2008-01-01
Distributed network-based battle management High performance computing supporting uniform and nonuniform memory access with single and multithreaded...pallet Airborne EO/IR and radar sensors VNIR through SWIR hyperspectral systems VNIR, MWIR, and LWIR high-resolution sys- tems Wideband SAR systems...meteorological sensors Hyperspectral sensor systems (PHILLS) Mid-wave infrared (MWIR) Indium Antimonide (InSb) imaging system Long-wave infrared ( LWIR
Flight model performances of HISUI hyperspectral sensor onboard ISS (International Space Station)
NASA Astrophysics Data System (ADS)
Tanii, Jun; Kashimura, Osamu; Ito, Yoshiyuki; Iwasaki, Akira
2016-10-01
Hyperspectral Imager Suite (HISUI) is a next-generation Japanese sensor that will be mounted on Japanese Experiment Module (JEM) of ISS (International Space Station) in 2019 as timeframe. HISUI hyperspectral sensor obtains spectral images of 185 bands with the ground sampling distance of 20x31 meter from the visible to shortwave-infrared region. The sensor system is the follow-on mission of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) in the visible to shortwave infrared region. The critical design review of the instrument was accomplished in 2014. Integration and tests of an flight model of HISUI hyperspectral sensor is being carried out. Simultaneously, the development of JEM-External Facility (EF) Payload system for the instrument started. The system includes the structure, the thermal control system, the electrical system and the pointing mechanism. The development status and the performances including some of the tests results of Instrument flight model, such as optical performance, optical distortion and radiometric performance are reported.
Flight model of HISUI hyperspectral sensor onboard ISS (International Space Station)
NASA Astrophysics Data System (ADS)
Tanii, Jun; Kashimura, Osamu; Ito, Yoshiyuki; Iwasaki, Akira
2017-09-01
Hyperspectral Imager Suite (HISUI) is a next-generation Japanese sensor that will be mounted on Japanese Experiment Module (JEM) of ISS (International Space Station) in 2019 as timeframe. HISUI hyperspectral sensor obtains spectral images of 185 bands with the ground sampling distance of 20x31 meter from the visible to shortwave-infrared wavelength region. The sensor is the follow-on mission of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) in the visible to shortwave infrared region. The critical design review of the instrument was accomplished in 2014. Integration and tests of a Flight Model (FM) of HISUI hyperspectral sensor have been completed in the beginning of 2017. Simultaneously, the development of JEMExternal Facility (EF) Payload system for the instrument is being carried out. The system includes the structure, the thermal control sub-system and the electrical sub-system. The tests results of flight model, such as optical performance, optical distortion and radiometric performance are reported.
A data-management system using sensor technology and wireless devices for port security
NASA Astrophysics Data System (ADS)
Saldaña, Manuel; Rivera, Javier; Oyola, Jose; Manian, Vidya
2014-05-01
Sensor technologies such as infrared sensors and hyperspectral imaging, video camera surveillance are proven to be viable in port security. Drawing from sources such as infrared sensor data, digital camera images and processed hyperspectral images, this article explores the implementation of a real-time data delivery system. In an effort to improve the manner in which anomaly detection data is delivered to interested parties in port security, this system explores how a client-server architecture can provide protected access to data, reports, and device status. Sensor data and hyperspectral image data will be kept in a monitored directory, where the system will link it to existing users in the database. Since this system will render processed hyperspectral images that are dynamically added to the server - which often occupy a large amount of space - the resolution of these images is trimmed down to around 1024×768 pixels. Changes that occur in any image or data modification that originates from any sensor will trigger a message to all users that have a relation with the aforementioned. These messages will be sent to the corresponding users through automatic email generation and through a push notification using Google Cloud Messaging for Android. Moreover, this paper presents the complete architecture for data reception from the sensors, processing, storage and discusses how users of this system such as port security personnel can use benefit from the use of this service to receive secure real-time notifications if their designated sensors have detected anomalies and/or have remote access to results from processed hyperspectral imagery relevant to their assigned posts.
Remote sensing of soil moisture using airborne hyperspectral data
USDA-ARS?s Scientific Manuscript database
The Institute for Technology Development (ITD) has developed an airborne hyperspectral sensor system that collects electromagnetic reflectance data of the terrain. The system consists of sensors for three different sections of the electromagnetic spectrum; the Ultra-Violet (UV), Visible/Near Infrare...
Quantification of Water Quality Parameters for the Wabash River Using Hyperspectral Remote Sensing
NASA Astrophysics Data System (ADS)
Tan, J.; Cherkauer, K. A.; Chaubey, I.
2011-12-01
Increasingly impaired water bodies in the agriculturally dominated Midwestern United States pose a risk to water supplies, aquatic ecology and contribute to the eutrophication of the Gulf of Mexico. Improving regional water quality calls for new techniques for monitoring and managing water quality over large river systems. Optical indicators of water quality enable a timely and cost-effective method for observing and quantifying water quality conditions by remote sensing. Compared to broad spectral sensors such as Landsat, which observe reflectance over limited spectral bands, hyperspectral sensors should have significant advantages in their ability to estimate water quality parameters because they are designed to split the spectral signature into hundreds of very narrow spectral bands increasing their ability to resolve optically sensitive water quality indicators. Two airborne hyperspectral images were acquired over the Wabash River using a ProSpecTIR-VS2 sensor system on May 15th, 2010. These images were analyzed together with concurrent in-stream water quality data collected to assess our ability to extract optically sensitive constituents. Utilizing the correlation between in-stream data and reflectance from the hyperspectral images, models were developed to estimate the concentrations of chlorophyll a, dissolved organic carbon and total suspended solids. Models were developed using the full array of hyperspectral bands, as well as Landsat bands synthesized by averaging hyperspectral bands within the Landsat spectral range. Higher R2 and lower RMSE values were found for the models taking full advantage of the hyperspectral sensor, supporting the conclusion that the hyperspectral sensor was better at predicting the in-stream concentrations of chlorophyll a, dissolved organic carbon and total suspended solids in the Wabash River. Results also suggest that predictive models may not be the same for the Wabash River as for its tributaries.
2012-02-09
The calibrated data are then sent to NRL Stennis Space Center (NRL-SSC) for further processing using the NRL SSC Automated Processing System (APS...hyperspectral sensor in space we have not previously developed automated processing for hyperspectral ocean color data. The hyperspectral processing branch
Onboard Image Processing System for Hyperspectral Sensor
Hihara, Hiroki; Moritani, Kotaro; Inoue, Masao; Hoshi, Yoshihiro; Iwasaki, Akira; Takada, Jun; Inada, Hitomi; Suzuki, Makoto; Seki, Taeko; Ichikawa, Satoshi; Tanii, Jun
2015-01-01
Onboard image processing systems for a hyperspectral sensor have been developed in order to maximize image data transmission efficiency for large volume and high speed data downlink capacity. Since more than 100 channels are required for hyperspectral sensors on Earth observation satellites, fast and small-footprint lossless image compression capability is essential for reducing the size and weight of a sensor system. A fast lossless image compression algorithm has been developed, and is implemented in the onboard correction circuitry of sensitivity and linearity of Complementary Metal Oxide Semiconductor (CMOS) sensors in order to maximize the compression ratio. The employed image compression method is based on Fast, Efficient, Lossless Image compression System (FELICS), which is a hierarchical predictive coding method with resolution scaling. To improve FELICS’s performance of image decorrelation and entropy coding, we apply a two-dimensional interpolation prediction and adaptive Golomb-Rice coding. It supports progressive decompression using resolution scaling while still maintaining superior performance measured as speed and complexity. Coding efficiency and compression speed enlarge the effective capacity of signal transmission channels, which lead to reducing onboard hardware by multiplexing sensor signals into a reduced number of compression circuits. The circuitry is embedded into the data formatter of the sensor system without adding size, weight, power consumption, and fabrication cost. PMID:26404281
Concept and integration of an on-line quasi-operational airborne hyperspectral remote sensing system
NASA Astrophysics Data System (ADS)
Schilling, Hendrik; Lenz, Andreas; Gross, Wolfgang; Perpeet, Dominik; Wuttke, Sebastian; Middelmann, Wolfgang
2013-10-01
Modern mission characteristics require the use of advanced imaging sensors in reconnaissance. In particular, high spatial and high spectral resolution imaging provides promising data for many tasks such as classification and detecting objects of military relevance, such as camouflaged units or improvised explosive devices (IEDs). Especially in asymmetric warfare with highly mobile forces, intelligence, surveillance and reconnaissance (ISR) needs to be available close to real-time. This demands the use of unmanned aerial vehicles (UAVs) in combination with downlink capability. The system described in this contribution is integrated in a wing pod for ease of installation and calibration. It is designed for the real-time acquisition and analysis of hyperspectral data. The main component is a Specim AISA Eagle II hyperspectral sensor, covering the visible and near-infrared (VNIR) spectral range with a spectral resolution up to 1.2 nm and 1024 pixel across track, leading to a ground sampling distance below 1 m at typical altitudes. The push broom characteristic of the hyperspectral sensor demands an inertial navigation system (INS) for rectification and georeferencing of the image data. Additional sensors are a high resolution RGB (HR-RGB) frame camera and a thermal imaging camera. For on-line application, the data is preselected, compressed and transmitted to the ground control station (GCS) by an existing system in a second wing pod. The final result after data processing in the GCS is a hyperspectral orthorectified GeoTIFF, which is filed in the ERDAS APOLLO geographical information system. APOLLO allows remote access to the data and offers web-based analysis tools. The system is quasi-operational and was successfully tested in May 2013 in Bremerhaven, Germany.
Imaging Beyond What Man Can See
NASA Technical Reports Server (NTRS)
May, George; Mitchell, Brian
2004-01-01
Three lightweight, portable hyperspectral sensor systems have been built that capture energy from 200 to 1700 nanometers (ultravio1et to shortwave infrared). The sensors incorporate a line scanning technique that requires no relative movement between the target and the sensor. This unique capability, combined with portability, opens up new uses of hyperspectral imaging for laboratory and field environments. Each system has a GUI-based software package that allows the user to communicate with the imaging device for setting spatial resolution, spectral bands and other parameters. NASA's Space Partnership Development has sponsored these innovative developments and their application to human problems on Earth and in space. Hyperspectral datasets have been captured and analyzed in numerous areas including precision agriculture, food safety, biomedical imaging, and forensics. Discussion on research results will include realtime detection of food contaminants, molds and toxin research on corn, identifying counterfeit documents, non-invasive wound monitoring and aircraft applications. Future research will include development of a thermal infrared hyperspectral sensor that will support natural resource applications on Earth and thermal analyses during long duration space flight. This paper incorporates a variety of disciplines and imaging technologies that have been linked together to allow the expansion of remote sensing across both traditional and non-traditional boundaries.
Atmospheric correction for hyperspectral ocean color sensors
NASA Astrophysics Data System (ADS)
Ibrahim, A.; Ahmad, Z.; Franz, B. A.; Knobelspiesse, K. D.
2017-12-01
NASA's heritage Atmospheric Correction (AC) algorithm for multi-spectral ocean color sensors is inadequate for the new generation of spaceborne hyperspectral sensors, such as NASA's first hyperspectral Ocean Color Instrument (OCI) onboard the anticipated Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite mission. The AC process must estimate and remove the atmospheric path radiance contribution due to the Rayleigh scattering by air molecules and by aerosols from the measured top-of-atmosphere (TOA) radiance. Further, it must also compensate for the absorption by atmospheric gases and correct for reflection and refraction of the air-sea interface. We present and evaluate an improved AC for hyperspectral sensors beyond the heritage approach by utilizing the additional spectral information of the hyperspectral sensor. The study encompasses a theoretical radiative transfer sensitivity analysis as well as a practical application of the Hyperspectral Imager for the Coastal Ocean (HICO) and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensors.
NASA Astrophysics Data System (ADS)
Ishihara, Miya; Sato, Masato; Kutsuna, Toshiharu; Ishihara, Masayuki; Mochida, Joji; Kikuchi, Makoto
2008-02-01
There is a demand in the field of regenerative medicine for measurement technology that enables determination of functions and components of engineered tissue. To meet this demand, we developed a method for extracellular matrix characterization using time-resolved autofluorescence spectroscopy, which enabled simultaneous measurements with mechanical properties using relaxation of laser-induced stress wave. In this study, in addition to time-resolved fluorescent spectroscopy, hyperspectral sensor, which enables to capture both spectral and spatial information, was used for evaluation of biochemical characterization of tissue-engineered cartilage. Hyperspectral imaging system provides spectral resolution of 1.2 nm and image rate of 100 images/sec. The imaging system consisted of the hyperspectral sensor, a scanner for x-y plane imaging, magnifying optics and Xenon lamp for transmmissive lighting. Cellular imaging using the hyperspectral image system has been achieved by improvement in spatial resolution up to 9 micrometer. The spectroscopic cellular imaging could be observed using cultured chondrocytes as sample. At early stage of culture, the hyperspectral imaging offered information about cellular function associated with endogeneous fluorescent biomolecules.
Hyperspectral Systems Increase Imaging Capabilities
NASA Technical Reports Server (NTRS)
2010-01-01
In 1983, NASA started developing hyperspectral systems to image in the ultraviolet and infrared wavelengths. In 2001, the first on-orbit hyperspectral imager, Hyperion, was launched aboard the Earth Observing-1 spacecraft. Based on the hyperspectral imaging sensors used in Earth observation satellites, Stennis Space Center engineers and Institute for Technology Development researchers collaborated on a new design that was smaller and used an improved scanner. Featured in Spinoff 2007, the technology is now exclusively licensed by Themis Vision Systems LLC, of Richmond, Virginia, and is widely used in medical and life sciences, defense and security, forensics, and microscopy.
Incorporating signal-dependent noise for hyperspectral target detection
NASA Astrophysics Data System (ADS)
Morman, Christopher J.; Meola, Joseph
2015-05-01
The majority of hyperspectral target detection algorithms are developed from statistical data models employing stationary background statistics or white Gaussian noise models. Stationary background models are inaccurate as a result of two separate physical processes. First, varying background classes often exist in the imagery that possess different clutter statistics. Many algorithms can account for this variability through the use of subspaces or clustering techniques. The second physical process, which is often ignored, is a signal-dependent sensor noise term. For photon counting sensors that are often used in hyperspectral imaging systems, sensor noise increases as the measured signal level increases as a result of Poisson random processes. This work investigates the impact of this sensor noise on target detection performance. A linear noise model is developed describing sensor noise variance as a linear function of signal level. The linear noise model is then incorporated for detection of targets using data collected at Wright Patterson Air Force Base.
Hyperspectral monitoring of chemically sensitive plant sentinels
NASA Astrophysics Data System (ADS)
Simmons, Danielle A.; Kerekes, John P.; Raqueno, Nina G.
2009-08-01
Automated detection of chemical threats is essential for an early warning of a potential attack. Harnessing plants as bio-sensors allows for distributed sensing without a power supply. Monitoring the bio-sensors requires a specifically tailored hyperspectral system. Tobacco plants have been genetically engineered to de-green when a material of interest (e.g. zinc, TNT) is introduced to their immediate vicinity. The reflectance spectra of the bio-sensors must be accurately characterized during the de-greening process for them to play a role in an effective warning system. Hyperspectral data have been collected under laboratory conditions to determine the key regions in the reflectance spectra associated with the degreening phenomenon. Bio-sensor plants and control (nongenetically engineered) plants were exposed to TNT over the course of two days and their spectra were measured every six hours. Rochester Institute of Technologys Digital Imaging and Remote Sensing Image Generation Model (DIRSIG) was used to simulate detection of de-greened plants in the field. The simulated scene contains a brick school building, sidewalks, trees and the bio-sensors placed at the entrances to the buildings. Trade studies of the bio-sensor monitoring system were also conducted using DIRSIG simulations. System performance was studied as a function of field of view, pixel size, illumination conditions, radiometric noise, spectral waveband dependence and spectral resolution. Preliminary results show that the most significant change in reflectance during the degreening period occurs in the near infrared region.
NASA Astrophysics Data System (ADS)
Näthe, Paul; Becker, Rolf
2014-05-01
Soil moisture and plant available water are important environmental parameters that affect plant growth and crop yield. Hence, they are significant parameters for vegetation monitoring and precision agriculture. However, validation through ground-based soil moisture measurements is necessary for accessing soil moisture, plant canopy temperature, soil temperature and soil roughness with airborne hyperspectral imaging systems in a corresponding hyperspectral imaging campaign as a part of the INTERREG IV A-Project SMART INSPECTORS. At this point, commercially available sensors for matric potential, plant available water and volumetric water content are utilized for automated measurements with smart sensor nodes which are developed on the basis of open-source 868MHz radio modules, featuring a full-scale microcontroller unit that allows an autarkic operation of the sensor nodes on batteries in the field. The generated data from each of these sensor nodes is transferred wirelessly with an open-source protocol to a central node, the so-called "gateway". This gateway collects, interprets and buffers the sensor readings and, eventually, pushes the data-time series onto a server-based database. The entire data processing chain from the sensor reading to the final storage of data-time series on a server is realized with open-source hardware and software in such a way that the recorded data can be accessed from anywhere through the internet. It will be presented how this open-source based wireless sensor network is developed and specified for the application of ground truthing. In addition, the system's perspectives and potentials with respect to usability and applicability for vegetation monitoring and precision agriculture shall be pointed out. Regarding the corresponding hyperspectral imaging campaign, results from ground measurements will be discussed in terms of their contributing aspects to the remote sensing system. Finally, the significance of the wireless sensor network for the application of ground truthing shall be determined.
NASA Astrophysics Data System (ADS)
Gomer, Nathaniel R.; Tazik, Shawna; Gardner, Charles W.; Nelson, Matthew P.
2017-05-01
Hyperspectral imaging (HSI) is a valuable tool for the detection and analysis of targets located within complex backgrounds. HSI can detect threat materials on environmental surfaces, where the concentration of the target of interest is often very low and is typically found within complex scenery. Unfortunately, current generation HSI systems have size, weight, and power limitations that prohibit their use for field-portable and/or real-time applications. Current generation systems commonly provide an inefficient area search rate, require close proximity to the target for screening, and/or are not capable of making real-time measurements. ChemImage Sensor Systems (CISS) is developing a variety of real-time, wide-field hyperspectral imaging systems that utilize shortwave infrared (SWIR) absorption and Raman spectroscopy. SWIR HSI sensors provide wide-area imagery with at or near real time detection speeds. Raman HSI sensors are being developed to overcome two obstacles present in standard Raman detection systems: slow area search rate (due to small laser spot sizes) and lack of eye-safety. SWIR HSI sensors have been integrated into mobile, robot based platforms and handheld variants for the detection of explosives and chemical warfare agents (CWAs). In addition, the fusion of these two technologies into a single system has shown the feasibility of using both techniques concurrently to provide higher probability of detection and lower false alarm rates. This paper will provide background on Raman and SWIR HSI, discuss the applications for these techniques, and provide an overview of novel CISS HSI sensors focusing on sensor design and detection results.
Bathymetry Estimations Using Vicariously Calibrated HICO Data
2013-07-16
prototype sensor installed on the International Space Station (ISS) designed to explore the management and capability of a space-borne hyperspectral sensor ...management of the HICO sensor . Bathymetry information is essential for naval operations in coastal regions. However, bathymetry may not be available in... sensors with coarser resolutions. Furthermore, its contiguous hyperspectral range is well suited to be used as input to the Hyperspectral Optimization
Compressive hyperspectral sensor for LWIR gas detection
NASA Astrophysics Data System (ADS)
Russell, Thomas A.; McMackin, Lenore; Bridge, Bob; Baraniuk, Richard
2012-06-01
Focal plane arrays with associated electronics and cooling are a substantial portion of the cost, complexity, size, weight, and power requirements of Long-Wave IR (LWIR) imagers. Hyperspectral LWIR imagers add significant data volume burden as they collect a high-resolution spectrum at each pixel. We report here on a LWIR Hyperspectral Sensor that applies Compressive Sensing (CS) in order to achieve benefits in these areas. The sensor applies single-pixel detection technology demonstrated by Rice University. The single-pixel approach uses a Digital Micro-mirror Device (DMD) to reflect and multiplex the light from a random assortment of pixels onto the detector. This is repeated for a number of measurements much less than the total number of scene pixels. We have extended this architecture to hyperspectral LWIR sensing by inserting a Fabry-Perot spectrometer in the optical path. This compressive hyperspectral imager collects all three dimensions on a single detection element, greatly reducing the size, weight and power requirements of the system relative to traditional approaches, while also reducing data volume. The CS architecture also supports innovative adaptive approaches to sensing, as the DMD device allows control over the selection of spatial scene pixels to be multiplexed on the detector. We are applying this advantage to the detection of plume gases, by adaptively locating and concentrating target energy. A key challenge in this system is the diffraction loss produce by the DMD in the LWIR. We report the results of testing DMD operation in the LWIR, as well as system spatial and spectral performance.
A LWIR hyperspectral imager using a Sagnac interferometer and cooled HgCdTe detector array
NASA Astrophysics Data System (ADS)
Lucey, Paul G.; Wood, Mark; Crites, Sarah T.; Akagi, Jason
2012-06-01
LWIR hyperspectral imaging has a wide range of civil and military applications with its ability to sense chemical compositions at standoff ranges. Most recent implementations of this technology use spectrographs employing varying degrees of cryogenic cooling to reduce sensor self-emission that can severely limit sensitivity. We have taken an interferometric approach that promises to reduce the need for cooling while preserving high resolution. Reduced cooling has multiple benefits including faster system readiness from a power off state, lower mass, and potentially lower cost owing to lower system complexity. We coupled an uncooled Sagnac interferometer with a 256x320 mercury cadmium telluride array with an 11 micron cutoff to produce a spatial interferometric LWIR hyperspectral imaging system operating from 7.5 to 11 microns. The sensor was tested in ground-ground applications, and from a small aircraft producing spectral imagery including detection of gas emission from high vapor pressure liquids.
Fast and compact internal scanning CMOS-based hyperspectral camera: the Snapscan
NASA Astrophysics Data System (ADS)
Pichette, Julien; Charle, Wouter; Lambrechts, Andy
2017-02-01
Imec has developed a process for the monolithic integration of optical filters on top of CMOS image sensors, leading to compact, cost-efficient and faster hyperspectral cameras. Linescan cameras are typically used in remote sensing or for conveyor belt applications. Translation of the target is not always possible for large objects or in many medical applications. Therefore, we introduce a novel camera, the Snapscan (patent pending), exploiting internal movement of a linescan sensor enabling fast and convenient acquisition of high-resolution hyperspectral cubes (up to 2048x3652x150 in spectral range 475-925 nm). The Snapscan combines the spectral and spatial resolutions of a linescan system with the convenience of a snapshot camera.
A Digital Sensor Simulator of the Pushbroom Offner Hyperspectral Imaging Spectrometer
Tao, Dongxing; Jia, Guorui; Yuan, Yan; Zhao, Huijie
2014-01-01
Sensor simulators can be used in forecasting the imaging quality of a new hyperspectral imaging spectrometer, and generating simulated data for the development and validation of the data processing algorithms. This paper presents a novel digital sensor simulator for the pushbroom Offner hyperspectral imaging spectrometer, which is widely used in the hyperspectral remote sensing. Based on the imaging process, the sensor simulator consists of a spatial response module, a spectral response module, and a radiometric response module. In order to enhance the simulation accuracy, spatial interpolation-resampling, which is implemented before the spatial degradation, is developed to compromise the direction error and the extra aliasing effect. Instead of using the spectral response function (SRF), the dispersive imaging characteristics of the Offner convex grating optical system is accurately modeled by its configuration parameters. The non-uniformity characteristics, such as keystone and smile effects, are simulated in the corresponding modules. In this work, the spatial, spectral and radiometric calibration processes are simulated to provide the parameters of modulation transfer function (MTF), SRF and radiometric calibration parameters of the sensor simulator. Some uncertainty factors (the stability, band width of the monochromator for the spectral calibration, and the integrating sphere uncertainty for the radiometric calibration) are considered in the simulation of the calibration process. With the calibration parameters, several experiments were designed to validate the spatial, spectral and radiometric response of the sensor simulator, respectively. The experiment results indicate that the sensor simulator is valid. PMID:25615727
Wavelet compression techniques for hyperspectral data
NASA Technical Reports Server (NTRS)
Evans, Bruce; Ringer, Brian; Yeates, Mathew
1994-01-01
Hyperspectral sensors are electro-optic sensors which typically operate in visible and near infrared bands. Their characteristic property is the ability to resolve a relatively large number (i.e., tens to hundreds) of contiguous spectral bands to produce a detailed profile of the electromagnetic spectrum. In contrast, multispectral sensors measure relatively few non-contiguous spectral bands. Like multispectral sensors, hyperspectral sensors are often also imaging sensors, measuring spectra over an array of spatial resolution cells. The data produced may thus be viewed as a three dimensional array of samples in which two dimensions correspond to spatial position and the third to wavelength. Because they multiply the already large storage/transmission bandwidth requirements of conventional digital images, hyperspectral sensors generate formidable torrents of data. Their fine spectral resolution typically results in high redundancy in the spectral dimension, so that hyperspectral data sets are excellent candidates for compression. Although there have been a number of studies of compression algorithms for multispectral data, we are not aware of any published results for hyperspectral data. Three algorithms for hyperspectral data compression are compared. They were selected as representatives of three major approaches for extending conventional lossy image compression techniques to hyperspectral data. The simplest approach treats the data as an ensemble of images and compresses each image independently, ignoring the correlation between spectral bands. The second approach transforms the data to decorrelate the spectral bands, and then compresses the transformed data as a set of independent images. The third approach directly generalizes two-dimensional transform coding by applying a three-dimensional transform as part of the usual transform-quantize-entropy code procedure. The algorithms studied all use the discrete wavelet transform. In the first two cases, a wavelet transform coder was used for the two-dimensional compression. The third case used a three dimensional extension of this same algorithm.
NASA Astrophysics Data System (ADS)
Gomer, Nathaniel R.; Gardner, Charles W.; Nelson, Matthew P.
2016-05-01
Hyperspectral imaging (HSI) is a valuable tool for the investigation and analysis of targets in complex background with a high degree of autonomy. HSI is beneficial for the detection of threat materials on environmental surfaces, where the concentration of the target of interest is often very low and is typically found within complex scenery. Two HSI techniques that have proven to be valuable are Raman and shortwave infrared (SWIR) HSI. Unfortunately, current generation HSI systems have numerous size, weight, and power (SWaP) limitations that make their potential integration onto a handheld or field portable platform difficult. The systems that are field-portable do so by sacrificing system performance, typically by providing an inefficient area search rate, requiring close proximity to the target for screening, and/or eliminating the potential to conduct real-time measurements. To address these shortcomings, ChemImage Sensor Systems (CISS) is developing a variety of wide-field hyperspectral imaging systems. Raman HSI sensors are being developed to overcome two obstacles present in standard Raman detection systems: slow area search rate (due to small laser spot sizes) and lack of eye-safety. SWIR HSI sensors have been integrated into mobile, robot based platforms and handheld variants for the detection of explosives and chemical warfare agents (CWAs). In addition, the fusion of these two technologies into a single system has shown the feasibility of using both techniques concurrently to provide higher probability of detection and lower false alarm rates. This paper will provide background on Raman and SWIR HSI, discuss the applications for these techniques, and provide an overview of novel CISS HSI sensors focused on sensor design and detection results.
Image quality measures to assess hyperspectral compression techniques
NASA Astrophysics Data System (ADS)
Lurie, Joan B.; Evans, Bruce W.; Ringer, Brian; Yeates, Mathew
1994-12-01
The term 'multispectral' is used to describe imagery with anywhere from three to about 20 bands of data. The images acquired by Landsat and similar earth sensing satellites including the French Spot platform are typical examples of multispectral data sets. Applications range from crop observation and yield estimation, to forestry, to sensing of the environment. The wave bands typically range from the visible to thermal infrared and are fractions of a micron wide. They may or may not be contiguous. Thus each pixel will have several spectral intensities associated with it but detailed spectra are not obtained. The term 'hyperspectral' is typically used for spectral data encompassing hundreds of samples of a spectrum. Hyperspectral, electro-optical sensors typically operate in the visible and near infrared bands. Their characteristic property is the ability to resolve a large number (typically hundreds) of contiguous spectral bands, thus producing a detailed profile of the electromagnetic spectrum. Like multispectral sensors, recently developed hyperspectral sensors are often also imaging sensors, measuring spectral over a two dimensional spatial array of picture elements of pixels. The resulting data is thus inherently three dimensional - an array of samples in which two dimensions correspond to spatial position and the third to wavelength. The data sets, commonly referred to as image cubes or datacubes (although technically they are often rectangular solids), are very rich in information but quickly become unwieldy in size, generating formidable torrents of data. Both spaceborne and airborne hyperspectral cameras exist and are in use today. The data is unique in its ability to provide high spatial and spectral resolution simultaneously, and shows great promise in both military and civilian applications. A data analysis system has been built at TRW under a series of Internal Research and Development projects. This development has been prompted by the business opportunities, by the series of instruments built here and by the availability of data from other instruments. The products of the processing system has been used to process data produced by TRW sensors and other instruments. Figure 1 provides an overview of the TRW hyperspectral collection, data handling and exploitation capability. The Analysis and Exploitation functions deal with the digitized image cubes. The analysis system was designed to handle various types of data but the emphasis was on the data acquired by the TRW instruments.
Habib, Ayman; Han, Youkyung; Xiong, Weifeng; ...
2016-09-24
Low-cost Unmanned Airborne Vehicles (UAVs) equipped with consumer-grade imaging systems have emerged as a potential remote sensing platform that could satisfy the needs of a wide range of civilian applications. Among these applications, UAV-based agricultural mapping and monitoring have attracted significant attention from both the research and professional communities. The interest in UAV-based remote sensing for agricultural management is motivated by the need to maximize crop yield. Remote sensing-based crop yield prediction and estimation are primarily based on imaging systems with different spectral coverage and resolution (e.g., RGB and hyperspectral imaging systems). Due to the data volume, RGB imaging ismore » based on frame cameras, while hyperspectral sensors are primarily push-broom scanners. To cope with the limited endurance and payload constraints of low-cost UAVs, the agricultural research and professional communities have to rely on consumer-grade and light-weight sensors. However, the geometric fidelity of derived information from push-broom hyperspectral scanners is quite sensitive to the available position and orientation established through a direct geo-referencing unit onboard the imaging platform (i.e., an integrated Global Navigation Satellite System (GNSS) and Inertial Navigation System (INS). This paper presents an automated framework for the integration of frame RGB images, push-broom hyperspectral scanner data and consumer-grade GNSS/INS navigation data for accurate geometric rectification of the hyperspectral scenes. The approach relies on utilizing the navigation data, together with a modified Speeded-Up Robust Feature (SURF) detector and descriptor, for automating the identification of conjugate features in the RGB and hyperspectral imagery. The SURF modification takes into consideration the available direct geo-referencing information to improve the reliability of the matching procedure in the presence of repetitive texture within a mechanized agricultural field. Identified features are then used to improve the geometric fidelity of the previously ortho-rectified hyperspectral data. Lastly, experimental results from two real datasets show that the geometric rectification of the hyperspectral data was improved by almost one order of magnitude.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habib, Ayman; Han, Youkyung; Xiong, Weifeng
Low-cost Unmanned Airborne Vehicles (UAVs) equipped with consumer-grade imaging systems have emerged as a potential remote sensing platform that could satisfy the needs of a wide range of civilian applications. Among these applications, UAV-based agricultural mapping and monitoring have attracted significant attention from both the research and professional communities. The interest in UAV-based remote sensing for agricultural management is motivated by the need to maximize crop yield. Remote sensing-based crop yield prediction and estimation are primarily based on imaging systems with different spectral coverage and resolution (e.g., RGB and hyperspectral imaging systems). Due to the data volume, RGB imaging ismore » based on frame cameras, while hyperspectral sensors are primarily push-broom scanners. To cope with the limited endurance and payload constraints of low-cost UAVs, the agricultural research and professional communities have to rely on consumer-grade and light-weight sensors. However, the geometric fidelity of derived information from push-broom hyperspectral scanners is quite sensitive to the available position and orientation established through a direct geo-referencing unit onboard the imaging platform (i.e., an integrated Global Navigation Satellite System (GNSS) and Inertial Navigation System (INS). This paper presents an automated framework for the integration of frame RGB images, push-broom hyperspectral scanner data and consumer-grade GNSS/INS navigation data for accurate geometric rectification of the hyperspectral scenes. The approach relies on utilizing the navigation data, together with a modified Speeded-Up Robust Feature (SURF) detector and descriptor, for automating the identification of conjugate features in the RGB and hyperspectral imagery. The SURF modification takes into consideration the available direct geo-referencing information to improve the reliability of the matching procedure in the presence of repetitive texture within a mechanized agricultural field. Identified features are then used to improve the geometric fidelity of the previously ortho-rectified hyperspectral data. Lastly, experimental results from two real datasets show that the geometric rectification of the hyperspectral data was improved by almost one order of magnitude.« less
3D surface scan of biological samples with a Push-broom Imaging Spectrometer
NASA Astrophysics Data System (ADS)
Yao, Haibo; Kincaid, Russell; Hruska, Zuzana; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.
2013-08-01
The food industry is always on the lookout for sensing technologies for rapid and nondestructive inspection of food products. Hyperspectral imaging technology integrates both imaging and spectroscopy into unique imaging sensors. Its application for food safety and quality inspection has made significant progress in recent years. Specifically, hyperspectral imaging has shown its potential for surface contamination detection in many food related applications. Most existing hyperspectral imaging systems use pushbroom scanning which is generally used for flat surface inspection. In some applications it is desirable to be able to acquire hyperspectral images on circular objects such as corn ears, apples, and cucumbers. Past research describes inspection systems that examine all surfaces of individual objects. Most of these systems did not employ hyperspectral imaging. These systems typically utilized a roller to rotate an object, such as an apple. During apple rotation, the camera took multiple images in order to cover the complete surface of the apple. The acquired image data lacked the spectral component present in a hyperspectral image. This paper discusses the development of a hyperspectral imaging system for a 3-D surface scan of biological samples. The new instrument is based on a pushbroom hyperspectral line scanner using a rotational stage to turn the sample. The system is suitable for whole surface hyperspectral imaging of circular objects. In addition to its value to the food industry, the system could be useful for other applications involving 3-D surface inspection.
Combining hyperspectral imaging and Raman spectroscopy for remote chemical sensing
NASA Astrophysics Data System (ADS)
Ingram, John M.; Lo, Edsanter
2008-04-01
The Photonics Research Center at the United States Military Academy is conducting research to demonstrate the feasibility of combining hyperspectral imaging and Raman spectroscopy for remote chemical detection over a broad area of interest. One limitation of future trace detection systems is their ability to analyze large areas of view. Hyperspectral imaging provides a balance between fast spectral analysis and scanning area. Integration of a hyperspectral system capable of remote chemical detection will greatly enhance our soldiers' ability to see the battlefield to make threat related decisions. It can also queue the trace detection systems onto the correct interrogation area saving time and reconnaissance/surveillance resources. This research develops both the sensor design and the detection/discrimination algorithms. The one meter remote detection without background radiation is a simple proof of concept.
NASA Astrophysics Data System (ADS)
Hook, Simon; Hulley, Glynn; Nicholson, Kerry
2017-04-01
Land Surface Temperature and Emissivity (LST&E) data are critical variables for studying a variety of Earth surface processes and surface-atmosphere interactions such as evapotranspiration, surface energy balance and water vapor retrievals. LST&E have been identified as an important Earth System Data Record (ESDR) by NASA and many other international organizations Accurate knowledge of the LST&E is a key requirement for many energy balance models to estimate important surface biophysical variables such as evapotranspiration and plant-available soil moisture. LST&E products are currently generated from sensors in low earth orbit (LEO) such as the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and Aqua satellites as well as from sensors in geostationary Earth orbit (GEO) such as the Geostationary Operational Environmental Satellites (GOES) and airborne sensors such as the Hyperspectral Thermal Emission Spectrometer (HyTES). LST&E products are generated with varying accuracies depending on the input data, including ancillary data such as atmospheric water vapor, as well as algorithmic approaches. NASA has identified the need to develop long-term, consistent, and calibrated data and products that are valid across multiple missions and satellite sensors. We will discuss the different approaches that can be used to retrieve surface temperature and emissivity from multispectral and hyperspectral thermal infrared sensors using examples from a variety of different sensors such as those mentioned, and planned new sensors like the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) and the Hyperspectral Infrared Imager (HyspIRI). We will also discuss a project underway at NASA to develop a single unified product from some the individual sensor products and assess the errors associated with the product.
Spectral Reconstruction Based on Svm for Cross Calibration
NASA Astrophysics Data System (ADS)
Gao, H.; Ma, Y.; Liu, W.; He, H.
2017-05-01
Chinese HY-1C/1D satellites will use a 5nm/10nm-resolutional visible-near infrared(VNIR) hyperspectral sensor with the solar calibrator to cross-calibrate with other sensors. The hyperspectral radiance data are composed of average radiance in the sensor's passbands and bear a spectral smoothing effect, a transform from the hyperspectral radiance data to the 1-nm-resolution apparent spectral radiance by spectral reconstruction need to be implemented. In order to solve the problem of noise cumulation and deterioration after several times of iteration by the iterative algorithm, a novel regression method based on SVM is proposed, which can approach arbitrary complex non-linear relationship closely and provide with better generalization capability by learning. In the opinion of system, the relationship between the apparent radiance and equivalent radiance is nonlinear mapping introduced by spectral response function(SRF), SVM transform the low-dimensional non-linear question into high-dimensional linear question though kernel function, obtaining global optimal solution by virtue of quadratic form. The experiment is performed using 6S-simulated spectrums considering the SRF and SNR of the hyperspectral sensor, measured reflectance spectrums of water body and different atmosphere conditions. The contrastive result shows: firstly, the proposed method is with more reconstructed accuracy especially to the high-frequency signal; secondly, while the spectral resolution of the hyperspectral sensor reduces, the proposed method performs better than the iterative method; finally, the root mean square relative error(RMSRE) which is used to evaluate the difference of the reconstructed spectrum and the real spectrum over the whole spectral range is calculated, it decreses by one time at least by proposed method.
USDA-ARS?s Scientific Manuscript database
An Unmanned Agricultural Robotics System (UARS) is acquired, rebuilt with desired hardware, and operated in both classrooms and field. The UARS includes crop height sensor, crop canopy analyzer, normalized difference vegetative index (NDVI) sensor, multispectral camera, and hyperspectral radiometer...
Hyperspectral and in situ data fusion for the steering of plant production systems
NASA Astrophysics Data System (ADS)
Verstraeten, W. W.; Coppin, P.
2009-04-01
Plant production systems are governed by biotic and a-biotic factors and by management practices. Some of the relevant parameters have already been identified and incorporated as inputs into existing models for production assessment, early-warning, and process management. These parameters originate nowadays primarily from in-situ measurements and observations. Non-invasive remotely sensed data, the diagnostic tools of excellence where it concerns the interaction of solar energy with biomass, have seldom been included and if so, mostly to support yield assessment and harvest monitoring only. The availability of new-generation hyperspectral/hypertemporal signatures will greatly facilitate their integration into full-fledged plant production model either via direct use, forcing, assimilation or re-initialization strategies. The main objective of IS-HS (Integration of In Situ data and HyperSpectral remote sensing for plant production modeling) is to set up a multidisciplinary research platform to deepen our system understanding and to develop production-oriented schemes to steer capital-intensive vegetation scenarios. Real-time steering in a 10-15 year timeframe is envisaged, where current system state is monitored, and steered towards an ideal state in terms of production quantity and quality. IS-HS focuses on hyperspectral sensor design, time series analysis tools for remote sensing data of vegetation systems, on the establishment of two stream communication between satellite and ground sensors, on the development of citrus plant production systems, and on the design of in-situ data sensor networks. The general framework of this system approach will be presented. In time, this integration should allow to cross the bridge from post-harvest assessment to near real-time potential and actual yield monitoring in terms of crop.
NASA Astrophysics Data System (ADS)
Holasek, Rick; Nakanishi, Keith; Ziph-Schatzberg, Leah; Santman, Jeff; Woodman, Patrick; Zacaroli, Richard; Wiggins, Richard
2017-04-01
Hyperspectral imaging (HSI) has been used for over two decades in laboratory research, academic, environmental and defense applications. In more recent time, HSI has started to be adopted for commercial applications in machine vision, conservation, resource exploration, and precision agriculture, to name just a few of the economically viable uses for the technology. Corning Incorporated (Corning) has been developing and manufacturing HSI sensors, sensor systems, and sensor optical engines, as well as HSI sensor components such as gratings and slits for over a decade and a half. This depth of experience and technological breadth has allowed Corning to design and develop unique HSI spectrometers with an unprecedented combination of high performance, low cost and low Size, Weight, and Power (SWaP). These sensors and sensor systems are offered with wavelength coverage ranges from the visible to the Long Wave Infrared (LWIR). The extremely low SWaP of Corning's HSI sensors and sensor systems enables their deployment using limited payload platforms such as small unmanned aerial vehicles (UAVs). This paper discusses use of the Corning patented monolithic design Offner spectrometer, the microHSI™, to build a highly compact 400-1000 nm HSI sensor in combination with a small Inertial Navigation System (INS) and micro-computer to make a complete turn-key airborne remote sensing payload. This Selectable Hyperspectral Airborne Remote sensing Kit (SHARK) has industry leading SWaP (1.5 lbs) at a disruptively low price due, in large part, to Corning's ability to manufacture the monolithic spectrometer out of polymers (i.e. plastic) and therefore reduce manufacturing costs considerably. The other factor in lowering costs is Corning's well established in house manufacturing capability in optical components and sensors that further enable cost-effective fabrication. The competitive SWaP and low cost of the microHSI™ sensor is approaching, and in some cases less than the price point of Multi Spectral Imaging (MSI) sensors. Specific designs of the Corning microHSI™ SHARK visNIR turn-key system are presented along with salient performance characteristics. Initial focus market areas include precision agriculture and historic and recent microHSI™ SHARK prototype test results are presented.
Using hyperspectral remote sensing for land cover classification
NASA Astrophysics Data System (ADS)
Zhang, Wendy W.; Sriharan, Shobha
2005-01-01
This project used hyperspectral data set to classify land cover using remote sensing techniques. Many different earth-sensing satellites, with diverse sensors mounted on sophisticated platforms, are currently in earth orbit. These sensors are designed to cover a wide range of the electromagnetic spectrum and are generating enormous amounts of data that must be processed, stored, and made available to the user community. The Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) collects data in 224 bands that are approximately 9.6 nm wide in contiguous bands between 0.40 and 2.45 mm. Hyperspectral sensors acquire images in many, very narrow, contiguous spectral bands throughout the visible, near-IR, and thermal IR portions of the spectrum. The unsupervised image classification procedure automatically categorizes the pixels in an image into land cover classes or themes. Experiments on using hyperspectral remote sensing for land cover classification were conducted during the 2003 and 2004 NASA Summer Faculty Fellowship Program at Stennis Space Center. Research Systems Inc.'s (RSI) ENVI software package was used in this application framework. In this application, emphasis was placed on: (1) Spectrally oriented classification procedures for land cover mapping, particularly, the supervised surface classification using AVIRIS data; and (2) Identifying data endmembers.
Towards establishing compact imaging spectrometer standards
Slonecker, E. Terrence; Allen, David W.; Resmini, Ronald G.
2016-01-01
Remote sensing science is currently undergoing a tremendous expansion in the area of hyperspectral imaging (HSI) technology. Spurred largely by the explosive growth of Unmanned Aerial Vehicles (UAV), sometimes called Unmanned Aircraft Systems (UAS), or drones, HSI capabilities that once required access to one of only a handful of very specialized and expensive sensor systems are now miniaturized and widely available commercially. Small compact imaging spectrometers (CIS) now on the market offer a number of hyperspectral imaging capabilities in terms of spectral range and sampling. The potential uses of HSI/CIS on UAVs/UASs seem limitless. However, the rapid expansion of unmanned aircraft and small hyperspectral sensor capabilities has created a number of questions related to technological, legal, and operational capabilities. Lightweight sensor systems suitable for UAV platforms are being advertised in the trade literature at an ever-expanding rate with no standardization of system performance specifications or terms of reference. To address this issue, both the U.S. Geological Survey and the National Institute of Standards and Technology are eveloping draft standards to meet these issues. This paper presents the outline of a combined USGS/NIST cooperative strategy to develop and test a characterization methodology to meet the needs of a new and expanding UAV/CIS/HSI user community.
NASA Astrophysics Data System (ADS)
Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan
2010-02-01
Near-infrared spectroscopy is a promising, rapidly developing, reliable and noninvasive technique, used extensively in the biomedicine and in pharmaceutical industry. With the introduction of acousto-optic tunable filters (AOTF) and highly sensitive InGaAs focal plane sensor arrays, real-time high resolution hyper-spectral imaging has become feasible for a number of new biomedical in vivo applications. However, due to the specificity of the AOTF technology and lack of spectral calibration standardization, maintaining long-term stability and compatibility of the acquired hyper-spectral images across different systems is still a challenging problem. Efficiently solving both is essential as the majority of methods for analysis of hyper-spectral images relay on a priori knowledge extracted from large spectral databases, serving as the basis for reliable qualitative or quantitative analysis of various biological samples. In this study, we propose and evaluate fast and reliable spectral calibration of hyper-spectral imaging systems in the short wavelength infrared spectral region. The proposed spectral calibration method is based on light sources or materials, exhibiting distinct spectral features, which enable robust non-rigid registration of the acquired spectra. The calibration accounts for all of the components of a typical hyper-spectral imaging system such as AOTF, light source, lens and optical fibers. The obtained results indicated that practical, fast and reliable spectral calibration of hyper-spectral imaging systems is possible, thereby assuring long-term stability and inter-system compatibility of the acquired hyper-spectral images.
Point-and-stare operation and high-speed image acquisition in real-time hyperspectral imaging
NASA Astrophysics Data System (ADS)
Driver, Richard D.; Bannon, David P.; Ciccone, Domenic; Hill, Sam L.
2010-04-01
The design and optical performance of a small-footprint, low-power, turnkey, Point-And-Stare hyperspectral analyzer, capable of fully automated field deployment in remote and harsh environments, is described. The unit is packaged for outdoor operation in an IP56 protected air-conditioned enclosure and includes a mechanically ruggedized fully reflective, aberration-corrected hyperspectral VNIR (400-1000 nm) spectrometer with a board-level detector optimized for point and stare operation, an on-board computer capable of full system data-acquisition and control, and a fully functioning internal hyperspectral calibration system for in-situ system spectral calibration and verification. Performance data on the unit under extremes of real-time survey operation and high spatial and high spectral resolution will be discussed. Hyperspectral acquisition including full parameter tracking is achieved by the addition of a fiber-optic based downwelling spectral channel for solar illumination tracking during hyperspectral acquisition and the use of other sensors for spatial and directional tracking to pinpoint view location. The system is mounted on a Pan-And-Tilt device, automatically controlled from the analyzer's on-board computer, making the HyperspecTM particularly adaptable for base security, border protection and remote deployments. A hyperspectral macro library has been developed to control hyperspectral image acquisition, system calibration and scene location control. The software allows the system to be operated in a fully automatic mode or under direct operator control through a GigE interface.
Snapshot hyperspectral fovea vision system (HyperVideo)
NASA Astrophysics Data System (ADS)
Kriesel, Jason; Scriven, Gordon; Gat, Nahum; Nagaraj, Sheela; Willson, Paul; Swaminathan, V.
2012-06-01
The development and demonstration of a new snapshot hyperspectral sensor is described. The system is a significant extension of the four dimensional imaging spectrometer (4DIS) concept, which resolves all four dimensions of hyperspectral imaging data (2D spatial, spectral, and temporal) in real-time. The new sensor, dubbed "4×4DIS" uses a single fiber optic reformatter that feeds into four separate, miniature visible to near-infrared (VNIR) imaging spectrometers, providing significantly better spatial resolution than previous systems. Full data cubes are captured in each frame period without scanning, i.e., "HyperVideo". The current system operates up to 30 Hz (i.e., 30 cubes/s), has 300 spectral bands from 400 to 1100 nm (~2.4 nm resolution), and a spatial resolution of 44×40 pixels. An additional 1.4 Megapixel video camera provides scene context and effectively sharpens the spatial resolution of the hyperspectral data. Essentially, the 4×4DIS provides a 2D spatially resolved grid of 44×40 = 1760 separate spectral measurements every 33 ms, which is overlaid on the detailed spatial information provided by the context camera. The system can use a wide range of off-the-shelf lenses and can either be operated so that the fields of view match, or in a "spectral fovea" mode, in which the 4×4DIS system uses narrow field of view optics, and is cued by a wider field of view context camera. Unlike other hyperspectral snapshot schemes, which require intensive computations to deconvolve the data (e.g., Computed Tomographic Imaging Spectrometer), the 4×4DIS requires only a linear remapping, enabling real-time display and analysis. The system concept has a range of applications including biomedical imaging, missile defense, infrared counter measure (IRCM) threat characterization, and ground based remote sensing.
High Throughput System for Plant Height and Hyperspectral Measurement
NASA Astrophysics Data System (ADS)
Zhao, H.; Xu, L.; Jiang, H.; Shi, S.; Chen, D.
2018-04-01
Hyperspectral and three-dimensional measurement can obtain the intrinsic physicochemical properties and external geometrical characteristics of objects, respectively. Currently, a variety of sensors are integrated into a system to collect spectral and morphological information in agriculture. However, previous experiments were usually performed with several commercial devices on a single platform. Inadequate registration and synchronization among instruments often resulted in mismatch between spectral and 3D information of the same target. And narrow field of view (FOV) extends the working hours in farms. Therefore, we propose a high throughput prototype that combines stereo vision and grating dispersion to simultaneously acquire hyperspectral and 3D information.
NASA Astrophysics Data System (ADS)
Turner, D.; Lucieer, A.; McCabe, M.; Parkes, S.; Clarke, I.
2017-08-01
In this study, we assess two push broom hyperspectral sensors as carried by small (10-15 kg) multi-rotor Unmanned Aircraft Systems (UAS). We used a Headwall Photonics micro-Hyperspec push broom sensor with 324 spectral bands (4-5 nm FWHM) and a Headwall Photonics nano-Hyperspec sensor with 270 spectral bands (6 nm FWHM) both in the VNIR spectral range (400-1000 nm). A gimbal was used to stabilise the sensors in relation to the aircraft flight dynamics, and for the micro-Hyperspec a tightly coupled dual frequency Global Navigation Satellite System (GNSS) receiver, an Inertial Measurement Unit (IMU), and Machine Vision Camera (MVC) were used for attitude and position determination. For the nano-Hyperspec, a navigation grade GNSS system and IMU provided position and attitude data. This study presents the geometric results of one flight over a grass oval on which a dense Ground Control Point (GCP) network was deployed. The aim being to ascertain the geometric accuracy achievable with the system. Using the PARGE software package (ReSe - Remote Sensing Applications) we ortho-rectify the push broom hyperspectral image strips and then quantify the accuracy of the ortho-rectification by using the GCPs as check points. The orientation (roll, pitch, and yaw) of the sensor is measured by the IMU. Alternatively imagery from a MVC running at 15 Hz, with accurate camera position data can be processed with Structure from Motion (SfM) software to obtain an estimated camera orientation. In this study, we look at which of these data sources will yield a flight strip with the highest geometric accuracy.
2003-09-30
We are developing an integrated rapid environmental assessment capability that will be used to feed an ocean nowcast/forecast system. The goal is to develop a capacity for predicting the dynamics in inherent optical properties in coastal waters. This is being accomplished by developing an integrated observation system that is being coupled to a data assimilative hydrodynamic bio-optical ecosystem model. The system was used adaptively to calibrate hyperspectral remote sensing sensors in optically complex nearshore coastal waters.
USDA-ARS?s Scientific Manuscript database
Modern hyperspectral sensors permit reflectance measurements of crop canopies in hundreds of narrow spectral wavebands. While these sensors describe plant canopy reflectance in greater detail than multispectral sensors, they also suffer from issues with data redundancy and spectral autocorrelation. ...
Hyperspectral Imaging of Forest Resources: The Malaysian Experience
NASA Astrophysics Data System (ADS)
Mohd Hasmadi, I.; Kamaruzaman, J.
2008-08-01
Remote sensing using satellite and aircraft images are well established technology. Remote sensing application of hyperspectral imaging, however, is relatively new to Malaysian forestry. Through a wide range of wavelengths hyperspectral data are precisely capable to capture narrow bands of spectra. Airborne sensors typically offer greatly enhanced spatial and spectral resolution over their satellite counterparts, and able to control experimental design closely during image acquisition. The first study using hyperspectral imaging for forest inventory in Malaysia were conducted by Professor Hj. Kamaruzaman from the Faculty of Forestry, Universiti Putra Malaysia in 2002 using the AISA sensor manufactured by Specim Ltd, Finland. The main objective has been to develop methods that are directly suited for practical tropical forestry application at the high level of accuracy. Forest inventory and tree classification including development of single spectral signatures have been the most important interest at the current practices. Experiences from the studies showed that retrieval of timber volume and tree discrimination using this system is well and some or rather is better than other remote sensing methods. This article reviews the research and application of airborne hyperspectral remote sensing for forest survey and assessment in Malaysia.
NASA Astrophysics Data System (ADS)
Rissanen, Anna; Guo, Bin; Saari, Heikki; Näsilä, Antti; Mannila, Rami; Akujärvi, Altti; Ojanen, Harri
2017-02-01
VTT's Fabry-Perot interferometers (FPI) technology enables creation of small and cost-efficient microspectrometers and hyperspectral imagers - these robust and light-weight sensors are currently finding their way into a variety of novel applications, including emerging medical products, automotive sensors, space instruments and mobile sensing devices. This presentation gives an overview of our core FPI technologies with current advances in generation of novel sensing applications including recent mobile technology demonstrators of a hyperspectral iPhone and a mobile phone CO2 sensor, which aim to advance mobile spectroscopic sensing.
NASA Astrophysics Data System (ADS)
Ogawa, Kenta; Konno, Yukiko; Yamamoto, Satoru; Matsunaga, Tsuneo; Tachikawa, Tetsushi; Komoda, Mako; Kashimura, Osamu; Rokugawa, Shuichi
2016-10-01
Hyperspectral Imager Suite (HISUI)[1] is a Japanese future spaceborne hyperspectral instrument being developed by Ministry of Economy, Trade, and Industry (METI) and will be delivered to ISS in 2018. In HISUI project, observation strategy is important especially for hyperspectral sensor, and relationship between the limitations of sensor operation and the planned observation scenarios have to be studied. We have developed concept of multiple algorithms approach. The concept is to use two (or more) algorithm models (Long Strip Model and Score Downfall Model) for selecting observing scenes from complex data acquisition requests with satisfactory of sensor constrains. We have tested the algorithm, and found that the performance of two models depends on remaining data acquisition requests, i.e. distribution score along with orbits. We conclude that the multiple algorithms approach will be make better collection plans for HISUI comparing with single fixed approach.
SWIR hyperspectral imaging detector for surface residues
NASA Astrophysics Data System (ADS)
Nelson, Matthew P.; Mangold, Paul; Gomer, Nathaniel; Klueva, Oksana; Treado, Patrick
2013-05-01
ChemImage has developed a SWIR Hyperspectral Imaging (HSI) sensor which uses hyperspectral imaging for wide area surveillance and standoff detection of surface residues. Existing detection technologies often require close proximity for sensing or detecting, endangering operators and costly equipment. Furthermore, most of the existing sensors do not support autonomous, real-time, mobile platform based detection of threats. The SWIR HSI sensor provides real-time standoff detection of surface residues. The SWIR HSI sensor provides wide area surveillance and HSI capability enabled by liquid crystal tunable filter technology. Easy-to-use detection software with a simple, intuitive user interface produces automated alarms and real-time display of threat and type. The system has potential to be used for the detection of variety of threats including chemicals and illicit drug substances and allows for easy updates in the field for detection of new hazardous materials. SWIR HSI technology could be used by law enforcement for standoff screening of suspicious locations and vehicles in pursuit of illegal labs or combat engineers to support route-clearance applications- ultimately to save the lives of soldiers and civilians. In this paper, results from a SWIR HSI sensor, which include detection of various materials in bulk form, as well as residue amounts on vehicles, people and other surfaces, will be discussed.
Secure and Efficient Transmission of Hyperspectral Images for Geosciences Applications
NASA Astrophysics Data System (ADS)
Carpentieri, Bruno; Pizzolante, Raffaele
2017-12-01
Hyperspectral images are acquired through air-borne or space-borne special cameras (sensors) that collect information coming from the electromagnetic spectrum of the observed terrains. Hyperspectral remote sensing and hyperspectral images are used for a wide range of purposes: originally, they were developed for mining applications and for geology because of the capability of this kind of images to correctly identify various types of underground minerals by analysing the reflected spectrums, but their usage has spread in other application fields, such as ecology, military and surveillance, historical research and even archaeology. The large amount of data obtained by the hyperspectral sensors, the fact that these images are acquired at a high cost by air-borne sensors and that they are generally transmitted to a base, makes it necessary to provide an efficient and secure transmission protocol. In this paper, we propose a novel framework that allows secure and efficient transmission of hyperspectral images, by combining a reversible invisible watermarking scheme, used in conjunction with digital signature techniques, and a state-of-art predictive-based lossless compression algorithm.
Evaluation of Algorithms for Compressing Hyperspectral Data
NASA Technical Reports Server (NTRS)
Cook, Sid; Harsanyi, Joseph; Faber, Vance
2003-01-01
With EO-1 Hyperion in orbit NASA is showing their continued commitment to hyperspectral imaging (HSI). As HSI sensor technology continues to mature, the ever-increasing amounts of sensor data generated will result in a need for more cost effective communication and data handling systems. Lockheed Martin, with considerable experience in spacecraft design and developing special purpose onboard processors, has teamed with Applied Signal & Image Technology (ASIT), who has an extensive heritage in HSI spectral compression and Mapping Science (MSI) for JPEG 2000 spatial compression expertise, to develop a real-time and intelligent onboard processing (OBP) system to reduce HSI sensor downlink requirements. Our goal is to reduce the downlink requirement by a factor > 100, while retaining the necessary spectral and spatial fidelity of the sensor data needed to satisfy the many science, military, and intelligence goals of these systems. Our compression algorithms leverage commercial-off-the-shelf (COTS) spectral and spatial exploitation algorithms. We are currently in the process of evaluating these compression algorithms using statistical analysis and NASA scientists. We are also developing special purpose processors for executing these algorithms onboard a spacecraft.
Resolution Enhancement of Hyperion Hyperspectral Data using Ikonos Multispectral Data
2007-09-01
spatial - resolution hyperspectral image to produce a sharpened product. The result is a product that has the spectral properties of the ...multispectral sensors. In this work, we examine the benefits of combining data from high- spatial - resolution , low- spectral - resolution spectral imaging...sensors with data obtained from high- spectral - resolution , low- spatial - resolution spectral imaging sensors.
Evaluation of Sun Glint Correction Algorithms for High-Spatial Resolution Hyperspectral Imagery
2012-09-01
ACRONYMS AND ABBREVIATIONS AISA Airborne Imaging Spectrometer for Applications AVIRIS Airborne Visible/Infrared Imaging Spectrometer BIL Band...sensor bracket mount combining Airborne Imaging Spectrometer for Applications ( AISA ) Eagle and Hawk sensors into a single imaging system (SpecTIR 2011...The AISA Eagle is a VNIR sensor with a wavelength range of approximately 400–970 nm and the AISA Hawk sensor is a SWIR sensor with a wavelength
Development of a Micro-UAV Hyperspectral Imaging Platform for Assessing Hydrogeological Hazards
NASA Astrophysics Data System (ADS)
Chen, Z.; Alabsi, M.
2015-12-01
The exacerbating global weather changes have cast significant impacts upon the proportion of water supplied to agriculture. Therefore, one of the 21stCentury Grant Challenges faced by global population is securing water for food. However, the soil-water behavior in an agricultural environment is complex; among others, one of the key properties we recognize is water repellence or hydrophobicity, which affects many hydrogeological and hazardous conditions such as excessive water infiltration, runoff, and soil erosion. Under a US-Israel research program funded by USDA and BARD at Israel, we have proposed the development of a novel micro-unmanned aerial vehicle (micro-UAV or drone) based hyperspectral imaging platform for identifying and assessing soil repellence at low altitudes with enhanced flexibility, much reduced cost, and ultimately easy use. This aerial imaging system consists of a generic micro-UAV, hyperspectral sensor aided by GPS/IMU, on-board computing units, and a ground station. The target benefits of this system include: (1) programmable waypoint navigation and robotic control for multi-view imaging; (2) ability of two- or three-dimensional scene reconstruction for complex terrains; and (3) fusion with other sensors to realize real-time diagnosis (e.g., humidity and solar irradiation that may affect soil-water sensing). In this talk we present our methodology and processes in integration of hyperspectral imaging, on-board sensing and computing, hyperspectral data modeling, and preliminary field demonstration and verification of the developed prototype.
Compact LWIR sensors using spatial interferometric technology (Conference Presentation)
NASA Astrophysics Data System (ADS)
Bingham, Adam L.; Lucey, Paul G.; Knobbe, Edward T.
2017-05-01
Recent developments in reducing the cost and mass of hyperspectral sensors have enabled more widespread use for short range compositional imaging applications. HSI in the long wave infrared (LWIR) is of interest because it is sensitive to spectral phenomena not accessible to other wavelengths, and because of its inherent thermal imaging capability. At Spectrum Photonics we have pursued compact LWIR hyperspectral sensors both using microbolometer arrays and compact cryogenic detector cameras. Our microbolometer-based systems are principally aimed at short standoff applications, currently weigh 10-15 lbs and feature sizes approximately 20x20x10 cm, with sensitivity in the 1-2 microflick range, and imaging times on the order of 30 seconds. Our systems that employ cryogenic arrays are aimed at medium standoff ranges such as nadir looking missions from UAVs. Recent work with cooled sensors has focused on Strained Layer Superlattice (SLS) technology, as these detector arrays are undergoing rapid improvements, and have some advantages compared to HgCdTe detectors in terms of calibration stability. These sensors include full on-board processing sensor stabilization so are somewhat larger than the microbolometer systems, but could be adapted to much more compact form factors. We will review our recent progress in both these application areas.
Retrieval Lesson Learned from NAST-I Hyperspectral Data
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Smith, William L.; Liu, Xu; Larar, Allen M.; Mango, Stephen A.
2007-01-01
The retrieval lesson learned is important to many current and future hyperspectral remote sensors. Validated retrieval algorithms demonstrate the advancement of hyperspectral remote sensing capabilities to be achieved with current and future satellite instruments.
Contrast based band selection for optimized weathered oil detection in hyperspectral images
NASA Astrophysics Data System (ADS)
Levaux, Florian; Bostater, Charles R., Jr.; Neyt, Xavier
2012-09-01
Hyperspectral imagery offers unique benefits for detection of land and water features due to the information contained in reflectance signatures such as the bi-directional reflectance distribution function or BRDF. The reflectance signature directly shows the relative absorption and backscattering features of targets. These features can be very useful in shoreline monitoring or surveillance applications, for example to detect weathered oil. In real-time detection applications, processing of hyperspectral data can be an important tool and Optimal band selection is thus important in real time applications in order to select the essential bands using the absorption and backscatter information. In the present paper, band selection is based upon the optimization of target detection using contrast algorithms. The common definition of the contrast (using only one band out of all possible combinations available within a hyperspectral image) is generalized in order to consider all the possible combinations of wavelength dependent contrasts using hyperspectral images. The inflection (defined here as an approximation of the second derivative) is also used in order to enhance the variations in the reflectance spectra as well as in the contrast spectrua in order to assist in optimal band selection. The results of the selection in term of target detection (false alarms and missed detection) are also compared with a previous method to perform feature detection, namely the matched filter. In this paper, imagery is acquired using a pushbroom hyperspectral sensor mounted at the bow of a small vessel. The sensor is mechanically rotated using an optical rotation stage. This opto-mechanical scanning system produces hyperspectral images with pixel sizes on the order of mm to cm scales, depending upon the distance between the sensor and the shoreline being monitored. The motion of the platform during the acquisition induces distortions in the collected HSI imagery. It is therefore necessary to apply a motion correction to the imagery. In this paper, imagery is corrected for the pitching motion of a vessel, which causes most of the deformation when the vessel is anchored at 2 points (bow and stern) during the acquisition of the hyperspectral imagry.
Uncooled long-wave infrared hyperspectral imaging
NASA Technical Reports Server (NTRS)
Lucey, Paul G. (Inventor)
2006-01-01
A long-wave infrared hyperspectral sensor device employs a combination of an interferometer with an uncooled microbolometer array camera to produce hyperspectral images without the use of bulky, power-hungry motorized components, making it suitable for UAV vehicles, small mobile platforms, or in extraterrestrial environments. The sensor device can provide signal-to-noise ratios near 200 for ambient temperature scenes with 33 wavenumber resolution at a frame rate of 50 Hz, with higher results indicated by ongoing component improvements.
Sousa, Daniel; Small, Christopher
2018-02-14
Planned hyperspectral satellite missions and the decreased revisit time of multispectral imaging offer the potential for data fusion to leverage both the spectral resolution of hyperspectral sensors and the temporal resolution of multispectral constellations. Hyperspectral imagery can also be used to better understand fundamental properties of multispectral data. In this analysis, we use five flight lines from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) archive with coincident Landsat 8 acquisitions over a spectrally diverse region of California to address the following questions: (1) How much of the spectral dimensionality of hyperspectral data is captured in multispectral data?; (2) Is the characteristic pyramidal structure of the multispectral feature space also present in the low order dimensions of the hyperspectral feature space at comparable spatial scales?; (3) How much variability in rock and soil substrate endmembers (EMs) present in hyperspectral data is captured by multispectral sensors? We find nearly identical partitions of variance, low-order feature space topologies, and EM spectra for hyperspectral and multispectral image composites. The resulting feature spaces and EMs are also very similar to those from previous global multispectral analyses, implying that the fundamental structure of the global feature space is present in our relatively small spatial subset of California. Finally, we find that the multispectral dataset well represents the substrate EM variability present in the study area - despite its inability to resolve narrow band absorptions. We observe a tentative but consistent physical relationship between the gradation of substrate reflectance in the feature space and the gradation of sand versus clay content in the soil classification system.
Small, Christopher
2018-01-01
Planned hyperspectral satellite missions and the decreased revisit time of multispectral imaging offer the potential for data fusion to leverage both the spectral resolution of hyperspectral sensors and the temporal resolution of multispectral constellations. Hyperspectral imagery can also be used to better understand fundamental properties of multispectral data. In this analysis, we use five flight lines from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) archive with coincident Landsat 8 acquisitions over a spectrally diverse region of California to address the following questions: (1) How much of the spectral dimensionality of hyperspectral data is captured in multispectral data?; (2) Is the characteristic pyramidal structure of the multispectral feature space also present in the low order dimensions of the hyperspectral feature space at comparable spatial scales?; (3) How much variability in rock and soil substrate endmembers (EMs) present in hyperspectral data is captured by multispectral sensors? We find nearly identical partitions of variance, low-order feature space topologies, and EM spectra for hyperspectral and multispectral image composites. The resulting feature spaces and EMs are also very similar to those from previous global multispectral analyses, implying that the fundamental structure of the global feature space is present in our relatively small spatial subset of California. Finally, we find that the multispectral dataset well represents the substrate EM variability present in the study area – despite its inability to resolve narrow band absorptions. We observe a tentative but consistent physical relationship between the gradation of substrate reflectance in the feature space and the gradation of sand versus clay content in the soil classification system. PMID:29443900
Hyperspectral Imager for the Coastal Ocean: instrument description and first images.
Lucke, Robert L; Corson, Michael; McGlothlin, Norman R; Butcher, Steve D; Wood, Daniel L; Korwan, Daniel R; Li, Rong R; Snyder, Willliam A; Davis, Curt O; Chen, Davidson T
2011-04-10
The Hyperspectral Imager for the Coastal Ocean (HICO) is the first spaceborne hyperspectral sensor designed specifically for the coastal ocean and estuarial, riverine, or other shallow-water areas. The HICO generates hyperspectral images, primarily over the 400-900 nm spectral range, with a ground sample distance of ≈90 m (at nadir) and a high signal-to-noise ratio. The HICO is now operating on the International Space Station (ISS). Its cross-track and along-track fields of view are 42 km (at nadir) and 192 km, respectively, for a total scene area of 8000 km(2). The HICO is an innovative prototype sensor that builds on extensive experience with airborne sensors and makes extensive use of commercial off-the-shelf components to build a space sensor at a small fraction of the usual cost and time. Here we describe the instrument's design and characterization and present early images from the ISS. © 2011 Optical Society of America
Mahlein, Anne-Katrin; Hammersley, Simon; Oerke, Erich-Christian; Dehne, Heinz-Wilhelm; Goldbach, Heiner; Grieve, Bruce
2015-06-01
Hyperspectral imaging systems used in plant science or agriculture often have suboptimal signal-to-noise ratio in the blue region (400-500 nm) of the electromagnetic spectrum. Typically there are two principal reasons for this effect, the low sensitivity of the imaging sensor and the low amount of light available from the illuminating source. In plant science, the blue region contains relevant information about the physiology and the health status of a plant. We report on the improvement in sensitivity of a hyperspectral imaging system in the blue region of the spectrum by using supplemental illumination provided by an array of high brightness light emitting diodes (LEDs) with an emission peak at 470 nm.
William, David J; Rybicki, Nancy B; Lombana, Alfonso V; O'Brien, Tim M; Gomez, Richard B
2003-01-01
The use of airborne hyperspectral remote sensing imagery for automated mapping of submerged aquatic vegetation (SAV) in the tidal Potomac River was investigated for near to real-time resource assessment and monitoring. Airborne hyperspectral imagery and field spectrometer measurements were obtained in October of 2000. A spectral library database containing selected ground-based and airborne sensor spectra was developed for use in image processing. The spectral library is used to automate the processing of hyperspectral imagery for potential real-time material identification and mapping. Field based spectra were compared to the airborne imagery using the database to identify and map two species of SAV (Myriophyllum spicatum and Vallisneria americana). Overall accuracy of the vegetation maps derived from hyperspectral imagery was determined by comparison to a product that combined aerial photography and field based sampling at the end of the SAV growing season. The algorithms and databases developed in this study will be useful with the current and forthcoming space-based hyperspectral remote sensing systems.
Kokaly, R.F.; King, T.V.V.; Hoefen, T.M.
2011-01-01
Identifying materials by measuring and analyzing their reflectance spectra has been an important method in analytical chemistry for decades. Airborne and space-based imaging spectrometers allow scientists to detect materials and map their distributions across the landscape. With new satellite-borne hyperspectral sensors planned for the future, for example, HYSPIRI (HYPerspectral InfraRed Imager), robust methods are needed to fully exploit the information content of hyperspectral remote sensing data. A method of identifying and mapping materials using spectral-feature based analysis of reflectance data in an expert-system framework called MICA (Material Identification and Characterization Algorithm) is described in this paper. The core concepts and calculations of MICA are presented. A MICA command file has been developed and applied to map minerals in the full-country coverage of the 2007 Afghanistan HyMap hyperspectral data. ?? 2011 IEEE.
Hakala, Teemu; Markelin, Lauri; Honkavaara, Eija; Scott, Barry; Theocharous, Theo; Nevalainen, Olli; Näsi, Roope; Suomalainen, Juha; Viljanen, Niko; Greenwell, Claire; Fox, Nigel
2018-05-03
Drone-based remote sensing has evolved rapidly in recent years. Miniaturized hyperspectral imaging sensors are becoming more common as they provide more abundant information of the object compared to traditional cameras. Reflectance is a physically defined object property and therefore often preferred output of the remote sensing data capture to be used in the further processes. Absolute calibration of the sensor provides a possibility for physical modelling of the imaging process and enables efficient procedures for reflectance correction. Our objective is to develop a method for direct reflectance measurements for drone-based remote sensing. It is based on an imaging spectrometer and irradiance spectrometer. This approach is highly attractive for many practical applications as it does not require in situ reflectance panels for converting the sensor radiance to ground reflectance factors. We performed SI-traceable spectral and radiance calibration of a tuneable Fabry-Pérot Interferometer -based (FPI) hyperspectral camera at the National Physical Laboratory NPL (Teddington, UK). The camera represents novel technology by collecting 2D format hyperspectral image cubes using time sequential spectral scanning principle. The radiance accuracy of different channels varied between ±4% when evaluated using independent test data, and linearity of the camera response was on average 0.9994. The spectral response calibration showed side peaks on several channels that were due to the multiple orders of interference of the FPI. The drone-based direct reflectance measurement system showed promising results with imagery collected over Wytham Forest (Oxford, UK).
Hakala, Teemu; Scott, Barry; Theocharous, Theo; Näsi, Roope; Suomalainen, Juha; Greenwell, Claire; Fox, Nigel
2018-01-01
Drone-based remote sensing has evolved rapidly in recent years. Miniaturized hyperspectral imaging sensors are becoming more common as they provide more abundant information of the object compared to traditional cameras. Reflectance is a physically defined object property and therefore often preferred output of the remote sensing data capture to be used in the further processes. Absolute calibration of the sensor provides a possibility for physical modelling of the imaging process and enables efficient procedures for reflectance correction. Our objective is to develop a method for direct reflectance measurements for drone-based remote sensing. It is based on an imaging spectrometer and irradiance spectrometer. This approach is highly attractive for many practical applications as it does not require in situ reflectance panels for converting the sensor radiance to ground reflectance factors. We performed SI-traceable spectral and radiance calibration of a tuneable Fabry-Pérot Interferometer -based (FPI) hyperspectral camera at the National Physical Laboratory NPL (Teddington, UK). The camera represents novel technology by collecting 2D format hyperspectral image cubes using time sequential spectral scanning principle. The radiance accuracy of different channels varied between ±4% when evaluated using independent test data, and linearity of the camera response was on average 0.9994. The spectral response calibration showed side peaks on several channels that were due to the multiple orders of interference of the FPI. The drone-based direct reflectance measurement system showed promising results with imagery collected over Wytham Forest (Oxford, UK). PMID:29751560
Hyperspectral Microwave Atmospheric Sounder (HyMas) - New Capability in the CoSMIR-CoSSIR Scanhead
NASA Technical Reports Server (NTRS)
Hilliard, L. M.; Racette, P. E.; Blackwell, W.; Galbraith, C.; Thompson, E.
2015-01-01
Lincoln Laboratory and NASA's Goddard Space Flight Center have teamed to re-use an existing instrument platform, the CoSMIRCoSSIR system for atmospheric sounding, to develop a new capability in hyperspectral filtering, data collection, and display. The volume of the scanhead accomodated an intermediate frequency processor(IFP), that provides the filtering and digitization of the raw data and the interoperable remote component (IRC) adapted to CoSMIR, CoSSIR, and HyMAS that stores and archives the data with time tagged calibration and navigation data.The first element of the work is the demonstration of a hyperspectral microwave receiver subsystem that was recently shown using a comprehensive simulation study to yield performance that substantially exceeds current state-of-the-art. Hyperspectral microwave sounders with 100 channels offer temperature and humidity sounding improvements similar to those obtained when infrared sensors became hyperspectral, but with the relative insensitivity to clouds that characterizes microwave sensors. Hyperspectral microwave operation is achieved using independent RF antennareceiver arrays that sample the same areavolume of the Earths surfaceatmosphere at slightly different frequencies and therefore synthesize a set of dense, finely spaced vertical weighting functions. The second, enabling element of the proposal is the development of a compact 52-channel Intermediate Frequency processor module. A principal challenge in the development of a hyperspectral microwave system is the size of the IF filter bank required for channelization. Large bandwidths are simultaneously processed, thus complicating the use of digital back-ends with associated high complexities, costs, and power requirements. Our approach involves passive filters implemented using low-temperature co-fired ceramic (LTCC) technology to achieve an ultra-compact module that can be easily integrated with existing RF front-end technology. This IF processor is universally applicable to other microwave sensing missions requiring compact IF spectrometry.The data include 52 operational channels with low IF module volume (100cm3) and mass (300g) and linearity better than 0.3 over a 330K dynamic range.
Miniature infrared hyperspectral imaging sensor for airborne applications
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele; Hinnrichs, Bradford; McCutchen, Earl
2017-05-01
Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera, both MWIR and LWIR, small enough to serve as a payload on a miniature unmanned aerial vehicles. The optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of the sensor. This new and innovative approach to infrared hyperspectral imaging spectrometer uses micro-optics and will be explained in this paper. The micro-optics are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a mini-UAV or commercial quadcopter. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the spatial resolution. A 2 x 2 lenslet array will image four different spectral images of the scene each frame and when coupled with a 512 x 512 focal plane array will give spatial resolution of 256 x 256 pixel each spectral image. Another system that we developed uses a 4 x 4 lenslet array on a 1024 x 1024 pixel element focal plane array which gives 16 spectral images of 256 x 256 pixel resolution each frame.
Imaging spectroscopy using embedded diffractive optical arrays
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele; Hinnrichs, Bradford
2017-09-01
Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera based on diffractive optic arrays. This approach to hyperspectral imaging has been demonstrated in all three infrared bands SWIR, MWIR and LWIR. The hyperspectral optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of this infrared hyperspectral sensor. This new and innovative approach to an infrared hyperspectral imaging spectrometer uses micro-optics that are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a small satellite, mini-UAV, commercial quadcopter or man portable. Also, an application of how this spectral imaging technology can easily be used to quantify the mass and volume flow rates of hydrocarbon gases. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. The detector array is divided into sub-images covered by each lenslet. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the number of simultaneous different spectral images collected each frame of the camera. A 2 x 2 lenslet array will image four different spectral images of the scene each frame and when coupled with a 512 x 512 focal plane array will give spatial resolution of 256 x 256 pixel each spectral image. Another system that we developed uses a 4 x 4 lenslet array on a 1024 x 1024 pixel element focal plane array which gives 16 spectral images of 256 x 256 pixel resolution each frame. This system spans the SWIR and MWIR bands with a single optical array and focal plane array.
Radiometric Correction of Multitemporal Hyperspectral Uas Image Mosaics of Seedling Stands
NASA Astrophysics Data System (ADS)
Markelin, L.; Honkavaara, E.; Näsi, R.; Viljanen, N.; Rosnell, T.; Hakala, T.; Vastaranta, M.; Koivisto, T.; Holopainen, M.
2017-10-01
Novel miniaturized multi- and hyperspectral imaging sensors on board of unmanned aerial vehicles have recently shown great potential in various environmental monitoring and measuring tasks such as precision agriculture and forest management. These systems can be used to collect dense 3D point clouds and spectral information over small areas such as single forest stands or sample plots. Accurate radiometric processing and atmospheric correction is required when data sets from different dates and sensors, collected in varying illumination conditions, are combined. Performance of novel radiometric block adjustment method, developed at Finnish Geospatial Research Institute, is evaluated with multitemporal hyperspectral data set of seedling stands collected during spring and summer 2016. Illumination conditions during campaigns varied from bright to overcast. We use two different methods to produce homogenous image mosaics and hyperspectral point clouds: image-wise relative correction and image-wise relative correction with BRDF. Radiometric datasets are converted to reflectance using reference panels and changes in reflectance spectra is analysed. Tested methods improved image mosaic homogeneity by 5 % to 25 %. Results show that the evaluated method can produce consistent reflectance mosaics and reflectance spectra shape between different areas and dates.
NASA Astrophysics Data System (ADS)
Navarro-Cerrillo, Rafael Mª; Trujillo, Jesus; de la Orden, Manuel Sánchez; Hernández-Clemente, Rocío
2014-02-01
A new generation of narrow-band hyperspectral remote sensing data offers an alternative to broad-band multispectral data for the estimation of vegetation chlorophyll content. This paper examines the potential of some of these sensors comparing red-edge and simple ratio indices to develop a rapid and cost-effective system for monitoring Mediterranean pine plantations in Spain. Chlorophyll content retrieval was analyzed with the red-edge R750/R710 index and the simple ratio R800/R560 index using the PROSPECT-5 leaf model and the Discrete Anisotropic Radiative Transfer (DART) and experimental approach. Five sensors were used: AHS, CHRIS/Proba, Hyperion, Landsat and QuickBird. The model simulation results obtained with synthetic spectra demonstrated the feasibility of estimating Ca + b content in conifers using the simple ratio R800/R560 index formulated with different full widths at half maximum (FWHM) at the leaf level. This index yielded a r2 = 0.69 for a FWHM of 30 nm and r2 = 0.55 for a FWHM of 70 nm. Experimental results compared the regression coefficients obtained with various multispectral and hyperspectral images with different spatial resolutions at the stand level. The strongest relationships where obtained using high-resolution hyperspectral images acquired with the AHS sensor (r2 = 0.65) while coarser spatial and spectral resolution images yielded a lower root mean square error (QuickBird r2 = 0.42; Landsat r2 = 0.48; Hyperion r2 = 0.56; CHRIS/Proba r2 = 0.57). This study shows the need to estimate chlorophyll content in forest plantations at the stand level with high spatial and spectral resolution sensors. Nevertheless, these results also show the accuracy obtained with medium-resolution sensors when monitoring physiological processes. Generating biochemical maps at the stand level could play a critical rule in the early detection of forest decline processes enabling their use in precision forestry.
A case study of precision farming for nutrient management of corn
NASA Astrophysics Data System (ADS)
Blanco, Alfonso; Hunt, Ray; Gomez, Richard B.; Roper, William E.
2003-08-01
Precision farming relies on the cost effectiveness of collecting and interpreting data, which describes the variations of agricultural conditions such as crop stresses, nutrient deficiencies, water stresses, or pest infestation. Hyperspectral remote sensing from satellites and airborne sensors can be a way to obtain data needed to develop site-specific farming management strategies. The primary objective of the hyperspectral applications in precision farming is to provide farmers with a technology, which can detect specific crop conditions that can be used to program variable-rate applications. Applications of water, pesticides, and fertilizer can be tailored to the needs of the agricultural crops, based on the conditions reflected on the imagery. This paper presents an experimental study performed in Beltsville, Maryland for assessing the plant density and nutrient uptake of corn using a simple photographic method from a model airplane versus obtaining hyperspectral imagery from an airborne sensor. The hyperspectral sensor utilized in this study was the AISA sensor. These remote sensors can measure the temperature of plants; or to be more specific, they can measure how much energy plants emit at the visible and near-infrared wavelengths of the spectrum, such as water and vegetation.
NASA Astrophysics Data System (ADS)
Jerram, P. A.; Fryer, M.; Pratlong, J.; Pike, A.; Walker, A.; Dierickx, B.; Dupont, B.; Defernez, A.
2017-11-01
CCDs have been used for many years for Hyperspectral imaging missions and have been extremely successful. These include the Medium Resolution Imaging Spectrometer (MERIS) [1] on Envisat, the Compact High Resolution Imaging Spectrometer (CHRIS) on Proba and the Ozone Monitoring Instrument operating in the UV spectral region. ESA are also planning a number of further missions that are likely to use CCD technology (Sentinel 3, 4 and 5). However CMOS sensors have a number of advantages which means that they will probably be used for hyperspectral applications in the longer term. There are two main advantages with CMOS sensors: First a hyperspectral image consists of spectral lines with a large difference in intensity; in a frame transfer CCD the faint spectral lines have to be transferred through the part of the imager illuminated by intense lines. This can lead to cross-talk and whilst this problem can be reduced by the use of split frame transfer and faster line rates CMOS sensors do not require a frame transfer and hence inherently will not suffer from this problem. Second, with a CMOS sensor the intense spectral lines can be read multiple times within a frame to give a significant increase in dynamic range. We will describe the design, and initial test of a CMOS sensor for use in hyperspectral applications. This device has been designed to give as high a dynamic range as possible with minimum cross-talk. The sensor has been manufactured on high resistivity epitaxial silicon wafers and is be back-thinned and left relatively thick in order to obtain the maximum quantum efficiency across the entire spectral range
Moses, Wesley J.; Bowles, Jeffrey H.; Corson, Michael R.
2015-01-01
Using simulated data, we investigated the effect of noise in a spaceborne hyperspectral sensor on the accuracy of the atmospheric correction of at-sensor radiances and the consequent uncertainties in retrieved water quality parameters. Specifically, we investigated the improvement expected as the F-number of the sensor is changed from 3.5, which is the smallest among existing operational spaceborne hyperspectral sensors, to 1.0, which is foreseeable in the near future. With the change in F-number, the uncertainties in the atmospherically corrected reflectance decreased by more than 90% across the visible-near-infrared spectrum, the number of pixels with negative reflectance (caused by over-correction) decreased to almost one-third, and the uncertainties in the retrieved water quality parameters decreased by more than 50% and up to 92%. The analysis was based on the sensor model of the Hyperspectral Imager for the Coastal Ocean (HICO) but using a 30-m spatial resolution instead of HICO’s 96 m. Atmospheric correction was performed using Tafkaa. Water quality parameters were retrieved using a numerical method and a semi-analytical algorithm. The results emphasize the effect of sensor noise on water quality parameter retrieval and the need for sensors with high Signal-to-Noise Ratio for quantitative remote sensing of optically complex waters. PMID:25781507
Enabling Searches on Wavelengths in a Hyperspectral Indices Database
NASA Astrophysics Data System (ADS)
Piñuela, F.; Cerra, D.; Müller, R.
2017-10-01
Spectral indices derived from hyperspectral reflectance measurements are powerful tools to estimate physical parameters in a non-destructive and precise way for several fields of applications, among others vegetation health analysis, coastal and deep water constituents, geology, and atmosphere composition. In the last years, several micro-hyperspectral sensors have appeared, with both full-frame and push-broom acquisition technologies, while in the near future several hyperspectral spaceborne missions are planned to be launched. This is fostering the use of hyperspectral data in basic and applied research causing a large number of spectral indices to be defined and used in various applications. Ad hoc search engines are therefore needed to retrieve the most appropriate indices for a given application. In traditional systems, query input parameters are limited to alphanumeric strings, while characteristics such as spectral range/ bandwidth are not used in any existing search engine. Such information would be relevant, as it enables an inverse type of search: given the spectral capabilities of a given sensor or a specific spectral band, find all indices which can be derived from it. This paper describes a tool which enables a search as described above, by using the central wavelength or spectral range used by a given index as a search parameter. This offers the ability to manage numeric wavelength ranges in order to select indices which work at best in a given set of wavelengths or wavelength ranges.
a Spatio-Spectral Camera for High Resolution Hyperspectral Imaging
NASA Astrophysics Data System (ADS)
Livens, S.; Pauly, K.; Baeck, P.; Blommaert, J.; Nuyts, D.; Zender, J.; Delauré, B.
2017-08-01
Imaging with a conventional frame camera from a moving remotely piloted aircraft system (RPAS) is by design very inefficient. Less than 1 % of the flying time is used for collecting light. This unused potential can be utilized by an innovative imaging concept, the spatio-spectral camera. The core of the camera is a frame sensor with a large number of hyperspectral filters arranged on the sensor in stepwise lines. It combines the advantages of frame cameras with those of pushbroom cameras. By acquiring images in rapid succession, such a camera can collect detailed hyperspectral information, while retaining the high spatial resolution offered by the sensor. We have developed two versions of a spatio-spectral camera and used them in a variety of conditions. In this paper, we present a summary of three missions with the in-house developed COSI prototype camera (600-900 nm) in the domains of precision agriculture (fungus infection monitoring in experimental wheat plots), horticulture (crop status monitoring to evaluate irrigation management in strawberry fields) and geology (meteorite detection on a grassland field). Additionally, we describe the characteristics of the 2nd generation, commercially available ButterflEYE camera offering extended spectral range (475-925 nm), and we discuss future work.
2007-03-01
instrumentation was provided under a cooperative agreement with the Applanix Systems Integration Group (ASIG), a subsidiary of the Trimble Corporation. This MSI...system (Digital Sensor System; http://www.applanix.com/products/dss index.php) was provided as part of the Applanix Position and Orientation System (POS
NASA Astrophysics Data System (ADS)
Bareth, G.; Bolten, A.; Gnyp, M. L.; Reusch, S.; Jasper, J.
2016-06-01
The development of UAV-based sensing systems for agronomic applications serves the improvement of crop management. The latter is in the focus of precision agriculture which intends to optimize yield, fertilizer input, and crop protection. Besides, in some cropping systems vehicle-based sensing devices are less suitable because fields cannot be entered from certain growing stages onwards. This is true for rice, maize, sorghum, and many more crops. Consequently, UAV-based sensing approaches fill a niche of very high resolution data acquisition on the field scale in space and time. While mounting RGB digital compact cameras to low-weight UAVs (< 5 kg) is well established, the miniaturization of sensors in the last years also enables hyperspectral data acquisition from those platforms. From both, RGB and hyperspectral data, vegetation indices (VIs) are computed to estimate crop growth parameters. In this contribution, we compare two different sensing approaches from a low-weight UAV platform (< 5 kg) for monitoring a nitrogen field experiment of winter wheat and a corresponding farmers' field in Western Germany. (i) A standard digital compact camera was flown to acquire RGB images which are used to compute the RGBVI and (ii) NDVI is computed from a newly modified version of the Yara N-Sensor. The latter is a well-established tractor-based hyperspectral sensor for crop management and is available on the market since a decade. It was modified for this study to fit the requirements of UAV-based data acquisition. Consequently, we focus on three objectives in this contribution: (1) to evaluate the potential of the uncalibrated RGBVI for monitoring nitrogen status in winter wheat, (2) investigate the UAV-based performance of the modified Yara N-Sensor, and (3) compare the results of the two different UAV-based sensing approaches for winter wheat.
Vierling, L.A.; Fersdahl, M.; Chen, X.; Li, Z.; Zimmerman, P.
2006-01-01
We describe a new remote sensing system called the Short Wave Aerostat-Mounted Imager (SWAMI). The SWAMI is designed to acquire co-located video imagery and hyperspectral data to study basic remote sensing questions and to link landscape level trace gas fluxes with spatially and temporally appropriate spectral observations. The SWAMI can fly at altitudes up to 2 km above ground level to bridge the spatial gap between radiometric measurements collected near the surface and those acquired by other aircraft or satellites. The SWAMI platform consists of a dual channel hyperspectral spectroradiometer, video camera, GPS, thermal infrared sensor, and several meteorological and control sensors. All SWAMI functions (e.g. data acquisition and sensor pointing) can be controlled from the ground via wireless transmission. Sample data from the sampling platform are presented, along with several potential scientific applications of SWAMI data.
Methods for gas detection using stationary hyperspectral imaging sensors
Conger, James L [San Ramon, CA; Henderson, John R [Castro Valley, CA
2012-04-24
According to one embodiment, a method comprises producing a first hyperspectral imaging (HSI) data cube of a location at a first time using data from a HSI sensor; producing a second HSI data cube of the same location at a second time using data from the HSI sensor; subtracting on a pixel-by-pixel basis the second HSI data cube from the first HSI data cube to produce a raw difference cube; calibrating the raw difference cube to produce a calibrated raw difference cube; selecting at least one desired spectral band based on a gas of interest; producing a detection image based on the at least one selected spectral band and the calibrated raw difference cube; examining the detection image to determine presence of the gas of interest; and outputting a result of the examination. Other methods, systems, and computer program products for detecting the presence of a gas are also described.
Radiometric and geometric analysis of hyperspectral imagery acquired from an unmanned aerial vehicle
Hruska, Ryan; Mitchell, Jessica; Anderson, Matthew; ...
2012-09-17
During the summer of 2010, an Unmanned Aerial Vehicle (UAV) hyperspectral in-flight calibration and characterization experiment of the Resonon PIKA II imaging spectrometer was conducted at the U.S. Department of Energy’s Idaho National Laboratory (INL) UAV Research Park. The purpose of the experiment was to validate the radiometric calibration of the spectrometer and determine the georegistration accuracy achievable from the on-board global positioning system (GPS) and inertial navigation sensors (INS) under operational conditions. In order for low-cost hyperspectral systems to compete with larger systems flown on manned aircraft, they must be able to collect data suitable for quantitative scientific analysis.more » The results of the in-flight calibration experiment indicate an absolute average agreement of 96.3%, 93.7% and 85.7% for calibration tarps of 56%, 24%, and 2.5% reflectivity, respectively. The achieved planimetric accuracy was 4.6 meters (based on RMSE).« less
UAV-Based Hyperspectral Remote Sensing for Precision Agriculture: Challenges and Opportunities
NASA Astrophysics Data System (ADS)
Angel, Y.; Parkes, S. D.; Turner, D.; Houborg, R.; Lucieer, A.; McCabe, M.
2017-12-01
Modern agricultural production relies on monitoring crop status by observing and measuring variables such as soil condition, plant health, fertilizer and pesticide effect, irrigation and crop yield. Managing all of these factors is a considerable challenge for crop producers. As such, providing integrated technological solutions that enable improved diagnostics of field condition to maximize profits, while minimizing environmental impacts, would be of much interest. Such challenges can be addressed by implementing remote sensing systems such as hyperspectral imaging to produce precise biophysical indicator maps across the various cycles of crop development. Recent progress in unmanned aerial vehicles (UAVs) have advanced traditional satellite-based capabilities, providing a capacity for high-spatial, spectral and temporal response. However, while some hyperspectral sensors have been developed for use onboard UAVs, significant investment is required to develop a system and data processing workflow that retrieves accurately georeferenced mosaics. Here we explore the use of a pushbroom hyperspectral camera that is integrated on-board a multi-rotor UAV system to measure the surface reflectance in 272 distinct spectral bands across a wavelengths range spanning 400-1000 nm, and outline the requirement for sensor calibration, integration onto a stable UAV platform enabling accurate positional data, flight planning, and development of data post-processing workflows for georeferenced mosaics. The provision of high-quality and geo-corrected imagery facilitates the development of metrics of vegetation health that can be used to identify potential problems such as production inefficiencies, diseases and nutrient deficiencies and other data-streams to enable improved crop management. Immense opportunities remain to be exploited in the implementation of UAV-based hyperspectral sensing (and its combination with other imaging systems) to provide a transferable and scalable integrated framework for crop growth monitoring and yield prediction. Here we explore some of the challenges and issues in translating the available technological capacity into a useful and useable image collection and processing flow-path that enables these potential applications to be better realized.
Hyperspectral sensors and the conservation of monumental buildings
NASA Astrophysics Data System (ADS)
Camaiti, Mara; Benvenuti, Marco; Chiarantini, Leandro; Costagliola, Pilar; Moretti, Sandro; Paba, Francesca; Pecchioni, Elena; Vettori, Silvia
2010-05-01
The continuous control of the conservation state of outdoor materials is a good practice for timely planning conservative interventions and therefore to preserve historical buildings. The monitoring of surfaces composition, in order to characterize compounds of neo-formation and deposition, by traditional diagnostic campaigns, although gives accurate results, is a long and expensive method, and often micro-destructive analyses are required. On the other hand, hyperspectral analysis in the visible and near infrared (VNIR) region is a very common technique for determining the characteristics and properties of soils, air, and water in consideration of its capability to give information in a rapid, simultaneous and not-destructive way. VNIR Hypespectral analysis, which discriminate materials on the basis of their different patterns of absorption at specific wavelengths, are in fact successfully used for identifying minerals and rocks (1), as well as for detecting soil properties including moisture, organic content and salinity (2). Among the existing VNIR techniques (Laboratory Spectroscopy - LS, Portable Spectroscopy - PS and Imaging Spectroscopy - IS), PS and IS can play a crucial role in the characterization of components of exposed stone surfaces. In particular, the Imaging Spectroscopic (remote sensing), which uses sensors placed both on land or airborne, may contribute to the monitoring of large areas in consideration of its ability to produce large areal maps at relatively low costs. In this presentation the application of hyperspectral instruments (mainly PS and IS, not applied before in the field of monumental building diagnostic) to quantify the degradation of carbonate surfaces will be discussed. In particular, considering gypsum as the precursor symptom of damage, many factors which may affect the estimation of gypsum content on the surface will be taken into consideration. Two hyperspectral sensors will be considered: 1) A portable radiometer (ASD-FieldSpec FP Pro spectroradiometer), which continuously acquires punctual reflectance spectra in the range 350-2500 nm, both in natural light conditions and by a contact probe (fixed geometry of shot). This instrument is used on field for the identification of different materials, as well as for the definition of maps (e.g geological maps) if coupled with other hyperspectral instruments. 2) Hyperspectral sensor SIM-GA (Selex Galileo Multisensor Hyperspectral System), a system with spatial acquisition of data which may be used on an earth as well as on an airborne platform. SIM-GA consists of two electro-optical heads, which operate in the VNIR and SWIR regions, respectively, between 400-1000 nm and 1000-2500 nm (3). Although the spectral signature in the VNIR of many minerals is known, the co-presence of more minerals on a surface can affect the quantitative analysis of gypsum. Different minerals, such as gypsum, calcite, weddellite, whewellite, and other components (i.e. carbon particles in black crusts) are, in fact, commonly found on historical surfaces. In order to illustrate the complexity, but also the potentiality of hyperspectral sensors (portable or remote sensing) for the characterization of stone surfaces, a case study, the Facade of Santa Maria Novella in Florence - Italy, will be presented. References 1) R.N. Clark and G.A. Swayze, 1995, "Mapping minerals, amorphous materials, environmental materials, vegetation, water, ice, and snow, and other materials: The USGS Tricorder Algorithm", in "Summaries of the Fifth Annual JPL Airborne Earth Science Workshop", JPL Publication 95-1,1,39-40 2) E. Ben-Dor, K. Patin, A. Banin and A. Karnieli, 2002, "Mapping of several soil properties using DATS-7915 hyperspectral scanner data. A case study over clayely soils in Israel", International Journal of Remote Sensing, 23(6), 1043-1062 3) S. Vettori, M. Benvenuti, M. Camaiti, L. Chiarantini, P. Costagliola, S. Moretti, E. Pecchioni, 2008, "Assessment of the deterioration status of historical buildings by Hyperspectral Imaging techniques", in Proceedings of the "In situ Monitoring of Monumental Surfaces -SMS/08" Congress, Edifir-Edizioni Firenze 2008, 55-64
NASA Astrophysics Data System (ADS)
Gabrieli, A.; Wright, R.; Porter, J. N.; Lucey, P. G.; Crites, S.; Garbeil, H.; Pilger, E. J.; Wood, M.
2015-12-01
The ability to quantify volcanic SO2 and image the spatial distribution in plumes either by day or by night would be beneficial to volcanologists. In this project, a newly developed remote sensing long-wave thermal infrared imaging hyperspectral sensor, was tested. The system employs a Sagnac interferometer and an uncooled microbolometer in rapid scanning configuration. This instrument is able to collect hyperspectral images of the scene between 8 and 14 and for each pixel a spectrum containing 50 samples can be retrieved. Images are spectrally and radiometrically calibrated using an IR source with a narrow band filter and two black bodies. The sensitivity of the system was studied by using a gas cell containing various known concentrations of SO2, which are representative of those found in volcanic plumes. Measured spectra were compared with theoretical spectra obtained from MODTRAN5 with the same viewing geometry and spectral resolution as the sensor. The MODTRAN5 calculations were carried out using a radiative transfer algorithm which accounts for the transmission and emission both inside and outside of the gas cell. These preliminary results and field measurements at Kīlauea volcano, Hawai'i will be discussed demonstrating the performance of the system and the ability of retrieving SO2 plume concentrations.
Hyperspectral Imaging and Related Field Methods: Building the Science
NASA Technical Reports Server (NTRS)
Goetz, Alexander F. H.; Steffen, Konrad; Wessman, Carol
1999-01-01
The proposal requested funds for the computing power to bring hyperspectral image processing into undergraduate and graduate remote sensing courses. This upgrade made it possible to handle more students in these oversubscribed courses and to enhance CSES' summer short course entitled "Hyperspectral Imaging and Data Analysis" provided for government, industry, university and military. Funds were also requested to build field measurement capabilities through the purchase of spectroradiometers, canopy radiation sensors and a differential GPS system. These instruments provided systematic and complete sets of field data for the analysis of hyperspectral data with the appropriate radiometric and wavelength calibration as well as atmospheric data needed for application of radiative transfer models. The proposed field equipment made it possible to team-teach a new field methods course, unique in the country, that took advantage of the expertise of the investigators rostered in three different departments, Geology, Geography and Biology.
Kim, Taehoon; Visbal-Onufrak, Michelle A.; Konger, Raymond L.; Kim, Young L.
2017-01-01
Sensitive and accurate assessment of dermatologic inflammatory hyperemia in otherwise grossly normal-appearing skin conditions is beneficial to laypeople for monitoring their own skin health on a regular basis, to patients for looking for timely clinical examination, and to primary care physicians or dermatologists for delivering effective treatments. We propose that mathematical hyperspectral reconstruction from RGB images in a simple imaging setup can provide reliable visualization of hemoglobin content in a large skin area. Without relying on a complicated, expensive, and slow hyperspectral imaging system, we demonstrate the feasibility of determining heterogeneous or multifocal areas of inflammatory hyperemia associated with experimental photocarcinogenesis in mice. We envision that RGB-based reconstructed hyperspectral imaging of subclinical inflammatory hyperemic foci could potentially be integrated with the built-in camera (RGB sensor) of a smartphone to develop a simple imaging device that could offer affordable monitoring of dermatologic health. PMID:29188120
Hyperspectral Microwave Atmospheric Sounder (HyMAS) - New Capability in the CoSMIR-CoSSIR Scanhead
NASA Technical Reports Server (NTRS)
Hilliard, Lawrence; Racette, Paul; Blackwell, William; Galbraith, Christopher; Thompson, Erik
2015-01-01
Lincoln Laboratory and NASA's Goddard Space Flight Center have teamed to re-use an existing instrument platform, the CoSMIR/CoSSIR system for atmospheric sounding, to develop a new capability in hyperspectral filtering, data collection, and display. The volume of the scanhead accomodated an intermediate frequency processor(IFP), that provides the filtering and digitization of the raw data and the interoperable remote component (IRC) adapted to CoSMIR, CoSSIR, and HyMAS that stores and archives the data with time tagged calibration and navigation data. The first element of the work is the demonstration of a hyperspectral microwave receiver subsystem that was recently shown using a comprehensive simulation study to yield performance that substantially exceeds current state-of-the-art. Hyperspectral microwave sounders with approximately 100 channels offer temperature and humidity sounding improvements similar to those obtained when infrared sensors became hyperspectral, but with the relative insensitivity to clouds that characterizes microwave sensors. Hyperspectral microwave operation is achieved using independent RF antenna/receiver arrays that sample the same area/volume of the Earth's surface/atmosphere at slightly different frequencies and therefore synthesize a set of dense, finely spaced vertical weighting functions. The second, enabling element of the proposal is the development of a compact 52-channel Intermediate Frequency processor module. A principal challenge in the development of a hyperspectral microwave system is the size of the IF filter bank required for channelization. Large bandwidths are simultaneously processed, thus complicating the use of digital back-ends with associated high complexities, costs, and power requirements. Our approach involves passive filters implemented using low-temperature co-fired ceramic (LTCC) technology to achieve an ultra-compact module that can be easily integrated with existing radio frequency front-end technology. This IF processor is universally applicable to other microwave sensing missions requiring compact IF spectrometry. The data include 52 operational channels with low IF module volume (less than 100 cubic centimeters) and mass (less than 300 grams) and linearity better than 0.3 percent over a 330,000 dynamic range.
Comparison of multi- and hyperspectral imaging data of leaf rust infected wheat plants
NASA Astrophysics Data System (ADS)
Franke, Jonas; Menz, Gunter; Oerke, Erich-Christian; Rascher, Uwe
2005-10-01
In the context of precision agriculture, several recent studies have focused on detecting crop stress caused by pathogenic fungi. For this purpose, several sensor systems have been used to develop in-field-detection systems or to test possible applications of remote sensing. The objective of this research was to evaluate the potential of different sensor systems for multitemporal monitoring of leaf rust (puccinia recondita) infected wheat crops, with the aim of early detection of infected stands. A comparison between a hyperspectral (120 spectral bands) and a multispectral (3 spectral bands) imaging system shows the benefits and limitations of each approach. Reflectance data of leaf rust infected and fungicide treated control wheat stand boxes (1sqm each) were collected before and until 17 days after inoculation. Plants were grown under controlled conditions in the greenhouse and measurements were taken under consistent illumination conditions. The results of mixture tuned matched filtering analysis showed the suitability of hyperspectral data for early discrimination of leaf rust infected wheat crops due to their higher spectral sensitivity. Five days after inoculation leaf rust infected leaves were detected, although only slight visual symptoms appeared. A clear discrimination between infected and control stands was possible. Multispectral data showed a higher sensitivity to external factors like illumination conditions, causing poor classification accuracy. Nevertheless, if these factors could get under control, even multispectral data may serve a good indicator for infection severity.
Airborne hyperspectral remote sensing in Italy
NASA Astrophysics Data System (ADS)
Bianchi, Remo; Marino, Carlo M.; Pignatti, Stefano
1994-12-01
The Italian National Research Council (CNR) in the framework of its `Strategic Project for Climate and Environment in Southern Italy' established a new laboratory for airborne hyperspectral imaging devoted to environmental problems. Since the end of June 1994, the LARA (Laboratorio Aereo per Ricerche Ambientali -- Airborne Laboratory for Environmental Studies) Project is fully operative to provide hyperspectral data to the national and international scientific community by means of deployments of its CASA-212 aircraft carrying the Daedalus AA5000 MIVIS (multispectral infrared and visible imaging spectrometer) system. MIVIS is a modular instrument consisting of 102 spectral channels that use independent optical sensors simultaneously sampled and recorded onto a compact computer compatible magnetic tape medium with a data capacity of 10.2 Gbytes. To support the preprocessing and production pipeline of the large hyperspectral data sets CNR housed in Pomezia, a town close to Rome, a ground based computer system with a software designed to handle MIVIS data. The software (MIDAS-Multispectral Interactive Data Analysis System), besides the data production management, gives to users a powerful and highly extensible hyperspectral analysis system. The Pomezia's ground station is designed to maintain and check the MIVIS instrument performance through the evaluation of data quality (like spectral accuracy, signal to noise performance, signal variations, etc.), and to produce, archive, and diffuse MIVIS data in the form of geometrically and radiometrically corrected data sets on low cost and easy access CC media.
A FPGA implementation for linearly unmixing a hyperspectral image using OpenCL
NASA Astrophysics Data System (ADS)
Guerra, Raúl; López, Sebastián.; Sarmiento, Roberto
2017-10-01
Hyperspectral imaging systems provide images in which single pixels have information from across the electromagnetic spectrum of the scene under analysis. These systems divide the spectrum into many contiguos channels, which may be even out of the visible part of the spectra. The main advantage of the hyperspectral imaging technology is that certain objects leave unique fingerprints in the electromagnetic spectrum, known as spectral signatures, which allow to distinguish between different materials that may look like the same in a traditional RGB image. Accordingly, the most important hyperspectral imaging applications are related with distinguishing or identifying materials in a particular scene. In hyperspectral imaging applications under real-time constraints, the huge amount of information provided by the hyperspectral sensors has to be rapidly processed and analysed. For such purpose, parallel hardware devices, such as Field Programmable Gate Arrays (FPGAs) are typically used. However, developing hardware applications typically requires expertise in the specific targeted device, as well as in the tools and methodologies which can be used to perform the implementation of the desired algorithms in the specific device. In this scenario, the Open Computing Language (OpenCL) emerges as a very interesting solution in which a single high-level synthesis design language can be used to efficiently develop applications in multiple and different hardware devices. In this work, the Fast Algorithm for Linearly Unmixing Hyperspectral Images (FUN) has been implemented into a Bitware Stratix V Altera FPGA using OpenCL. The obtained results demonstrate the suitability of OpenCL as a viable design methodology for quickly creating efficient FPGAs designs for real-time hyperspectral imaging applications.
2016-08-18
multi- sensor remote sensing approach to describe the distribution of oil from the DWH spill. They used airborne and satellite , multi- and hyperspectral...Experimental Sensors e.g., Acoustic and Nuclear Magnetic Resonance (NMR) (Fingas and Brown, 2012; Puestow et al., 2013). These are further...ship, aerial - aircraft, aerostat or UAV, or satellite ), among other classification criteria. A comprehensive review of sensor categories employed
Spectral Reconstruction for Obtaining Virtual Hyperspectral Images
NASA Astrophysics Data System (ADS)
Perez, G. J. P.; Castro, E. C.
2016-12-01
Hyperspectral sensors demonstrated its capabalities in identifying materials and detecting processes in a satellite scene. However, availability of hyperspectral images are limited due to the high development cost of these sensors. Currently, most of the readily available data are from multi-spectral instruments. Spectral reconstruction is an alternative method to address the need for hyperspectral information. The spectral reconstruction technique has been shown to provide a quick and accurate detection of defects in an integrated circuit, recovers damaged parts of frescoes, and it also aids in converting a microscope into an imaging spectrometer. By using several spectral bands together with a spectral library, a spectrum acquired by a sensor can be expressed as a linear superposition of elementary signals. In this study, spectral reconstruction is used to estimate the spectra of different surfaces imaged by Landsat 8. Four atmospherically corrected surface reflectance from three visible bands (499 nm, 585 nm, 670 nm) and one near-infrared band (872 nm) of Landsat 8, and a spectral library of ground elements acquired from the United States Geological Survey (USGS) are used. The spectral library is limited to 420-1020 nm spectral range, and is interpolated at one nanometer resolution. Singular Value Decomposition (SVD) is used to calculate the basis spectra, which are then applied to reconstruct the spectrum. The spectral reconstruction is applied for test cases within the library consisting of vegetation communities. This technique was successful in reconstructing a hyperspectral signal with error of less than 12% for most of the test cases. Hence, this study demonstrated the potential of simulating information at any desired wavelength, creating a virtual hyperspectral sensor without the need for additional satellite bands.
Advanced processing for high-bandwidth sensor systems
NASA Astrophysics Data System (ADS)
Szymanski, John J.; Blain, Phil C.; Bloch, Jeffrey J.; Brislawn, Christopher M.; Brumby, Steven P.; Cafferty, Maureen M.; Dunham, Mark E.; Frigo, Janette R.; Gokhale, Maya; Harvey, Neal R.; Kenyon, Garrett; Kim, Won-Ha; Layne, J.; Lavenier, Dominique D.; McCabe, Kevin P.; Mitchell, Melanie; Moore, Kurt R.; Perkins, Simon J.; Porter, Reid B.; Robinson, S.; Salazar, Alfonso; Theiler, James P.; Young, Aaron C.
2000-11-01
Compute performance and algorithm design are key problems of image processing and scientific computing in general. For example, imaging spectrometers are capable of producing data in hundreds of spectral bands with millions of pixels. These data sets show great promise for remote sensing applications, but require new and computationally intensive processing. The goal of the Deployable Adaptive Processing Systems (DAPS) project at Los Alamos National Laboratory is to develop advanced processing hardware and algorithms for high-bandwidth sensor applications. The project has produced electronics for processing multi- and hyper-spectral sensor data, as well as LIDAR data, while employing processing elements using a variety of technologies. The project team is currently working on reconfigurable computing technology and advanced feature extraction techniques, with an emphasis on their application to image and RF signal processing. This paper presents reconfigurable computing technology and advanced feature extraction algorithm work and their application to multi- and hyperspectral image processing. Related projects on genetic algorithms as applied to image processing will be introduced, as will the collaboration between the DAPS project and the DARPA Adaptive Computing Systems program. Further details are presented in other talks during this conference and in other conferences taking place during this symposium.
Research on hyperspectral dynamic scene and image sequence simulation
NASA Astrophysics Data System (ADS)
Sun, Dandan; Liu, Fang; Gao, Jiaobo; Sun, Kefeng; Hu, Yu; Li, Yu; Xie, Junhu; Zhang, Lei
2016-10-01
This paper presents a simulation method of hyperspectral dynamic scene and image sequence for hyperspectral equipment evaluation and target detection algorithm. Because of high spectral resolution, strong band continuity, anti-interference and other advantages, in recent years, hyperspectral imaging technology has been rapidly developed and is widely used in many areas such as optoelectronic target detection, military defense and remote sensing systems. Digital imaging simulation, as a crucial part of hardware in loop simulation, can be applied to testing and evaluation hyperspectral imaging equipment with lower development cost and shorter development period. Meanwhile, visual simulation can produce a lot of original image data under various conditions for hyperspectral image feature extraction and classification algorithm. Based on radiation physic model and material characteristic parameters this paper proposes a generation method of digital scene. By building multiple sensor models under different bands and different bandwidths, hyperspectral scenes in visible, MWIR, LWIR band, with spectral resolution 0.01μm, 0.05μm and 0.1μm have been simulated in this paper. The final dynamic scenes have high real-time and realistic, with frequency up to 100 HZ. By means of saving all the scene gray data in the same viewpoint image sequence is obtained. The analysis results show whether in the infrared band or the visible band, the grayscale variations of simulated hyperspectral images are consistent with the theoretical analysis results.
Parallel hyperspectral image reconstruction using random projections
NASA Astrophysics Data System (ADS)
Sevilla, Jorge; Martín, Gabriel; Nascimento, José M. P.
2016-10-01
Spaceborne sensors systems are characterized by scarce onboard computing and storage resources and by communication links with reduced bandwidth. Random projections techniques have been demonstrated as an effective and very light way to reduce the number of measurements in hyperspectral data, thus, the data to be transmitted to the Earth station is reduced. However, the reconstruction of the original data from the random projections may be computationally expensive. SpeCA is a blind hyperspectral reconstruction technique that exploits the fact that hyperspectral vectors often belong to a low dimensional subspace. SpeCA has shown promising results in the task of recovering hyperspectral data from a reduced number of random measurements. In this manuscript we focus on the implementation of the SpeCA algorithm for graphics processing units (GPU) using the compute unified device architecture (CUDA). Experimental results conducted using synthetic and real hyperspectral datasets on the GPU architecture by NVIDIA: GeForce GTX 980, reveal that the use of GPUs can provide real-time reconstruction. The achieved speedup is up to 22 times when compared with the processing time of SpeCA running on one core of the Intel i7-4790K CPU (3.4GHz), with 32 Gbyte memory.
Advanced Systems Map, Monitor, and Manage Earth's Resources
NASA Technical Reports Server (NTRS)
2007-01-01
SpecTIR LLC, headquartered in Reno, Nevada, is recognized for innovative sensor design, on-demand hyperspectral data collection, and image-generating products for business, academia, and national and international governments. SpecTIR's current vice president of business development has brought a wealth of NASA-related research experience to the company, as the former principal investigator on a NASA-sponsored hyperspectral crop-imaging project. This project, made possible through a Small Business Technology Transfer (STTR) contract with Goddard Space Flight Center, aimed to enhance airborne hyperspectral sensing and ground-truthing means for crop inspection in the Mid-Atlantic region of the United States. Areas of application for such technology include precision farming and irrigation; oil, gas, and mineral exploration; pollution and contamination monitoring; wetland and forestry characterization; water quality assessment; and submerged aquatic vegetation mapping. Today, SpecTIR maintains its relationship with Goddard through programs at the University of Maryland in College Park, Maryland, and at the U.S. Department of Agriculture campus in Beltsville, Maryland. Additionally, work continues on the integration of hyperspectral data with LIDAR systems and other commercial-off-the-shelf technologies.
Infrared hyperspectral imaging miniaturized for UAV applications
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele; Hinnrichs, Bradford; McCutchen, Earl
2017-02-01
Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera, both MWIR and LWIR, small enough to serve as a payload on a miniature unmanned aerial vehicles. The optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of the sensor. This new and innovative approach to infrared hyperspectral imaging spectrometer uses micro-optics and will be explained in this paper. The micro-optics are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a mini-UAV or commercial quadcopter. Also, an example of how this technology can easily be used to quantify a hydrocarbon gas leak's volume and mass flowrates. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the spatial resolution. A 2 x 2 lenslet array will image four different spectral images of the scene each frame and when coupled with a 512 x 512 focal plane array will give spatial resolution of 256 x 256 pixel each spectral image. Another system that we developed uses a 4 x 4 lenslet array on a 1024 x 1024 pixel element focal plane array which gives 16 spectral images of 256 x 256 pixel resolution each frame.
Active Multimodal Sensor System for Target Recognition and Tracking
Zhang, Guirong; Zou, Zhaofan; Liu, Ziyue; Mao, Jiansen
2017-01-01
High accuracy target recognition and tracking systems using a single sensor or a passive multisensor set are susceptible to external interferences and exhibit environmental dependencies. These difficulties stem mainly from limitations to the available imaging frequency bands, and a general lack of coherent diversity of the available target-related data. This paper proposes an active multimodal sensor system for target recognition and tracking, consisting of a visible, an infrared, and a hyperspectral sensor. The system makes full use of its multisensor information collection abilities; furthermore, it can actively control different sensors to collect additional data, according to the needs of the real-time target recognition and tracking processes. This level of integration between hardware collection control and data processing is experimentally shown to effectively improve the accuracy and robustness of the target recognition and tracking system. PMID:28657609
Innovative R.E.A. tools for integrated bathymetric survey
NASA Astrophysics Data System (ADS)
Demarte, Maurizio; Ivaldi, Roberta; Sinapi, Luigi; Bruzzone, Gabriele; Caccia, Massimo; Odetti, Angelo; Fontanelli, Giacomo; Masini, Andrea; Simeone, Emilio
2017-04-01
The REA (Rapid Environmental Assessment) concept is a methodology finalized to acquire environmental information, process them and return in standard paper-chart or standard digital format. Acquired data become thus available for the ingestion or the valorization of the Civilian Protection Emergency Organization or the Rapid Response Forces. The use of Remotely Piloted Aircraft Systems (RPAS) with the miniaturization of multispectral camera or Hyperspectral camera gives to the operator the capability to react in a short time jointly with the capacity to collect a big amount of different data and to deliver a very large number of products. The proposed methodology incorporates data collected from remote and autonomous sensors that acquire data over areas in a cost-effective manner. The hyperspectral sensors are able to map seafloor morphology, seabed structure, depth of bottom surface and an estimate of sediment development. The considerable spectral portions are selected using an appropriate configuration of hyperspectral cameras to maximize the spectral resolution. Data acquired by hyperspectral camera are geo-referenced synchronously to an Attitude and Heading Reference Systems (AHRS) sensor. The data can be subjected to a first step on-board processing of the unmanned vehicle before be transferred through the Ground Control Station (GCS) to a Processing Exploitation Dissemination (PED) system. The recent introduction of Data Distribution Systems (DDS) capabilities in PED allow a cooperative distributed approach to modern decision making. Two platforms are used in our project, a Remote Piloted Aircraft (RPAS) and an Unmanned Surface Vehicle (USV). The two platforms mutually interact to cover a surveyed area wider than the ones that could be covered by the single vehicles. The USV, especially designed to work in very shallow water, has a modular structure and an open hardware and software architecture allowing for an easy installation and integration of various sensors useful for seabed analysis. The very stable platform located on the top of the USV allows for taking-off and landing of the RPAS. By exploiting its higher power autonomy and load capability, the USV will be used as a mothership for the RPAS. In particular, during the missions the USV will be able to furnish recharging possibility for the RPAS and it will be able to function as a bridge for the communication between the RPAS and its control station. The main advantage of the system is the remote acquisition of high-resolution bathymetric data from RPAS in areas where the possibility to have a systematic and traditional survey are few or none. These tools (USV carrying an RPAS with Hyperspectral camera) constitute an innovative and powerful system that gives to the Emergency Response Unit the right instruments to react quickly. The developing of this support could be solve the classical conflict between resolution, needed to capture the fine scale variability and coverage, needed for the large environmental phenomena, with very high variability over a wide range of spatial and temporal scales as the coastal environment.
Hyperspectral Image Classification via Kernel Sparse Representation
2013-01-01
classification algorithms. Moreover, the spatial coherency across neighboring pixels is also incorporated through a kernelized joint sparsity model , where...joint sparsity model , where all of the pixels within a small neighborhood are jointly represented in the feature space by selecting a few common training...hyperspectral imagery, joint spar- sity model , kernel methods, sparse representation. I. INTRODUCTION HYPERSPECTRAL imaging sensors capture images
Plant Phenotyping using Probabilistic Topic Models: Uncovering the Hyperspectral Language of Plants
Wahabzada, Mirwaes; Mahlein, Anne-Katrin; Bauckhage, Christian; Steiner, Ulrike; Oerke, Erich-Christian; Kersting, Kristian
2016-01-01
Modern phenotyping and plant disease detection methods, based on optical sensors and information technology, provide promising approaches to plant research and precision farming. In particular, hyperspectral imaging have been found to reveal physiological and structural characteristics in plants and to allow for tracking physiological dynamics due to environmental effects. In this work, we present an approach to plant phenotyping that integrates non-invasive sensors, computer vision, as well as data mining techniques and allows for monitoring how plants respond to stress. To uncover latent hyperspectral characteristics of diseased plants reliably and in an easy-to-understand way, we “wordify” the hyperspectral images, i.e., we turn the images into a corpus of text documents. Then, we apply probabilistic topic models, a well-established natural language processing technique that identifies content and topics of documents. Based on recent regularized topic models, we demonstrate that one can track automatically the development of three foliar diseases of barley. We also present a visualization of the topics that provides plant scientists an intuitive tool for hyperspectral imaging. In short, our analysis and visualization of characteristic topics found during symptom development and disease progress reveal the hyperspectral language of plant diseases. PMID:26957018
A new approach for fast indexing of hyperspectral image data for knowledge retrieval and mining
NASA Astrophysics Data System (ADS)
Clowers, Robert; Dua, Sumeet
2005-11-01
Multispectral sensors produce images with a few relatively broad wavelength bands. Hyperspectral remote sensors, on the other hand, collect image data simultaneously in dozens or hundreds of narrow and adjacent spectral bands. These measurements make it possible to derive a continuous spectrum for each image cell, generating an image cube across multiple spectral components. Hyperspectral imaging has sound applications in a variety of areas such as mineral exploration, hazardous waste remediation, mapping habitat, invasive vegetation, eco system monitoring, hazardous gas detection, mineral detection, soil degradation, and climate change. This image has a strong potential for transforming the imaging paradigms associated with several design and manufacturing processes. In this paper, we describe a novel approach for fast indexing of multi-dimensional hyperspectral image data, especially for data mining applications. The index exploits the spectral and spatial relationships embedded in these image sets. The index will be employed for knowledge retrieval applications that require fast information interpretation approaches. The index can also be deployed in real-time mission-critical domains, as it is shown to exhibit speed with high degrees of dimensionality associated with the data. The strength of this index in terms of degree of false dismissals and false alarms will also be demonstrated. The paper will highlight some common applications of this imaging computational paradigm and will conclude with directions for future improvement and investigation.
NASA Astrophysics Data System (ADS)
Gomer, Nathaniel R.; Gardner, Charles W.
2014-05-01
In order to combat the threat of emplaced explosives (land mines, etc.), ChemImage Sensor Systems (CISS) has developed a multi-sensor, robot mounted sensor capable of identification and confirmation of potential threats. The system, known as STARR (Shortwave-infrared Targeted Agile Raman Robot), utilizes shortwave infrared spectroscopy for the identification of potential threats, combined with a visible short-range standoff Raman hyperspectral imaging (HSI) system for material confirmation. The entire system is mounted onto a Talon UGV (Unmanned Ground Vehicle), giving the sensor an increased area search rate and reducing the risk of injury to the operator. The Raman HSI system utilizes a fiber array spectral translator (FAST) for the acquisition of high quality Raman chemical images, allowing for increased sensitivity and improved specificity. An overview of the design and operation of the system will be presented, along with initial detection results of the fusion sensor.
Detecting subtle environmental change: a multi-temporal airborne imaging spectroscopy approach
NASA Astrophysics Data System (ADS)
Yule, Ian J.; Pullanagari, Reddy R.; Kereszturi, G.
2016-10-01
Airborne and satellite hyperspectral remote sensing is a key technology to observe finite change in ecosystems and environments. The role of such sensors will improve our ability to monitor and mitigate natural and agricultural environments on a much larger spatial scale than can be achieved using field measurements such as soil coring or proximal sensors to estimate the chemistry of vegetation. Hyperspectral sensors for commentarial and scientific activities are increasingly available and cost effective, providing a great opportunity to measure and detect changes in the environment and ecosystem. This can be used to extract critical information to develop more advanced management practices. In this research, we provide an overview of the data acquisition, processing and analysis of airborne, full-spectrum hyperspectral imagery from a small-scale aerial mapping project in hill-country farms in New Zealand, using an AISA Fenix sensor (Specim, Finland). The imagery has been radiometrically and atmospherically corrected, georectified and mosaicked. The hyperspectral data cube was then spectrally and spatially smoothed using Savitzky-Golay and median filter, respectively. The mosaicked imagery used to calculate bio-chemical properties of surface vegetation, such as pasture. Ground samples (n = 200) were collected a few days after the over-flight are used to develop a calibration model using partial least squares regression method. In-leaf nitrogen, potassium and phosphorous concentration were calculated using the reflectance values from the airborne hyperspectral imagery. In total, three surveys of an example property have been acquired that show changes in the pattern of availability of a major element in vegetation canopy, in this case nitrogen.
Hyperspectral data compression using a Wiener filter predictor
NASA Astrophysics Data System (ADS)
Villeneuve, Pierre V.; Beaven, Scott G.; Stocker, Alan D.
2013-09-01
The application of compression to hyperspectral image data is a significant technical challenge. A primary bottleneck in disseminating data products to the tactical user community is the limited communication bandwidth between the airborne sensor and the ground station receiver. This report summarizes the newly-developed "Z-Chrome" algorithm for lossless compression of hyperspectral image data. A Wiener filter prediction framework is used as a basis for modeling new image bands from already-encoded bands. The resulting residual errors are then compressed using available state-of-the-art lossless image compression functions. Compression performance is demonstrated using a large number of test data collected over a wide variety of scene content from six different airborne and spaceborne sensors .
Research on hyperspectral dynamic scene and image sequence simulation
NASA Astrophysics Data System (ADS)
Sun, Dandan; Gao, Jiaobo; Sun, Kefeng; Hu, Yu; Li, Yu; Xie, Junhu; Zhang, Lei
2016-10-01
This paper presents a simulation method of hyper-spectral dynamic scene and image sequence for hyper-spectral equipment evaluation and target detection algorithm. Because of high spectral resolution, strong band continuity, anti-interference and other advantages, in recent years, hyper-spectral imaging technology has been rapidly developed and is widely used in many areas such as optoelectronic target detection, military defense and remote sensing systems. Digital imaging simulation, as a crucial part of hardware in loop simulation, can be applied to testing and evaluation hyper-spectral imaging equipment with lower development cost and shorter development period. Meanwhile, visual simulation can produce a lot of original image data under various conditions for hyper-spectral image feature extraction and classification algorithm. Based on radiation physic model and material characteristic parameters this paper proposes a generation method of digital scene. By building multiple sensor models under different bands and different bandwidths, hyper-spectral scenes in visible, MWIR, LWIR band, with spectral resolution 0.01μm, 0.05μm and 0.1μm have been simulated in this paper. The final dynamic scenes have high real-time and realistic, with frequency up to 100 HZ. By means of saving all the scene gray data in the same viewpoint image sequence is obtained. The analysis results show whether in the infrared band or the visible band, the grayscale variations of simulated hyper-spectral images are consistent with the theoretical analysis results.
Statistical modeling of natural backgrounds in hyperspectral LWIR data
NASA Astrophysics Data System (ADS)
Truslow, Eric; Manolakis, Dimitris; Cooley, Thomas; Meola, Joseph
2016-09-01
Hyperspectral sensors operating in the long wave infrared (LWIR) have a wealth of applications including remote material identification and rare target detection. While statistical models for modeling surface reflectance in visible and near-infrared regimes have been well studied, models for the temperature and emissivity in the LWIR have not been rigorously investigated. In this paper, we investigate modeling hyperspectral LWIR data using a statistical mixture model for the emissivity and surface temperature. Statistical models for the surface parameters can be used to simulate surface radiances and at-sensor radiance which drives the variability of measured radiance and ultimately the performance of signal processing algorithms. Thus, having models that adequately capture data variation is extremely important for studying performance trades. The purpose of this paper is twofold. First, we study the validity of this model using real hyperspectral data, and compare the relative variability of hyperspectral data in the LWIR and visible and near-infrared (VNIR) regimes. Second, we illustrate how materials that are easily distinguished in the VNIR, may be difficult to separate when imaged in the LWIR.
Radiometric characterization of hyperspectral imagers using multispectral sensors
NASA Astrophysics Data System (ADS)
McCorkel, Joel; Thome, Kurt; Leisso, Nathan; Anderson, Nikolaus; Czapla-Myers, Jeff
2009-08-01
The Remote Sensing Group (RSG) at the University of Arizona has a long history of using ground-based test sites for the calibration of airborne and satellite based sensors. Often, ground-truth measurements at these tests sites are not always successful due to weather and funding availability. Therefore, RSG has also employed automated ground instrument approaches and cross-calibration methods to verify the radiometric calibration of a sensor. The goal in the cross-calibration method is to transfer the calibration of a well-known sensor to that of a different sensor. This work studies the feasibility of determining the radiometric calibration of a hyperspectral imager using multispectral imagery. The work relies on the Moderate Resolution Imaging Spectroradiometer (MODIS) as a reference for the hyperspectral sensor Hyperion. Test sites used for comparisons are Railroad Valley in Nevada and a portion of the Libyan Desert in North Africa. Hyperion bands are compared to MODIS by band averaging Hyperion's high spectral resolution data with the relative spectral response of MODIS. The results compare cross-calibration scenarios that differ in image acquisition coincidence, test site used for the calibration, and reference sensor. Cross-calibration results are presented that show agreement between the use of coincident and non-coincident image pairs within 2% in most bands as well as similar agreement between results that employ the different MODIS sensors as a reference.
Radiometric Characterization of Hyperspectral Imagers using Multispectral Sensors
NASA Technical Reports Server (NTRS)
McCorkel, Joel; Kurt, Thome; Leisso, Nathan; Anderson, Nikolaus; Czapla-Myers, Jeff
2009-01-01
The Remote Sensing Group (RSG) at the University of Arizona has a long history of using ground-based test sites for the calibration of airborne and satellite based sensors. Often, ground-truth measurements at these test sites are not always successful due to weather and funding availability. Therefore, RSG has also automated ground instrument approaches and cross-calibration methods to verify the radiometric calibration of a sensor. The goal in the cross-calibration method is to transfer the calibration of a well-known sensor to that of a different sensor, This work studies the feasibility of determining the radiometric calibration of a hyperspectral imager using multispectral a imagery. The work relies on the Moderate Resolution Imaging Spectroradiometer (M0DIS) as a reference for the hyperspectral sensor Hyperion. Test sites used for comparisons are Railroad Valley in Nevada and a portion of the Libyan Desert in North Africa. Hyperion bands are compared to MODIS by band averaging Hyperion's high spectral resolution data with the relative spectral response of M0DlS. The results compare cross-calibration scenarios that differ in image acquisition coincidence, test site used for the calibration, and reference sensor. Cross-calibration results are presented that show agreement between the use of coincident and non-coincident image pairs within 2% in most brands as well as similar agreement between results that employ the different MODIS sensors as a reference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leary, T.J.; Lamb, A.
The Department of Energy`s Office of Arms Control and Non-Proliferation (NN-20) has developed a suite of airborne remote sensing systems that simultaneously collect coincident data from a US Navy P-3 aircraft. The primary objective of the Airborne Multisensor Pod System (AMPS) Program is {open_quotes}to collect multisensor data that can be used for data research, both to reduce interpretation problems associated with data overload and to develop information products more complete than can be obtained from any single sensor.{close_quotes} The sensors are housed in wing-mounted pods and include: a Ku-Band Synthetic Aperture Radar; a CASI Hyperspectral Imager; a Daedalus 3600 Airbornemore » Multispectral Scanner; a Wild Heerbrugg RC-30 motion compensated large format camera; various high resolution, light intensified and thermal video cameras; and several experimental sensors (e.g. the Portable Hyperspectral Imager of Low-Light Spectroscopy (PHILLS)). Over the past year or so, the Coastal Marine Resource Assessment (CAMRA) group at the Florida Department of Environmental Protection`s Marine Research Institute (FMRI) has been working with the Department of Energy through the Naval Research Laboratory to develop applications and products from existing data. Considerable effort has been spent identifying image formats integration parameters. 2 refs., 3 figs., 2 tabs.« less
Candiani, Gabriele; Picone, Nicoletta; Pompilio, Loredana; Pepe, Monica; Colledani, Marcello
2017-01-01
Waste of electric and electronic equipment (WEEE) is the fastest-growing waste stream in Europe. The large amount of electric and electronic products introduced every year in the market makes WEEE disposal a relevant problem. On the other hand, the high abundance of key metals included in WEEE has increased the industrial interest in WEEE recycling. However, the high variability of materials used to produce electric and electronic equipment makes key metals’ recovery a complex task: the separation process requires flexible systems, which are not currently implemented in recycling plants. In this context, hyperspectral sensors and imaging systems represent a suitable technology to improve WEEE recycling rates and the quality of the output products. This work introduces the preliminary tests using a hyperspectral system, integrated in an automatic WEEE recycling pilot plant, for the characterization of mixtures of fine particles derived from WEEE shredding. Several combinations of classification algorithms and techniques for signal enhancement of reflectance spectra were implemented and compared. The methodology introduced in this study has shown characterization accuracies greater than 95%. PMID:28505070
Real-Time and Post-Processed Georeferencing for Hyperpspectral Drone Remote Sensing
NASA Astrophysics Data System (ADS)
Oliveira, R. A.; Khoramshahi, E.; Suomalainen, J.; Hakala, T.; Viljanen, N.; Honkavaara, E.
2018-05-01
The use of drones and photogrammetric technologies are increasing rapidly in different applications. Currently, drone processing workflow is in most cases based on sequential image acquisition and post-processing, but there are great interests towards real-time solutions. Fast and reliable real-time drone data processing can benefit, for instance, environmental monitoring tasks in precision agriculture and in forest. Recent developments in miniaturized and low-cost inertial measurement systems and GNSS sensors, and Real-time kinematic (RTK) position data are offering new perspectives for the comprehensive remote sensing applications. The combination of these sensors and light-weight and low-cost multi- or hyperspectral frame sensors in drones provides the opportunity of creating near real-time or real-time remote sensing data of target object. We have developed a system with direct georeferencing onboard drone to be used combined with hyperspectral frame cameras in real-time remote sensing applications. The objective of this study is to evaluate the real-time georeferencing comparing with post-processing solutions. Experimental data sets were captured in agricultural and forested test sites using the system. The accuracy of onboard georeferencing data were better than 0.5 m. The results showed that the real-time remote sensing is promising and feasible in both test sites.
Evaluation of the AIRIS Standoff Hyperspectral Imaging System
2011-01-01
desorption gas chromatography ( TD -GC). 13 4.4 Sensor Configuration For these measurements the AIRIS sensor was mounted on a lab bench opposite the fume...I J. ^4 5 . . ? J? s - » - ? ] g > > 1 ; j ’.’ S •; u] | 1 z | r 2 .• ^ z i ^ ^ ^’ i £ ^ | | i i 2 | Z I i i £ J: • in 1/1 c & <£• •: llJ 15 10
2011-07-01
radar [e.g., synthetic aperture radar (SAR)]. EO/IR includes multi- and hyperspectral imaging. Signal processing of data from nonimaging sensors, such...enhanced recognition ability. Other nonimage -based techniques, such as category theory,45 hierarchical systems,46 and gradient index flow,47 are possible...the battle- field. There is a plethora of imaging and nonimaging sensors on the battlefield that are being networked together for trans- mission of
Simulation of the hyperspectral data from multispectral data using Python programming language
NASA Astrophysics Data System (ADS)
Tiwari, Varun; Kumar, Vinay; Pandey, Kamal; Ranade, Rigved; Agarwal, Shefali
2016-04-01
Multispectral remote sensing (MRS) sensors have proved their potential in acquiring and retrieving information of Land Use Land (LULC) Cover features in the past few decades. These MRS sensor generally acquire data within limited broad spectral bands i.e. ranging from 3 to 10 number of bands. The limited number of bands and broad spectral bandwidth in MRS sensors becomes a limitation in detailed LULC studies as it is not capable of distinguishing spectrally similar LULC features. On the counterpart, fascinating detailed information available in hyperspectral (HRS) data is spectrally over determined and able to distinguish spectrally similar material of the earth surface. But presently the availability of HRS sensors is limited. This is because of the requirement of sensitive detectors and large storage capability, which makes the acquisition and processing cumbersome and exorbitant. So, there arises a need to utilize the available MRS data for detailed LULC studies. Spectral reconstruction approach is one of the technique used for simulating hyperspectral data from available multispectral data. In the present study, spectral reconstruction approach is utilized for the simulation of hyperspectral data using EO-1 ALI multispectral data. The technique is implemented using python programming language which is open source in nature and possess support for advanced imaging processing libraries and utilities. Over all 70 bands have been simulated and validated using visual interpretation, statistical and classification approach.
Collaborative Point Paper on Border Surveillance Technology
2007-06-01
Systems PLC LORHIS (Long Range Hyperspectral Imaging System ) can be configured for either manned or unmanned aircraft to automatically detect and...Airships, and/or Aerostats, (RF, Electro-Optical, Infrared, Video) • Land- based Sensor Systems (Attended/Mobile and Unattended: e.g., CCD, Motion, Acoustic...electronic surveillance technologies for intrusion detection and warning. These ground- based systems are primarily short-range, up to around 500 meters
An Intraoperative Visualization System Using Hyperspectral Imaging to Aid in Brain Tumor Delineation
Ortega, Samuel; M. Callicó, Gustavo; Juárez, Eduardo; Bulters, Diederik; Szolna, Adam; Piñeiro, Juan F.; Sosa, Coralia; J. O’Shanahan, Aruma; Bisshopp, Sara; Hernández, María; Morera, Jesús; Ravi, Daniele; Kiran, B. Ravi; Vega, Aurelio; Báez-Quevedo, Abelardo; Yang, Guang-Zhong; Stanciulescu, Bogdan; Sarmiento, Roberto
2018-01-01
Hyperspectral imaging (HSI) allows for the acquisition of large numbers of spectral bands throughout the electromagnetic spectrum (within and beyond the visual range) with respect to the surface of scenes captured by sensors. Using this information and a set of complex classification algorithms, it is possible to determine which material or substance is located in each pixel. The work presented in this paper aims to exploit the characteristics of HSI to develop a demonstrator capable of delineating tumor tissue from brain tissue during neurosurgical operations. Improved delineation of tumor boundaries is expected to improve the results of surgery. The developed demonstrator is composed of two hyperspectral cameras covering a spectral range of 400–1700 nm. Furthermore, a hardware accelerator connected to a control unit is used to speed up the hyperspectral brain cancer detection algorithm to achieve processing during the time of surgery. A labeled dataset comprised of more than 300,000 spectral signatures is used as the training dataset for the supervised stage of the classification algorithm. In this preliminary study, thematic maps obtained from a validation database of seven hyperspectral images of in vivo brain tissue captured and processed during neurosurgical operations demonstrate that the system is able to discriminate between normal and tumor tissue in the brain. The results can be provided during the surgical procedure (~1 min), making it a practical system for neurosurgeons to use in the near future to improve excision and potentially improve patient outcomes. PMID:29389893
Fabelo, Himar; Ortega, Samuel; Lazcano, Raquel; Madroñal, Daniel; M Callicó, Gustavo; Juárez, Eduardo; Salvador, Rubén; Bulters, Diederik; Bulstrode, Harry; Szolna, Adam; Piñeiro, Juan F; Sosa, Coralia; J O'Shanahan, Aruma; Bisshopp, Sara; Hernández, María; Morera, Jesús; Ravi, Daniele; Kiran, B Ravi; Vega, Aurelio; Báez-Quevedo, Abelardo; Yang, Guang-Zhong; Stanciulescu, Bogdan; Sarmiento, Roberto
2018-02-01
Hyperspectral imaging (HSI) allows for the acquisition of large numbers of spectral bands throughout the electromagnetic spectrum (within and beyond the visual range) with respect to the surface of scenes captured by sensors. Using this information and a set of complex classification algorithms, it is possible to determine which material or substance is located in each pixel. The work presented in this paper aims to exploit the characteristics of HSI to develop a demonstrator capable of delineating tumor tissue from brain tissue during neurosurgical operations. Improved delineation of tumor boundaries is expected to improve the results of surgery. The developed demonstrator is composed of two hyperspectral cameras covering a spectral range of 400-1700 nm. Furthermore, a hardware accelerator connected to a control unit is used to speed up the hyperspectral brain cancer detection algorithm to achieve processing during the time of surgery. A labeled dataset comprised of more than 300,000 spectral signatures is used as the training dataset for the supervised stage of the classification algorithm. In this preliminary study, thematic maps obtained from a validation database of seven hyperspectral images of in vivo brain tissue captured and processed during neurosurgical operations demonstrate that the system is able to discriminate between normal and tumor tissue in the brain. The results can be provided during the surgical procedure (~1 min), making it a practical system for neurosurgeons to use in the near future to improve excision and potentially improve patient outcomes.
Airborne measurements in the infrared using FTIR-based imaging hyperspectral sensors
NASA Astrophysics Data System (ADS)
Puckrin, E.; Turcotte, C. S.; Lahaie, P.; Dubé, D.; Lagueux, P.; Farley, V.; Marcotte, F.; Chamberland, M.
2009-09-01
Hyperspectral ground mapping is being used in an ever-increasing extent for numerous applications in the military, geology and environmental fields. The different regions of the electromagnetic spectrum help produce information of differing nature. The visible, near-infrared and short-wave infrared radiation (400 nm to 2.5 μm) has been mostly used to analyze reflected solar light, while the mid-wave (3 to 5 μm) and long-wave (8 to 12 μm or thermal) infrared senses the self-emission of molecules directly, enabling the acquisition of data during night time. Push-broom dispersive sensors have been typically used for airborne hyperspectral mapping. However, extending the spectral range towards the mid-wave and long-wave infrared brings performance limitations due to the self emission of the sensor itself. The Fourier-transform spectrometer technology has been extensively used in the infrared spectral range due to its high transmittance as well as throughput and multiplex advantages, thereby reducing the sensor self-emission problem. Telops has developed the Hyper-Cam, a rugged and compact infrared hyperspectral imager. The Hyper-Cam is based on the Fourier-transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. It provides passive signature measurement capability, with up to 320x256 pixels at spectral resolutions of up to 0.25 cm-1. The Hyper-Cam has been used on the ground in several field campaigns, including the demonstration of standoff chemical agent detection. More recently, the Hyper-Cam has been integrated into an airplane to provide airborne measurement capabilities. A special pointing module was designed to compensate for airplane attitude and forward motion. To our knowledge, the Hyper-Cam is the first commercial airborne hyperspectral imaging sensor based on Fourier-transform infrared technology. The first airborne measurements and some preliminary performance criteria for the Hyper-Cam are presented in this paper.
Airborne measurements in the infrared using FTIR-based imaging hyperspectral sensors
NASA Astrophysics Data System (ADS)
Puckrin, E.; Turcotte, C. S.; Lahaie, P.; Dubé, D.; Farley, V.; Lagueux, P.; Marcotte, F.; Chamberland, M.
2009-05-01
Hyperspectral ground mapping is being used in an ever-increasing extent for numerous applications in the military, geology and environmental fields. The different regions of the electromagnetic spectrum help produce information of differing nature. The visible, near-infrared and short-wave infrared radiation (400 nm to 2.5 μm) has been mostly used to analyze reflected solar light, while the mid-wave (3 to 5 μm) and long-wave (8 to 12 μm or thermal) infrared senses the self-emission of molecules directly, enabling the acquisition of data during night time. Push-broom dispersive sensors have been typically used for airborne hyperspectral mapping. However, extending the spectral range towards the mid-wave and long-wave infrared brings performance limitations due to the self emission of the sensor itself. The Fourier-transform spectrometer technology has been extensively used in the infrared spectral range due to its high transmittance as well as throughput and multiplex advantages, thereby reducing the sensor self-emission problem. Telops has developed the Hyper-Cam, a rugged and compact infrared hyperspectral imager. The Hyper-Cam is based on the Fourier-transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. It provides passive signature measurement capability, with up to 320x256 pixels at spectral resolutions of up to 0.25 cm-1. The Hyper-Cam has been used on the ground in several field campaigns, including the demonstration of standoff chemical agent detection. More recently, the Hyper-Cam has been integrated into an airplane to provide airborne measurement capabilities. A special pointing module was designed to compensate for airplane attitude and forward motion. To our knowledge, the Hyper-Cam is the first commercial airborne hyperspectral imaging sensor based on Fourier-transform infrared technology. The first airborne measurements and some preliminary performance criteria for the Hyper-Cam are presented in this paper.
NASA Astrophysics Data System (ADS)
Thenkabail, Prasad S.
2017-04-01
This presentation summarizes the advances made over 40+ years in understanding, modeling, and mapping terrestrial vegetation as reported in the new book on "Hyperspectral Remote Sensing of Vegetation" (Publisher:Taylor and Francis inc.). The advent of spaceborne hyperspectral sensors or imaging spectroscopy (e.g., NASA's Hyperion, ESA's PROBA, and upcoming Italy's ASI's Prisma, Germany's DLR's EnMAP, Japanese HIUSI, NASA's HyspIRI) as well as the advances made in processing when handling large volumes of hyperspectral data have generated tremendous interest in advancing the hyperspectral applications' knowledge base to large areas. Advances made in using hyperspectral data, relative to broadband data, include: (a) significantly improved characterization and modeling of a wide array of biophysical and biochemical properties of vegetation, (b) ability to discriminate plant species and vegetation types with high degree of accuracy, (c) reducing uncertainties in determining net primary productivity or carbon assessments from terrestrial vegetation, (d) improved crop productivity and water productivity models, (e) ability to assess stress resulting from causes such as management practices, pests and disease, water deficit or water excess, and (f) establishing more sensitive wavebands and indices to study vegetation characteristics. The presentation will discuss topics such as: (1) hyperspectral sensors and their characteristics, (2) methods of overcoming the Hughes phenomenon, (3) characterizing biophysical and biochemical properties, (4) advances made in using hyperspectral data in modeling evapotranspiration or actual water use by plants, (5) study of phenology, light use efficiency, and gross primary productivity, (5) improved accuracies in species identification and land cover classifications, and (6) applications in precision farming.
A long-wave infrared hyperspectral sensor for Shadow class UAVs
NASA Astrophysics Data System (ADS)
Lucey, P. G.; Akagi, Jason T.; Hinrichs, John L.; Crites, S. T.; Wright, R.
2013-05-01
The University of Hawaii has developed a concept to ruggedize an existing thermal infrared hyperspectral system for use in the NASA SIERRA UAV. The Hawaii Institute of Geophysics and Planetology has developed a suite of instruments that acquire high spectral resolution thermal infrared image data with low mass and power consumption by combining microbolometers with stationary interferometers, allowing us to achieve hyperspectral resolution (20 wavenumbers between 8 and 14 micrometers), with signal to noise ratios as high as 1500:1. Several similar instruments have been developed and flown by our research group. One recent iteration, developed under NASA EPSCoR funding and designed for inclusion on a microsatellite (Thermal Hyperspectral Imager; THI), has a mass of 11 kg. Making THI ready for deployment on the SIERRA will involve incorporating improvements made in building nine thermal interferometric hyperspectral systems for commercial and government sponsors as part of HIGP's wider program. This includes: a) hardening the system for operation in the SIERRA environment, b) compact design for the calibration system, c) reconfiguring software for autonomous operation, d) incorporating HIGP-developed detectors with increased responsiveness at the 8 micron end of the TIR range, and e) an improved interferometer to increase SNR for imaging at the SIERRA's air speed. UAVs provide a unique platform for science investigations that the proposed instrument, UAVTHI, will be well placed to facilitate (e.g. very high temporal resolution measurements of temporally dynamic phenomena, such as wildfires and volcanic ash clouds). Its spectral range is suited to measuring gas plumes, including sulfur dioxide and carbon dioxide, which exhibit absorption features in the 8 to 14 micron range.
Cucci, Costanza; Delaney, John K; Picollo, Marcello
2016-10-18
Diffuse reflectance hyperspectral imaging, or reflectance imaging spectroscopy, is a sophisticated technique that enables the capture of hundreds of images in contiguous narrow spectral bands (bandwidth < 10 nm), typically in the visible (Vis, 400-750 nm) and the near-infrared (NIR, 750-2500 nm) regions. This sequence of images provides a data set that is called an image-cube or file-cube. Two dimensions of the image-cube are the spatial dimensions of the scene, and the third dimension is the wavelength. In this way, each spatial pixel in the image has an associated reflectance spectrum. This "big data" image-cube allows for the mining of artists' materials and mapping their distribution across the surface of a work of art. Reflectance hyperspectral imaging, introduced in the 1980s by Goetz and co-workers, led to a revolution in the field of remote sensing of the earth and near planets ( Goetz, F. H.; Vane, G.; Solomon, B. N.; Rock, N. Imaging Spectrometry for Earth Remote Sensing . Science , 1985 , 228 , 1147 - 1152 ). In the subsequent decades, thanks to rapid advances in solid-state sensor technology, reflectance hyperspectral imaging, once only available to large government laboratories, was extended to new fields of application, such as monitoring agri-foods, pharmaceutical products, the environment, and cultural heritage. In the 2000s, the potential of this noninvasive technology for the study of artworks became evident and, consequently, the methodology is becoming more widely used in the art conservation science field. Typically hyperspectral reflectance image-cubes contain millions of spectra. Many of these spectra are similar, making the reduction of the data set size an important first step. Thus, image-processing tools based on multivariate techniques, such as principal component analysis (PCA), automated classification methods, or expert knowledge systems, that search for known spectral features are often applied. These algorithms seek to reduce the large number of high-quality spectra to a common subset, which allow identifying and mapping artists' materials and alteration products. Hence, reflectance hyperspectral imaging is finding its place as the starting point to find sites on polychrome surfaces for spot analytical techniques, such as X-ray fluorescence, Raman spectroscopy, and Fourier transform infrared spectroscopy. Reflectance hyperspectral imaging can also provide image products that are a mainstay in the art conservation field, such as color-accurate images, broadband near-infrared images, and false-color products. This Account reports on the research activity carried out by two research groups, one at the "Nello Carrara" Institute of Applied Physics of the Italian National Research Council (IFAC-CNR) in Florence and the other at the National Gallery of Art (NGA) in Washington, D.C. Both groups have conducted parallel research, with frequent interchanges, to develop multispectral and hyperspectral imaging systems to study works of art. In the past decade, they have designed and experimented with some of the earliest spectral imaging prototypes for museum applications. In this Account, a brief presentation of the hyperspectral sensor systems is given with case studies showing how reflectance hyperspectral imaging is answering key questions in cultural heritage.
BCB Bonding Technology of Back-Side Illuminated COMS Device
NASA Astrophysics Data System (ADS)
Wu, Y.; Jiang, G. Q.; Jia, S. X.; Shi, Y. M.
2018-03-01
Back-side illuminated CMOS(BSI) sensor is a key device in spaceborne hyperspectral imaging technology. Compared with traditional devices, the path of incident light is simplified and the spectral response is planarized by BSI sensors, which meets the requirements of quantitative hyperspectral imaging applications. Wafer bonding is the basic technology and key process of the fabrication of BSI sensors. 6 inch bonding of CMOS wafer and glass wafer was fabricated based on the low bonding temperature and high stability of BCB. The influence of different thickness of BCB on bonding strength was studied. Wafer bonding with high strength, high stability and no bubbles was fabricated by changing bonding conditions.
NASA Technical Reports Server (NTRS)
Ambeau, Brittany L.; Gerace, Aaron D.; Montanaro, Matthew; McCorkel, Joel
2016-01-01
Climate change studies require long-term, continuous records that extend beyond the lifetime, and the temporal resolution, of a single remote sensing satellite sensor. The inter-calibration of spaceborne sensors is therefore desired to provide spatially, spectrally, and temporally homogeneous datasets. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) tool is a first principle-based synthetic image generation model that has the potential to characterize the parameters that impact the accuracy of the inter-calibration of spaceborne sensors. To demonstrate the potential utility of the model, we compare the radiance observed in real image data to the radiance observed in simulated image from DIRSIG. In the present work, a synthetic landscape of the Algodones Sand Dunes System is created. The terrain is facetized using a 2-meter digital elevation model generated from NASA Goddard's LiDAR, Hyperspectral, and Thermal (G-LiHT) imager. The material spectra are assigned using hyperspectral measurements of sand collected from the Algodones Sand Dunes System. Lastly, the bidirectional reflectance distribution function (BRDF) properties are assigned to the modeled terrain using the Moderate Resolution Imaging Spectroradiometer (MODIS) BRDF product in conjunction with DIRSIG's Ross-Li capability. The results of this work indicate that DIRSIG is in good agreement with real image data. The potential sources of residual error are identified and the possibilities for future work are discussed..
NASA Astrophysics Data System (ADS)
Ambeau, Brittany L.; Gerace, Aaron D.; Montanaro, Matthew; McCorkel, Joel
2016-09-01
Climate change studies require long-term, continuous records that extend beyond the lifetime, and the temporal resolution, of a single remote sensing satellite sensor. The inter-calibration of spaceborne sensors is therefore desired to provide spatially, spectrally, and temporally homogeneous datasets. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) tool is a first principle-based synthetic image generation model that has the potential to characterize the parameters that impact the accuracy of the inter-calibration of spaceborne sensors. To demonstrate the potential utility of the model, we compare the radiance observed in real image data to the radiance observed in simulated image from DIRSIG. In the present work, a synthetic landscape of the Algodones Sand Dunes System is created. The terrain is facetized using a 2-meter digital elevation model generated from NASA Goddard's LiDAR, Hyperspectral, and Thermal (G-LiHT) imager. The material spectra are assigned using hyperspectral measurements of sand collected from the Algodones Sand Dunes System. Lastly, the bidirectional reflectance distribution function (BRDF) properties are assigned to the modeled terrain using the Moderate Resolution Imaging Spectroradiometer (MODIS) BRDF product in conjunction with DIRSIG's Ross-Li capability. The results of this work indicate that DIRSIG is in good agreement with real image data. The potential sources of residual error are identified and the possibilities for future work are discussed.
Standoff chemical D and Id with extended LWIR hyperspectral imaging spectroradiometer
NASA Astrophysics Data System (ADS)
Prel, Florent; Moreau, Louis; Lavoie, Hugo; Bouffard, François; Thériault, Jean-Marc; Vallieres, Christian; Roy, Claude; Dubé, Denis
2013-05-01
Standoff detection and identification (D and Id) of unknown volatile chemicals such as chemical pollutants and consequences of industrial incidents has been increasingly desired for first responders and for environmental monitoring. On site gas detection sensors are commercially available and several of them can even detect more than one chemical species, however only few of them have the capabilities of detecting a wide variety of gases at long and safe distances. The ABB Hyperspectral Imaging Spectroradiometer (MR-i), configured for gas detection detects and identifies a wide variety of chemical species including toxic industrial chemicals (TICs) and surrogates several kilometers away from the sensor. This configuration is called iCATSI for improved Compact Atmospheric Sounding Interferometer. iCATSI is a standoff passive system. The modularity of the MR-i platform allows optimization of the detection configuration with a 256 x 256 Focal Plane Array imager or a line scanning imager both covering the long wave IR atmospheric window up to 14 μm. The uniqueness of its extended LWIR cut off enables to detect more chemicals as well as provide higher probability of detection than usual LWIR sensors.
Lange, Maximilian; Dechant, Benjamin; Rebmann, Corinna; Vohland, Michael; Cuntz, Matthias; Doktor, Daniel
2017-08-11
Quantifying the accuracy of remote sensing products is a timely endeavor given the rapid increase in Earth observation missions. A validation site for Sentinel-2 products was hence established in central Germany. Automatic multispectral and hyperspectral sensor systems were installed in parallel with an existing eddy covariance flux tower, providing spectral information of the vegetation present at high temporal resolution. Normalized Difference Vegetation Index (NDVI) values from ground-based hyperspectral and multispectral sensors were compared with NDVI products derived from Sentinel-2A and Moderate-resolution Imaging Spectroradiometer (MODIS). The influence of different spatial and temporal resolutions was assessed. High correlations and similar phenological patterns between in situ and satellite-based NDVI time series demonstrated the reliability of satellite-based phenological metrics. Sentinel-2-derived metrics showed better agreement with in situ measurements than MODIS-derived metrics. Dynamic filtering with the best index slope extraction algorithm was nevertheless beneficial for Sentinel-2 NDVI time series despite the availability of quality information from the atmospheric correction procedure.
Lange, Maximilian; Rebmann, Corinna; Cuntz, Matthias; Doktor, Daniel
2017-01-01
Quantifying the accuracy of remote sensing products is a timely endeavor given the rapid increase in Earth observation missions. A validation site for Sentinel-2 products was hence established in central Germany. Automatic multispectral and hyperspectral sensor systems were installed in parallel with an existing eddy covariance flux tower, providing spectral information of the vegetation present at high temporal resolution. Normalized Difference Vegetation Index (NDVI) values from ground-based hyperspectral and multispectral sensors were compared with NDVI products derived from Sentinel-2A and Moderate-resolution Imaging Spectroradiometer (MODIS). The influence of different spatial and temporal resolutions was assessed. High correlations and similar phenological patterns between in situ and satellite-based NDVI time series demonstrated the reliability of satellite-based phenological metrics. Sentinel-2-derived metrics showed better agreement with in situ measurements than MODIS-derived metrics. Dynamic filtering with the best index slope extraction algorithm was nevertheless beneficial for Sentinel-2 NDVI time series despite the availability of quality information from the atmospheric correction procedure. PMID:28800065
Performance metrics for the evaluation of hyperspectral chemical identification systems
NASA Astrophysics Data System (ADS)
Truslow, Eric; Golowich, Steven; Manolakis, Dimitris; Ingle, Vinay
2016-02-01
Remote sensing of chemical vapor plumes is a difficult but important task for many military and civilian applications. Hyperspectral sensors operating in the long-wave infrared regime have well-demonstrated detection capabilities. However, the identification of a plume's chemical constituents, based on a chemical library, is a multiple hypothesis testing problem which standard detection metrics do not fully describe. We propose using an additional performance metric for identification based on the so-called Dice index. Our approach partitions and weights a confusion matrix to develop both the standard detection metrics and identification metric. Using the proposed metrics, we demonstrate that the intuitive system design of a detector bank followed by an identifier is indeed justified when incorporating performance information beyond the standard detection metrics.
Remote sensing of soil moisture using airborne hyperspectral data
Finn, M.; Lewis, M.; Bosch, D.; Giraldo, Mario; Yamamoto, K.; Sullivan, D.; Kincaid, R.; Luna, R.; Allam, G.; Kvien, Craig; Williams, M.
2011-01-01
Landscape assessment of soil moisture is critical to understanding the hydrological cycle at the regional scale and in broad-scale studies of biophysical processes affected by global climate changes in temperature and precipitation. Traditional efforts to measure soil moisture have been principally restricted to in situ measurements, so remote sensing techniques are often employed. Hyperspectral sensors with finer spatial resolution and narrow band widths may offer an alternative to traditional multispectral analysis of soil moisture, particularly in landscapes with high spatial heterogeneity. This preliminary research evaluates the ability of remotely sensed hyperspectral data to quantify soil moisture for the Little River Experimental Watershed (LREW), Georgia. An airborne hyperspectral instrument with a short-wavelength infrared (SWIR) sensor was flown in 2005 and 2007 and the results were correlated to in situ soil moisture values. A significant statistical correlation (R2 value above 0.7 for both sampling dates) for the hyperspectral instrument data and the soil moisture probe data at 5.08 cm (2 inches) was determined. While models for the 20.32 cm (8 inches) and 30.48 cm (12 inches) depths were tested, they were not able to estimate soil moisture to the same degree.
Remote sensing of soil moisture using airborne hyperspectral data
Finn, Michael P.; Lewis, Mark (David); Bosch, David D.; Giraldo, Mario; Yamamoto, Kristina H.; Sullivan, Dana G.; Kincaid, Russell; Luna, Ronaldo; Allam, Gopala Krishna; Kvien, Craig; Williams, Michael S.
2011-01-01
Landscape assessment of soil moisture is critical to understanding the hydrological cycle at the regional scale and in broad-scale studies of biophysical processes affected by global climate changes in temperature and precipitation. Traditional efforts to measure soil moisture have been principally restricted to in situ measurements, so remote sensing techniques are often employed. Hyperspectral sensors with finer spatial resolution and narrow band widths may offer an alternative to traditional multispectral analysis of soil moisture, particularly in landscapes with high spatial heterogeneity. This preliminary research evaluates the ability of remotely sensed hyperspectral data to quantify soil moisture for the Little River Experimental Watershed (LREW), Georgia. An airborne hyperspectral instrument with a short-wavelength infrared (SWIR) sensor was flown in 2005 and 2007 and the results were correlated to in situ soil moisture values. A significant statistical correlation (R 2 value above 0.7 for both sampling dates) for the hyperspectral instrument data and the soil moisture probe data at 5.08 cm (2 inches) was determined. While models for the 20.32 cm (8 inches) and 30.48 cm (12 inches) depths were tested, they were not able to estimate soil moisture to the same degree.
Data Processing for the Space-Based Desis Hyperspectral Sensor
NASA Astrophysics Data System (ADS)
Carmona, E.; Avbelj, J.; Alonso, K.; Bachmann, M.; Cerra, D.; Eckardt, A.; Gerasch, B.; Graham, L.; Günther, B.; Heiden, U.; Kerr, G.; Knodt, U.; Krutz, D.; Krawcyk, H.; Makarau, A.; Miller, R.; Müller, R.; Perkins, R.; Walter, I.
2017-05-01
The German Aerospace Center (DLR) and Teledyne Brown Engineering (TBE) have established a collaboration to develop and operate a new space-based hyperspectral sensor, the DLR Earth Sensing Imaging Spectrometer (DESIS). DESIS will provide spacebased hyperspectral data in the VNIR with high spectral resolution and near-global coverage. While TBE provides the platform and infrastructure for operation of the DESIS instrument on the International Space Station, DLR is responsible for providing the instrument and the processing software. The DESIS instrument is equipped with novel characteristics for an imaging spectrometer such high spectral resolution (2.55 nm), a mirror pointing unit or a CMOS sensor operated in rolling shutter mode. We present here an overview of the DESIS instrument and its processing chain, emphasizing the effect of the novel characteristics of DESIS in the data processing and final data products. Furthermore, we analyse in more detail the effect of the rolling shutter on the DESIS data and possible mitigation/correction strategies.
ROI-Based On-Board Compression for Hyperspectral Remote Sensing Images on GPU.
Giordano, Rossella; Guccione, Pietro
2017-05-19
In recent years, hyperspectral sensors for Earth remote sensing have become very popular. Such systems are able to provide the user with images having both spectral and spatial information. The current hyperspectral spaceborne sensors are able to capture large areas with increased spatial and spectral resolution. For this reason, the volume of acquired data needs to be reduced on board in order to avoid a low orbital duty cycle due to limited storage space. Recently, literature has focused the attention on efficient ways for on-board data compression. This topic is a challenging task due to the difficult environment (outer space) and due to the limited time, power and computing resources. Often, the hardware properties of Graphic Processing Units (GPU) have been adopted to reduce the processing time using parallel computing. The current work proposes a framework for on-board operation on a GPU, using NVIDIA's CUDA (Compute Unified Device Architecture) architecture. The algorithm aims at performing on-board compression using the target's related strategy. In detail, the main operations are: the automatic recognition of land cover types or detection of events in near real time in regions of interest (this is a user related choice) with an unsupervised classifier; the compression of specific regions with space-variant different bit rates including Principal Component Analysis (PCA), wavelet and arithmetic coding; and data volume management to the Ground Station. Experiments are provided using a real dataset taken from an AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) airborne sensor in a harbor area.
Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring.
Allison, Robert S; Johnston, Joshua M; Craig, Gregory; Jennings, Sion
2016-08-18
For decades detection and monitoring of forest and other wildland fires has relied heavily on aircraft (and satellites). Technical advances and improved affordability of both sensors and sensor platforms promise to revolutionize the way aircraft detect, monitor and help suppress wildfires. Sensor systems like hyperspectral cameras, image intensifiers and thermal cameras that have previously been limited in use due to cost or technology considerations are now becoming widely available and affordable. Similarly, new airborne sensor platforms, particularly small, unmanned aircraft or drones, are enabling new applications for airborne fire sensing. In this review we outline the state of the art in direct, semi-automated and automated fire detection from both manned and unmanned aerial platforms. We discuss the operational constraints and opportunities provided by these sensor systems including a discussion of the objective evaluation of these systems in a realistic context.
Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring
Allison, Robert S.; Johnston, Joshua M.; Craig, Gregory; Jennings, Sion
2016-01-01
For decades detection and monitoring of forest and other wildland fires has relied heavily on aircraft (and satellites). Technical advances and improved affordability of both sensors and sensor platforms promise to revolutionize the way aircraft detect, monitor and help suppress wildfires. Sensor systems like hyperspectral cameras, image intensifiers and thermal cameras that have previously been limited in use due to cost or technology considerations are now becoming widely available and affordable. Similarly, new airborne sensor platforms, particularly small, unmanned aircraft or drones, are enabling new applications for airborne fire sensing. In this review we outline the state of the art in direct, semi-automated and automated fire detection from both manned and unmanned aerial platforms. We discuss the operational constraints and opportunities provided by these sensor systems including a discussion of the objective evaluation of these systems in a realistic context. PMID:27548174
On-orbit characterization of hyperspectral imagers
NASA Astrophysics Data System (ADS)
McCorkel, Joel
Remote Sensing Group (RSG) at the University of Arizona has a long history of using ground-based test sites for the calibration of airborne- and satellite-based sensors. Often, ground-truth measurements at these tests sites are not always successful due to weather and funding availability. Therefore, RSG has also employed automated ground instrument approaches and cross-calibration methods to verify the radiometric calibration of a sensor. The goal in the cross-calibration method is to transfer the calibration of a well-known sensor to that of a different sensor. This dissertation presents a method for determining the radiometric calibration of a hyperspectral imager using multispectral imagery. The work relies on a multispectral sensor, Moderate-resolution Imaging Spectroradiometer (MODIS), as a reference for the hyperspectral sensor Hyperion. Test sites used for comparisons are Railroad Valley in Nevada and a portion of the Libyan Desert in North Africa. A method to predict hyperspectral surface reflectance using a combination of MODIS data and spectral shape information is developed and applied for the characterization of Hyperion. Spectral shape information is based on RSG's historical in situ data for the Railroad Valley test site and spectral library data for the Libyan test site. Average atmospheric parameters, also based on historical measurements, are used in reflectance prediction and transfer to space. Results of several cross-calibration scenarios that differ in image acquisition coincidence, test site, and reference sensor are found for the characterization of Hyperion. These are compared with results from the reflectance-based approach of vicarious calibration, a well-documented method developed by the RSG that serves as a baseline for calibration performance for the cross-calibration method developed here. Cross-calibration provides results that are within 2% of those of reflectance-based results in most spectral regions. Larger disagreements exist for shorter wavelengths studied in this work as well as in spectral areas that experience absorption by the atmosphere.
Scene-based method for spatial misregistration detection in hyperspectral imagery.
Dell'Endice, Francesco; Nieke, Jens; Schläpfer, Daniel; Itten, Klaus I
2007-05-20
Hyperspectral imaging (HSI) sensors suffer from spatial misregistration, an artifact that prevents the accurate acquisition of the spectra. Physical considerations let us assume that the influence of the spatial misregistration on the acquired data depends both on the wavelength and on the across-track position. A scene-based method, based on edge detection, is therefore proposed. Such a procedure measures the variation on the spatial location of an edge between its various monochromatic projections, giving an estimation for spatial misregistration, and also allowing identification of misalignments. The method has been applied to several hyperspectral sensors, either prism, or grating-based designs. The results confirm the dependence assumptions on lambda and theta, spectral wavelength and across-track pixel, respectively. Suggestions are also given to correct for spatial misregistration.
NASA Astrophysics Data System (ADS)
Mönnig, Carsten
2014-05-01
The increasing precision of modern farming systems requires a near-real-time monitoring of agricultural crops in order to estimate soil condition, plant health and potential crop yield. For large sized agricultural plots, satellite imagery or aerial surveys can be used at considerable costs and possible time delays of days or even weeks. However, for small to medium sized plots, these monitoring approaches are cost-prohibitive and difficult to assess. Therefore, we propose within the INTERREG IV A-Project SMART INSPECTORS (Smart Aerial Test Rigs with Infrared Spectrometers and Radar), a cost effective, comparably simple approach to support farmers with a small and lightweight hyperspectral imaging system to collect remotely sensed data in spectral bands in between 400 to 1700nm. SMART INSPECTORS includes the whole remote sensing processing chain of small scale remote sensing from sensor construction, data processing and ground truthing for analysis of the results. The sensors are mounted on a remotely controlled (RC) Octocopter, a fixed wing RC airplane as well as on a two-seated Autogyro for larger plots. The high resolution images up to 5cm on the ground include spectra of visible light, near and thermal infrared as well as hyperspectral imagery. The data will be analyzed using remote sensing software and a Geographic Information System (GIS). The soil condition analysis includes soil humidity, temperature and roughness. Furthermore, a radar sensor is envisaged for the detection of geomorphologic, drainage and soil-plant roughness investigation. Plant health control includes drought stress, vegetation health, pest control, growth condition and canopy temperature. Different vegetation and soil indices will help to determine and understand soil conditions and plant traits. Additional investigation might include crop yield estimation of certain crops like apples, strawberries, pasture land, etc. The quality of remotely sensed vegetation data will be tested with ground truthing tools like a spectrometer, visual inspection and ground control panel. The soil condition will also be monitored with a wireless sensor network installed on the examined plots of interest. Provided with this data, a farmer can respond immediately to potential threats with high local precision. In this presentation, preliminary results of hyperspectral images of distinctive vegetation cover and soil on different pasture test plots are shown. After an evaluation period, the whole processing chain will offer farmers a unique, near real- time, low cost solution for small to mid-sized agricultural plots in order to easily assess crop and soil quality and the estimation of harvest. SMART INSPECTORS remotely sensed data will form the basis for an input in a decision support system which aims to detect crop related issues in order to react quickly and efficiently, saving fertilizer, water or pesticides.
NASA Astrophysics Data System (ADS)
Plaza, Antonio; Chang, Chein-I.; Plaza, Javier; Valencia, David
2006-05-01
The incorporation of hyperspectral sensors aboard airborne/satellite platforms is currently producing a nearly continual stream of multidimensional image data, and this high data volume has soon introduced new processing challenges. The price paid for the wealth spatial and spectral information available from hyperspectral sensors is the enormous amounts of data that they generate. Several applications exist, however, where having the desired information calculated quickly enough for practical use is highly desirable. High computing performance of algorithm analysis is particularly important in homeland defense and security applications, in which swift decisions often involve detection of (sub-pixel) military targets (including hostile weaponry, camouflage, concealment, and decoys) or chemical/biological agents. In order to speed-up computational performance of hyperspectral imaging algorithms, this paper develops several fast parallel data processing techniques. Techniques include four classes of algorithms: (1) unsupervised classification, (2) spectral unmixing, and (3) automatic target recognition, and (4) onboard data compression. A massively parallel Beowulf cluster (Thunderhead) at NASA's Goddard Space Flight Center in Maryland is used to measure parallel performance of the proposed algorithms. In order to explore the viability of developing onboard, real-time hyperspectral data compression algorithms, a Xilinx Virtex-II field programmable gate array (FPGA) is also used in experiments. Our quantitative and comparative assessment of parallel techniques and strategies may help image analysts in selection of parallel hyperspectral algorithms for specific applications.
NASA Technical Reports Server (NTRS)
Doelling, David R.; Scarino, Benjamin R.; Morstad, Daniel; Gopalan, Arun; Bhatt, Rajendra; Lukashin, Constantine; Minnis, Patrick
2013-01-01
Spectral band differences between sensors can complicate the process of intercalibration of a visible sensor against a reference sensor. This can be best addressed by using a hyperspectral reference sensor whenever possible because they can be used to accurately mitigate the band differences. This paper demonstrates the feasibility of using operational Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) large-footprint hyperspectral radiances to calibrate geostationary Earth-observing (GEO) sensors. Near simultaneous nadir overpass measurements were used to compare the temporal calibration of SCIAMACHY with Aqua Moderate Resolution Imaging Spectroradiometer band radiances, which were found to be consistent to within 0.44% over seven years. An operational SCIAMACHY/GEO ray-matching technique was presented, along with enhancements to improve radiance pair sampling. These enhancements did not bias the underlying intercalibration and provided enough sampling to allow up to monthly monitoring of the GEO sensor degradation. The results of the SCIAMACHY/GEO intercalibration were compared with other operational four-year Meteosat-9 0.65-µm calibration coefficients and were found to be within 1% of the gain, and more importantly, it had one of the lowest temporal standard errors of all the methods. This is more than likely that the GEO spectral response function could be directly applied to the SCIAMACHY radiances, whereas the other operational methods inferred a spectral correction factor. This method allows the validation of the spectral corrections required by other methods.
HYPERSPECTRAL CHANNEL SELECTION FOR WATER QUALITY MONITORING ON THE GREAT MIAMI RIVER, OHIO
During the summer of 1999, spectral data were collected with a hand-held spectroradiometer, a laboratory spectrometer and airborne hyperspectral sensors from the Great Miami River (GMR), Ohio. Approximately 80 km of the GMR were imaged during a flyover with a Compact Airborne Sp...
The Hyperspectral Imager for the Coastal Ocean (HICO) offers the coastal environmental monitoring community an unprecedented opportunity to observe changes in coastal and estuarine water quality across a range of spatial scales not feasible with traditional field-based monitoring...
Detection of disturbed earth using hyperspectral LWIR imaging data
NASA Astrophysics Data System (ADS)
Hubbard, Wendy; Bishop, Gary; Gagnon, Jean-Philippe; Lagueux, Philippe; Hannuna, Sion; Campbell, Neill
2010-10-01
The Reststrahlen effect has been investigated for detecting regions of recently disturbed earth, by taking images where metallic objects had been buried in a sandy soil and comparing with images of undisturbed soil. The images were taken with a Long wave Infrared (LWIR) Hyperspectral Sensor, the Hyper-Cam.
Efficient integration of spectral features for vehicle tracking utilizing an adaptive sensor
NASA Astrophysics Data System (ADS)
Uzkent, Burak; Hoffman, Matthew J.; Vodacek, Anthony
2015-03-01
Object tracking in urban environments is an important and challenging problem that is traditionally tackled using visible and near infrared wavelengths. By inserting extended data such as spectral features of the objects one can improve the reliability of the identification process. However, huge increase in data created by hyperspectral imaging is usually prohibitive. To overcome the complexity problem, we propose a persistent air-to-ground target tracking system inspired by a state-of-the-art, adaptive, multi-modal sensor. The adaptive sensor is capable of providing panchromatic images as well as the spectra of desired pixels. This addresses the data challenge of hyperspectral tracking by only recording spectral data as needed. Spectral likelihoods are integrated into a data association algorithm in a Bayesian fashion to minimize the likelihood of misidentification. A framework for controlling spectral data collection is developed by incorporating motion segmentation information and prior information from a Gaussian Sum filter (GSF) movement predictions from a multi-model forecasting set. An intersection mask of the surveillance area is extracted from OpenStreetMap source and incorporated into the tracking algorithm to perform online refinement of multiple model set. The proposed system is tested using challenging and realistic scenarios generated in an adverse environment.
Cavalli, Rosa Maria; Fusilli, Lorenzo; Pascucci, Simone; Pignatti, Stefano; Santini, Federico
2008-01-01
This study aims at comparing the capability of different sensors to detect land cover materials within an historical urban center. The main objective is to evaluate the added value of hyperspectral sensors in mapping a complex urban context. In this study we used: (a) the ALI and Hyperion satellite data, (b) the LANDSAT ETM+ satellite data, (c) MIVIS airborne data and (d) the high spatial resolution IKONOS imagery as reference. The Venice city center shows a complex urban land cover and therefore was chosen for testing the spectral and spatial characteristics of different sensors in mapping the urban tissue. For this purpose, an object-oriented approach and different common classification methods were used. Moreover, spectra of the main anthropogenic surfaces (i.e. roofing and paving materials) were collected during the field campaigns conducted on the study area. They were exploited for applying band-depth and sub-pixel analyses to subsets of Hyperion and MIVIS hyperspectral imagery. The results show that satellite data with a 30m spatial resolution (ALI, LANDSAT ETM+ and HYPERION) are able to identify only the main urban land cover materials. PMID:27879879
A new application of hyperspectral radiometry: the characterization of painted surfaces
NASA Astrophysics Data System (ADS)
Wang, Cong; Salvatici, Teresa; Camaiti, Mara; Del Ventisette, Chiara; Moretti, Sandro
2016-04-01
Hyperspectral sensors, working in the Visible-Near Infrared and Short Wave Infrared (VNIR-SWIR) regions, are widely employed for geological applications since they can discriminate many inorganic (e.g. mineral phases) and organic compounds (i.e. vegetations and soils) [1]. Their advantage is to work in the portion of the solar spectrum used for remote sensors. Some examples of application of the hyperspectral sensors to the conservation of cultural heritage are also known. These applications concern the detection of gypsum on historical buildings [2], and the monitoring of organic protective materials on stone surfaces [3]. On the contrary, hyperspectral radiometry has not been employed on painted surfaces. Indeed, the characterization of these surfaces is mainly performed with sophisticated, micro-destractive and time-consuming laboratory analyses (i.e. SEM-EDS, FTIR and, GC-MS spectroscopy) or through portable and non-invasive instruments (mid FTIR, micro Raman, XRF, FORS) which work in different spectral ranges [4,5]. In this work the discrimination of many organic and inorganic components from paintings was investigated through a hyperspectral spectroradiometer ,which works in the 350-2500 nm region. The reflectance spectra were collected by the contact reflectance probe, equipped with an internal light source with fixed geometry of illumination and shot. Several standards samples, selected among the most common materials of paintings, were prepared and analysed in order to collect reference spectra. The standards were prepared with powders of 7 pure pigments, films of 5 varnishes (natural and synthetic), and films of 3 dried binding media. Monochromatic painted surfaces have also been prepared and investigated to verify the identification of different compounds on the surface. The results show that the discrimination of pure products is possible in the VNIR-SWIR region, except for compounds with similar composition (e.g. natural resins such as dammar and mastic). The reflectance spectra of painted surfaces, as supposed, are more complex than the spectra of pure materials, but the identification of single components is possible if the superficial layer of varnish was thin enough to allow the "penetration" of the irradiation light until the pictorial layer. Finally, the hyperspectral technique, owe to the fast spectra collection (10 spectra/second) and the friendly use of the instrument, has been proved to be a successful method for the evaluation of cleaning treatments, because of the possibility to monitor the partial or total elimination of varnish. References 1) Ramakrishnan D, Bharti R (2015) Hyperspectral remote sensing and geological applications. Curr Sci 108(5):879-891 2) Camaiti M, Benvenuti M, Chiarantini L et al (2011) Hyperspectral sensor for gypsum detection on monumental buildings. J Geophys Eng 8:S126-S131 3) Vettori S et al (2012) Portable hyperspectral device as a valuable tool for the detection of protective agents applied on historical buildings. In: Geophysical Research Abstracts of EGU General Assembly 2012, Wien, 22-27 April 2012, vol 14, p 9459 4) Miliani C, Rosi F, Brunetti BG et al (2010) In Situ Noninvasive Study of Artworks: The MOLAB Multitechnique Approach. Accounts Chem Res 43(6):758-738 5) Bacci M (1995) Fibre optics applications to works of art. Sensor Actuat B-Chem 29:190-196
Wavelength band selection method for multispectral target detection.
Karlholm, Jörgen; Renhorn, Ingmar
2002-11-10
A framework is proposed for the selection of wavelength bands for multispectral sensors by use of hyperspectral reference data. Using the results from the detection theory we derive a cost function that is minimized by a set of spectral bands optimal in terms of detection performance for discrimination between a class of small rare targets and clutter with known spectral distribution. The method may be used, e.g., in the design of multispectral infrared search and track and electro-optical missile warning sensors, where a low false-alarm rate and a high-detection probability for detection of small targets against a clutter background are of critical importance, but the required high frame rate prevents the use of hyperspectral sensors.
Liu, Bo; Zhang, Lifu; Zhang, Xia; Zhang, Bing; Tong, Qingxi
2009-01-01
Data simulation is widely used in remote sensing to produce imagery for a new sensor in the design stage, for scale issues of some special applications, or for testing of novel algorithms. Hyperspectral data could provide more abundant information than traditional multispectral data and thus greatly extend the range of remote sensing applications. Unfortunately, hyperspectral data are much more difficult and expensive to acquire and were not available prior to the development of operational hyperspectral instruments, while large amounts of accumulated multispectral data have been collected around the world over the past several decades. Therefore, it is reasonable to examine means of using these multispectral data to simulate or construct hyperspectral data, especially in situations where hyperspectral data are necessary but hard to acquire. Here, a method based on spectral reconstruction is proposed to simulate hyperspectral data (Hyperion data) from multispectral Advanced Land Imager data (ALI data). This method involves extraction of the inherent information of source data and reassignment to newly simulated data. A total of 106 bands of Hyperion data were simulated from ALI data covering the same area. To evaluate this method, we compare the simulated and original Hyperion data by visual interpretation, statistical comparison, and classification. The results generally showed good performance of this method and indicated that most bands were well simulated, and the information both preserved and presented well. This makes it possible to simulate hyperspectral data from multispectral data for testing the performance of algorithms, extend the use of multispectral data and help the design of a virtual sensor. PMID:22574064
NASA Astrophysics Data System (ADS)
Stuffler, Timo; Förster, Klaus; Hofer, Stefan; Leipold, Manfred; Sang, Bernhard; Kaufmann, Hermann; Penné, Boris; Mueller, Andreas; Chlebek, Christian
2009-10-01
In the upcoming generation of satellite sensors, hyperspectral instruments will play a significant role. This payload type is considered world-wide within different future planning. Our team has now successfully finalized the Phase B study for the advanced hyperspectral mission EnMAP (Environmental Mapping and Analysis Programme), Germans next optical satellite being scheduled for launch in 2012. GFZ in Potsdam has the scientific lead on EnMAP, Kayser-Threde in Munich is the industrial prime. The EnMAP instrument provides over 240 continuous spectral bands in the wavelength range between 420 and 2450 nm with a ground resolution of 30 m×30 m. Thus, the broad science and application community can draw from an extensive and highly resolved pool of information supporting the modeling and optimization process on their results. The performance of the hyperspectral instrument allows for a detailed monitoring, characterization and parameter extraction of rock/soil targets, vegetation, and inland and coastal waters on a global scale supporting a wide variety of applications in agriculture, forestry, water management and geology. The operation of an airborne system (ARES) as an element in the HGF hyperspectral network and the ongoing evolution concerning data handling and extraction procedures, will support the later inclusion process of EnMAP into the growing scientist and user communities.
Characterisation methods for the hyperspectral sensor HySpex at DLR's calibration home base
NASA Astrophysics Data System (ADS)
Baumgartner, Andreas; Gege, Peter; Köhler, Claas; Lenhard, Karim; Schwarzmaier, Thomas
2012-09-01
The German Aerospace Center's (DLR) Remote Sensing Technology Institute (IMF) operates a laboratory for the characterisation of imaging spectrometers. Originally designed as Calibration Home Base (CHB) for the imaging spectrometer APEX, the laboratory can be used to characterise nearly every airborne hyperspectral system. Characterisation methods will be demonstrated exemplarily with HySpex, an airborne imaging spectrometer system from Norsk Elektro Optikks A/S (NEO). Consisting of two separate devices (VNIR-1600 and SWIR-320me) the setup covers the spectral range from 400 nm to 2500 nm. Both airborne sensors have been characterised at NEO. This includes measurement of spectral and spatial resolution and misregistration, polarisation sensitivity, signal to noise ratios and the radiometric response. The same parameters have been examined at the CHB and were used to validate the NEO measurements. Additionally, the line spread functions (LSF) in across and along track direction and the spectral response functions (SRF) for certain detector pixels were measured. The high degree of lab automation allows the determination of the SRFs and LSFs for a large amount of sampling points. Despite this, the measurement of these functions for every detector element would be too time-consuming as typical detectors have 105 elements. But with enough sampling points it is possible to interpolate the attributes of the remaining pixels. The knowledge of these properties for every detector element allows the quantification of spectral and spatial misregistration (smile and keystone) and a better calibration of airborne data. Further laboratory measurements are used to validate the models for the spectral and spatial properties of the imaging spectrometers. Compared to the future German spaceborne hyperspectral Imager EnMAP, the HySpex sensors have the same or higher spectral and spatial resolution. Therefore, airborne data will be used to prepare for and validate the spaceborne system's data.
NASA Astrophysics Data System (ADS)
Nelson, Matthew P.; Tazik, Shawna K.; Bangalore, Arjun S.; Treado, Patrick J.; Klem, Ethan; Temple, Dorota
2017-05-01
Hyperspectral imaging (HSI) systems can provide detection and identification of a variety of targets in the presence of complex backgrounds. However, current generation sensors are typically large, costly to field, do not usually operate in real time and have limited sensitivity and specificity. Despite these shortcomings, HSI-based intelligence has proven to be a valuable tool, thus resulting in increased demand for this type of technology. By moving the next generation of HSI technology into a more adaptive configuration, and a smaller and more cost effective form factor, HSI technologies can help maintain a competitive advantage for the U.S. armed forces as well as local, state and federal law enforcement agencies. Operating near the physical limits of HSI system capability is often necessary and very challenging, but is often enabled by rigorous modeling of detection performance. Specific performance envelopes we consistently strive to improve include: operating under low signal to background conditions; at higher and higher frame rates; and under less than ideal motion control scenarios. An adaptable, low cost, low footprint, standoff sensor architecture we have been maturing includes the use of conformal liquid crystal tunable filters (LCTFs). These Conformal Filters (CFs) are electro-optically tunable, multivariate HSI spectrometers that, when combined with Dual Polarization (DP) optics, produce optimized spectral passbands on demand, which can readily be reconfigured, to discriminate targets from complex backgrounds in real-time. With DARPA support, ChemImage Sensor Systems (CISS™) in collaboration with Research Triangle Institute (RTI) International are developing a novel, real-time, adaptable, compressive sensing short-wave infrared (SWIR) hyperspectral imaging technology called the Reconfigurable Conformal Imaging Sensor (RCIS) based on DP-CF technology. RCIS will address many shortcomings of current generation systems and offer improvements in operational agility and detection performance, while addressing sensor weight, form factor and cost needs. This paper discusses recent test and performance modeling results of a RCIS breadboard apparatus.
SpecTIR and SEBASS analysis of the National Mining District, Humboldt County, Nevada
NASA Astrophysics Data System (ADS)
Morken, Todd O.
The purpose of this study was to evaluate the minerals and materials that could be uniquely identified and mapped from measurements made with airborne hyperspectral SpecTIR VNIR/SWIR and SEBASS TIR sensors over areas in the National Mining District. SpecTIR Corporation and Aerospace Corporation acquired Hyperspectral measurements on June 26, 2008 using their ProSpecTIR and SEBASS sensors respectively. In addition the effects of vegetation, elevation, the atmosphere on spectral measurements were evaluated to determine their impact upon the data analysis and target identification. The National Mining District is located approximately 75 miles northeast of Winnemucca, Nevada at the northern end of the Santa Rosa Mountains. Precious metal mining has been dormant in this area since the 1940's, however with increased metal prices over the last decade economic interest in the region has increased substantially. Buckskin Mountain has a preserved alteration assemblage that is exposed in topographically steep terrain, ideal for exploring what hydrothermal alteration products can be identified and mapped in these datasets. These Visible Near Infrared (VNIR), Short Wave Infrared (SWIR), and Long Wave Infrared (LWIR) hyperspectral datasets were used to identify and map kaolinite, alunite, quartz, opal, and illite/muscovite, all of which are useful exploration target identifiers and can indicate regions of alteration. These mapping results were then combined with and compared to other geospatial data in a geographic information systems (GIS) database. The TIR hyperspectral data provided significant additional information that can benefit geologic exploration and demonstrated its usefulness as an additional tool for geological exploration.
Tree Classification with Fused Mobile Laser Scanning and Hyperspectral Data
Puttonen, Eetu; Jaakkola, Anttoni; Litkey, Paula; Hyyppä, Juha
2011-01-01
Mobile Laser Scanning data were collected simultaneously with hyperspectral data using the Finnish Geodetic Institute Sensei system. The data were tested for tree species classification. The test area was an urban garden in the City of Espoo, Finland. Point clouds representing 168 individual tree specimens of 23 tree species were determined manually. The classification of the trees was done using first only the spatial data from point clouds, then with only the spectral data obtained with a spectrometer, and finally with the combined spatial and hyperspectral data from both sensors. Two classification tests were performed: the separation of coniferous and deciduous trees, and the identification of individual tree species. All determined tree specimens were used in distinguishing coniferous and deciduous trees. A subset of 133 trees and 10 tree species was used in the tree species classification. The best classification results for the fused data were 95.8% for the separation of the coniferous and deciduous classes. The best overall tree species classification succeeded with 83.5% accuracy for the best tested fused data feature combination. The respective results for paired structural features derived from the laser point cloud were 90.5% for the separation of the coniferous and deciduous classes and 65.4% for the species classification. Classification accuracies with paired hyperspectral reflectance value data were 90.5% for the separation of coniferous and deciduous classes and 62.4% for different species. The results are among the first of their kind and they show that mobile collected fused data outperformed single-sensor data in both classification tests and by a significant margin. PMID:22163894
Tree classification with fused mobile laser scanning and hyperspectral data.
Puttonen, Eetu; Jaakkola, Anttoni; Litkey, Paula; Hyyppä, Juha
2011-01-01
Mobile Laser Scanning data were collected simultaneously with hyperspectral data using the Finnish Geodetic Institute Sensei system. The data were tested for tree species classification. The test area was an urban garden in the City of Espoo, Finland. Point clouds representing 168 individual tree specimens of 23 tree species were determined manually. The classification of the trees was done using first only the spatial data from point clouds, then with only the spectral data obtained with a spectrometer, and finally with the combined spatial and hyperspectral data from both sensors. Two classification tests were performed: the separation of coniferous and deciduous trees, and the identification of individual tree species. All determined tree specimens were used in distinguishing coniferous and deciduous trees. A subset of 133 trees and 10 tree species was used in the tree species classification. The best classification results for the fused data were 95.8% for the separation of the coniferous and deciduous classes. The best overall tree species classification succeeded with 83.5% accuracy for the best tested fused data feature combination. The respective results for paired structural features derived from the laser point cloud were 90.5% for the separation of the coniferous and deciduous classes and 65.4% for the species classification. Classification accuracies with paired hyperspectral reflectance value data were 90.5% for the separation of coniferous and deciduous classes and 62.4% for different species. The results are among the first of their kind and they show that mobile collected fused data outperformed single-sensor data in both classification tests and by a significant margin.
NASA Astrophysics Data System (ADS)
Engel, Dave W.; Reichardt, Thomas A.; Kulp, Thomas J.; Graff, David L.; Thompson, Sandra E.
2016-05-01
Validating predictive models and quantifying uncertainties inherent in the modeling process is a critical component of the HARD Solids Venture program [1]. Our current research focuses on validating physics-based models predicting the optical properties of solid materials for arbitrary surface morphologies and characterizing the uncertainties in these models. We employ a systematic and hierarchical approach by designing physical experiments and comparing the experimental results with the outputs of computational predictive models. We illustrate this approach through an example comparing a micro-scale forward model to an idealized solid-material system and then propagating the results through a system model to the sensor level. Our efforts should enhance detection reliability of the hyper-spectral imaging technique and the confidence in model utilization and model outputs by users and stakeholders.
Enhancing hyperspectral spatial resolution using multispectral image fusion: A wavelet approach
NASA Astrophysics Data System (ADS)
Jazaeri, Amin
High spectral and spatial resolution images have a significant impact in remote sensing applications. Because both spatial and spectral resolutions of spaceborne sensors are fixed by design and it is not possible to further increase the spatial or spectral resolution, techniques such as image fusion must be applied to achieve such goals. This dissertation introduces the concept of wavelet fusion between hyperspectral and multispectral sensors in order to enhance the spectral and spatial resolution of a hyperspectral image. To test the robustness of this concept, images from Hyperion (hyperspectral sensor) and Advanced Land Imager (multispectral sensor) were first co-registered and then fused using different wavelet algorithms. A regression-based fusion algorithm was also implemented for comparison purposes. The results show that the fused images using a combined bi-linear wavelet-regression algorithm have less error than other methods when compared to the ground truth. In addition, a combined regression-wavelet algorithm shows more immunity to misalignment of the pixels due to the lack of proper registration. The quantitative measures of average mean square error show that the performance of wavelet-based methods degrades when the spatial resolution of hyperspectral images becomes eight times less than its corresponding multispectral image. Regardless of what method of fusion is utilized, the main challenge in image fusion is image registration, which is also a very time intensive process. Because the combined regression wavelet technique is computationally expensive, a hybrid technique based on regression and wavelet methods was also implemented to decrease computational overhead. However, the gain in faster computation was offset by the introduction of more error in the outcome. The secondary objective of this dissertation is to examine the feasibility and sensor requirements for image fusion for future NASA missions in order to be able to perform onboard image fusion. In this process, the main challenge of image registration was resolved by registering the input images using transformation matrices of previously acquired data. The composite image resulted from the fusion process remarkably matched the ground truth, indicating the possibility of real time onboard fusion processing.
Hyperspectral Imaging Sensors and the Marine Coastal Zone
NASA Technical Reports Server (NTRS)
Richardson, Laurie L.
2000-01-01
Hyperspectral imaging sensors greatly expand the potential of remote sensing to assess, map, and monitor marine coastal zones. Each pixel in a hyperspectral image contains an entire spectrum of information. As a result, hyperspectral image data can be processed in two very different ways: by image classification techniques, to produce mapped outputs of features in the image on a regional scale; and by use of spectral analysis of the spectral data embedded within each pixel of the image. The latter is particularly useful in marine coastal zones because of the spectral complexity of suspended as well as benthic features found in these environments. Spectral-based analysis of hyperspectral (AVIRIS) imagery was carried out to investigate a marine coastal zone of South Florida, USA. Florida Bay is a phytoplankton-rich estuary characterized by taxonomically distinct phytoplankton assemblages and extensive seagrass beds. End-member spectra were extracted from AVIRIS image data corresponding to ground-truth sample stations and well-known field sites. Spectral libraries were constructed from the AVIRIS end-member spectra and used to classify images using the Spectral Angle Mapper (SAM) algorithm, a spectral-based approach that compares the spectrum, in each pixel of an image with each spectrum in a spectral library. Using this approach different phytoplankton assemblages containing diatoms, cyanobacteria, and green microalgae, as well as benthic community (seagrasses), were mapped.
Upscaling of spectroradiometer data for stress detection in orchards with remote sensing
NASA Astrophysics Data System (ADS)
Kempeneers, Pieter; De Backer, Steve; Delalieux, Stephanie; Sterckx, Sindy; Debruyn, Walter; Coppin, Pol; Scheunders, Paul
2004-10-01
This paper studies the detection of vegetation stress in orchards via remote sensing. During previous research, it was shown that stress can be detected reliably on hyperspectral reflectances of the fresh leaves, using a generic wavelet based hyperspectral classification. In this work, we demonstrate the capability to detect stress from airborne/spaceborne hyperspectral sensors by upscaling the leaf reflectances to top of atmosphere (TOA) radiances. Several data sets are generated, measuring the foliar reflectance with a portable field spectroradiometer, covering different time periods, fruit variants and stress types. We concentrated on the Jonagold and Golden Delicious apple trees, induced with mildew and nitrogen deficiency. First, a directional homogeneous canopy reflectance model (ACRM) is applied on these data sets for simulating top of canopy (TOC) spectra. Then, the TOC level is further upscaled to TOA, using the atmospheric radiative transfer model MODTRAN4. To simulate hyperspectral imagery acquired with real airborne/spaceborne sensors, the spectrum is further filtered and subsampled to the available resolution. Using these simulated upscaled TOC and TOA spectra in classification, we will demonstrate that there is still a differentiation possible between stresses and non-stressed trees. Furthermore, results show it is possible to train a classifier with simulated TOA data, to make a classification of real hyperspectral imagery over the orchard.
High spatial resolution LWIR hyperspectral sensor
NASA Astrophysics Data System (ADS)
Roberts, Carson B.; Bodkin, Andrew; Daly, James T.; Meola, Joseph
2015-06-01
Presented is a new hyperspectral imager design based on multiple slit scanning. This represents an innovation in the classic trade-off between speed and resolution. This LWIR design has been able to produce data-cubes at 3 times the rate of conventional single slit scan devices. The instrument has a built-in radiometric and spectral calibrator.
Soil Moisture Estimation Using Hyperspectral SWIR Imagery
NASA Astrophysics Data System (ADS)
Lewis, D.
2007-12-01
The U.S. Geological Survey (USGS) is engaged with the U.S. Department of Agriculture's (USDA) Agricultural Research Service (ARS) and the University of Georgia's National Environmentally Sound Production Agriculture Laboratory (NESPAL) both in Tifton, Georgia, USA, to develop transformations for medium and high resolution remotely sensed images to generate moisture indicators for soil. The Institute for Technology Development (ITD) is located at the Stennis Space Center in southern Mississippi and has developed hyperspectral sensor systems that, when mounted in aircraft, collect electromagnetic reflectance data of the terrain. The sensor suite consists of sensors for three different sections of the electromagnetic spectrum; the Ultra-Violet (UV), Visible/Near InfraRed (VNIR) and Short Wave InfraRed (SWIR). The USDA/ ARS' Southeast Watershed Research Laboratory has probes that measure and record soil moisture. Data taken from the ITD SWIR sensor and the USDA/ARS soil moisture meters were analyzed to study the informatics relationships between SWIR data and measured soil moisture. The geographic locations of 29 soil moisture meters provided by the USDA/ARS are in the vicinity of Tifton, Georgia. Using USGS Digital Ortho Quads (DOQ), flightlines were drawn over the 29 soil moisture meters. The SWIR sensor was installed into an aircraft. The coordinates for the flightlines were also loaded into the navigational system of the aircraft. This airborne platform was used to collect the data over these flightlines. In order to prepare the data set for analysis, standard preprocessing was performed. These standard processes included sensor calibration, spectral subsetting, and atmospheric calibration. All 60 bands of the SWIR data were collected for each line in the image data, 15 bands of which were stripped from the data set leaving 45 bands of information in the wavelength range of 906 to 1705 nanometers. All the image files were calibrated using the regression equations generated by using radiometer data collected over calibration tarps. Regions of Interest (ROI) were drawn over the image data set corresponding with the location of the soil moisture meters. Scripts written in ENVI's Interactive Data Language (IDL) were developed to extract the spectra from each of the processed hyperspectral image data over each soil moisture meter from its corresponding ROI. The informatics relationship between soil moisture and SWIR spectra was identified by using the resulting data set.
NASA Technical Reports Server (NTRS)
1999-01-01
A survey is presented of NASA-developed technologies and systems that were reaching commercial application in the course of 1999. Attention is given to the contributions of each major NASA Research Center. Representative 'spinoff' technologies include the predictive AI engine monitoring system EMPAS, the GPS-based Wide Area Augmentation System for aircraft navigation, a CMOS-Active Pixel Sensor camera-on-a-chip, a marine spectroradiometer, portable fuel cells, hyperspectral camera technology, and a rapid-prototyping process for ceramic components.
NASA Astrophysics Data System (ADS)
Klueva, Oksana; Nelson, Matthew P.; Gardner, Charles W.; Gomer, Nathaniel R.
2015-05-01
Proliferation of chemical and explosive threats as well as illicit drugs continues to be an escalating danger to civilian and military personnel. Conventional means of detecting and identifying hazardous materials often require the use of reagents and/or physical sampling, which is a time-consuming, costly and often dangerous process. Stand-off detection allows the operator to detect threat residues from a safer distance minimizing danger to people and equipment. Current fielded technologies for standoff detection of chemical and explosive threats are challenged by low area search rates, poor targeting efficiency, lack of sensitivity and specificity or use of costly and potentially unsafe equipment such as lasers. A demand exists for stand-off systems that are fast, safe, reliable and user-friendly. To address this need, ChemImage Sensor Systems™ (CISS) has developed reagent-less, non-contact, non-destructive sensors for the real-time detection of hazardous materials based on widefield shortwave infrared (SWIR) and Raman hyperspectral imaging (HSI). Hyperspectral imaging enables automated target detection displayed in the form of image making result analysis intuitive and user-friendly. Application of the CISS' SWIR-HSI and Raman sensing technologies to Homeland Security and Law Enforcement for standoff detection of homemade explosives and illicit drugs and their precursors in vehicle and personnel checkpoints is discussed. Sensing technologies include a portable, robot-mounted and standalone variants of the technology. Test data is shown that supports the use of SWIR and Raman HSI for explosive and drug screening at checkpoints as well as screening for explosives and drugs at suspected clandestine manufacturing facilities.
Hyperspectral Sensors Final Report CRADA No. TC02173.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Priest, R. E.; Sauvageau, J. E.
This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Science Applications International Corporation (SAIC), National Security Space Operations/SRBU, to develop longwave infrared (LWIR) hyperspectral imaging (HSI) sensors for airborne and potentially ground and space, platforms. LLNL has designed and developed LWIR HSI sensors since 1995. The current generation of these sensors has applications to users within the U.S. Department of Defense and the Intelligence Community. User needs are for multiple copies provided by commercial industry. To gain the most benefit from the U.S. Government’s prior investments inmore » LWIR HSI sensors developed at LLNL, transfer of technology and know-how from LLNL HSI experts to commercial industry was needed. The overarching purpose of the CRADA project was to facilitate the transfer of the necessary technology from LLNL to SAIC thereby allowing the U.S. Government to procure LWIR HSI sensors from this company.« less
Gyrocopter-Based Remote Sensing Platform
NASA Astrophysics Data System (ADS)
Weber, I.; Jenal, A.; Kneer, C.; Bongartz, J.
2015-04-01
In this paper the development of a lightweight and highly modularized airborne sensor platform for remote sensing applications utilizing a gyrocopter as a carrier platform is described. The current sensor configuration consists of a high resolution DSLR camera for VIS-RGB recordings. As a second sensor modality, a snapshot hyperspectral camera was integrated in the aircraft. Moreover a custom-developed thermal imaging system composed of a VIS-PAN camera and a LWIR-camera is used for aerial recordings in the thermal infrared range. Furthermore another custom-developed highly flexible imaging system for high resolution multispectral image acquisition with up to six spectral bands in the VIS-NIR range is presented. The performance of the overall system was tested during several flights with all sensor modalities and the precalculated demands with respect to spatial resolution and reliability were validated. The collected data sets were georeferenced, georectified, orthorectified and then stitched to mosaics.
Hyperspectral data analysis procedures with reduced sensitivity to noise
NASA Technical Reports Server (NTRS)
Landgrebe, David A.
1993-01-01
Multispectral sensor systems have become steadily improved over the years in their ability to deliver increased spectral detail. With the advent of hyperspectral sensors, including imaging spectrometers, this technology is in the process of taking a large leap forward, thus providing the possibility of enabling delivery of much more detailed information. However, this direction of development has drawn even more attention to the matter of noise and other deleterious effects in the data, because reducing the fundamental limitations of spectral detail on information collection raises the limitations presented by noise to even greater importance. Much current effort in remote sensing research is thus being devoted to adjusting the data to mitigate the effects of noise and other deleterious effects. A parallel approach to the problem is to look for analysis approaches and procedures which have reduced sensitivity to such effects. We discuss some of the fundamental principles which define analysis algorithm characteristics providing such reduced sensitivity. One such analysis procedure including an example analysis of a data set is described, illustrating this effect.
The Hyperspectral Imager for the Coastal Ocean (HICO): Sensor and Data Processing Overview
2010-01-20
backscattering coefficients, and others. Several of these software modules will be developed within the Automated Processing System (APS), a data... Automated Processing System (APS) NRL developed APS, which processes satellite data into ocean color data products. APS is a collection of methods...used for ocean color processing which provide the tools for the automated processing of satellite imagery [1]. These tools are in the process of
NASA Astrophysics Data System (ADS)
Gross, W.; Boehler, J.; Twizer, K.; Kedem, B.; Lenz, A.; Kneubuehler, M.; Wellig, P.; Oechslin, R.; Schilling, H.; Rotman, S.; Middelmann, W.
2016-10-01
Hyperspectral remote sensing data can be used for civil and military applications to robustly detect and classify target objects. High spectral resolution of hyperspectral data can compensate for the comparatively low spatial resolution, which allows for detection and classification of small targets, even below image resolution. Hyperspectral data sets are prone to considerable spectral redundancy, affecting and limiting data processing and algorithm performance. As a consequence, data reduction strategies become increasingly important, especially in view of near-real-time data analysis. The goal of this paper is to analyze different strategies for hyperspectral band selection algorithms and their effect on subpixel classification for different target and background materials. Airborne hyperspectral data is used in combination with linear target simulation procedures to create a representative amount of target-to-background ratios for evaluation of detection limits. Data from two different airborne hyperspectral sensors, AISA Eagle and Hawk, are used to evaluate transferability of band selection when using different sensors. The same target objects were recorded to compare the calculated detection limits. To determine subpixel classification results, pure pixels from the target materials are extracted and used to simulate mixed pixels with selected background materials. Target signatures are linearly combined with different background materials in varying ratios. The commonly used classification algorithms Adaptive Coherence Estimator (ACE) is used to compare the detection limit for the original data with several band selection and data reduction strategies. The evaluation of the classification results is done by assuming a fixed false alarm ratio and calculating the mean target-to-background ratio of correctly detected pixels. The results allow drawing conclusions about specific band combinations for certain target and background combinations. Additionally, generally useful wavelength ranges are determined and the optimal amount of principal components is analyzed.
Novel snapshot hyperspectral imager for fluorescence imaging
NASA Astrophysics Data System (ADS)
Chandler, Lynn; Chandler, Andrea; Periasamy, Ammasi
2018-02-01
Hyperspectral imaging has emerged as a new technique for the identification and classification of biological tissue1. Benefitting recent developments in sensor technology, the new class of hyperspectral imagers can capture entire hypercubes with single shot operation and it shows great potential for real-time imaging in biomedical sciences. This paper explores the use of a SnapShot imager in fluorescence imaging via microscope for the very first time. Utilizing the latest imaging sensor, the Snapshot imager is both compact and attachable via C-mount to any commercially available light microscope. Using this setup, fluorescence hypercubes of several cells were generated, containing both spatial and spectral information. The fluorescence images were acquired with one shot operation for all the emission range from visible to near infrared (VIS-IR). The paper will present the hypercubes obtained images from example tissues (475-630nm). This study demonstrates the potential of application in cell biology or biomedical applications for real time monitoring.
Accurate reconstruction of hyperspectral images from compressive sensing measurements
NASA Astrophysics Data System (ADS)
Greer, John B.; Flake, J. C.
2013-05-01
The emerging field of Compressive Sensing (CS) provides a new way to capture data by shifting the heaviest burden of data collection from the sensor to the computer on the user-end. This new means of sensing requires fewer measurements for a given amount of information than traditional sensors. We investigate the efficacy of CS for capturing HyperSpectral Imagery (HSI) remotely. We also introduce a new family of algorithms for constructing HSI from CS measurements with Split Bregman Iteration [Goldstein and Osher,2009]. These algorithms combine spatial Total Variation (TV) with smoothing in the spectral dimension. We examine models for three different CS sensors: the Coded Aperture Snapshot Spectral Imager-Single Disperser (CASSI-SD) [Wagadarikar et al.,2008] and Dual Disperser (CASSI-DD) [Gehm et al.,2007] cameras, and a hypothetical random sensing model closer to CS theory, but not necessarily implementable with existing technology. We simulate the capture of remotely sensed images by applying the sensor forward models to well-known HSI scenes - an AVIRIS image of Cuprite, Nevada and the HYMAP Urban image. To measure accuracy of the CS models, we compare the scenes constructed with our new algorithm to the original AVIRIS and HYMAP cubes. The results demonstrate the possibility of accurately sensing HSI remotely with significantly fewer measurements than standard hyperspectral cameras.
The International Space Station (ISS) is a "global observation and diagnosis station” that offers a unique vantage for observing the Earth's coastal ecosystems. From its position in low-Earth orbit, the station’s optical sensors provide images which help us under...
Hyperspectral remote sensing for early detection of invasive pests
Jennifer Pontius; Mary Martin; Lucie Plourde; Richard Hallett
2008-01-01
Use of hyperspectral technologies to assess vegetation stress has been well-documented over the past several decades. However, taking these technologies from research to management applications has proven challenging. A multi-agency effort was conducted in 2006 to examine the capability of a commercially available sensor (SpecTIR VNIR) to map ash decline due to the...
Band registration of tuneable frame format hyperspectral UAV imagers in complex scenes
NASA Astrophysics Data System (ADS)
Honkavaara, Eija; Rosnell, Tomi; Oliveira, Raquel; Tommaselli, Antonio
2017-12-01
A recent revolution in miniaturised sensor technology has provided markets with novel hyperspectral imagers operating in the frame format principle. In the case of unmanned aerial vehicle (UAV) based remote sensing, the frame format technology is highly attractive in comparison to the commonly utilised pushbroom scanning technology, because it offers better stability and the possibility to capture stereoscopic data sets, bringing an opportunity for 3D hyperspectral object reconstruction. Tuneable filters are one of the approaches for capturing multi- or hyperspectral frame images. The individual bands are not aligned when operating a sensor based on tuneable filters from a mobile platform, such as UAV, because the full spectrum recording is carried out in the time-sequential principle. The objective of this investigation was to study the aspects of band registration of an imager based on tuneable filters and to develop a rigorous and efficient approach for band registration in complex 3D scenes, such as forests. The method first determines the orientations of selected reference bands and reconstructs the 3D scene using structure-from-motion and dense image matching technologies. The bands, without orientation, are then matched to the oriented bands accounting the 3D scene to provide exterior orientations, and afterwards, hyperspectral orthomosaics, or hyperspectral point clouds, are calculated. The uncertainty aspects of the novel approach were studied. An empirical assessment was carried out in a forested environment using hyperspectral images captured with a hyperspectral 2D frame format camera, based on a tuneable Fabry-Pérot interferometer (FPI) on board a multicopter and supported by a high spatial resolution consumer colour camera. A theoretical assessment showed that the method was capable of providing band registration accuracy better than 0.5-pixel size. The empirical assessment proved the performance and showed that, with the novel method, most parts of the band misalignments were less than the pixel size. Furthermore, it was shown that the performance of the band alignment was dependent on the spatial distance from the reference band.
A new hyperspectral image compression paradigm based on fusion
NASA Astrophysics Data System (ADS)
Guerra, Raúl; Melián, José; López, Sebastián.; Sarmiento, Roberto
2016-10-01
The on-board compression of remote sensed hyperspectral images is an important task nowadays. One of the main difficulties is that the compression of these images must be performed in the satellite which carries the hyperspectral sensor. Hence, this process must be performed by space qualified hardware, having area, power and speed limitations. Moreover, it is important to achieve high compression ratios without compromising the quality of the decompress image. In this manuscript we proposed a new methodology for compressing hyperspectral images based on hyperspectral image fusion concepts. The proposed compression process has two independent steps. The first one is to spatially degrade the remote sensed hyperspectral image to obtain a low resolution hyperspectral image. The second step is to spectrally degrade the remote sensed hyperspectral image to obtain a high resolution multispectral image. These two degraded images are then send to the earth surface, where they must be fused using a fusion algorithm for hyperspectral and multispectral image, in order to recover the remote sensed hyperspectral image. The main advantage of the proposed methodology for compressing remote sensed hyperspectral images is that the compression process, which must be performed on-board, becomes very simple, being the fusion process used to reconstruct image the more complex one. An extra advantage is that the compression ratio can be fixed in advanced. Many simulations have been performed using different fusion algorithms and different methodologies for degrading the hyperspectral image. The results obtained in the simulations performed corroborate the benefits of the proposed methodology.
NASA Astrophysics Data System (ADS)
Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.
2012-05-01
Naturally occurring Aspergillus flavus strains can be either toxigenic or atoxigenic, indicating their ability to produce aflatoxin or not, under specific conditions. Corn contaminated with toxigenic strains of A. flavus can result in great losses to the agricultural industry and pose threats to public health. Past research showed that fluorescence hyperspectral imaging could be a potential tool for rapid and non-invasive detection of aflatoxin contaminated corn. The objective of the current study was to assess, with the use of a hyperspectral sensor, the difference in fluorescence emission between corn kernels inoculated with toxigenic and atoxigenic inoculums of A. flavus. Corn ears were inoculated with AF13, a toxigenic strain of A. flavus, and AF38, an atoxigenic strain of A. flavus, at dough stage of development and harvested 8 weeks after inoculation. After harvest, single corn kernels were divided into three groups prior to imaging: control, adjacent, and glowing. Both sides of the kernel, germplasm and endosperm, were imaged separately using a fluorescence hyperspectral imaging system. It was found that the classification accuracies of the three manually designated groups were not promising. However, the separation of corn kernels based on different fungal inoculums yielded better results. The best result was achieved with the germplasm side of the corn kernels. Results are expected to enhance the potential of fluorescence hyperspectral imaging for the detection of aflatoxin contaminated corn.
Airborne Hyperspectral Imaging of Seagrass and Coral Reef
NASA Astrophysics Data System (ADS)
Merrill, J.; Pan, Z.; Mewes, T.; Herwitz, S.
2013-12-01
This talk presents the process of project preparation, airborne data collection, data pre-processing and comparative analysis of a series of airborne hyperspectral projects focused on the mapping of seagrass and coral reef communities in the Florida Keys. As part of a series of large collaborative projects funded by the NASA ROSES program and the Florida Fish and Wildlife Conservation Commission and administered by the NASA UAV Collaborative, a series of airborne hyperspectral datasets were collected over six sites in the Florida Keys in May 2012, October 2012 and May 2013 by Galileo Group, Inc. using a manned Cessna 172 and NASA's SIERRA Unmanned Aerial Vehicle. Precise solar and tidal data were used to calculate airborne collection parameters and develop flight plans designed to optimize data quality. Two independent Visible and Near-Infrared (VNIR) hyperspectral imaging systems covering 400-100nm were used to collect imagery over six Areas of Interest (AOIs). Multiple collections were performed over all sites across strict solar windows in the mornings and afternoons. Independently developed pre-processing algorithms were employed to radiometrically correct, synchronize and georectify individual flight lines which were then combined into color balanced mosaics for each Area of Interest. The use of two different hyperspectral sensor as well as environmental variations between each collection allow for the comparative analysis of data quality as well as the iterative refinement of flight planning and collection parameters.
On the Challenge of Observing Pelagic Sargassum in Coastal Oceans: A Multi-sensor Assessment
NASA Astrophysics Data System (ADS)
Hu, C.; Feng, L.; Hardy, R.; Hochberg, E. J.
2016-02-01
Remote detection of pelagic Sargassum is often hindered by its spectral similarity to other floating materials and by the inadequate spatial resolution. Using measurements from multi-spectral satellite sensors (Moderate Resolution Imaging Spectroradiometer or MODIS), Landsat, WorldView-2 (or WV-2) as well as hyperspectral sensors (Hyperspectral Imager for the Coastal Ocean or HICO, Airborne Visible-InfraRed Imaging Spectrometer or AVIRIS) and airborne digital photos, we analyze and compare their ability (in terms of spectral and spatial resolutions) to detect Sargassum and to differentiate from other floating materials such as Trichodesmium, Syringodium, Ulva, garbage, and emulsified oil. Field measurements suggest that Sargassum has a distinctive reflectance curvature around 630 nm due to its chlorophyll c pigments, which provides a unique spectral signature when combined with the reflectance ratio between brown ( 650 nm) and green ( 555 nm) wavelengths. For a 10-nm resolution sensor on the hyperspectral HyspIRI mission currently being planned by NASA, a stepwise rule to examine several indexes established from 6 bands (centered at 555, 605, 625, 645, 685, 755 nm) is shown to be effective to unambiguously differentiate Sargassum from all other floating materials Numerical simulations using spectral endmembers and noise in the satellite-derived reflectance suggest that spectral discrimination is degraded when a pixel is mixed between Sargassum and water. A minimum of 20-30% Sargassum coverage within a pixel is required to retain such ability, while the partial coverage can be as low as 1-2% when detecting floating materials without spectral discrimination. With its expected signal-to-noise ratios (SNRs 200:1), the hyperspectral HyspIRI mission may provide a compromise between spatial resolution and spatial coverage to improve our capacity to detect, discriminate, and quantify Sargassum.
Thenkabail, Prasad S.; Lyon, John G.; Huete, Alfredo; Edited by Thenkabail, Prasad S.; Lyon, John G.; Huete, Alfredo
2011-01-01
The focus of this chapter was to summarize the advances made over last 40+ years, as reported in various chapters of this book, in understanding, modeling, and mapping terrestrial vegetation using hyperspectral remote sensing (or imaging spectroscopy) using sensors that are ground-based, truck-mounted, airborne, and spaceborne. As we have seen in various chapters of this book and synthesized in this chapter, the advances made include: (a) significantly improved characterization and modeling of a wide array of biophysical and biochemical properties of vegetation, (b) ability to discriminate plant species and vegetation types with high degree of accuracies (c) reducing uncertainties in determining net primary productivity or carbon assessments from terrestrial vegetation, (d) improved crop productivity and water productivity models, (b), (e) ability to access stress resulting from causes such as management practices, pests and disease, water deficit or excess; , and (f) establishing more sensitive wavebands and indices to detect plant water\\moisture content. The advent of spaceborne hyperspectral sensors (e.g., NASA’s Hyperion, ESA’s PROBA, and upcoming NASA’s HyspIRI) and numerous methods and techniques espoused in this book to overcome Hughes phenomenon or data redundancy when handling large volumes of hyperspectral data have generated tremendous interest in advancing our hyperspectral applications knowledge base over larger spatial extent such as region, nation, continent, and globe.
Airborne net-centric multi-INT sensor control, display, fusion, and exploitation systems
NASA Astrophysics Data System (ADS)
Linne von Berg, Dale C.; Lee, John N.; Kruer, Melvin R.; Duncan, Michael D.; Olchowski, Fred M.; Allman, Eric; Howard, Grant
2004-08-01
The NRL Optical Sciences Division has initiated a multi-year effort to develop and demonstrate an airborne net-centric suite of multi-intelligence (multi-INT) sensors and exploitation systems for real-time target detection and targeting product dissemination. The goal of this Net-centric Multi-Intelligence Fusion Targeting Initiative (NCMIFTI) is to develop an airborne real-time intelligence gathering and targeting system that can be used to detect concealed, camouflaged, and mobile targets. The multi-INT sensor suite will include high-resolution visible/infrared (EO/IR) dual-band cameras, hyperspectral imaging (HSI) sensors in the visible-to-near infrared, short-wave and long-wave infrared (VNIR/SWIR/LWIR) bands, Synthetic Aperture Radar (SAR), electronics intelligence sensors (ELINT), and off-board networked sensors. Other sensors are also being considered for inclusion in the suite to address unique target detection needs. Integrating a suite of multi-INT sensors on a single platform should optimize real-time fusion of the on-board sensor streams, thereby improving the detection probability and reducing the false alarms that occur in reconnaissance systems that use single-sensor types on separate platforms, or that use independent target detection algorithms on multiple sensors. In addition to the integration and fusion of the multi-INT sensors, the effort is establishing an open-systems net-centric architecture that will provide a modular "plug and play" capability for additional sensors and system components and provide distributed connectivity to multiple sites for remote system control and exploitation.
NASA Astrophysics Data System (ADS)
Brachmann, Johannes F. S.; Baumgartner, Andreas; Lenhard, Karim
2016-10-01
The Calibration Home Base (CHB) at the Remote Sensing Technology Institute of the German Aerospace Center (DLR-IMF) is an optical laboratory designed for the calibration of imaging spectrometers for the VNIR/SWIR wavelength range. Radiometric, spectral and geometric characterization is realized in the CHB in a precise and highly automated fashion. This allows performing a wide range of time consuming measurements in an efficient way. The implementation of ISO 9001 standards ensures a traceable quality of results. DLR-IMF will support the calibration and characterization campaign of the future German spaceborne hyperspectral imager EnMAP. In the context of this activity, a procedure for the correction of imaging artifacts, such as due to stray light, is currently being developed by DLR-IMF. Goal is the correction of in-band stray light as well as ghost images down to a level of a few digital numbers in the whole wavelength range 420-2450 nm. DLR-IMF owns a Norsk Elektro Optikks HySpex airborne imaging spectrometer system that has been thoroughly characterized. This system will be used to test stray light calibration procedures for EnMAP. Hyperspectral snapshot sensors offer the possibility to simultaneously acquire hyperspectral data in two dimensions. Recently, these rather new spectrometers have arisen much interest in the remote sensing community. Different designs are currently used for local area observation such as by use of small unmanned aerial vehicles (sUAV). In this context the CHB's measurement capabilities are currently extended such that a standard measurement procedure for these new sensors will be implemented.
Hyperspectral analysis of columbia spotted frog habitat
Shive, J.P.; Pilliod, D.S.; Peterson, C.R.
2010-01-01
Wildlife managers increasingly are using remotely sensed imagery to improve habitat delineations and sampling strategies. Advances in remote sensing technology, such as hyperspectral imagery, provide more information than previously was available with multispectral sensors. We evaluated accuracy of high-resolution hyperspectral image classifications to identify wetlands and wetland habitat features important for Columbia spotted frogs (Rana luteiventris) and compared the results to multispectral image classification and United States Geological Survey topographic maps. The study area spanned 3 lake basins in the Salmon River Mountains, Idaho, USA. Hyperspectral data were collected with an airborne sensor on 30 June 2002 and on 8 July 2006. A 12-year comprehensive ground survey of the study area for Columbia spotted frog reproduction served as validation for image classifications. Hyperspectral image classification accuracy of wetlands was high, with a producer's accuracy of 96 (44 wetlands) correctly classified with the 2002 data and 89 (41 wetlands) correctly classified with the 2006 data. We applied habitat-based rules to delineate breeding habitat from other wetlands, and successfully predicted 74 (14 wetlands) of known breeding wetlands for the Columbia spotted frog. Emergent sedge microhabitat classification showed promise for directly predicting Columbia spotted frog egg mass locations within a wetland by correctly identifying 72 (23 of 32) of known locations. Our study indicates hyperspectral imagery can be an effective tool for mapping spotted frog breeding habitat in the selected mountain basins. We conclude that this technique has potential for improving site selection for inventory and monitoring programs conducted across similar wetland habitat and can be a useful tool for delineating wildlife habitats. ?? 2010 The Wildlife Society.
NASA Astrophysics Data System (ADS)
Rossi, Alessandro; Acito, Nicola; Diani, Marco; Corsini, Giovanni; De Ceglie, Sergio Ugo; Riccobono, Aldo; Chiarantini, Leandro
2014-10-01
Airborne hyperspectral imagery is valuable for military and civilian applications, such as target identification, detection of anomalies and changes within multiple acquisitions. In target detection (TD) applications, the performance assessment of different algorithms is an important and critical issue. In this context, the small number of public available hyperspectral data motivated us to perform an extensive measurement campaign including various operating scenarios. The campaign was organized by CISAM in cooperation with University of Pisa, Selex ES and CSSN-ITE, and it was conducted in Viareggio, Italy in May, 2013. The Selex ES airborne hyperspectral sensor SIM.GA was mounted on board of an airplane to collect images over different sites in the morning and afternoon of two subsequent days. This paper describes the hyperspectral data collection of the trial. Four different sites were set up, representing a complex urban scenario, two parking lots and a rural area. Targets with dimensions comparable to the sensor ground resolution were deployed in the sites to reproduce different operating situations. An extensive ground truth documentation completes the data collection. Experiments to test anomalous change detection techniques were set up changing the position of the deployed targets. Search and rescue scenarios were simulated to evaluate the performance of anomaly detection algorithms. Moreover, the reflectance signatures of the targets were measured on the ground to perform spectral matching in varying atmospheric and illumination conditions. The paper presents some preliminary results that show the effectiveness of hyperspectral data exploitation for the object detection tasks of interest in this work.
A low cost thermal infrared hyperspectral imager for small satellites
NASA Astrophysics Data System (ADS)
Crites, S. T.; Lucey, P. G.; Wright, R.; Garbeil, H.; Horton, K. A.
2011-06-01
The traditional model for space-based earth observations involves long mission times, high cost, and long development time. Because of the significant time and monetary investment required, riskier instrument development missions or those with very specific scientific goals are unlikely to successfully obtain funding. However, a niche for earth observations exploiting new technologies in focused, short lifetime missions is opening with the growth of the small satellite market and launch opportunities for these satellites. These low-cost, short-lived missions provide an experimental platform for testing new sensor technologies that may transition to larger, more long-lived platforms. The low costs and short lifetimes also increase acceptable risk to sensors, enabling large decreases in cost using commercial off the shelf (COTS) parts and allowing early-career scientists and engineers to gain experience with these projects. We are building a low-cost long-wave infrared spectral sensor, funded by the NASA Experimental Project to Stimulate Competitive Research program (EPSCOR), to demonstrate the ways in which a university's scientific and instrument development programs can fit into this niche. The sensor is a low-mass, power efficient thermal hyperspectral imager with electronics contained in a pressure vessel to enable the use of COTS electronics, and will be compatible with small satellite platforms. The sensor, called Thermal Hyperspectral Imager (THI), is based on a Sagnac interferometer and uses an uncooled 320x256 microbolometer array. The sensor will collect calibrated radiance data at long-wave infrared (LWIR, 8-14 microns) wavelengths in 230-meter pixels with 20 wavenumber spectral resolution from a 400-km orbit.
2008-09-04
mospheric correction. volume 3756, pages 348–353. SPIE, 1999. Daniel Birkenheuer and Seth Gutman. A Comparison of GOES Moisture-Derived Product and GPS...pages 417–428. SPIE, 2001. E. J. Ientilucci and S. D. Brown. Advances in wide-area hyperspectral image sim- ulation. In W. R. Watkins , D. Clement
NASA Technical Reports Server (NTRS)
Blonski, Slawomir; Glasser, Gerald; Russell, Jeffrey; Ryan, Robert; Terrie, Greg; Zanoni, Vicki
2003-01-01
Spectral band synthesis is a key step in the process of creating a simulated multispectral image from hyperspectral data. In this step, narrow hyperspectral bands are combined into broader multispectral bands. Such an approach has been used quite often, but to the best of our knowledge accuracy of the band synthesis simulations has not been evaluated thus far. Therefore, the main goal of this paper is to provide validation of the spectral band synthesis algorithm used in the ART software. The next section contains a description of the algorithm and an example of its application. Using spectral responses of AVIRIS, Hyperion, ALI, and ETM+, the following section shows how the synthesized spectral bands compare with actual bands, and it presents an evaluation of the simulation accuracy based on results of MODTRAN modeling. In the final sections of the paper, simulated images are compared with data acquired by actual satellite sensors. First, a Landsat 7 ETM+ image is simulated using an AVIRIS hyperspectral data cube. Then, two datasets collected with the Hyperion instrument from the EO-1 satellite are used to simulate multispectral images from the ALI and ETM+ sensors.
PET and PVC separation with hyperspectral imagery.
Moroni, Monica; Mei, Alessandro; Leonardi, Alessandra; Lupo, Emanuela; Marca, Floriana La
2015-01-20
Traditional plants for plastic separation in homogeneous products employ material physical properties (for instance density). Due to the small intervals of variability of different polymer properties, the output quality may not be adequate. Sensing technologies based on hyperspectral imaging have been introduced in order to classify materials and to increase the quality of recycled products, which have to comply with specific standards determined by industrial applications. This paper presents the results of the characterization of two different plastic polymers--polyethylene terephthalate (PET) and polyvinyl chloride (PVC)--in different phases of their life cycle (primary raw materials, urban and urban-assimilated waste and secondary raw materials) to show the contribution of hyperspectral sensors in the field of material recycling. This is accomplished via near-infrared (900-1700 nm) reflectance spectra extracted from hyperspectral images acquired with a two-linear-spectrometer apparatus. Results have shown that a rapid and reliable identification of PET and PVC can be achieved by using a simple two near-infrared wavelength operator coupled to an analysis of reflectance spectra. This resulted in 100% classification accuracy. A sensor based on this identification method appears suitable and inexpensive to build and provides the necessary speed and performance required by the recycling industry.
PET and PVC Separation with Hyperspectral Imagery
Moroni, Monica; Mei, Alessandro; Leonardi, Alessandra; Lupo, Emanuela; La Marca, Floriana
2015-01-01
Traditional plants for plastic separation in homogeneous products employ material physical properties (for instance density). Due to the small intervals of variability of different polymer properties, the output quality may not be adequate. Sensing technologies based on hyperspectral imaging have been introduced in order to classify materials and to increase the quality of recycled products, which have to comply with specific standards determined by industrial applications. This paper presents the results of the characterization of two different plastic polymers—polyethylene terephthalate (PET) and polyvinyl chloride (PVC)—in different phases of their life cycle (primary raw materials, urban and urban-assimilated waste and secondary raw materials) to show the contribution of hyperspectral sensors in the field of material recycling. This is accomplished via near-infrared (900–1700 nm) reflectance spectra extracted from hyperspectral images acquired with a two-linear-spectrometer apparatus. Results have shown that a rapid and reliable identification of PET and PVC can be achieved by using a simple two near-infrared wavelength operator coupled to an analysis of reflectance spectra. This resulted in 100% classification accuracy. A sensor based on this identification method appears suitable and inexpensive to build and provides the necessary speed and performance required by the recycling industry. PMID:25609050
Great Lakes Hyperspectral Water Quality Instrument Suite for Airborne Monitoring of Algal Blooms
NASA Technical Reports Server (NTRS)
Lekki, John; Leshkevich, George; Nguyen, Quang-Viet; Flatico, Joseph; Prokop, Norman; Kojima, Jun; Anderson, Robert; Demers, James; Krasowski, Michael
2007-01-01
NASA Glenn Research Center and NOAA Great Lakes Environmental Research Lab are collaborating to utilize an airborne hyperspectral imaging sensor suite to monitor Harmful Algal Blooms (HABs) in the western basin of Lake Erie. The HABs are very dynamic events as they form, spread and then disappear within a 4 to 8 week time period in late summer. They are a concern for human health, fish and wildlife because they can contain blue green toxic algae. Because of this toxicity there is a need for the blooms to be continually monitored. This situation is well suited for aircraft based monitoring because the blooms are a very dynamic event and they can spread over a large area. High resolution satellite data is not suitable by itself because it will not give the temporal resolution due to the infrequent overpasses of the quickly changing blooms. A custom designed hyperspectral imager and a point spectrometer mounted on aT 34 aircraft have been used to obtain data on an algal bloom that formed in the western basin of Lake Erie during September 2006. The sensor suite and operations will be described and preliminary hyperspectral data of this event will be presented
Spectral-Spatial Classification of Hyperspectral Images Using Hierarchical Optimization
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Tilton, James C.
2011-01-01
A new spectral-spatial method for hyperspectral data classification is proposed. For a given hyperspectral image, probabilistic pixelwise classification is first applied. Then, hierarchical step-wise optimization algorithm is performed, by iteratively merging neighboring regions with the smallest Dissimilarity Criterion (DC) and recomputing class labels for new regions. The DC is computed by comparing region mean vectors, class labels and a number of pixels in the two regions under consideration. The algorithm is converged when all the pixels get involved in the region merging procedure. Experimental results are presented on two remote sensing hyperspectral images acquired by the AVIRIS and ROSIS sensors. The proposed approach improves classification accuracies and provides maps with more homogeneous regions, when compared to previously proposed classification techniques.
Noise properties of a corner-cube Michelson interferometer LWIR hyperspectral imager
NASA Astrophysics Data System (ADS)
Bergstrom, D.; Renhorn, I.; Svensson, T.; Persson, R.; Hallberg, T.; Lindell, R.; Boreman, G.
2010-04-01
Interferometric hyperspectral imagers using infrared focal plane array (FPA) sensors have received increasing interest within the field of security and defence. Setups are commonly based upon either the Sagnac or the Michelson configuration, where the former is usually preferred due to its mechanical robustness. However, the Michelson configuration shows advantages in larger FOV due to better vignetting performance and improved signal-to-noise ratio and cost reduction due to relaxation of beamsplitter specifications. Recently, a laboratory prototype of a more robust and easy-to-align corner-cube Michelson hyperspectral imager has been demonstrated. The prototype is based upon an uncooled bolometric FPA in the LWIR (8-14 μm) spectral band and in this paper the noise properties of this hyperspectral imager are discussed.
The Hyperspectral Satellite and Program EnMAP (Environmental Monitoring and Analysis Program)
NASA Astrophysics Data System (ADS)
Stuffler, T.; Kaufmann, C.; Hofer, S.; Förster, K. P.; Schreier, G.; Mueller, A.; Penné, B.
2008-08-01
In the upcoming generation of satellite sensors, hyperspectral instruments will play a significant role and are considered world-wide within different future planning. Our team has successfully finished the Phase B study for the advanced hyperspectral mission EnMAP. Routine operations shall start in 2012. The scientific lead of the mission is at the GFZ and the industrial prime ship at Kayser-Threde. The performance of the hyperspectral instrument allows for a detailed monitoring, characterisation and parameter extraction of rock/soil targets, vegetation, and inland and coastal waters on a global scale supporting a wide variety of applications in agriculture, forestry, water management and geology. The EnMAP instrument provides over 240 continuous spectral bands in the wavelength range between 420 - 2450 nm with a ground resolution of 30 m x 30 m. Thus, the broad science and application community can draw from an extensive and highly resolved pool of information supporting the modelling and optimisation process on their results. The operation of an airborne system (ARES) as an element in the HGF hyperspectral network and the ongoing evolution concerning data handling and extraction procedures, will support the later inclusion process of EnMAP into the growing scientist and user communities. As a scientific pathfinder mission a broad international science community has raised larger interest in the hyperspectral data sets as well as value adding companies investigating the commercial potential of EnMAP. The presented paper describes the instrument and mission highlighting the data application and the actual status in the EnMAP planning phase.
Hyperspectral image reconstruction using RGB color for foodborne pathogen detection on agar plates
NASA Astrophysics Data System (ADS)
Yoon, Seung-Chul; Shin, Tae-Sung; Park, Bosoon; Lawrence, Kurt C.; Heitschmidt, Gerald W.
2014-03-01
This paper reports the latest development of a color vision technique for detecting colonies of foodborne pathogens grown on agar plates with a hyperspectral image classification model that was developed using full hyperspectral data. The hyperspectral classification model depended on reflectance spectra measured in the visible and near-infrared spectral range from 400 and 1,000 nm (473 narrow spectral bands). Multivariate regression methods were used to estimate and predict hyperspectral data from RGB color values. The six representative non-O157 Shiga-toxin producing Eschetichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145) were grown on Rainbow agar plates. A line-scan pushbroom hyperspectral image sensor was used to scan 36 agar plates grown with pure STEC colonies at each plate. The 36 hyperspectral images of the agar plates were divided in half to create training and test sets. The mean Rsquared value for hyperspectral image estimation was about 0.98 in the spectral range between 400 and 700 nm for linear, quadratic and cubic polynomial regression models and the detection accuracy of the hyperspectral image classification model with the principal component analysis and k-nearest neighbors for the test set was up to 92% (99% with the original hyperspectral images). Thus, the results of the study suggested that color-based detection may be viable as a multispectral imaging solution without much loss of prediction accuracy compared to hyperspectral imaging.
Pesticide residue quantification analysis by hyperspectral imaging sensors
NASA Astrophysics Data System (ADS)
Liao, Yuan-Hsun; Lo, Wei-Sheng; Guo, Horng-Yuh; Kao, Ching-Hua; Chou, Tau-Meu; Chen, Junne-Jih; Wen, Chia-Hsien; Lin, Chinsu; Chen, Hsian-Min; Ouyang, Yen-Chieh; Wu, Chao-Cheng; Chen, Shih-Yu; Chang, Chein-I.
2015-05-01
Pesticide residue detection in agriculture crops is a challenging issue and is even more difficult to quantify pesticide residue resident in agriculture produces and fruits. This paper conducts a series of base-line experiments which are particularly designed for three specific pesticides commonly used in Taiwan. The materials used for experiments are single leaves of vegetable produces which are being contaminated by various amount of concentration of pesticides. Two sensors are used to collected data. One is Fourier Transform Infrared (FTIR) spectroscopy. The other is a hyperspectral sensor, called Geophysical and Environmental Research (GER) 2600 spectroradiometer which is a batteryoperated field portable spectroradiometer with full real-time data acquisition from 350 nm to 2500 nm. In order to quantify data with different levels of pesticide residue concentration, several measures for spectral discrimination are developed. Mores specifically, new measures for calculating relative power between two sensors are particularly designed to be able to evaluate effectiveness of each of sensors in quantifying the used pesticide residues. The experimental results show that the GER is a better sensor than FTIR in the sense of pesticide residue quantification.
Lausch, Angela; Pause, Marion; Merbach, Ines; Zacharias, Steffen; Doktor, Daniel; Volk, Martin; Seppelt, Ralf
2013-02-01
Remote sensing is an important tool for studying patterns in surface processes on different spatiotemporal scales. However, differences in the spatiospectral and temporal resolution of remote sensing data as well as sensor-specific surveying characteristics very often hinder comparative analyses and effective up- and downscaling analyses. This paper presents a new methodical framework for combining hyperspectral remote sensing data on different spatial and temporal scales. We demonstrate the potential of using the "One Sensor at Different Scales" (OSADIS) approach for the laboratory (plot), field (local), and landscape (regional) scales. By implementing the OSADIS approach, we are able (1) to develop suitable stress-controlled vegetation indices for selected variables such as the Leaf Area Index (LAI), chlorophyll, photosynthesis, water content, nutrient content, etc. over a whole vegetation period. Focused laboratory monitoring can help to document additive and counteractive factors and processes of the vegetation and to correctly interpret their spectral response; (2) to transfer the models obtained to the landscape level; (3) to record imaging hyperspectral information on different spatial scales, achieving a true comparison of the structure and process results; (4) to minimize existing errors from geometrical, spectral, and temporal effects due to sensor- and time-specific differences; and (5) to carry out a realistic top- and downscaling by determining scale-dependent correction factors and transfer functions. The first results of OSADIS experiments are provided by controlled whole vegetation experiments on barley under water stress on the plot scale to model LAI using the vegetation indices Normalized Difference Vegetation Index (NDVI) and green NDVI (GNDVI). The regression model ascertained from imaging hyperspectral AISA-EAGLE/HAWK (DUAL) data was used to model LAI. This was done by using the vegetation index GNDVI with an R (2) of 0.83, which was transferred to airborne hyperspectral data on the local and regional scales. For this purpose, hyperspectral imagery was collected at three altitudes over a land cover gradient of 25 km within a timeframe of a few minutes, yielding a spatial resolution from 1 to 3 m. For all recorded spatial scales, both the LAI and the NDVI were determined. The spatial properties of LAI and NDVI of all recorded hyperspectral images were compared using semivariance metrics derived from the variogram. The first results show spatial differences in the heterogeneity of LAI and NDVI from 1 to 3 m with the recorded hyperspectral data. That means that differently recorded data on different scales might not sufficiently maintain the spatial properties of high spatial resolution hyperspectral images.
Spectral Band Characterization for Hyperspectral Monitoring of Water Quality
NASA Technical Reports Server (NTRS)
Vermillion, Stephanie C.; Raqueno, Rolando; Simmons, Rulon
2001-01-01
A method for selecting the set of spectral characteristics that provides the smallest increase in prediction error is of interest to those using hyperspectral imaging (HSI) to monitor water quality. The spectral characteristics of interest to these applications are spectral bandwidth and location. Three water quality constituents of interest that are detectable via remote sensing are chlorophyll (CHL), total suspended solids (TSS), and colored dissolved organic matter (CDOM). Hyperspectral data provides a rich source of information regarding the content and composition of these materials, but often provides more data than an analyst can manage. This study addresses the spectral characteristics need for water quality monitoring for two reasons. First, determination of the greatest contribution of these spectral characteristics would greatly improve computational ease and efficiency. Second, understanding the spectral capabilities of different spectral resolutions and specific regions is an essential part of future system development and characterization. As new systems are developed and tested, water quality managers will be asked to determine sensor specifications that provide the most accurate and efficient water quality measurements. We address these issues using data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and a set of models to predict constituent concentrations.
SENSOR: a tool for the simulation of hyperspectral remote sensing systems
NASA Astrophysics Data System (ADS)
Börner, Anko; Wiest, Lorenz; Keller, Peter; Reulke, Ralf; Richter, Rolf; Schaepman, Michael; Schläpfer, Daniel
The consistent end-to-end simulation of airborne and spaceborne earth remote sensing systems is an important task, and sometimes the only way for the adaptation and optimisation of a sensor and its observation conditions, the choice and test of algorithms for data processing, error estimation and the evaluation of the capabilities of the whole sensor system. The presented software simulator SENSOR (Software Environment for the Simulation of Optical Remote sensing systems) includes a full model of the sensor hardware, the observed scene, and the atmosphere in between. The simulator consists of three parts. The first part describes the geometrical relations between scene, sun, and the remote sensing system using a ray-tracing algorithm. The second part of the simulation environment considers the radiometry. It calculates the at-sensor radiance using a pre-calculated multidimensional lookup-table taking the atmospheric influence on the radiation into account. The third part consists of an optical and an electronic sensor model for the generation of digital images. Using SENSOR for an optimisation requires the additional application of task-specific data processing algorithms. The principle of the end-to-end-simulation approach is explained, all relevant concepts of SENSOR are discussed, and first examples of its use are given. The verification of SENSOR is demonstrated. This work is closely related to the Airborne PRISM Experiment (APEX), an airborne imaging spectrometer funded by the European Space Agency.
Active Volcano Monitoring using a Space-based Hyperspectral Imager
NASA Astrophysics Data System (ADS)
Cipar, J. J.; Dunn, R.; Cooley, T.
2010-12-01
Active volcanoes occur on every continent, often in close proximity to heavily populated areas. While ground-based studies are essential for scientific research and disaster mitigation, remote sensing from space can provide rapid and continuous monitoring of active and potentially active volcanoes [Ramsey and Flynn, 2004]. In this paper, we report on hyperspectral measurements of Kilauea volcano, Hawaii. Hyperspectral images obtained by the US Air Force TacSat-3/ARTEMIS sensor [Lockwood et al, 2006] are used to obtain estimates of the surface temperatures for the volcano. ARTEMIS measures surface-reflected light in the visible, near-infrared, and short-wave infrared bands (VNIR-SWIR). The SWIR bands are known to be sensitive to thermal radiation [Green, 1996]. For example, images from the NASA Hyperion hyperspectral sensor have shown the extent of wildfires and active volcanoes [Young, 2009]. We employ the methodology described by Dennison et al, (2006) to obtain an estimate of the temperature of the active region of Kilauea. Both day and night-time images were used in the analysis. To improve the estimate, we aggregated neighboring pixels. The active rim of the lava lake is clearly discernable in the temperature image, with a measured temperature exceeding 1100o C. The temperature decreases markedly on the exterior of the summit crater. While a long-wave infrared (LWIR) sensor would be ideal for volcano monitoring, we have shown that the thermal state of an active volcano can be monitored using the SWIR channels of a reflective hyperspectral imager. References: Dennison, Philip E., Kraivut Charoensiri, Dar A. Roberts, Seth H. Peterson, and Robert O. Green (2006). Wildfire temperature and land cover modeling using hyperspectral data, Remote Sens. Environ., vol. 100, pp. 212-222. Green, R. O. (1996). Estimation of biomass fire temperature and areal extent from calibrated AVIRIS spectra, in Summaries of the 6th Annual JPL Airborne Earth Science Workshop, Pasadena, CA JPL Publ. 96-4, vol. 1, pp. 105-113. Lockwood, Ronald B., Thomas W. Cooley, Richard M. Nadile, James A. Gardner, Peter S. Armstrong, Abraham M. Payton, Thom M. Davis, Stanley D. Straight, Thomas G. Chrien, Edward L. Gussin, and David Makowski (2006). Advanced Responsive Tactically-Effective Military Imaging Spectrometer (ARTEMIS) Design, in Proceedings of the 2006 IEEE International Geoscience and Remote Sensing Symposium, 31 July-4 August 2006, Denver, Colorado. Ramsey, Michael S., and Luke P. Flynn (2004). Strategies, insights, and the recent advances in volcanic monitoring and mapping with data from NASA’s Earth Observing System, Jour. of Volcanology and Geothermal Research, vol. 135, pp. 1-11. Young, Joseph (2009). EO-1 Weekly status report for September 24-30, 2009, Earth Science Mission Operations (ESMO) Office, NASA Goddard Space Flight Center, Greenbelt, MD 20771.
Images Revealing More Than a Thousand Words
NASA Technical Reports Server (NTRS)
2003-01-01
A unique sensor developed by ProVision Technologies, a NASA Commercial Space Center housed by the Institute for Technology Development, produces hyperspectral images with cutting-edge applications in food safety, skin health, forensics, and anti-terrorism activities. While hyperspectral imaging technology continues to make advances with ProVision Technologies, it has also been transferred to the commercial sector through a spinoff company, Photon Industries, Inc.
Information-Efficient Spectral Imaging Sensor With Tdi
Rienstra, Jeffrey L.; Gentry, Stephen M.; Sweatt, William C.
2004-01-13
A programmable optical filter for use in multispectral and hyperspectral imaging employing variable gain time delay and integrate arrays. A telescope focuses an image of a scene onto at least one TDI array that is covered by a multispectral filter that passes separate bandwidths of light onto the rows in the TDI array. The variable gain feature of the TDI array allows individual rows of pixels to be attenuated individually. The attenuations are functions of the magnitudes of the positive and negative components of a spectral basis vector. The spectral basis vector is constructed so that its positive elements emphasize the presence of a target and its negative elements emphasize the presence of the constituents of the background of the imaged scene. This system provides for a very efficient determination of the presence of the target, as opposed to the very data intensive data manipulations that are required in conventional hyperspectral imaging systems.
2013-09-30
residence time (hours) Figure 4. Left side: residence time calculated for the VCR using particle tracking and a hydrodynamic model (FVCOM). Blue ...Coast Reserve (VCR’07) Multi-Sensor Campaign. Marine Geodesy 33, 53-75. Lawson, S.E., P.L. Wiberg, K.J. McGlathery, and D.C. Fugate , 2007. Wind
1993-09-23
dioxide ( TeO2 ) crystal which splits a beam of light entering the sensor into a set of two narrow band, orthogonally polarized images for each...See Figure 3) These laws hold true for Light ry V m .Li t ray , &o r air RefairRefractive lade: a, )’i i .- t 1 V Refractive inaex n’ Glass or
1998 IEEE Aerospace Conference. Proceedings.
NASA Astrophysics Data System (ADS)
The following topics were covered: science frontiers and aerospace; flight systems technologies; spacecraft attitude determination and control; space power systems; smart structures and dynamics; military avionics; electronic packaging; MEMS; hyperspectral remote sensing for GVP; space laser technology; pointing, control, tracking and stabilization technologies; payload support technologies; protection technologies; 21st century space mission management and design; aircraft flight testing; aerospace test and evaluation; small satellites and enabling technologies; systems design optimisation; advanced launch vehicles; GPS applications and technologies; antennas and radar; software and systems engineering; scalable systems; communications; target tracking applications; remote sensing; advanced sensors; and optoelectronics.
Covariance descriptor fusion for target detection
NASA Astrophysics Data System (ADS)
Cukur, Huseyin; Binol, Hamidullah; Bal, Abdullah; Yavuz, Fatih
2016-05-01
Target detection is one of the most important topics for military or civilian applications. In order to address such detection tasks, hyperspectral imaging sensors provide useful images data containing both spatial and spectral information. Target detection has various challenging scenarios for hyperspectral images. To overcome these challenges, covariance descriptor presents many advantages. Detection capability of the conventional covariance descriptor technique can be improved by fusion methods. In this paper, hyperspectral bands are clustered according to inter-bands correlation. Target detection is then realized by fusion of covariance descriptor results based on the band clusters. The proposed combination technique is denoted Covariance Descriptor Fusion (CDF). The efficiency of the CDF is evaluated by applying to hyperspectral imagery to detect man-made objects. The obtained results show that the CDF presents better performance than the conventional covariance descriptor.
A novel scene-based non-uniformity correction method for SWIR push-broom hyperspectral sensors
NASA Astrophysics Data System (ADS)
Hu, Bin-Lin; Hao, Shi-Jing; Sun, De-Xin; Liu, Yin-Nian
2017-09-01
A novel scene-based non-uniformity correction (NUC) method for short-wavelength infrared (SWIR) push-broom hyperspectral sensors is proposed and evaluated. This method relies on the assumption that for each band there will be ground objects with similar reflectance to form uniform regions when a sufficient number of scanning lines are acquired. The uniform regions are extracted automatically through a sorting algorithm, and are used to compute the corresponding NUC coefficients. SWIR hyperspectral data from airborne experiment are used to verify and evaluate the proposed method, and results show that stripes in the scenes have been well corrected without any significant information loss, and the non-uniformity is less than 0.5%. In addition, the proposed method is compared to two other regular methods, and they are evaluated based on their adaptability to the various scenes, non-uniformity, roughness and spectral fidelity. It turns out that the proposed method shows strong adaptability, high accuracy and efficiency.
Detection of gas plumes in cluttered environments using long-wave infrared hyperspectral sensors
NASA Astrophysics Data System (ADS)
Broadwater, Joshua B.; Spisz, Thomas S.; Carr, Alison K.
2008-04-01
Long-wave infrared hyperspectral sensors provide the ability to detect gas plumes at stand-off distances. A number of detection algorithms have been developed for such applications, but in situations where the gas is released in a complex background and is at air temperature, these detectors can generate a considerable amount of false alarms. To make matters more difficult, the gas tends to have non-uniform concentrations throughout the plume making it spatially similar to the false alarms. Simple post-processing using median filters can remove a number of the false alarms, but at the cost of removing a significant amount of the gas plume as well. We approach the problem using an adaptive subpixel detector and morphological processing techniques. The adaptive subpixel detection algorithm is able to detect the gas plume against the complex background. We then use morphological processing techniques to isolate the gas plume while simultaneously rejecting nearly all false alarms. Results will be demonstrated on a set of ground-based long-wave infrared hyperspectral image sequences.
NASA Astrophysics Data System (ADS)
Wright, L.; Coddington, O.; Pilewskie, P.
2016-12-01
Hyperspectral instruments are a growing class of Earth observing sensors designed to improve remote sensing capabilities beyond discrete multi-band sensors by providing tens to hundreds of continuous spectral channels. Improved spectral resolution, range and radiometric accuracy allow the collection of large amounts of spectral data, facilitating thorough characterization of both atmospheric and surface properties. These new instruments require novel approaches for processing imagery and separating surface and atmospheric signals. One approach is numerical source separation, which allows the determination of the underlying physical causes of observed signals. Improved source separation will enable hyperspectral imagery to better address key science questions relevant to climate change, including land-use changes, trends in clouds and atmospheric water vapor, and aerosol characteristics. We developed an Informed Non-negative Matrix Factorization (INMF) method for separating atmospheric and surface sources. INMF offers marked benefits over other commonly employed techniques including non-negativity, which avoids physically impossible results; and adaptability, which tailors the method to hyperspectral source separation. The INMF algorithm is adapted to separate contributions from physically distinct sources using constraints on spectral and spatial variability, and library spectra to improve the initial guess. We also explore methods to produce an initial guess of the spatial separation patterns. Using this INMF algorithm we decompose hyperspectral imagery from the NASA Hyperspectral Imager for the Coastal Ocean (HICO) with a focus on separating surface and atmospheric signal contributions. HICO's coastal ocean focus provides a dataset with a wide range of atmospheric conditions, including high and low aerosol optical thickness and cloud cover, with only minor contributions from the ocean surfaces in order to isolate the contributions of the multiple atmospheric sources.
Challenges in automatic sorting of construction and demolition waste by hyperspectral imaging
NASA Astrophysics Data System (ADS)
Hollstein, Frank; Cacho, Íñigo; Arnaiz, Sixto; Wohllebe, Markus
2016-05-01
EU-28 countries currently generate 460 Mt/year of construction and demolition waste (C&DW) and the generation rate is expected to reach around 570 Mt/year between 2025 and 2030. There is great potential for recycling C&DW materials since they are massively produced and content valuable resources. But new C&DW is more complex than existing one and there is a need for shifting from traditional recycling approaches to novel recycling solutions. One basic step to achieve this objective is an improvement in (automatic) sorting technology. Hyperspectral Imaging is a promising candidate to support the process. However, the industrial distribution of Hyperspectral Imaging in the C&DW recycling branch is currently insufficiently pronounced due to high investment costs, still insufficient robustness of optical sensor hardware in harsh ambient conditions and, because of the need of sensor fusion, not well-engineered special software methods to perform the (on line) sorting tasks. Thereby frame rates of over 300 Hz are needed for a successful sorting result. Currently the biggest challenges with regard to C&DW detection cover the need of overlapping VIS, NIR and SWIR hyperspectral images in time and space, in particular for selective recognition of contaminated particles. In the study on hand a new approach for hyperspectral imagers is presented by exploiting SWIR hyperspectral information in real time (with 300 Hz). The contribution describes both laboratory results with regard to optical detection of the most important C&DW material composites as well as a development path for an industrial implementation in automatic sorting and separation lines. The main focus is placed on the closure of the two recycling circuits "grey to grey" and "red to red" because of their outstanding potential for sustainability in conservation of construction resources.
The Effectiveness of Hydrothermal Alteration Mapping based on Hyperspectral Data in Tropical Region
NASA Astrophysics Data System (ADS)
Muhammad, R. R. D.; Saepuloh, A.
2016-09-01
Hyperspectral remote sensing could be used to characterize targets at earth's surface based on their spectra. This capability is useful for mapping and characterizing the distribution of host rocks, alteration assemblages, and minerals. Contrary to the multispectral sensors, the hyperspectral identifies targets with high spectral resolution. The Wayang Windu Geothermal field in West Java, Indonesia was selected as the study area due to the existence of surface manifestation and dense vegetation environment. Therefore, the effectiveness of hyperspectral remote sensing in tropical region was targeted as the study objective. The Spectral Angle Mapper (SAM) method was used to detect the occurrence of clay minerals spatially from Hyperion data. The SAM references of reflectance spectra were obtained from field observation at altered materials. To calculate the effectiveness of hyperspectral data, we used multispectral data from Landsat-8. The comparison method was conducted by comparing the SAM's rule images from Hyperion and Landsat-8, resulting that hyperspectral was more accurate than multispectral data. Hyperion SAM's rule images showed lower value compared to Landsat-8, the significant number derived from using Hyperion was about 24% better. This inferred that the hyperspectral remote sensing is preferable for mineral mapping even though vegetation covered study area.
Advances in miniature spectrometer and sensor development
NASA Astrophysics Data System (ADS)
Malinen, Jouko; Rissanen, Anna; Saari, Heikki; Karioja, Pentti; Karppinen, Mikko; Aalto, Timo; Tukkiniemi, Kari
2014-05-01
Miniaturization and cost reduction of spectrometer and sensor technologies has great potential to open up new applications areas and business opportunities for analytical technology in hand held, mobile and on-line applications. Advances in microfabrication have resulted in high-performance MEMS and MOEMS devices for spectrometer applications. Many other enabling technologies are useful for miniature analytical solutions, such as silicon photonics, nanoimprint lithography (NIL), system-on-chip, system-on-package techniques for integration of electronics and photonics, 3D printing, powerful embedded computing platforms, networked solutions as well as advances in chemometrics modeling. This paper will summarize recent work on spectrometer and sensor miniaturization at VTT Technical Research Centre of Finland. Fabry-Perot interferometer (FPI) tunable filter technology has been developed in two technical versions: Piezoactuated FPIs have been applied in miniature hyperspectral imaging needs in light weight UAV and nanosatellite applications, chemical imaging as well as medical applications. Microfabricated MOEMS FPIs have been developed as cost-effective sensor platforms for visible, NIR and IR applications. Further examples of sensor miniaturization will be discussed, including system-on-package sensor head for mid-IR gas analyzer, roll-to-roll printed Surface Enhanced Raman Scattering (SERS) technology as well as UV imprinted waveguide sensor for formaldehyde detection.
NASA Astrophysics Data System (ADS)
Jarvis, Jan; Haertelt, Marko; Hugger, Stefan; Butschek, Lorenz; Fuchs, Frank; Ostendorf, Ralf; Wagner, Joachim; Beyerer, Juergen
2017-04-01
In this work we present data analysis algorithms for detection of hazardous substances in hyperspectral observations acquired using active mid-infrared (MIR) backscattering spectroscopy. We present a novel background extraction algorithm based on the adaptive target generation process proposed by Ren and Chang called the adaptive background generation process (ABGP) that generates a robust and physically meaningful set of background spectra for operation of the well-known adaptive matched subspace detection (AMSD) algorithm. It is shown that the resulting AMSD-ABGP detection algorithm competes well with other widely used detection algorithms. The method is demonstrated in measurement data obtained by two fundamentally different active MIR hyperspectral data acquisition devices. A hyperspectral image sensor applicable in static scenes takes a wavelength sequential approach to hyperspectral data acquisition, whereas a rapid wavelength-scanning single-element detector variant of the same principle uses spatial scanning to generate the hyperspectral observation. It is shown that the measurement timescale of the latter is sufficient for the application of the data analysis algorithms even in dynamic scenarios.
Design and laboratory calibration of the compact pushbroom hyperspectral imaging system
NASA Astrophysics Data System (ADS)
Zhou, Jiankang; Ji, Yiqun; Chen, Yuheng; Chen, Xinhua; Shen, Weimin
2009-11-01
The designed hyperspectral imaging system is composed of three main parts, that is, optical subsystem, electronic subsystem and capturing subsystem. And a three-dimensional "image cube" can be obtained through push-broom. The fore-optics is commercial-off-the-shelf with high speed and three continuous zoom ratios. Since the dispersive imaging part is based on Offner relay configuration with an aberration-corrected convex grating, high power of light collection and variable view field are obtained. The holographic recording parameters of the convex grating are optimized, and the aberration of the Offner configuration dispersive system is balanced. The electronic system adopts module design, which can minimize size, mass, and power consumption. Frame transfer area-array CCD is chosen as the image sensor and the spectral line can be binned to achieve better SNR and sensitivity without any deterioration in spatial resolution. The capturing system based on the computer can set the capturing parameters, calibrate the spectrometer, process and display spectral imaging data. Laboratory calibrations are prerequisite for using precise spectral data. The spatial and spectral calibration minimize smile and keystone distortion caused by optical system, assembly and so on and fix positions of spatial and spectral line on the frame area-array CCD. Gases excitation lamp is used in smile calibration and the keystone calculation is carried out by different viewing field point source created by a series of narrow slit. The laboratory and field imaging results show that this pushbroom hyperspectral imaging system can acquire high quality spectral images.
NASA Astrophysics Data System (ADS)
Mahlein, Anne-Katrin; Hillnhütter, Christian; Mewes, Thorsten; Scholz, Christine; Steiner, Ulrike; Dehne, Heinz-Willhelm; Oerke, Erich-Christian
2009-09-01
Depending on environmental factors fungal diseases of crops are often distributed heterogeneously in fields. Precision agriculture in plant protection implies a targeted fungicide application adjusted these field heterogeneities. Therefore an understanding of the spatial and temporal occurrence of pathogens is elementary. As shown in previous studies, remote sensing techniques can be used to detect and observe spectral anomalies in the field. In 2008, a sugar beet field site was observed at different growth stages of the crop using different remote sensing techniques. The experimental field site consisted of two treatments. One plot was sprayed with a fungicide to avoid fungal infections. In order to obtain sugar beet plants infected with foliar diseases the other plot was not sprayed. Remote sensing data were acquired from the high-resolution airborne hyperspectral imaging ROSIS in July 2008 at sugar beet growth stage 39 and from the HyMap sensor systems in August 2008 at sugar beet growth stage 45, respectively. Additionally hyperspectral signatures of diseased and non-diseased sugar beet plants were measured with a non-imaging hand held spectroradiometer at growth stage 49 in September. Ground truth data, in particular disease severity were collected at 50 sampling points in the field. Changes of reflection rates were related to disease severity increasing with time. Erysiphe betae causing powdery mildew was the most frequent leaf pathogen. A classification of healthy and diseased sugar beets in the field was possible by using hyperspectral vegetation indices calculated from canopy reflectance.
SSUSI-Lite: a far-ultraviolet hyper-spectral imager for space weather remote sensing
NASA Astrophysics Data System (ADS)
Ogorzalek, Bernard; Osterman, Steven; Carlsson, Uno; Grey, Matthew; Hicks, John; Hourani, Ramsey; Kerem, Samuel; Marcotte, Kathryn; Parker, Charles; Paxton, Larry J.
2015-09-01
SSUSI-Lite is a far-ultraviolet (115-180nm) hyperspectral imager for monitoring space weather. The SSUSI and GUVI sensors, its predecessors, have demonstrated their value as space weather monitors. SSUSI-Lite is a refresh of the Special Sensor Ultraviolet Spectrographic Imager (SSUSI) design that has flown on the Defense Meteorological Satellite Program (DMSP) spacecraft F16 through F19. The refresh updates the 25-year-old design and insures that the next generation of SSUSI/GUVI sensors can be accommodated on any number of potential platforms. SSUSI-Lite maintains the same optical layout as SSUSI, includes updates to key functional elements, and reduces the sensor volume, mass, and power requirements. SSUSI-Lite contains an improved scanner design that results in precise mirror pointing and allows for variable scan profiles. The detector electronics have been redesigned to employ all digital pulse processing. The largest decrease in volume, mass, and power has been obtained by consolidating all control and power electronics into one data processing unit.
Prasad, Dilip K; Agarwal, Krishna
2016-03-22
We propose a method for classifying radiometric oceanic color data measured by hyperspectral satellite sensors into known spectral classes, irrespective of the downwelling irradiance of the particular day, i.e., the illumination conditions. The focus is not on retrieving the inherent optical properties but to classify the pixels according to the known spectral classes of the reflectances from the ocean. The method compensates for the unknown downwelling irradiance by white balancing the radiometric data at the ocean pixels using the radiometric data of bright pixels (typically from clouds). The white-balanced data is compared with the entries in a pre-calibrated lookup table in which each entry represents the spectral properties of one class. The proposed approach is tested on two datasets of in situ measurements and 26 different daylight illumination spectra for medium resolution imaging spectrometer (MERIS), moderate-resolution imaging spectroradiometer (MODIS), sea-viewing wide field-of-view sensor (SeaWiFS), coastal zone color scanner (CZCS), ocean and land colour instrument (OLCI), and visible infrared imaging radiometer suite (VIIRS) sensors. Results are also shown for CIMEL's SeaPRISM sun photometer sensor used on-board field trips. Accuracy of more than 92% is observed on the validation dataset and more than 86% is observed on the other dataset for all satellite sensors. The potential of applying the algorithms to non-satellite and non-multi-spectral sensors mountable on airborne systems is demonstrated by showing classification results for two consumer cameras. Classification on actual MERIS data is also shown. Additional results comparing the spectra of remote sensing reflectance with level 2 MERIS data and chlorophyll concentration estimates of the data are included.
NASA Astrophysics Data System (ADS)
Lucey, Paul G.; Hinrichs, John L.; Akagi, Jason
2012-06-01
A prototype long wave infrared Fourier transform spectral imaging system using a wedged Fabry-Perot interferometer and a microbolometer array was designed and built. The instrument can be used at both short (cm) and long standoff ranges (infinity focus). Signal to noise ratios are in the several hundred range for 30 C targets. The sensor is compact, fitting in a volume about 12 x12 x 4 inches.
Towards automated spectroscopic tissue classification in thyroid and parathyroid surgery.
Schols, Rutger M; Alic, Lejla; Wieringa, Fokko P; Bouvy, Nicole D; Stassen, Laurents P S
2017-03-01
In (para-)thyroid surgery iatrogenic parathyroid injury should be prevented. To aid the surgeons' eye, a camera system enabling parathyroid-specific image enhancement would be useful. Hyperspectral camera technology might work, provided that the spectral signature of parathyroid tissue offers enough specific features to be reliably and automatically distinguished from surrounding tissues. As a first step to investigate this, we examined the feasibility of wide band diffuse reflectance spectroscopy (DRS) for automated spectroscopic tissue classification, using silicon (Si) and indium-gallium-arsenide (InGaAs) sensors. DRS (350-1830 nm) was performed during (para-)thyroid resections. From the acquired spectra 36 features at predefined wavelengths were extracted. The best features for classification of parathyroid from adipose or thyroid were assessed by binary logistic regression for Si- and InGaAs-sensor ranges. Classification performance was evaluated by leave-one-out cross-validation. In 19 patients 299 spectra were recorded (62 tissue sites: thyroid = 23, parathyroid = 21, adipose = 18). Classification accuracy of parathyroid-adipose was, respectively, 79% (Si), 82% (InGaAs) and 97% (Si/InGaAs combined). Parathyroid-thyroid classification accuracies were 80% (Si), 75% (InGaAs), 82% (Si/InGaAs combined). Si and InGaAs sensors are fairly accurate for automated spectroscopic classification of parathyroid, adipose and thyroid tissues. Combination of both sensor technologies improves accuracy. Follow-up research, aimed towards hyperspectral imaging seems justified. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Hyperspectral image compressing using wavelet-based method
NASA Astrophysics Data System (ADS)
Yu, Hui; Zhang, Zhi-jie; Lei, Bo; Wang, Chen-sheng
2017-10-01
Hyperspectral imaging sensors can acquire images in hundreds of continuous narrow spectral bands. Therefore each object presented in the image can be identified from their spectral response. However, such kind of imaging brings a huge amount of data, which requires transmission, processing, and storage resources for both airborne and space borne imaging. Due to the high volume of hyperspectral image data, the exploration of compression strategies has received a lot of attention in recent years. Compression of hyperspectral data cubes is an effective solution for these problems. Lossless compression of the hyperspectral data usually results in low compression ratio, which may not meet the available resources; on the other hand, lossy compression may give the desired ratio, but with a significant degradation effect on object identification performance of the hyperspectral data. Moreover, most hyperspectral data compression techniques exploits the similarities in spectral dimensions; which requires bands reordering or regrouping, to make use of the spectral redundancy. In this paper, we explored the spectral cross correlation between different bands, and proposed an adaptive band selection method to obtain the spectral bands which contain most of the information of the acquired hyperspectral data cube. The proposed method mainly consist three steps: First, the algorithm decomposes the original hyperspectral imagery into a series of subspaces based on the hyper correlation matrix of the hyperspectral images between different bands. And then the Wavelet-based algorithm is applied to the each subspaces. At last the PCA method is applied to the wavelet coefficients to produce the chosen number of components. The performance of the proposed method was tested by using ISODATA classification method.
Rapidly updated hyperspectral sounding and imaging data for severe storm prediction
NASA Astrophysics Data System (ADS)
Bingham, Gail; Jensen, Scott; Elwell, John; Cardon, Joel; Crain, David; Huang, Hung-Lung (Allen); Smith, William L.; Revercomb, Hank E.; Huppi, Ronald J.
2013-09-01
Several studies have shown that a geostationary hyperspectral imager/sounder can provide the most significant value increase in short term, regional numerical prediction weather models over a range of other options. In 1998, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) proposal was selected by NASA as the New Millennium Earth Observation 3 program over several other geostationary instrument development proposals. After the EO3 GIFTS flight demonstration program was changed to an Engineering Development Unit (EDU) due to funding limitations by one of the partners, the EDU was subjected to flight-like thermal vacuum calibration and testing and successfully validated the breakthrough technologies needed to make a successful observatory. After several government stops and starts, only EUMETSAT's Meteosat Third Generation (MTG-S) sounder is in operational development. Recently, a commercial partnership has been formed to fill the significant data gap. AsiaSat has partnered with GeoMetWatch (GMW)1 to fund the development and launch of the Sounding and Tracking Observatory for Regional Meteorology (STORMTM) sensor, a derivative of the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) EDU that was designed, built, and tested by Utah State University (USU). STORMTM combines advanced technologies to observe surface thermal properties, atmospheric weather, and chemistry variables in four dimensions to provide high vertical resolution temperature and moisture sounding information, with the fourth dimension (time) provided by the geosynchronous satellite platform ability to measure a location as often as desired. STORMTM will enhance the polar orbiting imaging and sounding measurements by providing: (1) a direct measure of moisture flux and altitude-resolved water vapor and cloud tracer winds throughout the troposphere, (2) an observation of the time varying atmospheric thermodynamics associated with storm system development, and (3) the transport of tropospheric pollutant gases. The AsiaSat/GMW partnership will host the first STORMTM sensor on their AsiaSat 9 telecommunications satellite at 122 E over the Asia Pacific area. GMW's business plan is to sell the unique STORM data and data products to countries and companies in the satellite coverage area. GMW plans to place 6 STORMTM sensors on geostationary telecommunications satellites to provide global hyperspectral sounding and imaging data. Utah State University's Advanced Weather Systems Laboratory (AWS) will build the sensors for GMW.
Garcia, Jair E.; Girard, Madeline B.; Kasumovic, Michael; Petersen, Phred; Wilksch, Philip A.; Dyer, Adrian G.
2015-01-01
Background The ability to discriminate between two similar or progressively dissimilar colours is important for many animals as it allows for accurately interpreting visual signals produced by key target stimuli or distractor information. Spectrophotometry objectively measures the spectral characteristics of these signals, but is often limited to point samples that could underestimate spectral variability within a single sample. Algorithms for RGB images and digital imaging devices with many more than three channels, hyperspectral cameras, have been recently developed to produce image spectrophotometers to recover reflectance spectra at individual pixel locations. We compare a linearised RGB and a hyperspectral camera in terms of their individual capacities to discriminate between colour targets of varying perceptual similarity for a human observer. Main Findings (1) The colour discrimination power of the RGB device is dependent on colour similarity between the samples whilst the hyperspectral device enables the reconstruction of a unique spectrum for each sampled pixel location independently from their chromatic appearance. (2) Uncertainty associated with spectral reconstruction from RGB responses results from the joint effect of metamerism and spectral variability within a single sample. Conclusion (1) RGB devices give a valuable insight into the limitations of colour discrimination with a low number of photoreceptors, as the principles involved in the interpretation of photoreceptor signals in trichromatic animals also apply to RGB camera responses. (2) The hyperspectral camera architecture provides means to explore other important aspects of colour vision like the perception of certain types of camouflage and colour constancy where multiple, narrow-band sensors increase resolution. PMID:25965264
NASA Astrophysics Data System (ADS)
Senthil Kumar, A.; Keerthi, V.; Manjunath, A. S.; Werff, Harald van der; Meer, Freek van der
2010-08-01
Classification of hyperspectral images has been receiving considerable attention with many new applications reported from commercial and military sectors. Hyperspectral images are composed of a large number of spectral channels, and have the potential to deliver a great deal of information about a remotely sensed scene. However, in addition to high dimensionality, hyperspectral image classification is compounded with a coarse ground pixel size of the sensor for want of adequate sensor signal to noise ratio within a fine spectral passband. This makes multiple ground features jointly occupying a single pixel. Spectral mixture analysis typically begins with pixel classification with spectral matching techniques, followed by the use of spectral unmixing algorithms for estimating endmembers abundance values in the pixel. The spectral matching techniques are analogous to supervised pattern recognition approaches, and try to estimate some similarity between spectral signatures of the pixel and reference target. In this paper, we propose a spectral matching approach by combining two schemes—variable interval spectral average (VISA) method and spectral curve matching (SCM) method. The VISA method helps to detect transient spectral features at different scales of spectral windows, while the SCM method finds a match between these features of the pixel and one of library spectra by least square fitting. Here we also compare the performance of the combined algorithm with other spectral matching techniques using a simulated and the AVIRIS hyperspectral data sets. Our results indicate that the proposed combination technique exhibits a stronger performance over the other methods in the classification of both the pure and mixed class pixels simultaneously.
NASA Astrophysics Data System (ADS)
Freer, J. E.; Richardson, T.; Yang, Z.
2012-12-01
Recent advances in remote sensing and geographic information has led the way for the development of hyperspectral sensors and cloud scanning LIDAR (Light Detection And Ranging). Both these technologies can be used to sense environmental processes and capture detailed spatial information, they are often deployed in ground, aircraft and satellite based systems. Hyperspectral remote sensing, also known as imaging spectroscopy, is a relatively new technology that is currently being investigated by researchers and scientists with regard to the detection and identification of landscapes, terrestrial vegetation, and manmade materials and backgrounds. There are many applications that could take advantages of hyperspectral remote sensing coupled to detailed surface feature mapping using LIDAR. This embryonic project involves developing the engineering solutions and post processing techniques needed to realise an ultra high resolution helicopter based environmental sensing platform which can fly at lower altitudes than aircraft systems and can be deployed more frequently. We aim to present this new technology platform in this special session (the only one of it's kind in the UK). Initial applications are planned on a range of environmental sensing problems that would benefit from such complex and detailed data.We look forward to being able to display and discuss this initiative with colleagues and any potential interest in future collaborative projects.
NASA Astrophysics Data System (ADS)
Freer, J.; Richardson, T. S.
2012-04-01
Recent advances in remote sensing and geographic information has led the way for the development of hyperspectral sensors and cloud scanning LIDAR (Light Detection And Ranging). Both these technologies can be used to sense environmental processes and capture detailed spatial information, they are often deployed in ground, aircraft and satellite based systems. Hyperspectral remote sensing, also known as imaging spectroscopy, is a relatively new technology that is currently being investigated by researchers and scientists with regard to the detection and identification of landscapes, terrestrial vegetation, and manmade materials and backgrounds. There are many applications that could take advantages of hyperspectral remote sensing coupled to detailed surface feature mapping using LIDAR. This embryonic project involves developing the engineering solutions and post processing techniques needed to realise an ultra high resolution helicopter based environmental sensing platform which can fly at lower altitudes than aircraft systems and can be deployed more frequently. We aim to display this new technology platform in this special session (the only one of it's kind in the UK). Initial applications are planned on a range of environmental sensing problems that would benefit from such complex and detailed data. We look forward to being able to display and discuss this initiative with colleagues and any potential interest in future collaborative projects.
NASA Astrophysics Data System (ADS)
Näsi, R.; Viljanen, N.; Kaivosoja, J.; Hakala, T.; Pandžić, M.; Markelin, L.; Honkavaara, E.
2017-10-01
Multispectral and hyperspectral imaging is usually acquired by satellite and aircraft platforms. Recently, miniaturized hyperspectral 2D frame cameras have showed great potential to precise agriculture estimations and they are feasible to combine with lightweight platforms, such as drones. Drone platform is a flexible tool for remote sensing applications with environment and agriculture. The assessment and comparison of different platforms such as satellite, aircraft and drones with different sensors, such as hyperspectral and RGB cameras is an important task in order to understand the potential of the data provided by these equipment and to select the most appropriate according to the user applications and requirements. In this context, open and permanent test fields are very significant and helpful experimental environment, since they provide a comparative data for different platforms, sensors and users, allowing multi-temporal analyses as well. Objective of this work was to investigate the feasibility of an open permanent test field in context of precision agriculture. Satellite (Sentinel-2), aircraft and drones with hyperspectral and RGB cameras were assessed in this study to estimate biomass, using linear regression models and in-situ samples. Spectral data and 3D information were used and compared in different combinations to investigate the quality of the models. The biomass estimation accuracies using linear regression models were better than 90 % for the drone based datasets. The results showed that the use of spectral and 3D features together improved the estimation model. However, estimation of nitrogen content was less accurate with the evaluated remote sensing sensors. The open and permanent test field showed to be suitable to provide an accurate and reliable reference data for the commercial users and farmers.
NASA Astrophysics Data System (ADS)
Tagesson, T.; Fensholt, R.; Huber, S.; Horion, S.; Guiro, I.; Ehammer, A.; Ardo, J.
2015-08-01
This paper investigates how hyperspectral reflectance (between 350 and 1800 nm) can be used to infer ecosystem properties for a semi-arid savanna grassland in West Africa using a unique in situ-based multi-angular data set of hemispherical conical reflectance factor (HCRF) measurements. Relationships between seasonal dynamics in hyperspectral HCRF and ecosystem properties (biomass, gross primary productivity (GPP), light use efficiency (LUE), and fraction of photosynthetically active radiation absorbed by vegetation (FAPAR)) were analysed. HCRF data (ρ) were used to study the relationship between normalised difference spectral indices (NDSIs) and the measured ecosystem properties. Finally, the effects of variable sun sensor viewing geometry on different NDSI wavelength combinations were analysed. The wavelengths with the strongest correlation to seasonal dynamics in ecosystem properties were shortwave infrared (biomass), the peak absorption band for chlorophyll a and b (at 682 nm) (GPP), the oxygen A band at 761 nm used for estimating chlorophyll fluorescence (GPP and LUE), and blue wavelengths (ρ412) (FAPAR). The NDSI with the strongest correlation to (i) biomass combined red-edge HCRF (ρ705) with green HCRF (ρ587), (ii) GPP combined wavelengths at the peak of green reflection (ρ518, ρ556), (iii) LUE combined red (ρ688) with blue HCRF (ρ436), and (iv) FAPAR combined blue (ρ399) and near-infrared (ρ1295) wavelengths. NDSIs combining near infrared and shortwave infrared were strongly affected by solar zenith angles and sensor viewing geometry, as were many combinations of visible wavelengths. This study provides analyses based upon novel multi-angular hyperspectral data for validation of Earth-observation-based properties of semi-arid ecosystems, as well as insights for designing spectral characteristics of future sensors for ecosystem monitoring.
Hakkenberg, C R; Peet, R K; Urban, D L; Song, C
2018-01-01
In light of the need to operationalize the mapping of forest composition at landscape scales, this study uses multi-scale nested vegetation sampling in conjunction with LiDAR-hyperspectral remotely sensed data from the G-LiHT airborne sensor to map vascular plant compositional turnover in a compositionally and structurally complex North Carolina Piedmont forest. Reflecting a shift in emphasis from remotely sensing individual crowns to detecting aggregate optical-structural properties of forest stands, predictive maps reflect the composition of entire vascular plant communities, inclusive of those species smaller than the resolution of the remotely sensed imagery, intertwined with proximate taxa, or otherwise obscured from optical sensors by dense upper canopies. Stand-scale vascular plant composition is modeled as community continua: where discrete community-unit classes at different compositional resolutions provide interpretable context for continuous gradient maps that depict n-dimensional compositional complexity as a single, consistent RGB color combination. In total, derived remotely sensed predictors explain 71%, 54%, and 48% of the variation in the first three components of vascular plant composition, respectively. Among all remotely sensed environmental gradients, topography derived from LiDAR ground returns, forest structure estimated from LiDAR all returns, and morphological-biochemical traits determined from hyperspectral imagery each significantly correspond to the three primary axes of floristic composition in the study site. Results confirm the complementarity of LiDAR and hyperspectral sensors for modeling the environmental gradients constraining landscape turnover in vascular plant composition and hold promise for predictive mapping applications spanning local land management to global ecosystem modeling. © 2017 by the Ecological Society of America.
The HYDICE instrument design and its application to planetary instruments
NASA Technical Reports Server (NTRS)
Basedow, R.; Silverglate, P.; Rappoport, W.; Rockwell, R.; Rosenberg, D.; Shu, K.; Whittlesey, R.; Zalewski, E.
1993-01-01
The Hyperspectral Digital Imagery Collection Experiment (HYDICE) instrument represents a significant advance in the state of the art in hyperspectral sensors. It combines a higher signal-to-noise ratio (SNR) and significantly better spatial and spectral resolution and radio metric accuracy than systems flying on aircraft today. The need for 'clean' data, i.e., data free of sampling artifacts and excessive spatial or spectral noise, is a key driver behind the difficult combination of performance requirements laid out for HYDICE. Most of these involve the sensor optics and detector. This paper presents an optimized approach to those requirements, one that comprises push broom scanning, a single, mechanically cooled focal plane, a double-pass prism spectrometer, and an easily fabricated yet wide-field telescope. Central to the approach is a detector array that covers the entire spectrum from 0.4 to 2.5 microns. Among the major benefits conferred by such a design are optical and mechanical simplicity, low polarization sensitivity, and coverage of the entire spectrum without suffering the spectral gaps caused by beam splitters. The overall system minimizes interfaces to the C-141 aircraft on which it will be flown, can be calibrated on the ground and in flight to accuracies better than those required, and is designed for simple, push-button operation. Only unprocessed data are recorded during flight. A ground data processing station provides quick-look, calibration correction, and archiving capabilities, with a throughput better than the requirements. Overall performance of the system is expected to provide the solid database required to evaluate the potential of hyperspectral imagery in a wide variety of applications. HYDICE can be regarded as a test bed for future planetary instruments. The ability to spectrally image a wide field of view over multiple spectral octaves offers obvious advantages and is expected to maximize science return for the required cost and weight.
Hyperspectral imaging polarimeter in the infrared
NASA Astrophysics Data System (ADS)
Jensen, Gary L.; Peterson, James Q.
1998-11-01
The Space Dynamics Laboratory at Utah State University is building an infrared Hyperspectral Imaging Polarimeter (HIP). Designed for high spatial and spectral resolution polarimetry of backscattered sunlight from cloud tops in the 2.7 micrometer water band, it will fly aboard the Flying Infrared Signatures Technology Aircraft (FISTA), an Air Force KC-135. It is a proof-of-concept sensor, combining hyperspectral pushbroom imaging with high speed, solid state polarimetry, using as many off-the-shelf components as possible, and utilizing an optical breadboard design for rapid prototyping. It is based around a 256 X 320 window selectable InSb camera, a solid-state Ferro-electric Liquid Crystal (FLC) polarimeter, and a transmissive diffraction grating.
NASA Astrophysics Data System (ADS)
Fabelo, Himar; Ortega, Samuel; Kabwama, Silvester; Callico, Gustavo M.; Bulters, Diederik; Szolna, Adam; Pineiro, Juan F.; Sarmiento, Roberto
2016-05-01
Hyperspectral images allow obtaining large amounts of information about the surface of the scene that is captured by the sensor. Using this information and a set of complex classification algorithms is possible to determine which material or substance is located in each pixel. The HELICoiD (HypErspectraL Imaging Cancer Detection) project is a European FET project that has the goal to develop a demonstrator capable to discriminate, with high precision, between normal and tumour tissues, operating in real-time, during neurosurgical operations. This demonstrator could help the neurosurgeons in the process of brain tumour resection, avoiding the excessive extraction of normal tissue and unintentionally leaving small remnants of tumour. Such precise delimitation of the tumour boundaries will improve the results of the surgery. The HELICoiD demonstrator is composed of two hyperspectral cameras obtained from Headwall. The first one in the spectral range from 400 to 1000 nm (visible and near infrared) and the second one in the spectral range from 900 to 1700 nm (near infrared). The demonstrator also includes an illumination system that covers the spectral range from 400 nm to 2200 nm. A data processing unit is in charge of managing all the parts of the demonstrator, and a high performance platform aims to accelerate the hyperspectral image classification process. Each one of these elements is installed in a customized structure specially designed for surgical environments. Preliminary results of the classification algorithms offer high accuracy (over 95%) in the discrimination between normal and tumour tissues.
NASA Astrophysics Data System (ADS)
Pieper, Michael; Manolakis, Dimitris; Truslow, Eric; Cooley, Thomas; Brueggeman, Michael; Jacobson, John; Weisner, Andrew
2017-08-01
Accurate estimation or retrieval of surface emissivity from long-wave infrared or thermal infrared (TIR) hyperspectral imaging data acquired by airborne or spaceborne sensors is necessary for many scientific and defense applications. This process consists of two interwoven steps: atmospheric compensation and temperature-emissivity separation (TES). The most widely used TES algorithms for hyperspectral imaging data assume that the emissivity spectra for solids are smooth compared to the atmospheric transmission function. We develop a model to explain and evaluate the performance of TES algorithms using a smoothing approach. Based on this model, we identify three sources of error: the smoothing error of the emissivity spectrum, the emissivity error from using the incorrect temperature, and the errors caused by sensor noise. For each TES smoothing technique, we analyze the bias and variability of the temperature errors, which translate to emissivity errors. The performance model explains how the errors interact to generate temperature errors. Since we assume exact knowledge of the atmosphere, the presented results provide an upper bound on the performance of TES algorithms based on the smoothness assumption.
Best practices in passive remote sensing VNIR hyperspectral system hardware calibrations
Jablonski, Joseph; Durell, Christopher; Slonecker, Terry; Wong, Kwok; Simon, Blair; Eichelberger, Andrew; Osterberg, Jacob
2016-01-01
Hyperspectral imaging (HSI) is an exciting and rapidly expanding area of instruments and technology in passive remote sensing. Due to quickly changing applications, the instruments are evolving to suit new uses and there is a need for consistent definition, testing, characterization and calibration. This paper seeks to outline a broad prescription and recommendations for basic specification, testing and characterization that must be done on Visible Near Infra-Red grating-based sensors in order to provide calibrated absolute output and performance or at least relative performance that will suit the user’s task. The primary goal of this paper is to provide awareness of the issues with performance of this technology and make recommendations towards standards and protocols that could be used for further efforts in emerging procedures for national laboratory and standards groups.
Miniaturized optical wavelength sensors
NASA Astrophysics Data System (ADS)
Kung, Helen Ling-Ning
Recently semiconductor processing technology has been applied to the miniaturization of optical wavelength sensors. Compact sensors enable new applications such as integrated diode-laser wavelength monitors and frequency lockers, portable chemical and biological detection, and portable and adaptive hyperspectral imaging arrays. Small sensing systems have trade-offs between resolution, operating range, throughput, multiplexing and complexity. We have developed a new wavelength sensing architecture that balances these parameters for applications involving hyperspectral imaging spectrometer arrays. In this thesis we discuss and demonstrate two new wavelength-sensing architectures whose single-pixel designs can easily be extended into spectrometer arrays. The first class of devices is based on sampling a standing wave. These devices are based on measuring the wavelength-dependent period of optical standing waves formed by the interference of forward and reflected waves at a mirror. We fabricated two different devices based on this principle. The first device is a wavelength monitor, which measures the wavelength and power of a monochromatic source. The second device is a spectrometer that can also act as a selective spectral coherence sensor. The spectrometer contains a large displacement piston-motion MEMS mirror and a thin GaAs photodiode flip-chip bonded to a quartz substrate. The performance of this spectrometer is similar to that of a Michelson in resolution, operating range, throughput and multiplexing but with the added advantages of fewer components and one-dimensional architecture. The second class of devices is based on the Talbot self-imaging effect. The Talbot effect occurs when a periodic object is illuminated with a spatially coherent wave. Periodically spaced self-images are formed behind the object. The spacing of the self-images is proportional to wavelength of the incident light. We discuss and demonstrate how this effect can be used for spectroscopy. In the conclusion we compare these two new miniaturized spectrometer architectures to existing miniaturized spectrometers. We believe that the combination of miniaturized wavelength sensors and smart processing should facilitate the development real-time, adaptive and portable sensing systems.
Label-Free Biomedical Imaging Using High-Speed Lock-In Pixel Sensor for Stimulated Raman Scattering
Mars, Kamel; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Yamada, Takahiro
2017-01-01
Raman imaging eliminates the need for staining procedures, providing label-free imaging to study biological samples. Recent developments in stimulated Raman scattering (SRS) have achieved fast acquisition speed and hyperspectral imaging. However, there has been a problem of lack of detectors suitable for MHz modulation rate parallel detection, detecting multiple small SRS signals while eliminating extremely strong offset due to direct laser light. In this paper, we present a complementary metal-oxide semiconductor (CMOS) image sensor using high-speed lock-in pixels for stimulated Raman scattering that is capable of obtaining the difference of Stokes-on and Stokes-off signal at modulation frequency of 20 MHz in the pixel before reading out. The generated small SRS signal is extracted and amplified in a pixel using a high-speed and large area lateral electric field charge modulator (LEFM) employing two-step ion implantation and an in-pixel pair of low-pass filter, a sample and hold circuit and a switched capacitor integrator using a fully differential amplifier. A prototype chip is fabricated using 0.11 μm CMOS image sensor technology process. SRS spectra and images of stearic acid and 3T3-L1 samples are successfully obtained. The outcomes suggest that hyperspectral and multi-focus SRS imaging at video rate is viable after slight modifications to the pixel architecture and the acquisition system. PMID:29120358
Label-Free Biomedical Imaging Using High-Speed Lock-In Pixel Sensor for Stimulated Raman Scattering.
Mars, Kamel; Lioe, De Xing; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Yamada, Takahiro; Hashimoto, Mamoru
2017-11-09
Raman imaging eliminates the need for staining procedures, providing label-free imaging to study biological samples. Recent developments in stimulated Raman scattering (SRS) have achieved fast acquisition speed and hyperspectral imaging. However, there has been a problem of lack of detectors suitable for MHz modulation rate parallel detection, detecting multiple small SRS signals while eliminating extremely strong offset due to direct laser light. In this paper, we present a complementary metal-oxide semiconductor (CMOS) image sensor using high-speed lock-in pixels for stimulated Raman scattering that is capable of obtaining the difference of Stokes-on and Stokes-off signal at modulation frequency of 20 MHz in the pixel before reading out. The generated small SRS signal is extracted and amplified in a pixel using a high-speed and large area lateral electric field charge modulator (LEFM) employing two-step ion implantation and an in-pixel pair of low-pass filter, a sample and hold circuit and a switched capacitor integrator using a fully differential amplifier. A prototype chip is fabricated using 0.11 μm CMOS image sensor technology process. SRS spectra and images of stearic acid and 3T3-L1 samples are successfully obtained. The outcomes suggest that hyperspectral and multi-focus SRS imaging at video rate is viable after slight modifications to the pixel architecture and the acquisition system.
Research on ground-based LWIR hyperspectral imaging remote gas detection
NASA Astrophysics Data System (ADS)
Yang, Zhixiong; Yu, Chunchao; Zheng, Weijian; Lei, Zhenggang; Yan, Min; Yuan, Xiaochun; Zhang, Peizhong
2015-10-01
The new progress of ground-based long-wave infrared remote sensing is presented, which describes the windowing spatial and temporal modulation Fourier spectroscopy imaging in details. The prototype forms the interference fringes based on the corner-cube of spatial modulation of Michelson interferometer, using cooled long-wave infrared photovoltaic staring FPA (focal plane array) detector. The LWIR hyperspectral imaging is achieved by the process of collection, reorganization, correction, apodization, FFT etc. from data cube. Noise equivalent sensor response (NESR), which is the sensitivity index of CHIPED-1 LWIR hyperspectral imaging prototype, can reach 5.6×10-8W/(cm-1.sr.cm2) at single sampling. Hyperspectral imaging is used in the field of organic gas VOC infrared detection. Relative to wide band infrared imaging, it has some advantages. Such as, it has high sensitivity, the strong anti-interference ability, identify the variety, and so on.
NASA Astrophysics Data System (ADS)
Ibrahim, Elsy; Kim, Wonkook; Crawford, Melba; Monbaliu, Jaak
2017-02-01
Remote sensing has been successfully utilized to distinguish and quantify sediment properties in the intertidal environment. Classification approaches of imagery are popular and powerful yet can lead to site- and case-specific results. Such specificity creates challenges for temporal studies. Thus, this paper investigates the use of regression models to quantify sediment properties instead of classifying them. Two regression approaches, namely multiple regression (MR) and support vector regression (SVR), are used in this study for the retrieval of bio-physical variables of intertidal surface sediment of the IJzermonding, a Belgian nature reserve. In the regression analysis, mud content, chlorophyll a concentration, organic matter content, and soil moisture are estimated using radiometric variables of two airborne sensors, namely airborne hyperspectral sensor (AHS) and airborne prism experiment (APEX) and and using field hyperspectral acquisitions by analytical spectral device (ASD). The performance of the two regression approaches is best for the estimation of moisture content. SVR attains the highest accuracy without feature reduction while MR achieves good results when feature reduction is carried out. Sediment property maps are successfully obtained using the models and hyperspectral imagery where SVR used with all bands achieves the best performance. The study also involves the extraction of weights identifying the contribution of each band of the images in the quantification of each sediment property when MR and principal component analysis are used.
Construction of a small and lightweight hyperspectral imaging system
NASA Astrophysics Data System (ADS)
Vogel, Britta; Hünniger, Dirk; Bastian, Georg
2014-05-01
The analysis of the reflected sunlight offers great opportunity to gain information about the environment, including vegetation and soil. In the case of plants the wavelength ratio of the reflected light usually undergoes a change if the state of growth or state of health changes. So the measurement of the reflected light allows drawing conclusions about the state of, amongst others, vegetation. Using a hyperspectral imaging system for data acquisition leads to a large dataset, which can be evaluated with respect to several different questions to obtain various information by one measurement. Based on commercially available plain optical components we developed a small and lightweight hyperspectral imaging system within the INTERREG IV A-Project SMART INSPECTORS. The project SMART INSPECTORS [Smart Aerial Test Rigs with Infrared Spectrometers and Radar] deals with the fusion of airborne visible and infrared imaging remote sensing instruments and wireless sensor networks for precision agriculture and environmental research. A high performance camera was required in terms of good signal, good wavelength resolution and good spatial resolution, while severe constraints of size, proportions and mass had to be met due to the intended use on small unmanned aerial vehicles. The detector was chosen to operate without additional cooling. The refractive and focusing optical components were identified by supporting works with an optical raytracing software and a self-developed program. We present details of design and construction of our camera system, test results to confirm the optical simulation predictions as well as our first measurements.
Importance of Calibration/Validation Traceability for Multi-Sensor Imaging Spectrometry Applications
NASA Technical Reports Server (NTRS)
Thome, K.
2017-01-01
Knowledge of calibration traceability is essential for ensuring the quality of data products relying on multiple sensors and especially true for imaging spectrometers. The current work discusses the expected impact that imaging spectrometers have in ensuring radiometric traceability for both multispectral and hyperspectral products. The Climate Absolute Radiance and Refractivity Observatory Pathfinder mission is used to show the role that high-accuracy imaging spectrometers can play in understanding test sites used for vicarious calibration of sensors. The associated Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer calibration demonstration system is used to illustrate recent advances in laboratory radiometric calibration approaches that will allow both the use of imaging spectrometers as calibration standards as well as to ensure the consistency of the multiple imaging spectrometers expected to be on orbit in the next decade.
Mapping alteration minerals at prospect, outcrop and drill core scales using imaging spectrometry
Kruse, Fred A.; L. Bedell, Richard; Taranik, James V.; Peppin, William A.; Weatherbee, Oliver; Calvin, Wendy M.
2011-01-01
Imaging spectrometer data (also known as ‘hyperspectral imagery’ or HSI) are well established for detailed mineral mapping from airborne and satellite systems. Overhead data, however, have substantial additional potential when used together with ground-based measurements. An imaging spectrometer system was used to acquire airborne measurements and to image in-place outcrops (mine walls) and boxed drill core and rock chips using modified sensor-mounting configurations. Data were acquired at 5 nm nominal spectral resolution in 360 channels from 0.4 to 2.45 μm. Analysis results using standardized hyperspectral methodologies demonstrate rapid extraction of representative mineral spectra and mapping of mineral distributions and abundances in map-plan, with core depth, and on the mine walls. The examples shown highlight the capabilities of these data for mineral mapping. Integration of these approaches promotes improved understanding of relations between geology, alteration and spectral signatures in three dimensions and should lead to improved efficiency of mine development, operations and ultimately effective mine closure. PMID:25937681
NASA Astrophysics Data System (ADS)
Barbieux, Kévin; Nouchi, Vincent; Merminod, Bertrand
2016-10-01
Retrieving the water-leaving reflectance from airborne hyperspectral data implies to deal with three steps. Firstly, the radiance recorded by an airborne sensor comes from several sources: the real radiance of the object, the atmospheric scattering, sky and sun glint and the dark current of the sensor. Secondly, the dispersive element inside the sensor (usually a diffraction grating or a prism) could move during the flight, thus shifting the observed spectra on the wavelengths axis. Thirdly, to compute the reflectance, it is necessary to estimate, for each band, what value of irradiance corresponds to a 100% reflectance. We present here our calibration method, relying on the absorption features of the atmosphere and the near-infrared properties of common materials. By choosing proper flight height and flight lines angle, we can ignore atmospheric and sun glint contributions. Autocorrelation plots allow to identify and reduce the noise in our signals. Then, we compute a signal that represents the high frequencies of the spectrum, to localize the atmospheric absorption peaks (mainly the dioxygen peak around 760 nm). Matching these peaks removes the shift induced by the moving dispersive element. Finally, we use the signal collected over a Lambertian, unit-reflectance surface to estimate the ratio of the system's transmittances to its near-infrared transmittance. This transmittance is computed assuming an average 50% reflectance of the vegetation and nearly 0% for water in the near-infrared. Results show great correlation between the output spectra and ground measurements from a TriOS Ramses and the water-insight WISP-3.
NASA Astrophysics Data System (ADS)
Wright, L.; Coddington, O.; Pilewskie, P.
2017-12-01
Hyperspectral instruments are a growing class of Earth observing sensors designed to improve remote sensing capabilities beyond discrete multi-band sensors by providing tens to hundreds of continuous spectral channels. Improved spectral resolution, range and radiometric accuracy allow the collection of large amounts of spectral data, facilitating thorough characterization of both atmospheric and surface properties. We describe the development of an Informed Non-Negative Matrix Factorization (INMF) spectral unmixing method to exploit this spectral information and separate atmospheric and surface signals based on their physical sources. INMF offers marked benefits over other commonly employed techniques including non-negativity, which avoids physically impossible results; and adaptability, which tailors the method to hyperspectral source separation. The INMF algorithm is adapted to separate contributions from physically distinct sources using constraints on spectral and spatial variability, and library spectra to improve the initial guess. Using this INMF algorithm we decompose hyperspectral imagery from the NASA Hyperspectral Imager for the Coastal Ocean (HICO), with a focus on separating surface and atmospheric signal contributions. HICO's coastal ocean focus provides a dataset with a wide range of atmospheric and surface conditions. These include atmospheres with varying aerosol optical thicknesses and cloud cover. HICO images also provide a range of surface conditions including deep ocean regions, with only minor contributions from the ocean surfaces; and more complex shallow coastal regions with contributions from the seafloor or suspended sediments. We provide extensive comparison of INMF decomposition results against independent measurements of physical properties. These include comparison against traditional model-based retrievals of water-leaving, aerosol, and molecular scattering radiances and other satellite products, such as aerosol optical thickness from the Moderate Resolution Imaging Spectroradiometer (MODIS).
Autonomous collection of dynamically-cued multi-sensor imagery
NASA Astrophysics Data System (ADS)
Daniel, Brian; Wilson, Michael L.; Edelberg, Jason; Jensen, Mark; Johnson, Troy; Anderson, Scott
2011-05-01
The availability of imagery simultaneously collected from sensors of disparate modalities enhances an image analyst's situational awareness and expands the overall detection capability to a larger array of target classes. Dynamic cooperation between sensors is increasingly important for the collection of coincident data from multiple sensors either on the same or on different platforms suitable for UAV deployment. Of particular interest is autonomous collaboration between wide area survey detection, high-resolution inspection, and RF sensors that span large segments of the electromagnetic spectrum. The Naval Research Laboratory (NRL) in conjunction with the Space Dynamics Laboratory (SDL) is building sensors with such networked communications capability and is conducting field tests to demonstrate the feasibility of collaborative sensor data collection and exploitation. Example survey / detection sensors include: NuSAR (NRL Unmanned SAR), a UAV compatible synthetic aperture radar system; microHSI, an NRL developed lightweight hyper-spectral imager; RASAR (Real-time Autonomous SAR), a lightweight podded synthetic aperture radar; and N-WAPSS-16 (Nighttime Wide-Area Persistent Surveillance Sensor-16Mpix), a MWIR large array gimbaled system. From these sensors, detected target cues are automatically sent to the NRL/SDL developed EyePod, a high-resolution, narrow FOV EO/IR sensor, for target inspection. In addition to this cooperative data collection, EyePod's real-time, autonomous target tracking capabilities will be demonstrated. Preliminary results and target analysis will be presented.
NASA Astrophysics Data System (ADS)
Li, Q. S.; Wong, F. K. K.; Fung, T.
2017-08-01
Lightweight unmanned aerial vehicle (UAV) loaded with novel sensors offers a low cost and minimum risk solution for data acquisition in complex environment. This study assessed the performance of UAV-based hyperspectral image and digital surface model (DSM) derived from photogrammetric point clouds for 13 species classification in wetland area of Hong Kong. Multiple feature reduction methods and different classifiers were compared. The best result was obtained when transformed components from minimum noise fraction (MNF) and DSM were combined in support vector machine (SVM) classifier. Wavelength regions at chlorophyll absorption green peak, red, red edge and Oxygen absorption at near infrared were identified for better species discrimination. In addition, input of DSM data reduces overestimation of low plant species and misclassification due to the shadow effect and inter-species morphological variation. This study establishes a framework for quick survey and update on wetland environment using UAV system. The findings indicate that the utility of UAV-borne hyperspectral and derived tree height information provides a solid foundation for further researches such as biological invasion monitoring and bio-parameters modelling in wetland.
Extended SWIR imaging sensors for hyperspectral imaging applications
NASA Astrophysics Data System (ADS)
Weber, A.; Benecke, M.; Wendler, J.; Sieck, A.; Hübner, D.; Figgemeier, H.; Breiter, R.
2016-05-01
AIM has developed SWIR modules including FPAs based on liquid phase epitaxy (LPE) grown MCT usable in a wide range of hyperspectral imaging applications. Silicon read-out integrated circuits (ROIC) provide various integration and readout modes including specific functions for spectral imaging applications. An important advantage of MCT based detectors is the tunable band gap. The spectral sensitivity of MCT detectors can be engineered to cover the extended SWIR spectral region up to 2.5μm without compromising in performance. AIM developed the technology to extend the spectral sensitivity of its SWIR modules also into the VIS. This has been successfully demonstrated for 384x288 and 1024x256 FPAs with 24μm pitch. Results are presented in this paper. The FPAs are integrated into compact dewar cooler configurations using different types of coolers, like rotary coolers, AIM's long life split linear cooler MCC030 or extreme long life SF100 Pulse Tube cooler. The SWIR modules include command and control electronics (CCE) which allow easy interfacing using a digital standard interface. The development status and performance results of AIM's latest MCT SWIR modules suitable for hyperspectral systems and applications will be presented.
Hyperspectral target detection using manifold learning and multiple target spectra
Ziemann, Amanda K.; Theiler, James; Messinger, David W.
2016-03-31
Imagery collected from satellites and airborne platforms provides an important tool for remotely analyzing the content of a scene. In particular, the ability to remotely detect a specific material within a scene is of critical importance in nonproliferation and other applications. The sensor systems that process hyperspectral images collect the high-dimensional spectral information necessary to perform these detection analyses. For a d-dimensional hyperspectral image, however, where d is the number of spectral bands, it is common for the data to inherently occupy an m-dimensional space with m << d. In the remote sensing community, this has led to recent interestmore » in the use of manifold learning, which seeks to characterize the embedded lower-dimensional, nonlinear manifold that the data discretely approximate. The research presented in this paper focuses on a graph theory and manifold learning approach to target detection, using an adaptive version of locally linear embedding that is biased to separate target pixels from background pixels. Finally, this approach incorporates multiple target signatures for a particular material, accounting for the spectral variability that is often present within a solid material of interest.« less
Current LWIR HSI Remote Sensing Activities at Defence R&D Canada - Valcartier
2009-10-01
measures the IR radiation from a target scene which is optically combined onto a single detector out-of-phase with the IR radiation from a corresponding...Hyper-Cam-LW. The MODDIFS project involves the development of a leading edge infrared ( IR ) hyperspectral sensor optimized for the standoff detection...essentially offer the optical subtraction capability of the CATSI system but at high-spatial resolution using an MCT focal plane array of 8484
Validation of Ocean Color Sensors Using a Profiling Hyperspectral Radiometer
2014-01-01
shadows. The HyperOCRs are all thermally characterized for temperature corrections and spectrally characterized to account for stray light corrections...August 24,2010 is shown in Figure 4A along with the mean percent difference between the NOAA Hyperpro ( Black /Dash) and the other two identical Hyperpro...difference (n=24) between the NOAA Hyperpro ( Black /Dash, Fig. 4A) and the other two Hyperpro systems. The dotted line for the red (bottom) and dash line for
Alexakis, Dimitrios; Sarris, Apostolos; Astaras, Theodoros; Albanakis, Konstantinos
2009-01-01
Thessaly is a low relief region in Greece where hundreds of Neolithic settlements/tells called magoules were established from the Early Neolithic period until the Bronze Age (6,000 – 3,000 BC). Multi-sensor remote sensing was applied to the study area in order to evaluate its potential to detect Neolithic settlements. Hundreds of sites were geo-referenced through systematic GPS surveying throughout the region. Data from four primary sensors were used, namely Landsat ETM, ASTER, EO1 - HYPERION and IKONOS. A range of image processing techniques were originally applied to the hyperspectral imagery in order to detect the settlements and validate the results of GPS surveying. Although specific difficulties were encountered in the automatic classification of archaeological features composed by a similar parent material with the surrounding landscape, the results of the research suggested a different response of each sensor to the detection of the Neolithic settlements, according to their spectral and spatial resolution. PMID:22399961
Alexakis, Dimitrios; Sarris, Apostolos; Astaras, Theodoros; Albanakis, Konstantinos
2009-01-01
Thessaly is a low relief region in Greece where hundreds of Neolithic settlements/tells called magoules were established from the Early Neolithic period until the Bronze Age (6,000 - 3,000 BC). Multi-sensor remote sensing was applied to the study area in order to evaluate its potential to detect Neolithic settlements. Hundreds of sites were geo-referenced through systematic GPS surveying throughout the region. Data from four primary sensors were used, namely Landsat ETM, ASTER, EO1 - HYPERION and IKONOS. A range of image processing techniques were originally applied to the hyperspectral imagery in order to detect the settlements and validate the results of GPS surveying. Although specific difficulties were encountered in the automatic classification of archaeological features composed by a similar parent material with the surrounding landscape, the results of the research suggested a different response of each sensor to the detection of the Neolithic settlements, according to their spectral and spatial resolution.
Hyperspectral Data Processing and Mapping of Soil Parameters: Preliminary Data from Tuscany (Italy)
NASA Astrophysics Data System (ADS)
Garfagnoli, F.; Moretti, S.; Catani, F.; Innocenti, L.; Chiarantini, L.
2010-12-01
Hyperspectral imaging has become a very powerful remote sensing tool for its capability of performing chemical and physical analysis of the observed areas. The objective of this study is to retrieve and characterize clay mineral content of the cultivated layer of soils, from both airborne hyperspectral and field spectrometry surveys in the 400-2500 nm spectral range. Correlation analysis is used to examine the possibility to predict the selected property using high-resolution reflectance spectra and images. The study area is located in the Mugello basin, about 30 km north of Firenze (Tuscany, Italy). Agriculturally suitable terrains are assigned mainly to annual crops, marginally to olive groves, vineyards and orchards. Soils mostly belong to Regosols and Cambisols orders. About 80 topsoil samples scattered all over the area were collected simultaneously with the flight of SIM.GA hyperspectral camera from Selex Galileo. The quantitative determination of clay minerals content in soil samples was performed by means of XRD and Rietveld refinement. An ASD FieldSpec spectroradiometer was used to obtain reflectance spectra from dried, crushed and sieved samples under controlled laboratory conditions. Different chemometric techniques (multiple linear regression, vertex component analysis, partial least squares regression and band depth analysis) were preliminarily tested to correlate mineralogical records with reflectance data. A one component partial least squares regression model yielded a preliminary R2 value of 0.65. A similar result was achieved by plotting the absorption peak depth at 2210 versus total clay mineral content (band-depth analysis). A complete hyperspectral geocoded reflectance dataset was collected using SIM.GA hyperspectral image sensor from Selex-Galileo, mounted on board of the University of Firenze ultra light aircraft. The approximate pixel resolution was 0.6 m (VNIR) and 1.2 m (SWIR). Airborne SIM.GA row data were firstly transformed into at-sensor radiance values, where calibration coefficients and parameters from laboratory measurements are applied to non-georeferred VNIR/SWIR DN values. Then, geocoded products are retrieved for each flight line by using a procedure developed in IDL Language and PARGE (PARametric Geocoding) software. When all compensation parameters are applied to hyperspectral data or to the final thematic map, orthorectified, georeferred and coregistered VNIR to SWIR images or maps are available for GIS application and 3D view. Airborne imagery has to be corrected for the influence of the atmosphere, solar illumination, sensor viewing geometry and terrain geometry information, for the retrieval of inherent surface reflectance properties. Then, different geophysical parameters can be investigated and retrieved by means of inversion algorithms. The experimental fitting of laboratory data on mineral content is used for airborne data inversion, whose results are in agreement with laboratory records, demonstrating the possibility to use this methodology for digital mapping of soil properties.
Super-resolution reconstruction of hyperspectral images.
Akgun, Toygar; Altunbasak, Yucel; Mersereau, Russell M
2005-11-01
Hyperspectral images are used for aerial and space imagery applications, including target detection, tracking, agricultural, and natural resource exploration. Unfortunately, atmospheric scattering, secondary illumination, changing viewing angles, and sensor noise degrade the quality of these images. Improving their resolution has a high payoff, but applying super-resolution techniques separately to every spectral band is problematic for two main reasons. First, the number of spectral bands can be in the hundreds, which increases the computational load excessively. Second, considering the bands separately does not make use of the information that is present across them. Furthermore, separate band super-resolution does not make use of the inherent low dimensionality of the spectral data, which can effectively be used to improve the robustness against noise. In this paper, we introduce a novel super-resolution method for hyperspectral images. An integral part of our work is to model the hyperspectral image acquisition process. We propose a model that enables us to represent the hyperspectral observations from different wavelengths as weighted linear combinations of a small number of basis image planes. Then, a method for applying super resolution to hyperspectral images using this model is presented. The method fuses information from multiple observations and spectral bands to improve spatial resolution and reconstruct the spectrum of the observed scene as a combination of a small number of spectral basis functions.
Hyperspectral Imaging of fecal contamination on chickens
NASA Technical Reports Server (NTRS)
2003-01-01
ProVision Technologies, a NASA research partnership center at Sternis Space Center in Mississippi, has developed a new hyperspectral imaging (HSI) system that is much smaller than the original large units used aboard remote sensing aircraft and satellites. The new apparatus is about the size of a breadbox. Health-related applications of HSI include scanning chickens during processing to help prevent contaminated food from getting to the table. ProVision is working with Sanderson Farms of Mississippi and the U.S. Department of Agriculture. ProVision has a record in its spectral library of the unique spectral signature of fecal contamination, so chickens can be scanned and those with a positive reading can be separated. HSI sensors can also determine the quantity of surface contamination. Research in this application is quite advanced, and ProVision is working on a licensing agreement for the technology. The potential for future use of this equipment in food processing and food safety is enormous.
NIR hyperspectral compressive imager based on a modified Fabry–Perot resonator
NASA Astrophysics Data System (ADS)
Oiknine, Yaniv; August, Isaac; Blumberg, Dan G.; Stern, Adrian
2018-04-01
The acquisition of hyperspectral (HS) image datacubes with available 2D sensor arrays involves a time consuming scanning process. In the last decade, several compressive sensing (CS) techniques were proposed to reduce the HS acquisition time. In this paper, we present a method for near-infrared (NIR) HS imaging which relies on our rapid CS resonator spectroscopy technique. Within the framework of CS, and by using a modified Fabry–Perot resonator, a sequence of spectrally modulated images is used to recover NIR HS datacubes. Owing to the innovative CS design, we demonstrate the ability to reconstruct NIR HS images with hundreds of spectral bands from an order of magnitude fewer measurements, i.e. with a compression ratio of about 10:1. This high compression ratio, together with the high optical throughput of the system, facilitates fast acquisition of large HS datacubes.
Fast Uncooled Low Density FPA of VPD PbSe for Applications in Hyperspectral Imagery
2009-10-01
Marañosa (ITM-CIDA). Area de Optronica y Acustica Unidad de Sensores y Micro-Nano Tecnologia Arturo Soria, 289 E-28033 Madrid, Spain ABSTRACT...ADDRESS(ES) Instituto Tecnologico de la Marañosa (ITM-CIDA). Area de Optronica y Acustica Unidad de Sensores y Micro-Nano Tecnologia Arturo Soria, 289
Hyperspectral Image Classification using a Self-Organizing Map
NASA Technical Reports Server (NTRS)
Martinez, P.; Gualtieri, J. A.; Aguilar, P. L.; Perez, R. M.; Linaje, M.; Preciado, J. C.; Plaza, A.
2001-01-01
The use of hyperspectral data to determine the abundance of constituents in a certain portion of the Earth's surface relies on the capability of imaging spectrometers to provide a large amount of information at each pixel of a certain scene. Today, hyperspectral imaging sensors are capable of generating unprecedented volumes of radiometric data. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), for example, routinely produces image cubes with 224 spectral bands. This undoubtedly opens a wide range of new possibilities, but the analysis of such a massive amount of information is not an easy task. In fact, most of the existing algorithms devoted to analyzing multispectral images are not applicable in the hyperspectral domain, because of the size and high dimensionality of the images. The application of neural networks to perform unsupervised classification of hyperspectral data has been tested by several authors and also by us in some previous work. We have also focused on analyzing the intrinsic capability of neural networks to parallelize the whole hyperspectral unmixing process. The results shown in this work indicate that neural network models are able to find clusters of closely related hyperspectral signatures, and thus can be used as a powerful tool to achieve the desired classification. The present work discusses the possibility of using a Self Organizing neural network to perform unsupervised classification of hyperspectral images. In sections 3 and 4, the topology of the proposed neural network and the training algorithm are respectively described. Section 5 provides the results we have obtained after applying the proposed methodology to real hyperspectral data, described in section 2. Different parameters in the learning stage have been modified in order to obtain a detailed description of their influence on the final results. Finally, in section 6 we provide the conclusions at which we have arrived.
Hyperspectral imaging flow cytometer
Sinclair, Michael B.; Jones, Howland D. T.
2017-10-25
A hyperspectral imaging flow cytometer can acquire high-resolution hyperspectral images of particles, such as biological cells, flowing through a microfluidic system. The hyperspectral imaging flow cytometer can provide detailed spatial maps of multiple emitting species, cell morphology information, and state of health. An optimized system can image about 20 cells per second. The hyperspectral imaging flow cytometer enables many thousands of cells to be characterized in a single session.
NASA Astrophysics Data System (ADS)
Anders, Niels; Suomalainen, Juha; Seeger, Manuel; Keesstra, Saskia; Bartholomeus, Harm; Paron, Paolo
2014-05-01
The recent increase of performance and endurance of electronically controlled flying platforms, such as multi-copters and fixed-wing airplanes, and decreasing size and weight of different sensors and batteries leads to increasing popularity of Unmanned Aerial Systems (UAS) for scientific purposes. Modern workflows that implement UAS include guided flight plan generation, 3D GPS navigation for fully automated piloting, and automated processing with new techniques such as "Structure from Motion" photogrammetry. UAS are often equipped with normal RGB cameras, multi- and hyperspectral sensors, radar, or other sensors, and provide a cheap and flexible solution for creating multi-temporal data sets. UAS revolutionized multi-temporal research allowing new applications related to change analysis and process monitoring. The EGU General Assembly 2014 is hosting a session on platforms, sensors and applications with UAS in soil science and geomorphology. This presentation briefly summarizes the outcome of this session, addressing the current state and future challenges of small-platform data acquisition in soil science and geomorphology.
Simulation of APEX data: the SENSOR approach
NASA Astrophysics Data System (ADS)
Boerner, Anko; Schaepman, Michael E.; Schlaepfer, Daniel; Wiest, Lorenz; Reulke, Ralf
1999-10-01
The consistent simulation of airborne and spaceborne hyperspectral data is an important task and sometimes the only way for the adaptation and optimization of a sensor and its observing conditions, the choice and test of algorithms for data processing, error estimations and the evaluation of the capabilities of the whole sensor system. The integration of three approaches is suggested for the data simulation of APEX (Airborne Prism Experiment): (1) a spectrally consistent approach (e.g. using AVIRIS data), (2) a geometrically consistent approach (e.g. using CASI data), and (3) an end-to- end simulation of the sensor system. In this paper, the last approach is discussed in detail. Such a technique should be used if there is no simple deterministic relation between input and output parameters. The simulation environment SENSOR (Software Environment for the Simulation of Optical Remote Sensing Systems) presented here includes a full model of the sensor system, the observed object and the atmosphere. The simulator consists of three parts. The first part describes the geometrical relations between object, sun, and sensor using a ray tracing algorithm. The second part of the simulation environment considers the radiometry. It calculates the at-sensor-radiance using a pre-calculated multidimensional lookup-table for the atmospheric boundary conditions and bi- directional reflectances. Part three consists of an optical and an electronic sensor model for the generation of digital images. Application-specific algorithms for data processing must be considered additionally. The benefit of using an end- to-end simulation approach is demonstrated, an example of a simulated APEX data cube is given, and preliminary steps of evaluation of SENSOR are carried out.
NASA Astrophysics Data System (ADS)
Zhao, Chun-yan; Li, Xin; Wei, Wei; Zheng, Xiao-bing
2016-10-01
With the progress of quantitative remote sensing, the acquisition of surface BRDF becomes more and more important. In order to improve the accuracy of the surface BRDF measurements, a VNIR-SWIR Bidirectional Reflectance Automatic Measurement System, which was developed by Hefei Institutes of Physical Science (HIPS), is introduced that allows in situ measurements of hyperspectral bidirectional reflectance data. Hyperspectral bidirectional reflectance distribution function data sets taken with the BRDF automatic measurement system nominally cover the spectral range between 390 and 2390 nm in 971 bands. In July 2007, September 2008, June 2011, we acquired a series of the BRDF data covered Dunhuang radiometric calibration test site in terms of the BRDF measurement system. We have not obtained such comprehensive and accurate data as they are, since 1990s when the site was built up. These data are applied to calibration for FY-2 and other satellites sensors. Field BRDF data of a Dunhuang site surface reveal a strong spectral variability. An anisotropy factor (ANIF), defined as the ratio between the directional reflectance and nadir reflectance over the hemisphere, is introduced as a surrogate measurement for the extent of spectral BRDF effects. The ANIF data show a very high correlation with the solar zenith angle due to multiple scattering effects over a desert site. Since surface geometry, multiple scattering, and BRDF effects are related, these findings may help to derive BRDF model parameters from the in-situ BRDF measurement remotely sensed hyperspectral data sets.
Seagrass Identification Using High-Resolution 532nm Bathymetric LiDAR and Hyperspectral Imagery
NASA Astrophysics Data System (ADS)
Pan, Z.; Prasad, S.; Starek, M. J.; Fernandez Diaz, J. C.; Glennie, C. L.; Carter, W. E.; Shrestha, R. L.; Singhania, A.; Gibeaut, J. C.
2013-12-01
Seagrass provides vital habitat for marine fisheries and is a key indicator species of coastal ecosystem vitality. Monitoring seagrass is therefore an important environmental initiative, but measuring details of seagrass distribution over large areas via remote sensing has proved challenging. Developments in airborne bathymetric light detection and ranging (LiDAR) provide great potential in this regard. Traditional bathymetric LiDAR systems have been limited in their ability to map within the shallow water zone (< 1 m) where seagrass is typically present due to limitations in receiver response and laser pulse length. Emergent short-pulse width bathymetric LiDAR sensors and waveform processing algorithms enable depth measurements in shallow water environments previously inaccessible. This 3D information of the benthic layer can be applied to detect seagrass and characterize its distribution. Researchers with the National Center for Airborne Laser Mapping (NCALM) at the University of Houston (UH) and the Coastal and Marine Geospatial Sciences Lab (CMGL) of the Harte Research Institute at Texas A&M University-Corpus Christi conducted a coordinated airborne and boat-based survey of the Redfish Bay State Scientific Area as part of a collaborative study to investigate the capabilities of bathymetric LiDAR and hyperspectral imaging for seagrass mapping. Redfish Bay, located along the middle Texas coast of the Gulf of Mexico, is a state scientific area designated for the purpose of protecting and studying native seagrasses. Redfish Bay is part of the broader Coastal Bend Bays estuary system recognized by the US Environmental Protection Agency (EPA) as a national estuary of significance. For this survey, UH acquired high-resolution discrete-return and full-waveform bathymetric data using their Optech Aquarius 532 nm green LiDAR. In a separate flight, UH collected 2 sets of hyperspectral imaging data (1.2-m pixel resolution and 72 bands, and 0.6m pixel resolution and 36 bands) with their CASI 1500 hyperspectral sensor. The ground survey was conducted by CMGL. The team used an airboat to collect in-situ radiometer measurements of sky irradiance and surface water reflectance at different locations in the bay. The team also collected water samples, GPS position, and depth. A follow-up survey was conducted to acquire ground-truth data of benthic type at over 80 locations within the bay. Two complementary approaches were developed to detect and map the seagrass cover over the study area - automated classification algorithms were validated with high spatial resolution hyperspectral imagery, and a continuous wavelet based signal processing and pulse broadening analysis of the digitized returns was performed with the full waveform of the bathymetric LiDAR. The two approaches were compared to the collected ground truth data of seagrass type, height, and location. Results of the evaluation will be presented, along with a preliminary discussion of the fusion of the LiDAR and hyperspectral imagery for improved overall classification accuracy.
NASA Astrophysics Data System (ADS)
Thenkabail, P. S.; Huete, A. R.
2012-12-01
This presentation summarizes the advances made over 40+ years in understanding, modeling, and mapping terrestrial vegetation as reported in the new book on "Hyperspectral Remote Sensing of Vegetation" (Publisher: Taylor and Francis inc.). The advent of spaceborne hyperspectral sensors or imaging spectroscopy (e.g., NASA's Hyperion, ESA's PROBA, and upcoming Italy's ASI's Prisma, Germany's DLR's EnMAP, Japanese HIUSI, NASA's HyspIRI) as well as the advancements in processing large volumes of hyperspectral data have generated tremendous interest in expanding the hyperspectral applications' knowledge base to large areas. Advances made in using hyperspectral data, relative to broadband spectral data, include: (a) significantly improved characterization and modeling of a wide array of biophysical and biochemical properties of vegetation, (b) the ability to discriminate plant species and vegetation types with high degree of accuracy, (c) reduced uncertainty in determining net primary productivity or carbon assessments from terrestrial vegetation, (d) improved crop productivity and water productivity models, (e) the ability to assess stress resulting from causes such as management practices, pests and disease, water deficit or water excess, and (f) establishing wavebands and indices with greater sensitivity for analyzing vegetation characteristics. Current state of knowledge on hyperspectral narrowbands (HNBs) for agricultural and vegetation studies inferred from the Book entitled hyperspectral remote sensing of vegetation by Thenkabail et al., 2011. Six study areas of the World for which we have extensive data from field spectroradiometers for 8 major world crops (wheat, corn, rice, barley, soybeans, pulses, and cotton). Approx. 10,500 such data points will be used in crop modeling and in building spectral libraries.
Vanegas, Fernando; Bratanov, Dmitry; Powell, Kevin; Weiss, John; Gonzalez, Felipe
2018-01-17
Recent advances in remote sensed imagery and geospatial image processing using unmanned aerial vehicles (UAVs) have enabled the rapid and ongoing development of monitoring tools for crop management and the detection/surveillance of insect pests. This paper describes a (UAV) remote sensing-based methodology to increase the efficiency of existing surveillance practices (human inspectors and insect traps) for detecting pest infestations (e.g., grape phylloxera in vineyards). The methodology uses a UAV integrated with advanced digital hyperspectral, multispectral, and RGB sensors. We implemented the methodology for the development of a predictive model for phylloxera detection. In this method, we explore the combination of airborne RGB, multispectral, and hyperspectral imagery with ground-based data at two separate time periods and under different levels of phylloxera infestation. We describe the technology used-the sensors, the UAV, and the flight operations-the processing workflow of the datasets from each imagery type, and the methods for combining multiple airborne with ground-based datasets. Finally, we present relevant results of correlation between the different processed datasets. The objective of this research is to develop a novel methodology for collecting, processing, analising and integrating multispectral, hyperspectral, ground and spatial data to remote sense different variables in different applications, such as, in this case, plant pest surveillance. The development of such methodology would provide researchers, agronomists, and UAV practitioners reliable data collection protocols and methods to achieve faster processing techniques and integrate multiple sources of data in diverse remote sensing applications.
Zhao, Hui-Jie; Jiang, Cheng; Jia, Guo-Rui
2014-01-01
Adjacency effects may introduce errors in the quantitative applications of hyperspectral remote sensing, of which the significant item is the earth-atmosphere coupling radiance. However, the surrounding relief and shadow induce strong changes in hyperspectral images acquired from rugged terrain, which is not accurate to describe the spectral characteristics. Furthermore, the radiative coupling process between the earth and the atmosphere is more complex over the rugged scenes. In order to meet the requirements of real-time processing in data simulation, an equivalent reflectance of background was developed by taking into account the topography and the geometry between surroundings and targets based on the radiative transfer process. The contributions of the coupling to the signal at sensor level were then evaluated. This approach was integrated to the sensor-level radiance simulation model and then validated through simulating a set of actual radiance data. The results show that the visual effect of simulated images is consistent with that of observed images. It was also shown that the spectral similarity is improved over rugged scenes. In addition, the model precision is maintained at the same level over flat scenes.
Hyperspectral imaging applied to forensic medicine
NASA Astrophysics Data System (ADS)
Malkoff, Donald B.; Oliver, William R.
2000-03-01
Remote sensing techniques now include the use of hyperspectral infrared imaging sensors covering the mid-and- long wave regions of the spectrum. They have found use in military surveillance applications due to their capability for detection and classification of a large variety of both naturally occurring and man-made substances. The images they produce reveal the spatial distributions of spectral patterns that reflect differences in material temperature, texture, and composition. A program is proposed for demonstrating proof-of-concept in using a portable sensor of this type for crime scene investigations. It is anticipated to be useful in discovering and documenting the affects of trauma and/or naturally occurring illnesses, as well as detecting blood spills, tire patterns, toxic chemicals, skin injection sites, blunt traumas to the body, fluid accumulations, congenital biochemical defects, and a host of other conditions and diseases. This approach can significantly enhance capabilities for determining the circumstances of death. Potential users include law enforcement organizations (police, FBI, CIA), medical examiners, hospitals/emergency rooms, and medical laboratories. Many of the image analysis algorithms already in place for hyperspectral remote sensing and crime scene investigations can be applied to the interpretation of data obtained in this program.
NASA Astrophysics Data System (ADS)
Jia, Mingming; Zhang, Yuanzhi; Wang, Zongming; Song, Kaishan; Ren, Chunying
2014-12-01
Mangrove species compositions and distributions are essential for conservation and restoration efforts. In this study, hyperspectral data of EO-1 HYPERION sensor and high spatial resolution data of SPOT-5 sensor were used in Mai Po mangrove species mapping. Objected-oriented method was used in mangrove species classification processing. Firstly, mangrove objects were obtained via segmenting high spatial resolution data of SPOT-5. Then the objects were classified into different mangrove species based on the spectral differences of HYPERION image. The classification result showed that in the top canopy, Kandelia obovata and Avicennia marina dominated Mai Po Marshes Natural Reserve, with area of 196.8 ha and 110.8 ha, respectively, Acanthus ilicifolius and Aegiceras corniculatum were mixed together and living at the edge of channels with an area of 11.7 ha. Additionally, mangrove species shows clearly zonations and associations in the Mai Po Core Zone. The overall accuracy of our mangrove map was 88% and the Kappa confidence was 0.83, which indicated great potential of using hyperspectral and high-resolution data for distinguishing and mapping mangrove species.
Airborne camera and spectrometer experiments and data evaluation
NASA Astrophysics Data System (ADS)
Lehmann, F. F.; Bucher, T.; Pless, S.; Wohlfeil, J.; Hirschmüller, H.
2009-09-01
New stereo push broom camera systems have been developed at German Aerospace Centre (DLR). The new small multispectral systems (Multi Functional Camerahead - MFC, Advanced Multispectral Scanner - AMS) are light weight, compact and display three or five RGB stereo lines of 8000, 10 000 or 14 000 pixels, which are used for stereo processing and the generation of Digital Surface Models (DSM) and near True Orthoimage Mosaics (TOM). Simultaneous acquisition of different types of MFC-cameras for infrared and RGB data has been successfully tested. All spectral channels record the image data in full resolution, pan-sharpening is not necessary. Analogue to the line scanner data an automatic processing chain for UltraCamD and UltraCamX exists. The different systems have been flown for different types of applications; main fields of interest among others are environmental applications (flooding simulations, monitoring tasks, classification) and 3D-modelling (e.g. city mapping). From the DSM and TOM data Digital Terrain Models (DTM) and 3D city models are derived. Textures for the facades are taken from oblique orthoimages, which are created from the same input data as the TOM and the DOM. The resulting models are characterised by high geometric accuracy and the perfect fit of image data and DSM. The DLR is permanently developing and testing a wide range of sensor types and imaging platforms for terrestrial and space applications. The MFC-sensors have been flown in combination with laser systems and imaging spectrometers and special data fusion products have been developed. These products include hyperspectral orthoimages and 3D hyperspectral data.
Chu, Bingquan; Yu, Keqiang; Zhao, Yanru
2018-01-01
This study aimed to develop an approach for quickly and noninvasively differentiating the roasting degrees of coffee beans using hyperspectral imaging (HSI). The qualitative properties of seven roasting degrees of coffee beans (unroasted, light, moderately light, light medium, medium, moderately dark, and dark) were assayed, including moisture, crude fat, trigonelline, chlorogenic acid, and caffeine contents. These properties were influenced greatly by the respective roasting degree. Their hyperspectral images (874–1734 nm) were collected using a hyperspectral reflectance imaging system. The spectra of the regions of interest were manually extracted from the HSI images. Then, principal components analysis was employed to compress the spectral data and select the optimal wavelengths based on loading weight analysis. Meanwhile, the random frog (RF) methodology and the successive projections algorithm were also adopted to pick effective wavelengths from the spectral data. Finally, least squares support vector machine (LS-SVM) was utilized to establish discriminative models using spectral reflectance and corresponding labeled classes for each degree of roast sample. The results showed that the LS-SVM model, established by the RF selecting method, with eight wavelengths performed very well, achieving an overall classification accuracy of 90.30%. In conclusion, HSI was illustrated as a potential technique for noninvasively classifying the roasting degrees of coffee beans and might have an important application for the development of nondestructive, real-time, and portable sensors to monitor the roasting process of coffee beans. PMID:29671781
Chu, Bingquan; Yu, Keqiang; Zhao, Yanru; He, Yong
2018-04-19
This study aimed to develop an approach for quickly and noninvasively differentiating the roasting degrees of coffee beans using hyperspectral imaging (HSI). The qualitative properties of seven roasting degrees of coffee beans (unroasted, light, moderately light, light medium, medium, moderately dark, and dark) were assayed, including moisture, crude fat, trigonelline, chlorogenic acid, and caffeine contents. These properties were influenced greatly by the respective roasting degree. Their hyperspectral images (874⁻1734 nm) were collected using a hyperspectral reflectance imaging system. The spectra of the regions of interest were manually extracted from the HSI images. Then, principal components analysis was employed to compress the spectral data and select the optimal wavelengths based on loading weight analysis. Meanwhile, the random frog (RF) methodology and the successive projections algorithm were also adopted to pick effective wavelengths from the spectral data. Finally, least squares support vector machine (LS-SVM) was utilized to establish discriminative models using spectral reflectance and corresponding labeled classes for each degree of roast sample. The results showed that the LS-SVM model, established by the RF selecting method, with eight wavelengths performed very well, achieving an overall classification accuracy of 90.30%. In conclusion, HSI was illustrated as a potential technique for noninvasively classifying the roasting degrees of coffee beans and might have an important application for the development of nondestructive, real-time, and portable sensors to monitor the roasting process of coffee beans.
Detection of cracks on tomatoes using hyperspectral near-infrared reflectance imaging system
USDA-ARS?s Scientific Manuscript database
The objective of this study was to evaluate the use of hyperspectral near-infrared (NIR) reflectance imaging techniques for detection of cuticle cracks on tomatoes. A hyperspectral near-infrared reflectance imaging system in the region of 1000-1700 nm was used to obtain hyperspectral reflectance ima...
Hyperspectral data discrimination methods
NASA Astrophysics Data System (ADS)
Casasent, David P.; Chen, Xuewen
2000-12-01
Hyperspectral data provides spectral response information that provides detailed chemical, moisture, and other description of constituent parts of an item. These new sensor data are useful in USDA product inspection. However, such data introduce problems such as the curse of dimensionality, the need to reduce the number of features used to accommodate realistic small training set sizes, and the need to employ discriminatory features and still achieve good generalization (comparable training and test set performance). Several two-step methods are compared to a new and preferable single-step spectral decomposition algorithm. Initial results on hyperspectral data for good/bad almonds and for good/bad (aflatoxin infested) corn kernels are presented. The hyperspectral application addressed differs greatly from prior USDA work (PLS) in which the level of a specific channel constituent in food was estimated. A validation set (separate from the test set) is used in selecting algorithm parameters. Threshold parameters are varied to select the best Pc operating point. Initial results show that nonlinear features yield improved performance.
NASA Astrophysics Data System (ADS)
Liu, Zhaoxin; Zhao, Liaoying; Li, Xiaorun; Chen, Shuhan
2018-04-01
Owing to the limitation of spatial resolution of the imaging sensor and the variability of ground surfaces, mixed pixels are widesperead in hyperspectral imagery. The traditional subpixel mapping algorithms treat all mixed pixels as boundary-mixed pixels while ignoring the existence of linear subpixels. To solve this question, this paper proposed a new subpixel mapping method based on linear subpixel feature detection and object optimization. Firstly, the fraction value of each class is obtained by spectral unmixing. Secondly, the linear subpixel features are pre-determined based on the hyperspectral characteristics and the linear subpixel feature; the remaining mixed pixels are detected based on maximum linearization index analysis. The classes of linear subpixels are determined by using template matching method. Finally, the whole subpixel mapping results are iteratively optimized by binary particle swarm optimization algorithm. The performance of the proposed subpixel mapping method is evaluated via experiments based on simulated and real hyperspectral data sets. The experimental results demonstrate that the proposed method can improve the accuracy of subpixel mapping.
NASA Astrophysics Data System (ADS)
Bachmann, Charles M.; Gray, Deric; Abelev, Andrei; Philpot, William; Montes, Marcos J.; Fusina, Robert; Musser, Joseph; Li, Rong-Rong; Vermillion, Michael; Smith, Geoffrey; Korwan, Daniel; Snow, Charlotte; Miller, W. David; Gardner, Joan; Sletten, Mark; Georgiev, Georgi; Truitt, Barry; Killmon, Marcus; Sellars, Jon; Woolard, Jason; Parrish, Christopher; Schwarzscild, Art
2012-06-01
In June 2011, a multi-sensor airborne remote sensing campaign was flown at the Virginia Coast Reserve Long Term Ecological Research site with coordinated ground and water calibration and validation (cal/val) measurements. Remote sensing imagery acquired during the ten day exercise included hyperspectral imagery (CASI-1500), topographic LiDAR, and thermal infra-red imagery, all simultaneously from the same aircraft. Airborne synthetic aperture radar (SAR) data acquisition for a smaller subset of sites occurred in September 2011 (VCR'11). Focus areas for VCR'11 were properties of beaches and tidal flats and barrier island vegetation and, in the water column, shallow water bathymetry. On land, cal/val emphasized tidal flat and beach grain size distributions, density, moisture content, and other geotechnical properties such as shear and bearing strength (dynamic deflection modulus), which were related to hyperspectral BRDF measurements taken with the new NRL Goniometer for Outdoor Portable Hyperspectral Earth Reflectance (GOPHER). This builds on our earlier work at this site in 2007 related to beach properties and shallow water bathymetry. A priority for VCR'11 was to collect and model relationships between hyperspectral imagery, acquired from the aircraft at a variety of different phase angles, and geotechnical properties of beaches and tidal flats. One aspect of this effort was a demonstration that sand density differences are observable and consistent in reflectance spectra from GOPHER data, in CASI hyperspectral imagery, as well as in hyperspectral goniometer measurements conducted in our laboratory after VCR'11.
Design and operation of SUCHI: the space ultra-compact hyperspectral imager for a small satellite
NASA Astrophysics Data System (ADS)
Crites, S. T.; Lucey, P. G.; Wright, R.; Chan, J.; Garbeil, H.; Horton, K. A.; Imai, A.; Pilger, E. J.; Wood, M.; Yoneshige, Lance
2014-06-01
The primary payload on the University of Hawaii-built `HiakaSat' micro-satellite will be the Space Ultra Compact Hyperspectral Imager (SUCHI). SUCHI is a low-mass (<9kg), low-volume (10x10x36 cm3) long wave infrared hyperspectral imager designed and built at the University of Hawaii. SUCHI is based on a variable-gap Fabry-Perot interferometer employed as a Fourier transform spectrometer with images collected by a commercial 320x256 microbolometer array. The microbolometer camera and vacuum-sensitive electronics are contained within a sealed vessel at 1 atm. SUCHI will collect spectral radiance data from 8 to 14 microns and demonstrate the potential of this instrument for geological studies from orbit (e.g. mapping of major rock-forming minerals) and volcanic hazard observation and assessment (e.g. quantification of volcanic sulfur dioxide pollution and lava flow cooling rates). The sensor has been integrated with the satellite which will launch on the Office of Responsive Space ORS-4 mission scheduled for 2014. The primary mission will last 6 months, with extended operations anticipated for approximately 2 years. A follow-on mission has been proposed to perform imaging of Earth's surface in the 3-5 micron range with a field of view of 5 km with 5.25 m sampling (from a 350 km orbit). The 19-kg proposed instrument will be a prototype sensor for a constellation of small satellites for Earth imaging. The integrated satellite properties will be incorporated into the Hawaii Space Flight Laboratory's constellation maintenance software environment COSMOS (Comprehensive Openarchitecture Space Mission Operations System) to ease future implementation of the instrument as part of a constellation.
Phenoliner: A New Field Phenotyping Platform for Grapevine Research
Kicherer, Anna; Herzog, Katja; Bendel, Nele; Klück, Hans-Christian; Backhaus, Andreas; Wieland, Markus; Klingbeil, Lasse; Läbe, Thomas; Hohl, Christian; Petry, Willi; Kuhlmann, Heiner; Seiffert, Udo; Töpfer, Reinhard
2017-01-01
In grapevine research the acquisition of phenotypic data is largely restricted to the field due to its perennial nature and size. The methodologies used to assess morphological traits and phenology are mainly limited to visual scoring. Some measurements for biotic and abiotic stress, as well as for quality assessments, are done by invasive measures. The new evolving sensor technologies provide the opportunity to perform non-destructive evaluations of phenotypic traits using different field phenotyping platforms. One of the biggest technical challenges for field phenotyping of grapevines are the varying light conditions and the background. In the present study the Phenoliner is presented, which represents a novel type of a robust field phenotyping platform. The vehicle is based on a grape harvester following the concept of a moveable tunnel. The tunnel it is equipped with different sensor systems (RGB and NIR camera system, hyperspectral camera, RTK-GPS, orientation sensor) and an artificial broadband light source. It is independent from external light conditions and in combination with artificial background, the Phenoliner enables standardised acquisition of high-quality, geo-referenced sensor data. PMID:28708080
Phenoliner: A New Field Phenotyping Platform for Grapevine Research.
Kicherer, Anna; Herzog, Katja; Bendel, Nele; Klück, Hans-Christian; Backhaus, Andreas; Wieland, Markus; Rose, Johann Christian; Klingbeil, Lasse; Läbe, Thomas; Hohl, Christian; Petry, Willi; Kuhlmann, Heiner; Seiffert, Udo; Töpfer, Reinhard
2017-07-14
In grapevine research the acquisition of phenotypic data is largely restricted to the field due to its perennial nature and size. The methodologies used to assess morphological traits and phenology are mainly limited to visual scoring. Some measurements for biotic and abiotic stress, as well as for quality assessments, are done by invasive measures. The new evolving sensor technologies provide the opportunity to perform non-destructive evaluations of phenotypic traits using different field phenotyping platforms. One of the biggest technical challenges for field phenotyping of grapevines are the varying light conditions and the background. In the present study the Phenoliner is presented, which represents a novel type of a robust field phenotyping platform. The vehicle is based on a grape harvester following the concept of a moveable tunnel. The tunnel it is equipped with different sensor systems (RGB and NIR camera system, hyperspectral camera, RTK-GPS, orientation sensor) and an artificial broadband light source. It is independent from external light conditions and in combination with artificial background, the Phenoliner enables standardised acquisition of high-quality, geo-referenced sensor data.
Han, Yang; Qin, Wei-chao; Wang, Ye-qiao
2014-06-01
In recent years, the area of saline soil in the west of Jilin Province expands increasingly, and soil quality is becoming more and more worsening, which not only caused great damage to the land resources, but also posed a huge threat to agricultural production and ecological environment. We combined with polarized and hyperspectral information to establish the general model and scientifically validated it. The results show that there is a strong relationship between the saline soil hyperspectral polarized information and its physicochemical property parameters, and with regularity. This paper has important theoretical significance for the mechanism of saline soil surface reflection, recognition and classification of saline soil and background, the utilization of soil polarization sensor and the development of quantitative remote sensing.
NASA Astrophysics Data System (ADS)
Truitt, Paul W.; Soliz, Peter; Meigs, Andrew D.; Otten, Leonard John, III
2000-11-01
A Fourier Transform hyperspectral imager was integrated onto a standard clinical fundus camera, a Zeiss FF3, for the purposes of spectrally characterizing normal anatomical and pathological features in the human ocular fundus. To develop this instrument an existing FDA approved retinal camera was selected to avoid the difficulties of obtaining new FDA approval. Because of this, several unusual design constraints were imposed on the optical configuration. Techniques to calibrate the sensor and to define where the hyperspectral pushbroom stripe was located on the retina were developed, including the manufacturing of an artificial eye with calibration features suitable for a spectral imager. In this implementation the Fourier transform hyperspectral imager can collect over a hundred 86 cm-1 spectrally resolved bands with 12 micro meter/pixel spatial resolution within the 1050 nm to 450 nm band. This equates to 2 nm to 8 nm spectral resolution depending on the wavelength. For retinal observations the band of interest tends to lie between 475 nm and 790 nm. The instrument has been in use over the last year successfully collecting hyperspectral images of the optic disc, retinal vessels, choroidal vessels, retinal backgrounds, and macula diabetic macular edema, and lesions of age-related macular degeneration.
Wang, Yan-Cang; Gu, Xiao-He; Zhu, Jin-Shan; Long, Hui-Ling; Xu, Peng; Liao, Qin-Hong
2014-01-01
The present study aims to assess the feasibility of multi-spectral data in monitoring soil organic matter content. The data source comes from hyperspectral measured under laboratory condition, and simulated multi-spectral data from the hyperspectral. According to the reflectance response functions of Landsat TM and HJ-CCD (the Environment and Disaster Reduction Small Satellites, HJ), the hyperspectra were resampled for the corresponding bands of multi-spectral sensors. The correlation between hyperspectral, simulated reflectance spectra and organic matter content was calculated, and used to extract the sensitive bands of the organic matter in the north fluvo-aquic soil. The partial least square regression (PLSR) method was used to establish experiential models to estimate soil organic matter content. Both root mean squared error (RMSE) and coefficient of the determination (R2) were introduced to test the precision and stability of the modes. Results demonstrate that compared with the hyperspectral data, the best model established by simulated multi-spectral data gives a good result for organic matter content, with R2=0.586, and RMSE=0.280. Therefore, using multi-spectral data to predict tide soil organic matter content is feasible.
Parallel hyperspectral compressive sensing method on GPU
NASA Astrophysics Data System (ADS)
Bernabé, Sergio; Martín, Gabriel; Nascimento, José M. P.
2015-10-01
Remote hyperspectral sensors collect large amounts of data per flight usually with low spatial resolution. It is known that the bandwidth connection between the satellite/airborne platform and the ground station is reduced, thus a compression onboard method is desirable to reduce the amount of data to be transmitted. This paper presents a parallel implementation of an compressive sensing method, called parallel hyperspectral coded aperture (P-HYCA), for graphics processing units (GPU) using the compute unified device architecture (CUDA). This method takes into account two main properties of hyperspectral dataset, namely the high correlation existing among the spectral bands and the generally low number of endmembers needed to explain the data, which largely reduces the number of measurements necessary to correctly reconstruct the original data. Experimental results conducted using synthetic and real hyperspectral datasets on two different GPU architectures by NVIDIA: GeForce GTX 590 and GeForce GTX TITAN, reveal that the use of GPUs can provide real-time compressive sensing performance. The achieved speedup is up to 20 times when compared with the processing time of HYCA running on one core of the Intel i7-2600 CPU (3.4GHz), with 16 Gbyte memory.
NASA Astrophysics Data System (ADS)
Shecter, Liat; Oiknine, Yaniv; August, Isaac; Stern, Adrian
2017-09-01
Recently we presented a Compressive Sensing Miniature Ultra-spectral Imaging System (CS-MUSI)1 . This system consists of a single Liquid Crystal (LC) phase retarder as a spectral modulator and a gray scale sensor array to capture a multiplexed signal of the imaged scene. By designing the LC spectral modulator in compliance with the Compressive Sensing (CS) guidelines and applying appropriate algorithms we demonstrated reconstruction of spectral (hyper/ ultra) datacubes from an order of magnitude fewer samples than taken by conventional sensors. The LC modulator is designed to have an effective width of a few tens of micrometers, therefore it is prone to imperfections and spatial nonuniformity. In this work, we present the study of this nonuniformity and present a mathematical algorithm that allows the inference of the spectral transmission over the entire cell area from only a few calibration measurements.
Atmospheric radiance interpolation for the modeling of hyperspectral data
NASA Astrophysics Data System (ADS)
Fuehrer, Perry; Healey, Glenn; Rauch, Brian; Slater, David; Ratkowski, Anthony
2008-04-01
The calibration of data from hyperspectral sensors to spectral radiance enables the use of physical models to predict measured spectra. Since environmental conditions are often unknown, material detection algorithms have emerged that utilize predicted spectra over ranges of environmental conditions. The predicted spectra are typically generated by a radiative transfer (RT) code such as MODTRAN TM. Such techniques require the specification of a set of environmental conditions. This is particularly challenging in the LWIR for which temperature and atmospheric constituent profiles are required as inputs for the RT codes. We have developed an automated method for generating environmental conditions to obtain a desired sampling of spectra in the sensor radiance domain. Our method provides a way of eliminating the usual problems encountered, because sensor radiance spectra depend nonlinearly on the environmental parameters, when model conditions are specified by a uniform sampling of environmental parameters. It uses an initial set of radiance vectors concatenated over a set of conditions to define the mapping from environmental conditions to sensor spectral radiance. This approach enables a given number of model conditions to span the space of desired radiance spectra and improves both the accuracy and efficiency of detection algorithms that rely upon use of predicted spectra.
Optimized extreme learning machine for urban land cover classification using hyperspectral imagery
NASA Astrophysics Data System (ADS)
Su, Hongjun; Tian, Shufang; Cai, Yue; Sheng, Yehua; Chen, Chen; Najafian, Maryam
2017-12-01
This work presents a new urban land cover classification framework using the firefly algorithm (FA) optimized extreme learning machine (ELM). FA is adopted to optimize the regularization coefficient C and Gaussian kernel σ for kernel ELM. Additionally, effectiveness of spectral features derived from an FA-based band selection algorithm is studied for the proposed classification task. Three sets of hyperspectral databases were recorded using different sensors, namely HYDICE, HyMap, and AVIRIS. Our study shows that the proposed method outperforms traditional classification algorithms such as SVM and reduces computational cost significantly.
Spectrometry of Pasture Condition and Biogeochemistry in the Central Amazon
NASA Technical Reports Server (NTRS)
Asner, Gregory P.; Townsend, Alan R.; Bustamante, Mercedes M. C.
1999-01-01
Regional analyses of Amazon cattle pasture biogeochemistry are difficult due to the complexity of human, edaphic, biotic and climatic factors and persistent cloud cover in satellite observations. We developed a method to estimate key biophysical properties of Amazon pastures using hyperspectral reflectance data and photon transport inverse modeling. Remote estimates of live and senescent biomass were strongly correlated with plant-available forms of soil phosphorus and calcium. These results provide a basis for monitoring pasture condition and biogeochemistry in the Amazon Basin using spaceborne hyperspectral sensors.
NASA Astrophysics Data System (ADS)
Gopalan, A.; Doelling, D. R.; Scarino, B. R.; Chee, T.; Haney, C.; Bhatt, R.
2016-12-01
The CERES calibration group at NASA/LaRC has developed and deployed a suite of online data exploration and visualization tools targeted towards a range of spaceborne VIS/IR imager calibration applications for the Earth Science community. These web-based tools are driven by the open-source R (Language for Statistical Computing and Visualization) with a web interface for the user to customize the results according to their application. The tool contains a library of geostationary and sun-synchronous imager spectral response functions (SRF), incoming solar spectra, SCIAMACHY and Hyperion Earth reflected visible hyper-spectral data, and IASI IR hyper-spectral data. The suite of six specific web-based tools was designed to provide critical information necessary for sensor cross-calibration. One of the challenges of sensor cross-calibration is accounting for spectral band differences and may introduce biases if not handled properly. The spectral band adjustment factors (SBAF) are a function of the earth target, atmospheric and cloud conditions or scene type and angular conditions, when obtaining sensor radiance pairs. The SBAF will need to be customized for each inter-calibration target and sensor pair. The advantages of having a community open source tool are: 1) only one archive of SCIAMACHY, Hyperion, and IASI datasets needs to be maintained, which is on the order of 50TB. 2) the framework will allow easy incorporation of new satellite SRFs and hyper-spectral datasets and associated coincident atmospheric and cloud properties, such as PW. 3) web tool or SBAF algorithm improvements or suggestions when incorporated can benefit the community at large. 4) The customization effort is on the user rather than on the host. In this paper we discuss each of these tools in detail and explore the variety of advanced options that can be used to constrain the results along with specific use cases to highlight the value-added by these datasets.
Multi sensor satellite imagers for commercial remote sensing
NASA Astrophysics Data System (ADS)
Cronje, T.; Burger, H.; Du Plessis, J.; Du Toit, J. F.; Marais, L.; Strumpfer, F.
2005-10-01
This paper will discuss and compare recent refractive and catodioptric imager designs developed and manufactured at SunSpace for Multi Sensor Satellite Imagers with Panchromatic, Multi-spectral, Area and Hyperspectral sensors on a single Focal Plane Array (FPA). These satellite optical systems were designed with applications to monitor food supplies, crop yield and disaster monitoring in mind. The aim of these imagers is to achieve medium to high resolution (2.5m to 15m) spatial sampling, wide swaths (up to 45km) and noise equivalent reflectance (NER) values of less than 0.5%. State-of-the-art FPA designs are discussed and address the choice of detectors to achieve these performances. Special attention is given to thermal robustness and compactness, the use of folding prisms to place multiple detectors in a large FPA and a specially developed process to customize the spectral selection with the need to minimize mass, power and cost. A refractive imager with up to 6 spectral bands (6.25m GSD) and a catodioptric imager with panchromatic (2.7m GSD), multi-spectral (6 bands, 4.6m GSD), hyperspectral (400nm to 2.35μm, 200 bands, 15m GSD) sensors on the same FPA will be discussed. Both of these imagers are also equipped with real time video view finding capabilities. The electronic units could be subdivided into the Front-End Electronics and Control Electronics with analogue and digital signal processing. A dedicated Analogue Front-End is used for Correlated Double Sampling (CDS), black level correction, variable gain and up to 12-bit digitizing and high speed LVDS data link to a mass memory unit.
Forest height Mapping using the fusion of Lidar and MULTI-ANGLE spectral data
NASA Astrophysics Data System (ADS)
Pang, Y.; Li, Z.
2016-12-01
Characterizing the complexity of forest ecosystem over large area is highly complex. Light detection and Ranging (LIDAR) approaches have demonstrated a high capacity to accurately estimate forest structural parameters. A number of satellite mission concepts have been proposed to fuse LiDAR with other optical imagery allowing Multi-angle spectral observations to be captured using the Bidirectional Reflectance Distribution Function (BRDF) characteristics of forests. China is developing the concept of Chinese Terrestrial Carbon Mapping Satellite. A multi-beam waveform Lidar is the main sensor. A multi-angle imagery system is considered as the spatial mapping sensor. In this study, we explore the fusion potential of Lidar and multi-angle spectral data to estimate forest height across different scales. We flew intensive airborne Lidar and Multi-angle hyperspectral data in Genhe Forest Ecological Research Station, Northeast China. Then extended the spatial scale with some long transect flights to cover more forest structures. Forest height data derived from airborne lidar data was used as reference data and the multi-angle hyperspectral data was used as model inputs. Our results demonstrate that the multi-angle spectral data can be used to estimate forest height with the RMSE of 1.1 m with an R2 approximately 0.8.
Improved detection and false alarm rejection for chemical vapors using passive hyperspectral imaging
NASA Astrophysics Data System (ADS)
Marinelli, William J.; Miyashiro, Rex; Gittins, Christopher M.; Konno, Daisei; Chang, Shing; Farr, Matt; Perkins, Brad
2013-05-01
Two AIRIS sensors were tested at Dugway Proving Grounds against chemical agent vapor simulants. The primary objectives of the test were to: 1) assess performance of algorithm improvements designed to reduce false alarm rates with a special emphasis on solar effects, and 3) evaluate performance in target detection at 5 km. The tests included 66 total releases comprising alternating 120 kg glacial acetic acid (GAA) and 60 kg triethyl phosphate (TEP) events. The AIRIS sensors had common algorithms, detection thresholds, and sensor parameters. The sensors used the target set defined for the Joint Service Lightweight Chemical Agent Detector (JSLSCAD) with TEP substituted for GA and GAA substituted for VX. They were exercised at two sites located at either 3 km or 5 km from the release point. Data from the tests will be presented showing that: 1) excellent detection capability was obtained at both ranges with significantly shorter alarm times at 5 km, 2) inter-sensor comparison revealed very comparable performance, 3) false alarm rates < 1 incident per 10 hours running time over 143 hours of sensor operations were achieved, 4) algorithm improvements eliminated both solar and cloud false alarms. The algorithms enabling the improved false alarm rejection will be discussed. The sensor technology has recently been extended to address the problem of detection of liquid and solid chemical agents and toxic industrial chemical on surfaces. The phenomenology and applicability of passive infrared hyperspectral imaging to this problem will be discussed and demonstrated.
EARTHS (Earth Albedo Radiometer for Temporal Hemispheric Sensing)
NASA Astrophysics Data System (ADS)
Ackleson, S. G.; Bowles, J. H.; Mouroulis, P.; Philpot, W. D.
2018-02-01
We propose a concept for measuring the hemispherical Earth albedo in high temporal and spectral resolution using a hyperspectral imaging sensor deployed on a lunar satellite, such as the proposed NASA Deep Space Gateway.
Spatial/Spectral Identification of Endmembers from AVIRIS Data using Mathematical Morphology
NASA Technical Reports Server (NTRS)
Plaza, Antonio; Martinez, Pablo; Gualtieri, J. Anthony; Perez, Rosa M.
2001-01-01
During the last several years, a number of airborne and satellite hyperspectral sensors have been developed or improved for remote sensing applications. Imaging spectrometry allows the detection of materials, objects and regions in a particular scene with a high degree of accuracy. Hyperspectral data typically consist of hundreds of thousands of spectra, so the analysis of this information is a key issue. Mathematical morphology theory is a widely used nonlinear technique for image analysis and pattern recognition. Although it is especially well suited to segment binary or grayscale images with irregular and complex shapes, its application in the classification/segmentation of multispectral or hyperspectral images has been quite rare. In this paper, we discuss a new completely automated methodology to find endmembers in the hyperspectral data cube using mathematical morphology. The extension of classic morphology to the hyperspectral domain allows us to integrate spectral and spatial information in the analysis process. In Section 3, some basic concepts about mathematical morphology and the technical details of our algorithm are provided. In Section 4, the accuracy of the proposed method is tested by its application to real hyperspectral data obtained from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imaging spectrometer. Some details about these data and reference results, obtained by well-known endmember extraction techniques, are provided in Section 2. Finally, in Section 5 we expose the main conclusions at which we have arrived.
Mapping water surface roughness in a shallow, gravel-bed river using hyperspectral imagery
NASA Astrophysics Data System (ADS)
Overstreet, B. T.; Legleiter, C. J.
2014-12-01
Rapid advances in remote sensing are narrowing the gap between the data available for characterizing physical and biological processes in rivers and the information needed to guide river management decisions. The availability and quality of hyperspectral imagery have increased drastically over the past 20 years and hyperspectral data is now used in a number of different capacities that range from classifying riverine environments to measuring river bathymetry. A fundamental challenge in relating the spectral data from images to biophysical processes is the difficulty of isolating individual contributions to the at-sensor radiance, each associated with a different component of the fluvial environment. In this presentation we describe a method for isolating the contribution of light reflected from the water surface, or sun glint, from a hyperspectral image of a shallow gravel-bed river. We show that isolation and removal of sun glint can improve the accuracy of spectrally-based depth retrieval in cases where sun glint dominates the at-sensor radiance. Observed-vs.-predicted R2 values for depth retrieval improved from 0.56 to 0.68 following sun glint removal. In addition to clarifying the signal associated with the water column and bed, isolating sun glint could unlock important hydraulic information contained within the topography of the water surface. We present data from flume and field experiments suggesting that the intensity of sun glint is a function of water surface roughness. In rivers, water surface roughness depends on local flow hydraulics: depth, velocity, and bed material grain size. To explore this relationship, we coupled maps of image-derived sun glint with hydraulic measurements collected with a kayak-borne acoustic Doppler current profiler along 2 km of the Snake River in Grand Teton National Park. Spatial patterns of sun glint are spatially correlated with field observations of near-surface velocity and depth, suggesting that reach scale hydraulics could be mapped from hyperspectral images. These findings also suggest that aquatic habitats, which are often associated with specific hydraulic conditions and manifested as distinct surface textures, could be mapped quantitatively over large areas using hyperspectral imagery.
Multipurpose hyperspectral imaging system
USDA-ARS?s Scientific Manuscript database
A hyperspectral imaging system of high spectral and spatial resolution that incorporates several innovative features has been developed to incorporate a focal plane scanner (U.S. Patent 6,166,373). This feature enables the system to be used for both airborne/spaceborne and laboratory hyperspectral i...
Coral Reef Remote Sensing Using Simulated VIIRS and LDCM Imagery
NASA Technical Reports Server (NTRS)
Estep, Leland; Spruce, Joseph P.; Blonski, Slawomir; Moore, Roxzana
2008-01-01
The Rapid Prototyping Capability (RPC) node at NASA Stennis Space Center, MS, was used to simulate NASA next-generation sensor imagery over well-known coral reef areas: Looe Key, FL, and Kaneohe Bay, HI. The objective was to assess the degree to which next-generation sensor systems-the Visible/Infrared Imager/Radiometer Suite (VIIRS) and the Landsat Data Continuity Mission (LDCM)- might provide key input to the National Oceanographic and Atmospheric Administration (NOAA) Integrated Coral Observing Network (ICON)/Coral Reef Early Warning System (CREWS) Decision Support Tool (DST). The DST data layers produced from the simulated imagery concerned water quality and benthic classification map layers. The water optical parameters of interest were chlorophyll (Chl) and the absorption coefficient (a). The input imagery used by the RPC for simulation included spaceborne (Hyperion) and airborne (AVIRIS) hyperspectral data. Specific field data to complement and aid in validation of the overflight data was used when available. The results of the experiment show that the next-generation sensor systems are capable of providing valuable data layer resources to NOAA s ICON/CREWS DST.
Coral Reef Remote Sensing using Simulated VIIRS and LDCM Imagery
NASA Technical Reports Server (NTRS)
Estep, Leland; Spruce, Joseph P.
2007-01-01
The Rapid Prototyping Capability (RPC) node at NASA Stennis Space Center, MS, was used to simulate NASA next-generation sensor imagery over well-known coral reef areas: Looe Key, FL, and Kaneohe Bay, HI. The objective was to assess the degree to which next-generation sensor systems the Visible/Infrared Imager/Radiometer Suite (VIIRS) and the Landsat Data Continuity Mission (LDCM) might provide key input to the National Oceanographic and Atmospheric Administration (NOAA) Integrated Coral Observing Network (ICON)/Coral Reef Early Warning System (CREWS) Decision Support Tool (DST). The DST data layers produced from the simulated imagery concerned water quality and benthic classification map layers. The water optical parameters of interest were chlorophyll (Chl) and the absorption coefficient (a). The input imagery used by the RPC for simulation included spaceborne (Hyperion) and airborne (AVIRIS) hyperspectral data. Specific field data to complement and aid in validation of the overflight data was used when available. The results of the experiment show that the next-generation sensor systems are capable of providing valuable data layer resources to NOAA's ICON/CREWS DST.
NASA Astrophysics Data System (ADS)
Epps, S. A.
2017-12-01
Suspended particulate matter (SPM) is an important agent in generating marine light conditions which in turn have strong influences on biogeochemical systems. SPM also behaves as a vehicle for contaminant migration and is of interest to the estimation of bulk material transport in the marine environment. The measurement of inherent optical properties (IOPs) and apparent optical properties (AOPs) is becoming increasingly important in the prediction of SPM concentration. To more fully utilize data generated in bathymetric lidar surveys, modern systems such as CZMIL (the Coastal Zone Mapping Imaging LIDAR) include a hyperspectral sensor to collect data necessary for remote sensing reflectance (Rrs), an AOP. Some IOPs can be estimated can be estimated from Rrs. Additionally, a bathymetric lidar return signal contains both absorption and backscattering components (IOPs) at 532 nm which may be utilized for SPM prediction. This research utilizes IOP measurements using AC-9, AC-S, BB-9, and LISST-100X-B sensors deployed in the Northern Gulf of Mexico concurrent with SPM collection via filtration. Concomitant Rrs values were collected using a hand held hyperspectral sensor. Several hundred linearly regressed single-parameter estimates are created to predict SPM concentration using the IOPs attenuation, total scatter, backscatter, absorption and significant amalgamations thereof. Multiple wavelengths of light are analyzed for each IOP or IOP combination. Consideration is given to the suitability of each IOP type to SPM concentration prediction. Several criteria are assessed to winnow out the best predictors. These include sensor, data, and environmental limitations. The quantitative analyses of this research assist to identify the best types of IOPs (and wavelengths) for SPM prediction. Rrs at multiple wavelengths is also considered for SPM prediction. This research is focused on the functionality of IOP and AOP based SPM concentration predictions made available from the data products of bathymetric lidar surveys. It has applications for researchers with interest in IOPs, AOPs and SPM. There are also implications for monitoring estuarine, coastal, and offshore environments using bathymetric lidar and in-situ optical sensor suites to estimate SPM.
Hyperspectral Remote Sensing of Atmospheric Profiles from Satellites and Aircraft
NASA Technical Reports Server (NTRS)
Smith, W. L.; Zhou, D. K.; Harrison, F. W.; Revercomb, H. E.; Larar, A. M.; Huang, H. L.; Huang, B.
2001-01-01
A future hyperspectral resolution remote imaging and sounding system, called the GIFTS (Geostationary Imaging Fourier Transform Spectrometer), is described. An airborne system, which produces the type of hyperspectral resolution sounding data to be achieved with the GIFTS, has been flown on high altitude aircraft. Results from simulations and from the airborne measurements are presented to demonstrate the revolutionary remote sounding capabilities to be realized with future satellite hyperspectral remote imaging/sounding systems.
Hyperspectral remote sensing application for monitoring and preservation of plant ecosystems
NASA Astrophysics Data System (ADS)
Krezhova, Dora; Maneva, Svetla; Zdravev, Tomas; Petrov, Nikolay; Stoev, Antoniy
Remote sensing technologies have advanced significantly at last decade and have improved the capability to gather information about Earth’s resources and environment. They have many applications in Earth observation, such as mapping and updating land-use and cover, weather forecasting, biodiversity determination, etc. Hyperspectral remote sensing offers unique opportunities in the environmental monitoring and sustainable use of natural resources. Remote sensing sensors on space-based platforms, aircrafts, or on ground, are capable of providing detailed spectral, spatial and temporal information on terrestrial ecosystems. Ground-based sensors are used to record detailed information about the land surface and to create a data base for better characterizing the objects which are being imaged by the other sensors. In this paper some applications of two hyperspectral remote sensing techniques, leaf reflectance and chlorophyll fluorescence, for monitoring and assessment of the effects of adverse environmental conditions on plant ecosystems are presented. The effect of stress factors such as enhanced UV-radiation, acid rain, salinity, viral infections applied to some young plants (potato, pea, tobacco) and trees (plums, apples, paulownia) as well as of some growth regulators were investigated. Hyperspectral reflectance and fluorescence data were collected by means of a portable fiber-optics spectrometer in the visible and near infrared spectral ranges (450-850 nm and 600-900 nm), respectively. The differences between the reflectance data of healthy (control) and injured (stressed) plants were assessed by means of statistical (Student’s t-criterion), first derivative, and cluster analysis and calculation of some vegetation indices in four most informative for the investigated species regions: green (520-580 nm), red (640-680 nm), red edge (690-720 nm) and near infrared (720-780 nm). Fluorescence spectra were analyzed at five characteristic wavelengths located at the maximums of the emitted radiation and at the forefronts and rear slopes. The strong relationship, which was found between the results from the two remote sensing techniques and some biochemical and serological analyses (stress markers, DAS-ELISA test), indicates the importance of hyperspectral reflectance and fluorescence techniques for conducting, easily and without damage, rapid health condition assessments of vegetation. This study fills in the existed spectral data base and exemplifies the benefits of integrating remote sensing, Earth observation, plant physiology, ecology, and conducting of interdisciplinary investigations of terrestrial ecosystems.
Vanegas, Fernando; Weiss, John; Gonzalez, Felipe
2018-01-01
Recent advances in remote sensed imagery and geospatial image processing using unmanned aerial vehicles (UAVs) have enabled the rapid and ongoing development of monitoring tools for crop management and the detection/surveillance of insect pests. This paper describes a (UAV) remote sensing-based methodology to increase the efficiency of existing surveillance practices (human inspectors and insect traps) for detecting pest infestations (e.g., grape phylloxera in vineyards). The methodology uses a UAV integrated with advanced digital hyperspectral, multispectral, and RGB sensors. We implemented the methodology for the development of a predictive model for phylloxera detection. In this method, we explore the combination of airborne RGB, multispectral, and hyperspectral imagery with ground-based data at two separate time periods and under different levels of phylloxera infestation. We describe the technology used—the sensors, the UAV, and the flight operations—the processing workflow of the datasets from each imagery type, and the methods for combining multiple airborne with ground-based datasets. Finally, we present relevant results of correlation between the different processed datasets. The objective of this research is to develop a novel methodology for collecting, processing, analysing and integrating multispectral, hyperspectral, ground and spatial data to remote sense different variables in different applications, such as, in this case, plant pest surveillance. The development of such methodology would provide researchers, agronomists, and UAV practitioners reliable data collection protocols and methods to achieve faster processing techniques and integrate multiple sources of data in diverse remote sensing applications. PMID:29342101
Assessment of target detection limits in hyperspectral data
NASA Astrophysics Data System (ADS)
Gross, W.; Boehler, J.; Schilling, H.; Middelmann, W.; Weyermann, J.; Wellig, P.; Oechslin, R.; Kneubuehler, M.
2015-10-01
Hyperspectral remote sensing data can be used for civil and military applications to detect and classify target objects that cannot be reliably separated using broadband sensors. The comparably low spatial resolution is compensated by the fact that small targets, even below image resolution, can still be classified. The goal of this paper is to determine the target size to spatial resolution ratio for successful classification of different target and background materials. Airborne hyperspectral data is used to simulate data with known mixture ratios and to estimate the detection threshold for given false alarm rates. The data was collected in July 2014 over Greding, Germany, using airborne aisaEAGLE and aisaHAWK hyperspectral sensors. On the ground, various target materials were placed on natural background. The targets were four quadratic molton patches with an edge length of 7 meters in the colors black, white, grey and green. Also, two different types of polyethylene (camouflage nets) with an edge length of approximately 5.5 meters were deployed. Synthetic data is generated from the original data using spectral mixtures. Target signatures are linearly combined with different background materials in specific ratios. The simulated mixtures are appended to the original data and the target areas are removed for evaluation. Commonly used classification algorithms, e.g. Matched Filtering, Adaptive Cosine Estimator are used to determine the detection limit. Fixed false alarm rates are employed to find and analyze certain regions where false alarms usually occur first. A combination of 18 targets and 12 backgrounds is analyzed for three VNIR and two SWIR data sets of the same area.
Imaging of blood cells based on snapshot Hyper-Spectral Imaging systems
NASA Astrophysics Data System (ADS)
Robison, Christopher J.; Kolanko, Christopher; Bourlai, Thirimachos; Dawson, Jeremy M.
2015-05-01
Snapshot Hyper-Spectral imaging systems are capable of capturing several spectral bands simultaneously, offering coregistered images of a target. With appropriate optics, these systems are potentially able to image blood cells in vivo as they flow through a vessel, eliminating the need for a blood draw and sample staining. Our group has evaluated the capability of a commercial Snapshot Hyper-Spectral imaging system, the Arrow system from Rebellion Photonics, in differentiating between white and red blood cells on unstained blood smear slides. We evaluated the imaging capabilities of this hyperspectral camera; attached to a microscope at varying objective powers and illumination intensity. Hyperspectral data consisting of 25, 443x313 hyperspectral bands with ~3nm spacing were captured over the range of 419 to 494nm. Open-source hyper-spectral data cube analysis tools, used primarily in Geographic Information Systems (GIS) applications, indicate that white blood cells features are most prominent in the 428-442nm band for blood samples viewed under 20x and 50x magnification over a varying range of illumination intensities. These images could potentially be used in subsequent automated white blood cell segmentation and counting algorithms for performing in vivo white blood cell counting.
Hyperspectral remote sensing image retrieval system using spectral and texture features.
Zhang, Jing; Geng, Wenhao; Liang, Xi; Li, Jiafeng; Zhuo, Li; Zhou, Qianlan
2017-06-01
Although many content-based image retrieval systems have been developed, few studies have focused on hyperspectral remote sensing images. In this paper, a hyperspectral remote sensing image retrieval system based on spectral and texture features is proposed. The main contributions are fourfold: (1) considering the "mixed pixel" in the hyperspectral image, endmembers as spectral features are extracted by an improved automatic pixel purity index algorithm, then the texture features are extracted with the gray level co-occurrence matrix; (2) similarity measurement is designed for the hyperspectral remote sensing image retrieval system, in which the similarity of spectral features is measured with the spectral information divergence and spectral angle match mixed measurement and in which the similarity of textural features is measured with Euclidean distance; (3) considering the limited ability of the human visual system, the retrieval results are returned after synthesizing true color images based on the hyperspectral image characteristics; (4) the retrieval results are optimized by adjusting the feature weights of similarity measurements according to the user's relevance feedback. The experimental results on NASA data sets can show that our system can achieve comparable superior retrieval performance to existing hyperspectral analysis schemes.
NASA Technical Reports Server (NTRS)
2004-01-01
Topics covered include: Analysis of SSEM Sensor Data Using BEAM; Hairlike Percutaneous Photochemical Sensors; Video Guidance Sensors Using Remotely Activated Targets; Simulating Remote Sensing Systems; EHW Approach to Temperature Compensation of Electronics; Polymorphic Electronic Circuits; Micro-Tubular Fuel Cells; Whispering-Gallery-Mode Tunable Narrow-Band-Pass Filter; PVM Wrapper; Simulation of Hyperspectral Images; Algorithm for Controlling a Centrifugal Compressor; Hybrid Inflatable Pressure Vessel; Double-Acting, Locking Carabiners; Position Sensor Integral with a Linear Actuator; Improved Electromagnetic Brake; Flow Straightener for a Rotating-Drum Liquid Separator; Sensory-Feedback Exoskeletal Arm Controller; Active Suppression of Instabilities in Engine Combustors; Fabrication of Robust, Flat, Thinned, UV-Imaging CCDs; Chemical Thinning Process for Fabricating UV-Imaging CCDs; Pseudoslit Spectrometer; Waste-Heat-Driven Cooling Using Complex Compound Sorbents; Improved Refractometer for Measuring Temperatures of Drops; Semiconductor Lasers Containing Quantum Wells in Junctions; Phytoplankton-Fluorescence-Lifetime Vertical Profiler; Hexagonal Pixels and Indexing Scheme for Binary Images; Finding Minimum-Power Broadcast Trees for Wireless Networks; and Automation of Design Engineering Processes.
IMAGING SPECTROSCOPY FOR DETERMINING RANGELAND STRESSORS TO WESTERN WATERSHEDS
The Environmental Protection Agency is developing rangeland ecological indicators in twelve western states using advanced remote sensing techniques. Fine spectral resolution (hyperspectral) sensors, or imaging spectrometers, can detect the subtle spectral features that make veget...
NASA Astrophysics Data System (ADS)
Hoang, Nguyen Tien; Koike, Katsuaki
2018-03-01
Hyperspectral remote sensing generally provides more detailed spectral information and greater accuracy than multispectral remote sensing for identification of surface materials. However, there have been no hyperspectral imagers that cover the entire Earth surface. This lack points to a need for producing pseudo-hyperspectral imagery by hyperspectral transformation from multispectral images. We have recently developed such a method, a Pseudo-Hyperspectral Image Transformation Algorithm (PHITA), which transforms Landsat 7 ETM+ images into pseudo-EO-1 Hyperion images using multiple linear regression models of ETM+ and Hyperion band reflectance data. This study extends the PHITA to transform TM, OLI, and EO-1 ALI sensor images into pseudo-Hyperion images. By choosing a part of the Fish Lake Valley geothermal prospect area in the western United States for study, the pseudo-Hyperion images produced from the TM, ETM+, OLI, and ALI images by PHITA were confirmed to be applicable to mineral mapping. Using a reference map as the truth, three main minerals (muscovite and chlorite mixture, opal, and calcite) were identified with high overall accuracies from the pseudo-images (> 95% and > 42% for excluding and including unclassified pixels, respectively). The highest accuracy was obtained from the ALI image, followed by ETM+, TM, and OLI images in descending order. The TM, OLI, and ALI images can be alternatives to ETM+ imagery for the hyperspectral transformation that aids the production of pseudo-Hyperion images for areas without high-quality ETM+ images because of scan line corrector failure, and for long-term global monitoring of land surfaces.
NASA Astrophysics Data System (ADS)
Wright, L.; Coddington, O.; Pilewskie, P.
2015-12-01
Current challenges in Earth remote sensing require improved instrument spectral resolution, spectral coverage, and radiometric accuracy. Hyperspectral instruments, deployed on both aircraft and spacecraft, are a growing class of Earth observing sensors designed to meet these challenges. They collect large amounts of spectral data, allowing thorough characterization of both atmospheric and surface properties. The higher accuracy and increased spectral and spatial resolutions of new imagers require new numerical approaches for processing imagery and separating surface and atmospheric signals. One potential approach is source separation, which allows us to determine the underlying physical causes of observed changes. Improved signal separation will allow hyperspectral instruments to better address key science questions relevant to climate change, including land-use changes, trends in clouds and atmospheric water vapor, and aerosol characteristics. In this work, we investigate a Non-negative Matrix Factorization (NMF) method for the separation of atmospheric and land surface signal sources. NMF offers marked benefits over other commonly employed techniques, including non-negativity, which avoids physically impossible results, and adaptability, which allows the method to be tailored to hyperspectral source separation. We adapt our NMF algorithm to distinguish between contributions from different physically distinct sources by introducing constraints on spectral and spatial variability and by using library spectra to inform separation. We evaluate our NMF algorithm with simulated hyperspectral images as well as hyperspectral imagery from several instruments including, the NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), NASA Hyperspectral Imager for the Coastal Ocean (HICO) and National Ecological Observatory Network (NEON) Imaging Spectrometer.
Regularization destriping of remote sensing imagery
NASA Astrophysics Data System (ADS)
Basnayake, Ranil; Bollt, Erik; Tufillaro, Nicholas; Sun, Jie; Gierach, Michelle
2017-07-01
We illustrate the utility of variational destriping for ocean color images from both multispectral and hyperspectral sensors. In particular, we examine data from a filter spectrometer, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar Partnership (NPP) orbiter, and an airborne grating spectrometer, the Jet Population Laboratory's (JPL) hyperspectral Portable Remote Imaging Spectrometer (PRISM) sensor. We solve the destriping problem using a variational regularization method by giving weights spatially to preserve the other features of the image during the destriping process. The target functional penalizes the neighborhood of stripes
(strictly, directionally uniform features) while promoting data fidelity, and the functional is minimized by solving the Euler-Lagrange equations with an explicit finite-difference scheme. We show the accuracy of our method from a benchmark data set which represents the sea surface temperature off the coast of Oregon, USA. Technical details, such as how to impose continuity across data gaps using inpainting, are also described.
Hyperspectral image analysis for standoff trace detection using IR laser spectroscopy
NASA Astrophysics Data System (ADS)
Jarvis, J.; Fuchs, F.; Hugger, S.; Ostendorf, R.; Butschek, L.; Yang, Q.; Dreyhaupt, A.; Grahmann, J.; Wagner, J.
2016-05-01
In the recent past infrared laser backscattering spectroscopy using Quantum Cascade Lasers (QCL) emitting in the molecular fingerprint region between 7.5 μm and 10 μm proved a highly promising approach for stand-off detection of dangerous substances. In this work we present an active illumination hyperspectral image sensor, utilizing QCLs as spectral selective illumination sources. A high performance Mercury Cadmium Telluride (MCT) imager is used for collection of the diffusely backscattered light. Well known target detection algorithms like the Adaptive Matched Subspace Detector and the Adaptive Coherent Estimator are used to detect pixel vectors in the recorded hyperspectral image that contain traces of explosive substances like PETN, RDX or TNT. In addition we present an extension of the backscattering spectroscopy technique towards real-time detection using a MOEMS EC-QCL.
Thin-film tunable filters for hyperspectral fluorescence microscopy
Favreau, Peter; Hernandez, Clarissa; Lindsey, Ashley Stringfellow; Alvarez, Diego F.; Rich, Thomas; Prabhat, Prashant
2013-01-01
Abstract. Hyperspectral imaging is a powerful tool that acquires data from many spectral bands, forming a contiguous spectrum. Hyperspectral imaging was originally developed for remote sensing applications; however, hyperspectral techniques have since been applied to biological fluorescence imaging applications, such as fluorescence microscopy and small animal fluorescence imaging. The spectral filtering method largely determines the sensitivity and specificity of any hyperspectral imaging system. There are several types of spectral filtering hardware available for microscopy systems, most commonly acousto-optic tunable filters (AOTFs) and liquid crystal tunable filters (LCTFs). These filtering technologies have advantages and disadvantages. Here, we present a novel tunable filter for hyperspectral imaging—the thin-film tunable filter (TFTF). The TFTF presents several advantages over AOTFs and LCTFs, most notably, a high percentage transmission and a high out-of-band optical density (OD). We present a comparison of a TFTF-based hyperspectral microscopy system and a commercially available AOTF-based system. We have characterized the light transmission, wavelength calibration, and OD of both systems, and have then evaluated the capability of each system for discriminating between green fluorescent protein and highly autofluorescent lung tissue. Our results suggest that TFTFs are an alternative approach for hyperspectral filtering that offers improved transmission and out-of-band blocking. These characteristics make TFTFs well suited for other biomedical imaging devices, such as ophthalmoscopes or endoscopes. PMID:24077519
Grégori, Gérald; Rajwa, Bartek; Patsekin, Valery; Jones, James; Furuki, Motohiro; Yamamoto, Masanobu; Paul Robinson, J
2014-01-01
Hyperspectral cytometry is an emerging technology for single-cell analysis that combines ultrafast optical spectroscopy and flow cytometry. Spectral cytometry systems utilize diffraction gratings or prism-based monochromators to disperse fluorescence signals from multiple labels (organic dyes, nanoparticles, or fluorescent proteins) present in each analyzed bioparticle onto linear detector arrays such as multianode photomultipliers or charge-coupled device sensors. The resultant data, consisting of a series of characterizing every analyzed cell, are not compensated by employing the traditional cytometry approach, but rather are spectrally unmixed utilizing algorithms such as constrained Poisson regression or non-negative matrix factorization. Although implementations of spectral cytometry were envisioned as early as the 1980s, only recently has the development of highly sensitive photomultiplier tube arrays led to design and construction of functional prototypes and subsequently to introduction of commercially available systems. This chapter summarizes the historical efforts and work in the field of spectral cytometry performed at Purdue University Cytometry Laboratories and describes the technology developed by Sony Corporation that resulted in release of the first commercial spectral cytometry system-the Sony SP6800. A brief introduction to spectral data analysis is also provided, with emphasis on the differences between traditional polychromatic and spectral cytometry approaches.
NASA Astrophysics Data System (ADS)
Foster, Robert; Ibrahim, Amir; Gilerson, Alex; El-Habashi, Ahmed; Carrizo, Carlos; Ahmed, Sam
2015-09-01
During two cruises in 2014, the polarized radiance of the ocean and the sky were continuously acquired using a HyperSAS-POL system. The system consists of seven hyperspectral radiometric sensors, three of which (one unpolarized and two polarized) look at the water and similarly three at the sky. The system autonomously tracks the Sun position and the heading of the research vessel to which it is attached in order to maintain a fixed relative azimuth angle with respect to the Sun (i.e. 90°) and therefore avoid the specular reflection of the sunlight. For the duration of both cruises, (NASA Ship Aircraft Bio-Optical Research (SABOR), and NOAA VIIRS Validation/Calibration), in situ inherent optical properties (IOPs) were continuously acquired using a set of instrument packages modified for underway measurement, and hyperspectral radiometric measurements were taken manually at all stations. During SABOR, an underwater polarimeter was deployed when conditions permitted. All measurements were combined in an effort to first develop a glint (sky + Sun) correction scheme for the upwelling polarized signal from a wind driven ocean surface and compare with one assuming that the ocean surface is flat.
Buchhorn, Marcel; Petereit, Reinhold; Heim, Birgit
2013-01-01
This article presents and technically describes a new field spectro-goniometer system for the ground-based characterization of the surface reflectance anisotropy under natural illumination conditions developed at the Alfred Wegener Institute (AWI). The spectro-goniometer consists of a Manual Transportable Instrument platform for ground-based Spectro-directional observations (ManTIS), and a hyperspectral sensor system. The presented measurement strategy shows that the AWI ManTIS field spectro-goniometer can deliver high quality hemispherical conical reflectance factor (HCRF) measurements with a pointing accuracy of ±6 cm within the constant observation center. The sampling of a ManTIS hemisphere (up to 30° viewing zenith, 360° viewing azimuth) needs approx. 18 min. The developed data processing chain in combination with the software used for the semi-automatic control provides a reliable method to reduce temporal effects during the measurements. The presented visualization and analysis approaches of the HCRF data of an Arctic low growing vegetation showcase prove the high quality of spectro-goniometer measurements. The patented low-cost and lightweight ManTIS instrument platform can be customized for various research needs and is available for purchase.
Unsupervised domain adaptation for early detection of drought stress in hyperspectral images
NASA Astrophysics Data System (ADS)
Schmitter, P.; Steinrücken, J.; Römer, C.; Ballvora, A.; Léon, J.; Rascher, U.; Plümer, L.
2017-09-01
Hyperspectral images can be used to uncover physiological processes in plants if interpreted properly. Machine Learning methods such as Support Vector Machines (SVM) and Random Forests have been applied to estimate development of biomass and detect and predict plant diseases and drought stress. One basic requirement of machine learning implies, that training and testing is done in the same domain and the same distribution. Different genotypes, environmental conditions, illumination and sensors violate this requirement in most practical circumstances. Here, we present an approach, which enables the detection of physiological processes by transferring the prior knowledge within an existing model into a related target domain, where no label information is available. We propose a two-step transformation of the target features, which enables a direct application of an existing model. The transformation is evaluated by an objective function including additional prior knowledge about classification and physiological processes in plants. We have applied the approach to three sets of hyperspectral images, which were acquired with different plant species in different environments observed with different sensors. It is shown, that a classification model, derived on one of the sets, delivers satisfying classification results on the transformed features of the other data sets. Furthermore, in all cases early non-invasive detection of drought stress was possible.
Surface emissivity and temperature retrieval for a hyperspectral sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borel, C.C.
1998-12-01
With the growing use of hyper-spectral imagers, e.g., AVIRIS in the visible and short-wave infrared there is hope of using such instruments in the mid-wave and thermal IR (TIR) some day. The author believes that this will enable him to get around using the present temperature-emissivity separation algorithms using methods which take advantage of the many channels available in hyper-spectral imagers. A simple fact used in coming up with a novel algorithm is that a typical surface emissivity spectrum are rather smooth compared to spectral features introduced by the atmosphere. Thus, a iterative solution technique can be devised which retrievesmore » emissivity spectra based on spectral smoothness. To make the emissivities realistic, atmospheric parameters are varied using approximations, look-up tables derived from a radiative transfer code and spectral libraries. One such iterative algorithm solves the radiative transfer equation for the radiance at the sensor for the unknown emissivity and uses the blackbody temperature computed in an atmospheric window to get a guess for the unknown surface temperature. By varying the surface temperature over a small range a series of emissivity spectra are calculated. The one with the smoothest characteristic is chosen. The algorithm was tested on synthetic data using MODTRAN and the Salisbury emissivity database.« less
NASA Astrophysics Data System (ADS)
Uslu, Faruk Sukru
2017-07-01
Oil spills on the ocean surface cause serious environmental, political, and economic problems. Therefore, these catastrophic threats to marine ecosystems require detection and monitoring. Hyperspectral sensors are powerful optical sensors used for oil spill detection with the help of detailed spectral information of materials. However, huge amounts of data in hyperspectral imaging (HSI) require fast and accurate computation methods for detection problems. Support vector data description (SVDD) is one of the most suitable methods for detection, especially for large data sets. Nevertheless, the selection of kernel parameters is one of the main problems in SVDD. This paper presents a method, inspired by ensemble learning, for improving performance of SVDD without tuning its kernel parameters. Additionally, a classifier selection technique is proposed to get more gain. The proposed approach also aims to solve the small sample size problem, which is very important for processing high-dimensional data in HSI. The algorithm is applied to two HSI data sets for detection problems. In the first HSI data set, various targets are detected; in the second HSI data set, oil spill detection in situ is realized. The experimental results demonstrate the feasibility and performance improvement of the proposed algorithm for oil spill detection problems.
Parallel-multiplexed excitation light-sheet microscopy (Conference Presentation)
NASA Astrophysics Data System (ADS)
Xu, Dongli; Zhou, Weibin; Peng, Leilei
2017-02-01
Laser scanning light-sheet imaging allows fast 3D image of live samples with minimal bleach and photo-toxicity. Existing light-sheet techniques have very limited capability in multi-label imaging. Hyper-spectral imaging is needed to unmix commonly used fluorescent proteins with large spectral overlaps. However, the challenge is how to perform hyper-spectral imaging without sacrificing the image speed, so that dynamic and complex events can be captured live. We report wavelength-encoded structured illumination light sheet imaging (λ-SIM light-sheet), a novel light-sheet technique that is capable of parallel multiplexing in multiple excitation-emission spectral channels. λ-SIM light-sheet captures images of all possible excitation-emission channels in true parallel. It does not require compromising the imaging speed and is capable of distinguish labels by both excitation and emission spectral properties, which facilitates unmixing fluorescent labels with overlapping spectral peaks and will allow more labels being used together. We build a hyper-spectral light-sheet microscope that combined λ-SIM with an extended field of view through Bessel beam illumination. The system has a 250-micron-wide field of view and confocal level resolution. The microscope, equipped with multiple laser lines and an unlimited number of spectral channels, can potentially image up to 6 commonly used fluorescent proteins from blue to red. Results from in vivo imaging of live zebrafish embryos expressing various genetic markers and sensors will be shown. Hyper-spectral images from λ-SIM light-sheet will allow multiplexed and dynamic functional imaging in live tissue and animals.
MCT-based SWIR hyperspectral imaging system for evaluation of biological samples
USDA-ARS?s Scientific Manuscript database
Hyperspectral imaging has been shown to be a powerful tool for nondestructive evaluation of biological samples. We recently developed a new line-scan-based shortwave infrared (SWIR) hyperspectral imaging system. Critical sensing components of the system include a SWIR spectrograph, an MCT (HgCdTe) a...
Multitemporal spectroscopy for crop stress detection using band selection methods
NASA Astrophysics Data System (ADS)
Mewes, Thorsten; Franke, Jonas; Menz, Gunter
2008-08-01
A fast and precise sensor-based identification of pathogen infestations in wheat stands is essential for the implementation of site-specific fungicide applications. Several works have shown possibilities and limitations for the detection of plant stress using spectral sensor data. Hyperspectral data provide the opportunity to collect spectral reflectance in contiguous bands over a broad range of the electromagnetic spectrum. Individual phenomena like the light absorption of leaf pigments can be examined in detail. The precise knowledge of stress-dependent shifting in certain spectral wavelengths provides great advantages in detecting fungal infections. This study focuses on band selection techniques for hyperspectral data to identify relevant and redundant information in spectra regarding a detection of plant stress caused by pathogens. In a laboratory experiment, five 1 sqm boxes with wheat were multitemporarily measured by a ASD Fieldspec® 3 FR spectroradiometer. Two stands were inoculated with Blumeria graminis - the pathogen causing powdery mildew - and one stand was used to simulate the effect of water deficiency. Two stands were kept healthy as control stands. Daily measurements of the spectral reflectance were taken over a 14-day period. Three ASD Pro Lamps were used to illuminate the plots with constant light. By applying band selection techniques, the three types of different wheat vitality could be accurately differentiated at certain stages. Hyperspectral data can provide precise information about pathogen infestations. The reduction of the spectral dimension of sensor data by means of band selection procedures is an appropriate method to speed up the data supply for precision agriculture.
NASA Astrophysics Data System (ADS)
Adjorlolo, Clement; Cho, Moses A.; Mutanga, Onisimo; Ismail, Riyad
2012-01-01
Hyperspectral remote-sensing approaches are suitable for detection of the differences in 3-carbon (C3) and four carbon (C4) grass species phenology and composition. However, the application of hyperspectral sensors to vegetation has been hampered by high-dimensionality, spectral redundancy, and multicollinearity problems. In this experiment, resampling of hyperspectral data to wider wavelength intervals, around a few band-centers, sensitive to the biophysical and biochemical properties of C3 or C4 grass species is proposed. The approach accounts for an inherent property of vegetation spectral response: the asymmetrical nature of the inter-band correlations between a waveband and its shorter- and longer-wavelength neighbors. It involves constructing a curve of weighting threshold of correlation (Pearson's r) between a chosen band-center and its neighbors, as a function of wavelength. In addition, data were resampled to some multispectral sensors-ASTER, GeoEye-1, IKONOS, QuickBird, RapidEye, SPOT 5, and WorldView-2 satellites-for comparative purposes, with the proposed method. The resulting datasets were analyzed, using the random forest algorithm. The proposed resampling method achieved improved classification accuracy (κ=0.82), compared to the resampled multispectral datasets (κ=0.78, 0.65, 0.62, 0.59, 0.65, 0.62, 0.76, respectively). Overall, results from this study demonstrated that spectral resolutions for C3 and C4 grasses can be optimized and controlled for high dimensionality and multicollinearity problems, yet yielding high classification accuracies. The findings also provide a sound basis for programming wavebands for future sensors.
Høye, Gudrun; Fridman, Andrei
2013-05-06
Current high-resolution push-broom hyperspectral cameras introduce keystone errors to the captured data. Efforts to correct these errors in hardware severely limit the optical design, in particular with respect to light throughput and spatial resolution, while at the same time the residual keystone often remains large. The mixel camera solves this problem by combining a hardware component--an array of light mixing chambers--with a mathematical method that restores the hyperspectral data to its keystone-free form, based on the data that was recorded onto the sensor with large keystone. A Virtual Camera software, that was developed specifically for this purpose, was used to compare the performance of the mixel camera to traditional cameras that correct keystone in hardware. The mixel camera can collect at least four times more light than most current high-resolution hyperspectral cameras, and simulations have shown that the mixel camera will be photon-noise limited--even in bright light--with a significantly improved signal-to-noise ratio compared to traditional cameras. A prototype has been built and is being tested.
Hyperspectral Image Analysis for Skin Tumor Detection
NASA Astrophysics Data System (ADS)
Kong, Seong G.; Park, Lae-Jeong
This chapter presents hyperspectral imaging of fluorescence for nonin-vasive detection of tumorous tissue on mouse skin. Hyperspectral imaging sensors collect two-dimensional (2D) image data of an object in a number of narrow, adjacent spectral bands. This high-resolution measurement of spectral information reveals a continuous emission spectrum for each image pixel useful for skin tumor detection. The hyperspectral image data used in this study are fluorescence intensities of a mouse sample consisting of 21 spectral bands in the visible spectrum of wavelengths ranging from 440 to 640 nm. Fluorescence signals are measured using a laser excitation source with the center wavelength of 337 nm. An acousto-optic tunable filter is used to capture individual spectral band images at a 10-nm resolution. All spectral band images are spatially registered with the reference band image at 490 nm to obtain exact pixel correspondences by compensating the offsets caused during the image capture procedure. The support vector machines with polynomial kernel functions provide decision boundaries with a maximum separation margin to classify malignant tumor and normal tissue from the observed fluorescence spectral signatures for skin tumor detection.
A method of minimum volume simplex analysis constrained unmixing for hyperspectral image
NASA Astrophysics Data System (ADS)
Zou, Jinlin; Lan, Jinhui; Zeng, Yiliang; Wu, Hongtao
2017-07-01
The signal recorded by a low resolution hyperspectral remote sensor from a given pixel, letting alone the effects of the complex terrain, is a mixture of substances. To improve the accuracy of classification and sub-pixel object detection, hyperspectral unmixing(HU) is a frontier-line in remote sensing area. Unmixing algorithm based on geometric has become popular since the hyperspectral image possesses abundant spectral information and the mixed model is easy to understand. However, most of the algorithms are based on pure pixel assumption, and since the non-linear mixed model is complex, it is hard to obtain the optimal endmembers especially under a highly mixed spectral data. To provide a simple but accurate method, we propose a minimum volume simplex analysis constrained (MVSAC) unmixing algorithm. The proposed approach combines the algebraic constraints that are inherent to the convex minimum volume with abundance soft constraint. While considering abundance fraction, we can obtain the pure endmember set and abundance fraction correspondingly, and the final unmixing result is closer to reality and has better accuracy. We illustrate the performance of the proposed algorithm in unmixing simulated data and real hyperspectral data, and the result indicates that the proposed method can obtain the distinct signatures correctly without redundant endmember and yields much better performance than the pure pixel based algorithm.
Multiview hyperspectral topography of tissue structural and functional characteristics
NASA Astrophysics Data System (ADS)
Zhang, Shiwu; Liu, Peng; Huang, Jiwei; Xu, Ronald
2012-12-01
Accurate and in vivo characterization of structural, functional, and molecular characteristics of biological tissue will facilitate quantitative diagnosis, therapeutic guidance, and outcome assessment in many clinical applications, such as wound healing, cancer surgery, and organ transplantation. However, many clinical imaging systems have limitations and fail to provide noninvasive, real time, and quantitative assessment of biological tissue in an operation room. To overcome these limitations, we developed and tested a multiview hyperspectral imaging system. The multiview hyperspectral imaging system integrated the multiview and the hyperspectral imaging techniques in a single portable unit. Four plane mirrors are cohered together as a multiview reflective mirror set with a rectangular cross section. The multiview reflective mirror set was placed between a hyperspectral camera and the measured biological tissue. For a single image acquisition task, a hyperspectral data cube with five views was obtained. The five-view hyperspectral image consisted of a main objective image and four reflective images. Three-dimensional topography of the scene was achieved by correlating the matching pixels between the objective image and the reflective images. Three-dimensional mapping of tissue oxygenation was achieved using a hyperspectral oxygenation algorithm. The multiview hyperspectral imaging technique is currently under quantitative validation in a wound model, a tissue-simulating blood phantom, and an in vivo biological tissue model. The preliminary results have demonstrated the technical feasibility of using multiview hyperspectral imaging for three-dimensional topography of tissue functional properties.
Lee, Hoonsoo; Kim, Moon S; Lohumi, Santosh; Cho, Byoung-Kwan
2018-06-05
Extensive research has been conducted on non-destructive and rapid detection of melamine in powdered foods in the last decade. While Raman and near-infrared hyperspectral imaging techniques have been successful in terms of non-destructive and rapid measurement, they have limitations with respect to measurement time and detection capability, respectively. Therefore, the objective of this study was to develop a mercury cadmium telluride (MCT)-based short-wave infrared (SWIR) hyperspectral imaging system and algorithm to detect melamine quantitatively in milk powder. The SWIR hyperspectral imaging system consisted of a custom-designed illumination system, a SWIR hyperspectral camera, a data acquisition module and a sample transfer table. SWIR hyperspectral images were obtained for melamine-milk samples with different melamine concentrations, pure melamine and pure milk powder. Analysis of variance and the partial least squares regression method over the 1000-2500 nm wavelength region were used to develop an optimal model for detection. The results showed that a melamine concentration as low as 50 ppm in melamine-milk powder samples could be detected. Thus, the MCT-based SWIR hyperspectral imaging system has the potential for quantitative and qualitative detection of adulterants in powder samples.
NASA Astrophysics Data System (ADS)
Peller, Joseph A.; Ceja, Nancy K.; Wawak, Amanda J.; Trammell, Susan R.
2018-02-01
Polarized light imaging and optical spectroscopy can be used to distinguish between healthy and diseased tissue. In this study, the design and testing of a single-pixel hyperspectral imaging system that uses differences in the polarization of light reflected from tissue to differentiate between healthy and thermally damaged tissue is discussed. Thermal lesions were created in porcine skin (n = 8) samples using an IR laser. The damaged regions were clearly visible in the polarized light hyperspectral images. Reflectance hyperspectral and white light imaging was also obtained for all tissue samples. Sizes of the thermally damaged regions as measured via polarized light hyperspectral imaging are compared to sizes of these regions as measured in the reflectance hyperspectral images and white light images. Good agreement between the sizes measured by all three imaging modalities was found. Hyperspectral polarized light imaging can differentiate between healthy and damaged tissue. Possible applications of this imaging system include determination of tumor margins during cancer surgery or pre-surgical biopsy.
Hyperspectral Image Turbulence Measurements of the Atmosphere
NASA Technical Reports Server (NTRS)
Lane, Sarah E.; West, Leanne L.; Gimmestad, Gary G.; Kireev, Stanislav; Smith, William L., Sr.; Burdette, Edward M.; Daniels, Taumi; Cornman, Larry
2012-01-01
A Forward Looking Interferometer (FLI) sensor has the potential to be used as a means of detecting aviation hazards in flight. One of these hazards is mountain wave turbulence. The results from a data acquisition activity at the University of Colorado s Mountain Research Station will be presented here. Hyperspectral datacubes from a Telops Hyper-Cam are being studied to determine if evidence of a turbulent event can be identified in the data. These data are then being compared with D&P TurboFT data, which are collected at a much higher time resolution and broader spectrum.
Using linear polarization for LWIR hyperspectral sensing of liquid contaminants
NASA Astrophysics Data System (ADS)
Thériault, Jean-Marc; Fortin, Gilles; Lacasse, Paul; Bouffard, François; Lavoie, Hugo
2013-09-01
We report and analyze recent results obtained with the MoDDIFS sensor (Multi-option Differential Detection and Imaging Fourier Spectrometer) for the passive polarization sensing of liquid contaminants in the long wave infrared (LWIR). Field measurements of polarized spectral radiance done on ethylene glycol and SF96 probed at distances of 6.5 and 450 meters, respectively, have been used to develop and test a GLRT-type detection algorithm adapted for liquid contaminants. The GLRT detection results serve to establish the potential and advantage of probing the vertical and horizontal linear hyperspectral polarization components for improving liquid contaminants detection.
Manifold alignment with Schroedinger eigenmaps
NASA Astrophysics Data System (ADS)
Johnson, Juan E.; Bachmann, Charles M.; Cahill, Nathan D.
2016-05-01
The sun-target-sensor angle can change during aerial remote sensing. In an attempt to compensate BRDF effects in multi-angular hyperspectral images, the Semi-Supervised Manifold Alignment (SSMA) algorithm pulls data from similar classes together and pushes data from different classes apart. SSMA uses Laplacian Eigenmaps (LE) to preserve the original geometric structure of each local data set independently. In this paper, we replace LE with Spatial-Spectral Schoedinger Eigenmaps (SSSE) which was designed to be a semisupervised enhancement to the to extend the SSMA methodology and improve classification of multi-angular hyperspectral images captured over Hog Island in the Virginia Coast Reserve.
An embedded multi-core parallel model for real-time stereo imaging
NASA Astrophysics Data System (ADS)
He, Wenjing; Hu, Jian; Niu, Jingyu; Li, Chuanrong; Liu, Guangyu
2018-04-01
The real-time processing based on embedded system will enhance the application capability of stereo imaging for LiDAR and hyperspectral sensor. The task partitioning and scheduling strategies for embedded multiprocessor system starts relatively late, compared with that for PC computer. In this paper, aimed at embedded multi-core processing platform, a parallel model for stereo imaging is studied and verified. After analyzing the computing amount, throughout capacity and buffering requirements, a two-stage pipeline parallel model based on message transmission is established. This model can be applied to fast stereo imaging for airborne sensors with various characteristics. To demonstrate the feasibility and effectiveness of the parallel model, a parallel software was designed using test flight data, based on the 8-core DSP processor TMS320C6678. The results indicate that the design performed well in workload distribution and had a speed-up ratio up to 6.4.
Combining the AIRS, CrIS and IASI Radiance Records for Climate Level Retrievals
NASA Astrophysics Data System (ADS)
Strow, L. L.
2016-12-01
The AIRS record is now 14+ years long, and with the addition of CrIS should provide a 30+ year long hyperspectral radiance record that can be supplemented with another two times in the diurnal cycle with IASI starting in 2007. The stability of these sensors can be established by comparisons to CO2 variability and to tropical sea surface temperature trends. At present the observed stabilities are much better than climate requirements of 0.01/year. SNO observations indicate radiometric agreement among these sensors of 0.1 - 0.3K before any empirical adjustments. A 1-year set of SNO overlaps have statistical uncertainties of less than 0.01K between these three sensors. Moreover, we show that IASI can be used as a transfer standard between AIRS and CrIS (or between CrIS-1 and CrIS-2) should there be a gap in overlap of sensors in the PM orbit. We have done these SNO comparisons by converting AIRS and IASI spectral to the CrIS instrument lineshape (ILS). Achieving climate quality retrievals, trends, and anomalies of temperature and humidity is non-trivial and requires error characterization (not validation) that to date has not been done with single-footprint hyperspectral sensor retrievals. We suggest that the infrared hyperspectral community utilize a common ILS radiance product as a first-step in achieving climate-quality retrievals in order to remove uncertainties in differential instrument sensitivies and in different forward radiative transfer models. We propose a very different approach for Level 3 (climate) products where anomalies and trends (one of the main products of interest to the climate community) are derived directly from Level 3 radiance products, giving far superior error traceability and retrieval regularization in the vertical. Tempertature and humidity trends and anomalies for 14-years of AIRS will be presented and compared to those provided by ERA-Interim, AIRS Level3 data, and microwave sensors. A significant advantage of this approach, which uses small subsets of averaged radiance data, is the ability to re-process the Level 3 type products over and over again since they are so small. In addition, this approach allows others in the community to peform climate-level studies with thes sensors without needing large data processing and storage capabilities.
LWIR hyperspectral imaging application and detection of chemical precursors
NASA Astrophysics Data System (ADS)
Lavoie, Hugo; Thériault, Jean-Marc; Bouffard, François; Puckrin, Eldon; Dubé, Denis
2012-10-01
Detection and identification of Toxic industrial chemicals (TICs) represent a major challenge to protect and sustain first responder and public security. In this context, passive Hyperspectral Imaging (HSI) is a promising technology for the standoff detection and identification of chemical vapors emanating from a distant location. To investigate this method, the Department of National Defense and Public Safety Canada have mandated Defense Research and Development Canada (DRDC) - Valcartier to develop and test Very Long Wave Infrared (VLWIR) HSI sensors for standoff detection. The initial effort was focused to address the standoff detection and identification of toxic industrial chemicals (TICs), surrogates and precursors. Sensors such as the Improved Compact ATmospheric Sounding Interferometer (iCATSI) and the Multi-option Differential Detection and Imaging Fourier Spectrometer (MoDDIFS) were developed for this application. This paper presents the sensor developments and preliminary results of standoff detection and identification of TICs and precursors. The iCATSI and MoDDIFS sensors are based on the optical differential Fourier-transform infrared (FTIR) radiometric technology and are able to detect, spectrally resolve and identify small leak at ranges in excess of 1 km. Results from a series of trials in asymmetric threat type scenarios are reported. These results serve to establish the potential of passive standoff HSI detection of TICs, precursors and surrogates.
Detection of chemical pollutants by passive LWIR hyperspectral imaging
NASA Astrophysics Data System (ADS)
Lavoie, Hugo; Thériault, Jean-Marc; Bouffard, François; Puckrin, Eldon; Dubé, Denis
2012-09-01
Toxic industrial chemicals (TICs) represent a major threat to public health and security. Their detection constitutes a real challenge to security and first responder's communities. One promising detection method is based on the passive standoff identification of chemical vapors emanating from the laboratory under surveillance. To investigate this method, the Department of National Defense and Public Safety Canada have mandated Defense Research and Development Canada (DRDC) - Valcartier to develop and test passive Long Wave Infrared (LWIR) hyperspectral imaging (HSI) sensors for standoff detection. The initial effort was focused to address the standoff detection and identification of toxic industrial chemicals (TICs) and precursors. Sensors such as the Multi-option Differential Detection and Imaging Fourier Spectrometer (MoDDIFS) and the Improved Compact ATmospheric Sounding Interferometer (iCATSI) were developed for this application. This paper describes the sensor developments and presents initial results of standoff detection and identification of TICs and precursors. The standoff sensors are based on the differential Fourier-transform infrared (FTIR) radiometric technology and are able to detect, spectrally resolve and identify small leak plumes at ranges in excess of 1 km. Results from a series of trials in asymmetric threat type scenarios will be presented. These results will serve to establish the potential of the method for standoff detection of TICs precursors and surrogates.
NASA Technical Reports Server (NTRS)
Czapla-Myers, J.; Thome, K.; Anderson, N.; McCorkel, J.; Leisso, N.; Good, W.; Collins, S.
2009-01-01
Ball Aerospace and Technologies Corporation in Boulder, Colorado, has developed a heliostat facility that will be used to determine the preflight radiometric calibration of Earth-observing sensors that operate in the solar-reflective regime. While automatically tracking the Sun, the heliostat directs the solar beam inside a thermal vacuum chamber, where the sensor under test resides. The main advantage to using the Sun as the illumination source for preflight radiometric calibration is because it will also be the source of illumination when the sensor is in flight. This minimizes errors in the pre- and post-launch calibration due to spectral mismatches. It also allows the instrument under test to operate at irradiance values similar to those on orbit. The Remote Sensing Group at the University of Arizona measured the transmittance of the heliostat facility using three methods, the first of which is a relative measurement made using a hyperspectral portable spectroradiometer and well-calibrated reference panel. The second method is also a relative measurement, and uses a 12-channel automated solar radiometer. The final method is an absolute measurement using a hyperspectral spectroradiometer and reference panel combination, where the spectroradiometer is calibrated on site using a solar-radiation-based calibration.
NASA Astrophysics Data System (ADS)
Fan, Jiayuan; Tan, Hui Li; Toomik, Maria; Lu, Shijian
2016-10-01
Spatial pyramid matching has demonstrated its power for image recognition task by pooling features from spatially increasingly fine sub-regions. Motivated by the concept of feature pooling at multiple pyramid levels, we propose a novel spectral-spatial hyperspectral image classification approach using superpixel-based spatial pyramid representation. This technique first generates multiple superpixel maps by decreasing the superpixel number gradually along with the increased spatial regions for labelled samples. By using every superpixel map, sparse representation of pixels within every spatial region is then computed through local max pooling. Finally, features learned from training samples are aggregated and trained by a support vector machine (SVM) classifier. The proposed spectral-spatial hyperspectral image classification technique has been evaluated on two public hyperspectral datasets, including the Indian Pines image containing 16 different agricultural scene categories with a 20m resolution acquired by AVIRIS and the University of Pavia image containing 9 land-use categories with a 1.3m spatial resolution acquired by the ROSIS-03 sensor. Experimental results show significantly improved performance compared with the state-of-the-art works. The major contributions of this proposed technique include (1) a new spectral-spatial classification approach to generate feature representation for hyperspectral image, (2) a complementary yet effective feature pooling approach, i.e. the superpixel-based spatial pyramid representation that is used for the spatial correlation study, (3) evaluation on two public hyperspectral image datasets with superior image classification performance.
Geometrical calibration of an AOTF hyper-spectral imaging system
NASA Astrophysics Data System (ADS)
Špiclin, Žiga; Katrašnik, Jaka; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan
2010-02-01
Optical aberrations present an important problem in optical measurements. Geometrical calibration of an imaging system is therefore of the utmost importance for achieving accurate optical measurements. In hyper-spectral imaging systems, the problem of optical aberrations is even more pronounced because optical aberrations are wavelength dependent. Geometrical calibration must therefore be performed over the entire spectral range of the hyper-spectral imaging system, which is usually far greater than that of the visible light spectrum. This problem is especially adverse in AOTF (Acousto- Optic Tunable Filter) hyper-spectral imaging systems, as the diffraction of light in AOTF filters is dependent on both wavelength and angle of incidence. Geometrical calibration of hyper-spectral imaging system was performed by stable caliber of known dimensions, which was imaged at different wavelengths over the entire spectral range. The acquired images were then automatically registered to the caliber model by both parametric and nonparametric transformation based on B-splines and by minimizing normalized correlation coefficient. The calibration method was tested on an AOTF hyper-spectral imaging system in the near infrared spectral range. The results indicated substantial wavelength dependent optical aberration that is especially pronounced in the spectral range closer to the infrared part of the spectrum. The calibration method was able to accurately characterize the aberrations and produce transformations for efficient sub-pixel geometrical calibration over the entire spectral range, finally yielding better spatial resolution of hyperspectral imaging system.
A Forest Fire Sensor Web Concept with UAVSAR
NASA Astrophysics Data System (ADS)
Lou, Y.; Chien, S.; Clark, D.; Doubleday, J.; Muellerschoen, R.; Zheng, Y.
2008-12-01
We developed a forest fire sensor web concept with a UAVSAR-based smart sensor and onboard automated response capability that will allow us to monitor fire progression based on coarse initial information provided by an external source. This autonomous disturbance detection and monitoring system combines the unique capabilities of imaging radar with high throughput onboard processing technology and onboard automated response capability based on specific science algorithms. In this forest fire sensor web scenario, a fire is initially located by MODIS/RapidFire or a ground-based fire observer. This information is transmitted to the UAVSAR onboard automated response system (CASPER). CASPER generates a flight plan to cover the alerted fire area and executes the flight plan. The onboard processor generates the fuel load map from raw radar data, used with wind and elevation information, predicts the likely fire progression. CASPER then autonomously alters the flight plan to track the fire progression, providing this information to the fire fighting team on the ground. We can also relay the precise fire location to other remote sensing assets with autonomous response capability such as Earth Observation-1 (EO-1)'s hyper-spectral imager to acquire the fire data.
Hyperspectral stimulated emission depletion microscopy and methods of use thereof
Timlin, Jerilyn A; Aaron, Jesse S
2014-04-01
A hyperspectral stimulated emission depletion ("STED") microscope system for high-resolution imaging of samples labeled with multiple fluorophores (e.g., two to ten fluorophores). The hyperspectral STED microscope includes a light source, optical systems configured for generating an excitation light beam and a depletion light beam, optical systems configured for focusing the excitation and depletion light beams on a sample, and systems for collecting and processing data generated by interaction of the excitation and depletion light beams with the sample. Hyperspectral STED data may be analyzed using multivariate curve resolution analysis techniques to deconvolute emission from the multiple fluorophores. The hyperspectral STED microscope described herein can be used for multi-color, subdiffraction imaging of samples (e.g., materials and biological materials) and for analyzing a tissue by Forster Resonance Energy Transfer ("FRET").
Recent progress of push-broom infrared hyper-spectral imager in SITP
NASA Astrophysics Data System (ADS)
Wang, Yueming; Hu, Weida; Shu, Rong; Li, Chunlai; Yuan, Liyin; Wang, Jianyu
2017-02-01
In the past decades, hyper-spectral imaging technologies were well developed in SITP, CAS. Many innovations for system design and key parts of hyper-spectral imager were finished. First airborne hyper-spectral imager operating from VNIR to TIR in the world was emerged in SITP. It is well known as OMIS(Operational Modular Imaging Spectrometer). Some new technologies were introduced to improve the performance of hyper-spectral imaging system in these years. A high spatial space-borne hyper-spectral imager aboard Tiangong-1 spacecraft was launched on Sep.29, 2011. Thanks for ground motion compensation and high optical efficiency prismatic spectrometer, a large amount of hyper-spectral imagery with high sensitivity and good quality were acquired in the past years. Some important phenomena were observed. To diminish spectral distortion and expand field of view, new type of prismatic imaging spectrometer based curved prism were proposed by SITP. A prototype of hyper-spectral imager based spherical fused silica prism were manufactured, which can operate from 400nm 2500nm. We also made progress in the development of LWIR hyper-spectral imaging technology. Compact and low F number LWIR imaging spectrometer was designed, manufactured and integrated. The spectrometer operated in a cryogenically-cooled vacuum box for background radiation restraint. The system performed well during flight experiment in an airborne platform. Thanks high sensitivity FPA and high performance optics, spatial resolution and spectral resolution and SNR of system are improved enormously. However, more work should be done for high radiometric accuracy in the future.
NASA Astrophysics Data System (ADS)
Clark, M. L.; Kilham, N. E.
2015-12-01
Land-cover maps are important science products needed for natural resource and ecosystem service management, biodiversity conservation planning, and assessing human-induced and natural drivers of land change. Most land-cover maps at regional to global scales are produced with remote sensing techniques applied to multispectral satellite imagery with 30-500 m pixel sizes (e.g., Landsat, MODIS). Hyperspectral, or imaging spectrometer, imagery measuring the visible to shortwave infrared regions (VSWIR) of the spectrum have shown impressive capacity to map plant species and coarser land-cover associations, yet techniques have not been widely tested at regional and greater spatial scales. The Hyperspectral Infrared Imager (HyspIRI) mission is a VSWIR hyperspectral and thermal satellite being considered for development by NASA. The goal of this study was to assess multi-temporal, HyspIRI-like satellite imagery for improved land cover mapping relative to multispectral satellites. We mapped FAO Land Cover Classification System (LCCS) classes over 22,500 km2 in the San Francisco Bay Area, California using 30-m HyspIRI, Landsat 8 and Sentinel-2 imagery simulated from data acquired by NASA's AVIRIS airborne sensor. Random Forests (RF) and Multiple-Endmember Spectral Mixture Analysis (MESMA) classifiers were applied to the simulated images and accuracies were compared to those from real Landsat 8 images. The RF classifier was superior to MESMA, and multi-temporal data yielded higher accuracy than summer-only data. With RF, hyperspectral data had overall accuracy of 72.2% and 85.1% with full 20-class and reduced 12-class schemes, respectively. Multispectral imagery had lower accuracy. For example, simulated and real Landsat data had 7.5% and 4.6% lower accuracy than HyspIRI data with 12 classes, respectively. In summary, our results indicate increased mapping accuracy using HyspIRI multi-temporal imagery, particularly in discriminating different natural vegetation types, such as spectrally-mixed woodlands and forests.
AIRS Retrieval Validation During the EAQUATE
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Smith, William L.; Cuomo, Vincenzo; Taylor, Jonathan P.; Barnet, Christopher D.; DiGirolamo, Paolo; Pappalardo, Gelsomina; Larar, Allen M.; Liu, Xu; Newman, Stuart M.
2006-01-01
Atmospheric and surface thermodynamic parameters retrieved with advanced hyperspectral remote sensors of Earth observing satellites are critical for weather prediction and scientific research. The retrieval algorithms and retrieved parameters from satellite sounders must be validated to demonstrate the capability and accuracy of both observation and data processing systems. The European AQUA Thermodynamic Experiment (EAQUATE) was conducted mainly for validation of the Atmospheric InfraRed Sounder (AIRS) on the AQUA satellite, but also for assessment of validation systems of both ground-based and aircraft-based instruments which will be used for other satellite systems such as the Infrared Atmospheric Sounding Interferometer (IASI) on the European MetOp satellite, the Cross-track Infrared Sounder (CrIS) from the NPOESS Preparatory Project and the following NPOESS series of satellites. Detailed inter-comparisons were conducted and presented using different retrieval methodologies: measurements from airborne ultraspectral Fourier transform spectrometers, aircraft in-situ instruments, dedicated dropsondes and radiosondes, and ground based Raman Lidar, as well as from the European Center for Medium range Weather Forecasting (ECMWF) modeled thermal structures. The results of this study not only illustrate the quality of the measurements and retrieval products but also demonstrate the capability of these validation systems which are put in place to validate current and future hyperspectral sounding instruments and their scientific products.
Atmospheric Correction Algorithm for Hyperspectral Imagery
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. J. Pollina
1999-09-01
In December 1997, the US Department of Energy (DOE) established a Center of Excellence (Hyperspectral-Multispectral Algorithm Research Center, HyMARC) for promoting the research and development of algorithms to exploit spectral imagery. This center is located at the DOE Remote Sensing Laboratory in Las Vegas, Nevada, and is operated for the DOE by Bechtel Nevada. This paper presents the results to date of a research project begun at the center during 1998 to investigate the correction of hyperspectral data for atmospheric aerosols. Results of a project conducted by the Rochester Institute of Technology to define, implement, and test procedures for absolutemore » calibration and correction of hyperspectral data to absolute units of high spectral resolution imagery will be presented. Hybrid techniques for atmospheric correction using image or spectral scene data coupled through radiative propagation models will be specifically addressed. Results of this effort to analyze HYDICE sensor data will be included. Preliminary results based on studying the performance of standard routines, such as Atmospheric Pre-corrected Differential Absorption and Nonlinear Least Squares Spectral Fit, in retrieving reflectance spectra show overall reflectance retrieval errors of approximately one to two reflectance units in the 0.4- to 2.5-micron-wavelength region (outside of the absorption features). These results are based on HYDICE sensor data collected from the Southern Great Plains Atmospheric Radiation Measurement site during overflights conducted in July of 1997. Results of an upgrade made in the model-based atmospheric correction techniques, which take advantage of updates made to the moderate resolution atmospheric transmittance model (MODTRAN 4.0) software, will also be presented. Data will be shown to demonstrate how the reflectance retrieval in the shorter wavelengths of the blue-green region will be improved because of enhanced modeling of multiple scattering effects.« less
NASA Astrophysics Data System (ADS)
Gedalin, Daniel; Oiknine, Yaniv; August, Isaac; Blumberg, Dan G.; Rotman, Stanley R.; Stern, Adrian
2017-04-01
Compressive sensing theory was proposed to deal with the high quantity of measurements demanded by traditional hyperspectral systems. Recently, a compressive spectral imaging technique dubbed compressive sensing miniature ultraspectral imaging (CS-MUSI) was presented. This system uses a voltage controlled liquid crystal device to create multiplexed hyperspectral cubes. We evaluate the utility of the data captured using the CS-MUSI system for the task of target detection. Specifically, we compare the performance of the matched filter target detection algorithm in traditional hyperspectral systems and in CS-MUSI multiplexed hyperspectral cubes. We found that the target detection algorithm performs similarly in both cases, despite the fact that the CS-MUSI data is up to an order of magnitude less than that in conventional hyperspectral cubes. Moreover, the target detection is approximately an order of magnitude faster in CS-MUSI data.
Analysis of hyperspectral scattering images using a moment method for apple firmness prediction
USDA-ARS?s Scientific Manuscript database
This article reports on using a moment method to extract features from the hyperspectral scattering profiles for apple fruit firmness prediction. Hyperspectral scattering images between 500 nm and 1000 nm were acquired online, using a hyperspectral scattering system, for ‘Golden Delicious’, ’Jonagol...
Infrared hyperspectral imaging sensor for gas detection
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele
2000-11-01
A small light weight man portable imaging spectrometer has many applications; gas leak detection, flare analysis, threat warning, chemical agent detection, just to name a few. With support from the US Air Force and Navy, Pacific Advanced Technology has developed a small man portable hyperspectral imaging sensor with an embedded DSP processor for real time processing that is capable of remotely imaging various targets such as gas plums, flames and camouflaged targets. Based upon their spectral signature the species and concentration of gases can be determined. This system has been field tested at numerous places including White Mountain, CA, Edwards AFB, and Vandenberg AFB. Recently evaluation of the system for gas detection has been performed. This paper presents these results. The system uses a conventional infrared camera fitted with a diffractive optic that images as well as disperses the incident radiation to form spectral images that are collected in band sequential mode. Because the diffractive optic performs both imaging and spectral filtering, the lens system consists of only a single element that is small, light weight and robust, thus allowing man portability. The number of spectral bands are programmable such that only those bands of interest need to be collected. The system is entirely passive, therefore, easily used in a covert operation. Currently Pacific Advanced Technology is working on the next generation of this camera system that will have both an embedded processor as well as an embedded digital signal processor in a small hand held camera configuration. This will allow the implementation of signal and image processing algorithms for gas detection and identification in real time. This paper presents field test data on gas detection and identification as well as discuss the signal and image processing used to enhance the gas visibility. Flow rates as low as 0.01 cubic feet per minute have been imaged with this system.
2007-05-01
difficult but it determines the long-term stability of the sensor. This step includes sensor drift ( spectral response) and spectral (channel...and Navy products using high spectral resolution satellites. This program (Hyperspectral 34 Characterization of the Coastal Zone) is a core NRLSSC...absorption and total attenuation) the standard accepted instrument is the WetLab’s Inc., ac-9, with a higher resolution spectral instrument in final
Technical Report: Unmanned Helicopter Solution for Survey-Grade Lidar and Hyperspectral Mapping
NASA Astrophysics Data System (ADS)
Kaňuk, Ján; Gallay, Michal; Eck, Christoph; Zgraggen, Carlo; Dvorný, Eduard
2018-05-01
Recent development of light-weight unmanned airborne vehicles (UAV) and miniaturization of sensors provide new possibilities for remote sensing and high-resolution mapping. Mini-UAV platforms are emerging, but powerful UAV platforms of higher payload capacity are required to carry the sensors for survey-grade mapping. In this paper, we demonstrate a technological solution and application of two different payloads for highly accurate and detailed mapping. The unmanned airborne system (UAS) comprises a Scout B1-100 autonomously operating UAV helicopter powered by a gasoline two-stroke engine with maximum take-off weight of 75 kg. The UAV allows for integrating of up to 18 kg of a customized payload. Our technological solution comprises two types of payload completely independent of the platform. The first payload contains a VUX-1 laser scanner (Riegl, Austria) and a Sony A6000 E-Mount photo camera. The second payload integrates a hyperspectral push-broom scanner AISA Kestrel 10 (Specim, Finland). The two payloads need to be alternated if mapping with both is required. Both payloads include an inertial navigation system xNAV550 (Oxford Technical Solutions Ltd., United Kingdom), a separate data link, and a power supply unit. Such a constellation allowed for achieving high accuracy of the flight line post-processing in two test missions. The standard deviation was 0.02 m (XY) and 0.025 m (Z), respectively. The intended application of the UAS was for high-resolution mapping and monitoring of landscape dynamics (landslides, erosion, flooding, or crops growth). The legal regulations for such UAV applications in Switzerland and Slovakia are also discussed.
Thermal luminescence spectroscopy chemical imaging sensor.
Carrieri, Arthur H; Buican, Tudor N; Roese, Erik S; Sutter, James; Samuels, Alan C
2012-10-01
The authors present a pseudo-active chemical imaging sensor model embodying irradiative transient heating, temperature nonequilibrium thermal luminescence spectroscopy, differential hyperspectral imaging, and artificial neural network technologies integrated together. We elaborate on various optimizations, simulations, and animations of the integrated sensor design and apply it to the terrestrial chemical contamination problem, where the interstitial contaminant compounds of detection interest (analytes) comprise liquid chemical warfare agents, their various derivative condensed phase compounds, and other material of a life-threatening nature. The sensor must measure and process a dynamic pattern of absorptive-emissive middle infrared molecular signature spectra of subject analytes to perform its chemical imaging and standoff detection functions successfully.
False alarm recognition in hyperspectral gas plume identification
Conger, James L [San Ramon, CA; Lawson, Janice K [Tracy, CA; Aimonetti, William D [Livermore, CA
2011-03-29
According to one embodiment, a method for analyzing hyperspectral data includes collecting first hyperspectral data of a scene using a hyperspectral imager during a no-gas period and analyzing the first hyperspectral data using one or more gas plume detection logics. The gas plume detection logic is executed using a low detection threshold, and detects each occurrence of an observed hyperspectral signature. The method also includes generating a histogram for all occurrences of each observed hyperspectral signature which is detected using the gas plume detection logic, and determining a probability of false alarm (PFA) for all occurrences of each observed hyperspectral signature based on the histogram. Possibly at some other time, the method includes collecting second hyperspectral data, and analyzing the second hyperspectral data using the one or more gas plume detection logics and the PFA to determine if any gas is present. Other systems and methods are also included.
NASA Astrophysics Data System (ADS)
Torkildsen, H. E.; Hovland, H.; Opsahl, T.; Haavardsholm, T. V.; Nicolas, S.; Skauli, T.
2014-06-01
In some applications of multi- or hyperspectral imaging, it is important to have a compact sensor. The most compact spectral imaging sensors are based on spectral filtering in the focal plane. For hyperspectral imaging, it has been proposed to use a "linearly variable" bandpass filter in the focal plane, combined with scanning of the field of view. As the image of a given object in the scene moves across the field of view, it is observed through parts of the filter with varying center wavelength, and a complete spectrum can be assembled. However if the radiance received from the object varies with viewing angle, or with time, then the reconstructed spectrum will be distorted. We describe a camera design where this hyperspectral functionality is traded for multispectral imaging with better spectral integrity. Spectral distortion is minimized by using a patterned filter with 6 bands arranged close together, so that a scene object is seen by each spectral band in rapid succession and with minimal change in viewing angle. The set of 6 bands is repeated 4 times so that the spectral data can be checked for internal consistency. Still the total extent of the filter in the scan direction is small. Therefore the remainder of the image sensor can be used for conventional imaging with potential for using motion tracking and 3D reconstruction to support the spectral imaging function. We show detailed characterization of the point spread function of the camera, demonstrating the importance of such characterization as a basis for image reconstruction. A simplified image reconstruction based on feature-based image coregistration is shown to yield reasonable results. Elimination of spectral artifacts due to scene motion is demonstrated.
NASA Astrophysics Data System (ADS)
Packard, Corey D.; Viola, Timothy S.; Klein, Mark D.
2017-10-01
The ability to predict spectral electro-optical (EO) signatures for various targets against realistic, cluttered backgrounds is paramount for rigorous signature evaluation. Knowledge of background and target signatures, including plumes, is essential for a variety of scientific and defense-related applications including contrast analysis, camouflage development, automatic target recognition (ATR) algorithm development and scene material classification. The capability to simulate any desired mission scenario with forecast or historical weather is a tremendous asset for defense agencies, serving as a complement to (or substitute for) target and background signature measurement campaigns. In this paper, a systematic process for the physical temperature and visible-through-infrared radiance prediction of several diverse targets in a cluttered natural environment scene is presented. The ability of a virtual airborne sensor platform to detect and differentiate targets from a cluttered background, from a variety of sensor perspectives and across numerous wavelengths in differing atmospheric conditions, is considered. The process described utilizes the thermal and radiance simulation software MuSES and provides a repeatable, accurate approach for analyzing wavelength-dependent background and target (including plume) signatures in multiple band-integrated wavebands (multispectral) or hyperspectrally. The engineering workflow required to combine 3D geometric descriptions, thermal material properties, natural weather boundary conditions, all modes of heat transfer and spectral surface properties is summarized. This procedure includes geometric scene creation, material and optical property attribution, and transient physical temperature prediction. Radiance renderings, based on ray-tracing and the Sandford-Robertson BRDF model, are coupled with MODTRAN for the inclusion of atmospheric effects. This virtual hyperspectral/multispectral radiance prediction methodology has been extensively validated and provides a flexible process for signature evaluation and algorithm development.
Projection technologies for imaging sensor calibration, characterization, and HWIL testing at AEDC
NASA Astrophysics Data System (ADS)
Lowry, H. S.; Breeden, M. F.; Crider, D. H.; Steely, S. L.; Nicholson, R. A.; Labello, J. M.
2010-04-01
The characterization, calibration, and mission simulation testing of imaging sensors require continual involvement in the development and evaluation of radiometric projection technologies. Arnold Engineering Development Center (AEDC) uses these technologies to perform hardware-in-the-loop (HWIL) testing with high-fidelity complex scene projection technologies that involve sophisticated radiometric source calibration systems to validate sensor mission performance. Testing with the National Institute of Standards and Technology (NIST) Ballistic Missile Defense Organization (BMDO) transfer radiometer (BXR) and Missile Defense Agency (MDA) transfer radiometer (MDXR) offers improved radiometric and temporal fidelity in this cold-background environment. The development of hardware and test methodologies to accommodate wide field of view (WFOV), polarimetric, and multi/hyperspectral imaging systems is being pursued to support a variety of program needs such as space situational awareness (SSA). Test techniques for the acquisition of data needed for scene generation models (solar/lunar exclusion, radiation effects, etc.) are also needed and are being sought. The extension of HWIL testing to the 7V Chamber requires the upgrade of the current satellite emulation scene generation system. This paper provides an overview of pertinent technologies being investigated and implemented at AEDC.
Hyperspectral imaging utility for transportation systems
NASA Astrophysics Data System (ADS)
Bridgelall, Raj; Rafert, J. Bruce; Tolliver, Denver
2015-03-01
The global transportation system is massive, open, and dynamic. Existing performance and condition assessments of the complex interacting networks of roadways, bridges, railroads, pipelines, waterways, airways, and intermodal ports are expensive. Hyperspectral imaging is an emerging remote sensing technique for the non-destructive evaluation of multimodal transportation infrastructure. Unlike panchromatic, color, and infrared imaging, each layer of a hyperspectral image pixel records reflectance intensity from one of dozens or hundreds of relatively narrow wavelength bands that span a broad range of the electromagnetic spectrum. Hence, every pixel of a hyperspectral scene provides a unique spectral signature that offers new opportunities for informed decision-making in transportation systems development, operations, and maintenance. Spaceborne systems capture images of vast areas in a short period but provide lower spatial resolution than airborne systems. Practitioners use manned aircraft to achieve higher spatial and spectral resolution, but at the price of custom missions and narrow focus. The rapid size and cost reduction of unmanned aircraft systems promise a third alternative that offers hybrid benefits at affordable prices by conducting multiple parallel missions. This research formulates a theoretical framework for a pushbroom type of hyperspectral imaging system on each type of data acquisition platform. The study then applies the framework to assess the relative potential utility of hyperspectral imaging for previously proposed remote sensing applications in transportation. The authors also introduce and suggest new potential applications of hyperspectral imaging in transportation asset management, network performance evaluation, and risk assessments to enable effective and objective decision- and policy-making.
NASA Astrophysics Data System (ADS)
Kenton, Arthur C.; Geci, Duane M.; McDonald, James A.; Ray, Kristofer J.; Thomas, Clayton M.; Holloway, John H., Jr.; Petee, Danny A.; Witherspoon, Ned H.
2003-09-01
The objective of the Office of Naval Research (ONR) Rapid Overt Reconnaissance (ROR) program and the Airborne Littoral Reconnaissance Technologies project's Littoral Assessment of Mine Burial Signatures (LAMBS) contract is to determine if electro-optical spectral discriminants exist that are useful for the detection of land mines located in littoral regions. Statistically significant buried mine overburden and background signature data were collected over a wide spectral range (0.35 to 14 μm) to identify robust spectral features that might serve as discriminants for new airborne sensor concepts. The LAMBS program further expands the hyperspectral database previously collected and analyzed on the U.S. Army's Hyperspectral Mine Detection Phenomenology program [see "Detection of Land Mines with Hyperspectral Data," and "Hyperspectral Mine Detection Phenomenology Program," Proc. SPIE Vol. 3710, pp 917-928 and 819-829, AeroSense April 1999] to littoral areas where tidal, surf, and wind action can additionally modify spectral signatures. This work summarizes the LAMBS buried mine collections conducted at three beach sites - an inland bay beach site (Eglin AFB, FL, Site A-22), an Atlantic beach site (Duck, NC), and a Gulf beach site (Eglin AFB, FL, Site A-15). Characteristics of the spectral signatures of the various dry and damp beach sands are presented. These are then compared to buried land mine signatures observed for the tested background types, burial ages, and environmental conditions experienced.
[Advances in the research on hyperspectral remote sensing in biodiversity and conservation].
He, Cheng; Feng, Zhong-Ke; Yuan, Jin-Jun; Wang, Jia; Gong, Yin-Xi; Dong, Zhi-Hai
2012-06-01
With the species reduction and the habitat destruction becoming serious increasingly, the biodiversity conservation has become one of the hottest topics. Remote sensing, the science of non-contact collection information, has the function of corresponding estimates of biodiversity, building model between species diversity relationship and mapping the index of biodiversity, which has been used widely in the field of biodiversity conservation. The present paper discussed the application of hyperspectral technology to the biodiversity conservation from two aspects, remote sensors and remote sensing techniques, and after, enumerated successful applications for emphasis. All these had a certain reference value in the development of biodiversity conservation.
Information-efficient spectral imaging sensor
Sweatt, William C.; Gentry, Stephen M.; Boye, Clinton A.; Grotbeck, Carter L.; Stallard, Brian R.; Descour, Michael R.
2003-01-01
A programmable optical filter for use in multispectral and hyperspectral imaging. The filter splits the light collected by an optical telescope into two channels for each of the pixels in a row in a scanned image, one channel to handle the positive elements of a spectral basis filter and one for the negative elements of the spectral basis filter. Each channel for each pixel disperses its light into n spectral bins, with the light in each bin being attenuated in accordance with the value of the associated positive or negative element of the spectral basis vector. The spectral basis vector is constructed so that its positive elements emphasize the presence of a target and its negative elements emphasize the presence of the constituents of the background of the imaged scene. The attenuated light in the channels is re-imaged onto separate detectors for each pixel and then the signals from the detectors are combined to give an indication of the presence or not of the target in each pixel of the scanned scene. This system provides for a very efficient optical determination of the presence of the target, as opposed to the very data intensive data manipulations that are required in conventional hyperspectral imaging systems.
BreedVision--a multi-sensor platform for non-destructive field-based phenotyping in plant breeding.
Busemeyer, Lucas; Mentrup, Daniel; Möller, Kim; Wunder, Erik; Alheit, Katharina; Hahn, Volker; Maurer, Hans Peter; Reif, Jochen C; Würschum, Tobias; Müller, Joachim; Rahe, Florian; Ruckelshausen, Arno
2013-02-27
To achieve the food and energy security of an increasing World population likely to exceed nine billion by 2050 represents a major challenge for plant breeding. Our ability to measure traits under field conditions has improved little over the last decades and currently constitutes a major bottleneck in crop improvement. This work describes the development of a tractor-pulled multi-sensor phenotyping platform for small grain cereals with a focus on the technological development of the system. Various optical sensors like light curtain imaging, 3D Time-of-Flight cameras, laser distance sensors, hyperspectral imaging as well as color imaging are integrated into the system to collect spectral and morphological information of the plants. The study specifies: the mechanical design, the system architecture for data collection and data processing, the phenotyping procedure of the integrated system, results from field trials for data quality evaluation, as well as calibration results for plant height determination as a quantified example for a platform application. Repeated measurements were taken at three developmental stages of the plants in the years 2011 and 2012 employing triticale (×Triticosecale Wittmack L.) as a model species. The technical repeatability of measurement results was high for nearly all different types of sensors which confirmed the high suitability of the platform under field conditions. The developed platform constitutes a robust basis for the development and calibration of further sensor and multi-sensor fusion models to measure various agronomic traits like plant moisture content, lodging, tiller density or biomass yield, and thus, represents a major step towards widening the bottleneck of non-destructive phenotyping for crop improvement and plant genetic studies.
BreedVision — A Multi-Sensor Platform for Non-Destructive Field-Based Phenotyping in Plant Breeding
Busemeyer, Lucas; Mentrup, Daniel; Möller, Kim; Wunder, Erik; Alheit, Katharina; Hahn, Volker; Maurer, Hans Peter; Reif, Jochen C.; Würschum, Tobias; Müller, Joachim; Rahe, Florian; Ruckelshausen, Arno
2013-01-01
To achieve the food and energy security of an increasing World population likely to exceed nine billion by 2050 represents a major challenge for plant breeding. Our ability to measure traits under field conditions has improved little over the last decades and currently constitutes a major bottleneck in crop improvement. This work describes the development of a tractor-pulled multi-sensor phenotyping platform for small grain cereals with a focus on the technological development of the system. Various optical sensors like light curtain imaging, 3D Time-of-Flight cameras, laser distance sensors, hyperspectral imaging as well as color imaging are integrated into the system to collect spectral and morphological information of the plants. The study specifies: the mechanical design, the system architecture for data collection and data processing, the phenotyping procedure of the integrated system, results from field trials for data quality evaluation, as well as calibration results for plant height determination as a quantified example for a platform application. Repeated measurements were taken at three developmental stages of the plants in the years 2011 and 2012 employing triticale (×Triticosecale Wittmack L.) as a model species. The technical repeatability of measurement results was high for nearly all different types of sensors which confirmed the high suitability of the platform under field conditions. The developed platform constitutes a robust basis for the development and calibration of further sensor and multi-sensor fusion models to measure various agronomic traits like plant moisture content, lodging, tiller density or biomass yield, and thus, represents a major step towards widening the bottleneck of non-destructive phenotyping for crop improvement and plant genetic studies. PMID:23447014
Applications of spectral band adjustment factors (SBAF) for cross-calibration
Chander, Gyanesh
2013-01-01
To monitor land surface processes over a wide range of temporal and spatial scales, it is critical to have coordinated observations of the Earth's surface acquired from multiple spaceborne imaging sensors. However, an integrated global observation framework requires an understanding of how land surface processes are seen differently by various sensors. This is particularly true for sensors acquiring data in spectral bands whose relative spectral responses (RSRs) are not similar and thus may produce different results while observing the same target. The intrinsic offsets between two sensors caused by RSR mismatches can be compensated by using a spectral band adjustment factor (SBAF), which takes into account the spectral profile of the target and the RSR of the two sensors. The motivation of this work comes from the need to compensate the spectral response differences of multispectral sensors in order to provide a more accurate cross-calibration between the sensors. In this paper, radiometric cross-calibration of the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) sensors was performed using near-simultaneous observations over the Libya 4 pseudoinvariant calibration site in the visible and near-infrared spectral range. The RSR differences of the analogous ETM+ and MODIS spectral bands provide the opportunity to explore, understand, quantify, and compensate for the measurement differences between these two sensors. The cross-calibration was initially performed by comparing the top-of-atmosphere (TOA) reflectances between the two sensors over their lifetimes. The average percent differences in the long-term trends ranged from $-$5% to $+$6%. The RSR compensated ETM+ TOA reflectance (ETM+$^{ast}$) measurements were then found to agree with MODIS TOA reflectance to within 5% for all bands when Earth Observing-1 Hy- erion hyperspectral data were used to produce the SBAFs. These differences were later reduced to within 1% for all bands (except band 2) by using Environmental Satellite Scanning Imaging Absorption Spectrometer for Atmospheric Cartography hyperspectral data to produce the SBAFs.
System and method for progressive band selection for hyperspectral images
NASA Technical Reports Server (NTRS)
Fisher, Kevin (Inventor)
2013-01-01
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for progressive band selection for hyperspectral images. A system having module configured to control a processor to practice the method calculates a virtual dimensionality of a hyperspectral image having multiple bands to determine a quantity Q of how many bands are needed for a threshold level of information, ranks each band based on a statistical measure, selects Q bands from the multiple bands to generate a subset of bands based on the virtual dimensionality, and generates a reduced image based on the subset of bands. This approach can create reduced datasets of full hyperspectral images tailored for individual applications. The system uses a metric specific to a target application to rank the image bands, and then selects the most useful bands. The number of bands selected can be specified manually or calculated from the hyperspectral image's virtual dimensionality.
Nanocolloid substrate for surface enhanced Raman scattering sensor for biological applications
USDA-ARS?s Scientific Manuscript database
Biopolymer encapsulated with silver nanoparticle (BeSN) substrate was prepared by chemical reduction method with silver nitrate, trisodium citrate in addition to polyvinyl alcohol. Optical properties of BeSN were analyzed with UV/Vis spectroscopy and hyperspectral microscope imaging. UV/Visible spec...
Land cover mapping in Latvia using hyperspectral airborne and simulated Sentinel-2 data
NASA Astrophysics Data System (ADS)
Jakovels, Dainis; Filipovs, Jevgenijs; Brauns, Agris; Taskovs, Juris; Erins, Gatis
2016-08-01
Land cover mapping in Latvia is performed as part of the Corine Land Cover (CLC) initiative every six years. The advantage of CLC is the creation of a standardized nomenclature and mapping protocol comparable across all European countries, thereby making it a valuable information source at the European level. However, low spatial resolution and accuracy, infrequent updates and expensive manual production has limited its use at the national level. As of now, there is no remote sensing based high resolution land cover and land use services designed specifically for Latvia which would account for the country's natural and land use specifics and end-user interests. The European Space Agency launched the Sentinel-2 satellite in 2015 aiming to provide continuity of free high resolution multispectral satellite data thereby presenting an opportunity to develop and adapted land cover and land use algorithm which accounts for national enduser needs. In this study, land cover mapping scheme according to national end-user needs was developed and tested in two pilot territories (Cesis and Burtnieki). Hyperspectral airborne data covering spectral range 400-2500 nm was acquired in summer 2015 using Airborne Surveillance and Environmental Monitoring System (ARSENAL). The gathered data was tested for land cover classification of seven general classes (urban/artificial, bare, forest, shrubland, agricultural/grassland, wetlands, water) and sub-classes specific for Latvia as well as simulation of Sentinel-2 satellite data. Hyperspectral data sets consist of 122 spectral bands in visible to near infrared spectral range (356-950 nm) and 100 bands in short wave infrared (950-2500 nm). Classification of land cover was tested separately for each sensor data and fused cross-sensor data. The best overall classification accuracy 84.2% and satisfactory classification accuracy (more than 80%) for 9 of 13 classes was obtained using Support Vector Machine (SVM) classifier with 109 band hyperspectral data. Grassland and agriculture land demonstrated lowest classification accuracy in pixel based approach, but result significantly improved by looking at agriculture polygons registered in Rural Support Service data as objects. The test of simulated Sentinel-2 bands for land cover mapping using SVM classifier showed 82.8% overall accuracy and satisfactory separation of 7 classes. SVM provided highest overall accuracy 84.2% in comparison to 75.9% for k-Nearest Neighbor and 79.2% Linear Discriminant Analysis classifiers.
NASA Astrophysics Data System (ADS)
Scafutto, Rebecca DeĺPapa Moreira; de Souza Filho, Carlos Roberto; Riley, Dean N.; de Oliveira, Wilson Jose
2018-02-01
Methane (CH4) is the main constituent of natural gas. Fugitive CH4 emissions partially stem from geological reservoirs (seepages) and leaks in pipelines and petroleum production plants. Airborne hyperspectral sensors with enough spectral and spatial resolution and high signal-to-noise ratio can potentially detect these emissions. Here, a field experiment performed with controlled release CH4 sources was conducted in the Rocky Mountain Oilfield Testing Center (RMOTC), Casper, WY (USA). These sources were configured to deliver diverse emission types (surface and subsurface) and rates (20-1450 scf/hr), simulating natural (seepages) and anthropogenic (pipeline) CH4 leaks. The Aerospace Corporation's SEBASS (Spatially-Enhanced Broadband Array Spectrograph System) sensor acquired hyperspectral thermal infrared data over the experimental site with 128 bands spanning the 7.6 μm-13.5 μm range. The data was acquired with a spatial resolution of 0.5 m at 1500 ft and 0.84 m at 2500 ft above ground level. Radiance images were pre-processed with an adaptation of the In-Scene Atmospheric Compensation algorithm and converted to emissivity through the Emissivity Normalization algorithm. The data was processed with a Matched Filter. Results allowed the separation between endmembers related to the spectral signature of CH4 from the background. Pixels containing CH4 signatures (absorption bands at 7.69 μm and 7.88 μm) were highlighted and the gas plumes mapped with high definition in the imagery. The dispersion of the mapped plumes is consistent with the wind direction measured independently during the experiment. Variations in the dimension of mapped gas plumes were proportional to the emission rate of each CH4 source. Spectral analysis of the signatures within the plumes shows that CH4 spectral absorption features are sharper and deeper in pixels located near the emitting source, revealing regions with higher gas density and assisting in locating CH4 sources in the field accurately. These results indicate that thermal infrared hyperspectral imaging can support the oil industry profusely, by revealing new petroleum plays through direct detection of gaseous hydrocarbon seepages, serving as tools to monitor leaks along pipelines and oil processing plants, while simultaneously refining estimates of CH4 emissions.
NASA Astrophysics Data System (ADS)
Merucci, L.; Buongiorno, M. F.; Teggi, S.; Bogliolo, M. P.
Temperature map and spectral emissivity have been retrieved by means of the TIR re- gion data collected by the DAIS airborne hyperspectral sensor on the Solfatara, Campi Flegrei, Italy, during the July 27, 1997 flight. During the 7915 DAIS flight a contem- poraneous field campaign was carried out in order to measure the surface temperature in the Solfatara crater and a radiosonde has been launched to measure the local at- mospheric profile. A normalized vegetation index filter has been used to select in the Solfatara crater scene the areas not covered by vegetation upon which the temperature and emissivity retrieval algorithms have been applied. The atmospheric contribute has been estimated by means of the MODTRAN radiative transfer code. The temperature map has been finally validated with the field measurements and the spectral emissivity image has been compared with the spectra available for the mineralogical species that cover the Solfatara crater.
Excitation-scanning hyperspectral imaging system for microscopic and endoscopic applications
NASA Astrophysics Data System (ADS)
Mayes, Sam A.; Leavesley, Silas J.; Rich, Thomas C.
2016-04-01
Current microscopic and endoscopic technologies for cancer screening utilize white-light illumination sources. Hyper-spectral imaging has been shown to improve sensitivity while retaining specificity when compared to white-light imaging in both microscopy and in vivo imaging. However, hyperspectral imaging methods have historically suffered from slow acquisition times due to the narrow bandwidth of spectral filters. Often minutes are required to gather a full image stack. We have developed a novel approach called excitation-scanning hyperspectral imaging that provides 2-3 orders of magnitude increased signal strength. This reduces acquisition times significantly, allowing for live video acquisition. Here, we describe a preliminary prototype excitation-scanning hyperspectral imaging system that can be coupled with endoscopes or microscopes for hyperspectral imaging of tissues and cells. Our system is comprised of three subsystems: illumination, transmission, and imaging. The illumination subsystem employs light-emitting diode arrays to illuminate at different wavelengths. The transmission subsystem utilizes a unique geometry of optics and a liquid light guide. Software controls allow us to interface with and control the subsystems and components. Digital and analog signals are used to coordinate wavelength intensity, cycling and camera triggering. Testing of the system shows it can cycle 16 wavelengths at as fast as 1 ms per cycle. Additionally, more than 18% of the light transmits through the system. Our setup should allow for hyperspectral imaging of tissue and cells in real time.
Second International Airborne Remote Sensing Conference and Exhibition
NASA Technical Reports Server (NTRS)
1996-01-01
The conference provided four days of displays and scientific presentations on applications, technology, a science of sub-orbital data gathering and analysis. The twelve displayed aircraft equipped with sophisticated instrumentation represented a wide range of environmental and reconnaissance missions,including marine pollution control, fire detection, Open Skies Treaty verification, thermal mapping, hydrographical measurements, military research, ecological and agricultural observations, geophysical research, atmospheric and meterological observations, and aerial photography. The U.S. Air Force and the On-Site Inspection Agency displayed the new Open Skies Treaty verification Boeing OC 135B that promotes international monitoring of military forces and activities. SRl's Jetstream uses foliage and ground penetrating SAR for forest inventories, toxic waste delineation, and concealed target and buried unexploded ordnance detection. Earth Search Sciences's Gulfstream 1 with prototype miniaturized airborne hyperspectral imaging equipment specializes in accurate mineral differentiation, low-cost hydrocarbon exploration, and nonproliferation applications. John E. Chance and the U.S. Army Corps of Engineers displayed the Bell 2 helicopter with SHOALS that performs hydrographic surveying of navigation projects, coastal environment assessment, and nautical charting surveys. Bechtel Nevada and U.S. DOE displayed both the Beech King AIR B-200 platform equipped to provide first response to nuclear accidents and routine environmental surveillance, and the MBB BO-105 helicopter used in spectral analysis for environmental assessment and military appraisal. NASA Ames Research Center's high-altitude Lockheed ER-2 assists in earth resources monitoring research in atmospheric chemistry, oceanography, and electronic sensors; ozone and greenhouse studies and satellite calibration and data validation. Ames also showcased the Learjet 24 Airborne Observatory that completed missions in Venus cloud cover analysis, Quadantid meteor shower studies, extra-solar far infrared ionic structure lines measurement, Cape Kennedy launch support, and studies in air pollution, The Products and Services Exhibit showcased new sensor and image processing technologies, aircraft data collection services, unmanned vehicle technology, platform equipment, turn-key services, software a workstations, GPS services, publications, and processing and integration systems by 58 exhibitors. The participation of aircraft users and crews provided unique dialogue between those who plan data collection a operate the remote sensing technology, and those who supply the data processing and integration equipment. Research results using hyperspectral imagery, radar and optical sensors, lidar, digital aerial photography, a integrated systems were presented. Major research and development programs and campaigns we reviewed, including CNR's LARA Project and European Space Agency's 1991-1995 Airborne Campaign. The pre-conference short courses addressed airborne video, photogrammetry, hyperspectral data analysis, digital orthophotography, imagery and GIS integration, IFSAR, GPS, and spectrometer calibration.
Hyperspectral Features of Oil-Polluted Sea Ice and the Response to the Contamination Area Fraction
Li, Ying; Liu, Chengyu; Xie, Feng
2018-01-01
Researchers have studied oil spills in open waters using remote sensors, but few have focused on extracting reflectance features of oil pollution on sea ice. An experiment was conducted on natural sea ice in Bohai Bay, China, to obtain the spectral reflectance of oil-contaminated sea ice. The spectral absorption index (SAI), spectral peak height (SPH), and wavelet detail coefficient (DWT d5) were calculated using stepwise multiple linear regression. The reflectances of some false targets were measured and analysed. The simulated false targets were sediment, iron ore fines, coal dust, and the melt pool. The measured reflectances were resampled using five common sensors (GF-2, Landsat8-OLI, Sentinel3-OLCI, MODIS, and AVIRIS). Some significant spectral features could discriminate between oil-polluted and clean sea ice. The indices correlated well with the oil area fractions. All of the adjusted R2 values exceeded 0.9. The SPH model1, based on spectral features at 507–670 and 1627–1746 nm, displayed the best fitting. The resampled data indicated that these multi-spectral and hyper-spectral sensors could be used to detect crude oil on the sea ice if the effect of noise and spatial resolution are neglected. The spectral features and their identified changes may provide reference on sensor design and band selection. PMID:29342945
Design and performance of an integrated ground and space sensor web for monitoring active volcanoes.
NASA Astrophysics Data System (ADS)
Lahusen, Richard; Song, Wenzhan; Kedar, Sharon; Shirazi, Behrooz; Chien, Steve; Doubleday, Joshua; Davies, Ashley; Webb, Frank; Dzurisin, Dan; Pallister, John
2010-05-01
An interdisciplinary team of computer, earth and space scientists collaborated to develop a sensor web system for rapid deployment at active volcanoes. The primary goals of this Optimized Autonomous Space In situ Sensorweb (OASIS) are to: 1) integrate complementary space and in situ (ground-based) elements into an interactive, autonomous sensor web; 2) advance sensor web power and communication resource management technology; and 3) enable scalability for seamless addition sensors and other satellites into the sensor web. This three-year project began with a rigorous multidisciplinary interchange that resulted in definition of system requirements to guide the design of the OASIS network and to achieve the stated project goals. Based on those guidelines, we have developed fully self-contained in situ nodes that integrate GPS, seismic, infrasonic and lightning (ash) detection sensors. The nodes in the wireless sensor network are linked to the ground control center through a mesh network that is highly optimized for remote geophysical monitoring. OASIS also features an autonomous bidirectional interaction between ground nodes and instruments on the EO-1 space platform through continuous analysis and messaging capabilities at the command and control center. Data from both the in situ sensors and satellite-borne hyperspectral imaging sensors stream into a common database for real-time visualization and analysis by earth scientists. We have successfully completed a field deployment of 15 nodes within the crater and on the flanks of Mount St. Helens, Washington. The demonstration that sensor web technology facilitates rapid network deployments and that we can achieve real-time continuous data acquisition. We are now optimizing component performance and improving user interaction for additional deployments at erupting volcanoes in 2010.
NASA Astrophysics Data System (ADS)
Caras, Tamir; Hedley, John; Karnieli, Arnon
2017-12-01
Remote sensing offers a potential tool for large scale environmental surveying and monitoring. However, remote observations of coral reefs are difficult especially due to the spatial and spectral complexity of the target compared to sensor specifications as well as the environmental implications of the water medium above. The development of sensors is driven by technological advances and the desired products. Currently, spaceborne systems are technologically limited to a choice between high spectral resolution and high spatial resolution, but not both. The current study explores the dilemma of whether future sensor design for marine monitoring should prioritise on improving their spatial or spectral resolution. To address this question, a spatially and spectrally resampled ground-level hyperspectral image was used to test two classification elements: (1) how the tradeoff between spatial and spectral resolutions affects classification; and (2) how a noise reduction by majority filter might improve classification accuracy. The studied reef, in the Gulf of Aqaba (Eilat), Israel, is heterogeneous and complex so the local substrate patches are generally finer than currently available imagery. Therefore, the tested spatial resolution was broadly divided into four scale categories from five millimeters to one meter. Spectral resolution resampling aimed to mimic currently available and forthcoming spaceborne sensors such as (1) Environmental Mapping and Analysis Program (EnMAP) that is characterized by 25 bands of 6.5 nm width; (2) VENμS with 12 narrow bands; and (3) the WorldView series with broadband multispectral resolution. Results suggest that spatial resolution should generally be prioritized for coral reef classification because the finer spatial scale tested (pixel size < 0.1 m) may compensate for some low spectral resolution drawbacks. In this regard, it is shown that the post-classification majority filtering substantially improves the accuracy of all pixel sizes up to the point where the kernel size reaches the average unit size (pixel < 0.25 m). However, careful investigation as to the effect of band distribution and choice could improve the sensor suitability for the marine environment task. This in mind, while the focus in this study was on the technologically limited spaceborne design, aerial sensors may presently provide an opportunity to implement the suggested setup.
High Spatial Resolution Bidirectional Reflectance Retrieval Using Satellite Data
2010-12-01
of a region of interest (ROI), also known as its revisit time. It is useful for change detection in imagery. For example, deforestation studies do...hyperspectral sensors are disadvantageous as they increase processing and increase the complexity and cost of the satellite’s operation; however
3-D surface scan of biological samples with a push-broom imaging spectrometer
USDA-ARS?s Scientific Manuscript database
The food industry is always on the lookout for sensing technologies for rapid and nondestructive inspection of food products. Hyperspectral imaging technology integrates both imaging and spectroscopy into unique imaging sensors. Its application for food safety and quality inspection has made signifi...
NASA Astrophysics Data System (ADS)
Haakenaasen, Randi; Lovold, Stian
2003-01-01
Infrared technology in Norway started at the Norwegian Defense Research Establishment (FFI) in the 1960s, and has since then spread to universities, other research institutes and industry. FFI has a large, integrated IR activity that includes research and development in IR detectors, optics design, optical coatings, advanced dewar design, modelling/simulation of IR scenes, and image analysis. Part of the integrated activity is a laboratory for more basic research in materials science and semiconductor physics, in which thin films of CdHgTe are grown by molecular beam epitaxy and processed into IR detectors by various techniques. FFI also has a lot of experience in research and development of tunable infrared lasers for various applications. Norwegian industrial activities include production of infrared homing anti-ship missiles, laser rangefinders, various infrared gas sensors, hyperspectral cameras, and fiberoptic sensor systems for structural health monitoring and offshore oil well diagnostics.
Mineral Physicochemistry based Geoscience Products for Mapping the Earth's Surface and Subsurface
NASA Astrophysics Data System (ADS)
Laukamp, C.; Cudahy, T.; Caccetta, M.; Haest, M.; Rodger, A.; Western Australian Centre of Excellence3D Mineral Mapping
2011-12-01
Mineral maps derived from remotes sensing data can be used to address geological questions about mineral systems important for exploration and mining. This paper focuses on the application of geoscience-tuned multi- and hyperspectral sensors (e.g. ASTER, HyMap) and the methods to routinely create meaningful higher level geoscience products from these data sets. The vision is a 3D mineral map of the earth's surface and subsurface. Understanding the physicochemistry of rock forming minerals and the related diagnostic absorption features in the visible, near, mid and far infrared is a key for mineral mapping. For this, reflectance spectra obtained with lab based visible and infrared spectroscopic (VIRS) instruments (e.g. Bruker Hemisphere Vertex 70) are compared to various remote and proximal sensing techniques. Calibration of the various sensor types is a major challenge with any such comparisons. The spectral resolution of the respective instruments and the band positions are two of the main factors governing the ability to identify mineral groups or mineral species and compositions of those. The routine processing method employed by the Western Australian Centre of Excellence for 3D Mineral Mapping (http://c3dmm.csiro.au) is a multiple feature extraction method (MFEM). This method targets mineral specific absorption features rather than relying on spectral libraries or the need to find pure endmembers. The principle behind MFEM allows us to easily compare hyperspectral surface and subsurface data, laying the foundation for a seamless and accurate 3-dimensional mineral map. The advantage of VIRS techniques for geoscientific applications is the ability to deliver quantitative mineral information over multiple scales. For example, C3DMM is working towards a suite of ASTER-derived maps covering the Australian continent, scheduled for publication in 2012. A suite of higher level geoscience products of Western Australia (e.g. AlOH group abundance and composition) are now available. The multispectral satellite data can be integrated with hyperspectral airborne and drill core data (e.g. HyLogging), which is demonstrated by various case studies ranging from Channel Iron Deposits in the Hamersley Basin (WA) to various Australian orogenic Au deposits. Comparison with airborne and field hyperspectral or lab-based VIRS, as well as independent analyses such as XRD and geochemistry, enables us to deliver cross-calibrated geoscience products derived from the whole suite of geoscience tuned multi- and hyperspectral technologies. Kaolin crystallinity and hematite-goethite ratio for characterization of regolith, and Tschermak substitution in white micas for mapping of chemical gradients associated with hydrothermal ore deposits are a few of the multiple examples where 3D mineral maps can help to resolve geological questions.
Automated synthetic scene generation
NASA Astrophysics Data System (ADS)
Givens, Ryan N.
Physics-based simulations generate synthetic imagery to help organizations anticipate system performance of proposed remote sensing systems. However, manually constructing synthetic scenes which are sophisticated enough to capture the complexity of real-world sites can take days to months depending on the size of the site and desired fidelity of the scene. This research, sponsored by the Air Force Research Laboratory's Sensors Directorate, successfully developed an automated approach to fuse high-resolution RGB imagery, lidar data, and hyperspectral imagery and then extract the necessary scene components. The method greatly reduces the time and money required to generate realistic synthetic scenes and developed new approaches to improve material identification using information from all three of the input datasets.
Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan
2011-04-01
In this study, we propose and evaluate a method for spectral characterization of acousto-optic tunable filter (AOTF) hyperspectral imaging systems in the near-infrared (NIR) spectral region from 900 nm to 1700 nm. The proposed spectral characterization method is based on the SRM-2035 standard reference material, exhibiting distinct spectral features, which enables robust non-rigid matching of the acquired and reference spectra. The matching is performed by simultaneously optimizing the parameters of the AOTF tuning curve, spectral resolution, baseline, and multiplicative effects. In this way, the tuning curve (frequency-wavelength characteristics) and the corresponding spectral resolution of the AOTF hyperspectral imaging system can be characterized simultaneously. Also, the method enables simple spectral characterization of the entire imaging plane of hyperspectral imaging systems. The results indicate that the method is accurate and efficient and can easily be integrated with systems operating in diffuse reflection or transmission modes. Therefore, the proposed method is suitable for characterization, calibration, or validation of AOTF hyperspectral imaging systems. © 2011 Society for Applied Spectroscopy
NASA Astrophysics Data System (ADS)
Pahlavani, Parham; Bigdeli, Behnaz
2017-12-01
Hyperspectral images contain extremely rich spectral information that offer great potential to discriminate between various land cover classes. However, these images are usually composed of tens or hundreds of spectrally close bands, which result in high redundancy and great amount of computation time in hyperspectral classification. Furthermore, in the presence of mixed coverage pixels, crisp classifiers produced errors, omission and commission. This paper presents a mutual information-Dempster-Shafer system through an ensemble classification approach for classification of hyperspectral data. First, mutual information is applied to split data into a few independent partitions to overcome high dimensionality. Then, a fuzzy maximum likelihood classifies each band subset. Finally, Dempster-Shafer is applied to fuse the results of the fuzzy classifiers. In order to assess the proposed method, a crisp ensemble system based on a support vector machine as the crisp classifier and weighted majority voting as the crisp fusion method are applied on hyperspectral data. Furthermore, a dimension reduction system is utilized to assess the effectiveness of mutual information band splitting of the proposed method. The proposed methodology provides interesting conclusions on the effectiveness and potentiality of mutual information-Dempster-Shafer based classification of hyperspectral data.
Software algorithms for false alarm reduction in LWIR hyperspectral chemical agent detection
NASA Astrophysics Data System (ADS)
Manolakis, D.; Model, J.; Rossacci, M.; Zhang, D.; Ontiveros, E.; Pieper, M.; Seeley, J.; Weitz, D.
2008-04-01
The long-wave infrared (LWIR) hyperpectral sensing modality is one that is often used for the problem of detection and identification of chemical warfare agents (CWA) which apply to both military and civilian situations. The inherent nature and complexity of background clutter dictates a need for sophisticated and robust statistical models which are then used in the design of optimum signal processing algorithms that then provide the best exploitation of hyperspectral data to ultimately make decisions on the absence or presence of potentially harmful CWAs. This paper describes the basic elements of an automated signal processing pipeline developed at MIT Lincoln Laboratory. In addition to describing this signal processing architecture in detail, we briefly describe the key signal models that form the foundation of these algorithms as well as some spatial processing techniques used for false alarm mitigation. Finally, we apply this processing pipeline to real data measured by the Telops FIRST hyperspectral (FIRST) sensor to demonstrate its practical utility for the user community.
Hyperspectral anomaly detection using Sony PlayStation 3
NASA Astrophysics Data System (ADS)
Rosario, Dalton; Romano, João; Sepulveda, Rene
2009-05-01
We present a proof-of-principle demonstration using Sony's IBM Cell processor-based PlayStation 3 (PS3) to run-in near real-time-a hyperspectral anomaly detection algorithm (HADA) on real hyperspectral (HS) long-wave infrared imagery. The PS3 console proved to be ideal for doing precisely the kind of heavy computational lifting HS based algorithms require, and the fact that it is a relatively open platform makes programming scientific applications feasible. The PS3 HADA is a unique parallel-random sampling based anomaly detection approach that does not require prior spectra of the clutter background. The PS3 HADA is designed to handle known underlying difficulties (e.g., target shape/scale uncertainties) often ignored in the development of autonomous anomaly detection algorithms. The effort is part of an ongoing cooperative contribution between the Army Research Laboratory and the Army's Armament, Research, Development and Engineering Center, which aims at demonstrating performance of innovative algorithmic approaches for applications requiring autonomous anomaly detection using passive sensors.
APEX - the Hyperspectral ESA Airborne Prism Experiment
Itten, Klaus I.; Dell'Endice, Francesco; Hueni, Andreas; Kneubühler, Mathias; Schläpfer, Daniel; Odermatt, Daniel; Seidel, Felix; Huber, Silvia; Schopfer, Jürg; Kellenberger, Tobias; Bühler, Yves; D'Odorico, Petra; Nieke, Jens; Alberti, Edoardo; Meuleman, Koen
2008-01-01
The airborne ESA-APEX (Airborne Prism Experiment) hyperspectral mission simulator is described with its distinct specifications to provide high quality remote sensing data. The concept of an automatic calibration, performed in the Calibration Home Base (CHB) by using the Control Test Master (CTM), the In-Flight Calibration facility (IFC), quality flagging (QF) and specific processing in a dedicated Processing and Archiving Facility (PAF), and vicarious calibration experiments are presented. A preview on major applications and the corresponding development efforts to provide scientific data products up to level 2/3 to the user is presented for limnology, vegetation, aerosols, general classification routines and rapid mapping tasks. BRDF (Bidirectional Reflectance Distribution Function) issues are discussed and the spectral database SPECCHIO (Spectral Input/Output) introduced. The optical performance as well as the dedicated software utilities make APEX a state-of-the-art hyperspectral sensor, capable of (a) satisfying the needs of several research communities and (b) helping the understanding of the Earth's complex mechanisms. PMID:27873868
Portable Hyperspectral Imaging Broadens Sensing Horizons
NASA Technical Reports Server (NTRS)
2007-01-01
Broadband multispectral imaging can be very helpful in showing differences in energy being radiated and is often employed by NASA satellites to monitor temperature and climate changes. In addition, hyperspectral imaging is ideal for advanced laboratory uses, biomedical imaging, forensics, counter-terrorism, skin health, food safety, and Earth imaging. Lextel Intelligence Systems, LLC, of Jackson, Mississippi purchased Photon Industries Inc., a spinoff company of NASA's Stennis Space Center and the Institute for Technology Development dedicated to developing new hyperspectral imaging technologies. Lextel has added new features to and expanded the applicability of the hyperspectral imaging systems. It has made advances in the size, usability, and cost of the instruments. The company now offers a suite of turnkey hyperspectral imaging systems based on the original NASA groundwork. It currently has four lines of hyperspectral imaging products: the EagleEye VNIR 100E, the EagleEye SWIR 100E, the EagleEye SWIR 200E, and the EagleEye UV 100E. These Lextel instruments are used worldwide for a wide variety of applications including medical, military, forensics, and food safety.
Hyperspectral imaging for food processing automation
NASA Astrophysics Data System (ADS)
Park, Bosoon; Lawrence, Kurt C.; Windham, William R.; Smith, Doug P.; Feldner, Peggy W.
2002-11-01
This paper presents the research results that demonstrates hyperspectral imaging could be used effectively for detecting feces (from duodenum, ceca, and colon) and ingesta on the surface of poultry carcasses, and potential application for real-time, on-line processing of poultry for automatic safety inspection. The hyperspectral imaging system included a line scan camera with prism-grating-prism spectrograph, fiber optic line lighting, motorized lens control, and hyperspectral image processing software. Hyperspectral image processing algorithms, specifically band ratio of dual-wavelength (565/517) images and thresholding were effective on the identification of fecal and ingesta contamination of poultry carcasses. A multispectral imaging system including a common aperture camera with three optical trim filters (515.4 nm with 8.6- nm FWHM), 566.4 nm with 8.8-nm FWHM, and 631 nm with 10.2-nm FWHM), which were selected and validated by a hyperspectral imaging system, was developed for a real-time, on-line application. A total image processing time required to perform the current multispectral images captured by a common aperture camera was approximately 251 msec or 3.99 frames/sec. A preliminary test shows that the accuracy of real-time multispectral imaging system to detect feces and ingesta on corn/soybean fed poultry carcasses was 96%. However, many false positive spots that cause system errors were also detected.
Lee, Hoonsoo; Kim, Moon S; Song, Yu-Rim; Oh, Chang-Sik; Lim, Hyoun-Sub; Lee, Wang-Hee; Kang, Jum-Soon; Cho, Byoung-Kwan
2017-03-01
There is a need to minimize economic damage by sorting infected seeds from healthy seeds before seeding. However, current methods of detecting infected seeds, such as seedling grow-out, enzyme-linked immunosorbent assays, the polymerase chain reaction (PCR) and the real-time PCR have a critical drawbacks in that they are time-consuming, labor-intensive and destructive procedures. The present study aimed to evaluate the potential of visible/near-infrared (Vis/NIR) hyperspectral imaging system for detecting bacteria-infected watermelon seeds. A hyperspectral Vis/NIR reflectance imaging system (spectral region of 400-1000 nm) was constructed to obtain hyperspectral reflectance images for 336 bacteria-infected watermelon seeds, which were then subjected to partial least square discriminant analysis (PLS-DA) and a least-squares support vector machine (LS-SVM) to classify bacteria-infected watermelon seeds from healthy watermelon seeds. The developed system detected bacteria-infected watermelon seeds with an accuracy > 90% (PLS-DA: 91.7%, LS-SVM: 90.5%), suggesting that the Vis/NIR hyperspectral imaging system is effective for quarantining bacteria-infected watermelon seeds. The results of the present study show that it is possible to use the Vis/NIR hyperspectral imaging system for detecting bacteria-infected watermelon seeds. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Physics-based Detection of Subpixel Targets in Hyperspectral Imagery
2007-01-01
Learning Vector Quantization LWIR ...Wave Infrared ( LWIR ) from 7.0 to 15.0 microns regions as well. At these wavelengths, emissivity dominates the spectral signature. Emissivity is...object emits instead of reflects. Initial work has already been finished applying the hybrid detectors to LWIR sensors [13]. However, target
Fusion of remotely sensed data from airborne and ground-based sensors for cotton regrowth study
USDA-ARS?s Scientific Manuscript database
The study investigated the use of aerial multispectral imagery and ground-based hyperspectral data for the discrimination of different crop types and timely detection of cotton plants over large areas. Airborne multispectral imagery and ground-based spectral reflectance data were acquired at the sa...
The French proposal for a high spatial resolution Hyperspectral mission
NASA Astrophysics Data System (ADS)
Carrère, Véronique; Briottet, Xavier; Jacquemoud, Stéphane; Marion, Rodolphe; Bourguignon, Anne; Chami, Malik; Chanussot, Jocelyn; Chevrel, Stéphane; Deliot, Philippe; Dumont, Marie; Foucher, Pierre-Yves; Gomez, Cécile; Roman-Minghelli, Audrey; Sheeren, David; Weber, Christiane; Lefèvre, Marie-José; Mandea, Mioara
2014-05-01
More than 25 years of airborne imaging spectroscopy and spaceborne sensors such as Hyperion or HICO have clearly demonstrated the ability of such a remote sensing technique to produce value added information regarding surface composition and physical properties for a large variety of applications. Scheduled missions such as EnMAP and PRISMA prove the increased interest of the scientific community for such a type of remote sensing data. In France, a group of Science and Defence users of imaging spectrometry data (Groupe de Synthèse Hyperspectral, GSH) established an up-to-date review of possible applications, define instrument specifications required for accurate, quantitative retrieval of diagnostic parameters, and identify fields of application where imaging spectrometry is a major contribution. From these conclusions, CNES (French Space Agency) decided a phase 0 study for an hyperspectral mission concept, named at this time HYPXIM (HYPerspectral-X IMagery), the main fields of applications are vegetation biodiversity, coastal and inland waters, geosciences, urban environment, atmospheric sciences, cryosphere and Defence. Results pointed out applications where high spatial resolution was necessary and would not be covered by the other foreseen hyperspectral missions. The phase A started at the beginning of 2013 based on the following HYPXIM characteristics: a hyperspectral camera covering the [0.4 - 2.5 µm] spectral range with a 8 m ground sampling distance (GSD) and a PAN camera with a 1.85 m GSD, onboard a mini-satellite platform. This phase A is currently stopped due to budget constraints. Nevertheless, the Science team is currently focusing on the preparation for the next CNES prospective meeting (March, 2014), an important step for the future of the mission. This paper will provide an update of the status of this mission and of new results obtained by the Science team.
The fusion of satellite and UAV data: simulation of high spatial resolution band
NASA Astrophysics Data System (ADS)
Jenerowicz, Agnieszka; Siok, Katarzyna; Woroszkiewicz, Malgorzata; Orych, Agata
2017-10-01
Remote sensing techniques used in the precision agriculture and farming that apply imagery data obtained with sensors mounted on UAV platforms became more popular in the last few years due to the availability of low- cost UAV platforms and low- cost sensors. Data obtained from low altitudes with low- cost sensors can be characterised by high spatial and radiometric resolution but quite low spectral resolution, therefore the application of imagery data obtained with such technology is quite limited and can be used only for the basic land cover classification. To enrich the spectral resolution of imagery data acquired with low- cost sensors from low altitudes, the authors proposed the fusion of RGB data obtained with UAV platform with multispectral satellite imagery. The fusion is based on the pansharpening process, that aims to integrate the spatial details of the high-resolution panchromatic image with the spectral information of lower resolution multispectral or hyperspectral imagery to obtain multispectral or hyperspectral images with high spatial resolution. The key of pansharpening is to properly estimate the missing spatial details of multispectral images while preserving their spectral properties. In the research, the authors presented the fusion of RGB images (with high spatial resolution) obtained with sensors mounted on low- cost UAV platforms and multispectral satellite imagery with satellite sensors, i.e. Landsat 8 OLI. To perform the fusion of UAV data with satellite imagery, the simulation of the panchromatic bands from RGB data based on the spectral channels linear combination, was conducted. Next, for simulated bands and multispectral satellite images, the Gram-Schmidt pansharpening method was applied. As a result of the fusion, the authors obtained several multispectral images with very high spatial resolution and then analysed the spatial and spectral accuracies of processed images.
Texture-adaptive hyperspectral video acquisition system with a spatial light modulator
NASA Astrophysics Data System (ADS)
Fang, Xiaojing; Feng, Jiao; Wang, Yongjin
2014-10-01
We present a new hybrid camera system based on spatial light modulator (SLM) to capture texture-adaptive high-resolution hyperspectral video. The hybrid camera system records a hyperspectral video with low spatial resolution using a gray camera and a high-spatial resolution video using a RGB camera. The hyperspectral video is subsampled by the SLM. The subsampled points can be adaptively selected according to the texture characteristic of the scene by combining with digital imaging analysis and computational processing. In this paper, we propose an adaptive sampling method utilizing texture segmentation and wavelet transform (WT). We also demonstrate the effectiveness of the sampled pattern on the SLM with the proposed method.
Hyperspectral imaging for nondestructive evaluation of tomatoes
USDA-ARS?s Scientific Manuscript database
Machine vision methods for quality and defect evaluation of tomatoes have been studied for online sorting and robotic harvesting applications. We investigated the use of a hyperspectral imaging system for quality evaluation and defect detection for tomatoes. Hyperspectral reflectance images were a...
NASA Technical Reports Server (NTRS)
Miura, Tomoaki; Huete, Alfredo R.; Ferreira, Laerte G.; Sano, Edson E.
2004-01-01
The savanna, typically found in the sub-tropics and seasonal tropics, are the dominant vegetation biome type in the southern hemisphere, covering approximately 45% of the South America. In Brazil, the savanna, locally known as "cerrado," is the most intensely stressed biome with both natural environmental pressures (e.g., the strong seasonality in weather, extreme soil nutrient impoverishment, and widespread fire occurrences) and rapid/aggressive land conversions (Skole et al., 1994; Ratter et al., 1997). Better characterization and discrimination of cerrado physiognomies are needed in order to improve understanding of cerrado dynamics and its impact on carbon storage, nutrient dynamics, and the prospect for sustainable land use in the Brazilian cerrado biome. Satellite remote sensing have been known to be a useful tool for land cover and land use mapping (Rougharden et al., 1991; Hansen et al., 2000). However, attempts to discriminate and classify Brazilian cerrado using multi-spectral sensors (e.g., Landsat TM) and/or moderate resolution sensors (e.g., NOAA AVHRR NDVI) have often resulted in a limited success due partly to small contrasts depicted in their multiband, spectral reflectance or vegetation index values among cerrado classes (Seyler et al., 2002; Fran a and Setzer, 1998). In this study, we aimed to improve discrimination as well as biophysical characterization of the Brazilian cerrado physiognomies with hyperspectral remote sensing. We used Hyperion, the first satellite-based hyperspectral imager, onboard the Earth Observing-1 (EO-1) platform.
Duan, Si-Bo; Li, Zhao-Liang; Tang, Bo-Hui; Wu, Hua; Ma, Lingling; Zhao, Enyu; Li, Chuanrong
2013-01-01
To evaluate the in-flight performance of a new hyperspectral sensor onboard an unmanned aerial vehicle (UAV-HYPER), a comprehensive field campaign was conducted over the Baotou test site in China on 3 September 2011. Several portable reference reflectance targets were deployed across the test site. The radiometric performance of the UAV-HYPER sensor was assessed in terms of signal-to-noise ratio (SNR) and the calibration accuracy. The SNR of the different bands of the UAV-HYPER sensor was estimated to be between approximately 5 and 120 over the homogeneous targets, and the linear response of the apparent reflectance ranged from approximately 0.05 to 0.45. The uniform and non-uniform Lambertian land surface reflectance was retrieved and validated using in situ measurements, with root mean square error (RMSE) of approximately 0.01–0.07 and relative RMSE of approximately 5%–12%. There were small discrepancies between the retrieved uniform and non-uniform Lambertian land surface reflectance over the homogeneous targets and under low aerosol optical depth (AOD) conditions (AOD = 0.18). However, these discrepancies must be taken into account when adjacent pixels had large land surface reflectance contrast and under high AOD conditions (e.g. AOD = 1.0). PMID:23785513
Classification of case-II waters using hyperspectral (HICO) data over North Indian Ocean
NASA Astrophysics Data System (ADS)
Srinivasa Rao, N.; Ramarao, E. P.; Srinivas, K.; Deka, P. C.
2016-05-01
State of the art Ocean color algorithms are proven for retrieving the ocean constituents (chlorophyll-a, CDOM and Suspended Sediments) in case-I waters. However, these algorithms could not perform well at case-II waters because of the optical complexity. Hyperspectral data is found to be promising to classify the case-II waters. The aim of this study is to propose the spectral bands for future Ocean color sensors to classify the case-II waters. Study has been performed with Rrs's of HICO at estuaries of the river Indus and GBM of North Indian Ocean. Appropriate field samples are not available to validate and propose empirical models to retrieve concentrations. The sensor HICO is not currently operational to plan validation exercise. Aqua MODIS data at case-I and Case-II waters are used as complementary to in- situ. Analysis of Spectral reflectance curves suggests the band ratios of Rrs 484 nm and Rrs 581 nm, Rrs 490 nm and Rrs 426 nm to classify the Chlorophyll -a and CDOM respectively. Rrs 610 nm gives the best scope for suspended sediment retrieval. The work suggests the need for ocean color sensors with central wavelength's of 426, 484, 490, 581 and 610 nm to estimate the concentrations of Chl-a, Suspended Sediments and CDOM in case-II waters.
NASA Technical Reports Server (NTRS)
Li, Yonghong; Wu, Aisheng; Xiong, Xiaoxiong
2016-01-01
This paper compares the calibration consistency of the spectrally-matched thermal emissive bands (TEB) between the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) and the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS), using observations from their simultaneous nadir overpasses (SNO). Nearly-simultaneous hyperspectral measurements from the Aqua Atmospheric Infrared Sounder(AIRS) and the S-NPP Cross-track Infrared Sounder (CrIS) are used to account for existing spectral response differences between MODIS and VIIRS TEB. The comparison uses VIIRS Sensor Data Records (SDR) in MODIS five-minute granule format provided by the NASA Land Product and Evaluation and Test Element (PEATE) and Aqua MODIS Collection 6 Level 1 B (L1B) products. Each AIRS footprint of 13.5 km (or CrIS field of view of 14 km) is co-located with multiple MODIS (or VIIRS) pixels. The corresponding AIRS- and CrIS-simulated MODIS and VIIRS radiances are derived by convolutions based on sensor-dependent relative spectral response (RSR) functions. The VIIRS and MODIS TEB calibration consistency is evaluated and the two sensors agreed within 0.2 K in brightness temperature.Additional factors affecting the comparison such as geolocation and atmospheric water vapor content are also discussed in this paper.
Extraction of incident irradiance from LWIR hyperspectral imagery
NASA Astrophysics Data System (ADS)
Lahaie, Pierre
2014-10-01
The atmospheric correction of thermal hyperspectral imagery can be separated in two distinct processes: Atmospheric Compensation (AC) and Temperature and Emissivity separation (TES). TES requires for input at each pixel, the ground leaving radiance and the atmospheric downwelling irradiance, which are the outputs of the AC process. The extraction from imagery of the downwelling irradiance requires assumptions about some of the pixels' nature, the sensor and the atmosphere. Another difficulty is that, often the sensor's spectral response is not well characterized. To deal with this unknown, we defined a spectral mean operator that is used to filter the ground leaving radiance and a computation of the downwelling irradiance from MODTRAN. A user will select a number of pixels in the image for which the emissivity is assumed to be known. The emissivity of these pixels is assumed to be smooth and that the only spectrally fast varying variable in the downwelling irradiance. Using these assumptions we built an algorithm to estimate the downwelling irradiance. The algorithm is used on all the selected pixels. The estimated irradiance is the average on the spectral channels of the resulting computation. The algorithm performs well in simulation and results are shown for errors in the assumed emissivity and for errors in the atmospheric profiles. The sensor noise influences mainly the required number of pixels.
Hyperspectral imaging simulation of object under sea-sky background
NASA Astrophysics Data System (ADS)
Wang, Biao; Lin, Jia-xuan; Gao, Wei; Yue, Hui
2016-10-01
Remote sensing image simulation plays an important role in spaceborne/airborne load demonstration and algorithm development. Hyperspectral imaging is valuable in marine monitoring, search and rescue. On the demand of spectral imaging of objects under the complex sea scene, physics based simulation method of spectral image of object under sea scene is proposed. On the development of an imaging simulation model considering object, background, atmosphere conditions, sensor, it is able to examine the influence of wind speed, atmosphere conditions and other environment factors change on spectral image quality under complex sea scene. Firstly, the sea scattering model is established based on the Philips sea spectral model, the rough surface scattering theory and the water volume scattering characteristics. The measured bi directional reflectance distribution function (BRDF) data of objects is fit to the statistical model. MODTRAN software is used to obtain solar illumination on the sea, sky brightness, the atmosphere transmittance from sea to sensor and atmosphere backscattered radiance, and Monte Carlo ray tracing method is used to calculate the sea surface object composite scattering and spectral image. Finally, the object spectrum is acquired by the space transformation, radiation degradation and adding the noise. The model connects the spectrum image with the environmental parameters, the object parameters, and the sensor parameters, which provide a tool for the load demonstration and algorithm development.
A study of aerosol absorption and height retrievals with a hyperspectral (UV to NIR) passive sensor
NASA Astrophysics Data System (ADS)
Gasso, S.
2017-12-01
With the deployment of the first sensor (TOMS, in 1978) with capabilities to detect aerosol absorption (AA) from space, there has been a continuous evolution in hardware and algorithms used to measured this property. Although with TOMS and its more advanced successors (such as OMI) made significant progress in globally characterizing AA , there is room for improvement especially by taking advantage of sensors with extended spectral coverage (UV to NIR) and high spatial resolution (<1 km). While such unique sensor does not exist yet, the collocation of observations from different platforms that jointly fulfill those characteristics (e.g. A-Train, S-NPP) confirm that it is possible to fully retrieve all AA parameters that modulate absorption in the upwelling radiance (AOD, SSA and aerosol layer height). However, such combined approaches still have some drawbacks such as the difficulty to account for cloud contamination. The upcoming deployment of satellite detectors with the desired features all in one sensor (PACE, TropOMI, GEMS) prompt a revision of the AA retrieval technique used in past approaches. In particular,the TropOMI mission, a hyperspectral UV-to-NIR sensor with moderate ( 5km nadir pixel) spatial resolution to be launched in Fall 2017. In addition , the sensor will include sensing capabilities for the wavelength range of the Oxygen bands A and B at very high wavelength resolution. This study will be centered on the aerosol detection capabilities of TropOMI. Because the spectral range covered, it is theoretically possible to simultaneously retrieve the aerosol optical depth, the single scattering albedo and aerosol mean height without assuming any of them as it was the case with previous retrieval approaches. Specifically, we intend to present a theoretical study based on simulated radiances at selected UV, VIS and near-IR bands (including the Oxygen bands) and evaluate the sensitivity of this sensor to different levels of aerosol concentration, height and absorption properties (imaginary index) along with particle size distribution.
HICO and RAIDS Experiment Payload - Hyperspectral Imager for the Coastal Ocean
NASA Technical Reports Server (NTRS)
Corson, Mike
2009-01-01
HICO and RAIDS Experiment Payload - Hyperspectral Imager For The Coastal Ocean (HREP-HICO) will operate a visible and near-infrared (VNIR) Maritime Hyperspectral Imaging (MHSI) system, to detect, identify and quantify coastal geophysical features from the International Space Station.
Onboard Processor for Compressing HSI Data
NASA Technical Reports Server (NTRS)
Cook, Sid; Harsanyi, Joe; Day, John H. (Technical Monitor)
2002-01-01
With EO-1 Hyperion and MightySat in orbit NASA and the DoD are showing their continued commitment to hyperspectral imaging (HSI). As HSI sensor technology continues to mature, the ever-increasing amounts of sensor data generated will result in a need for more cost effective communication and data handling systems. Lockheed Martin, with considerable experience in spacecraft design and developing special purpose onboard processors, has teamed with Applied Signal & Image Technology (ASIT), who has an extensive heritage in HSI, to develop a real-time and intelligent onboard processing (OBP) system to reduce HSI sensor downlink requirements. Our goal is to reduce the downlink requirement by a factor greater than 100, while retaining the necessary spectral fidelity of the sensor data needed to satisfy the many science, military, and intelligence goals of these systems. Our initial spectral compression experiments leverage commercial-off-the-shelf (COTS) spectral exploitation algorithms for segmentation, material identification and spectral compression that ASIT has developed. ASIT will also support the modification and integration of this COTS software into the OBP. Other commercially available COTS software for spatial compression will also be employed as part of the overall compression processing sequence. Over the next year elements of a high-performance reconfigurable OBP will be developed to implement proven preprocessing steps that distill the HSI data stream in both spectral and spatial dimensions. The system will intelligently reduce the volume of data that must be stored, transmitted to the ground, and processed while minimizing the loss of information.
A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing.
Udelhoven, Thomas; Schlerf, Martin; Segl, Karl; Mallick, Kaniska; Bossung, Christian; Retzlaff, Rebecca; Rock, Gilles; Fischer, Peter; Müller, Andreas; Storch, Tobias; Eisele, Andreas; Weise, Dennis; Hupfer, Werner; Knigge, Thiemo
2017-07-01
This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR) satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping). The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1-5 days at off-nadir). At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month). To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1) a hyperspectral TIR system with ~75 bands at 7.2-12.5 µm (instrument NEDT 0.05 K-0.1 K) and a ground sampling distance (GSD) of 60 m, and (2) a panchromatic high-resolution TIR-imager with two channels (8.0-10.25 µm and 10.25-12.5 µm) and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1-3 days) to combine data from the visible and near infrared (VNIR), the shortwave infrared (SWIR) and TIR spectral regions and to refine parameter retrieval.
NASA Astrophysics Data System (ADS)
Samberg, Andre; Babichenko, Sergei; Poryvkina, Larisa
2005-05-01
Delay between the time when natural disaster, for example, oil accident in coastal water, occurred and the time when environmental protection actions, for example, water and shoreline clean-up, started is of significant importance. Mostly remote sensing techniques are considered as (near) real-time and suitable for multiple tasks. These techniques in combination with rapid environmental assessment methodologies would form multi-tier environmental assessment model, which allows creating (near) real-time datasets and optimizing sampling scenarios. This paper presents the idea of three-tier environmental assessment model. Here all three tiers are briefly described to show the linkages between them, with a particular focus on the first tier. Furthermore, it is described how large-scale environmental assessment can be improved by using an airborne 3-D scanning FLS-AM series hyperspectral lidar. This new aircraft-based sensor is typically applied for oil mapping on sea/ground surface and extracting optical features of subjects. In general, a sampling network, which is based on three-tier environmental assessment model, can include ship(s) and aircraft(s). The airborne 3-D scanning FLS-AM series hyperspectral lidar helps to speed up the whole process of assessing of area of natural disaster significantly, because this is a real-time remote sensing mean. For instance, it can deliver such information as georeferenced oil spill position in WGS-84, the estimated size of the whole oil spill, and the estimated amount of oil in seawater or on ground. All information is produced in digital form and, thus, can be directly transferred into a customer"s GIS (Geographical Information System) system.
Multi-optical mine detection: results from a field trial
NASA Astrophysics Data System (ADS)
Letalick, Dietmar; Tolt, Gustav; Sjökvist, Stefan K.; Nyberg, Sten; Grönwall, Christina; Andersson, Pierre; Linderhed, Anna; Forssell, Göran; Larsson, Håkan; Uppsäll, Magnus
2006-05-01
As a part of the Swedish mine detection project MOMS, an initial field trial was conducted at the Swedish EOD and Demining Centre (SWEDEC). The purpose was to collect data on surface-laid mines, UXO, submunitions, IED's, and background with a variety of optical sensors, for further use in the project. Three terrain types were covered: forest, gravel road, and an area which had recovered after total removal of all vegetation some years before. The sensors used in the field trial included UV, VIS, and NIR sensors as well as thermal, multi-spectral, and hyper-spectral sensors, 3-D laser radar and polarization sensors. Some of the sensors were mounted on an aerial work platform, while others were placed on tripods on the ground. This paper describes the field trial and the presents some initial results obtained from the subsequent analysis.
Detection of Chlorophyll and Leaf Area Index Dynamics from Sub-weekly Hyperspectral Imagery
NASA Technical Reports Server (NTRS)
Houborg, Rasmus; McCabe, Matthew F.; Angel, Yoseline; Middleton, Elizabeth M.
2016-01-01
Temporally rich hyperspectral time-series can provide unique time critical information on within-field variations in vegetation health and distribution needed by farmers to effectively optimize crop production. In this study, a dense time series of images were acquired from the Earth Observing-1 (EO-1) Hyperion sensor over an intensive farming area in the center of Saudi Arabia. After correction for atmospheric effects, optimal links between carefully selected explanatory hyperspectral vegetation indices and target vegetation characteristics were established using a machine learning approach. A dataset of in-situ measured leaf chlorophyll (Chll) and leaf area index (LAI), collected during five intensive field campaigns over a variety of crop types, were used to train the rule-based predictive models. The ability of the narrow-band hyperspectral reflectance information to robustly assess and discriminate dynamics in foliar biochemistry and biomass through empirical relationships were investigated. This also involved evaluations of the generalization and reproducibility of the predictions beyond the conditions of the training dataset. The very high temporal resolution of the satellite retrievals constituted a specifically intriguing feature that facilitated detection of total canopy Chl and LAI dynamics down to sub-weekly intervals. The study advocates the benefits associated with the availability of optimum spectral and temporal resolution spaceborne observations for agricultural management purposes.
Detection of chlorophyll and leaf area index dynamics from sub-weekly hyperspectral imagery
NASA Astrophysics Data System (ADS)
Houborg, Rasmus; McCabe, Matthew F.; Angel, Yoseline; Middleton, Elizabeth M.
2016-10-01
Temporally rich hyperspectral time-series can provide unique time critical information on within-field variations in vegetation health and distribution needed by farmers to effectively optimize crop production. In this study, a dense timeseries of images were acquired from the Earth Observing-1 (EO-1) Hyperion sensor over an intensive farming area in the center of Saudi Arabia. After correction for atmospheric effects, optimal links between carefully selected explanatory hyperspectral vegetation indices and target vegetation characteristics were established using a machine learning approach. A dataset of in-situ measured leaf chlorophyll (Chll) and leaf area index (LAI), collected during five intensive field campaigns over a variety of crop types, were used to train the rule-based predictive models. The ability of the narrow-band hyperspectral reflectance information to robustly assess and discriminate dynamics in foliar biochemistry and biomass through empirical relationships were investigated. This also involved evaluations of the generalization and reproducibility of the predictions beyond the conditions of the training dataset. The very high temporal resolution of the satellite retrievals constituted a specifically intriguing feature that facilitated detection of total canopy Chl and LAI dynamics down to sub-weekly intervals. The study advocates the benefits associated with the availability of optimum spectral and temporal resolution spaceborne observations for agricultural management purposes.
A Field Portable Hyperspectral Goniometer for Coastal Characterization
NASA Technical Reports Server (NTRS)
Bachmann, Charles M.; Gray, Deric; Abelev, Andrei; Philpot, William; Fusina, Robert A.; Musser, Joseph A.; Vermillion, Michael; Doctor, Katarina; White, Maurice; Georgiev, Georgi
2012-01-01
During an airborne multi-sensor remote sensing experiment at the Virginia Coast Reserve (VCR) Long Term Ecological Research (LTER) site in June 2011 (VCR '11), first measurements were taken with the new NRL Goniometer for Outdoor Portable Hyperspectral Earth Reflectance (GOPHER). GOPHER measures the angular distribution of hyperspectral reflectance. GOPHER was constructed for NRL by Spectra Vista Corporation (SVC) and the University of Lethbridge through a capital equipment purchase in 2010. The GOPHER spectrometer is an SVC HR -1024, which measures hyperspectral reflectance over the range from 350 -2500 nm, the visible, near infrared, and short-wave infrared. During measurements, the spectrometer travels along a zenith quarter -arc track that can rotate in azimuth, allowing for measurement of the bi-directional reflectance distribution function (BRDF) over the whole hemisphere. The zenith arc has a radius of approximately 2m, and the spectrometer scan pattern can be programmed on the fly during calibration and validation efforts. The spectrometer and zenith arc assembly can be raised and lowered along a mast to allow for measurement of uneven terrain or vegetation canopies of moderate height. Hydraulics on the chassis allow for leveling of the instrument in the field. At just over 400 lbs, GOPHER is a field portable instrument and can be transformed into a compact trailer assembly for movement over long distances in the field.
Optical control and diagnostics sensors for gas turbine machinery
NASA Astrophysics Data System (ADS)
Trolinger, James D.; Jenkins, Thomas P.; Heeg, Bauke
2012-10-01
There exists a vast range of optical techniques that have been under development for solving complex measurement problems related to gas-turbine machinery and phenomena. For instance, several optical techniques are ideally suited for studying fundamental combustion phenomena in laboratory environments. Yet other techniques hold significant promise for use as either on-line gas turbine control sensors, or as health monitoring diagnostics sensors. In this paper, we briefly summarize these and discuss, in more detail, some of the latter class of techniques, including phosphor thermometry, hyperspectral imaging and low coherence interferometry, which are particularly suited for control and diagnostics sensing on hot section components with ceramic thermal barrier coatings (TBCs).
NASA Astrophysics Data System (ADS)
Giblin, Jay P.; Dixon, John; Dupuis, Julia R.; Cosofret, Bogdan R.; Marinelli, William J.
2017-05-01
Sensor technologies capable of detecting low vapor pressure liquid surface contaminants, as well as solids, in a noncontact fashion while on-the-move continues to be an important need for the U.S. Army. In this paper, we discuss the development of a long-wave infrared (LWIR, 8-10.5 μm) spatial heterodyne spectrometer coupled with an LWIR illuminator and an automated detection algorithm for detection of surface contaminants from a moving vehicle. The system is designed to detect surface contaminants by repetitively collecting LWIR reflectance spectra of the ground. Detection and identification of surface contaminants is based on spectral correlation of the measured LWIR ground reflectance spectra with high fidelity library spectra and the system's cumulative binary detection response from the sampled ground. We present the concepts of the detection algorithm through a discussion of the system signal model. In addition, we present reflectance spectra of surfaces contaminated with a liquid CWA simulant, triethyl phosphate (TEP), and a solid simulant, acetaminophen acquired while the sensor was stationary and on-the-move. Surfaces included CARC painted steel, asphalt, concrete, and sand. The data collected was analyzed to determine the probability of detecting 800 μm diameter contaminant particles at a 0.5 g/m2 areal density with the SHSCAD traversing a surface.
An advanced scanning method for space-borne hyper-spectral imaging system
NASA Astrophysics Data System (ADS)
Wang, Yue-ming; Lang, Jun-Wei; Wang, Jian-Yu; Jiang, Zi-Qing
2011-08-01
Space-borne hyper-spectral imagery is an important means for the studies and applications of earth science. High cost efficiency could be acquired by optimized system design. In this paper, an advanced scanning method is proposed, which contributes to implement both high temporal and spatial resolution imaging system. Revisit frequency and effective working time of space-borne hyper-spectral imagers could be greatly improved by adopting two-axis scanning system if spatial resolution and radiometric accuracy are not harshly demanded. In order to avoid the quality degradation caused by image rotation, an idea of two-axis rotation has been presented based on the analysis and simulation of two-dimensional scanning motion path and features. Further improvement of the imagers' detection ability under the conditions of small solar altitude angle and low surface reflectance can be realized by the Ground Motion Compensation on pitch axis. The structure and control performance are also described. An intelligent integration technology of two-dimensional scanning and image motion compensation is elaborated in this paper. With this technology, sun-synchronous hyper-spectral imagers are able to pay quick visit to hot spots, acquiring both high spatial and temporal resolution hyper-spectral images, which enables rapid response of emergencies. The result has reference value for developing operational space-borne hyper-spectral imagers.
NASA Astrophysics Data System (ADS)
Saari, H.; Akujärvi, A.; Holmlund, C.; Ojanen, H.; Kaivosoja, J.; Nissinen, A.; Niemeläinen, O.
2017-10-01
The accurate determination of the quality parameters of crops requires a spectral range from 400 nm to 2500 nm (Kawamura et al., 2010, Thenkabail et al., 2002). Presently the hyperspectral imaging systems that cover this wavelength range consist of several separate hyperspectral imagers and the system weight is from 5 to 15 kg. In addition the cost of the Short Wave Infrared (SWIR) cameras is high ( 50 k€). VTT has previously developed compact hyperspectral imagers for drones and Cubesats for Visible and Very near Infrared (VNIR) spectral ranges (Saari et al., 2013, Mannila et al., 2013, Näsilä et al., 2016). Recently VTT has started to develop a hyperspectral imaging system that will enable imaging simultaneously in the Visible, VNIR, and SWIR spectral bands. The system can be operated from a drone, on a camera stand, or attached to a tractor. The targeted main applications of the DroneKnowledge hyperspectral system are grass, peas, and cereals. In this paper the characteristics of the built system are shortly described. The system was used for spectral measurements of wheat, several grass species and pea plants fixed to the camera mount in the test fields in Southern Finland and in the green house. The wheat, grass and pea field measurements were also carried out using the system mounted on the tractor. The work is part of the Finnish nationally funded DroneKnowledge - Towards knowledge based export of small UAS remote sensing technology project.
Proto, Monica; Bavusi, Massimo; Bernini, Romeo; Bigagli, Lorenzo; Bost, Marie; Bourquin, Frédrèric; Cottineau, Louis-Marie; Cuomo, Vincenzo; Della Vecchia, Pietro; Dolce, Mauro; Dumoulin, Jean; Eppelbaum, Lev; Fornaro, Gianfranco; Gustafsson, Mats; Hugenschmidt, Johannes; Kaspersen, Peter; Kim, Hyunwook; Lapenna, Vincenzo; Leggio, Mario; Loperte, Antonio; Mazzetti, Paolo; Moroni, Claudio; Nativi, Stefano; Nordebo, Sven; Pacini, Fabrizio; Palombo, Angelo; Pascucci, Simone; Perrone, Angela; Pignatti, Stefano; Ponzo, Felice Carlo; Rizzo, Enzo; Soldovieri, Francesco; Taillade, Fédrèric
2010-01-01
The ISTIMES project, funded by the European Commission in the frame of a joint Call "ICT and Security" of the Seventh Framework Programme, is presented and preliminary research results are discussed. The main objective of the ISTIMES project is to design, assess and promote an Information and Communication Technologies (ICT)-based system, exploiting distributed and local sensors, for non-destructive electromagnetic monitoring of critical transport infrastructures. The integration of electromagnetic technologies with new ICT information and telecommunications systems enables remotely controlled monitoring and surveillance and real time data imaging of the critical transport infrastructures. The project exploits different non-invasive imaging technologies based on electromagnetic sensing (optic fiber sensors, Synthetic Aperture Radar satellite platform based, hyperspectral spectroscopy, Infrared thermography, Ground Penetrating Radar-, low-frequency geophysical techniques, Ground based systems for displacement monitoring). In this paper, we show the preliminary results arising from the GPR and infrared thermographic measurements carried out on the Musmeci bridge in Potenza, located in a highly seismic area of the Apennine chain (Southern Italy) and representing one of the test beds of the project.
Transport Infrastructure Surveillance and Monitoring by Electromagnetic Sensing: The ISTIMES Project
Proto, Monica; Bavusi, Massimo; Bernini, Romeo; Bigagli, Lorenzo; Bost, Marie; Bourquin, Frédrèric.; Cottineau, Louis-Marie; Cuomo, Vincenzo; Vecchia, Pietro Della; Dolce, Mauro; Dumoulin, Jean; Eppelbaum, Lev; Fornaro, Gianfranco; Gustafsson, Mats; Hugenschmidt, Johannes; Kaspersen, Peter; Kim, Hyunwook; Lapenna, Vincenzo; Leggio, Mario; Loperte, Antonio; Mazzetti, Paolo; Moroni, Claudio; Nativi, Stefano; Nordebo, Sven; Pacini, Fabrizio; Palombo, Angelo; Pascucci, Simone; Perrone, Angela; Pignatti, Stefano; Ponzo, Felice Carlo; Rizzo, Enzo; Soldovieri, Francesco; Taillade, Fédrèric
2010-01-01
The ISTIMES project, funded by the European Commission in the frame of a joint Call “ICT and Security” of the Seventh Framework Programme, is presented and preliminary research results are discussed. The main objective of the ISTIMES project is to design, assess and promote an Information and Communication Technologies (ICT)-based system, exploiting distributed and local sensors, for non-destructive electromagnetic monitoring of critical transport infrastructures. The integration of electromagnetic technologies with new ICT information and telecommunications systems enables remotely controlled monitoring and surveillance and real time data imaging of the critical transport infrastructures. The project exploits different non-invasive imaging technologies based on electromagnetic sensing (optic fiber sensors, Synthetic Aperture Radar satellite platform based, hyperspectral spectroscopy, Infrared thermography, Ground Penetrating Radar-, low-frequency geophysical techniques, Ground based systems for displacement monitoring). In this paper, we show the preliminary results arising from the GPR and infrared thermographic measurements carried out on the Musmeci bridge in Potenza, located in a highly seismic area of the Apennine chain (Southern Italy) and representing one of the test beds of the project. PMID:22163489
USDA-ARS?s Scientific Manuscript database
Hyperspectral microscope imaging is presented as a rapid and efficient tool to classify foodborne bacteria species. The spectral data were obtained from five different species of Staphylococcus spp. with a hyperspectral microscope imaging system that provided a maximum of 89 contiguous spectral imag...
2007-09-27
the spatial and spectral resolution ...variety of geological and vegetation mapping efforts, the Hymap sensor offered the best available combination of spectral and spatial resolution , signal... The limitations of the technology currently relate to spatial and spectral resolution and geo- correction accuracy. Secondly, HSI datasets
Urban growth and agricultural production have caused an influx of nutrients into Lake Erie, leading to eutrophic zones. These conditions result in the formation of algal blooms, some of which are toxic due to the presence of Microcystis (a cyanobacteria), which produces the hepat...
NASA Astrophysics Data System (ADS)
Liu, Chanjuan; van Netten, Jaap J.; Klein, Marvin E.; van Baal, Jeff G.; Bus, Sicco A.; van der Heijden, Ferdi
2013-12-01
Early detection of (pre-)signs of ulceration on a diabetic foot is valuable for clinical practice. Hyperspectral imaging is a promising technique for detection and classification of such (pre-)signs. However, the number of the spectral bands should be limited to avoid overfitting, which is critical for pixel classification with hyperspectral image data. The goal was to design a detector/classifier based on spectral imaging (SI) with a small number of optical bandpass filters. The performance and stability of the design were also investigated. The selection of the bandpass filters boils down to a feature selection problem. A dataset was built, containing reflectance spectra of 227 skin spots from 64 patients, measured with a spectrometer. Each skin spot was annotated manually by clinicians as "healthy" or a specific (pre-)sign of ulceration. Statistical analysis on the data set showed the number of required filters is between 3 and 7, depending on additional constraints on the filter set. The stability analysis revealed that shot noise was the most critical factor affecting the classification performance. It indicated that this impact could be avoided in future SI systems with a camera sensor whose saturation level is higher than 106, or by postimage processing.
Onboard Classification of Hyperspectral Data on the Earth Observing One Mission
NASA Technical Reports Server (NTRS)
Chien, Steve; Tran, Daniel; Schaffer, Steve; Rabideau, Gregg; Davies, Ashley Gerard; Doggett, Thomas; Greeley, Ronald; Ip, Felipe; Baker, Victor; Doubleday, Joshua;
2009-01-01
Remote-sensed hyperspectral data represents significant challenges in downlink due to its large data volumes. This paper describes a research program designed to process hyperspectral data products onboard spacecraft to (a) reduce data downlink volumes and (b) decrease latency to provide key data products (often by enabling use of lower data rate communications systems). We describe efforts to develop onboard processing to study volcanoes, floods, and cryosphere, using the Hyperion hyperspectral imager and onboard processing for the Earth Observing One (EO-1) mission as well as preliminary work targeting the Hyperspectral Infrared Imager (HyspIRI) mission.
NASA Astrophysics Data System (ADS)
Nelson, Matthew P.; Basta, Andrew; Patil, Raju; Klueva, Oksana; Treado, Patrick J.
2013-05-01
The utility of Hyper Spectral Imaging (HSI) passive chemical detection employing wide field, standoff imaging continues to be advanced in detection applications. With a drive for reduced SWaP (Size, Weight, and Power), increased speed of detection and sensitivity, developing a handheld platform that is robust and user-friendly increases the detection capabilities of the end user. In addition, easy to use handheld detectors could improve the effectiveness of locating and identifying threats while reducing risks to the individual. ChemImage Sensor Systems (CISS) has developed the HSI Aperio™ sensor for real time, wide area surveillance and standoff detection of explosives, chemical threats, and narcotics for use in both government and commercial contexts. Employing liquid crystal tunable filter technology, the HSI system has an intuitive user interface that produces automated detections and real-time display of threats with an end user created library of threat signatures that is easily updated allowing for new hazardous materials. Unlike existing detection technologies that often require close proximity for sensing and so endanger operators and costly equipment, the handheld sensor allows the individual operator to detect threats from a safe distance. Uses of the sensor include locating production facilities of illegal drugs or IEDs by identification of materials on surfaces such as walls, floors, doors, deposits on production tools and residue on individuals. In addition, the sensor can be used for longer-range standoff applications such as hasty checkpoint or vehicle inspection of residue materials on surfaces or bulk material identification. The CISS Aperio™ sensor has faster data collection, faster image processing, and increased detection capability compared to previous sensors.
Development of a Hyperspectral Imaging System for Online Quality Inspection of Pickling Cucumbers
USDA-ARS?s Scientific Manuscript database
This paper reports on the development of a hyperspectral imaging prototype for evaluation of external and internal quality of pickling cucumbers. The prototype consisted of a two-lane round belt conveyor, two illumination sources (one for reflectance and one for transmittance), and a hyperspectral i...
Application of hyperspectral imaging for characterization of intramuscular fat distribution in beef
USDA-ARS?s Scientific Manuscript database
In this study, a hyperspectral imaging system in the spectral region of 400–1000 nm was used for visualization and determination of intramuscular fat concentration in beef samples. Hyperspectral images were acquired for beef samples, and spectral information was then extracted from each single sampl...
2010-04-01
NRL Stennis Space Center (NRL-SSC) for further processing using the NRL SSC Automated Processing System (APS). APS was developed for processing...have not previously developed automated processing for 73 hyperspectral ocean color data. The hyperspectral processing branch includes several
Hyperspectral imaging with deformable gratings fabricated with metal-elastomer nanocomposites
NASA Astrophysics Data System (ADS)
Potenza, Marco A. C.; Nazzari, Daniele; Cremonesi, Llorenç; Denti, Ilaria; Milani, Paolo
2017-11-01
We report the fabrication and characterization of a simple and compact hyperspectral imaging setup based on a stretchable diffraction grating made with a metal-polymer nanocomposite. The nanocomposite is produced by implanting Ag clusters in a poly(dimethylsiloxane) film by supersonic cluster beam implantation. The deformable grating has curved grooves and is imposed on a concave cylindrical surface, thus obtaining optical power in two orthogonal directions. Both diffractive and optical powers are obtained by reflection, thus realizing a diffractive-catoptric optical device. This makes it easier to minimize aberrations. We prove that, despite the extended spectral range and the simplified optical scheme, it is actually possible to work with a traditional CCD sensor and achieve a good spectral and spatial resolution.
Multispectral and hyperspectral advanced characterization of soldier's camouflage equipment
NASA Astrophysics Data System (ADS)
Farley, Vincent; Kastek, Mariusz; Chamberland, Martin; PiÄ tkowski, Tadeusz; Lagueux, Philippe; Dulski, Rafał; Trzaskawka, Piotr
2013-05-01
The requirements for soldier camouflage in the context of modern warfare are becoming more complex and challenging given the emergence of novel infrared sensors. There is a pressing need for the development of adapted fabrics and soldier camouflage devices to provide efficient camouflage in both the visible and infrared spectral ranges. The Military University of Technology has conducted an intensive project to develop new materials and fabrics to further improve the camouflage efficiency of soldiers. The developed materials shall feature visible and infrared properties that make these unique and adapted to various military context needs. This paper presents the details of an advanced measurement campaign of those unique materials where the correlation between multispectral and hyperspectral infrared measurements is performed.
Multispectral and hyperspectral advanced characterization of soldier's camouflage equipment
NASA Astrophysics Data System (ADS)
Lagueux, Philippe; Kastek, Mariusz; Chamberland, Martin; PiÄ tkowski, Tadeusz; Farley, Vincent; Dulski, Rafał; Trzaskawka, Piotr
2013-10-01
The requirements for soldier camouflage in the context of modern warfare are becoming more complex and challenging given the emergence of novel infrared sensors. There is a pressing need for the development of adapted fabrics and soldier camouflage devices to provide efficient camouflage in both the visible and infrared spectral ranges. The Military University of Technology has conducted an intensive project to develop new materials and fabrics to further improve the camouflage efficiency of soldiers. The developed materials shall feature visible and infrared properties that make these unique and adapted to various military context needs. This paper presents the details of an advanced measurement campaign of those unique materials where the correlation between multispectral and hyperspectral infrared measurements is performed.
NASA Astrophysics Data System (ADS)
Suomalainen, Juha; Franke, Jappe; Anders, Niels; Iqbal, Shahzad; Wenting, Philip; Becker, Rolf; Kooistra, Lammert
2014-05-01
We have developed a lightweight Hyperspectral Mapping System (HYMSY) and a novel processing chain for UAV based mapping. The HYMSY consists of a custom pushbroom spectrometer (range 450-950nm, FWHM 9nm, ~20 lines/s, 328 pixels/line), a consumer camera (collecting 16MPix raw image every 2 seconds), a GPS-Inertia Navigation System (GPS-INS), and synchronization and data storage units. The weight of the system at take-off is 2.0kg allowing us to mount it on a relatively small octocopter. The novel processing chain exploits photogrammetry in the georectification process of the hyperspectral data. At first stage the photos are processed in a photogrammetric software producing a high-resolution RGB orthomosaic, a Digital Surface Model (DSM), and photogrammetric UAV/camera position and attitude at the moment of each photo. These photogrammetric camera positions are then used to enhance the internal accuracy of GPS-INS data. These enhanced GPS-INS data are then used to project the hyperspectral data over the photogrammetric DSM, producing a georectified end product. The presented photogrammetric processing chain allows fully automated georectification of hyperspectral data using a compact GPS-INS unit while still producingin UAV use higher georeferencing accuracy than would be possible using the traditional processing method. During 2013, we have operated HYMSY on 150+ octocopter flights at 60+ sites or days. On typical flight we have produced for a 2-10ha area: a RGB orthoimagemosaic at 1-5cm resolution, a DSM in 5-10cm resolution, and hyperspectral datacube at 10-50cm resolution. The targets have mostly consisted of vegetated targets including potatoes, wheat, sugar beets, onions, tulips, coral reefs, and heathlands,. In this poster we present the Hyperspectral Mapping System and the photogrammetric processing chain with some of our first mapping results.
NASA Astrophysics Data System (ADS)
Lawrence, Kurt C.; Park, Bosoon; Windham, William R.; Mao, Chengye; Poole, Gavin H.
2003-03-01
A method to calibrate a pushbroom hyperspectral imaging system for "near-field" applications in agricultural and food safety has been demonstrated. The method consists of a modified geometric control point correction applied to a focal plane array to remove smile and keystone distortion from the system. Once a FPA correction was applied, single wavelength and distance calibrations were used to describe all points on the FPA. Finally, a percent reflectance calibration, applied on a pixel-by-pixel basis, was used for accurate measurements for the hyperspectral imaging system. The method was demonstrated with a stationary prism-grating-prism, pushbroom hyperspectral imaging system. For the system described, wavelength and distance calibrations were used to reduce the wavelength errors to <0.5 nm and distance errors to <0.01mm (across the entrance slit width). The pixel-by-pixel percent reflectance calibration, which was performed at all wavelengths with dark current and 99% reflectance calibration-panel measurements, was verified with measurements on a certified gradient Spectralon panel with values ranging from about 14% reflectance to 99% reflectance with errors generally less than 5% at the mid-wavelength measurements. Results from the calibration method, indicate the hyperspectral imaging system has a usable range between 420 nm and 840 nm. Outside this range, errors increase significantly.
SSUSI-lite: next generation far-ultraviolet sensor for characterizing geospace
NASA Astrophysics Data System (ADS)
Paxton, Larry J.; Hicks, John E.; Grey, Matthew P.; Parker, Charles W.; Hourani, Ramsay S.; Marcotte, Kathryn M.; Carlsson, Uno P.; Kerem, Samuel; Osterman, Steven N.; Maas, Bryan J.; Ogorzalek, Bernard S.
2016-10-01
SSUSI-Lite is an update of an existing sensor, SSUSI. The current generation of Defense Meteorological Satellite Program (DMSP) satellites (Block 5D3) includes a hyperspectral, cross-tracking imaging spectrograph known as the Special Sensor Ultraviolet Spectrographic Imager (SSUSI). SSUSI has been part of the DMSP program since 1990. SSUSI is designed to provide space weather information such as: auroral imagery, ionospheric electron density profiles, and neutral density composition changes. The sensors that are flying today (see http://ssusi.jhuapl.edu) were designed in 1990 - 1992. There have been some significant improvements in flight hardware since then. The SSUSI-Lite instrument is more capable than SSUSI yet consumes ½ the power and is ½ the mass. The total package count (and as a consequence, integration cost and difficulty) was reduced from 7 to 2. The scan mechanism was redesigned and tested and is a factor of 10 better. SSUSI-Lite can be flown as a hosted payload or a rideshare - it only needs about 10 watts and weighs under 10 kg. We will show results from tests of an interesting intensified position sensitive anode pulse counting detector system. We use this approach because the SSUSI sensor operates in the far ultraviolet - from about 110 to 180 nm or 0.11 to 0.18 microns.
Spatial-scanning hyperspectral imaging probe for bio-imaging applications
NASA Astrophysics Data System (ADS)
Lim, Hoong-Ta; Murukeshan, Vadakke Matham
2016-03-01
The three common methods to perform hyperspectral imaging are the spatial-scanning, spectral-scanning, and snapshot methods. However, only the spectral-scanning and snapshot methods have been configured to a hyperspectral imaging probe as of today. This paper presents a spatial-scanning (pushbroom) hyperspectral imaging probe, which is realized by integrating a pushbroom hyperspectral imager with an imaging probe. The proposed hyperspectral imaging probe can also function as an endoscopic probe by integrating a custom fabricated image fiber bundle unit. The imaging probe is configured by incorporating a gradient-index lens at the end face of an image fiber bundle that consists of about 50 000 individual fiberlets. The necessary simulations, methodology, and detailed instrumentation aspects that are carried out are explained followed by assessing the developed probe's performance. Resolution test targets such as United States Air Force chart as well as bio-samples such as chicken breast tissue with blood clot are used as test samples for resolution analysis and for performance validation. This system is built on a pushbroom hyperspectral imaging system with a video camera and has the advantage of acquiring information from a large number of spectral bands with selectable region of interest. The advantages of this spatial-scanning hyperspectral imaging probe can be extended to test samples or tissues residing in regions that are difficult to access with potential diagnostic bio-imaging applications.
Detection of mechanical injury on pickling cucumbers using near-infrared hyperspectral imaging
NASA Astrophysics Data System (ADS)
Ariana, D.; Lu, R.; Guyer, D.
2005-11-01
Automated detection of defects on freshly harvested pickling cucumbers will help the pickle industry provide higher quality pickle products and reduce potential economic losses. Research was conducted on using a hyperspectral imaging system for detecting defects on pickling cucumbers caused by mechanical stress. A near-infrared hyperspectral imaging system was used to capture both spatial and spectral information from cucumbers in the spectral region of 900 - 1700 nm. The system consisted of an imaging spectrograph attached to an InGaAs camera with line-light fiber bundles as an illumination source. Cucumber samples were subjected to two forms of mechanical loading, dropping and rolling, to simulate stress caused by mechanical harvesting. Hyperspectral images were acquired from the cucumbers over time periods of 0, 1, 2, 3, and 6 days after mechanical stress. Hyperspectral image processing methods, including principal component analysis and wavelength selection, were developed to separate normal and mechanically injured cucumbers. Results showed that reflectance from normal or non-bruised cucumbers was consistently higher than that from bruised cucumbers. The spectral region between 950 and 1350 nm was found to be most effective for bruise detection. The hyperspectral imaging system detected all mechanically injured cucumbers immediately after they were bruised. The overall detection accuracy was 97% within two hours of bruising and it was lower as time progressed. Lower detection accuracies for the prolonged times after bruising were attributed to the self- healing of the bruised tissue after mechanical injury. This research demonstrated that hyperspectral imaging is useful for detecting mechanical injury on pickling cucumbers.
NASA Astrophysics Data System (ADS)
Saluja, Ridhi; Garg, J. K.
2017-10-01
Wetlands, one of the most productive ecosystems on Earth, perform myriad ecological functions and provide a host of ecological services. Despite their ecological and economic values, wetlands have experienced significant degradation during the last century and the trend continues. Hyperspectral sensors provide opportunities to map and monitor macrophyte species within wetlands for their management and conservation. In this study, an attempt has been made to evaluate the potential of narrowband spectroradiometer data in discriminating wetland macrophytes during different seasons. main objectives of the research were (1) to determine whether macrophyte species could be discriminated based on in-situ hyperspectral reflectance collected over different seasons and at each measured waveband (400-950nm), (2) to compare the effectiveness of spectral reflectance and spectral indices in discriminating macrophyte species, and (3) to identify spectral wavelengths that are most sensitive in discriminating macrophyte species. Spectral characteristics of dominant wetland macrophyte species were collected seasonally using SVC GER 1500 portable spectroradiometer over the 400 to 1050nm spectral range at 1.5nm interval, at the Bhindawas wetland in the state of Haryana, India. Hyperspectral observations were pre-processed and subjected to statistical analysis, which involved a two-step approach including feature selection (ANOVA and KW test) and feature extraction (LDA and PCA). Statistical analysis revealed that the most influential wavelengths for discrimination were distributed along the spectral profile from visible to the near-infrared regions. The results suggest that hyperspectral data can be used discriminate wetland macrophyte species working as an effective tool for advanced mapping and monitoring of wetlands.
EnGeoMAP - geological applications within the EnMAP hyperspectral satellite science program
NASA Astrophysics Data System (ADS)
Boesche, N. K.; Mielke, C.; Rogass, C.; Guanter, L.
2016-12-01
Hyperspectral investigations from near field to space substantially contribute to geological exploration and mining monitoring of raw material and mineral deposits. Due to their spectral characteristics, large mineral occurrences and minefields can be identified from space and the spatial distribution of distinct proxy minerals be mapped. In the frame of the EnMAP hyperspectral satellite science program a mineral and elemental mapping tool was developed - the EnGeoMAP. It contains a basic mineral mapping and a rare earth element mapping approach. This study shows the performance of EnGeoMAP based on simulated EnMAP data of the rare earth element bearing Mountain Pass Carbonatite Complex, USA, and the Rodalquilar and Lomilla Calderas, Spain, which host the economically relevant gold-silver, lead-zinc-silver-gold and alunite deposits. The mountain pass image data was simulated on the basis of AVIRIS Next Generation images, while the Rodalquilar data is based on HyMap images. The EnGeoMAP - Base approach was applied to both images, while the mountain pass image data were additionally analysed using the EnGeoMAP - REE software tool. The results are mineral and elemental maps that serve as proxies for the regional lithology and deposit types. The validation of the maps is based on chemical analyses of field samples. Current airborne sensors meet the spatial and spectral requirements for detailed mineral mapping and future hyperspectral space borne missions will additionally provide a large coverage. For those hyperspectral missions, EnGeoMAP is a rapid data analysis tool that is provided to spectral geologists working in mineral exploration.
A methodology for luminance map retrieval using airborne hyperspectral and photogrammetric data
NASA Astrophysics Data System (ADS)
Pipia, Luca; Alamús, Ramon; Tardà, Anna; Pérez, Fernando; Palà, Vicenç; Corbera, Jordi
2014-10-01
This paper puts forward a methodology developed at the Institut Cartogràfic i Geològic de Catalunya (ICGC) to quantify upwelling light flux using hyperspectral and photogrammetric airborne data. The work was carried out in the frame of a demonstrative study requested by the municipality of Sant Cugat del Vallès, in the vicinity of Barcelona (Spain), and aimed to envisage a new approach to assess artificial lighting policies and actions as alternative to field campaigns. Hyperspectral and high resolution multispectral/panchromatic data were acquired simultaneously over urban areas. In order to avoid moon light contributions, data were acquired during the first days of new moon phase. Hyperspectral data were radiometrically calibrated. Then, National Center for Environmental Prediction (NCEP) atmospheric profiles were employed to estimate the actual Column Water Vapor (CWV) to be passed to ModTran5.0 for the atmospheric transmissivity τ calculation. At-the-ground radiance was finally integrated using the photopic sensitivity curve to generate a luminance map (cdm-2) of the flown area by mosaicking the different flight tracks. In an attempt to improve the spatial resolution and enhance the dynamic range of the luminance map, a sensor-fusion strategy was finally looked into. DMC Photogrammetric data acquired simultaneously to hyperspectral information were converted into at-the-ground radiance and upscaled to CASI spatial resolution. High-resolution (HR) luminance maps with enhanced dynamic range were finally generated by linearly fitting up-scaled DMC mosaics to the CASI-based luminance information. In the end, a preliminary assessment of the methodology is carried out using non-simultaneous in-situ measurements.
Nieke, Jens; Reusen, Ils
2007-01-01
User-driven requirements for remote sensing data are difficult to define, especially details on geometric, spectral and radiometric parameters. Even more difficult is a decent assessment of the required degrees of processing and corresponding data quality. It is therefore a real challenge to appropriately assess data costs and services to be provided. In 2006, the HYRESSA project was initiated within the framework 6 programme of the European Commission to analyze the user needs of the hyperspectral remote sensing community. Special focus was given to finding an answer to the key question, “What are the individual user requirements for hyperspectral imagery and its related data products?”. A Value-Benefit Analysis (VBA) was performed to retrieve user needs and address open items accordingly. The VBA is an established tool for systematic problem solving by supporting the possibility of comparing competing projects or solutions. It enables evaluation on the basis of a multidimensional objective model and can be augmented with expert's preferences. After undergoing a VBA, the scaling method (e.g., Law of Comparative Judgment) was applied for achieving the desired ranking judgments. The result, which is the relative value of projects with respect to a well-defined main objective, can therefore be produced analytically using a VBA. A multidimensional objective model adhering to VBA methodology was established. Thereafter, end users and experts were requested to fill out a Questionnaire of User Needs (QUN) at the highest level of detail - the value indicator level. The end user was additionally requested to report personal preferences for his particular research field. In the end, results from the experts' evaluation and results from a sensor data survey can be compared in order to understand user needs and the drawbacks of existing data products. The investigation – focusing on the needs of the hyperspectral user community in Europe – showed that a VBA is a suitable method for analyzing the needs of hyperspectral data users and supporting the sensor/data specification-building process. The VBA has the advantage of being easy to handle, resulting in a comprehensive evaluation. The primary disadvantage is the large effort in realizing such an analysis because the level of detail is extremely high.
Fire detection from hyperspectral data using neural network approach
NASA Astrophysics Data System (ADS)
Piscini, Alessandro; Amici, Stefania
2015-10-01
This study describes an application of artificial neural networks for the recognition of flaming areas using hyper- spectral remote sensed data. Satellite remote sensing is considered an effective and safe way to monitor active fires for environmental and people safeguarding. Neural networks are an effective and consolidated technique for the classification of satellite images. Moreover, once well trained, they prove to be very fast in the application stage for a rapid response. At flaming temperature, thanks to its low excitation energy (about 4.34 eV), potassium (K) ionize with a unique doublet emission features. This emission features can be detected remotely providing a detection map of active fire which allows in principle to separate flaming from smouldering areas of vegetation even in presence of smoke. For this study a normalised Advanced K Band Difference (AKBD) has been applied to airborne hyper spectral sensor covering a range of 400-970 nm with resolution 2.9 nm. A back propagation neural network was used for the recognition of active fires affecting the hyperspectral image. The network was trained using all channels of sensor as inputs, and the corresponding AKBD indexes as target output. In order to evaluate its generalization capabilities, the neural network was validated on two independent data sets of hyperspectral images, not used during neural network training phase. The validation results for the independent data-sets had an overall accuracy round 100% for both image and a few commission errors (0.1%), therefore demonstrating the feasibility of estimating the presence of active fires using a neural network approach. Although the validation of the neural network classifier had a few commission errors, the producer accuracies were lower due to the presence of omission errors. Image analysis revealed that those false negatives lie in "smoky" portion fire fronts, and due to the low intensity of the signal. The proposed method can be considered effective both in terms of classification accuracy and generalization capability. In particular our approach proved to be robust in the rejection of false positives, often corresponding to noisy or smoke pixels, whose presence in hyperspectral images can often undermine the performance of traditional classification algorithms. In order to improve neural network performance, future activities will include also the exploiting of hyperspectral images in the shortwave infrared region of the electromagnetic spectrum, covering wavelengths from 1400 to 2500 nm, which include significant emitted radiance from fire.
Dental caries imaging using hyperspectral stimulated Raman scattering microscopy
NASA Astrophysics Data System (ADS)
Wang, Zi; Zheng, Wei; Jian, Lin; Huang, Zhiwei
2016-03-01
We report the development of a polarization-resolved hyperspectral stimulated Raman scattering (SRS) imaging technique based on a picosecond (ps) laser-pumped optical parametric oscillator system for label-free imaging of dental caries. In our imaging system, hyperspectral SRS images (512×512 pixels) in both fingerprint region (800-1800 cm-1) and high-wavenumber region (2800-3600 cm-1) are acquired in minutes by scanning the wavelength of OPO output, which is a thousand times faster than conventional confocal micro Raman imaging. SRS spectra variations from normal enamel to caries obtained from the hyperspectral SRS images show the loss of phosphate and carbonate in the carious region. While polarization-resolved SRS images at 959 cm-1 demonstrate that the caries has higher depolarization ratio. Our results demonstrate that the polarization resolved-hyperspectral SRS imaging technique developed allows for rapid identification of the biochemical and structural changes of dental caries.
NASA Astrophysics Data System (ADS)
Bassani, Cristiana; Tirelli, Cecilia; Manzo, Ciro; Pietrodangelo, Adriana; Curci, Gabriele
2015-04-01
The aerosol micro-physical properties are crucial to analyze their radiative impact on the Earth's radiation budget [IPCC, 2007]. The 6SV model, last generation of the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer code [Kotchenova et al., 2007; Vermote et al., 1997] has been used to perform physically-based atmospheric correction of hyperspectral airborne and aircraft remote sensing data [Vermote et al., 2009; Bassani et al. 2010; Tirelli et al., 2014]. The atmospheric correction of hyperspectral data has been shown to be sensitive to the aerosol micro-physical properties, as reported in Bassani et al., 2012. The role of the aerosol micro-physical properties on the accuracy of the atmospheric correction of hyperspectral data acquired over water and land targets is investigated within the framework of CLAM-PHYM (Coasts and Lake Assessment and Monitoring by PRISMA HYperspectral Mission) and PRIMES (Synergistic use of PRISMA products with high resolution meteo-chemical simulations and their validation on ground and from satellite) projects, both funded by Italian Space Agency (ASI). In this work, the results of the radiative field of the Earth/Atmosphere coupled system simulated by using 6SV during the atmospheric correction of hyperspectral data are presented. The analysis of the clear-sky direct radiative effect is performed considering the aerosol micro-physical properties used to define the aerosol model during the atmospheric correction process. In particular, the AERONET [Holben et al., 1998] and FLEXAOD [Curci et al., 2014] micro-physical properties are used for each image to evaluate the contribution of the size distribution and refractive index of the aerosol type on the surface reflectance and on the direct radiative forcing. The results highlight the potential of the hyperspectral remote sensing data for atmospheric studies as well as for environmental studies. Currently, the future hyperspectral missions, such as the PRISMA mission, are an opportunity to study the aerosol radiative effects. IPCC, 2007. Climate Change 2007: the Physical Science Basis. ISBN 978 0521 88009-1 Hardback; 978 0521 70596-7 Paperback. Kotchenova and Vermote, 2007. Appl. Opt. doi:10.1364/AO.46.004455. Vermote et al., 1997. IEEE Trans. Geosci. Remote Sens. doi:10.1109/36.581987. Vermote and Kotchenova, 2009. J. Geophys. Res. doi:10.1029/2007JD009662. Bassani et al., 2010. Sensors. doi:10.3390/s100706421. Bassani et al., 2012. Atmos. Meas. Tech. doi:10.5194/amt-5-1193-2012. Tirelli,C. et al., 2014. AGU2014, 15-19 September 2014. Holben et al., 1998. Rem. Sens. Environ. doi:10.1016/S0034-4257(98)00031-5 Curci et al., 2014. Atmos. Environ. doi:10.1016/j.atmosenv.2014.09.009
Methodology for the passive detection and discrimination of chemical and biological aerosols
NASA Astrophysics Data System (ADS)
Marinelli, William J.; Shokhirev, Kirill N.; Konno, Daisei; Rossi, David C.; Richardson, Martin
2013-05-01
The standoff detection and discrimination of aerosolized biological and chemical agents has traditionally been addressed through LIDAR approaches, but sensor systems using these methods have yet to be deployed. We discuss the development and testing of an approach to detect these aerosols using the deployed base of passive infrared hyperspectral sensors used for chemical vapor detection. The detection of aerosols requires the inclusion of down welling sky and up welling ground radiation in the description of the radiative transfer process. The wavelength and size dependent ratio of absorption to scattering provides much of the discrimination capability. The approach to the detection of aerosols utilizes much of the same phenomenology employed in vapor detection; however, the sensor system must acquire information on non-line-of-sight sources of radiation contributing to the scattering process. We describe the general methodology developed to detect chemical or biological aerosols, including justifications for the simplifying assumptions that enable the development of a real-time sensor system. Mie scattering calculations, aerosol size distribution dependence, and the angular dependence of the scattering on the aerosol signature will be discussed. This methodology will then be applied to two test cases: the ground level release of a biological aerosol (BG) and a nonbiological confuser (kaolin clay) as well as the debris field resulting from the intercept of a cruise missile carrying a thickened VX warhead. A field measurement, conducted at the Utah Test and Training Range will be used to illustrate the issues associated with the use of the method.
NASA Astrophysics Data System (ADS)
Gabrieli, Andrea; Wright, Robert; Lucey, Paul G.; Porter, John N.; Garbeil, Harold; Pilger, Eric; Wood, Mark
2016-10-01
The ability to image and quantify SO2 path-concentrations in volcanic plumes, either by day or by night, is beneficial to volcanologists. Gas emission rates are affected by the chemical equilibria in rising magmas and a better understanding of this relationship would be useful for short-term eruption prediction. A newly developed remote sensing long-wave thermal InfraRed (IR) imaging hyperspectral sensor - the Thermal Hyperspectral Imager (THI) - was built and tested. The system employs a Sagnac interferometer and an uncooled microbolometer in rapid scanning configuration to collect hyperspectral images of volcanic plumes. Each pixel in the resulting image yields a spectrum with 50 samples between 8 and 14 μm. Images are spectrally and radiometrically calibrated using an IR source with a narrow band filter and two blackbodies. In this paper, the sensitivity of the instrument for the purpose of quantifying SO2 using well constrained laboratory experiments is evaluated, and initial field results from Kīlauea volcano, Hawai'i, are presented. The sensitivity of THI was determined using gas cells filled with known concentrations of SO2 and using NIST-traceable blackbodies to simulate a range of realistic background conditions. Measurements made by THI were then benchmarked against a high spectral resolution off-the-shelf Michelson FTIR instrument. Theoretical thermal IR spectral radiances were computed with MODTRAN5 for the same optical conditions, to evaluate how well the (known) concentration of SO2 in the gas cells could be retrieved from the resulting THI spectra. Finally, THI was recently field-tested at Kīlauea to evaluate its ability to image the concentration of SO2 in a real volcanic plume. A path-concentration of 7150 ppm m was retrieved from measurements made near the Halema'uma'u vent.
Along-track calibration of SWIR push-broom hyperspectral imaging system
NASA Astrophysics Data System (ADS)
Jemec, Jurij; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran
2016-05-01
Push-broom hyperspectral imaging systems are increasingly used for various medical, agricultural and military purposes. The acquired images contain spectral information in every pixel of the imaged scene collecting additional information about the imaged scene compared to the classical RGB color imaging. Due to the misalignment and imperfections in the optical components comprising the push-broom hyperspectral imaging system, variable spectral and spatial misalignments and blur are present in the acquired images. To capture these distortions, a spatially and spectrally variant response function must be identified at each spatial and spectral position. In this study, we propose a procedure to characterize the variant response function of Short-Wavelength Infrared (SWIR) push-broom hyperspectral imaging systems in the across-track and along-track direction and remove its effect from the acquired images. A custom laser-machined spatial calibration targets are used for the characterization. The spatial and spectral variability of the response function in the across-track and along-track direction is modeled by a parametrized basis function. Finally, the characterization results are used to restore the distorted hyperspectral images in the across-track and along-track direction by a Richardson-Lucy deconvolution-based algorithm. The proposed calibration method in the across-track and along-track direction is thoroughly evaluated on images of targets with well-defined geometric properties. The results suggest that the proposed procedure is well suited for fast and accurate spatial calibration of push-broom hyperspectral imaging systems.
NASA Astrophysics Data System (ADS)
Laurence, Audrey; Pichette, Julien; Angulo-Rodríguez, Leticia M.; Saint Pierre, Catherine; Lesage, Frédéric; Bouthillier, Alain; Nguyen, Dang Khoa; Leblond, Frédéric
2016-03-01
Following normal neuronal activity, there is an increase in cerebral blood flow and cerebral blood volume to provide oxygenated hemoglobin to active neurons. For abnormal activity such as epileptiform discharges, this hemodynamic response may be inadequate to meet the high metabolic demands. To verify this hypothesis, we developed a novel hyperspectral imaging system able to monitor real-time cortical hemodynamic changes during brain surgery. The imaging system is directly integrated into a surgical microscope, using the white-light source for illumination. A snapshot hyperspectral camera is used for detection (4x4 mosaic filter array detecting 16 wavelengths simultaneously). We present calibration experiments where phantoms made of intralipid and food dyes were imaged. Relative concentrations of three dyes were recovered at a video rate of 30 frames per second. We also present hyperspectral recordings during brain surgery of epileptic patients with concurrent electrocorticography recordings. Relative concentration maps of oxygenated and deoxygenated hemoglobin were extracted from the data, allowing real-time studies of hemodynamic changes with a good spatial resolution. Finally, we present preliminary results on phantoms obtained with an integrated spatial frequency domain imaging system to recover tissue optical properties. This additional module, used together with the hyperspectral imaging system, will allow quantification of hemoglobin concentrations maps. Our hyperspectral imaging system offers a new tool to analyze hemodynamic changes, especially in the case of epileptiform discharges. It also offers an opportunity to study brain connectivity by analyzing correlations between hemodynamic responses of different tissue regions.
NASA Technical Reports Server (NTRS)
Hooker, Stanford B.; Bernhard, Germar; Morrow, John H.; Booth, Charles R.; Comer, Thomas; Lind, Randall N.; Quang, Vi
2012-01-01
A principal objective of the Optical Sensors for Planetary Radiance Energy (OSPREy) activity is to establish an above-water radiometer system as a lower-cost alternative to existing in-water systems for the collection of ground-truth observations. The goal is to be able to make high-quality measurements satisfying the accuracy requirements for the vicarious calibration and algorithm validation of next-generation satellites that make ocean color and atmospheric measurements. This means the measurements will have a documented uncertainty satisfying the established performance metrics for producing climate-quality data records. The OSPREy approach is based on enhancing commercial-off-the-shelf fixed-wavelength and hyperspectral sensors to create hybridspectral instruments with an improved accuracy and spectral resolution, as well as a dynamic range permitting sea, Sun, sky, and Moon observations. Greater spectral diversity in the ultraviolet (UV) will be exploited to separate the living and nonliving components of marine ecosystems; UV bands will also be used to flag and improve atmospheric correction algorithms in the presence of absorbing aerosols. The short-wave infrared (SWIR) is expected to improve atmospheric correction, because the ocean is radiometrically blacker at these wavelengths. This report describes the development of the sensors, including unique capabilities like three-axis polarimetry; the documented uncertainty will be presented in a subsequent report.
Design of light guide sleeve on hyperspectral imaging system for skin diagnosis
NASA Astrophysics Data System (ADS)
Yan, Yung-Jhe; Chang, Chao-Hsin; Huang, Ting-Wei; Chiang, Hou-Chi; Wu, Jeng-Fu; Ou-Yang, Mang
2017-08-01
A hyperspectral imaging system is proposed for early study of skin diagnosis. A stable and high hyperspectral image quality is important for analysis. Therefore, a light guide sleeve (LGS) was designed for the embedded on a hyperspectral imaging system. It provides a uniform light source on the object plane with the determined distance. Furthermore, it can shield the ambient light from entering the system and increasing noise. For the purpose of producing a uniform light source, the LGS device was designed in the symmetrical double-layered structure. It has light cut structures to adjust distribution of rays between two layers and has the Lambertian surface in the front-end to promote output uniformity. In the simulation of the design, the uniformity of illuminance was about 91.7%. In the measurement of the actual light guide sleeve, the uniformity of illuminance was about 92.5%.
NASA Astrophysics Data System (ADS)
Meola, Joseph; Absi, Anthony; Islam, Mohammed N.; Peterson, Lauren M.; Ke, Kevin; Freeman, Michael J.; Ifaraguerri, Agustin I.
2014-06-01
Hyperspectral imaging systems are currently used for numerous activities related to spectral identification of materials. These passive imaging systems rely on naturally reflected/emitted radiation as the source of the signal. Thermal infrared systems measure radiation emitted from objects in the scene. As such, they can operate at both day and night. However, visible through shortwave infrared systems measure solar illumination reflected from objects. As a result, their use is limited to daytime applications. Omni Sciences has produced high powered broadband shortwave infrared super-continuum laser illuminators. A 64-watt breadboard system was recently packaged and tested at Wright-Patterson Air Force Base to gauge beam quality and to serve as a proof-of-concept for potential use as an illuminator for a hyperspectral receiver. The laser illuminator was placed in a tower and directed along a 1.4km slant path to various target materials with reflected radiation measured with both a broadband camera and a hyperspectral imaging system to gauge performance.
ISBDD Model for Classification of Hyperspectral Remote Sensing Imagery
Li, Na; Xu, Zhaopeng; Zhao, Huijie; Huang, Xinchen; Drummond, Jane; Wang, Daming
2018-01-01
The diverse density (DD) algorithm was proposed to handle the problem of low classification accuracy when training samples contain interference such as mixed pixels. The DD algorithm can learn a feature vector from training bags, which comprise instances (pixels). However, the feature vector learned by the DD algorithm cannot always effectively represent one type of ground cover. To handle this problem, an instance space-based diverse density (ISBDD) model that employs a novel training strategy is proposed in this paper. In the ISBDD model, DD values of each pixel are computed instead of learning a feature vector, and as a result, the pixel can be classified according to its DD values. Airborne hyperspectral data collected by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor and the Push-broom Hyperspectral Imager (PHI) are applied to evaluate the performance of the proposed model. Results show that the overall classification accuracy of ISBDD model on the AVIRIS and PHI images is up to 97.65% and 89.02%, respectively, while the kappa coefficient is up to 0.97 and 0.88, respectively. PMID:29510547
PREDICTION METRICS FOR CHEMICAL DETECTION IN LONG-WAVE INFRARED HYPERSPECTRAL IMAGERY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chilton, M.; Walsh, S.J.; Daly, D.S.
2009-01-01
Natural and man-made chemical processes generate gaseous plumes that may be detected by hyperspectral imaging, which produces a matrix of spectra affected by the chemical constituents of the plume, the atmosphere, the bounding background surface and instrument noise. A physics-based model of observed radiance shows that high chemical absorbance and low background emissivity result in a larger chemical signature. Using simulated hyperspectral imagery, this study investigated two metrics which exploited this relationship. The objective was to explore how well the chosen metrics predicted when a chemical would be more easily detected when comparing one background type to another. The twomore » predictor metrics correctly rank ordered the backgrounds for about 94% of the chemicals tested as compared to the background rank orders from Whitened Matched Filtering (a detection algorithm) of the simulated spectra. These results suggest that the metrics provide a reasonable summary of how the background emissivity and chemical absorbance interact to produce the at-sensor chemical signal. This study suggests that similarly effective predictors that account for more general physical conditions may be derived.« less
Classification of Hyperspectral Data Based on Guided Filtering and Random Forest
NASA Astrophysics Data System (ADS)
Ma, H.; Feng, W.; Cao, X.; Wang, L.
2017-09-01
Hyperspectral images usually consist of more than one hundred spectral bands, which have potentials to provide rich spatial and spectral information. However, the application of hyperspectral data is still challengeable due to "the curse of dimensionality". In this context, many techniques, which aim to make full use of both the spatial and spectral information, are investigated. In order to preserve the geometrical information, meanwhile, with less spectral bands, we propose a novel method, which combines principal components analysis (PCA), guided image filtering and the random forest classifier (RF). In detail, PCA is firstly employed to reduce the dimension of spectral bands. Secondly, the guided image filtering technique is introduced to smooth land object, meanwhile preserving the edge of objects. Finally, the features are fed into RF classifier. To illustrate the effectiveness of the method, we carry out experiments over the popular Indian Pines data set, which is collected by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor. By comparing the proposed method with the method of only using PCA or guided image filter, we find that effect of the proposed method is better.
Self-adaptive road tracking in hyperspectral data for C-IED
NASA Astrophysics Data System (ADS)
Schilling, Hendrik; Gross, Wolfgang; Middelmann, Wolfgang
2012-09-01
For Counter Improvised Explosive Devices purposes, main routes including their vicinity are surveyed. In future military operations, small hyperspectral sensors will be used for ground covering reconnaissance, complementing images from infrared and high resolution sensors. They will be mounted on unmanned airborne vehicles and are used for on-line monitoring of convoy routes. Depending of the proximity to the road, different regions can be defined for threat assessment. Automatic road tracking can help choosing the correct areas of interest. Often, the exact discrimination between road and surroundings fails in conventional methods due to low contrast in pan-chromatic images at the road boundaries or occlusions. In this contribution, a novel real-time lock-on road tracking algorithm is introduced. It uses hyperspectral data and is specifically designed to address the afore- mentioned deficiencies of conventional methods. Local features are calculated from the high-resolution spectral signatures. They describe the similarity to the actual road cover and to either roadside. Classification is per- formed to discriminate the signatures. To improve robustness against variations in road cover, the classification results are used to progressively adapt the road and roadside classes. Occlusions are treated by predicting the course of the road and comparing the signatures in the target area to previously determined road cover signa- tures. The algorithm can be easily extended to show regions of varying threat, depending on the distance to the road. Thus, complex anomaly detectors and classification algorithms can be applied to a reduced data set. First experiments were performed for AISA Eagle II (400nm - 970nm) and AISA Hawk (970nm - 2450nm) data
EO-1 analysis applicable to coastal characterization
NASA Astrophysics Data System (ADS)
Burke, Hsiao-hua K.; Misra, Bijoy; Hsu, Su May; Griffin, Michael K.; Upham, Carolyn; Farrar, Kris
2003-09-01
The EO-1 satellite is part of NASA's New Millennium Program (NMP). It consists of three imaging sensors: the multi-spectral Advanced Land Imager (ALI), Hyperion and Atmospheric Corrector. Hyperion provides a high-resolution hyperspectral imager capable of resolving 220 spectral bands (from 0.4 to 2.5 micron) with a 30 m resolution. The instrument images a 7.5 km by 100 km land area per image. Hyperion is currently the only space-borne HSI data source since the launch of EO-1 in late 2000. The discussion begins with the unique capability of hyperspectral sensing to coastal characterization: (1) most ocean feature algorithms are semi-empirical retrievals and HSI has all spectral bands to provide legacy with previous sensors and to explore new information, (2) coastal features are more complex than those of deep ocean that coupled effects are best resolved with HSI, and (3) with contiguous spectral coverage, atmospheric compensation can be done with more accuracy and confidence, especially since atmospheric aerosol effects are the most pronounced in the visible region where coastal feature lie. EO-1 data from Chesapeake Bay from 19 February 2002 are analyzed. In this presentation, it is first illustrated that hyperspectral data inherently provide more information for feature extraction than multispectral data despite Hyperion has lower SNR than ALI. Chlorophyll retrievals are also shown. The results compare favorably with data from other sources. The analysis illustrates the potential value of Hyperion (and HSI in general) data to coastal characterization. Future measurement requirements (air borne and space borne) are also discussed.
NASA Astrophysics Data System (ADS)
Joseph, E.; Nalli, N. R.; Oyola, M. I.; Morris, V. R.; Sakai, R.
2014-12-01
An overview is given of research to validate or improve the retrieval of environmental data records (EDRs) from recently deployed hyperspectral IR satellite sensors such as Suomi NPP Cross-track Infrared Microwave Sounder Suite (CrIMSS). The effort centers around several surface field intensive campaigns that are designed or leveraged for EDR validation. These data include ship-based observations of upper air ozone, pressure, temperature and relative humidity soundings; aerosol and cloud properties; and sea surface temperature. Similar intensive data from two land-based sites are also utilized as well. One site, the Howard University Beltsville site, is at a single point location but has a comprehensive array of observations for an extended period of time. The other land site, presently being deployed by the University at Albany, is under development with limited upper air soundings but will have regionally distributed surface based microwave profiling of temperature and relative humidity on the scale of 10 - 50 km and other standard meteorological observations. Combined these observations provide data that are unique in their wide range including, a variety of meteorological conditions and atmospheric compositions over the ocean and urban-suburban environments. With the distributed surface sites the variability of atmospheric conditions are captured concurrently across a regional spatial scale. Some specific examples are given of comparisons of moisture and temperature correlative EDRs from the satellite sensors and surface based observations. An additional example is given of the use of this data to correct sea surface temperature (SST) retrieval biases from the hyperspectral IR satellite observations due to aerosol contamination.
Design of a concise Féry-prism hyperspectral imaging system based on multi-configuration
NASA Astrophysics Data System (ADS)
Dong, Wei; Nie, Yun-feng; Zhou, Jin-song
2013-08-01
In order to meet the needs of space borne and airborne hyperspectral imaging system for light weight, simplification and high spatial resolution, a novel design of Féry-prism hyperspectral imaging system based on Zemax multi-configuration method is presented. The novel structure is well arranged by analyzing optical monochromatic aberrations theoretically, and the optical structure of this design is concise. The fundamental of this design is Offner relay configuration, whereas the secondary mirror is replaced by Féry-prism with curved surfaces and a reflective front face. By reflection, the light beam passes through the Féry-prism twice, which promotes spectral resolution and enhances image quality at the same time. The result shows that the system can achieve light weight and simplification, compared to other hyperspectral imaging systems. Composed of merely two spherical mirrors and one achromatized Féry-prism to perform both dispersion and imaging functions, this structure is concise and compact. The average spectral resolution is 6.2nm; The MTFs for 0.45~1.00um spectral range are greater than 0.75, RMSs are less than 2.4um; The maximal smile is less than 10% pixel, while the keystones is less than 2.8% pixel; image quality approximates the diffraction limit. The design result shows that hyperspectral imaging system with one modified Féry-prism substituting the secondary mirror of Offner relay configuration is feasible from the perspective of both theory and practice, and possesses the merits of simple structure, convenient optical alignment, and good image quality, high resolution in space and spectra, adjustable dispersive nonlinearity. The system satisfies the requirements of airborne or space borne hyperspectral imaging system.
Concept of an advanced hyperspectral remote sensing system for pipeline monitoring
NASA Astrophysics Data System (ADS)
Keskin, Göksu; Teutsch, Caroline D.; Lenz, Andreas; Middelmann, Wolfgang
2015-10-01
Areas occupied by oil pipelines and storage facilities are prone to severe contamination due to leaks caused by natural forces, poor maintenance or third parties. These threats have to be detected as quickly as possible in order to prevent serious environmental damage. Periodical and emergency monitoring activities need to be carried out for successful disaster management and pollution minimization. Airborne remote sensing stands out as an appropriate choice to operate either in an emergency or periodically. Hydrocarbon Index (HI) and Hydrocarbon Detection Index (HDI) utilize the unique absorption features of hydrocarbon based materials at SWIR spectral region. These band ratio based methods require no a priori knowledge of the reference spectrum and can be calculated in real time. This work introduces a flexible airborne pipeline monitoring system based on the online quasi-operational hyperspectral remote sensing system developed at Fraunhofer IOSB, utilizing HI and HDI for oil leak detection on the data acquired by an SWIR imaging sensor. Robustness of HI and HDI compared to state of the art detection algorithms is evaluated in an experimental setup using a synthetic dataset, which was prepared in a systematic way to simulate linear mixtures of selected background and oil spectra consisting of gradually decreasing percentages of oil content. Real airborne measurements in Ettlingen, Germany are used to gather background data while the crude oil spectrum was measured with a field spectrometer. The results indicate that the system can be utilized for online and offline monitoring activities.
Earth Observations from the International Space Station: Benefits for Humanity
NASA Technical Reports Server (NTRS)
Stefanov, William L.
2015-01-01
The International Space Station (ISS) is a unique terrestrial remote sensing platform for observation of the Earth's land surface, oceans, and atmosphere. Unlike automated remote-sensing platforms it has a human crew; is equipped with both internal and externally-mounted active and passive remote sensing instruments; and has an inclined, low-Earth orbit that provides variable views and lighting (day and night) over 95 percent of the inhabited surface of the Earth. As such, it provides a useful complement to autonomous, sun-synchronous sensor systems in higher altitude polar orbits. Beginning in May 2012, NASA ISS sensor systems have been available to respond to requests for data through the International Charter, Space and Major Disasters, also known as the "International Disaster Charter" or IDC. Data from digital handheld cameras, multispectral, and hyperspectral imaging systems has been acquired in response to IDC activations and delivered to requesting agencies through the United States Geological Survey. The characteristics of the ISS for Earth observation will be presented, including past, current, and planned NASA, International Partner, and commercial remote sensing systems. The role and capabilities of the ISS for humanitarian benefit, specifically collection of remotely sensed disaster response data, will be discussed.
International Space Station Data Collection for Disaster Response
NASA Technical Reports Server (NTRS)
Stefanov, William L.; Evans, Cynthia A.
2015-01-01
Remotely sensed data acquired by orbital sensor systems has emerged as a vital tool to identify the extent of damage resulting from a natural disaster, as well as providing near-real time mapping support to response efforts on the ground and humanitarian aid efforts. The International Space Station (ISS) is a unique terrestrial remote sensing platform for acquiring disaster response imagery. Unlike automated remote-sensing platforms it has a human crew; is equipped with both internal and externally-mounted remote sensing instruments; and has an inclined, low-Earth orbit that provides variable views and lighting (day and night) over 95 percent of the inhabited surface of the Earth. As such, it provides a useful complement to autonomous sensor systems in higher altitude polar orbits. NASA remote sensing assets on the station began collecting International Disaster Charter (IDC) response data in May 2012. The initial NASA ISS sensor systems responding to IDC activations included the ISS Agricultural Camera (ISSAC), mounted in the Window Observational Research Facility (WORF); the Crew Earth Observations (CEO) Facility, where the crew collects imagery using off-the-shelf handheld digital cameras; and the Hyperspectral Imager for the Coastal Ocean (HICO), a visible to near-infrared system mounted externally on the Japan Experiment Module Exposed Facility. The ISSAC completed its primary mission in January 2013. It was replaced by the very high resolution ISS SERVIR Environmental Research and Visualization System (ISERV) Pathfinder, a visible-wavelength digital camera, telescope, and pointing system. Since the start of IDC response in 2012 there have been 108 IDC activations; NASA sensor systems have collected data for thirty-two of these events. Of the successful data collections, eight involved two or more ISS sensor systems responding to the same event. Data has also been collected by International Partners in response to natural disasters, most notably JAXA and Roscosmos/Energia through the Urugan program.
NASA Technical Reports Server (NTRS)
Lekki, John; Anderson, Robert; Avouris, Dulcinea; Becker, RIchard; Churnside, James; Cline, Michael; Demers, James; Leshkevich, George; Liou, Larry; Luvall, Jeffrey;
2017-01-01
Harmful algal blooms (HABs) in Lake Erie have been prominent in recent years. The bloom in 2014 reached a severe level causing the State of Ohio to declare a state of emergency. At that time NASA Glenn Research Center was requested by stakeholders to help monitor the blooms in Lake Erie. Glenn conducted flights twice a week in August and September and assembled and distributed the HAB information to the shoreline water resource managers using its hyperspectral imaging sensor (in development since 2006), the S??3 Viking aircraft, and funding resources from the NASA Headquarters Earth Science Division. Since then, the State of Ohio, National Oceanic and Atmospheric Administration (NOAA), and U.S. Environmental Protection Agency (EPA) have elevated their funding and activities for observing, monitoring, and addressing the root cause of HABs. Also, the communities and stakeholders have persistently requested NASA Glenn??s participation in HAB observation. Abundant field campaigns and sample analyses have been funded by Ohio and NOAA, which provided a great opportunity for NASA to advance science and airborne hyperspectral remote sensing economically. Capitalizing on this opportunity to advance the science of algal blooms and remote sensing, NASA Glenn conducted the Airborne Hyperspectral Observation of harmful algal blooms campaign in 2015 that was, in many respects, twice as large as the 2014 campaign. Focusing mostly on Lake Erie, but also including other small inland lakes and the Ohio River, the campaign was conducted in partnership with a large number of partners specializing in marine science and remote sensing. Airborne hyperspectral observation of HABs holds promise to distinguish potential HABs from nuisance blooms, determine their concentrations, and delineate their movement in an augmented spatial and temporal resolution and under clouds??all of which are excellent complements to satellite observations. Working with collaborators at several Ohio and Michigan institutions as well as one in South Dakota and one in Alabama, this effort was able to provide next-day georeferenced estimates of cyanobacteria and scum concentrations. Very prompt processing and analysis of the hyperspectral imagery is necessary for the information to be acted upon. For example, a next-day report of an overflight over the Ohio River indicated that a bloom could be present as far downstream as the Cincinnati intake, but the Ohio EPA had not received visual reports of a bloom that far downstream. Water samples were obtained at the Cincinnati water intake, based on the flight data, and detected microcystins in the source water. The flight data helped State and municipal authorities realize the potential extent of that bloom, and triggered response sampling, before the visual river-wide scums started forming. The present document describes the process that was utilized to take raw remote sensing data and create information products; this includes system calibration and validation, efforts to correct atmospheric effects, and algorithms that produce the data products. Furthermore, successful research into improved algorithms for expanding the capability to delineate in water constituents is included. Finally, comparisons that show expected relationships between ground-based measurements and hyperspectral imager version 2 (HSI2) data results are presented, giving confidence in the remote sensing products.
Oil spill characterization thanks to optical airborne imagery during the NOFO campaign 2015
NASA Astrophysics Data System (ADS)
Viallefont-Robinet, F.; Ceamanos, X.; Angelliaume, S.; Miegebielle, V.
2017-10-01
One of the objectives of the NAOMI (New Advanced Observation Method Integration) research project, fruit of a partnership between Total and ONERA, is to work on the detection, the quantification and the characterization of offshore hydrocarbon at the sea surface using airborne remote sensing. In this framework, work has been done to characterize the spectral signature of hydrocarbons in lab in order to build a database of oil spectral signatures. The main objective of this database is to provide spectral libraries for data processing algorithms to be applied to airborne VNIRSWIR hyperspectral images. A campaign run by the NOFO institute (Norwegian Clean Seas Association for Operating Companies) took place in 2015 to test anti-pollution equipment. During this campaign, several hydrocarbon products, including an oil emulsion, were released into the sea, off the Norwegian coast. The NOFO team allowed the NAOMI project to acquire data over the resulting oil slicks using the SETHI system, which is an airborne remote sensing imaging system developed by ONERA. SETHI integrates a new generation of optoelectronic and radar payloads and can operate over a wide range of frequency bands. SETHI is a pod-based system operating onboard a Falcon 20 Dassault aircraft, which is owned by AvDEF. For these experiments, imaging sensors were constituted by 2 synthetic aperture radar (SAR), working at X and L bands in a full polarimetric mode (HH, HV, VH, VV) and 2 HySpex hyperspectral cameras working in the VNIR (0,4 to 1 μm) and SWIR (1 to 2,5 μm) spectral ranges. A sample of the oil emulsion that was used during the campaign was sent to our laboratory for analysis. Measurements of its transmission and of its reflectance in the VNIR and SWIR spectral domains have been performed at ONERA with a Perkin Elmer spectroradiometer and a spectrogoniometer. Several samples of the oil emulsion were prepared in order to measure spectral variations according to oil thickness, illumination angle and aging. These measurements have been used to build spectral libraries. Spectral matching techniques, relying on these libraries have been applied to the airborne hyperspectral acquisitions. These data processing approaches enable to characterize the oil emulsion by estimating the properties taken into account to build the spectral library, thus going further than unsupervised spectral indices that are able to detect the presence of oil. The paper will describe the airborne hyperspectral data, the measurements performed in the laboratory, and the processing of the optical images with spectral indices for oil detection and with spectral matching techniques for oil characterization. Furthermore, the issue of mixed oil-water pixels in the hyperspectral images due to limited spatial resolution will be addressed by estimating the areal fraction of each.
UAV hyperspectral and lidar data analysis for vegetation applications
NASA Astrophysics Data System (ADS)
Sankey, Temuulen; Sankey, Joel; Donager, Jonathon
2017-04-01
High spatial and spectral resolution remote sensing data are critically needed to classify forest vegetation and measure their structure at the level of individual species and canopies. Here we test high-resolution lidar and hyperspectral data from unmanned aerial vehicles (UAV) and demonstrate a lidar-hyperspectral image fusion method in treated and control forests with varying tree density and canopy cover as well as in an ecotone with a gradient of vegetation and topography in northern Arizona, USA. The fusion performs better (88% overall accuracy) than either data type alone, particularly for species with similar spectral signature, but different canopy sizes. The lidar data provides estimates of individual tree height (R2=0.90; RMSE=2.3m) and crown diameter (R2=0.72; RMSE=0.71m) as well as total tree canopy cover (R2=0.87; RMSE=9.5%) and tree density (R2=0.77; RMSE=0.69 trees/cell) in 10 m cells across thin only, burn only, thin-and-burn, and control treatments, where tree cover and density ranged between 22-50% and 1-3.5 trees/cell, respectively. The lidar data also produces high accuracy DEM (R2=0.95; RMSE=0.43m). The lidar and hyperspectral sensors and methods demonstrated here can be widely applied across a gradient of vegetation and topography for monitoring ecosystem changes.
NASA Astrophysics Data System (ADS)
Wu, Yuanfeng; Gao, Lianru; Zhang, Bing; Zhao, Haina; Li, Jun
2014-01-01
We present a parallel implementation of the optimized maximum noise fraction (G-OMNF) transform algorithm for feature extraction of hyperspectral images on commodity graphics processing units (GPUs). The proposed approach explored the algorithm data-level concurrency and optimized the computing flow. We first defined a three-dimensional grid, in which each thread calculates a sub-block data to easily facilitate the spatial and spectral neighborhood data searches in noise estimation, which is one of the most important steps involved in OMNF. Then, we optimized the processing flow and computed the noise covariance matrix before computing the image covariance matrix to reduce the original hyperspectral image data transmission. These optimization strategies can greatly improve the computing efficiency and can be applied to other feature extraction algorithms. The proposed parallel feature extraction algorithm was implemented on an Nvidia Tesla GPU using the compute unified device architecture and basic linear algebra subroutines library. Through the experiments on several real hyperspectral images, our GPU parallel implementation provides a significant speedup of the algorithm compared with the CPU implementation, especially for highly data parallelizable and arithmetically intensive algorithm parts, such as noise estimation. In order to further evaluate the effectiveness of G-OMNF, we used two different applications: spectral unmixing and classification for evaluation. Considering the sensor scanning rate and the data acquisition time, the proposed parallel implementation met the on-board real-time feature extraction.
Naval Research Laboratory Fact Book 2012
2012-11-01
Distributed network-based battle management High performance computing supporting uniform and nonuniform memory access with single and multithreaded...hyperspectral systems VNIR, MWIR, and LWIR high-resolution systems Wideband SAR systems RF and laser data links High-speed, high-power...hyperspectral imaging system Long-wave infrared ( LWIR ) quantum well IR photodetector (QWIP) imaging system Research and Development Services Divi- sion
Compressive hyperspectral and multispectral imaging fusion
NASA Astrophysics Data System (ADS)
Espitia, Óscar; Castillo, Sergio; Arguello, Henry
2016-05-01
Image fusion is a valuable framework which combines two or more images of the same scene from one or multiple sensors, allowing to improve the resolution of the images and increase the interpretable content. In remote sensing a common fusion problem consists of merging hyperspectral (HS) and multispectral (MS) images that involve large amount of redundant data, which ignores the highly correlated structure of the datacube along the spatial and spectral dimensions. Compressive HS and MS systems compress the spectral data in the acquisition step allowing to reduce the data redundancy by using different sampling patterns. This work presents a compressed HS and MS image fusion approach, which uses a high dimensional joint sparse model. The joint sparse model is formulated by combining HS and MS compressive acquisition models. The high spectral and spatial resolution image is reconstructed by using sparse optimization algorithms. Different fusion spectral image scenarios are used to explore the performance of the proposed scheme. Several simulations with synthetic and real datacubes show promising results as the reliable reconstruction of a high spectral and spatial resolution image can be achieved by using as few as just the 50% of the datacube.
NASA Astrophysics Data System (ADS)
Vettori, S.; Pecchioni, E.; Camaiti, M.; Garfagnoli, F.; Benvenuti, M.; Costagliola, P.; Moretti, S.
2012-04-01
In the recent past, a wide range of protective products (in most cases, synthetic polymers) have been applied to the surfaces of ancient buildings/artefacts to preserve them from alteration [1]. The lack of a detailed mapping of the permanence and efficacy of these treatments, in particular when applied on large surfaces such as building facades, may be particularly noxious when new restoration treatments are needed and the best choice of restoration protocols has to be taken. The presence of protective compounds on stone surfaces may be detected in laboratory by relatively simple diagnostic tests, which, however, normally require invasive (or micro-invasive) sampling methodologies and are time-consuming, thus limiting their use only to a restricted number of samples and sampling sites. On the contrary, hyperspectral sensors are rapid, non-invasive and non-destructive tools capable of analyzing different materials on the basis of their different patterns of absorption at specific wavelengths, and so particularly suitable for the field of cultural heritage [2,3]. In addition, they can be successfully used to discriminate between inorganic (i.e. rocks and minerals) and organic compounds, as well as to acquire, in short times, many spectra and compositional maps at relatively low costs. In this study we analyzed a number of stone samples (Carrara Marble and biogenic calcarenites - "Lecce Stone" and "Maastricht Stone"-) after treatment of their surfaces with synthetic polymers (synthetic wax, acrylic, perfluorinated and silicon based polymers) of common use in conservation-restoration practice. The hyperspectral device used for this purpose was ASD FieldSpec FR Pro spectroradiometer, a portable, high-resolution instrument designed to acquire Visible and Near-Infrared (VNIR: 350-1000 nm) and Short-Wave Infrared (SWIR: 1000-2500 nm) punctual reflectance spectra with a rapid data collection time (about 0.1 s for each spectrum). The reflectance spectra so far obtained in the laboratory experiments indicate that this hyperspectral technique is able to distinguish the different protective agents and, therefore, may be used to monitor the conservation treatments employed for the stone surfaces of historic materials. [1] G.G. Amoroso, M. Camaiti, Scienza dei materiali e restauro - La pietra: dalle mani degli artisti e degli scalpellini a quelle dei chimici macromolecolari, Alinea Ed., Firenze, 1997. [2] S. Vettori, M. Benvenuti, M. Camaiti, L. Chiarantini, P. Costagliola, S. Moretti, E. Pecchioni, 2008, "Assessment of the deterioration status of historical buildings by hyperspectral imaging techniques", in Proceedings of the "In situ Monitoring of Monumental Surfaces -SMS/08" Congress, Edifir-Edizioni Firenze 2008, 55-64. [3] M. Camaiti, S. Vettori, M. Benvenuti, L. Chiarantini, P. Costagliola, F. Di Benedetto, S. Moretti, F. Paba, E. Pecchioni, 2011, "Hyperspectral sensor for gypsum detection on monumental buildings", Journal of Geophysics and Engineering, 8, S126-S131.
Hyperspectral Technique for Detecting Soil Parameters
NASA Astrophysics Data System (ADS)
Garfagnoli, F.; Ciampalini, A.; Moretti, S.; Chiarantini, L.
2011-12-01
In satellite and airborne remote sensing, hyperspectral technique has become a very powerful tool, due to the possibility of rapidly realizing chemical/mineralogical maps of the studied areas. Many studies are trying to customize the algorithms to identify several geo-physical soil properties. The specific objective of this study is to investigate those soil characteristics, such as clay mineral content, influencing degradation processes (soil erosion and shallow landslides), by means of correlation analysis, in order to examine the possibility of predicting the selected property using high-resolution reflectance spectra and images. The study area is located in the Mugello basin, about 30 km north of Firenze (Tuscany, Italy). Agriculturally suitable terrains are assigned mainly to annual crops, marginally to olive groves, vineyards and orchards. Soils mostly belong to Regosols and Cambisols orders. An ASD FieldSpec spectroradiometer was used to obtain reflectance spectra from about 80 dried, crushed and sieved samples under controlled laboratory conditions. Samples were collected simultaneously with the flight of SIM.GA hyperspectral camera from Selex Galileo, over an area of about 5 km2 and their positions were recorded with a differential GPS. The quantitative determination of clay minerals content was performed by means of XRD and Rietveld refinement. Different chemometric techniques were preliminarily tested to correlate mineralogical records with reflectance data. A one component partial least squares regression model yielded a preliminary R2 value of 0.65. A slightly better result was achieved by plotting the absorption peak depth at 2210 versus total clay content (band-depth analysis). The complete SIM.GA hyperspectral geocoded row dataset, with an approximate pixel resolution of 0.6 m (VNIR) and 1.2 m (SWIR), was firstly transformed into at sensor radiance values, by applying calibration coefficients and parameters from laboratory measurements to non-georeferred VNIR/SWIR DN values. Then, airborne imagery needed to be corrected for the influence of the atmosphere, solar illumination, sensor viewing geometry and terrain geometry information, for the retrieval of inherent surface reflectance properties. The geocoded products were obtained for each flight line by using a procedure developed in IDL Language and PARGE (PARametric Geocoding) software. When all compensation parameters were applied to hyperspectral data or to the final thematic map, orthorectified, georeferred and coregistered VNIR to SWIR images or maps were available for GIS application and 3D view as well as for the retrieval of different geophysical parameters by means of inversion algorithms. The experimental fitting of laboratory data on mineral content is used for airborne data inversion, whose results are in agreement with laboratory records, demonstrating the possibility to use this methodology for digital mapping of soil properties. In this study, we established a complete procedure for mapping clay content areal variations in agricultural soils starting form airborne hyperspectral imagery.
On-line fresh-cut lettuce quality measurement system using hyperspectral imaging
USDA-ARS?s Scientific Manuscript database
Lettuce, which is a main type of fresh-cut vegetable, has been used in various fresh-cut products. In this study, an online quality measurement system for detecting foreign substances on the fresh-cut lettuce was developed using hyperspectral reflectance imaging. The online detection system with a s...
Transferability of multi- and hyperspectral optical biocrust indices
NASA Astrophysics Data System (ADS)
Rodríguez-Caballero, E.; Escribano, P.; Olehowski, C.; Chamizo, S.; Hill, J.; Cantón, Y.; Weber, B.
2017-04-01
Biological soil crusts (biocrusts) are communities of cyanobacteria, algae, microfungi, lichens and bryophytes in varying proportions, which live within or immediately on top of the uppermost millimeters of the soil in arid and semiarid regions. As biocrusts are highly relevant for ecosystem processes like carbon, nitrogen, and water cycling, a correct characterization of their spatial distribution is required. Following this objective, considerable efforts have been devoted to the identification and mapping of biocrusts using remote sensing data, and several mapping indices have been developed. However, their transferability to different regions has only rarely been tested. In this study we investigated the transferability of two multispectral indices, i.e. the Crust Index (CI) and the Biological Soil Crust Index (BSCI), and two hyperspectral indices, i.e. the Continuum Removal Crust Identification Algorithm (CRCIA) and the Crust Development Index (CDI), in three sites dominated by biocrusts, but with differences in soil and vegetation composition. Whereas multispectral indices have been important and valuable tools for first approaches to map and classify biological soil crusts, hyperspectral data and indices developed for these allowed to classify biocrusts at much higher accuracy. While multispectral indices showed Kappa (κ) values below 0.6, hyperspectral indices obtained good classification accuracy (κ ∼ 0.8) in both the study area where they had been developed and in the newly tested region. These results highlight the capability of hyperspectral sensors to identify specific absorption features related to photosynthetic pigments as chlorophyll and carotenoids, but also the limitation of multispectral information to discriminate between areas dominated by biocrusts, vegetation or bare soil. Based on these results we conclude that remote sensing offers an important and valid tool to map biocrusts. However, the spectral similarity between the main surface components of drylands and biocrusts demand for mapping indices based on hyperspectral information to correctly map areas dominated by biocrusts at ecosystem scale.
Airborne Hyperspectral Imagery for the Detection of Agricultural Crop Stress
NASA Technical Reports Server (NTRS)
Cassady, Philip E.; Perry, Eileen M.; Gardner, Margaret E.; Roberts, Dar A.
2001-01-01
Multispectral digital imagery from aircraft or satellite is presently being used to derive basic assessments of crop health for growers and others involved in the agricultural industry. Research indicates that narrow band stress indices derived from hyperspectral imagery should have improved sensitivity to provide more specific information on the type and cause of crop stress, Under funding from the NASA Earth Observation Commercial Applications Program (EOCAP) we are identifying and evaluating scientific and commercial applications of hyperspectral imagery for the remote characterization of agricultural crop stress. During the summer of 1999 a field experiment was conducted with varying nitrogen treatments on a production corn-field in eastern Nebraska. The AVIRIS (Airborne Visible-Infrared Imaging Spectrometer) hyperspectral imager was flown at two critical dates during crop development, at two different altitudes, providing images with approximately 18m pixels and 3m pixels. Simultaneous supporting soil and crop characterization included spectral reflectance measurements above the canopy, biomass characterization, soil sampling, and aerial photography. In this paper we describe the experiment and results, and examine the following three issues relative to the utility of hyperspectral imagery for scientific study and commercial crop stress products: (1) Accuracy of reflectance derived stress indices relative to conventional measures of stress. We compare reflectance-derived indices (both field radiometer and AVIRIS) with applied nitrogen and with leaf level measurement of nitrogen availability and chlorophyll concentrations over the experimental plots (4 replications of 5 different nitrogen levels); (2) Ability of the hyperspectral sensors to detect sub-pixel areas under crop stress. We applied the stress indices to both the 3m and 18m AVIRIS imagery for the entire production corn field using several sub-pixel areas within the field to compare the relative sensitivity of each stress index; and (3) Comparative sensitivity of stress indices to realistic measurement uncertainties. We compare the stress indices calculated with several levels of spectral uncertainty (by shifting the wavelengths) and reflectance uncertainty (by systematically varying the reflectance retrieval code initialization).
NASA Astrophysics Data System (ADS)
Svejkosky, Joseph
The spectral signatures of vehicles in hyperspectral imagery exhibit temporal variations due to the preponderance of surfaces with material properties that display non-Lambertian bi-directional reflectance distribution functions (BRDFs). These temporal variations are caused by changing illumination conditions, changing sun-target-sensor geometry, changing road surface properties, and changing vehicle orientations. To quantify these variations and determine their relative importance in a sub-pixel vehicle reacquisition and tracking scenario, a hyperspectral vehicle BRDF sampling experiment was conducted in which four vehicles were rotated at different orientations and imaged over a six-hour period. The hyperspectral imagery was calibrated using novel in-scene methods and converted to reflectance imagery. The resulting BRDF sampled time-series imagery showed a strong vehicle level BRDF dependence on vehicle shape in off-nadir imaging scenarios and a strong dependence on vehicle color in simulated nadir imaging scenarios. The imagery also exhibited spectral features characteristic of sampling the BRDF of non-Lambertian targets, which were subsequently verified with simulations. In addition, the imagery demonstrated that the illumination contribution from vehicle adjacent horizontal surfaces significantly altered the shape and magnitude of the vehicle reflectance spectrum. The results of the BRDF sampling experiment illustrate the need for a target vehicle BRDF model and detection scheme that incorporates non-Lambertian BRDFs. A new detection algorithm called Eigenvector Loading Regression (ELR) is proposed that learns a hyperspectral vehicle BRDF from a series of BRDF measurements using regression in a lower dimensional space and then applies the learned BRDF to make test spectrum predictions. In cases of non-Lambertian vehicle BRDF, this detection methodology performs favorably when compared to subspace detections algorithms and graph-based detection algorithms that do not account for the target BRDF. The algorithms are compared using a test environment in which observed spectral reflectance signatures from the BRDF sampling experiment are implanted into aerial hyperspectral imagery that contain large quantities of vehicles.
2002-09-30
integrated observation system that is being coupled to a data assimilative hydrodynamic bio-optical ecosystem model. The system was used adaptively to develop hyperspectral remote sensing techniques in optically complex nearshore coastal waters.
Tunable electro-optic filter stack
Fontecchio, Adam K.; Shriyan, Sameet K.; Bellingham, Alyssa
2017-09-05
A holographic polymer dispersed liquid crystal (HPDLC) tunable filter exhibits switching times of no more than 20 microseconds. The HPDLC tunable filter can be utilized in a variety of applications. An HPDLC tunable filter stack can be utilized in a hyperspectral imaging system capable of spectrally multiplexing hyperspectral imaging data acquired while the hyperspectral imaging system is airborne. HPDLC tunable filter stacks can be utilized in high speed switchable optical shielding systems, for example as a coating for a visor or an aircraft canopy. These HPDLC tunable filter stacks can be fabricated using a spin coating apparatus and associated fabrication methods.
[Application of hyper-spectral remote sensing technology in environmental protection].
Zhao, Shao-Hua; Zhang, Feng; Wang, Qiao; Yao, Yun-Jun; Wang, Zhong-Ting; You, Dai-An
2013-12-01
Hyper-spectral remote sensing (RS) technology has been widely used in environmental protection. The present work introduces its recent application in the RS monitoring of pollution gas, green-house gas, algal bloom, water quality of catch water environment, safety of drinking water sources, biodiversity, vegetation classification, soil pollution, and so on. Finally, issues such as scarce hyper-spectral satellites, the limits of data processing and information extract are related. Some proposals are also presented, including developing subsequent satellites of HJ-1 satellite with differential optical absorption spectroscopy, greenhouse gas spectroscopy and hyper-spectral imager, strengthening the study of hyper-spectral data processing and information extraction, and promoting the construction of environmental application system.
NASA Astrophysics Data System (ADS)
Ilehag, R.; Schenk, A.; Hinz, S.
2017-08-01
This paper presents a concept for classification of facade elements, based on the material and the geometry of the elements in addition to the thermal radiation of the facade with the usage of a multimodal Unmanned Aerial Vehicle (UAV) system. Once the concept is finalized and functional, the workflow can be used for energy demand estimations for buildings by exploiting existing methods for estimation of heat transfer coefficient and the transmitted heat loss. The multimodal system consists of a thermal, a hyperspectral and an optical sensor, which can be operational with a UAV. While dealing with sensors that operate in different spectra and have different technical specifications, such as the radiometric and the geometric resolution, the challenges that are faced are presented. Addressed are the different approaches of data fusion, such as image registration, generation of 3D models by performing image matching and the means for classification based on either the geometry of the object or the pixel values. As a first step towards realizing the concept, the result from a geometric calibration with a designed multimodal calibration pattern is presented.
Sub-parcel terroir mapping supported by UAV-based hyperspectral imagery
NASA Astrophysics Data System (ADS)
Takács, Katalin; Árvai, Mátyás; Koós, Sándor; Deák, Márton; Bakacsi, Zsófia; László, Péter; Pásztor, László
2017-04-01
There is a greater need to better understand the regional-to-parcel variations in viticultural potential. The differentiation and mapping of the variability of grape and wine quality require comprehensive spatial modelling of climatic, topographic and soil properties and a "terroir-based approach". Using remote and proximal sensing sensors and instruments are the most effective way for surveying vineyard status, such as geomorphologic and soil conditions, plant water and nutrient availability, plant health. UAV (Unmanned Aerial Vechicle) platforms are ideal for the remote monitoring of small and medium size vineyards, because flight planning is flexible and very high spatial ground resolution (even centimeters) can be achieved. Using hyperspectral remote sensing techniques the spectral response of the vegetation and the bare soil surface can be analyzed in very high spectral resolution, which can support terroir mapping on a sub-parcel level. Our study area is located in Hungary, in the Tokaj Wine Region, which is a historical region for botrityzed dessert wine making. The area of Tokaj Wine Region was formed mostly by Miocene volcanic activity, where andesite, rhyolite lavas and tuffs are characteristic and loess cover also occurs in some regions. The various geology and morphology of this area result diversity in soil types and soil properties as well. The study site was surveyed by a Cubert UHD-185 hyperspectral camera set on a Cortex Octocopter platform. The hyperspectral images were acquired in VIS-NIR (visible and near-infrared; 450-950 nm), with 4 nm sampling interval. The image acquisition was carried out at bare soil conditions, therefore the most important soil properties, which has dominant role by the delineation of terroir, can be predicted. In our paper we will present the first results of the hyperspectral survey.
NASA Astrophysics Data System (ADS)
Tedesco, M.; Alexander, P. M.; Briggs, K.; Linares, M.; Mote, T. L.
2016-12-01
The spatial and temporal evolution of surface impurities over the Greenland ice sheet plays a crucial role in modulating the meltwater production in view of the associated feedback on albedo. Recent studies have pointed to a `darkening' of the west portion of the ice sheet with this reduction in albedo likely associated with the increasing presence of surface impurities (e.g., soot, dust) and biological activity (e.g., cryoconite holes, algae, bacteria). Regional climate models currently do not account for the presence, evolution and impact on albedo of such impurities, mostly because the underlying processes driving the spectral and morphological evolution of impurities are poorly known. One for the reasons for this is the lack of hyperspectral and high-spatial resolution data over specific regions of the Greenland ice sheet. To put things in perspective: there is more hyperspectral data at high spatial resolution for the planet Mars than for the Greenland ice sheet. In this presentation, we report the results of an analysis using the few available hyperspectral data collected over Greenland by the HYPERION and AVIRIS sensors, in conjunction with visible (RGB) helicopter-based high resolution images and LANDSAT/WorldView data for characterizing the spectral and morphological evolution of surface impurities and cryoconite holes over western Greenland. The hyperspectral data is used to characterize the abundance of different `endmembers' and the temporal evolution (inter-seasonal and intra-seasonal) of surface impurities composition and concentration. Digital photographs from helicopter are used to characterize the size and distribution of cryoconite holes as a function of elevation and, lastly, LANDSAT/WV images are used to study the evolution of `mysterious' shapes that form as a consequence of the accumulation of impurities and the ice flow.
NASA Astrophysics Data System (ADS)
Kim, Moon S.; Cho, Byoung-Kwan; Yang, Chun-Chieh; Chao, Kaunglin; Lefcourt, Alan M.; Chen, Yud-Ren
2006-10-01
We have developed nondestructive opto-electronic imaging techniques for rapid assessment of safety and wholesomeness of foods. A recently developed fast hyperspectral line-scan imaging system integrated with a commercial apple-sorting machine was evaluated for rapid detection of animal feces matter on apples. Apples obtained from a local orchard were artificially contaminated with cow feces. For the online trial, hyperspectral images with 60 spectral channels, reflectance in the visible to near infrared regions and fluorescence emissions with UV-A excitation, were acquired from apples moving at a processing sorting-line speed of three apples per second. Reflectance and fluorescence imaging required a passive light source, and each method used independent continuous wave (CW) light sources. In this paper, integration of the hyperspectral imaging system with the commercial applesorting machine and preliminary results for detection of fecal contamination on apples, mainly based on the fluorescence method, are presented.
NASA Astrophysics Data System (ADS)
Zhou, Xiaohu; Neubauer, Franz; Zhao, Dong; Xu, Shichao
2015-01-01
The high-precision geometric correction of airborne hyperspectral remote sensing image processing was a hard nut to crack, and conventional methods of remote sensing image processing by selecting ground control points to correct the images are not suitable in the correction process of airborne hyperspectral image. The optical scanning system of an inertial measurement unit combined with differential global positioning system (IMU/DGPS) is introduced to correct the synchronous scanned Operational Modular Imaging Spectrometer II (OMIS II) hyperspectral remote sensing images. Posture parameters, which were synchronized with the OMIS II, were first obtained from the IMU/DGPS. Second, coordinate conversion and flight attitude parameters' calculations were conducted. Third, according to the imaging principle of OMIS II, mathematical correction was applied and the corrected image pixels were resampled. Then, better image processing results were achieved.
NASA Astrophysics Data System (ADS)
Scanlan, Neil W.; Schott, John R.; Brown, Scott D.
2004-01-01
Synthetic imagery has traditionally been used to support sensor design by enabling design engineers to pre-evaluate image products during the design and development stages. Increasingly exploitation analysts are looking to synthetic imagery as a way to develop and test exploitation algorithms before image data are available from new sensors. Even when sensors are available, synthetic imagery can significantly aid in algorithm development by providing a wide range of "ground truthed" images with varying illumination, atmospheric, viewing and scene conditions. One limitation of synthetic data is that the background variability is often too bland. It does not exhibit the spatial and spectral variability present in real data. In this work, four fundamentally different texture modeling algorithms will first be implemented as necessary into the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model environment. Two of the models to be tested are variants of a statistical Z-Score selection model, while the remaining two involve a texture synthesis and a spectral end-member fractional abundance map approach, respectively. A detailed comparative performance analysis of each model will then be carried out on several texturally significant regions of the resultant synthetic hyperspectral imagery. The quantitative assessment of each model will utilize a set of three peformance metrics that have been derived from spatial Gray Level Co-Occurrence Matrix (GLCM) analysis, hyperspectral Signal-to-Clutter Ratio (SCR) measures, and a new concept termed the Spectral Co-Occurrence Matrix (SCM) metric which permits the simultaneous measurement of spatial and spectral texture. Previous research efforts on the validation and performance analysis of texture characterization models have been largely qualitative in nature based on conducting visual inspections of synthetic textures in order to judge the degree of similarity to the original sample texture imagery. The quantitative measures used in this study will in combination attempt to determine which texture characterization models best capture the correct statistical and radiometric attributes of the corresponding real image textures in both the spatial and spectral domains. The motivation for this work is to refine our understanding of the complexities of texture phenomena so that an optimal texture characterization model that can accurately account for these complexities can be eventually implemented into a synthetic image generation (SIG) model. Further, conclusions will be drawn regarding which of the candidate texture models are able to achieve realistic levels of spatial and spectral clutter, thereby permitting more effective and robust testing of hyperspectral algorithms in synthetic imagery.
NASA Astrophysics Data System (ADS)
Scanlan, Neil W.; Schott, John R.; Brown, Scott D.
2003-12-01
Synthetic imagery has traditionally been used to support sensor design by enabling design engineers to pre-evaluate image products during the design and development stages. Increasingly exploitation analysts are looking to synthetic imagery as a way to develop and test exploitation algorithms before image data are available from new sensors. Even when sensors are available, synthetic imagery can significantly aid in algorithm development by providing a wide range of "ground truthed" images with varying illumination, atmospheric, viewing and scene conditions. One limitation of synthetic data is that the background variability is often too bland. It does not exhibit the spatial and spectral variability present in real data. In this work, four fundamentally different texture modeling algorithms will first be implemented as necessary into the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model environment. Two of the models to be tested are variants of a statistical Z-Score selection model, while the remaining two involve a texture synthesis and a spectral end-member fractional abundance map approach, respectively. A detailed comparative performance analysis of each model will then be carried out on several texturally significant regions of the resultant synthetic hyperspectral imagery. The quantitative assessment of each model will utilize a set of three peformance metrics that have been derived from spatial Gray Level Co-Occurrence Matrix (GLCM) analysis, hyperspectral Signal-to-Clutter Ratio (SCR) measures, and a new concept termed the Spectral Co-Occurrence Matrix (SCM) metric which permits the simultaneous measurement of spatial and spectral texture. Previous research efforts on the validation and performance analysis of texture characterization models have been largely qualitative in nature based on conducting visual inspections of synthetic textures in order to judge the degree of similarity to the original sample texture imagery. The quantitative measures used in this study will in combination attempt to determine which texture characterization models best capture the correct statistical and radiometric attributes of the corresponding real image textures in both the spatial and spectral domains. The motivation for this work is to refine our understanding of the complexities of texture phenomena so that an optimal texture characterization model that can accurately account for these complexities can be eventually implemented into a synthetic image generation (SIG) model. Further, conclusions will be drawn regarding which of the candidate texture models are able to achieve realistic levels of spatial and spectral clutter, thereby permitting more effective and robust testing of hyperspectral algorithms in synthetic imagery.
Target Detection Using an AOTF Hyperspectral Imager
NASA Technical Reports Server (NTRS)
Cheng, L-J.; Mahoney, J.; Reyes, F.; Suiter, H.
1994-01-01
This paper reports results of a recent field experiment using a prototype system to evaluate the acousto-optic tunable filter polarimetric hyperspectral imaging technology for target detection applications.
Radiative Transfer Modeling and Retrievals for Advanced Hyperspectral Sensors
NASA Technical Reports Server (NTRS)
Liu, Xu; Zhou, Daniel K.; Larar, Allen M.; Smith, William L., Sr.; Mango, Stephen A.
2009-01-01
A novel radiative transfer model and a physical inversion algorithm based on principal component analysis will be presented. Instead of dealing with channel radiances, the new approach fits principal component scores of these quantities. Compared to channel-based radiative transfer models, the new approach compresses radiances into a much smaller dimension making both forward modeling and inversion algorithm more efficient.
2014-01-01
monitoring wind -driven re-suspension events (Chen 2006), a predictive factor for patho- gens such as E. coli (Nevers and Whitman 2005), and a...properties where HICO imagery could be acquired as well as along the major salinity gradients of each estuary (Figure 2). A Sea- Bird 25 CTD (Sea- Bird
NASA Astrophysics Data System (ADS)
Nawn, Corinne D.; Souhan, Brian E.; Carter, Robert; Kneapler, Caitlin; Fell, Nicholas; Ye, Jing Yong
2016-03-01
During emergency medical situations where the patient has an obstructed airway or necessitates respiratory support, endotracheal intubation (ETI) is the medical technique of placing a tube into the trachea in order to facilitate adequate ventilation of the lungs. In particular, the anatomical, visual and time-sensitive challenges presented in these scenarios, such as in trauma, require a skilled provider in order to successfully place the tube into the trachea. Complications during ETI such as repeated attempts, failed intubation or accidental intubation of the esophagus can lead to severe consequences or ultimately death. Consequently, a need exists for a feedback mechanism to aid providers in performing successful ETI. To investigate potential characteristics to exploit as a feedback mechanism, our study examined the spectral properties of the trachea tissue to determine whether a unique spectral profile exists. In this work, hyperspectral cameras and fiber optic sensors were used to capture and analyze the reflectance profiles of tracheal and esophageal tissues illuminated with UV and white light. Our results show consistent and specific spectral characteristics of the trachea, providing foundational support for using spectral properties to detect features of the trachea.
NASA Astrophysics Data System (ADS)
Chen, Hai-Wen; McGurr, Mike; Brickhouse, Mark
2015-11-01
We present a newly developed feature transformation (FT) detection method for hyper-spectral imagery (HSI) sensors. In essence, the FT method, by transforming the original features (spectral bands) to a different feature domain, may considerably increase the statistical separation between the target and background probability density functions, and thus may significantly improve the target detection and identification performance, as evidenced by the test results in this paper. We show that by differentiating the original spectral, one can completely separate targets from the background using a single spectral band, leading to perfect detection results. In addition, we have proposed an automated best spectral band selection process with a double-threshold scheme that can rank the available spectral bands from the best to the worst for target detection. Finally, we have also proposed an automated cross-spectrum fusion process to further improve the detection performance in lower spectral range (<1000 nm) by selecting the best spectral band pair with multivariate analysis. Promising detection performance has been achieved using a small background material signature library for concept-proving, and has then been further evaluated and verified using a real background HSI scene collected by a HYDICE sensor.
Optimisation and evaluation of hyperspectral imaging system using machine learning algorithm
NASA Astrophysics Data System (ADS)
Suthar, Gajendra; Huang, Jung Y.; Chidangil, Santhosh
2017-10-01
Hyperspectral imaging (HSI), also called imaging spectrometer, originated from remote sensing. Hyperspectral imaging is an emerging imaging modality for medical applications, especially in disease diagnosis and image-guided surgery. HSI acquires a three-dimensional dataset called hypercube, with two spatial dimensions and one spectral dimension. Spatially resolved spectral imaging obtained by HSI provides diagnostic information about the objects physiology, morphology, and composition. The present work involves testing and evaluating the performance of the hyperspectral imaging system. The methodology involved manually taking reflectance of the object in many images or scan of the object. The object used for the evaluation of the system was cabbage and tomato. The data is further converted to the required format and the analysis is done using machine learning algorithm. The machine learning algorithms applied were able to distinguish between the object present in the hypercube obtain by the scan. It was concluded from the results that system was working as expected. This was observed by the different spectra obtained by using the machine-learning algorithm.
Dynamic Range and Sensitivity Requirements of Satellite Ocean Color Sensors: Learning from the Past
NASA Technical Reports Server (NTRS)
Hu, Chuanmin; Feng, Lian; Lee, Zhongping; Davis, Curtiss O.; Mannino, Antonio; McClain, Charles R.; Franz, Bryan A.
2012-01-01
Sensor design and mission planning for satellite ocean color measurements requires careful consideration of the signal dynamic range and sensitivity (specifically here signal-to-noise ratio or SNR) so that small changes of ocean properties (e.g., surface chlorophyll-a concentrations or Chl) can be quantified while most measurements are not saturated. Past and current sensors used different signal levels, formats, and conventions to specify these critical parameters, making it difficult to make cross-sensor comparisons or to establish standards for future sensor design. The goal of this study is to quantify these parameters under uniform conditions for widely used past and current sensors in order to provide a reference for the design of future ocean color radiometers. Using measurements from the Moderate Resolution Imaging Spectroradiometer onboard the Aqua satellite (MODISA) under various solar zenith angles (SZAs), typical (L(sub typical)) and maximum (L(sub max)) at-sensor radiances from the visible to the shortwave IR were determined. The Ltypical values at an SZA of 45 deg were used as constraints to calculate SNRs of 10 multiband sensors at the same L(sub typical) radiance input and 2 hyperspectral sensors at a similar radiance input. The calculations were based on clear-water scenes with an objective method of selecting pixels with minimal cross-pixel variations to assure target homogeneity. Among the widely used ocean color sensors that have routine global coverage, MODISA ocean bands (1 km) showed 2-4 times higher SNRs than the Sea-viewing Wide Field-of-view Sensor (Sea-WiFS) (1 km) and comparable SNRs to the Medium Resolution Imaging Spectrometer (MERIS)-RR (reduced resolution, 1.2 km), leading to different levels of precision in the retrieved Chl data product. MERIS-FR (full resolution, 300 m) showed SNRs lower than MODISA and MERIS-RR with the gain in spatial resolution. SNRs of all MODISA ocean bands and SeaWiFS bands (except the SeaWiFS near-IR bands) exceeded those from prelaunch sensor specifications after adjusting the input radiance to L(sub typical). The tabulated L(sub typical), L(sub max), and SNRs of the various multiband and hyperspectral sensors under the same or similar radiance input provide references to compare sensor performance in product precision and to help design future missions such as the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission and the Pre-Aerosol-Clouds-Ecosystems (PACE) mission currently being planned by the U.S. National Aeronautics and Space Administration (NASA).
NASA Tech Briefs, January 2014
NASA Technical Reports Server (NTRS)
2014-01-01
Topics include: Multi-Source Autonomous Response for Targeting and Monitoring of Volcanic Activity; Software Suite to Support In-Flight Characterization of Remote Sensing Systems; Visual Image Sensor Organ Replacement; Ultra-Wideband, Dual-Polarized, Beam-Steering P-Band Array Antenna; Centering a DDR Strobe in the Middle of a Data Packet; Using a Commercial Ethernet PHY Device in a Radiation Environment; Submerged AUV Charging Station; Habitat Demonstration Unit (HDU) Vertical Cylinder Habitat; Origami-Inspired Folding of Thick, Rigid Panels; A Novel Protocol for Decoating and Permeabilizing Bacterial Spores for Epifluorescent Microscopy; Method and Apparatus for Automated Isolation of Nucleic Acids from Small Cell Samples; Enabling Microliquid Chromatography by Microbead Packing of Microchannels; On-Command Force and Torque Impeding Devices (OC-FTID) Using ERF; Deployable Fresnel Rings; Transition-Edge Hot-Electron Microbolometers for Millimeter and Submillimeter Astrophysics; Spacecraft Trajectory Analysis and Mission Planning Simulation (STAMPS) Software; Cross Support Transfer Service (CSTS) Framework Library; Arbitrary Shape Deformation in CFD Design; Range Safety Flight Elevation Limit Calculation Software; Frequency-Modulated, Continuous-Wave Laser Ranging Using Photon-Counting Detectors; Calculation of Operations Efficiency Factors for Mars Surface Missions; GPU Lossless Hyperspectral Data Compression System; Robust, Optimal Subsonic Airfoil Shapes; Protograph-Based Raptor-Like Codes; Fuzzy Neuron: Method and Hardware Realization; Kalman Filter Input Processor for Boresight Calibration; Organizing Compression of Hyperspectral Imagery to Allow Efficient Parallel Decompression; and Temperature Dependences of Mechanisms Responsible for the Water-Vapor Continuum Absorption.
A custom multi-modal sensor suite and data analysis pipeline for aerial field phenotyping
NASA Astrophysics Data System (ADS)
Bartlett, Paul W.; Coblenz, Lauren; Sherwin, Gary; Stambler, Adam; van der Meer, Andries
2017-05-01
Our group has developed a custom, multi-modal sensor suite and data analysis pipeline to phenotype crops in the field using unpiloted aircraft systems (UAS). This approach to high-throughput field phenotyping is part of a research initiative intending to markedly accelerate the breeding process for refined energy sorghum varieties. To date, single rotor and multirotor helicopters, roughly 14 kg in total weight, are being employed to provide sensor coverage over multiple hectaresized fields in tens of minutes. The quick, autonomous operations allow for complete field coverage at consistent plant and lighting conditions, with low operating costs. The sensor suite collects data simultaneously from six sensors and registers it for fusion and analysis. High resolution color imagery targets color and geometric phenotypes, along with lidar measurements. Long-wave infrared imagery targets temperature phenomena and plant stress. Hyperspectral visible and near-infrared imagery targets phenotypes such as biomass and chlorophyll content, as well as novel, predictive spectral signatures. Onboard spectrometers and careful laboratory and in-field calibration techniques aim to increase the physical validity of the sensor data throughout and across growing seasons. Off-line processing of data creates basic products such as image maps and digital elevation models. Derived data products include phenotype charts, statistics, and trends. The outcome of this work is a set of commercially available phenotyping technologies, including sensor suites, a fully integrated phenotyping UAS, and data analysis software. Effort is also underway to transition these technologies to farm management users by way of streamlined, lower cost sensor packages and intuitive software interfaces.
Using hyperspectral imaging technology to identify diseased tomato leaves
NASA Astrophysics Data System (ADS)
Li, Cuiling; Wang, Xiu; Zhao, Xueguan; Meng, Zhijun; Zou, Wei
2016-11-01
In the process of tomato plants growth, due to the effect of plants genetic factors, poor environment factors, or disoperation of parasites, there will generate a series of unusual symptoms on tomato plants from physiology, organization structure and external form, as a result, they cannot grow normally, and further to influence the tomato yield and economic benefits. Hyperspectral image usually has high spectral resolution, not only contains spectral information, but also contains the image information, so this study adopted hyperspectral imaging technology to identify diseased tomato leaves, and developed a simple hyperspectral imaging system, including a halogen lamp light source unit, a hyperspectral image acquisition unit and a data processing unit. Spectrometer detection wavelength ranged from 400nm to 1000nm. After hyperspectral images of tomato leaves being captured, it was needed to calibrate hyperspectral images. This research used spectrum angle matching method and spectral red edge parameters discriminant method respectively to identify diseased tomato leaves. Using spectral red edge parameters discriminant method produced higher recognition accuracy, the accuracy was higher than 90%. Research results have shown that using hyperspectral imaging technology to identify diseased tomato leaves is feasible, and provides the discriminant basis for subsequent disease control of tomato plants.
NASA Astrophysics Data System (ADS)
Li, Jingwei; Cai, Fuhong; Dong, Yongjiang; Zhu, Zhenfeng; Sun, Xianhe; Zhang, Hequn; He, Sailing
2017-06-01
In this study, a portable confocal hyperspectral microscope is developed. In traditional confocal laser scanning microscopes, scan lens and tube lens are utilized to achieve a conjugate relationship between the galvanometer and the back focal plane of the objective, in order to achieve a better resolution. However, these lenses make it difficult to scale down the volume of the system. In our portable confocal hyperspectral microscope (PCHM), the objective is placed directly next to the galvomirror. Thus, scan lens and tube lens are not included in our system and the size of this system is greatly reduced. Furthermore, the resolution is also acceptable in many biomedical and food-safety applications. Through reducing the optical length of the system, the signal detection efficiency is enhanced. This is conducive to realizing both the fluorescence and Raman hyperspectral imaging. With a multimode fiber as a pinhole, an improved image contrast is also achieved. Fluorescent spectral images for HeLa cells/fingers and Raman spectral images of kumquat pericarp are present. The spectral resolution and spatial resolutions are about 0.4 nm and 2.19 μm, respectively. These results demonstrate that this portable hyperspectral microscope can be used in in-vivo fluorescence imaging and in situ Raman spectral imaging.
GPU Lossless Hyperspectral Data Compression System
NASA Technical Reports Server (NTRS)
Aranki, Nazeeh I.; Keymeulen, Didier; Kiely, Aaron B.; Klimesh, Matthew A.
2014-01-01
Hyperspectral imaging systems onboard aircraft or spacecraft can acquire large amounts of data, putting a strain on limited downlink and storage resources. Onboard data compression can mitigate this problem but may require a system capable of a high throughput. In order to achieve a high throughput with a software compressor, a graphics processing unit (GPU) implementation of a compressor was developed targeting the current state-of-the-art GPUs from NVIDIA(R). The implementation is based on the fast lossless (FL) compression algorithm reported in "Fast Lossless Compression of Multispectral-Image Data" (NPO- 42517), NASA Tech Briefs, Vol. 30, No. 8 (August 2006), page 26, which operates on hyperspectral data and achieves excellent compression performance while having low complexity. The FL compressor uses an adaptive filtering method and achieves state-of-the-art performance in both compression effectiveness and low complexity. The new Consultative Committee for Space Data Systems (CCSDS) Standard for Lossless Multispectral & Hyperspectral image compression (CCSDS 123) is based on the FL compressor. The software makes use of the highly-parallel processing capability of GPUs to achieve a throughput at least six times higher than that of a software implementation running on a single-core CPU. This implementation provides a practical real-time solution for compression of data from airborne hyperspectral instruments.
Design of a novel Hyper-spectral riflescope system
NASA Astrophysics Data System (ADS)
Huang, YunHan; Fu, YueGang
2016-10-01
Hyper-spectral imaging involves many research areas, such as optics, spectroscopy, mechanical, microelectronics, and computers, etc. Hyper-spectral imaging system has an irreplaceable role in the detection field. At present, due to the improvement of camouflage technology, characteristic of target in battlefield becomes more complex and the targets became more and more difficult to be detected, According to this phenomenon the author designed a novel hyper-spectral riflescope optical system. In general, the riflescope optical system is composed of two parts front object lens and zoom relay system. Firstly, dispersion characteristics of the typical optical glasses varies during band 400nm 1 000nm, the author derived apochromatic theory that suitable to the front system and relay system without using special glass, and make a example to testify its correctness. In general, the zoom mode of relay system lens is different from the objective lens system, so we should take consideration of them separately. Secondly, based on the above theory, the articles designed a hyper-spectral riflescope system, which has a continuous zoom curve, zoom ratio is 4 times and the F number of the system is 4.8;Full field of view varies during 1.8° 7.2°.Structure of the system is relatively compact, and has not used special glass, eventually the article give the schematic of system MTF and zoom curves of relay movable parts. the curve is smooth and can be applied to practical engineering. The author adopt ZEMAX design software to analyses the results .Design result shows that, in the visible and near-infrared wavelengths, the MTF of imaging system at 60lp / mm during all bands are greater than 0.3, which prove the correctness of the design theory and good performance of system.
Hyperspectral imaging using the single-pixel Fourier transform technique
NASA Astrophysics Data System (ADS)
Jin, Senlin; Hui, Wangwei; Wang, Yunlong; Huang, Kaicheng; Shi, Qiushuai; Ying, Cuifeng; Liu, Dongqi; Ye, Qing; Zhou, Wenyuan; Tian, Jianguo
2017-03-01
Hyperspectral imaging technology is playing an increasingly important role in the fields of food analysis, medicine and biotechnology. To improve the speed of operation and increase the light throughput in a compact equipment structure, a Fourier transform hyperspectral imaging system based on a single-pixel technique is proposed in this study. Compared with current imaging spectrometry approaches, the proposed system has a wider spectral range (400-1100 nm), a better spectral resolution (1 nm) and requires fewer measurement data (a sample rate of 6.25%). The performance of this system was verified by its application to the non-destructive testing of potatoes.
NASA Astrophysics Data System (ADS)
Hartzell, P. J.; Glennie, C. L.; Hauser, D. L.; Okyay, U.; Khan, S.; Finnegan, D. C.
2016-12-01
Recent advances in remote sensing technology have expanded the acquisition and fusion of active lidar and passive hyperspectral imagery (HSI) from an exclusively airborne technique to terrestrial modalities. This enables high resolution 3D spatial and spectral quantification of vertical geologic structures for applications such as virtual 3D rock outcrop models for hydrocarbon reservoir analog analysis and mineral quantification in open pit mining environments. In contrast to airborne observation geometry, the vertical surfaces observed by horizontal-viewing terrestrial HSI sensors are prone to extensive topography-induced solar shadowing, which leads to reduced pixel classification accuracy or outright removal of shadowed pixels from analysis tasks. Using a precisely calibrated and registered offset cylindrical linear array camera model, we demonstrate the use of 3D lidar data for sub-pixel HSI shadow detection and the restoration of the shadowed pixel spectra via empirical methods that utilize illuminated and shadowed pixels of similar material composition. We further introduce a new HSI shadow restoration technique that leverages collocated backscattered lidar intensity, which is resistant to solar conditions, obtained by projecting the 3D lidar points through the HSI camera model into HSI pixel space. Using ratios derived from the overlapping lidar laser and HSI wavelengths, restored shadow pixel spectra are approximated using a simple scale factor. Simulations of multiple lidar wavelengths, i.e., multi-spectral lidar, indicate the potential for robust HSI spectral restoration that is independent of the complexity and costs associated with rigorous radiometric transfer models, which have yet to be developed for horizontal-viewing terrestrial HSI sensors. The spectral restoration performance is quantified through HSI pixel classification consistency between full sun and partial sun exposures of a single geologic outcrop.
LIME: 3D visualisation and interpretation of virtual geoscience models
NASA Astrophysics Data System (ADS)
Buckley, Simon; Ringdal, Kari; Dolva, Benjamin; Naumann, Nicole; Kurz, Tobias
2017-04-01
Three-dimensional and photorealistic acquisition of surface topography, using methods such as laser scanning and photogrammetry, has become widespread across the geosciences over the last decade. With recent innovations in photogrammetric processing software, robust and automated data capture hardware, and novel sensor platforms, including unmanned aerial vehicles, obtaining 3D representations of exposed topography has never been easier. In addition to 3D datasets, fusion of surface geometry with imaging sensors, such as multi/hyperspectral, thermal and ground-based InSAR, and geophysical methods, create novel and highly visual datasets that provide a fundamental spatial framework to address open geoscience research questions. Although data capture and processing routines are becoming well-established and widely reported in the scientific literature, challenges remain related to the analysis, co-visualisation and presentation of 3D photorealistic models, especially for new users (e.g. students and scientists new to geomatics methods). Interpretation and measurement is essential for quantitative analysis of 3D datasets, and qualitative methods are valuable for presentation purposes, for planning and in education. Motivated by this background, the current contribution presents LIME, a lightweight and high performance 3D software for interpreting and co-visualising 3D models and related image data in geoscience applications. The software focuses on novel data integration and visualisation of 3D topography with image sources such as hyperspectral imagery, logs and interpretation panels, geophysical datasets and georeferenced maps and images. High quality visual output can be generated for dissemination purposes, to aid researchers with communication of their research results. The background of the software is described and case studies from outcrop geology, in hyperspectral mineral mapping and geophysical-geospatial data integration are used to showcase the novel methods developed.
A hyperspectral image projector for hyperspectral imagers
NASA Astrophysics Data System (ADS)
Rice, Joseph P.; Brown, Steven W.; Neira, Jorge E.; Bousquet, Robert R.
2007-04-01
We have developed and demonstrated a Hyperspectral Image Projector (HIP) intended for system-level validation testing of hyperspectral imagers, including the instrument and any associated spectral unmixing algorithms. HIP, based on the same digital micromirror arrays used in commercial digital light processing (DLP*) displays, is capable of projecting any combination of many different arbitrarily programmable basis spectra into each image pixel at up to video frame rates. We use a scheme whereby one micromirror array is used to produce light having the spectra of endmembers (i.e. vegetation, water, minerals, etc.), and a second micromirror array, optically in series with the first, projects any combination of these arbitrarily-programmable spectra into the pixels of a 1024 x 768 element spatial image, thereby producing temporally-integrated images having spectrally mixed pixels. HIP goes beyond conventional DLP projectors in that each spatial pixel can have an arbitrary spectrum, not just arbitrary color. As such, the resulting spectral and spatial content of the projected image can simulate realistic scenes that a hyperspectral imager will measure during its use. Also, the spectral radiance of the projected scenes can be measured with a calibrated spectroradiometer, such that the spectral radiance projected into each pixel of the hyperspectral imager can be accurately known. Use of such projected scenes in a controlled laboratory setting would alleviate expensive field testing of instruments, allow better separation of environmental effects from instrument effects, and enable system-level performance testing and validation of hyperspectral imagers as used with analysis algorithms. For example, known mixtures of relevant endmember spectra could be projected into arbitrary spatial pixels in a hyperspectral imager, enabling tests of how well a full system, consisting of the instrument + calibration + analysis algorithm, performs in unmixing (i.e. de-convolving) the spectra in all pixels. We discuss here the performance of a visible prototype HIP. The technology is readily extendable to the ultraviolet and infrared spectral ranges, and the scenes can be static or dynamic.
USDA-ARS?s Scientific Manuscript database
The goal of this project was to construct a cart and a mounting system that would allow a hyperspectral laser-induced fluorescence imaging system (HLIFIS) to be used to detect fecal material in produce fields. Fecal contaminated produce is a recognized food safety risk. Previous research demonstrate...
RVC-CAL library for endmember and abundance estimation in hyperspectral image analysis
NASA Astrophysics Data System (ADS)
Lazcano López, R.; Madroñal Quintín, D.; Juárez Martínez, E.; Sanz Álvaro, C.
2015-10-01
Hyperspectral imaging (HI) collects information from across the electromagnetic spectrum, covering a wide range of wavelengths. Although this technology was initially developed for remote sensing and earth observation, its multiple advantages - such as high spectral resolution - led to its application in other fields, as cancer detection. However, this new field has shown specific requirements; for instance, it needs to accomplish strong time specifications, since all the potential applications - like surgical guidance or in vivo tumor detection - imply real-time requisites. Achieving this time requirements is a great challenge, as hyperspectral images generate extremely high volumes of data to process. Thus, some new research lines are studying new processing techniques, and the most relevant ones are related to system parallelization. In that line, this paper describes the construction of a new hyperspectral processing library for RVC-CAL language, which is specifically designed for multimedia applications and allows multithreading compilation and system parallelization. This paper presents the development of the required library functions to implement two of the four stages of the hyperspectral imaging processing chain--endmember and abundances estimation. The results obtained show that the library achieves speedups of 30%, approximately, comparing to an existing software of hyperspectral images analysis; concretely, the endmember estimation step reaches an average speedup of 27.6%, which saves almost 8 seconds in the execution time. It also shows the existence of some bottlenecks, as the communication interfaces among the different actors due to the volume of data to transfer. Finally, it is shown that the library considerably simplifies the implementation process. Thus, experimental results show the potential of a RVC-CAL library for analyzing hyperspectral images in real-time, as it provides enough resources to study the system performance.
MTF Determination of SENTINEL-4 Detector Arrays
NASA Astrophysics Data System (ADS)
Reulke, R.; Sebastian, I.; Williges, C.; Hohn, R.
2017-05-01
The Institute for Optical Sensor Systems was involved in many international space projects in recent years. These include, for example, the fokal plane array (FPA) of the hyperspectral sensors ENMAP or Sentinel-4, but also the FPA for the high resolution FPA for Kompsat-3. An important requirement of the customer is the measurement of the detector MTF for different wavelengths. A measuring station under clean room conditions and evaluation algorithms was developed for these measurements. The measurement setup consist of a collimator with slit target in focus for illumination at infinity, a gimbal mounted detector facing an auxiliary lens in front, a halogen lamp with monochromator or filter, as well as optical and electrical ground support equipment. Different targets and therefore also different measurement and data evaluation opportunities are possible with this setup. Examples are slit, edge, pin hole but also a Siemens star. The article describes the measurement setup, the different measuring and evaluation procedures and exemplary results for Sentinel-4 detector.
Automated cart with VIS/NIR hyperspectral reflectance and fluorescence imaging capabilities
USDA-ARS?s Scientific Manuscript database
A system to take high-resolution VIS/NIR hyperspectral reflectance and fluorescence images in outdoor fields using ambient lighting or a pulsed laser (355 nm), respectively, for illumination was designed, built, and tested. Components of the system include a semi-autonomous cart, a gated-intensified...
Biological sample evaluation using a line-scan based SWIR hyperspectral imaging system
USDA-ARS?s Scientific Manuscript database
A new line-scan hyperspectral imaging system was developed to enable short wavelength infrared (SWIR) imagery for biological sample evaluation. Critical sensing components include a SWIR imaging spectrograph and an HgCdTe (MCT) focal plane array detector. To date, agricultural applications of infra...
USDA-ARS?s Scientific Manuscript database
The U. S. Department of Agriculture, Agricultural Research Service has been developing a method and system to detect fecal contamination on processed poultry carcasses with hyperspectral and multispectral imaging systems. The patented method utilizes a three step approach to contaminant detection. S...
NASA Astrophysics Data System (ADS)
Zhan, Yuanzeng; Mao, Tianming; Gong, Fang; Wang, Difeng; Chen, Jianyu
2010-10-01
As an effective survey tool for oil spill detection, the airborne hyper-spectral sensor affords the potentiality for retrieving the quantitative information of oil slick which is useful for the cleanup of spilled oil. But many airborne hyper-spectral images are affected by sun glitter which distorts radiance values and spectral ratios used for oil slick detection. In 2005, there's an oil spill event leaking at oil drilling platform in The South China Sea, and an AISA+ airborne hyper-spectral image recorded this event will be selected for studying in this paper, which is affected by sun glitter terribly. Through a spectrum analysis of the oil and water samples, two features -- "spectral rotation" and "a pair of fixed points" can be found in spectral curves between crude oil film and water. Base on these features, an oil film information retrieval method which can overcome the influence of sun glitter is presented. Firstly, the radiance of the image is converted to normal apparent reflectance (NormAR). Then, based on the features of "spectral rotation" (used for distinguishing oil film and water) and "a pair of fixed points" (used for overcoming the effect of sun glitter), NormAR894/NormAR516 is selected as an indicator of oil film. Finally, by using a threshold combined with the technologies of image filter and mathematic morphology, the distribution and relative thickness of oil film are retrieved.
Multispectral and hyperspectral measurements of soldier's camouflage equipment
NASA Astrophysics Data System (ADS)
Kastek, Mariusz; Piątkowski, Tadeusz; Dulski, Rafal; Chamberland, Martin; Lagueux, Philippe; Farley, Vincent
2012-06-01
In today's electro-optic warfare era, it is more than vital for one nation's defense to possess the most advanced measurement and signature intelligence (MASINT) capabilities. This is critical to gain a strategic advantage in the planning of the military operations and deployments. The thermal infrared region of the electromagnetic spectrum is a key region that is exploited for infrared reconnaissance and surveillance missions. The Military University of Technology has conducted an intensive measurement campaign of various soldier's camouflage devices in the scope of building a database of infrared signatures. One of today's key technologies required to perform signature measurements has become infrared hyperspectral and broadband/multispectral imaging sensors. The Telops Hyper-Cam LW product represents a unique commercial offering with outstanding performances and versatility for the collection of hyperspectral infrared images. The Hyper-Cam allows for the infrared imagery of a target (320 × 256 pixels) at a very high spectral resolution (down to 0.25 cm-1). Moreover, the Military University of Technology has made use of a suite of scientific grade commercial infrared cameras to further measure and assess the targets from a broadband/multispectral perspective. The experiment concept and measurement results are presented in this paper.
NASA Astrophysics Data System (ADS)
Yang, J.; Ren, G.; Ma, Y.; Dong, L.; Wan, J.
2018-04-01
The marine oil spill is a sudden event, and the airborne hyperspectral means to detect the oil spill is an important part of the rapid response. Sun glint, the specular reflection of sun light from water surface to sensor, is inevitable due to the limitation of observation geometry, which makes so much bright glint in image that it is difficult to extract oil spill feature information from the remote sensing data. This paper takes AISA+ airborne hyperspectral oil spill image as data source, using multi-scale wavelet transform, enhanced Lee filter, enhanced Frost filter and mean filter method for sea surface glint suppression of images. And then the classical SVM method is used for the oil spill information detection, and oil spill information distribution map obtained by human-computer interactive interpretation is used to verify the accuracy of oil spill detection. The results show that the above methods can effectively suppress the sea surface glints and improve the accuracy of oil spill detection. The enhanced Lee filter method has the highest detection accuracy of 88.28 %, which is 12.2 % higher than that of the original image.
A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing
Udelhoven, Thomas; Schlerf, Martin; Segl, Karl; Mallick, Kaniska; Bossung, Christian; Rock, Gilles; Fischer, Peter; Müller, Andreas; Storch, Tobias; Eisele, Andreas; Weise, Dennis; Hupfer, Werner; Knigge, Thiemo
2017-01-01
This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR) satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping). The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1–5 days at off-nadir). At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month). To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1) a hyperspectral TIR system with ~75 bands at 7.2–12.5 µm (instrument NEDT 0.05 K–0.1 K) and a ground sampling distance (GSD) of 60 m, and (2) a panchromatic high-resolution TIR-imager with two channels (8.0–10.25 µm and 10.25–12.5 µm) and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1–3 days) to combine data from the visible and near infrared (VNIR), the shortwave infrared (SWIR) and TIR spectral regions and to refine parameter retrieval. PMID:28671575
Approach to the problem of the parameters optimization of the shooting system
NASA Astrophysics Data System (ADS)
Demidova, L. A.; Sablina, V. A.; Sokolova, Y. S.
2018-02-01
The problem of the objects identification on the base of their hyperspectral features has been considered. It is offered to use the SVM classifiers’ ensembles, adapted to specifics of the problem of the objects identification on the base of their hyperspectral features. The results of the objects identification on the base of their hyperspectral features with using of the SVM classifiers have been presented.
Design and Analysis of a Hyperspectral Microwave Receiver Subsystem
NASA Technical Reports Server (NTRS)
Blackwell, W.; Galbraith, C.; Hancock, T.; Leslie, R.; Osaretin, I.; Shields, M.; Racette, P.; Hillard, L.
2012-01-01
Hyperspectral microwave (HM) sounding has been proposed to achieve unprecedented performance. HM operation is achieved using multiple banks of RF spectrometers with large aggregate bandwidth. A principal challenge is Size/Weight/Power scaling. Objectives of this work: 1) Demonstrate ultra-compact (100 cm3) 52-channel IF processor (enabler); 2) Demonstrate a hyperspectral microwave receiver subsystem; and 3) Deliver a flight-ready system to validate HM sounding.
Mineral Mapping with AVIRIS and EO-1 Hyperion
NASA Technical Reports Server (NTRS)
Kruse, Fred A.
2004-01-01
Imaging Spectrometry data or Hyperspectral Imagery (HSI) acquired using airborne systems have been used in the geologic community since the early 1980 s and represent a mature technology (Goetz et al., 1985; Kruse et al., 1999). The solar spectral range, 0.4 to 2.5 m, provides abundant information about many important Earth-surface minerals (Clark et al., 1990). In particular, the 2.0 to 2.5 m (SWIR) spectral range covers spectral features of hydroxyl-bearing minerals, sulfates, and carbonates common to many geologic units and hydrothermal alteration assemblages. Previous research has proven the ability of airborne and spaceborne hyperspectral systems to uniquely identify and map these and other minerals, even in sub-pixel abundances (Kruse and Lefkoff, 1993; Boardman and Kruse, 1994; Boardman et al., 1995; Kruse, et al., 1999). This paper describes a case history for a site in northern Death Valley, California and Nevada along with selected SNR calculations/results for other sites around the world. Various hyperspectral mineral mapping results for this site have previously been presented and published (Kruse, 1988; Kruse et al., 1993, 1999, 2001, 2002, 2003), however, this paper presents a condensed summary of key details for hyperspectral data from 2000 and 2001 and the results of accuracy assessment for satellite hyperspectral data compared to airborne hyperspectral data used as ground truth.
NASA Astrophysics Data System (ADS)
Rock, Gilles; Fischer, Kim; Schlerf, Martin; Gerhards, Max; Udelhoven, Thomas
2017-04-01
The development and optimization of image processing algorithms requires the availability of datasets depicting every step from earth surface to the sensor's detector. The lack of ground truth data obliges to develop algorithms on simulated data. The simulation of hyperspectral remote sensing data is a useful tool for a variety of tasks such as the design of systems, the understanding of the image formation process, and the development and validation of data processing algorithms. An end-to-end simulator has been set up consisting of a forward simulator, a backward simulator and a validation module. The forward simulator derives radiance datasets based on laboratory sample spectra, applies atmospheric contributions using radiative transfer equations, and simulates the instrument response using configurable sensor models. This is followed by the backward simulation branch, consisting of an atmospheric correction (AC), a temperature and emissivity separation (TES) or a hybrid AC and TES algorithm. An independent validation module allows the comparison between input and output dataset and the benchmarking of different processing algorithms. In this study, hyperspectral thermal infrared scenes of a variety of surfaces have been simulated to analyze existing AC and TES algorithms. The ARTEMISS algorithm was optimized and benchmarked against the original implementations. The errors in TES were found to be related to incorrect water vapor retrieval. The atmospheric characterization could be optimized resulting in increasing accuracies in temperature and emissivity retrieval. Airborne datasets of different spectral resolutions were simulated from terrestrial HyperCam-LW measurements. The simulated airborne radiance spectra were subjected to atmospheric correction and TES and further used for a plant species classification study analyzing effects related to noise and mixed pixels.
Analysis Of AVIRIS Data From LEO-15 Using Tafkaa Atmospheric Correction
NASA Technical Reports Server (NTRS)
Montes, Marcos J.; Gao, Bo-Cai; Davis, Curtiss O.; Moline, Mark
2004-01-01
We previously developed an algorithm named Tafkaa for atmospheric correction of remote sensing ocean color data from aircraft and satellite platforms. The algorithm allows quick atmospheric correction of hyperspectral data using lookup tables generated with a modified version of Ahmad & Fraser s vector radiative transfer code. During the past few years we have extended the capabilities of the code. Current modifications include the ability to account for within scene variation in solar geometry (important for very long scenes) and view geometries (important for wide fields of view). Additionally, versions of Tafkaa have been made for a variety of multi-spectral sensors, including SeaWiFS and MODIS. In this proceeding we present some initial results of atmospheric correction of AVIRIS data from the 2001 July Hyperspectral Coastal Ocean Dynamics Experiment (HyCODE) at LEO-15.
NASA Astrophysics Data System (ADS)
Setiyoko, A.; Dharma, I. G. W. S.; Haryanto, T.
2017-01-01
Multispectral data and hyperspectral data acquired from satellite sensor have the ability in detecting various objects on the earth ranging from low scale to high scale modeling. These data are increasingly being used to produce geospatial information for rapid analysis by running feature extraction or classification process. Applying the most suited model for this data mining is still challenging because there are issues regarding accuracy and computational cost. This research aim is to develop a better understanding regarding object feature extraction and classification applied for satellite image by systematically reviewing related recent research projects. A method used in this research is based on PRISMA statement. After deriving important points from trusted sources, pixel based and texture-based feature extraction techniques are promising technique to be analyzed more in recent development of feature extraction and classification.
Multi-Channel Hyperspectral Fluorescence Detection Excited by Coupled Plasmon-Waveguide Resonance
Du, Chan; Liu, Le; Zhang, Lin; Guo, Jun; Guo, Jihua; Ma, Hui; He, Yonghong
2013-01-01
We propose in this paper a biosensor scheme based on coupled plasmon-waveguide resonance (CPWR) excited fluorescence spectroscopy. A symmetrical structure that offers higher surface electric field strengths, longer surface propagation lengths and depths is developed to support guided waveguide modes for the efficient excitation of fluorescence. The optimal parameters for the sensor films are theoretically and experimentally investigated, leading to a detection limit of 0.1 nM (for a Cy5 solution). Multiplex analysis possible with the fluorescence detection is further advanced by employing the hyperspectral fluorescence technique to record the full spectra for every pixel on the sample plane. We demonstrate experimentally that highly overlapping fluorescence (Cy5 and Dylight680) can be distinguished and ratios of different emission sources can be determined accurately. This biosensor shows great potential for multiplex detections of fluorescence analytes. PMID:24129023