(IPM) that has flown on a variety of airborne vehicles including Cessna airplanes, Citation jets and a helicopter and will fly on an Unmanned Aerial System (UAS) hexacopter to monitor natural phenomena. The IPM's developed thus far were developed on platforms that emulate a satellite environment which use real satellite flight software, real ground software. In addition, science processing software has been developed that perform hyperspectral processing onboard using various parallel processing techniques to enable creation of onboard hyperspectral data products while consuming low power. A cubesat design was developed that is low cost and that is scalable to larger consteallations and thus can provide daily hyperspectral observations for any spot on earth. The design was based on the existing IPM prototypes and metrics that were developed over the past few years and a shrunken IPM that can perform up to 800 Mbps throughput. Thus this constellation of hyperspectral cubesats could be constantly monitoring spectra with spectral angle mappers after Level 0, Level 1 Radiometric Correction, Atmospheric Correction processing. This provides the opportunity daily monitoring of any spot on earth on a daily basis at 30 meter resolution which is not available today.
Analysis of hyper-spectral AVIRIS image data over a mixed-conifer forest in Maine
NASA Technical Reports Server (NTRS)
Lawrence, William T.; Shimabukuro, Yosio E.; Gao, Bo-Cai
1993-01-01
An introduction to some of the potential uses of hyperspectral data for ecosystem analysis is presented. The examples given are derived from a digital dataset acquired over a sub-boreal forest in central Maine in 1990 by the NASA-JPL Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) instrument gathers data from 400 to 2500 nm in 224 channels at bandwidths of approximately 10 nm. As a preview to the uses of the hyperspectral data, several products from this dataset were extracted. They range from the traditional false color composite made from simulated Thematic Mapper bands and the well known normalized difference vegetation index to much more exotic products such as fractions of vegetation, soil and shade based on linear spectral mixing models and estimates of the leaf water content at the landscape level derived using spectrum-matching techniques. Our research and that of many others indicates that the hyperspectral datasets carry much important information which is only beginning to be understood. This analysis gives an initial indication of the utility of hyperspectral data. Much work still remains to be done in algorithm development and in understanding the physics behind the complex information signal carried in the hyperspectral datasets. This work must be carried out to provide the fullest science support for high spectral resolution data to be acquired by many of the instruments to be launched as part of the Earth Observing System program in the mid-1990's.
Ishikawa, Daitaro; Nishii, Takashi; Mizuno, Fumiaki; Sato, Harumi; Kazarian, Sergei G; Ozaki, Yukihiro
2013-12-01
This study was carried out to evaluate a new high-speed hyperspectral near-infrared (NIR) camera named Compovision. Quantitative analyses of the crystallinity and crystal evolution of biodegradable polymer, polylactic acid (PLA), and its concentration in PLA/poly-(R)-3-hydroxybutyrate (PHB) blends were investigated using near-infrared (NIR) imaging. This NIR camera can measure two-dimensional NIR spectral data in the 1000-2350 nm region obtaining images with wide field of view of 150 × 250 mm(2) (approximately 100 000 pixels) at high speeds (in less than 5 s). PLA with differing crystallinities between 0 and 50% blended samples with PHB in ratios of 80/20, 60/40, 40/60, 20/80, and pure films of 100% PLA and PHB were prepared. Compovision was used to collect respective NIR spectra in the 1000-2350 nm region and investigate the crystallinity of PLA and its concentration in the blends. The partial least squares (PLS) regression models for the crystallinity of PLA were developed using absorbance, second derivative, and standard normal variate (SNV) spectra from the most informative region of the spectra, between 1600 and 2000 nm. The predicted results of PLS models achieved using the absorbance and second derivative spectra were fairly good with a root mean square error (RMSE) of less than 6.1% and a determination of coefficient (R(2)) of more than 0.88 for PLS factor 1. The results obtained using the SNV spectra yielded the best prediction with the smallest RMSE of 2.93% and the highest R(2) of 0.976. Moreover, PLS models developed for estimating the concentration of PLA in the blend polymers using SNV spectra gave good predicted results where the RMSE was 4.94% and R(2) was 0.98. The SNV-based models provided the best-predicted results, since it can reduce the effects of the spectral changes induced by the inhomogeneity and the thickness of the samples. Wide area crystal evolution of PLA on a plate where a temperature slope of 70-105 °C had occurred was also monitored using NIR imaging. An SNV-based image gave an obvious contrast of the crystallinity around the crystal growth area according to slight temperature change. Moreover, it clarified the inhomogeneity of crystal evolution over the significant wide area. These results have proved that the newly developed hyperspectral NIR camera, Compovision, can be successfully used to study polymers for industrial processes, such as monitoring the crystallinity of PLA and the different composition of PLA/PHB blends.
WhiteRef: a new tower-based hyperspectral system for continuous reflectance measurements.
Sakowska, Karolina; Gianelle, Damiano; Zaldei, Alessandro; MacArthur, Alasdair; Carotenuto, Federico; Miglietta, Franco; Zampedri, Roberto; Cavagna, Mauro; Vescovo, Loris
2015-01-08
Proximal sensing is fundamental to monitor the spatial and seasonal dynamics of ecosystems and can be considered as a crucial validation tool to upscale in situ observations to the satellite level. Linking hyperspectral remote sensing with carbon fluxes and biophysical parameters is critical to allow the exploitation of spatial and temporal extensive information for validating model simulations at different scales. In this study, we present the WhiteRef, a new hyperspectral system designed as a direct result of the needs identified during the EUROSPEC ES0903 Cost Action, and developed by Fondazione Edmund Mach and the Institute of Biometeorology, CNR, Italy. The system is based on the ASD FieldSpec Pro spectroradiometer and was designed to acquire continuous radiometric measurements at the Eddy Covariance (EC) towers and to fill a gap in the scientific community: in fact, no system for continuous spectral measurements in the Short Wave Infrared was tested before at the EC sites. The paper illustrates the functioning of the WhiteRef and describes its main advantages and disadvantages. The WhiteRef system, being based on a robust and high quality commercially available instrument, has a clear potential for unattended continuous measurements aiming at the validation of satellites' vegetation products.
Analysis for signal-to-noise ratio of hyper-spectral imaging FTIR interferometer
NASA Astrophysics Data System (ADS)
Li, Xun-niu; Zheng, Wei-jian; Lei, Zheng-gang; Wang, Hai-yang; Fu, Yan-peng
2013-08-01
Signal-to-noise Ratio of hyper-spectral imaging FTIR interferometer system plays a decisive role on the performance of the instrument. It is necessary to analyze them in the development process. Based on the simplified target/background model, the energy transfer model of the LWIR hyper-spectral imaging interferometer has been discussed. The noise equivalent spectral radiance (NESR) and its influencing factors of the interferometer system was analyzed, and the signal-to-noise(SNR) was calculated by using the properties of NESR and incident radiance. In a typical application environment, using standard atmospheric model of USA(1976 COESA) as a background, and set a reasonable target/background temperature difference, and take Michelson spatial modulation Fourier Transform interferometer as an example, the paper had calculated the NESR and the SNR of the interferometer system which using the commercially LWIR cooled FPA and UFPA detector. The system noise sources of the instrument were also analyzed in the paper. The results of those analyses can be used to optimize and pre-estimate the performance of the interferometer system, and analysis the applicable conditions of use different detectors. It has important guiding significance for the LWIR interferometer spectrometer design.
Identification of invasive and expansive plant species based on airborne hyperspectral and ALS data
NASA Astrophysics Data System (ADS)
Szporak-Wasilewska, Sylwia; Kuc, Gabriela; Jóźwiak, Jacek; Demarchi, Luca; Chormański, Jarosław; Marcinkowska-Ochtyra, Adriana; Ochtyra, Adrian; Jarocińska, Anna; Sabat, Anita; Zagajewski, Bogdan; Tokarska-Guzik, Barbara; Bzdęga, Katarzyna; Pasierbiński, Andrzej; Fojcik, Barbara; Jędrzejczyk-Korycińska, Monika; Kopeć, Dominik; Wylazłowska, Justyna; Woziwoda, Beata; Michalska-Hejduk, Dorota; Halladin-Dąbrowska, Anna
2017-04-01
The aim of Natura 2000 network is to ensure the long term survival of most valuable and threatened species and habitats in Europe. The encroachment of invasive alien and expansive native plant species is among the most essential threat that can cause significant damage to protected habitats and their biodiversity. The phenomenon requires comprehensive and efficient repeatable solutions that can be applied to various areas in order to assess the impact on habitats. The aim of this study is to investigate of the issue of invasive and expansive plant species as they affect protected areas at a larger scale of Natura 2000 network in Poland. In order to determine the scale of the problem we have been developing methods of identification of invasive and expansive species and then detecting their occurrence and mapping their distribution in selected protected areas within Natura 2000 network using airborne hyperspectral and airborne laser scanning data. The aerial platform used consists of hyperspectral HySpex scanner (451 bands in VNIR and SWIR), Airborne Laser Scanner (FWF) Riegl Lite Mapper and RGB camera. It allowed to obtain simultaneous 1 meter resolution hyperspectral image, 0.1 m resolution orthophotomaps and point cloud data acquired with 7 points/m2. Airborne images were acquired three times per year during growing season to account for plant seasonal change (in May/June, July/August and September/October 2016). The hyperspectral images were radiometrically, geometrically and atmospherically corrected. Atmospheric correction was performed and validated using ASD FieldSpec 4 measurements. ALS point cloud data were used to generate several different topographic, vegetation and intensity products with 1 m spatial resolution. Acquired data (both hyperspectral and ALS) were used to test different classification methods including Mixture Tuned Matched Filtering (MTMF), Spectral Angle Mapper (SAM), Random Forest (RF), Support Vector Machines (SVM), among others. Simultaneously to airborne data acquisitions also botanical surveys were performed covering in total 5680 reference plots for 18 alien invasive and native expansive plant species (1886 in first flight campaign, 1907 in second and 1887 in third). The collected data were used to identify species characteristics such as spectral properties among others (percentage cover, growth stage, discoloration, coexisting species, land use, plant litter). The research includes 10 invasive alien species and 8 native expansive plant species. Amongst plant species selected for the purposes of this study were: Robinia pseudoacacia, Padus serotina, Rumex confertus, Erigeron annuus, Spiraea tomentosa, Solidago spp., Lupinus polyphyllus, Reynoutria spp., Echinocystis lobata and Heracleum spp. as alien invasive species, and Urtica dioica, Filipendula ulmaria, Phragmites australis, Rubus spp, Calamagrostis epigejos, Cirsium arvense, Molinia caerulea, Deschampsia caespitosa as native expansive species. In this study we present the methodology used for identification of invasive alien and expansive native plant species using hyperspectral and airborne laser data with resulting accuracies using different classification methods and exemplary distribution maps. The research within this study will be continued during growing season of the year 2017. Acknowledgements This research has been carried out under the Biostrateg Programme of the Polish National Centre for Research and Development (NCBiR), project No.: DZP/BIOSTRATEG-II/390/2015: The innovative approach supporting monitoring of non-forest Natura 2000 habitats, using remote sensing methods (HabitARS).
Inelastic hyperspectral lidar for aquatic ecosystems monitoring and landscape plant scanning test
NASA Astrophysics Data System (ADS)
Zhao, Guangyu; Malmqvist, Elin; Rydhmer, Klas; Strand, Alfred; Bianco, Giuseppe; Hansson, Lars-Anders; Svanberg, Sune; Brydegaard, Mikkel
2018-04-01
We have developed an aquatic inelastic hyperspectral lidar with unrestricted focal-depth and enough sensitivity and spatio-temporal resolution to detect and resolve position and behavior of individual sub-millimeter aquatic organisms. We demonstrate ranging with monitoring of elastic echoes, water Raman signals and fluorescence from chlorophyllbearing phytoplankton and dye tagged organisms. The system is based on a blue CW diode laser and a Scheimpflug optical arrangement.
2002-09-30
Physical Modeling for Processing Geosynchronous Imaging Fourier Transform Spectrometer-Indian Ocean METOC Imager ( GIFTS -IOMI) Hyperspectral Data...water quality assessment. OBJECTIVES The objective of this DoD research effort is to develop and demonstrate a fully functional GIFTS - IOMI...environment once GIFTS -IOMI is stationed over the Indian Ocean. The system will provide specialized methods for the characterization of the atmospheric
Hyperspectral Imaging of River Systems
2012-09-30
derivatives, to target products --- sediment, chlorophyll, or sampled pixels know to contain pigments of interest, such as phycocyanin commonly found in...from 400 at 450 nm to 200 at 850 nm. The Hyperion SNR is approximately ¼ of the HICO SNR.] IMPACT/ APPLICATIONS The long term goal of this work...Tufillaro, M. Corson, B-C. Gao, and R. Lucke, 2012, “Hyperspectral Imager for the Coastal Ocean (HICO): overview and Coastal Ocean Applications
Hyperspectral imagery for observing spectral signature change in Aspergillus flavus
NASA Astrophysics Data System (ADS)
DiCrispino, Kevin; Yao, Haibo; Hruska, Zuzana; Brabham, Kori; Lewis, David; Beach, Jim; Brown, Robert L.; Cleveland, Thomas E.
2005-11-01
Aflatoxin contaminated corn is dangerous for domestic animals when used as feed and cause liver cancer when consumed by human beings. Therefore, the ability to detect A. flavus and its toxic metabolite, aflatoxin, is important. The objective of this study is to measure A. flavus growth using hyperspectral technology and develop spectral signatures for A. flavus. Based on the research group's previous experiments using hyperspectral imaging techniques, it has been confirmed that the spectral signature of A. flavus is unique and readily identifiable against any background or surrounding surface and among other fungal strains. This study focused on observing changes in the A. flavus spectral signature over an eight-day growth period. The study used a visible-near-infrared hyperspectral image system for data acquisition. This image system uses focal plane pushbroom scanning for high spatial and high spectral resolution imaging. Procedures previously developed by the research group were used for image calibration and image processing. The results showed that while A. flavus gradually progressed along the experiment timeline, the day-to-day surface reflectance of A. flavus displayed significant difference in discreet regions of the wavelength spectrum. External disturbance due to environmental changes also altered the growth and subsequently changed the reflectance patterns of A. flavus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCann, Cooper; Repasky, Kevin S.; Morin, Mikindra
Low-cost flight-based hyperspectral imaging systems have the potential to provide important information for ecosystem and environmental studies as well as aide in land management. To realize this potential, methods must be developed to provide large-area surface reflectance data allowing for temporal data sets at the mesoscale. This paper describes a bootstrap method of producing a large-area, radiometrically referenced hyperspectral data set using the Landsat surface reflectance (LaSRC) data product as a reference target. The bootstrap method uses standard hyperspectral processing techniques that are extended to remove uneven illumination conditions between flight passes, allowing for radiometrically self-consistent data after mosaicking. Throughmore » selective spectral and spatial resampling, LaSRC data are used as a radiometric reference target. Advantages of the bootstrap method include the need for minimal site access, no ancillary instrumentation, and automated data processing. Data from two hyperspectral flights over the same managed agricultural and unmanaged range land covering approximately 5.8 km 2 acquired on June 21, 2014 and June 24, 2015 are presented. As a result, data from a flight over agricultural land collected on June 6, 2016 are compared with concurrently collected ground-based reflectance spectra as a means of validation.« less
McCann, Cooper; Repasky, Kevin S.; Morin, Mikindra; ...
2017-07-25
Low-cost flight-based hyperspectral imaging systems have the potential to provide important information for ecosystem and environmental studies as well as aide in land management. To realize this potential, methods must be developed to provide large-area surface reflectance data allowing for temporal data sets at the mesoscale. This paper describes a bootstrap method of producing a large-area, radiometrically referenced hyperspectral data set using the Landsat surface reflectance (LaSRC) data product as a reference target. The bootstrap method uses standard hyperspectral processing techniques that are extended to remove uneven illumination conditions between flight passes, allowing for radiometrically self-consistent data after mosaicking. Throughmore » selective spectral and spatial resampling, LaSRC data are used as a radiometric reference target. Advantages of the bootstrap method include the need for minimal site access, no ancillary instrumentation, and automated data processing. Data from two hyperspectral flights over the same managed agricultural and unmanaged range land covering approximately 5.8 km 2 acquired on June 21, 2014 and June 24, 2015 are presented. As a result, data from a flight over agricultural land collected on June 6, 2016 are compared with concurrently collected ground-based reflectance spectra as a means of validation.« less
Advances in Spectral-Spatial Classification of Hyperspectral Images
NASA Technical Reports Server (NTRS)
Fauvel, Mathieu; Tarabalka, Yuliya; Benediktsson, Jon Atli; Chanussot, Jocelyn; Tilton, James C.
2012-01-01
Recent advances in spectral-spatial classification of hyperspectral images are presented in this paper. Several techniques are investigated for combining both spatial and spectral information. Spatial information is extracted at the object (set of pixels) level rather than at the conventional pixel level. Mathematical morphology is first used to derive the morphological profile of the image, which includes characteristics about the size, orientation, and contrast of the spatial structures present in the image. Then, the morphological neighborhood is defined and used to derive additional features for classification. Classification is performed with support vector machines (SVMs) using the available spectral information and the extracted spatial information. Spatial postprocessing is next investigated to build more homogeneous and spatially consistent thematic maps. To that end, three presegmentation techniques are applied to define regions that are used to regularize the preliminary pixel-wise thematic map. Finally, a multiple-classifier (MC) system is defined to produce relevant markers that are exploited to segment the hyperspectral image with the minimum spanning forest algorithm. Experimental results conducted on three real hyperspectral images with different spatial and spectral resolutions and corresponding to various contexts are presented. They highlight the importance of spectral–spatial strategies for the accurate classification of hyperspectral images and validate the proposed methods.
NASA Astrophysics Data System (ADS)
Stuffler, Timo; Förster, Klaus; Hofer, Stefan; Leipold, Manfred; Sang, Bernhard; Kaufmann, Hermann; Penné, Boris; Mueller, Andreas; Chlebek, Christian
2009-10-01
In the upcoming generation of satellite sensors, hyperspectral instruments will play a significant role. This payload type is considered world-wide within different future planning. Our team has now successfully finalized the Phase B study for the advanced hyperspectral mission EnMAP (Environmental Mapping and Analysis Programme), Germans next optical satellite being scheduled for launch in 2012. GFZ in Potsdam has the scientific lead on EnMAP, Kayser-Threde in Munich is the industrial prime. The EnMAP instrument provides over 240 continuous spectral bands in the wavelength range between 420 and 2450 nm with a ground resolution of 30 m×30 m. Thus, the broad science and application community can draw from an extensive and highly resolved pool of information supporting the modeling and optimization process on their results. The performance of the hyperspectral instrument allows for a detailed monitoring, characterization and parameter extraction of rock/soil targets, vegetation, and inland and coastal waters on a global scale supporting a wide variety of applications in agriculture, forestry, water management and geology. The operation of an airborne system (ARES) as an element in the HGF hyperspectral network and the ongoing evolution concerning data handling and extraction procedures, will support the later inclusion process of EnMAP into the growing scientist and user communities.
Zhang, Xiaolei; Liu, Fei; He, Yong; Li, Xiaoli
2012-01-01
Hyperspectral imaging in the visible and near infrared (VIS-NIR) region was used to develop a novel method for discriminating different varieties of commodity maize seeds. Firstly, hyperspectral images of 330 samples of six varieties of maize seeds were acquired using a hyperspectral imaging system in the 380–1,030 nm wavelength range. Secondly, principal component analysis (PCA) and kernel principal component analysis (KPCA) were used to explore the internal structure of the spectral data. Thirdly, three optimal wavelengths (523, 579 and 863 nm) were selected by implementing PCA directly on each image. Then four textural variables including contrast, homogeneity, energy and correlation were extracted from gray level co-occurrence matrix (GLCM) of each monochromatic image based on the optimal wavelengths. Finally, several models for maize seeds identification were established by least squares-support vector machine (LS-SVM) and back propagation neural network (BPNN) using four different combinations of principal components (PCs), kernel principal components (KPCs) and textural features as input variables, respectively. The recognition accuracy achieved in the PCA-GLCM-LS-SVM model (98.89%) was the most satisfactory one. We conclude that hyperspectral imaging combined with texture analysis can be implemented for fast classification of different varieties of maize seeds. PMID:23235456
Electro-optic Imaging Fourier Transform Spectrometer
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin
2005-01-01
JPL is developing an innovative compact, low mass, Electro-Optic Imaging Fourier Transform Spectrometer (E-O IFTS) for hyperspectral imaging applications. The spectral region of this spectrometer will be 1 - 2.5 micron (1000-4000/cm) to allow high-resolution, high-speed hyperspectral imaging applications. One application will be the remote sensing of the measurement of a large number of different atmospheric gases simultaneously in the same airmass. Due to the use of a combination of birefringent phase retarders and multiple achromatic phase switches to achieve phase delay, this spectrometer is capable of hyperspectral measurements similar to that of the conventional Fourier transform spectrometer but without any moving parts. In this paper, the principle of operations, system architecture and recent experimental progress will be presented.
NASA Astrophysics Data System (ADS)
Holasek, R. E.; Nakanishi, K.; Swartz, B.; Zacaroli, R.; Hill, B.; Naungayan, J.; Herwitz, S.; Kavros, P.; English, D. C.
2013-12-01
As part of the NASA ROSES program, the NovaSol Selectable Hyperspectral Airborne Remote-sensing Kit (SHARK) was flown as the payload on the unmanned Vision II helicopter. The goal of the May 2013 data collection was to obtain high resolution visible and near-infrared (visNIR) hyperspectral data of seagrasses and coral reefs in the Florida Keys. The specifications of the SHARK hyperspectral system and the Vision II turbine rotorcraft will be described along with the process of integrating the payload to the vehicle platform. The minimal size, weight, and power (SWaP) specifications of the SHARK system is an ideal match to the Vision II helicopter and its flight parameters. One advantage of the helicopter over fixed wing platforms is its inherent ability to take off and land in a limited area and without a runway, enabling the UAV to be located in close proximity to the experiment areas and the science team. Decisions regarding integration times, waypoint selection, mission duration, and mission frequency are able to be based upon the local environmental conditions and can be modified just prior to take off. The operational procedures and coordination between the UAV pilot, payload operator, and scientist will be described. The SHARK system includes an inertial navigation system and digital elevation model (DEM) which allows image coordinates to be calculated onboard the aircraft in real-time. Examples of the geo-registered images from the data collection will be shown. SHARK mounted below VTUAV. SHARK deployed on VTUAV over water.
NASA Astrophysics Data System (ADS)
Špiclin, Žiga; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan
2012-03-01
Spatial resolution of hyperspectral imaging systems can vary significantly due to axial optical aberrations that originate from wavelength-induced index-of-refraction variations of the imaging optics. For systems that have a broad spectral range, the spatial resolution will vary significantly both with respect to the acquisition wavelength and with respect to the spatial position within each spectral image. Variations of the spatial resolution can be effectively characterized as part of the calibration procedure by a local image-based estimation of the pointspread function (PSF) of the hyperspectral imaging system. The estimated PSF can then be used in the image deconvolution methods to improve the spatial resolution of the spectral images. We estimated the PSFs from the spectral images of a line grid geometric caliber. From individual line segments of the line grid, the PSF was obtained by a non-parametric estimation procedure that used an orthogonal series representation of the PSF. By using the non-parametric estimation procedure, the PSFs were estimated at different spatial positions and at different wavelengths. The variations of the spatial resolution were characterized by the radius and the fullwidth half-maximum of each PSF and by the modulation transfer function, computed from images of USAF1951 resolution target. The estimation and characterization of the PSFs and the image deconvolution based spatial resolution enhancement were tested on images obtained by a hyperspectral imaging system with an acousto-optic tunable filter in the visible spectral range. The results demonstrate that the spatial resolution of the acquired spectral images can be significantly improved using the estimated PSFs and image deconvolution methods.
Fusion of LBP and SWLD using spatio-spectral information for hyperspectral face recognition
NASA Astrophysics Data System (ADS)
Xie, Zhihua; Jiang, Peng; Zhang, Shuai; Xiong, Jinquan
2018-01-01
Hyperspectral imaging, recording intrinsic spectral information of the skin cross different spectral bands, become an important issue for robust face recognition. However, the main challenges for hyperspectral face recognition are high data dimensionality, low signal to noise ratio and inter band misalignment. In this paper, hyperspectral face recognition based on LBP (Local binary pattern) and SWLD (Simplified Weber local descriptor) is proposed to extract discriminative local features from spatio-spectral fusion information. Firstly, the spatio-spectral fusion strategy based on statistical information is used to attain discriminative features of hyperspectral face images. Secondly, LBP is applied to extract the orientation of the fusion face edges. Thirdly, SWLD is proposed to encode the intensity information in hyperspectral images. Finally, we adopt a symmetric Kullback-Leibler distance to compute the encoded face images. The hyperspectral face recognition is tested on Hong Kong Polytechnic University Hyperspectral Face database (PolyUHSFD). Experimental results show that the proposed method has higher recognition rate (92.8%) than the state of the art hyperspectral face recognition algorithms.
A new hyperspectral image compression paradigm based on fusion
NASA Astrophysics Data System (ADS)
Guerra, Raúl; Melián, José; López, Sebastián.; Sarmiento, Roberto
2016-10-01
The on-board compression of remote sensed hyperspectral images is an important task nowadays. One of the main difficulties is that the compression of these images must be performed in the satellite which carries the hyperspectral sensor. Hence, this process must be performed by space qualified hardware, having area, power and speed limitations. Moreover, it is important to achieve high compression ratios without compromising the quality of the decompress image. In this manuscript we proposed a new methodology for compressing hyperspectral images based on hyperspectral image fusion concepts. The proposed compression process has two independent steps. The first one is to spatially degrade the remote sensed hyperspectral image to obtain a low resolution hyperspectral image. The second step is to spectrally degrade the remote sensed hyperspectral image to obtain a high resolution multispectral image. These two degraded images are then send to the earth surface, where they must be fused using a fusion algorithm for hyperspectral and multispectral image, in order to recover the remote sensed hyperspectral image. The main advantage of the proposed methodology for compressing remote sensed hyperspectral images is that the compression process, which must be performed on-board, becomes very simple, being the fusion process used to reconstruct image the more complex one. An extra advantage is that the compression ratio can be fixed in advanced. Many simulations have been performed using different fusion algorithms and different methodologies for degrading the hyperspectral image. The results obtained in the simulations performed corroborate the benefits of the proposed methodology.
System design for 3D wound imaging using low-cost mobile devices
NASA Astrophysics Data System (ADS)
Sirazitdinova, Ekaterina; Deserno, Thomas M.
2017-03-01
The state-of-the art method of wound assessment is a manual, imprecise and time-consuming procedure. Per- formed by clinicians, it has limited reproducibility and accuracy, large time consumption and high costs. Novel technologies such as laser scanning microscopy, multi-photon microscopy, optical coherence tomography and hyper-spectral imaging, as well as devices relying on the structured light sensors, make accurate wound assessment possible. However, such methods have limitations due to high costs and may lack portability and availability. In this paper, we present a low-cost wound assessment system and architecture for fast and accurate cutaneous wound assessment using inexpensive consumer smartphone devices. Computer vision techniques are applied either on the device or the server to reconstruct wounds in 3D as dense models, which are generated from images taken with a built-in single camera of a smartphone device. The system architecture includes imaging (smartphone), processing (smartphone or PACS) and storage (PACS) devices. It supports tracking over time by alignment of 3D models, color correction using a reference color card placed into the scene and automatic segmentation of wound regions. Using our system, we are able to detect and document quantitative characteristics of chronic wounds, including size, depth, volume, rate of healing, as well as qualitative characteristics as color, presence of necrosis and type of involved tissue.
NIR DLP hyperspectral imaging system for medical applications
NASA Astrophysics Data System (ADS)
Wehner, Eleanor; Thapa, Abhas; Livingston, Edward; Zuzak, Karel
2011-03-01
DLP® hyperspectral reflectance imaging in the visible range has been previously shown to quantify hemoglobin oxygenation in subsurface tissues, 1 mm to 2 mm deep. Extending the spectral range into the near infrared reflects biochemical information from deeper subsurface tissues. Unlike any other illumination method, the digital micro-mirror device, DMD, chip is programmable, allowing the user to actively illuminate with precisely predetermined spectra of illumination with a minimum bandpass of approximately 10 nm. It is possible to construct active spectral-based illumination that includes but is not limited to containing sharp cutoffs to act as filters or forming complex spectra, varying the intensity of light at discrete wavelengths. We have characterized and tested a pure NIR, 760 nm to 1600 nm, DLP hyperspectral reflectance imaging system. In its simplest application, the NIR system can be used to quantify the percentage of water in a subject, enabling edema visualization. It can also be used to map vein structure in a patient in real time. During gall bladder surgery, this system could be invaluable in imaging bile through fatty tissue, aiding surgeons in locating the common bile duct in real time without injecting any contrast agents.
Design Analysis of a Space Based Chromotomographic Hyperspectral Imaging Experiment
2010-03-01
Tilt Platforms S-340 Platform Recommended Models Mirror Aluminum Aluminum S-340.Ax Invar Zerodur glass S-340.ix Titanium BK7 glass S-340.Tx Steel S-340...composed of a telescope, two grating spectrometers, calibration lamps, and focal plane electronics and cooling system. The telescope is a three mirror ...advanced hyperspectral imager for coastal bathymetry is that the experiment will closely mirror that of the proposed space-based chromotomographic hy
The Hyperspectral Satellite and Program EnMAP (Environmental Monitoring and Analysis Program)
NASA Astrophysics Data System (ADS)
Stuffler, T.; Kaufmann, C.; Hofer, S.; Förster, K. P.; Schreier, G.; Mueller, A.; Penné, B.
2008-08-01
In the upcoming generation of satellite sensors, hyperspectral instruments will play a significant role and are considered world-wide within different future planning. Our team has successfully finished the Phase B study for the advanced hyperspectral mission EnMAP. Routine operations shall start in 2012. The scientific lead of the mission is at the GFZ and the industrial prime ship at Kayser-Threde. The performance of the hyperspectral instrument allows for a detailed monitoring, characterisation and parameter extraction of rock/soil targets, vegetation, and inland and coastal waters on a global scale supporting a wide variety of applications in agriculture, forestry, water management and geology. The EnMAP instrument provides over 240 continuous spectral bands in the wavelength range between 420 - 2450 nm with a ground resolution of 30 m x 30 m. Thus, the broad science and application community can draw from an extensive and highly resolved pool of information supporting the modelling and optimisation process on their results. The operation of an airborne system (ARES) as an element in the HGF hyperspectral network and the ongoing evolution concerning data handling and extraction procedures, will support the later inclusion process of EnMAP into the growing scientist and user communities. As a scientific pathfinder mission a broad international science community has raised larger interest in the hyperspectral data sets as well as value adding companies investigating the commercial potential of EnMAP. The presented paper describes the instrument and mission highlighting the data application and the actual status in the EnMAP planning phase.
Airborne net-centric multi-INT sensor control, display, fusion, and exploitation systems
NASA Astrophysics Data System (ADS)
Linne von Berg, Dale C.; Lee, John N.; Kruer, Melvin R.; Duncan, Michael D.; Olchowski, Fred M.; Allman, Eric; Howard, Grant
2004-08-01
The NRL Optical Sciences Division has initiated a multi-year effort to develop and demonstrate an airborne net-centric suite of multi-intelligence (multi-INT) sensors and exploitation systems for real-time target detection and targeting product dissemination. The goal of this Net-centric Multi-Intelligence Fusion Targeting Initiative (NCMIFTI) is to develop an airborne real-time intelligence gathering and targeting system that can be used to detect concealed, camouflaged, and mobile targets. The multi-INT sensor suite will include high-resolution visible/infrared (EO/IR) dual-band cameras, hyperspectral imaging (HSI) sensors in the visible-to-near infrared, short-wave and long-wave infrared (VNIR/SWIR/LWIR) bands, Synthetic Aperture Radar (SAR), electronics intelligence sensors (ELINT), and off-board networked sensors. Other sensors are also being considered for inclusion in the suite to address unique target detection needs. Integrating a suite of multi-INT sensors on a single platform should optimize real-time fusion of the on-board sensor streams, thereby improving the detection probability and reducing the false alarms that occur in reconnaissance systems that use single-sensor types on separate platforms, or that use independent target detection algorithms on multiple sensors. In addition to the integration and fusion of the multi-INT sensors, the effort is establishing an open-systems net-centric architecture that will provide a modular "plug and play" capability for additional sensors and system components and provide distributed connectivity to multiple sites for remote system control and exploitation.
NASA Astrophysics Data System (ADS)
Schneider, M.; Müller, R.; Krawzcyk, H.; Bachmann, M.; Storch, T.; Mogulsky, V.; Hofer, S.
2012-07-01
The German Aerospace Center DLR - namely the Earth Observation Center EOC and the German Space Operations Center GSOC - is responsible for the establishment of the ground segment of the future German hyperspectral satellite mission EnMAP (Environmental Mapping and Analysis Program). The Earth Observation Center has long lasting experiences with air- and spaceborne acquisition, processing, and analysis of hyperspectral image data. In the first part of this paper, an overview of the radiometric in-flight calibration concept including dark value measurements, deep space measurements, internal lamps measurements and sun measurements is presented. Complemented by pre-launch calibration and characterization these analyses will deliver a detailed and quantitative assessment of possible changes of spectral and radiometric characteristics of the hyperspectral instrument, e.g. due to degradation of single elements. A geometric accuracy of 100 m, which will be improved to 30 m with respect to a used reference image, if it exists, will be achieved by ground processing. Therfore, and for the required co-registration accuracy between SWIR and VNIR channels, additional to the radiometric calibration, also a geometric calibration is necessary. In the second part of this paper, the concept of the geometric calibration is presented in detail. The geometric processing of EnMAP scenes will be based on laboratory calibration results. During repeated passes over selected calibration areas images will be acquired. The update of geometric camera model parameters will be done by an adjustment using ground control points, which will be extracted by automatic image matching. In the adjustment, the improvements of the attitude angles (boresight angles), the improvements of the interior orientation (view vector) and the improvements of the position data are estimated. In this paper, the improvement of the boresight angles is presented in detail as an example. The other values and combinations follow the same rules. The geometric calibration will mainly be executed during the commissioning phase, later in the mission it is only executed if required, i.e. if the geometric accuracy of the produced images is close to or exceeds the requirements of 100 m or 30 m respectively, whereas the radiometric calibration will be executed periodically during the mission with a higher frequency during commissioning phase.
Contrast based band selection for optimized weathered oil detection in hyperspectral images
NASA Astrophysics Data System (ADS)
Levaux, Florian; Bostater, Charles R., Jr.; Neyt, Xavier
2012-09-01
Hyperspectral imagery offers unique benefits for detection of land and water features due to the information contained in reflectance signatures such as the bi-directional reflectance distribution function or BRDF. The reflectance signature directly shows the relative absorption and backscattering features of targets. These features can be very useful in shoreline monitoring or surveillance applications, for example to detect weathered oil. In real-time detection applications, processing of hyperspectral data can be an important tool and Optimal band selection is thus important in real time applications in order to select the essential bands using the absorption and backscatter information. In the present paper, band selection is based upon the optimization of target detection using contrast algorithms. The common definition of the contrast (using only one band out of all possible combinations available within a hyperspectral image) is generalized in order to consider all the possible combinations of wavelength dependent contrasts using hyperspectral images. The inflection (defined here as an approximation of the second derivative) is also used in order to enhance the variations in the reflectance spectra as well as in the contrast spectrua in order to assist in optimal band selection. The results of the selection in term of target detection (false alarms and missed detection) are also compared with a previous method to perform feature detection, namely the matched filter. In this paper, imagery is acquired using a pushbroom hyperspectral sensor mounted at the bow of a small vessel. The sensor is mechanically rotated using an optical rotation stage. This opto-mechanical scanning system produces hyperspectral images with pixel sizes on the order of mm to cm scales, depending upon the distance between the sensor and the shoreline being monitored. The motion of the platform during the acquisition induces distortions in the collected HSI imagery. It is therefore necessary to apply a motion correction to the imagery. In this paper, imagery is corrected for the pitching motion of a vessel, which causes most of the deformation when the vessel is anchored at 2 points (bow and stern) during the acquisition of the hyperspectral imagry.
Estimation of tissue optical parameters with hyperspectral imaging and spectral unmixing
NASA Astrophysics Data System (ADS)
Lu, Guolan; Qin, Xulei; Wang, Dongsheng; Chen, Zhuo G.; Fei, Baowei
2015-03-01
Early detection of oral cancer and its curable precursors can improve patient survival and quality of life. Hyperspectral imaging (HSI) holds the potential for noninvasive early detection of oral cancer. The quantification of tissue chromophores by spectral unmixing of hyperspectral images could provide insights for evaluating cancer progression. In this study, non-negative matrix factorization has been applied for decomposing hyperspectral images into physiologically meaningful chromophore concentration maps. The approach has been validated by computer-simulated hyperspectral images and in vivo tumor hyperspectral images from a head and neck cancer animal model.
Hyperspectral Shack–Hartmann test
Birch, Gabriel C.; Descour, Michael R.; Tkaczyk, Tomasz S.
2011-01-01
A hyperspectral Shack–Hartmann test bed has been developed to characterize the performance of miniature optics across a wide spectral range, a necessary first step in developing broadband achromatized all-polymer endomicroscopes. The Shack–Hartmann test bed was used to measure the chromatic focal shift (CFS) of a glass singlet lens and a glass achromatic lens, i.e., lenses representing the extrema of CFS magnitude in polymer elements to be found in endomicroscope systems. The lenses were tested from 500 to 700 nm in 5 and 10 nm steps, respectively. In both cases, we found close agreement between test results obtained from a ZEMAX model of the test bed and test lens and those obtained by experiment (maximum error of 12 μm for the singlet lens and 5 μm for the achromatic triplet lens). Future applications of the hyperspectral Shack–Hartmann test include measurements of aberrations as a function of wavelength, characterization of manufactured plastic endomicroscope elements and systems, and reverse optimization. PMID:20885478
LWIR hyperspectral micro-imager for detection of trace explosive particles
NASA Astrophysics Data System (ADS)
Bingham, Adam L.; Lucey, Paul G.; Akagi, Jason T.; Hinrichs, John L.; Knobbe, Edward T.
2014-05-01
Chemical micro-imaging is a powerful tool for the detection and identification of analytes of interest against a cluttered background (i.e. trace explosive particles left behind in a fingerprint). While a variety of groups have demonstrated the efficacy of Raman instruments for these applications, point by point or line by line acquisition of a targeted field of view (FOV) is a time consuming process if it is to be accomplished with useful spatial resolutions. Spectrum Photonics has developed and demonstrated a prototype system utilizing long wave infrared hyperspectral microscopy, which enables the simultaneous collection of LWIR reflectance spectra from 8-14 μm in a 30 x 7 mm FOV with 30 μm spatial resolution in 30 s. An overview of the uncooled Sagnac-based LWIR HSM system will be given, emphasizing the benefits of this approach. Laboratory Hyperspectral data collected from custom mixtures and fingerprint residues is shown, focusing on the ability of the LWIR chemical micro-imager to detect chemicals of interest out of a cluttered background.
Advanced pushbroom hyperspectral LWIR imagers
NASA Astrophysics Data System (ADS)
Holma, Hannu; Hyvärinen, Timo; Lehtomaa, Jarmo; Karjalainen, Harri; Jaskari, Risto
2009-05-01
Performance studies and instrument designs for hyperspectral pushbroom imagers in thermal wavelength region are introduced. The studies involve imaging systems based on both MCT and microbolometer detector. All the systems employ pushbroom imaging spectrograph with transmission grating and on-axis optics. The aim of the work was to design high performance instruments with good image quality and compact size for various application requirements. A big challenge in realizing these goals without considerable cooling of the whole instrument is to control the instrument radiation from all the surfaces of the instrument itself. This challenge is even bigger in hyperspectral instruments, where the optical power from the target is spread spectrally over tens of pixels, but the instrument radiation is not dispersed. Without any suppression, the instrument radiation can overwhelm the radiation from the target by 1000 times. In the first imager design, BMC-technique (background monitoring on-chip), background suppression and temperature stabilization have been combined with cryo-cooled MCT-detector. The performance of a very compact hyperspectral imager with 84 spectral bands and 384 spatial samples has been studied and NESR of 18 mW/(m2srμm) at 10 μm wavelength for 300 K target has been achieved. This leads to SNR of 580. These results are based on a simulation model. The second version of the imager with an uncooled microbolometer detector and optics in ambient temperature aims at imaging targets at higher temperatures or with illumination. Heater rods with ellipsoidal reflectors can be used to illuminate the swath line of the hyperspectral imager on a target or sample, like drill core in mineralogical analysis. Performance characteristics for microbolometer version have been experimentally verified.
Hyperspectral image processing methods
USDA-ARS?s Scientific Manuscript database
Hyperspectral image processing refers to the use of computer algorithms to extract, store and manipulate both spatial and spectral information contained in hyperspectral images across the visible and near-infrared portion of the electromagnetic spectrum. A typical hyperspectral image processing work...
Airborne imaging for heritage documentation using the Fotokite tethered flying camera
NASA Astrophysics Data System (ADS)
Verhoeven, Geert; Lupashin, Sergei; Briese, Christian; Doneus, Michael
2014-05-01
Since the beginning of aerial photography, researchers used all kinds of devices (from pigeons, kites, poles, and balloons to rockets) to take still cameras aloft and remotely gather aerial imagery. To date, many of these unmanned devices are still used for what has been referred to as Low-Altitude Aerial Photography or LAAP. In addition to these more traditional camera platforms, radio-controlled (multi-)copter platforms have recently added a new aspect to LAAP. Although model airplanes have been around for several decades, the decreasing cost, increasing functionality and stability of ready-to-fly multi-copter systems has proliferated their use among non-hobbyists. As such, they became a very popular tool for aerial imaging. The overwhelming amount of currently available brands and types (heli-, dual-, tri-, quad-, hexa-, octo-, dodeca-, deca-hexa and deca-octocopters), together with the wide variety of navigation options (e.g. altitude and position hold, waypoint flight) and camera mounts indicate that these platforms are here to stay for some time. Given the multitude of still camera types and the image quality they are currently capable of, endless combinations of low- and high-cost LAAP solutions are available. In addition, LAAP allows for the exploitation of new imaging techniques, as it is often only a matter of lifting the appropriate device (e.g. video cameras, thermal frame imagers, hyperspectral line sensors). Archaeologists were among the first to adopt this technology, as it provided them with a means to easily acquire essential data from a unique point of view, whether for simple illustration purposes of standing historic structures or to compute three-dimensional (3D) models and orthophotographs from excavation areas. However, even very cheap multi-copters models require certain skills to pilot them safely. Additionally, malfunction or overconfidence might lift these devices to altitudes where they can interfere with manned aircrafts. As such, the safe operation of these devices is still an issue, certainly when flying on locations which can be crowded (such as students on excavations or tourists walking around historic places). As the future of UAS regulation remains unclear, this talk presents an alternative approach to aerial imaging: the Fotokite. Developed at the ETH Zürich, the Fotokite is a tethered flying camera that is essentially a multi-copter connected to the ground with a taut tether to achieve controlled flight. Crucially, it relies solely on onboard IMU (Inertial Measurement Unit) measurements to fly, launches in seconds, and is classified as not a UAS (Unmanned Aerial System), e.g. in the latest FAA (Federal Aviation Administration) UAS proposal. As a result it may be used for imaging cultural heritage in a variety of environments and settings with minimal training by non-experienced pilots. Furthermore, it is subject to less extensive certification, regulation and import/export restrictions, making it a viable solution for use at a greater range of sites than traditional methods. Unlike a balloon or a kite it is not subject to particular weather conditions and, thanks to active stabilization, is capable of a variety of intelligent flight modes. Finally, it is compact and lightweight, making it easy to transport and deploy, and its lack of reliance on GNSS (Global Navigation Satellite System) makes it possible to use in urban, overbuilt areas. After outlining its operating principles, the talk will present some archaeological case studies in which the Fotokite was used, hereby assessing its capabilities compared to the conventional UAS's on the market.
The future of VIS-IR hyperspectral remote sensing for the exploration of the solar system
NASA Astrophysics Data System (ADS)
Filacchione, Gianrico
2017-06-01
In the last 30 years our understanding of the Solar System has greatly advanced thanks to the introduction of VIS-IR imaging spectrometers which have provided hyperspectral views of planets, satellites, asteroids, comets and rings. By providing moderate resolution images and reflectance spectra for each pixel at the same time, these instruments allow to elaborate spectral-spatial models for very different targets: when used to observe surfaces, hyperspectral methods permit to retrieve endmembers composition (minerals, ices, organics, liquids), mixing state among endmembers (areal, intimate, intraparticle), physical properties (particle size, roughness, temperature) and to correlate these quantities with geological and morphological units. Similarly, morphological, dynamical and compositional studies of gaseous and aerosol species can be retrieved for planetary atmospheres, exospheres and auroras. To achieve these results, very different optical layouts, detectors technologies and observing techniques have been adopted in the last decades, going from very large and complex payloads, like ISM (IR Spectral Mapper) on russian mission Phobos to Mars and NIMS (Near IR Mapping Spectrometer) on US Galileo mission to Jupiter, which were the first hyperspectral imagers to flow aboard planetary missions, to more recent compact and performing experiments. The future of VIS-IR hyperspectral remote sensing is challenging because the complexity of modern planetary missions drives towards the realization of increasingly smaller, lighter and more performing payloads able to survive in harsh radiation and planetary protected environments or to operate from demanding platforms like landers, rovers and cubesats. As a development for future missions, one can foresee that apart instruments designed around well-consolidated optical solutions relying on prisms or gratings as dispersive elements, a new class of innovative hyperspectral imagers will rise: recent developments in Optomechatronics (the fusion of Optical and Mechatronic technologies) including the realization of linear variable filters, acusto-optic and liquid crystals tunable filters, micro-opto-mechanical systems (MOEMS) open the possibility to realize completely new imaging spectrometers designs for planetary exploration. The resulting miniaturization of optical and dispers! ive elements with VIS-IR detectors open pathways towards more integrated and compact instruments. Parallel to those developments it will be necessary to develop also new test and calibration setups to be used to characterize this new instrumentation during AIV-AIT phases.
NASA Astrophysics Data System (ADS)
Priore, Ryan J.; Jacksen, Niels
2016-05-01
Infrared hyperspectral imagers (HSI) have been fielded for the detection of hazardous chemical and biological compounds, tag detection (friend versus foe detection) and other defense critical sensing missions over the last two decades. Low Size/Weight/Power/Cost (SWaPc) methods of identification of chemical compounds spectroscopy has been a long term goal for hand held applications. We describe a new HSI concept for low cost / high performance InGaAs SWIR camera chemical identification for military, security, industrial and commercial end user applications. Multivariate Optical Elements (MOEs) are thin-film devices that encode a broadband, spectroscopic pattern allowing a simple broadband detector to generate a highly sensitive and specific detection for a target analyte. MOEs can be matched 1:1 to a discrete analyte or class prediction. Additionally, MOE filter sets are capable of sensing an orthogonal projection of the original sparse spectroscopic space enabling a small set of MOEs to discriminate a multitude of target analytes. This paper identifies algorithms and broadband optical filter designs that have been demonstrated to identify chemical compounds using high performance InGaAs VGA detectors. It shows how some of the initial models have been reduced to simple spectral designs and tested to produce positive identification of such chemicals. We also are developing pixilated MOE compressed detection sensors for the detection of a multitude of chemical targets in challenging backgrounds/environments for both commercial and defense/security applications. This MOE based, real-time HSI sensor will exhibit superior sensitivity and specificity as compared to currently fielded HSI systems.
NASA Astrophysics Data System (ADS)
Watanabe, Sei-ichiro; Tsuda, Yuichi; Yoshikawa, Makoto; Tanaka, Satoshi; Saiki, Takanao; Nakazawa, Satoru
2017-07-01
The Hayabusa2 mission journeys to C-type near-Earth asteroid (162173) Ryugu (1999 JU3) to observe and explore the 900 m-sized object, as well as return samples collected from the surface layer. The Haybusa2 spacecraft developed by Japan Aerospace Exploration Agency (JAXA) was successfully launched on December 3, 2014 by an H-IIA launch vehicle and performed an Earth swing-by on December 3, 2015 to set it on a course toward its target Ryugu. Hayabusa2 aims at increasing our knowledge of the early history and transfer processes of the solar system through deciphering memories recorded on Ryugu, especially about the origin of water and organic materials transferred to the Earth's region. Hayabusa2 carries four remote-sensing instruments, a telescopic optical camera with seven colors (ONC-T), a laser altimeter (LIDAR), a near-infrared spectrometer covering the 3-μm absorption band (NIRS3), and a thermal infrared imager (TIR). It also has three small rovers of MINERVA-II and a small lander MASCOT (Mobile Asteroid Surface Scout) developed by German Aerospace Center (DLR) in cooperation with French space agency CNES. MASCOT has a wide angle imager (MasCam), a 6-band thermal radiator (MARA), a 3-axis magnetometer (MasMag), and a hyperspectral infrared microscope (MicrOmega). Further, Hayabusa2 has a sampling device (SMP), and impact experiment devices which consist of a small carry-on impactor (SCI) and a deployable camera (DCAM3). The interdisciplinary research using the data from these onboard and lander's instruments and the analyses of returned samples are the key to success of the mission.
Bertani, Francesca R; Mozetic, Pamela; Fioramonti, Marco; Iuliani, Michele; Ribelli, Giulia; Pantano, Francesco; Santini, Daniele; Tonini, Giuseppe; Trombetta, Marcella; Businaro, Luca; Selci, Stefano; Rainer, Alberto
2017-08-21
The possibility of detecting and classifying living cells in a label-free and non-invasive manner holds significant theranostic potential. In this work, Hyperspectral Imaging (HSI) has been successfully applied to the analysis of macrophagic polarization, given its central role in several pathological settings, including the regulation of tumour microenvironment. Human monocyte derived macrophages have been investigated using hyperspectral reflectance confocal microscopy, and hyperspectral datasets have been analysed in terms of M1 vs. M2 polarization by Principal Components Analysis (PCA). Following PCA, Linear Discriminant Analysis has been implemented for semi-automatic classification of macrophagic polarization from HSI data. Our results confirm the possibility to perform single-cell-level in vitro classification of M1 vs. M2 macrophages in a non-invasive and label-free manner with a high accuracy (above 98% for cells deriving from the same donor), supporting the idea of applying the technique to the study of complex interacting cellular systems, such in the case of tumour-immunity in vitro models.
Naval EarthMap Observer (NEMO) science and naval products
NASA Astrophysics Data System (ADS)
Davis, Curtiss O.; Kappus, Mary E.; Gao, Bo-Cai; Bissett, W. Paul; Snyder, William A.
1998-11-01
A wide variety of applications of imaging spectrometry have been demonstrated using data from aircraft systems. Based on this experience the Navy is pursuing the Hyperspectral Remote Sensing Technology (HRST) Program to use hyperspectral imagery to characterize the littoral environment, for scientific and environmental studies and to meet Naval needs. To obtain the required space based hyperspectral imagery the Navy has joined in a partnership with industry to build and fly the Naval EarthMap Observer (NEMO). The NEMO spacecraft has the Coastal Ocean Imaging Spectrometer (COIS) a hyperspectral imager with adequate spectral and spatial resolution and a high signal-to- noise ratio to provide long term monitoring and real-time characterization of the coastal environment. It includes on- board processing for rapid data analysis and data compression, a large volume recorder, and high speed downlink to handle the required large volumes of data. This paper describes the algorithms for processing the COIS data to provide at-launch ocean data products and the research and modeling that are planned to use COIS data to advance our understanding of the dynamics of the coastal ocean.
Evaluation of camouflage effectiveness using hyperspectral images
NASA Astrophysics Data System (ADS)
Zavvartorbati, Ahmad; Dehghani, Hamid; Rashidi, Ali Jabar
2017-10-01
Recent advances in camouflage engineering have made it more difficult to detect targets. Assessing the effectiveness of camouflage against different target detection methods leads to identifying the strengths and weaknesses of camouflage designs. One of the target detection methods is to analyze the content of the scene using remote sensing hyperspectral images. In the process of evaluating camouflage designs, there must be comprehensive and efficient evaluation criteria. Three parameters were considered as the main factors affecting the target detection and based on these factors, camouflage effectiveness assessment criteria were proposed. To combine the criteria in the form of a single equation, the equation used in target visual search models was employed and for determining the criteria, a model was presented based on the structure of the computational visual attention systems. Also, in software implementations on the HyMap hyperspectral image, a variety of camouflage levels were created for the real targets in the image. Assessing the camouflage levels using the proposed criteria, comparing and analyzing the results can show that the provided criteria and model are effective for the evaluation of camouflage designs using hyperspectral images.
Hyperspectral optical imaging of human iris in vivo: characteristics of reflectance spectra
NASA Astrophysics Data System (ADS)
Medina, José M.; Pereira, Luís M.; Correia, Hélder T.; Nascimento, Sérgio M. C.
2011-07-01
We report a hyperspectral imaging system to measure the reflectance spectra of real human irises with high spatial resolution. A set of ocular prosthesis was used as the control condition. Reflectance data were decorrelated by the principal-component analysis. The main conclusion is that spectral complexity of the human iris is considerable: between 9 and 11 principal components are necessary to account for 99% of the cumulative variance in human irises. Correcting image misalignments associated with spontaneous ocular movements did not influence this result. The data also suggests a correlation between the first principal component and different levels of melanin present in the irises. It was also found that although the spectral characteristics of the first five principal components were not affected by the radial and angular position of the selected iridal areas, they affect the higher-order ones, suggesting a possible influence of the iris texture. The results show that hyperspectral imaging in the iris, together with adequate spectroscopic analyses provide more information than conventional colorimetric methods, making hyperspectral imaging suitable for the characterization of melanin and the noninvasive diagnosis of ocular diseases and iris color.
Onboard Image Processing System for Hyperspectral Sensor
Hihara, Hiroki; Moritani, Kotaro; Inoue, Masao; Hoshi, Yoshihiro; Iwasaki, Akira; Takada, Jun; Inada, Hitomi; Suzuki, Makoto; Seki, Taeko; Ichikawa, Satoshi; Tanii, Jun
2015-01-01
Onboard image processing systems for a hyperspectral sensor have been developed in order to maximize image data transmission efficiency for large volume and high speed data downlink capacity. Since more than 100 channels are required for hyperspectral sensors on Earth observation satellites, fast and small-footprint lossless image compression capability is essential for reducing the size and weight of a sensor system. A fast lossless image compression algorithm has been developed, and is implemented in the onboard correction circuitry of sensitivity and linearity of Complementary Metal Oxide Semiconductor (CMOS) sensors in order to maximize the compression ratio. The employed image compression method is based on Fast, Efficient, Lossless Image compression System (FELICS), which is a hierarchical predictive coding method with resolution scaling. To improve FELICS’s performance of image decorrelation and entropy coding, we apply a two-dimensional interpolation prediction and adaptive Golomb-Rice coding. It supports progressive decompression using resolution scaling while still maintaining superior performance measured as speed and complexity. Coding efficiency and compression speed enlarge the effective capacity of signal transmission channels, which lead to reducing onboard hardware by multiplexing sensor signals into a reduced number of compression circuits. The circuitry is embedded into the data formatter of the sensor system without adding size, weight, power consumption, and fabrication cost. PMID:26404281
Development of a compressive sampling hyperspectral imager prototype
NASA Astrophysics Data System (ADS)
Barducci, Alessandro; Guzzi, Donatella; Lastri, Cinzia; Nardino, Vanni; Marcoionni, Paolo; Pippi, Ivan
2013-10-01
Compressive sensing (CS) is a new technology that investigates the chance to sample signals at a lower rate than the traditional sampling theory. The main advantage of CS is that compression takes place during the sampling phase, making possible significant savings in terms of the ADC, data storage memory, down-link bandwidth, and electrical power absorption. The CS technology could have primary importance for spaceborne missions and technology, paving the way to noteworthy reductions of payload mass, volume, and cost. On the contrary, the main CS disadvantage is made by the intensive off-line data processing necessary to obtain the desired source estimation. In this paper we summarize the CS architecture and its possible implementations for Earth observation, giving evidence of possible bottlenecks hindering this technology. CS necessarily employs a multiplexing scheme, which should produce some SNR disadvantage. Moreover, this approach would necessitate optical light modulators and 2-dim detector arrays of high frame rate. This paper describes the development of a sensor prototype at laboratory level that will be utilized for the experimental assessment of CS performance and the related reconstruction errors. The experimental test-bed adopts a push-broom imaging spectrometer, a liquid crystal plate, a standard CCD camera and a Silicon PhotoMultiplier (SiPM) matrix. The prototype is being developed within the framework of the ESA ITI-B Project titled "Hyperspectral Passive Satellite Imaging via Compressive Sensing".
Melanoma detection using smartphone and multimode hyperspectral imaging
NASA Astrophysics Data System (ADS)
MacKinnon, Nicholas; Vasefi, Fartash; Booth, Nicholas; Farkas, Daniel L.
2016-04-01
This project's goal is to determine how to effectively implement a technology continuum from a low cost, remotely deployable imaging device to a more sophisticated multimode imaging system within a standard clinical practice. In this work a smartphone is used in conjunction with an optical attachment to capture cross-polarized and collinear color images of a nevus that are analyzed to quantify chromophore distribution. The nevus is also imaged by a multimode hyperspectral system, our proprietary SkinSpect™ device. Relative accuracy and biological plausibility of the two systems algorithms are compared to assess aspects of feasibility of in-home or primary care practitioner smartphone screening prior to rigorous clinical analysis via the SkinSpect.
NASA Astrophysics Data System (ADS)
Krause, Keith Stuart
The change, reduction, or extinction of species is a major issue currently facing the Earth. Efforts are underway to measure, monitor, and protect habitats that contain high species diversity. Remote sensing technology shows extreme value for monitoring species diversity by mapping ecosystems and using those land cover maps or other derived data as proxies to species number and distribution. The National Ecological Observatory Network (NEON) Airborne Observation Platform (AOP) consists of remote sensing instruments such as an imaging spectrometer, a full-waveform lidar, and a high-resolution color camera. AOP collected data over the Ordway-Swisher Biological Station (OSBS) in May 2014. A majority of the OSBS site is covered by the Sandhill ecosystem, which contains a very high diversity of vegetation species and is a native habitat for several threatened fauna species. The research presented here investigates ways to analyze the AOP data to map ecosystems at the OSBS site. The research attempts to leverage the high spatial resolution data and study the variability of the data within a ground plot scale along with integrating data from the different sensors. Mathematical features are derived from the data and brought into a decision tree classification algorithm (rpart), in order to create an ecosystem map for the site. The hyperspectral and lidar features serve as proxies for chemical, functional, and structural differences in the vegetation types for each of the ecosystems. K-folds cross validation shows a training accuracy of 91%, a validation accuracy of 78%, and a 66% accuracy using independent ground validation. The results presented here represent an important contribution to utilizing integrated hyperspectral and lidar remote sensing data for ecosystem mapping, by relating the spatial variability of the data within a ground plot scale to a collection of vegetation types that make up a given ecosystem.
Enabling Searches on Wavelengths in a Hyperspectral Indices Database
NASA Astrophysics Data System (ADS)
Piñuela, F.; Cerra, D.; Müller, R.
2017-10-01
Spectral indices derived from hyperspectral reflectance measurements are powerful tools to estimate physical parameters in a non-destructive and precise way for several fields of applications, among others vegetation health analysis, coastal and deep water constituents, geology, and atmosphere composition. In the last years, several micro-hyperspectral sensors have appeared, with both full-frame and push-broom acquisition technologies, while in the near future several hyperspectral spaceborne missions are planned to be launched. This is fostering the use of hyperspectral data in basic and applied research causing a large number of spectral indices to be defined and used in various applications. Ad hoc search engines are therefore needed to retrieve the most appropriate indices for a given application. In traditional systems, query input parameters are limited to alphanumeric strings, while characteristics such as spectral range/ bandwidth are not used in any existing search engine. Such information would be relevant, as it enables an inverse type of search: given the spectral capabilities of a given sensor or a specific spectral band, find all indices which can be derived from it. This paper describes a tool which enables a search as described above, by using the central wavelength or spectral range used by a given index as a search parameter. This offers the ability to manage numeric wavelength ranges in order to select indices which work at best in a given set of wavelengths or wavelength ranges.
NASA Astrophysics Data System (ADS)
Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.
2012-05-01
Naturally occurring Aspergillus flavus strains can be either toxigenic or atoxigenic, indicating their ability to produce aflatoxin or not, under specific conditions. Corn contaminated with toxigenic strains of A. flavus can result in great losses to the agricultural industry and pose threats to public health. Past research showed that fluorescence hyperspectral imaging could be a potential tool for rapid and non-invasive detection of aflatoxin contaminated corn. The objective of the current study was to assess, with the use of a hyperspectral sensor, the difference in fluorescence emission between corn kernels inoculated with toxigenic and atoxigenic inoculums of A. flavus. Corn ears were inoculated with AF13, a toxigenic strain of A. flavus, and AF38, an atoxigenic strain of A. flavus, at dough stage of development and harvested 8 weeks after inoculation. After harvest, single corn kernels were divided into three groups prior to imaging: control, adjacent, and glowing. Both sides of the kernel, germplasm and endosperm, were imaged separately using a fluorescence hyperspectral imaging system. It was found that the classification accuracies of the three manually designated groups were not promising. However, the separation of corn kernels based on different fungal inoculums yielded better results. The best result was achieved with the germplasm side of the corn kernels. Results are expected to enhance the potential of fluorescence hyperspectral imaging for the detection of aflatoxin contaminated corn.
HMM for hyperspectral spectrum representation and classification with endmember entropy vectors
NASA Astrophysics Data System (ADS)
Arabi, Samir Y. W.; Fernandes, David; Pizarro, Marco A.
2015-10-01
The Hyperspectral images due to its good spectral resolution are extensively used for classification, but its high number of bands requires a higher bandwidth in the transmission data, a higher data storage capability and a higher computational capability in processing systems. This work presents a new methodology for hyperspectral data classification that can work with a reduced number of spectral bands and achieve good results, comparable with processing methods that require all hyperspectral bands. The proposed method for hyperspectral spectra classification is based on the Hidden Markov Model (HMM) associated to each Endmember (EM) of a scene and the conditional probabilities of each EM belongs to each other EM. The EM conditional probability is transformed in EM vector entropy and those vectors are used as reference vectors for the classes in the scene. The conditional probability of a spectrum that will be classified is also transformed in a spectrum entropy vector, which is classified in a given class by the minimum ED (Euclidian Distance) among it and the EM entropy vectors. The methodology was tested with good results using AVIRIS spectra of a scene with 13 EM considering the full 209 bands and the reduced spectral bands of 128, 64 and 32. For the test area its show that can be used only 32 spectral bands instead of the original 209 bands, without significant loss in the classification process.
Airborne Hyperspectral Imaging of Seagrass and Coral Reef
NASA Astrophysics Data System (ADS)
Merrill, J.; Pan, Z.; Mewes, T.; Herwitz, S.
2013-12-01
This talk presents the process of project preparation, airborne data collection, data pre-processing and comparative analysis of a series of airborne hyperspectral projects focused on the mapping of seagrass and coral reef communities in the Florida Keys. As part of a series of large collaborative projects funded by the NASA ROSES program and the Florida Fish and Wildlife Conservation Commission and administered by the NASA UAV Collaborative, a series of airborne hyperspectral datasets were collected over six sites in the Florida Keys in May 2012, October 2012 and May 2013 by Galileo Group, Inc. using a manned Cessna 172 and NASA's SIERRA Unmanned Aerial Vehicle. Precise solar and tidal data were used to calculate airborne collection parameters and develop flight plans designed to optimize data quality. Two independent Visible and Near-Infrared (VNIR) hyperspectral imaging systems covering 400-100nm were used to collect imagery over six Areas of Interest (AOIs). Multiple collections were performed over all sites across strict solar windows in the mornings and afternoons. Independently developed pre-processing algorithms were employed to radiometrically correct, synchronize and georectify individual flight lines which were then combined into color balanced mosaics for each Area of Interest. The use of two different hyperspectral sensor as well as environmental variations between each collection allow for the comparative analysis of data quality as well as the iterative refinement of flight planning and collection parameters.
Hyperspectral image reconstruction using RGB color for foodborne pathogen detection on agar plates
NASA Astrophysics Data System (ADS)
Yoon, Seung-Chul; Shin, Tae-Sung; Park, Bosoon; Lawrence, Kurt C.; Heitschmidt, Gerald W.
2014-03-01
This paper reports the latest development of a color vision technique for detecting colonies of foodborne pathogens grown on agar plates with a hyperspectral image classification model that was developed using full hyperspectral data. The hyperspectral classification model depended on reflectance spectra measured in the visible and near-infrared spectral range from 400 and 1,000 nm (473 narrow spectral bands). Multivariate regression methods were used to estimate and predict hyperspectral data from RGB color values. The six representative non-O157 Shiga-toxin producing Eschetichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145) were grown on Rainbow agar plates. A line-scan pushbroom hyperspectral image sensor was used to scan 36 agar plates grown with pure STEC colonies at each plate. The 36 hyperspectral images of the agar plates were divided in half to create training and test sets. The mean Rsquared value for hyperspectral image estimation was about 0.98 in the spectral range between 400 and 700 nm for linear, quadratic and cubic polynomial regression models and the detection accuracy of the hyperspectral image classification model with the principal component analysis and k-nearest neighbors for the test set was up to 92% (99% with the original hyperspectral images). Thus, the results of the study suggested that color-based detection may be viable as a multispectral imaging solution without much loss of prediction accuracy compared to hyperspectral imaging.
Newer views of the Moon: Comparing spectra from Clementine and the Moon Mineralogy Mapper
Kramer, G.Y.; Besse, S.; Nettles, J.; Combe, J.-P.; Clark, R.N.; Pieters, C.M.; Staid, M.; Malaret, E.; Boardman, J.; Green, R.O.; Head, J.W.; McCord, T.B.
2011-01-01
The Moon Mineralogy Mapper (M3) provided the first global hyperspectral data of the lunar surface in 85 bands from 460 to 2980 nm. The Clementine mission provided the first global multispectral maps the lunar surface in 11 spectral bands across the ultraviolet-visible (UV-VIS) and near-infrared (NIR). In an effort to understand how M3 improves our ability to analyze and interpret lunar data, we compare M3 spectra with those from Clementine's UV-VIS and NIR cameras. The Clementine mission provided the first global multispectral maps the lunar surface in 11 spectral bands across the UV-VIS and NIR. We have found that M3 reflectance values are lower across all wavelengths compared with albedos from both of Clementine's UV-VIS and NIR cameras. M3 spectra show the Moon to be redder, that is, have a steeper continuum slope, than indicated by Clementine. The 1 m absorption band depths may be comparable between the instruments, but Clementine data consistently exhibit shallower 2 m band depths than M 3. Absorption band minimums are difficult to compare due to the significantly different spectral resolutions. Copyright 2011 by the American Geophysical Union.
Newer views of the Moon: Comparing spectra from Clementineand the Moon Mineralogy Mapper
Georgiana Y. Kramer,; Sebastian Besse,; Nettles, Jeff; Jean-Philippe Combe,; Clark, Roger N.; Pieters, Carle M.; Matthew Staid,; Joseph Boardman,; Robert Green,; McCord, Thomas B.; Malaret, Erik; Head, James W.
2011-01-01
The Moon Mineralogy Mapper (M3) provided the first global hyperspectral data of the lunar surface in 85 bands from 460 to 2980 nm. The Clementine mission provided the first global multispectral maps the lunar surface in 11 spectral bands across the ultraviolet-visible (UV-VIS) and near-infrared (NIR). In an effort to understand how M3 improves our ability to analyze and interpret lunar data, we compare M3 spectra with those from Clementine's UV-VIS and NIR cameras. The Clementine mission provided the first global multispectral maps the lunar surface in 11 spectral bands across the UV-VIS and NIR. We have found that M3 reflectance values are lower across all wavelengths compared with albedos from both of Clementine's UV-VIS and NIR cameras. M3 spectra show the Moon to be redder, that is, have a steeper continuum slope, than indicated by Clementine. The 1 μm absorption band depths may be comparable between the instruments, but Clementine data consistently exhibit shallower 2 μm band depths than M3. Absorption band minimums are difficult to compare due to the significantly different spectral resolutions.
Multispectral fluorescence imaging techniques for nondestructive food safety inspection
NASA Astrophysics Data System (ADS)
Kim, Moon S.; Lefcourt, Alan M.; Chen, Yud-Ren
2004-03-01
The use of spectral sensing has gained acceptance as a rapid means for nondestructive inspection of postharvest food produce. Current technologies generally use color or a single wavelength camera technology. The applicability and sensitivity of these techniques can be expanded through the use of multiple wavelengths. Reflectance in the Vis/NIR is the prevalent spectral technique. Fluorescence, compared to reflectance, is regarded as a more sensitive technique due to its dynamic responses to subtle changes in biological entities. Our laboratory has been exploring fluorescence as a potential means for detection of quality and wholesomeness of food products. Applications of fluorescence sensing require an understanding of the spectral characteristics emanating from constituents and potential contaminants. A number of factors affecting fluorescence emission characteristics are discussed. Because of relatively low fluorescence quantum yield from biological samples, a system with a powerful pulse light source such as a laser coupled with a gated detection device is used to harvest fluorescence, in the presence of ambient light. Several fluorescence sensor platforms developed in our laboratory, including hyperspectral imaging, and laser-induced fluorescence (LIF) and steady-state fluorescence imaging systems with multispectral capabilities are presented. We demonstrate the potential uses of recently developed fluorescence imaging platforms in food safety inspection of apples contaminated with animal feces.
Zhu, Wen-Jing; Mao, Han-Ping; Li, Qing-Lin; Liu, Hong-Yu; Sun, Jun; Zuo, Zhi-Yu; Chen, Yong
2014-09-01
With 25%, 50%, 75%, 100% and 150%, five levels of, nitrogen (N), phosphorus (P) and potassium (K) nutrition stress samples cultivated in Venlo type greenhouse soilless cultivation mode as the research object, polarized reflectance spectra and hyperspectral images of different nutrient deficiency greenhouse tomato leaves were acquired by using polarized reflectance spectroscopy system developed by our own research group and hyperspectral imaging system respectively. The relationship between a certain number of changes in the bump and texture of non-smooth surface of the nutrient stress leaf and the level of polarization reflected radiation was clarified by scanning electron microscopy (SEM). On the one hand, the polarization spectrum was converted into the degree of polarization through Stokes equation, and the four polarization characteristics between the polarization spectroscopy and reference measurement values of N, P and K respectively were extracted. On the other hand, the four characteristic wavelengths of N, P, K hyperspectral image data were determined respectively through the principal component analysis, followed by eight hyperspectral texture features extracted corresponding to the four characteristic wavelengths through correlation analysis. Polarization characteristics and hyperspectral texture features combined with each characteristics of N, P, K were extracted. These 12 characteristic variables were normalized by maximum-minimum value method. N, P, K nutrient levels quantitative diagnostic models were established by SVR. Results of models are as follows: the correlation coefficient of nitrogen r = 0.961 8, root mean square error RMSE= 0.451; correlation coefficient of phosphorus r = 0.916 3, root mean square error RMSE = 0.620; correlation coefficient of potassium r = 0.940 6, root mean square error RMSE = 0.494. The results show that high precision tomato leaves nutrition prediction model could be built by using polarized reflectance spectroscopy combined with high spectral information fusion technology and achieve good diagnoses effect. It has a great significance for the improvement of model accuracy and the development of special instruments. The research provides a new idea for the rapid detection of tomato nutrient content.
Calibration and testing of a Raman hyperspectral imaging system to reveal powdered food adulteration
Lohumi, Santosh; Lee, Hoonsoo; Kim, Moon S.; Qin, Jianwei; Kandpal, Lalit Mohan; Bae, Hyungjin; Rahman, Anisur
2018-01-01
The potential adulteration of foodstuffs has led to increasing concern regarding food safety and security, in particular for powdered food products where cheap ground materials or hazardous chemicals can be added to increase the quantity of powder or to obtain the desired aesthetic quality. Due to the resulting potential health threat to consumers, the development of a fast, label-free, and non-invasive technique for the detection of adulteration over a wide range of food products is necessary. We therefore report the development of a rapid Raman hyperspectral imaging technique for the detection of food adulteration and for authenticity analysis. The Raman hyperspectral imaging system comprises of a custom designed laser illumination system, sensing module, and a software interface. Laser illumination system generates a 785 nm laser line of high power, and the Gaussian like intensity distribution of laser beam is shaped by incorporating an engineered diffuser. The sensing module utilize Rayleigh filters, imaging spectrometer, and detector for collection of the Raman scattering signals along the laser line. A custom-built software to acquire Raman hyperspectral images which also facilitate the real time visualization of Raman chemical images of scanned samples. The developed system was employed for the simultaneous detection of Sudan dye and Congo red dye adulteration in paprika powder, and benzoyl peroxide and alloxan monohydrate adulteration in wheat flour at six different concentrations (w/w) from 0.05 to 1%. The collected Raman imaging data of the adulterated samples were analyzed to visualize and detect the adulterant concentrations by generating a binary image for each individual adulterant material. The results obtained based on the Raman chemical images of adulterants showed a strong correlation (R>0.98) between added and pixel based calculated concentration of adulterant materials. This developed Raman imaging system thus, can be considered as a powerful analytical technique for the quality and authenticity analysis of food products. PMID:29708973
Lohumi, Santosh; Lee, Hoonsoo; Kim, Moon S; Qin, Jianwei; Kandpal, Lalit Mohan; Bae, Hyungjin; Rahman, Anisur; Cho, Byoung-Kwan
2018-01-01
The potential adulteration of foodstuffs has led to increasing concern regarding food safety and security, in particular for powdered food products where cheap ground materials or hazardous chemicals can be added to increase the quantity of powder or to obtain the desired aesthetic quality. Due to the resulting potential health threat to consumers, the development of a fast, label-free, and non-invasive technique for the detection of adulteration over a wide range of food products is necessary. We therefore report the development of a rapid Raman hyperspectral imaging technique for the detection of food adulteration and for authenticity analysis. The Raman hyperspectral imaging system comprises of a custom designed laser illumination system, sensing module, and a software interface. Laser illumination system generates a 785 nm laser line of high power, and the Gaussian like intensity distribution of laser beam is shaped by incorporating an engineered diffuser. The sensing module utilize Rayleigh filters, imaging spectrometer, and detector for collection of the Raman scattering signals along the laser line. A custom-built software to acquire Raman hyperspectral images which also facilitate the real time visualization of Raman chemical images of scanned samples. The developed system was employed for the simultaneous detection of Sudan dye and Congo red dye adulteration in paprika powder, and benzoyl peroxide and alloxan monohydrate adulteration in wheat flour at six different concentrations (w/w) from 0.05 to 1%. The collected Raman imaging data of the adulterated samples were analyzed to visualize and detect the adulterant concentrations by generating a binary image for each individual adulterant material. The results obtained based on the Raman chemical images of adulterants showed a strong correlation (R>0.98) between added and pixel based calculated concentration of adulterant materials. This developed Raman imaging system thus, can be considered as a powerful analytical technique for the quality and authenticity analysis of food products.
Hyper-Spectral Synthesis of Active OB Stars Using GLaDoS
NASA Astrophysics Data System (ADS)
Hill, N. R.; Townsend, R. H. D.
2016-11-01
In recent years there has been considerable interest in using graphics processing units (GPUs) to perform scientific computations that have traditionally been handled by central processing units (CPUs). However, there is one area where the scientific potential of GPUs has been overlooked - computer graphics, the task they were originally designed for. Here we introduce GLaDoS, a hyper-spectral code which leverages the graphics capabilities of GPUs to synthesize spatially and spectrally resolved images of complex stellar systems. We demonstrate how GLaDoS can be applied to calculate observables for various classes of stars including systems with inhomogenous surface temperatures and contact binaries.
AOTF hyperspectral microscopic imaging for foodborne pathogenic bacteria detection
NASA Astrophysics Data System (ADS)
Park, Bosoon; Lee, Sangdae; Yoon, Seung-Chul; Sundaram, Jaya; Windham, William R.; Hinton, Arthur, Jr.; Lawrence, Kurt C.
2011-06-01
Hyperspectral microscope imaging (HMI) method which provides both spatial and spectral information can be effective for foodborne pathogen detection. The AOTF-based hyperspectral microscope imaging method can be used to characterize spectral properties of biofilm formed by Salmonella enteritidis as well as Escherichia coli. The intensity of spectral imagery and the pattern of spectral distribution varied with system parameters (integration time and gain) of HMI system. The preliminary results demonstrated determination of optimum parameter values of HMI system and the integration time must be no more than 250 ms for quality image acquisition from biofilm formed by S. enteritidis. Among the contiguous spectral imagery between 450 and 800 nm, the intensity of spectral images at 498, 522, 550 and 594 nm were distinctive for biofilm; whereas, the intensity of spectral images at 546 nm was distinctive for E. coli. For more accurate comparison of intensity from spectral images, a calibration protocol, using neutral density filters and multiple exposures, need to be developed to standardize image acquisition. For the identification or classification of unknown food pathogen samples, ground truth regions-of-interest pixels need to be selected for "spectrally pure fingerprints" for the Salmonella and E. coli species.
NASA Astrophysics Data System (ADS)
Han, Zhimin; Zhang, Aoyu; Wang, Xiguang; Sun, Zongxiao; Wang, May D.; Xie, Tianyu
2016-01-01
The early detection and diagnosis of malignant colorectal tumors enables the initiation of early-stage therapy and can significantly increase the survival rate and post-treatment quality of life among cancer patients. Hyperspectral imaging (HSI) is recognized as a powerful tool for noninvasive cancer detection. In the gastrointestinal field, most of the studies on HSI have involved ex vivo biopsies or resected tissues. In the present study, we aimed to assess the difference in the in vivo spectral reflectance of malignant colorectal tumors and normal mucosa. A total of 21 colorectal tumors or adenomatous polyps from 12 patients at Shanghai Zhongshan Hospital were examined using a flexible hyperspectral (HS) colonoscopy system that can obtain in vivo HS images of the colorectal mucosa. We determined the optimal wavelengths for differentiating tumors from normal tissue based on these recorded images. The application of the determined wavelengths in spectral imaging in clinical trials indicated that such a clinical support system comprising a flexible HS colonoscopy unit and band selection unit is useful for outlining the tumor region and enhancing the display of the mucosa microvascular pattern in vivo.