Science.gov

Sample records for hypoglossal nucleus normal

  1. Revisiting Antagonist Effects in Hypoglossal Nucleus: Brainstem Circuit for the State-Dependent Control of Hypoglossal Motoneurons: A Hypothesis

    PubMed Central

    Fenik, Victor B.

    2015-01-01

    We reassessed and provided new insights into the findings that were obtained in our previous experiments that employed the injections of combined adrenergic, serotonergic, GABAergic, and glycinergic antagonists into the hypoglossal nucleus in order to pharmacologically abolish the depression of hypoglossal nerve activity that occurred during carbachol-induced rapid-eye-movement (REM) sleep-like state in anesthetized rats. We concluded that noradrenergic disfacilitation is the major mechanism that is responsible for approximately 90% of the depression of hypoglossal motoneurons, whereas the remaining 10% can be explained by serotonergic mechanisms that have net inhibitory effect on hypoglossal nerve activity during REM sleep-like state. We hypothesized that both noradrenergic and serotonergic state-dependent mechanisms indirectly control hypoglossal motoneuron excitability during REM sleep; their activities are integrated and mediated to hypoglossal motoneurons by reticular formation neurons. In addition, we proposed a brainstem neural circuit that can explain the new findings. PMID:26648908

  2. Mesopontine cholinergic projections to the hypoglossal motor nucleus.

    PubMed

    Rukhadze, Irma; Kubin, Leszek

    2007-02-14

    Mesopontine cholinergic (ACh) neurons have increased discharge during wakefulness, rapid eye movement (REM) sleep, or both. Hypoglossal (12) motoneurons, which play an important role in the control of upper airway patency, are postsynaptically excited by stimulation of nicotinic receptors, whereas muscarinic receptors presynaptically inhibit inputs to 12 motoneurons. These data suggest that ACh contributes to sleep/wake-related changes in the activity of 12 motoneurons by acting within the hypoglossal motor nucleus (Mo12), but the origins of ACh projections to Mo12 are not well established. We used retrograde tracers to assess the projections of ACh neurons of the mesopontine pedinculopontine tegmental (PPT) and laterodorsal tegmental (LDT) nuclei to the Mo12. In six Sprague-Dawley rats, Fluorogold or B subunit of cholera toxin, were pressure injected (5-20nl) into the Mo12. Retrogradely labeled neurons, identified as ACh using nitric oxide synthase (NOS) immunohistochemistry, were found bilaterally in discrete subregions of both PPT and LDT nuclei. Most retrogradely labeled PPT cells (96%) were located in the PPT pars compacta region adjacent to the ventrolateral tip of the superior cerebellar peduncle. In the LDT, retrogradely labeled neurons were located exclusively in its pars alpha region. Over twice as many ACh neurons projecting to the Mo12 were located in the PPT than LDT. The results demonstrate direct mesopontine ACh projections to the Mo12. These projections may contribute to the characteristic of wakefulness and REM sleep increases, as well as REM sleep-related decrements, of 12 motoneuronal activity.

  3. Transient expression of somatostatin messenger RNA and peptide in the hypoglossal nucleus of the neonatal rat.

    PubMed

    Seroogy, K B; Bayliss, D A; Szymeczek, C L; Hökfelt, T; Millhorn, D E

    1991-06-21

    The postnatal developmental expression of somatostatin mRNA and peptide in the rat hypoglossal nucleus was analyzed using immunocytochemical and in situ hybridization techniques. Both the neuropeptide and its cognate mRNA were found to be transiently present within a subpopulation of hypoglossal motoneurons during the neonatal period. At the day of birth, a large population of perikarya situated in caudal, ventral regions of the hypoglossal nucleus expressed somatostatin. By postnatal day 7, the number of hypoglossal somata which expressed somatostatin had diminished considerably, and by 2 weeks postnatal, only few such cell bodies were found. By 3-4 weeks postnatal, somatostatin peptide- and mRNA-containing hypoglossal motoneurons were rarely observed, and in the adult, they were never detected, despite the use of colchicine. A double-labeling co-localization technique was used to demonstrate that somatostatin, when present perinatally, always coexisted with calcitonin gene-related peptide in hypoglossal motoneurons. The latter peptide, in contrast to somatostatin, was expressed in large numbers of somata throughout the entire hypoglossal nucleus and persisted within the motoneurons throughout development into adulthood. These results demonstrate that somatostatin is transiently expressed in motoneurons of the caudal, ventral tier of the hypoglossal nucleus in the neonatal rat. The developmental disappearance of somatostatin is most likely not due to cell death; hypoglossal somata continue to express calcitonin gene-related peptide, with which somatostatin coexisted perinatally, a high levels throughout development. Thus, it appears that the regulation of somatostatin expression in hypoglossal neurons occurs at the level of gene transcription or mRNA stability/degradation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1680035

  4. Serotonergic projections from the caudal raphe nuclei to the hypoglossal nucleus in male and female rats

    PubMed Central

    Barker, Jessica R.; Thomas, Cathy F.; Behan, Mary

    2009-01-01

    The respiratory control system is sexually dimorphic. In many brain regions, including respiratory motor nuclei, serotonin (5HT) levels are higher in females than in males. We hypothesized that there could be sex differences in 5HT input to the hypoglossal nucleus, a region of the brainstem involved in upper airway control. Adult Fischer 344 rats were anesthetized and a retrograde transsynaptic neuroanatomical tracer, Bartha pseudorabies virus (PRV), was injected into the tongue. Sections through the medulla were reacted immunocytochemically for the presence of (i) PRV, (ii) tryptophan hydroxylase (TPH; marker of 5HT neurons), (iii) PRV combined with TPH, and (iv) 5HT. Sex hormone levels were measured in female rats and correlated with TPH immunoreactivity, as hypoglossal 5HT levels vary with the estrous cycle. The number of PRV neurons was comparable in male and female rats. The number and distribution of TPH immunoreactive neurons in the caudal raphe nuclei were similar in male and female rats. The subset of 5HT neurons that innervate hypoglossal motoneurons was also similar in male and female rats. With the exception of the ventrolateral region of the hypoglossal nucleus, 5HT immunoreactivity was similar in male and female rats. These data suggest that sex differences in 5HT modulation of hypoglossal motoneurons in male and female rats are not the result of sex differences in TPH or 5HT, but may result from differences in neurotransmitter release and reuptake, location of 5HT synaptic terminals on hypoglossal motoneurons, pre- and postsynaptic 5HT receptor expression, or the distribution of sex hormone receptors on hypoglossal or caudal raphe neurons. PMID:19073285

  5. Cortical Innervation of the Hypoglossal Nucleus in the Non-Human Primate (Macaca mulatta)

    PubMed Central

    Morecraft, Robert J.; Stilwell-Morecraft, Kimberly S.; Solon-Cline, Kathryn M.; Ge, Jizhi; Darling, Warren G.

    2014-01-01

    The corticobulbar projection to the hypoglossal nucleus was studied from the frontal, parietal, cingulate and insular cortices in the rhesus monkey using high-resolution anterograde tracers and stereology. The hypoglossal nucleus received bilateral input from the face/head region of the primary (M1), ventrolateral pre- (LPMCv), supplementary (M2), rostral cingulate (M3), and caudal cingulate (M4) motor cortices. Additional bilateral corticohypoglossal projections were found from the dorsolateral premotor cortex (LPMCd), ventrolateral proisocortical motor area (ProM), ventrolateral primary somatosensory cortex (S1), rostral insula and pregenual region of the anterior cingulate gyrus (areas 24/32). Dense terminal projections arose from the ventral region of M1, moderate projections from LPMCv and rostral part of M2, with considerably less hypoglossal projections arising from the other cortical regions. These findings demonstrate that extensive regions of the non-human primate cerebral cortex innervate the hypoglossal nucleus. The widespread and bilateral nature of this corticobulbar connection suggests recovery of tongue movement after cortical injury that compromises a subset of these areas, may occur from spared corticohypoglossal projection areas located on the lateral, as well as medial surfaces of both hemispheres. Since functional imaging studies have shown that homologous cortical areas are activated in humans during tongue movement tasks, these corticobulbar projections may exist in the human brain. PMID:24752643

  6. GABAA receptor antagonism at the hypoglossal motor nucleus increases genioglossus muscle activity in NREM but not REM sleep.

    PubMed

    Morrison, Janna L; Sood, Sandeep; Liu, Hattie; Park, Eileen; Nolan, Philip; Horner, Richard L

    2003-04-15

    The pharyngeal muscles, such as the genioglossus (GG) muscle of the tongue, are important for effective lung ventilation since they maintain an open airspace. Rapid-eye-movement (REM) sleep, however, recruits powerful neural mechanisms that can abolish GG activity, even during strong reflex respiratory stimulation by elevated CO2. In vitro studies have demonstrated the presence of GABAA receptors on hypoglossal motoneurons, and these and other data have led to the speculation that GABAA mechanisms may contribute to the suppression of hypoglossal motor outflow to the GG muscle in REM sleep. We have developed an animal model that allows us to chronically manipulate neurotransmission at the hypoglossal motor nucleus using microdialysis across natural sleep-wake states in rats. The present study tests the hypothesis that microdialysis perfusion of the GABAA receptor antagonist bicuculline into the hypoglossal motor nucleus will prevent the suppression of GG muscle activity in REM sleep during both room-air and CO2-stimulated breathing. Ten rats were implanted with electroencephalogram and neck muscle electrodes to record sleep-wake states, and GG and diaphragm electrodes for respiratory muscle recording. Microdialysis probes were implanted into the hypoglossal motor nucleus for perfusion of artificial cerebrospinal fluid (ACSF) or 100 microM bicuculline during room-air and CO2-stimulated breathing (7 % inspired CO2). GABAA receptor antagonism at the hypoglossal motor nucleus increased respiratory-related GG activity during both room-air (P = 0.01) and CO2-stimulated breathing (P = 0.007), indicating a background inhibitory GABA tone. However, the effects of bicuculline on GG activity depended on the prevailing sleep-wake state (P < 0.005), with bicuculline increasing GG activity in non-REM (NREM) sleep and wakefulness both in room air and hypercapnia (P < 0.01), but GG activity was effectively abolished in those REM periods without phasic twitches in the GG muscle

  7. Inhibition of the pontine Kölliker-Fuse nucleus abolishes eupneic inspiratory hypoglossal motor discharge in rat.

    PubMed

    Bautista, T G; Dutschmann, M

    2014-05-16

    The pontine Kölliker-Fuse nucleus (KF) has established functions in the regulation of inspiratory-expiratory phase transition and the regulation of upper airway patency via laryngeal valving mechanisms. Here we studied the role of the KF in the gating and modulation of eupneic hypoglossal motor activity (HNA) using the in situ perfused brainstem preparation, which displays robust inspiratory HNA. Microinjection of glutamate into the KF area triggered complex and often biphasic modulation (excitation/inhibition or inhibition/excitation) of HNA. Subsequent transient pharmacological inhibition of KF by unilateral microinjection of GABA-A receptor agonist isoguvacine reduced HNA and while bilateral microinjections completely abolished HNA. Our results indicate that mixed and overlapping KF pre-motor neurons provide eupneic drive for inspiratory HNA and postinspiratory vagal nerve activity. Both motor activities have important functions in the regulation of upper airway patency during eupnea but also during various oro-pharyngeal behaviors. These results have potential implications in the contribution of state-dependent modulation of KF hypoglossal pre-motor neurons during sleep-wake cycle to obstructive sleep apnea. PMID:24603053

  8. Inhibition of the pontine Kölliker-Fuse nucleus abolishes eupneic inspiratory hypoglossal motor discharge in rat.

    PubMed

    Bautista, T G; Dutschmann, M

    2014-05-16

    The pontine Kölliker-Fuse nucleus (KF) has established functions in the regulation of inspiratory-expiratory phase transition and the regulation of upper airway patency via laryngeal valving mechanisms. Here we studied the role of the KF in the gating and modulation of eupneic hypoglossal motor activity (HNA) using the in situ perfused brainstem preparation, which displays robust inspiratory HNA. Microinjection of glutamate into the KF area triggered complex and often biphasic modulation (excitation/inhibition or inhibition/excitation) of HNA. Subsequent transient pharmacological inhibition of KF by unilateral microinjection of GABA-A receptor agonist isoguvacine reduced HNA and while bilateral microinjections completely abolished HNA. Our results indicate that mixed and overlapping KF pre-motor neurons provide eupneic drive for inspiratory HNA and postinspiratory vagal nerve activity. Both motor activities have important functions in the regulation of upper airway patency during eupnea but also during various oro-pharyngeal behaviors. These results have potential implications in the contribution of state-dependent modulation of KF hypoglossal pre-motor neurons during sleep-wake cycle to obstructive sleep apnea.

  9. The Effect of Tongue Exercise on Serotonergic Input to the Hypoglossal Nucleus in Young and Old Rats

    ERIC Educational Resources Information Center

    Behan, Mary; Moeser, Adam E.; Thomas, Cathy F.; Russell, John A.; Wang, Hao; Leverson, Glen E.; Connor, Nadine P.

    2012-01-01

    Purpose: Breathing and swallowing problems affect elderly people and may be related to age-associated tongue dysfunction. Hypoglossal motoneurons that innervate the tongue receive a robust, excitatory serotonergic (5HT) input and may be affected by aging. We used a rat model of aging and progressive resistance tongue exercise to determine whether…

  10. GAD67-GFP+ neurons in the Nucleus of Roller: a possible source of inhibitory input to hypoglossal motoneurons. I. Morphology and firing properties.

    PubMed

    van Brederode, J F M; Yanagawa, Y; Berger, A J

    2011-01-01

    In this study we examined the electrophysiological and morphological properties of inhibitory neurons located just ventrolateral to the hypoglossal motor (XII) nucleus in the Nucleus of Roller (NR). In vitro experiments were performed on medullary slices derived from postnatal day 5 (P5) to P15 GAD67-GFP knock-in mouse pups. on cell recordings from GFP+ cells in NR in rhythmic slices revealed that these neurons are spontaneously active, although their spiking activity does not exhibit inspiratory phase modulation. Morphologically, GFP+ cells were bi- or multipolar cells with small- to medium-sized cell bodies and small dendritic trees that were often oriented parallel to the border of the XII nucleus. GFP+ cells were classified as either tonic or phasic based on their firing responses to depolarizing step current stimulation in whole cell current clamp. Tonic GFP+ cells fired a regular train of action potentials (APs) throughout the duration of the pulse and often showed rebound spikes after a hyperpolarizing step. In contrast, phasic GFP+ neurons did not fire throughout the depolarizing current step but instead fired fewer than four APs at the onset of the pulse or fired multiple APs, but only after a marked delay. Phasic cells had a significantly smaller input resistance and shorter membrane time constant than tonic GFP+ cells. In addition, phasic GFP+ cells differed from tonic cells in the shape and time course of their spike afterpotentials, the minimum firing frequency at threshold current amplitude, and the slope of their current-frequency relationship. These results suggest that GABAergic neurons in the NR are morphologically and electrophysiologically heterogeneous cells that could provide tonic inhibitory synaptic input to HMs. PMID:21047932

  11. Embryonic anastomosis between hypoglossal nerves.

    PubMed

    Rodríguez-Vázquez, J F; Mérida-Velasco, J R; Verdugo-López, S; Sanz-Casado, J V; Jiménez-Collado, J

    2009-12-01

    This article presents two cases of anastomosis of hypoglossal nerves in the suprahyoid region in human embryos of CR length 10.75 and 17.5 mm. This variation was studied in two human specimens at this stage of development and compared with the normal arrangement of the hypoglossal nerves in embryos at the same stage. The anastomotic branches were of similar caliber to the main trunks. In both cases the anastomosis was located dorsal to the origin of the geniohyoid muscles and caudal to the genioglossus muscles, lying transversally over the cranial face of the body of the hyoid bone anlage. The anastomosis formed a suprahyoid nerve chiasm on the midline in the embryo of 10.75 mm CR length.

  12. Isolated unilateral idiopathic transient hypoglossal nerve palsy

    PubMed Central

    Ahmed, Syed Viqar; Akram, Muhammad Saqub

    2014-01-01

    A 52-year-old Caucasian man presented with sudden onset of difficulty in moving his tongue to the left with preceding left-sided headache with no neck pain. Earlier, he had self-limiting chest infection without rashes or tonsillar enlargement. His medical and surgical history was unremarkable with no recent trauma. Oral examination revealed difficulty in protruding his tongue to the left with muscle bulk loss and fasciculation on the same side, suggesting left hypoglossal nerve palsy. Examination of the rest of the cranial nerves and nervous system was normal. The patient's oropharyngeal and laryngeal examination was unremarkable with no cervical lymphadenopathy. He had normal laboratory investigations and cerebrospinal fluid examination. Extensive imaging of the head, neck and chest failed to reveal any pathology. Further review by an otorhinologist and rheumatologist ruled out any other underlying pathology. He made a good recovery without treatment. English literature search revealed very few cases of idiopathic, transient, unilateral hypoglossal nerve palsy. PMID:24969070

  13. Nitrergic innervation of trigeminal and hypoglossal motoneurons in the cat.

    PubMed

    Pose, Ines; Fung, Simon; Sampogna, Sharon; Chase, Michael H; Morales, Francisco R

    2005-04-11

    The present study was undertaken to determine the location of trigeminal and hypoglossal premotor neurons that express neuronal nitric oxide synthase (nNOS) in the cat. Cholera toxin subunit b (CTb) was injected into the trigeminal (mV) or the hypoglossal (mXII) motor nuclei in order to label the corresponding premotor neurons. CTb immunocytochemistry was combined with NADPH-d histochemistry or nNOS immunocytochemistry to identify premotor nitrergic (NADPH-d(+)/CTb(+) or nNOS(+)/ CTb(+) double-labeled) neurons. Premotor trigeminal as well as premotor hypoglossal neurons were located in the ventro-medial medullary reticular formation in a region corresponding to the nucleus magnocellularis (Mc) and the ventral aspect of the nucleus reticularis gigantocellularis (NRGc). Following the injection of CTb into the mV, this region was found to contain a total of 60 +/- 15 double-labeled neurons on the ipsilateral side and 33 +/- 14 on the contralateral side. CTb injections into the mXII resulted in 40 +/- 17 double-labeled neurons in this region on the ipsilateral side and 16 +/- 5 on the contralateral side. Thus, we conclude that premotor trigeminal and premotor hypoglossal nitrergic cells coexist in the same medullary region. They are colocalized with a larger population of nitrergic cells (7200 +/- 23). Premotor neurons in other locations did not express nNOS. The present data demonstrate that a population of neurons within the Mc and the NRGc are the source of the nitrergic innervation of trigeminal and hypoglossal motoneurons. Based on the characteristics of nitric oxide actions and its diffusibility, we postulate that these neurons may serve to synchronize the activity of mV and mXII motoneurons. PMID:15804497

  14. Exogenous nerve growth factor protects the hypoglossal nerve against crush injury

    PubMed Central

    Fan, Li-yuan; Wang, Zhong-chao; Wang, Pin; Lan, Yu-yan; Tu, Ling

    2015-01-01

    Studies have shown that sensory nerve damage can activate the p38 mitogen-activated protein kinase (MAPK) pathway, but whether the same type of nerve injury after exercise activates the p38MAPK pathway remains unclear. Several studies have demonstrated that nerve growth factor may play a role in the repair process after peripheral nerve injury, but there has been little research focusing on the hypoglossal nerve injury and repair. In this study, we designed and established rat models of hypoglossal nerve crush injury and gave intraperitoneal injections of exogenous nerve growth factor to rats for 14 days. p38MAPK activity in the damaged neurons was increased following hypoglossal nerve crush injury; exogenous nerve growth factor inhibited this increase in acitivity and increased the survival rate of motor neurons within the hypoglossal nucleus. Under transmission electron microscopy, we found that the injection of nerve growth factor contributed to the restoration of the morphology of hypoglossal nerve after crush injury. Our experimental findings indicate that exogenous nerve growth factor can protect damaged neurons and promote hypoglossal nerve regeneration following hypoglossal nerve crush injury. PMID:26889186

  15. Hypocretin (orexin) input to trigeminal and hypoglossal motoneurons in the cat: a double-labeling immunohistochemical study.

    PubMed

    Fung, S J; Yamuy, J; Sampogna, S; Morales, F R; Chase, M H

    2001-06-01

    In trigeminal and hypoglossal motor nuclei of adult cats, hypocretin immunoreactive fiber varicosities were observed in apposition to retrogradely labeled motoneuron somata and dendrites. Among those lateral hypothalamus neurons that project to the hypoglossal nucleus some were determined to be hypocretin immunoreactive and were located amongst the single-labeled hypocretinergic neurons. These data suggest that hypocretin may play a role in the synaptic control of these motoneurons. PMID:11382413

  16. Control of hypoglossal motoneurones during naturally occurring sleep and wakefulness in the intact, unanaesthetized cat: a field potential study.

    PubMed

    Fung, Simon J; Chase, Michael H

    2014-08-01

    The present electrophysiological study was designed to determine the discharge threshold of hypoglossal motoneurones during naturally occurring states of sleep and wakefulness in the intact, unanaesthetized cat. The antidromic field potential, which reflects the net level of membrane excitability of motoneurones and therefore their discharge threshold, was recorded in the hypoglossal nucleus following stimulation of the hypoglossal nerve. The amplitude of the antidromic field potential was larger during wakefulness and non-rapid eye movement (NREM) sleep compared with REM sleep. There was no significant difference in the amplitude of the field potential when wakefulness was compared with NREM sleep (P = 0.103, df = 3, t = 2.324). However, there was a 46% reduction in amplitude during REM sleep compared with NREM sleep (P < 0.001, df = 10, t = 6.421) or wakefulness (P < 0.01, df = 4, t = -4.598). These findings indicate that whereas the excitability of motoneurones that comprise the hypoglossal motor pool is relatively constant during wakefulness and NREM sleep, their excitability is significantly reduced during REM sleep. This state-dependent pattern of control of hypoglossal motoneurones during REM sleep is similar to that reported for motoneurones in other motor nuclei at all levels of the neuraxis. The decrease in the evoked response of hypoglossal motoneurones, which reflects a significant increase in the discharge threshold of individual motoneurones, results in atonia of the lingual and related muscles during REM sleep. PMID:24605864

  17. Contribution of the Runx1 transcription factor to axonal pathfinding and muscle innervation by hypoglossal motoneurons.

    PubMed

    Yoshikawa, Masaaki; Hirabayashi, Mizuki; Ito, Ryota; Ozaki, Shigeru; Aizawa, Shin; Masuda, Tomoyuki; Senzaki, Kouji; Shiga, Takashi

    2015-11-01

    The runt-related transcription factor Runx1 contributes to cell type specification and axonal targeting projections of the nociceptive dorsal root ganglion neurons. Runx1 is also expressed in the central nervous system, but little is known of its functions in brain development. At mouse embryonic day (E) 17.5, Runx1-positive neurons were detected in the ventrocaudal subdivision of the hypoglossal nucleus. Runx1-positive neurons lacked calcitonin gene-related peptide (CGRP) expression, whereas Runx1-negative neurons expressed CGRP. Expression of CGRP was not changed in Runx1-deficient mice at E17.5, suggesting that Runx1 alone does not suppress CGRP expression. Hypoglossal axon projections to the intrinsic vertical (V) and transverse (T) tongue muscles were sparser in Runx1-deficient mice at E17.5 compared to age-matched wild-type littermates. Concomitantly, vesicular acetylcholine transporter-positive axon terminals and acetylcholine receptor clusters were less dense in the V and T tongue muscles of Runx1-deficient mice. These abnormalities in axonal projection were not caused by a reduction in the total number hypoglossal neurons, failed synaptogenesis, or tongue muscles deficits. Our results implicate Runx1 in the targeting of ventrocaudal hypoglossal axons to specific tongue muscles. However, Runx1 deficiency did not alter neuronal survival or the expression of multiple motoneuron markers as in other neuronal populations. Thus, Runx1 appears to have distinct developmental functions in different brain regions.

  18. Evidence for a trigeminal mesencephalic-hypoglossal nuclei loop involved in controlling vibrissae movements in the rat.

    PubMed

    Mameli, Ombretta; Caria, Marcello Alessandro; Pellitteri, Rosalia; Russo, Antonella; Saccone, Salvatore; Stanzani, Stefania

    2016-03-01

    Previous studies performed in rats showed that the whisker-pad motor innervation involves not only the facial nerve, but also some hypoglossal neurons whose axons travel within the trigeminal infraorbital nerve (ION) and target the extrinsic muscles surrounding the whisker-pad macrovibrissae. Furthermore, the electrical stimulation of the ION induced an increase in the EMG activity of these muscles, while the hypoglossal nucleus stimulation elicited evoked potentials and single motor unit responses. However, the existence of a neural network able to involve the XIIth nucleus in macrovibrissae whisking control was totally unknown until now. Since other recent experiments demonstrated that: (1) the mesencephalic trigeminal nucleus (Me5) neurons respond to both spontaneous and artificial movements of macrovibrissae, and (2) the Me5 peripheral terminals provide a monosynaptic sensory innervation to the macrovibrissae, the present study was aimed at analyzing a possible role of the Me5 nucleus as a relay station in the sensory-motor loop that involves the XIIth nucleus neurons in rhythmic whisking control. Two tracers were used in the same animal: Fluoro Gold, which was injected into the whisker pad to retrogradely label the hypoglossal whisker-pad projection neurons, and Dil, which was instead injected into the Me5 to label its projections to these hypoglossal neurons. Results demonstrated that terminals of the Me5 neurons monosynaptically target the hypoglossal whisker-pad projection neurons. The functional role of this sensory-motor connection is discussed, with particular regard to a hypothesized proprioceptive reflex in whisker-pad extrinsic muscles that can be elicited by the activation of the Me5 macrovibrissae receptors. PMID:26645304

  19. [Hypoglossal nerve neuropraxia after shoulder hemiarthroplasty].

    PubMed

    Pariente, L; Camarena, P; Koo, M; Sabaté, A; Armengol, J

    2014-05-01

    We report a case of hypoglossal nerve damage after shoulder hemiarthroplasty with the patient in "beach chair" position, performed with general anesthesia with orotracheal intubation, and without complications. An ultrasound-guided interscalene block was previously performed in an alert patient. After the intervention, the patient showed clinical symptomatology compatible with paralysis of the right hypoglossal nerve that completely disappeared after 4 weeks. Mechanisms such as hyperextension of the neck during intubation, endotracheal tube cuff pressure, excessive hyperextension, or head lateralization during surgery have been described as causes of this neurological damage. We discuss the causes, the associated factors and suggest preventive measures.

  20. Trigemino-hypoglossal somatic reflex in the pharmacological studies of nociception in orofacial area.

    PubMed

    Zubrzycki, Marek; Janecka, Anna; Zubrzycka, Maria

    2015-01-01

    Disorders involving the orofacial area represent a major medical and social problem. They are a consequence of central nociceptive processes associated with stimulation of the trigeminal nerve nucleus. A rat model of trigeminal pain, utilizing tongue jerks evoked by electrical tooth pulp stimulation during perfusion of the cerebral ventricles with various neuropeptide solutions, can be used in the pharmacological studies of nociception in orofacial area. The investigated neuropeptides diffuse through the cerebroventricular lining producing an analgesic effect either directly, through the trigemino-hypoglossal reflex arc neurons or indirectly through the periaqueductal central gray, raphe nuclei or locus coeruleus neurons. The aim of this review is to present the effect of pharmacological activity of various neuropeptides affecting the transmission of the sensory information from the orofacial area on the example of trigemino-hypoglossal reflex in rats. PMID:26581382

  1. Hypoglossal Nerve Stimulation for Obstructive Sleep Apnea.

    PubMed

    Mwenge, Gimbada B; Rombaux, Philippe; Lengele, Benoit; Rodenstein, Daniel

    2015-01-01

    Obstructive sleep apnea (OSA) is a very frequent affliction that affects about 1-5% of the adult population in its severe form. Continuous positive airway pressure (CPAP) is the most commonly used treatment and is highly effective, but its use is limited by low long-term adherence rates and overall poor acceptance among the patients. Therefore, there is a need for developing alternative approaches to OSA treatment, including a more 'natural' concept of maintaining an open airway through neuromodulation. Here we review the concept, scientific rationale, and technical details of hypoglossal nerve stimulation. We also review results of published clinical studies with several hypoglossal stimulation devices that are being investigated today. Hypoglossal nerve stimulation appears to be a very promising treatment for patients with moderate-to-severe OSA. If its efficacy is confirmed, it will probably be complementary with CPAP therapy and initially aimed at patients unable or unwilling to use CPAP. Once it becomes a standard therapy, its advantages might prove sufficient to challenge CPAP as the first-line therapy.

  2. Localization and function of dopamine receptors in the subthalamic nucleus of normal and parkinsonian monkeys

    PubMed Central

    Hu, Xing; Rommelfanger, Karen S.; Pare, Jean-Francois; Khan, Zafar U.; Smith, Yoland; Wichmann, Thomas

    2014-01-01

    The subthalamic nucleus (STN) receives a dopaminergic innervation from the substantia nigra pars compacta, but the role of this projection remains poorly understood, particularly in primates. To address this issue, we used immuno-electron microscopy to localize D1, D2, and D5 dopamine receptors in the STN of rhesus macaques and studied the electrophysiological effects of activating D1-like or D2-like receptors in normal and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated parkinsonian monkeys. Labeling of D1 and D2 receptors was primarily found presynaptically, on preterminal axons and putative glutamatergic and GABAergic terminals, while D5 receptors were more significantly expressed postsynaptically, on dendritic shafts of STN neurons. The electrical spiking activity of STN neurons, recorded with standard extracellular recording methods, was studied before, during, and after intra-STN administration of the dopamine D1-like receptor agonist SKF82958, the D2-like receptor agonist quinpirole, or artificial cerebrospinal fluid (control injections). In normal animals, administration of SKF82958 significantly reduced the spontaneous firing but increased the rate of intraburst firing and the proportion of pause-burst sequences of firing. Quinpirole only increased the proportion of such pause-burst sequences in STN neurons of normal monkeys. In MPTP-treated monkeys, the D1-like receptor agonist also reduced the firing rate and increased the proportion of pause-burst sequences, while the D2-like receptor agonist did not change any of the chosen descriptors of the firing pattern of STN neurons. Our data suggest that dopamine receptor activation can directly modulate the electrical activity of STN neurons by pre- and postsynaptic mechanisms in both normal and parkinsonian states, predominantly via activation of D1 receptors. PMID:24760789

  3. Cortical entrainment of human hypoglossal motor unit activities

    PubMed Central

    Laine, Christopher M.; Nickerson, Laura A.

    2012-01-01

    Output from the primary motor cortex contains oscillations that can have frequency-specific effects on the firing of motoneurons (MNs). Whereas much is known about the effects of oscillatory cortical drive on the output of spinal MN pools, considerably less is known about the effects on cranial motor nuclei, which govern speech/oromotor control. Here, we investigated cortical input to one such motor pool, the hypoglossal motor nucleus (HMN), which controls muscles of the tongue. We recorded intramuscular genioglossus electromyogram (EMG) and scalp EEG from healthy adult subjects performing a tongue protrusion task. Cortical entrainment of HMN population activity was assessed by measuring coherence between EEG and multiunit EMG activity. In addition, cortical entrainment of individual MN firing activity was assessed by measuring phase locking between single motor unit (SMU) action potentials and EEG oscillations. We found that cortical entrainment of multiunit activity was detectable within the 15- to 40-Hz frequency range but was inconsistent across recordings. By comparison, cortical entrainment of SMU spike timing was reliable within the same frequency range. Furthermore, this effect was found to be intermittent over time. Our study represents an important step in understanding corticomuscular synchronization in the context of human oromotor control and is the first study to document SMU entrainment by cortical oscillations in vivo. PMID:22049332

  4. On the classification of normally distributed neurons: an application to human dentate nucleus.

    PubMed

    Ristanović, Dušan; Milošević, Nebojša T; Marić, Dušica L

    2011-03-01

    One of the major goals in cellular neurobiology is the meaningful cell classification. However, in cell classification there are many unresolved issues that need to be addressed. Neuronal classification usually starts with grouping cells into classes according to their main morphological features. If one tries to test quantitatively such a qualitative classification, a considerable overlap in cell types often appears. There is little published information on it. In order to remove the above-mentioned shortcoming, we undertook the present study with the aim to offer a novel method for solving the class overlapping problem. To illustrate our method, we analyzed a sample of 124 neurons from adult human dentate nucleus. Among them we qualitatively selected 55 neurons with small dendritic fields (the small neurons), and 69 asymmetrical neurons with large dendritic fields (the large neurons). We showed that these two samples are normally and independently distributed. By measuring the neuronal soma areas of both samples, we observed that the corresponding normal curves cut each other. We proved that the abscissa of the point of intersection of the curves could represent the boundary between the two adjacent overlapping neuronal classes, since the error done by such division is minimal. Statistical evaluation of the division was also performed.

  5. The modulation by 5-HT of glutamatergic inputs from the raphe pallidus to rat hypoglossal motoneurones, in vitro

    PubMed Central

    Bouryi, Vitali A; Lewis, David I

    2003-01-01

    Decreases in the activity of 5-HT-containing caudal raphe neurones during sleep are thought to be partially responsible for the resultant disfacilitation of hypoglossal motoneurones. Whilst 5-HT has a direct excitatory action on hypoglossal motoneurones as a result of activation of 5-HT2 receptors, microinjection of 5-HT2 antagonists into the hypoglossal nucleus reduces motor activity to a much lesser extent compared to the suppression observed during sleep suggesting other transmitters co-localised in caudal raphe neurones may also be involved. The aim of the present study was therefore to characterise raphe pallidus inputs to hypoglossal motoneurones. Whole cell recordings were made from hypoglossal motoneurones in vitro. 5-HT evoked a direct membrane depolarisation (8.45 ± 3.8 mV, P < 0.001) and increase in cell input resistance (53 ± 40 %, P < 0.001) which was blocked by the 5-HT2 antagonist, ritanserin (2.40 ± 2.7 vs. 7.04 ± 4.6 mV). Stimulation within the raphe pallidus evoked a monosynaptic EPSC that was significantly reduced by the AMPA/kainateantagonist, NBQX (22.8 ± 16 % of control, P < 0.001). In contrast, the 5-HT2 antagonist, ritanserin, had no effect on the amplitude of these EPSCs (106 ± 31 % of control, P = n.s.). 5-HT reduced these EPSCs to 50.0 ± 13 % of control (P < 0.001), as did the 5-HT1A agonist, 8-OH-DPAT (52.5 ± 17 %, P < 0.001) and the 5-HT1B agonist, CP 93129 (40.6 ± 29 %, P < 0.01). 8-OH-DPAT and CP 93129 increased the paired pulse ratio (1.38 ± 0.27 to 1.91 ± 0.54, P < 0.05 & 1.27 ± 0.08 to 1.44 ± 0.13, P < 0.01 respectively) but had no effect on the postsynaptic glutamate response (99 ± 4.4 % and 100 ± 2.5 %, P = n.s.). They also increased the frequency (P < 0.001), but not the amplitude, of miniature glutamatergic EPSCs in hypoglossal motoneurones. These data demonstrate that raphe pallidus inputs to hypoglossal motoneurones are predominantly glutamatergic in nature, with 5-HT decreasing the release of glutamate from

  6. Developmental nicotine exposure disrupts dendritic arborization patterns of hypoglossal motoneurons in the neonatal rat.

    PubMed

    Powell, Gregory L; Gaddy, Joshua; Xu, Fei; Fregosi, Ralph F; Levine, Richard B

    2016-10-01

    Maternal smoking or use of other products containing nicotine during pregnancy can have significant adverse consequences for respiratory function in neonates. We have shown, in previous studies, that developmental nicotine exposure (DNE) in a model system compromises the normal function of respiratory circuits within the brainstem. The effects of DNE include alterations in the excitability and synaptic interactions of the hypoglossal motoneurons, which innervate muscles of the tongue. This study was undertaken to test the hypothesis that these functional consequences of DNE are accompanied by changes in the dendritic morphology of hypoglossal motoneurons. Hypoglossal motoneurons in brain stem slices were filled with neurobiotin during whole-cell patch clamp recordings and subjected to histological processing to reveal dendrites. Morphometric analysis, including the Sholl method, revealed significant effects of DNE on dendritic branching patterns. In particular, whereas within the first five postnatal days there was significant growth of the higher-order dendritic branches of motoneurons from control animals, the growth was compromised in motoneurons from neonates that were subjected to DNE. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1125-1137, 2016. PMID:26818139

  7. Stimulation of contacts in ventral but not dorsal subthalamic nucleus normalizes response switching in Parkinson's disease.

    PubMed

    Greenhouse, Ian; Gould, Sherrie; Houser, Melissa; Aron, Adam R

    2013-06-01

    Switching between responses is a key executive function known to rely on the frontal cortex and the basal ganglia. Here we aimed to establish with greater anatomical specificity whether such switching could be mediated via different possible frontal-basal-ganglia circuits. Accordingly, we stimulated dorsal vs. ventral contacts of electrodes in the subthalamic nucleus (STN) in Parkinson's patients during switching performance, and also studied matched controls. The patients underwent three sessions: once with bilateral dorsal contact stimulation, once with bilateral ventral contact stimulation, and once Off stimulation. Patients Off stimulation showed abnormal patterns of switching, and stimulation of the ventral contacts but not the dorsal contacts normalized the pattern of behavior relative to controls. This provides some of the first evidence in humans that stimulation of dorsal vs. ventral STN DBS contacts has differential effects on executive function. As response switching is an executive function known to rely on prefrontal cortex, these results suggest that ventral contact stimulation affected an executive/associative cortico-basal ganglia circuit.

  8. MID-INFRARED SPECTRAL INDICATORS OF STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY IN NORMAL GALAXIES

    SciTech Connect

    Treyer, Marie; Martin, Christopher D.; Wyder, Ted; Schiminovich, David; O'Dowd, Matt; Johnson, Benjamin D.; Charlot, Stephane; Heckman, Timothy; Martins, Lucimara; Seibert, Mark; Van der Hulst, J. M.

    2010-08-20

    We investigate the use of mid-infrared (MIR) polycyclic aromatic hydrocarbon (PAH) bands, the continuum, and emission lines as probes of star formation (SF) and active galactic nucleus (AGN) activity in a sample of 100 'normal' and local (z {approx} 0.1) emission-line galaxies. The MIR spectra were obtained with the Spitzer Space Telescope Infrared Spectrograph as part of the Spitzer-SDSS-GALEX Spectroscopic Survey, which includes multi-wavelength photometry from the ultraviolet to the far-infrared and optical spectroscopy. The continuum and features were extracted using PAHFIT, a decomposition code which we find to yield PAH equivalent widths (EWs) up to {approx}30 times larger than the commonly used spline methods. Despite the lack of extreme objects in our sample (such as strong AGNs, low-metallicity galaxies, or ULIRGs), we find significant variations in PAH, continuum, and emission-line properties, and systematic trends between these MIR properties and optically derived physical properties, such as age, metallicity, and radiation field hardness. We revisit the diagnostic diagram relating PAH EWs and [Ne II]12.8 {mu}m/[O IV]25.9 {mu}m line ratios and find it to be in much better agreement with the standard optical SF/AGN classification than when spline decompositions are used, while also potentially revealing obscured AGNs. The luminosity of individual PAH components, of the continuum, and, with poorer statistics, of the neon emission lines and molecular hydrogen lines are found to be tightly correlated to the total infrared (TIR) luminosity, making individual MIR components good gauges of the total dust emission in SF galaxies. Like the TIR luminosity, these individual components can be used to estimate dust attenuation in the UV and in H{alpha} lines based on energy balance arguments. We also propose average scaling relations between these components and dust-corrected, H{alpha}-derived SF rates.

  9. Signaling mechanism underlying the histamine-modulated action of hypoglossal motoneurons.

    PubMed

    Liu, Zi-Long; Wu, Xu; Luo, Yan-Jia; Wang, Lu; Qu, Wei-Min; Li, Shan-Qun; Huang, Zhi-Li

    2016-04-01

    Histamine, an important modulator of the arousal states of the central nervous system, has been reported to contribute an excitatory drive at the hypoglossal motor nucleus to the genioglossus (GG) muscle, which is involved in the pathogenesis of obstructive sleep apnea. However, the effect of histamine on hypoglossal motoneurons (HMNs) and the underlying signaling mechanisms have remained elusive. Here, whole-cell patch-clamp recordings were conducted using neonatal rat brain sections, which showed that histamine excited HMNs with an inward current under voltage-clamp and a depolarization membrane potential under current-clamp via histamine H1 receptors (H1Rs). The phospholipase C inhibitor U-73122 blocked H1Rs-mediated excitatory effects, but protein kinase A inhibitor and protein kinase C inhibitor did not, indicating that the signal transduction cascades underlying the excitatory action of histamine on HMNs were H1R/Gq/11 /phospholipase C/inositol-1,4,5-trisphosphate (IP3). The effects of histamine were also dependent on extracellular Na(+) and intracellular Ca(2+), which took place via activation of Na(+)-Ca(2+) exchangers. These results identify the signaling molecules associated with the regulatory effect of histamine on HMNs. The findings of this study may provide new insights into therapeutic approaches in obstructive sleep apnea. We proposed the post-synaptic mechanisms underlying the modulation effect of histamine on hypoglossal motoneuron. Histamine activates the H1Rs via PLC and IP3, increases Ca(2+) releases from intracellular stores, promotes Na(+) influx and Ca(2+) efflux via the NCXs, and then produces an inward current and depolarizes the neurons. Histamine modulates the excitability of HMNs with other neuromodulators, such as noradrenaline, serotonin and orexin. We think that these findings should provide an important new direction for drug development for the treatment of obstructive sleep apnea.

  10. Color canals modification with canny edge detection and morphological reconstruction for cell nucleus segmentation and area measurement in normal Pap smear images

    NASA Astrophysics Data System (ADS)

    Riana, Dwiza; Dewi, Dyah Ekashanti Octorina; Widyantoro, Dwi H.; Mengko, Tati Latifah R.

    2014-03-01

    This paper presents a cell nucleus segmentation and area measurement of Pap smear images by means of modification of color canals with Canny edge detection and morphological reconstruction methods. Cell nucleus characterization plays an important role for classifying the degree of abnormality in cervical cancer. The aim of this work is to find the matched measurement method with the manual nucleus area measurement. In this work, we utilized pap smear single cell images from Herlev data bank in RGB mode. The cell images were selected from 90 normal class subjects that include: Normal Superficial, Normal Intermediate, and Normal Columnar classes. The nucleus of each cell image was cropped manually to localize from the cytoplasm. The color canals modification was performed on each cropped nucleus image by, first, separating each R, G, B, and grayscale canals, then implementing addition operation based on color canals (R+G+B, R+G, R+B, G+B, and grayscale). The Canny edge detection was applied on those modifications resulting in binary edge images. The nucleus segmentation was implemented on the edge images by performing region filling based on morphological reconstruction. The area property was calculated based on the segmented nucleus area. The nucleus area from the proposed method was verified to the existing manual measurement (ground truth) of the Herlev data bank. Based on thorough observation upon the selected color canals and Canny edge detection. It can be concluded that Canny edge detection with R+G+B canal is the most significant for all Normal classes (r 0,305, p-value 0.05). While for Normal Superficial and Normal Intermediate, Canny edge detection is significant for all RGB modifications with (r 0.414 - 0.817 range, , p-value 0.05), and for Normal Columnar, Canny edge detection is significant for R+B canal (r 0.505, p-value 0.05).

  11. K+-nucleus scattering using K {yields} {mu}{nu} decays as a normalization check

    SciTech Connect

    Michael, R.; Hicks, K.; Bart, S.

    1995-04-01

    Elastic scattering of 720 and 620 MeV/c positive kaons from targets of {sup 12}C and {sup 6}Li has been measured up to laboratory angles of 42{degrees}. Since the magnitude of the cross sections is sensitive to nuclear medium effects, the K{yields}{mu}{nu} decay mode has been used to check the normalization. GEANT has been used to mimic the kaon decays over a path length of 12cm, with a correlated beam structure matching the experimental kaon beam. The corresponding muon distribution has been passed thru Monte Carlo simulations of the moby dick spectrometer. The results are compared with the experimental number of decay muons with good agreement. These results also agree with the normalization found using p-p elastic scattering. The normalized K{sup +} elastic data are compared to recent optical model predictions based on both Klein-Gordon and KDP equations in the impulse approximation.

  12. Frequency Matters: Beta Band Subthalamic Nucleus Deep Brain Stimulation Induces Parkinsonian-like Blink Abnormalities in Normal Rats

    PubMed Central

    Kaminer, Jaime; Thakur, Pratibha; Evinger, Craig

    2014-01-01

    The synchronized beta band oscillations in the basal ganglia-cortical networks in Parkinson's disease (PD) may be responsible for PD motor symptoms or an epiphenomenon of dopamine loss. We investigated the causal role of beta band activity in PD motor symptoms by testing the effects of beta frequency subthalamic nucleus deep brain stimulation (STN DBS) on blink reflex excitability, amplitude, and plasticity in normal rats. Delivering 16 Hz STN DBS produced the same increase in blink reflex excitability and impairment in blink reflex plasticity in normal rats as occurs in rats with 6-OHDA lesions and PD patients. These deficits were not an artifact of STN DBS because when these normal rats received 130 Hz STN DBS, their blink characteristics were the same as without STN DBS. To demonstrate the blink reflex disturbances with 16 Hz STN DBS were frequency specific, we tested the same rats with 7 Hz STN DBS, a theta band frequency typical of dystonia. In contrast to beta stimulation, 7 Hz DBS exaggerated blink reflex plasticity as occurs in focal dystonia. Thus, without destroying dopamine neurons or blocking dopamine receptors, frequency specific STN DBS can be used to create PD- or dystonic-like symptoms in a normal rat. PMID:25146113

  13. Nuclear vertex constants and asymptotic normalization coefficients for the tritium nucleus

    SciTech Connect

    Babenko, V. A.; Petrov, N. M.

    2009-12-15

    The properties of the nuclear vertex constant for virtual triton decay to a deuteron and a neutron (T {sup {yields}} d + n) are investigated along with the properties of the asymptotic normalization coefficient defined for the triton wave function and related to this constant. These quantities are calculated numerically on the basis of an equation that relates the asymptotic normalization coefficient to the triton effective radius {rho}{sub T}, which was introduced in the present study. The values of G{sub T}{sup 2} = 1.244(68) fm and C{sub T}{sup 2} = 2.958(162) found from our calculations are in good agreement with experimental and theoretical estimates obtained for these quantities in other studies. Physical properties of the triton virtual state are also discussed.

  14. Electrical stimulation of the hypoglossal nerve: a potential therapy.

    PubMed

    Schwartz, Alan R; Smith, Philip L; Oliven, Arie

    2014-02-01

    Obstructive sleep apnea is characterized by recurrent episodes of pharyngeal collapse, which result from a decrease in pharyngeal dilator muscle tone. The genioglossus is a major pharyngeal dilator that maintains airway patency during sleep. Early studies in animal and humans have demonstrated that electrical stimulation of this muscle reduces pharyngeal collapsibility, increases airflow, and mitigates obstructive sleep apnea. These findings impelled the development of fully implantable hypoglossal nerve stimulating systems (HGNS), for which feasibility trial results are now available. These pilot studies have confirmed that hypoglossal nerve stimulation can prevent pharyngeal collapse without arousing patients from sleep. Potentially, a substantial segment of the patient population with obstructive sleep apnea can be treated with this novel approach. Furthermore, the feasibility trial findings suggest that the therapeutic potential of HGNS can be optimized by selecting patients judiciously, titrating the stimulus intensity optimally, and characterizing the underlying function and anatomy of the pharynx. These strategies are currently being examined in ongoing pivotal trials of HGNS.

  15. Nerve injury reduces responses of hypoglossal motoneurones to baseline and chemoreceptor-modulated inspiratory drive in the adult rat

    PubMed Central

    González-Forero, David; Portillo, Federico; Sunico, Carmen R; Moreno-López, Bernardo

    2004-01-01

    The effects of peripheral nerve lesions on the membrane and synaptic properties of motoneurones have been extensively studied. However, minimal information exists about how these alterations finally influence discharge activity and motor output under physiological afferent drive. The aim of this work was to evaluate the effect of hypoglossal (XIIth) nerve crushing on hypoglossal motoneurone (HMN) discharge in response to the basal inspiratory afferent drive and its chemosensory modulation by CO2. The evolution of the lesion was assessed by recording the compound muscle action potential evoked by XIIth nerve stimulation, which was lost on crushing and then recovered gradually to control values from the second to fourth weeks post-lesion. Basal inspiratory activities recorded 7 days post-injury in the nerve proximal to the lesion site, and in the nucleus, were reduced by 51.6% and 35.8%, respectively. Single unit antidromic latencies were lengthened by lesion, and unusually high stimulation intensities were frequently required to elicit antidromic spikes. Likewise, inspiratory modulation of unitary discharge under conditions in which chemoreceptor drive was varied by altering end-tidal CO2 was reduced by more than 60%. Although the general recruitment scheme was preserved after XIIth nerve lesion, we noticed an increased proportion of low-threshold units and a reduced recruitment gain across the physiological range. Immunohistochemical staining of synaptophysin in the hypoglossal nuclei revealed significant reductions of this synaptic marker after nerve injury. Morphological and functional alterations recovered with muscle re-innervation. Thus, we report here that nerve lesion induced changes in the basal activity and discharge modulation of HMNs, concurrent with the loss of afferent inputs. Nevertheless, we suggest that an increase in membrane excitability, reported by others, and in the proportion of low-threshold units, could serve to preserve minimal electrical

  16. Clival osteomyelitis and hypoglossal nerve palsy--rare complications of Lemierre's syndrome.

    PubMed

    He, Jingzhou; Lam, Jonathan Chun Leuk; Adlan, Tarig

    2015-01-01

    An increasingly reported entity, Lemierre's syndrome classically presents with a recent oropharyngeal infection, internal jugular vein thrombosis and the presence of anaerobic organisms such as Fusobacterium necrophorum. The authors report a normally fit and well 17-year-old boy who presented with severe sepsis following a 5-day history of a sore throat, myalgia and neck stiffness requiring intensive care admission. Blood cultures grew F. necrophorum and radiological investigations demonstrated left internal jugular vein, cavernous sinus and sigmoid sinus thrombus, left vertebral artery dissection and thrombus within the left internal carotid artery. Imaging also revealed two areas of acute ischaemia in the brain, consistent with septic emboli, skull base (clival) osteomyelitis and an extensive epidural abscess. The patient improved on meropenem and metronidazole and was warfarinised for his cavernous sinus thrombosis. He has an on-going left-sided hypoglossal (XIIth) nerve palsy. PMID:26323975

  17. Antagonism of orexin receptors in the posterior hypothalamus reduces hypoglossal and cardiorespiratory excitation from the perifornical hypothalamus.

    PubMed

    Stettner, Georg M; Kubin, Leszek

    2013-01-01

    The perifornical (PF) region of the posterior hypothalamus promotes wakefulness and facilitates motor activity. In anesthetized rats, local disinhibition of PF neurons by GABA(A) receptor antagonists activates orexin (OX) neurons and elicits a systemic response, including increases of hypoglossal nerve activity (XIIa), respiratory rate, heart rate, and blood pressure. The increase of XIIa is mediated to hypoglossal (XII) motoneurons by pathways that do not require noradrenergic or serotonergic projections. We hypothesized that the pathway might include OX-dependent activation locally within the PF region or direct projections of OX neurons to the XII nucleus. Adult, male Sprague-Dawley rats were urethane anesthetized, vagotomized, paralyzed, and ventilated. Gabazine (GABA(A) receptor antagonist, 0.18 mM, 20 nl) was injected into the PF region, and ~2 h later, a second gabazine injection was performed preceded by injection of a dual OX1/2 receptor antagonist (almorexant; 90 mM) either into the XII nucleus (40-60 nl at 2-3 rostrocaudal levels; n = 6 rats), or into the PF region (40-60 nl; n = 6 rats). XIIa, respiratory rate, heart rate, and arterial blood pressure were analyzed for 70 min after each gabazine injection. The excitatory effects of PF gabazine on XIIa, respiratory, and heart rates were significantly reduced by up to 44-82% when gabazine injections were preceded by PF almorexant injections, but not when almorexant was injected into the XII nucleus. These data suggest that a significant portion of XII motoneuronal and cardiorespiratory activation evoked by disinhibition of PF neurons is mediated by local OX-dependent mechanisms within the posterior hypothalamus.

  18. Early Idiopathic Normal Pressure Hydrocephalus Patients With Neuropsychological Impairment Are Associated With Increased Fractional Anisotropy in the Anterior Thalamic Nucleus

    PubMed Central

    Chen, Yung-Chieh; Chiang, Shih-Wei; Chi, Chia-Hsing; Liou, Michelle; Kuo, Duen-Pang; Kao, Hung-Wen; Chung, Hsiao-Wen; Ma, Hsin I.; Peng, Giia-Sheun; Wu, Yu-Te; Chen, Cheng-Yu

    2016-01-01

    Abstract In this study, we aimed to investigate the reactive changes in diffusion tensor imaging (DTI)-derived diffusion metrics of the anterior thalamic nucleus (AN), a relaying center for the Papez circuit, in early idiopathic normal pressure hydrocephalus (iNPH) patients with memory impairment, as well as its correlation with the patients’ neuropsychological performances. In total, 28 probable iNPH patients with symptom onset within 1 year and 17 control subjects were prospectively recruited between 2010 and 2013 for this institutional review board-approved study. Imaging studies including DTI and a neuropsychological assessment battery were performed in all subjects. Diffusion metrics were measured from the region of the AN using tract-deterministic seeding method by reconstructing the mammillo–thalamo–cingulate connections within the Papez circuit. Differences in diffusion metrics and memory assessment scores between the patient and control group were examined via the Mann–Whitney U test. Spearman correlation analyses were performed to examine associations between diffusion metrics of AN and neuropsychological tests within the patient group. We discovered that early iNPH patients exhibited marked elevations in fractional anisotropy, pure diffusion anisotropy, and axial diffusivity (all P < 0.01), as well as lower neuropsychological test scores including verbal and nonverbal memory (all P < 0.05) compared with normal control. Spearman rank correlation analyses did not disclose significant correlations between AN diffusion metrics and neuropsychological test scores in the patient group, whereas ranked scatter plots clearly demonstrated a dichotic sample distribution between patient and control samples. In summary, our study highlighted the potential compensatory role of the AN by increasing thalamocortical connectivity within the Papez circuit because memory function declines in early iNPH when early shunt treatment may potentially reverse the

  19. Glycinergic synaptic transmission in the cochlear nucleus of mice with normal hearing and age-related hearing loss.

    PubMed

    Xie, Ruili; Manis, Paul B

    2013-10-01

    The principal inhibitory neurotransmitter in the mammalian cochlear nucleus (CN) is glycine. During age-related hearing loss (AHL), glycinergic inhibition becomes weaker in CN. However, it is unclear what aspects of glycinergic transmission are responsible for weaker inhibition with AHL. We examined glycinergic transmission onto bushy cells of the anteroventral CN in normal-hearing CBA/CaJ mice and in DBA/2J mice, a strain that exhibits an early onset AHL. Glycinergic synaptic transmission was examined in brain slices of mice at 10-15 postnatal days old, 20-35 days old, and at 6-7 mo old. Spontaneous inhibitory postsynaptic current (sIPSC) event frequency and amplitude were the same among all three ages in both strains of mice. However, the amplitudes of IPSCs evoked (eIPSC) from stimulating the dorsal CN were smaller, and the failure rate was higher, with increasing age due to decreased quantal content in both mouse strains, independent of hearing status. The coefficient of variation of the eIPSC amplitude also increased with age. The decay time constant (τ) of sIPSCs and eIPSCs were constant in CBA/CaJ mice at all ages, but were significantly slower in DBA/2J mice at postnatal days 20-35, following the onset of AHL, and not at earlier or later ages. Our results suggest that glycinergic inhibition at the synapses onto bushy cells becomes weaker and less reliable with age through changes in release. However, the hearing loss in DBA/2J mice is accompanied by a transiently enhanced inhibition, which could disrupt the balance of excitation and inhibition.

  20. Modulation of motor cortex neuronal activity and motor behavior during subthalamic nucleus stimulation in the normal primate.

    PubMed

    Johnson, Luke A; Xu, Weidong; Baker, Kenneth B; Zhang, Jianyu; Vitek, Jerrold L

    2015-04-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established surgical therapy for advanced Parkinson's disease (PD). An emerging hypothesis is that the therapeutic benefit of DBS is derived from direct modulation of primary motor cortex (M1), yet little is known about the influence of STN DBS on individual neurons in M1. We investigated the effect of STN DBS, delivered at discrete interval intensities (20, 40, 60, 80, and 100%) of corticospinal tract threshold (CSTT), on motor performance and M1 neuronal activity in a naive nonhuman primate. Motor performance during a food reach and retrieval task improved during low-intensity stimulation (20% CSTT) but worsened as intensity approached the threshold for activation of corticospinal fibers (80% and 100% CSTT). To assess cortical effects of STN DBS, spontaneous, extracellular neuronal activity was collected from M1 neurons before, during, and after DBS at the same CSTT stimulus intensities. STN DBS significantly modulated the firing of a majority of M1 neurons; however, the direction of effect varied with stimulus intensity such that, at 20% CSTT, most neurons were suppressed, whereas at the highest stimulus intensities the majority of neurons were activated. At a population level, firing rates increased as stimulus intensity increased. These results show that STN DBS influences both motor performance and M1 neuronal activity systematically according to stimulus intensity. In addition, the unanticipated reduction in reach times suggests that STN DBS, at stimulus intensities lower than typically used for treatment of PD motor signs, can enhance normal motor performance.

  1. Wasted tongue in neuromyelitis optica spectrum disorders due to hypoglossal nerve involvement.

    PubMed

    Viswanathan, Shanthi

    2015-04-01

    We report two cases of neuromyelitis optica spectrum disorder with hypoglossal nerve involvement resulting in a wasted tongue associated with other brainstem symptoms of hypogeusia, hypersalivation, hiccough, increased sweating, hyperemesis and myelitis (in the second patient). This occurred due to involvement of the hypoglossal, tractus solitarius and dorsal vagal nuclei. Though the myelitis and other brainstem signs recovered the hypoglossal nerve involvement resulting in a unilateral wasted tongue did not. It is important to consider neuromyelitis optica and its spectrum disorders in the differential diagnosis of a wasted tongue though its occurrence is rare.

  2. Meningioma arising in the hypoglossal canal: the midline suboccipital subtonsillar approach

    PubMed Central

    Dobrowolski, Samuel; Lepski, Guilherme; Tatagiba, Marcos

    2016-01-01

    Hypoglossal canal meningiomas (HCMs) are extremely rare, and a consensus has yet to be reached regarding the most appropriate treatment approach for these types of tumors. Surgical procedures to the hypoglossal canal are often complex and lengthy, and are often associated with high rates of morbidity. Several approaches have been used to remove such lesions. Most of these approaches have been adapted from methods used for jugular foramen surgery. Our goal is to present an approach that improves visualization of the hypoglossal canal, thus reducing this pathology's risk of morbidity. In this report, we describe one case of HCM in which the tumor was safely and effectively removed by the midline subtonsillar approach, which allows for a direct primary intradural visualization of the hypoglossal canal. There was no postoperative complication in the patient. The length of follow-up was 73 months, and there has been no recurrence of the tumor. PMID:27451423

  3. Persistent Primitive Hypoglossal Artery (PPHA) - A Rare Anomaly with Literature Review.

    PubMed

    Srinivas, M R; Vedaraju, K S; Manjappa, B H; Nagaraj, B R

    2016-01-01

    Persistent primitive hypoglossal artery (PPHA) is a rare embryonic carotid vertebrobasilar artery anastomosis. Hypoglossal artery arises from the internal carotid artery (ICA) between the C1 and C2 vertebral levels and traverses through the hypoglossal canal to join the vertebro-basilar system. We present a rare case of an anomalous right sided PPHA as a sole supply to posterior circulation of brain with absent/hypoplastic bilateral vertebral arteries in a two year child who had presented with acute left sided haemiplegia. Three dimensional time of flight magnetic resonance angiography identified an anomalous vessel arising from the right internal carotid artery at the level of axis vertebra and joining the vertebra-basilar arterial system after coursing through the right hypoglossal canal. This anomaly when present may predispose the person to aneurysm formation, ischaemia in the posterior circulation and atherosclerotic disease of the intracranial vessels. PMID:26894148

  4. Persistent Primitive Hypoglossal Artery (PPHA) – A Rare Anomaly with Literature Review

    PubMed Central

    Vedaraju, KS; Manjappa, BH; Nagaraj, BR

    2016-01-01

    Persistent primitive hypoglossal artery (PPHA) is a rare embryonic carotid vertebrobasilar artery anastomosis. Hypoglossal artery arises from the internal carotid artery (ICA) between the C1 and C2 vertebral levels and traverses through the hypoglossal canal to join the vertebro-basilar system. We present a rare case of an anomalous right sided PPHA as a sole supply to posterior circulation of brain with absent/hypoplastic bilateral vertebral arteries in a two year child who had presented with acute left sided haemiplegia. Three dimensional time of flight magnetic resonance angiography identified an anomalous vessel arising from the right internal carotid artery at the level of axis vertebra and joining the vertebra-basilar arterial system after coursing through the right hypoglossal canal. This anomaly when present may predispose the person to aneurysm formation, ischaemia in the posterior circulation and atherosclerotic disease of the intracranial vessels. PMID:26894148

  5. Differential expression of extracellular-signal-regulated kinase 5 (ERK5) in normal and degenerated human nucleus pulposus tissues and cells

    SciTech Connect

    Liang, Weiguo; Fang, Dejian; Ye, Dongping; Zou, Longqiang; Shen, Yan; Dai, Libing; Xu, Jiake

    2014-07-11

    Highlights: • ERK5 involved in NP cells. • ERK5 involved in NP tissue. • It was important modulator. - Abstract: Extracellular-signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and regulates a wide variety of cellular processes such as proliferation, differentiation, necrosis, apoptosis and degeneration. However, the expression of ERK5 and its role in degenerated human nucleus pulposus (NP) is hitherto unknown. In this study, we observed the differential expression of ERK5 in normal and degenerated human nucleus pulposus tissues by using immunohistochemical staining and Western blot. Treatment of NP cells with Pro-inflammatory cytokine, TNF-α decreased ERK5 gene expression as well as NP marker gene expression; including the type II collagen and aggrecan. Suppression of ERK5 gene expression in NP cells by ERK5 siRNA resulted in decreased gene expression of type II collagen and aggrecan. Furthermore, inhibition of ERK5 activation by BIX02188 (5 μM) decreased the gene expression of type II collagen and aggrecan in NP cells. Our results document the expression of ERK5 in degenerated nucleus pulposus tissues, and suggest a potential involvement of ERK5 in human degenerated nucleus pulposus.

  6. Hypoglossal canal size in living hominoids and the evolution of human speech.

    PubMed

    Jungers, William L; Pokempner, Amy A; Kay, Richard F; Cartmill, Matt

    2003-08-01

    The relative size of the hypoglossal canal has been proposed as a useful diagnostic tool for the identification of human-like speech capabilities in the hominid fossil record. Relatively large hypoglossal canals (standardized to oral cavity size) were observed in humans and assumed to correspond to relatively large hypoglossal nerves, the cranial nerve that controls motor function of the tongue. It was suggested that the human pattern of tongue motor innervation and associated speech potential are very different from those of African apes and australopithecines; the modern human condition apparently appeared by the time of Middle Pleistocene Homo. A broader interspecific analysis of hypoglossal canal size in primates conducted in 1999 has rejected this diagnostic and inferences based upon it. In an attempt to resolve these differences of opinion, which we believe are based in part on biased size-adjustments and/or unwarranted assumptions, a new data set was collected and analyzed from 298 extant hominoid skulls, including orangutans, gorillas, chimpanzees, bonobos, siamang, gibbons, and modern humans. Data on the absolute size of the hypoglossal nerve itself were also gathered from a small sample of humans and chimpanzee cadavers. A scale-free index of relative hypoglossal canal size (RHCS) was computed as 100 x (hypoglossal canal area(0.5)/oral cavity volume(0.333)). No significant sexual dimorphism in RHCS was discovered in any species of living hominoid, but there are significant interspecific differences in both absolute and relative sizes of the hypoglossal canal. In absolute terms, humans possess significantly larger canals than any other species except gorillas, but there is considerable overlap with chimpanzees. Humans are also characterized by large values of RHCS, but gibbons possess an even larger average mean for this index; siamang and bonobos overlap appreciably with humans in RHCS. The value of RHCS in Australopithecus afarensis is well within both

  7. Hypoglossal canal size in living hominoids and the evolution of human speech.

    PubMed

    Jungers, William L; Pokempner, Amy A; Kay, Richard F; Cartmill, Matt

    2003-08-01

    The relative size of the hypoglossal canal has been proposed as a useful diagnostic tool for the identification of human-like speech capabilities in the hominid fossil record. Relatively large hypoglossal canals (standardized to oral cavity size) were observed in humans and assumed to correspond to relatively large hypoglossal nerves, the cranial nerve that controls motor function of the tongue. It was suggested that the human pattern of tongue motor innervation and associated speech potential are very different from those of African apes and australopithecines; the modern human condition apparently appeared by the time of Middle Pleistocene Homo. A broader interspecific analysis of hypoglossal canal size in primates conducted in 1999 has rejected this diagnostic and inferences based upon it. In an attempt to resolve these differences of opinion, which we believe are based in part on biased size-adjustments and/or unwarranted assumptions, a new data set was collected and analyzed from 298 extant hominoid skulls, including orangutans, gorillas, chimpanzees, bonobos, siamang, gibbons, and modern humans. Data on the absolute size of the hypoglossal nerve itself were also gathered from a small sample of humans and chimpanzee cadavers. A scale-free index of relative hypoglossal canal size (RHCS) was computed as 100 x (hypoglossal canal area(0.5)/oral cavity volume(0.333)). No significant sexual dimorphism in RHCS was discovered in any species of living hominoid, but there are significant interspecific differences in both absolute and relative sizes of the hypoglossal canal. In absolute terms, humans possess significantly larger canals than any other species except gorillas, but there is considerable overlap with chimpanzees. Humans are also characterized by large values of RHCS, but gibbons possess an even larger average mean for this index; siamang and bonobos overlap appreciably with humans in RHCS. The value of RHCS in Australopithecus afarensis is well within both

  8. Treating Obstructive Sleep Apnea with Hypoglossal Nerve Stimulation

    PubMed Central

    Eastwood, Peter R.; Barnes, Maree; Walsh, Jennifer H.; Maddison, Kathleen J.; Hee, Geoffrey; Schwartz, Alan R.; Smith, Philip L.; Malhotra, Atul; McEvoy, R. Douglas; Wheatley, John R.; O'Donoghue, Fergal J.; Rochford, Peter D.; Churchward, Tom; Campbell, Matthew C.; Palme, Carsten E.; Robinson, Sam; Goding, George S.; Eckert, Danny J.; Jordan, Amy S.; Catcheside, Peter G.; Tyler, Louise; Antic, Nick A.; Worsnop, Christopher J.; Kezirian, Eric J.; Hillman, David R.

    2011-01-01

    Background: Reduced upper airway muscle activity during sleep is fundamental to obstructive sleep apnea (OSA) pathogenesis. Hypoglossal nerve stimulation (HGNS) counteracts this problem, with potential to reduce OSA severity. Study Objectives: To examine safety and efficacy of a novel HGNS system (HGNS, Apnex Medical, Inc.) in treating OSA. Participants: Twenty-one patients, 67% male, age (mean ± SD) 53.6 ± 9.2 years, with moderate to severe OSA and unable to tolerate continuous positive airway pressure (CPAP). Design: Each participant underwent surgical implantation of the HGNS system in a prospective single-arm interventional trial. OSA severity was defined by apnea-hypopnea index (AHI) during in-laboratory polysomnography (PSG) at baseline and 3 and 6 months post-implant. Therapy compliance was assessed by nightly hours of use. Symptoms were assessed using the Epworth Sleepiness Scale (ESS), Functional Outcomes of Sleep Questionnaire (FOSQ), Calgary Sleep Apnea Quality of Life Index (SAQLI), and the Beck Depression Inventory (BDI). Results: HGNS was used on 89% ± 15% of nights (n = 21). On these nights, it was used for 5.8 ± 1.6 h per night. Nineteen of 21 participants had baseline and 6-month PSGs. There was a significant improvement (all P < 0.05) from baseline to 6 months in: AHI (43.1 ± 17.5 to 19.5 ± 16.7), ESS (12.1 ± 4.7 to 8.1 ± 4.4), FOSQ (14.4 ± 2.0 to 16.7 ± 2.2), SAQLI (3.2 ± 1.0 to 4.9 ± 1.3), and BDI (15.8 ± 9.0 to 9.7 ± 7.6). Two serious device-related adverse events occurred: an infection requiring device removal and a stimulation lead cuff dislodgement requiring replacement. Conclusions: HGNS demonstrated favorable safety, efficacy, and compliance. Participants experienced a significant decrease in OSA severity and OSA-associated symptoms. Clinical Trial Information: Name: Australian Clinical Study of the Apnex Medical HGNS System to Treat Obstructive Sleep Apnea. Registration Number: NCT01186926. URL: http://clinicaltrials.gov/ct2

  9. Normalization.

    ERIC Educational Resources Information Center

    Cuevas, Eduardo J.

    1997-01-01

    Discusses cornerstone of Montessori theory, normalization, which asserts that if a child is placed in an optimum prepared environment where inner impulses match external opportunities, the undeviated self emerges, a being totally in harmony with its surroundings. Makes distinctions regarding normalization, normalized, and normality, indicating how…

  10. Nucleus-nucleus potentials

    SciTech Connect

    Satchler, G.R.

    1983-01-01

    The significance of a nucleus-nucleus potential is discussed. Information about such potentials obtained from scattering experiments is reviewed, including recent examples of so-called rainbow scattering that probe the potential at smaller distances. The evidence for interactions involving the nuclear spins is summarized, and their possible origin in couplings to non-elastic channels. Various models of the potentials are discussed.

  11. Exercise training normalizes an increased neuronal excitability of NTS-projecting neurons of the hypothalamic paraventricular nucleus in hypertensive rats.

    PubMed

    Stern, Javier E; Sonner, Patrick M; Son, Sook Jin; Silva, Fabiana C P; Jackson, Keshia; Michelini, Lisete C

    2012-05-01

    Elevated sympathetic outflow and altered autonomic reflexes, including impaired baroreflex function, are common findings observed in hypertensive disorders. Although a growing body of evidence supports a contribution of preautonomic neurons in the hypothalamic paraventricular nucleus (PVN) to altered autonomic control during hypertension, the precise underlying mechanisms remain unknown. Here, we aimed to determine whether the intrinsic excitability and repetitive firing properties of preautonomic PVN neurons that innervate the nucleus tractus solitarii (PVN-NTS neurons) were altered in spontaneously hypertensive rats (SHR). Moreover, given that exercise training is known to improve and/or correct autonomic deficits in hypertensive conditions, we evaluated whether exercise is an efficient behavioral approach to correct altered neuronal excitability in hypertensive rats. Patch-clamp recordings were obtained from retrogradely labeled PVN-NTS neurons in hypothalamic slices obtained from sedentary (S) and trained (T) Wistar-Kyoto (WKY) and SHR rats. Our results indicate an increased excitability of PVN-NTS neurons in SHR-S rats, reflected by an enhanced input-output function in response to depolarizing stimuli, a hyperpolarizing shift in Na(+) spike threshold, and smaller hyperpolarizing afterpotentials. Importantly, we found exercise training in SHR rats to restore all these parameters back to those levels observed in WKY-S rats. In several cases, exercise evoked opposing effects in WKY-S rats compared with SHR-S rats, suggesting that exercise effects on PVN-NTS neurons are state dependent. Taken together, our results suggest that elevated preautonomic PVN-NTS neuronal excitability may contribute to altered autonomic control in SHR rats and that exercise training efficiently corrects these abnormalities.

  12. [The stimulating effects of contralateral glossopharyngeal and hypoglossal afferent fibers on the glossopharyngeo-hypoglossal reflex activities in the frog].

    PubMed

    Murayama, N

    1991-01-01

    American Bullfrogs, Rana catesbiana, immobilized with suxamethonium chloride (20 mg/kg b. w., i. p.), were used. By stimulating the glossopharyngeal (IX) nerve, reflex activities, composed of early (10-20 ms in latency) and late (greater than 20 ms) components, were evoked in both protoractor branch (P. br.) and retractor branch (R. br.) of the ipsilateral hypoglossal (XII) nerve. Contralateral IXth nerve stimulation increased the reflex activities of both components in the P. br. elicited ipsilaterally by the homonymous nerve. Whereas, it increased the reflex activities of the early component in the R. br. but, decreased that of the late component. On the other hand, stimulation of P. br. in the contralateral XIIth nerve increased the activities of both components in the P. br. and those of the late component in the R. br., but did not affect the activities of the early component in the R. br. The time course of these effects was similar to that by contralateral IXth nerve stimulation. The present findings strongly suggest the existence of afferent fibers in the XIIth nerve. PMID:1770456

  13. Electrical stimulation of the hypoglossal nerve in the treatment of obstructive sleep apnea.

    PubMed

    Kezirian, Eric J; Boudewyns, An; Eisele, David W; Schwartz, Alan R; Smith, Philip L; Van de Heyning, Paul H; De Backer, Wilfried A

    2010-10-01

    Upper airway occlusion in obstructive sleep apnea has been attributed to a decline in pharyngeal neuromuscular activity occurring in a structurally narrowed airway. Surgical treatment focuses on the correction of anatomic abnormalities, but there is a potential role for activation of the upper airway musculature, especially with stimulation of the hypoglossal nerve and genioglossus muscle. We present evidence from research on upper airway neuromuscular electrical stimulation in animals and humans. We also present results from eight obstructive sleep apnea patients with a fully implanted system for hypoglossal nerve stimulation, demonstrating an improvement in upper airway collapsibility and obstructive sleep apnea severity. Future research, including optimization of device features and stimulation parameters as well as patient selection, is necessary to make hypoglossal nerve stimulation a viable alternative to positive airway pressure therapy and upper airway surgical procedures.

  14. Hypoglossal Neuropathology and Respiratory Activity in Pompe Mice

    PubMed Central

    Sandhu, Milapjit S.; Elmallah, Mai K.; Falk, Darin J.; Lane, Michael A.; Reier, Paul J.; Byrne, Barry J.; Fuller, David D.

    2011-01-01

    Pompe disease is a lysosomal storage disorder associated with systemic deficiency of acid α-glucosidase (GAA). Respiratory-related problems in Pompe disease include hypoventilation and upper airway dysfunction. Although these problems have generally been attributed to muscular pathology, recent work has highlighted the potential role of central nervous system (CNS) neuropathology in Pompe motor deficiencies. We used a murine model of Pompe disease to test the hypothesis that systemic GAA deficiency is associated with hypoglossal (XII) motoneuron pathology and altered XII motor output during breathing. Brainstem tissue was harvested from adult Gaa−/− mice and the periodic acid Schiff method was used to examine neuronal glycogen accumulation. Semi-thin (2 μm) plastic sections showed widespread medullary neuropathology with extensive cytoplasmic glycogen accumulation in XII motoneuron soma. We next recorded efferent XII bursting in anesthetized and ventilated Gaa−/− and B6/129 mice both before and after bilateral vagotomy. The coefficient of variation of respiratory cycle duration was greater in Gaa−/− compared to B6/129 mice (p < 0.01). Vagotomy caused a robust increase in XII inspiratory burst amplitude in B6/129 mice (239 ± 44% baseline; p < 0.01) but had little impact on burst amplitude in Gaa−/− mice (130 ± 23% baseline; p > 0.05). We conclude that CNS GAA deficiency results in substantial glycogen accumulation in XII motoneuron cell bodies and altered XII motor output. Therapeutic strategies targeting the CNS may be required to fully correct respiratory-related deficits in Pompe disease. PMID:21747768

  15. Hypoglossal Nerve Stimulation Improves Obstructive Sleep Apnea: 12 Month Outcomes

    PubMed Central

    Kezirian, Eric J.; Goding, George S.; Malhotra, Atul; O'Donoghue, Fergal J.; Zammit, Gary; Wheatley, John R.; Catcheside, Peter G.; Smith, Philip L.; Schwartz, Alan R.; Walsh, Jennifer H.; Maddison, Kathleen J.; Claman, David M.; Huntley, Tod; Park, Steven Y.; Campbell, Matthew C.; Palme, Carsten E.; Iber, Conrad; Eastwood, Peter R.; Hillman, David R.; Barnes, Maree

    2013-01-01

    Reduced upper airway muscle activity during sleep is a key contributor to obstructive sleep apnoea (OSA) pathogenesis. Hypoglossal nerve stimulation (HGNS) activates upper airway dilator muscles, including the genioglossus, and has the potential to reduce OSA severity. The objective of this study was to examine the safety, feasibility, and efficacy of a novel HGNS system (HGNS®, Apnex Medical, Inc., St. Paul, MN) in treating OSA at 12 months following implantation. Thirty-one subjects (35% female, age 52·4±9·4 years) with moderate to severe OSA and unable to tolerate positive airway pressure underwent surgical implantation and activation of the HGNS system in a prospective single-arm interventional trial. Primary outcomes were changes in OSA severity (apnoea-hypopnoea index, AHI, from in-laboratory polysomnogram) and sleep-related quality of life (Functional Outcomes of Sleep Questionnaire, FOSQ). HGNS was used on 86±16% of nights for 5·4±1·4 hours per night. There was a significant improvement (p < 0·001) from baseline to 12 months in AHI (45.4±17·5 to 25·3±20·6 events/h) and FOSQ score (14·2±2·0 to 17·0±2·4) as well as other polysomnogram and symptom measures. Outcomes were stable compared to 6 months following implantation. Three serious device-related adverse events occurred: an infection requiring device removal and two stimulation lead cuff dislodgements requiring replacement. There were no significant adverse events with onset later than 6 months following implantation. HGNS demonstrated favourable safety, feasibility, and efficacy. PMID:24033656

  16. Central effects of 5-HT on respiratory and hypoglossal activities in the adult cat.

    PubMed

    Rose, D; Khater-Boidin, J; Toussaint, P; Duron, B

    1995-07-01

    The activities of the diaphragmatic, internal intercostal and hypoglossal-innervated muscles were studied in adult decerebrate cats in response to 5-HT and related agents (8-OH-DPAT and DOI). The drugs were placed on the floor of the IVth ventricle. The mean respiratory frequency (Fi) increased (124-193% of the control value) within 3 min of the 5-HT application, and decreased thereafter (30-90%). The mean Ti and Te changed similarly, but opposite to Fi. With some delay, the hypoglossal-innervated muscles were tonically activated or exhibited increased activities. Methysergide pretreatment completely blocked the effect of 5-HT on all the respiratory parameters and the hypoglossal-innervated muscles activities. The responses to 8-OH-DPAT and DOI indicate that 5-HT modulates the respiratory frequency via activation of both 5-HT1A and 5-HT2 receptors. Nevertheless, the effect of 5-HT on both the expiratory and hypoglossal-innervated muscles seems to depend on 5-HT2 receptors activation only.

  17. Hypoglossal Nerve Stimulator Implantation in an Adolescent With Down Syndrome and Sleep Apnea.

    PubMed

    Diercks, Gillian R; Keamy, Donald; Kinane, Thomas Bernard; Skotko, Brian; Schwartz, Allison; Grealish, Ellen; Dobrowski, John; Soose, Ryan; Hartnick, Christopher J

    2016-05-01

    Obstructive sleep apnea (OSA) is more common in children with Down syndrome, affecting up to 60% of patients, and may persist in up to 50% of patients after adenotonsillectomy. These children with persistent moderate to severe OSA require continuous positive airway pressure, which is often poorly tolerated, or even tracheotomy for severe cases. The hypoglossal nerve stimulator is an implantable device that produces an electrical impulse to the anterior branches of the hypoglossal nerve, resulting in tongue protrusion in response to respiratory variation. It is an effective treatment of sleep apnea in select adult patients because it allows for alleviation of tongue base collapse, improving airway obstruction. Herein we describe the first pediatric hypoglossal nerve stimulator implantation, which was performed in an adolescent with Down syndrome and refractory severe OSA (apnea hypopnea index [AHI]: 48.5 events/hour). The patient would not tolerate continuous positive airway pressure and required a long-standing tracheotomy. Hypoglossal nerve stimulator therapy was well tolerated and effective, resulting in significant improvement in the patient's OSA (overall AHI: 3.4 events/hour; AHI: 2.5-9.7 events/hour at optimal voltage settings depending on sleep stage and body position). Five months after implantation, the patient's tracheotomy was successfully removed and he continues to do well with nightly therapy. PMID:27244805

  18. Changes in electrophysiological properties of cat hypoglossal motoneurons during carbachol-induced motor inhibition.

    PubMed

    Fung, S J; Yamuy, J; Xi, M C; Engelhardt, J K; Morales, F R; Chase, M H

    2000-12-01

    The control of hypoglossal motoneurons during sleep is important from a basic science perspective as well as to understand the bases for pharyngeal occlusion which results in the obstructive sleep apnea syndrome. In the present work, we used intracellular recording techniques to determine changes in membrane properties in adult cats in which atonia was produced by the injection of carbachol into the pontine tegmentum (AS-carbachol). During AS-carbachol, 86% of the recorded hypoglossal motoneurons were found to be postsynaptically inhibited on the basis of analyses of their electrical properties; the electrical properties of the remaining 14% were similar to motoneurons recorded during control conditions. Those cells that exhibited changes in their electrical properties during AS-carbachol also displayed large-amplitude inhibitory synaptic potentials. Following sciatic nerve stimulation, hypoglossal motoneurons which responded with a depolarizing potential during control conditions exhibited a hyperpolarizing potential during AS-carbachol. Both spontaneous and evoked inhibitory potentials recorded during AS-carbachol were comparable to those that have been previously observed in trigeminal and spinal cord motoneurons under similar experimental conditions as well as during naturally occurring active sleep. Calculations based on modeling the changes that we found in input resistance and membrane time constant with a three-compartment neuron model suggest that shunts are present in all three compartments of the hypoglossal motoneuron model. Taken together, these data indicate that postsynaptic inhibitory drives are widely distributed on the soma-dendritic tree of hypoglossal motoneurons during AS-carbachol. These postsynaptic inhibitory actions are likely to be involved in the pathophysiology of obstructive sleep apnea. PMID:11102580

  19. Stent-Assisted Coil Embolization of a Wide-Neck Aneurysm of a Persistent Primitive Hypoglossal Artery

    SciTech Connect

    Baldi, Sebastian Zander, Tobias; Rabellino, Martin; Maynar, Manuel

    2009-03-15

    Persistent primitive hypoglossal artery (PPHA) represents the second most common carotid-vertebrobasilar anastomosis. The association of PPHA with intracranial aneurysms is not unusual. Treatment of aneurysms located on the PPHA itself is challenging due to the increased risk of ischemic complications secondary to the hypoglossal artery often being the sole contributor of flow to the posterior circulation. We report a case of a wide-neck aneurysm in a PPHA successfully treated using a stent-assisted coil embolization technique.

  20. Ceftriaxone attenuates ethanol drinking and restores extracellular glutamate concentration through normalization of GLT-1 in nucleus accumbens of male alcohol-preferring rats

    PubMed Central

    Das, Sujan C.; Yamamoto, Bryan K.; Hristov, Alexandar M.; Sari, Youssef

    2015-01-01

    Alteration of glutamatergic-neurotransmission is a hallmark of alcohol abuse. We have previously reported that chronic ethanol-drinking downregulated glutamate transporter 1 (GLT-1) in nucleus accumbens (NAc) in male P rats in a manner that was reversed by ceftriaxone treatment. However, the effect of ceftriaxone on extracellular glutamate concentrations in NAc after chronic ethanol-drinking has not yet been studied. In the present study, male P rats were treated with ceftriaxone (100 mg/kg/day, i.p.) for five consecutive days following five-weeks of free choice ethanol (15% and 30%) drinking. In vivo microdialysis was performed to measure the extracellular glutamate concentrations in NAc and the effect of blockade of GLT-1 with dihydrokainic acid (DHK) on extracellular glutamate in NAc of ceftriaxone-treated rats was determined. Ceftriaxone treatment attenuated ethanol intake as well as ethanol preference. Extracellular glutamate was significantly higher in NAc after five-weeks of ethanol drinking in saline-treated compared to water control rats. Ceftriaxone treatment blocked the increase extracellular glutamate produced by ethanol intake. Blockade of GLT-1 by DHK reversed the effects of ceftriaxone on glutamate and implicated the role of GLT-1 in the normalization of extracellular glutamate by ceftriaxone. In addition, GLT-1 protein was decreased in ethanol exposed animals and ceftriaxone treatment reversed this deficit. Ceftriaxone treatment also increased glutamine synthetase activity in NAc but not in PFC as compared to ethanol drinking saline-treated rats. Our present study demonstrates that ceftriaxone treatment prevents ethanol drinking in part through normalization of extracellular glutamate concentrations in NAc of male P rats via GLT-1. PMID:26002627

  1. Ceftriaxone attenuates ethanol drinking and restores extracellular glutamate concentration through normalization of GLT-1 in nucleus accumbens of male alcohol-preferring rats.

    PubMed

    Das, Sujan C; Yamamoto, Bryan K; Hristov, Alexandar M; Sari, Youssef

    2015-10-01

    Alteration of glutamatergic-neurotransmission is a hallmark of alcohol dependence. We have previously reported that chronic ethanol-drinking downregulated glutamate transporter 1 (GLT-1) in nucleus accumbens (NAc) in male P rats in a manner that was reversed by ceftriaxone treatment. However, the effect of ceftriaxone on extracellular glutamate concentrations in NAc after chronic ethanol-drinking has not yet been studied. In the present study, male P rats were treated with ceftriaxone (100 mg/kg/day, i.p.) for five consecutive days following five-weeks of free choice ethanol (15% and 30%) drinking. In vivo microdialysis was performed to measure the extracellular glutamate concentrations in NAc and the effect of blockade of GLT-1 with dihydrokainic acid (DHK) on extracellular glutamate in NAc of ceftriaxone-treated rats was determined. Ceftriaxone treatment attenuated ethanol intake as well as ethanol preference. Extracellular glutamate was significantly higher in NAc after five-weeks of ethanol drinking in saline-treated compared to water control rats. Ceftriaxone treatment blocked the increase extracellular glutamate produced by ethanol intake. Blockade of GLT-1 by DHK reversed the effects of ceftriaxone on glutamate and implicated the role of GLT-1 in the normalization of extracellular glutamate by ceftriaxone. In addition, GLT-1 protein was decreased in ethanol exposed animals and ceftriaxone treatment reversed this deficit. Ceftriaxone treatment also increased glutamine synthetase activity in NAc but not in PFC as compared to ethanol drinking saline-treated rats. Our present study demonstrates that ceftriaxone treatment prevents ethanol drinking in part through normalization of extracellular glutamate concentrations in NAc of male P rats via GLT-1.

  2. Three cases of dural arteriovenous fistula of the anterior condylar vein within the hypoglossal canal.

    PubMed

    Ernst, R; Bulas, R; Tomsick, T; van Loveren, H; Aziz, K A

    1999-01-01

    Dural arteriovenous fistulas (DAVFs) of the anterior condylar vein are an uncommon but important subset of fistulas occurring at the skull base that can be confused with DAVFs of the marginal sinus on angiography. MR angiography source images can document the intraosseous extent and the relationship to the hypoglossal canal of this type of fistula, which can have significant clinical implications. We present the imaging features of angiography, CT, and MR angiography of three cases of DAVFs localized to the anterior condylar vein and within the hypoglossal canal, which were confirmed by source images from MR angiography. Transvenous coil embolization was curative in two of three cases and would seem to be the treatment of choice when venous access is available. PMID:10588137

  3. Pharyngeal patency caused by stimulation of the hypoglossal nerve in anaesthesia-relaxed patients.

    PubMed

    Ilomäki, J; Baer, G A; Karhuketo, T; Talonen, P; Puhakka, H

    1997-01-01

    Impaired function of the genioglossal muscle is the most frequent reason for upper airway obstruction during sleep. Functional electrical stimulation (FES) of the hypoglossal nerve may be used to push the tongue forward to release the obstruction. Anaesthesia-induced upper airway obstruction resembles the situation during obstructive sleep apnea (OSA) syndrome. In order to develop an implantable FES system for treatment of OSA, we stimulated the exposed hypoglossal nerve in 6 patients undergoing radical cancer surgery of the head and neck region. Tongue movements during stimulation were video filmed and the amount of unobstructed airway achieved with stimulation was estimated using the adjacent intubation tube as reference. In every case, stimulation created an unobstructed airway, larger than the intubation tube.

  4. Ganglioneuromas involving the hypoglossal nerve and the vagus nerve in a child: Surgical difficulties.

    PubMed

    Bakshi, Jaimanti; Mohammed, Abdul Wadood; Lele, Saudamini; Nada, Ritambra

    2016-02-01

    Ganglioneuromas are benign tumors that arise from the Schwann cells of the autonomic nervous system. They are usually seen in the posterior mediastinum and the paraspinal retroperitoneum in relation to the sympathetic chain. In the head and neck, they are usually related to the cervical sympathetic ganglia or to the ganglion nodosum of the vagus nerve or the hypoglossal nerve. We describe what we believe is the first reported case of multiple ganglioneuromas of the parapharyngeal space in which two separate cranial nerves were involved. The patient was a 10-year-old girl who presented with a 2-year history of a painless and slowly progressive swelling on the left side of her neck and a 1-year history hoarseness. She had no history of relevant trauma or surgery. Intraoperatively, we found two tumors in the left parapharyngeal space-one that had arisen from the hypoglossal nerve and the other from the vagus nerve. Both ganglioneuromas were surgically removed, but the affected nerves had to be sacrificed. Postoperatively, the patient exhibited hypoglossal nerve and vocal fold palsy, but she was asymptomatic. In addition to the case description, we discuss the difficulties we faced during surgical excision. PMID:26930339

  5. Influence of lung volume on phrenic, hypoglossal and mylohyoid nerve activities.

    PubMed

    Bartlett, D; St John, W M

    1988-07-01

    In decerebrate, paralyzed cats, ventilated by a servo-respirator in accordance with phrenic nerve activity, we examined the influence of lung volume on the activities of the phrenic, hypoglossal and mylohyoid nerves. When lung inflation was briefly withheld, the durations of inspiration (TI) and expiration (TE) and the activities of all three nerves increased. The relative increase in hypoglossal activity greatly exceeded that of phrenic activity and was apparent earlier in the course of inspiration. This hypoglossal response was enhanced by hypercapnia and isocapnic hypoxia. The responses of mylohyoid activity were quite variable: withholding lung inflation augmented inspiratory activity in some cats, but expiratory discharge in others. Sustained increases in end-expiratory lung volume were induced by application of 3-4 cm H2O of positive end-expiratory pressure (PEEP). Steady-state PEEP did not influence nerve activities or the breathing pattern. Bilateral vagotomy increased TI, TE, and the activities of all three nerves. No response to withoholding lung inflation could be discerned after vagal section. The results provide further definition of the influence of vagally mediated, lung volume dependent reflexes on the control of upper airway muscles. These reflexes are well suited to relieve or prevent upper airway obstruction. PMID:3051235

  6. Ganglioneuromas involving the hypoglossal nerve and the vagus nerve in a child: Surgical difficulties.

    PubMed

    Bakshi, Jaimanti; Mohammed, Abdul Wadood; Lele, Saudamini; Nada, Ritambra

    2016-02-01

    Ganglioneuromas are benign tumors that arise from the Schwann cells of the autonomic nervous system. They are usually seen in the posterior mediastinum and the paraspinal retroperitoneum in relation to the sympathetic chain. In the head and neck, they are usually related to the cervical sympathetic ganglia or to the ganglion nodosum of the vagus nerve or the hypoglossal nerve. We describe what we believe is the first reported case of multiple ganglioneuromas of the parapharyngeal space in which two separate cranial nerves were involved. The patient was a 10-year-old girl who presented with a 2-year history of a painless and slowly progressive swelling on the left side of her neck and a 1-year history hoarseness. She had no history of relevant trauma or surgery. Intraoperatively, we found two tumors in the left parapharyngeal space-one that had arisen from the hypoglossal nerve and the other from the vagus nerve. Both ganglioneuromas were surgically removed, but the affected nerves had to be sacrificed. Postoperatively, the patient exhibited hypoglossal nerve and vocal fold palsy, but she was asymptomatic. In addition to the case description, we discuss the difficulties we faced during surgical excision.

  7. Outcomes of Direct Facial-to-Hypoglossal Neurorrhaphy with Parotid Release

    PubMed Central

    Jacobson, Joel; Rihani, Jordan; Lin, Karen; Miller, Phillip J.; Roland, J. Thomas

    2010-01-01

    Lesions of the temporal bone and cerebellopontine angle and their management can result in facial nerve paralysis. When the nerve deficit is not amenable to primary end-to-end repair or interpositional grafting, nerve transposition can be used to accomplish the goals of restoring facial tone, symmetry, and voluntary movement. The most widely used nerve transposition is the hypoglossal-facial nerve anastamosis, of which there are several technical variations. Previously we described a technique of single end-to-side anastamosis using intratemporal facial nerve mobilization and parotid release. This study further characterizes the results of this technique with a larger patient cohort and longer-term follow-up. The design of this study is a retrospective chart review and the setting is an academic tertiary care referral center. Twenty-one patients with facial nerve paralysis from proximal nerve injury at the cerebellopontine angle underwent facial-hypoglossal neurorraphy with parotid release. Outcomes were assessed using the Repaired Facial Nerve Recovery Scale, questionnaires, and patient photographs. Of the 21 patients, 18 were successfully reinnervated to a score of a B or C on the recovery scale, which equates to good oral and ocular sphincter closure with minimal mass movement. The mean duration of paralysis between injury and repair was 12.1 months (range 0 to 36 months) with a mean follow-up of 55 months. There were no cases of hemiglossal atrophy, paralysis, or subjective dysfunction. Direct facial-hypoglossal neurorrhaphy with parotid release achieved a functional reinnervation and good clinical outcome in the majority of patients, with minimal lingual morbidity. This technique is a viable option for facial reanimation and should be strongly considered as a surgical option for the paralyzed face. PMID:22451794

  8. Central effects of 5-HT on activity of respiratory and hypoglossally innervated muscles in newborn kittens.

    PubMed Central

    Khater-Boidin, J; Rose, D; Duron, B

    1996-01-01

    1. In decerebrate kittens (n = 29), electrical activity was studied in the 3rd intercartilaginous (inspiratory), the 9th internal intercostal (expiratory) and the hypoglossally innervated muscles (geniohyoid m. and sternohyoid m.) evoked by the application of 5-HT (n = 16) or related agents (5-HT1A agonist, 8-OH-DPAT (n = 6) and 5-HT2 agonist, DOI floor of the IVth ventricle. 2. The application of a control solution (n = 2) produced no significant changes either in minute inspiratory frequency (Fi) or in the electrical activity of the muscles studied. Except for these controls, only one trial with one dose of one drug was performed in a given kitten. 3. A dose-related decrease in Fi was observed in response to 5-HT. Low doses (50-500 nmol, n1 = 8) induced a long-lasting bradypnoea; high doses (5000-10,000 nmol, n2 = 8) induced prolonged periods of apnoea. 4. The apnoeas observed in tracheotomized (n = 3) or non-tracheotomized (n2 = 8) kittens were mainly of central origin and linked to the lengthening of expiratory time. The expiratory muscle activation came on with the reinforcement of the activity of hypoglossally innervated muscles. 5. Application of agonists showed that both the 5-HT-dependent modulation of Fi and the effects of 5-HT on the activity of the muscles studied resulted predominantly from activation of 5-HT2 receptors. PMID:8866368

  9. Central effects of 5-HT on activity of respiratory and hypoglossally innervated muscles in newborn kittens.

    PubMed

    Khater-Boidin, J; Rose, D; Duron, B

    1996-08-15

    1. In decerebrate kittens (n = 29), electrical activity was studied in the 3rd intercartilaginous (inspiratory), the 9th internal intercostal (expiratory) and the hypoglossally innervated muscles (geniohyoid m. and sternohyoid m.) evoked by the application of 5-HT (n = 16) or related agents (5-HT1A agonist, 8-OH-DPAT (n = 6) and 5-HT2 agonist, DOI floor of the IVth ventricle. 2. The application of a control solution (n = 2) produced no significant changes either in minute inspiratory frequency (Fi) or in the electrical activity of the muscles studied. Except for these controls, only one trial with one dose of one drug was performed in a given kitten. 3. A dose-related decrease in Fi was observed in response to 5-HT. Low doses (50-500 nmol, n1 = 8) induced a long-lasting bradypnoea; high doses (5000-10,000 nmol, n2 = 8) induced prolonged periods of apnoea. 4. The apnoeas observed in tracheotomized (n = 3) or non-tracheotomized (n2 = 8) kittens were mainly of central origin and linked to the lengthening of expiratory time. The expiratory muscle activation came on with the reinforcement of the activity of hypoglossally innervated muscles. 5. Application of agonists showed that both the 5-HT-dependent modulation of Fi and the effects of 5-HT on the activity of the muscles studied resulted predominantly from activation of 5-HT2 receptors.

  10. Hypoglossal Nerve Palsy After Airway Management for General Anesthesia: An Analysis of 69 Patients

    PubMed Central

    Shah, Aalap C.; Barnes, Christopher; Spiekerman, Charles F.; Bollag, Laurent A.

    2014-01-01

    Isolated hypoglossal nerve palsy (HNP), or neurapraxia, a rare postoperative complication after airway management, causes ipsilateral tongue deviation, dysarthria, and dysphagia. We reviewed the pathophysiological causes of hypoglossal nerve injury and discuss the associated clinical and procedural characteristics of affected patients. Furthermore, we identified procedural factors potentially affecting HNP recovery duration and propose several measures that may reduce the risk of HNP. While HNP can occur after a variety of surgeries, most cases in the literature were reported after orthopedic and otolaryngology operations, typically in males. The diagnosis is frequently missed by the anesthesia care team in the recovery room due to the delayed symptomatic onset and often requires neurology and otolaryngology evaluations to exclude serious etiologies. Signs and symptoms are self-limited, with resolution occurring within 2 months in 50% of patients, and 80% resolving within 4 months. Currently, there are no specific preventive or therapeutic recommendations. We found 69 cases of HNP after procedural airway management reported in the literature from 1926–2013. PMID:25625257

  11. Targeted hypoglossal neurostimulation for obstructive sleep apnoea: a 1-year pilot study.

    PubMed

    Mwenge, Gimbada B; Rombaux, Philippe; Dury, Myriam; Lengelé, Benoît; Rodenstein, Daniel

    2013-02-01

    Continuous positive airway pressure (CPAP) is an effective but cumbersome treatment for obstructive sleep apnoea (OSA). Noncompliant patients need alternative therapies. We studied a tongue neurostimulation approach: targeted hypoglossal neurostimulation (THN) therapy with the aura6000™ System. A multi-contact electrode positioned around the main trunk of the twelfth nerve connected to an implanted pulse generator stimulates segments of the nerve, activating dilator muscles. The primary objective was to improve the polysomnographically determined apnoea/hypopnoea index (AHI) at 3 months, and maintain the improvement after 12 months of treatment. 13 out of 14 operated patients were successfully implanted. At 12 months, the AHI decreased from 45±18 to 21±17, a 53% reduction (p<0.001). The 4% oxygen desaturation index fell from 29±20 to 15±16 and the arousal index from 37±13 to 25±14, both p<0.001. The Epworth sleepiness scale decreased from 11±7 to 8±4 (p=0.09). THN was neither painful nor awakened patients, who all complied with therapy. There were two transient tongue paresis. The present study represents the longest study of any hypoglossal neurostimulation reported to date. We conclude that THN is safe and effective to treat OSA in patients not compliant with CPAP.

  12. [EXPRESSION OF SEROTONIN TRANSPORTER IN THE DORSAL RAPHE NUCLEUS DURING THE EARLY POSTNATAL PERIOD IN NORMAL STATE AND UNDER PRENATAL DEFICIENCY OF THE SEROTONERGIC SYSTEM IN RATS].

    PubMed

    Khozhai, L I

    2016-01-01

    The expression of the serotonin transport membrane protein (5-NTT) in the dorsal raphe nucleus (DNR) was investigated in laboratory Wistar rats during the early postnatal period. The results of the immunocytochemical study using primary antibodies--anti-Serotonin transporter antibody (AbCam, UK)--showed that during the first 3 postnatal weeks the intensity of 5-NTT expression in DNR of control animals changes. At the earliest postnatal times the main part of subnuclear neurons (dorsal, ventral and lateral ones) of the dorsal raphe nucleus (DNR-d, DNR-v, DNR-lat) was shown to intensely express 5-NTT. Sites of 5-NTT localization are found on the membrane surface of neuron bodies and processes in neuropile. The reduction in the number of neurons expressing 5-NTT and of its binding sites was observed on P10. At this time a redistribution of 5-NTT localization sites occurs: they are very few on neuron bodies and dendrites but are located rather densely on the plasma membrane of axons. The number of neurons expressing 5-NTT gradually increases with age and in neuropile the density of 5-NTT localization sites rises. It is shown that during the prenatal development the reduction of serotonin level in all parts of the DNR leads to a reduction in both the number of neurons expressing 5-NTT and sites of its localization in the early postnatal period, this trend continuing with age. PMID:27220242

  13. [EXPRESSION OF SEROTONIN TRANSPORTER IN THE DORSAL RAPHE NUCLEUS DURING THE EARLY POSTNATAL PERIOD IN NORMAL STATE AND UNDER PRENATAL DEFICIENCY OF THE SEROTONERGIC SYSTEM IN RATS].

    PubMed

    Khozhai, L I

    2016-01-01

    The expression of the serotonin transport membrane protein (5-NTT) in the dorsal raphe nucleus (DNR) was investigated in laboratory Wistar rats during the early postnatal period. The results of the immunocytochemical study using primary antibodies--anti-Serotonin transporter antibody (AbCam, UK)--showed that during the first 3 postnatal weeks the intensity of 5-NTT expression in DNR of control animals changes. At the earliest postnatal times the main part of subnuclear neurons (dorsal, ventral and lateral ones) of the dorsal raphe nucleus (DNR-d, DNR-v, DNR-lat) was shown to intensely express 5-NTT. Sites of 5-NTT localization are found on the membrane surface of neuron bodies and processes in neuropile. The reduction in the number of neurons expressing 5-NTT and of its binding sites was observed on P10. At this time a redistribution of 5-NTT localization sites occurs: they are very few on neuron bodies and dendrites but are located rather densely on the plasma membrane of axons. The number of neurons expressing 5-NTT gradually increases with age and in neuropile the density of 5-NTT localization sites rises. It is shown that during the prenatal development the reduction of serotonin level in all parts of the DNR leads to a reduction in both the number of neurons expressing 5-NTT and sites of its localization in the early postnatal period, this trend continuing with age.

  14. Beta 1- and beta 2-adrenergic /sup 125/I-pindolol binding sites in the interpeduncular nucleus of the rat: Normal distribution and the effects of deafferentation

    SciTech Connect

    Battisti, W.P.; Artymyshyn, R.P.; Murray, M.

    1989-07-01

    The plasticity of the beta 1- and beta 2-adrenergic receptor subtypes was examined in the interpeduncular nucleus (IPN) of the adult rat. The beta-adrenergic receptor antagonist 125I-pindolol (125I-PIN) was used in conjunction with the selective subtype antagonists ICI 118,551 and ICI 89,406 to determine the subnuclear distribution of beta 1- and beta 2-adrenergic receptors in this nucleus and to correlate the receptor distribution with the distribution of both noradrenergic afferents from the locus coeruleus (LC) and non-noradrenergic afferents from the fasiculus retroflexus (FR). The density of these binding sites was examined following lesions that decreased (LC lesions) or increased (FR lesions) the density of the noradrenergic projection in the IPN. Quantitative radioautography indicated that beta 1-labeled binding sites account for the larger percentage of binding sites in the IPN. The beta 1-binding sites are densest in those subnuclei that receive a noradrenergic projection from the LC: the central, rostral, and intermediate subnuclei. beta 1-binding sites are algo homogeneously distributed throughout the lateral subnuclei, where there is no detectable noradrenergic innervation. beta 2-binding sites have a more restricted distribution. They are concentrated in the ventral half of the lateral subnuclei, where they account for 70% of total 125I-PIN binding sites. beta 2-binding sites are also present along the ventral border of the IPN. Some of this labeling extends into the central and intermediate subnuclei. Bilateral lesions of the LC, which selectively remove noradrenergic innervation to the IPN, result in an increase in the beta 1-binding sites. Bilateral lesions of the FR, which remove the major cholinergic and peptidergic input from the IPN, elicit an increase in noradrenergic projections and a decrease in beta 1-binding sites.

  15. Hypoglossal nerve stimulation rescue surgery after multiple multilevel procedures for obstructive sleep apnea.

    PubMed

    Strohl, Madeleine; Strohl, Kingman; Palomo, J Martin; Ponsky, Diana

    2016-01-01

    Hypoglossal nerve stimulation (HNS) is a new procedure offered for the treatment of moderate-to-severe obstructive sleep apnea (OSA) that has been shown to decrease the severity and symptoms of OSA in select patients. We report on a case of a patient with persistent symptoms and findings of OSA despite a history of multiple multilevel procedures, including an uvulopalatopharyngoplasty (UPPP) with revision, a genioglossus advancement, and a maxillomandibular advancement. The patient then underwent HNS with significant improvement of his symptoms and severity. The success of this patient's HNS surgery demonstrates that we need to examine where HNS fits into the approach to surgery for OSA. There could be benefit to considering cranial nerve stimulation earlier than conventional approaches for select patients. PMID:26700261

  16. Hypoglossal nerve stimulation rescue surgery after multiple multilevel procedures for obstructive sleep apnea.

    PubMed

    Strohl, Madeleine; Strohl, Kingman; Palomo, J Martin; Ponsky, Diana

    2016-01-01

    Hypoglossal nerve stimulation (HNS) is a new procedure offered for the treatment of moderate-to-severe obstructive sleep apnea (OSA) that has been shown to decrease the severity and symptoms of OSA in select patients. We report on a case of a patient with persistent symptoms and findings of OSA despite a history of multiple multilevel procedures, including an uvulopalatopharyngoplasty (UPPP) with revision, a genioglossus advancement, and a maxillomandibular advancement. The patient then underwent HNS with significant improvement of his symptoms and severity. The success of this patient's HNS surgery demonstrates that we need to examine where HNS fits into the approach to surgery for OSA. There could be benefit to considering cranial nerve stimulation earlier than conventional approaches for select patients.

  17. Persistent GABAA/C responses to gabazine, taurine and beta-alanine in rat hypoglossal motoneurons.

    PubMed

    Chesnoy-Marchais, D

    2016-08-25

    In hypoglossal motoneurons, a sustained anionic current, sensitive to a blocker of ρ-containing GABA receptors, (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) and insensitive to bicuculline, was previously shown to be activated by gabazine. In order to better characterize the receptors involved, the sensitivity of this atypical response to pentobarbital (30μM), allopregnanolone (0.3μM) and midazolam (0.5μM) was first investigated. Pentobarbital potentiated the response, whereas the steroid and the benzodiazepine were ineffective. The results indicate the involvement of hybrid heteromeric receptors, including at least a GABA receptor ρ subunit and a γ subunit, accounting for the pentobarbital-sensitivity. The effects of the endogenous β amino acids, taurine and β-alanine, which are released under various pathological conditions and show neuroprotective properties, were then studied. In the presence of the glycine receptor blocker strychnine (1μM), both taurine (0.3-1mM) and β-alanine (0.3mM) activated sustained anionic currents, which were partly blocked by TPMPA (100μM). Thus, both β amino acids activated ρ-containing GABA receptors in hypoglossal motoneurons. Bicuculline (20μM) reduced responses to taurine and β-alanine, but small sustained responses persisted in the presence of both strychnine and bicuculline. Responses to β-alanine were slightly increased by allopregnanolone, indicating a contribution of the bicuculline- and neurosteroid-sensitive GABAA receptors underlying tonic inhibition in these motoneurons. Since sustained activation of anionic channels inhibits most mature principal neurons, the ρ-containing GABA receptors permanently activated by taurine and β-alanine might contribute to some of their neuroprotective properties under damaging overexcitatory situations. PMID:27246441

  18. Transmission of the respiratory rhythm to trigeminal and hypoglossal motor neurons in the American Bullfrog (Lithobates catesbeiana).

    PubMed

    Kottick, Andrew; Baghdadwala, Mufaddal I; Ferguson, Erin V; Wilson, Richard J A

    2013-08-15

    Spatially distinct, interacting oscillators in the bullfrog medulla generate and coordinated buccal and lung ventilatory rhythms, but how these rhythms are transmitted onto trigeminal and hypoglossal motor neurons is unknown. Using a vertically-mounted isolated brainstem preparation, the Sheep Dip, we identified the regions of the brainstem containing motor nuclei using a solution capable of blocking synaptic release and, following washout, locally exposed these regions to 5 μM NBQX and/or 50 μM AP5. Local application of NBQX significantly reduced the amplitude of buccal and lung bursts on the trigeminal nerve, and lung bursts on the hypoglossal nerve. Local AP5 caused a significant reduction in lung burst amplitude on both nerves, but for buccal bursts, hypoglossal amplitude increased and trigeminal amplitude was unchanged. Local co-application of NBQX and AP5 eliminated fictive respiratory motor output completely in both nerves. These results are consistent with mammalian data, suggesting a critical role for glutamate in transmission of respiratory activity from oscillators to motor neurons. PMID:23791823

  19. Transmission of the respiratory rhythm to trigeminal and hypoglossal motor neurons in the American Bullfrog (Lithobates catesbeiana).

    PubMed

    Kottick, Andrew; Baghdadwala, Mufaddal I; Ferguson, Erin V; Wilson, Richard J A

    2013-08-15

    Spatially distinct, interacting oscillators in the bullfrog medulla generate and coordinated buccal and lung ventilatory rhythms, but how these rhythms are transmitted onto trigeminal and hypoglossal motor neurons is unknown. Using a vertically-mounted isolated brainstem preparation, the Sheep Dip, we identified the regions of the brainstem containing motor nuclei using a solution capable of blocking synaptic release and, following washout, locally exposed these regions to 5 μM NBQX and/or 50 μM AP5. Local application of NBQX significantly reduced the amplitude of buccal and lung bursts on the trigeminal nerve, and lung bursts on the hypoglossal nerve. Local AP5 caused a significant reduction in lung burst amplitude on both nerves, but for buccal bursts, hypoglossal amplitude increased and trigeminal amplitude was unchanged. Local co-application of NBQX and AP5 eliminated fictive respiratory motor output completely in both nerves. These results are consistent with mammalian data, suggesting a critical role for glutamate in transmission of respiratory activity from oscillators to motor neurons.

  20. Neutron-proton effective mass splitting in neutron-rich matter at normal density from analyzing nucleon-nucleus scattering data within an isospin dependent optical model

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Hua; Guo, Wen-Jun; Li, Bao-An; Chen, Lie-Wen; Fattoyev, Farrukh J.; Newton, William G.

    2015-04-01

    The neutron-proton effective mass splitting in asymmetric nucleonic matter of isospin asymmetry δ and normal density is found to be mn-p* ≡ (mn* - mp*) / m = (0.41 ± 0.15) δ from analyzing globally 1088 sets of reaction and angular differential cross sections of proton elastic scattering on 130 targets with beam energies from 0.783 MeV to 200 MeV, and 1161 sets of data of neutron elastic scattering on 104 targets with beam energies from 0.05 MeV to 200 MeV within an isospin dependent non-relativistic optical potential model. It sets a useful reference for testing model predictions on the momentum dependence of the nucleon isovector potential necessary for understanding novel structures and reactions of rare isotopes.

  1. Dilation of the oropharynx via selective stimulation of the hypoglossal nerve

    NASA Astrophysics Data System (ADS)

    Huang, Jingtao; Sahin, Mesut; Durand, Dominique M.

    2005-12-01

    The functional effects of selective hypoglossal nerve (HG) stimulation with a multi-contact peripheral nerve electrode were assessed using images of the upper airways and the tongue in anesthetized beagles. A biphasic pulse train of 50 Hz frequency and 2 s duration was applied through each one of the tripolar contact sets of the nerve electrode while the pharyngeal images were acquired into a computer. The stimulation current was limited to 20% above the activation threshold for maximum selectivity. The images showed that various contact sets could generate several different activation patterns of the tongue muscles resulting in medial and/or lateral dilation and closing of the airways at the tongue root. Some of these patterns translated into an increase in the oropharyngeal size while others did not have any effect. The pharyngeal sizes were not statistically different during stimulation either between the two different positions of the head (30° and 60°), or when the lateral contacts were compared with the medial ones. The contacts that had the least effect generated an average of 53 ± 15% pharyngeal dilation relative to the best contacts, indicating that the results are marginally sensitive to the contact position around the HG nerve trunk. These results suggest that selective HG nerve stimulation can be a useful technique to produce multiple tongue activation patterns that can dilate the pharynx. This may in turn increase the size of the patient population who can benefit from HG nerve stimulation as a treatment method for obstructive sleep apnea.

  2. Dilation of the oropharynx via selective stimulation of the hypoglossal nerve.

    PubMed

    Huang, Jingtao; Sahin, Mesut; Durand, Dominique M

    2005-12-01

    The functional effects of selective hypoglossal nerve (HG) stimulation with a multi-contact peripheral nerve electrode were assessed using images of the upper airways and the tongue in anesthetized beagles. A biphasic pulse train of 50 Hz frequency and 2 s duration was applied through each one of the tripolar contact sets of the nerve electrode while the pharyngeal images were acquired into a computer. The stimulation current was limited to 20% above the activation threshold for maximum selectivity. The images showed that various contact sets could generate several different activation patterns of the tongue muscles resulting in medial and/or lateral dilation and closing of the airways at the tongue root. Some of these patterns translated into an increase in the oropharyngeal size while others did not have any effect. The pharyngeal sizes were not statistically different during stimulation either between the two different positions of the head (30 degrees and 60 degrees), or when the lateral contacts were compared with the medial ones. The contacts that had the least effect generated an average of 53 +/- 15% pharyngeal dilation relative to the best contacts, indicating that the results are marginally sensitive to the contact position around the HG nerve trunk. These results suggest that selective HG nerve stimulation can be a useful technique to produce multiple tongue activation patterns that can dilate the pharynx. This may in turn increase the size of the patient population who can benefit from HG nerve stimulation as a treatment method for obstructive sleep apnea. PMID:16317230

  3. Drive latencies in hypoglossal motoneurons indicate developmental change in the brainstem respiratory network

    NASA Astrophysics Data System (ADS)

    Fietkiewicz, Christopher; Loparo, Kenneth A.; Wilson, Christopher G.

    2011-10-01

    The respiratory rhythm originates and diverges from the brainstem to drive thousands of motoneurons that are responsible for control of the diaphragm, intercostals and upper airway. These motoneurons are known to have a wide range of phase relationships, even within a single motoneuron pool. The proposed source of this rhythm, the preBötzinger complex (preBötC), responds to an array of developmental changes in the first days post-birth, specifically at postnatal day 3 (P3). We hypothesize that such developmental changes in the preBötC have a direct effect on motoneuron phase relationships and should be detectable around age P3. To test our hypothesis, we obtained single- and dual-voltage-clamp recordings of hypoglossal motoneurons in an in vitro slice preparation. We introduce a novel approach to analyzing the phase relationships between motoneurons by using cross-correlation analysis to determine the drive latencies. This analysis reveals that the distribution of drive latencies undergoes a significant change at or before age P3. We use a computational model of the in vitro slice to demonstrate the observed phase differences and hypothesize that network heterogeneity alone may not be sufficient to explain them. Through simulations, we show the effects on the preBötC of different network characteristics such as clustering and common inputs.

  4. Unilateral Multiple Facial Nerve Branch Reconstruction Using “End-to-side Loop Graft” Supercharged by Hypoglossal Nerve

    PubMed Central

    Sasaki, Ryo; Takeuchi, Yuichi; Watanabe, Yorikatsu; Niimi, Yosuke; Sakurai, Hiroyuki; Miyata, Mariko; Yamato, Masayuki

    2014-01-01

    Background: Extensive facial nerve defects between the facial nerve trunk and its branches can be clinically reconstructed by incorporating double innervation into an end-to-side loop graft technique. This study developed a new animal model to evaluate the technique’s ability to promote nerve regeneration. Methods: Rats were divided into the intact, nonsupercharge, and supercharge groups. Artificially created facial nerve defects were reconstructed with a nerve graft, which was end-to-end sutured from proximal facial nerve stump to the mandibular branch (nonsupercharge group), or with the graft of which other end was end-to-side sutured to the hypoglossal nerve (supercharge group). And they were evaluated after 30 weeks. Results: Axonal diameter was significantly larger in the supercharge group than in the nonsupercharge group for the buccal (3.78 ± 1.68 vs 3.16 ± 1.22; P < 0.0001) and marginal mandibular branches (3.97 ± 2.31 vs 3.46 ± 1.57; P < 0.0001), but the diameter was significantly larger in the intact group for all branches except the temporal branch. In the supercharge group, compound muscle action potential amplitude was significantly higher than in the nonsupercharge group (4.18 ± 1.49 mV vs 1.87 ± 0.37 mV; P < 0.0001) and similar to that in the intact group (4.11 ± 0.68 mV). Retrograde labeling showed that the mimetic muscles were double-innervated by facial and hypoglossal nerve nuclei in the supercharge group. Conclusions: Multiple facial nerve branch reconstruction with an end-to-side loop graft was able to achieve axonal distribution. Additionally, axonal supercharge from the hypoglossal nerve significantly improved outcomes. PMID:25426357

  5. Current injection and receptor-mediated excitation produce similar maximal firing rates in hypoglossal motoneurons.

    PubMed

    Wakefield, Hilary E; Fregosi, Ralph F; Fuglevand, Andrew J

    2016-03-01

    The maximum firing rates of motoneurons (MNs), activated in response to synaptic drive, appear to be much lower than that elicited by current injection. It could be that the decrease in input resistance associated with increased synaptic activity (but not current injection) might blunt overall changes in membrane depolarization and thereby limit spike-frequency output. To test this idea, we recorded, in the same cells, maximal firing responses to current injection and to synaptic activation. We prepared 300 μm medullary slices in neonatal rats that contained hypoglossal MNs and used whole-cell patch-clamp electrophysiology to record their maximum firing rates in response to triangular-ramp current injections and to glutamate receptor-mediated excitation. Brief pressure pulses of high-concentration glutamate led to significant depolarization, high firing rates, and temporary cessation of spiking due to spike inactivation. In the same cells, we applied current clamp protocols that approximated the time course of membrane potential change associated with glutamate application and with peak current levels large enough to cause spike inactivation. Means (SD) of maximum firing rates obtained in response to glutamate application were nearly identical to those obtained in response to ramp current injection [glutamate 47.1 ± 12.0 impulses (imp)/s, current injection 47.5 ± 11.2 imp/s], even though input resistance was 40% less during glutamate application compared with current injection. Therefore, these data suggest that the reduction in input resistance associated with receptor-mediated excitation does not, by itself, limit the maximal firing rate responses in MNs.

  6. Prenatal nicotine exposure increases apnoea and reduces nicotinic potentiation of hypoglossal inspiratory output in mice

    PubMed Central

    Robinson, Dean M; Peebles, Karen C; Kwok, Henry; Adams, Brandon M; Clarke, Lan-Ling; Woollard, Gerald A; Funk, Gregory D

    2002-01-01

    We examined the effects of in utero nicotine exposure on postnatal development of breathing pattern and ventilatory responses to hypoxia (7.4 % O2) using whole-body plethysmography in mice at postnatal day 0 (P0), P3, P9, P19 and P42. Nicotine delayed early postnatal changes in breathing pattern. During normoxia, control and nicotine-exposed P0 mice exhibited a high frequency of apnoea (fA) which declined by P3 in control animals (from 6.7 ± 0.7 to 2.2 ± 0.7 min−1) but persisted in P3 nicotine-exposed animals (5.4 ± 1.3 min−1). Hypoxia induced a rapid and sustained reduction in fA except in P0 nicotine-exposed animals where it fell initially and then increased throughout the hypoxic period. During recovery, fA increased above control levels in both groups at P0. By P3 this increase was reduced in control but persisted in nicotine-exposed animals. To examine the origin of differences in respiratory behaviour, we compared the activity of hypoglossal (XII) nerves and motoneurons in medullary slice preparations. The frequency and variability of the respiratory rhythm and the envelope of inspiratory activity in XII nerves and motoneurons were indistinguishable between control and nicotine-exposed animals. Activation of postsynaptic nicotine receptors caused an inward current in XII motoneurons that potentiated XII nerve burst amplitude by 25 ± 5 % in control but only 14 ± 3 % in nicotine-exposed animals. Increased apnoea following nicotine exposure does not appear to reflect changes in basal activity of rhythm or pattern-generating networks, but may result, in part, from reduced nicotinic modulation of XII motoneurons. PMID:11826179

  7. Preinspiratory and inspiratory hypoglossal motor output during hypoxia-induced plasticity in the rat

    PubMed Central

    Fuller, David D.

    2010-01-01

    Respiratory-related discharge in the hypoglossal (XII) nerve is composed of preinspiratory (pre-I) and inspiratory (I) activity. Our first purpose was to test the hypothesis that hypoxia-induced plasticity in XII motor output is differentially expressed in pre-I vs. I XII bursting. Short-term potentiation (STP) of XII motor output was induced in urethane-anesthetized, vagotomized, and ventilated rats by exposure to isocapnic hypoxia (PaO2 of ∼35 Torr). Both pre-I and I XII discharge abruptly increased at beginning of hypoxia (i.e., acute hypoxic response), and the relative increase in amplitude was much greater for pre-I (507 ± 46% baseline) vs. I bursting (257 ± 16% baseline; P < 0.01). In addition, STP was expressed in I but not pre-I bursting following hypoxia. Specifically, I activity remained elevated following termination of hypoxia but pre-I bursting abruptly returned to prehypoxia levels. Our second purpose was to test the hypothesis that STP of I XII activity results from recruitment of inactive or “silent” XII motoneurons (MNs) vs. rate coding of active MNs. Single fiber recordings were used to classify XII MNs as I, expiratory-inspiratory, or silent based on baseline discharge patterns. STP of I XII activity following hypoxia was associated with increased discharge frequency in active I and silent MNs but not expiratory-inspiratory MNs. We conclude that the expression of respiratory plasticity is differentially regulated between pre-I and I XII activity. In addition, both recruitment of silent MNs and rate coding of active I MNs contribute to increases in XII motor output following hypoxia. PMID:20150564

  8. Ageing and gonadectomy have similar effects on hypoglossal long-term facilitation in male Fischer rats

    PubMed Central

    Zabka, AG; Mitchell, GS; Behan, M

    2005-01-01

    Long-term facilitation (LTF), a form of serotonin-dependent respiratory plasticity induced by intermittent hypoxia, decreases with increasing age or following gonadectomy in male Sprague-Dawley (SD) rats. Ageing is accompanied by decreasing levels of testosterone, which in turn influences serotonergic function. In addition, LTF in young male rats differs among strains. Thus, we tested the hypothesis that LTF is similar in middle-aged and gonadectomized young male rats of an inbred rat strain commonly used in studies on ageing (F344) by comparison with SD rats. We further tested whether the magnitude of LTF correlates with circulating serum levels of testosterone and/or progesterone. Young and middle-aged intact and young gonadectomized (GDX) male Fischer 344 rats were anaesthetized, neuromuscularly blocked and ventilated. Integrated phrenic and hypoglossal (XII) nerve activities were measured before, during and 60 min following three 5-min episodes of isocapnic hypoxia. LTF was observed in phrenic motor output in young and middle-aged intact and young GDX rats. In contrast, XII LTF was observed only in young intact rats. In middle-aged and young GDX rats, XII LTF was significantly lower than in young intact rats (P < 0.05). Furthermore, XII LTF was positively correlated with the testosterone/progesterone ratio. These data show that serotonin-dependent plasticity in upper airway respiratory output is similar in F344 and SD rat strains. Furthermore, LTF is similarly impaired in middle-aged and gonadectomized male rats, suggesting that gonadal hormones play an important role in modulating the capacity for neuroplasticity in upper airway motor control. PMID:15613371

  9. Single cell laser dissection with molecular beacon polymerase chain reaction identifies 2A as the predominant serotonin receptor subtype in hypoglossal motoneurons.

    PubMed

    Zhan, G; Shaheen, F; Mackiewicz, M; Fenik, P; Veasey, S C

    2002-01-01

    We hypothesize that sleep state-dependent withdrawal of serotonin (5-hydroxytryptamine, 5-HT) at upper airway (UAW) dilator motoneurons contributes significantly to sleep-related suppression of dilator muscle activity in obstructive sleep apnea. Identification of 5-HT receptor subtypes involved in postsynaptic facilitation of UAW motoneuron activity may provide pharmacotherapies for this prevalent disorder. We have adapted two assays to provide semi-quantitative measurements of mRNA copy numbers for 5-HT receptor subtypes in single UAW motoneurons. Specifically, soma of 111 hypoglossal (XII) motoneurons in 10 adult male rats were captured using a laser dissection microscope, and then used individually in single round molecular beacon polymerase chain reaction (PCR) for real-time quantitation of 5-HT(2A), 5-HT(2C), 5-HT(3), 5-HT(4), 5-HT(5A), 5-HT(5B), 5-HT(6) or 5-HT(7) receptor. Receptor mRNA copy numbers from single XII motoneurons were compared to control samples from within the XII nucleus and lateral medulla. All 20 motoneuronal soma assayed for the 5-HT(2A) receptor had measurable copy numbers (7028+/-2656 copies/cell). In contrast, copy numbers for the 5-HT(2A) receptor in XII non-motoneuronal (n=17) and lateral medulla (n=15) samples were 81+/-51 copies and 83+/-35 copies, respectively, P<0.05. Seven of 13 XII motoneurons assayed had measurable 5-HT(2C) receptor copy numbers of mRNA (287+/-112 copies/cell). XII soma had minimal 5-HT(3), 5-HT(4), 5-HT(5A), 5-HT(5B), 5-HT(6) or 5-HT(7) receptor mRNA. 5-HT(2A) receptor mRNA presence within XII motoneurons was confirmed with digoxigenin-labeled in situ hybridization. In summary, combined use of laser dissection and molecular beacon PCR revealed 5-HT(2A) receptor as the predominant 5-HT receptor mRNA in XII motoneurons, and identified small quantities of 5-HT(2C) receptor. This information will allow a more complete understanding of serotonergic control of respiratory activity.

  10. Dural arteriovenous fistulas of the hypoglossal canal: systematic review on imaging anatomy, clinical findings, and endovascular management.

    PubMed

    Spittau, Björn; Millán, Diego San; El-Sherifi, Saad; Hader, Claudia; Singh, Tejinder Pal; Motschall, Edith; Vach, Werner; Urbach, Horst; Meckel, Stephan

    2015-04-01

    Dural arteriovenous fistulas (DAVFs) of the hypoglossal canal (HCDAVFs) are rare and display a complex angiographic anatomy. Hitherto, they have been referred to as various entities (for example, "marginal sinus DAVFs") solely described in case reports or small series. In this in-depth review of HCDAVF, the authors describe clinical and imaging findings, as well as treatment strategies and subsequent outcomes, based on a systematic literature review supplemented by their own cases (120 cases total). Further, the involved craniocervical venous anatomy with variable venous anastomoses is summarized. Hypoglossal canal DAVFs consist of a fistulous pouch involving the anterior condylar confluence and/or anterior condylar vein with a variable intraosseous component. Three major types of venous drainage are associated with distinct clinical patterns: Type 1, with anterograde drainage (62.5%), mostly presents with pulsatile tinnitus; Type 2, with retrograde drainage to the cavernous sinus and/or orbital veins (23.3%), is associated with ocular symptoms and may mimic cavernous sinus DAVF; and Type 3, with cortical and/or perimedullary drainage (14.2%), presents with either hemorrhage or cervical myelopathy. For Types 1 and 2 HCDAVF, transvenous embolization demonstrates high safety and efficacy (2.9% morbidity, 92.7% total occlusion). Understanding the complex venous anatomy is crucial for planning alternative approaches if standard transjugular access is impossible. Transarterial embolization or surgical disconnection (morbidity 13.3%-16.7%) should be reserved for Type 3 HCDAVFs or lesions with poor venous access. A conservative strategy could be appropriate in Type 1 HCDAVF for which spontaneous regression (5.8%) may be observed. PMID:25415064

  11. Hypofractionated stereotactic radiotherapy for dumbbell-shaped hypoglossal schwannomas: Two cases of long-term follow-up and a review of the literature

    PubMed Central

    Li, Yong; Lou, Jinrong; Qiu, Shujun; Guo, Yutian; Pan, Mianshun

    2016-01-01

    Cases of hypoglossal schwannoma are extremely rare. Historically, microsurgical resection has been the standard treatment, but it may not always be feasible; thus, it is crucial to investigate alternative treatments. We herein present the cases of two patients, both of whom presented with tongue deviation and hemiatrophy, accompanied by headaches. Magnetic resonance imaging revealed a dumbbell-shaped tumor originating from the hypoglossal nerve that was adjacent to the cranial base in each patient. Hypofractionated stereotactic radiotherapy was used to treat the tumors, with a total dose of 30 Gy in 3-Gy fractions delivered to the planning target volume. Several months later, the tumors had significantly decreased in size and the symptoms of the two patients had gradually improved. PMID:27446582

  12. Mechanics of the nucleus.

    PubMed

    Lammerding, Jan

    2011-04-01

    The nucleus is the distinguishing feature of eukaryotic cells. Until recently, it was often considered simply as a unique compartment containing the genetic information of the cell and associated machinery, without much attention to its structure and mechanical properties. This article provides compelling examples that illustrate how specific nuclear structures are associated with important cellular functions, and how defects in nuclear mechanics can cause a multitude of human diseases. During differentiation, embryonic stem cells modify their nuclear envelope composition and chromatin structure, resulting in stiffer nuclei that reflect decreased transcriptional plasticity. In contrast, neutrophils have evolved characteristic lobulated nuclei that increase their physical plasticity, enabling passage through narrow tissue spaces in their response to inflammation. Research on diverse cell types further demonstrates how induced nuclear deformations during cellular compression or stretch can modulate cellular function. Pathological examples of disturbed nuclear mechanics include the many diseases caused by mutations in the nuclear envelope proteins lamin A/C and associated proteins, as well as cancer cells that are often characterized by abnormal nuclear morphology. In this article, we will focus on determining the functional relationship between nuclear mechanics and cellular (dys-)function, describing the molecular changes associated with physiological and pathological examples, the resulting defects in nuclear mechanics, and the effects on cellular function. New insights into the close relationship between nuclear mechanics and cellular organization and function will yield a better understanding of normal biology and will offer new clues into therapeutic approaches to the various diseases associated with defective nuclear mechanics.

  13. Teaching normal birth, normally.

    PubMed

    Hotelling, Barbara A

    2009-01-01

    Teaching normal-birth Lamaze classes normally involves considering the qualities that make birth normal and structuring classes to embrace those qualities. In this column, teaching strategies are suggested for classes that unfold naturally, free from unnecessary interventions. PMID:19436595

  14. The Nucleus Introduced

    PubMed Central

    Pederson, Thoru

    2011-01-01

    Now is an opportune moment to address the confluence of cell biological form and function that is the nucleus. Its arrival is especially timely because the recognition that the nucleus is extremely dynamic has now been solidly established as a paradigm shift over the past two decades, and also because we now see on the horizon numerous ways in which organization itself, including gene location and possibly self-organizing bodies, underlies nuclear functions. PMID:20660024

  15. Excitatory-inhibitory imbalance in hypoglossal neurons during the critical period of postnatal development in the rat.

    PubMed

    Gao, Xiu-ping; Liu, Qing-song; Liu, Qiuli; Wong-Riley, Margaret T T

    2011-04-15

    Hypoglossal motoneurons (HMs) innervate tongue muscles and are critical in maintaining patency of the upper airway during respiration. Abnormalities in HMs have been implicated in sudden infant death syndrome (SIDS) and obstructive sleep apnoea. Previously, we found a critical period in respiratory network development in rats around postnatal day (P) 12-13, when abrupt neurochemical, metabolic and physiological changes occurred. To test our hypothesis that an imbalance between inhibitory and excitatory synaptic transmission exists during the critical period, whole-cell patch-clamp recordings of HMs were done in brainstem slices of rats daily from P0 to P16. The results indicated that: (1) the amplitude and charge transfer of miniature excitatory postsynaptic currents (mEPSCs) were significantly reduced at P12-13; (2) the amplitude, mean frequency and charge transfer of miniature inhibitory postsynaptic currents (mIPSCs) were significantly increased at P12-13; (3) the kinetics (rise time and decay time) of both mEPSCs and mIPSCs accelerated with age; (4) the amplitude and frequency of spontaneous EPSCs were significantly reduced at P12-13, whereas those of spontaneous IPSCs were significantly increased at P12-13; and (5) both glycine and GABA contributed to mIPSCs. However, GABAergic currents fluctuated within a narrow range during the first three postnatal weeks, whereas glycinergic ones exhibited age-dependent changes comparable to those of total mIPSCs, indicating a reversal in dominance from GABA to glycine with development. Thus, our results provide strong electrophysiological evidence for an excitatory-inhibitory imbalance in HMs during the critical period of postnatal development in rats that may have significant implications for SIDS. PMID:21486774

  16. A thalamic input to the nucleus accumbens mediates opiate dependence.

    PubMed

    Zhu, Yingjie; Wienecke, Carl F R; Nachtrab, Gregory; Chen, Xiaoke

    2016-02-11

    Chronic opiate use induces opiate dependence, which is characterized by extremely unpleasant physical and emotional feelings after drug use is terminated. Both the rewarding effects of a drug and the desire to avoid withdrawal symptoms motivate continued drug use, and the nucleus accumbens is important for orchestrating both processes. While multiple inputs to the nucleus accumbens regulate reward, little is known about the nucleus accumbens circuitry underlying withdrawal. Here we identify the paraventricular nucleus of the thalamus as a prominent input to the nucleus accumbens mediating the expression of opiate-withdrawal-induced physical signs and aversive memory. Activity in the paraventricular nucleus of the thalamus to nucleus accumbens pathway is necessary and sufficient to mediate behavioural aversion. Selectively silencing this pathway abolishes aversive symptoms in two different mouse models of opiate withdrawal. Chronic morphine exposure selectively potentiates excitatory transmission between the paraventricular nucleus of the thalamus and D2-receptor-expressing medium spiny neurons via synaptic insertion of GluA2-lacking AMPA receptors. Notably, in vivo optogenetic depotentiation restores normal transmission at these synapses and robustly suppresses morphine withdrawal symptoms. This links morphine-evoked pathway- and cell-type-specific plasticity in the paraventricular nucleus of the thalamus to nucleus accumbens circuit to opiate dependence, and suggests that reprogramming this circuit holds promise for treating opiate addiction.

  17. Kaon-nucleus scattering

    NASA Technical Reports Server (NTRS)

    Hong, Byungsik; Buck, Warren W.; Maung, Khin M.

    1989-01-01

    Two kinds of number density distributions of the nucleus, harmonic well and Woods-Saxon models, are used with the t-matrix that is taken from the scattering experiments to find a simple optical potential. The parameterized two body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to imaginary part of the forward elastic scattering amplitude, are shown. The eikonal approximation was chosen as the solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.

  18. Kaon-nucleus scattering

    NASA Technical Reports Server (NTRS)

    Hong, Byungsik; Maung, Khin Maung; Wilson, John W.; Buck, Warren W.

    1989-01-01

    The derivations of the Lippmann-Schwinger equation and Watson multiple scattering are given. A simple optical potential is found to be the first term of that series. The number density distribution models of the nucleus, harmonic well, and Woods-Saxon are used without t-matrix taken from the scattering experiments. The parameterized two-body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to the imaginary part of the forward elastic scattering amplitude, are presented. The eikonal approximation was chosen as our solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.

  19. Convergence of the nucleus-nucleus Glauber multiple scattering series

    SciTech Connect

    Usmani, A.A.; Ahmad, I. )

    1991-05-01

    The Glauber {ital S}-matrix operator for nucleus-nucleus scattering is expressed as a finite series of matrix elements involving Bell's polynomials. Analyzing {alpha}{sup 4}He elastic-scattering data at the incident momentum of 4.32 GeV/{ital c}, we infer that our expansion is appreciably converging. Further, by applying closure over target and projectile states and neglecting a certain class of terms involving intermediate excitations, we arrive at a recurrence relation for nucleus-nucleus multiple scattering series terms, which invites further study as it seems to provide a simple method for calculating the nucleus-nucleus elastic-scattering cross section.

  20. Hypoglossal-facial nerve anastomosis and rehabilitation in patients with complete facial palsy: cohort study of 30 patients followed up for three years.

    PubMed

    Dalla Toffola, Elena; Pavese, Chiara; Cecini, Miriam; Petrucci, Lucia; Ricotti, Susanna; Bejor, Maurizio; Salimbeni, Grazia; Biglioli, Federico; Klersy, Catherine

    2014-01-01

    Our study evaluates the grade and timing of recovery in 30 patients with complete facial paralysis (House-Brackmann grade VI) treated with hypoglossal-facial nerve (XII-VII) anastomosis and a long-term rehabilitation program, consisting of exercises in facial muscle activation mediated by tongue movement and synkinesis control with mirror feedback. Reinnervation after XII-VII anastomosis occurred in 29 patients, on average 5.4 months after surgery. Three years after the anastomosis, 23.3% of patients had grade II, 53.3% grade III, 20% grade IV and 3.3% grade VI ratings on the House-Brackmann scale. Time to reinnervation was associated with the final House-Brackmann grade. Our study demonstrates that patients undergoing XIIVII anastomosis and a long-term rehabilitation program display a significant recovery of facial symmetry and movement. The recovery continues for at Hypoglossal-facial nerve anastomosis and rehabilitation in patients with complete facial palsy: cohort study of 30 patients followed up for three years least three years after the anastomosis, meaning that prolonged follow-up of these patients is advisable.

  1. Hypoglossal-facial nerve anastomosis and rehabilitation in patients with complete facial palsy: cohort study of 30 patients followed up for three years.

    PubMed

    Dalla Toffola, Elena; Pavese, Chiara; Cecini, Miriam; Petrucci, Lucia; Ricotti, Susanna; Bejor, Maurizio; Salimbeni, Grazia; Biglioli, Federico; Klersy, Catherine

    2014-01-01

    Our study evaluates the grade and timing of recovery in 30 patients with complete facial paralysis (House-Brackmann grade VI) treated with hypoglossal-facial nerve (XII-VII) anastomosis and a long-term rehabilitation program, consisting of exercises in facial muscle activation mediated by tongue movement and synkinesis control with mirror feedback. Reinnervation after XII-VII anastomosis occurred in 29 patients, on average 5.4 months after surgery. Three years after the anastomosis, 23.3% of patients had grade II, 53.3% grade III, 20% grade IV and 3.3% grade VI ratings on the House-Brackmann scale. Time to reinnervation was associated with the final House-Brackmann grade. Our study demonstrates that patients undergoing XIIVII anastomosis and a long-term rehabilitation program display a significant recovery of facial symmetry and movement. The recovery continues for at Hypoglossal-facial nerve anastomosis and rehabilitation in patients with complete facial palsy: cohort study of 30 patients followed up for three years least three years after the anastomosis, meaning that prolonged follow-up of these patients is advisable. PMID:25473738

  2. Onset of deconfinement in nucleus-nucleus collisions

    SciTech Connect

    Gazdzicki, M.; Gorenstein, M. I.; Seyboth, P.

    2012-05-15

    The energy dependence of hadron production in relativistic nucleus-nucleus collisions reveals anomalies-the kink, horn, and step. They were predicted as signals of the deconfinement phase transition and observed by the NA49 Collaboration in central PbPb collisions at the CERN SPS. This indicates the onset of the deconfinement in nucleus-nucleus collisions at about 30 A GeV.

  3. Proton Nucleus Elastic Scattering Data.

    1993-08-18

    Version 00 The Proton Nucleus Elastic Scattering Data file PNESD contains the numerical data and the related bibliography for the differential elastic cross sections, polarization and integral nonelastic cross sections for elastic proton-nucleus scattering.

  4. SUMOrganization of the nucleus.

    PubMed

    Heun, Patrick

    2007-06-01

    In the eukaryotic nucleus, gene expression and maintenance of genome integrity are tightly controlled at multiple levels, from the molecular details to the higher-order structure of the genome. The nucleus contains spatially and functionally distinct compartments in which these fundamental processes are carried out. While the dynamics and functions of some nuclear subdomains, like the nucleolus, have been well studied, other domains, like the PML-nuclear bodies, remain enigmatic. Recent evidence has now implicated the SUMOylation pathway as an important player in subnuclear architecture, particularly in the assembly of PML-nuclear bodies. Related functions include the organization of chromatin loops and maintenance of rDNA repeat stability. Consequently, complete loss of SUMO modification profoundly affects nuclear organization and cell viability.

  5. Antinucleon-nucleus interactions

    SciTech Connect

    Dover, C.B.

    1987-01-01

    Recent experimental and theoretical results on anti p-nucleus interactions are reviewed. We focus on determinations of the anti p optical potential from elastic scattering, the use of (anti p, anti p') inelastic scattering to reveal aspects of the spin-isospin dependence of N anti N amplitudes, and some puzzling features of (anti p, anti n) charge exchange reactions on nuclei. 47 refs., 7 figs.

  6. THE SPITZER MID-INFRARED ACTIVE GALACTIC NUCLEUS SURVEY. I. OPTICAL AND NEAR-INFRARED SPECTROSCOPY OF OBSCURED CANDIDATES AND NORMAL ACTIVE GALACTIC NUCLEI SELECTED IN THE MID-INFRARED

    SciTech Connect

    Lacy, M.; Ridgway, S. E.; Gates, E. L.; Petric, A. O.; Sajina, A.; Urrutia, T.; Cox Drews, S.; Harrison, C.; Seymour, N.; Storrie-Lombardi, L. J.

    2013-10-01

    We present the results of a program of optical and near-infrared spectroscopic follow-up of candidate active galactic nuclei (AGNs) selected in the mid-infrared. This survey selects both normal and obscured AGNs closely matched in luminosity across a wide range, from Seyfert galaxies with bolometric luminosities L {sub bol} ∼ 10{sup 10} L {sub ☉} to highly luminous quasars (L {sub bol} ∼ 10{sup 14} L {sub ☉}), all with redshifts ranging from 0 to 4.3. Samples of candidate AGNs were selected with mid-infrared color cuts at several different 24 μm flux density limits to ensure a range of luminosities at a given redshift. The survey consists of 786 candidate AGNs and quasars, of which 672 have spectroscopic redshifts and classifications. Of these, 137 (20%) are type 1 AGNs with blue continua, 294 (44%) are type 2 objects with extinctions A{sub V} ∼> 5 toward their AGNs, 96 (14%) are AGNs with lower extinctions (A{sub V} ∼ 1), and 145 (22%) have redshifts, but no clear signs of AGN activity in their spectra. Of the survey objects 50% have L {sub bol} > 10{sup 12} L {sub ☉}, in the quasar regime. We present composite spectra for type 2 quasars and objects with no signs of AGN activity in their spectra. We also discuss the mid-infrared—emission-line luminosity correlation and present the results of cross correlations with serendipitous X-ray and radio sources. The results show that: (1) obscured objects dominate the overall AGN population, (2) mid-infrared selected AGN candidates exist which lack AGN signatures in their optical spectra but have AGN-like X-ray or radio counterparts, and (3) X-ray and optical classifications of obscured and unobscured AGNs often differ.

  7. Analytic optical potentials for nucleon-nucleus nucleus-nucleus collisions involving light and medium nuclei

    NASA Technical Reports Server (NTRS)

    Bidasaria, H. B.; Townsend, L. W.

    1982-01-01

    Utilizing an optical model potential approximation to the exact nucleus-nucleus multiple-scattering series, optical potentials for nucleon-nucleus and nucleus-nucleus collisions are analytically derived. These expressions are applicable to light and medium cosmic ray nuclei as their single-particle density distributions are analytically determined, without approximation, from their actual harmonic well charge density distributions. Pauli correlation effects are included through the use of a simple Gaussian function to replace the usual expression obtained in the infinite nuclear matter approximation.

  8. Cytotoxicity of nucleus-targeting fluorescent gold nanoclusters.

    PubMed

    Zhao, Jing-Ya; Cui, Ran; Zhang, Zhi-Ling; Zhang, Mingxi; Xie, Zhi-Xiong; Pang, Dai-Wen

    2014-11-01

    Gold nanoclusters (AuNCs) with ultra small sizes and unique fluorescence properties have shown promising potential for imaging the nuclei of living cells. However, little is known regarding the potential cytotoxicity of AuNCs after they enter the cell nucleus. The aim of this study is to investigate whether and how nucleus-targeting AuNCs affect the normal functioning of cells. Highly stable, water-soluble and bright fluorescent Au25NCs (the core of each nanocluster is composed of 25 gold atoms) were synthesized. Specific targeting of Au25NCs to the cell nucleus was achieved by conjugating the TAT peptide to the Au25NCs. Cell viability, cell morphology, cell apoptosis/necrosis, reactive oxygen species (ROS) level and mitochondrial membrane potential examinations were performed on different cell lines exposed to the nucleus-targeting Au25NCs. We found that the nucleus-targeting Au25NCs caused cell apoptosis in a dose-dependent manner. A possible mechanism for the cytotoxicity of the nucleus-targeting Au25NCs was proposed as follows: the nucleus-targeting Au25NCs induce the production of ROS, resulting in the oxidative degradation of mitochondrial components, in turn leading to apoptosis via a mitochondrial damage pathway. This work facilitates a better understanding of the toxicity of AuNCs, especially nucleus-targeting AuNCs.

  9. Neutrino-nucleus interactions

    SciTech Connect

    Gallagher, H.; Garvey, G.; Zeller, G.P.; /Fermilab

    2011-01-01

    The study of neutrino oscillations has necessitated a new generation of neutrino experiments that are exploring neutrino-nuclear scattering processes. We focus in particular on charged-current quasi-elastic scattering, a particularly important channel that has been extensively investigated both in the bubble-chamber era and by current experiments. Recent results have led to theoretical reexamination of this process. We review the standard picture of quasi-elastic scattering as developed in electron scattering, review and discuss experimental results, and discuss additional nuclear effects such as exchange currents and short-range correlations that may play a significant role in neutrino-nucleus scattering.

  10. Nucleus from string theory

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Morita, Takeshi

    2011-08-01

    In generic holographic QCD, we find that baryons are bound to form a nucleus, and that its radius obeys the empirically-known mass-number (A) dependence r∝A1/3 for large A. Our result is robust, since we use only a generic property of D-brane actions in string theory. We also show that nucleons are bound completely in a finite volume. Furthermore, employing a concrete holographic model (derived by Hashimoto, Iizuka, and Yi, describing a multibaryon system in the Sakai-Sugimoto model), the nuclear radius is evaluated as O(1)×A1/3[fm], which is consistent with experiments.

  11. Higgs-boson production in nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W. (Principal Investigator)

    1990-01-01

    Cross-section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two-photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two-photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  12. Higgs-Boson Production in Nucleus-Nucleus Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  13. Meson multiplicity versus energy in relativistic nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Atwater, T. W.; Freier, P. S.

    1986-01-01

    A systematic study of meson multiplicity as a function of energy at energies up to 100 GeV/u in nucleus-nucleus collisions has been made, using cosmic-ray data in nuclear emulsion. The data are consistent with simple nucleon-nucleon superposition models. Multiplicity per interacting nucleon in AA collisions does not appear to differ significantly from pp collisions.

  14. Scaling phenomenon in relativistic nucleus-nucleus collisions

    SciTech Connect

    Wong, C. Y.; Blankenbecler, R.

    1980-01-01

    New scaling variables for proton and pion production in relativistic nucleus-nucleus collisions are introduced which are the generalizations of the Feynmann scaling variable. They allow a simple description of the cross sections at forward and backward angles. 2 figures.

  15. Soluble guanylate cyclase and neuronal nitric oxide synthase colocalize in rat nucleus tractus solitarii.

    PubMed

    Lin, L H; Talman, W T

    2005-03-01

    Nitric oxide has been implicated in transmission of cardiovascular signals in the nucleus tractus solitarii (NTS). Pharmacological studies suggest that activation of neurons by nitric oxide in the NTS may involve soluble guanylate cyclase (sGC). However, anatomical data supporting this suggestion have not been available. In this study, we tested the hypothesis that neurons and fibers containing neuronal nitric oxide synthase (nNOS) lie in close proximity to those containing sGC and the two enzymes colocalize in some neurons and fibers in the NTS. We perfused six rats and obtained brain stem sections for double immunofluorescent staining utilizing antibodies selective for sGC and for nNOS combined with confocal microscopy. The distribution and staining intensity of nNOS-immunoreactivity (IR) was similar to our earlier reports. IR of sGC was present in cell bodies, proximal dendrites and fibers of many brain stem regions. Strong sGC-IR was noted in the hypoglossal, dorsal motor nucleus of vagus and gracilis nuclei. The NTS exhibited moderate sGC-IR. Superimposed images showed that many NTS neurons contained both nNOS-IR and sGC-IR. The percentage of sGC-IR positive cells that were also nNOS-IR positive differed among NTS subnuclei. Similarly, the percentage of nNOS-IR positive cells that were also sGC positive differed among NTS subnuclei. Fibers stained for both nNOS-IR and sGC-IR were also present in NTS subnuclei. In addition, we identified fibers that were stained for nNOS-IR or sGC-IR alone and often found such singly labeled fibers apposed to each other. These data support our hypothesis and provide anatomical support for the suggestion that nitroxidergic activation of the NTS involves sGC.

  16. The nucleus basalis in Huntington's disease.

    PubMed

    Clark, A W; Parhad, I M; Folstein, S E; Whitehouse, P J; Hedreen, J C; Price, D L; Chase, G A

    1983-10-01

    The nucleus basalis of Meynert (nbM) provides most of the cholinergic input to the cerebral cortex. The loss of cortical choline acetyltransferase (CAT) activity in Alzheimer's disease (AD) and senile dementia of the Alzheimer's type (SDAT) appears to be related to a severe depopulation of the nbM in this dementia. In Huntington's disease (HD), by contrast, there is no loss of cortical CAT activity. The present quantitative study indicates that (1) there is no significant loss of neurons from the nbM in HD, and (2) that the previously described cytologic changes in the neurons of this nucleus in HD patients do not differ significantly from controls. These findings are consistent with the working hypothesis that the types of dementia associated with reductions of neocortical CAT activity are characterized by dysfunction or death of neurons in the nbM, but dementing disorders with normal neocortical CAT activity manifest no major abnormalities in this cholinergic nucleus of the basal forebrain. PMID:6225032

  17. Hyperon-nucleus potentials

    NASA Astrophysics Data System (ADS)

    Dover, C. B.; Gal, A.

    We review models for the interaction of baryons ( N, Λ, Σ and Ξ) with nuclei, emphasizing the underlying meson exchange picture. Starting from a phenomenological one boson exchange model (the Nijmegen potential, as an example) which accounts for the available NN, ΛN and ΣN two-body scattering data, we show how to construct the effective baryon-nucleon interaction ( G-matrix). Employing the folding model, we then obtain the many-body potentials for bound states in terms of the nuclear density and the appropriate spin-isospin weighted G-matrices. The models we emphasize most impose SU(3) constraints on baryon-baryon coupling constants SU(3) is broken through the use of physical masses), although we also compare with rough estimates based on quark model relations between coupling constants. We stress the essential unity and economy of such models, in which nucleon and hyperon-nucleus potentials are intimately related via SU(3), and the connection between the two-body and many-body potentials is preserved. We decompose the nuclear potentials into central and spin-orbit parts, each of which is isospin dependent. For nucleons, the microscopic origin of the isospin dependent Lane potential V1 N is clarified. For Λ and Σ hyperons, the one boson exchange model with SU(3) constraints leads to one-body spin-orbit strengths VLSB which are relatively weak ( VLSΛ ≈ 1.5-2 MeV, VLSΣ ≈ 2.5-;3 MeV, compared to VLSN ≈ 7-9 MeV). We demonstrate the interplay between symmetric and antisymmetric two-body spin-orbit forces which give rise to these results, as well as the special role of K and K ∗ exchange for hyperons. We contrast these results with predictions based on the naive quark model. From S and P-wave two-body interactions, a Lane potential for the Σ of depth V1 Σ ≈ 50-60 MeV is predicted although this result is somewhat uncertain. For the Ξ, the nuclear potential is very different in various models for the two-body interaction based on SU(3) or the quark

  18. A comprehensive review with potential significance during skull base and neck operations, Part II: glossopharyngeal, vagus, accessory, and hypoglossal nerves and cervical spinal nerves 1-4.

    PubMed

    Shoja, Mohammadali M; Oyesiku, Nelson M; Shokouhi, Ghaffar; Griessenauer, Christoph J; Chern, Joshua J; Rizk, Elias B; Loukas, Marios; Miller, Joseph H; Tubbs, R Shane

    2014-01-01

    Knowledge of the possible neural interconnections found between the lower cranial and upper cervical nerves may prove useful to surgeons who operate on the skull base and upper neck regions in order to avoid inadvertent traction or transection. We review the literature regarding the anatomy, function, and clinical implications of the complex neural networks formed by interconnections between the lower cranial and upper cervical nerves. A review of germane anatomic and clinical literature was performed. The review is organized into two parts. Part I discusses the anastomoses between the trigeminal, facial, and vestibulocochlear nerves or their branches and other nerve trunks or branches in the vicinity. Part II deals with the anastomoses between the glossopharyngeal, vagus, accessory and hypoglossal nerves and their branches or between these nerves and the first four cervical spinal nerves; the contribution of the autonomic nervous system to these neural plexuses is also briefly reviewed. Part II is presented in this article. Extensive and variable neural anastomoses exist between the lower cranial nerves and between the upper cervical nerves in such a way that these nerves with their extra-axial communications can be collectively considered a plexus.

  19. [Smile "forced" smile versus "spontaneous": comparison of 3 techniques of reconstructive surgery of the face. Myoplasty temporal muscle, hypoglossal facial anastomosis and gracilis muscle free flap].

    PubMed

    Lheureux-Portmann, A; Lapalus-Curtoud, Q; Robert, M; Tankéré, F; Disant, F; Pasche, P; Lamas, G; Gatignol, P

    2013-01-01

    The facial palsy cause serious consequences for patients. Studies have also shown that in these patients, the inability to produce an appropriate and spontaneous smile would be a key factor of depression. When facial palsy is considered complete and the nerve cannot be repaired, the patient can benefit from palliative surgery to regain a better quality of life in the aesthetic, functional, and psychological aspects. The hypoglossal-facial anastomosis (AHF), temporal myoplasty (MAT) and gracilis transposition (TG) are the major surgeries currently used for this purpose. The aim of our study is to assess quantitatively and qualitatively the effects of each of these surgeries on the lip mobility and production of smile. From this perspective, we proposed a protocol of an evaluation of facial motricity, of quality of life, and more particularly on the quality and the analysis of the smile. The results underline that there is no significant difference in the recovery of the facial motricity according to the surgery. Only the slower, deferred deadline of recovery at the patients AHF and TG who have to wait several months, it is for the same levels as that of the patients' MAT. A premature and intensive rehabilitation such as the patients of our protocol benefited from it what is nevertheless essential to a good recovery whatever is the surgery.

  20. Unexpected doubly-magic nucleus.

    SciTech Connect

    Janssens, R. V. F.; Physics

    2009-01-01

    Nuclei with a 'magic' number of both protons and neutrons, dubbed doubly magic, are particularly stable. The oxygen isotope {sup 24}O has been found to be one such nucleus - yet it lies just at the limit of stability.

  1. Cytotoxicity of nucleus-targeting fluorescent gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhao, Jing-Ya; Cui, Ran; Zhang, Zhi-Ling; Zhang, Mingxi; Xie, Zhi-Xiong; Pang, Dai-Wen

    2014-10-01

    Gold nanoclusters (AuNCs) with ultra small sizes and unique fluorescence properties have shown promising potential for imaging the nuclei of living cells. However, little is known regarding the potential cytotoxicity of AuNCs after they enter the cell nucleus. The aim of this study is to investigate whether and how nucleus-targeting AuNCs affect the normal functioning of cells. Highly stable, water-soluble and bright fluorescent Au25NCs (the core of each nanocluster is composed of 25 gold atoms) were synthesized. Specific targeting of Au25NCs to the cell nucleus was achieved by conjugating the TAT peptide to the Au25NCs. Cell viability, cell morphology, cell apoptosis/necrosis, reactive oxygen species (ROS) level and mitochondrial membrane potential examinations were performed on different cell lines exposed to the nucleus-targeting Au25NCs. We found that the nucleus-targeting Au25NCs caused cell apoptosis in a dose-dependent manner. A possible mechanism for the cytotoxicity of the nucleus-targeting Au25NCs was proposed as follows: the nucleus-targeting Au25NCs induce the production of ROS, resulting in the oxidative degradation of mitochondrial components, in turn leading to apoptosis via a mitochondrial damage pathway. This work facilitates a better understanding of the toxicity of AuNCs, especially nucleus-targeting AuNCs.Gold nanoclusters (AuNCs) with ultra small sizes and unique fluorescence properties have shown promising potential for imaging the nuclei of living cells. However, little is known regarding the potential cytotoxicity of AuNCs after they enter the cell nucleus. The aim of this study is to investigate whether and how nucleus-targeting AuNCs affect the normal functioning of cells. Highly stable, water-soluble and bright fluorescent Au25NCs (the core of each nanocluster is composed of 25 gold atoms) were synthesized. Specific targeting of Au25NCs to the cell nucleus was achieved by conjugating the TAT peptide to the Au25NCs. Cell viability, cell

  2. Sensitivity of cross sections for elastic nucleus-nucleus scattering to halo nucleus density distributions

    SciTech Connect

    Alkhazov, G. D.; Sarantsev, V. V.

    2012-12-15

    In order to clear up the sensitivity of the nucleus-nucleus scattering to the nuclear matter distributions in exotic halo nuclei, we have calculated differential cross sections for elastic scattering of the {sup 6}He and {sup 11}Li nuclei on several nuclear targets at the energy of 0.8 GeV/nucleon with different assumed nuclear density distributions in {sup 6}He and {sup 11}Li.

  3. Morphological and morphometric characterisation of Onuf's nucleus in the spinal cord in man

    PubMed Central

    PULLEN, A. H.; TUCKER, D.; MARTIN, J. E.

    1997-01-01

    In the absence of a systematic morphometric study of Onuf's nucleus in man, this investigation defines the limits of variation of segmental position and the range of length and volume of Onuf's nucleus in 6 normal humans displaying no neurological disease (2 males, 4 females). Serial section reconstruction methods in conjunction with the disector method provided information on the numbers, sizes and shapes of the constituent motor neurons of Onuf's nucleus. In contrast to previous descriptions, the cranial origin of Onuf's nucleus occurred in rostral S1 in 50% of subjects, and midcaudal S1 in the remaining subjects. Onuf's nucleus varied in length between 4 and 7 mm, and was 0.2–0.37 mm3 in volume. Differences in length or volume between males or females, or between the left and right side of the cord were not statistically significant. Neurons in Onuf's nucleus varied in diameter between 10 μm and 60 μm (mean 26 μm) and their mean number was 625±137. A higher density of neurons occurred at the cranial and caudal ends of the nucleus relative to the middle. While 37% of neurons were approximately spherical (shape index ∼1), 44% were ellipsoid and 19% fusiform (shape indices varying between 0.26 and 0.8). These findings are compared with previous studies of Onuf's nucleus in man and animals. The results form a basis for further studies on Onuf's nucleus in normality and neurodegenerative diseases. PMID:9306197

  4. a Unified Approach to Hadron-Hadron Hadron-Nucleus and Nucleus-Nucleus Collisions at High Energy

    NASA Astrophysics Data System (ADS)

    Wang, Xin-Nian

    The problem of multiparticle production in high -energy hadron-hadron, hadron-nucleus and nucleus-nucleus collisions are studied systematically in the framework of the Geometrical Branching Model (GBM). The model is based on the geometrical properties of nucleons and the stochastic nature of the interaction among the soft partons. The eikonal formalism is used to relate the elastic and inelastic cross sections and AGK cutting rule is used in connection with the multiparticle production process. The stochastic process of Furry branching is employed to describe the proliferation and hadronization of partons which lead to the produced particles. The approach describes hh, hA and AA collisions in a unified formalism for c.m. energies less than 100 GeV. The result of multiplicity distribution of produced particles exhibits Koba-Nielsen-Olesen (KNO) scaling. The universality of KNO scaling breaks down due to the different geometrical sizes of the hadron and nuclei. For hA and AA collisions, the formalism of GBM allows the hadron to be broken (to h^') by the first collision; indeed, it is the attention given to h^'h and h ^'h^' collisions that distinguishes this work from other earlier investigations on the subject. All of the calculated results are in good agreement with experiments. A general Monte Carlo simulation of GBM for multiparticle production in hh, hA and AA collisions is also given. The particle productivity in particular is studied in detail and is contrasted from the case where quark-gluon plasma (QGP) is produced in the AA collisions. This work forms a definitive description of hadronic and nuclear collisions that can serve as a basis from which exotic features such as the formation of QGP can be recognized as signatures deviating from the normal background.

  5. Neuronal loss in human medial vestibular nucleus.

    PubMed

    Alvarez, J C; Díaz, C; Suárez, C; Fernández, J A; González del Rey, C; Navarro, A; Tolivia, J

    1998-08-01

    The data concerning the effects of age on the brainstem are inconsistent, and few works are devoted to the human vestibular nuclear complex. The medial vestibular nucleus (MVN) is the largest nucleus of the vestibular nuclear complex, and it seems to be related mainly to vestibular compensation and vestibulo-ocular reflexes. Eight human brainstems have been used in this work. The specimens were embedded in paraffin, sectioned, and stained by the formaldehyde-thionin technique. Neuron profiles were drawn with a camera lucida at x330. Abercrombie's method was used to estimate the total number of neurons. We used the test of Kolmogorov-Smirnov with the correction of Lilliefors to evaluate the fit of our data to a normal distribution, and a regression analysis was performed to determine if the variation of our data with age was statistically significant. The present study clearly shows that neuronal loss occurs with aging. The total number of neurons decreases with age, from 122,241 +/- 651 cells in a 35-year-old individual to 75,915 +/- 453 cells in an 89-year-old individual. Neuron loss was significant in the caudal and intermediate thirds of the nucleus, whereas the changes in the rostral third were not significant. The nuclear diameter of surviving neurons decreased significantly with age. There is a neuron loss in the MVN that seems to be age-related. It could help explain why elderly people find it hard to compensate for unilateral vestibular deficits. The preservation of neurons in the rostral third could be related to the fact that this area primarily innervates the oculolmotor nuclei; these latter neurons do not decrease in number in other species studied.

  6. Cometary nucleus and active regions

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.

    1984-01-01

    On the basis of the icy conglomerate model of cometary nuclei, various observations demonstrate the spotted nature of many or most nuclei, i.e., regions of unusual activity, either high or low. Rotation periods, spin axes and even precession of the axes are determined. The observational evidence for variations in activity over the surfaces of cometary nuclei are listed and discussed. On June 11 the comet IRAS-ARAKI-ALCOCK approached the Earth to a distance of 0.031 AU, the nearest since C/Lexell, 1770 I, providing a unique opportunity for near-nucleus observations. Preliminary analysis of these images establishes the spin axis of the nucleus, with an oblioquity to the orbit plane of approximately 50 deg, and a lag angle of sublimation approximately 35 deg from the solar meridian on the nucleus. Asymmetries of the inner coma suggests a crazy-quilt distribution of ices with differing volatility over the surface of the nucleus. The observations of Comet P/Homes 1892 III, exhibiting two 8-10 magnitude bursts, are carefully analyzed. The grazing encounter produced, besides the first great burst, an active area on the nucleus, which was rotating retrograde with a period of 16.3hr and inclination nearly 180 deg. After the first burst the total magnitude fell less than two magnitudes from November 7 to November 30 (barely naked eye) while the nuclear region remained diffuse or complex, rarely if ever showing a stellar appearance. The fading was much more rapid after the second burst. The grazing encounter distributed a volume of large chunks in the neighborhood of the nucleus, maintaining activity for weeks.

  7. Formin' actin in the nucleus.

    PubMed

    Baarlink, Christian; Grosse, Robert

    2014-01-01

    Many if not most proteins can, under certain conditions, change cellular compartments, such as, for example, shuttling from the cytoplasm to the nucleus. Thus, many proteins may exert functions in various and very different subcellular locations, depending on the signaling context. A large amount of actin regulatory proteins has been detected in the mammalian cell nucleus, although their potential roles are much debated and are just beginning to emerge. Recently, members of the formin family of actin nucleators were also reported to dynamically localize to the nuclear environment. Here we discuss our findings that specific diaphanous-related formins can promote nuclear actin assembly in a signal-dependent manner.

  8. Functionalized active-nucleus complex sensor

    DOEpatents

    Pines, Alexander; Wemmer, David E.; Spence, Megan; Rubin, Seth

    2003-11-25

    A functionalized active-nucleus complex sensor that selectively associates with one or more target species, and a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species. The functionalized active-nucleus complex has an active-nucleus and a targeting carrier. The method involves functionalizing an active-nucleus, for each functionalized active-nucleus complex, by incorporating the active-nucleus into a macromolucular or molecular complex that is capable of binding one of the target species and then bringing the macromolecular or molecular complexes into contact with the target species and detecting the occurrence of or change in a nuclear magnetic resonance signal from each of the active-nuclei in each of the functionalized active-nucleus complexes.

  9. The midbrain precommand nucleus of the mormyrid electromotor network.

    PubMed

    von der Emde, G; Sena, L G; Niso, R; Grant, K

    2000-07-15

    The functional role of the midbrain precommand nucleus (PCN) of the electromotor system was explored in the weakly electric mormyrid fish Gnathonemus petersii, using extracellular recording of field potentials, single unit activity, and microstimulation in vivo. Electromotor-related field potentials in PCN are linked in a one-to-one manner and with a fixed time relationship to the electric organ discharge (EOD) command cycle, but occur later than EOD command activity in the medulla. It is suggested that PCN electromotor-related field potentials arise from two sources: (1) antidromically, by backpropagation across electrotonic synapses between PCN axons and command nucleus neurons, and (2) as corollary discharge-driven feedback arriving from the command nucleus indirectly, via multisynaptic pathways. PCN neurons can be activated by electrosensory input, but this does not necessarily activate the whole motor command chain. Microstimulation of PCN modulates the endogenous pattern of electromotor command in a way that can mimic the structure of certain stereotyped behavioral patterns. PCN activity is regulated, and to a certain extent synchronized, by corollary discharge feedback inhibition. However, PCN does not generally function as a synchronized pacemaker driving the electromotor command chain. We propose that PCN neurons integrate information of various origins and individually relay this to the command nucleus in the medulla. Some may also have intrinsic, although normally nonsynchronized, pacemaker properties. This descending activity, integrated in the electromotor command nucleus, will play an important modulatory role in the central pattern generator decision process.

  10. Orexinergic fibers are in contact with Kölliker-Fuse nucleus neurons projecting to the respiration-related nuclei in the medulla oblongata and spinal cord of the rat.

    PubMed

    Yokota, Shigefumi; Oka, Tatsuro; Asano, Hirohiko; Yasui, Yukihiko

    2016-10-01

    The neural pathways underlying the respiratory variation dependent on vigilance states remain unsettled. In the present study, we examined the orexinergic innervation of Kölliker-Fuse nucleus (KFN) neurons sending their axons to the rostral ventral respiratory group (rVRG) and phrenic nucleus (PhN) as well as to the hypoglossal nucleus (HGN) by using a combined retrograde tracing and immunohistochemistry. After injection of cholera toxin B subunit (CTb) into the KFN, CTb-labeled neurons that are also immunoreactive for orexin (ORX) were found prominently in the perifornical and medial regions and additionally in the lateral region of the hypothalamic ORX field. After injection of fluorogold (FG) into the rVRG, PhN or HGN, we found an overlapping distribution of ORX-immunoreactive axon terminals and FG-labeled neurons in the KFN. Within the neuropil of the KFN, asymmetrical synaptic contacts were made between these terminals and neurons. We further demonstrated that many neurons labeled with FG injected into the rVRG, PhN, or HGN are immunoreactive for ORX receptor 2. Present data suggest that rVRG-, PhN- and HGN-projecting KFN neurons may be under the excitatory influence of the ORXergic neurons for the state-dependent regulation of respiration.

  11. Suprachiasmatic Nucleus: Cell Autonomy and Network Properties

    PubMed Central

    Welsh, David K.; Takahashi, Joseph S.; Kay, Steve A.

    2013-01-01

    The suprachiasmatic nucleus (SCN) is the primary circadian pacemaker in mammals. Individual SCN neurons in dispersed culture can generate independent circadian oscillations of clock gene expression and neuronal firing. However, SCN rhythmicity depends on sufficient membrane depolarization and levels of intracellular calcium and cAMP. In the intact SCN, cellular oscillations are synchronized and reinforced by rhythmic synaptic input from other cells, resulting in a reproducible topographic pattern of distinct phases and amplitudes specified by SCN circuit organization. The SCN network synchronizes its component cellular oscillators, reinforces their oscillations, responds to light input by altering their phase distribution, increases their robustness to genetic perturbations, and enhances their precision. Thus, even though individual SCN neurons can be cell-autonomous circadian oscillators, neuronal network properties are integral to normal function of the SCN. PMID:20148688

  12. Higgs and Particle Production in Nucleus-Nucleus Collisions

    NASA Astrophysics Data System (ADS)

    Liu, Zhe

    We apply a diagrammatic approach to study Higgs boson, a color-neutral heavy particle, pro- duction in nucleus-nucleus collisions in the saturation framework without quantum evolution. We assume the strong coupling constant much smaller than one. Due to the heavy mass and colorless nature of Higgs particle, final state interactions are absent in our calculation. In order to treat the two nuclei dynamically symmetric, we use the Coulomb gauge which gives the appropriate light cone gauge for each nucleus. To further eliminate initial state interactions we choose specific prescriptions in the light cone propagators. We start the calculation from only two nucleons in each nucleus and then demonstrate how to generalize the calculation to higher orders diagrammatically. We simplify the diagrams by the Slavnov-Taylor-Ward identities. The resulting cross section is factorized into a product of two Weizsacker-Williams gluon distributions of the two nuclei when the transverse momentum of the produced scalar particle is around the saturation momentum. To our knowledge this is the first process where an exact analytic formula has been formed for a physical process, involving momenta on the order of the saturation momentum, in nucleus-nucleus collisions in the quasi-classical approximation. Since we have performed the calculation in an unconventional gauge choice, we further confirm our results in Feynman gauge where the Weizsacker-Williams gluon distribution is interpreted as a transverse momentum broadening of a hard gluons traversing a nuclear medium. The transverse momentum factorization manifests itself in light cone gauge but not so clearly in Feynman gauge. In saturation physics there are two different unintegrated gluon distributions usually encountered in the literature: the Weizsacker-Williams gluon distribution and the dipole gluon distribution. The first gluon distribution is constructed by solving classical Yang-Mills equation of motion in the Mc

  13. Analysis of relativistic nucleus-nucleus interactions in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Mcguire, Stephen C.

    1987-01-01

    The development of a computer-assisted method is reported for the determination of the angular distribution data for secondary particles produced in relativistic nucleus-nucleus collisions in emulsions. The method is applied to emulsion detectors that were placed in a constant, uniform magnetic field and exposed to beams of 60 and 200 GeV/nucleon O-16 ions at the Super Proton Synchrotron (SPS) of the European Center for Nuclear Research (CERN). Linear regression analysis is used to determine the azimuthal and polar emission angles from measured track coordinate data. The software, written in BASIC, is designed to be machine independent, and adaptable to an automated system for acquiring the track coordinates. The fitting algorithm is deterministic, and takes into account the experimental uncertainty in the measured points. Further, a procedure for using the track data to estimate the linear momenta of the charged particles observed in the detectors is included.

  14. Dynamical nucleus-nucleus potential at short distances

    SciTech Connect

    Jiang Yongying; Wang Ning; Li Zhuxia; Scheid, Werner

    2010-04-15

    The dynamical nucleus-nucleus potentials for fusion reactions {sup 40}Ca+{sup 40}Ca, {sup 48}Ca+{sup 208}Pb, and {sup 126}Sn+{sup 130}Te are studied with the improved quantum molecular dynamics model together with the extended Thomas-Fermi approximation for the kinetic energies of nuclei. The obtained fusion barrier for {sup 40}Ca+{sup 40}Ca is in good agreement with the extracted fusion barrier from the measured fusion excitation function, and the depths of the fusion pockets are close to the results of time-dependent Hartree-Fock calculations. The energy dependence of the fusion barrier is also investigated. The fusion pocket becomes shallow for a heavy fusion system and almost disappears for heavy nearly symmetric systems, and the obtained potential at short distances is higher than the adiabatic potential.

  15. Azimuthal correlation and collective behavior in nucleus-nucleus collisions

    SciTech Connect

    Mali, P.; Mukhopadhyay, A. Sarkar, S.; Singh, G.

    2015-03-15

    Various flow effects of nuclear and hadronic origin are investigated in nucleus-nucleus collisions. Nuclear emulsion data collected from {sup 84}Kr + Ag/Br interaction at an incident energy of 1.52 GeV per nucleon and from {sup 28}Si + Ag/Br interaction at an incident energy of 14.5 GeV per nucleon are used in the investigation. The transverse momentum distribution and the flow angle analysis show that collective behavior, like a bounce-off effect of the projectile spectators and a sidesplash effect of the target spectators, are present in our event samples. From an azimuthal angle analysis of the data we also see a direct flow of the projectile fragments and of the produced charged particles. On the other hand, for both data samples the target fragments exhibit a reverse flow, while the projectile fragments exhibit an elliptic flow. Relevant flow parameters are measured.

  16. Single nucleon emission in relativistic nucleus-nucleus reactions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Townsend, Lawrence W.

    1992-01-01

    Significant discrepancies between theory and experiment have previously been noted for nucleon emission via electromagnetic processes in relativistic nucleus-nucleus collisions. The present work investigates the hypothesis that these discrepancies have arisen due to uncertainties about how to deduce the experimental electromagnetic cross section from the total measured cross section. An optical-model calculation of single neutron removal is added to electromagnetic cross sections and compared to the total experimental cross sections. Good agreement is found thereby resolving some of the earlier noted discrepancies. A detailed comparison to the recent work of Benesh, Cook, and Vary is made for both the impact parameter and the nuclear cross section. Good agreement is obtained giving an independent confirmation of the parameterized formulas developed by those authors.

  17. Hummingbird Comet Nucleus Analysis Mission

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel; Carle, Glenn C.; Lasher, Larry E.

    2000-01-01

    Hummingbird is a highly focused scientific mission, proposed to NASA s Discovery Program, designed to address the highest priority questions in cometary science-that of the chemical composition of the cometary nucleus. After rendezvous with the comet, Hummingbird would first methodically image and map the comet, then collect and analyze dust, ice and gases from the cometary atmosphere to enrich characterization of the comet and support landing site selection. Then, like its namesake, Hummingbird would carefully descend to a pre-selected surface site obtaining a high-resolution image, gather a surface material sample, acquire surface temperature and then immediately return to orbit for detailed chemical and elemental analyses followed by a high resolution post-sampling image of the site. Hummingbird s analytical laboratory contains instrumentation for a comprehensive molecular and elemental analysis of the cometary nucleus as well as an innovative surface sample acquisition device.

  18. Multivariate normality

    NASA Technical Reports Server (NTRS)

    Crutcher, H. L.; Falls, L. W.

    1976-01-01

    Sets of experimentally determined or routinely observed data provide information about the past, present and, hopefully, future sets of similarly produced data. An infinite set of statistical models exists which may be used to describe the data sets. The normal distribution is one model. If it serves at all, it serves well. If a data set, or a transformation of the set, representative of a larger population can be described by the normal distribution, then valid statistical inferences can be drawn. There are several tests which may be applied to a data set to determine whether the univariate normal model adequately describes the set. The chi-square test based on Pearson's work in the late nineteenth and early twentieth centuries is often used. Like all tests, it has some weaknesses which are discussed in elementary texts. Extension of the chi-square test to the multivariate normal model is provided. Tables and graphs permit easier application of the test in the higher dimensions. Several examples, using recorded data, illustrate the procedures. Tests of maximum absolute differences, mean sum of squares of residuals, runs and changes of sign are included in these tests. Dimensions one through five with selected sample sizes 11 to 101 are used to illustrate the statistical tests developed.

  19. Photoproduction of lepton pairs in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies

    SciTech Connect

    Moreira, B. D.; Goncalves, V. P.; De Santana Amaral, J. T.

    2013-03-25

    In this contribution we study coherent interactions as a probe of the nonlinear effects in the Quantum Electrodynamics (QED). In particular, we study the multiphoton effects in the production of leptons pairs for proton-nucleus and nucleus-nucleus collisions for heavy nuclei. In the proton-nucleus we assume the ultrarelativistic proton as a source of photons and estimate the photoproduction of lepton pairs on nuclei at RHIC and LHC energies considering the multiphoton effects associated to multiple rescattering of the projectile photon on the proton of the nucleus. In nucleus - nucleus colllisions we consider the two nuclei as a source of photons. As each scattering contributes with a factor {alpha}Z to the cross section, this contribution must be taken into account for heavy nuclei. We consider the Coulomb corrections to calculate themultiple scatterings and estimate the total cross section for muon and tau pair production in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies.

  20. Turbulent mixing condensation nucleus counter

    NASA Astrophysics Data System (ADS)

    Mavliev, Rashid

    The construction and operating principles of the Turbulent Mixing Condensation Nucleus Counter (TM CNC) are described. Estimations based on the semiempirical theory of turbulent jets and the classical theory of nucleation and growth show the possibility of detecting particles as small as 2.5 nm without the interference of homogeneous nucleation. This conclusion was confirmed experimentally during the International Workshop on Intercomparison of Condensation Nuclei and Aerosol Particle Counters (Vienna, Austria). Number concentration, measured by the Turbulent Mixing CNC and other participating instruments, is found to be essentially equal.

  1. Normalizing Rejection.

    PubMed

    Conn, Vicki S; Zerwic, Julie; Jefferson, Urmeka; Anderson, Cindy M; Killion, Cheryl M; Smith, Carol E; Cohen, Marlene Z; Fahrenwald, Nancy L; Herrick, Linda; Topp, Robert; Benefield, Lazelle E; Loya, Julio

    2016-02-01

    Getting turned down for grant funding or having a manuscript rejected is an uncomfortable but not unusual occurrence during the course of a nurse researcher's professional life. Rejection can evoke an emotional response akin to the grieving process that can slow or even undermine productivity. Only by "normalizing" rejection, that is, by accepting it as an integral part of the scientific process, can researchers more quickly overcome negative emotions and instead use rejection to refine and advance their scientific programs. This article provides practical advice for coming to emotional terms with rejection and delineates methods for working constructively to address reviewer comments. PMID:26041785

  2. Comet nucleus sample return mission

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A comet nucleus sample return mission in terms of its relevant science objectives, candidate mission concepts, key design/technology requirements, and programmatic issues is discussed. The primary objective was to collect a sample of undisturbed comet material from beneath the surface of an active comet and to preserve its chemical and, if possible, its physical integrity and return it to Earth in a minimally altered state. The secondary objectives are to: (1) characterize the comet to a level consistent with a rendezvous mission; (2) monitor the comet dynamics through perihelion and aphelion with a long lived lander; and (3) determine the subsurface properties of the nucleus in an area local to the sampled core. A set of candidate comets is discussed. The hazards which the spacecraft would encounter in the vicinity of the comet are also discussed. The encounter strategy, the sampling hardware, the thermal control of the pristine comet material during the return to Earth, and the flight performance of various spacecraft systems and the cost estimates of such a mission are presented.

  3. Normal development.

    PubMed

    Girard, Nadine; Koob, Meriam; Brunel, Herv

    2016-01-01

    Numerous events are involved in brain development, some of which are detected by neuroimaging. Major changes in brain morphology are depicted by brain imaging during the fetal period while changes in brain composition can be demonstrated in both pre- and postnatal periods. Although ultrasonography and computed tomography can show changes in brain morphology, these techniques are insensitive to myelination that is one of the most important events occurring during brain maturation. Magnetic resonance imaging (MRI) is therefore the method of choice to evaluate brain maturation. MRI also gives insight into the microstructure of brain tissue through diffusion-weighted imaging and diffusion tensor imaging. Metabolic changes are also part of brain maturation and are assessed by proton magnetic resonance spectroscopy. Understanding and knowledge of the different steps in brain development are required to be able to detect morphologic and structural changes on neuroimaging. Consequently alterations in normal development can be depicted. PMID:27430460

  4. Theoretical antideuteron-nucleus absorptive cross sections

    NASA Technical Reports Server (NTRS)

    Buck, W. W.; Norbury, J. W.; Townsend, L. W.; Wilson, J. W.

    1993-01-01

    Antideuteron-nucleus absorptive cross sections for intermediate to high energies are calculated using an ion-ion optical model. Good agreement with experiment (within 15 percent) is obtained in this same model for (bar p)-nucleus cross sections at laboratory energies up to 15 GeV. We describe a technique for estimating antinucleus-nucleus cross sections from NN data and suggest that further cosmic ray studies to search for antideuterons and other antinuclei be undertaken.

  5. The identification of musical instruments through nucleus cochlear implants.

    PubMed

    Grasmeder, M L; Lutman, M E

    2006-09-01

    In this study, self-reported ability to recognize musical instruments was investigated by means of a questionnaire, which was sent to a group of adult Nucleus cochlear implant users and a group of normally hearing subjects. In addition, spectrograms and electrodograms were produced and analysed for samples of music played on 10 different musical instruments. Self-reported ability to recognize some instruments was poor in the group of implant users, particularly for the saxophone, tuba and clarinet. Electrodograms showed that these instruments could only be identified using distorted spectral information or reduced temporal information. Other instruments, such as the drum and piano, could be identified using temporal information. Limited spectral resolution makes the recognition of musical instruments difficult for Nucleus implant users.

  6. Nucleus accumbens invulnerability to methamphetamine neurotoxicity.

    PubMed

    Kuhn, Donald M; Angoa-Pérez, Mariana; Thomas, David M

    2011-01-01

    Methamphetamine (Meth) is a neurotoxic drug of abuse that damages neurons and nerve endings throughout the central nervous system. Emerging studies of human Meth addicts using both postmortem analyses of brain tissue and noninvasive imaging studies of intact brains have confirmed that Meth causes persistent structural abnormalities. Animal and human studies have also defined a number of significant functional problems and comorbid psychiatric disorders associated with long-term Meth abuse. This review summarizes the salient features of Meth-induced neurotoxicity with a focus on the dopamine (DA) neuronal system. DA nerve endings in the caudate-putamen (CPu) are damaged by Meth in a highly delimited manner. Even within the CPu, damage is remarkably heterogeneous, with ventral and lateral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared the damage that accompanies binge Meth intoxication, but relatively subtle changes in the disposition of DA in its nerve endings can lead to dramatic increases in Meth-induced toxicity in the CPu and overcome the normal resistance of the NAc to damage. In contrast to the CPu, where DA neuronal deficiencies are persistent, alterations in the NAc show a partial recovery. Animal models have been indispensable in studies of the causes and consequences of Meth neurotoxicity and in the development of new therapies. This research has shown that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of Meth to include brain structures not normally targeted for damage. The resistance of the NAc to Meth-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of Meth neurotoxicity by alterations in DA homeostasis is significant in light of the numerous important roles played by this brain structure.

  7. Inhibition of the pontine Kölliker-Fuse nucleus reduces genioglossal activity elicited by stimulation of the retrotrapezoid chemoreceptor neurons.

    PubMed

    Silva, Josiane N; Lucena, Elvis V; Silva, Talita M; Damasceno, Rosélia S; Takakura, Ana C; Moreira, Thiago S

    2016-07-22

    The Kölliker-Fuse (KF) region, located in the dorsolateral pons, projects to several brainstem areas involved in respiratory regulation, including the chemoreceptor neurons within the retrotrapezoid nucleus (RTN). Several lines of evidence indicate that the pontine KF region plays an important role in the control of the upper airways for the maintenance of appropriate airflow to and from the lungs. Specifically, we hypothesized that the KF region is involved in mediating the response of the hypoglossal motor activity to central respiratory chemoreflex activation and to stimulation of the chemoreceptor neurons within the RTN region. To test this hypothesis, we combined immunohistochemistry and physiological experiments. We found that in the KF, the majority of biotinylated dextran amine (BDA)-labeled axonal varicosities contained detectable levels of vesicular glutamate transporter-2 (VGLUT2), but few contained glutamic acid decarboxylase-67 (GAD67). The majority of the RTN neurons that were FluorGold (FG)-immunoreactive (i.e., projected to the KF) contained hypercapnia-induced Fos, but did not express tyrosine hydroxylase. In urethane-anesthetized sino-aortic denervated and vagotomized male Wistar rats, hypercapnia (10% CO2) or N-methyl-d-aspartate (NMDA) injection (0.1mM) in the RTN increased diaphragm (DiaEMG) and genioglossus muscle (GGEMG) activities and elicited abdominal (AbdEMG) activity. Bilateral injection of muscimol (GABA-A agonist; 2mM) into the KF region reduced the increase in DiaEMG and GGEMG produced by hypercapnia or NMDA into the RTN. Our data suggest that activation of chemoreceptor neurons in the RTN produces a significant increase in the genioglossus muscle activity and the excitatory pathway is dependent on the neurons located in the dorsolateral pontine KF region. PMID:27126558

  8. Inhibition of the pontine Kölliker-Fuse nucleus reduces genioglossal activity elicited by stimulation of the retrotrapezoid chemoreceptor neurons.

    PubMed

    Silva, Josiane N; Lucena, Elvis V; Silva, Talita M; Damasceno, Rosélia S; Takakura, Ana C; Moreira, Thiago S

    2016-07-22

    The Kölliker-Fuse (KF) region, located in the dorsolateral pons, projects to several brainstem areas involved in respiratory regulation, including the chemoreceptor neurons within the retrotrapezoid nucleus (RTN). Several lines of evidence indicate that the pontine KF region plays an important role in the control of the upper airways for the maintenance of appropriate airflow to and from the lungs. Specifically, we hypothesized that the KF region is involved in mediating the response of the hypoglossal motor activity to central respiratory chemoreflex activation and to stimulation of the chemoreceptor neurons within the RTN region. To test this hypothesis, we combined immunohistochemistry and physiological experiments. We found that in the KF, the majority of biotinylated dextran amine (BDA)-labeled axonal varicosities contained detectable levels of vesicular glutamate transporter-2 (VGLUT2), but few contained glutamic acid decarboxylase-67 (GAD67). The majority of the RTN neurons that were FluorGold (FG)-immunoreactive (i.e., projected to the KF) contained hypercapnia-induced Fos, but did not express tyrosine hydroxylase. In urethane-anesthetized sino-aortic denervated and vagotomized male Wistar rats, hypercapnia (10% CO2) or N-methyl-d-aspartate (NMDA) injection (0.1mM) in the RTN increased diaphragm (DiaEMG) and genioglossus muscle (GGEMG) activities and elicited abdominal (AbdEMG) activity. Bilateral injection of muscimol (GABA-A agonist; 2mM) into the KF region reduced the increase in DiaEMG and GGEMG produced by hypercapnia or NMDA into the RTN. Our data suggest that activation of chemoreceptor neurons in the RTN produces a significant increase in the genioglossus muscle activity and the excitatory pathway is dependent on the neurons located in the dorsolateral pontine KF region.

  9. Squish and squeeze-the nucleus as a physical barrier during migration in confined environments.

    PubMed

    McGregor, Alexandra Lynn; Hsia, Chieh-Ren; Lammerding, Jan

    2016-06-01

    From embryonic development to cancer metastasis, cell migration plays a central role in health and disease. It is increasingly becoming apparent that cells migrating in three-dimensional (3-D) environments exhibit some striking differences compared with their well-established 2-D counterparts. One key finding is the significant role the nucleus plays during 3-D migration: when cells move in confined spaces, the cell body and nucleus must deform to squeeze through available spaces, and the deformability of the large and relatively rigid nucleus can become rate-limiting. In this review, we highlight recent findings regarding the role of nuclear mechanics in 3-D migration, including factors that govern nuclear deformability, and emerging mechanisms by which cells apply cytoskeletal forces to the nucleus to facilitate nuclear translocation. Intriguingly, the 'physical barrier' imposed by the nucleus also impacts cytoplasmic dynamics that affect cell migration and signaling, and changes in nuclear structure resulting from the mechanical forces acting on the nucleus during 3-D migration could further alter cellular function. These findings have broad relevance to the migration of both normal and cancerous cells inside living tissues, and motivate further research into the molecular details by which cells move their nuclei, as well as the consequences of the mechanical stress on the nucleus.

  10. Actomyosin contractility rotates the cell nucleus.

    PubMed

    Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G V

    2014-01-21

    The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells.

  11. Actomyosin contractility rotates the cell nucleus

    PubMed Central

    Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G. V.

    2014-01-01

    The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells. PMID:24445418

  12. Chemical anatomy of the human paraventricular thalamic nucleus.

    PubMed

    Uroz, Victoria; Prensa, Lucía; Giménez-Amaya, José Manuel

    2004-03-01

    The paraventricular thalamic nucleus (Pa) lies in the most medial aspect of the thalamus and is considered one of the midline thalamic nuclei. In the present study, we carried out histochemical and immunohistochemical procedures in the Pa of normal individuals to visualize the pattern of distribution of acetylcholinesterase (AChE), calbindin D-28k (CB), parvalbumin (PV), calretinin (CR), limbic system-associated membrane protein (LAMP), substance P (SP), and enkephalin (ENK). Other cytoarchitectural and myeloarchitectural techniques, such as Nissl and Gallyas, were also employed to delineate the boundaries of the Pa. The main findings of this study are: 1) AChE staining in the Pa was heterogeneously distributed along its anteroposterior and mediolateral axes; 2) the Pa harbored numerous CB- and CR-immunoreactive (ir) cells and neuropil, but this nucleus was largely devoid of PV; 3) the Pa was highly enriched in LAMP and this protein appeared uniformly distributed through its whole extent; and, 4) the SP and ENK immunoreactivities in the Pa revealed numerous highly varicose fibers scattered throughout this nucleus, but no stained cells. This morphological study demonstrates that the Pa is a heterogeneous chemical structure in humans. The functional significance of these results is discussed in the light of similar data gathered in several mammalian species.

  13. The multifunctional lateral geniculate nucleus.

    PubMed

    Weyand, Theodore G

    2016-02-01

    Providing the critical link between the retina and visual cortex, the well-studied lateral geniculate nucleus (LGN) has stood out as a structure in search of a function exceeding the mundane 'relay'. For many mammals, it is structurally impressive: Exquisite lamination, sophisticated microcircuits, and blending of multiple inputs suggest some fundamental transform. This impression is bolstered by the fact that numerically, the retina accounts for a small fraction of its input. Despite such promise, the extent to which an LGN neuron separates itself from its retinal brethren has proven difficult to appreciate. Here, I argue that whereas retinogeniculate coupling is strong, what occurs in the LGN is judicious pruning of a retinal drive by nonretinal inputs. These nonretinal inputs reshape a receptive field that under the right conditions departs significantly from its retinal drive, even if transiently. I first review design features of the LGN and follow with evidence for 10 putative functions. Only two of these tend to surface in textbooks: parsing retinal axons by eye and functional group and gating by state. Among the remaining putative functions, implementation of the principle of graceful degradation and temporal decorrelation are at least as interesting but much less promoted. The retina solves formidable problems imposed by physics to yield multiple efficient and sensitive representations of the world. The LGN applies context, increasing content, and gates several of these representations. Even if the basic concentric receptive field remains, information transmitted for each LGN spike relative to each retinal spike is measurably increased. PMID:26479339

  14. Music and the nucleus accumbens.

    PubMed

    Mavridis, Ioannis N

    2015-03-01

    Music is a universal feature of human societies over time, mainly because it allows expression and regulation of strong emotions, thus influencing moods and evoking pleasure. The nucleus accumbens (NA), the most important pleasure center of the human brain (dominates the reward system), is the 'king of neurosciences' and dopamine (DA) can be rightfully considered as its 'crown' due to the fundamental role that this neurotransmitter plays in the brain's reward system. Purpose of this article was to review the existing literature regarding the relation between music and the NA. Studies have shown that reward value for music can be coded by activity levels in the NA, whose functional connectivity with auditory and frontal areas increases as a function of increasing musical reward. Listening to music strongly modulates activity in a network of mesolimbic structures involved in reward processing including the NA. The functional connectivity between brain regions mediating reward, autonomic and cognitive processing provides insight into understanding why listening to music is one of the most rewarding and pleasurable human experiences. Musical stimuli can significantly increase extracellular DA levels in the NA. NA DA and serotonin were found significantly higher in animals exposed to music. Finally, passive listening to unfamiliar although liked music showed activations in the NA.

  15. Nucleus accumbens stimulation in pathological obesity.

    PubMed

    Harat, Marek; Rudaś, Marcin; Zieliński, Piotr; Birska, Julita; Sokal, Paweł

    2016-01-01

    One of the potential treatment methods of obesity is deep brain stimulation (DBS) of nucleus accumbens. We describe the case of 19 years old woman with hypothalamic obesity. She weighted 151.4 kg before DBS and the non-surgical methods proved to be inefficient. She was treated with implantation of DBS electrode to nucleus accumbens bilaterally. Results were measured with body mass index and neuropsychological tests. Follow-up was 14 months. Fourteen months after surgery weight was 138 kg, BMI was 48.3. Neuropsychological test results were intact. The presented case supports the thesis of treatment of obesity with nucleus accumbens stimulation. PMID:27154450

  16. Dynamic risk control by human nucleus accumbens

    PubMed Central

    Lopez-Sosa, Fernando; Gonzalez-Rosa, Javier Jesus; Galarza, Ana; Avecillas, Josue; Pineda-Pardo, Jose Angel; Lopez-Ibor, Juan José; Reneses, Blanca; Barcia, Juan Antonio

    2015-01-01

    Real-world decisions about reward often involve a complex counterbalance of risk and value. Although the nucleus accumbens has been implicated in the underlying neural substrate, its criticality to human behaviour remains an open question, best addressed with interventional methodology that probes the behavioural consequences of focal neural modulation. Combining a psychometric index of risky decision-making with transient electrical modulation of the nucleus accumbens, here we reveal profound, highly dynamic alteration of the relation between probability of reward and choice during therapeutic deep brain stimulation in four patients with treatment-resistant psychiatric disease. Short-lived phasic electrical stimulation of the region of the nucleus accumbens dynamically altered risk behaviour, transiently shifting the psychometric function towards more risky decisions only for the duration of stimulation. A critical, on-line role of human nucleus accumbens in dynamic risk control is thereby established. PMID:26428667

  17. Microtubules move the nucleus to quiescence.

    PubMed

    Laporte, Damien; Sagot, Isabelle

    2014-01-01

    The nucleus is a cellular compartment that hosts several macro-molecular machines displaying a highly complex spatial organization. This tight architectural orchestration determines not only DNA replication and repair but also regulates gene expression. In budding yeast microtubules play a key role in structuring the nucleus since they condition the Rabl arrangement in G1 and chromosome partitioning during mitosis through their attachment to centromeres via the kinetochore proteins. Recently, we have shown that upon quiescence entry, intranuclear microtubules emanating from the spindle pole body elongate to form a highly stable bundle that spans the entire nucleus. Here, we examine some molecular mechanisms that may underlie the formation of this structure. As the intranuclear microtubule bundle causes a profound re-organization of the yeast nucleus and is required for cell survival during quiescence, we discuss the possibility that the assembly of such a structure participates in quiescence establishment.

  18. Order and disorder in the nucleus.

    PubMed

    Marshall, Wallace F

    2002-03-01

    Fluorescence in situ hybridization combined with three-dimensional microscopy has shown that chromosomes are not randomly strewn throughout the nucleus but are in fact fairly well organized, with different loci reproducibly found in different regions of the nucleus. At the same time, increasingly sophisticated methods to track and analyze the movements of specific chromosomal loci in vivo using four-dimensional microscopy have revealed that chromatin undergoes extensive Brownian motion. However, the diffusion of interphase chromatin is constrained, implying that chromosomes are physically anchored within the nucleus. This constraint on diffusion is the result of interactions between chromatin and structural elements within the nucleus, such as nuclear pores or the nuclear lamina. The combination of defined positioning with constrained diffusion has a strong impact on interactions between chromosomal loci, and appears to explain the tendency of certain chromosome rearrangements to occur during the development of cancer.

  19. Dynamic risk control by human nucleus accumbens.

    PubMed

    Nachev, Parashkev; Lopez-Sosa, Fernando; Gonzalez-Rosa, Javier Jesus; Galarza, Ana; Avecillas, Josue; Pineda-Pardo, Jose Angel; Lopez-Ibor, Juan José; Reneses, Blanca; Barcia, Juan Antonio; Strange, Bryan

    2015-12-01

    Real-world decisions about reward often involve a complex counterbalance of risk and value. Although the nucleus accumbens has been implicated in the underlying neural substrate, its criticality to human behaviour remains an open question, best addressed with interventional methodology that probes the behavioural consequences of focal neural modulation. Combining a psychometric index of risky decision-making with transient electrical modulation of the nucleus accumbens, here we reveal profound, highly dynamic alteration of the relation between probability of reward and choice during therapeutic deep brain stimulation in four patients with treatment-resistant psychiatric disease. Short-lived phasic electrical stimulation of the region of the nucleus accumbens dynamically altered risk behaviour, transiently shifting the psychometric function towards more risky decisions only for the duration of stimulation. A critical, on-line role of human nucleus accumbens in dynamic risk control is thereby established. PMID:26428667

  20. Comet encke: radar detection of nucleus.

    PubMed

    Kamoun, P G; Campbell, D B; Ostro, S J; Pettengill, G H; Shapiro, I I

    1982-04-16

    The nucleus of the periodic comet Encke was detected in November 1980 with the Arecibo Observatory's radar system (wavelength, 12.6 centimeters). The echoes in the one sense of circular polarization received imply a radar cross section of 1.1 +/- 0.7 square kilometers. The estimated bandwidth of these echoes combined with an estimate of the rotation vector of Encke yields a radius for the nucleus of l.5(+2.3)(-1.0) kilometers. The uncertainties given are dependent primarily on the range of models considered for the comet and for the manner in which its nucleus backscatters radio waves. Should this range prove inadequate, the true value of the radius of the nucleus might lie outside the limits given.

  1. Volumes of cochlear nucleus regions in rodents.

    PubMed

    Godfrey, Donald A; Lee, Augustine C; Hamilton, Walter D; Benjamin, Louis C; Vishwanath, Shilpa; Simo, Hermann; Godfrey, Lynn M; Mustapha, Abdurrahman I A A; Heffner, Rickye S

    2016-09-01

    The cochlear nucleus receives all the coded information about sound from the cochlea and is the source of auditory information for the rest of the central auditory system. As such, it is a critical auditory nucleus. The sizes of the cochlear nucleus as a whole and its three major subdivisions - anteroventral cochlear nucleus (AVCN), posteroventral cochlear nucleus (PVCN), and dorsal cochlear nucleus (DCN) - have been measured in a large number of mammals, but measurements of its subregions at a more detailed level for a variety of species have not previously been made. Size measurements are reported here for the summed granular regions, DCN layers, AVCN, PVCN, and interstitial nucleus in 15 different rodent species, as well as a lagomorph, carnivore, and small primate. This further refinement of measurements is important because the granular regions and superficial layers of the DCN appear to have some different functions than the other cochlear nucleus regions. Except for DCN layers in the mountain beaver, all regions were clearly identifiable in all the animals studied. Relative regional size differences among most of the rodents, and even the 3 non-rodents, were not large and did not show a consistent relation to their wide range of lifestyles and hearing parameters. However, the mountain beaver, and to a lesser extent the pocket gopher, two rodents that live in tunnel systems, had relative sizes of summed granular regions and DCN molecular layer distinctly larger than those of the other mammals. Among all the mammals studied, there was a high correlation between the size per body weight of summed granular regions and that of the DCN molecular layer, consistent with other evidence for a close relationship between granule cells and superficial DCN neurons. PMID:27435005

  2. Physiological importance of a circadian clock outside the suprachiasmatic nucleus.

    PubMed

    Storch, K-F; Paz, C; Signorovitch, J; Raviola, E; Pawlyk, B; Li, T; Weitz, C J

    2007-01-01

    Circadian clocks are widely distributed in mammalian tissues, but little is known about the physiological functions of clocks outside the suprachiasmatic nucleus of the brain. The retina has an intrinsic circadian clock, but its importance for vision is unknown. Here, we show that mice lacking Bmal1, a gene required for clock function, had abnormal retinal transcriptional responses to light and defective inner retinal electrical responses to light, but normal photoreceptor responses to light and retinas that appeared structurally normal as observed by light and electron microscopy. We generated mice with a retina-specific genetic deletion of Bmal1, and they had defects of retinal visual physiology essentially identical to those of mice lacking Bmal1 in all tissues and lacked a circadian rhythm of inner retinal electrical responses to light. Our findings indicate that the intrinsic circadian clock of the retina regulates retinal visual processing in vivo.

  3. Automatic leukocyte nucleus segmentation by intuitionistic fuzzy divergence based thresholding.

    PubMed

    Jati, Arindam; Singh, Garima; Mukherjee, Rashmi; Ghosh, Madhumala; Konar, Amit; Chakraborty, Chandan; Nagar, Atulya K

    2014-03-01

    The paper proposes a robust approach to automatic segmentation of leukocyte's nucleus from microscopic blood smear images under normal as well as noisy environment by employing a new exponential intuitionistic fuzzy divergence based thresholding technique. The algorithm minimizes the divergence between the actual image and the ideally thresholded image to search for the final threshold. A new divergence formula based on exponential intuitionistic fuzzy entropy has been proposed. Further, to increase its noise handling capacity, a neighborhood-based membership function for the image pixels has been designed. The proposed scheme has been applied on 110 normal and 54 leukemia (chronic myelogenous leukemia) affected blood samples. The nucleus segmentation results have been validated by three expert hematologists. The algorithm achieves an average segmentation accuracy of 98.52% in noise-free environment. It beats the competitor algorithms in terms of several other metrics. The proposed scheme with neighborhood based membership function outperforms the competitor algorithms in terms of segmentation accuracy under noisy environment. It achieves 93.90% and 94.93% accuracies for Speckle and Gaussian noises, respectively. The average area under the ROC curves comes out to be 0.9514 in noisy conditions, which proves the robustness of the proposed algorithm.

  4. Functional architecture in the cell nucleus.

    PubMed Central

    Dundr, M; Misteli, T

    2001-01-01

    The major functions of the cell nucleus, including transcription, pre-mRNA splicing and ribosome assembly, have been studied extensively by biochemical, genetic and molecular methods. An overwhelming amount of information about their molecular mechanisms is available. In stark contrast, very little is known about how these processes are integrated into the structural framework of the cell nucleus and how they are spatially and temporally co-ordinated within the three-dimensional confines of the nucleus. It is also largely unknown how nuclear architecture affects gene expression. In order to understand how genomes are organized, and how they function, the basic principles that govern nuclear architecture and function must be uncovered. Recent work combining molecular, biochemical and cell biological methods is beginning to shed light on how the nucleus functions and how genes are expressed in vivo. It has become clear that the nucleus contains distinct compartments and that many nuclear components are highly dynamic. Here we describe the major structural compartments of the cell nucleus and discuss their established and proposed functions. We summarize recent observations regarding the dynamic properties of chromatin, mRNA and nuclear proteins, and we consider the implications these findings have for the organization of nuclear processes and gene expression. Finally, we speculate that self-organization might play a substantial role in establishing and maintaining nuclear organization. PMID:11368755

  5. Improved Cloud Condensation Nucleus Spectrometer

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun

    2010-01-01

    An improved thermal-gradient cloud condensation nucleus spectrometer (CCNS) has been designed to provide several enhancements over prior thermal- gradient counters, including fast response and high-sensitivity detection covering a wide range of supersaturations. CCNSs are used in laboratory research on the relationships among aerosols, supersaturation of air, and the formation of clouds. The operational characteristics of prior counters are such that it takes long times to determine aerosol critical supersaturations. Hence, there is a need for a CCNS capable of rapid scanning through a wide range of supersaturations. The present improved CCNS satisfies this need. The improved thermal-gradient CCNS (see Figure 1) incorporates the following notable features: a) The main chamber is bounded on the top and bottom by parallel thick copper plates, which are joined by a thermally conductive vertical wall on one side and a thermally nonconductive wall on the opposite side. b) To establish a temperature gradient needed to establish a supersaturation gradient, water at two different regulated temperatures is pumped through tubes along the edges of the copper plates at the thermally-nonconductive-wall side. Figure 2 presents an example of temperature and supersaturation gradients for one combination of regulated temperatures at the thermally-nonconductive-wall edges of the copper plates. c) To enable measurement of the temperature gradient, ten thermocouples are cemented to the external surfaces of the copper plates (five on the top plate and five on the bottom plate), spaced at equal intervals along the width axis of the main chamber near the outlet end. d) Pieces of filter paper or cotton felt are cemented onto the interior surfaces of the copper plates and, prior to each experimental run, are saturated with water to establish a supersaturation field inside the main chamber. e) A flow of monodisperse aerosol and a dilution flow of humid air are introduced into the main

  6. A spatiotemporal analysis of gait freezing and the impact of pedunculopontine nucleus stimulation

    PubMed Central

    Cole, Michael H.; Graepel, Cara L.; Hyam, Jonathan A.; Jenkinson, Ned; Brittain, John-Stuart; Coyne, Terry J.; Silburn, Peter A.; Aziz, Tipu Z.; Kerr, Graham; Brown, Peter

    2012-01-01

    Gait freezing is an episodic arrest of locomotion due to an inability to take normal steps. Pedunculopontine nucleus stimulation is an emerging therapy proposed to improve gait freezing, even where refractory to medication. However, the efficacy and precise effects of pedunculopontine nucleus stimulation on Parkinsonian gait disturbance are not established. The clinical application of this new therapy is controversial and it is unknown if bilateral stimulation is more effective than unilateral. Here, in a double-blinded study using objective spatiotemporal gait analysis, we assessed the impact of unilateral and bilateral pedunculopontine nucleus stimulation on triggered episodes of gait freezing and on background deficits of unconstrained gait in Parkinson’s disease. Under experimental conditions, while OFF medication, Parkinsonian patients with severe gait freezing implanted with pedunculopontine nucleus stimulators below the pontomesencephalic junction were assessed during three conditions; off stimulation, unilateral stimulation and bilateral stimulation. Results were compared to Parkinsonian patients without gait freezing matched for disease severity and healthy controls. Pedunculopontine nucleus stimulation improved objective measures of gait freezing, with bilateral stimulation more effective than unilateral. During unconstrained walking, Parkinsonian patients who experience gait freezing had reduced step length and increased step length variability compared to patients without gait freezing; however, these deficits were unchanged by pedunculopontine nucleus stimulation. Chronic pedunculopontine nucleus stimulation improved Freezing of Gait Questionnaire scores, reflecting a reduction of the freezing encountered in patients’ usual environments and medication states. This study provides objective, double-blinded evidence that in a specific subgroup of Parkinsonian patients, stimulation of a caudal pedunculopontine nucleus region selectively improves gait

  7. Transient anomalous diffusion of telomeres in the nucleus of mammalian cells.

    PubMed

    Bronstein, I; Israel, Y; Kepten, E; Mai, S; Shav-Tal, Y; Barkai, E; Garini, Y

    2009-07-01

    We measured individual trajectories of fluorescently labeled telomeres in the nucleus of eukaryotic cells in the time range of 10(-2)-10(4)sec by combining a few acquisition methods. At short times the motion is subdiffusive with r2 approximately talpha and it changes to normal diffusion at longer times. The short times diffusion may be explained by the reptation model and the transient diffusion is consistent with a model of telomeres that are subject to a local binding mechanism with a wide but finite distribution of waiting times. These findings have important biological implications with respect to the genome organization in the nucleus.

  8. Dynamics of hadron-nucleus interactions

    SciTech Connect

    Wallace, S.J.

    1981-07-01

    Recent progress in diffraction theory shows that proton-nucleus scattering at nonforward angles is dominated by the interference of waves from two or more bright spots. Analytic formulas based on asymptotic theories of diffraction yield valuable new insights into the scattering and these formulas can be readily extended to illuminate the role of dynamical ingredients, i.e., the nucleon-nucleon amplitudes. The governing parameters of the diffraction and some direct connections between the observed cross sections and the input dynamics are reviewed. New information regarding the nucleon-nucleon parameters based on recent phase shift analyses show some systematic differences from the effective NN amplitudes which produce fits to proton-nucleus diffraction data. Recent progress in understanding the role of ..delta..-isobars in proton-nucleus dynamics is reviewed. 126 references.

  9. The dynamic landscape of the cell nucleus.

    PubMed

    Austin, Christopher M; Bellini, Michel

    2010-01-01

    While the cell nucleus was described for the first time almost two centuries ago, our modern view of the nuclear architecture is primarily based on studies from the last two decades. This surprising late start coincides with the development of new, powerful strategies to probe for the spatial organization of nuclear activities in both fixed and live cells. As a result, three major principles have emerged: first, the nucleus is not just a bag filled with nucleic acids and proteins. Rather, many distinct functional domains, including the chromosomes, resides within the confines of the nuclear envelope. Second, all these nuclear domains are highly dynamic, with molecules exchanging rapidly between them and the surrounding nucleoplasm. Finally, the motion of molecules within the nucleoplasm appears to be mostly driven by random diffusion. Here, the emerging roles of several subnuclear domains are discussed in the context of the dynamic functions of the cell nucleus.

  10. The nucleus: a black box being opened.

    PubMed

    van Driel, R; Humbel, B; de Jong, L

    1991-12-01

    Until recently our knowledge about the structural and functional organization of the cell nucleus was very limited. Recent technical developments in the field of ultrastructural analysis, combined with ongoing research on the properties of the nuclear matrix, give new insight into how the nucleus is structured. Two types of observations shape our ideas about nuclear organization. First, most nuclear functions (replication, transcription, RNA processing, and RNA transport) are highly localized within the nucleus, rather than diffusely distributed. Moreover, they are associated with the nuclear matrix. Second, chromatin is organized in discrete loops, bordered by nuclear matrix attachment sequences (MARs). Each loop may contain one or several genes. The arrangement of chromatin in loops has profound consequences for the regulation of gene expression.

  11. Interpretive monitoring in the caudate nucleus

    PubMed Central

    Yanike, Marianna; Ferrera, Vincent P

    2014-01-01

    In a dynamic environment an organism has to constantly adjust ongoing behavior to adapt to a given context. This process requires continuous monitoring of ongoing behavior to provide its meaningful interpretation. The caudate nucleus is known to have a role in behavioral monitoring, but the nature of these signals during dynamic behavior is still unclear. We recorded neuronal activity in the caudate nucleus in monkeys during categorization behavior that changed rapidly across contexts. We found that neuronal activity maintained representation of the identity and context of a recently categorized stimulus, as well as interpreted the behavioral meaningfulness of the maintained trace. The accuracy of this cognitive monitoring signal was highest for behavior for which subjects were prone to make errors. Thus, the caudate nucleus provides interpretive monitoring of ongoing behavior, which is necessary for contextually specific decisions to adapt to rapidly changing conditions. DOI: http://dx.doi.org/10.7554/eLife.03727.001 PMID:25415238

  12. The Effects of Disease Models of Nuclear Actin Polymerization on the Nucleus

    PubMed Central

    Serebryannyy, Leonid A.; Yuen, Michaela; Parilla, Megan; Cooper, Sandra T.; de Lanerolle, Primal

    2016-01-01

    Actin plays a crucial role in regulating multiple processes within the nucleus, including transcription and chromatin organization. However, the polymerization state of nuclear actin remains controversial, and there is no evidence for persistent actin filaments in a normal interphase nucleus. Further, several disease pathologies are characterized by polymerization of nuclear actin into stable filaments or rods. These include filaments that stain with phalloidin, resulting from point mutations in skeletal α-actin, detected in the human skeletal disease intranuclear rod myopathy, and cofilin/actin rods that form in response to cellular stressors like heatshock. To further elucidate the effects of these pathological actin structures, we examined the nucleus in both cell culture models as well as isolated human tissues. We find these actin structures alter the distribution of both RNA polymerase II and chromatin. Our data suggest that nuclear actin filaments result in disruption of nuclear organization, which may contribute to the disease pathology. PMID:27774069

  13. Hydrated nucleus pulposus herniation in seven dogs.

    PubMed

    Manunta, M L; Evangelisti, M A; Bergknut, N; Grinwis, G C M; Ballocco, I; Meij, B P

    2015-03-01

    The clinical signs, magnetic resonance imaging (MRI) findings, treatment and follow-up in seven dogs with hydrated nucleus pulposus extrusion (HNPE) are reported. All dogs had tetraparesis or tetraplegia. T2-weighted MRI revealed extradural hyperintense homogeneous material compressing the cervical spinal cord. After conservative treatment (five dogs) or surgical decompression (two dogs), all dogs returned to ambulatory function within 1 month. Follow-up MRI in conservatively treated dogs revealed complete disappearance of the extruded material. Histopathological examination of surgical specimens confirmed that the retrieved material was extruded nucleus pulposus with evidence of early degeneration. PMID:25599897

  14. Nucleus model for periodic Comet Tempel 2

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek

    1991-01-01

    Observational data obtained primarily during 1988 are analyzed and synthesized to develop a comprehensive physical model for the nucleus of Periodic Comet Tempel 2, one of the best studied members of Jupiter's family of short-period comets. It is confirmed that a previous investigation provided reliable information on the comet's spin-axis orientation, which implies and obliquity of 54 degrees of the orbit plane to the equatorial plane and which appears to have varied little - if at all - with time. This conclusion is critical for fitting a triaxial ellipsoid to approximate the figure of the nucleus.

  15. UNCOVERING THE NUCLEUS CANDIDATE FOR NGC 253

    SciTech Connect

    Günthardt, G. I.; Camperi, J. A.; Agüero, M. P.; Díaz, R. J.; Gomez, P. L.; Schirmer, M.; Bosch, G. E-mail: camperi@oac.uncor.edu E-mail: rdiaz@gemini.edu E-mail: mschirmer@gemini.edu

    2015-11-15

    NGC 253 is the nearest spiral galaxy with a nuclear starburst that becomes the best candidate for studying the relationship between starburst and active galactic nucleus activity. However, this central region is veiled by large amounts of dust, and it has been so far unclear which is the true dynamical nucleus to the point that there is no strong evidence that the galaxy harbors a supermassive black hole co-evolving with the starburst as was supposed earlier. Near-infrared (NIR) spectroscopy, especially NIR emission line analysis, could be advantageous in shedding light on the true nucleus identity. Using Flamingos-2 at Gemini South we have taken deep K-band spectra along the major axis of the central structure and through the brightest infrared source. In this work, we present evidence showing that the brightest NIR and mid-infrared source in the central region, already known as radio source TH7 and so far considered just a large stellar supercluster, in fact presents various symptoms of a genuine galactic nucleus. Therefore, it should be considered a valid nucleus candidate. Mentioning some distinctive aspects, it is the most massive compact infrared object in the central region, located at 2.″0 of the symmetry center of the galactic bar, as measured in the K-band emission. Moreover, our data indicate that this object is surrounded by a large circumnuclear stellar disk and it is also located at the rotation center of the large molecular gas disk of NGC 253. Furthermore, a kinematic residual appears in the H{sub 2} rotation curve with a sinusoidal shape consistent with an outflow centered in the candidate nucleus position. The maximum outflow velocity is located about 14 pc from TH7, which is consistent with the radius of a shell detected around the nucleus candidate, observed at 18.3 μm (Qa) and 12.8 μm ([Ne ii]) with T-ReCS. Also, the Brγ emission line profile shows a pronounced blueshift and this emission line also has the highest equivalent width at this

  16. Compound Nucleus Contributions to the Optical Potential

    SciTech Connect

    Thompson, I J; Dietrich, F S; Escher, J E; Dupuis, M

    2008-01-28

    An ab-initio calculation of the optical potential for neutron-nucleus scattering has been performed by explicitly coupling the elastic channel to all the particle-hole (p-h) excitation states in the target. These p-h states may be regarded as doorway states through which the flux flows to more complicated configurations, and (in the end) to long-lived compound nucleus resonances. The random-phase approximation (RPA) provides the linear combinations of p-h states that include the residual interactions within the target, and we show preliminary results for elastic flux loss using both p-h and RPA descriptions of target excitations.

  17. Uncovering the Nucleus Candidate for NGC 253

    NASA Astrophysics Data System (ADS)

    Günthardt, G. I.; Agüero, M. P.; Camperi, J. A.; Díaz, R. J.; Gomez, P. L.; Bosch, G.; Schirmer, M.

    2015-11-01

    NGC 253 is the nearest spiral galaxy with a nuclear starburst that becomes the best candidate for studying the relationship between starburst and active galactic nucleus activity. However, this central region is veiled by large amounts of dust, and it has been so far unclear which is the true dynamical nucleus to the point that there is no strong evidence that the galaxy harbors a supermassive black hole co-evolving with the starburst as was supposed earlier. Near-infrared (NIR) spectroscopy, especially NIR emission line analysis, could be advantageous in shedding light on the true nucleus identity. Using Flamingos-2 at Gemini South we have taken deep K-band spectra along the major axis of the central structure and through the brightest infrared source. In this work, we present evidence showing that the brightest NIR and mid-infrared source in the central region, already known as radio source TH7 and so far considered just a large stellar supercluster, in fact presents various symptoms of a genuine galactic nucleus. Therefore, it should be considered a valid nucleus candidate. Mentioning some distinctive aspects, it is the most massive compact infrared object in the central region, located at 2.″0 of the symmetry center of the galactic bar, as measured in the K-band emission. Moreover, our data indicate that this object is surrounded by a large circumnuclear stellar disk and it is also located at the rotation center of the large molecular gas disk of NGC 253. Furthermore, a kinematic residual appears in the H2 rotation curve with a sinusoidal shape consistent with an outflow centered in the candidate nucleus position. The maximum outflow velocity is located about 14 pc from TH7, which is consistent with the radius of a shell detected around the nucleus candidate, observed at 18.3 μm (Qa) and 12.8 μm ([Ne ii]) with T-ReCS. Also, the Brγ emission line profile shows a pronounced blueshift and this emission line also has the highest equivalent width at this

  18. A thalamic input to the nucleus accumbens mediates opiate dependence

    PubMed Central

    Zhu, Yingjie; Wienecke, Carl F.R.; Nachtrab, Gregory; Chen, Xiaoke

    2016-01-01

    Chronic opiate use induces opiate dependence, which is characterized by extremely unpleasant physical and emotional feelings after drug use is terminated. Both rewarding effects of drug and the desire to avoid withdrawal symptoms motivate continued drug use1-3, and the nucleus accumbens (NAc) is important for orchestrating both processes4,5. While multiple inputs to the NAc regulate reward6-9, little is known about the NAc circuitry underlying withdrawal. Here we identify the paraventricular nucleus of the thalamus (PVT) as a prominent input to the NAc mediating the expression of opiate withdrawal induced physical signs and aversive memory. Activity in the PVT to NAc pathway is necessary and sufficient to mediate behavioral aversion. Selectively silencing this pathway abolishes aversive symptoms in two different mouse models of opiate withdrawal. Chronic morphine exposure selectively potentiates excitatory transmission between the PVT and D2-receptor-expressing medium spiny neurons (D2-MSNs) via synaptic insertion of GluA2-lacking AMPA receptors. Notably, in vivo optogenetic depotentiation restores normal transmission at PVT→D2-MSNs synapses and robustly suppresses morphine withdrawal symptoms. These results link morphine-evoked pathway- and cell type-specific plasticity in the PVT→NAc circuit to opiate dependence, and suggest that reprogramming this circuit holds promise for treating opiate addiction. PMID:26840481

  19. A Relativistic Multiple Scattering Theory for Nucleus-Nucleus Collisions with Delta Resonance Coupling

    NASA Astrophysics Data System (ADS)

    Werneth, Charles; Maung Maung, Khin; Norbury, John

    2012-10-01

    Non-relativistic multiple scattering theories (NRMST) are formulated by separating the unperturbed Hamiltonian from the interaction and writing the Lippmann-Schwinger equation as an infinite series in the multiple sums of pseudo two-body operators, known as the Watson tau-operators. The advantage of using the multiple scattering theory (MST) is that the pseudo two-body operators are often well approximated by free two-body nucleon-nucleon operators, which are obtained from parameterizations of experimental data. Relativistic theories are needed to properly describe the production of new particles, such as pions, from nucleus-nucleus collisions. Relativistic multiple scattering theories (RMST) have been developed for nucleon-nucleus scattering; however, no RMST for nucleus-nucleus scattering has yet been derived.footnotetextMaung K M, Norbury J W, and Coleman T 2007 J. Phys. G 34 1861. The purpose of this research is to derive an RMST for nucleus-nucleus scattering and to include delta degrees of freedom in the interaction, the minimum requirement for pion production.

  20. Shape of Caudate Nucleus and Its Cognitive Correlates in Neuroleptic-Naive Schizotypal Personality Disorder

    PubMed Central

    Levitt, James J.; Westin, Carl-Fredrik; Nestor, Paul G.; Estepar, Raul S.J.; Dickey, Chandlee C.; Voglmaier, Martina M.; Seidman, Larry J.; Kikinis, Ron; Jolesz, Ferenc A.; McCarley, Robert W.; Shenton, Martha E.

    2009-01-01

    Background We measured the shape of the head of the caudate nucleus with a new approach based on magnetic resonance imaging (MRI) in schizotypal personality disorder (SPD) subjects in whom we previously reported decreased caudate nucleus volume. We believe MRI shape analysis complements traditional MRI volume measurements. Methods Magnetic resonance imaging scans were used to measure the shape of the caudate nucleus in 15 right-handed male subjects with SPD, who had no prior neuroleptic exposure, and in 14 matched normal comparison subjects. With MRI processing tools, we measured the head of the caudate nucleus using a shape index, which measured how much a given shape deviates from a sphere. Results In relation to comparison subjects, neuroleptic never-medicated SPD subjects had significantly higher (more “edgy”) head of the caudate shape index scores, lateralized to the right side. Additionally, for SPD subjects, higher right and left head of the caudate SI scores correlated significantly with poorer neuropsychological performance on tasks of visuospatial memory and auditory/verbal working memory, respectively. Conclusions These data confirm the value of measuring shape, as well as volume, of brain regions of interest and support the association of intrinsic pathology in the caudate nucleus, unrelated to neuroleptic medication, with cognitive abnormalities in the schizophrenia spectrum. PMID:14732598

  1. Shape and Size of the Fission Yeast Nucleus are governed by Equilibrium Mechanics

    NASA Astrophysics Data System (ADS)

    Lim, Gerald; Huber, Greg; Miller, Jonathan; Sazer, Shelley

    2006-03-01

    Nuclear morphogenesis in the asexual reproduction of Schizosaccharomyces pombe (fission yeast) consists of two stages: (i) volume-doubling growth, in which a round nucleus inflates uniformly, and (ii) division, in which the nucleus undergoes shape changes from round to oblong to peanut to dumbbell before it resolves into two smaller, round daughter nuclei, driven by the formation and elongation of a microtubule-based spindle within the nucleus. The combined volume of the daughter nuclei immediately after division is the same as the volume of the single nucleus at the onset of division. Consequently, the nuclear envelope (NE) area must increase by 26% during division. We are developing a model in order to determine the mechanics governing these shape and size changes. It is based on current knowledge of the nuclear structure, insight from normal and abnormal nuclei, and concepts from the mechanics governing lipid-bilayer membranes. We predict that (a) the NE prefers to be flat, (b) the NE is under tension, (c) the nucleus has an internal pressure, (d) nuclear growth is governed by the Law of Laplace, and (e) some abnormal nuclei behave like vesicles with encapsulated microtubules.

  2. IMACULAT — An Open Access Package for the Quantitative Analysis of Chromosome Localization in the Nucleus

    PubMed Central

    Rao, Basuthkar J.

    2013-01-01

    The alteration in the location of the chromosomes within the nucleus upon action of internal or external stimuli has been implicated in altering genome function. The effect of stimuli at a whole genome level is studied by using two-dimensional fluorescence in situ hybridization (FISH) to delineate whole chromosome territories within a cell nucleus, followed by a quantitative analysis of the spatial distribution of the chromosome. However, to the best of our knowledge, open access software capable of quantifying spatial distribution of whole chromosomes within cell nucleus is not available. In the current work, we present a software package that computes localization of whole chromosomes - Image Analysis of Chromosomes for computing localization (IMACULAT). We partition the nucleus into concentric elliptical compartments of equal area and the variance in the quantity of any chromosome in these shells is used to determine its localization in the nucleus. The images are pre-processed to remove the smudges outside the cell boundary. Automation allows high throughput analysis for deriving statistics. Proliferating normal human dermal fibroblasts were subjected to standard a two-dimensional FISH to delineate territories for all human chromosomes. Approximately 100 images from each chromosome were analyzed using IMACULAT. The analysis corroborated that these chromosome territories have non-random gene density based organization within the interphase nuclei of human fibroblasts. The ImageMagick Perl API has been used for pre-processing the images. The source code is made available at www.sanchak.com/imaculat.html. PMID:23577217

  3. TWO-PHOTON PHYSICS IN NUCLEUS-NUCLEUS COLLISIONS AT RHIC.

    SciTech Connect

    NYSTRAND,J.

    1998-09-10

    Ultra-relativistic heavy-ions carry strong electromagnetic and nuclear fields. Interactions between these fields in peripheral nucleus-nucleus collisions can probe many interesting physics topics. This presentation will focus on coherent two-photon and photonuclear processes at RHIC. The rates for these interactions will be high. The coherent coupling of all the protons in the nucleus enhances the equivalent photon flux by a factor Z{sup 2} up to an energy of {approx} 3 GeV. The plans for studying coherent interactions with the STAR experiment will be discussed. Experimental techniques for separating signal from background will be presented.

  4. An organism arises from every nucleus.

    PubMed

    Keklikoglu, Nurullah

    2009-01-01

    The fact that, cloning using somatic cell nuclear transfer (SCNT) method has been performed, opened new horizons for cloning, and changed the way of our understanding and approach to cell and nucleus. The progress in cloning technology, brought the anticipation of the ability to clone an organism from each somatic cell nucleus. Therefore, the 'Cell Theory' is about to take the additional statement as "An organism arises from every nucleus". The development of gene targeting procedures which can be applied with SCNT, showed us that it may be possible to obtain different versions of the original genetic constitution of a cell. Because of this opportunity which is provided by SCNT, in reproductive cloning, it would be possible to clone enhanced organisms which can adapt to different environmental conditions and survive. Furthermore, regaining the genetic characteristics of ancestors or reverse herediter variations would be possible. On the other hand, in therapeutic cloning, more precise and easily obtainable alternatives for cell replacement therapy could be presented. However, while producing healthier or different organisms from a nucleus, it is hard to foresee the side effects influencing natural processes in long term is rather difficult.

  5. The Checkerboard Model of the Nucleus

    NASA Astrophysics Data System (ADS)

    Lach, Theodore

    2015-04-01

    The Checker Board Model (CBM) of the nucleus and the associated extended standard model predicts that nature has 5 generations of quarks not 3 and that Nucleus is 2 dimensional. The CBM theory began with an insight into the structure of the He nucleus around the year 1989. Details of how this theory evolved which took many years, and is found on my web site (http://checkerboard.dnsalias.net) or in the following references One independent check of this model is that the wavelength of the ``up'' quark orbiting inside the proton at 84.8123% the speed of light (around the ``dn'' quark in the center of the proton) turns out to be exactly one de Broglie wavelength something determined after the mass and speed of the up quark were determined by other means. This theory explains the mass of the proton and neutron and their magnetic moments and this along with the beautiful symmetric 2D structure of the He nucleus led to the evolution of this theory. When this theory was first presented at Argonne in 1996, it was the first time that anyone had predicted the quarks orbited inside the proton at relativistic speeds and it was met with skepticism.

  6. The Nucleus and the Simple Microscope.

    ERIC Educational Resources Information Center

    Ford, Brian J.

    1982-01-01

    The 150th anniversary of the naming of the nucleus by Robert Brown in 1831 was commemorated by re-creating some of his most important observations using two of his microscopes. Comments on Brown's career and the microtechnique employed during his time are provided. (Author/JN)

  7. Quantitative differences among EMG activities of muscles innervated by subpopulations of hypoglossal and upper spinal motoneurons during non-REM sleep - REM sleep transitions: a window on neural processes in the sleeping brain.

    PubMed

    Rukhadze, I; Kamani, H; Kubin, L

    2011-12-01

    In the rat, a species widely used to study the neural mechanisms of sleep and motor control, lingual electromyographic activity (EMG) is minimal during non-rapid eye movement (non-REM) sleep and then phasic twitches gradually increase after the onset of REM sleep. To better characterize the central neural processes underlying this pattern, we quantified EMG of muscles innervated by distinct subpopulations of hypoglossal motoneurons and nuchal (N) EMG during transitions from non-REM sleep to REM sleep. In 8 chronically instrumented rats, we recorded cortical EEG, EMG at sites near the base of the tongue where genioglossal and intrinsic muscle fibers predominate (GG-I), EMG of the geniohyoid (GH) muscle, and N EMG. Sleep-wake states were identified and EMGs quantified relative to their mean levels in wakefulness in successive 10 s epochs. During non-REM sleep, the average EMG levels differed among the three muscles, with the order being N>GH>GG-I. During REM sleep, due to different magnitudes of phasic twitches, the order was reversed to GG-I>GH>N. GG-I and GH exhibited a gradual increase of twitching that peaked at 70-120 s after the onset of REM sleep and then declined if the REM sleep episode lasted longer. We propose that a common phasic excitatory generator impinges on motoneuron pools that innervate different muscles, but twitching magnitudes are different due to different levels of tonic motoneuronal hyperpolarization. We also propose that REM sleep episodes of average durations are terminated by intense activity of the central generator of phasic events, whereas long REM sleep episodes end as a result of a gradual waning of the tonic disfacilitatory and inhibitory processes.

  8. Correlation of transverse momentum and multiplicity in a superposition model of nucleus-nucleus collisions

    SciTech Connect

    Mrowczynski, Stanislaw

    2006-04-15

    In p-p collisions the average transverse momentum is known to be correlated with the multiplicity of produced particles. The correlation is shown to survive in a superposition model of nucleus-nucleus collisions. When properly parametrized, the correlation strength appears to be independent of the collision centrality--it is the same in p-p and central A-A collisions. However, the correlation is strongly suppressed by the centrality fluctuations.

  9. Average transverse momentum and energy density in high-energy nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.; Jurak, A.; Lord, J. J.

    1986-01-01

    Emulsion chambers were used to measure the transverse momenta of photons or pi(0) mesons produced in high-energy cosmic-ray nucleus-nucleus collisions. A group of events having large average transverse momenta has been found which apparently exceeds the expected limiting values. Analysis of the events at early interaction times, of the order of 1 fm/c, indicates that the observed transverse momentum increases with both rapidity density and energy density.

  10. Nucleus-nucleus total reaction cross sections, and the nuclear interaction radius

    SciTech Connect

    Abu-Ibrahim, Badawy

    2011-04-15

    We study the nucleus-nucleus total reaction cross sections for stable nuclei, in the energy region from 30A MeV to about 1A GeV, and find them to be in proportion to ({radical}({sigma}{sub pp}{sup tot}Z{sub 1}{sup 2/3}+{sigma}{sub pn}{sup tot}N{sub 1}{sup 2/3})+{radical}({sigma}{sub pp}{sup tot}Z{sub 2}{sup 2/3}+{sigma}{sub pn}{sup tot}N{sub 2}{sup 2/3})) {sup 2} in the mass range 8 to 100. Also, we find a parameter-free relation that enables us to predict a total reaction cross section for any nucleus-nucleus within 10% uncertainty at most, using the experimental value of the total reaction cross section of a given nucleus-nucleus. The power of the relation is demonstrated by several examples. The energy dependence of the nuclear interaction radius is deduced; it is found to be almost constant in the energy range from about 200A MeV to about 1A GeV; in this energy range and for nuclei with N=Z, R{sub I}(A)=(1.14{+-}0.02)A{sup 1/3} fm.

  11. The Neutrophil Nucleus and Its Role in Neutrophilic Function.

    PubMed

    Carvalho, Leonardo Olivieri; Aquino, Elaine Nascimento; Neves, Anne Caroline Dias; Fontes, Wagner

    2015-09-01

    The cell nucleus plays a key role in differentiation processes in eukaryotic cells. It is not the nucleus in particular, but the organization of the genes and their remodeling that provides the data for the adjustments to be made according to the medium. The neutrophil nucleus has a different morphology. It is a multi-lobed nucleus where some researchers argue no longer function. However, studies indicate that it is very probable the occurrence of chromatin remodeling during activation steps. It may be that the human neutrophil nucleus also contributes to the mobility of neutrophils through thin tissue spaces. Questions like these will be discussed in this small review. The topics include morphology of human neutrophil nucleus, maturation process and modifications of the neutrophil nucleus, neutrophil activation and chromatin modifications, causes and consequences of multi-lobulated segmented morphology, and importance of the nucleus in the formation of neutrophil extracellular traps (NETs).

  12. Normal Pressure Hydrocephalus

    MedlinePlus

    ... Enhancing Diversity Find People About NINDS NINDS Normal Pressure Hydrocephalus Information Page Synonym(s): Hydrocephalus - Normal Pressure Table ... Español Additional resources from MedlinePlus What is Normal Pressure Hydrocephalus? Normal pressure hydrocephalus (NPH) is an abnormal ...

  13. TOR-in(g) the nucleus.

    PubMed

    Tsang, Chi Kwan; Zheng, X F Steven

    2007-01-01

    Target of rapamycin (TOR) is a central component of the eukaryotic growth regulatory network. TOR controls the expression of diverse genes by all three RNA polymerases, including ribosome biogenesis, utilization and transport of nutrients, and stress-related genes. Until recently, TOR was thought to be a classical signaling kinase that regulates transcription factors in the cytoplasm. However, our recent study shows that in yeast, TOR dynamically shuttles between the cytoplasm and nucleus, and binds to 35S ribosomal DNA (rDNA) promoter. Importantly, nuclear localization and promoter-binding is crucial for TOR to control RNA polymerase (Pol) I-dependent 35S rDNA transcription. In contrast, either cytoplasmic or nuclear TOR is sufficient to regulate Pol II-dependent transcription. These observations suggest that TOR in the nucleus plays an important role in gene regulation, and that TOR takes a multifaceted approach to control expression of different genes.

  14. How the nucleus copes with proteotoxic stress.

    PubMed

    Shibata, Yoko; Morimoto, Richard I

    2014-05-19

    The proper folding of proteins is continuously challenged by intrinsic and extrinsic stresses, and the accumulation of toxic misfolded proteins is associated with many human diseases. Eukaryotic cells have evolved a complex network of protein quality control pathways to protect the proteome, and these pathways are specialized for each subcellular compartment. While many details have been elucidated for how the cytosol and endoplasmic reticulum counteract proteotoxic stress, relatively little is known about the pathways protecting the nucleus from protein misfolding. Proper maintenance of nuclear proteostasis has important implications in preserving genomic integrity, as well as for aging and disease. Here, we offer a conceptual framework for how proteostasis is maintained in this organelle. We define the particular requirements that must be considered for the nucleus to manage proteotoxic stress, summarize the known and implicated pathways of nuclear protein quality control, and identify the unresolved questions in the field.

  15. Cell Nucleus-Targeting Zwitterionic Carbon Dots

    PubMed Central

    Jung, Yun Kyung; Shin, Eeseul; Kim, Byeong-Su

    2015-01-01

    An innovative nucleus-targeting zwitterionic carbon dot (CD) vehicle has been developed for anticancer drug delivery and optical monitoring. The zwitterionic functional groups of the CDs introduced by a simple one-step synthesis using β-alanine as a passivating and zwitterionic ligand allow cytoplasmic uptake and subsequent nuclear translocation of the CDs. Moreover, multicolor fluorescence improves the accuracy of the CDs as an optical code. The CD-based drug delivery system constructed by non-covalent grafting of doxorubicin, exhibits superior antitumor efficacy owing to enhanced nuclear delivery in vitro and tumor accumulation in vivo, resulting in highly effective tumor growth inhibition. Since the zwitterionic CDs are highly biocompatible and effectively translocated into the nucleus, it provides a compelling solution to a multifunctional nanoparticle for substantially enhanced nuclear uptake of drugs and optical monitoring of translocation. PMID:26689549

  16. Cell Nucleus-Targeting Zwitterionic Carbon Dots.

    PubMed

    Jung, Yun Kyung; Shin, Eeseul; Kim, Byeong-Su

    2015-12-22

    An innovative nucleus-targeting zwitterionic carbon dot (CD) vehicle has been developed for anticancer drug delivery and optical monitoring. The zwitterionic functional groups of the CDs introduced by a simple one-step synthesis using β-alanine as a passivating and zwitterionic ligand allow cytoplasmic uptake and subsequent nuclear translocation of the CDs. Moreover, multicolor fluorescence improves the accuracy of the CDs as an optical code. The CD-based drug delivery system constructed by non-covalent grafting of doxorubicin, exhibits superior antitumor efficacy owing to enhanced nuclear delivery in vitro and tumor accumulation in vivo, resulting in highly effective tumor growth inhibition. Since the zwitterionic CDs are highly biocompatible and effectively translocated into the nucleus, it provides a compelling solution to a multifunctional nanoparticle for substantially enhanced nuclear uptake of drugs and optical monitoring of translocation.

  17. Coherency in neutrino-nucleus elastic scattering

    NASA Astrophysics Data System (ADS)

    Kerman, S.; Sharma, V.; Deniz, M.; Wong, H. T.; Chen, J.-W.; Li, H. B.; Lin, S. T.; Liu, C.-P.; Yue, Q.; Texono Collaboration

    2016-06-01

    Neutrino-nucleus elastic scattering provides a unique laboratory to study the quantum mechanical coherency effects in electroweak interactions, towards which several experimental programs are being actively pursued. We report results of our quantitative studies on the transitions towards decoherency. A parameter (α ) is identified to describe the degree of coherency, and its variations with incoming neutrino energy, detector threshold, and target nucleus are studied. The ranges of α that can be probed with realistic neutrino experiments are derived, indicating complementarity between projects with different sources and targets. Uncertainties in nuclear physics and in α would constrain sensitivities in probing physics beyond the standard model. The maximum neutrino energies corresponding to α >0.95 are derived.

  18. Core-nucleus distortation in hypernuclei

    SciTech Connect

    Bodmer, A.R.; Usmani, Q.N.

    1995-08-01

    We are completing a study of the effects of the spherical distortion of the {open_quotes}core{close_quotes} nucleus by the {Lambda} in a hypernucleus. The response of the core was determined by an appropriately chosen energy-density functional which depends, in particular, on the nuclear compressibility. The forcing action of the A is determined by the nuclear density dependence of the {Lambda} binding in nuclear matter which is obtained from our work on the {Lambda} single-particle energies. Because of the strongly repulsive {Lambda}NN forces, this {Lambda} binding {open_quotes}saturates{close_quotes} at a density close to the central density of nuclei, and results in a reduced core-nucleus distortion much less than would otherwise be obtained. The effects of the core distortion then turn out to be very small even for quite light hypernuclei. This result justifies the assumption that spherical core nuclei are effectively undistorted in a hypernucleus.

  19. Development of a Mobile Ice Nucleus Counter

    SciTech Connect

    Kok, Gregory; Kulkarni, Gourihar

    2014-07-10

    An ice nucleus counter has been constructed. The instrument uses built-in refrigeration systems for wall cooling. A cascade refrigeration system will allow the cold wall to operate as low as -70 deg C, and a single stage system can operate the warm wall at -45 deg C. A unique optical particle counter has been constructed using polarization detection of the scattered light. This allows differentiation of the particles exiting the chamber to determine if they are ice or liquid.

  20. Physical Properties of Cometary Nucleus Candidates

    NASA Technical Reports Server (NTRS)

    Jewitt, David; Hillman, John (Technical Monitor)

    2003-01-01

    In this proposal we aim to study the physical properties of the Centaurs and the dead comets, these being the precursors to, and the remnants from, the active cometary nuclei. The nuclei themselves are very difficult to study, because of the contaminating effects of near-nucleus coma. Systematic investigation of the nuclei both before they enter the zone of strong sublimation and after they have depleted their near-surface volatiles should neatly bracket the properties of these objects, revealing evolutionary effects.

  1. Parity violation in the compound nucleus

    SciTech Connect

    Mitchell, G. E.; Crawford, B. E.; Grossmann, C. A.; Lowie, L. Y.; Bowman, J. D.; Knudson, J.; Penttilae, S.; Seestrom, S. J.; Smith, D. A.; Yen, Yi-Fen; Yuan, V. W.; Delheij, P. P. J.; Haseyama, T.; Masaike, A.; Matsuda, Y.; Postma, H.; Roberson, N. R.; Sharapov, E. I.; Stephenson, S. L.

    1999-06-10

    Measurements have been performed on the helicity dependence of the neutron resonance cross section for many nuclei by our TRIPLE Collaboration. A large number of parity violations are observed. Generic enhancements amplify the signal for symmetry breaking and the stochastic properties of the compound nucleus permit the strength of the symmetry-breaking interaction to be determined without knowledge of the wave functions of individual states. A total of 15 nuclei have been analyzed with this statistical approach. The results are summarized.

  2. Revisiting the supratrigeminal nucleus in the rat.

    PubMed

    Fujio, T; Sato, F; Tachibana, Y; Kato, T; Tomita, A; Higashiyama, K; Ono, T; Maeda, Y; Yoshida, A

    2016-06-01

    The supratrigeminal nucleus (Vsup), originally proposed as a premotoneuron pool in the trigeminal reflex arc, is a key structure of jaw movement control. Surprisingly, however, the location of the rat Vsup has not precisely been defined. In light of our previous cat studies, we made two hypotheses regarding the rat Vsup: (1) the Vsup is cytoarchitectonically distinguishable from its surrounding structures; (2) the Vsup receives central axon terminals of the trigeminal mesencephalic nucleus (Vmes) neurons which are primary afferents innervating muscle spindles of jaw-closing muscles and periodontal ligaments around the teeth. To test the first hypothesis, we examined the cytoarchitecture of the rat Vsup. The Vsup was identified as an area medially adjacent to the dorsomedial part of trigeminal principal sensory nucleus (Vp), and extended from the level just rostral to the caudal two-thirds of the trigeminal motor nucleus (Vmo) to the level approximately 150 μm caudal to the Vmo. Our rat Vsup was much smaller and its location was considerably different in comparison to the Vsup reported previously. To evaluate the second hypothesis, we tested the distribution patterns of Vmes primary afferent terminals in the cytoarchitectonically identified Vsup. After transganglionic tracer applications to the masseter, deep temporal, and medial pterygoid nerves, a large number of axon terminals were observed in all parts of Vsup (especially in its medial part). After applications to the inferior alveolar, infraorbital, and lingual nerves, a small number of axon terminals were labeled in the caudolateral Vsup. The Vsup could also be identified electrophysiologically. After electrical stimulation of the masseter nerve, evoked potentials with slow negative component were isolated only in the Vsup. The present findings suggest that the rat Vsup can be cytoarchitectonically and electrophysiologically identified, receives somatotopic termination of the trigeminal primary afferents, and

  3. Activation of the dentate nucleus in a verb generation task: A 7T MRI study.

    PubMed

    Thürling, M; Küper, M; Stefanescu, R; Maderwald, S; Gizewski, E R; Ladd, M E; Timmann, D

    2011-08-01

    There is increasing evidence of a topographic organization within the human cerebellar cortex for motor and non-motor functions. Likewise, a subdivision of the dentate nucleus in a more dorsal and rostral motor domain and a more ventral and caudal non-motor domain has been proposed by Dum and Strick (2003) based on anatomical studies in monkey. In humans, however, very little is known about topographic organization within the dentate nucleus. Activation of the dentate nucleus in a verb generation task was examined in young and healthy subjects using ultra-highfield 7T functional magnetic resonance imaging (fMRI) with its increase in signal-to-noise ratio. Data of 17 subjects were included in statistical analysis. Subjects were asked to (i) read words (nouns) aloud presented on a screen, (ii) silently read the same nouns, (iii) silently generate the appropriate verbs to the same nouns and (iv) to silently repeat the names of the months. A block design was used. For image processing, a recently developed region of interest (ROI) driven normalization method of the dentate nuclei was applied. Activation related to motor speech (contrast aloud reading minus silent reading) was strongest in the rostral parts of the dentate nucleus. Dorsorostral activations were present bilaterally. Activation related to verb generation (contrast verb generation minus silent reading) was found in the ventrocaudal parts of the dentate nucleus on the right. The present findings are in good accordance with the anatomical data in monkeys and suggest that the human dentate nucleus can be subdivided into a rostral and more dorsal motor domain and a ventrocaudal non-motor domain. PMID:21640191

  4. Functional morphology of the suprachiasmatic nucleus.

    PubMed

    Ibata, Y; Okamura, H; Tanaka, M; Tamada, Y; Hayashi, S; Iijima, N; Matsuda, T; Munekawa, K; Takamatsu, T; Hisa, Y; Shigeyoshi, Y; Amaya, F

    1999-07-01

    In mammals, the biological clock (circadian oscillator) is situated in the suprachiasmatic nucleus (SCN), a small bilaterally paired structure just above the optic chiasm. Circadian rhythms of sleep-wakefulness and hormone release disappear when the SCN is destroyed, and transplantation of fetal or neonatal SCN into an arrhythmic host restores rhythmicity. There are several kinds of peptide-synthesizing neurons in the SCN, with vasoactive intestinal peptide, arginine vasopressin, and somatostatine neurons being most prominent. Those peptides and their mRNA show diurnal rhythmicity and may or may not be affected by light stimuli. Major neuronal inputs from retinal ganglion cells as well as other inputs such as those from the lateral geniculate nucleus and raphe nucleus are very important for entrainment and shift of circadian rhythms. In this review, we describe morphological and functional interactions between neurons and glial elements and their development. We also consider the expression of immediate-early genes in the SCN after light stimulation during subjective night and their role in the mechanism of signal transduction. The reciprocal interaction between the SCN and melatonin, which is synthesized in the pineal body under the influence of polysynaptic inputs from the SCN, is also considered. Finally, morphological and functional characteristics of clock genes, particularly mPers, which are considered to promote circadian rhythm, are reviewed. PMID:10433864

  5. [Venous vascularization of the lentiform nucleus].

    PubMed

    Wolfram-Gabel, R; Maillot, C

    The venous vascularization of the nucleus lentiformis in man is studied in 30 brains by injecting the vascular system with gelatinous Indian ink. The venous vascularization of the nucleus lentiformis is drained towards the deep venous system of the brain by two ways, one ascending, the other descending. The first one is formed by superior lenticular veins which drain into the thalamo-striate vein, principal tributary of the internal cerebral vein. The second one is formed by inferior lenticular veins which depend from the deep middle cerebral vein, another tributary of the internal cerebral vein. The veins of the nucleus lentiformis, especially the veins of the putamen, present many similarities with these one of the cerebral cortex. They form the center of venous units surrounded by an arterial ring formed by the branches of ramification of the central arteries. The principal vein of the unit is surrounded by a capillary-free space. This similarities may be explained by the common origin of the cerebral cortex and of the putamen, both belong to the neocortical system.

  6. Comet nucleus and asteroid sample return missions

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Three Advanced Design Projects have been completed this academic year at Penn State. At the beginning of the fall semester the students were organized into eight groups and given their choice of either a comet nucleus or an asteroid sample return mission. Once a mission had been chosen, the students developed conceptual designs. These were evaluated at the end of the fall semester and combined into three separate mission plans, including a comet nucleus same return (CNSR), a single asteroid sample return (SASR), and a multiple asteroid sample return (MASR). To facilitate the work required for each mission, the class was reorganized in the spring semester by combining groups to form three mission teams. An integration team consisting of two members from each group was formed for each mission so that communication and information exchange would be easier among the groups. The types of projects designed by the students evolved from numerous discussions with Penn State faculty and mission planners at the Johnson Space Center Human/Robotic Spacecraft Office. Robotic sample return missions are widely considered valuable precursors to manned missions in that they can provide details about a site's environment and scientific value. For example, a sample return from an asteroid might reveal valuable resources that, once mined, could be utilized for propulsion. These missions are also more adaptable when considering the risk to humans visiting unknown and potentially dangerous locations, such as a comet nucleus.

  7. Comet nucleus and asteroid sample return missions

    NASA Astrophysics Data System (ADS)

    1992-06-01

    Three Advanced Design Projects have been completed this academic year at Penn State. At the beginning of the fall semester the students were organized into eight groups and given their choice of either a comet nucleus or an asteroid sample return mission. Once a mission had been chosen, the students developed conceptual designs. These were evaluated at the end of the fall semester and combined into three separate mission plans, including a comet nucleus same return (CNSR), a single asteroid sample return (SASR), and a multiple asteroid sample return (MASR). To facilitate the work required for each mission, the class was reorganized in the spring semester by combining groups to form three mission teams. An integration team consisting of two members from each group was formed for each mission so that communication and information exchange would be easier among the groups. The types of projects designed by the students evolved from numerous discussions with Penn State faculty and mission planners at the Johnson Space Center Human/Robotic Spacecraft Office. Robotic sample return missions are widely considered valuable precursors to manned missions in that they can provide details about a site's environment and scientific value. For example, a sample return from an asteroid might reveal valuable resources that, once mined, could be utilized for propulsion. These missions are also more adaptable when considering the risk to humans visiting unknown and potentially dangerous locations, such as a comet nucleus.

  8. 5-Azacytidine affects the programming of expression of the somatic nucleus of Paramecium.

    PubMed

    Kwok, F W; Ng, S F

    1989-03-01

    This report introduces a new system in the study of programming of genomic function during development of the somatic nucleus of Paramecium tetraurelia. Previous works have established a definite, but replaceable, role of the germ nuclei (micronuclei) in oral development in the asexual cycle; their removal from the cell generates viable amicronucleate cell lines, which characteristically suffer a transient period of growth depression marked by abnormal oral development. Such cell lines gradually recover, showing that a compensatory mechanism is activated in the absence of the germ nuclei to bring the cell back to near-normal. To test the notion that the somatic nucleus (macronucleus) is involved in this compensation, cells possessing micronuclei were treated with 5-azacytidine during sexual reproduction when new somatic nuclei develop. These cells were then propagated asexually for a number of fissions in the absence of the drug, and thereafter micronuclei were removed from them. The amicronucleate cell lines generated in this manner clearly did not suffer a depression as severe as the untreated controls did in terms of growth rate and oral development, and they recovered much sooner. This supports the notion that the somatic nucleus is the physical basis of the compensatory mechanism. This study suggests that the stomatogenic sequences in question normally become repressed in the somatic nucleus developing in sexual reproduction, and that 5-azacytidine administered to the cells at this time could alter this programme which then persists during subsequent asexual propagation. The possibility that the somatic nucleus is programmed by methylation of cytosine at the 5' position is discussed. PMID:2482165

  9. Low P sub T hadron-nucleus interactions

    NASA Technical Reports Server (NTRS)

    Holynski, R.; Wozniak, K.

    1985-01-01

    The possibility of describing hadron-nucleus (hA) interactions is discussed in terms of a number of independent collisions of the projectile inside the target nucleus. This multiple rescattering may occur on a particle or quark parton level. To investigate the characteristics of hA interactions as a function of antineutrinos advantage is taken of the correlation between the average number antineutrinos of collisions of the projectile inside the nucleus and the number Ng of fast protons ejected from the struck nucleus. The relation antineutrinos vs Ng obtained in antineutrinos was used. For a given target nucleus this allows the selection of interactions occurring at different impact parameters.

  10. Sickle hemoglobin gelation. Reaction order and critical nucleus size.

    PubMed Central

    Behe, M J; Englander, S W

    1978-01-01

    Sickle hemoglobin (Hb S) gelation displays kinetics consistent with a rate-limiting nucleation step. The approximate size of the critical nucleus can be inferred from the order of the reaction with respect to Hb S activity, but determination of the reaction order is complicated by the fact that Hb S activity is substantially different from Hb S concentration at the high protein concentrations required for gelation. Equilibrium and kinetic experiments on Hb S gelation were designed to evaluate the relative activity coefficient of Hb S as a function of concentration. These experiments used non-Hb S proteins to mimic, and thus evaluate, the effect on activity coefficients of increasing Hb S concentration. At Hb S concentrations near 20% the change in Hb S activity coefficient generates two-thirds of the apparent dependence of nucleation rate on Hb S concentration. When this effect is explicitly accounted for, the nucleation reaction is seen to be approximately 10th-order with respect to effective number concentration of Hb S. The closeness of the reaction order to the number of strands in models of Hb S fibers suggests a nucleus close to the size of one turn of the Hb S fiber. These experiments introduce a new approach to the study of Hb S gelation, the equal activity isotherm, used here also to show that Hb S.Hb A (normal adult hemoglobin) hybrids do incorporate into growing nuclei and stable microtubules but that A.S hybridization is neutral with respect to promotion of Hb S nucleation and the sol-gel equilibrium. PMID:667302

  11. Intrinsic properties and neuropharmacology of midline paraventricular thalamic nucleus neurons

    PubMed Central

    Kolaj, Miloslav; Zhang, Li; Hermes, Michael L. H. J.

    2014-01-01

    Neurons in the midline and intralaminar thalamic nuclei are components of an interconnected brainstem, limbic and prefrontal cortex neural network that is engaged during arousal, vigilance, motivated and addictive behaviors, and stress. To better understand the cellular mechanisms underlying these functions, here we review some of the recently characterized electrophysiological and neuropharmacological properties of neurons in the paraventricular thalamic nucleus (PVT), derived from whole cell patch clamp recordings in acute rat brain slice preparations. PVT neurons display firing patterns and ionic conductances (IT and IH) that exhibit significant diurnal change. Their resting membrane potential (RMP) is maintained by various ionic conductances that include inward rectifier (Kir), hyperpolarization-activated nonselective cation (HCN) and TWIK-related acid sensitive (TASK) K+ channels. Firing patterns are regulated by high voltage-activated (HVA) and low voltage-activated (LVA) Ca2+ conductances. Moreover, transient receptor potential (TRP)-like nonselective cation channels together with Ca2+- and Na+-activated K+ conductances (KCa; KNa) contribute to unique slow afterhyperpolarizing potentials (sAHPs) that are generally not detectable in lateral thalamic or reticular thalamic nucleus neurons. The excitability of PVT neurons is also modulated by activation of neurotransmitter receptors associated with afferent pathways to PVT and other thalamic midline nuclei. We report on receptor-mediated actions of GABA, glutamate, monoamines and several neuropeptides: arginine vasopressin, gastrin-releasing peptide, thyrotropin releasing hormone and the orexins (hypocretins). This review represents an initial survey of intrinsic and transmitter-sensitive ionic conductances that are deemed to be unique to this population of midline thalamic neurons, information that is fundamental to an appreciation of the role these thalamic neurons may play in normal central nervous system

  12. Complete nucleotide sequence of the chlorarachniophyte nucleomorph: nature's smallest nucleus.

    PubMed

    Gilson, Paul R; Su, Vanessa; Slamovits, Claudio H; Reith, Michael E; Keeling, Patrick J; McFadden, Geoffrey I

    2006-06-20

    The introduction of plastids into different heterotrophic protists created lineages of algae that diversified explosively, proliferated in marine and freshwater environments, and radically altered the biosphere. The origins of these secondary plastids are usually inferred from the presence of additional plastid membranes. However, two examples provide unique snapshots of secondary-endosymbiosis-in-action, because they retain a vestige of the endosymbiont nucleus known as the nucleomorph. These are chlorarachniophytes and cryptomonads, which acquired their plastids from a green and red alga respectively. To allow comparisons between them, we have sequenced the nucleomorph genome from the chlorarachniophyte Bigelowiella natans: at a mere 373,000 bp and with only 331 genes, the smallest nuclear genome known and a model for extreme reduction. The genome is eukaryotic in nature, with three linear chromosomes containing densely packed genes with numerous overlaps. The genome is replete with 852 introns, but these are the smallest introns known, being only 18, 19, 20, or 21 nt in length. These pygmy introns are shown to be miniaturized versions of normal-sized introns present in the endosymbiont at the time of capture. Seventeen nucleomorph genes encode proteins that function in the plastid. The other nucleomorph genes are housekeeping entities, presumably underpinning maintenance and expression of these plastid proteins. Chlorarachniophyte plastids are thus serviced by three different genomes (plastid, nucleomorph, and host nucleus) requiring remarkable coordination and targeting. Although originating by two independent endosymbioses, chlorarachniophyte and cryptomonad nucleomorph genomes have converged upon remarkably similar architectures but differ in many molecular details that reflect two distinct trajectories to hypercompaction and reduction.

  13. The orientation of nucleus, nucleus-associated body and protruding nucleolus in aggregating Dictyostelium discoideum.

    PubMed

    Sameshima, M

    1985-02-01

    Dictyostelium discoideum growing or developing on cellulose dialysis membranes were fixed with acrolein vapour for electron microscopy. In interphase amoebae, nucleoli began to protrude from the nuclei. The percentage of cells with protruding nucleoli increased during aggregation by a value approximately twice as high in aggregation streams as in centers. Cells in pseudoplasmodia showed only a low percentage and protrusions disappeared at early culmination stage. The protrusions did not reappear when cells from dissociated pseudoplasmodia migrated toward cAMP. Thus the formation of the protrusions did not depend solely on chemotaxis; rather, it was specific to the aggregation stage. In aggregation streams, the nucleus was anterior in the cell, with the protrusion at its anterior periphery. In contrast, the nucleus associated body (NAB) was evident at the cell's mid-point. This orientation of nucleus and NAB in the aggregating slime mould amoeba is contrary to that seen in human neutrophils or cultured mouse 3T3 cells. PMID:2981691

  14. Nuclear radii calculations in various theoretical approaches for nucleus-nucleus interactions

    SciTech Connect

    Merino, C.; Novikov, I. S.; Shabelski, Yu.

    2009-12-15

    The information about sizes and nuclear density distributions in unstable (radioactive) nuclei is usually extracted from the data on interaction of radioactive nuclear beams with a nuclear target. We show that in the case of nucleus-nucleus collisions the values of the parameters depend somewhat strongly on the considered theoretical approach and on the assumption about the parametrization of the nuclear density distribution. The obtained values of root-mean-square radii (R{sub rms}) for stable nuclei with atomic weights A=12-40 vary by approximately 0.1 fm when calculated in the optical approximation, in the rigid target approximation, and using the exact expression of the Glauber theory. We present several examples of R{sub rms} radii calculations using these three theoretical approaches and compare these results with the data obtained from electron-nucleus scattering.

  15. Dense transient receptor potential cation channel, vanilloid family, type 2 (TRPV2) immunoreactivity defines a subset of motoneurons in the dorsal lateral nucleus of the spinal cord, the nucleus ambiguus and the trigeminal motor nucleus in rat.

    PubMed

    Lewinter, R D; Scherrer, G; Basbaum, A I

    2008-01-01

    The transient receptor potential cation channel, vanilloid family, type 2 (TRPV2) is a member of the TRPV family of proteins and is a homologue of the capsaicin/vanilloid receptor (transient receptor potential cation channel, vanilloid family, type 1, TRPV1). Like TRPV1, TRPV2 is expressed in a subset of dorsal root ganglia (DRG) neurons that project to superficial laminae of the spinal cord dorsal horn. Because noxious heat (>52 degrees C) activates TRPV2 in transfected cells this channel has been implicated in the processing of high intensity thermal pain messages in vivo. In contrast to TRPV1, however, which is restricted to small diameter DRG neurons, there is significant TRPV2 immunoreactivity in a variety of CNS regions. The present report focuses on a subset of neurons in the brainstem and spinal cord of the rat including the dorsal lateral nucleus (DLN) of the spinal cord, the nucleus ambiguus, and the motor trigeminal nucleus. Double label immunocytochemistry with markers of motoneurons, combined with retrograde labeling, established that these cells are, in fact, motoneurons. With the exception of their smaller diameter, these cells did not differ from other motoneurons, which are only lightly TRPV2-immunoreactive. As for the majority of DLN neurons, the densely-labeled populations co-express androgen receptor and follow normal DLN ontogeny. The functional significance of the very intense TRPV2 expression in these three distinct spinal cord and brainstem motoneurons groups remains to be determined.

  16. Timed restricted feeding restores the rhythms of expression of the clock protein, Period2, in the oval nucleus of the bed nucleus of the stria terminalis and central nucleus of the amygdala in adrenalectomized rats.

    PubMed

    Segall, L A; Verwey, M; Amir, S

    2008-11-11

    Feeding schedules that limit food availability to a set time of day are powerful synchronizers of the rhythms of expression of the circadian clock protein Period 2 (PER2) in the limbic forebrain in rats. Little is known, however, about the mechanisms that mediate the effect of such timed restricted feeding (TRF) schedules on the expression of PER2. Adrenal glucocorticoids have been implicated in the circadian regulation of clock genes expression in peripheral tissues as well as in the control of the rhythms of expression of PER2 in certain limbic forebrain regions, such as the oval nucleus of the bed nucleus of the stria terminalis (BNSTov) and central nucleus of the amygdala (CEA) in rats. To study the possible involvement of glucocorticoids in the regulation of PER2 expression by TRF, we assessed the effect of adrenalectomy on TRF-entrained PER2 rhythms in the limbic forebrain in rats. Adrenalectomy selectively abolished the rhythms of PER2 in the BNSTov and CEA in normally fed rats, as previously shown, but had no effect on TRF-entrained PER2 rhythms in the same structures. These findings show that the effect of TRF on PER2 rhythms in the limbic forebrain is independent of adrenal glucocorticoids and demonstrate that the involvement of glucocorticoids in the regulation PER2 rhythms in the limbic forebrain is not only region specific, as previously shown, but also state dependent.

  17. Disc nucleus fortification for lumbar degenerative disc disease: a biomechanical study.

    PubMed

    Dupré, Derrick A; Cook, Daniel J; Brad Bellotte, J; Oh, Michael Y; Whiting, Donald; Cheng, Boyle C

    2016-05-01

    OBJECTIVE Spinal stability is attributed in part to osteoligamentous structures, including the vertebral body, facets, intervertebral discs, and posterior elements. The materials in this study provide an opportunity to augment the degenerated nucleus without removing native disc material, a procedure introduced here as "fortification." The objective of this study was to determine the effect of nucleus fortification on lumbar disc biomechanics. METHODS The authors performed in vitro analysis of human cadaveric functional spinal units (FSUs), along with characterization and quantification of movement of the units using biomechanical data in intact, disc-only, and fortified specimens. The units underwent removal of all posterior elements and annulus and were fortified by injecting a biogel into the nucleus pulposus. Each specimen was subjected to load testing, range of motion (ROM) quantification, and disc bulge measurements. Optoelectric tracking was used to quantify disc bulge. These criteria were assessed in the intact, disc-only, and fortified treatments. RESULTS Disc-only FSUs resulted in increased ROM when compared with intact and fortified conditions. Fortification of the FSU resulted in partial restoration of normal ROM in the treatment groups. Analysis of hysteresis loops showed more linear response in the fortified groups when compared with the intact and disc-only groups. CONCLUSIONS Disc nucleus fortification increases linearity and decreases ROM.

  18. Disc nucleus fortification for lumbar degenerative disc disease: a biomechanical study.

    PubMed

    Dupré, Derrick A; Cook, Daniel J; Brad Bellotte, J; Oh, Michael Y; Whiting, Donald; Cheng, Boyle C

    2016-05-01

    OBJECTIVE Spinal stability is attributed in part to osteoligamentous structures, including the vertebral body, facets, intervertebral discs, and posterior elements. The materials in this study provide an opportunity to augment the degenerated nucleus without removing native disc material, a procedure introduced here as "fortification." The objective of this study was to determine the effect of nucleus fortification on lumbar disc biomechanics. METHODS The authors performed in vitro analysis of human cadaveric functional spinal units (FSUs), along with characterization and quantification of movement of the units using biomechanical data in intact, disc-only, and fortified specimens. The units underwent removal of all posterior elements and annulus and were fortified by injecting a biogel into the nucleus pulposus. Each specimen was subjected to load testing, range of motion (ROM) quantification, and disc bulge measurements. Optoelectric tracking was used to quantify disc bulge. These criteria were assessed in the intact, disc-only, and fortified treatments. RESULTS Disc-only FSUs resulted in increased ROM when compared with intact and fortified conditions. Fortification of the FSU resulted in partial restoration of normal ROM in the treatment groups. Analysis of hysteresis loops showed more linear response in the fortified groups when compared with the intact and disc-only groups. CONCLUSIONS Disc nucleus fortification increases linearity and decreases ROM. PMID:26771371

  19. Observation of direct hadronic pairs in nucleus-nucleus collisions in JACEE emulsion chambers

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.; Jurak, A.

    1985-01-01

    In a number of high energy ( or = 1 TeV/amu) nucleus-nucleus collisions observed in Japanese-American Cooperative Emulsion Experiment (JACEE) emulsion chambers, nonrandom spatial association of produced charged particles, mostly hadronic pairs, are observed. Similar narrow pairs are observed in about 100 events at much low energy (20 to 60 GeV/amu). Analysis shows that 30 to 50% of Pair abundances are understood by the Hambury-Brown-Twiss effect, and the remainder seems to require other explanations.

  20. Pion and Kaon Lab Frame Differential Cross Sections for Intermediate Energy Nucleus-Nucleus Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Blattnig, Steve R.

    2008-01-01

    Space radiation transport codes require accurate models for hadron production in intermediate energy nucleus-nucleus collisions. Codes require cross sections to be written in terms of lab frame variables and it is important to be able to verify models against experimental data in the lab frame. Several models are compared to lab frame data. It is found that models based on algebraic parameterizations are unable to describe intermediate energy differential cross section data. However, simple thermal model parameterizations, when appropriately transformed from the center of momentum to the lab frame, are able to account for the data.

  1. Electromagnetic processes in nucleus-nucleus collisions relating to space radiation research

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Most of the papers within this report deal with electromagnetic processes in nucleus-nucleus collisions which are of concern in the space radiation program. In particular, the removal of one and two nucleons via both electromagnetic and strong interaction processes has been extensively investigated. The theory of relativistic Coulomb fission has also been developed. Several papers on quark models also appear. Finally, note that the theoretical methods developed in this work have been directly applied to the task of radiation protection of astronauts. This has been done by parameterizing the theoretical formalism in such a fashion that it can be used in cosmic ray transport codes.

  2. The Checkerboard Model of the Nucleus

    NASA Astrophysics Data System (ADS)

    Lach, Theodore

    2014-03-01

    The Lach Checker Board Model (CBM) of the nucleus and the associated ESM predicts that nature has 5 generations of quarks not 3. The heaviest generation in the Extended Standard Model (ESM) has a t' quark of mass 65 GeV and a b' quark of 42.4 GeV. The lepton in this generation has a mass of 27 GeV. Part of this theory evolved because it appears that the quarks and lepton of each generation have masses related by the geometric mean. The Geometric mean of 65 and 27 is 42. Charge is conserved (+2/3 and -1 is -1/3). Details of how this theory evolved is found on my web site (http://checkerboard.dnsalias.net) or in the following references [T.M. Lach, Checkerboard Structure of the Nucleus, Infinite Energy, Vol. 5, issue 30, (2000); T.M. Lach, Masses of the Sub-Nuclear Particles, nucl-th/0008026, @http://xxx.lanl.gov/] One independent check of this CB model is that the wavelength of the ``up'' quark orbiting inside the proton at 84.8123% the speed of light around the ``dn'' quark in the center turns out to be exactly one DeBroglie wavelength. This explains the mass of the proton and neutron and their magnetic moments. This along with the beautiful symmetric 2D structure of the He nucleus led to the evolution of this theory. One would expect a t'-anti t' meson of mass of about 130 GeV.

  3. [The perichromatin compartment of the cell nucleus].

    PubMed

    Bogoliubov, D S

    2014-01-01

    In this review, the data on the structure and composition of the perichromatin compartment, a special border area between the condensed chromatin and the interchromatin space of the cell nucleus, are discussed in the light of the concept of nuclear functions in complex nuclear architectonics. Morphological features, molecular composition and functions of main extrachromosomal structures of the perichromatin compartment, perichromatin fibrils (PFs) and perichromatin granules (PGs) including nuclear stress-bodies (nSBs) that are derivates of the PGs under heat shock, are presented. A special attention was paid to the features of the molecular compositions of PFs and PGs in different cell types and at different physiological conditions. PMID:25696976

  4. Neutrino-nucleus scattering off 136Xe

    NASA Astrophysics Data System (ADS)

    Ydrefors, E.; Suhonen, J.; Zhao, Y. M.

    2015-01-01

    Background: Theoretical estimates of the cross sections for the neutrino-nucleus scattering off relevant nuclei for supernova neutrinos are essential for many applications in neutrino physics and astrophysics. The double-β -decaying nucleus 136Xe nucleus is used by the EXO Collaboration in the search for neutrinoless double-β decay. A ton-scale experiment based on 136Xe could also be used for studies of supernova neutrinos and/or solar neutrinos. Purpose: The purpose of the present work is, thus, to perform a study of the charged-current and neutral-current nuclear responses to supernova neutrinos for 136Xe . Method: The cross sections are computed by using the well-established framework for studies of semileptonic processes in nuclei introduced by O'Connell, Donnelly, and Walecka [Phys. Rev. C 6, 719 (1972), 10.1103/PhysRevC.6.719]. The nuclear wave functions of the initial and the final nuclear states for the neutral-current neutrino-nucleus scattering in 136Xe are computed by using the quasiparticle random-phase approximation (QRPA). Similarly, the pnQRPA is adopted to construct the initial and final nuclear states which are relevant for the charged-current reactions. The nuclear responses to supernova neutrinos are subsequently computed by folding the cross sections with appropriate energy spectra for the incoming neutrinos. Results: We present results for the cross sections of the charged-current and neutral-current neutrino and antineutrino scatterings off 136Xe . Nuclear responses to supernova neutrinos are also given. For the considered scenario for the neutrino mixing we have found that neutrino interactions with matter and so-called collective neutrino oscillations enhance significantly the neutrino and antineutrino flux-averaged cross sections. Conclusions: We have found that for the charged-current and neutral-current neutrino scatterings off 136Xe transitions mediated by the 1+ multipole are the most important ones. However, for the charged

  5. [The perichromatin compartment of the cell nucleus].

    PubMed

    Bogoliubov, D S

    2014-01-01

    In this review, the data on the structure and composition of the perichromatin compartment, a special border area between the condensed chromatin and the interchromatin space of the cell nucleus, are discussed in the light of the concept of nuclear functions in complex nuclear architectonics. Morphological features, molecular composition and functions of main extrachromosomal structures of the perichromatin compartment, perichromatin fibrils (PFs) and perichromatin granules (PGs) including nuclear stress-bodies (nSBs) that are derivates of the PGs under heat shock, are presented. A special attention was paid to the features of the molecular compositions of PFs and PGs in different cell types and at different physiological conditions.

  6. Nuclear mechanotransduction: forcing the nucleus to respond.

    PubMed

    Guilluy, Christophe; Burridge, Keith

    2015-01-01

    Cell phenotype and fate are driven by the mechanical properties of their surrounding environment. Changes in matrix rigidity or application of force have been shown to impact profoundly cell behavior and phenotype, demonstrating that the molecular mechanisms which "sense" and transduce these signals into biochemical pathways are central in cell biology. In this commentary, we discuss recent evidence showing that mechanotransduction mechanisms occur in the nucleus, allowing dynamic regulation of the nucleoskeleton in response to mechanical stress. We will review this nucleoskeletal response and its impact on both nuclear structure and function.

  7. Parity violation in the compound nucleus

    SciTech Connect

    Mitchell, G.E.; Crawford, B.E.; Grossmann, C.A.; Lowie, L.Y.; Bowman, J.D.; Knudson, J.; Penttilae, S.; Seestrom, S.J.; Smith, D.A.; Yen, Y.; Yuan, V.W.; Delheij, P.P.; Haseyama, T.; Masaike, A.; Matsuda, Y.; Postma, H.; Roberson, N.R.; Sharapov, E.I.; Stephenson, S.L.

    1999-06-01

    Measurements have been performed on the helicity dependence of the neutron resonance cross section for many nuclei by our TRIPLE Collaboration. A large number of parity violations are observed. Generic enhancements amplify the signal for symmetry breaking and the stochastic properties of the compound nucleus permit the strength of the symmetry-breaking interaction to be determined without knowledge of the wave functions of individual states. A total of 15 nuclei have been analyzed with this statistical approach. The results are summarized. {copyright} {ital 1999 American Institute of Physics.}

  8. Dust activity of Comet Halley's nucleus

    NASA Technical Reports Server (NTRS)

    Keller, H. U.; Delamere, W. A.; Huebner, W. F.; Reitsema, H.; Schmidt, H. U.; Schmidt, W. K. H.; Whipple, Fred L.; Wilhelm, K.

    1986-01-01

    Images obtained by the Halley multicolor camera using the clear filter with a pass band from 300 to 1000 nm were used to study dust activity in the comet nucleus. Comparisons with ground based observations confirm that dust production towards the Sun increases in activity relative to the southern background source while the Giotto spacecraft was approaching. This is in agreement with the assumption that the sunward activity becomes stronger when the source rotates towards the Sun. Estimated dust column density is 90 billion/sqm, with optical thickness less than or = 0.3. Surface reflectivity is less than 1%, indicating a very rough surface with large fractions of shadowed areas.

  9. Paraventricular hypothalamic nucleus: axonal projections to the brainstem

    PubMed Central

    Geerling, Joel C.; Shin, Jung-Won; Chimenti, Peter C.; Loewy, Arthur D.

    2010-01-01

    The paraventricular hypothalamic nucleus (PVH) contains many neurons that innervate the brainstem, but information regarding their target sites remains incomplete. Here, we labeled neurons in the rat PVH with an anterograde axonal tracer, Phaseolus vulgaris leucoagglutinin (PHAL) and studied their descending projections in reference to specific neuronal subpopulations throughout the brainstem. While many of their target sites were identified previously, numerous new observations were made. Major findings include: (1) In the midbrain, the PVH projects lightly to the ventral tegmental area, Edinger-Westphal nucleus, ventrolateral periaqueductal gray matter, reticular formation, pedunculopontine tegmental nucleus, and dorsal raphe nucleus. (2) In the dorsal pons, the PVH projects heavily to the pre-locus coeruleus, yet very little to the catecholamine neurons in the locus coeruleus, and selectively targets the viscerosensory subregions of the parabrachial nucleus; (3) In the ventral medulla, the superior salivatory nucleus, retrotrapezoid nucleus, compact and external formations of the nucleus ambiguus, A1 and caudal C1 catecholamine neurons, and caudal pressor area receive dense axonal projections, generally exceeding the PVH projection to the rostral C1 region; (4) The medial nucleus of the solitary tract (including A2 noradrenergic and aldosterone-sensitive neurons) receives the most extensive projections of the PVH, substantially more than the dorsal vagal nucleus or area postrema. Our findings suggest that the PVH may modulate a range of homeostatic functions, including cerebral and ocular blood flow, corneal and nasal hydration, ingestive behavior, sodium intake, and glucose metabolism, as well as cardiovascular, gastrointestinal, and respiratory activities. PMID:20187136

  10. Nuclear mean field and double-folding model of the nucleus-nucleus optical potential

    NASA Astrophysics Data System (ADS)

    Khoa, Dao T.; Phuc, Nguyen Hoang; Loan, Doan Thi; Loc, Bui Minh

    2016-09-01

    Realistic density dependent CDM3Yn versions of the M3Y interaction have been used in an extended Hartree-Fock (HF) calculation of nuclear matter (NM), with the nucleon single-particle potential determined from the total NM energy based on the Hugenholtz-van Hove theorem that gives rise naturally to a rearrangement term (RT). Using the RT of the single-nucleon potential obtained exactly at different NM densities, the density and energy dependence of the CDM3Yn interactions was modified to account properly for both the RT and observed energy dependence of the nucleon optical potential. Based on a local density approximation, the double-folding model of the nucleus-nucleus optical potential has been extended to take into account consistently the rearrangement effect and energy dependence of the nuclear mean-field potential, using the modified CDM3Yn interactions. The extended double-folding model was applied to study the elastic 12C+12C and 16O+12C scattering at the refractive energies, where the Airy structure of the nuclear rainbow has been well established. The RT was found to affect significantly the real nucleus-nucleus optical potential at small internuclear distances, giving a potential strength close to that implied by the realistic optical model description of the Airy oscillation.

  11. How dynein and microtubules rotate the nucleus.

    PubMed

    Wu, Jun; Lee, Kristen C; Dickinson, Richard B; Lele, Tanmay P

    2011-10-01

    In living cells, a fluctuating torque is exerted on the nuclear surface but the origin of the torque is unclear. In this study, we found that the nuclear rotation angle is directionally persistent on a time scale of tens of minutes, but rotationally diffusive on longer time scales. Rotation required the activity of the microtubule motor dynein. We formulated a model based on microtubules undergoing dynamic instability, with tensional forces between a stationary centrosome and the nuclear surface mediated by dynein. Model simulations suggest that the persistence in rotation angle is due to the transient asymmetric configuration of microtubules exerting a net torque in one direction until the configuration is again randomized by dynamic instability. The model predicts that the rotational magnitude must depend on the distance between the nucleus and the centrosome. To test this prediction, rotation was quantified in patterned cells in which the cell's centrosome was close to the projected nuclear centroid. Consistent with the prediction, the angular displacement was found to decrease in these cells relative to unpatterned cells. This work provides the first mechanistic explanation for how nuclear dynein interactions with discrete microtubules emanating from a stationary centrosome cause rotational torque on the nucleus.

  12. On M31's Double Nucleus

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Smith, B. F.; Cuzzi, Jeffrey (Technical Monitor)

    1995-01-01

    The recent HST discovery of a double nucleus in M31 brings into prominence the question how long, a second core can survive within the nuclear regions of a galaxy. Physical conditions in the nuclear regions of a typical galaxy help a second core survive, so it can orbit for a long time. possibly for thousands of orbits. Given the nearly uniform mass density in a core, tidal forces within a core radius are compressive in all directions and help the core survive the buffeting it takes as it orbits near the center of the galaxy. We use numerical experiments to illustrate these physical principles. Our method allows the full power of the experiments to be concentrated on the nuclear regions. Spatial resolution of about 0.2 pc comfortably resolves detail within the 1.4 parsec core radius of the second, but brighter core (P1) in M31. We use these physical principles to discuss M31's double nucleus, but they apply to other galaxies as well. and in other astronomical situations such as dumbbell galaxies. galaxies orbiting near the center of a galaxy cluster, and subclustering in galaxy clusters. The experiments also illustrate that galaxy encounters and merging are quite sensitive to external tidal forces, such as those produced by the gravitational potential in a group or cluster of galaxies.

  13. Caudal topographic nucleus isthmi and the rostral nontopographic nucleus isthmi in the turtle, Pseudemys scripta.

    PubMed

    Sereno, M I; Ulinski, P S

    1987-07-15

    Isthmotectal projections in turtles were examined by making serial section reconstructions of axonal and dendritic arborizations that were anterogradely or retrogradely filled with HRP. Two prominent tectal-recipient isthmic nuclei--the caudal magnocellular nucleus isthmi (Imc) and the rostral magnocellular nucleus isthmi (Imr)--exhibited strikingly different patterns of organization. Imc cells have flattened, bipolar dendritic fields that cover a few percent of the area of the cell plate constituting the nucleus and they project topographically to the ipsilateral tectum without local axon branches. The topography was examined explicitly at the single-cell level by using cases with two injections at widely separated tectal loci. Each Imc axon terminates as a compact swarm of several thousand boutons placed mainly in the upper central gray and superficial gray layers. One Imc terminal spans less that 1% of the tectal surface. Imr cells, by contrast, have large, sparsely branched dendritic fields overlapped by local axon collaterals while distally, their axons nontopographically innervate not only the deeper layers of the ipsilateral tectum but also ipsilateral Imc. Imr receives a nontopographic tectal input that contrasts with the topographic tectal input to Imc. Previous work on nucleus isthmi emphasized the role of the contralateral isthmotectal projection (which originates from a third isthmic nucleus in turtles) in mediating binocular interactions in the tectum. The present results on the two different but overlapping ipsilateral tecto-isthmo-tectal circuits set up by Imc and Imr are discussed in the light of physiological evidence for selective attention effects and local-global interactions in the tectum.

  14. Odyssey Comet Nucleus Orbiter: The Next Step in Cometary Exploration

    NASA Astrophysics Data System (ADS)

    Weissman, P. R.; Nilsen, E. N.; Smythe, W. D.; Marriott, J.; Reinert, R.

    2001-01-01

    Cometary nuclei are the most primitive bodies in the solar system, containing a cosmo-chemical record of the primordial solar nebula. Flyby missions to comets, such as those that encountered Comet Halley in 1986, provide a glimpse at this record. However, to study a cometary nucleus in detail requires a rendezvous mission, i.e., a nucleus orbiter. Only an orbiter provides the ability to map the entire nucleus surface at high resolution, to study the complex chemistry in the cometary coma and its variation with time, and to determine the mass and bulk density of the nucleus, key parameters in understanding how small bodies first formed in the solar nebula. A nucleus orbiter also provides the opportunity to sense the nucleus surface in preparation for more ambitious landing and sample return missions in the future. Additional information is contained in the original extended abstract.

  15. Synaptic interactions between perifornical lateral hypothalamic area, locus coeruleus nucleus and the oral pontine reticular nucleus are implicated in the stage succession during sleep-wakefulness cycle

    PubMed Central

    Tortorella, Silvia; Rodrigo-Angulo, Margarita L.; Núñez, Angel; Garzón, Miguel

    2013-01-01

    The perifornical area in the posterior lateral hypothalamus (PeFLH) has been implicated in several physiological functions including the sleep-wakefulness regulation. The PeFLH area contains several cell types including those expressing orexins (Orx; also known as hypocretins), mainly located in the PeF nucleus. The aim of the present study was to elucidate the synaptic interactions between Orx neurons located in the PeFLH area and different brainstem neurons involved in the generation of wakefulness and sleep stages such as the locus coeruleus (LC) nucleus (contributing to wakefulness) and the oral pontine reticular nucleus (PnO) nucleus (contributing to REM sleep). Anatomical data demonstrated the existence of a neuronal network involving the PeFLH area, LC, and the PnO nuclei that would control the sleep-wake cycle. Electrophysiological experiments indicated that PeFLH area had an excitatory effect on LC neurons. PeFLH stimulation increased the firing rate of LC neurons and induced an activation of the EEG. The excitatory effect evoked by PeFLH stimulation in LC neurons was blocked by the injection of the Orx-1 receptor antagonist SB-334867 into the LC. Similar electrical stimulation of the PeFLH area evoked an inhibition of PnO neurons by activation of GABAergic receptors because the effect was blocked by bicuculline application into the PnO. Our data also revealed that the LC and PnO nuclei exerted a feedback control on neuronal activity of PeFLH area. Electrical stimulation of LC facilitated firing activity of PeFLH neurons by activation of catecholaminergic receptors whereas PnO stimulation inhibited PeFLH neurons by activation of GABAergic receptors. In conclusion, Orx neurons of the PeFLH area seem to be an important organizer of the wakefulness and sleep stages in order to maintain a normal succession of stages during the sleep-wakefulness cycle. PMID:24311996

  16. Synaptic interactions between perifornical lateral hypothalamic area, locus coeruleus nucleus and the oral pontine reticular nucleus are implicated in the stage succession during sleep-wakefulness cycle.

    PubMed

    Tortorella, Silvia; Rodrigo-Angulo, Margarita L; Núñez, Angel; Garzón, Miguel

    2013-01-01

    The perifornical area in the posterior lateral hypothalamus (PeFLH) has been implicated in several physiological functions including the sleep-wakefulness regulation. The PeFLH area contains several cell types including those expressing orexins (Orx; also known as hypocretins), mainly located in the PeF nucleus. The aim of the present study was to elucidate the synaptic interactions between Orx neurons located in the PeFLH area and different brainstem neurons involved in the generation of wakefulness and sleep stages such as the locus coeruleus (LC) nucleus (contributing to wakefulness) and the oral pontine reticular nucleus (PnO) nucleus (contributing to REM sleep). Anatomical data demonstrated the existence of a neuronal network involving the PeFLH area, LC, and the PnO nuclei that would control the sleep-wake cycle. Electrophysiological experiments indicated that PeFLH area had an excitatory effect on LC neurons. PeFLH stimulation increased the firing rate of LC neurons and induced an activation of the EEG. The excitatory effect evoked by PeFLH stimulation in LC neurons was blocked by the injection of the Orx-1 receptor antagonist SB-334867 into the LC. Similar electrical stimulation of the PeFLH area evoked an inhibition of PnO neurons by activation of GABAergic receptors because the effect was blocked by bicuculline application into the PnO. Our data also revealed that the LC and PnO nuclei exerted a feedback control on neuronal activity of PeFLH area. Electrical stimulation of LC facilitated firing activity of PeFLH neurons by activation of catecholaminergic receptors whereas PnO stimulation inhibited PeFLH neurons by activation of GABAergic receptors. In conclusion, Orx neurons of the PeFLH area seem to be an important organizer of the wakefulness and sleep stages in order to maintain a normal succession of stages during the sleep-wakefulness cycle.

  17. Physical role for the nucleus in cell migration.

    PubMed

    Fruleux, Antoine; Hawkins, Rhoda J

    2016-09-14

    Cell migration is important for the function of many eukaryotic cells. Recently the nucleus has been shown to play an important role in cell motility. After giving an overview of cell motility mechanisms we review what is currently known about the mechanical properties of the nucleus and the connections between it and the cytoskeleton. We also discuss connections to the extracellular matrix and mechanotransduction. We identify key physical roles of the nucleus in cell migration.

  18. Physical role for the nucleus in cell migration

    NASA Astrophysics Data System (ADS)

    Fruleux, Antoine; Hawkins, Rhoda J.

    2016-09-01

    Cell migration is important for the function of many eukaryotic cells. Recently the nucleus has been shown to play an important role in cell motility. After giving an overview of cell motility mechanisms we review what is currently known about the mechanical properties of the nucleus and the connections between it and the cytoskeleton. We also discuss connections to the extracellular matrix and mechanotransduction. We identify key physical roles of the nucleus in cell migration.

  19. Physical role for the nucleus in cell migration.

    PubMed

    Fruleux, Antoine; Hawkins, Rhoda J

    2016-09-14

    Cell migration is important for the function of many eukaryotic cells. Recently the nucleus has been shown to play an important role in cell motility. After giving an overview of cell motility mechanisms we review what is currently known about the mechanical properties of the nucleus and the connections between it and the cytoskeleton. We also discuss connections to the extracellular matrix and mechanotransduction. We identify key physical roles of the nucleus in cell migration. PMID:27406341

  20. Direct exposure of chromosomes to nonactivated ovum cytoplasm is effective for bovine somatic cell nucleus reprogramming.

    PubMed

    Tani, T; Kato, Y; Tsunoda, Y

    2001-01-01

    We examined the in vitro developmental potential of nonactivated and activated enucleated ova receiving cumulus cells at various stages of the cell cycle. Eleven to 29% of activated ova receiving donor cells stopped developing at the 8-cell stage but 21% to 50% of nonactivated ova receiving donor cells at either the G(0), G(1), G(2), or M phase, or cycling cells developed into blastocysts. One normal calf was born after transferring five blastocysts that had developed from ova receiving donor cells at the M phase. The present study demonstrated that direct exposure of donor chromosomes to nonactivated ovum cytoplasm is effective for somatic cell nucleus reprogramming, and activated ovum cytoplasm does not reprogram the nucleus.

  1. J/ψ production and suppression in high-energy proton-nucleus collisions

    SciTech Connect

    Ma, Yan -Qing; Venugopalan, Raju; Zhang, Hong -Fei

    2015-10-02

    In this study, we apply a color glass condensate+nonrelativistic QCD (CGC+NRQCD) framework to compute J/ψ production in deuteron-nucleus collisions at RHIC and proton-nucleus collisions at the LHC. Our results match smoothly at high p⊥ to a next-to-leading order perturbative QCD+NRQCD computation. Excellent agreement is obtained for p⊥ spectra at the RHIC and LHC for central and forward rapidities, as well as for the normalized ratio RpA of these results to spectra in proton-proton collisions. In particular, we observe that the RpA data are strongly bounded by our computations of the same for each of the individual NRQCD channels; this result provides strong evidence that our description is robust against uncertainties in initial conditions and hadronization mechanisms.

  2. J/ψ production and suppression in high-energy proton-nucleus collisions

    DOE PAGESBeta

    Ma, Yan -Qing; Venugopalan, Raju; Zhang, Hong -Fei

    2015-10-02

    In this study, we apply a color glass condensate+nonrelativistic QCD (CGC+NRQCD) framework to compute J/ψ production in deuteron-nucleus collisions at RHIC and proton-nucleus collisions at the LHC. Our results match smoothly at high p⊥ to a next-to-leading order perturbative QCD+NRQCD computation. Excellent agreement is obtained for p⊥ spectra at the RHIC and LHC for central and forward rapidities, as well as for the normalized ratio RpA of these results to spectra in proton-proton collisions. In particular, we observe that the RpA data are strongly bounded by our computations of the same for each of the individual NRQCD channels; this resultmore » provides strong evidence that our description is robust against uncertainties in initial conditions and hadronization mechanisms.« less

  3. J /ψ production and suppression in high-energy proton-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Ma, Yan-Qing; Venugopalan, Raju; Zhang, Hong-Fei

    2015-10-01

    We apply a color glass condensate+nonrelativistic QCD (CGC +NRQCD ) framework to compute J /ψ production in deuteron-nucleus collisions at RHIC and proton-nucleus collisions at the LHC. Our results match smoothly at high p⊥ to a next-to-leading order perturbative QCD +NRQCD computation. Excellent agreement is obtained for p⊥ spectra at the RHIC and LHC for central and forward rapidities, as well as for the normalized ratio RpA of these results to spectra in proton-proton collisions. In particular, we observe that the RpA data are strongly bounded by our computations of the same for each of the individual NRQCD channels; this result provides strong evidence that our description is robust against uncertainties in initial conditions and hadronization mechanisms.

  4. Endocannabinoid-Mediated Plasticity in Nucleus Accumbens Controls Vulnerability to Anxiety after Social Defeat Stress.

    PubMed

    Bosch-Bouju, Clémentine; Larrieu, Thomas; Linders, Louisa; Manzoni, Olivier J; Layé, Sophie

    2016-08-01

    Chronic social defeat stress (CSDS) is a clinically relevant model of mood disorders. The relationship between the CSDS model and a physiologically pertinent paradigm of synaptic plasticity is not known. Here, we found that cluster analysis of the emotional behavior states of mice exposed to CSDS allowed their segregation into anxious and non-anxious groups. Endocannabinoid-mediated spike-timing dependent plasticity (STDP) in the nucleus accumbens was attenuated in non-anxious mice and abolished in anxious mice. Anxiety-like behavior in stressed animals was specifically correlated with their ability to produce STDP. Pharmacological enhancement of 2-arachidonoyl glycerol (2-AG) signaling in the nucleus accumbens normalized the anxious phenotype and STDP in anxious mice. These data reveal that endocannabinoid modulation of synaptic efficacy in response to a naturalistic activity pattern is both a molecular correlate of behavioral adaptability and a crucial factor in the adaptive response to chronic stress. PMID:27452462

  5. Giant Resonances in the Alpha-Nucleus Interaction

    SciTech Connect

    Karpeshin, F. F.

    2010-04-30

    Tunneling of alpha particles through the Coulomb barrier for the source {sup 135}Pr nucleus is consecutively considered. The effect of sharp peaks arising in the case of coincidence of the alpha energy with that of a quasistationary state within the barrier is elucidated. Peaks' energy depend on the alpha-nucleus potential. They can give rise to 'anomalous' properties of some neutron resonances. The peaks can also be observed in the incoming alpha-nucleus channel. The method can be applied for solution of the reverse problem of the alpha-nucleus scattering.

  6. The Normalized Child.

    ERIC Educational Resources Information Center

    Futrell, Kathleen H.

    1997-01-01

    Describes characteristics of the normalized child, the ultimate goal of Montessori education. First outlines children's basic needs, then describes traits of the normalized child, including love of order, work, silence and working alone; mutual aid and cooperation; profound spontaneous concentration; obedience; independence and initiative;…

  7. Nature of multiple-nucleus cluster galaxies

    SciTech Connect

    Merritt, D.

    1984-05-01

    In models for the evolution of galaxy clusters which include dynamical friction with the dark binding matter, the distribution of galaxies becomes more concentrated to the cluster center with time. In a cluster like Coma, this evolution could increase by a factor of approximately 3 the probability of finding a galaxy very close to the cluster center, without decreasing the typical velocity of such a galaxy significantly below the cluster mean. Such an enhancement is roughly what is needed to explain the large number of first-ranked cluster galaxies which are observed to have extra ''nuclei''; it is also consistent with the high velocities typically measured for these ''nuclei.'' Unlike the cannibalism model, this model predicts that the majority of multiple-nucleus systems are transient phenomena, and not galaxies in the process of merging.

  8. Nucleus of Comet P/Arend-Rigaux

    SciTech Connect

    Brooke, T.Y.; Knacke, R.F.

    1986-07-01

    Photometry data at 1-20 microns taken of Comet P/Arend-Rigaux are reported. The observations were carried out to test the possibility of observing the nuclei of low activity, nearly extinct comets at visible and IR wavelengths. The data were collected in February 1985 using the NASA 3 m IR telescope on Mauna Kea. The comet was at 1.67 AU heliocentric distance at the time. Attempts were made to detect rotation of the core on the bases of variations in the J, H and K light curves. The images obtained were those of a rotating nucleus with a radius of 4.0-6.2 km surrounded by a faint coma. The comet had a geometric albedo of 0.01-0.03 and a near-IR red slope that exhibited no evidence of the presence of ice. 32 references.

  9. Delta-nucleus dynamics: proceedings of symposium

    SciTech Connect

    Lee, T.S.H.; Geesaman, D.F.; Schiffer, J.P.

    1983-10-01

    The appreciation of the role in nuclear physics of the first excited state of the nucleon, the delta ..delta..(1232), has grown rapidly in the past decade. The delta resonance dominates nuclear reactions induced by intermediate energy pions, nucleons, and electromagnetic probes. It is also the most important non-nucleonic degree of freedom needed to resolve many fundamental problems encountered in the study of low-energy nuclear phenomena. Clearly, a new phase of nuclear physics has emerged and conventional thinking must be extended to account for this new dimension of nuclear dynamics. The most challenging problem we are facing is how a unified theory can be developed to describe ..delta..-nucleus dynamics at all energies. In exploring this new direction, it is important to have direct discussions among researchers with different viewpoints. Separate entries were prepared for the 49 papers presented. (WHK)

  10. Analysis of Returned Comet Nucleus Samples

    NASA Technical Reports Server (NTRS)

    Chang, Sherwood (Compiler)

    1997-01-01

    This volume contains abstracts that have been accepted by the Program Committee for presentation at the Workshop on Analysis of Returned Comet Nucleus Samples, held in Milpitas, California, January 16-18, 1989. Conveners are Sherwood Chang (NASA Ames Research Center) and Larry Nyquist (NASA Johnson Space Center). Program Committee members are Thomas Ahrens (ex-officio; California Institute of Technology), Lou Allamandola (NASA Ames Research Center), David Blake (NASA Ames Research Center), Donald Brownlee (University of Washington, Seattle), Theodore E. Bunch (NASA Ames Research Center), Humberto Campins (Planetary Science Institute), Jeff Cuzzi (NASA Ames Research Center), Eberhard Griin (Max-Plank-Institut fiir Kemphysik), Martha Hanner (Jet Propulsion Laboratory), Alan Harris (Jet Propulsion Laboratory), John Kerrid-e (University of Califomia, Los Angeles), Yves Langevin (University of Paris), Gerhard Schwehm (ESTEC), and Paul Weissman (Jet Propulsion Laboratory). Logistics and administrative support for the workshop were provided by the Lunar and Planetary Institute Projects Office.

  11. Shaping the nucleus: factors and forces.

    PubMed

    Walters, Alison D; Bommakanti, Ananth; Cohen-Fix, Orna

    2012-09-01

    Take a look at a textbook illustration of a cell and you will immediately be able to locate the nucleus, which is often drawn as a spherical or ovoid shaped structure. But not all cells have such nuclei. In fact, some disease states are diagnosed by the presence of nuclei that have an abnormal shape or size. What defines nuclear shape and nuclear size, and how does nuclear geometry affect nuclear function? While the answer to the latter question remains largely unknown, significant progress has been made towards understanding the former. In this review, we provide an overview of the factors and forces that affect nuclear shape and size, discuss the relationship between ER structure and nuclear morphology, and speculate on the possible connection between nuclear size and its shape. We also note the many interesting questions that remain to be explored. PMID:22566057

  12. Morphological differences in the lateral geniculate nucleus associated with dyslexia.

    PubMed

    Giraldo-Chica, Mónica; Hegarty, John P; Schneider, Keith A

    2015-01-01

    Developmental dyslexia is a common learning disability characterized by normal intelligence but difficulty in skills associated with reading, writing and spelling. One of the most prominent, albeit controversial, theories of dyslexia is the magnocellular theory, which suggests that malfunction of the magnocellular system in the brain is responsible for the behavioral deficits. We sought to test the basis of this theory by directly measuring the lateral geniculate nucleus (LGN), the only location in the brain where the magnocellular and parvocellular streams are spatially disjoint. Using high-resolution proton-density weighted MRI scans, we precisely measured the anatomical boundaries of the LGN in 13 subjects with dyslexia (five female) and 13 controls (three female), all 22-26 years old. The left LGN was significantly smaller in volume in subjects with dyslexia and also differed in shape; no differences were observed in the right LGN. The functional significance of this asymmetry is unknown, but these results are consistent with the magnocellular theory and support theories of dyslexia that involve differences in the early visual system.

  13. Hyperdipsia in rats after electrolytic lesions of nucleus medianus.

    PubMed

    Gardiner, T W; Stricker, E M

    1985-02-01

    Ablation of the ventral portion of nucleus medianus (vNM) in rats produced a temporary adipsia or hypodipsia that was accompanied by pronounced urinary fluid losses. When ad libitum drinking resumed, about half of the brain-damaged animals became hyperdipsic, exhibiting chronic two- to threefold elevations in their daily water intakes during the nocturnal hours of the day-night cycle. Rats that remained normodipsic after vNM ablation usually exhibited hyperdipsia if they were food-deprived overnight. The basis for the hyperdipsia produced by vNM ablation was not clear. The elevated water intakes appeared not to result from chronic urinary fluid losses, because hyperdipsic rats were able to concentrate their urine during the day, when they drank little. Moreover, the animals did not seem to be volume depleted; their plasma renin activities were not elevated, and they drank normally in association with meals. These and other findings suggest that vNM lesions damage neural substrates that control drinking behavior, and the hyperdipsia results from this rather than from physiological changes produced by the lesion.

  14. Morphological differences in the lateral geniculate nucleus associated with dyslexia.

    PubMed

    Giraldo-Chica, Mónica; Hegarty, John P; Schneider, Keith A

    2015-01-01

    Developmental dyslexia is a common learning disability characterized by normal intelligence but difficulty in skills associated with reading, writing and spelling. One of the most prominent, albeit controversial, theories of dyslexia is the magnocellular theory, which suggests that malfunction of the magnocellular system in the brain is responsible for the behavioral deficits. We sought to test the basis of this theory by directly measuring the lateral geniculate nucleus (LGN), the only location in the brain where the magnocellular and parvocellular streams are spatially disjoint. Using high-resolution proton-density weighted MRI scans, we precisely measured the anatomical boundaries of the LGN in 13 subjects with dyslexia (five female) and 13 controls (three female), all 22-26 years old. The left LGN was significantly smaller in volume in subjects with dyslexia and also differed in shape; no differences were observed in the right LGN. The functional significance of this asymmetry is unknown, but these results are consistent with the magnocellular theory and support theories of dyslexia that involve differences in the early visual system. PMID:26082892

  15. Cellular Mechanosensing: Getting to the nucleus of it all

    PubMed Central

    Fedorchak, Gregory R.; Kaminski, Ashley; Lammerding, Jan

    2014-01-01

    Cells respond to mechanical forces by activating specific genes and signaling pathways that allow the cells to adapt to their physical environment. Examples include muscle growth in response to exercise, bone remodeling based on their mechanical load, or endothelial cells aligning under fluid shear stress. While the involved downstream signaling pathways and mechanoresponsive genes are generally well characterized, many of the molecular mechanisms of the initiating ‘mechanosensing’ remain still elusive. In this review, we discuss recent findings and accumulating evidence suggesting that the cell nucleus plays a crucial role in cellular mechanotransduction, including processing incoming mechanoresponsive signals and even directly responding to mechanical forces. Consequently, mutations in the involved proteins or changes in nuclear envelope composition can directly impact mechanotransduction signaling and contribute to the development and progression of a variety of human diseases, including muscular dystrophy, cancer, and the focus of this review, dilated cardiomyopathy. Improved insights into the molecular mechanisms underlying nuclear mechanotransduction, brought in part by the emergence of new technologies to study intracellular mechanics at high spatial and temporal resolution, will not only result in a better understanding of cellular mechanosensing in normal cells but may also lead to the development of novel therapies in the many diseases linked to defects in nuclear envelope proteins. PMID:25008017

  16. Morphological differences in the lateral geniculate nucleus associated with dyslexia

    PubMed Central

    Giraldo-Chica, Mónica; Hegarty, John P.; Schneider, Keith A.

    2015-01-01

    Developmental dyslexia is a common learning disability characterized by normal intelligence but difficulty in skills associated with reading, writing and spelling. One of the most prominent, albeit controversial, theories of dyslexia is the magnocellular theory, which suggests that malfunction of the magnocellular system in the brain is responsible for the behavioral deficits. We sought to test the basis of this theory by directly measuring the lateral geniculate nucleus (LGN), the only location in the brain where the magnocellular and parvocellular streams are spatially disjoint. Using high-resolution proton-density weighted MRI scans, we precisely measured the anatomical boundaries of the LGN in 13 subjects with dyslexia (five female) and 13 controls (three female), all 22–26 years old. The left LGN was significantly smaller in volume in subjects with dyslexia and also differed in shape; no differences were observed in the right LGN. The functional significance of this asymmetry is unknown, but these results are consistent with the magnocellular theory and support theories of dyslexia that involve differences in the early visual system. PMID:26082892

  17. Spontaneous resorption of a large cervical herniated nucleus pulposus.

    PubMed

    Cvetanovich, Gregory L; Hsu, Andrew R; Frank, Rachel M; An, Howard S; Andersson, Gunnar B

    2014-07-01

    The majority of patients with symptomatic herniated discs can be successfully and conservatively managed and can achieve clinical improvement without surgical intervention. Resorption of the herniated nucleus pulposus (HNP) is 1 conservative mechanism for clinical improvement. We present the case of a 76-year-old healthy man with acute cervical radicular right arm pain and positive Spurling test. Magnetic resonance imaging (MRI) showed a large disc extrusion behind the C6 vertebral body, causing severe central canal stenosis and right-greater-than-left foraminal stenosis. The patient did not want surgical intervention, and his symptoms resolved with conservative treatment. A follow-up MRI 7 months after his initial presentation showed almost complete resorption of the herniated disc. The patient returned to his normal activities and has not had recurrence of symptoms for 2 years. This report provides an interesting example of complete resorption of a large, extruded cervical herniated disc in a symptomatic patient and a review of the literature on resorption of herniated discs. The review suggests that larger herniations with an epidural location (penetration of the posterior longitudinal ligament) have a greater chance of resorption.

  18. pH-activated size reduction of large compound nanoparticles for in vivo nucleus-targeted drug delivery.

    PubMed

    Fan, Yanbin; Li, Chunyan; Li, Fuyou; Chen, Daoyong

    2016-04-01

    Nucleus-targeted drug delivery is a promising strategy for anticancer therapy, but in vivo nucleus-targeted drug delivery has been challenging. Limited by the channel size of the nucleopore, vehicles that enter the nucleus via the nucleopore actively should be small and decorated with nuclear localization signal (NLS). However, the small vehicle size may promote leakage of vehicles into normal tissues, and the positively-charged NLS can lead to strong non-specific interactions in vivo. In the present study, we demonstrate an in vivo nucleus-targeted drug delivery using large compound nanoparticles with detachable PEG shell. The nanoparticles are composed of PEG-benzoic imine-oligo-l-lysine/iridium(III) metallodrug complex and formed in a kinetically-controlled fashion. Under physiological conditions (pH 7.4), the nanoparticles are large (ca. 150 nm) and protected by an inert PEG shell. When internalized into intracellular acidic endo/lysosomes of cancer cells, the nanoparticles dissociate into smaller ones (ca. 40 nm) and the PEG chains detach due to the cleavage of the benzoic imine bond at low pH. The small nanoparticles, with exposure of the oligo-l-lysine after the detachment of the PEG shield, then translocate into the nucleus via the nucleopore due to the small size and nuclear localization ability of the oligo-l-lysine. Importantly, the small particles could significantly release the contained drug into the nucleus, leading to ca. 20-fold higher cytotoxicity compared to the native drug in vitro. Further in vivo application of the nucleus-targeting nano-system in a nude-mice model showed significant tumor inhibition and remarkable life-span elongation. PMID:26854389

  19. Nonlinear osmotic properties of the cell nucleus.

    PubMed

    Finan, John D; Chalut, Kevin J; Wax, Adam; Guilak, Farshid

    2009-03-01

    In the absence of active volume regulation processes, cell volume is inversely proportional to osmolarity, as predicted by the Boyle Van't Hoff relation. In this study, we tested the hypothesis that nuclear volume has a similar relationship with extracellular osmolarity in articular chondrocytes, cells that are exposed to changes in the osmotic environment in vivo. Furthermore, we explored the mechanism of the relationships between osmolarity and nuclear size and shape. Nuclear size was quantified using two independent techniques, confocal laser scanning microscopy and angle-resolved low coherence interferometry. Nuclear volume was osmotically sensitive but this relationship was not linear, showing a decline in the osmotic sensitivity in the hypo-osmotic range. Nuclear shape was also influenced by extracellular osmolarity, becoming smoother as the osmolarity decreased. The osmotically induced changes in nuclear size paralleled the changes in nuclear shape, suggesting that shape and volume are interdependent. The osmotic sensitivity of shape and volume persisted after disruption of the actin cytoskeleton. Isolated nuclei contracted in response to physiologic changes in macromolecule concentration but not in response to physiologic changes in ion concentration, suggesting solute size has an important influence on the osmotic pressurization of the nucleus. This finding in turn implies that the diffusion barrier that causes osmotic effects is not a semi-permeable membrane, but rather due to size constraints that prevent large solute molecules from entering small spaces in the nucleus. As nuclear morphology has been associated previously with cell phenotype, these findings may provide new insight into the role of mechanical and osmotic signals in regulating cell physiology. PMID:19107599

  20. Nonlinear osmotic properties of the cell nucleus

    PubMed Central

    Finan, John D.; Chalut, Kevin J.; Wax, Adam; Guilak, Farshid

    2009-01-01

    Summary In the absence of active volume regulation processes, cell volume is inversely proportional to osmolarity, as predicted by the Boyle Van’t Hoff relation. In this study, we tested the hypothesis that nuclear volume has a similar relationship with extracellular osmolarity in articular chondrocytes, cells that are exposed to changes in the osmotic environment in vivo, and furthermore, we explored the mechanism of the relationships between osmolarity and nuclear size and shape. Nuclear size was quantified using two independent techniques, confocal laser scanning microscopy and angle-resolved low coherence interferometry. Nuclear volume was osmotically-sensitive but this relationship was not linear, showing a decline in the osmotic sensitivity in the hypo-osmotic range. Nuclear shape was also influenced by extracellular osmolarity, becoming smoother as the osmolarity decreased. The osmotically-induced changes in nuclear size paralleled the changes in nuclear shape, suggesting that shape and volume are interdependent. The osmotic sensitivity of shape and volume persisted after disruption of the actin cytoskeleton. Isolated nuclei contracted in response to physiologic changes in macromolecule concentration but not in response to physiologic changes in ion concentration, suggesting solute size has an important influence on the osmotic pressurization of the nucleus. This finding in turn implies that the diffusion barrier that causes osmotic effects is not a semi-permeable membrane, but rather due to size constraints that prevent large solute molecules from entering small spaces in the nucleus. As nuclear morphology has been associated previously with cell phenotype, these findings may provide new insight into the role of mechanical and osmotic signals in regulating cell physiology. PMID:19107599

  1. Activated ErbB3 Translocates to the Nucleus via Clathrin-independent Endocytosis, Which Is Associated with Proliferating Cells.

    PubMed

    Reif, Raymond; Adawy, Alshaimaa; Vartak, Nachiket; Schröder, Jutta; Günther, Georgia; Ghallab, Ahmed; Schmidt, Marcus; Schormann, Wiebke; Hengstler, Jan G

    2016-02-19

    Members of the receptor tyrosine kinase family (RTK) have been shown to be present in the nucleus of cells; however, the mechanisms underlying their trafficking to the nucleus, and their relevance once there are poorly understood. In the present study, we focus on the RTK ErbB3 and elucidate the mechanisms regulating its trafficking. We show that heregulin-stimulation induces trafficking of phosphorylated ErbB3 from the plasma membrane to the nucleus via a clathrin-independent mechanism. Nuclear import of ErbB3 occurs via importin β1, which drives the receptor through the nuclear pore complex. In the nucleus, ErbB3 interacts with transcription complexes, and thereby has a role in transcriptional regulation. Our results also demonstrate that ErbB3 nuclear localization is transient as it is exported out of the nucleus by the nuclear receptor protein crm-1. Analysis of normal, regenerating tissues, and tumors showed that ErbB3 nuclear translocation is a common event in proliferating tissues.

  2. Activated ErbB3 Translocates to the Nucleus via Clathrin-independent Endocytosis, Which Is Associated with Proliferating Cells.

    PubMed

    Reif, Raymond; Adawy, Alshaimaa; Vartak, Nachiket; Schröder, Jutta; Günther, Georgia; Ghallab, Ahmed; Schmidt, Marcus; Schormann, Wiebke; Hengstler, Jan G

    2016-02-19

    Members of the receptor tyrosine kinase family (RTK) have been shown to be present in the nucleus of cells; however, the mechanisms underlying their trafficking to the nucleus, and their relevance once there are poorly understood. In the present study, we focus on the RTK ErbB3 and elucidate the mechanisms regulating its trafficking. We show that heregulin-stimulation induces trafficking of phosphorylated ErbB3 from the plasma membrane to the nucleus via a clathrin-independent mechanism. Nuclear import of ErbB3 occurs via importin β1, which drives the receptor through the nuclear pore complex. In the nucleus, ErbB3 interacts with transcription complexes, and thereby has a role in transcriptional regulation. Our results also demonstrate that ErbB3 nuclear localization is transient as it is exported out of the nucleus by the nuclear receptor protein crm-1. Analysis of normal, regenerating tissues, and tumors showed that ErbB3 nuclear translocation is a common event in proliferating tissues. PMID:26719328

  3. Fluctuation analysis of relativistic nucleus-nucleus collisions in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Mcguire, Stephen C.

    1988-01-01

    An analytical technique was developed for identifying enhanced fluctuations in the angular distributions of secondary particles produced from relativistic nucleus-nucleus collisions. The method is applied under the assumption that the masses of the produced particles are small compared to their linear momenta. The importance of particles rests in the fact that enhanced fluctuations in the rapidity distributions is considered to be an experimental signal for the creation of the quark-gluon-plasma (QGP), a state of nuclear matter predicted from the quantum chromodynamics theory (QCD). In the approach, Monte Carlo simulations are employed that make use of a portable random member generator that allow the calculations to be performed on a desk-top computer. The method is illustrated with data taken from high altitude emulsion exposures and is immediately applicable to similar data from accelerator-based emulsion exposures.

  4. The suprachiasmatic nucleus-paraventricular nucleus interactions: a bridge to the neuroendocrine and autonomic nervous system.

    PubMed

    Buijs, R M; Hermes, M H; Kalsbeek, A

    1998-01-01

    Vasopressin (VP) is one of the principal neurotransmitters of the suprachiasmatic nucleus (SCN). By means of anatomical, physiological and electrophysiological techniques we have demonstrated that VP containing pathways from the SCN serve to affect neuroendocrine and 'autonomic' neurons in the paraventricular nucleus. By direct and indirect connections VP serves to inhibit corticosterone secretion, not only by affecting ACTH secretion but also by controlling the adrenal cortex via a neuronal route. Apart from controlling the pineal and adrenal, we also observed that the SCN is able to influence the heart. Subjecting rats or humans to light affects heart rate in a dose-dependent manner. These results suggest an important role for the SCN and VP in the SCN in the regulation of neuroendocrine and autonomic functions.

  5. Dynamical and Statistical Aspects in Nucleus--Nucleus Collisions Around the Fermi Energy

    NASA Astrophysics Data System (ADS)

    Tamain, B.; Assenard, M.; Auger, G.; Bacri, C. O.; Benlliure, J.; Bisquer, E.; Bocage, F.; Borderie, B.; Bougault, R.; Buchet, P.; Charvet, J. L.; Chbihi, A.; Colin, J.; Cussol, D.; Dayras, R.; Demeyer, A.; Dore, D.; Durand, D.; Eudes, P.; Frankland, J.; Galichet, E.; Genouin-Duhamel, E.; Gerlic, E.; Germain, M.; Gourio, D.; Guinet, D.; Gulminelli, F.; Lautesse, P.; Laville, J. L.; Lebrun, C.; Lecolley, J. F.; Lefevre, A.; Lefort, T.; Legrain, R.; Le Neindre, N.; Lopez, O.; Louvel, M.; Lukasik, J.; Marie, N.; Maskay, M.; Metivier, V.; Nalpas, L.; Nguyen, A.; Parlog, M.; Peter, J.; Plagnol, E.; Rahmani, A.; Reposeur, T.; Rivet, M. F.; Rosato, E.; Saint-Laurent, F.; Salou, S.; Squalli, M.; Steckmeyer, J. C.; Stern, M.; Tabacaru, T.; Tassan-Got, L.; Tirel, O.; Vient, E.; Volan, C.; Wieleczko, J. P.

    1998-01-01

    This contribution is devoted to two important aspects of intermediate energy nucleus-nucleus collisions: the competition of dynamical and statistical features, and the origin of the multifragmentation process. These two questions are discussed in focusing on Indra data. It turns out that most of collisions are binary and reminiscent of deep inelastic collisions observed at low energy. However, intermediate velocity emission is a clear signature of dynamical emission and establishes a link with the participant-spectator picture which applies at high bombarding energies. Multifragmentation is observed when the dissipated energy is large and it turns out that expansion occurs at least for central collisions, as it is expected if this phenomenum has a dynamical origin.

  6. Nuclear Effects in Neutrino-Nucleus Interactions and the MINERvA Neutrino Nucleus Scattering Program

    NASA Astrophysics Data System (ADS)

    Morfín, Jorge G.

    2011-09-01

    Nuclear effects of charged current deep inelastic neutrino-iron scattering have been studied in the frame-work of a χ2 analysis of parton distribution functions (PDFs)1. A set of iron PDFs have been extracted which are then used to compute xBj-dependent and Q2-dependent nuclear correction factors for iron structure functions which are required in global analyses of free nucleon PDFs. Upon comparing our results with nuclear correction factors from neutrino-nucleus scattering models and correction factors for l±-iron scattering we find that, except for very high xBj, our correction factors differ in both shape and magnitude from the correction factors of the models and charged-lepton scattering. The MINERvA neutrino-nucleus scattering experiment at Fermilab, will systematically study neutrino nuclear effects off of He, C, Fe and Pb for a more thorough A-dependent study of nuclear PDFs and these correction factors.

  7. Dielectron production in nucleus {plus} nucleus collisions at 1.05 GeV/nucleon

    SciTech Connect

    Porter, R.J.; Beedoe, S.; Bougteb, M.; Hallman, T.; Wang, Z.F.

    1996-06-28

    Measurements of dielectron production in heavy-ion collisions are valuable probes into the dynamics of the collision process. While the hadronic participants of the collision are subject to strong final state interactions, the coupling of the electron-positron pair to the collision medium is electromagnetic. Dielectrons, therefore suffer little rescattering leaving the interaction and can retain information about their production origins, probing even the early stages in the evolution of the collision. The DiLepton Spectrometer (DLS) collaboration`s original measurements of dielectron production established the existence of the signal at Bevalac energies. The 1992- 93 DLS measurements in nucleus+Nucleus collisions at a kinetic beam energy of 1.05 {ital GeV/nucleon} are the subject of this presentation.

  8. Cholinergic excitation from the pedunculopontine tegmental nucleus to the dentate nucleus in the rat.

    PubMed

    Vitale, F; Mattei, C; Capozzo, A; Pietrantoni, I; Mazzone, P; Scarnati, E

    2016-03-11

    In spite of the existence of pedunculopontine tegmental nucleus (PPTg) projections to cerebellar nuclei, their nature and functional role is unknown. These fibers may play a crucial role in postural control and may be involved in the beneficial effects induced by deep-brain stimulation (DBS) of brainstem structures in motor disorders. We investigated the effects of PPTg microstimulation on single-unit activity of dentate, fastigial and interpositus nuclei. The effects of PPTg stimulation were also studied in rats whose PPTg neurons were destroyed by ibotenic acid and subsequently subjected to iontophoretically applied cholinergic antagonists. The main response recorded in cerebellar nuclei was a short-latency (1.5-2 ms) and brief (13-15 ms) orthodromic activation. The dentate nucleus was the most responsive to PPTg stimulation. The destruction of PPTg cells reduced the occurrence of PPTg-evoked activation of dentate neurons, suggesting that the effect was due to stimulation of cell bodies and not due to fibers passing through or close to the PPTg. Application of cholinergic antagonists reduced or eliminated the PPTg-evoked response recorded in the dentate nucleus. The results show that excitation is exerted by the PPTg on the cerebellar nuclei, in particular on the dentate nucleus. Taken together with the reduction of nicotinamide adenine dinucleotide phosphate-diaphorase-positive neurons in lesioned animals, the iontophoretic experiments suggest that the activation of dentate neurons is due to cholinergic fibers. These data help to explain the effects of DBS of the PPTg on axial motor disabilities in neurodegenerative disorders. PMID:26762800

  9. Measuring gene expression noise in early Drosophila embryos: nucleus-to-nucleus variability

    PubMed Central

    Golyandina, Nina E.; Holloway, David M.; Lopes, Francisco J.P.; Spirov, Alexander V.; Spirova, Ekaterina N.; Usevich, Konstantin D.

    2012-01-01

    In recent years the analysis of noise in gene expression has widely attracted the attention of experimentalists and theoreticians. Experimentally, the approaches based on in vivo fluorescent reporters in single cells appear to be straightforward and effective tools for bacteria and yeast. However, transferring these approaches to multicellular organisms presents many methodological problems. Here we describe our approach to measure between-nucleus variability (noise) in the primary morphogenetic gradient of Bicoid (Bcd) in the precellular blastoderm stage of fruit fly (Drosophila) embryos. The approach is based on the comparison of results for fixed immunostained embryos with observations of live embryos carrying fluorescent Bcd (Bcd-GFP). We measure the noise using two-dimensional Singular Spectrum Analysis (2D SSA). We have found that the nucleus-to-nucleus noise in Bcd intensity, both for live (Bcd-GFP) and for fixed immunstained embryos, tends to be signal-independent. In addition, the character of the noise is sensitive to the nuclear masking technique used to extract quantitative intensities. Further, the method of decomposing the raw quantitative expression data into a signal (expression surface) and residual noise affects the character of the residual noise. We find that careful masking of confocal images and use of appropriate computational tools to decompose raw expression data into trend and noise makes it possible to extract and study the biological noise of gene expression. PMID:22723811

  10. Measuring gene expression noise in early Drosophila embryos: nucleus-to-nucleus variability.

    PubMed

    Golyandina, Nina E; Holloway, David M; Lopes, Francisco J P; Spirov, Alexander V; Spirova, Ekaterina N; Usevich, Konstantin D

    2012-01-01

    In recent years the analysis of noise in gene expression has widely attracted the attention of experimentalists and theoreticians. Experimentally, the approaches based on in vivo fluorescent reporters in single cells appear to be straightforward and effective tools for bacteria and yeast. However, transferring these approaches to multicellular organisms presents many methodological problems. Here we describe our approach to measure between-nucleus variability (noise) in the primary morphogenetic gradient of Bicoid (Bcd) in the precellular blastoderm stage of fruit fly (Drosophila) embryos. The approach is based on the comparison of results for fixed immunostained embryos with observations of live embryos carrying fluorescent Bcd (Bcd-GFP). We measure the noise using two-dimensional Singular Spectrum Analysis (2D SSA). We have found that the nucleus-to-nucleus noise in Bcd intensity, both for live (Bcd-GFP) and for fixed immunstained embryos, tends to be signal-independent. In addition, the character of the noise is sensitive to the nuclear masking technique used to extract quantitative intensities. Further, the method of decomposing the raw quantitative expression data into a signal (expression surface) and residual noise affects the character of the residual noise. We find that careful masking of confocal images and use of appropriate computational tools to decompose raw expression data into trend and noise makes it possible to extract and study the biological noise of gene expression.

  11. [Morphometric and immunohistochemical studies of the suprachiasmatic nucleus in the hereditary microphthalmic rat].

    PubMed

    Sugita, S; Ohsawa, K

    1992-10-01

    Morphometric and immunohistochemical analyses of the suprachiasmatic nucleus (SCN) were performed on hereditary microphthalmic rats. In normal rats, the number of cells and the volume of the SCN were 11, 631 and 6.7 x 10(-2) mm3 (an average taken from 12 SCNs). However, the neuronal population and volume of the SCN in hereditary microphthalmic rats were 7,450 and 4.5 x 10(-2) mm3 (an average taken from 14 SCNs), respectively. There were no significant differences in the size of neurons between normal and microphthalmic SCN neurons. Immunohistochemical studies showed that a considerable number of antivasopressin positive neurons were present in microphthalmic rats, despite their lack of the optic nerve. However, further detailed studies revealed that the number of antivasopressin positive neurons present in microphthalmic rats was only 68% of those found in normal rats. These findings suggest that the complete development of the SCN and vasopressin neurons depends on the visual input.

  12. The Confined Hydrogen Atom with a Moving Nucleus

    ERIC Educational Resources Information Center

    Fernandez, Francisco M.

    2010-01-01

    We study the hydrogen atom confined to a spherical box with impenetrable walls but, unlike earlier pedagogical articles on the subject, we assume that the nucleus also moves. We obtain the ground-state energy approximately by means of first-order perturbation theory and show that it is greater than that for the case in which the nucleus is clamped…

  13. Glutamatergic projection from the nucleus incertus to the septohippocampal system.

    PubMed

    Cervera-Ferri, Ana; Rahmani, Yasamin; Martínez-Bellver, Sergio; Teruel-Martí, Vicent; Martínez-Ricós, Joana

    2012-05-31

    Recent findings support a relevant role of the nucleus incertus in the control of the hippocampal activity through the modulation of theta rhythm. Previous studies from our group have shown that this nucleus is a critical relay between reticularis pontis oralis and the medial septum/diagonal band, regarded as the main activator and the pacemaker of the hippocampal oscillations, respectively. Besides, the nucleus incertus is highly linked to activated states related to the arousal response. The neurotransmission of the nucleus incertus, however, remains uncertain. Only GABA and the neuromodulator relaxin 3 are usually considered to be involved in its contribution to the septohippocampal system. In this work, we have analyzed the existence of an excitatory projection from the nucleus incertus to the medial septum. We have found a group of glutamatergic neurons in the nucleus incertus projecting to the medial septum. Moreover, we were able to describe a segregated distribution of calbindin and calretinin neurons. While calretinin expression was restricted to the nucleus incertus pars compacta, calbindin positive neurons where observed both in the pars dissipata and the pars compacta of the nucleus. The present work provides innovative data supporting an excitatory component in the pontoseptal pathway.

  14. Mission CaMKIIγ: shuttle calmodulin from membrane to nucleus.

    PubMed

    Malik, Zulfiqar A; Stein, Ivar S; Navedo, Manuel F; Hell, Johannes W

    2014-10-01

    Neuronal plasticity depends on plasma membrane Ca(2+) influx, resulting in activity-dependent gene transcription. Calmodulin (CaM) activated by Ca(2+) initiates the nuclear events, but how CaM makes its way to the nucleus has remained elusive. Ma et al. now show that CaMKIIγ transports CaM from cell surface Ca(2+) channels to the nucleus.

  15. Presynaptic facilitation of glycinergic mIPSC is reduced in mice lacking α3 glycine receptor subunits.

    PubMed

    Kono, Y; Hülsmann, S

    2016-04-21

    Glycinergic neurons provide an important mechanism to control excitation of motoneurons in the brainstem and a reduction or loss of glycinergic inhibition can be deleterious by leading to hyperexcitation such as in hyperekplexia or neurodegeneration and neuronal death as in amyotrophic lateral sclerosis (ALS). Second messenger systems that change cyclic AMP and lead to phosphorylation of the α3 subunit of the glycine receptor (GlyR α3) have been shown to be potent modulators of synaptic inhibition in the spinal cord and brain stem. In this study we analyzed the role of GlyR α3 in synaptic inhibition to the hypoglossal nucleus using Glra3 (the gene encoding the glycine receptor α3 subunit) knockout mice. We observed that baseline glycinergic synaptic transmission to nucleus of hypoglossal motoneurons is rather normal in Glra3 knockout mice. Interestingly, we found that the modulation of synaptic transmission by cAMP-mediated pathways appeared to be reduced in Glra3 knockout mice. In the second postnatal week the forskolin-induced increase of miniature inhibitory postsynaptic potential (mIPSC) frequency was significantly larger in control as compared to Glra3 knockout mice suggesting that presynaptic glycine release in the hypoglossal nucleus is partially depending on GlyR α3. PMID:26851771

  16. Normality in analytical psychology.

    PubMed

    Myers, Steve

    2013-12-01

    Although C.G. Jung's interest in normality wavered throughout his career, it was one of the areas he identified in later life as worthy of further research. He began his career using a definition of normality which would have been the target of Foucault's criticism, had Foucault chosen to review Jung's work. However, Jung then evolved his thinking to a standpoint that was more aligned to Foucault's own. Thereafter, the post Jungian concept of normality has remained relatively undeveloped by comparison with psychoanalysis and mainstream psychology. Jung's disjecta membra on the subject suggest that, in contemporary analytical psychology, too much focus is placed on the process of individuation to the neglect of applications that consider collective processes. Also, there is potential for useful research and development into the nature of conflict between individuals and societies, and how normal people typically develop in relation to the spectrum between individuation and collectivity.

  17. Normal Functioning Family

    MedlinePlus

    ... Spread the Word Shop AAP Find a Pediatrician Family Life Medical Home Family Dynamics Adoption & Foster Care ... Español Text Size Email Print Share Normal Functioning Family Page Content Article Body Is there any way ...

  18. Normal pressure hydrocephalus

    MedlinePlus

    Hydrocephalus - occult; Hydrocephalus - idiopathic; Hydrocephalus - adult; Hydrocephalus - communicating; Dementia - hydrocephalus; NPH ... Ferri FF. Normal pressure hydrocephalus. In: Ferri FF, ed. ... Elsevier; 2016:chap 648. Rosenberg GA. Brain edema and disorders ...

  19. Normality in Analytical Psychology

    PubMed Central

    Myers, Steve

    2013-01-01

    Although C.G. Jung’s interest in normality wavered throughout his career, it was one of the areas he identified in later life as worthy of further research. He began his career using a definition of normality which would have been the target of Foucault’s criticism, had Foucault chosen to review Jung’s work. However, Jung then evolved his thinking to a standpoint that was more aligned to Foucault’s own. Thereafter, the post Jungian concept of normality has remained relatively undeveloped by comparison with psychoanalysis and mainstream psychology. Jung’s disjecta membra on the subject suggest that, in contemporary analytical psychology, too much focus is placed on the process of individuation to the neglect of applications that consider collective processes. Also, there is potential for useful research and development into the nature of conflict between individuals and societies, and how normal people typically develop in relation to the spectrum between individuation and collectivity. PMID:25379262

  20. Normal Variants in Echocardiography.

    PubMed

    Sanchez, Daniel R; Bryg, Robert J

    2016-11-01

    Echocardiography is a powerful and convenient tool used routinely in the cardiac evaluation of many patients. Improved resolution and visualization of cardiac anatomy has led to the discovery of many normal variant structures that have no known pathologic consequence. Importantly, these findings may masquerade as pathology prompting unnecessary further evaluation at the expense of anxiety, cost, or potential harm. This review provides an updated and comprehensive collection of normal anatomic variants on both transthoracic and transesophageal imaging. PMID:27612473

  1. Nucleon emission via electromagnetic excitation in relativistic nucleus-nucleus collisions: Re-analysis of the Weizsacker-Williams method

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1989-01-01

    Previous analyses of the comparison of Weizsacker-Williams (WW) theory to experiment for nucleon emission via electromagnetic (EM) excitations in nucleus-nucleus collisions were not definitive because of different assumptions concerning the value of the minimum impact parameter. This situation is corrected by providing criteria that allows definitive statements to be made concerning agreement or disagreement between WW theory and experiment.

  2. Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei

    2014-09-01

    We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.

  3. Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy

    SciTech Connect

    Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei

    2014-09-08

    We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.

  4. Distinct roles of dopamine and subthalamic nucleus in learning and probabilistic decision making

    PubMed Central

    Bogacz, Rafal; Javed, Shazia; Mooney, Lucy K.; Murphy, Gillian; Keeley, Sophie; Whone, Alan L.

    2012-01-01

    Even simple behaviour requires us to make decisions based on combining multiple pieces of learned and new information. Making such decisions requires both learning the optimal response to each given stimulus as well as combining probabilistic information from multiple stimuli before selecting a response. Computational theories of decision making predict that learning individual stimulus–response associations and rapid combination of information from multiple stimuli are dependent on different components of basal ganglia circuitry. In particular, learning and retention of memory, required for optimal response choice, are significantly reliant on dopamine, whereas integrating information probabilistically is critically dependent upon functioning of the glutamatergic subthalamic nucleus (computing the ‘normalization term’ in Bayes’ theorem). Here, we test these theories by investigating 22 patients with Parkinson’s disease either treated with deep brain stimulation to the subthalamic nucleus and dopaminergic therapy or managed with dopaminergic therapy alone. We use computerized tasks that probe three cognitive functions—information acquisition (learning), memory over a delay and information integration when multiple pieces of sequentially presented information have to be combined. Patients performed the tasks ON or OFF deep brain stimulation and/or ON or OFF dopaminergic therapy. Consistent with the computational theories, we show that stopping dopaminergic therapy impairs memory for probabilistic information over a delay, whereas deep brain stimulation to the region of the subthalamic nucleus disrupts decision making when multiple pieces of acquired information must be combined. Furthermore, we found that when participants needed to update their decision on the basis of the last piece of information presented in the decision-making task, patients with deep brain stimulation of the subthalamic nucleus region did not slow down appropriately to revise their

  5. Distinct roles of dopamine and subthalamic nucleus in learning and probabilistic decision making.

    PubMed

    Coulthard, Elizabeth J; Bogacz, Rafal; Javed, Shazia; Mooney, Lucy K; Murphy, Gillian; Keeley, Sophie; Whone, Alan L

    2012-12-01

    Even simple behaviour requires us to make decisions based on combining multiple pieces of learned and new information. Making such decisions requires both learning the optimal response to each given stimulus as well as combining probabilistic information from multiple stimuli before selecting a response. Computational theories of decision making predict that learning individual stimulus-response associations and rapid combination of information from multiple stimuli are dependent on different components of basal ganglia circuitry. In particular, learning and retention of memory, required for optimal response choice, are significantly reliant on dopamine, whereas integrating information probabilistically is critically dependent upon functioning of the glutamatergic subthalamic nucleus (computing the 'normalization term' in Bayes' theorem). Here, we test these theories by investigating 22 patients with Parkinson's disease either treated with deep brain stimulation to the subthalamic nucleus and dopaminergic therapy or managed with dopaminergic therapy alone. We use computerized tasks that probe three cognitive functions-information acquisition (learning), memory over a delay and information integration when multiple pieces of sequentially presented information have to be combined. Patients performed the tasks ON or OFF deep brain stimulation and/or ON or OFF dopaminergic therapy. Consistent with the computational theories, we show that stopping dopaminergic therapy impairs memory for probabilistic information over a delay, whereas deep brain stimulation to the region of the subthalamic nucleus disrupts decision making when multiple pieces of acquired information must be combined. Furthermore, we found that when participants needed to update their decision on the basis of the last piece of information presented in the decision-making task, patients with deep brain stimulation of the subthalamic nucleus region did not slow down appropriately to revise their plan, a

  6. Control of nucleus accumbens activity with neurofeedback.

    PubMed

    Greer, Stephanie M; Trujillo, Andrew J; Glover, Gary H; Knutson, Brian

    2014-08-01

    The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be presented as "neurofeedback." In an fMRI-based neurofeedback experiment designed to elicit NAcc activity, we found that subjects could increase their own NAcc activity, and that display of neurofeedback significantly enhanced their ability to do so. Subjects were not as capable of decreasing their NAcc activity, however, and enhanced control did not persist after subsequent removal of neurofeedback. Further analyses suggested that individuals who recruited positive aroused affect were better able to increase NAcc activity in response to neurofeedback, and that NAcc neurofeedback also elicited functionally correlated activity in the medial prefrontal cortex. Together, these findings suggest that humans can modulate their own NAcc activity and that fMRI-based neurofeedback may augment their efforts. The observed association between positive arousal and effective NAcc control further supports an anticipatory affect account of NAcc function.

  7. Comparing Realistic Subthalamic Nucleus Neuron Models

    NASA Astrophysics Data System (ADS)

    Njap, Felix; Claussen, Jens C.; Moser, Andreas; Hofmann, Ulrich G.

    2011-06-01

    The mechanism of action of clinically effective electrical high frequency stimulation is still under debate. However, recent evidence points at the specific activation of GABA-ergic ion channels. Using a computational approach, we analyze temporal properties of the spike trains emitted by biologically realistic neurons of the subthalamic nucleus (STN) as a function of GABA-ergic synaptic input conductances. Our contribution is based on a model proposed by Rubin and Terman and exhibits a wide variety of different firing patterns, silent, low spiking, moderate spiking and intense spiking activity. We observed that most of the cells in our network turn to silent mode when we increase the GABAA input conductance above the threshold of 3.75 mS/cm2. On the other hand, insignificant changes in firing activity are observed when the input conductance is low or close to zero. We thus reproduce Rubin's model with vanishing synaptic conductances. To quantitatively compare spike trains from the original model with the modified model at different conductance levels, we apply four different (dis)similarity measures between them. We observe that Mahalanobis distance, Victor-Purpura metric, and Interspike Interval distribution are sensitive to different firing regimes, whereas Mutual Information seems undiscriminative for these functional changes.

  8. Calretinin Neurons in the Rat Suprachiasmatic Nucleus.

    PubMed

    Moore, Robert Y

    2016-08-01

    The hypothalamic suprachiasmatic nucleus (SCN), a circadian pacemaker, is present in all mammalian brains. It has a complex organization of peptide-containing neurons that is similar among species, but calcium-binding proteins are expressed variably. Neurons containing calretinin have been described in the SCN in a number of species but not with association to circadian function. The objective of the present study is to characterize a calretinin neuron (CAR) group in the rat anterior hypothalamus anatomically and functionally with a detailed description of its location and a quantitative analysis of neuronal calretinin immunoreactivity at 3 times of day, 0600, 1400, and 1900 h, from animals in either light-dark or constant dark conditions. CAR neurons occupy a region in the dorsal and lateral SCN with a circadian rhythm in CAR immunoreactivity with a peak at 0600 h and a rhythm in cytoplasmic CAR distribution with a peak at 1400 h. CAR neurons should be viewed as an anatomical and functional component of the rat SCN that expands the definition from observations with cell stains. CAR neurons are likely to modulate temporal regulation of calcium in synaptic transmission.

  9. Inside a plant nucleus: discovering the proteins.

    PubMed

    Petrovská, Beáta; Šebela, Marek; Doležel, Jaroslav

    2015-03-01

    Nuclear proteins are a vital component of eukaryotic cell nuclei and have a profound effect on the way in which genetic information is stored, expressed, replicated, repaired, and transmitted to daughter cells and progeny. Because of the plethora of functions, nuclear proteins represent the most abundant components of cell nuclei in all eukaryotes. However, while the plant genome is well understood at the DNA level, information on plant nuclear proteins remains scarce, perhaps with the exception of histones and a few other proteins. This lack of knowledge hampers efforts to understand how the plant genome is organized in the nucleus and how it functions. This review focuses on the current state of the art of the analysis of the plant nuclear proteome. Previous proteome studies have generally been designed to search for proteins involved in plant response to various forms of stress or to identify rather a modest number of proteins. Thus, there is a need for more comprehensive and systematic studies of proteins in the nuclei obtained at individual phases of the cell cycle, or isolated from various tissue types and stages of cell and tissue differentiation. All this in combination with protein structure, predicted function, and physical localization in 3D nuclear space could provide much needed progress in our understanding of the plant nuclear proteome and its role in plant genome organization and function.

  10. Ultrasonic evoked responses in rat cochlear nucleus

    PubMed Central

    Du, Yi; Ping, Junli; Li, Nanxin; Wu, Xihong; Li, Liang; Galbraith, Gary

    2009-01-01

    Numerous studies have reported auditory brainstem responses evoked by stimuli within the “normal” hearing range of rats, with maximum sensitivity peaking around 16 kHz. Yet rats also emit and respond to sounds in the ultrasonic (US) frequency range (30-100 kHz). However very few electrophysiological studies have recorded auditory brainstem responses using US stimuli, and none have exceeded 70 kHz. We report here short-latency (1-3 ms) evoked potentials recorded in rat cochlear nucleus (CN) to US stimuli ranging from 40-90 kHz. Robust responses were recorded in 33 of 36 CN recording sites to stimuli ranging from 40-60 kHz; and twenty-eight of these sites continued to yield well defined responses out to 90 kHz. Latencies systematically increased and overall amplitudes decreased with increasing US frequency. Amplitudes differed significantly in the three CN subnuclei, being largest in posterior-ventral (PVCN) and smallest in anterior-ventral (AVCN). The fact that well defined responses can be recorded to stimuli as high as 90 kHz significantly extends the recorded upper frequency range of neural activity in the brainstem auditory pathway of the rat. These evoked potential results agree with the well documented behavioral repertoire of rats in the US frequency range. PMID:17803975

  11. SUNrises on the International Plant Nucleus Consortium

    PubMed Central

    Graumann, Katja; Bass, Hank W.; Parry, Geraint

    2013-01-01

    The nuclear periphery is a dynamic, structured environment, whose precise functions are essential for global processes—from nuclear, to cellular, to organismal. Its main components—the nuclear envelope (NE) with inner and outer nuclear membranes (INM and ONM), nuclear pore complexes (NPC), associated cytoskeletal and nucleoskeletal components as well as chromatin are conserved across eukaryotes (Fig. 1). In metazoans in particular, the structure and functions of nuclear periphery components are intensely researched partly because of their involvement in various human diseases. While far less is known about these in plants, the last few years have seen a significant increase in research activity in this area. Plant biologists are not only catching up with the animal field, but recent findings are pushing our advances in this field globally. In recognition of this developing field, the Annual Society of Experimental Biology Meeting in Salzburg kindly hosted a session co-organized by Katja Graumann and David E. Evans (Oxford Brookes University) highlighting new insights into plant nuclear envelope proteins and their interactions. This session brought together leading researchers with expertise in topics such as epigenetics, meiosis, nuclear pore structure and functions, nucleoskeleton and nuclear envelope composition. An open and friendly exchange of ideas was fundamental to the success of the meeting, which resulted in founding the International Plant Nucleus Consortium. This review highlights new developments in plant nuclear envelope research presented at the conference and their importance for the wider understanding of metazoan, yeast and plant nuclear envelope functions and properties. PMID:23324458

  12. Functional network inference of the suprachiasmatic nucleus.

    PubMed

    Abel, John H; Meeker, Kirsten; Granados-Fuentes, Daniel; St John, Peter C; Wang, Thomas J; Bales, Benjamin B; Doyle, Francis J; Herzog, Erik D; Petzold, Linda R

    2016-04-19

    In the mammalian suprachiasmatic nucleus (SCN), noisy cellular oscillators communicate within a neuronal network to generate precise system-wide circadian rhythms. Although the intracellular genetic oscillator and intercellular biochemical coupling mechanisms have been examined previously, the network topology driving synchronization of the SCN has not been elucidated. This network has been particularly challenging to probe, due to its oscillatory components and slow coupling timescale. In this work, we investigated the SCN network at a single-cell resolution through a chemically induced desynchronization. We then inferred functional connections in the SCN by applying the maximal information coefficient statistic to bioluminescence reporter data from individual neurons while they resynchronized their circadian cycling. Our results demonstrate that the functional network of circadian cells associated with resynchronization has small-world characteristics, with a node degree distribution that is exponential. We show that hubs of this small-world network are preferentially located in the central SCN, with sparsely connected shells surrounding these cores. Finally, we used two computational models of circadian neurons to validate our predictions of network structure.

  13. Functional network inference of the suprachiasmatic nucleus.

    PubMed

    Abel, John H; Meeker, Kirsten; Granados-Fuentes, Daniel; St John, Peter C; Wang, Thomas J; Bales, Benjamin B; Doyle, Francis J; Herzog, Erik D; Petzold, Linda R

    2016-04-19

    In the mammalian suprachiasmatic nucleus (SCN), noisy cellular oscillators communicate within a neuronal network to generate precise system-wide circadian rhythms. Although the intracellular genetic oscillator and intercellular biochemical coupling mechanisms have been examined previously, the network topology driving synchronization of the SCN has not been elucidated. This network has been particularly challenging to probe, due to its oscillatory components and slow coupling timescale. In this work, we investigated the SCN network at a single-cell resolution through a chemically induced desynchronization. We then inferred functional connections in the SCN by applying the maximal information coefficient statistic to bioluminescence reporter data from individual neurons while they resynchronized their circadian cycling. Our results demonstrate that the functional network of circadian cells associated with resynchronization has small-world characteristics, with a node degree distribution that is exponential. We show that hubs of this small-world network are preferentially located in the central SCN, with sparsely connected shells surrounding these cores. Finally, we used two computational models of circadian neurons to validate our predictions of network structure. PMID:27044085

  14. Control of nucleus accumbens activity with neurofeedback

    PubMed Central

    Greer, Stephanie M.; Trujillo, Andrew J.; Glover, Gary H.; Knutson, Brian

    2014-01-01

    The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be presented as “neurofeedback.” In an fMRI-based neurofeedback experiment designed to elicit NAcc activity, we found that subjects could increase their own NAcc activity, and that display of neurofeedback significantly enhanced their ability to do so. Subjects were not as capable of decreasing their NAcc activity, however, and enhanced control did not persist after subsequent removal of neurofeedback. Further analyses suggested that individuals who recruited positive arousal affect were better able to increase NAcc activity in response to neurofeedback, and that NAcc neurofeedback also elicited functionally correlated activity in the medial prefrontal cortex. Together, these findings suggest that humans can modulate their own NAcc activity and that fMRI-based neurofeedback may augment their efforts. The observed association between positive arousal and effective NAcc control further supports an anticipatory affect account of NAcc function. PMID:24705203

  15. Mechanical behavior of the human lumbar intervertebral disc with polymeric hydrogel nucleus implant: An experimental and finite element study

    NASA Astrophysics Data System (ADS)

    Joshi, Abhijeet Bhaskar

    The origin of the lower back pain is often the degenerated lumbar intervertebral disc (IVD). We are proposing replacement of the degenerated nucleus by a PVA/PVP polymeric hydrogel implant. We hypothesize that a polymeric hydrogel nucleus implant can restore the normal biomechanics of the denucleated IVD by mimicking the natural load transfer phenomenon as in case of the intact IVD. Lumbar IVDs (n = 15) were harvested from human cadavers. In the first part, specimens were tested in four different conditions for compression: Intact, bone in plug, denucleated and Implanted. Hydrogel nucleus implants were chosen to have line-to-line fit in the created nuclear cavity. In the second part, nucleus implant material (modulus) and geometric (height and diameter) parameters were varied and specimens (n = 9) were tested. Nucleus implants with line-to-line fit significantly restored (88%) the compressive stiffness of the denucleated IVD. The synergistic effect between the implant and the intact annulus resulted in the nonlinear increase in implanted IVD stiffness, where Poisson effect of the hydrogel played major role. Nucleus implant parameters were observed to have a significant effect on the compressive stiffness. All implants with modulus in the tested range restored the compressive stiffness. The undersize implants resulted in incomplete restoration while oversize implants resulted in complete restoration compared to the BI condition. Finite element models (FEM) were developed to simulate the actual test conditions and validated against the experimental results for all conditions. The annulus (defined as hyperelastic, isotropic) mainly determined the nonlinear response of the IVD. Validated FEMs predicted 120--3000 kPa as a feasible range for nucleus implant modulus. FEMs also predicted that overdiameter implant would be more effective than overheight implant in terms of stiffness restoration. Underdiameter implants, initially allowed inward deformation of the annulus and

  16. Force normalization in paraplegics.

    PubMed

    Serra-Añó, P; García-Massó, X; Pellicer, M; González, L-M; López-Pascual, J; Giner-Pascual, M; Toca-Herrera, J L

    2012-06-01

    The principal aim of our study was the determination of the effectiveness of a standardized ratio, allometric scaling model and a gamma function model in normalizing the isometric torque data of spinal cord patients and healthy subjects. For this purpose we studied a sample of 21 healthy males and 23 spinal cord injury males. The experiment consisted of the measurement of the force of the upper limb movement executed by all the subjects. We also determined anthropometric variables with dual-energy x-ray absorptiometry. The experimental data were analyzed with 3 force normalization methods. Our results indicate that the most important confounding variable was the fat free mass of the dominant upper limb (r>0.36, p<0.05). With the standardization by body mass and allometric scaling model, the normalized torque was influenced by body size variables. However, the normalized torque by the gamma function model was independent of body size measures. Paraplegics were weaker (p<0.05) in extension movements when the data were normalized by the gamma function model. In summary, this study shows that the gamma function model with fat free mass of the dominant upper limb was more effective than the standardized ratio in removing the influence of body size variables. PMID:22377940

  17. Nucleogenesis and stomatogenesis in sexual reproduction of Paramecium tetraurelia may be controlled by chromosomal factors of the germ nucleus (micronucleus).

    PubMed

    Chau, M F; F Ng, S

    1989-02-24

    The nature of control of development of the nucleus and the oral apparatus by the germ nucleus (micronucleus) during sexual reproduction in Paramecium tetraurelia was analyzed by studying nine euploid (mostly haploid) clones. These clones were generated by conjugation between cells lacking micronuclei (amicronucleates) and micronucleates with diploid micronuclei. All except two of the euploid clones were normal in stomatogenesis in asexual reproduction. In contrast, during subsequent sexual reproduction (autogamy), eight of the euploid clones showed correlative abnormalities in nucleogenesis and stomatogenesis. The former involves the generation of gametic nuclei and the postzygotic development of micronuclei and macronuclear anlagen. The latter involves the crucial stomatogenic step of initiation of oral membraneile assembly, as well as the specification of the normal pattern of the oral apparatus. Since during autogamy haploid nuclei underwent meiosis giving rise to aneuploid nuclei and thus genomic imbalance, the present findings support the notion that micronuclear chromosomal factors contribute to both nucleogenesis and stomatogenesis in the sexual cycle. PMID:23195561

  18. Angiotensin receptor binding and pressor effects in cat subretrofacial nucleus

    SciTech Connect

    Allen, A.M.; Dampney, R.A.L.; Mendelsohn, F.A.O. Univ. of Sydney )

    1988-11-01

    Central administration of angiotensin II (ANG II) increases arterial blood pressure via increased sympathetic activity. The authors have examined the possibility that one site of action of ANG II is the subretrofacial (SRF) nucleus in the rostral ventrolateral medulla, since this nucleus is known to play a critical role in the tonic and phasic control of arterial pressure. In vitro autoradiography, employing {sup 125}I-labeled (Sar{sup 1}, Ile{sup 8})ANG II as radioligand, was used to localize binding sites for ANG-II in the cat ventrolateral medulla. A high density of ANG II-receptor binding sites was found confined to the SRF nucleus. In a second group of experiments in anesthetized cats, microinjections of ANG II, in doses ranging from 10 to 50 pmol, were made into histologically identified sites within and outside the SRF nucleus. Microinjections into the nucleus resulted in a dose-dependent increase in arterial pressure, which was abolished by systemic administration of the ganglion-blocking drug hexamethonium bromide. In contrast, microinjections just outside the SRF nucleus had no effect on arterial pressure. It is concluded that activation of ANG II-receptor binding sites within the SRF nucleus leads to an increase in arterial pressure via increased sympathetic efferent activity.

  19. The Suprachiasmatic Nucleus Modulates the Sensitivity of Arcuate Nucleus to Hypoglycemia in the Male Rat.

    PubMed

    Herrera-Moro Chao, D; León-Mercado, L; Foppen, E; Guzmán-Ruiz, M; Basualdo, M C; Escobar, C; Buijs, R M

    2016-09-01

    The suprachiasmatic nucleus (SCN) and arcuate nucleus (ARC) have reciprocal connections; catabolic metabolic information activates the ARC and inhibits SCN neuronal activity. Little is known about the influence of the SCN on the ARC. Here, we investigated whether the SCN modulated the sensitivity of the ARC to catabolic metabolic conditions. ARC neuronal activity, as determined by c-Fos immunoreactivity, was increased after a hypoglycemic stimulus by 2-deoxyglucose (2DG). The highest ARC neuronal activity after 2DG was found at the end of the light period (zeitgeber 11, ZT11) with a lower activity in the beginning of the light period (zeitgeber 2, ZT2), suggesting the involvement of the SCN. The higher activation of ARC neurons after 2DG at ZT11 was associated with higher 2DG induced blood glucose levels as compared with ZT2. Unilateral SCN-lesioned animals, gave a mainly ipsilateral activation of ARC neurons at the lesioned side, suggesting an inhibitory role of the SCN on ARC neurons. The 2DG-induced counterregulatory glucose response correlated with increased ARC neuronal activity and was significantly higher in unilateral SCN-lesioned animals. Finally, the ARC as site where 2DG may, at least partly, induce a counterregulatory response was confirmed by local microdialysis of 2DG. 2DG administration in the ARC produced a higher increase in circulating glucose compared with 2DG administration in surrounding areas such as the ventromedial nucleus of the hypothalamus (VMH). We conclude that the SCN uses neuronal pathways to the ARC to gate sensory metabolic information to the brain, regulating ARC glucose sensitivity and counterregulatory responses to hypoglycemic conditions. PMID:27429160

  20. The Suprachiasmatic Nucleus Modulates the Sensitivity of Arcuate Nucleus to Hypoglycemia in the Male Rat.

    PubMed

    Herrera-Moro Chao, D; León-Mercado, L; Foppen, E; Guzmán-Ruiz, M; Basualdo, M C; Escobar, C; Buijs, R M

    2016-09-01

    The suprachiasmatic nucleus (SCN) and arcuate nucleus (ARC) have reciprocal connections; catabolic metabolic information activates the ARC and inhibits SCN neuronal activity. Little is known about the influence of the SCN on the ARC. Here, we investigated whether the SCN modulated the sensitivity of the ARC to catabolic metabolic conditions. ARC neuronal activity, as determined by c-Fos immunoreactivity, was increased after a hypoglycemic stimulus by 2-deoxyglucose (2DG). The highest ARC neuronal activity after 2DG was found at the end of the light period (zeitgeber 11, ZT11) with a lower activity in the beginning of the light period (zeitgeber 2, ZT2), suggesting the involvement of the SCN. The higher activation of ARC neurons after 2DG at ZT11 was associated with higher 2DG induced blood glucose levels as compared with ZT2. Unilateral SCN-lesioned animals, gave a mainly ipsilateral activation of ARC neurons at the lesioned side, suggesting an inhibitory role of the SCN on ARC neurons. The 2DG-induced counterregulatory glucose response correlated with increased ARC neuronal activity and was significantly higher in unilateral SCN-lesioned animals. Finally, the ARC as site where 2DG may, at least partly, induce a counterregulatory response was confirmed by local microdialysis of 2DG. 2DG administration in the ARC produced a higher increase in circulating glucose compared with 2DG administration in surrounding areas such as the ventromedial nucleus of the hypothalamus (VMH). We conclude that the SCN uses neuronal pathways to the ARC to gate sensory metabolic information to the brain, regulating ARC glucose sensitivity and counterregulatory responses to hypoglycemic conditions.

  1. Multiple pion and kaon production in high energy nucleus-nucleus collisions: measurements versus specific models

    NASA Astrophysics Data System (ADS)

    Guptaroy, P.; de, Bh.; Bhattacharyya, S.; Bhattacharyya, D. P.

    The pion and kaon rapidity densities and the nature of kaon-pion ratios offer two very prominent and crucial physical observables on which modestly sufficient data for heavy nucleus collisions are available to date. In the light of two sets of models - one purely phenomenological and the other with a modest degree of a dynamical basis - we try to examine the state of agreement between calculations and experimental results obtainable from the past and the latest measurements. Impact and implications of all these would also finally be spelt out.

  2. Ice nucleus activity measurements of solid rocket motor exhaust particles

    NASA Technical Reports Server (NTRS)

    Keller, V. W. (Compiler)

    1986-01-01

    The ice Nucleus activity of exhaust particles generated from combustion of Space Shuttle propellant in small rocket motors has been measured. The activity at -20 C was substantially lower than that of aerosols generated by unpressurized combustion of propellant samples in previous studies. The activity decays rapidly with time and is decreased further in the presence of moist air. These tests corroborate the low effectivity ice nucleus measurement results obtained in the exhaust ground cloud of the Space Shuttle. Such low ice nucleus activity implies that Space Shuttle induced inadvertent weather modification via an ice phase process is extremely unlikely.

  3. Quarkonium-nucleus bound states from lattice QCD

    SciTech Connect

    Beane, S.  R.; Chang, E.; Cohen, S.  D.; Detmold, W.; Lin, H. -W.; Orginos, K.; Parreño, A.; Savage, M.  J.

    2015-06-11

    Quarkonium-nucleus systems are composed of two interacting hadronic states without common valence quarks, which interact primarily through multi-gluon exchanges, realizing a color van der Waals force. We present lattice QCD calculations of the interactions of strange and charm quarkonia with light nuclei. Both the strangeonium-nucleus and charmonium-nucleus systems are found to be relatively deeply bound when the masses of the three light quarks are set equal to that of the physical strange quark. Extrapolation of these results to the physical light-quark masses suggests that the binding energy of charmonium to nuclear matter is B < 40 MeV.

  4. Determination of electron-nucleus collisions geometry with forward neutrons

    SciTech Connect

    Zheng, L.; Aschenauer, E.; Lee, J. H.

    2014-12-29

    There are a large number of physics programs one can explore in electron-nucleus collisions at a future electron-ion collider. Collision geometry is very important in these studies, while the measurement for an event-by-event geometric control is rarely discussed in the prior deep-inelastic scattering experiments off a nucleus. This paper seeks to provide some detailed studies on the potential of tagging collision geometries through forward neutron multiplicity measurements with a zero degree calorimeter. As a result, this type of geometry handle, if achieved, can be extremely beneficial in constraining nuclear effects for the electron-nucleus program at an electron-ion collider.

  5. Smallest Black Hole in Galactic Nucleus Detected

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    A team of astronomers have reported the detection of the smallest black hole (BH) ever observed in a galactic nucleus. The BH is hosted in the center of dwarf galaxy RGG 118, and it weighs in at 50,000 solar masses, according to observations made by Vivienne Baldassare of University of Michigan and her collaborators. Small Discoveries: Why is the discovery of a small nuclear BH important? Some open questions that this could help answer are: - Do the very smallest dwarf galaxies have BHs at their centers too? Though we believe that there's a giant BH at the center of every galaxy, we aren't sure how far down the size scale this holds true. - What is the formation mechanism for BHs at the center of galaxies? - What's the behavior of the M-sigma relation at the low-mass end? The M-sigma relation is an observed correlation between the mass of a galaxy's central BH and the velocity dispersion of the stars in the galaxy. This relation is incredibly useful for determining properties of distant BHs and their galaxies empirically, but little data is available to constrain the low-mass end of the relation. M-sigma relation, plotting systems with dynamically-measured black hole masses. RGG 118 is plotted as the pink star. The solid and dashed lines represent various determinations of scaling relations. Credit: Baldassare et al. 2015. Identifying a Black Hole: RGG 118 was identified as a candidate host for an accreting, nuclear BH from the catalog of dwarf galaxies observed in the Sloan Digital Sky Survey. Baldassare and her team followed up with high-resolution spectroscopy from the Clay telescope in Chile and Chandra x-ray observations. Using these observations, the team determined that RGG 118 plays host to a massive BH at its center based on three clues: 1) narrow emission line ratios, which is a signature of accretion onto a massive BH, 2) the presence of broad emission lines, indicating that gas is rotating around a central BH, and 3) the existence of an X-ray point

  6. HUBBLE DETECTION OF COMET NUCLEUS AT FRINGE OF SOLAR SYSTEM

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is sample data from NASA's Hubble Space Telescope that illustrates the detection of comets in the Kuiper Belt, a region of space beyond the orbit of the planet Neptune. This pair of images, taken with the Wide Field Planetary Camera 2 (WFPC2), shows one of the candidate Kuiper Belt objects found with Hubble. Believed to be an icy comet nucleus several miles across, the object is so distant and faint that Hubble's search is the equivalent of finding the proverbial needle-in-haystack. Each photo is a 5-hour exposure of a piece of sky carefully selected such that it is nearly devoid of background stars and galaxies that could mask the elusive comet. The left image, taken on August 22, 1994, shows the candidate comet object (inside circle) embedded in the background. The right picture, take of the same region one hour forty-five minutes later shows the object has apparently moved in the predicted direction and rate of motion for a kuiper belt member. The dotted line on the images is a possible orbit that this Kuiper belt comet is following. A star (lower right corner) and a galaxy (upper right corner) provide a static background reference. In addition, other objects in the picture have not moved during this time, indicating they are outside our solar system. Through this search technique astronomers have identified 29 candidate comet nuclei belonging to an estimated population of 200 million particles orbiting the edge of our solar system. The Kupier Belt was theorized 40 years ago, and its larger members detected several years ago. However, Hubble has found the underlying population of normal comet-sized bodies. Credit: A. Cochran (University of Texas) and NASA

  7. Modulation of cardiorespiratory function mediated by the paraventricular nucleus

    PubMed Central

    Kc, Prabha; Dick, Thomas E.

    2010-01-01

    The hypothalamic paraventricular nucleus (PVN) coordinates autonomic and neuroendocrine systems to maintain homeostasis and to respond to stress. Neuroanatomic and neurophysiologic experiments have provided insight into the mechanisms by which the PVN acts. The PVN projects directly to the spinal cord and brainstem and, specifically, to sites that control cardiorespiratory function: the intermediolateral cell columns and phrenic motor nuclei in the spinal cord and rostral ventrolateral medulla (RVLM) and the rostral nuclei in the ventral respiratory column (rVRC) in the brainstem. Activation of the PVN increases ventilation (both tidal volume and frequency) and blood pressure (both heart rate and sympathetic nerve activity). Excitatory and inhibitory neurotransmitters including glutamate and GABA converge in the PVN to influence its neuronal activity. However, a tonic GABAergic input to the PVN directly modulates excitatory outflow from the PVN. Further, even within the PVN, microinjection of GABAA receptor blockers increases glutamate release suggesting an indirect mechanism by which GABA control contributes to PVN functions. PVN activity alters blood pressure and ventilation during various stresses, such as maternal separation, chronic intermittent hypoxia (CIH), dehydration and hemorrhage. Among the several PVN neurotransmitters and neurohormones, vasopressin and oxytocin modulate ventilation and blood pressure. Here, we review our data indicating that increases in vasopressin and vasopressin type 1A (V1A) receptor signaling in the RVLM and rVRC are mechanisms increasing blood pressure and ventilation after exposure to CIH. That blockade of V1A receptors in the medulla normalizes baseline blood pressure as well as blunts PVN-evoked blood pressure and ventilatory responses in CIH-conditioned animals indicate the role of vasopressin in cardiorespiratory control. In summary, morphological and functional studies have found that the PVN integrates sensory input and

  8. Normals to a Parabola

    ERIC Educational Resources Information Center

    Srinivasan, V. K.

    2013-01-01

    Given a parabola in the standard form y[superscript 2] = 4ax, corresponding to three points on the parabola, such that the normals at these three points P, Q, R concur at a point M = (h, k), the equation of the circumscribing circle through the three points P, Q, and R provides a tremendous opportunity to illustrate "The Art of Algebraic…

  9. Normal Psychosexual Development

    ERIC Educational Resources Information Center

    Rutter, Michael

    1971-01-01

    Normal sexual development is reviewed with respect to physical maturation, sexual interests, sex drive", psychosexual competence and maturity, gender role, object choice, children's concepts of sexual differences, sex role preference and standards, and psychosexual stages. Biologic, psychoanalytic and psychosocial theories are briefly considered.…

  10. Normal Birth Crossword Puzzle

    PubMed Central

    Hotelling, Barbara A.

    2006-01-01

    In this column, readers are introduced to Dawn Kersula and a crossword puzzle she designed to refresh and empower Lamaze childbirth education class participants with normal-birth information. The column's author goes on to demonstrate several ways crossword puzzles can be used in Lamaze classes. PMID:17322944

  11. Projections of nucleus angularis and nucleus laminaris to the lateral lemniscal nuclear complex of the barn owl.

    PubMed

    Takahashi, T T; Konishi, M

    1988-08-01

    Interaural phase and intensity are cues by which the barn owl determines, respectively, the azimuth and elevation of a sound source. Physiological studies indicate that phase and intensity are processed independently in the auditory brainstem of the barn owl. The phases of spectral components of a sound are encoded in nucleus magnocellularis (NM), one of the two cochlear nuclei. NM projects solely and bilaterally to nucleus laminaris (NL), wherein interaural phase difference is computed. The other cochlear nucleus, nucleus angularis (NA), encodes the amplitudes of spectral components of sounds. We report here the projections of NA and NL to the lateral lemniscal nuclei of the barn owl. The lateral lemniscal complex comprises nucleus olivaris superior (SO); nucleus lemnisci lateralis, pars ventralis (LLv); and nucleus ventralis lemnisci lateralis (VLV). At caudal levels, VLV may be divided into a posterior (VLVp) and an anterior (VLVa) subdivision on cytoarchitectonic grounds. At rostral levels, the cytoarchitectural differences diminish and the boundaries between the two subdivisions become obscured. Likewise, our data from anterograde tracing studies suggest that at caudal levels the terminal fields of NA and NL remain confined to VLVp and VLVa, respectively. They merge, however, at rostral levels. The data also suggest that NL projects to the medial portion of the ipsilateral SO and that NA projects bilaterally to all parts of SO and LLv. Studies with the retrograde transport of horseradish peroxidase confirm these projections. PMID:2463287

  12. Observation of the antimatter helium-4 nucleus.

    PubMed

    2011-05-19

    High-energy nuclear collisions create an energy density similar to that of the Universe microseconds after the Big Bang; in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high-energy accelerator of heavy nuclei provides an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus (4He), also known as the anti-α (α), consists of two antiprotons and two antineutrons (baryon number B = -4). It has not been observed previously, although the α-particle was identified a century ago by Rutherford and is present in cosmic radiation at the ten per cent level. Antimatter nuclei with B < -1 have been observed only as rare products of interactions at particle accelerators, where the rate of antinucleus production in high-energy collisions decreases by a factor of about 1,000 with each additional antinucleon. Here we report the observation of 4He, the heaviest observed antinucleus to date. In total, 18 4He counts were detected at the STAR experiment at the Relativistic Heavy Ion Collider (RHIC; ref. 6) in 10(9) recorded gold-on-gold (Au+Au) collisions at centre-of-mass energies of 200 GeV and 62 GeV per nucleon-nucleon pair. The yield is consistent with expectations from thermodynamic and coalescent nucleosynthesis models, providing an indication of the production rate of even heavier antimatter nuclei and a benchmark for possible future observations of 4He in cosmic radiation.

  13. Observation of the antimatter helium-4 nucleus.

    PubMed

    2011-05-19

    High-energy nuclear collisions create an energy density similar to that of the Universe microseconds after the Big Bang; in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high-energy accelerator of heavy nuclei provides an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus (4He), also known as the anti-α (α), consists of two antiprotons and two antineutrons (baryon number B = -4). It has not been observed previously, although the α-particle was identified a century ago by Rutherford and is present in cosmic radiation at the ten per cent level. Antimatter nuclei with B < -1 have been observed only as rare products of interactions at particle accelerators, where the rate of antinucleus production in high-energy collisions decreases by a factor of about 1,000 with each additional antinucleon. Here we report the observation of 4He, the heaviest observed antinucleus to date. In total, 18 4He counts were detected at the STAR experiment at the Relativistic Heavy Ion Collider (RHIC; ref. 6) in 10(9) recorded gold-on-gold (Au+Au) collisions at centre-of-mass energies of 200 GeV and 62 GeV per nucleon-nucleon pair. The yield is consistent with expectations from thermodynamic and coalescent nucleosynthesis models, providing an indication of the production rate of even heavier antimatter nuclei and a benchmark for possible future observations of 4He in cosmic radiation. PMID:21516103

  14. Stimulation of the Subthalamic Nucleus and Impulsivity

    PubMed Central

    Ballanger, Benedicte; van Eimeren, Thilo; Moro, Elena; Lozano, Andres M.; Hamani, Clement; Boulinguez, Philippe; Pellecchia, Giovanna; Houle, Sylvain; Poon, Yu Yan; Lang, Anthony E.; Strafella, Antonio P.

    2010-01-01

    Objective In Parkinson disease (PD) patients, deep brain stimulation (DBS) of the subthalamic nucleus (STN) may contribute to certain impulsive behavior during high-conflict decisions. A neurocomputational model of the basal ganglia has recently been proposed that suggests this behavioral aspect may be related to the role played by the STN in relaying a “hold your horses” signal intended to allow more time to settle on the best option. The aim of the present study was 2-fold: 1) to extend these observations by providing evidence that the STN may influence and prevent the execution of any response even during low-conflict decisions; and 2) to identify the neural correlates of this effect. Methods We measured regional cerebral blood flow during a Go/NoGo and a control (Go) task to study the motor improvement and response inhibition deficits associated with STN-DBS in patients with PD. Results Although it improved Unified Parkinson Disease Rating Scale motor ratings and induced a global decrease in reaction time during task performance, STN-DBS impaired response inhibition, as revealed by an increase in commission errors in NoGo trials. These behavioral effects were accompanied by changes in synaptic activity consisting of a reduced activation in the cortical networks responsible for reactive and proactive response inhibition. Interpretation The present results suggest that although it improves motor functions in PD patients, modulation of STN hyperactivity with DBS may tend at the same time to favor the appearance of impulsive behavior by acting on the gating mechanism involved in response initiation. PMID:20035509

  15. Multiple-scattering effects in nucleus-nucleus reactions with Glauber theory

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Shinya; Ebata, Shuichiro; Horiuchi, Wataru; Kimura, Masaaki

    2014-09-01

    A study of new unstable nuclei has become possible in new radioactive beam facilities. In order to understand the relationship between reaction observables and nuclear structure, we need reaction theory which exactly reflects the nuclear structure. The Glauber theory is a powerful tool of analyzing high energy nuclear reactions. The theory describes the multiple scattering processes, whereas the optical limit approximation (OLA), which is widely used, ignores those processes. Those effects are expected to play an important role in the nuclear collision involving unstable nuclei (see for example Phys. Rev. C 54, 1843 (1996)). Here we apply the Glauber theory to nucleus-nucleus reactions. The wave functions are generated by the Skyrme-Hartree-Fock method and are expressed in a Slater determinant that allows us to evaluate the complete Glauber amplitude easily. We calculate total reaction cross sections, elastic cross sections and differential elastic cross sections for 16~24O, 40~70Ca, 56,58Ni, 100~140Sn, 190~214Pb on proton, 4He, 12C targets and compare with experimental data. The Glauber theory gives much better description than the OLA, especially at larger scattering angles.

  16. Statistical analysis of secondary particle distributions in relativistic nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Mcguire, Stephen C.

    1987-01-01

    The use is described of several statistical techniques to characterize structure in the angular distributions of secondary particles from nucleus-nucleus collisions in the energy range 24 to 61 GeV/nucleon. The objective of this work was to determine whether there are correlations between emitted particle intensity and angle that may be used to support the existence of the quark gluon plasma. The techniques include chi-square null hypothesis tests, the method of discrete Fourier transform analysis, and fluctuation analysis. We have also used the method of composite unit vectors to test for azimuthal asymmetry in a data set of 63 JACEE-3 events. Each method is presented in a manner that provides the reader with some practical detail regarding its application. Of those events with relatively high statistics, Fe approaches 0 at 55 GeV/nucleon was found to possess an azimuthal distribution with a highly non-random structure. No evidence of non-statistical fluctuations was found in the pseudo-rapidity distributions of the events studied. It is seen that the most effective application of these methods relies upon the availability of many events or single events that possess very high multiplicities.

  17. Major diencephalic inputs to the hippocampus: supramammillary nucleus and nucleus reuniens. Circuitry and function

    PubMed Central

    Vertes, Robert P.

    2016-01-01

    The hippocampus receives two major external inputs from the diencephalon, that is, from the supramammillary nucleus (SUM) and nucleus reuniens (RE) of the midline thalamus. These two afferents systems project to separate, nonoverlapping, regions of the hippocampus. Specifically, the SUM distributes to the dentate gyrus (DG) and to CA2 of the dorsal and ventral hippocampus, whereas RE projects to CA1 of the dorsal and ventral hippocampus and to the subiculum. SUM and RE fibers to the hippocampus participate in common as well as in separate functions. Both systems would appear to amplify signals from other sources to their respective hippocampal targets. SUM amplifies signals from the entorhinal cortex (EC) to DG, whereas RE may amplify them from CA3 (and EC) to CA1 of the hippocampus. This “amplification” may serve to promote the transfer, encoding, and possibly storage of information from EC to DG and from CA3 and EC to CA1. Regarding their unique actions on the hippocampus, the SUM is a vital part of an ascending brainstem to hippocampal system generating the theta rhythm of the hippocampus, whereas RE importantly routes information from the medial prefrontal cortex to the hippocampus to thereby mediate functions involving both structures. In summary, although, to date, SUM and RE afferents to the hippocampus have not been extensively explored, the SUM and RE exert a profound influence on the hippocampus in processes of learning and memory. PMID:26072237

  18. Oxytocin in hypothalamic supraoptic nucleus is transferred to the caudate nucleus to influence pain modulation.

    PubMed

    Pan, Yang-Juan; Wang, Da-Xin; Yang, Jun; He, Xue-Ling; Xiao, Nai-Min; Ma, Rui-Qing; Wang, Chang-Hong; Lin, Bao-Cheng

    2016-08-01

    Oxytocin (OXT), which is synthesized and secreted in the hypothalamic supraoptic nucleus (SON), is the most important bioactive substance in SON regulating pain process. Our previous study has pointed that OXT in the caudate nucleus (CdN) plays a role in pain modulation. The communication was designed to investigate the source of OXT in the rat CdN during pain process using the methods of push-pull perfusion and radioimmunoassay. The results showed that (1) pain stimulation increased the OXT concentration in the CdN perfusion liquid; (2) SON cauterization inhibited the increase of OXT concentration in CdN perfusion liquid induced by the pain stimulation, which role in both sides of SON cauterization was stronger than that in one side of SON cauterization; and (3) SON microinjection of l-glutamate sodium, which excited the SON neurons, increased OXT concentration in the CdN perfusion liquid. The data suggested that OXT in the CdN was influenced by SON during pain process, i.e., OXT in the SON might be transferred to the CdN to influence pain modulation. PMID:27045802

  19. Interaction between hypothalamic dorsomedial nucleus and the suprachiasmatic nucleus determines intensity of food anticipatory behavior

    PubMed Central

    Acosta-Galvan, Guadalupe; Yi, Chun-Xia; van der Vliet, Jan; Jhamandas, Jack H.; Panula, Pertti; Angeles-Castellanos, Manuel; del Carmen Basualdo, María; Escobar, Carolina; Buijs, Ruud M.

    2011-01-01

    Food anticipatory behavior (FAA) is induced by limiting access to food for a few hours daily. Animals anticipate this scheduled meal event even without the suprachiasmatic nucleus (SCN), the biological clock. Consequently, a food-entrained oscillator has been proposed to be responsible for meal time estimation. Recent studies suggested the dorsomedial hypothalamus (DMH) as the site for this food-entrained oscillator, which has led to considerable controversy in the literature. Herein we demonstrate by means of c-Fos immunohistochemistry that the neuronal activity of the suprachiasmatic nucleus (SCN), which signals the rest phase in nocturnal animals, is reduced when animals anticipate the scheduled food and, simultaneously, neuronal activity within the DMH increases. Using retrograde tracing and confocal analysis, we show that inhibition of SCN neuronal activity is the consequence of activation of GABA-containing neurons in the DMH that project to the SCN. Next, we show that DMH lesions result in a loss or diminution of FAA, simultaneous with increased activity in the SCN. A subsequent lesion of the SCN restored FAA. We conclude that in intact animals, FAA may only occur when the DMH inhibits the activity of the SCN, thus permitting locomotor activity. As a result, FAA originates from a neuronal network comprising an interaction between the DMH and SCN. Moreover, this study shows that the DMH–SCN interaction may serve as an intrahypothalamic system to gate activity instead of rest overriding circadian predetermined temporal patterns. PMID:21402951

  20. Energy dependence of the nucleus-nucleus potential close to the Coulomb barrier

    SciTech Connect

    Washiyama, Kouhei; Lacroix, Denis

    2008-08-15

    The nucleus-nucleus interaction potentials in heavy-ion fusion reactions are extracted from the microscopic time-dependent Hartree-Fock theory for the mass symmetric reactions {sup 16}O + {sup 16}O, {sup 40}Ca + {sup 40}Ca, and {sup 48}Ca + {sup 48}Ca and the mass asymmetric reactions {sup 16}O + {sup 40,} {sup 48}Ca, {sup 40}Ca + {sup 48}Ca, {sup 16}O + {sup 208}Pb, and {sup 40}Ca + {sup 90}Zr. When the c.m. energy is much higher than the Coulomb barrier energy, potentials deduced with the microscopic theory identify with the frozen density approximation. As the c.m. energy decreases and approaches the Coulomb barrier, potentials become energy dependent. This dependence indicates dynamical reorganization of internal degrees of freedom and leads to a reduction of the 'apparent' barrier felt by the two nuclei during fusion of the order of 2-3% compared to the frozen density case. Several examples illustrate that the potential landscape changes rapidly when the c.m. energy is in the vicinity of the Coulomb barrier energy. The energy dependence is expected to have a significant role on fusion around the Coulomb barrier.

  1. Pion production at 180/sup 0/ in nucleus-nucleus collisions

    SciTech Connect

    Chessin, S.A.

    1983-05-01

    A survey experiment of pion production at 180/sup 0/ in nucleus-nucleus collisions is presented. Beams of 1.05 GeV/A and 2.1 GeV/A protons, alphas, and carbon were used, as well as proton beams of 0.80 GeV, 3.5 GeV, and 4.89 GeV, and argon beams of 1.05 GeV/A and 1.83 GeV/A. This is the first such experiment to use the heavier beams. Targets used ranged from carbon to lead. An in-depth review of the literature, both experimental and theoretical, is also presented. The systematics of the data are discussed, and comparisons are made both with prior experiments and with the predictions of the models reviewed. The cross sections appear consistent with a simple single nucleon-nucleon collision picture, without the need for collective or other exotic effects. Suggestions for future work are made.

  2. Deconvolving the Nucleus of Centaurus A Using Chandra PSF Library

    NASA Technical Reports Server (NTRS)

    Karovska, Margarita

    2000-01-01

    Centaurus A (NGC 5128) is a giant early-type galaxy containing the nearest (at 3.5 Mpc) radio-bright Active Galactic Nucleus (AGN). Cen A was observed with the High Resolution Camera (HRC) on the Chandra X-ray Observatory on several occasions since the launch in July 1999. The high-angular resolution (less than 0.5 arcsecond) Chandra/HRC images reveal X ray multi-scale structures in this object with unprecedented detail and clarity, including the bright nucleus believed to be associated with a supermassive black hole. We explored the spatial extent of the Cen A nucleus using deconvolution techniques on the full resolution Chandra images. Model point spread functions (PSFs) were derived from the standard Chandra raytrace PSF library as well as unresolved point sources observed with Chandra. The deconvolved images show that the Cen A nucleus is resolved and asymmetric. We discuss several possible causes of this extended emission and of the asymmetries.

  3. Active diffusion positions the nucleus in mouse oocytes.

    PubMed

    Almonacid, Maria; Ahmed, Wylie W; Bussonnier, Matthias; Mailly, Philippe; Betz, Timo; Voituriez, Raphaël; Gov, Nir S; Verlhac, Marie-Hélène

    2015-04-01

    In somatic cells, the position of the cell centroid is dictated by the centrosome. The centrosome is instrumental in nucleus positioning, the two structures being physically connected. Mouse oocytes have no centrosomes, yet harbour centrally located nuclei. We demonstrate how oocytes define their geometric centre in the absence of centrosomes. Using live imaging of oocytes, knockout for the formin 2 actin nucleator, with off-centred nuclei, together with optical trapping and modelling, we discover an unprecedented mode of nucleus positioning. We document how active diffusion of actin-coated vesicles, driven by myosin Vb, generates a pressure gradient and a propulsion force sufficient to move the oocyte nucleus. It promotes fluidization of the cytoplasm, contributing to nucleus directional movement towards the centre. Our results highlight the potential of active diffusion, a prominent source of intracellular transport, able to move large organelles such as nuclei, providing in vivo evidence of its biological function.

  4. Low-energy antinucleon-nucleus interaction revisited

    NASA Astrophysics Data System (ADS)

    Friedman, E.

    2015-08-01

    Annihilation cross sections of antiprotons and antineutrons on the proton between 50 and 400 MeV/c show Coulomb focusing below 200 MeV/c and almost no charge-dependence above 200 MeV/c. Similar comparisons for heavier targets are not possible for lack of overlap between nuclear targets studied with and beams. Interpolating between -nucleus annihilation cross sections with the help of an optical potential to compare with -nucleus annihilation cross sections reveal unexpected features of Coulomb interactions in the latter. Direct comparisons between -nucleus and -nucleus annihilations at very low energies could be possible if cross sections are measured on the same targets and at the same energies as the available cross sections for . Such measurements may be feasible in the foreseeable future.

  5. Cloud condensation nucleus-sulfate mass relationship and cloud albedo

    NASA Technical Reports Server (NTRS)

    Hegg, Dean A.

    1994-01-01

    Analysis of previously published, simultaneous measurements of cloud condensation nucleus number concentration and sulfate mass concentration suggest a nonlinear relationship between the two variables. This nonlinearity reduces the sensitivity of cloud albedo to changes in the sulfur cycle.

  6. Nucleus management in manual small incision cataract surgery by phacosection.

    PubMed

    Ravindra, M S

    2009-01-01

    Nucleus management is critical in manual small incision cataract surgery (MSICS), as the integrity of the tunnel, endothelium and posterior capsule needs to be respected. Several techniques of nucleus management are in vogue, depending upon the specific technique of MSICS. Nucleus can be removed in toto or bisected or trisected into smaller segments. The pressure in the eye can be maintained at the desired level with the use of an anterior chamber maintainer or kept at atmospheric levels. In MSICS, unlike phacoemulsification, there is no need to limit the size of the tunnel or restrain the size of capsulorrhexis. Large well-structured tunnels and larger capsulorrhexis provide better control on the surgical maneuvers. Safety and simplicity of MSICS has made it extremely popular. The purpose of this article is to describe nucleus management by phacosection in MSICS.

  7. The integrative role of the pedunculopontine nucleus in human gait.

    PubMed

    Lau, Brian; Welter, Marie-Laure; Belaid, Hayat; Fernandez Vidal, Sara; Bardinet, Eric; Grabli, David; Karachi, Carine

    2015-05-01

    The brainstem pedunculopontine nucleus has a likely, although unclear, role in gait control, and is a potential deep brain stimulation target for treating resistant gait disorders. These disorders are a major therapeutic challenge for the ageing population, especially in Parkinson's disease where gait and balance disorders can become resistant to both dopaminergic medication and subthalamic nucleus stimulation. Here, we present electrophysiological evidence that the pedunculopontine and subthalamic nuclei are involved in distinct aspects of gait using a locomotor imagery task in 14 patients with Parkinson's disease undergoing surgery for the implantation of pedunculopontine or subthalamic nuclei deep brain stimulation electrodes. We performed electrophysiological recordings in two phases, once during surgery, and again several days after surgery in a subset of patients. The majority of pedunculopontine nucleus neurons (57%) recorded intrasurgically exhibited changes in activity related to different task components, with 29% modulated during visual stimulation, 41% modulated during voluntary hand movement, and 49% modulated during imaginary gait. Pedunculopontine nucleus local field potentials recorded post-surgically were modulated in the beta and gamma bands during visual and motor events, and we observed alpha and beta band synchronization that was sustained for the duration of imaginary gait and spatially localized within the pedunculopontine nucleus. In contrast, significantly fewer subthalamic nucleus neurons (27%) recorded intrasurgically were modulated during the locomotor imagery, with most increasing or decreasing activity phasically during the hand movement that initiated or terminated imaginary gait. Our data support the hypothesis that the pedunculopontine nucleus influences gait control in manners extending beyond simply driving pattern generation. In contrast, the subthalamic nucleus seems to control movement execution that is not likely to be gait

  8. Odyssey: Comet Nucleus Orbiter; A Discovery 2000 Proposal

    NASA Astrophysics Data System (ADS)

    Weissman, P. R.; Nilsen, E. N.; Smythe, W. D.; Marriott, J.; Reinert, R.; Delamere, W. A.; Odyssey Science Team

    2000-10-01

    Odyssey will be NASA's first comet nucleus orbiter mission. The spacecraft will be launched in June 2006 on a Delta 2925 expendable vehicle and will use solar electric propulsion to rendezvous with periodic Comet Kopff in September 2009. Kopff is one of the most active short-period comets known, with a gas production near perihelion of 5 x 1028 molecules/sec and an estimated nucleus diameter of { ~}3.6 km. En route to Kopff, Odyssey will fly by the C-type asteroid 24 Themis, the largest asteroid ever encountered by a planetary spacecraft (d ≈ 215 km). Odyssey's scientific payload includes narrow and wide angle CCD cameras, an IR imaging radiometer, a gas chromatograph/mass spectrometer, a dust compositional analyzer, and a dust counter and accumulation sensors. The spacecraft will initially perform slow flybys of the active Kopff nucleus at distances between 500 and 100 km, and will then be placed in orbit around the nucleus at altitudes between 200 and 50 km. The in situ instruments will collect and analyze gas and dust in the cometary coma, providing elemental, molecular, isotopic, and mineralogic measurements of the cosmo-chemical record locked in comets of the origin of our solar system and the origin of life. The narrow angle camera will map the entire nucleus surface at a resolution of 1 m/pixel, providing detailed images of the nucleus topography and its change with time. The thermal imager will do the same at 21 m/pixel, providing unprecedented data on the energy balance at the surface of the cometary nucleus, key to understanding how the comet works. Odyssey will study Comet Kopff for 9 months. Extended mission options include: 1) higher resolution mapping at even lower altitudes, and 2) touch-down of the spacecraft on the nucleus surface.

  9. Under Pressure: Mechanical Stress Management in the Nucleus

    PubMed Central

    Belaadi, Néjma; Aureille, Julien; Guilluy, Christophe

    2016-01-01

    Cells are constantly adjusting to the mechanical properties of their surroundings, operating a complex mechanochemical feedback, which hinges on mechanotransduction mechanisms. Whereas adhesion structures have been shown to play a central role in mechanotransduction, it now emerges that the nucleus may act as a mechanosensitive structure. Here, we review recent advances demonstrating that mechanical stress emanating from the cytoskeleton can activate pathways in the nucleus which eventually impact both its structure and the transcriptional machinery. PMID:27314389

  10. Acts and knowledge management in the NUCLEUS hospital information system.

    PubMed Central

    Kanoui, H.; Joubert, M.; Favard, R.; Maury, G.; Pelletier, M.

    1995-01-01

    NUCLEUS is a project completed in June 1995 in the frame of the European Community programme AIM (Advanced Informatics in Medicine). The main result of NUCLEUS is a prototype of an integrated patient dossier. Together with this patient dossier, facilities have been developed for its customisation by the various categories of end-users. A semantic model has been designed to guide and control the exploitation of data, and ensures the overall integrity of the information system. PMID:8563297

  11. Truncal ataxia from infarction involving the inferior olivary nucleus.

    PubMed

    Park, Jae Hyun; Ryoo, Sookyung; Moon, So Young; Seo, Sand Won; Na, Duk L

    2012-08-01

    Truncal ataxia in medullary infarction may be caused by involvement of the lateral part of the medulla; however, truncal ataxia in infarction involving the inferior olivary nucleus (ION) has received comparatively little attention. We report a patient with truncal ataxia due to medial medullary infarction located in the ION. A lesion in the ION could produce a contralateral truncal ataxia due to increased inhibitory input to the contralesional vestibular nucleus from the contralesional flocculus.

  12. miR-155 Inhibits Nucleus Pulposus Cells' Degeneration through Targeting ERK 1/2.

    PubMed

    Ye, Dongping; Dai, Libing; Yao, Yicun; Qin, Shengnan; Xie, Han; Wang, Wen; Liang, Weiguo

    2016-01-01

    We first investigated the difference in microRNA expression between normal NP cells and degenerative NP cells using gene chip. We have found that the expression of ERK1/2 was decreased with overexpression of miR-155 in normal nucleus pulposus cell. Expression of ERK1/2 was increased with inhibition of miR-155. Overexpression or inhibition of miR-155 had no effects on the expression level of mRNA ERK1/2 in nucleus pulposus cell, which showed that miR-155 affected the expression of pERK1/2 after transcription of ERK1/2 mRNA indicating that ERK1/2 was a new target protein regulated by miR-155. In the degeneration of intervertebral disc, inhibited miR-155 decreased the expressions of extracellular main matrix collagen II and glycosaminoglycan and increased expression of ERK1/2. Taken together, our data suggested that miR-155 was the identified miRNA which regulated NP cells degenerated through directly targeting ERK1/2. PMID:27635110

  13. miR-155 Inhibits Nucleus Pulposus Cells' Degeneration through Targeting ERK 1/2

    PubMed Central

    Dai, Libing; Yao, Yicun; Qin, Shengnan; Xie, Han; Wang, Wen

    2016-01-01

    We first investigated the difference in microRNA expression between normal NP cells and degenerative NP cells using gene chip. We have found that the expression of ERK1/2 was decreased with overexpression of miR-155 in normal nucleus pulposus cell. Expression of ERK1/2 was increased with inhibition of miR-155. Overexpression or inhibition of miR-155 had no effects on the expression level of mRNA ERK1/2 in nucleus pulposus cell, which showed that miR-155 affected the expression of pERK1/2 after transcription of ERK1/2 mRNA indicating that ERK1/2 was a new target protein regulated by miR-155. In the degeneration of intervertebral disc, inhibited miR-155 decreased the expressions of extracellular main matrix collagen II and glycosaminoglycan and increased expression of ERK1/2. Taken together, our data suggested that miR-155 was the identified miRNA which regulated NP cells degenerated through directly targeting ERK1/2. PMID:27635110

  14. miR-155 Inhibits Nucleus Pulposus Cells' Degeneration through Targeting ERK 1/2

    PubMed Central

    Dai, Libing; Yao, Yicun; Qin, Shengnan; Xie, Han; Wang, Wen

    2016-01-01

    We first investigated the difference in microRNA expression between normal NP cells and degenerative NP cells using gene chip. We have found that the expression of ERK1/2 was decreased with overexpression of miR-155 in normal nucleus pulposus cell. Expression of ERK1/2 was increased with inhibition of miR-155. Overexpression or inhibition of miR-155 had no effects on the expression level of mRNA ERK1/2 in nucleus pulposus cell, which showed that miR-155 affected the expression of pERK1/2 after transcription of ERK1/2 mRNA indicating that ERK1/2 was a new target protein regulated by miR-155. In the degeneration of intervertebral disc, inhibited miR-155 decreased the expressions of extracellular main matrix collagen II and glycosaminoglycan and increased expression of ERK1/2. Taken together, our data suggested that miR-155 was the identified miRNA which regulated NP cells degenerated through directly targeting ERK1/2.

  15. Normal-reflection image

    SciTech Connect

    Huang, L.; Fehler, Michael C.

    2003-01-01

    Common-angle wave-equation migration using the double-square-root is generally less accurate than the common-shot migration because the wavefield continuation equation for thc former involves additional approximations compared to that for the latter. We present a common-angle wave-equation migration that has the same accuracy as common-shot wave-equation migration. An image obtained from common-angle migration is a four- to five-dimensional output volume for 3D cases. We propose a normal-reflection imaging condition for common-angle migration to produce a 3D output volume for 3D migration. The image is closely related to the normal-reflection coefficients at interfaces. This imaging condition will allow amplitude-preserving migration to generate an image with clear physical meaning.

  16. A FIBER APPARATUS IN THE NUCLEUS OF THE YEAST CELL

    PubMed Central

    Robinow, C. F.; Marak, J.

    1966-01-01

    The structure and mode of division of the nucleus of budding yeast cells have been studied by phase-contrast microscopy during life and by ordinary microscopy after Helly fixation. The components of the nucleus were differentially stained by the Feulgen procedure, with Giemsa solution after hydrolysis, and with iron alum haematoxylin. New information was obtained in cells fixed in Helly's by directly staining them with 0.005% acid fuchsin in 1% acetic acid in water. Electron micrographs have been made of sections of cells that were first fixed with 3% glutaraldehyde, then divested of their walls with snail juice, and postfixed with osmium tetroxide. Light and electron microscopy have given concordant information about the organization of the yeast nucleus. A peripheral segment of the nucleus is occupied by relatively dense matter (the "peripheral cluster" of Mundkur) which is Feulgen negative. The greater part of the nucleus is filled with fine-grained Feulgen-positive matter of low density in which chromosomes could not be identified. Chromosomes become visible in this region under the light microscope at meiosis. In the chromatin lies a short fiber with strong affinity for acid fuchsin. The nucleus divides by elongation and constriction, and during this process the fiber becomes long and thin. Electron microscopy has resolved it into a bundle of dark-edged 150 to 180 A filaments which extends between "centriolar plaques" that are attached to the nuclear envelope. PMID:5331666

  17. Suprachiasmatic Nucleus Neuropeptide Expression in Patients with Huntington's Disease

    PubMed Central

    van Wamelen, Daniel J.; Aziz, N. Ahmad; Anink, Jasper J.; van Steenhoven, Robin; Angeloni, Debora; Fraschini, Franco; Jockers, Ralf; Roos, Raymund A. C.; Swaab, Dick F.

    2013-01-01

    Study Objective: To study whether sleep and circadian rhythm disturbances in patients with Huntington's disease (HD) arise from dysfunction of the body's master clock, the hypothalamic suprachiasmatic nucleus. Design: Postmortem cohort study. Patients: Eight patients with HD and eight control subjects matched for sex, age, clock time and month of death, postmortem delay, and fixation time of paraffin-embedded hypothalamic tissue. Measurements and Results: Using postmortem paraffin-embedded tissue, we assessed the functional integrity of the suprachiasmatic nucleus in patients with HD and control subjects by determining the expression of two major regulatory neuropeptides, vasoactive intestinal polypeptide and arginine vasopressin. Additionally, we studied melatonin 1 and 2 receptor expression. Compared with control subjects, the suprachiasmatic nucleus contained 85% fewer neurons immunoreactive for vasoactive intestinal polypeptide and 33% fewer neurons for arginine vasopressin in patients with HD (P = 0.002 and P = 0.027). The total amount of vasoactive intestinal polypeptide and arginine vasopressin messenger RNA was unchanged. No change was observed in the number of melatonin 1 or 2 receptor immunoreactive neurons. Conclusions: These findings indicate posttranscriptional neuropeptide changes in the suprachiasmatic nucleus of patients with HD, and suggest that sleep and circadian rhythm disorders in these patients may at least partly arise from suprachiasmatic nucleus dysfunction. Citation: van Wamelen DJ; Aziz NA; Anink JJ; van Steenhoven R; Angeloni D; Fraschini F; Jockers R; Roos RAC; Swaab DF. Suprachiasmatic nucleus neuropeptide expression in patients with Huntington's disease. SLEEP 2013;36(1):117–125. PMID:23288978

  18. Advancing Normal Birth

    PubMed Central

    Lothian, Judith

    2015-01-01

    ABSTRACT In this column, the associate editor of The Journal of Perinatal Education provides an overview of research on the benefits of promoting and protecting the normal, physiologic processes of childbirth and the risks of interfering with those processes without clear medical indication. The associate editor also describes the contents of this issue, which offer a broad range of resources, research, and inspiration for childbirth educators in their efforts to promote, support, and protect natural, safe, and healthy birth.

  19. Teaching Normal Birth Interactively

    PubMed Central

    Hotelling, Barbara A.

    2004-01-01

    In this column, the author provides examples of teaching strategies that childbirth educators may utilize to illustrate each of the six care practices supported by Lamaze International to promote normal birth: labor begins on its own, freedom of movement throughout labor, continuous labor support, no routine interventions, non-supine (e.g., upright or side-lying) positions for birth, and no separation of mother and baby with unlimited opportunity for breastfeeding. PMID:17273389

  20. 3200 Phaethon, Asteroid or Comet Nucleus?

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Benkhoff, Johannes

    2015-08-01

    Physico-chemical modeling is central to understand the important physical processes in small solar system bodies. We have developed a computer simulation, SUISEI, that includes the physico-chemical processes relevant to comets within a global modeling framework. Our goals are to gain valuable insights into the intrinsic properties of cometary nuclei so we can better understand observations and in situ measurements. SUISEI includes a 3-D model of gas and heat transport in porous sub-surface layers in the interior of the nucleus.We present results on the application of SUISEI to the near-Sun object, Phaethon. Discovered in 1983 and classified as an asteroid, it has recently exhibited an active dust coma. Phaethon has long been associated as the source of the Geminids meteor shower so the dust activity provides a clear link to the meteor shower. The observed dust activity would traditionally lead to Phaethon being also classified as a comet (e.g., 2060-95P/Chiron, 133P/Elst-Pizarro). This is unusual since the orbit of Phaethon has a perihelion of 0.14 AU, resulting in surface temperatures of more than 1025K, much too hot for water ice or other volatiles to exist near the surface and drive the activity. This situation and others such as the “Active Asteroids” necessitates a revision of how we understand and classify these small asteroid-comet transition objects.We conclude the following for Phaethon:1. It is likely to contain relatively pristine volatiles in its interior despite repeated near perihelion passages of 0.14 AU during its history in its present orbit,2. Steady water gas fluxes at perihelion and throughout its orbit are insufficient to entrain the currently observed dust production,3. Thermal gradients into the surface as well as those caused by diurnal rotation are consistent with the mechanism of dust release due to thermal fracture,4. The initial large gas release during the first perihelion passage may be sufficient to produce enough dust to explain

  1. Biophysical assays to probe the mechanical properties of the interphase cell nucleus: substrate strain application and microneedle manipulation.

    PubMed

    Lombardi, Maria L; Zwerger, Monika; Lammerding, Jan

    2011-09-14

    complement this assay and can yield additional information on intracellular force transmission between the nucleus and the cytoskeleton. Studying nuclear mechanics in intact living cells preserves the normal intracellular architecture and avoids potential artifacts that can arise when working with isolated nuclei. Furthermore, substrate strain application presents a good model for the physiological stress experienced by cells in muscle or other tissues (e.g., vascular smooth muscle cells exposed to vessel strain). Lastly, while these tools have been developed primarily to study nuclear mechanics, they can also be applied to investigate the function of cytoskeletal proteins and mechanotransduction signaling.

  2. Spatial organization of RNA polymerase II inside a mammalian cell nucleus revealed by reflected light-sheet superresolution microscopy

    PubMed Central

    Zhao, Ziqing W.; Roy, Rahul; Gebhardt, J. Christof M.; Suter, David M.; Chapman, Alec R.; Xie, X. Sunney

    2014-01-01

    Superresolution microscopy based on single-molecule centroid determination has been widely applied to cellular imaging in recent years. However, quantitative imaging of the mammalian nucleus has been challenging due to the lack of 3D optical sectioning methods for normal-sized cells, as well as the inability to accurately count the absolute copy numbers of biomolecules in highly dense structures. Here we report a reflected light-sheet superresolution microscopy method capable of imaging inside the mammalian nucleus with superior signal-to-background ratio as well as molecular counting with single-copy accuracy. Using reflected light-sheet superresolution microscopy, we probed the spatial organization of transcription by RNA polymerase II (RNAP II) molecules and quantified their global extent of clustering inside the mammalian nucleus. Spatiotemporal clustering analysis that leverages on the blinking photophysics of specific organic dyes showed that the majority (>70%) of the transcription foci originate from single RNAP II molecules, and no significant clustering between RNAP II molecules was detected within the length scale of the reported diameter of “transcription factories.” Colocalization measurements of RNAP II molecules equally labeled by two spectrally distinct dyes confirmed the primarily unclustered distribution, arguing against a prevalent existence of transcription factories in the mammalian nucleus as previously proposed. The methods developed in our study pave the way for quantitative mapping and stoichiometric characterization of key biomolecular species deep inside mammalian cells. PMID:24379392

  3. Neuronal activity correlated with checking behaviour in the subthalamic nucleus of patients with obsessive-compulsive disorder.

    PubMed

    Burbaud, Pierre; Clair, Anne-Hélène; Langbour, Nicolas; Fernandez-Vidal, Sara; Goillandeau, Michel; Michelet, Thomas; Bardinet, Eric; Chéreau, Isabelle; Durif, Franck; Polosan, Mircea; Chabardès, Stephan; Fontaine, Denys; Magnié-Mauro, Marie-Noelle; Houeto, Jean-Luc; Bataille, Benoît; Millet, Bruno; Vérin, Marc; Baup, Nicolas; Krebs, Marie-Odile; Cornu, Philippe; Pelissolo, Antoine; Arbus, Christophe; Simonetta-Moreau, Marion; Yelnik, Jérôme; Welter, Marie-Laure; Mallet, Luc

    2013-01-01

    Doubt, and its behavioural correlate, checking, is a normal phenomenon of human cognition that is dramatically exacerbated in obsessive-compulsive disorder. We recently showed that deep brain stimulation in the associative-limbic area of the subthalamic nucleus, a central core of the basal ganglia, improved obsessive-compulsive disorder. To understand the physiological bases of symptoms in such patients, we recorded the activity of individual neurons in the therapeutic target during surgery while subjects performed a cognitive task that gave them the possibility of unrestricted repetitive checking after they had made a choice. We postulated that the activity of neurons in this region could be influenced by doubt and checking behaviour. Among the 63/87 task-related neurons recorded in 10 patients, 60% responded to various combinations of instructions, delay, movement or feedback, thus highlighting their role in the integration of different types of information. In addition, task-related activity directed towards decision-making increased during trials with checking in comparison with those without checking. These results suggest that the associative-limbic subthalamic nucleus plays a role in doubt-related repetitive thoughts. Overall, our results not only provide new insight into the role of the subthalamic nucleus in human cognition but also support the fact that subthalamic nucleus modulation by deep brain stimulation reduced compulsive behaviour in patients with obsessive-compulsive disorder.

  4. Spatial organization of RNA polymerase II inside a mammalian cell nucleus revealed by reflected light-sheet superresolution microscopy.

    PubMed

    Zhao, Ziqing W; Roy, Rahul; Gebhardt, J Christof M; Suter, David M; Chapman, Alec R; Xie, X Sunney

    2014-01-14

    Superresolution microscopy based on single-molecule centroid determination has been widely applied to cellular imaging in recent years. However, quantitative imaging of the mammalian nucleus has been challenging due to the lack of 3D optical sectioning methods for normal-sized cells, as well as the inability to accurately count the absolute copy numbers of biomolecules in highly dense structures. Here we report a reflected light-sheet superresolution microscopy method capable of imaging inside the mammalian nucleus with superior signal-to-background ratio as well as molecular counting with single-copy accuracy. Using reflected light-sheet superresolution microscopy, we probed the spatial organization of transcription by RNA polymerase II (RNAP II) molecules and quantified their global extent of clustering inside the mammalian nucleus. Spatiotemporal clustering analysis that leverages on the blinking photophysics of specific organic dyes showed that the majority (>70%) of the transcription foci originate from single RNAP II molecules, and no significant clustering between RNAP II molecules was detected within the length scale of the reported diameter of "transcription factories." Colocalization measurements of RNAP II molecules equally labeled by two spectrally distinct dyes confirmed the primarily unclustered distribution, arguing against a prevalent existence of transcription factories in the mammalian nucleus as previously proposed. The methods developed in our study pave the way for quantitative mapping and stoichiometric characterization of key biomolecular species deep inside mammalian cells.

  5. Neuronal activity correlated with checking behaviour in the subthalamic nucleus of patients with obsessive-compulsive disorder.

    PubMed

    Burbaud, Pierre; Clair, Anne-Hélène; Langbour, Nicolas; Fernandez-Vidal, Sara; Goillandeau, Michel; Michelet, Thomas; Bardinet, Eric; Chéreau, Isabelle; Durif, Franck; Polosan, Mircea; Chabardès, Stephan; Fontaine, Denys; Magnié-Mauro, Marie-Noelle; Houeto, Jean-Luc; Bataille, Benoît; Millet, Bruno; Vérin, Marc; Baup, Nicolas; Krebs, Marie-Odile; Cornu, Philippe; Pelissolo, Antoine; Arbus, Christophe; Simonetta-Moreau, Marion; Yelnik, Jérôme; Welter, Marie-Laure; Mallet, Luc

    2013-01-01

    Doubt, and its behavioural correlate, checking, is a normal phenomenon of human cognition that is dramatically exacerbated in obsessive-compulsive disorder. We recently showed that deep brain stimulation in the associative-limbic area of the subthalamic nucleus, a central core of the basal ganglia, improved obsessive-compulsive disorder. To understand the physiological bases of symptoms in such patients, we recorded the activity of individual neurons in the therapeutic target during surgery while subjects performed a cognitive task that gave them the possibility of unrestricted repetitive checking after they had made a choice. We postulated that the activity of neurons in this region could be influenced by doubt and checking behaviour. Among the 63/87 task-related neurons recorded in 10 patients, 60% responded to various combinations of instructions, delay, movement or feedback, thus highlighting their role in the integration of different types of information. In addition, task-related activity directed towards decision-making increased during trials with checking in comparison with those without checking. These results suggest that the associative-limbic subthalamic nucleus plays a role in doubt-related repetitive thoughts. Overall, our results not only provide new insight into the role of the subthalamic nucleus in human cognition but also support the fact that subthalamic nucleus modulation by deep brain stimulation reduced compulsive behaviour in patients with obsessive-compulsive disorder. PMID:23365104

  6. Computational prediction of Mycoplasma hominis proteins targeting in nucleus of host cell and their implication in prostate cancer etiology.

    PubMed

    Khan, Shahanavaj; Zakariah, Mohammed; Palaniappan, Sellappan

    2016-08-01

    Cancer has long been assumed to be a genetic disease. However, recent evidence supports the enigmatic connection of bacterial infection with the growth and development of various types of cancers. The cause and mechanism of the growth and development of prostate cancer due to Mycoplasma hominis remain unclear. Prostate cancer cells are infected and colonized by enteroinvasive M. hominis, which controls several factors that can affect prostate cancer growth in susceptible persons. We investigated M. hominis proteins targeting the nucleus of host cells and their implications in prostate cancer etiology. Many vital processes are controlled in the nucleus, where the proteins targeting M. hominis may have various potential implications. A total of 29/563 M. hominis proteins were predicted to target the nucleus of host cells. These include numerous proteins with the capability to alter normal growth activities. In conclusion, our results emphasize that various proteins of M. hominis targeted the nucleus of host cells and were involved in prostate cancer etiology through different mechanisms and strategies.

  7. Stopping powers and cross sections due to two-photon processes in relativistic nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Cheung, Wang K.; Norbury, John W.

    1994-01-01

    The effects of electromagnetic-production processes due to two-photon exchange in nucleus-nucleus collisions are discussed. Feynman diagrams for two-photon exchange are evaluated using quantum electrodynamics. The total cross section and stopping power for projectile and target nuclei of identical charge are found to be significant for heavy nuclei above a few GeV per nucleon-incident energy.

  8. Toward construction of a unified neutrino-nucleus interaction model

    NASA Astrophysics Data System (ADS)

    Kamano, Hiroyuki

    2014-09-01

    A precise knowledge of the neutrino-nucleus interactions is becoming one of the crucial issues for a successful determination of the neutrino parameters from the future neutrino-oscillation experiments. It is therefore urgent to have a reliable neutrino-nucleus interactoin model that enables a quantitative description of neutrino-nucleus reaction cross sections in an accuracy of 10 percent or less. However, the kinematic regions relevant to the neutrino parameter searches extend over the quasi-elastic, resonance, and deep-inelastic-scattering regions, where different theoretical treatments based on hadronic or partonic degrees of freedom are usually employed, and this makes the construction of a unified neutrino-nucleus interaction model covering those kinematic regions challenging. To tackle on such a challenging issue, we have recently developed a collaboration of experimentalists and theorists in different fields at J-PARC Branch of KEK Theory Center (http://www.nuint.kek.jp/index_e.html). In this talk, I review our efforts toward construction of the unified neutrino-nucleus interaction model at J-PARC Branch of KEK Theory Center. A precise knowledge of the neutrino-nucleus interactions is becoming one of the crucial issues for a successful determination of the neutrino parameters from the future neutrino-oscillation experiments. It is therefore urgent to have a reliable neutrino-nucleus interactoin model that enables a quantitative description of neutrino-nucleus reaction cross sections in an accuracy of 10 percent or less. However, the kinematic regions relevant to the neutrino parameter searches extend over the quasi-elastic, resonance, and deep-inelastic-scattering regions, where different theoretical treatments based on hadronic or partonic degrees of freedom are usually employed, and this makes the construction of a unified neutrino-nucleus interaction model covering those kinematic regions challenging. To tackle on such a challenging issue, we have

  9. Homologous upregulation of sst2 somatostatin receptor expression in the rat arcuate nucleus in vivo.

    PubMed

    Tannenbaum, G S; Turner, J; Guo, F; Videau, C; Epelbaum, J; Beaudet, A

    2001-07-01

    In vitro studies using various cell systems have provided conflicting results regarding homologous regulation of somatostatin (SRIH) receptors, and information on whether SRIH regulates the expression of its own receptors in vivo is lacking. In the present study we examined, by in situ hybridization, the effects of pretreatment with the sst2-preferring SRIH analog, octreotide, in vivo, on mRNA levels of two SRIH receptor subtypes, sst1 and sst2, in rat brain and pituitary. (125)I-[DTrp(8)]-SRIH binding was also measured in these regions. Three hours after the iv injection of 50 microg octreotide to conscious adult male rats, there was a 46% increase (p < 0.01) in the labeling density of sst2 mRNA-expressing cells in the hypothalamic arcuate nucleus compared to normal saline-pretreated controls, but not in any of the other brain regions examined. Computer-assisted image analysis revealed that 3 h exposure to octreotide significantly (p < 0.01) augmented both the number and labeling density of sst2 mRNA-expressing cells in the arcuate nucleus, compared to those in saline-treated controls. By contrast, within the anterior pituitary gland, in vivo exposure to octreotide did not affect the expression of sst2 mRNA. No changes in sst1 mRNA-expressing cells were observed after octreotide treatment in any of the regions measured, indicating that the observed effects were homologous, i.e. specific of the receptor subtype stimulated. Octreotide pretreatment was also without effect on the density of (125)I-[DTrp(8)]-SRIH binding in either the arcuate nucleus or pituitary. These results demonstrate, for the first time, that SRIH preexposure in vivo upregulates the expression of a subtype of its own receptors, sst2, within the central nervous system. They further suggest that pretreatment with SRIH in vivo does not cause sst2 receptor desensitization in arcuate nucleus and pituitary. Such homologous regulatory mechanisms may play an important role in the neuroendocrine control

  10. Homologous upregulation of sst2 somatostatin receptor expression in the rat arcuate nucleus in vivo.

    PubMed

    Tannenbaum, G S; Turner, J; Guo, F; Videau, C; Epelbaum, J; Beaudet, A

    2001-07-01

    In vitro studies using various cell systems have provided conflicting results regarding homologous regulation of somatostatin (SRIH) receptors, and information on whether SRIH regulates the expression of its own receptors in vivo is lacking. In the present study we examined, by in situ hybridization, the effects of pretreatment with the sst2-preferring SRIH analog, octreotide, in vivo, on mRNA levels of two SRIH receptor subtypes, sst1 and sst2, in rat brain and pituitary. (125)I-[DTrp(8)]-SRIH binding was also measured in these regions. Three hours after the iv injection of 50 microg octreotide to conscious adult male rats, there was a 46% increase (p < 0.01) in the labeling density of sst2 mRNA-expressing cells in the hypothalamic arcuate nucleus compared to normal saline-pretreated controls, but not in any of the other brain regions examined. Computer-assisted image analysis revealed that 3 h exposure to octreotide significantly (p < 0.01) augmented both the number and labeling density of sst2 mRNA-expressing cells in the arcuate nucleus, compared to those in saline-treated controls. By contrast, within the anterior pituitary gland, in vivo exposure to octreotide did not affect the expression of sst2 mRNA. No changes in sst1 mRNA-expressing cells were observed after octreotide treatment in any of the regions measured, indicating that the observed effects were homologous, i.e. specific of the receptor subtype stimulated. Octreotide pretreatment was also without effect on the density of (125)I-[DTrp(8)]-SRIH binding in either the arcuate nucleus or pituitary. These results demonstrate, for the first time, that SRIH preexposure in vivo upregulates the expression of a subtype of its own receptors, sst2, within the central nervous system. They further suggest that pretreatment with SRIH in vivo does not cause sst2 receptor desensitization in arcuate nucleus and pituitary. Such homologous regulatory mechanisms may play an important role in the neuroendocrine control

  11. Nucleus-nucleus cold fusion reactions analyzed with the l-dependent 'fusion by diffusion' model

    SciTech Connect

    Cap, T.; Siwek-Wilczynska, K.; Wilczynski, J.

    2011-05-15

    We present a modified version of the Fusion by Diffusion (FBD) model aimed at describing the synthesis of superheavy nuclei in cold fusion reactions, in which a low excited compound nucleus emits only one neutron. The modified FBD model accounts for the angular momentum dependence of three basic factors determining the evaporation residue cross section: the capture cross section {sigma}{sub cap}(l), the fusion probability P{sub fus}(l), and the survival probability P{sub surv}(l). The fusion hindrance factor, the inverse of P{sub fus}(l), is treated in terms of thermal fluctuations in the shape degrees of freedom and is expressed as a solution of the Smoluchowski diffusion equation. The l dependence of P{sub fus}(l) results from the l-dependent potential energy surface of the colliding system. A new parametrization of the distance of starting point of the diffusion process is introduced. An analysis of a complete set of 27 excitation functions for production of superheavy nuclei in cold fusion reactions, studied in experiments at GSI Darmstadt, RIKEN Tokyo, and LBNL Berkeley, is presented. The FBD model satisfactorily reproduces shapes and absolute cross sections of all the cold fusion excitation functions. It is shown that the peak position of the excitation function for a given 1n reaction is determined by the Q value of the reaction and the height of the fission barrier of the final nucleus. This fact could possibly be used in future experiments (with well-defined beam energy) for experimental determination of the fission barrier heights.

  12. PREFACE: 11th International Conference on Nucleus-Nucleus Collisions (NN2012)

    NASA Astrophysics Data System (ADS)

    Li, Bao-An; Natowitz, Joseph B.

    2013-03-01

    The 11th International Conference on Nucleus-Nucleus Collisions (NN2012) was held from 27 May to 1 June 2012, in San Antonio, Texas, USA. It was jointly organized and hosted by The Cyclotron Institute at Texas A&M University, College Station and The Department of Physics and Astronomy at Texas A&M University-Commerce. Among the approximately 300 participants were a large number of graduate students and post-doctoral fellows. The Keynote Talk of the conference, 'The State of Affairs of Present and Future Nucleus-Nucleus Collision Science', was given by Dr Robert Tribble, University Distinguished Professor and Director of the TAMU Cyclotron Institute. During the conference a very well-received public lecture on neutrino astronomy, 'The ICEcube project', was given by Dr Francis Halzen, Hilldale and Gregory Breit Distinguished Professor at the University of Wisconsin, Madison. The Scientific program continued in the general spirit and intention of this conference series. As is typical of this conference a broad range of topics including fundamental areas of nuclear dynamics, structure, and applications were addressed in 42 plenary session talks, 150 parallel session talks, and 21 posters. The high quality of the work presented emphasized the vitality and relevance of the subject matter of this conference. Following the tradition, the NN2012 International Advisory Committee selected the host and site of the next conference in this series. The 12th International Conference on Nucleus-Nucleus Collisions (NN2015) will be held 21-26 June 2015 in Catania, Italy. It will be hosted by The INFN, Laboratori Nazionali del Sud, INFN, Catania and the Dipartimento di Fisica e Astronomia of the University of Catania. The NN2012 Proceedings contains the conference program and 165 articles organized into the following 10 sections 1. Heavy and Superheavy Elements 2. QCD and Hadron Physics 3. Relativistic Heavy-Ion Collisions 4. Nuclear Structure 5. Nuclear Energy and Applications of

  13. DISJUNCTIVE NORMAL SHAPE MODELS

    PubMed Central

    Ramesh, Nisha; Mesadi, Fitsum; Cetin, Mujdat; Tasdizen, Tolga

    2016-01-01

    A novel implicit parametric shape model is proposed for segmentation and analysis of medical images. Functions representing the shape of an object can be approximated as a union of N polytopes. Each polytope is obtained by the intersection of M half-spaces. The shape function can be approximated as a disjunction of conjunctions, using the disjunctive normal form. The shape model is initialized using seed points defined by the user. We define a cost function based on the Chan-Vese energy functional. The model is differentiable, hence, gradient based optimization algorithms are used to find the model parameters. PMID:27403233

  14. Direct measurement of critical nucleus size in confined volumes.

    PubMed

    Liu, Jian; Nicholson, Catherine E; Cooper, Sharon J

    2007-06-19

    In crystallization, the critical nucleus size is of pivotal importance. Above this size, it is favorable for the new crystalline phase to form; below this size, the clusters will tend to dissolve rather than grow. To date, there has been no direct method for measuring the critical nucleus size. Instead, the size is typically calculated from the variation of crystallization rates with temperature. This involves using bulk values of the interfacial tension and enthalpy of fusion, which are inappropriate for small critical nucleus sizes. Here, we present a direct method for measuring the size of the critical nucleus, based on observing crystallization temperatures of materials within microemulsions. Using this approach, the number of molecules in the critical nucleus can be found simply by measuring the droplet size. Data on the freezing of water in water-in-oil microemulsions with and without the nucleating agent, heptacosanol, are presented to support our hypothesis. The results show that the critical nucleus contains 90-350 ice molecules for water pool radii of approximately 1.2-1.8 nm for the heptacosanol-doped microemulsions in which heterogeneous nucleation is initiated at the droplet interface. For the microemulsions without heptacosanol, the critical nucleus contains 70-210 ice molecules for water pool radii of approximately 1.2-1.8 nm. The smaller values arise because homogeneous nucleation occurs and therefore the crystallization temperatures are lower. We can also determine how bulk properties are perturbed at the nanoscale, and we find that the ratio of the ice-water interfacial tension to the enthalpy of fusion decreases significantly for water pool radii that are <2 nm.

  15. Regional connections of the mediodorsal thalamic nucleus in the rat.

    PubMed

    Bay, Hüsniye Hacıoğlu; Cavdar, Safiye

    2013-06-01

    Thalamic nuclei are classified as first- and higher-order relays. The first-order relays receive their driving afferents from ascending pathways and transmit messages to cortex that cortex has not seen before. The higher-order relays receive driver messages from layer-5 cortical cells for transmission from one cortical area to another. The present study used the retrograde tracer, fluoro-gold, to define the afferents to the three regions of the mediodorsal thalamic nucleus, to distinguish which parts contain first- or higher-order relays. The results show that the main inputs to the medial region of the nucleus come from olfactory and visceral structures, those to the central region come from limbic structures and those to the lateral region come from motor centers of the central nervous system. The medial and central regions receive both modulatory (layer 6) and driver (layer 5) afferent inputs from the orbitofrontal and medial frontal areas of the prefrontal cortex whereas the lateral region receives no layer-5 inputs from its cortical connections. Further, the inhibitory modulation of the mediodorsal thalamic nucleus shows regional differences. The medial region receives inhibitory afferents from the striatum (globus pallidus, caudate-putamen), the lateral region from the substantia nigra pars reticulata and the zona incerta, and all segments of the mediodorsal thalamic nucleus receive inhibitory afferents from the thalamic reticular nucleus. The results of the present study show that each region of the mediodorsal thalamic nucleus has distinct afferent connections allowing each region of mediodorsal thalamic nucleus to be considered relatively independent subnuclei that may subserve independent functions. PMID:23869861

  16. [Normal and disordered sleep].

    PubMed

    Arnulf, I

    2007-07-01

    Normal sleep is a complex and reversible state of brain functioning, including reduced inputs and outputs, blunted reflexes, and metabolic and cognitive changes. Evidence supports a role for sleep in the consolidation of an array of learning and memory tasks. Sleep deprivation and fragmentation result in executive dysfunction, increased appetite/weight and cellular stress. Sleep is a vital, complex but plastic function that can be modulated depending on individual heritage and motivation. The major role of sleep in attention and memory raises about concern the reduction in sleep duration recently pointed in teenagers and young adults. Sleep disorders are numerous and various. Their mechanism is not always identified, but may result from a central dysfunction in sleep-wake (e.g. narcolepsy) or circadian (e.g. advanced sleep phase syndrome) systems, from the sleep-related loss of compensation of reflexes normally effective during wakefulness (breathing is the most vulnerable function during sleep), or from other diseases preventing sleep (e.g. psychiatric insomnia, restless legs syndrome). PMID:17652992

  17. Calculated dynamical evolution of the nucleus of comet Hartley 2

    NASA Astrophysics Data System (ADS)

    Ksanfomality, Leonid

    2013-04-01

    The nucleus of comet Hartley 2 has a relatively regular dumbbell shape with unequal heads. The narrow part of elongated shape contains a relatively smooth region whose covering material is highly different in its shallow structure compared to other parts of this celestial body. The surface of crudely spherical parts of the nucleus is different from the surface of the "neck", which implies a hypothesis that the shape of the nucleus of Hartley 2 is indicative of destruction of this celestial body occurring in our days. The nucleus rotates around its axis passing through the center of mass, and centrifugal forces arise. This process is hindered by gravitation between parts of the nucleus and gradual slowing of rotation due to body lengthening because of the increase in the moment of inertia (proportional to R2) and due to friction losses in the neck material. We posed the task to determine centrifugal and gravitational forces in the neck (and, respectively, the strains of stretching and compression), the moment of inertia of the body and supply of its rotational energy E, the volume of the nucleus and its average density, and the position of the barycenter and center of rotation. It can be assumed that these forces cause slow but progressive lengthening of the neck which should eventually result in fragmentation of the nucleus. Centrifugal forces can be found as a result of summation of forces produced by parts of the body. According to the calculation model, the total stretching forces in the section passing through the narrowest cut of the neck are 1.21E6 N. The corresponding compression forces in the section passing through the narrow section are 1.04E6 N. The comparison of these values indicates a paradoxical result: stretching strains dominate in the neck, while compressions are dominant in the section passing through the common center of mass. The excess of stretching strains in the neck is 11%. The inference is as follows: the right part of the neck and the

  18. Nucleus rostrolateralis: an expansion of the epithalamus in some actinopterygii.

    PubMed

    Saidel, William M

    2013-10-01

    The diencephalic nucleus rostrolateralis (RL) in the African butterfly fish (Pantodon buchholzi) is a brain nucleus identified in fewer than a dozen of the ∼25,000 species of actinopterygian fishes. Located in the rostrolateral diencephalon, this nucleus in Pantodon receives direct and indirect visual input from the superior visual field. Its lack of precedent or consistent phylogenetic expression creates a difficulty in interpreting the functional role of this nucleus within the visual system. By tracing experiments, RL was found to be afferent to nucleus interpeduncularis (IP) and the target of cells from the subpallium of the telencephalon. RL is a component of a descending telencephalic pathway involved in at least one behavior at the intersection of limbic and somatic activities--feeding. The parallelism between the ventral telencephalon--RL--IP and the limbic/striatal--habenula--IP pathway (the dorsal diencephalic conduction system, DDCS) suggests that RL is a component within the DDCS. Moreover, the hodological connections of RL suggest that RL is likely a hypertrophy of the lateral habenula.

  19. Actin nucleators in the nucleus: an emerging theme.

    PubMed

    Weston, Louise; Coutts, Amanda S; La Thangue, Nicholas B

    2012-08-01

    Actin is an integral component of the cytoskeleton, forming a plethora of macromolecular structures that mediate various cellular functions. The formation of such structures relies on the ability of actin monomers to associate into polymers, and this process is regulated by actin nucleation factors. These factors use monomeric actin pools at specific cellular locations, thereby permitting rapid actin filament formation when required. It has now been established that actin is also present in the nucleus, where it is implicated in chromatin remodelling and the regulation of eukaryotic gene transcription. Notably, the presence of typical actin filaments in the nucleus has not been demonstrated directly. However, studies in recent years have provided evidence for the nuclear localisation of actin nucleation factors that promote cytoplasmic actin polymerisation. Their localisation to the nucleus suggests that these proteins mediate collaboration between the cytoskeleton and the nucleus, which might be dependent on their ability to promote actin polymerisation. The nature of this cooperation remains enigmatic and it will be important to elucidate the physiological relevance of the link between cytoskeletal actin networks and nuclear events. This Commentary explores the current evidence for the nuclear roles of actin nucleation factors. Furthermore, the implication of actin-associated proteins in relaying exogenous signals to the nucleus, particularly in response to cellular stress, will be considered.

  20. Coordinated Dynamics of RNA Splicing Speckles in the Nucleus.

    PubMed

    Zhang, Qiao; Kota, Krishna P; Alam, Samer G; Nickerson, Jeffrey A; Dickinson, Richard B; Lele, Tanmay P

    2016-06-01

    Despite being densely packed with chromatin, nuclear bodies and a nucleoskeletal network, the nucleus is a remarkably dynamic organelle. Chromatin loops form and relax, RNA transcripts and transcription factors move diffusively, and nuclear bodies move. We show here that RNA splicing speckled domains (splicing speckles) fluctuate in constrained nuclear volumes and remodel their shapes. Small speckles move in a directed way toward larger speckles with which they fuse. This directed movement is reduced upon decreasing cellular ATP levels or inhibiting RNA polymerase II activity. The random movement of speckles is reduced upon decreasing cellular ATP levels, moderately reduced after inhibition of SWI/SNF chromatin remodeling and modestly increased upon inhibiting RNA polymerase II activity. To define the paths through which speckles can translocate in the nucleus, we generated a pressure gradient to create flows in the nucleus. In response to the pressure gradient, speckles moved along curvilinear paths in the nucleus. Collectively, our results demonstrate a new type of ATP-dependent motion in the nucleus. We present a model where recycling splicing factors return as part of small sub-speckles from distal sites of RNA processing to larger splicing speckles by a directed ATP-driven mechanism through interchromatin spaces.

  1. Zolpidem modulates GABA(A) receptor function in subthalamic nucleus.

    PubMed

    Chen, Lei; Xie, Jun-Xia; Fung, Kam-Shuen; Yung, Wing-Ho

    2007-05-01

    The subthalamic nucleus occupies a position in the indirect pathway of basal ganglia circuit, which plays an important role in the movement regulation. Zolpidem is an imidazopyridine agonist with a high affinity on the benzodiazepine site of GABA(A) receptors containing alpha 1 subunit. Recently, zolpidem has been reported to be useful in treating subgroups of parkinsonian patients. A high density of zolpidem binding sites has been shown in rat subthalamic nucleus. To further investigate the modulation of zolpidem on GABA(A) receptor-mediated inhibitory synaptic current in subthalamic nucleus, whole-cell patch clamp recordings were used in the present study. Zolpidem at 100nM significantly prolonged the decay time and rise time of miniature inhibitory postsynaptic currents, with no effect on the amplitude and frequency. The benzodiazepine antagonist flumazenil could completely block the potentiation induced by zolpidem, confirming the specificity on the benzodiazepine site. At a high concentration of 1 microM, zolpidem significantly increased the decay time, rise time, amplitude and frequency of miniature inhibitory postsynaptic currents. In the behaving rats, unilateral microinjection of zolpidem into subthalamic nucleus induced a significant contralateral rotation. The present findings on the effect of zolpidem in subthalamic nucleus provide a rationale for further investigations into its potential in the treatment of Parkinson's disease. PMID:17337310

  2. Cochlear nucleus whole mount explants promote the differentiation of neuronal stem cells from the cochlear nucleus in co-culture experiments.

    PubMed

    Rak, Kristen; Völker, Johannes; Jürgens, Lukas; Völker, Christine; Frenz, Silke; Scherzad, Agmal; Schendzielorz, Philipp; Jablonka, Sibylle; Mlynski, Robert; Radeloff, Andreas; Hagen, Rudolf

    2015-08-01

    The cochlear nucleus is the first brainstem nucleus to receive sensory input from the cochlea. Depriving this nucleus of auditory input leads to cellular and molecular disorganization which may potentially be counteracted by the activation or application of stem cells. Neuronal stem cells (NSCs) have recently been identified in the neonatal cochlear nucleus and a persistent neurogenic niche was demonstrated in this brainstem nucleus until adulthood. The present work investigates whether the neurogenic environment of the cochlear nucleus can promote the survival of engrafted NSCs and whether cochlear nucleus-derived NSCs can differentiate into neurons and glia in brain tissue. Therefore, cochlear nucleus whole-mount explants were co-cultured with NSCs extracted from either the cochlear nucleus or the hippocampus and compared to a second environment using whole-mount explants from the hippocampus. Factors that are known to induce neuronal differentiation were also investigated in these NSC-explant experiments. NSCs derived from the cochlear nucleus engrafted in the brain tissue and differentiated into all cells of the neuronal lineage. Hippocampal NSCs also immigrated in cochlear nucleus explants and differentiated into neurons, astrocytes and oligodendrocytes. Laminin expression was up-regulated in the cochlear nucleus whole-mounts and regulated the in vitro differentiation of NSCs from the cochlear nucleus. These experiments confirm a neurogenic environment in the cochlear nucleus and the capacity of cochlear nucleus-derived NSCs to differentiate into neurons and glia. Consequently, the presented results provide a first step for the possible application of stem cells to repair the disorganization of the cochlear nucleus, which occurs after hearing loss. PMID:25960344

  3. Pornography, normalization, and empowerment.

    PubMed

    Weinberg, Martin S; Williams, Colin J; Kleiner, Sibyl; Irizarry, Yasmiyn

    2010-12-01

    Opponents and proponents of erotic representations (referred to hereafter as "pornography") have described the effects of pornography from their perspective. Little, however, has been done in the way of research to investigate these claims from the consumer's point of view. This especially has been so regarding the positive impact of such consumption on a person's sex life. Using a study group of 245 college students, we examined this question in a framework of scripting theory. We wanted to see whether viewing pornography appeared to expand sexual horizons through normalization and facilitate a willingness to explore new sexual behaviors and sexual relationships through empowerment. The data supported this viewpoint and further showed the effects to be mediated by gender and sexual preference identity. They suggested, however, that established scripts were extended rather than abandoned. We conclude with connections between our findings and the widespread viewing of pornography in contemporary society. PMID:20127507

  4. Normal Untreated Jurkat Cells

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. The objective of the research was to define a way to differentiate between effects due to microgravity and those due to possible stress from non-optimal spaceflight conditions. These Jurkat cells, a human acute T-cell leukemia was obtained to evaluate three types of potential experimental stressors: a) Temperature elevation; b) Serum starvation; and c) Centrifugal force. The data from previous spaceflight experiments showed that actin filaments and cell shape are significantly different for the control. These normal cells serve as the baseline for future spaceflight experiments.

  5. Red blood cell extrudes nucleus and mitochondria against oxidative stress.

    PubMed

    Zhang, Zhong-Wei; Cheng, Jian; Xu, Fei; Chen, Yang-Er; Du, Jun-Bo; Yuan, Ming; Zhu, Feng; Xu, Xiao-Chao; Yuan, Shu

    2011-07-01

    Mammal red blood cells (erythrocytes) contain neither nucleus nor mitochondria. Traditional theory suggests that the presence of a nucleus would prevent big nucleated erythrocytes to squeeze through these small capillaries. However, nucleus is too small to hinder erythrocyte deformation. And, there is no sound reason to abandon mitochondria for the living cells. Here, we found that mammal erythrocyte reactive oxygen species (ROS) levels kept stable under diabetes, ischemia reperfusion, and malaria conditions or in vitro sugar/heme treatments, whereas bird erythrocyte ROS levels increased dramatically in these circumstances. Nuclear and mitochondrial extrusion may help mammal erythrocytes to better adapt to high-sugar and high-heme conditions by limiting ROS generation. PMID:21698761

  6. The Potential Roles of Actin in The Nucleus

    PubMed Central

    Falahzadeh, Khadijeh; Banaei-Esfahani, Amir; Shahhoseini, Maryam

    2015-01-01

    Over the past few decades, actin’s presence in the nucleus has been demonstrated. Actin is a key protein necessary for different nuclear processes. Although actin is well known for its functional role in dynamic behavior of the cytoskeleton, emerging studies are now highlighting new roles for actin. At the present time there is no doubt about the presence of actin in the nucleus. A number of studies have uncovered the functional involvement of actin in nuclear processes. Actin as one of the nuclear components has its own structured and functional rules, such as nuclear matrix association, chromatin remodeling, transcription by RNA polymerases I, II, III and mRNA processing. In this historical review, we attempt to provide an overview of our current understanding of the functions of actin in the nucleus. PMID:25870830

  7. Azimuthal harmonics of color fields in a high energy nucleus

    NASA Astrophysics Data System (ADS)

    Lappi, T.

    2015-05-01

    Recent experimental results have revealed a surprisingly rich structure of multiparticle azimuthal correlations in high energy proton-nucleus collisions. Final state collective effects can be responsible for many of the observed effects, but it has recently been argued that a part of these correlations are present already in the wavefunctions of the colliding particles. We evaluate the momentum space 2-particle cumulant azimuthal anisotropy coefficients vn { 2 }, n = 2 , 3 , 4 from fundamental representation Wilson line distributions describing the high energy nucleus. These would correspond to the flow coefficients in very forward proton-nucleus scattering. We find significant differences between Wilson lines from the MV model and from JIMWLK evolution. The magnitude and qualitative transverse momentum dependence of the vn { 2 } values suggest that the fluctuations present in the initial fields are a significant contribution to the observed anisotropies.

  8. Exotic nucleus helium 9 and its excited states

    SciTech Connect

    Seth, K.K.; Artuso, M.; Barlow, D.; Iversen, S.; Kaletka, M.; Nann, H.; Parker, B.; Soundranayagam, R.

    1987-05-11

    The ground state and several excited states of /sup 9/He, the most neutron-rich nucleus to date, have been identified by means of the reaction /sup 9/Be(..pi../sup -/,..pi../sup +/) /sup 9/He. The mass excess of the ground state has been measured and it is found that the nucleus is unbound against single-neutron decay by 1.13 +- 0.10 MeV only. It is found that the excited-state spectrum of this nucleus, which is very far from the valley of stability, is in good agreement with the predictions of ''no-core'' shell-model calculations whose parameters were optimized for the stable nuclei in the valley.

  9. Pedunculopontine Nucleus Gamma Band Activity-Preconscious Awareness, Waking, and REM Sleep.

    PubMed

    Urbano, Francisco J; D'Onofrio, Stasia M; Luster, Brennon R; Beck, Paige B; Hyde, James Robert; Bisagno, Veronica; Garcia-Rill, Edgar

    2014-01-01

    The pedunculopontine nucleus (PPN) is a major component of the reticular activating system (RAS) that regulates waking and REM sleep, states of high-frequency EEG activity. Recently, we described the presence of high threshold, voltage-dependent N- and P/Q-type calcium channels in RAS nuclei that subserve gamma band oscillations in the mesopontine PPN, intralaminar parafascicular nucleus (Pf), and pontine subcoeruleus nucleus dorsalis (SubCD). Cortical gamma band activity participates in sensory perception, problem solving, and memory. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. That is, the RAS may play an early permissive role in volition. Our latest results suggest that (1) the manifestation of gamma band activity during waking may employ a separate intracellular pathway compared to that during REM sleep, (2) neuronal calcium sensor (NCS-1) protein, which is over expressed in schizophrenia and bipolar disorder, modulates gamma band oscillations in the PPN in a concentration-dependent manner, (3) leptin, which undergoes resistance in obesity resulting in sleep dysregulation, decreases sodium currents in PPN neurons, accounting for its normal attenuation of waking, and (4) following our discovery of electrical coupling in the RAS, we hypothesize that there are cell clusters within the PPN that may act in concert. These results provide novel information on the mechanisms controlling high-frequency activity related to waking and REM sleep by elements of the RAS.

  10. Activation of metabotropic glutamate receptors regulates ribosomes of cochlear nucleus neurons.

    PubMed

    Carzoli, Kathryn L; Hyson, Richard L

    2014-01-01

    The brain stem auditory system of the chick is an advantageous model for examining changes that occur as a result of deafness. Elimination of acoustic input through cochlear ablation results in the eventual death of approximately 30% of neurons in the chick cochlear nucleus, nucleus magnocellularis (NM). One early change following deafness is an alteration in NM ribosomes, evidenced both by a decrease in protein synthesis and reduction in antigenicity for Y10B, a monoclonal antibody that recognizes a ribosomal epitope. Previous studies have shown that mGluR activation is necessary to maintain Y10B antigenicity and NM viability. What is still unclear, however, is whether or not mGluR activation is sufficient to prevent deafness-induced changes in these neurons, or if other activity-dependent factors are also necessary. The current study investigated the ability of mGluR activation to regulate cochlear nucleus ribosomes in the absence of auditory nerve input. In vitro methods were employed to periodically pressure eject glutamate or mGluR agonists over neurons on one side of a slice preparation leaving the opposite side of the same slice untreated. Immunohistochemistry was then performed using Y10B in order to assess ribosomal changes. Application of glutamate and both group I and II selective mGluR agonists effectively rescued ribosomal antigenicity on the treated side of the slice in comparison to ribosomes on the untreated side. These findings suggest that administration of mGluR agonists is sufficient to reduce the early interruption of normal ribosomal integrity that is typically seen following loss of auditory nerve activity.

  11. Pedunculopontine Nucleus Gamma Band Activity-Preconscious Awareness, Waking, and REM Sleep

    PubMed Central

    Urbano, Francisco J.; D’Onofrio, Stasia M.; Luster, Brennon R.; Beck, Paige B.; Hyde, James Robert; Bisagno, Veronica; Garcia-Rill, Edgar

    2014-01-01

    The pedunculopontine nucleus (PPN) is a major component of the reticular activating system (RAS) that regulates waking and REM sleep, states of high-frequency EEG activity. Recently, we described the presence of high threshold, voltage-dependent N- and P/Q-type calcium channels in RAS nuclei that subserve gamma band oscillations in the mesopontine PPN, intralaminar parafascicular nucleus (Pf), and pontine subcoeruleus nucleus dorsalis (SubCD). Cortical gamma band activity participates in sensory perception, problem solving, and memory. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. That is, the RAS may play an early permissive role in volition. Our latest results suggest that (1) the manifestation of gamma band activity during waking may employ a separate intracellular pathway compared to that during REM sleep, (2) neuronal calcium sensor (NCS-1) protein, which is over expressed in schizophrenia and bipolar disorder, modulates gamma band oscillations in the PPN in a concentration-dependent manner, (3) leptin, which undergoes resistance in obesity resulting in sleep dysregulation, decreases sodium currents in PPN neurons, accounting for its normal attenuation of waking, and (4) following our discovery of electrical coupling in the RAS, we hypothesize that there are cell clusters within the PPN that may act in concert. These results provide novel information on the mechanisms controlling high-frequency activity related to waking and REM sleep by elements of the RAS. PMID:25368599

  12. Sensorimotor cortical influences on cuneate nucleus rhythmic activity in the anesthetized cat.

    PubMed

    Marino, J; Canedo, A; Aguilar, J

    2000-01-01

    This work aimed to study whether the sensorimotor cerebral cortex spreads down its rhythmic patterns of activity to the dorsal column nuclei. Extracellular and intracellular recordings were obtained from the cuneate nucleus of chloralose-anesthetized cats. From a total of 140 neurons tested (106 cuneolemniscal), 72 showed spontaneous rhythmic activity within the slow (< 1 Hz), delta (1-4 Hz), spindle (5-15 Hz) and higher frequencies, with seven cells having the delta rhythm coupled to slow oscillations. The spindle activity recorded in the cuneate was tightly coupled to the thalamo-cortico-thalamic spindle rhythmicity. Bilateral or contralateral removal of the frontoparietal cortex abolished the cuneate slow and spindle oscillations. Oscillatory paroxysmal activity generated by fast electrical stimulation (50-100 Hz/1-2 s) of the sensorimotor cortex induced burst firing synchronized with the paroxysmal cortical "spike" on all the non-lemniscal neurons, and inhibitory responses also coincident with the cortical paroxysmal "spike" in the majority (71%) of the cuneolemniscal cells. The remaining lemniscal-projecting neurons showed bursting activity (11%) or sequences of excitation-inhibition (18%) also time-locked to the cortical paroxysmal "spike". Additionally, the cerebral cortex induced coherent oscillatory activity between thalamic ventroposterolateral and cuneate neurons. Electrolytic lesion of the pyramidal tract abolished the cortically induced effects on the contralateral cuneate nucleus, as well as on the ipsilateral medial lemniscus. The results demonstrate that the sensorimotor cortex imposes its rhythmic patterns on the cuneate nucleus through the pyramidal tract, and that the corticocuneate network can generate normal and abnormal patterns of synchronized activity, such as delta waves, spindles and spike-and-wave complexes. The cuneate neurons, however, are able to generate oscillatory activity above 1 Hz in the absence of cortical input, which implies

  13. Brain networks modulated by subthalamic nucleus deep brain stimulation.

    PubMed

    Accolla, Ettore A; Herrojo Ruiz, Maria; Horn, Andreas; Schneider, Gerd-Helge; Schmitz-Hübsch, Tanja; Draganski, Bogdan; Kühn, Andrea A

    2016-09-01

    Deep brain stimulation of the subthalamic nucleus is an established treatment for the motor symptoms of Parkinson's disease. Given the frequent occurrence of stimulation-induced affective and cognitive adverse effects, a better understanding about the role of the subthalamic nucleus in non-motor functions is needed. The main goal of this study is to characterize anatomical circuits modulated by subthalamic deep brain stimulation, and infer about the inner organization of the nucleus in terms of motor and non-motor areas. Given its small size and anatomical intersubject variability, functional organization of the subthalamic nucleus is difficult to investigate in vivo with current methods. Here, we used local field potential recordings obtained from 10 patients with Parkinson's disease to identify a subthalamic area with an analogous electrophysiological signature, namely a predominant beta oscillatory activity. The spatial accuracy was improved by identifying a single contact per macroelectrode for its vicinity to the electrophysiological source of the beta oscillation. We then conducted whole brain probabilistic tractography seeding from the previously identified contacts, and further described connectivity modifications along the macroelectrode's main axis. The designated subthalamic 'beta' area projected predominantly to motor and premotor cortical regions additional to connections to limbic and associative areas. More ventral subthalamic areas showed predominant connectivity to medial temporal regions including amygdala and hippocampus. We interpret our findings as evidence for the convergence of different functional circuits within subthalamic nucleus' portions deemed to be appropriate as deep brain stimulation target to treat motor symptoms in Parkinson's disease. Potential clinical implications of our study are illustrated by an index case where deep brain stimulation of estimated predominant non-motor subthalamic nucleus induced hypomanic behaviour.

  14. Figure Caption for pair of images of 'Comet Nucleus Q

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Figure Caption for pair of images of 'Comet Nucleus Q'. 21Jul94 Last Look at the Q-nuclei First image - March 30, 1994. Two Q-nuclei and a split nucleus, P. Second image - July 20, 1994. at T - 10 hours. Both nuclei still show no sign of further fragmentation, although the coma near each is being stretched out along the direction of motion. Both images were taken with the WFPC2 Planetary Camera using a red filter. Credit: H. A. Weaver and T. E. Smith

  15. Low-energy rotational bands in the nucleus155Eu

    NASA Astrophysics Data System (ADS)

    Katajanheimo, R.; Liljavirta, H.; Siivola, A.; Hammarén, E.; Liukkonen, E.

    1984-02-01

    Excited states in the nucleus155Eu have been produced during in-beam bombardments of a154Sm target with3He beams at 22 and 27 MeV. Decay gamma rays were detected using coincidence equipment optimized for low-energy photons. The level scheme is based on the observed γγ-coincidence relationships combined with the information on relative intensities. Tentatively suggested spin assignments follow from the apparent rotational character of the nucleus. Experimental observations are compared with predictions calculated from a particle-rotor model with a nonspheroidal Woods-Saxon potential.

  16. Neutral current neutrino-nucleus interactions at high energies

    SciTech Connect

    Gay Ducati, M. B.; Machado, M. M.; Machado, M. V. T.

    2009-04-01

    We present a QCD analysis of the neutral current (NC) neutrino-nucleus interaction at the small-x region using the color dipole formalism. This phenomenological approach is quite successful in describing experimental results in deep inelastic ep scattering and charged current neutrino-nucleus interactions at high energies. We present theoretical predictions for the relevant structure functions and the corresponding implications for the total NC neutrino cross section. It is shown that at small x, the NC boson-nucleon cross section should exhibit the geometric scaling property that has important consequences for ultrahigh energy neutrino phenomenology.

  17. Recent Developments in Neutrino/Antineutrino-Nucleus Interactions

    DOE PAGESBeta

    Morfín, Jorge G.; Nieves, Juan; Sobczyk, Jan T.

    2012-01-01

    Recent experimental results and developments in the theoretical treatment of neutrino-nucleus interactions in the energy range of 1–10 GeV are discussed. Difficulties in extracting neutrino-nucleon cross sections from neutrino-nucleus scattering data are explained and significance of understanding nuclear effects for neutrino oscillation experiments is stressed. Detailed discussions of the status of two-body current contribution in the kinematic region dominated by quasielastic scattering and specific features of partonic nuclear effects in weak DIS scattering are presented.

  18. Final State Interactions Effects in Neutrino-Nucleus Interactions

    SciTech Connect

    Golan, Tomasz; Juszczak, Cezary; Sobczyk, Jan T.

    2012-07-01

    Final State Interactions effects are discussed in the context of Monte Carlo simulations of neutrino-nucleus interactions. A role of Formation Time is explained and several models describing this effect are compared. Various observables which are sensitive to FSI effects are reviewed including pion-nucleus interaction and hadron yields in backward hemisphere. NuWro Monte Carlo neutrino event generator is described and its ability to understand neutral current $\\pi^0$ production data in $\\sim 1$ GeV neutrino flux experiments is demonstrated.

  19. Recent Developments in Neutrino/Antineutrino-Nucleus Interactions

    SciTech Connect

    Morfín, Jorge G.; Nieves, Juan; Sobczyk, Jan T.

    2012-01-01

    Recent experimental results and developments in the theoretical treatment of neutrino-nucleus interactions in the energy range of 1–10 GeV are discussed. Difficulties in extracting neutrino-nucleon cross sections from neutrino-nucleus scattering data are explained and significance of understanding nuclear effects for neutrino oscillation experiments is stressed. Detailed discussions of the status of two-body current contribution in the kinematic region dominated by quasielastic scattering and specific features of partonic nuclear effects in weak DIS scattering are presented.

  20. Analysis of organic compounds in returned comet nucleus samples

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.

    1989-01-01

    Techniques for analysis of organic compounds in returned comet nucleus samples are described. Interstellar, chondritic and transitional organic components are discussed. Appropriate sampling procedures will be essential to the success of these analyses. It will be necessary to return samples that represent all the various regimes found in the nucleus, e.g., a complete core, volatile components (deep interior), and crustal components (surface minerals, rocks, processed organics such as macromolecular carbon and polymers). Furthermore, sampling, storage, return, and distribution of samples must be done under conditions that preclude contamination of the samples by terrestrial matter.

  1. Adolescence. What is normal?

    PubMed

    Offer, D; Ostrov, E; Howard, K I

    1989-06-01

    We present in some detail what constitutes normal behavior, or mental health, among teenagers. Our data are based on the results of a specially devised psychological questionnaire by one of us (D.O.). This questionnaire has been shown to reliably distinguish mentally healthy from psychiatrically disturbed populations. Results are presented across three decades (1960s, 1970s, and 1980s), across genders, and across the high school years. A conceptual framework is presented to help the clinician working with adolescents to understand the fluctuation in psychopathology among youth. Adolescent density in the total population is shown to be a significant factor in determining the rate of disturbance among teenagers. Our research findings demonstrate that the rate of behavioral disturbance among adolescents is the same as in other parts of the life cycle. The clinician working with adolescents tends to underestimate the severity of adolescent problems because of the near-universal belief that all adolescents undergo "adolescent turmoil." We have found that adolescents who are experiencing turmoil need professional help.

  2. Brain spatial normalization.

    PubMed

    Bug, William; Gustafson, Carl; Shahar, Allon; Gefen, Smadar; Fan, Yingli; Bertrand, Louise; Nissanov, Jonathan

    2007-01-01

    Neuroanatomical informatics, a subspecialty of neuroinformatics, focuses on technological solutions to neuroimage database access. Its current main goal is an image-based query system that is able to retrieve imagery based on anatomical location. Here, we describe a set of tools that collectively form such a solution for sectional material and that are available to investigators to use on their own data sets. The system accepts slide images as input and yields a matrix of transformation parameters that map each point on the input image to a standardized 3D brain atlas. In essence, this spatial normalization makes the atlas a spatial indexer from which queries can be issued simply by specifying a location on the reference atlas. Our objective here is to familiarize potential users of the system with the steps required of them as well as steps that take place behind the scene. We detail the capabilities and the limitations of the current implementation and briefly describe the enhancements planned for the near future.

  3. [Normal aging and cognition].

    PubMed

    Ska, Bernadette; Joanette, Yves

    2006-03-01

    It is now well documented that normal aging modifies the cognitive functioning and most observations suggest that cognition evolves in the direction of deterioration. The more frequently impaired functions are memory, attention and visual-spatial abilities. On the other hand, some abilities seem to increase, such as vocabulary. Considering the aging effect on cognition, questions remain regarding directionality, universality and reversibility. A great variability in aged related impacts is observed among subjects and among cognitive domains. Some individuals evolved more rapidly than others. Some cognitive functions are more affected by aging than others. General and specific factors are hypothesized to explain the aged related cognitive decline. Among them, educational level, health, cognitive style, life style, personality, are likely to modulate the aged related cognitive evolution by influencing attentional resources and cerebral plasticity. Cognitive resources are essential to develop adaptative strategies. During the life span, resources are activated and increased by learning and training. Considering the role of cognitive resources, successful aging is dependent on several conditions : absence of disease leading to a loss of autonomy, maintenance of cognitive and physical activities, and active and social engaged lifestyle. PMID:16527210

  4. The normal antireflux mechanism.

    PubMed

    Paterson, W G

    2001-08-01

    The normal antireflux mechanism consists of several components, any one of which may malfunction and render an individual prone to the development of GERD. The LES is clearly the most important component because gastroesophageal reflux almost always occurs when the sphincter pressure equals that of the stomach. Usually, an LES pressure of just 2 to 3 mm Hg above intragastric pressure is sufficient to prevent reflux. Other factors certainly play significant ancillary roles in preventing reflux. In the absence of a hiatal hernia, the crural fibers of the diaphragm serve as an "extrinsic" sphincter. Furthermore, the unique anatomy of the proximal stomach (e.g., the angle of His, mucosal flap valve, posterolateral location of the fundus) serves to keep gastric contents away from the gastroesophageal junction, making it less likely for reflux to occur when the LES relaxes. When a hiatal hernia is present, these factors are lost, and the hernia sac provides a reservoir for gastric juices with ready access to the LES. Finally, some degree of reflux occurs in all individuals, but esophageal clearance and acid neutralization provide an important last line of defense.

  5. Institutionalizing Normal: Rethinking Composition's Precedence in Normal Schools

    ERIC Educational Resources Information Center

    Skinnell, Ryan

    2013-01-01

    Composition historians have recently worked to recover histories of composition in normal schools. This essay argues, however, that historians have inadvertently misconstrued the role of normal schools in American education by inaccurately comparing rhetorical education in normal schools to rhetorical education in colleges and universities.…

  6. Friedreich ataxia: failure of GABA-ergic and glycinergic synaptic transmission in the dentate nucleus.

    PubMed

    Koeppen, Arnulf H; Ramirez, R Liane; Becker, Alyssa B; Feustel, Paul J; Mazurkiewicz, Joseph E

    2015-02-01

    Atrophy of large neurons in the dentate nucleus (DN) is an important pathologic correlate of neurologic disability in patients with Friedreich ataxia (FA). Thinning of the DN was quantified in 29 autopsy cases of FA and 2 carriers by measuring the thickness of the gray matter ribbon on stains with anti-glutamic acid decarboxylase, the rate-limiting enzyme in the biosynthesis of γ-amino-butyric acid (GABA). The DN was thinner than normal in all cases of FA, and atrophy correlated inversely with disease duration but not with age at onset or length of the homozygous guanine-adenine-adenine trinucleotide expansions. In 13 of the FA cases, frozen DN tissue was available for assay of frataxin. Dentate nucleus atrophy was more severe when frataxin was very low. Immunohistochemical staining for glutamic acid decarboxylase revealed grumose reaction and preservation of small GABA-ergic neurons in the DN of FA patients. Residual small DN neurons and varicose axons also contained the glycine transporter 2, identifying them as glycinergic. Immunohistochemistry also confirmed severe loss of GABA-A and glycine receptors in the DN with comparable depletion of the receptor-anchoring protein gephyrin. Thus, loss of gephyrin and failure to position GABA-A and glycine receptors correctly may reduce trophic support of large DN neurons and contribute to their atrophy. By contrast, Purkinje cells may escape retrograde atrophy in FA by issuing new axonal sprouts to small surviving DN neurons where they form reparative grumose clusters.

  7. Identification of different subsets of lung cells using Raman microspectroscopy and whole cell nucleus isolation.

    PubMed

    Pijanka, Jacek K; Stone, Nicholas; Rutter, Abigail V; Forsyth, Nicholas; Sockalingum, Ganesh D; Yang, Ying; Sulé-Suso, Josep

    2013-09-01

    Raman spectroscopy has been widely used to study its possible clinical application in cancer diagnosis. However, in order to make it into clinical practice, it is important that this technique is able not only to identify cancer cells from their normal counterparts, but also from the array of cells present in human tissues. To this purpose, we used Raman spectroscopy to assess whether this technique was able to differentiate not only between lung cancer cells and lung epithelial cells but also from lung fibroblasts. Furthermore, we studied whether the differences were due to cell lineage (epithelial versus fibroblast) or to different proliferative characteristics of cells, and where in the cell compartment these differences might reside. To answer these questions we studied cell cytoplasm, cell nucleus and isolated whole cell nuclei. Our data suggests that Raman spectroscopy can differentiate between lung cancer, lung epithelial cells and lung fibroblasts. More important, it can also differentiate between 2 cells from the same lineage (fibroblast) but with one of them rendered immortal and with an increased proliferative activity. Finally, it seems that the main spectral differences reside in the cell nucleus and that the study of isolated nuclei strengthens the differences between cells.

  8. Ventral cochlear nucleus neural discharge characteristics in the absence of outer hair cells.

    PubMed

    Woolf, N K; Ryan, A F

    1985-09-01

    The role of the cochlear outer hair cell (OHC) in auditory processing remains poorly understood. The OHCs possess an independent afferent innervation which constitutes 5-10% of cochlear afferent neurons and which appears to project to the cochlear nucleus (CN). Whether the OHCs contribute to the processing of auditory signals in the CN has not been determined. To address this question, kanamycin ototoxicity was used to produce selective OHC loss while leaving the inner hair cell (IHC) population largely intact, in the basal portion of the cochlea of chinchillas. Single unit responses were then recorded in the ventral cochlear nucleus (VCN), and compared to responses in untreated subjects. Many of the changes observed in VCN neural responses reflected changes which have previously been reported in the VIIIth nerve. However, frequency tuning curve tip segments which were normal in both bandwidth and length were observed in approximately 22% of the units associated with regions of complete OHC loss and preservation of IHCs. This has not been reported in previous OHC lesion studies. Also, first spike latency was found to be significantly lengthened for units associated with the OHC free regions. Those features of VCN neural responses which first arise within the CN, such as non-primary-like post-stimulus-time histogram response patterns, were unaffected by OHC loss. These results suggest that afferent fibers associated with OHCs do not play a major role in signal processing in the VCN. PMID:4041821

  9. NUCLEAR PHYSICS: Δ-Resonances in Ground State Properties of 2040Ca Spherical Cold Finite Nucleus at Equilibrium and under Compression

    NASA Astrophysics Data System (ADS)

    Abu-Sei'leek, Mohammed H. E.; Hasan, Mahmoud A.

    2010-08-01

    The ground state properties of the spherical nucleus 40Ca have been investigated by using constrained spherical Hartree-Fock (CSHF) approximation at equilibrium and under high radial compression in a six major shells. The effective baryon-baryon interaction that includes the Δ(1236) resonance freedom degrees to calculate nuclear properties is used. The nucleon-nucleon (N-N) interaction is based on Reid soft core (RSC) potential. The results of calculations show that much of increase in the nuclear energy generated under compression is used to create the massive Δ particles. The number of Δ's can be increased to about 2.1% of constituents of nucleus when nuclear density reaches about 1.34 times of normal density. The single particle energy levels are calculated and their behavior under compression is also examined. A good agreement has been found between current calculations and phenomenological shell model for low lying single-particle spectra. The gap between shells is very clear and L-S coupling become stronger as increasing the static load on the nucleus. The results show a considerable reduction in compressibility when freedom degrees of Δ's are taken into account. It has been found that the total nuclear radial density becomes denser in the interior and less dense in the exterior region of nucleus. The surface of nucleus becomes more and more responsive to compression than outer region.

  10. Studies of normal deformation in {sup 151}Dy

    SciTech Connect

    Nisius, D.; Janssens, R.V.F.; Crowell, B.

    1995-08-01

    The wealth of data collected in the study of superdeformation in {sup 151}Dy allowed for new information to be obtained on the normally deformed structures in this nucleus. At high spin several new yrast states have been identified for the first time. They were associated with single-particle excitations. Surprisingly, a sequence was identified with energy spacings characteristic of a rotational band of normal ({beta}2 {approximately} 0.2) deformation. The bandhead spin appears to be 15/2{sup -} and the levels extend up to a spin of 87/2{sup -}. A clear backbend is present at intermediate spins. While a similar band based on a bandhead of 6{sup +} is known in {sup 152}Dy, calculations suggest that this collective prolate band should not be seen in {sup 151}Dy. In the experiment described earlier in this report that is aimed at determining the deformations associated with the SD bands in this nucleus and {sup 152}Dy, the deformation associated with this band will be determined. This will provide further insight into the origin of this band.

  11. Altered mechanical properties of the nucleus in disease.

    PubMed

    Lombardi, Maria Lucia; Lammerding, Jan

    2010-01-01

    In eukaryotic cells, the nucleus is the largest and most rigid organelle. Therefore, its physical properties contribute critically to the biomechanical behavior of cells, e.g., during amoeboid migration or perfusion through narrow capillaries. Furthermore, it has been speculated that nuclear deformations could directly allow cells to sense mechanical stress, e.g., by modulating the access of specific transcription factors to their binding sites. Defects in nuclear mechanics have also been reported in a variety of muscular dystrophies caused by mutations in nuclear envelope proteins, indicating an important role in the maintenance of cells in mechanically stressed tissue. These findings have prompted the growing field of nuclear mechanics to develop advanced experimental methods to study the physical properties of the nucleus as a function of nuclear structure and organization, and to understand its role in physiology and disease. These experimental techniques include micropipette aspiration, atomic force microscopy of isolated nuclei, cellular strain and compression experiments, and microneedle manipulation of intact cells. These experiments have provided important insights into the mechanical behavior of the nucleus under physiological conditions, the distinct mechanical contributions of the nuclear lamina and interior, and how mutations in nuclear envelope proteins associated with a variety of human diseases can cause distinct alterations in the physical properties of the nucleus and contribute to the disease mechanism. Here, we provide a brief overview of the most common experimental techniques and their application and discuss the implication of their results on our current understanding of nuclear mechanics.

  12. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    SciTech Connect

    Gou, Ke-Mian; Chang, Chia-Chun; Shen, Qing-Ji; Sung, Li-Ying; Liu, Ji-Long

    2014-04-15

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus.

  13. Measuring neutrino-nucleus interactions with MINERνA

    SciTech Connect

    Rodrigues, P. A.

    2015-07-15

    We present results from the MINERνA experiment for neutrino-nucleus scattering in the few-GeV energy region. These measurements cover a range of processes that must be modeled correctly in neutrino oscillation experiments, and in which recent results from other experiments have suggested deficiencies in the models currently used.

  14. High-energy pion-nucleus scattering at LAMPF

    SciTech Connect

    Morris, C.L.

    1993-01-01

    Recent data obtained for pion-nucleus interactions above the [triangle](1232) is presented. The expected long mean-free path at pion energies above the [3,3] resonance is demonstrated in elastic scattering. Evidence for unexpected nuclear transparency for outgoing pions at resonance energies is presented. A new technique measuring virtual [triangle] components of the nuclear wave function is suggested.

  15. High-energy pion-nucleus scattering at LAMPF

    SciTech Connect

    Morris, C.L.

    1993-02-01

    Recent data obtained for pion-nucleus interactions above the {triangle}(1232) is presented. The expected long mean-free path at pion energies above the [3,3] resonance is demonstrated in elastic scattering. Evidence for unexpected nuclear transparency for outgoing pions at resonance energies is presented. A new technique measuring virtual {triangle} components of the nuclear wave function is suggested.

  16. mRNA-Producing Pseudo-nucleus System.

    PubMed

    Shin, Seung Won; Park, Kyung Soo; Shin, Woo Jung; Um, Soong Ho

    2015-11-01

    A pseudo-eukaryotic nucleus (PEN) system consisting of a gene-containing DNA hydrogel encapsulated in a liposome is fabricated. Owing to the structural characteristics of gene-containing DNA hydrogel, mRNA transcription efficiency is promoted 2.57-fold. Through the use of PEN as a platform for mRNA delivery to the cytosol, prolonged protein translation is achieved.

  17. Synthesis of the Furan Nucleus Promoted by Ytterbium Triflate.

    PubMed

    Taddeo, Vito Alessandro; Genovese, Salvatore; Epifano, Francesco; Fiorito, Serena

    2015-11-01

    An efficient synthesis of differently substituted furans from acetylene dicarboxylates and β-dicarbonyl compounds is described. The furan nucleus was built by means of an Yb(OTf)3 catalyzed cycloaddition reaction yielding desired adducts in 91%-98% yield.

  18. Synthesis of the Furan Nucleus Promoted by Ytterbium Triflate.

    PubMed

    Taddeo, Vito Alessandro; Genovese, Salvatore; Epifano, Francesco; Fiorito, Serena

    2015-11-01

    An efficient synthesis of differently substituted furans from acetylene dicarboxylates and β-dicarbonyl compounds is described. The furan nucleus was built by means of an Yb(OTf)3 catalyzed cycloaddition reaction yielding desired adducts in 91%-98% yield. PMID:26749804

  19. Brackett Gamma Imaging of the Nucleus of M83

    NASA Astrophysics Data System (ADS)

    Crosthwaite, L. P.; Turner, J. L.; Beck, S. C.; Meier, D. S.

    2004-12-01

    The gas-rich nucleus of barred spiral galaxy, M83, is a hotbed of star formation, with a total infrared luminosity of 4 X 109 Lo. We have observed the nucleus of M83 with the near infrared spectrometer, NIRSPEC, on Keck 2 to obtain high resolution Brγ recombination line spectra of the nucleus. Simultaneous imaging with the SCAM camera in a broadband K filter shows the position of the slit on the near-infrared galaxy. This allows us to map the nucleus with a continuum reference. The SCAM image shows a bright peak at the nucleus and a complex semi-circular arc of emission to the southwest. We stepped the 0.5'' X 24'' length slit in small declination increments to map a 20'' X 20'' region just west of the nucleus. Individual spectra were used to form a ra-dec-lambda cube and an integrated intensity map of Brγ . A total of 1.1 X 10-16 W m-2 of Brγ emission is detected in the map, in good agreement with previous low resolution observations (Turner, Ho, & Beck 1987, ApJ, 313, 644). This is not corrected for extinction within the molecular clouds in M83 or to the nebulae themselves and is therefore a lower limit to the true Brγ flux. Extinction is estimated to be at least a magnitude in the near-IR as measured in larger (4'') beams (Turner et al.) The bulk of the Brγ emission extends along the northern portion of the near-IR continuum semi-circle. Twenty percent of the total Brγ emission comes from single a 3'' (FWHM) source located 5'' west of the near-IR nucleus. The complementary NIRSPEC Brα data we have obtained will eventually allow us to evaluate the near-IR extinction on subarcsecond sizescales and obtain an extinction-corrected estimate of the Lyman continuum rate and therefore the number of ionizing stars.

  20. Physical interrelation of volatile and refractories in a cometary nucleus

    NASA Astrophysics Data System (ADS)

    Fulle, Marco; Alice Team (PI Alan Stern), CONSTERT Team (PI Wlodek Kofman), COSIMA Team (PI Martin Hilchenbach), GIADA Team (PI Alessandra Rotundi), MIDAS Team (PI Mark Bentley), MIRO Team (PI Mark Hofstadter), OSIRIS Team (PI Holger Sierks), ROSINA Team (PI Kathrin Altwegg), RPC Team (PIs Hans Nilsson, James Burch, Anders Eriksson, Karl Heinz-Glassmeier, Pierre Henri, Christopher Carr), RSI Team (PI Martin Paetzold), VIRTIS Team (PI Fabrizio Capaccioni), Lander Team (Lead Scientists: Hermann Boehnhardt and Jean-Pierre Bibring), IDS Team (Eberhard Gruen, Marcello Fulchignoni, Paul Weissman), Project Scientist Team (Matt Taylor, Bonnie Buratti, Nicolas Altobelli, Mathieu Choukroun), Ground-Based Observations Team (Colin Snodgrass)

    2016-10-01

    The Rosetta mission has been taking measurements of its target comet Comet 67P/Churyumov-Gerasimenko since early 2014 and will complete operations at the end of September 2016. The mission Science Management Plan, in 1994, laid out the the prime goals and themes of the mission. These five themes were: 1) To study the global characterisation of the Nuclues, the determination of the dynamics properties , surface morpholy and composition of the comet. 2) Examination of the Chemical, Mineralogical and isotopic compositions of volatiles and refractories in a cometary nucleus.3) Physical interrelation of volatile and refractories in a cometary nucleus4) Study the development of cometary activity and the process in the surface layer of the nucleus and in the inner coma5) The origins of comets, the relationship between cometary and interstellar material and the implications for the origin of the solar system,To cover all aspects of the Rosetta mission in this special Show case session, this abstracts is one of 5, with this particular presentation focusing on theme 3, in particular on a) The dust-to-gas ratio; b) distributed sources of volatiles; c) seasonal evolution of the dust size distribution.a) The dust-to-gas ratio has been provided by coma observations measuring the gas and dust loss rates from the nucleus surface. The ratio of these two loss rates provides a lower limit of the dust-to-gas ratio at the nucleus surface, since it does not take into account the largest chunks unable to leave the nucleus, or falling back due to the dominant gravity. We review the value inferred so far, its time evolution, and new techniques to directly measure it in the nucleus.b) Evidences offered by Rosetta observations of gas sublimating from dust particles are up to now faint. We report the few available observations and an estimate of the probable average water content in dust particles inferred by 3D gas-dynamical codes of 67P coma.c) The dust-size distribution tunes the sizes

  1. Chromatin-Bound Xenopus Dppa2 Shapes the Nucleus by Locally Inhibiting Microtubule Assembly

    PubMed Central

    Xue, John Z.; Woo, Eileen M.; Postow, Lisa; Chait, Brian T.; Funabiki, Hironori

    2013-01-01

    SUMMARY Nuclear shape and size vary between species, during development and in many tissue pathologies, but the causes and effects of these differences remain poorly understood. During fertilization, sperm nuclei undergo a dramatic conversion from a heavily compacted form into decondensed, spherical pronuclei, accompanied by rapid nucleation of microtubules from centrosomes. Here we report that the assembly of the spherical nucleus depends on a critical balance of microtubule dynamics, which is regulated by the chromatin-binding protein Developmental pluripotency-associated 2 (Dppa2). While microtubules normally promote sperm pronuclear expansion, in Dppa2-depleted Xenopus egg extracts excess microtubules cause pronuclear assembly defects leading to abnormal morphology and disorganized DNA replication. Dppa2 inhibits microtubule polymerization in vitro, and Dppa2 activity is needed at a precise time and location during nascent pronuclear formation. This demonstrates a strict spatiotemporal requirement for local suppression of microtubules during nuclear formation, fulfilled by chromatin-bound microtubule regulators. PMID:24075807

  2. The nucleus basalis of Meynert in 20 definite cases of Creutzfeldt-Jakob disease.

    PubMed Central

    Cartier, L; Verdugo, R; Vergara, C; Galvez, S

    1989-01-01

    The population of neurons and the neuronal size in the nucleus basalis of Meynert (nbM) were studied in 20 patients with definite Creutzfeldt-Jakob disease (CJD). When compared with a normal control group, the 20 CJD brains showed a significant loss of neurons and reduction of neuronal size, mainly in the middle level of the nbM and mostly affecting the right side. Since these findings show some parallelism with the amount of cortical damage and given the scarce gliosis and spongiosis found in only six of the 20 CJD brains, we postulate that the involvement of the nbM in CJD is a retrograde abnormality secondary to the damage of the neocortex. Images PMID:2647906

  3. Lhx1 Controls Terminal Differentiation and Circadian Function of the Suprachiasmatic Nucleus

    PubMed Central

    Bedont, Joseph L.; LeGates, Tara A.; Slat, Emily A.; Byerly, Mardi S.; Wang, Hong; Hu, Jianfei; Rupp, Alan C.; Qian, Jiang; Wong, G. William; Herzog, Erik D.; Hattar, Samer; Blackshaw, Seth

    2014-01-01

    SUMMARY Vertebrate circadian rhythms are organized by the hypothalamic suprachiasmatic nucleus (SCN). Despite its physiological importance, SCN development is poorly understood. Here, we show that Lim homeodomain transcription factor 1 (Lhx1) is essential for terminal differentiation and function of the SCN. Deletion of Lhx1 in the developing SCN results in loss of SCN-enriched neuropeptides involved in synchronization and coupling to downstream oscillators, among other aspects of circadian function. Intact, albeit damped, clock gene expression rhythms persist in Lhx1-deficient SCN; however, circadian activity rhythms are highly disorganized and susceptible to surprising changes in period, phase, and consolidation following neuropeptide infusion. Our results identify a factor required for SCN terminal differentiation. In addition, our in vivo study of combinatorial SCN neuropeptide disruption uncovered synergies among SCN-enriched neuropeptides in regulating normal circadian function. These animals provide a platform for studying the central oscillator's role in physiology and cognition. PMID:24767996

  4. Quantum tunneling of the excited rotational bands in the superdeformed nucleus 143Eu

    NASA Astrophysics Data System (ADS)

    Leoni, S.; Bracco, A.; Camera, F.; Million, B.; Algora, A.; Axelsson, A.; Benzoni, G.; Bergström, M.; Blasi, N.; Castoldi, M.; Frattini, S.; Gadea, A.; Herskind, B.; Kmiecik, M.; Lo Bianco, G.; Maj, A.; Nyberg, J.; Pignanelli, M.; Styczen, J.; Vigezzi, E.; Zieblinski, M.; Zucchiatti, A.

    2001-01-01

    The properties of the thermally excited rotational motion up to the region of rotational damping are studied experimentally in the superdeformed nucleus 143Eu. The effective lifetime of the excited discrete rotational bands forming ridge structures in /γ-/γ matrices is measured at the EUROBALL array using the DSAM technique, giving a quadrupole moment Qt~10 /eb, consistent with the deformation of the superdeformed yrast band. In addition, the effective number of excited superdeformed bands is extracted by a statistical analysis of the ridge structure, for transition energies down to the region where the effect of the decay-out into the normal deformed well shows up. The experimental data are compared with microscopic cranked shell model calculations including a residual interaction of surface delta type. Satisfactory agreement between data and theory is obtained when the quantum tunneling of the excited superdeformed states is included in the model.

  5. Forward J /ψ production in proton-nucleus collisions at high energy

    NASA Astrophysics Data System (ADS)

    Ducloué, B.; Lappi, T.; Mäntysaari, H.

    2015-06-01

    Inclusive production of J /ψ mesons, especially at forward rapidities, is an important probe of small-x gluons in protons and nuclei. In this paper we reevaluate the production cross sections in the color glass condensate framework, where the process is described by a large x gluon from the probe splitting into a quark pair and eikonally interacting with the target proton or nucleus. Using a standard collinear gluon distribution for the probe and an up-to-date dipole cross section fitted to HERA data to describe the target we achieve a rather good description of the cross section in proton-proton collisions, although with a rather large normalization uncertainty. More importantly, we show that generalizing the dipole cross section to nuclei in the Glauber approach results in a nuclear suppression of J /ψ production that is much closer to the experimental data than claimed in previous literature.

  6. Effects of Total Light Deprivation on Dorsal Lateral Geniculate Nucleus of Male Neonate Rats

    PubMed Central

    Jameie, Seyed Behnam E-Din; Abdolrahmani, Mohammad; Nobakht, Maliheh

    2010-01-01

    Objectives This study examines the effects of total light deprivation on the developing lateral geniculate nucleus, the primary integration centre for visual information Methods Sprague-Dawley rats were reared for one month in a dark room from 7th postnatal day before eye opening. A group of rats was taken back into normal condition for 15 days, and then perfused. Coronal sections of LGN were prepared and stained with Cresyl Violet and Cytochrome Oxidase to investigate the number of neurons, volume and length, as well as neuronal activity level. Results The results showed that LD for one month causes progressive loss of neurons and decreases neuronal activity level in the LGN. Conclusion It can be concluded that during early postnatal development of the rats’ visual system, light deprivation causes structural and functional changes in LGN. PMID:22043334

  7. Decreased swelling pressure of rat nucleus pulposus associated with simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.; Mahmood, Mubashar

    1989-01-01

    Data are presented on the effects of actual and simulated weightlessness on the swelling pressure of nucleus pulposus in rats exposed to 12.5 days of flight aboard Cosmos 1887 or to seven days of tail suspension, respectively. The flight-exposed rats were adapted to normal gravity for over 50 hrs prior to sacrifice and tissue harvesting. In the experiments with flight-exposed rats, swelling pressures were 690, 675, and 622 mm Hg for flight rats, synchronous controls, and vivarium controls, respectively. In experiments with simulated weightlessness, swelling pressures were 295, 610, and 527 mm Hg for tail-suspended rats, cage controls, and vivarium controls, respectively, suggesting that fluid moves into the disc during seven days of simulated weightlessness.

  8. Capsaicin binds to prohibitin 2 and displaces it from the mitochondria to the nucleus

    SciTech Connect

    Kuramori, Chikanori; Azuma, Motoki; Kume, Kanako; Kaneko, Yuki; Inoue, Atsushi; Yamaguchi, Yuki; Kabe, Yasuaki; Hosoya, Takamitsu; Kizaki, Masahiro; Suematsu, Makoto; Handa, Hiroshi

    2009-02-06

    Capsaicin is widely used as a food additive and as an analgesic agent. Besides its well-known role in nociception, which is mediated by vanilloid receptor 1 specifically expressed in dorsal root ganglion neurons, capsaicin has also been considered as a potential anticancer agent, as it inhibits cell proliferation and induces apoptosis in various types of cancer cells. Here we identified a new molecular target of capsaicin from human myeloid leukemia cells. We show that capsaicin binds to prohibitin (PHB) 2, which is normally localized to the inner mitochondrial membrane, and induces its translocation to the nucleus. PHB2 is implicated in the maintenance of mitochondrial morphology and the control of apoptosis. We also provide evidence suggesting that capsaicin causes apoptosis directly through the mitochondria and that PHB2 contributes to capsaicin-induced apoptosis at multiple levels. This work will serve as an important foundation for further understanding of anticancer activity of capsaicin.

  9. Heterosynaptic regulation of external globus pallidus inputs to the subthalamic nucleus by the motor cortex.

    PubMed

    Chu, Hong-Yuan; Atherton, Jeremy F; Wokosin, David; Surmeier, D James; Bevan, Mark D

    2015-01-21

    The two principal movement-suppressing pathways of the basal ganglia, the so-called hyperdirect and indirect pathways, interact within the subthalamic nucleus (STN). An appropriate level and pattern of hyperdirect pathway cortical excitation and indirect pathway external globus pallidus (GPe) inhibition of the STN are critical for normal movement and are greatly perturbed in Parkinson's disease. Here we demonstrate that motor cortical inputs to the STN heterosynaptically regulate, through activation of postsynaptic NMDA receptors, the number of functional GABAA receptor-mediated GPe-STN inputs. Therefore, a homeostatic mechanism, intrinsic to the STN, balances cortical excitation by adjusting the strength of GPe inhibition. However, following the loss of dopamine, excessive cortical activation of STN NMDA receptors triggers GPe-STN inputs to strengthen abnormally, contributing to the emergence of pathological, correlated activity.

  10. Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in parkinsonian patients.

    PubMed

    Magnin, M; Morel, A; Jeanmonod, D

    2000-01-01

    exhibiting random or rhythmic low-threshold calcium spike bursts were found preponderantly in the ventral anterior nucleus (53.4%) and in the ventral lateral anterior nucleus (52.7%). Tremor-locked units were confined to the ventral division of the ventral lateral posterior nucleus (35.4%). None of the random or rhythmic low-threshold calcium spike bursting units responded to somatosensory stimuli or voluntary movements, either in the medial or in the lateral thalamus. The presence of low-threshold calcium spike bursts at the thalamic level, together with the paucity (8%) of responses to voluntary movements compared to what is found in normal non-human primates, demonstrate a pathological state of inhibition due to the overactivity of the internal subdivision of the globus pallidus units. Activities of the thalamic cells producing low-threshold calcium spike bursts are not synchronized with each other or with the tremor. However, this does not exclude a causal role of these activities in the generation of tremor. Indeed, it has been demonstrated that even random electrical stimulations of the rolandic cortex in parkinsonian patients induce tremor episodes, probably due to the triggering of rhythmic, low-threshold calcium spike-dependent, thalamocortical activities. Similarly, low-threshold calcium spike bursts could be at the origin of rigidity and dystonia through an activation of the supplementary motor area and of akinesia when reaching the pre-supplementary motor area. We conclude that the intrinsic oscillatory properties of individual neurons, combined with the dynamic properties of the thalamocortical circuitry, are responsible for the three cardinal parkinsonian symptoms. PMID:10717435

  11. Cytoskeletal tension induces the polarized architecture of the nucleus.

    PubMed

    Kim, Dong-Hwee; Wirtz, Denis

    2015-04-01

    The nuclear lamina is a thin filamentous meshwork that provides mechanical support to the nucleus and regulates essential cellular processes such as DNA replication, chromatin organization, cell division, and differentiation. Isolated horizontal imaging using fluorescence and electron microscopy has long suggested that the nuclear lamina is composed of structurally different A-type and B-type lamin proteins and nuclear lamin-associated membrane proteins that together form a thin layer that is spatially isotropic with no apparent difference in molecular content or density between the top and bottom of the nucleus. Chromosomes are condensed differently along the radial direction from the periphery of the nucleus to the nuclear center; therefore, chromatin accessibility for gene expression is different along the nuclear radius. However, 3D confocal reconstruction reveals instead that major lamin protein lamin A/C forms an apically polarized Frisbee-like dome structure in the nucleus of adherent cells. Here we show that both A-type lamins and transcriptionally active chromatins are vertically polarized by the tension exercised by the perinuclear actin cap (or actin cap) that is composed of highly contractile actomyosin fibers organized at the apical surface of the nucleus. Mechanical coupling between actin cap and lamina through LINC (linkers of nucleoskeleton and cytoskeleton) protein complexes induces an apical distribution of transcription-active subnucleolar compartments and epigenetic markers of transcription-active genes. This study reveals that intranuclear structures, such as nuclear lamina and chromosomal architecture, are apically polarized through the extranuclear perinuclear actin cap in a wide range of somatic adherent cells.

  12. GAS ACCRETION IN THE M32 NUCLEUS: PAST AND PRESENT

    SciTech Connect

    Seth, Anil C.

    2010-12-10

    Using adaptive optics assisted Gemini/NIFS data, I study the present and past gas accretion in the central 3'' of the M32 nucleus. From changes in the spectral slope and CO line depths near the center, I find evidence for unresolved dust emission resulting from black hole (BH) accretion. With a luminosity of {approx}2 x 10{sup 38} erg s{sup -1}, this dust emission appears to be the most luminous tracer of current BH accretion, 2 orders of magnitude more luminous than previously detected X-ray emission. These observations suggest that using high-resolution infrared data to search for dust emission may be an effective way to detect other nearby, low-luminosity BHs, such as those in globular clusters. I also examine the fossil evidence of gas accretion contained in the kinematics of the stars in the nucleus. The higher order moments (h3 and h4) of the line-of-sight velocity distribution show patterns that are remarkably similar to those seen on larger scales in elliptical galaxies and in gas-rich merger simulations. The kinematics suggests the presence of two components in the M32 nucleus, a dominant disk overlying a pressure supported component. I discuss possible formation scenarios for the M32 nucleus in the context of the kinematic data as well as previous stellar population studies. The kinematic measurements presented here are the highest quality available for the nucleus of M32, and may be useful for any future dynamical models of this benchmark system.

  13. The bed nucleus of the stria terminalis has developmental and adult forms in mice, with the male bias in the developmental form being dependent on testicular AMH.

    PubMed

    Wittmann, Walter; McLennan, Ian S

    2013-09-01

    Canonically, the sexual dimorphism in the brain develops perinatally, with adult sexuality emerging due to the activating effects of pubescent sexual hormones. This concept does not readily explain why children have a gender identity and exhibit sex-stereotypic behaviours. These phenomena could be explained if some aspects of the sexual brain networks have childhood forms, which are transformed at puberty to generate adult sexuality. The bed nucleus of stria terminalis (BNST) is a dimorphic nucleus that is sex-reversed in transsexuals but not homosexuals. We report here that the principal nucleus of the BNST (BNSTp) of mice has developmental and adult forms that are differentially regulated. In 20-day-old prepubescent mice, the male bias in the principal nucleus of the BNST (BNSTp) was moderate (360 ± 6 vs 288 ± 12 calbindin(+ve) neurons, p < 0.0001), and absent in mice that lacked a gonadal hormone, AMH. After 20 days, the number of BNSTp neurons increased in the male mice by 25% (p < 0.0001) and decreased in female mice by 15% (p = 0.0012), independent of AMH. Adult male AMH-deficient mice had a normal preference for sniffing female pheromones (soiled bedding), but exhibited a relative disinterest in both male and female pheromones. This suggests that male mice require AMH to undergo normal social development. The reported observations provide a rationale for examining AMH levels in children with gender identity disorders and disorders of socialization that involve a male bias.

  14. A Chandra X-ray Study of Cygnus A. 2; The Nucleus

    NASA Technical Reports Server (NTRS)

    Young, Andrew J.; Wilson, Andrew; Terashima, Yuichi; Arnaud, Keith A.; Smith, David A.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We report Chandra Advanced CCD Imaging Spectrometer and quasi-simultaneous Rossi X-Ray Timing Explorer (RXTE) observations of the nearby, powerful radio galaxy Cygnus A, with the present paper focusing on the properties of the active nucleus. In the Chandra observation, the hard (less than a few keV) X-ray emission is spatially unresolved with a size is approximately 1" (1.5 kpc, H(sub 0) = 50 km/s/Mpc) and coincides with the radio and near-infrared nuclei. In contrast, the soft (less than 2 keV) emission exhibits a bipolar nebulosity that aligns with the optical bipolar continuum and emission-line structures and approximately with the radio jet. In particular, the soft X-ray emission corresponds very well with the [O III] (lambda)5007 and H(alpha) + [N II] lambda(lambda)6548, 6583 nebulosity imaged with Hubble Space Telescope. At the location of the nucleus, there is only weak soft X-ray emission, an effect that may be intrinsic or result from a dust lane that crosses the nucleus perpendicular to the source axis. The spectra of the various X-ray components have been obtained by simultaneous fits to the six detectors. The compact nucleus is detected to 100 keV and is well described by a heavily absorbed power-law spectrum with Gamma(sub h) = 1.52(sup + 0.12, sub -0.12) (similar to other 0.12 narrow-line radio galaxies) and equivalent hydrogen column N(sub H)(nuc) = 2.0(sup +0.1, sub -0.1) x 10(exp 23)/sq cm. This 0.2 column is compatible with the dust obscuration to the near-infrared source for a normal gas-to-dust ratio. The soft (less than 2 keV) emission from the nucleus may be described by a power-law spectrum with the same index (i.e., Gamma(sub l) = Gamma(sub h), although direct fits suggest a slightly larger value for Gamma(sub l). Narrow emission lines from highly ionized neon and silicon, as well as a "neutral" Fe K(alpha) line, are detected in the nucleus and its vicinity (r approximately less than 2 kpc). The equivalent width (EW) of the Fe K(alpha) line

  15. Preservation of Neurons of the Nucleus Basalis in Subcortical Ischemic Vascular Disease

    PubMed Central

    Jung, San; Zarow, Chris; Mack, Wendy J.; Zheng, Ling; Vinters, Harrry V.; Ellis, William G.; Lyness, Scott A.; Chui, Helena C.

    2014-01-01

    Object To compare loss of neurons in the nucleus basalis of Meynert (NB) in subcortical ischemic vascular disease (SIVD) to normal controls, Alzheimer’s disease (AD), and cases with mixed AD/SIVD pathology. Design Autopsied cases drawn from a longitudinal observational study with SIVD, AD and normal aging. Subjects Pathologically defined SIVD (n = 16), AD (n = 20), mixed pathology (n = 10), and age- and education-matched normal control (n = 17) groups were studied. Main Outcome measures NB neuronal cell counts in each group and their correlation with the extent of MRI white matter lesions (WML) and Clinical Dementia Rating (CDR) scores closest to death. Results No significant loss of neurons was found in SIVD compared to age-matched controls in contrast to AD and mixed groups, where there was significant neuronal loss. A significant inverse correlation between NB neurons and CDR scores was found in AD, but not in the SIVD and mixed groups. NB cell counts were not correlated with either the extent of white matter lesions or cortical gray matter volume in SIVD or AD groups. Conclusions These findings inveigh against primary loss of cholinergic neurons in SIVD, but do not rule out the possibility of secondary cholinergic deficits due to disruptions of cholinergic projections to cerebral cortex. PMID:22393167

  16. Oscillatory activity in the subthalamic nucleus during arm reaching in Parkinson's disease.

    PubMed

    Joundi, Raed A; Brittain, John-Stuart; Green, Alex L; Aziz, Tipu Z; Brown, Peter; Jenkinson, Ned

    2012-08-01

    Oscillatory activities in the brain within the beta (15-30 Hz) and gamma (70-90 Hz) ranges have been implicated in the generation of voluntary movement. However, their roles remain unclear. Here, we record local field potential activity from the region of the subthalamic nucleus during movement of the contralateral limb in 11 patients with Parkinson's disease. Patients were on their normal dopaminergic medication and were cued to perform arm-reaching movements after a delay period at three different speeds: 'slow', 'normal', and 'fast'. Beta activity desynchronized earlier in response to the cue indicating an upcoming fast reach than to the cues for slow or normal speed movement. There was no difference in the degree of beta desynchronization between reaching speeds and beta desynchronization was established prior to movement onset in all cases. In contrast, synchronization in the gamma range developed during the reaching movement, and was especially pronounced during fast reaching. Thus the timing of suppression in the beta band depended on task demands, whereas the degree of increase in gamma oscillations depended on movement speed. These findings point to functionally segregated roles for different oscillatory frequencies in motor preparation and performance.

  17. Opposite regulation of body temperature by cholinergic input to the paraventricular nucleus and supraoptic nucleus in rats.

    PubMed

    Takahashi, A; Ishimaru, H; Ikarashi, Y; Kishi, E; Maruyama, Y

    2001-08-01

    Hypothalamic cholinergic system plays an important role in the regulation of body temperature and fluid balance. We have previously shown that cholinergic stimulation of the anterior hypothalamus and preoptic area was accompanied by a fall in body temperature, increased water intake, and increased Fos protein in the paraventricular nucleus (PVN) and supraoptic nucleus (SON). In the present study, to estimate the role played by cholinergic input to the PVN and SON in thermoregulation and water intake, we used microdialysis for cholinergic stimulation with neostigmine and analysis of the nucleus, and also investigated immunoreactivity for c-Fos protein in the brain. This stimulation increased extracellular concentration of acetylcholine in these nuclei. Stimulation of the PVN decreased body temperature and increased water intake. On the other hand, stimulation of the SON increased body temperature. Both in PVN-stimulated and SON-stimulated rats, c-Fos-like immunoreactivity (Fos-IR) was evident in the PVN, SON and certain regions including locus coeruleus (LC), area postrema and nucleus of the solitary tract (NTS). Addition of atropine to the dialysis medium attenuated the increase of Fos-IR and suppressed the cholinergic stimulation-induced responses in body temperature and water intake. These results suggest that cholinergic muscarinic mechanisms in PVN and SON play an opposite function in the regulation of body temperature. The same neuronal pathway including LC and NTS may participate in an advance both in hypothermia and in hyperthermia.

  18. WMAP normalization of inflationary cosmologies

    SciTech Connect

    Liddle, Andrew R.; Parkinson, David; Mukherjee, Pia; Leach, Samuel M.

    2006-10-15

    We use the three-year WMAP observations to determine the normalization of the matter power spectrum in inflationary cosmologies. In this context, the quantity of interest is not the normalization marginalized over all parameters, but rather the normalization as a function of the inflationary parameters n{sub S} and r with marginalization over the remaining cosmological parameters. We compute this normalization and provide an accurate fitting function. The statistical uncertainty in the normalization is 3%, roughly half that achieved by COBE. We use the k-l relation for the standard cosmological model to identify the pivot scale for the WMAP normalization. We also quote the inflationary energy scale corresponding to the WMAP normalization.

  19. Global optical potential for nucleus-nucleus systems from 50 MeV/u to 400 MeV/u

    NASA Astrophysics Data System (ADS)

    Furumoto, T.; Horiuchi, W.; Takashina, M.; Yamamoto, Y.; Sakuragi, Y.

    2012-04-01

    We present a new global optical potential (GOP) for nucleus-nucleus systems, including neutron-rich and proton-rich isotopes, in the energy range of 50-400 MeV/u. The GOP is derived from the microscopic folding model with the complex G-matrix interaction CEG07 and the global density presented by the São Paulo group. The folding model accounts for realistic complex optical potentials of nucleus-nucleus systems well and reproduces the existing elastic scattering data for stable heavy-ion projectiles at incident energies above 50 MeV/u. We then calculate the folding-model potentials (FMPs) for projectiles of even-even isotopes, 8-22C, 12-24O, 16-38Ne, 20-40Mg, 22-48Si, 26-52S, 30-62Ar, and 34-70Ca, scattered by stable target nuclei of 12C, 16O, 28Si, 40Ca 58Ni, 90Zr, 120Sn, and 208Pb at incident energies of 50, 60, 70, 80, 100, 120, 140, 160, 180, 200, 250, 300, 350, and 400 MeV/u. The calculated FMP is represented, with a sufficient accuracy, by a linear combination of 10-range Gaussian functions. The expansion coefficients depend on the incident energy, the projectile and target mass numbers, and the projectile atomic number, while the range parameters depend only on the projectile and target mass numbers. The adequate mass region of the present GOP by the global density is inspected in comparison with FMP by realistic density. The full set of the range parameters and the coefficients for all the projectile-target combinations at each incident energy are provided on a permanent open-access website together with a fortran program for calculating the microscopic-basis GOP (MGOP) for a desired projectile nucleus by the spline interpolation over the incident energy and the target mass number.

  20. Responses of primate caudal parabrachial nucleus and Kolliker-fuse nucleus neurons to whole body rotation

    NASA Technical Reports Server (NTRS)

    Balaban, Carey D.; McGee, David M.; Zhou, Jianxun; Scudder, Charles A.

    2002-01-01

    The caudal aspect of the parabrachial (PBN) and Kolliker-Fuse (KF) nuclei receive vestibular nuclear and visceral afferent information and are connected reciprocally with the spinal cord, hypothalamus, amygdala, and limbic cortex. Hence, they may be important sites of vestibulo-visceral integration, particularly for the development of affective responses to gravitoinertial challenges. Extracellular recordings were made from caudal PBN cells in three alert, adult female Macaca nemestrina through an implanted chamber. Sinusoidal and position trapezoid angular whole body rotation was delivered in yaw, roll, pitch, and vertical semicircular canal planes. Sites were confirmed histologically. Units that responded during rotation were located in lateral and medial PBN and KF caudal to the trochlear nerve at sites that were confirmed anatomically to receive superior vestibular nucleus afferents. Responses to whole-body angular rotation were modeled as a sum of three signals: angular velocity, a leaky integration of angular velocity, and vertical position. All neurons displayed angular velocity and integrated angular velocity sensitivity, but only 60% of the neurons were position-sensitive. These responses to vertical rotation could display symmetric, asymmetric, or fully rectified cosinusoidal spatial tuning about a best orientation in different cells. The spatial properties of velocity and integrated velocity and position responses were independent for all position-sensitive neurons; the angular velocity and integrated angular velocity signals showed independent spatial tuning in the position-insensitive neurons. Individual units showed one of three different orientations of their excitatory axis of velocity rotation sensitivity: vertical-plane-only responses, positive elevation responses (vertical plane plus ipsilateral yaw), and negative elevation axis responses (vertical plane plus negative yaw). The interactions between the velocity and integrated velocity components

  1. Semiphenomenological method of analysis for intermediate-energy alpha-nucleus elastic scattering data

    SciTech Connect

    Ahmad, I.; Alvi, M.A.

    1983-12-01

    We propose a semiphenomenological method of analysis for intermediate energy ..cap alpha..-nucleus elastic scattering experiments and demonstrate its usefulness by analyzing available elastic ..cap alpha..-nucleus scattering data at 1.37 GeV.

  2. Projections from the hypothalamic paraventricular nucleus and the nucleus of the solitary tract to prechoroidal neurons in the superior salivatory nucleus: Pathways controlling rodent choroidal blood flow.

    PubMed

    Li, Chunyan; Fitzgerald, Malinda E C; Ledoux, Mark S; Gong, Suzhen; Ryan, Patrick; Del Mar, Nobel; Reiner, Anton

    2010-10-28

    Using intrachoroidal injection of the transneuronal retrograde tracer pseudorabies virus (PRV) in rats, we previously localized preganglionic neurons in the superior salivatory nucleus (SSN) that regulate choroidal blood flow (ChBF) via projections to the pterygopalatine ganglion (PPG). In the present study, we used higher-order transneuronal retrograde labeling following intrachoroidal PRV injection to identify central neuronal cell groups involved in parasympathetic regulation of ChBF via input to the SSN. These prominently included the hypothalamic paraventricular nucleus (PVN) and the nucleus of the solitary tract (NTS), both of which are responsive to systemic BP and are involved in systemic sympathetic vasoconstriction. Conventional pathway tracing methods were then used to determine if the PVN and/or NTS project directly to the choroidal subdivision of the SSN. Following retrograde tracer injection into SSN (biotinylated dextran amine 3K or Fluorogold), labeled perikarya were found in PVN and NTS. Injection of the anterograde tracer, biotinylated dextran amine 10K (BDA10K), into PVN or NTS resulted in densely packed BDA10K+terminals in prechoroidal SSN (as defined by its enrichment in nitric oxide synthase-containing perikarya). Double-label studies showed these inputs ended directly on prechoroidal nitric oxide synthase-containing neurons of SSN. Our study thus establishes that PVN and NTS project directly to the part of SSN involved in parasympathetic vasodilatory control of the choroid via the PPG. These results suggest that control of ChBF may be linked to systemic blood pressure and central control of the systemic vasculature.

  3. Projections from the Hypothalamic Paraventricular Nucleus and the Nucleus of the Solitary Tract to Prechoroidal Neurons in the Superior Salivatory Nucleus: Pathways Controlling Rodent Choroidal Blood Flow

    PubMed Central

    Li, Chunyan; Fitzgerald, Malinda E.C.; LeDoux, Mark S.; Gong, Suzhen; Ryan, Patrick; Del Mar, Nobel; Reiner, Anton

    2010-01-01

    Using intrachoroidal injection of the transneuronal retrograde tracer pseudorabies virus (PRV) in rats, we previously localized preganglionic neurons in the superior salivatory nucleus (SSN) that regulate choroidal blood flow (ChBF) via projections to the pterygopalatine ganglion (PPG). In the present study, we used higher order transneuronal retrograde labeling following intrachoroidal PRV injection to identify central neuronal cell groups involved in parasympathetic regulation of ChBF via input to the SSN. These prominently included the hypothalamic paraventricular nucleus (PVN) and the nucleus of the solitary tract (NTS), both of which are responsive to systemic BP, and are involved in systemic sympathetic vasoconstriction. Conventional pathway tracing methods were then used to determine if the PVN and/or NTS project directly to the choroidal subdivision of the SSN. Following retrograde tracer injection into SSN (biotinylated dextran amine 3K or Fluorogold), labeled perikarya were found in PVN and NTS. Injection of the anterograde tracer, biotinylated dextran amine 10K (BDA10K) into PVN or NTS resulted in densely packed BDA10K+ terminals in prechoroidal SSN (as defined by its enrichment in nitric oxide synthase-containing perikarya). Double-label studies showed these inputs ended directly on prechoroidal nitric oxide synthase-containing neurons of SSN. Our study thus establishes that PVN and NTS project directly to the part of SSN involved in parasympathetic vasodilatory control of the choroid via the PPG. These results suggest that control of ChBF may be linked to systemic blood pressure and central control of the systemic vasculature. PMID:20801105

  4. Development of injectable hydrogels for nucleus pulposus replacement

    NASA Astrophysics Data System (ADS)

    Thomas, Jonathan D.

    Intervertebral disc degeneration has been reported as the underlying cause for 75% of cases of lower back pain and is marked by dehydration of the nucleus pulposus within the intervertebral disc. There have been many implant designs to replace the nucleus pulposus. Some researchers have proposed the replacement of the nucleus pulposus with hydrogel materials. The insertion of devices made from these materials further compromises the annulus of the disc. An ideal nucleus replacement could be injected into the disc space and form a solid in vivo. However, injectable replacements using curing elastomers and thermoplastic materials are not ideal because of the potentially harmful exothermic heat evolved from their reactions and the toxicity of the reactants used. We propose a hydrogel system that can be injected as a liquid at 25°C and solidified to yield a hydrogel within the intervertebral disc at 37°C. In aqueous solutions, these polymers have Lower Critical Solution Temperatures (LCST) between 25-37°C, making them unique candidate materials for this application. Poly(N-isopropylacrylamide) (PNIPAAm) is the most widely studied LCST polymer due to its drastic transition near body temperature. However, by itself, pure PNIPAAm forms a hydrogel that has low water content and can readily undergo plastic deformation. To increase the water content and impart elasticity to PNIPAAm hydrogels, grafted and branched hydrogel systems were created that incorporated the thermogelling PNIPAAm and hydrophilic poly(ethylene glycol) (PEG). In this research, the effects of polymer composition and monomer to initiator ratio, which controls polymer MW, on the in vitro swelling properties (mass, chemical, and compressive mechanical stability) of hydrogels formed from aqueous solutions of these polymers were evaluated. Immersion studies were also conducted in solutions to simulate the osmotic environment of the nucleus pulposus. The effects of repeated compression and unloading cycles

  5. Active Galactic Nucleus Host Galaxy Morphologies in COSMOS

    NASA Astrophysics Data System (ADS)

    Gabor, J. M.; Impey, C. D.; Jahnke, K.; Simmons, B. D.; Trump, J. R.; Koekemoer, A. M.; Brusa, M.; Cappelluti, N.; Schinnerer, E.; Smolčić, V.; Salvato, M.; Rhodes, J. D.; Mobasher, B.; Capak, P.; Massey, R.; Leauthaud, A.; Scoville, N.

    2009-01-01

    We use Hubble Space Telescope/Advanced Camera for Surveys images and a photometric catalog of the Cosmic Evolution Survey (COSMOS) field to analyze morphologies of the host galaxies of ~400 active galactic nucleus (AGN) candidates at redshifts 0.3 < z < 1.0. We compare the AGN hosts with a sample of nonactive galaxies drawn from the COSMOS field to match the magnitude and redshift distribution of the AGN hosts. We perform two-dimensional surface brightness modeling with GALFIT to yield host galaxy and nuclear point source magnitudes. X-ray-selected AGN host galaxy morphologies span a substantial range that peaks between those of early-type, bulge-dominated and late-type, disk-dominated systems. We also measure the asymmetry and concentration of the host galaxies. Unaccounted for, the nuclear point source can significantly bias results of these measured structural parameters, so we subtract the best-fit point source component to obtain images of the underlying host galaxies. Our concentration measurements reinforce the findings of our two-dimensional morphology fits, placing X-ray AGN hosts between early- and late-type inactive galaxies. AGN host asymmetry distributions are consistent with those of control galaxies. Combined with a lack of excess companion galaxies around AGN, the asymmetry distributions indicate that strong interactions are no more prevalent among AGN than normal galaxies. In light of recent work, these results suggest that the host galaxies of AGN at these X-ray luminosities may be in a transition from disk-dominated to bulge-dominated, but that this transition is not typically triggered by major mergers. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc, under NASA contract NAS 5-26555; also based on data collected at: the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the XMM-Newton, an ESA science mission with

  6. Triple F - A Comet Nucleus Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Kueppers, Michael; Keller, Horst Uwe; Kuhrt, Ekkehard; A'Hearn, Michael; Altwegg, Kathrin; Betrand, Regis; Busemann, Henner; Capria, Maria Teresa; Colangeli, Luigi

    2008-01-01

    The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA s Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three samples of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-and-go sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.

  7. Coulomb Excitation of the N = 50 nucleus 80Zn

    NASA Astrophysics Data System (ADS)

    van de Walle, J.; Aksouh, F.; Ames, F.; Behrens, T.; Bildstein, V.; Blazhev, A.; Cederkäll, J.; Clément, E.; Cocolios, T. E.; Davinson, T.; Delahaye, P.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Gernhauser, R.; Georgiev, G.; Habs, D.; Heyde, K.; Huber, G.; Huyse, M.; Ibrahim, F.; Ivanov, O.; Iwanicki, J.; Jolie, J.; Kester, O.; Köster, U.; Kröll, T.; Krücken, R.; Lauer, M.; Lisetskiy, A. F.; Lutter, R.; Marsh, B. A.; Mayet, P.; Niedermaier, O.; Nilsson, T.; Pantea, M.; Perru, O.; Raabe, R.; Reiter, P.; Sawicka, M.; Scheit, H.; Schrieder, G.; Schwalm, D.; Seliverstov, M. D.; Sieber, T.; Sletten, G.; Smirnova, N.; Stanoiu, M.; Stefanescu, I.; Thomas, J.-C.; Valiente-Dobón, J. J.; van Duppen, P.; Verney, D.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Wolf, B. H.; Zielińska, M.

    2008-05-01

    Neutron rich Zinc isotopes, including the N = 50 nucleus 80Zn, were produced and post-accelerated at the Radioactive Ion Beam (RIB) facility REX-ISOLDE (CERN). Low-energy Coulomb excitation was induced on these isotopes after post-acceleration, yielding B(E2) strengths to the first excited 2+ states. For the first time, an excited state in 80Zn was observed and the 21+ state in 78Zn was established. The measured B(E2,21+-->01+) values are compared to two sets of large scale shell model calculations. Both calculations reproduce the observed B(E2) systematics for the full Zinc isotopic chain. The results for N = 50 isotones indicate a good N = 50 shell closure and a strong Z = 28 proton core polarization. The new results serve as benchmarks to establish theoretical models, predicting the nuclear properties of the doubly magic nucleus 78Ni.

  8. Regulated chromosomal DNA replication in the absence of a nucleus.

    PubMed

    Walter, J; Sun, L; Newport, J

    1998-03-01

    Using Xenopus egg extracts, we have developed a completely soluble system for eukaryotic chromosomal DNA replication. In the absence of a nuclear envelope, a single, complete round of ORC-dependent DNA replication is catalyzed by cytosolic and nuclear extracts added sequentially to demembranated sperm chromatin or prokaryotic plasmid DNA. The absence of rereplication is explained by an activity present in the nucleus that prevents the binding of MCM to chromatin. Our results indicate that the role of the nuclear envelope in DNA replication is to concentrate activators and inhibitors of replication inside the nucleus. In addition, they provide direct evidence that metazoans use the same strategy as yeast to activate DNA replication and to restrict it to a single round per cell cycle.

  9. Cell Autonomy and Synchrony of Suprachiasmatic Nucleus Circadian Oscillators

    PubMed Central

    Mohawk, Jennifer A.; Takahashi, Joseph S.

    2013-01-01

    The suprachiasmatic nucleus (SCN) of the hypothalamus is the site of the master circadian pacemaker in mammals. The individual cells of the SCN are capable of functioning independently from one another and therefore must form a cohesive circadian network through intercellular coupling. The network properties of the SCN lead to coordination of circadian rhythms among its neurons and neuronal subpopulations. There is increasing evidence for multiple interconnected oscillators within the SCN, and in this Review, we will highlight recent advances in our understanding of the complex organization and function of the cellular and network-level SCN clock. Understanding the way in which synchrony is achieved between cells in the SCN will provide insight into the means by which this important nucleus orchestrates circadian rhythms throughout the organism. PMID:21665298

  10. Progressive activation of paratrigeminal nucleus during entrance to hibernation

    SciTech Connect

    Kilduff, T.S.; Sharp, F.R.; Heller, H.C. Univ. of California, San Francisco Veterans Administration Medical Center, San Francisco, CA )

    1988-07-01

    The paratrigeminal nucleus (Pa5) undergoes a progressive increase in its uptake of 2-({sup 14}C)deoxyglucose (2DG) relative to other brain structures during entrance to hibernation in the ground squirrel. This highly significant increase results in the Pa5 becoming the most highly labeled brain region during hibernation, even though it exhibits one of the lowest levels of 2DG uptake in the brain during the nonhibernating state. The progressive activation of the Pa5 observed during entrance is reversed during arousal from hibernation. These observations and the neuroanatomical projections of the Pa5 implicate this nucleus as playing a role in the entrance and maintenance of the hibernating state.

  11. Triple F - A Comet Nucleus Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Kueppers, Michael; Keller, H. U.; Kuehrt, E.; A'Hearn, M. F.; Altwegg, K.; Bertrand, R.; Busemann, H.; Capria, M. T.; Colangeli, L.; Davidsson, B.; Ehrenfreund, P.; Knollenberg, J.; Mottola, S.; Weiss, P.; Zolensky, M.; Akim, E.; Basilevsky, A.; Galimov, E.; Gerasimov, M.; Korablev, O.; Charnley, S.; Nittler, L. R.; Sandford, S.; Weissman, P.

    2008-01-01

    The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA's Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three sample cores of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-andgo sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.

  12. Maps of interaural delay in the owl's nucleus laminaris.

    PubMed

    Carr, Catherine E; Shah, Sahil; McColgan, Thomas; Ashida, Go; Kuokkanen, Paula T; Brill, Sandra; Kempter, Richard; Wagner, Hermann

    2015-09-01

    Axons from the nucleus magnocellularis form a presynaptic map of interaural time differences (ITDs) in the nucleus laminaris (NL). These inputs generate a field potential that varies systematically with recording position and can be used to measure the map of ITDs. In the barn owl, the representation of best ITD shifts with mediolateral position in NL, so as to form continuous, smoothly overlapping maps of ITD with iso-ITD contours that are not parallel to the NL border. Frontal space (0°) is, however, represented throughout and thus overrepresented with respect to the periphery. Measurements of presynaptic conduction delay, combined with a model of delay line conduction velocity, reveal that conduction delays can account for the mediolateral shifts in the map of ITD. PMID:26224776

  13. Organotypic slice culture of the hypothalamic paraventricular nucleus of rat

    PubMed Central

    Cho, Eun Seong; Lee, So Yeong; Park, Jae-Yong; Hong, Seong-Geun

    2007-01-01

    Organotypic slice cultures have been developed as an alternative to acute brain slices because the neuronal viability and synaptic connectivity in these cultures can be preserved well for a prolonged period of time. This study evaluated a stationary organotypic slice culture developed for the hypothalamic paraventricular nucleus (PVN) of rat. The results showed that the slice cultures maintain the typical shape of the nucleus, the immunocytochemical signals for oxytocin, vasopressin, and corticotropin-releasing hormone, and the electrophysiological properties of PVN neurons for up to 3 weeks in vitro. The PVN neurons in the culture expressed the green fluorescent protein gene that had been delivered by the adenoviral vectors. The results indicate that the cultured slices preserve the properties of the PVN neurons, and can be used in longterm studies on these neurons in vitro. PMID:17322769

  14. Structure in the nucleus of NGC 1068 at 10 microns

    NASA Technical Reports Server (NTRS)

    Tresch-Fienberg, R.; Fazio, G. G.; Gezari, D. Y.; Lamb, G. M.; Shu, P. K.; Hoffmann, W. F.; Mccreight, C. R.

    1987-01-01

    New 8-13 micron array camera images of the central kiloparsec of Seyfert 2 galaxy NGC 1068 resolve structure that is similar to that observed at visible and radio wavelengths. The images reveal an infrared source which is extended and asymmetric, with its long axis oriented at P.A. 33 deg. Maps of the spatial distribution of 8-13 micron color temperature and warm dust opacity are derived from the multiwavelength infrared images. The results suggest that there exist two pointlike luminosity sources in the central region of NGC 1068, with the brighter source at the nucleus and the fainter one some 100 pc to the northeast. This geometry strengthens the possibility that the 10 micron emission observed from grains in the nucleus is powered by a nonthermal source. In the context of earlier visible and radio studies, these results considerably strengthen the case for jet-induced star formation in NGC 1068.

  15. Structure in the nucleus of NGC 1068 at 10 microns

    NASA Technical Reports Server (NTRS)

    Tresch-Fienberg, R.; Fazio, G. G.; Gezari, D. Y.; Hoffmann, W. F.; Lamb, G. M.; Shu, P. K.; Mccreight, C. R.

    1987-01-01

    New 8 to 13 micron array camera images of the central kiloparsec of Seyfert 2 galaxy NGC 1068 resolve structure that is similar to that observed at visible and radio wavelengths. The images reveal an infrared source which is extended and asymmetric, with its long axis oriented at P.A. 33 deg. Maps of the spatial distribution of 8 to 13 micron color temperature and warm dust opacity are derived from the multiwavelength infrared images. The results suggest that there exist two pointlike luminosity sources in the central regions of NGC 1068, with the brighter source at the nucleus and the fainter one some 100 pc to the northeast. This geometry strengthens the possibility that the 10 micron emission observed from grains in the nucleus is powered by a nonthermal source. In the context of earlier visible and radio studies, these results considerably strengthen the case for jet induced star formation in NGC 1068.

  16. Velocity dispersions in galaxies. IV - The nucleus of NGC 1068

    NASA Technical Reports Server (NTRS)

    Richstone, D. O.; Morton, D. C.

    1975-01-01

    A high-resolution spectrum of the Seyfert galaxy NGC 1068, obtained with an integrating television system, is compared with the spectrum of a KO III star (delta Tau) to derive the line-of-sight velocity dispersion of the stars in the galactic nucleus. An Fe I absorption line observed at 4059.7 A yields a velocity dispersion of 150 (plus or minus 50) km/sec. An upper limit for the nuclear mass is derived in terms of this velocity dispersion, an estimated nuclear radius of 136 pc, and a Hubble constant of 50 km/sec per Mpc. The results, 14 (+10, -8) by 10 to the 8th power solar masses, is shown to be consistent with a number of quasar models scaled down in luminosity to provide the energy source for a Seyfert nucleus. Strong H and K interstellar absorption lines superposed on the spectrum of NGC 1068 are analyzed.-

  17. Volume regulation and shape bifurcation in the cell nucleus.

    PubMed

    Kim, Dong-Hwee; Li, Bo; Si, Fangwei; Phillip, Jude M; Wirtz, Denis; Sun, Sean X

    2015-09-15

    Alterations in nuclear morphology are closely associated with essential cell functions, such as cell motility and polarization, and correlate with a wide range of human diseases, including cancer, muscular dystrophy, dilated cardiomyopathy and progeria. However, the mechanics and forces that shape the nucleus are not well understood. Here, we demonstrate that when an adherent cell is detached from its substratum, the nucleus undergoes a large volumetric reduction accompanied by a morphological transition from an almost smooth to a heavily folded surface. We develop a mathematical model that systematically analyzes the evolution of nuclear shape and volume. The analysis suggests that the pressure difference across the nuclear envelope, which is influenced by changes in cell volume and regulated by microtubules and actin filaments, is a major factor determining nuclear morphology. Our results show that physical and chemical properties of the extracellular microenvironment directly influence nuclear morphology and suggest that there is a direct link between the environment and gene regulation.

  18. Theoretical description of the decay chain of the nucleus 294118

    NASA Astrophysics Data System (ADS)

    Sobiczewski, Adam

    2016-09-01

    The decay chain of the nucleus 294118, the heaviest nucleus observed (at JINR-Dubna) up to now, is analyzed theoretically. The α-decay energies {Q}α , the α-decay and the spontaneous-fission half-lives, {T}α and {T}{{sf}}, are studied. The analysis of the α decay is based on a phenomenological model using only three parameters. The calculations are performed in three variants using masses obtained with three nuclear-mass models accurately describing masses of heaviest nuclei. The experimental {Q}α energies are reconstructed with the average of the absolute values of the discrepancies: 180 keV, 270 keV and 290 keV, in the three variants considered. Measured half-lives {T}α are reproduced within the average ratios: 2.9, 9.8 and 5.2 in these variants.

  19. Neutrino-nucleus interactions at the LBNF near detector

    SciTech Connect

    Mosel, Ulrich

    2015-10-15

    The reaction mechanisms for neutrino interactions with an {sup 40}Ar nucleus with the LBNF flux are calculated with the Giessen-Boltzmann-Uehling-Uhlenbeck (GiBUU) transport-theoretical implementation of these interactions. Quasielastic scattering, many-body effects, pion production and absorption and Deep Inelastic Scattering are discussed; they all play a role at the LBNF energies and are experimentally entangled with each other. Quasielastic scattering makes up for only about 1/3 of the total cross section whereas pion production channels make up about 2/3 of the total. This underlines the need for a consistent description of the neutrino-nucleus reaction that treats all channels on an equal, consistent footing. The results discussed here can also serve as useful guideposts for the Intermediate Neutrino Program.

  20. Maps of interaural delay in the owl's nucleus laminaris

    PubMed Central

    Shah, Sahil; McColgan, Thomas; Ashida, Go; Kuokkanen, Paula T.; Brill, Sandra; Kempter, Richard; Wagner, Hermann

    2015-01-01

    Axons from the nucleus magnocellularis form a presynaptic map of interaural time differences (ITDs) in the nucleus laminaris (NL). These inputs generate a field potential that varies systematically with recording position and can be used to measure the map of ITDs. In the barn owl, the representation of best ITD shifts with mediolateral position in NL, so as to form continuous, smoothly overlapping maps of ITD with iso-ITD contours that are not parallel to the NL border. Frontal space (0°) is, however, represented throughout and thus overrepresented with respect to the periphery. Measurements of presynaptic conduction delay, combined with a model of delay line conduction velocity, reveal that conduction delays can account for the mediolateral shifts in the map of ITD. PMID:26224776

  1. The cellular mastermind(?) – Mechanotransduction and the nucleus

    PubMed Central

    Kaminski, Ashley; Fedorchak, Gregory R.; Lammerding, Jan

    2015-01-01

    Cells respond to mechanical stimulation by activation of specific signaling pathways and genes that allow the cell to adapt to its dynamic physical environment. How cells sense the various mechanical inputs and translate them into biochemical signals remains an area of active investigation. Recent reports suggest that the cell nucleus may be directly implicated in this cellular mechanotransduction process. In this chapter, we discuss how forces applied to the cell surface and cytoplasm induce changes in nuclear structure and organization, which could directly affect gene expression, while also highlighting the complex interplay between nuclear structural proteins and transcriptional regulators that may further modulate mechanotransduction signaling. Taken together, these findings paint a picture of the nucleus as a central hub in cellular mechanotransduction—both structurally and biochemically—with important implications in physiology and disease. PMID:25081618

  2. Towards a Deeper Understanding of the Nucleus with Exotic Nuclei

    NASA Astrophysics Data System (ADS)

    Ormand, Erich

    2006-10-01

    Despite more than fifty years of study, many questions about now nuclei are put together remain. While nuclei near the valley of stability have provided a wealth of information, they are not sufficient to provide us with a comprehensive and unified description of the nucleus. Especially lacking is an accurate picture of those exotic species that are the basis of cosmic alchemy. The missing pieces in the puzzle can be filled in with a determined experimental and theoretical effort focusing on nuclei lying far from the valley of stability. Here, I will outline the intellectual challenges that can be addressed by proposed exotic-beam facilities, and how new experimental data will quide and refine theoretical descriptions of the nucleus.

  3. K+-nucleus potentials from K+-nucleon amplitudes

    NASA Astrophysics Data System (ADS)

    Friedman, E.

    2016-10-01

    Optical potentials for K+-nucleus interactions are constructed from K+-nucleon amplitudes using recently developed algorithm based on K+-N kinematics in the nuclear medium. With the deep penetration of K+ mesons into the nucleus at momenta below 800 MeV / c it is possible to test this approach with greater sensitivity than hitherto done with K- and pions. The energy-dependence of experimental reaction and total cross sections on nuclei is better reproduced with this approach compared to fixed-energy amplitudes. The inclusion of Pauli correlations in the medium also improves the agreement between calculation and experiment. The absolute scale of the cross sections is reproduced very well for 6Li but for C, Si and Ca calculated cross sections are (23 ± 4)% smaller than experiment, in agreement with earlier analyses. Two phenomenological models that produce such missing strength suggest that the imaginary part of the potential needs about 40% enhancement.

  4. IC5063: A merger with a hidden luminous active nucleus

    NASA Technical Reports Server (NTRS)

    Colina, L.; Sparks, W. B.; Macchetto, F. D.

    1990-01-01

    IC5063 is a nearby galaxy classified as an SO and containing a system of dust lanes parallel to its major optical axis (Danziger, Goss and Wellington, 1981; Bergeron, Durret and Boksenberg, 1983). Extended emission line regions with high excitation properties have been detected over distances of up to 19 kpc from the nucleus. This galaxy has been classified as Seyfert 2 on the basis of its emission line spectrum. These characteristics make IC5063 one of the best candidates for a merger remnant and an excellent candidate for a hidden luminous active nucleus. Based on new broad and narrow band images and long-slit spectroscopy obtained at the ESO 3.6 m telescope, the authors present some preliminary results supporting this hypothesis.

  5. Doubly magic nucleus (108)(270)Hs162.

    PubMed

    Dvorak, J; Brüchle, W; Chelnokov, M; Dressler, R; Düllmann, Ch E; Eberhardt, K; Gorshkov, V; Jäger, E; Krücken, R; Kuznetsov, A; Nagame, Y; Nebel, F; Novackova, Z; Qin, Z; Schädel, M; Schausten, B; Schimpf, E; Semchenkov, A; Thörle, P; Türler, A; Wegrzecki, M; Wierczinski, B; Yakushev, A; Yeremin, A

    2006-12-15

    Theoretical calculations predict 270Hs (Z=108, N=162) to be a doubly magic deformed nucleus, decaying mainly by alpha-particle emission. In this work, based on a rapid chemical isolation of Hs isotopes produced in the 26Mg+248Cm reaction, we observed 15 genetically linked nuclear decay chains. Four chains were attributed to the new nuclide 270Hs, which decays by alpha-particle emission with Qalpha=9.02+/-0.03 MeV to 266Sg which undergoes spontaneous fission with a half-life of 444(-148)(+444) ms. A production cross section of about 3 pb was measured for 270Hs. Thus, 270Hs is the first nucleus for which experimental nuclear decay properties have become available for comparison with theoretical predictions of the N=162 shell stability. PMID:17280272

  6. Nucleus incertus inactivation impairs spatial learning and memory in rats.

    PubMed

    Nategh, Mohsen; Nikseresht, Sara; Khodagholi, Fariba; Motamedi, Fereshteh

    2015-02-01

    Nucleus incertus (NI) is a pontine nucleus which releases mainly GABA and relaxin-3 in rats. Its suggested functions include response to stress, arousal, and modulation of hippocampal theta rhythm. Since the role of NI in learning and memory has not been well characterized, therefore the involvement of this nucleus in spatial learning and memory and the aftermath hippocampal levels of c-fos and pCREB were evaluated. NI was targeted by implanting cannula in male rats. For reference memory, NI was inactivated by lidocaine (0.4 μl, 4%) at three stages of acquisition, consolidation and retrieval in Morris water maze paradigm. For working memory, NI was inactivated in acquisition and retrieval phases. Injection of lidocaine prior to the first training session of reference memory significantly increased the distance moved, suggesting that inactivation of NI delays acquisition in this spatial task. Inactivation also interfered with the retrieval phase of spatial reference memory, as the time in target quadrant for lidocaine group was less, and the escape latency was higher compared to the control group. However, no difference was observed in the consolidation phase. In the working memory task, with inter-trial intervals of 75 min, the escape latency was higher when NI was inactivated in the retrieval phase. In addition, c-fos and pCREB/CREB levels decreased in NI-inhibited rats. This study suggests that nucleus incertus might participate in acquisition of spatial reference, and retrieval of both spatial reference and working memory. Further studies should investigate possible roles of NI in the hippocampal plasticity.

  7. Analysis about the force of electrons revolve around the nucleus

    NASA Astrophysics Data System (ADS)

    Yongquan, Han

    1, Let's compare the difference of two algorithms: the electrostatic force between protons and electrons, F1 = ke2 / r2, r is the radius of the electron around the nucleus movement - within 10-10 meters; Electronic movement speed is close to the light- about 107 meters per second, the size of the centripetal force F2 = v2m/r. F1 should be approximately equal to F2,calculate the ratio of F1 and F2, F2 / F1 = (v2m/r) (ke2 / r2) / = (107 * 107 * 0.91 * 10-30 / r)/(9 * 109 * 1.6* 10-19*1.6*10-19 / r2) = 4 x 103.The calculation shows that not only the electrostatic force and other force. 2, The radius of the electron orbiting around the nucleus named r, F = Ke2 / r2 = 9 x 109 x #¨1.6 x 10 -19) 2 / r2 = v2m/r, r = 2.5 x 10-14 meters, namely that the radius of hydrogen atom is about 2.5 x 10- 14 meters, that is different with the observed result (10-10 meters).Electrons revolve around the nucleus may faster than 107 m/s, can almost reach 108 meters per second, if the electronic moves by 108 meters per second, hydrogen atom radius is approximately 2. 5 x 10 -16 meters, has converged in the interior of the nucleus, it is not possible. Use density to instead of electricity, can solve this problem. Author: hanyongquan TEL: 15611860790

  8. The Ionization Source in the Nucleus of M84

    NASA Technical Reports Server (NTRS)

    Bower, G. A.; Green, R. F.; Quillen, A. C.; Danks, A.; Malumuth, E. M.; Gull, T.; Woodgate, B.; Hutchings, J.; Joseph, C.; Kaiser, M. E.

    2000-01-01

    We have obtained new Hubble Space Telescope (HST) observations of M84, a nearby massive elliptical galaxy whose nucleus contains a approximately 1.5 X 10(exp 9) solar mass dark compact object, which presumably is a supermassive black hole. Our Space Telescope Imaging Spectrograph (STIS) spectrum provides the first clear detection of emission lines in the blue (e.g., [0 II] lambda 3727, HBeta and [0 III] lambda lambda4959,5007), which arise from a compact region approximately 0".28 across centered on the nucleus. Our Near Infrared Camera and MultiObject Spectrometer (NICMOS) images exhibit the best view through the prominent dust lanes evident at optical wavelengths and provide a more accurate correction for the internal extinction. The relative fluxes of the emission lines we have detected in the blue together with those detected in the wavelength range 6295 - 6867 A by Bower et al. indicate that the gas at the nucleus is photoionized by a nonstellar process, instead of hot stars. Stellar absorption features from cool stars at the nucleus are very weak. We update the spectral energy distribution of the nuclear point source and find that although it is roughly flat in most bands, the optical to UV continuum is very red, similar to the spectral energy distribution of BL Lac. Thus, the nuclear point source seen in high-resolution optical images is not a star cluster but is instead a nonstellar source. Assuming isotropic emission from this source, we estimate that the ratio of bolometric luminosity to Eddington luminosity is about 5 x 10(exp -7). However, this could be underestimated if this source is a misaligned BL Lac object, which is a possibility suggested by the spectral energy distribution and the evidence of optical variability we describe.

  9. Hidden Glashow resonance in neutrino-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Alikhanov, I.

    2016-05-01

    Today it is widely believed that s-channel excitation of an on-shell W boson, commonly known as the Glashow resonance, can be initiated in matter only by the electron antineutrino in the process νbaree- →W- at the laboratory energy around 6.3 PeV. In this Letter we argue that the Glashow resonance within the Standard Model also occurs in neutrino-nucleus collisions. The main conclusions are as follows. 1) The Glashow resonance can be excited by both neutrinos and antineutrinos of all the three flavors scattering in the Coulomb field of a nucleus. 2) The Glashow resonance in a neutrino-nucleus reaction does not manifest itself as a Breit-Wigner-like peak in the cross section but the latter exhibits instead a slow logarithmic-law growth with the neutrino energy. The resonance turns thus out to be hidden. 3) More than 98% of W bosons produced in the sub-PeV region in neutrino-initiated reactions in water/ice will be from the Glashow resonance. 4) The vast majority of the Glashow resonance events in a neutrino detector are expected at energies from a few TeV to a few tens of TeV, being mostly initiated by the conventional atmospheric neutrinos dominant in this energy range. Calculations of the cross sections for Glashow resonance excitation on the oxygen nucleus as well as on the proton are carried out in detail. The results of this Letter can be useful for studies of neutrino interactions at large volume water/ice neutrino detectors. For example, in the IceCube detector one can expect 0.3 Glashow resonance events with shower-like topologies and the deposited energies above 300 TeV per year. It is therefore likely already to have at least one Glashow resonance event in the IceCube data set.

  10. Study of Comet Nucleus Gamma-Ray Spectrometer Penetration System

    NASA Technical Reports Server (NTRS)

    Adams, G. L.; Amundsen, R. J.; Beardsley, R. W.; Cash, R. H.; Clark, B. C.; Knight, T. C. D.; Martin, J. P.; Monti, P.; Outteridge, D. A.; Plaster, W. D.

    1986-01-01

    A penetrator system has been suggested as an approach for making in situ measurements of the composition and physical properties of the nucleus of a comet. This study has examined in detail the feasibility of implementing the penetrator concept. The penetrator system and mission designs have been developed and iterated in sufficient detail to provide a high level of confidence that the concept can be implemented within the constraints of the Mariner Mark 2 spacecraft.

  11. Methods and compositions for targeting macromolecules into the nucleus

    DOEpatents

    Chook, Yuh Min

    2013-06-25

    The present invention includes compositions, methods and kits for directing an agent across the nuclear membrane of a cell. The present invention includes a Karyopherin beta2 translocation motif in a polypeptide having a slightly positively charged region or a slightly hydrophobic region and one or more R/K/H-X.sub.(2-5)-P-Y motifs. The polypeptide targets the agent into the cell nucleus.

  12. Neutrino magnetic moment effects in neutrino nucleus reactions

    SciTech Connect

    Singh, S.K.; Athar, M.S.

    1995-10-01

    Some low energy neutrino nucleus reactions induced by neutrinos (antineutrinos) having a magnetic moment of the order of 10{sup {minus}9}{minus}10{sup {minus}10} Bohr magneton are studied. It is found that in the case of {sup 4}He, {sup 12}C, and {sup 16}O, the detection of very low energy scalar and isoscalar elastic and inelastic reactions induced by the isoscalar vector currents can provide a better limit on the neutrino magnetic moment.

  13. Mechanics and deformation of the nucleus in micropipette aspiration experiment.

    PubMed

    Vaziri, Ashkan; Mofrad, Mohammad R Kaazempur

    2007-01-01

    Robust biomechanical models are essential for the study of nuclear mechanics and deformation and can help shed light on the underlying mechanisms of stress transition in nuclear elements. Here, we develop a computational model for an isolated nucleus undergoing micropipette aspiration. Our model includes distinct components representing the nucleoplasm and nuclear envelope. The nuclear envelope itself comprises three layers: inner and outer nuclear membranes and one thicker layer representing the nuclear lamina. The nucleoplasm is modeled as a viscoelastic Maxwell material with a single time constant, while a modified Maxwell model, equivalent to a spring and a dashpot in series and both in parallel with a spring, is adopted for the inner and outer nuclear membranes. The nuclear envelope layer is taken as a linear elastic material. The proposed computational model, validated using experimental observations of Guilak et al. [2000. Viscoelastic properties of the cell nucleus. Biochemical and Biophysical Research Communications 269, 781-786] and Deguchi et al. [2005, Flow-induced hardening of endothelial nucleus as an intracellular stress-bearing organelle. Journal of Biomechanics 38, 1751-1759], is employed to study nuclear mechanics and deformation in micropipette aspiration and to shed light on the contribution of individual nuclear components on the response. The results indicate that the overall response of an isolated nucleus in micropipette aspiration is highly sensitive to the apparent stiffness of the nuclear lamina. This observation suggests that micropipette aspiration is an effective technique for examining the influence of various kinds of alteration in the nuclear lamina, such as mutations in the gene encoding lamin A, and also structural remodeling due to mechanical perturbation.

  14. Mechanics and deformation of the nucleus in micropipette aspiration experiment.

    PubMed

    Vaziri, Ashkan; Mofrad, Mohammad R Kaazempur

    2007-01-01

    Robust biomechanical models are essential for the study of nuclear mechanics and deformation and can help shed light on the underlying mechanisms of stress transition in nuclear elements. Here, we develop a computational model for an isolated nucleus undergoing micropipette aspiration. Our model includes distinct components representing the nucleoplasm and nuclear envelope. The nuclear envelope itself comprises three layers: inner and outer nuclear membranes and one thicker layer representing the nuclear lamina. The nucleoplasm is modeled as a viscoelastic Maxwell material with a single time constant, while a modified Maxwell model, equivalent to a spring and a dashpot in series and both in parallel with a spring, is adopted for the inner and outer nuclear membranes. The nuclear envelope layer is taken as a linear elastic material. The proposed computational model, validated using experimental observations of Guilak et al. [2000. Viscoelastic properties of the cell nucleus. Biochemical and Biophysical Research Communications 269, 781-786] and Deguchi et al. [2005, Flow-induced hardening of endothelial nucleus as an intracellular stress-bearing organelle. Journal of Biomechanics 38, 1751-1759], is employed to study nuclear mechanics and deformation in micropipette aspiration and to shed light on the contribution of individual nuclear components on the response. The results indicate that the overall response of an isolated nucleus in micropipette aspiration is highly sensitive to the apparent stiffness of the nuclear lamina. This observation suggests that micropipette aspiration is an effective technique for examining the influence of various kinds of alteration in the nuclear lamina, such as mutations in the gene encoding lamin A, and also structural remodeling due to mechanical perturbation. PMID:17112531

  15. Theory and phenomenology of coherent neutrino-nucleus scattering

    SciTech Connect

    McLaughlin, Gail

    2015-07-15

    We review the theory and phenomenology of coherent elastic neutrino-nucleus scattering (CEνNS). After a brief introduction, we summarize the places where CEνNS is already in use and then turn to future physics opportunities from CEνNS. CEνNS has been proposed as a way to limit or discover beyond the standard model physics, measure the nuclear-neutron radius and constrain the Weinberg angle.

  16. The subthalamic nucleus. Part I: development, cytology, topography and connections.

    PubMed

    Marani, Enrico; Heida, Tjitske; Lakke, Egbert A J F; Usunoff, Kamen G

    2008-01-01

    This monograph (Part I of two volumes) on the subthalamic nucleus (STN) accentuates the gap between experimental animal and human information concerning subthalamic development, cytology, topography and connections. The light and electron microscopical cytology focuses on the open nucleus concept and the neuronal types present in the STN. The cytochemistry encompasses enzymes, NO, glial fibrillary acidic protein (GFAP), calcium binding proteins, and receptors (dopamine, cannabinoid, opioid, glutamate, gamma-aminobutyric acid (GABA), serotonin, cholinergic, and calcium channels). The ontogeny of the subthalamic cell cord is also reviewed. The topography concerns the rat, cat, baboon and human STN. The descriptions of the connections are also given from a historical point of view. Recent tracer studies on the rat nigro-subthalamic connection revealed contralateral projections. Part II of the two volumes (volume 199) on the subthalamic nucleus (STN) starts with a systemic model of the basal ganglia to evaluate the position of the STN in the direct, indirect and hyperdirect pathways. A summary of in vitro studies is given, describing STN spontaneous activity as well as responses to depolarizing and hyperpolarizing inputs and high-frequency stimulation. STN bursting activity and the underlying ionic mechanisms are investigated. Deep brain stimulation used for symptomatic treatment of Parkinson's disease is discussed in terms of the elements that are influenced and its hypothesized mechanisms. This part of the monograph explores the pedunculopontine-subthalamic connections and summarizes attempts to mimic neurotransmitter actions of the pedunculopontine nucleus in cell cultures and high-frequency stimulation on cultured dissociated rat subthalamic neurons. STN cell models--single- and multi-compartment models and system-level models are discussed in relation to subthalamic function and dysfunction. Parts I and II are compared. PMID:18727483

  17. The subthalamic nucleus part II: modelling and simulation of activity.

    PubMed

    Heida, Tjitske; Marani, Enrico; Usunoff, Kamen G

    2008-01-01

    Part I of The Subthalamic Nucleus (volume 198) (STN) accentuates the gap between experimental animal and human information concerning subthalamic development, cytology, topography and connections.The light and electron microscopical cytology focuses on the open nucleus concept and the neuronal types present in the STN. The cytochemistry encompasses enzymes, NO, glial fibrillary acidic protein (GFAP), calcium binding proteins, and receptors (dopamine, cannabinoid, opioid, glutamate, gamma-aminobutyric acid (GABA), serotonin, cholinergic, and calcium channels). The ontogeny of the subthalamic cell cord is also reviewed. The topography concerns the rat, cat, baboon and human STN. The descriptions of the connections are also given from a historical point of view. Recent tracer studies on the rat nigro-subthalamic connection revealed contralateral projections. This monograph (Part II of the two volumes) on the subthalamic nucleus (STN) starts with a systemic model of the basal ganglia to evaluate the position of the STN in the direct, indirect and hyperdirect pathways. A summary of in vitro studies is given, describing STN spontaneous activity as well as responses to depolarizing and hyperpolarizing inputs and high-frequency stimulation. STN bursting activity and the underlying ionic mechanisms are investigated. Deep brain stimulation used for symptomatic treatment of Parkinson's disease is discussed in terms of the elements that are influenced and its hypothesized mechanisms. This part of the monograph explores the pedunculopontine-subthalamic connections and summarizes attempts to mimic neurotransmitter actions of the pedunculopontine nucleus in cell cultures and high-frequency stimulation on cultured dissociated rat subthalamic neurons. STN cell models - single- and multi-compartment models and system-level models are discussed in relation to subthalamic function and dysfunction. Parts I and II are compared. PMID:18727495

  18. Emission of charged particles from excited compound nucleus

    SciTech Connect

    Kalandarov, Sh. A.; Adamian, G. G.; Antonenko, N. V.

    2010-11-24

    The formation and decay of excited compound nucleus are studied within the dinuclear system model[1]. The cross sections of complex fragment emission are calculated and compared with experimental data for the reactions {sup 3}He+{sup 108}Ag, {sup 78,82}Kr+{sup 12}C. Angular momentum dependence of cluster emission in {sup 78}Kr+{sup 12}C and {sup 40}Ca+{sup 78}Kr reactions is demonstrated.

  19. mRNA-Producing Pseudo-nucleus System.

    PubMed

    Shin, Seung Won; Park, Kyung Soo; Shin, Woo Jung; Um, Soong Ho

    2015-11-01

    A pseudo-eukaryotic nucleus (PEN) system consisting of a gene-containing DNA hydrogel encapsulated in a liposome is fabricated. Owing to the structural characteristics of gene-containing DNA hydrogel, mRNA transcription efficiency is promoted 2.57-fold. Through the use of PEN as a platform for mRNA delivery to the cytosol, prolonged protein translation is achieved. PMID:26310990

  20. AN OFF-CENTERED ACTIVE GALACTIC NUCLEUS IN NGC 3115

    SciTech Connect

    Menezes, R. B.; Steiner, J. E.; Ricci, T. V.

    2014-11-20

    NGC 3115 is an S0 galaxy that has always been considered to have a pure absorption-line spectrum. Some recent studies have detected a compact radio-emitting nucleus in this object, coinciding with the photometric center and with a candidate for the X-ray nucleus. This is evidence of the existence of a low-luminosity active galactic nucleus (AGN) in the galaxy, although no emission line has ever been observed. We report the detection of an emission-line spectrum of a type 1 AGN in NGC 3115, with an Hα luminosity of L {sub Hα} = (4.2 ± 0.4) × 10{sup 37} erg s{sup –1}. Our analysis revealed that this AGN is located at a projected distance of ∼0.''29 ± 0.''05 (corresponding to ∼14.3 ± 2.5 pc) from the stellar bulge center, which is coincident with the kinematic center of this object's stellar velocity map. The black hole corresponding to the observed off-centered AGN may form a binary system with a black hole located at the stellar bulge center. However, it is also possible that the displaced black hole is the merged remnant of the binary system coalescence, after the ''kick'' caused by the asymmetric emission of gravitational waves. We propose that certain features in the stellar velocity dispersion map are the result of perturbations caused by the off-centered AGN.

  1. Incorporation of mammalian actin into microfilaments in plant cell nucleus

    PubMed Central

    Paves, Heiti; Truve, Erkki

    2004-01-01

    Background Actin is an ancient molecule that shows more than 90% amino acid homology between mammalian and plant actins. The regions of the actin molecule that are involved in F-actin assembly are largely conserved, and it is likely that mammalian actin is able to incorporate into microfilaments in plant cells but there is no experimental evidence until now. Results Visualization of microfilaments in onion bulb scale epidermis cells by different techniques revealed that rhodamine-phalloidin stained F-actin besides cytoplasm also in the nuclei whereas GFP-mouse talin hybrid protein did not enter the nuclei. Microinjection of fluorescently labeled actin was applied to study the presence of nuclear microfilaments in plant cells. Ratio imaging of injected fluorescent rabbit skeletal muscle actin and phalloidin staining of the microinjected cells showed that mammalian actin was able to incorporate into plant F-actin. The incorporation occurred preferentially in the nucleus and in the perinuclear region of plant cells whereas part of plant microfilaments, mostly in the periphery of cytoplasm, did not incorporate mammalian actin. Conclusions Microinjected mammalian actin is able to enter plant cell's nucleus, whereas incorporation of mammalian actin into plant F-actin occurs preferentially in the nucleus and perinuclear area. PMID:15102327

  2. Dorsal raphe nucleus projecting retinal ganglion cells: Why Y cells?

    PubMed Central

    Pickard, Gary E.; So, Kwok-Fai; Pu, Mingliang

    2015-01-01

    Retinal ganglion Y (alpha) cells are found in retinas ranging from frogs to mice to primates. The highly conserved nature of the large, fast conducting retinal Y cell is a testament to its fundamental task, although precisely what this task is remained ill-defined. The recent discovery that Y-alpha retinal ganglion cells send axon collaterals to the serotonergic dorsal raphe nucleus (DRN) in addition to the lateral geniculate nucleus (LGN), medial interlaminar nucleus (MIN), pretectum and the superior colliculus (SC) has offered new insights into the important survival tasks performed by these cells with highly branched axons. We propose that in addition to its role in visual perception, the Y-alpha retinal ganglion cell provides concurrent signals via axon collaterals to the DRN, the major source of serotonergic afferents to the forebrain, to dramatically inhibit 5-HT activity during orientation or alerting/escape responses, which dis-facilitates ongoing tonic motor activity while dis-inhibiting sensory information processing throughout the visual system. The new data provide a fresh view of these evolutionarily old retinal ganglion cells. PMID:26363667

  3. An Automatic Learning-Based Framework for Robust Nucleus Segmentation.

    PubMed

    Xing, Fuyong; Xie, Yuanpu; Yang, Lin

    2016-02-01

    Computer-aided image analysis of histopathology specimens could potentially provide support for early detection and improved characterization of diseases such as brain tumor, pancreatic neuroendocrine tumor (NET), and breast cancer. Automated nucleus segmentation is a prerequisite for various quantitative analyses including automatic morphological feature computation. However, it remains to be a challenging problem due to the complex nature of histopathology images. In this paper, we propose a learning-based framework for robust and automatic nucleus segmentation with shape preservation. Given a nucleus image, it begins with a deep convolutional neural network (CNN) model to generate a probability map, on which an iterative region merging approach is performed for shape initializations. Next, a novel segmentation algorithm is exploited to separate individual nuclei combining a robust selection-based sparse shape model and a local repulsive deformable model. One of the significant benefits of the proposed framework is that it is applicable to different staining histopathology images. Due to the feature learning characteristic of the deep CNN and the high level shape prior modeling, the proposed method is general enough to perform well across multiple scenarios. We have tested the proposed algorithm on three large-scale pathology image datasets using a range of different tissue and stain preparations, and the comparative experiments with recent state of the arts demonstrate the superior performance of the proposed approach.

  4. Growth behavior of cochlear nucleus neuronal cells on semiconductor substrates.

    PubMed

    Rak, Kristen; Wasielewski, Natalia; Radeloff, Andreas; Scherzed, Agmal; Jablonka, Sibylle; Hagen, Rudolf; Mlynski, Robert

    2011-05-01

    Auditory brainstem implants provide sound information by direct stimulation of the cochlear nucleus to patients with dysfunctional or absent cranial nerve VIII. In contrast to patients with cochlear implants, the use of the auditory brainstem implants is less successful. This cannot be fully explained by the difference location of stimulation but a rather unspecific neuronal stimulation. The aim of this study was to further examine neuronal cells of the cochlear nucleus and to test their interactions with semiconductor substrates as a potential electrode material for improved auditory brainstem implants. The cochlear nuclei of postnatal day 7 rats were microsurgically dissected. The tissue was dissociated enzymatically and plated on coverslips as control and on the semiconductor substrates silicon or silicon nitride. After 4 days in culture the morphology and growth of dissociated cells was determined by fluorescence and scanning electron microscopy. Dissociated cells of the cochlear nucleus showed reduced cell growth on semiconductor substrates compared with controls. SEM analysis demonstrated close contact of neurons with supporting cells in culture and good adherence of neuronal growth cones on the used materials. These findings present basic knowledge for the development of neuron-electrode interfaces for future auditory brainstem implants. PMID:21370446

  5. Coulomb problem for a Z>Z_cr nucleus

    NASA Astrophysics Data System (ADS)

    Kuleshov, V. M.; Mur, V. D.; Narozhny, N. B.; Fedotov, A. M.; Lozovik, Yu E.; Popov, V. S.

    2015-08-01

    A closed-form equation is derived for the critical nucleus charge Z=Z_cr at which a discrete level with the Dirac quantum number touches the lower continuum of the Dirac equation solutions. For the Coulomb potential cut off rectangularly at the short distance r0 = R{\\hbar}/(mc), R \\ll {1}, the critical nucleus charge values are obtained for several values of κ and R. It is shown that the partial scattering matrix of elastic positron-nucleus scattering, Sκ = \\exp(2iδκ(\\varepsilon_p)), is also unitary for Z>Z_cr. For this range, the scattering phase δ κ (\\varepsilon _p) is calculated as a function of the positron energy E_p = \\varepsilonp mc2, as are the positions and widths of quasidiscrete levels corresponding to the scattering matrix poles. The implication is that the single-particle approximation for the Dirac equation is valid not only for Z but also for Z>Z_cr and that there is no spontaneous creation of e^+e^- pairs from the vacuum.

  6. Energetic communication between mitochondria and nucleus directed by catalyzed phosphotransfer

    PubMed Central

    Dzeja, Petras P.; Bortolon, Ryan; Perez-Terzic, Carmen; Holmuhamedov, Ekshon L.; Terzic, Andre

    2002-01-01

    Exchange of information between the nucleus and cytosol depends on the metabolic state of the cell, yet the energy-supply pathways to the nuclear compartment are unknown. Here, the energetics of nucleocytoplasmic communication was determined by imaging import of a constitutive nuclear protein histone H1. Translocation of H1 through nuclear pores in cardiac cells relied on ATP supplied by mitochondrial oxidative phosphorylation, but not by glycolysis. Although mitochondria clustered around the nucleus, reducing the distance for energy transfer, simple nucleotide diffusion was insufficient to meet the energetic demands of nuclear transport. Rather, the integrated phosphotransfer network was required for delivery of high-energy phosphoryls from mitochondria to the nucleus. In neonatal cardiomyocytes with low creatine kinase activity, inhibition of adenylate kinase-catalyzed phosphotransfer abolished nuclear import. With deficient adenylate kinase, nucleoside diphosphate kinase, which secures phosphoryl exchange between ATP and GTP, was unable to sustain nuclear import. Up-regulation of creatine kinase phosphotransfer, to mimic metabolic conditions of adult cardiac cells, rescued H1 import, suggesting a developmental plasticity of the cellular energetic system. Thus, mitochondrial oxidative phosphorylation coupled with phosphotransfer relays provides an efficient energetic unit in support of nuclear transport. PMID:12119406

  7. Electron Spin Resonance (ESR) studies of returned comet nucleus samples

    NASA Technical Reports Server (NTRS)

    Tsay, Fun-Dow; Kim, Soon Sam; Liang, Ranty H.

    1989-01-01

    The most important objective of the Comet Nucleus Sample Returm Mission is to return samples which could reflect formation conditions and evolutionary processes in the early solar nebula. It is expected that the returned samples will consist of fine-grained silicate materials mixed with ices composed of simple molecules such as H2O, NH3, CH4 as well as organics and/or more complex compounds. Because of the exposure to ionizing radiation from cosmic-ray, gamma-ray, and solar wind protons at low temperature, free radicals are expected to be formed and trapped in the solid ice matrices. The kind of trapped radical species together with their concentration and thermal stability can be used as a dosimeter as well as a geothermometer to determine thermal and radiation histories as well as outgassing and other possible alternation effects since the nucleus material was formed. Since free radicals that are known to contain unpaired electrons are all paramagnetic in nature, they can be readily detected and characterized in their native form by the Electron Spin Resonance (ESR) method. In fact, ESR has been shown to be a non-destructive, highly sensitive tool for the detection and characterization of paramagnetic, ferromagnetic, and radiation damage centers in terrestrial and extraterrestrial geological samples. The potential use of ESR as an effective method in the study of returned comet nucleus samples, in particular, in the analysis of fine-grained solid state icy samples is discussed.

  8. Relief memory consolidation requires protein synthesis within the nucleus accumbens.

    PubMed

    Bruning, Johann E A; Breitfeld, Tino; Kahl, Evelyn; Bergado-Acosta, Jorge R; Fendt, Markus

    2016-06-01

    Relief learning refers to the association of a stimulus with the relief from an aversive event. The thus-learned relief stimulus then can induce, e.g., an attenuation of the startle response or approach behavior, indicating positive valence. Previous studies revealed that the nucleus accumbens is essential for the acquisition and retrieval of relief memory. Here, we ask whether the nucleus accumbens is also the brain site for consolidation of relief memory into a long-term form. In rats, we blocked local protein synthesis within the nucleus accumbens by local infusions of anisomycin at different time points during a relief conditioning experiment. Accumbal anisomycin injections immediately after the relief conditioning session, but not 4 h later, prevented the consolidation into long-term relief memory. The retention of already consolidated relief memory was not affected by anisomycin injections. This identifies a time window and site for relief memory consolidation. These findings should complement our understanding of the full range of effects of adverse experiences, including cases of their distortion in humans such as post-traumatic stress disorder and/or phobias. PMID:26792192

  9. Magnetic dipole excitations of the 163Dy nucleus

    NASA Astrophysics Data System (ADS)

    Zenginerler, Zemine; Tabar, Emre; Yakut, Hakan; Kuliev, Ali Akbar; Guliyev, Ekber

    2014-03-01

    In this study some properties of the magnetic dipole excitations of the deformed odd mass 163Dy nucleus were studied by using Quasiparticle-phonon nuclear model (QPNM). The several of the ground-state and low-lying magnetic dipole (M1) mode characteristics were calculated for deformed odd-mass nuclei using a separable Hamiltonian within the QPNM. The M1 excited states, reduced transition probabilities B(M1), the ground-state magnetic properties such as magnetic moment (μ), intrinsic magnetic moment (gK) , effective spin factor (gseff.) are the fundamental characteristics of the odd-mass nucleus and provide key information to understand nuclear structure. The theoretical results were compared with the available experimental data and other theoretical approaches. Calculations show that the spin-spin interaction in this isotopes leads to polarization effect influencing the magnetic moments. Furthermore we found a strong fragmentation of the M1 strength in 163Dy nucleus which was in qualitative agreement with the experimental data. Sakarya University, Project Number: 2012-50-02-007 and Z.Zenginerler acknowledge to TUBITAK-TURKEY 2013, fellowship No: 2219.

  10. Experimental studies of pion-nucleus interactions at intermediate energies

    SciTech Connect

    Not Available

    1991-12-31

    This report summarizes the work on experimental research in intermediate energy nuclear physics carried out at New Mexico State University in 1991 under a great from the US Department of Energy. Most of these studies have involved investigations of various pion-nucleus interactions. The work has been carried out both with the LAMPF accelerator at the Los Alamos National Laboratory and with the cyclotron at the Paul Scherrer Institute (PSI) near Zurich, Switzerland. Part of the experimental work involves measurements of new data on double-charge-exchange scattering, using facilities at LAMPF which we helped modify, and on pion absorption, using a new detector system at PSI that covers nearly the full solid-angle region which we helped construct. Other work involved preparation for future experiments using polarized nuclear targets and a new high-resolution spectrometer system for detecting {pi}{sup 0} mesons. We also presented several proposals for works to be done in future years, involving studies related to pi-mesonic atoms, fundamental pion-nucleon interactions, studies of the difference between charged and neutral pion interactions with the nucleon, studies of the isospin structure of pion-nucleus interactions, and pion scattering from polarized {sup 3}He targets. This work is aimed at improving our understanding of the pion-nucleon interaction, of the pion-nucleus interaction mechanism, and of nuclear structure.

  11. By moonlighting in the nucleus, villin regulates epithelial plasticity

    PubMed Central

    Patnaik, Srinivas; George, Sudeep P.; Pham, Eric; Roy, Swati; Singh, Kanchan; Mariadason, John M.; Khurana, Seema

    2016-01-01

    Villin is a tissue-specific, actin-binding protein involved in the assembly and maintenance of microvilli in polarized epithelial cells. Conversely, villin is also linked with the loss of epithelial polarity and gain of the mesenchymal phenotype in migrating, invasive cells. In this study, we describe for the first time how villin can switch between these disparate functions to change tissue architecture by moonlighting in the nucleus. Our study reveals that the moonlighting function of villin in the nucleus may play an important role in tissue homeostasis and disease. Villin accumulates in the nucleus during wound repair, and altering the cellular microenvironment by inducing hypoxia increases the nuclear accumulation of villin. Nuclear villin is also associated with mouse models of tumorigenesis, and a systematic analysis of a large cohort of colorectal cancer specimens confirmed the nuclear distribution of villin in a subset of tumors. Our study demonstrates that nuclear villin regulates epithelial–mesenchymal transition (EMT). Altering the nuclear localization of villin affects the expression and activity of Slug, a key transcriptional regulator of EMT. In addition, we find that villin directly interacts with a transcriptional corepressor and ligand of the Slug promoter, ZBRK1. The outcome of this study underscores the role of nuclear villin and its binding partner ZBRK1 in the regulation of EMT and as potential new therapeutic targets to inhibit tumorigenesis. PMID:26658611

  12. Coexistence of central nucleus, cores, and rods: Diagnostic relevance

    PubMed Central

    Dhinakaran, Sathiyabama; Kumar, Rashmi Santhosh; Thakkar, Ravindra; Narayanappa, Gayathri

    2016-01-01

    Background: Congenital myopathies (CMs) though considered distinct disorders, simultaneous occurrence of central nucleus, nemaline rods, and cores in the same biopsy are scarcely reported. Objective: A retrospective reassessment of cases diagnosed as CMs to look for multiple pathologies missed, if any, during the initial diagnosis. Materials and Methods: Enzyme histochemical, and immunohistochemical-stained slides from 125 cases diagnosed as congenital myopathy were reassessed. Results: The study revealed 15 cases (12%) of congenital myopathy with more than one morphological feature. Central nucleus with cores (n = 11), central nucleus, nemaline rods and cores (n = 3), and nemaline rods with cores (n = 1). 4/11 cases were diagnosed as centronuclear myopathy (CNM) in the first instance; in addition, cores were revealed on reassessment. Discussion: The prevalence of CMs of all neuromuscular disorders is approximately 6 in 100,000 live births, with regional variations. Three main defined CMs include centro nuclear myopathy (CNM), nemaline rod myopathy (NRM), and central core disease (CCD). However, they are more diverse with overlapping clinical and histopathological features, thus broadening the spectra within each category of congenital myopathy. Conclusion: Identification of cases with overlap of pathological features has diagnostic relevance. PMID:27293330

  13. Action at a Distance in the Cell's Nucleus

    NASA Astrophysics Data System (ADS)

    Kondev, Jane

    Various functions performed by chromosomes involve long-range communication between DNA sequences that are tens of thousands of bases apart along the genome, and microns apart in the nucleus. In this talk I will discuss experiments and theory relating to two distinct modes of long-range communication in the nucleus, chromosome looping and protein hopping along the chromosome, both in the context of DNA-break repair in yeast. Yeast is an excellent model system for studies that link chromosome conformations to their function as there is ample experimental evidence that yeast chromosome conformations are well described by a simple, random-walk polymer model. Using a combination of polymer physics theory and experiments on yeast cells, I will demonstrate that loss of polymer entropy due to chromosome looping is the driving force for homology search during repair of broken DNA by homologous recombination. I will also discuss the spread of histone modifications along the chromosome and away from the DNA break point in the context of simple physics models based on chromosome looping and kinase hopping, and show how combining physics theory and cell-biology experiment can be used to dissect the molecular mechanism of the spreading process. These examples demonstrate how combined theoretical and experimental studies can reveal physical principles of long-range communication in the nucleus, which play important roles in regulation of gene expression, DNA recombination, and chromatin modification. This work was supported by the NSF DMR-1206146.

  14. Effects of bupropion on the forced swim test and release of dopamine in the nucleus accumbens in ACTH-treated rats.

    PubMed

    Kitamura, Yoshihisa; Yagi, Takahiko; Kitagawa, Kouhei; Shinomiya, Kazuaki; Kawasaki, Hiromu; Asanuma, Masato; Gomita, Yutaka

    2010-08-01

    The dopamine reuptake inhibitor bupropion has clinically been proven to improve depression and treatment-resistant depression. We examined its influence on the duration of immobility during the forced swim test in adrenocorticotropic hormone (ACTH)-treated rats and further analyzed the possible role of dopamine receptors in this effect. Additionally, the mechanism by which bupropion acts in this model was explored specifically in relation to the site of action through the use of microinjections into the medial prefrontal cortex and nucleus accumbens. Bupropion significantly decreased the duration of immobility in normal and ACTH-treated rats. This effect was blocked by D2 and D3 receptor antagonists in normal rats. Furthermore, infusions of bupropion into the nucleus accumbens, but not medial prefrontal cortex, decreased the immobility of normal and ACTH-treated rats during the forced swim test. Bupropion treatment plus repeated ACTH treatment significantly increased the extracellular dopamine concentration. These findings suggest the antidepressant-like effect of bupropion to be related to levels of dopamine in the rat nucleus accumbens.

  15. Normalizing Catastrophe: An Educational Response

    ERIC Educational Resources Information Center

    Jickling, Bob

    2013-01-01

    Processes of normalizing assumptions and values have been the subjects of theoretical framing and critique for several decades now. Critique has often been tied to issues of environmental sustainability and social justice. Now, in an era of global warming, there is a rising concern that the results of normalizing of present values could be…

  16. Rational Normalization of Concentration Measures.

    ERIC Educational Resources Information Center

    Bonckaert, P.; Egghe, L.

    1991-01-01

    Discusses normalization features of good concentration measures and extends the range of values of concentration measures that are population-size-independent. Rational normalization is described, and mathematical formulas for the coefficient of variation, Pratt's measure, the Gini index, Theil's measure, and Atkinson's indices are explained. (14…

  17. Gluon saturation and net-proton spectra in relativistic nucleus-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Min; Hou, Zhao-Yu; Wang, Xiu-Ting; Sun, Xian-Jing

    2011-03-01

    By means of the AKK08 fragmentation function, the net-proton transverse momentum (pT) spectra in A+A collisions are studied with two phenomenological models based on the Color Glass Condensate formalism. After a χ2 analysis of the experimental data from BRAHMS, the normalization constant C is extracted at RHIC energies of =62.4 and 200 GeV, and the theoretical results of the net-proton pT spectra at selected rapidities are also given. It is shown that the theoretical results are in good agreement with the experimental data. Finally, assuming the constant C should have an exponent dependence of , we also predict the theoretical results of net-proton pT spectra at LHC energies of =2.76, 3.94, and 5.52 TeV.

  18. Hadron multiplicities and chemical freeze-out conditions in proton-proton and nucleus-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Vovchenko, V.; Begun, V. V.; Gorenstein, M. I.

    2016-06-01

    New results of the NA61/SHINE Collaboration at the CERN SPS on mean hadron multiplicities in proton-proton (p+p) interactions are analyzed within the transport models and the hadron resonance gas (HRG) statistical model. The chemical freeze-out parameters in p+p interactions and central Pb+Pb (or Au+Au) collisions are found and compared with each other in the range of the center-of-mass energy of the nucleon pair √{sN N}=3.2 -17.3 GeV. The canonical ensemble formulation of the HRG model is used to describe mean hadron multiplicities in p+p interactions and the grand canonical ensemble in central Pb+Pb and Au+Au collisions. The chemical freeze-out temperatures in p+p interactions are found to be larger than the corresponding temperatures in central nucleus-nucleus collisions.

  19. Neuronal relationships between the dorsal periaqueductal nucleus and the inferior colliculus (nucleus commissuralis) in the cat. A Golgi study.

    PubMed

    Herrera, M; Sánchez del Campo, F; Ruiz, A; Smith Agreda, V

    1988-06-01

    Cell types in the dorsal periaqueductal nucleus (PAGd) were studied with the aid of the rapid Golgi method in young cats. The neurons were subdivided into fusiform and stellate types with several varieties of the latter class according to the final destination of their axons. Fusiform neurons send their axons to the neuropil of the Ncom. In turn these neurons receive descending fibres from the nucleus commissuralis (Ncom) which seem to establish axo-dendritic contacts. Also commissural neurons receive contacts from ascending fibres of the PAGd. On the basis of Golgi material it is concluded that particular neuronal types of the PAGd could establish reciprocal connections with neuronal elements of the ventral part of the Ncom. The present study supports the hypothesis that the PAGd could be subdivided into discrete cell groups according to their afferent and efferent projections.

  20. Nucleus-encoded periplastid-targeted EFL in chlorarachniophytes.

    PubMed

    Gile, Gillian H; Keeling, Patrick J

    2008-09-01

    Chlorarachniophytes are cercozoan amoeboflagellates that acquired photosynthesis by enslaving a green alga, which has retained a highly reduced nucleus called a nucleomorph. The nucleomorph lacks many genes necessary for its own maintenance and expression, suggesting that some genes have been moved to the host nucleus and their products are now targeted back to the periplastid compartment (PPC), the reduced eukaryotic cytoplasm of the endosymbiont. Protein trafficking in chlorarachniophytes is therefore complex, including nucleus-encoded plastid-targeted proteins, nucleomorph-encoded plastid-targeted proteins, and nucleus-encoded periplastid-targeted proteins. A major gap in our understanding of this system is the PPC-targeted proteins because none have been described in any chlorarachniophytes. Here we describe the first such protein, the GTPase EFL. EFL was characterized from 7 chlorarachniophytes, and 2 distinct types were found. One is related to foraminiferan EFL and lacks an amino-terminal extension. The second, distantly related, type encodes an amino-terminal extension consisting of a signal peptide followed by sequence sharing many characteristics with transit peptides from nucleus-encoded plastid-targeted proteins and which we conclude is most likely PPC targeted. Western blotting with antibodies specific to putative host and PPC-targeted EFL from the chlorarachniophytes Bigelowiella natans and Gymnochlora stellata is consistent with posttranslational cleavage of the leaders from PPC-targeted proteins. Immunolocalization of both proteins in B. natans confirmed the cytosolic location of the leaderless EFL and a distinct localization pattern for the PPC-targeted protein but could not rule out a plastid location (albeit very unlikely). We sought other proteins with a similar leader and identified a eukaryotic translation initiation factor 1 encoding a bipartite extension with the same properties. Transit peptide sequences were characterized from all 3

  1. Managing incontinence: women's normalizing strategies.

    PubMed

    Skoner, M M; Haylor, M J

    1993-01-01

    Women's strategies for managing urinary incontinence were examined in a grounded-theory study. The women's basic social concern was dealing with incontinence in a manner that enabled them to feel normal. Feeling normal meant being able to do what they wanted to do and needed to do to have a normal life-style as they perceived it. This goal was accomplished by normalizing incontinence and its management. Normalization was achieved by directing its course through self-management, accounting for it in terms of personal history and life experiences, and delaying medical counsel. These strategies are described. The findings provide fresh insights about women's response to incontinence and their practice of self-managing its consequences. PMID:8138472

  2. Pion yields and the nature of kaon-pion ratios in high energy nucleus-nucleus collisons: models versus measurements

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; De, B.; Guptaroy, P.

    2001-08-01

    The pion densities and the nature of kaon-pion ratios offer two very prominent and crucial physical observables on which sufficient data for heavy nucleus collisions, to date, are available. In the light of two models - one purely phenomenological and the other with a sound dynamical basis - we would try to examine here the state of agreement between calculations and experimental results obtainable from the past and the latest measurements. Impact and implications of all these would also finally be spelt out.

  3. Superscaling in electron-nucleus scattering and its link to CC and NC QE neutrino-nucleus scattering

    SciTech Connect

    Barbaro, M. B.; Amaro, J. E.; Caballero, J. A.; González-Jiménez, R.; Donnelly, T. W.; Ivanov, M.; Udías, J. M.

    2015-05-15

    The superscaling approach (SuSA) to neutrino-nucleus scattering, based on the assumed universality of the scaling function for electromagnetic and weak interactions, is reviewed. The predictions of the SuSA model for bot CC and NC differential and total cross sections are presented and compared with the MiniBooNE data. The role of scaling violations, in particular the contribution of meson exchange currents in the two-particle two-hole sector, is explored.

  4. Quantitative analysis of anatomical changes in the cuneate nucleus following forelimb denervation: a stereological morphometric study in adult cats.

    PubMed

    Avendaño, C; Dykes, R W

    1996-07-01

    The consequences on the cuneate nucleus of the transection of the major nerves of the forelimb in adult cats were studied quantitatively with stereological procedures on celloidin-embedded material. The cell cluster region of the normal cuneate was 2.93 +/- 0.41 (mean +/- SD) mm3. This volume decreased significantly 4.5 weeks after the injury. The decrease amounted to 11-23%, and persisted until the longest survival studied (36 weeks). Despite this reduction in nuclear volume, there was no significant loss of neurons. The normal cell cluster region contained 48.8 +/- 7.3 (mean +/- SD) x 1000 neurons. Neuronal density showed a significant 16.8% mean increase between 4 weeks and 36 weeks of deafferentation. Perikaryal volume decreased by an average of 15.2%, between 1 and 36 weeks, but since cell bodies make only a small fraction of the total volume, much of the overall volume reduction observed must be attributed to a concomitant reduction of the neuropil. The distribution of cell size suggested that there are two populations of neurons, presumably corresponding to interneurons and projection neurons. This bimodal distribution was maintained after deafferentation, but after 4 weeks it shifted to the left, showing an increase in small cells and a decrease of large cells. These findings demonstrate that peripheral deafferentation causes a substantial and persistent decrease of cytoplasmic mass in the cuneate nucleus, involving both neuropil and neuronal cell bodies, but does not lead to neuron loss, at least up to 36 weeks after injury. These effects suggest that the altered synaptic input and trophic support subsequent to deafferentation leave the cuneate nucleus in a permanently compromised, albeit seemingly stable, state.

  5. Cytoarchitecture and efferent projections of the nucleus incertus of the rat.

    PubMed

    Olucha-Bordonau, Francisco E; Teruel, Vicent; Barcia-González, Jorge; Ruiz-Torner, Amparo; Valverde-Navarro, Alfonso A; Martínez-Soriano, Francisco

    2003-09-01

    The nucleus incertus is located caudal to the dorsal raphe and medial to the dorsal tegmentum. It is composed of a pars compacta and a pars dissipata and contains acetylcholinesterase, glutamic acid decarboxylase, and cholecystokinin-positive somata. In the present study, anterograde tracer injections in the nucleus incertus resulted in terminal-like labeling in the perirhinal cortex and the dorsal endopyriform nucleus, the hippocampus, the medial septum diagonal band complex, lateral and triangular septum medial amygdala, the intralaminar thalamic nuclei, and the lateral habenula. The hypothalamus contained dense plexuses of fibers in the medial forebrain bundle that spread in nearly all nuclei. Labeling in the suprachiasmatic nucleus filled specifically the ventral half. In the midbrain, labeled fibers were observed in the interpeduncular nuclei, ventral tegmental area, periaqueductal gray, superior colliculus, pericentral inferior colliculus, pretectal area, the raphe nuclei, and the nucleus reticularis pontis oralis. Retrograde tracer injections were made in areas reached by anterogradely labeled fibers including the medial prefrontal cortex, hippocampus, amygdala, habenula, nucleus reuniens, superior colliculus, periaqueductal gray, and interpeduncular nuclei. All these injections gave rise to retrograde labeling in the nucleus incertus but not in the dorsal tegmental nucleus. These data led us to conclude that there is a system of ascending projections arising from the nucleus incertus to the median raphe, mammillary complex, hypothalamus, lateral habenula, nucleus reuniens, amygdala, entorhinal cortex, medial septum, and hippocampus. Many of the targets of the nucleus incertus were involved in arousal mechanisms including the synchronization and desynchronization of the theta rhythm.

  6. The nucleus is an intracellular propagator of tensile forces in NIH 3T3 fibroblasts.

    PubMed

    Alam, Samer G; Lovett, David; Kim, Dae In; Roux, Kyle J; Dickinson, Richard B; Lele, Tanmay P

    2015-05-15

    Nuclear positioning is a crucial cell function, but how a migrating cell positions its nucleus is not understood. Using traction-force microscopy, we found that the position of the nucleus in migrating fibroblasts closely coincided with the center point of the traction-force balance, called the point of maximum tension (PMT). Positioning of the nucleus close to the PMT required nucleus-cytoskeleton connections through linker of nucleoskeleton-to-cytoskeleton (LINC) complexes. Although the nucleus briefly lagged behind the PMT following spontaneous detachment of the uropod during migration, the nucleus quickly repositioned to the PMT within a few minutes. Moreover, traction-generating spontaneous protrusions deformed the nearby nucleus surface to pull the nuclear centroid toward the new PMT, and subsequent retraction of these protrusions relaxed the nuclear deformation and restored the nucleus to its original position. We propose that the protruding or retracting cell boundary transmits a force to the surface of the nucleus through the intervening cytoskeletal network connected by the LINC complexes, and that these forces help to position the nucleus centrally and allow the nucleus to efficiently propagate traction forces across the length of the cell during migration.

  7. Impaired drinking responses of rats with lesions of nucleus medianus: circadian dependence.

    PubMed

    Gardiner, T W; Stricker, E M

    1985-02-01

    The drinking behavior of rats with electrolytic lesions of ventral nucleus medianus (vNM) was examined during acute hyperosmolality and hypovolemia. The brain-damaged animals were impaired in their drinking responses to systemic treatment with hypertonic saline or polyethylene glycol solution when they were tested during the day. However, apparently normal drinking responses to both dipsogenic challenges were observed when the same animals were pretreated with the stimulant drug, caffeine, or when they were tested at night. These results suggest that lesions of vNM may produce complex alterations in the control of drinking behavior rather than the destruction of sensory receptors. The lesions appear to disrupt both circadian influences on drinking and activational components of drinking that normally serve to facilitate the behavioral response. The present results, together with similar findings for rats given lesions of the subfornical organ, support recent proposals that periventricular tissue bordering the rostral wall of the third cerebral ventricle plays an important role in the central control of drinking.

  8. Microtubule-nucleus interactions in Dictyostelium discoideum mediated by central motor kinesins.

    PubMed

    Tikhonenko, Irina; Nag, Dilip K; Robinson, Douglas N; Koonce, Michael P

    2009-05-01

    Kinesins are a diverse superfamily of motor proteins that drive organelles and other microtubule-based movements in eukaryotic cells. These motors play important roles in multiple events during both interphase and cell division. Dictyostelium discoideum contains 13 kinesin motors, 12 of which are grouped into nine families, plus one orphan. Functions for 11 of the 13 motors have been previously investigated; we address here the activities of the two remaining kinesins, both isoforms with central motor domains. Kif6 (of the kinesin-13 family) appears to be essential for cell viability. The partial knockdown of Kif6 with RNA interference generates mitotic defects (lagging chromosomes and aberrant spindle assemblies) that are consistent with kinesin-13 disruptions in other organisms. However, the orphan motor Kif9 participates in a completely novel kinesin activity, one that maintains a connection between the microtubule-organizing center (MTOC) and nucleus during interphase. kif9 null cell growth is impaired, and the MTOC appears to disconnect from its normally tight nuclear linkage. Mitotic spindles elongate in a normal fashion in kif9(-) cells, but we hypothesize that this kinesin is important for positioning the MTOC into the nuclear envelope during prophase. This function would be significant for the early steps of cell division and also may play a role in regulating centrosome replication.

  9. [Action of substance P and one of its synthetic antagonists on the nucleus tractus solitarius].

    PubMed

    Villa, A; Gilberti, G; Rapuzzi, G

    1989-08-01

    The study aims to establish the nature of the chemical mediator which produces the IP (presynaptic inhibition) of the mechanoreceptive afferents reaching the NTS (nucleus tractus solitarius) of the frog. To this end we have examined the effects of the administration of SP (substance P) and of one of its antagonists in the IV ventricle, in both normal and unilaterally axotomized preparations at the level of the glossopharyngeal nerve. In particular we have examined the size of the afferent discharge of the glossopharyngeal-hypoglossus reflex arc and the PAD (primary afferent depolarization) phenomena recorded from the dorsal root of the XII. While in normal preparations the SP reduces the size of the reflex discharge, on the contrary the antagonist increases it; the electrical activity of PAD appears to be enhanced by SP and reduced by the antagonist. Lastly SP normalises the enhanced response produced by axotomy. All the observed effects favour the hypothesis that the IP, which appears in the NTS with the activation of the mechanoreceptive afferents, is brought about by the release of S.P. from their central endings.

  10. Nucleus accumbens shell, but not core, tracks motivational value of salt.

    PubMed

    Loriaux, Amy L; Roitman, Jamie D; Roitman, Mitchell F

    2011-09-01

    To appropriately respond to an affective stimulus, we must be able to track its value across changes in both the external and internal environment. The nucleus accumbens (NAc) is a critical component of reward circuitry, but recent work suggests that the NAc encodes aversion as well as reward. It remains unknown whether differential NAc activity reflects flexible changes in stimulus value when it is altered due to a change in physiological state. We measured the activity of individual NAc neurons when rats were given intraoral infusions of a hypertonic salt solution (0.45 M NaCl) across multiple sessions in which motivational state was manipulated. This normally nonpreferred taste was made rewarding via sodium depletion, which resulted in a strong motivation to seek out and consume salt. Recordings were made in three conditions: while sodium replete (REP), during acute sodium depletion (DEP), and following replenishment of salt to normal sodium balance (POST). We found that NAc neurons in the shell and core subregions responded differently across the three conditions. In the shell, we observed overall increases in NAc activity when the salt solution was nonpreferred (REP) but decreases when the salt solution was preferred (DEP). In the core, overall activity was significantly altered only after sodium balance was restored (POST). The results lend further support to the selective encoding of affective stimuli by the NAc and suggest that NAc shell is particularly involved in flexibly encoding stimulus value based on motivational state. PMID:21697439

  11. Retinoic acid influences the development of the inferior olivary nucleus in the rodent.

    PubMed

    Yamamoto, Miyuki; Fujinuma, Masahiro; Hirano, Shinji; Hayakawa, Yoshika; Clagett-Dame, Margaret; Zhang, Jinghua; McCaffery, Peter

    2005-04-15

    All-trans retinoic acid (atRA) is an endogenous morphogen that regulates gene transcription. Maternal exposure to atRA results in severe developmental abnormalities by disrupting normal patterns of atRA distribution. Previously, we have shown that the pontine nucleus, which originates from the rhombic lip, is severely atrophied in the mouse on exposure to atRA at gestational days 9 and 10. In this study, we show that this same period of atRA exposure has the contrary effect on the inferior olive and this rhombic lip derivative is expanded in volume and probably contains an increased number of cells. The posterior region of the inferior olive maintains a relatively normal shape but is significantly expanded in size. In contrast, the organization of the anterior inferior olive is severely disrupted. Because endogenous atRA levels are known to be higher in the region of the posterior inferior olive at the time of birth of inferior olivary neurons, these results suggest that endogenous atRA may promote the generation, or select the fate, of posterior neurons of the inferior olive. In support of this concept, a reduction in atRA resulting from vitamin A deficiency results in loss of cells of the posterior inferior olive.

  12. Interaction between auditory and motor activities in an avian song control nucleus.

    PubMed Central

    McCasland, J S; Konishi, M

    1981-01-01

    Discrete telencephalic nuclei HVc (hyperstriatum ventrale, pars caudale) and RA (nucleus robustus archistriatalis) have been implicated by lesion studies in the control of vocalization in songbirds. We demonstrate directly the role of HVc in vocalization by presenting neuronal recordings taken from HVc of singing birds. Intracellular recordings from anesthetized birds have shown that many neurons in HVc respond to auditory stimuli. We confirm this result in the extracellular recordings from awake-behaving birds and further demonstrate responses of HVc neurons to playback of the bird's own song. The functional significance of these responses is not yet clear, but behavioral studies show that auditory feedback plays a crucial role in the development of normal song. We show that the song-correlated temporal pattern of neural activity persists even in the deaf bird. Furthermore, we show that in the normal bird, the activity pattern correlated with production of certain song elements can be clearly distinguished from the pattern of auditory responses to the same song elements. This result implies that an interaction occurs in HVc of the singing bird between motor and auditory activity. Through experiments involving playback of sound while the bird is singing, we show that the interaction consists of motor inhibition of auditory activity in HVc and that this inhibition decays slowly over a period of seconds after the song terminates. PMID:6950421

  13. A hypothalamic projection to the turtle red nucleus: an anterograde and retrograde tracing study.

    PubMed

    Herrick, J L; Keifer, J

    1997-10-01

    It is well known that the reptilian red nucleus lacks a descending motor cortical input to the red nucleus, but has a well-developed cerebellar input. The present study was undertaken to determine whether there is a descending rubral input that originates from the hypothalamus. Using an in vitro preparation from the turtle, injections of neurobiotin into the red nucleus resulted in retrograde labeling of neurons in the suprapeduncular nucleus of the hypothalamus. Injections of either neurobiotin or fluorescein dextran into the suprapeduncular nucleus resulted in anterograde labeling of axons and terminal boutons in the red nucleus. The majority of these terminations appeared to lie in the medial part of the red nucleus. These data have implications for the potential control of the somatic motor system of reptiles by limbic system inputs.

  14. The Nucleus Prepositus Hypoglossi Contributes to Head Direction Cell Stability in Rats

    PubMed Central

    Butler, William N.

    2015-01-01

    Head direction (HD) cells in the rat limbic system fire according to the animal's orientation independently of the animal's environmental location or behavior. These HD cells receive strong inputs from the vestibular system, among other areas, as evidenced by disruption of their directional firing after lesions or inactivation of vestibular inputs. Two brainstem nuclei, the supragenual nucleus (SGN) and nucleus prepositus hypoglossi (NPH), are known to project to the HD network and are thought to be possible relays of vestibular information. Previous work has shown that lesioning the SGN leads to a loss of spatial tuning in downstream HD cells, but the NPH has historically been defined as an oculomotor nuclei and therefore its role in contributing to the HD signal is less clear. Here, we investigated this role by recording HD cells in the anterior thalamus after either neurotoxic or electrolytic lesions of the NPH. There was a total loss of direction-specific firing in anterodorsal thalamus cells in animals with complete NPH lesions. However, many cells were identified that fired in bursts unrelated to the animals' directional heading and were similar to cells seen in previous studies that damaged vestibular-associated areas. Some animals with significant but incomplete lesions of the NPH had HD cells that were stable under normal conditions, but were unstable under conditions designed to minimize the use of external cues. These results support the hypothesis that the NPH, beyond its traditional oculomotor function, plays a critical role in conveying vestibular-related information to the HD circuit. PMID:25673848

  15. Increased Synchrony and Bursting of Dorsal Cochlear Nucleus Fusiform Cells Correlate with Tinnitus

    PubMed Central

    Wu, Calvin; Martel, David T.

    2016-01-01

    Tinnitus, the perception of phantom sounds, is thought to arise from increased neural synchrony, which facilitates perceptual binding and creates salient sensory features in the absence of physical stimuli. In the auditory cortex, increased spontaneous cross-unit synchrony and single-unit bursting are de facto physiological correlates of tinnitus. However, it is unknown whether neurons in the dorsal cochlear nucleus (DCN), the putative tinnitus-induction site, exhibit increased synchrony. Using a temporary-threshold shift model and gap-prepulse inhibition of the acoustic startle to assess tinnitus, we recorded spontaneous activity from fusiform cells, the principle neurons of the DCN, in normal hearing, tinnitus, and non-tinnitus guinea pigs. Synchrony and bursting, as well as spontaneous firing rate (SFR), correlated with behavioral evidence of tinnitus, and increased synchrony and bursting were associated with SFR elevation. The presence of increased synchrony and bursting in DCN fusiform cells suggests that a neural code for phantom sounds emerges in this brainstem location and likely contributes to the formation of the tinnitus percept. SIGNIFICANCE STATEMENT Tinnitus, a phantom auditory percept, is encoded by pathological changes in the neural synchrony code of perceptual processing. Increased cross-unit synchrony and bursting have been linked to tinnitus in several higher auditory stations but not in fusiform cells of the dorsal cochlear nucleus (DCN), key brainstem neurons in tinnitus generation. Here, we demonstrate increased synchrony and bursting of fusiform cell spontaneous firing, which correlate with frequency-specific behavioral measures of tinnitus. Thus, the neural representation of tinnitus emerges early in auditory processing and likely drives its pathophysiology in higher structures. PMID:26865628

  16. Theta synchronization between the hippocampus and the nucleus incertus in urethane-anesthetized rats.

    PubMed

    Cervera-Ferri, Ana; Guerrero-Martínez, Juan; Bataller-Mompeán, Manuel; Taberner-Cortes, Alida; Martínez-Ricós, Joana; Ruiz-Torner, Amparo; Teruel-Martí, Vicent

    2011-06-01

    Oscillatory coupling between distributed areas can constitute a mechanism for neuronal integration. Theta oscillations provide temporal windows for hippocampal processing and only appear during certain active states of animals. Since previous studies have demonstrated that nucleus incertus (NI) contributes to the generation of hippocampal theta activity, in this paper, we evaluated the oscillatory coupling between both structures. We compared hippocampal and NI field potentials that were simultaneously recorded in urethane-anesthetized rats. Electrical and cholinergic stimulations of the reticularis pontis oralis nucleus have been used as hippocampal theta generation models. The spectral analyses reveal that electrical stimulation induced an increase in theta oscillations in both channels, whose frequencies depended on the intensity of stimulation. The intensity range used simultaneously increased the normalized spectral energy in the fast theta band (6-12 Hz) in HPC and NI. Frequencies within the theta range were found to be very similar in both channels. In order to validate coupling, spectral coherence was inspected. The data reveal that coherence in the high theta band also increased while stimuli were applied. Cholinergic activation progressively increased the main frequency in both structures to reach an asymptotic period with stable peak frequency in the low theta range (3-6 Hz), which could be first observed in NI and lasted about 1,500 s. Coherence in this band reached values close to 1. Taken together, these results support an electrophysiological and functional coupling between the hippocampus and the reticular formation, suggesting NI to be part of a distributed network working at theta frequencies.

  17. How do Hox transcription factors find their target genes in the nucleus of living cells?

    PubMed

    Gehring, Walter J

    2011-01-01

    Homeotic mutations first found in Drosophila led to the identification of Hox genes in all bilateria. These genes are exceptional in that they are arranged in an ordered cluster, in which they are positioned in the same order along the chromosome as they are expressed along the antero-posterior axis to specify the corresponding body regions. They share a highly conserved DNA sequence of 180 bp, the homeobox which encodes the homeodomain, a 60 amino acid polypeptide involved in specific DNA and RNA binding and in protein-protein interactions. The discovery of the homeobox has uncovered for the first time a universal principle of specification of the body plan along the antero-posterior axis. The structure of the homeodomain has been determined by NMR spectroscopy and by X-ray crystallography. However, the mechanism by which the Hox proteins find their target genes in the nucleus of a living cell has been enigmatic. Transcriptome analysis indicates that there are hundreds of target genes to be regulated, both positively and negatively to ensure normal development. In the following, we show by Fluorescence Correlation Spectroscopy (FCS) and single molecule imaging in live salivary gland cells, that the mechanism of recognition is purely stochastic. The homeodomain associates and dissociates rapidly (in the ms range) with chromatin all along the chromosomes. If, however, it associates with a specific binding site in a puffed chromosome region, it remains bound for seconds or minutes to exert its function, by forming a complex with co-activators or co-repressors respectively. These direct measurements solve an old enigma of how Hox transcription factors find their target genes in the nucleus of live cells.

  18. PACAP neurons in the hypothalamic ventromedial nucleus are targets of central leptin signaling.

    PubMed

    Hawke, Zoe; Ivanov, Tina R; Bechtold, David A; Dhillon, Harveen; Lowell, Brad B; Luckman, Simon M

    2009-11-25

    The adipose-derived hormone, leptin, was discovered over 10 years ago, but only now are we unmasking its downstream pathways which lead to reduced energy intake (feeding) and increased energy expenditure (thermogenesis). Recent transgenic models have challenged the long-standing supposition that the hypothalamic arcuate nucleus (Arc) is omnipotent in the central response to leptin, and research focus is beginning to shift to examine roles of extra-arcuate sites. Dhillon et al. (2006) demonstrated that targeted knock out of the signaling form of the leptin receptor (lepr-B) in steroidogenic factor 1 (SF-1) cells of the hypothalamic ventromedial nucleus (VMN) produces obesity of a similar magnitude to the pro-opiomelanocortin (POMC)-driven lepr-B deleted mouse, via a functionally distinct mechanism. These findings reveal that SF-1 cells of the VMN could be equally as important as POMC cells in mediating leptin's anti-obesity effects. However, the identification of molecular and cellular correlates of this relationship remains tantalizingly unknown. Here, we have shown that mRNA expression of the VMN-expressed neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is regulated according to energy status and that it exerts catabolic effects when administered centrally to mice. Furthermore, we have shown that SF-1 and PACAP mRNAs are colocalized in the VMN, and that leptin signaling via lepr-B is required for normal PACAP expression in these cells. Finally, blocking endogenous central PACAP signaling with the antagonist PACAP(6-38) markedly attenuates leptin-induced hypophagia and hyperthermia in vivo. Thus, it appears that PACAP is an important mediator of central leptin effects on energy balance.

  19. Evidence for a motor and a non-motor domain in the human dentate nucleus--an fMRI study.

    PubMed

    Küper, M; Dimitrova, A; Thürling, M; Maderwald, S; Roths, J; Elles, H G; Gizewski, E R; Ladd, M E; Diedrichsen, J; Timmann, D

    2011-02-14

    Dum and Strick (J. Neurophysiol. 2003; 89, 634-639) proposed a division of the cerebellar dentate nucleus into a "motor" and "non-motor" area based on anatomical data in the monkey. We asked the question whether motor and non-motor domains of the dentate can be found in humans using functional magnetic resonance imaging (fMRI). Therefore dentate activation was compared in motor and cognitive tasks. Young, healthy participants were tested in a 1.5 T MRI scanner. Data from 13 participants were included in the final analysis. A block design was used for the experimental conditions. Finger tapping of different complexities served as motor tasks, while cognitive testing included a verbal working memory and a visuospatial task. To further confirm motor-related dentate activation, a simple finger movement task was tested in a supplementary experiment using ultra-highfield (7 T) fMRI in 23 participants. For image processing, a recently developed region of interest (ROI) driven normalization method of the deep cerebellar nuclei was used. Dorso-rostral dentate nucleus activation was associated with motor function, whereas cognitive tasks led to prominent activation of the caudal nucleus. The visuospatial task evoked activity bilaterally in the caudal dentate nucleus, whereas verbal working memory led to activation predominantly in the right caudal dentate. These findings are consistent with Dum and Strick's anatomical findings in the monkey. PMID:21081171

  20. NUCLEAR PHYSICS Resonances-Excitation Calculation Studies Investigation of Δ(3, 3) in Ground State of 90Zr Cold Finite Heavy Nucleus at Equilibrium and Under Large Compression

    NASA Astrophysics Data System (ADS)

    Mohammed, H. E. Abu-Sei'leek

    2011-01-01

    A non-relativistic microscopic mean field theory of finite nuclei is investigated where the nucleus is described as a collection of nucleons and delta resonances. The ground state properties of 90Zr nucleus have been investigated at equilibrium and large amplitude compression using a realistic effective baryon-baryon Hamiltonian based on Reid Soft Core (RSC) potential. The sensitivity of the ground state properties is studied, such as binding energy, nuclear radius, radial density distribution, and single particle energies to the degree of compression. It is found that the most of increasing in the nuclear energy generated under compression is used to create the massive Δ particles. For 90Zr nucleus under compression at 2.5 times density of the normal nuclear density, the excited nucleons to Δ's are increased sharply up to 14% of the total number of constituents. This result is consistent with the values extracted from relativistic heavy-ion collisions. The single particle energy levels are calculated and their behaviors under compression are examined too. A good agreement between results with effective Hamiltonian and the phenomenological shell model for the low lying single-particle spectra is obtained. A considerable reduction in compressibility for the nucleus, and softening of the equation of state with the inclusion of the Δ's in the nuclear dynamics are suggested by the results.