Science.gov

Sample records for hypoglossal nucleus normal

  1. TDP-43 in the hypoglossal nucleus identifies amyotrophic lateral sclerosis in behavioral variant frontotemporal dementia.

    PubMed

    Halliday, Glenda M; Kiernan, Matthew C; Kril, Jillian J; Mito, Remika; Masuda-Suzukake, Masami; Hasegawa, Masato; McCann, Heather; Bartley, Lauren; Dobson-Stone, Carol; Kwok, John B J; Hornberger, Michael; Hodges, John R; Tan, Rachel H

    2016-07-15

    The hypoglossal nucleus was recently identified as a key brain region in which the presence of TDP-43 pathology could accurately discriminate TDP-43 proteinopathy cases with clinical amyotrophic lateral sclerosis (ALS). The objective of the present study was to assess the hypoglossal nucleus in behavioral variant frontotemporal dementia (bvFTD), and determine whether TDP-43 in this region is associated with clinical ALS. Twenty-nine cases with neuropathological FTLD-TDP and clinical bvFTD that had not been previously assessed for hypoglossal TDP-43 pathology were included in this study. Of these 29 cases, 41% (n=12) had a dual diagnosis of bvFTD-ALS at presentation, all 100% (n=12) of which demonstrated hypoglossal TDP-43 pathology. Of the 59% (n=17) cohort that presented with pure bvFTD, 35% (n=6) were identified with hypoglossal TDP-43 pathology. Review of the case files of all pure bvFTD cases revealed evidence of possible or probable ALS in 5 of the 6 hypoglossal-positive cases (83%) towards the end of disease, and this was absent from all cases without such pathology. In conclusion, the present study validates grading the presence of TDP-43 in the hypoglossal nucleus for the pathological identification of bvFTD cases with clinical ALS, and extends this to include the identification of cases with possible ALS at end-stage.

  2. A quantitative study of subsurface cisterns and their relationships in normal and axotomized hypoglossal neurones.

    PubMed

    Sumner, B E

    1975-01-01

    A quantitative ultrastructural survey was made of subsurface cisterns and their association with overlying structures in the left hypoglossal nucleus of normal rats, and rats which had received left hypoglossal axotomies 7-84 days previously. Subsurface cisterns in normal rats occurred in some hypoglossal neurones, and, sporadically, in proximal dendrites. They were mostly subsynaptic, and often associated with Nissl substance; From 7-14 days postoperatively, when many somatic boutons temporarily lost contact with the perikaryal surface, and were replaced by a microglial sheath, the percentage of perikaryon with underlying cistern was significantly reduced. The Nissl substance was also dispersed at this stage, and not restored until 28 days postoperatively. At 21 days normal percentages of subsurface cistern were restored, but the cisterns were now mostly subastrocytic, an astrocytic sheath having replaced the microglial sheath. From 63 days onwards the cisterns were mostly subsynaptic again as boutons returned to the regenerating perikarya and the temporary astrocytic sheath disappeared. It is suggested that subsurface cisterns might alter the overlying perikaryal surface in some way during neuronal regeneration, causing certain boutons to adhere there.

  3. Chronic intermittent hypoxia affects endogenous serotonergic inputs and expression of synaptic proteins in rat hypoglossal nucleus

    PubMed Central

    Wu, Xu; Lu, Huan; Hu, Lijuan; Gong, Wankun; Wang, Juan; Fu, Cuiping; Liu, Zilong; Li, Shanqun

    2017-01-01

    Evidence has shown that hypoxic episodes elicit hypoglossal neuroplasticity which depends on elevated serotonin (5-HT), in contrast to the rationale of obstructive sleep apnea (OSA) that deficient serotonergic input to HMs fails to keep airway patency. Therefore, understanding of the 5-HT dynamic changes at hypoglossal nucleus (HN) during chronic intermittent hypoxia (CIH) will be essential to central pathogenic mechanism and pharmacological therapy of OSA. Moreover, the effect of CIH on BDNF-TrkB signaling proteins was quantified in an attempt to elucidate cellular cascades/synaptic mechanisms following 5-HT alteration. Male rats were randomly exposed to normal air (control), intermittent hypoxia of 3 weeks (IH3) and 5 weeks (IH5) groups. Through electrical stimulation of dorsal raphe nuclei (DRN), we conducted amperometric technique with carbon fiber electrode in vivo to measure the real time release of 5-HT at XII nucleus. 5-HT2A receptors immunostaining measured by intensity and c-Fos quantified visually were both determined by immunohistochemistry. CIH significantly reduced endogenous serotonergic inputs from DRN to XII nucleus, shown as decreased peak value of 5-HT signals both in IH3 and IH5groups, whereas time to peak and half-life period of 5-HT were unaffected. Neither 5-HT2A receptors nor c-Fos expression in HN were significantly altered by CIH. Except for marked increase in phosphorylation of ERK in IH5 rats, BDNF-TrkB signaling and synaptophys consistently demonstrated downregulated levels. These results suggest that the deficiency of 5-HT and BDNF-dependent synaptic proteins in our CIH protocol contribute to the decompensated mechanism of OSA. PMID:28337282

  4. Application of histamine or serotonin to the hypoglossal nucleus increases genioglossus muscle activity across the wake-sleep cycle.

    PubMed

    Neuzeret, Pierre-Charles; Sakai, Kazuya; Gormand, Frédéric; Petitjean, Thierry; Buda, Colette; Sastre, Jean-Pierre; Parrot, Sandrine; Guidon, Gérard; Lin, Jian-Sheng

    2009-03-01

    The decrease in genioglossus (GG) muscle activity during sleep, especially rapid eye movement (REM) or paradoxical sleep, can lead to airway occlusion and obstructive sleep apnoea (OSA). The hypoglossal nucleus innervating the GG muscle is under the control of serotonergic, noradrenergic and histaminergic neurons that cease firing during paradoxical sleep. The objectives of this study were to determine the effect on GG muscle activity during different wake-sleep states of the microdialysis application of serotonin, histamine (HA) or noradrenaline (NE) to the hypoglossal nucleus in freely moving cats. Six adult cats were implanted with electroencephalogram, electro-oculogram and neck electromyogram electrodes to record wake-sleep states and with GG muscle and diaphragm electrodes to record respiratory muscle activity. Microdialysis probes were inserted into the hypoglossal nucleus for monoamine application. Changes in GG muscle activity were assessed by power spectrum analysis. In the baseline conditions, tonic GG muscle activity decreased progressively and significantly from wakefulness to slow-wave sleep and even further during slow-wave sleep with ponto-geniculo-occipital waves and paradoxical sleep. Application of serotonin or HA significantly increased GG muscle activity during the wake-sleep states when compared with controls. By contrast, NE had no excitatory effect. Our results indicate that both serotonin and HA have a potent excitatory action on GG muscle activity, suggesting multiple aminergic control of upper airway muscle activity during the wake-sleep cycle. These data might help in the development of pharmacological approaches for the treatment of OSA.

  5. The Effect of Tongue Exercise on Serotonergic Input to the Hypoglossal Nucleus in Young and Old Rats

    ERIC Educational Resources Information Center

    Behan, Mary; Moeser, Adam E.; Thomas, Cathy F.; Russell, John A.; Wang, Hao; Leverson, Glen E.; Connor, Nadine P.

    2012-01-01

    Purpose: Breathing and swallowing problems affect elderly people and may be related to age-associated tongue dysfunction. Hypoglossal motoneurons that innervate the tongue receive a robust, excitatory serotonergic (5HT) input and may be affected by aging. We used a rat model of aging and progressive resistance tongue exercise to determine whether…

  6. Role of the trigeminal nerve in regrowth of hypoglossal motoneurons after hypoglossal-facial anastomosis.

    PubMed

    Mameli, Ombretta; Pellitteri, Rosalia; Russo, Antonella; Stanzani, Stefania; Caria, Marcello Alessandro; De Riu, Pier Luigi

    2006-12-01

    Conclusion. Functional recovery of facial muscles following hypoglossal-facial anastomosis (HFA) may be dependent not only on sensory information, relayed via the trigeminal nuclei to the hypoglossal nucleus, but also on extratrigeminal fibers, originating from the hypoglossal nucleus that travel in the infraorbital nerve (ION). This fact helps to explain the ability of hypoglossal neurons, after HFA, to induce contractions of muscles originally innervated from other nervous structures. Objective. The aim of the study was to better understand the role of the trigeminal nerve in reinnervation of facial muscles by hypoglossal motoneurons following HFA. Materials and methods. Central afferences of the ION were analyzed in rats by labeling the exposed nerve with horseradish peroxidase (HRP), whereas central organization of the efferent projections to the vibrissal area was analyzed by labeling the whisker pad muscles of the rat with a 5% solution of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil) in N,N-dimethylformamide. Results. The results show that extratrigeminal fibers, originating in the hypoglossal nucleus, travel along the ION. Retrograde tracing applied to ION or injected into the whisker pad showed labeled neurons in the Pr5 nucleus and all Sp5 trigeminal subnuclei. Small labeled neurons (10-15 microm diameter; 10-12 neurons per section), were also found in the hypoglossal nucleus.

  7. Transcriptional regulation of mouse hypoglossal motor neuron somatotopic map formation.

    PubMed

    Chen, Xin; Wang, Jae Woong; Salin-Cantegrel, Adele; Dali, Rola; Stifani, Stefano

    2016-11-01

    Somatic motor neurons in the hypoglossal nucleus innervate tongue muscles controlling vital functions such as chewing, swallowing and respiration. Formation of functional hypoglossal nerve circuits depends on the establishment of precise hypoglossal motor neuron maps correlating with specific tongue muscle innervations. Little is known about the molecular mechanisms controlling mammalian hypoglossal motor neuron topographic map formation. Here we show that combinatorial expression of transcription factors Runx1, SCIP and FoxP1 defines separate mouse hypoglossal motor neuron groups with different topological, neurotransmitter and calcium-buffering phenotypes. Runx1 and SCIP are coexpressed in ventromedial hypoglossal motor neurons involved in control of tongue protrusion whereas FoxP1 is expressed in dorsomedial motor neurons associated with tongue retraction. Establishment of separate hypoglossal motor neuron maps depends in part on Runx1-mediated suppression of ventrolateral and dorsomedial motor neuron phenotypes and regulation of FoxP1 expression pattern. These findings suggest that combinatorial actions of Runx1, SCIP and FoxP1 are important for mouse hypoglossal nucleus somatotopic map formation.

  8. Embryonic anastomosis between hypoglossal nerves.

    PubMed

    Rodríguez-Vázquez, J F; Mérida-Velasco, J R; Verdugo-López, S; Sanz-Casado, J V; Jiménez-Collado, J

    2009-12-01

    This article presents two cases of anastomosis of hypoglossal nerves in the suprahyoid region in human embryos of CR length 10.75 and 17.5 mm. This variation was studied in two human specimens at this stage of development and compared with the normal arrangement of the hypoglossal nerves in embryos at the same stage. The anastomotic branches were of similar caliber to the main trunks. In both cases the anastomosis was located dorsal to the origin of the geniohyoid muscles and caudal to the genioglossus muscles, lying transversally over the cranial face of the body of the hyoid bone anlage. The anastomosis formed a suprahyoid nerve chiasm on the midline in the embryo of 10.75 mm CR length.

  9. Nicotinic receptors modulate the onset of reactive oxygen species production and mitochondrial dysfunction evoked by glutamate uptake block in the rat hypoglossal nucleus.

    PubMed

    Tortora, Maria; Corsini, Silvia; Nistri, Andrea

    2017-02-03

    In several neurodegenerative diseases, glutamate-mediated excitotoxicity is considered to be a major process to initiate cell degeneration. Indeed, subsequent to excessive glutamate receptor stimulation, reactive oxygen species (ROS) generation and mitochondrial dysfunction are regarded as two major gateways leading to neuron death. These processes are mimicked in an in vitro model of rat brainstem slice when excitotoxicity is induced by DL-threo-β-benzyloxyaspartate (TBOA), a specific glutamate-uptake blocker that increases extracellular glutamate. Our recent study has demonstrated that brainstem hypoglossal motoneurons, which are very vulnerable to this damage, were neuroprotected from excitotoxicity with nicotine application through the activation of nicotinic acetylcholine receptors (nAChRs) and subsequent inhibition of ROS and mitochondrial dysfunction. The present study examined if endogenous cholinergic activity exerted any protective effect in this pathophysiological model and how ROS production (estimated with rhodamine fluorescence) and mitochondrial dysfunction (measured as methyltetrazolium reduction) were time-related during the early phase of excitotoxicity (0-4h). nAChR antagonists did not modify TBOA-evoked ROS production (that was nearly doubled over control) or mitochondrial impairment (25% decline), suggesting that intrinsic nAChR activity was insufficient to contrast excitotoxicity and needed further stimulation with nicotine to become effective. ROS production always preceded mitochondrial dysfunction by about 2h. Nicotine prevented both ROS production and mitochondrial metabolic depression with a delayed action that alluded to a complex chain of events targeting these two lesional processes. The present data indicate a relatively wide time frame during which strong nAChR activation can arrest a runaway neurotoxic process leading to cell death.

  10. Exogenous nerve growth factor protects the hypoglossal nerve against crush injury

    PubMed Central

    Fan, Li-yuan; Wang, Zhong-chao; Wang, Pin; Lan, Yu-yan; Tu, Ling

    2015-01-01

    Studies have shown that sensory nerve damage can activate the p38 mitogen-activated protein kinase (MAPK) pathway, but whether the same type of nerve injury after exercise activates the p38MAPK pathway remains unclear. Several studies have demonstrated that nerve growth factor may play a role in the repair process after peripheral nerve injury, but there has been little research focusing on the hypoglossal nerve injury and repair. In this study, we designed and established rat models of hypoglossal nerve crush injury and gave intraperitoneal injections of exogenous nerve growth factor to rats for 14 days. p38MAPK activity in the damaged neurons was increased following hypoglossal nerve crush injury; exogenous nerve growth factor inhibited this increase in acitivity and increased the survival rate of motor neurons within the hypoglossal nucleus. Under transmission electron microscopy, we found that the injection of nerve growth factor contributed to the restoration of the morphology of hypoglossal nerve after crush injury. Our experimental findings indicate that exogenous nerve growth factor can protect damaged neurons and promote hypoglossal nerve regeneration following hypoglossal nerve crush injury. PMID:26889186

  11. Chemogenetic stimulation of the hypoglossal neurons improves upper airway patency

    PubMed Central

    Fleury Curado, Thomaz; Fishbein, Kenneth; Pho, Huy; Brennick, Michael; Dergacheva, Olga; Sennes, Luiz U.; Pham, Luu V.; Ladenheim, Ellen E.; Spencer, Richard; Mendelowitz, David; Schwartz, Alan R.; Polotsky, Vsevolod Y.

    2017-01-01

    Obstructive sleep apnea (OSA) is characterized by recurrent upper airway obstruction during sleep. OSA leads to high cardiovascular morbidity and mortality. The pathogenesis of OSA has been linked to a defect in neuromuscular control of the pharynx. There is no effective pharmacotherapy for OSA. The objective of this study was to determine whether upper airway patency can be improved using chemogenetic approach by deploying designer receptors exclusively activated by designer drug (DREADD) in the hypoglossal motorneurons. DREADD (rAAV5-hSyn-hM3(Gq)-mCherry) and control virus (rAAV5-hSyn-EGFP) were stereotactically administered to the hypoglossal nucleus of C57BL/6J mice. In 6–8 weeks genioglossus EMG and dynamic MRI of the upper airway were performed before and after administration of the DREADD ligand clozapine-N-oxide (CNO) or vehicle (saline). In DREADD-treated mice, CNO activated the genioglossus muscle and markedly dilated the pharynx, whereas saline had no effect. Control virus treated mice showed no effect of CNO. Our results suggest that chemogenetic approach can be considered as a treatment option for OSA and other motorneuron disorders. PMID:28281681

  12. Contribution of the Runx1 transcription factor to axonal pathfinding and muscle innervation by hypoglossal motoneurons.

    PubMed

    Yoshikawa, Masaaki; Hirabayashi, Mizuki; Ito, Ryota; Ozaki, Shigeru; Aizawa, Shin; Masuda, Tomoyuki; Senzaki, Kouji; Shiga, Takashi

    2015-11-01

    The runt-related transcription factor Runx1 contributes to cell type specification and axonal targeting projections of the nociceptive dorsal root ganglion neurons. Runx1 is also expressed in the central nervous system, but little is known of its functions in brain development. At mouse embryonic day (E) 17.5, Runx1-positive neurons were detected in the ventrocaudal subdivision of the hypoglossal nucleus. Runx1-positive neurons lacked calcitonin gene-related peptide (CGRP) expression, whereas Runx1-negative neurons expressed CGRP. Expression of CGRP was not changed in Runx1-deficient mice at E17.5, suggesting that Runx1 alone does not suppress CGRP expression. Hypoglossal axon projections to the intrinsic vertical (V) and transverse (T) tongue muscles were sparser in Runx1-deficient mice at E17.5 compared to age-matched wild-type littermates. Concomitantly, vesicular acetylcholine transporter-positive axon terminals and acetylcholine receptor clusters were less dense in the V and T tongue muscles of Runx1-deficient mice. These abnormalities in axonal projection were not caused by a reduction in the total number hypoglossal neurons, failed synaptogenesis, or tongue muscles deficits. Our results implicate Runx1 in the targeting of ventrocaudal hypoglossal axons to specific tongue muscles. However, Runx1 deficiency did not alter neuronal survival or the expression of multiple motoneuron markers as in other neuronal populations. Thus, Runx1 appears to have distinct developmental functions in different brain regions.

  13. [Anatomical variations in the hypoglossal canal].

    PubMed

    De Francisco, M; Lemos, J L; Liberti, E A; Adamo, J; Jácomo, A L; Matson, E

    1990-01-01

    In this paper, 492 human dried skulls grouped according to sex and race (White and no White) were examined and the presence of a double hypoglossal canal was observed in 97 skulls. The statistical analysis allowed us to conclude that no significative difference exists in race X canal type; sex X canal type; race X side and sex X side interations.

  14. Evidence of neuroanatomical connection between the superior cervical ganglion and hypoglossal nerve in the hamster as revealed by tract-tracing and degeneration methods

    PubMed Central

    TSENG, CHI-YU; LUE, JUNE-HORNG; LEE, SHIH-HSIUNG; WEN, CHEN-YUAN; SHIEH, JENG-YUNG

    2001-01-01

    Previous studies have shown the existence of a sympathetic component in some cranial nerves including the hypoglossal nerve. In this study, the horseradish peroxidase (HRP) tract-tracing retrograde technique and experimental degeneration method were used to elucidate the possible neuroanatomical relationship between the superior cervical ganglion (SCG) and the hypoglossal nerve of hamsters. About 10% of the SCG principal neurons were HRP positive following the tracer application to the trunk of hypoglossal nerve. Most of the HRP-labelled neurons were multipolar and were randomly distributed in the ganglion. When HRP was injected into the medial branch of the hypoglossal nerve, some of the SCG neurons were labelled, but they were not detected when HRP was injected into the lateral branch. The present findings suggest that postganglionic sympathetic fibres from the SCG may travel along the hypoglossal nerve trunk via its medial branch to terminate in visceral targets such as the intralingual glands. By electron microscopy, the HRP reaction product was localised in the neuronal somata and numerous unmyelinated fibres in the SCG. In addition, HRP-labelled axon profiles considered to be the collateral branches of the principal neurons contained numerous clear round and a few dense core vesicles. Besides the above, some HRP-labelled small myelinated fibres, considered to be visceral afferents, were also present. Results of experimental degeneration following the severance of the hypoglossal nerve showed the presence of degenerating neuronal elements both in the hypoglossal nucleus and the SCG. This confirms that the hypoglossal nerve contains sympathetic component from the SCG which may be involved in regulation of the autonomic function of the tongue. PMID:11327203

  15. Differential involvement of perineuronal astrocytes and microglia in synaptic stripping after hypoglossal axotomy.

    PubMed

    Yamada, J; Nakanishi, H; Jinno, S

    2011-05-19

    Following peripheral axotomy, the presynaptic terminals are removed from lesioned neurons, that is synaptic stripping. To elucidate involvement of astrocytes and microglia in synaptic stripping, we herein examined the motoneuron perineuronal circumference after hypoglossal nerve transection. As reported previously, axotomy-induced slow cell death occurred in C57BL/6 mice but not in Wistar rats. Synaptophysin labeling in the hypoglossal nucleus exhibited a minor reduction in both species after axotomy. Slice patch recording showed that the mean frequency of miniature postsynaptic currents in axotomized motoneurons was significantly lower in rats than in mice. We then estimated the relative coverage of motoneuron perineuronal circumference by line profile analysis. In the synaptic environment, axotomy-induced intrusion of astrocytic processes was significantly more extensive in rats than in mice, whereas microglial intrusion into the synaptic space was significantly more severe in mice than in rats. Interestingly, in the extrasynaptic environment, the prevalence of contact between astrocytic processes and lesioned motoneurons was significantly increased in rats, while no significant axotomy-induced alterations in astrocytic contact were observed in mice. These findings indicate that astrocytic, but not microglial, reaction may primarily mediate some anti-apoptotic effects through synaptic stripping after hypoglossal nerve axotomy. In addition, enlargement of astrocytic processes in the extrasynaptic environment may also be involved in neuronal protection via the increased uptake of excessive glutamate.

  16. Embryonic and larval development of the sonic motor nucleus in the oyster toadfish

    SciTech Connect

    Galeo, A.J.; Fine, M.L.; Stevenson, J.A.

    1987-07-01

    The sonic motor nucleus (SMN), a likely homologue of the hypoglossal nucleus, provides the final common pathway for sound production in the oyster toadfish (Opsanus tau). SMN neurons increase in size and number for 7-8 years postnatally, and the swimbladder-sonic muscle complex grows throughout life. This study describes the normal embryonic and larval development of the SMN from its initial differentiation on about day 19 through day 40, when the yolk sac is resorbed and the fish is free swimming. In contrast to the rapid development of CNS nuclei in mammals, the SMN gradually increased in maturity with more active growth at the beginning and end of the observation period and a relatively static period in the middle. Consistent with a hypoglossal homology, the SMN differentiated within the spinal cord, added cells rostrally, and eventually extended into the medulla. Immature neurons appeared to originate from precursor cells in the ventral portion of the ventricular zone of the central canal. Such cells were initially round with little cytoplasmic development and later added processes and Nissl substance. The number of neurons increased 10-fold from a median of 35 to 322 cells, and no evidence of cell death was observed. Soma area approximately doubled from 20.6 to 41.2 micron 2, and cell nucleus area followed a similar pattern. (/sup 3/H)-thymidine autoradiography demonstrated that neurons were added continuously throughout the nucleus during embryonic and larval development.

  17. Retrograde Gene Delivery to Hypoglossal Motoneurons Using Adeno-Associated Virus Serotype 9

    PubMed Central

    ElMallah, Mai K.; Falk, Darin J.; Lane, Michael A.; Conlon, Thomas J.; Lee, Kun-Ze; Shafi, Nadeem I.; Reier, Paul J.

    2012-01-01

    Abstract Retrograde viral transport (i.e., muscle to motoneuron) enables targeted gene delivery to specific motor pools. Recombinant adeno-associated virus serotype 9 (AAV9) robustly infects motoneurons, but the retrograde transport capabilities of AAV9 have not been systematically evaluated. Accordingly, we evaluated the retrograde transduction efficiency of AAV9 after direct tongue injection in 129SVE mice as well as a mouse model that displays neuromuscular pathology (Gaa−/−). Hypoglossal (XII) motoneurons were histologically evaluated 8 weeks after tongue injection with AAV9 encoding green fluorescent protein (GFP) with expression driven by the chicken β-actin promoter (1×1011 vector genomes). On average, GFP expression was detected in 234±43 XII motoneurons 8 weeks after AAV9-GFP tongue injection. In contrast, tongue injection with a highly efficient retrograde anatomical tracer (cholera toxin β subunit, CT-β) resulted in infection of 818±88 XII motoneurons per mouse. The retrograde transduction efficiency of AAV9 was similar between the 129SVE mice and those with neuromuscular disease (Gaa−/−). Routine hematoxylin and eosin staining and cluster of differentiation (CD) immunostaining for T cells (CD3) indicated no persistent inflammation within the tongue or XII nucleus after AAV9 injection. Additional experiments indicated no adverse effects of AAV9 on the pattern of breathing. We conclude that AAV9 can retrogradely infect a significant portion of a given motoneuron pool in normal and dystrophic mice, and that its transduction efficiency is approximately 30% of what can be achieved with CT-β. PMID:22693957

  18. Neuroglia in the inferior olivary nucleus during normal aging and Alzheimer's disease.

    PubMed

    Lasn, H; Winblad, B; Bogdanovic, N

    2006-01-01

    It is likely that neuronal loss occurs in certain brain regions in Alzheimer's Disease (AD) without any neurofibrillary pathology. In the human principle inferior olivary nucleus (PO), we have shown that neuronal loss is about 34% (Lasn et al. Journal of Alzheimer Disease, 2001; 3: 159-168), but the fate of the neuroglial cells is unknown. Since the unique network of neurons and neuroglial cells and their cohabitation are essential for normal functioning of CNS, we designed a study to estimate the total number of oligodendrocytes and astrocytes in normally aged and AD brains. The study is based on 10 control and 11 AD post-mortem human brains. An unbiased stereological fractionator method was used. We found significant oligodendroglial cell loss (46%) in AD as compared to control brains, while the total number of astrocytes showed a tendency to decrease. It is likely that the ratio of oligodendroglial cells to neurons remains unchanged even in degenerative states, indicating that oligodendroglial cells parallel neuronal loss. Astroglial cells did not increase in total number, but the ratio to neurons was significantly increased due to the neuronal loss. Using a novel unbiased quantitative method, we were able to describe significant oligodendroglial loss in the PO but the pathogenic mechanism behind remains unknown.

  19. Increases in cytoplasmic dopamine compromise the normal resistance of the nucleus accumbens to methamphetamine neurotoxicity.

    PubMed

    Thomas, David M; Francescutti-Verbeem, Dina M; Kuhn, Donald M

    2009-06-01

    Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the caudate-putamen (CPu) where long-term DA depletion and microglial activation are most evident. Even damage within the CPu is remarkably heterogenous with lateral and ventral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared of the damage that accompanies binge METH intoxication. Increases in cytoplasmic DA produced by reserpine, L-DOPA or clorgyline prior to METH uncover damage in the NAc as evidenced by microglial activation and depletion of DA, tyrosine hydroxylase (TH), and the DA transporter. These effects do not occur in the NAc after treatment with METH alone. In contrast to the CPu where DA, TH, and DA transporter levels remain depleted chronically, DA nerve ending alterations in the NAc show a partial recovery over time. None of the treatments that enhance METH toxicity in the NAc and CPu lead to losses of TH protein or DA cell bodies in the substantia nigra or the ventral tegmentum. These data show that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of METH to include brain structures not normally targeted for damage by METH alone. The resistance of the NAc to METH-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of METH neurotoxicity by alterations in DA homeostasis is significant in light of the important roles played by this brain structure.

  20. MID-INFRARED SPECTRAL INDICATORS OF STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY IN NORMAL GALAXIES

    SciTech Connect

    Treyer, Marie; Martin, Christopher D.; Wyder, Ted; Schiminovich, David; O'Dowd, Matt; Johnson, Benjamin D.; Charlot, Stephane; Heckman, Timothy; Martins, Lucimara; Seibert, Mark; Van der Hulst, J. M.

    2010-08-20

    We investigate the use of mid-infrared (MIR) polycyclic aromatic hydrocarbon (PAH) bands, the continuum, and emission lines as probes of star formation (SF) and active galactic nucleus (AGN) activity in a sample of 100 'normal' and local (z {approx} 0.1) emission-line galaxies. The MIR spectra were obtained with the Spitzer Space Telescope Infrared Spectrograph as part of the Spitzer-SDSS-GALEX Spectroscopic Survey, which includes multi-wavelength photometry from the ultraviolet to the far-infrared and optical spectroscopy. The continuum and features were extracted using PAHFIT, a decomposition code which we find to yield PAH equivalent widths (EWs) up to {approx}30 times larger than the commonly used spline methods. Despite the lack of extreme objects in our sample (such as strong AGNs, low-metallicity galaxies, or ULIRGs), we find significant variations in PAH, continuum, and emission-line properties, and systematic trends between these MIR properties and optically derived physical properties, such as age, metallicity, and radiation field hardness. We revisit the diagnostic diagram relating PAH EWs and [Ne II]12.8 {mu}m/[O IV]25.9 {mu}m line ratios and find it to be in much better agreement with the standard optical SF/AGN classification than when spline decompositions are used, while also potentially revealing obscured AGNs. The luminosity of individual PAH components, of the continuum, and, with poorer statistics, of the neon emission lines and molecular hydrogen lines are found to be tightly correlated to the total infrared (TIR) luminosity, making individual MIR components good gauges of the total dust emission in SF galaxies. Like the TIR luminosity, these individual components can be used to estimate dust attenuation in the UV and in H{alpha} lines based on energy balance arguments. We also propose average scaling relations between these components and dust-corrected, H{alpha}-derived SF rates.

  1. Signaling mechanism underlying the histamine-modulated action of hypoglossal motoneurons.

    PubMed

    Liu, Zi-Long; Wu, Xu; Luo, Yan-Jia; Wang, Lu; Qu, Wei-Min; Li, Shan-Qun; Huang, Zhi-Li

    2016-04-01

    Histamine, an important modulator of the arousal states of the central nervous system, has been reported to contribute an excitatory drive at the hypoglossal motor nucleus to the genioglossus (GG) muscle, which is involved in the pathogenesis of obstructive sleep apnea. However, the effect of histamine on hypoglossal motoneurons (HMNs) and the underlying signaling mechanisms have remained elusive. Here, whole-cell patch-clamp recordings were conducted using neonatal rat brain sections, which showed that histamine excited HMNs with an inward current under voltage-clamp and a depolarization membrane potential under current-clamp via histamine H1 receptors (H1Rs). The phospholipase C inhibitor U-73122 blocked H1Rs-mediated excitatory effects, but protein kinase A inhibitor and protein kinase C inhibitor did not, indicating that the signal transduction cascades underlying the excitatory action of histamine on HMNs were H1R/Gq/11 /phospholipase C/inositol-1,4,5-trisphosphate (IP3). The effects of histamine were also dependent on extracellular Na(+) and intracellular Ca(2+), which took place via activation of Na(+)-Ca(2+) exchangers. These results identify the signaling molecules associated with the regulatory effect of histamine on HMNs. The findings of this study may provide new insights into therapeutic approaches in obstructive sleep apnea. We proposed the post-synaptic mechanisms underlying the modulation effect of histamine on hypoglossal motoneuron. Histamine activates the H1Rs via PLC and IP3, increases Ca(2+) releases from intracellular stores, promotes Na(+) influx and Ca(2+) efflux via the NCXs, and then produces an inward current and depolarizes the neurons. Histamine modulates the excitability of HMNs with other neuromodulators, such as noradrenaline, serotonin and orexin. We think that these findings should provide an important new direction for drug development for the treatment of obstructive sleep apnea.

  2. Nicotinic excitation of rat hypoglossal motoneurons.

    PubMed

    Chamberlin, N L; Bocchiaro, C M; Greene, R W; Feldman, J L

    2002-01-01

    Hypoglossal motoneurons (HMNs), which innervate the tongue muscles, are involved in several important physiological functions, including the maintenance of upper airway patency. The neural mechanisms that affect HMN excitability are therefore important determinants of effective breathing. Obstructive sleep apnea is a disorder characterized by recurrent collapse of the upper airway that is likely due to decline of pharyngeal motoneuron activity during sleep. Because cholinergic neuronal activity is closely coupled to wake and sleep states, we tested the effects and pharmacology of nicotinic acetylcholine receptor (nAChR) activation on HMNs. We made intracellular recordings from HMNs in medullary slices from neonatal rats and found that local application of the nicotinic agonist, 1,1-dimethyl-4-phenylpiperazinium iodide, excited HMNs by a Ca(2+)-sensitive, and TTX-insensitive inward current that was blocked by dihydro-beta-erythroidine (IC(50): 19+/-3 nM), methyllycaconitine (IC(50): 32+/-7 nM), and mecamylamine (IC(50): 88+/-11 nM), but not by alpha-bungarotoxin (10 nM). This is consistent with responses being mediated by postsynaptic nAChRs that do not contain the alpha7 subunit. These results suggest that nAChR activation may contribute to central maintenance of upper airway patency and that the decline in firing rate of cholinergic neurons during sleep could potentially disfacilitate airway dilator muscle activity, contributing to airway obstruction.

  3. A Morphometric Examination of the Ultrastructure of Regenerating Hypoglossal Motoneurons from the Rat and Analysis of Thyroid Hormone Influence on Motoneuron Structure and Regeneration

    DTIC Science & Technology

    1988-07-14

    from the rat. Hypoglossal nucleus volume and neuronal size were estimated from 50 micron sections. The volume and surface area of cell body organelles...diminished (pɘ.05). Significant neuronal enlargement (pɘ.05) was detected 13 and 21 days following axotomy. Subcellular alterations were most... neuronal enlargement was prolonged among the hyperthyroid animals. Enhanced nucleolar vacuolization, multiple nucleoli and nuclear filaments were

  4. The intercalatus nucleus of Staderini.

    PubMed

    Cascella, Marco

    2016-01-01

    Rutilio Staderini was one of the leading Italian anatomists of the twentieth century, together with some scientists, such as Giulio Chiarugi, Giovanni Vitali, and others. He was also a member of a new generation of anatomists. They had continued the tradition of the most famous Italian scientists, which started from the Renaissance up until the nineteenth century. Although he carried out important studies of neuroanatomy and comparative anatomy, as well as embryology, his name is rarely remembered by most medical historians. His name is linked to the nucleus he discovered: the Staderini nucleus or intercalated nucleus, a collection of nerve cells in the medulla oblongata located lateral to the hypoglossal nucleus. This article focuses on the biography of the neuroanatomist as well as the nucleus that carries his name and his other research, especially on comparative anatomy and embryology.

  5. Re-innervation of facial nerve territory using a composite hypoglossal nerve--muscle autograft--facial nerve bridge. An experimental model in sheep.

    PubMed

    Drew, S J; Fullarton, A C; Glasby, M A; Mountain, R E; Murray, J A

    1995-04-01

    The hypoglossal nerve has been used both entirely and in part to repair the facial nerve. Using the partial technique it may be difficult to obtain sufficient length and a free interposed graft is then required to extend the hypoglossal element. In six sheep the facial nerve was excised between its emergence from the stylomastoid foramen and its bifurcation in the parotid gland. The hypoglossal nerve was exposed and split longitudinally producing a limb which was reflected towards the distal stump of the facial nerve. This left a gap of 4-5 cm which was bridged with a freeze-thawed coaxially aligned skeletal muscle autograft. The sheep were examined at 8 months. Laser doppler blood-flow studies showed the blood-flow distal to the graft to be about 25% of that at an equivalent site on the normal side. Peak nerve conduction velocities were also reduced on the repaired side but stimulation of the proximal hypoglossal nerve was nevertheless capable of causing adequate contraction of both facial and tongue muscles. Histological comparison of the repaired facial nerves with equivalent sites on the normal side showed a reduction in mean axon and fibre diameters with normal myelin sheath thickness for the regenerated axon sizes. All of these features are to be expected in a regenerated nerve and are consistent with a good level of recovery of function.

  6. Facilitation of distinct inhibitory synaptic inputs by chemical anoxia in neurons in the oculomotor, facial and hypoglossal motor nuclei of the rat.

    PubMed

    Takagi, Satoshi; Kono, Yu; Nagase, Masashi; Mochio, Soichiro; Kato, Fusao

    2017-04-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the selective loss of motor neurons in the brainstem and spinal cord. Clinical studies have indicated that there is a distinct region-dependent difference in the vulnerability of motor neurons. For example, the motor neurons in the facial and hypoglossal nuclei are more susceptible to neuronal death than those in the oculomotor nucleus. To understand the mechanism underlying the differential susceptibility to cell death of the neurons in different motor nuclei, we compared the effects of chemical anoxia on the membrane currents and postsynaptic currents in different motor nuclei. The membrane currents were recorded from neurons in the oculomotor, facial and hypoglossal nuclei in brain slices of juvenile Wistar rats by using whole-cell recording in the presence of tetrodotoxin that prevents action potential-dependent synaptic transmission. NaCN consistently induced an inward current and a significant increase in the frequency of spontaneous synaptic inputs in neurons from these three nuclei. However, this increase in the synaptic input frequency was abolished by strychnine, a glycine receptor antagonist, but not by picrotoxin in neurons from the hypoglossal and facial nuclei, whereas that in neurons from the oculomotor nucleus was abolished by picrotoxin, but not by strychnine. Blocking ionotropic glutamate receptors did not significantly affect the NaCN-induced release facilitation in any of the three motor nuclei. These results suggest that anoxia selectively facilitates glycine release in the hypoglossal and facial nuclei and GABA release in the oculomotor nucleus. The region-dependent differences in the neurotransmitters involved in the anoxia-triggered release facilitation might provide a basis for the selective vulnerability of motor neurons in the neurodegeneration associated with ALS.

  7. Color canals modification with canny edge detection and morphological reconstruction for cell nucleus segmentation and area measurement in normal Pap smear images

    NASA Astrophysics Data System (ADS)

    Riana, Dwiza; Dewi, Dyah Ekashanti Octorina; Widyantoro, Dwi H.; Mengko, Tati Latifah R.

    2014-03-01

    This paper presents a cell nucleus segmentation and area measurement of Pap smear images by means of modification of color canals with Canny edge detection and morphological reconstruction methods. Cell nucleus characterization plays an important role for classifying the degree of abnormality in cervical cancer. The aim of this work is to find the matched measurement method with the manual nucleus area measurement. In this work, we utilized pap smear single cell images from Herlev data bank in RGB mode. The cell images were selected from 90 normal class subjects that include: Normal Superficial, Normal Intermediate, and Normal Columnar classes. The nucleus of each cell image was cropped manually to localize from the cytoplasm. The color canals modification was performed on each cropped nucleus image by, first, separating each R, G, B, and grayscale canals, then implementing addition operation based on color canals (R+G+B, R+G, R+B, G+B, and grayscale). The Canny edge detection was applied on those modifications resulting in binary edge images. The nucleus segmentation was implemented on the edge images by performing region filling based on morphological reconstruction. The area property was calculated based on the segmented nucleus area. The nucleus area from the proposed method was verified to the existing manual measurement (ground truth) of the Herlev data bank. Based on thorough observation upon the selected color canals and Canny edge detection. It can be concluded that Canny edge detection with R+G+B canal is the most significant for all Normal classes (r 0,305, p-value 0.05). While for Normal Superficial and Normal Intermediate, Canny edge detection is significant for all RGB modifications with (r 0.414 - 0.817 range, , p-value 0.05), and for Normal Columnar, Canny edge detection is significant for R+B canal (r 0.505, p-value 0.05).

  8. [Chromosome territories in the interphase nucleus in normal or pathological condition].

    PubMed

    Lavrov, A V; Vol'dgorn, Ia I; Bochkov, N P

    2011-01-01

    The non-random arrangement of chromosomes in the interphase nucleus was observed for the first time in the late XIX century. However, considerable progress in studying chromosome territories became possible only in the end of the XX century mainly due to advances in microscopy and molecular biology. At present, chromosome territories are believed to play an important role in epigenetic regulation of genome activity during various cell processes including but not limited to cell cycle, differentiation, stress response. 3D structure of genome also plays an important role in pathogenesis of various hereditary diseases and cancer. This article describes main provisions of the chromosome territory theory and current trends toward further development of human genetics based on the new knowledge about the role of chromosome territories.

  9. Hypoglossal nerve stimulation improves obstructive sleep apnea: 12-month outcomes.

    PubMed

    Kezirian, Eric J; Goding, George S; Malhotra, Atul; O'Donoghue, Fergal J; Zammit, Gary; Wheatley, John R; Catcheside, Peter G; Smith, Philip L; Schwartz, Alan R; Walsh, Jennifer H; Maddison, Kathleen J; Claman, David M; Huntley, Tod; Park, Steven Y; Campbell, Matthew C; Palme, Carsten E; Iber, Conrad; Eastwood, Peter R; Hillman, David R; Barnes, Maree

    2014-02-01

    Reduced upper airway muscle activity during sleep is a key contributor to obstructive sleep apnea pathogenesis. Hypoglossal nerve stimulation activates upper airway dilator muscles, including the genioglossus, and has the potential to reduce obstructive sleep apnea severity. The objective of this study was to examine the safety, feasibility and efficacy of a novel hypoglossal nerve stimulation system (HGNS; Apnex Medical, St Paul, MN, USA) in treating obstructive sleep apnea at 12 months following implantation. Thirty-one subjects (35% female, age 52.4 ± 9.4 years) with moderate to severe obstructive sleep apnea and unable to tolerate positive airway pressure underwent surgical implantation and activation of the hypoglossal nerve stimulation system in a prospective single-arm interventional trial. Primary outcomes were changes in obstructive sleep apnea severity (apnea-hypopnea index, from in-laboratory polysomnogram) and sleep-related quality of life [Functional Outcomes of Sleep Questionnaire (FOSQ)]. Hypoglossal nerve stimulation was used on 86 ± 16% of nights for 5.4 ± 1.4 h per night. There was a significant improvement (P < 0.001) from baseline to 12 months in apnea-hypopnea index (45.4 ± 17.5 to 25.3 ± 20.6 events h(-1) ) and Functional Outcomes of Sleep Questionnaire score (14.2 ± 2.0 to 17.0 ± 2.4), as well as other polysomnogram and symptom measures. Outcomes were stable compared with 6 months following implantation. Three serious device-related adverse events occurred: an infection requiring device removal; and two stimulation lead cuff dislodgements requiring replacement. There were no significant adverse events with onset later than 6 months following implantation. Hypoglossal nerve stimulation demonstrated favourable safety, feasibility and efficacy.

  10. Nuclear vertex constants and asymptotic normalization coefficients for the tritium nucleus

    SciTech Connect

    Babenko, V. A.; Petrov, N. M.

    2009-12-15

    The properties of the nuclear vertex constant for virtual triton decay to a deuteron and a neutron (T {sup {yields}} d + n) are investigated along with the properties of the asymptotic normalization coefficient defined for the triton wave function and related to this constant. These quantities are calculated numerically on the basis of an equation that relates the asymptotic normalization coefficient to the triton effective radius {rho}{sub T}, which was introduced in the present study. The values of G{sub T}{sup 2} = 1.244(68) fm and C{sub T}{sup 2} = 2.958(162) found from our calculations are in good agreement with experimental and theoretical estimates obtained for these quantities in other studies. Physical properties of the triton virtual state are also discussed.

  11. Activation of the Hypoglossal to Tongue Musculature Motor Pathway by Remote Control

    PubMed Central

    Horton, Garret A.; Fraigne, Jimmy J.; Torontali, Zoltan A.; Snow, Matthew B.; Lapierre, Jennifer L.; Liu, Hattie; Montandon, Gaspard; Peever, John H.; Horner, Richard L.

    2017-01-01

    Reduced tongue muscle tone precipitates obstructive sleep apnea (OSA), and activation of the tongue musculature can lessen OSA. The hypoglossal motor nucleus (HMN) innervates the tongue muscles but there is no pharmacological agent currently able to selectively manipulate a channel (e.g., Kir2.4) that is highly restricted in its expression to cranial motor pools such as the HMN. To model the effect of manipulating such a restricted target, we introduced a “designer” receptor into the HMN and selectively modulated it with a “designer” drug. We used cre-dependent viral vectors (AAV8-hSyn-DIO-hM3Dq-mCherry) to transduce hypoglossal motoneurons of ChAT-Cre+ mice with hM3Dq (activating) receptors. We measured sleep and breathing in three conditions: (i) sham, (ii) after systemic administration of clozapine-N-oxide (CNO; 1 mg/kg) or (iii) vehicle. CNO activates hM3Dq receptors but is otherwise biologically inert. Systemic administration of CNO caused significant and sustained increases in tongue muscle activity in non-REM (261 ± 33% for 10 hrs) and REM sleep (217 ± 21% for 8 hrs), both P < 0.01 versus controls. Responses were specific and selective for the tongue with no effects on diaphragm or postural muscle activities, or sleep-wake states. These results support targeting a selective and restricted “druggable” target at the HMN (e.g., Kir2.4) to activate tongue motor activity during sleep. PMID:28383527

  12. TrkB Signaling in Dorsal Raphe Nucleus is Essential for Antidepressant Efficacy and Normal Aggression Behavior.

    PubMed

    Adachi, Megumi; Autry, Anita E; Mahgoub, Melissa; Suzuki, Kanzo; Monteggia, Lisa M

    2017-03-01

    Brain-derived neurotrophic factor (BDNF) and its high affinity receptor, tropomyosin receptor kinase B (TrkB), have important roles in neural plasticity and are required for antidepressant efficacy. Studies examining the role of BDNF-TrkB signaling in depression and antidepressant efficacy have largely focused on the limbic system, leaving it unclear whether this signaling is important in other brain regions. BDNF and TrkB are both highly expressed in the dorsal raphe nucleus (DRN), a brain region that has been suggested to have a role in depression and antidepressant action, although it is unknown whether BDNF and TrkB in the dorsal raphe nucleus are involved in these processes. We combined the adeno-associated virus (AAV) with the Cre-loxP site-specific recombination system to selectively knock down either Bdnf or TrkB in the DRN. These mice were then characterized in several behavioral paradigms including measures of depression-related behavior and antidepressant efficacy. We show that knockdown of TrkB, but not Bdnf, in the DRN results in loss of antidepressant efficacy and increased aggression-related behavior. We also show that knockdown of TrkB or Bdnf in this brain region does not have an impact on weight, activity levels, anxiety, or depression-related behaviors. These data reveal a critical role for TrkB signaling in the DRN in mediating antidepressant responses and normal aggression behavior. The results also suggest a non-cell autonomous role for BDNF in the DRN in mediating antidepressant efficacy.

  13. Surgical and conservative methods for restoring impaired motor function - facial nerve, spinal accessory nerve, hypoglossal nerve (not including vagal nerve or swallowing)

    PubMed Central

    Laskawi, R.; Rohrbach, S.

    2005-01-01

    The present review gives a survey of rehabilitative measures for disorders of the motor function of the mimetic muscles (facial nerve), and muscles innervated by the spinal accessory and hypoglossal nerves. The dysfunction can present either as paralysis or hyperkinesis (hyperkinesia). Conservative and surgical treatment options aimed at restoring normal motor function and correcting the movement disorders are described. Static reanimation techniques are not dealt with. The final section describes the use of botulinum toxin in the therapy of dysphagia. PMID:22073058

  14. Early Idiopathic Normal Pressure Hydrocephalus Patients With Neuropsychological Impairment Are Associated With Increased Fractional Anisotropy in the Anterior Thalamic Nucleus.

    PubMed

    Chen, Yung-Chieh; Chiang, Shih-Wei; Chi, Chia-Hsing; Liou, Michelle; Kuo, Duen-Pang; Kao, Hung-Wen; Chung, Hsiao-Wen; Ma, Hsin I; Peng, Giia-Sheun; Wu, Yu-Te; Chen, Cheng-Yu

    2016-05-01

    In this study, we aimed to investigate the reactive changes in diffusion tensor imaging (DTI)-derived diffusion metrics of the anterior thalamic nucleus (AN), a relaying center for the Papez circuit, in early idiopathic normal pressure hydrocephalus (iNPH) patients with memory impairment, as well as its correlation with the patients' neuropsychological performances. In total, 28 probable iNPH patients with symptom onset within 1 year and 17 control subjects were prospectively recruited between 2010 and 2013 for this institutional review board-approved study. Imaging studies including DTI and a neuropsychological assessment battery were performed in all subjects. Diffusion metrics were measured from the region of the AN using tract-deterministic seeding method by reconstructing the mammillo-thalamo-cingulate connections within the Papez circuit. Differences in diffusion metrics and memory assessment scores between the patient and control group were examined via the Mann-Whitney U test. Spearman correlation analyses were performed to examine associations between diffusion metrics of AN and neuropsychological tests within the patient group. We discovered that early iNPH patients exhibited marked elevations in fractional anisotropy, pure diffusion anisotropy, and axial diffusivity (all P < 0.01), as well as lower neuropsychological test scores including verbal and nonverbal memory (all P < 0.05) compared with normal control. Spearman rank correlation analyses did not disclose significant correlations between AN diffusion metrics and neuropsychological test scores in the patient group, whereas ranked scatter plots clearly demonstrated a dichotic sample distribution between patient and control samples. In summary, our study highlighted the potential compensatory role of the AN by increasing thalamocortical connectivity within the Papez circuit because memory function declines in early iNPH when early shunt treatment may potentially reverse the memory deficits.

  15. Early Idiopathic Normal Pressure Hydrocephalus Patients With Neuropsychological Impairment Are Associated With Increased Fractional Anisotropy in the Anterior Thalamic Nucleus

    PubMed Central

    Chen, Yung-Chieh; Chiang, Shih-Wei; Chi, Chia-Hsing; Liou, Michelle; Kuo, Duen-Pang; Kao, Hung-Wen; Chung, Hsiao-Wen; Ma, Hsin I.; Peng, Giia-Sheun; Wu, Yu-Te; Chen, Cheng-Yu

    2016-01-01

    Abstract In this study, we aimed to investigate the reactive changes in diffusion tensor imaging (DTI)-derived diffusion metrics of the anterior thalamic nucleus (AN), a relaying center for the Papez circuit, in early idiopathic normal pressure hydrocephalus (iNPH) patients with memory impairment, as well as its correlation with the patients’ neuropsychological performances. In total, 28 probable iNPH patients with symptom onset within 1 year and 17 control subjects were prospectively recruited between 2010 and 2013 for this institutional review board-approved study. Imaging studies including DTI and a neuropsychological assessment battery were performed in all subjects. Diffusion metrics were measured from the region of the AN using tract-deterministic seeding method by reconstructing the mammillo–thalamo–cingulate connections within the Papez circuit. Differences in diffusion metrics and memory assessment scores between the patient and control group were examined via the Mann–Whitney U test. Spearman correlation analyses were performed to examine associations between diffusion metrics of AN and neuropsychological tests within the patient group. We discovered that early iNPH patients exhibited marked elevations in fractional anisotropy, pure diffusion anisotropy, and axial diffusivity (all P < 0.01), as well as lower neuropsychological test scores including verbal and nonverbal memory (all P < 0.05) compared with normal control. Spearman rank correlation analyses did not disclose significant correlations between AN diffusion metrics and neuropsychological test scores in the patient group, whereas ranked scatter plots clearly demonstrated a dichotic sample distribution between patient and control samples. In summary, our study highlighted the potential compensatory role of the AN by increasing thalamocortical connectivity within the Papez circuit because memory function declines in early iNPH when early shunt treatment may potentially reverse the

  16. Skull base osteomyelitis presenting with an isolated hypoglossal nerve palsy

    PubMed Central

    Kasfiki, Eirini Vasileiou; Kelly, Ciaran; Smith, John; Nicolaides, Andreas

    2013-01-01

    This is the first case of skull base osteomyelitis presenting with isolated bilateral hypoglossal nerve palsy reported in the literature. A 75-year-old man presented with tongue paralysis without any other cranial nerve palsy. He was otherwise well apart from recently having a high prostate-specific antigen level recorded. Investigations for malignancy or cerebrovascular insult were negative with the diagnosis of skull base osteomyelitis confirmed using CT. Following treatment with intravenous antibiotics for 6 weeks, symptoms resolved. PMID:23853016

  17. Modulation of motor cortex neuronal activity and motor behavior during subthalamic nucleus stimulation in the normal primate.

    PubMed

    Johnson, Luke A; Xu, Weidong; Baker, Kenneth B; Zhang, Jianyu; Vitek, Jerrold L

    2015-04-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established surgical therapy for advanced Parkinson's disease (PD). An emerging hypothesis is that the therapeutic benefit of DBS is derived from direct modulation of primary motor cortex (M1), yet little is known about the influence of STN DBS on individual neurons in M1. We investigated the effect of STN DBS, delivered at discrete interval intensities (20, 40, 60, 80, and 100%) of corticospinal tract threshold (CSTT), on motor performance and M1 neuronal activity in a naive nonhuman primate. Motor performance during a food reach and retrieval task improved during low-intensity stimulation (20% CSTT) but worsened as intensity approached the threshold for activation of corticospinal fibers (80% and 100% CSTT). To assess cortical effects of STN DBS, spontaneous, extracellular neuronal activity was collected from M1 neurons before, during, and after DBS at the same CSTT stimulus intensities. STN DBS significantly modulated the firing of a majority of M1 neurons; however, the direction of effect varied with stimulus intensity such that, at 20% CSTT, most neurons were suppressed, whereas at the highest stimulus intensities the majority of neurons were activated. At a population level, firing rates increased as stimulus intensity increased. These results show that STN DBS influences both motor performance and M1 neuronal activity systematically according to stimulus intensity. In addition, the unanticipated reduction in reach times suggests that STN DBS, at stimulus intensities lower than typically used for treatment of PD motor signs, can enhance normal motor performance.

  18. Differential expression of extracellular-signal-regulated kinase 5 (ERK5) in normal and degenerated human nucleus pulposus tissues and cells

    SciTech Connect

    Liang, Weiguo; Fang, Dejian; Ye, Dongping; Zou, Longqiang; Shen, Yan; Dai, Libing; Xu, Jiake

    2014-07-11

    Highlights: • ERK5 involved in NP cells. • ERK5 involved in NP tissue. • It was important modulator. - Abstract: Extracellular-signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and regulates a wide variety of cellular processes such as proliferation, differentiation, necrosis, apoptosis and degeneration. However, the expression of ERK5 and its role in degenerated human nucleus pulposus (NP) is hitherto unknown. In this study, we observed the differential expression of ERK5 in normal and degenerated human nucleus pulposus tissues by using immunohistochemical staining and Western blot. Treatment of NP cells with Pro-inflammatory cytokine, TNF-α decreased ERK5 gene expression as well as NP marker gene expression; including the type II collagen and aggrecan. Suppression of ERK5 gene expression in NP cells by ERK5 siRNA resulted in decreased gene expression of type II collagen and aggrecan. Furthermore, inhibition of ERK5 activation by BIX02188 (5 μM) decreased the gene expression of type II collagen and aggrecan in NP cells. Our results document the expression of ERK5 in degenerated nucleus pulposus tissues, and suggest a potential involvement of ERK5 in human degenerated nucleus pulposus.

  19. Hypoglossal canal size in living hominoids and the evolution of human speech.

    PubMed

    Jungers, William L; Pokempner, Amy A; Kay, Richard F; Cartmill, Matt

    2003-08-01

    The relative size of the hypoglossal canal has been proposed as a useful diagnostic tool for the identification of human-like speech capabilities in the hominid fossil record. Relatively large hypoglossal canals (standardized to oral cavity size) were observed in humans and assumed to correspond to relatively large hypoglossal nerves, the cranial nerve that controls motor function of the tongue. It was suggested that the human pattern of tongue motor innervation and associated speech potential are very different from those of African apes and australopithecines; the modern human condition apparently appeared by the time of Middle Pleistocene Homo. A broader interspecific analysis of hypoglossal canal size in primates conducted in 1999 has rejected this diagnostic and inferences based upon it. In an attempt to resolve these differences of opinion, which we believe are based in part on biased size-adjustments and/or unwarranted assumptions, a new data set was collected and analyzed from 298 extant hominoid skulls, including orangutans, gorillas, chimpanzees, bonobos, siamang, gibbons, and modern humans. Data on the absolute size of the hypoglossal nerve itself were also gathered from a small sample of humans and chimpanzee cadavers. A scale-free index of relative hypoglossal canal size (RHCS) was computed as 100 x (hypoglossal canal area(0.5)/oral cavity volume(0.333)). No significant sexual dimorphism in RHCS was discovered in any species of living hominoid, but there are significant interspecific differences in both absolute and relative sizes of the hypoglossal canal. In absolute terms, humans possess significantly larger canals than any other species except gorillas, but there is considerable overlap with chimpanzees. Humans are also characterized by large values of RHCS, but gibbons possess an even larger average mean for this index; siamang and bonobos overlap appreciably with humans in RHCS. The value of RHCS in Australopithecus afarensis is well within both

  20. Elevated mRNA-levels of distinct mitochondrial and plasma membrane Ca2+ transporters in individual hypoglossal motor neurons of endstage SOD1 transgenic mice

    PubMed Central

    Mühling, Tobias; Duda, Johanna; Weishaupt, Jochen H.; Ludolph, Albert C.; Liss, Birgit

    2014-01-01

    Disturbances in Ca2+ homeostasis and mitochondrial dysfunction have emerged as major pathogenic features in familial and sporadic forms of Amyotrophic Lateral Sclerosis (ALS), a fatal degenerative motor neuron disease. However, the distinct molecular ALS-pathology remains unclear. Recently, an activity-dependent Ca2+ homeostasis deficit, selectively in highly vulnerable cholinergic motor neurons in the hypoglossal nucleus (hMNs) from a common ALS mouse model, the endstage superoxide dismutase SOD1G93A transgenic mouse, was described. This functional deficit was defined by a reduced hMN mitochondrial Ca2+ uptake capacity and elevated Ca2+ extrusion across the plasma membrane. To address the underlying molecular mechanisms, here we quantified mRNA-levels of respective potential mitochondrial and plasma membrane Ca2+ transporters in individual, choline-acetyltransferase (ChAT) positive hMNs from wildtype (WT) and endstage SOD1G93A mice, by combining UV laser microdissection with RT-qPCR techniques, and specific data normalization. As ChAT cDNA levels as well as cDNA and genomic DNA levels of the mitochondrially encoded NADH dehydrogenase ND1 were not different between hMNs from WT and endstage SOD1G93A mice, these genes were used to normalize hMN-specific mRNA-levels of plasma membrane and mitochondrial Ca2+ transporters, respectively. We detected about 2-fold higher levels of the mitochondrial Ca2+ transporters MCU/MICU1, Letm1, and UCP2 in remaining hMNs from endstage SOD1G93A mice. These higher expression-levels of mitochondrial Ca2+ transporters in individual hMNs were not associated with a respective increase in number of mitochondrial genomes, as evident from hMN specific ND1 DNA quantification. Normalized mRNA-levels for the plasma membrane Na+/Ca2+ exchanger NCX1 were also about 2-fold higher in hMNs from SOD1G93A mice. Thus, pharmacological stimulation of Ca2+ transporters in highly vulnerable hMNs might offer a neuroprotective strategy for ALS. PMID:25452714

  1. Suppression of jaw-opening and trigemino-hypoglossal reflexes during swallowing in the cat.

    PubMed

    Ono, T; Ishiwata, Y; Kuroda, T; Nakamura, Y

    1999-11-01

    Jaw-opening and trigemino-hypoglossal reflexes can be evoked by innocuous as well as noxious afferents from intra-oral structures. It has been reported that the amplitude of the jaw-opening reflex evoked by weak electrical stimulation of the upper lip is subject not only to tonic suppression but also to phase-linked modulation during mastication. In this study, we investigated whether the jaw-opening and trigemino-hypoglossal reflexes are modulated during swallowing. Data were obtained from 8 chloralose-anesthetized cats. Reflexes were monitored by electromyographic activities recorded from the anterior digastric, genioglossus, and styloglossus muscles and, after paralysis, by the efferent discharge in the digastric and hypoglossal nerves. Swallowing was elicited either by water dropped on the tongue or by repetitive stimulation of the superior laryngeal nerve. Jaw-opening and trigemino-hypoglossal reflexes were evoked by stimulation of the lingual nerve, and the evoked afferent volley was recorded from the Gasserian ganglion so that the threshold of the lingual nerve could be determined. The following results were obtained: (1) The jaw-opening and trigemino-hypoglossal reflexes evoked by stimulation of the low-threshold, but not high-threshold, lingual afferents were remarkably suppressed during swallowing; and (2) both the jaw-opening and trigemino-hypoglossal reflexes evoked by low-threshold lingual afferents were suppressed during fictive swallowing after the animals were paralyzed. We conclude that the jaw-opening and trigemino-hypoglossal reflexes evoked by low-threshold lingual afferents are suppressed during swallowing by a central motor program.

  2. α2-Adrenergic blockade rescues hypoglossal motor defense against obstructive sleep apnea

    PubMed Central

    Song, Gang

    2017-01-01

    Decreased noradrenergic excitation of hypoglossal motoneurons during sleep causing hypotonia of pharyngeal dilator muscles is a major contributor to the pathogenesis of obstructive sleep apnea (OSA), a widespread disease for which treatment options are limited. Previous OSA drug candidates targeting various excitatory/inhibitory receptors on hypoglossal motoneurons have proved unviable in reactivating these neurons, particularly during rapid-eye-movement (REM) sleep. To identify a viable drug target, we show that the repurposed α2-adrenergic antagonist yohimbine potently reversed the depressant effect of REM sleep on baseline hypoglossal motoneuron activity (a first-line motor defense against OSA) in rats. Remarkably, yohimbine also restored the obstructive apnea–induced long-term facilitation of hypoglossal motoneuron activity (hLTF), a much-neglected form of noradrenergic-dependent neuroplasticity that could provide a second-line motor defense against OSA but was also depressed during REM sleep. Corroborating immunohistologic, optogenetic, and pharmacologic evidence confirmed that yohimbine’s beneficial effects on baseline hypoglossal motoneuron activity and hLTF were mediated mainly through activation of pontine A7 and A5 noradrenergic neurons. Our results suggest a 2-tier (impaired first- and second-line motor defense) mechanism of noradrenergic-dependent pathogenesis of OSA and a promising pharmacotherapy for rescuing both these intrinsic defenses against OSA through disinhibition of A7 and A5 neurons by α2-adrenergic blockade. PMID:28239660

  3. Tongue muscle plasticity following hypoglossal nerve stimulation in aged rats

    PubMed Central

    Connor, Nadine P.; Russell, John A.; Jackson, Michelle A.; Kletzien, Heidi; Wang, Hao; Schaser, Allison J.; Leverson, Glen E.; Zealear, David L.

    2012-01-01

    Introduction Age-related decreases in tongue muscle mass and strength have been reported. It may be possible to prevent age-related tongue muscle changes using neuromuscular electrical stimulation (NMES). Our hypothesis was that alterations in muscle contractile properties and myosin heavy chain composition would be found following NMES. Methods Fifty-four young, middle-aged and old Fischer 344/Brown Norway rats were included. Twenty-four rats underwent bilateral electrical stimulation of the hypoglossal nerves for 8 weeks and were compared with control or sham rats. Muscle contractile properties and myosin heavy chain (MHC) in the genioglossus (GG), styloglossus (SG) and hyoglossus (HG) muscles were examined. Results In comparison with unstimulated control rats, we found reduced muscle fatigue, increased contraction and half decay times and increased twitch and tetanic tension. Increased Type I MHC was found, except for GG in old and middle-aged rats. Discussion Transitions in tongue muscle contractile properties and phenotype were found following NMES. PMID:23169566

  4. Intrinsic excitability differs between murine hypoglossal and spinal motoneurons.

    PubMed

    Tadros, M A; Fuglevand, A J; Brichta, A M; Callister, R J

    2016-05-01

    Motoneurons differ in the behaviors they control and their vulnerability to disease and aging. For example, brain stem motoneurons such as hypoglossal motoneurons (HMs) are involved in licking, suckling, swallowing, respiration, and vocalization. In contrast, spinal motoneurons (SMs) innervating the limbs are involved in postural and locomotor tasks requiring higher loads and lower movement velocities. Surprisingly, the properties of these two motoneuron pools have not been directly compared, even though studies on HMs predominate in the literature compared with SMs, especially for adult animals. Here we used whole cell patch-clamp recording to compare the electrophysiological properties of HMs and SMs in age-matched neonatal mice (P7-P10). Passive membrane properties were remarkably similar in HMs and SMs, and afterhyperpolarization properties did not differ markedly between the two populations. HMs had narrower action potentials (APs) and a faster upstroke on their APs compared with SMs. Furthermore, HMs discharged APs at higher frequencies in response to both step and ramp current injection than SMs. Therefore, while HMs and SMs have similar passive properties, they differ in their response to similar levels of depolarizing current. This suggests that each population possesses differing suites of ion channels that allow them to discharge at rates matched to the different mechanical properties of the muscle fibers that drive their distinct motor functions.

  5. Solid-Cystic Hypoglossal Nerve Schwannoma with Fluid-Fluid Level: A Rare Case Report

    PubMed Central

    Sahoo, Kulamani; Shaha, Pramod Ramchand; Ilyas, Mohd. Abbas; Khairnar, Gaurav Rajendra

    2016-01-01

    Schwannomas (neurinoma, neurilemmoma) are benign slow-growing encapsulated tumours originating from well-differentiated myelin-producing Schwann cells or nerve fiber sheet cells at the glial-Schwann cell junction. Hypoglossal nerve schwannoma mostly develops in the intracranial and extra-cranial segment or in both intracranial and extra-cranial segment forming a dumbbell shape tumour. The peripheral hypoglossal schwannomas are very rare. We present a case of right hypoglossal nerve schwannoma in a 46-year-old female who presented with headache and neck pain since 2 weeks with deviation of tongue to right side since 1 week. Patient was investigated with Computed Tomography (CT) scan of head and Magnetic Resonance Imaging (MRI) of brain, which showed a dumb-bell shaped solid-cystic mass lesion with fluid-fluid level in right cerebello-pontine angle cistern. PMID:28208975

  6. A rare case of persistent hypoglossal artery associated with contralateral proximal subclavian stenosis

    PubMed Central

    Napolitano, Giuseppina; Leone, Giuseppe; Aiello, Alessandra; La porta, Antonietta; Tedeschi, Enrico; Briganti, Francesco; Caranci, Ferdinando

    2016-01-01

    Abstract The persistent hypoglossal artery is rare vascular anomalies. We report the case of a 50-year old man with right hypoglossal artery, ipsilateral hypoplasic internal carotid artery, associated with left proximal subclavian stenosis with subclavian steal syndrome. Power-Doppler-Ultra-Sonography spectral images obtained after the patient exercised the left arm showed mid-systolic deceleration with retrograde late-systolic velocities. A Computed Tomography Angiography demonstrated a proximal stenosis of the left SA, a mild right ICA hypoplasia and an anomalous artery arising from right ICA at C2–C3 level, entering the cranium via the hypoglossal canal and joining the basilar artery. Usually the presence of PHA may be completely asymptomatic, and detected as an incidental finding by CTA or MRA, but in our case its diagnosis is extremely important because it is often the only vessel supplying blood to the basilar trunk and posterior circulation. PMID:28352804

  7. Transient unilateral combined paresis of the hypoglossal nerve and lingual nerve following intubation anesthesia.

    PubMed

    Ulusoy, Hulya; Besir, Ahmet; Cekic, Bahanur; Kosucu, Muge; Geze, Sukran

    2014-01-01

    Nerve damage may occur in the pharyngolaryngeal region during general anesthesia. The most frequently injured nerves are the hypoglossal, lingual and recurrent laryngeal. These injuries may arise in association with several factors, such as laryngoscopy, endotracheal intubation and tube insertion, cuff pressure, mask ventilation, the triple airway maneuver, the oropharyngeal airway, manner of intubation tube insertion, head and neck position and aspiration. Nerve injuries in this region may take the form of an isolated single nerve or of paresis of two nerves together in the form of hypoglossal and recurrent laryngeal nerve palsy (Tapia's syndrome). However, combined injury of the lingual and hypoglossal nerves following intubation anesthesia is a much rarer condition. The risk of this damage can be reduced with precautionary measures. We describe a case of combined unilateral nervus hypoglossus and nervus lingualis paresis developing after intubation anesthesia.

  8. Hypoglossal Neuropathology and Respiratory Activity in Pompe Mice

    PubMed Central

    Sandhu, Milapjit S.; Elmallah, Mai K.; Falk, Darin J.; Lane, Michael A.; Reier, Paul J.; Byrne, Barry J.; Fuller, David D.

    2011-01-01

    Pompe disease is a lysosomal storage disorder associated with systemic deficiency of acid α-glucosidase (GAA). Respiratory-related problems in Pompe disease include hypoventilation and upper airway dysfunction. Although these problems have generally been attributed to muscular pathology, recent work has highlighted the potential role of central nervous system (CNS) neuropathology in Pompe motor deficiencies. We used a murine model of Pompe disease to test the hypothesis that systemic GAA deficiency is associated with hypoglossal (XII) motoneuron pathology and altered XII motor output during breathing. Brainstem tissue was harvested from adult Gaa−/− mice and the periodic acid Schiff method was used to examine neuronal glycogen accumulation. Semi-thin (2 μm) plastic sections showed widespread medullary neuropathology with extensive cytoplasmic glycogen accumulation in XII motoneuron soma. We next recorded efferent XII bursting in anesthetized and ventilated Gaa−/− and B6/129 mice both before and after bilateral vagotomy. The coefficient of variation of respiratory cycle duration was greater in Gaa−/− compared to B6/129 mice (p < 0.01). Vagotomy caused a robust increase in XII inspiratory burst amplitude in B6/129 mice (239 ± 44% baseline; p < 0.01) but had little impact on burst amplitude in Gaa−/− mice (130 ± 23% baseline; p > 0.05). We conclude that CNS GAA deficiency results in substantial glycogen accumulation in XII motoneuron cell bodies and altered XII motor output. Therapeutic strategies targeting the CNS may be required to fully correct respiratory-related deficits in Pompe disease. PMID:21747768

  9. Fibromyalgia Patients Had Normal Distraction Related Pain Inhibition but Cognitive Impairment Reflected in Caudate Nucleus and Hippocampus during the Stroop Color Word Test

    PubMed Central

    Martinsen, Sofia; Flodin, Pär; Berrebi, Jonathan; Löfgren, Monika; Bileviciute-Ljungar, Indre; Ingvar, Martin; Fransson, Peter; Kosek, Eva

    2014-01-01

    The mechanisms causing cognitive problems in chronic pain patients are not well understood. We used the Stroop color word task (SCWT) to investigate distraction-induced analgesia, cognitive performance, and cerebral activation patterns in 29 fibromyalgia (FM) patients (mean age 49.8 years, range 25–64 years) and 31 healthy controls (HC) (mean age 46.3 years, range 20–63 years). In the first study, SCWT was used to investigate distraction-induced analgesia in FM patients. Two versions of the task were applied, one with only congruent color-word images and one with incongruent images. Pressure pain thresholds were assessed using a pressure algometer before, during, and following SCWT. In the second study, reaction times (RTs) were assessed and functional magnetic resonance imaging (fMRI) was used to investigate cerebral activation patterns in FM patients and HC during the SCWT. An event-related task mixing incongruent and congruent images was used. In study one, we found reduced pressure pain sensitivity during SCWT in both groups alike and no statistically significant differences were seen between the incongruent and congruent conditions. The study two revealed longer RTs during the incongruent compared to the congruent condition in both groups. FM patients had longer RTs than HC in both conditions. Furthermore, we found a significant interaction between group and congruency; that is, the group differences in RTs were more pronounced during the incongruent condition. This was reflected in a reduced activation of the caudate nucleus, lingual gyrus, temporal areas, and the hippocampus in FM patients compared to HC. In conclusion, we found normal pain inhibition during SWTC in FM patients. The cognitive difficulties seen in FM patients, reflected in longer RTs, were related to reduced activation of the caudate nucleus and hippocampus during incongruent SCWT, which most likely affected the mechanisms of cognitive learning in FM patients. PMID:25275449

  10. Stent-Assisted Coil Embolization of a Wide-Neck Aneurysm of a Persistent Primitive Hypoglossal Artery

    SciTech Connect

    Baldi, Sebastian Zander, Tobias; Rabellino, Martin; Maynar, Manuel

    2009-03-15

    Persistent primitive hypoglossal artery (PPHA) represents the second most common carotid-vertebrobasilar anastomosis. The association of PPHA with intracranial aneurysms is not unusual. Treatment of aneurysms located on the PPHA itself is challenging due to the increased risk of ischemic complications secondary to the hypoglossal artery often being the sole contributor of flow to the posterior circulation. We report a case of a wide-neck aneurysm in a PPHA successfully treated using a stent-assisted coil embolization technique.

  11. Na(V)1.1 channels are critical for intercellular communication in the suprachiasmatic nucleus and for normal circadian rhythms.

    PubMed

    Han, Sung; Yu, Frank H; Schwartz, Michael D; Linton, Jonathan D; Bosma, Martha M; Hurley, James B; Catterall, William A; de la Iglesia, Horacio O

    2012-02-07

    Na(V)1.1 is the primary voltage-gated Na(+) channel in several classes of GABAergic interneurons, and its reduced activity leads to reduced excitability and decreased GABAergic tone. Here, we show that Na(V)1.1 channels are expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus. Mice carrying a heterozygous loss of function mutation in the Scn1a gene (Scn1a(+/-)), which encodes the pore-forming α-subunit of the Na(V)1.1 channel, have longer circadian period than WT mice and lack light-induced phase shifts. In contrast, Scn1a(+/-) mice have exaggerated light-induced negative-masking behavior and normal electroretinogram, suggesting an intact retina light response. Scn1a(+/-) mice show normal light induction of c-Fos and mPer1 mRNA in ventral SCN but impaired gene expression responses in dorsal SCN. Electrical stimulation of the optic chiasm elicits reduced calcium transients and impaired ventro-dorsal communication in SCN neurons from Scn1a(+/-) mice, and this communication is barely detectable in the homozygous gene KO (Scn1a(-/-)). Enhancement of GABAergic transmission with tiagabine plus clonazepam partially rescues the effects of deletion of Na(V)1.1 on circadian period and phase shifting. Our report demonstrates that a specific voltage-gated Na(+) channel and its associated impairment of SCN interneuronal communication lead to major deficits in the function of the master circadian pacemaker. Heterozygous loss of Na(V)1.1 channels is the underlying cause for severe myoclonic epilepsy of infancy; the circadian deficits that we report may contribute to sleep disorders in severe myoclonic epilepsy of infancy patients.

  12. Ceftriaxone attenuates ethanol drinking and restores extracellular glutamate concentration through normalization of GLT-1 in nucleus accumbens of male alcohol-preferring rats.

    PubMed

    Das, Sujan C; Yamamoto, Bryan K; Hristov, Alexandar M; Sari, Youssef

    2015-10-01

    Alteration of glutamatergic-neurotransmission is a hallmark of alcohol dependence. We have previously reported that chronic ethanol-drinking downregulated glutamate transporter 1 (GLT-1) in nucleus accumbens (NAc) in male P rats in a manner that was reversed by ceftriaxone treatment. However, the effect of ceftriaxone on extracellular glutamate concentrations in NAc after chronic ethanol-drinking has not yet been studied. In the present study, male P rats were treated with ceftriaxone (100 mg/kg/day, i.p.) for five consecutive days following five-weeks of free choice ethanol (15% and 30%) drinking. In vivo microdialysis was performed to measure the extracellular glutamate concentrations in NAc and the effect of blockade of GLT-1 with dihydrokainic acid (DHK) on extracellular glutamate in NAc of ceftriaxone-treated rats was determined. Ceftriaxone treatment attenuated ethanol intake as well as ethanol preference. Extracellular glutamate was significantly higher in NAc after five-weeks of ethanol drinking in saline-treated compared to water control rats. Ceftriaxone treatment blocked the increase extracellular glutamate produced by ethanol intake. Blockade of GLT-1 by DHK reversed the effects of ceftriaxone on glutamate and implicated the role of GLT-1 in the normalization of extracellular glutamate by ceftriaxone. In addition, GLT-1 protein was decreased in ethanol exposed animals and ceftriaxone treatment reversed this deficit. Ceftriaxone treatment also increased glutamine synthetase activity in NAc but not in PFC as compared to ethanol drinking saline-treated rats. Our present study demonstrates that ceftriaxone treatment prevents ethanol drinking in part through normalization of extracellular glutamate concentrations in NAc of male P rats via GLT-1.

  13. Unilateral compression neuropathy of the hypoglossal nerve due to head suspension orthosis in mitochondriopathy.

    PubMed

    Finsterer, Josef; Hess, Barbara

    2004-12-01

    An 85-year-old woman with multisystem mitochondriopathy experienced tension headache, cervical pain, torque head-posture, and vertigo since 1980 for which she was continuously wearing a head-suspension-orthosis- since 1990. Since 1996 she developed severe left-sided weakness and wasting of the tongue. Needle-EMG of the left genioglossus muscle revealed abnormal spontaneous activity and reduced interference-pattern. No morphological alterations in the anatomical course of the hypoglossal nerve were found. Severe, unilateral weakness and wasting of the tongue was interpreted due to chronic compression of the hypoglossal nerve by long-standing use of a head-suspension-orthosis for cervical pain from cervical muscle weakness and resulting spinal degeneration.

  14. Bell's palsy and partial hypoglossal to facial nerve transfer: Case presentation and literature review

    PubMed Central

    Socolovsky, Mariano; Páez, Miguel Domínguez; Masi, Gilda Di; Molina, Gonzalo; Fernández, Eduardo

    2012-01-01

    Background: Idiopathic facial nerve palsy (Bell's palsy) is a very common condition that affects active population. Despite its generally benign course, a minority of patients can remain with permanent and severe sequelae, including facial palsy or dyskinesia. Hypoglossal to facial nerve anastomosis is rarely used to reinnervate the mimic muscle in these patients. In this paper, we present a case where a direct partial hypoglossal to facial nerve transfer was used to reinnervate the upper and lower face. We also discuss the indications of this procedure. Case Description: A 53-year-old woman presenting a spontaneous complete (House and Brackmann grade 6) facial palsy on her left side showed no improvement after 13 months of conservative treatment. Electromyography (EMG) showed complete denervation of the mimic muscles. A direct partial hypoglossal to facial nerve anastomosis was performed, including dissection of the facial nerve at the fallopian canal. One year after the procedure, the patient showed House and Brackmann grade 3 function in her affected face. Conclusions: Partial hypoglossal–facial anastomosis with intratemporal drilling of the facial nerve is a viable technique in the rare cases in which severe Bell's palsy does not recover spontaneously. Only carefully selected patients can really benefit from this technique. PMID:22574255

  15. Facial reanimation after facial nerve injury using hypoglossal to facial nerve anastomosis: the gruppo otologico experience.

    PubMed

    Tanbouzi Husseini, Sami; Kumar, David Victor; De Donato, Giuseppe; Almutair, Tamama; Sanna, Mario

    2013-12-01

    To evaluate the results of facial nerve reanimation after facial nerve injury by means of hypoglossal to facial nerve anastomosis. Retrospective case review. Private neuro-otologic and cranial base quaternary referral center. Sixty patients underwent hypoglossal to facial nerve anastomosis for facial nerve reanimation between April 1987 and December 2010. Only forty patients completed a minimal follow up of 24 months at the time of evaluation and were included in the study population. Facial nerve paralysis was present for a mean duration of 11.3 months (range 2-42 months) and all the patients had a HB grade VI prior their surgery. Final facial nerve motor function. The most common cause of facial paralysis was vestibular Schwannoma surgery. All the patients achieved a postoperative HB grade III or IV after a mean follow-up time of 20 months. The facial movements were detected after a period that ranged from ranged from 5 to 9 months. Only 4 patients suffered from difficulties during eating and drinking and three of them had associated lower cranial nerve deficit. Despite the various techniques in facial reanimation following total facial nerve paralysis, the end to end of hypoglossal to facial nerve anastomosis remains one of the best treatments in cases of viable distal facial stump and nonatrophic musculature.

  16. Ultrasound findings of bilateral hypoplasia of the vertebral arteries associated with a persistent carotid-hypoglossal artery

    PubMed Central

    Janzen, Annette; Steinhuber, Christine Robert; Bogdahn, Ulrich Robert; Schuierer, Gerhard Robert; Schlachetzki, Felix

    2009-01-01

    We present a 31-year-old female who was admitted to our neurology department for vertigo, partial left-sided hemihypesthesia and nuchal headache of subacute onset. Colour-duplex ultrasound disclosed bilateral low flow with a high resistance flow pattern in both vertebral arteries in the V2 segments, while the basilar artery had normal flow. CT angiography and MRI ruled out any ischaemic cerebral infarct and disclosed a persistent hypoglossal artery (PHA) originating from the left internal carotid artery (ICA). The patient was eventually treated for cervicobrachialgia. Persistent carotid-basilar anastomosis such as PHA may account for an atypical stroke pattern in carotid disease, aneurysms and arterovenous malformations. In retrospect, PHA is amendable to colour-Duplex investigation due to an abnormal ICA flow and a discrepancy between the vertebral and basilar flow patterns. Ultrasound investigation of the vertebrobasilar system remains a challenge as variants appear frequently; hypoplasia of the vertebral arteries should thus be confirmed using CT or MR angiography. PMID:21686784

  17. Ultrasound findings of bilateral hypoplasia of the vertebral arteries associated with a persistent carotid-hypoglossal artery.

    PubMed

    Janzen, Annette; Steinhuber, Christine Robert; Bogdahn, Ulrich Robert; Schuierer, Gerhard Robert; Schlachetzki, Felix

    2009-01-01

    We present a 31-year-old female who was admitted to our neurology department for vertigo, partial left-sided hemihypesthesia and nuchal headache of subacute onset. Colour-duplex ultrasound disclosed bilateral low flow with a high resistance flow pattern in both vertebral arteries in the V2 segments, while the basilar artery had normal flow. CT angiography and MRI ruled out any ischaemic cerebral infarct and disclosed a persistent hypoglossal artery (PHA) originating from the left internal carotid artery (ICA). The patient was eventually treated for cervicobrachialgia. Persistent carotid-basilar anastomosis such as PHA may account for an atypical stroke pattern in carotid disease, aneurysms and arterovenous malformations. In retrospect, PHA is amendable to colour-Duplex investigation due to an abnormal ICA flow and a discrepancy between the vertebral and basilar flow patterns. Ultrasound investigation of the vertebrobasilar system remains a challenge as variants appear frequently; hypoplasia of the vertebral arteries should thus be confirmed using CT or MR angiography.

  18. Minimally Invasive Approach to the Lingual and Hypoglossal Nerves in the Adult Rat.

    PubMed

    Doyle, Edward John; Phillips, Grady W; Gratton, Michael Anne; Long, John P; Varvares, Mark A

    2016-06-01

    Surgical manipulation of the sensory and motor nerves of the rat tongue is often employed in studies evaluating the oral cavity functions of mastication and deglutition. A noninvasive, atraumatic approach that will then facilitate sufficient manipulation of these structures is required. In this study, we detail an approach that consistently allows identification of the hypoglossal (motor) and lingual (sensory) nerves of the rat. Six Wistar rats (250-500 g) were anesthetized and dissected either as fresh tissue (N = 3) or following transcardial perfusion with 4% paraformaldehyde (N = 3). Both fixed and non-fixed specimens of the rat head and neck were incised in the right submandibular region. The first animal in each group was used to gain a basic understanding of the regional muscular anatomy with reference to the hypoglossal and lingual nerves. Subsequent animals were used for the development of an efficient and minimally invasive approach to these nerves. The resultant approach begins as an incision through skin and platysma, followed by medial reflection of the digastric muscle. This allows visualization of the hypoglossal nerve in the region of the bifurcation of the common trunk into medial and lateral subdivisions. Next, the lingual nerve dissection is approached by reflection rostrally of the transversus mandibularis muscle and a caudal reflection of the mylohyoid muscle. This dissection reveals the geniohyoid muscle which when separated bluntly using forceps, exposes the lingual nerve. The anatomical approach described and illustrated herein will aid investigators in consistent identification of these two nerves as fundamental methods of their projects.

  19. End-to-side intrapetrous hypoglossal-facialanastomosis for reanimation of the face. Technical note.

    PubMed

    Ferraresi, Stefano; Garozzo, Debora; Migliorini, Vittorino; Buffatti, Paolo

    2006-03-01

    The aim of this paper was to report on further experience with a new technique for reanimation of the facial nerve. This procedure allows a straight end-to-side hypoglossal-facial anastomosis without interruption of the 12th cranial nerve or the need for graft interposition. It is technically demanding and time consuming but offers an effective, reliable, and extraordinarily quick means of reinnervating the facial muscles, including the orbicularis oculi muscle, thus avoiding the need for a gold weight in the eyelid or a fascial sling.

  20. Developmental nicotine exposure enhances inhibitory synaptic transmission in motor neurons and interneurons critical for normal breathing

    PubMed Central

    Jaiswal, Stuti J.; Wollman, Lila Buls; Harrison, Caitlyn M.; Pilarski, Jason Q.; Fregosi, Ralph F.

    2015-01-01

    Nicotine exposure in utero negatively affects neuronal growth, differentiation and synaptogenesis. We used rhythmic brainstems slices and immunohistochemistry to determine how developmental nicotine exposure (DNE) alters inhibitory neurotransmission in two regions essential to normal breathing, the hypoglossal motor nucleus (XIIn) and preBötzinger complex (preBötC). We microinjected glycine or muscimol (GABAA agonist) into the XIIn or preBötC of rhythmic brainstem slices from neonatal rats while recording from XII nerve roots to obtain XII motoneuron population activity. Injection of glycine or muscimol into the XIIn reduced XII nerve burst amplitude, while injection into the preBötC altered nerve burst frequency. These responses were exaggerated in preparations from DNE animals. Quantitative immunohistochemistry revealed a significantly higher GABAA receptor density on XII motoneurons from DNE pups. There were no differences in GABAA receptor density in the preBötC, and there were no differences in glycine receptor expression in either region. Nicotine, in the absence of other chemicals in tobacco smoke, alters normal development of brainstem circuits that are critical for normal breathing. PMID:26097160

  1. Neuronal development in the trigeminal mesencephalic nucleus of the duck under normal and hypothyroid states: I. A light microscopic morphometric analysis.

    PubMed

    Narayanan, Y; Narayanan, C H

    1987-01-01

    Light microscopic morphometric procedures were used in order to examine the effects of propylthiouracil (PTU) on the development of the mesencephalic nucleus of the trigeminal nerve in the duck. A single vascular injection of a 0.2% solution of PTU was administered at a dosage of 2 microliter/gm embryo weight on embryonic day nine (E9). Control embryos received a similar dose of Ringer's solution. The following parameters of cytodifferentiation of cells of the mesencephalic nucleus of V were studied: somal area profiles, nuclear area, and nuclear cytoplasmic ratios. In addition, the frequency of beak clapping was recorded from E16. Significant differences were observed in somal area profiles in the experimental group at E16 and E18 and in nuclear area profiles from E16 through hatching. Beak activity in the experimental embryos was drastically reduced. It is concluded that PTU induces a retardation in the differentiation of cells of the mesencephalic nucleus of V which may lead to behavior deficits as evidenced by reduction of beak activity. These observations provide a basis for the study of interactions between thyroid hormone and specific neuronal systems in the emergence of an adaptive function.

  2. Hypoglossal Nerve Palsy After Airway Management for General Anesthesia: An Analysis of 69 Patients

    PubMed Central

    Shah, Aalap C.; Barnes, Christopher; Spiekerman, Charles F.; Bollag, Laurent A.

    2014-01-01

    Isolated hypoglossal nerve palsy (HNP), or neurapraxia, a rare postoperative complication after airway management, causes ipsilateral tongue deviation, dysarthria, and dysphagia. We reviewed the pathophysiological causes of hypoglossal nerve injury and discuss the associated clinical and procedural characteristics of affected patients. Furthermore, we identified procedural factors potentially affecting HNP recovery duration and propose several measures that may reduce the risk of HNP. While HNP can occur after a variety of surgeries, most cases in the literature were reported after orthopedic and otolaryngology operations, typically in males. The diagnosis is frequently missed by the anesthesia care team in the recovery room due to the delayed symptomatic onset and often requires neurology and otolaryngology evaluations to exclude serious etiologies. Signs and symptoms are self-limited, with resolution occurring within 2 months in 50% of patients, and 80% resolving within 4 months. Currently, there are no specific preventive or therapeutic recommendations. We found 69 cases of HNP after procedural airway management reported in the literature from 1926–2013. PMID:25625257

  3. [EXPRESSION OF SEROTONIN TRANSPORTER IN THE DORSAL RAPHE NUCLEUS DURING THE EARLY POSTNATAL PERIOD IN NORMAL STATE AND UNDER PRENATAL DEFICIENCY OF THE SEROTONERGIC SYSTEM IN RATS].

    PubMed

    Khozhai, L I

    2016-01-01

    The expression of the serotonin transport membrane protein (5-NTT) in the dorsal raphe nucleus (DNR) was investigated in laboratory Wistar rats during the early postnatal period. The results of the immunocytochemical study using primary antibodies--anti-Serotonin transporter antibody (AbCam, UK)--showed that during the first 3 postnatal weeks the intensity of 5-NTT expression in DNR of control animals changes. At the earliest postnatal times the main part of subnuclear neurons (dorsal, ventral and lateral ones) of the dorsal raphe nucleus (DNR-d, DNR-v, DNR-lat) was shown to intensely express 5-NTT. Sites of 5-NTT localization are found on the membrane surface of neuron bodies and processes in neuropile. The reduction in the number of neurons expressing 5-NTT and of its binding sites was observed on P10. At this time a redistribution of 5-NTT localization sites occurs: they are very few on neuron bodies and dendrites but are located rather densely on the plasma membrane of axons. The number of neurons expressing 5-NTT gradually increases with age and in neuropile the density of 5-NTT localization sites rises. It is shown that during the prenatal development the reduction of serotonin level in all parts of the DNR leads to a reduction in both the number of neurons expressing 5-NTT and sites of its localization in the early postnatal period, this trend continuing with age.

  4. [A case of medial medullary infarction with persistent primitive hypoglossal artery].

    PubMed

    Jin, Kazutaka; Aihara, Naoto; Tsukamoto, Tetsuro

    2002-04-01

    A 66-year-old woman was admitted to our hospital because of vomiting, dizziness and vertigo. Neurological examination on admission revealed only upbeat nystagmus without cranial nerve symptoms, paresis, cerebellar signs or sensory disturbances. Magnetic resonance(MR) images demonstrated a new T 2 high intensity and T 1 iso-intensity signal lesion in the right upper medial medulla. This medial medullary infarction caused central vestibular dysfunction. MR angiography and digital subtraction angiography demonstrated a persistent primitive hypoglossal artery (PPHA) originating from the right internal carotid artery to the vertebrobasilar artery associated with the stenosis of the right internal carotid artery at the level of the cervical bifurcation. This is the first report of medullary infarction with persistent carotid-basilar anastomosis. We suspected this medullary infarction was caused by artery to artery embolism in the branch of the right vertebral artery through the PPHA distal originated from the stenosis of the right internal carotid artery.

  5. Neutron-proton effective mass splitting in neutron-rich matter at normal density from analyzing nucleon-nucleus scattering data within an isospin dependent optical model

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Hua; Guo, Wen-Jun; Li, Bao-An; Chen, Lie-Wen; Fattoyev, Farrukh J.; Newton, William G.

    2015-04-01

    The neutron-proton effective mass splitting in asymmetric nucleonic matter of isospin asymmetry δ and normal density is found to be mn-p* ≡ (mn* - mp*) / m = (0.41 ± 0.15) δ from analyzing globally 1088 sets of reaction and angular differential cross sections of proton elastic scattering on 130 targets with beam energies from 0.783 MeV to 200 MeV, and 1161 sets of data of neutron elastic scattering on 104 targets with beam energies from 0.05 MeV to 200 MeV within an isospin dependent non-relativistic optical potential model. It sets a useful reference for testing model predictions on the momentum dependence of the nucleon isovector potential necessary for understanding novel structures and reactions of rare isotopes.

  6. Dilation of the oropharynx via selective stimulation of the hypoglossal nerve

    NASA Astrophysics Data System (ADS)

    Huang, Jingtao; Sahin, Mesut; Durand, Dominique M.

    2005-12-01

    The functional effects of selective hypoglossal nerve (HG) stimulation with a multi-contact peripheral nerve electrode were assessed using images of the upper airways and the tongue in anesthetized beagles. A biphasic pulse train of 50 Hz frequency and 2 s duration was applied through each one of the tripolar contact sets of the nerve electrode while the pharyngeal images were acquired into a computer. The stimulation current was limited to 20% above the activation threshold for maximum selectivity. The images showed that various contact sets could generate several different activation patterns of the tongue muscles resulting in medial and/or lateral dilation and closing of the airways at the tongue root. Some of these patterns translated into an increase in the oropharyngeal size while others did not have any effect. The pharyngeal sizes were not statistically different during stimulation either between the two different positions of the head (30° and 60°), or when the lateral contacts were compared with the medial ones. The contacts that had the least effect generated an average of 53 ± 15% pharyngeal dilation relative to the best contacts, indicating that the results are marginally sensitive to the contact position around the HG nerve trunk. These results suggest that selective HG nerve stimulation can be a useful technique to produce multiple tongue activation patterns that can dilate the pharynx. This may in turn increase the size of the patient population who can benefit from HG nerve stimulation as a treatment method for obstructive sleep apnea.

  7. Intensity and frequency dependence of laryngeal afferent inputs to respiratory hypoglossal motoneurons.

    PubMed

    Mifflin, S W

    1997-12-01

    Inspiratory hypoglossal motoneurons (IHMs) mediate contraction of the genioglossus muscle and contribute to the regulation of upper airway patency. Intracellular recordings were obtained from antidromically identified IHMs in anesthetized, vagotomized cats, and IHM responses to electrical activation of superior laryngeal nerve (SLN) afferent fibers at various frequencies and intensities were examined. SLN stimulus frequencies <2 Hz evoked an excitatory-inhibitory postsynaptic potential (EPSP-IPSP) sequence or only an IPSP in most IHMs that did not change in amplitude as the stimulus was maintained. During sustained stimulus frequencies of 5-10 Hz, there was a reduction in the amplitude of SLN-evoked IPSPs with time with variable changes in the EPSP. At stimulus frequencies >25 Hz, the amplitude of EPSPs and IPSPs was reduced over time. At a given stimulus frequency, increasing stimulus intensity enhanced the decay of the SLN-evoked postsynaptic potentials (PSPs). Frequency-dependent attenuation of SLN inputs to IHMs also occurred in newborn kittens. These results suggest that activation of SLN afferents evokes different PSP responses in IHMs depending on the stimulus frequency. At intermediate frequencies, inhibitory inputs are selectively filtered so that excitatory inputs predominate. At higher frequencies there was no discernible SLN-evoked PSP temporally locked to the SLN stimuli. Alterations in SLN-evoked PSPs could play a role in the coordination of genioglossal contraction during respiration, swallowing, and other complex motor acts where laryngeal afferents are activated.

  8. Systemic Delivery of a Brain-Penetrant TrkB Antagonist Reduces Cocaine Self-Administration and Normalizes TrkB Signaling in the Nucleus Accumbens and Prefrontal Cortex

    PubMed Central

    Vendruscolo, Leandro F.; Caffino, Lucia; Giannotti, Giuseppe; Cazorla, Maxime; Fumagalli, Fabio; Riva, Marco A.; Homberg, Judith R.; Koob, George F.; Contet, Candice

    2016-01-01

    Cocaine exposure alters brain-derived neurotrophic factor (BDNF) expression in the brain. BDNF signaling through TrkB receptors differentially modulates cocaine self-administration, depending on the brain regions involved. In the present study, we determined how brain-wide inhibition of TrkB signaling affects cocaine intake, the motivation for the drug, and reinstatement of drug taking after extinction. To overcome the inability of TrkB ligands to cross the blood–brain barrier, the TrkB antagonist cyclotraxin-B was fused to the nontoxic transduction domain of the tat protein from human immunodeficiency virus type 1 (tat-cyclotraxin-B). Intravenous injection of tat-cyclotraxin-B dose-dependently reduced cocaine intake, motivation for cocaine (as measured under a progressive ratio schedule of reinforcement), and reinstatement of cocaine taking in rats allowed either short or long access to cocaine self-administration. In contrast, the treatment did not affect operant responding for a highly palatable sweet solution, demonstrating that the effects of tat-cyclotraxin-B are specific for cocaine reinforcement. Cocaine self-administration increased TrkB signaling and activated the downstream Akt pathway in the nucleus accumbens, and had opposite effects in the prefrontal cortex. Pretreatment with tat-cyclotraxin-B normalized protein levels in these two dopamine-innervated brain regions. Cocaine self-administration also increased TrkB signaling in the ventral tegmental area, where the dopaminergic projections originate, but pretreatment with tat-cyclotraxin-B did not alter this effect. Altogether, our data show that systemic administration of a brain-penetrant TrkB antagonist leads to brain region-specific effects and may be a potential pharmacological strategy for the treatment of cocaine addiction. SIGNIFICANCE STATEMENT Brain-derived neurotrophic factor (BDNF) signaling through TrkB receptors plays a well established role in cocaine reinforcement. However, local

  9. Current injection and receptor-mediated excitation produce similar maximal firing rates in hypoglossal motoneurons.

    PubMed

    Wakefield, Hilary E; Fregosi, Ralph F; Fuglevand, Andrew J

    2016-03-01

    The maximum firing rates of motoneurons (MNs), activated in response to synaptic drive, appear to be much lower than that elicited by current injection. It could be that the decrease in input resistance associated with increased synaptic activity (but not current injection) might blunt overall changes in membrane depolarization and thereby limit spike-frequency output. To test this idea, we recorded, in the same cells, maximal firing responses to current injection and to synaptic activation. We prepared 300 μm medullary slices in neonatal rats that contained hypoglossal MNs and used whole-cell patch-clamp electrophysiology to record their maximum firing rates in response to triangular-ramp current injections and to glutamate receptor-mediated excitation. Brief pressure pulses of high-concentration glutamate led to significant depolarization, high firing rates, and temporary cessation of spiking due to spike inactivation. In the same cells, we applied current clamp protocols that approximated the time course of membrane potential change associated with glutamate application and with peak current levels large enough to cause spike inactivation. Means (SD) of maximum firing rates obtained in response to glutamate application were nearly identical to those obtained in response to ramp current injection [glutamate 47.1 ± 12.0 impulses (imp)/s, current injection 47.5 ± 11.2 imp/s], even though input resistance was 40% less during glutamate application compared with current injection. Therefore, these data suggest that the reduction in input resistance associated with receptor-mediated excitation does not, by itself, limit the maximal firing rate responses in MNs.

  10. Ampakine CX717 potentiates intermittent hypoxia-induced hypoglossal long-term facilitation.

    PubMed

    Turner, S M; ElMallah, M K; Hoyt, A K; Greer, J J; Fuller, D D

    2016-09-01

    Glutamatergic currents play a fundamental role in regulating respiratory motor output and are partially mediated by α-amino-3-hydroxy-5-methyl-isoxazole-propionic acid (AMPA) receptors throughout the premotor and motor respiratory circuitry. Ampakines are pharmacological compounds that enhance glutamatergic transmission by altering AMPA receptor channel kinetics. Here, we examined if ampakines alter the expression of respiratory long-term facilitation (LTF), a form of neuroplasticity manifested as a persistent increase in inspiratory activity following brief periods of reduced O2 [intermittent hypoxia (IH)]. Current synaptic models indicate enhanced effectiveness of glutamatergic synapses after IH, and we hypothesized that ampakine pretreatment would potentiate IH-induced LTF of respiratory activity. Inspiratory bursting was recorded from the hypoglossal nerve of anesthetized and mechanically ventilated mice. During baseline (BL) recording conditions, burst amplitude was stable for at least 90 min (98 ± 5% BL). Exposure to IH (3 × 1 min, 15% O2) resulted in a sustained increase in burst amplitude (218 ± 44% BL at 90 min following final bout of hypoxia). Mice given an intraperitoneal injection of ampakine CX717 (15 mg/kg) 10 min before IH showed enhanced LTF (500 ± 110% BL at 90 min). Post hoc analyses indicated that CX717 potentiated LTF only when initial baseline burst amplitude was low. We conclude that under appropriate conditions ampakine pretreatment can potentiate IH-induced respiratory LTF. These data suggest that ampakines may have therapeutic value in the context of hypoxia-based neurorehabilitation strategies, particularly in disorders with blunted respiratory motor output such as spinal cord injury.

  11. Nerve cuff electrode using embedded magnets and its application to hypoglossal nerve stimulation

    NASA Astrophysics Data System (ADS)

    Seo, Jungmin; Hye Wee, Jee; Hoan Park, Jeong; Park, Pona; Kim, Jeong-Whun; Kim, Sung June

    2016-12-01

    Objective. A novel nerve cuff electrode with embedded magnets was fabricated and developed. In this study, a pair of magnets was fully embedded and encapsulated in a liquid crystal polymer (LCP) substrate to utilize magnetic force in order to replace the conventional installing techniques of cuff electrodes. In vitro and in vivo experiments were conducted to evaluate the feasibility of the magnet-embedded nerve cuff electrode (MENCE). Lastly, several issues pertaining to the MENCE such as the cuff-to-nerve diameter ratio, the force of the magnets, and possible concerns were discussed in the discussion section. Approach. Electrochemical impedance spectrum and cyclic voltammetry assessments were conducted to measure the impedance and charge storage capacity of the cathodal phase (CSCc). The MENCE was installed onto the hypoglossal nerve (HN) of a rabbit and the movement of the genioglossus was recorded through C-arm fluoroscopy while the HN was stimulated by a pulsed current. Main results. The measured impedance was 0.638 ∠ -67.8° kΩ at 1 kHz and 5.27 ∠ -82.1° kΩ at 100 Hz. The average values of access resistance and cut-off frequency were 0.145 kΩ and 3.98 kHz, respectively. The CSCc of the electrode was measured as 1.69 mC cm-2 at the scan rate of 1 mV s-1. The movement of the genioglossus contraction was observed under a pulsed current with an amplitude level of 0.106 mA, a rate of 0.635 kHz, and a duration of 0.375 ms applied through the MENCE. Significance. A few methods to close and secure cuff electrodes have been researched, but they are associated with several drawbacks. To overcome these, we used magnetic force as a closing method of the cuff electrode. The MENCE can be precisely installed on a target nerve without any surgical techniques such as suturing or molding. Furthermore, it is convenient to remove the installed MENCE because it requires little force to detach one magnet from the other, enabling repeatable installation and removal. We

  12. High energy nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Wosiek, B.

    1986-01-01

    Experimental results on high energy nucleus-nucleus interactions are presented. The data are discussed within the framework of standard super-position models and from the point-of-view of the possible formation of new states of matter in heavy ion collisions.

  13. Effect of ghrelin receptor agonist and antagonist on the activity of arcuate nucleus tyrosine hydroxylase containing neurons in C57BL/6 male mice exposed to normal or high fat diet.

    PubMed

    Pirnik, Z; Majercikova, Z; Holubova, M; Pirnik, R; Zelezna, B; Maletinska, L; Kiss, A

    2014-08-01

    Catecholamines participate in the food intake regulation, however, there are no literature data available, dealing with the activity of tyrosine hydroxylase (TH) neurons in response to stimulation or inhibition of GHS-R (growth hormone secretagogue receptor) in the hypothalamic arcuate nucleus (ARC). The present study was focused to reveal whether [Dpr(N-octanoyl) 3ghrelin], a stable GHS-R agonist, itself in doses of 5 or 10 mg/kg (s.c.) or in combination with GHS-R receptor antagonist ([DLys3]GHRP-6) in dose of 10 mg/kg (s.c.), may affect the activity of ARC TH-containing neurons in C57BL/6 male mice fed either with standard (SD) or high fat diet (HFD) that developed a diet-induced obesity (DIO). The data of the present study clearly indicate that both doses of GHS-R agonist stimulated food intake in SD mice and GHS-R antagonist significantly reduced GHS-R agonist orexinergic effect in SD mice and suppressed the voluntary food intake in HFD mice. Both doses of the GHS-R agonist stimulated Fos expression in ARC neurons in both diet groups of mice which was not abolished by GHS-R antagonist pretreatment. Moreover, both doses of the GHS-R agonist significantly influenced the activation of TH neurons in the ARC of SD mice. The GHS-R antagonist also significantly increased TH neurons activation after GHS-R agonist although this effect was less powerful in HFD mice. This is the first study demonstrating response of local ARC TH neurons to peripherally applied GHS-R agonist and antagonist. The present data point out that the response of TH neurons to GHS-R agonist and antagonist is different in normal and DIO mice and extend our knowledge about the further ARC neuronal phenotype responding to peripheral ghrelin. To bring insight into the understanding of the functional significance of the activated TH neurons in ARC, in the context of the ghrelin peripheral increase, further studies are required.

  14. The vasopressin-induced excitation of hypoglossal and facial motoneurons in young rats is mediated by V1a but not V1b receptors, and is independent of intracellular calcium signalling.

    PubMed

    Reymond-Marron, I; Tribollet, E; Raggenbass, M

    2006-09-01

    As a hormone, vasopressin binds to three distinct receptors: V1a and V1b receptors, which induce phospholipase-Cbeta (PLCbeta) activation and Ca2+ mobilization; and V2 receptors, which are coupled to adenylyl cyclase. V1a and V1b receptors are also present in neurons. In particular, hypoglossal (XII) and facial (VII) motoneurons are excited following vasopressin-V1a receptor binding. The aim of the present study was double: (i) to determine whether V1b receptors contribute to the excitatory effect of vasopressin in XII and VII motoneurons; and (ii) to establish whether the action of vasopressin on motoneurons is mediated by Ca2+ signalling. Patch-clamp recordings were performed in brainstem slices of young rats. Vasopressin depolarized the membrane or generated an inward current. By contrast, [1-deamino-4-cyclohexylalanine] arginine vasopressin (d[Cha4]AVP), a V1b agonist, had no effect. The action of vasopressin was suppressed by Phaa-D-Tyr(Et)-Phe-Gln-Asn-Lys-Pro-Arg-NH2, a V1a antagonist, but not by SSR149415, a V1b antagonist. Thus, the vasopressin-induced excitation of brainstem motoneurons was exclusively mediated by V1a receptors. Light microscopic autoradiography failed to detect V1b binding sites in the facial nucleus. In motoneurons loaded with GTP-gamma-S, a non-hydrolysable analogue of GTP, the effect of vasopressin was suppressed, indicating that neuronal V1a receptors are G-protein-coupled. Intracellular Ca2+ chelation suppressed a Ca2+-activated potassium current, but did not affect the vasopressin-evoked current. H7 and GF109203, inhibitors of protein kinase C, were without effect on the vasopressin-induced excitation. U73122 and D609, PLCbeta inhibitors, were also without effect. Thus, excitation of brainstem motoneurons by V1a receptor activation is probably mediated by a second messenger distinct from that associated with peripheral V1a receptors.

  15. A developmental study of glutamatergic neuron populations in the ventrobasal and the lateral geniculate nucleus of the thalamus: Comparing Genetic Absence Rats from Strasbourg (GAERS) and normal control wistar rats.

    PubMed

    Kirazlı, Özlem; Çavdar, Safiye; Yıldızel, Sercan; Onat, Filiz; Kaptanoğlu, Erkan

    2017-02-01

    An imbalance of GABAergic inhibition and glutamatergic excitation is suspected to be the cause of absence epileptic seizures. Absence seizures are known to be generated in thalamocortical circuitry. In the present study we used light microscopy immunohistochemistry to quantify the density of glutamate+ve neurons at two developmental stages (P10 and P60) in two thalamic nuclei, the ventrobasal (VB) and lateral geniculate nucleus (LGN) in Wistar rats and compared the results with similar data obtained from genetic absence epilepsy rats from Strasbourg (GAERS). Rats were perfused transcardially with glutaraldehyde and paraformaldehyde fixative, then samples from VB and LGN were removed from each animal and sectioned. The glutamatergic neurons were labelled using light-microscopic glutamate immunohistochemistry. The disector method was used to quantify the glutamate+ve neurons in VB and LGN of GAERS and Wistar rats. The data were statistically analyzed. The distribution of the glutamate+ve neurons in the VB thalamic nucleus showed a significant reduction in the neuronal profiles per unit thalamic area from P10 to P60 in both Wistar and GAERS. The decrease was greater in the GAERS compared to the Wistar animals. However, in the LGN no reduction was observed either in the Wistar or in the GAERS. Comparing the density of glutamate+ve neurons in the VB thalamic nucleus of P10 of Wistar animals with of P10 GAERS showed statistically significant greater densities of these neurons in GAERS than in the Wistar rats. However no significant difference was present at P60 between the Wistar and GAERS animals. The disproportional decrease in GAERS may be related to the onset of absence seizures or may be related to neurogenesis of absence epilepsy.

  16. Simultaneous expression of glutathione, thioredoxin-1, and their reductases in nerve transected hypoglossal motor neurons of rat.

    PubMed

    Hama, Isuzu; Nakagomi, Saya; Konishi, Hiroyuki; Kiyama, Hiroshi

    2010-01-08

    Anti-oxidative stress responses are crucial for the survival of nerve-injured motor neurons. Herein, we examined changes in expression of glutathione reductase (GSHr), thioredoxins (TRX1 and TRX2), and thioredoxin reductases (TRXr1 and TRXr2), important constituents of anti-oxidative pathways, following rat hypoglossal nerve transection. RT-PCR and in situ hybridization demonstrated that GSHr, TRX1, and TRXr1 mRNAs were significantly up-regulated during the first few weeks in nerve-injured motor neurons, while TRX2 and TRXr2 mRNAs were unchanged throughout 8 weeks after nerve transection. The up-regulation of GSH, GSHr, TRX1, and TRXr1 proteins in injured neurons was confirmed by immunohistochemical analysis. Western blotting also demonstrated up-regulation of GSHr, TRX1, and TRXr1 in injured neurons. These data suggest that the two major redox systems, GSH/GSHr and TRX1/TRXr1, are simultaneously activated in injured neurons, and likely provide protection of injured neurons against oxidative stress.

  17. The Nucleus Introduced

    PubMed Central

    Pederson, Thoru

    2011-01-01

    Now is an opportune moment to address the confluence of cell biological form and function that is the nucleus. Its arrival is especially timely because the recognition that the nucleus is extremely dynamic has now been solidly established as a paradigm shift over the past two decades, and also because we now see on the horizon numerous ways in which organization itself, including gene location and possibly self-organizing bodies, underlies nuclear functions. PMID:20660024

  18. Kaon-nucleus scattering

    NASA Technical Reports Server (NTRS)

    Hong, Byungsik; Maung, Khin Maung; Wilson, John W.; Buck, Warren W.

    1989-01-01

    The derivations of the Lippmann-Schwinger equation and Watson multiple scattering are given. A simple optical potential is found to be the first term of that series. The number density distribution models of the nucleus, harmonic well, and Woods-Saxon are used without t-matrix taken from the scattering experiments. The parameterized two-body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to the imaginary part of the forward elastic scattering amplitude, are presented. The eikonal approximation was chosen as our solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.

  19. Kaon-nucleus scattering

    NASA Technical Reports Server (NTRS)

    Hong, Byungsik; Buck, Warren W.; Maung, Khin M.

    1989-01-01

    Two kinds of number density distributions of the nucleus, harmonic well and Woods-Saxon models, are used with the t-matrix that is taken from the scattering experiments to find a simple optical potential. The parameterized two body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to imaginary part of the forward elastic scattering amplitude, are shown. The eikonal approximation was chosen as the solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.

  20. Onset of deconfinement in nucleus-nucleus collisions

    SciTech Connect

    Gazdzicki, M.; Gorenstein, M. I.; Seyboth, P.

    2012-05-15

    The energy dependence of hadron production in relativistic nucleus-nucleus collisions reveals anomalies-the kink, horn, and step. They were predicted as signals of the deconfinement phase transition and observed by the NA49 Collaboration in central PbPb collisions at the CERN SPS. This indicates the onset of the deconfinement in nucleus-nucleus collisions at about 30 A GeV.

  1. THE SPITZER MID-INFRARED ACTIVE GALACTIC NUCLEUS SURVEY. I. OPTICAL AND NEAR-INFRARED SPECTROSCOPY OF OBSCURED CANDIDATES AND NORMAL ACTIVE GALACTIC NUCLEI SELECTED IN THE MID-INFRARED

    SciTech Connect

    Lacy, M.; Ridgway, S. E.; Gates, E. L.; Petric, A. O.; Sajina, A.; Urrutia, T.; Cox Drews, S.; Harrison, C.; Seymour, N.; Storrie-Lombardi, L. J.

    2013-10-01

    We present the results of a program of optical and near-infrared spectroscopic follow-up of candidate active galactic nuclei (AGNs) selected in the mid-infrared. This survey selects both normal and obscured AGNs closely matched in luminosity across a wide range, from Seyfert galaxies with bolometric luminosities L {sub bol} ∼ 10{sup 10} L {sub ☉} to highly luminous quasars (L {sub bol} ∼ 10{sup 14} L {sub ☉}), all with redshifts ranging from 0 to 4.3. Samples of candidate AGNs were selected with mid-infrared color cuts at several different 24 μm flux density limits to ensure a range of luminosities at a given redshift. The survey consists of 786 candidate AGNs and quasars, of which 672 have spectroscopic redshifts and classifications. Of these, 137 (20%) are type 1 AGNs with blue continua, 294 (44%) are type 2 objects with extinctions A{sub V} ∼> 5 toward their AGNs, 96 (14%) are AGNs with lower extinctions (A{sub V} ∼ 1), and 145 (22%) have redshifts, but no clear signs of AGN activity in their spectra. Of the survey objects 50% have L {sub bol} > 10{sup 12} L {sub ☉}, in the quasar regime. We present composite spectra for type 2 quasars and objects with no signs of AGN activity in their spectra. We also discuss the mid-infrared—emission-line luminosity correlation and present the results of cross correlations with serendipitous X-ray and radio sources. The results show that: (1) obscured objects dominate the overall AGN population, (2) mid-infrared selected AGN candidates exist which lack AGN signatures in their optical spectra but have AGN-like X-ray or radio counterparts, and (3) X-ray and optical classifications of obscured and unobscured AGNs often differ.

  2. Cytotoxicity of nucleus-targeting fluorescent gold nanoclusters.

    PubMed

    Zhao, Jing-Ya; Cui, Ran; Zhang, Zhi-Ling; Zhang, Mingxi; Xie, Zhi-Xiong; Pang, Dai-Wen

    2014-11-07

    Gold nanoclusters (AuNCs) with ultra small sizes and unique fluorescence properties have shown promising potential for imaging the nuclei of living cells. However, little is known regarding the potential cytotoxicity of AuNCs after they enter the cell nucleus. The aim of this study is to investigate whether and how nucleus-targeting AuNCs affect the normal functioning of cells. Highly stable, water-soluble and bright fluorescent Au25NCs (the core of each nanocluster is composed of 25 gold atoms) were synthesized. Specific targeting of Au25NCs to the cell nucleus was achieved by conjugating the TAT peptide to the Au25NCs. Cell viability, cell morphology, cell apoptosis/necrosis, reactive oxygen species (ROS) level and mitochondrial membrane potential examinations were performed on different cell lines exposed to the nucleus-targeting Au25NCs. We found that the nucleus-targeting Au25NCs caused cell apoptosis in a dose-dependent manner. A possible mechanism for the cytotoxicity of the nucleus-targeting Au25NCs was proposed as follows: the nucleus-targeting Au25NCs induce the production of ROS, resulting in the oxidative degradation of mitochondrial components, in turn leading to apoptosis via a mitochondrial damage pathway. This work facilitates a better understanding of the toxicity of AuNCs, especially nucleus-targeting AuNCs.

  3. Neutrino-nucleus interactions

    SciTech Connect

    Gallagher, H.; Garvey, G.; Zeller, G.P.; /Fermilab

    2011-01-01

    The study of neutrino oscillations has necessitated a new generation of neutrino experiments that are exploring neutrino-nuclear scattering processes. We focus in particular on charged-current quasi-elastic scattering, a particularly important channel that has been extensively investigated both in the bubble-chamber era and by current experiments. Recent results have led to theoretical reexamination of this process. We review the standard picture of quasi-elastic scattering as developed in electron scattering, review and discuss experimental results, and discuss additional nuclear effects such as exchange currents and short-range correlations that may play a significant role in neutrino-nucleus scattering.

  4. Reality of comet nucleus.

    NASA Technical Reports Server (NTRS)

    Lyttleton, R. A.

    1972-01-01

    The prime problem of a comet mission must be to settle whether the cometary nucleus has an actual tangible material existence, or whether it arises from some optical effect present only at times within comets. The absence of any large particles in a comet seems to be demonstrated by certain meteor showers. A feature that would seem to indicate that a comet consists primarily of a swarm of particles is that the coma in general contracts as the comet approaches the sun, roughly in proportion within the distance, and then expands again as it recedes.

  5. Nucleus from string theory

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Morita, Takeshi

    2011-08-01

    In generic holographic QCD, we find that baryons are bound to form a nucleus, and that its radius obeys the empirically-known mass-number (A) dependence r∝A1/3 for large A. Our result is robust, since we use only a generic property of D-brane actions in string theory. We also show that nucleons are bound completely in a finite volume. Furthermore, employing a concrete holographic model (derived by Hashimoto, Iizuka, and Yi, describing a multibaryon system in the Sakai-Sugimoto model), the nuclear radius is evaluated as O(1)×A1/3[fm], which is consistent with experiments.

  6. Higgs-boson production in nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W. (Principal Investigator)

    1990-01-01

    Cross-section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two-photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two-photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  7. Higgs-Boson Production in Nucleus-Nucleus Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  8. Networking the nucleus

    PubMed Central

    Rajapakse, Indika; Scalzo, David; Tapscott, Stephen J; Kosak, Steven T; Groudine, Mark

    2010-01-01

    The nuclei of differentiating cells exhibit several fundamental principles of self-organization. They are composed of many dynamical units connected physically and functionally to each other—a complex network—and the different parts of the system are mutually adapted and produce a characteristic end state. A unique cell-specific signature emerges over time from complex interactions among constituent elements that delineate coordinate gene expression and chromosome topology. Each element itself consists of many interacting components, all dynamical in nature. Self-organizing systems can be simplified while retaining complex information using approaches that examine the relationship between elements, such as spatial relationships and transcriptional information. These relationships can be represented using well-defined networks. We hypothesize that during the process of differentiation, networks within the cell nucleus rewire according to simple rules, from which a higher level of order emerges. Studying the interaction within and among networks provides a useful framework for investigating the complex organization and dynamic function of the nucleus. PMID:20664641

  9. Meson multiplicity versus energy in relativistic nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Atwater, T. W.; Freier, P. S.

    1986-01-01

    A systematic study of meson multiplicity as a function of energy at energies up to 100 GeV/u in nucleus-nucleus collisions has been made, using cosmic-ray data in nuclear emulsion. The data are consistent with simple nucleon-nucleon superposition models. Multiplicity per interacting nucleon in AA collisions does not appear to differ significantly from pp collisions.

  10. Momentum loss in proton-nucleus and nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Khan, Ferdous; Townsend, Lawrence W.

    1993-01-01

    An optical model description, based on multiple scattering theory, of longitudinal momentum loss in proton-nucleus and nucleus-nucleus collisions is presented. The crucial role of the imaginary component of the nucleon-nucleon transition matrix in accounting for longitudinal momentum transfer is demonstrated. Results obtained with this model are compared with Intranuclear Cascade (INC) calculations, as well as with predictions from Vlasov-Uehling-Uhlenbeck (VUU) and quantum molecular dynamics (QMD) simulations. Comparisons are also made with experimental data where available. These indicate that the present model is adequate to account for longitudinal momentum transfer in both proton-nucleus and nucleus-nucleus collisions over a wide range of energies.

  11. Surface albedo of cometary nucleus

    NASA Astrophysics Data System (ADS)

    Mukai, T.; Mukai, S.

    A variation of the albedo on the illuminated disk of a comet nucleus is estimated, taking into account the multiple reflection of incident light due to small scale roughness. The dependences of the average albedo over the illuminated disk on the degree of roughness and on the complex refractive index of the surface materials are examined. The variation estimates are compared with measurements of the nucleus albedo of Comet Halley (Reitsema et al., 1987).

  12. Cytotoxicity of nucleus-targeting fluorescent gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhao, Jing-Ya; Cui, Ran; Zhang, Zhi-Ling; Zhang, Mingxi; Xie, Zhi-Xiong; Pang, Dai-Wen

    2014-10-01

    Gold nanoclusters (AuNCs) with ultra small sizes and unique fluorescence properties have shown promising potential for imaging the nuclei of living cells. However, little is known regarding the potential cytotoxicity of AuNCs after they enter the cell nucleus. The aim of this study is to investigate whether and how nucleus-targeting AuNCs affect the normal functioning of cells. Highly stable, water-soluble and bright fluorescent Au25NCs (the core of each nanocluster is composed of 25 gold atoms) were synthesized. Specific targeting of Au25NCs to the cell nucleus was achieved by conjugating the TAT peptide to the Au25NCs. Cell viability, cell morphology, cell apoptosis/necrosis, reactive oxygen species (ROS) level and mitochondrial membrane potential examinations were performed on different cell lines exposed to the nucleus-targeting Au25NCs. We found that the nucleus-targeting Au25NCs caused cell apoptosis in a dose-dependent manner. A possible mechanism for the cytotoxicity of the nucleus-targeting Au25NCs was proposed as follows: the nucleus-targeting Au25NCs induce the production of ROS, resulting in the oxidative degradation of mitochondrial components, in turn leading to apoptosis via a mitochondrial damage pathway. This work facilitates a better understanding of the toxicity of AuNCs, especially nucleus-targeting AuNCs.Gold nanoclusters (AuNCs) with ultra small sizes and unique fluorescence properties have shown promising potential for imaging the nuclei of living cells. However, little is known regarding the potential cytotoxicity of AuNCs after they enter the cell nucleus. The aim of this study is to investigate whether and how nucleus-targeting AuNCs affect the normal functioning of cells. Highly stable, water-soluble and bright fluorescent Au25NCs (the core of each nanocluster is composed of 25 gold atoms) were synthesized. Specific targeting of Au25NCs to the cell nucleus was achieved by conjugating the TAT peptide to the Au25NCs. Cell viability, cell

  13. A comprehensive review with potential significance during skull base and neck operations, Part II: glossopharyngeal, vagus, accessory, and hypoglossal nerves and cervical spinal nerves 1-4.

    PubMed

    Shoja, Mohammadali M; Oyesiku, Nelson M; Shokouhi, Ghaffar; Griessenauer, Christoph J; Chern, Joshua J; Rizk, Elias B; Loukas, Marios; Miller, Joseph H; Tubbs, R Shane

    2014-01-01

    Knowledge of the possible neural interconnections found between the lower cranial and upper cervical nerves may prove useful to surgeons who operate on the skull base and upper neck regions in order to avoid inadvertent traction or transection. We review the literature regarding the anatomy, function, and clinical implications of the complex neural networks formed by interconnections between the lower cranial and upper cervical nerves. A review of germane anatomic and clinical literature was performed. The review is organized into two parts. Part I discusses the anastomoses between the trigeminal, facial, and vestibulocochlear nerves or their branches and other nerve trunks or branches in the vicinity. Part II deals with the anastomoses between the glossopharyngeal, vagus, accessory and hypoglossal nerves and their branches or between these nerves and the first four cervical spinal nerves; the contribution of the autonomic nervous system to these neural plexuses is also briefly reviewed. Part II is presented in this article. Extensive and variable neural anastomoses exist between the lower cranial nerves and between the upper cervical nerves in such a way that these nerves with their extra-axial communications can be collectively considered a plexus.

  14. [Smile "forced" smile versus "spontaneous": comparison of 3 techniques of reconstructive surgery of the face. Myoplasty temporal muscle, hypoglossal facial anastomosis and gracilis muscle free flap].

    PubMed

    Lheureux-Portmann, A; Lapalus-Curtoud, Q; Robert, M; Tankéré, F; Disant, F; Pasche, P; Lamas, G; Gatignol, P

    2013-01-01

    The facial palsy cause serious consequences for patients. Studies have also shown that in these patients, the inability to produce an appropriate and spontaneous smile would be a key factor of depression. When facial palsy is considered complete and the nerve cannot be repaired, the patient can benefit from palliative surgery to regain a better quality of life in the aesthetic, functional, and psychological aspects. The hypoglossal-facial anastomosis (AHF), temporal myoplasty (MAT) and gracilis transposition (TG) are the major surgeries currently used for this purpose. The aim of our study is to assess quantitatively and qualitatively the effects of each of these surgeries on the lip mobility and production of smile. From this perspective, we proposed a protocol of an evaluation of facial motricity, of quality of life, and more particularly on the quality and the analysis of the smile. The results underline that there is no significant difference in the recovery of the facial motricity according to the surgery. Only the slower, deferred deadline of recovery at the patients AHF and TG who have to wait several months, it is for the same levels as that of the patients' MAT. A premature and intensive rehabilitation such as the patients of our protocol benefited from it what is nevertheless essential to a good recovery whatever is the surgery.

  15. Sensitivity of cross sections for elastic nucleus-nucleus scattering to halo nucleus density distributions

    SciTech Connect

    Alkhazov, G. D.; Sarantsev, V. V.

    2012-12-15

    In order to clear up the sensitivity of the nucleus-nucleus scattering to the nuclear matter distributions in exotic halo nuclei, we have calculated differential cross sections for elastic scattering of the {sup 6}He and {sup 11}Li nuclei on several nuclear targets at the energy of 0.8 GeV/nucleon with different assumed nuclear density distributions in {sup 6}He and {sup 11}Li.

  16. Morphology of multiple-nucleus brightest cluster galaxies

    SciTech Connect

    Lauer, T.R.

    1988-02-01

    The morphology of high SNR CCD images of 16 multiple-nucleus brightest cluster galaxies is studied using an algorithm that models images of the systems as the line-of-sight superposition of normal elliptical galaxies. The algorithm is applied initially to the classic multiple-nucleus cD galaxy in A2199. Evidence is found suggestive of deep interpenetrating high-speed encounters by its secondaries. The interactions effects studied include noncentric isophotes, brightness profile effects, excess light around primary galaxies, and dynamical friction wakes. The results show that in many cases multiple systems are interacting systems. 42 references.

  17. The morphology of multiple-nucleus brightest cluster galaxies

    NASA Technical Reports Server (NTRS)

    Lauer, Tod R.

    1988-01-01

    The morphology of high SNR CCD images of 16 multiple-nucleus brightest cluster galaxies is studied using an algorithm that models images of the systems as the line-of-sight superposition of normal elliptical galaxies. The algorithm is applied initially to the classic multiple-nucleus cD galaxy in A2199. Evidence is found suggestive of deep interpenetrating high-speed encounters by its secondaries. The interactions effects studied include noncentric isophotes, brightness profile effects, excess light around primary galaxies, and dynamical friction wakes. The results show that in many cases multiple systems are interacting systems.

  18. Formin' actin in the nucleus.

    PubMed

    Baarlink, Christian; Grosse, Robert

    2014-01-01

    Many if not most proteins can, under certain conditions, change cellular compartments, such as, for example, shuttling from the cytoplasm to the nucleus. Thus, many proteins may exert functions in various and very different subcellular locations, depending on the signaling context. A large amount of actin regulatory proteins has been detected in the mammalian cell nucleus, although their potential roles are much debated and are just beginning to emerge. Recently, members of the formin family of actin nucleators were also reported to dynamically localize to the nuclear environment. Here we discuss our findings that specific diaphanous-related formins can promote nuclear actin assembly in a signal-dependent manner.

  19. Finite Element Study of a Lumbar Intervertebral Disc Nucleus Replacement Device.

    PubMed

    Coogan, Jessica S; Francis, W Loren; Eliason, Travis D; Bredbenner, Todd L; Stemper, Brian D; Yoganandan, Narayan; Pintar, Frank A; Nicolella, Daniel P

    2016-01-01

    Nucleus replacement technologies are a minimally invasive alternative to spinal fusion and total disc replacement that have the potential to reduce pain and restore motion for patients with degenerative disc disease. Finite element modeling can be used to determine the biomechanics associated with nucleus replacement technologies. The current study focuses on a new nucleus replacement device designed as a conforming silicone implant with an internal void. A validated finite element model of the human lumbar L3-L4 motion segment was developed and used to investigate the influence of the nucleus replacement device on spine biomechanics. In addition, the effect of device design changes on biomechanics was determined. A 3D, L3-L4 finite element model was constructed from medical imaging data. Models were created with the normal intact nucleus, the nucleus replacement device, and a solid silicone implant. Probabilistic analysis was performed on the normal model to provide quantitative validation metrics. Sensitivity analysis was performed on the silicone Shore A durometer of the device. Models were loaded under axial compression followed by flexion/extension, lateral bending, or axial rotation. Compressive displacement, endplate stresses, reaction moment, and annulus stresses were determined and compared between the different models. The novel nucleus replacement device resulted in similar compressive displacement, endplate stress, and annulus stress and slightly higher reaction moment compared with the normal nucleus. The solid implant resulted in decreased displacement, increased endplate stress, decreased annulus stress, and decreased reaction moment compared with the novel device. With increasing silicone durometer, compressive displacement decreased, endplate stress increased, reaction moment increased, and annulus stress decreased. Finite element analysis was used to show that the novel nucleus replacement device results in similar biomechanics compared with the

  20. Finite Element Study of a Lumbar Intervertebral Disc Nucleus Replacement Device

    PubMed Central

    Coogan, Jessica S.; Francis, W. Loren; Eliason, Travis D.; Bredbenner, Todd L.; Stemper, Brian D.; Yoganandan, Narayan; Pintar, Frank A.; Nicolella, Daniel P.

    2016-01-01

    Nucleus replacement technologies are a minimally invasive alternative to spinal fusion and total disc replacement that have the potential to reduce pain and restore motion for patients with degenerative disc disease. Finite element modeling can be used to determine the biomechanics associated with nucleus replacement technologies. The current study focuses on a new nucleus replacement device designed as a conforming silicone implant with an internal void. A validated finite element model of the human lumbar L3–L4 motion segment was developed and used to investigate the influence of the nucleus replacement device on spine biomechanics. In addition, the effect of device design changes on biomechanics was determined. A 3D, L3–L4 finite element model was constructed from medical imaging data. Models were created with the normal intact nucleus, the nucleus replacement device, and a solid silicone implant. Probabilistic analysis was performed on the normal model to provide quantitative validation metrics. Sensitivity analysis was performed on the silicone Shore A durometer of the device. Models were loaded under axial compression followed by flexion/extension, lateral bending, or axial rotation. Compressive displacement, endplate stresses, reaction moment, and annulus stresses were determined and compared between the different models. The novel nucleus replacement device resulted in similar compressive displacement, endplate stress, and annulus stress and slightly higher reaction moment compared with the normal nucleus. The solid implant resulted in decreased displacement, increased endplate stress, decreased annulus stress, and decreased reaction moment compared with the novel device. With increasing silicone durometer, compressive displacement decreased, endplate stress increased, reaction moment increased, and annulus stress decreased. Finite element analysis was used to show that the novel nucleus replacement device results in similar biomechanics compared with

  1. Functionalized active-nucleus complex sensor

    DOEpatents

    Pines, Alexander; Wemmer, David E.; Spence, Megan; Rubin, Seth

    2003-11-25

    A functionalized active-nucleus complex sensor that selectively associates with one or more target species, and a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species. The functionalized active-nucleus complex has an active-nucleus and a targeting carrier. The method involves functionalizing an active-nucleus, for each functionalized active-nucleus complex, by incorporating the active-nucleus into a macromolucular or molecular complex that is capable of binding one of the target species and then bringing the macromolecular or molecular complexes into contact with the target species and detecting the occurrence of or change in a nuclear magnetic resonance signal from each of the active-nuclei in each of the functionalized active-nucleus complexes.

  2. The midbrain precommand nucleus of the mormyrid electromotor network.

    PubMed

    von der Emde, G; Sena, L G; Niso, R; Grant, K

    2000-07-15

    The functional role of the midbrain precommand nucleus (PCN) of the electromotor system was explored in the weakly electric mormyrid fish Gnathonemus petersii, using extracellular recording of field potentials, single unit activity, and microstimulation in vivo. Electromotor-related field potentials in PCN are linked in a one-to-one manner and with a fixed time relationship to the electric organ discharge (EOD) command cycle, but occur later than EOD command activity in the medulla. It is suggested that PCN electromotor-related field potentials arise from two sources: (1) antidromically, by backpropagation across electrotonic synapses between PCN axons and command nucleus neurons, and (2) as corollary discharge-driven feedback arriving from the command nucleus indirectly, via multisynaptic pathways. PCN neurons can be activated by electrosensory input, but this does not necessarily activate the whole motor command chain. Microstimulation of PCN modulates the endogenous pattern of electromotor command in a way that can mimic the structure of certain stereotyped behavioral patterns. PCN activity is regulated, and to a certain extent synchronized, by corollary discharge feedback inhibition. However, PCN does not generally function as a synchronized pacemaker driving the electromotor command chain. We propose that PCN neurons integrate information of various origins and individually relay this to the command nucleus in the medulla. Some may also have intrinsic, although normally nonsynchronized, pacemaker properties. This descending activity, integrated in the electromotor command nucleus, will play an important modulatory role in the central pattern generator decision process.

  3. The nucleus of the Cygnus A galaxy

    NASA Astrophysics Data System (ADS)

    Vestergaard, M.; Barthel, P. D.

    1993-02-01

    New obtained high resolution optical images of the prototypical luminous radio galaxy Cygnus A (3C 405) indicate an inhomogeneous distribution of obscuring dust and, in combination with previous data, three types of radiation (stellar and blue featureless continuum as well as luminous line emission) in its central regions. The alleged double nucleus finds its origin in heavy obscuration coupled to excess line emission in the central regions of an otherwise normal giant elliptical galaxy. A strongly reddened nuclear component, coincident with the Cygnus A radio core, is found to emit faint but concentrated narrow line emission. All data appear consistent with identification of Cygnus A as a radio-loud quasar having its radio axis oriented at about 35 deg from the sky plane. The presumed dust torus obscuring the quasar continuum is inferred to be smaller than 800 parsec.

  4. Higgs and Particle Production in Nucleus-Nucleus Collisions

    NASA Astrophysics Data System (ADS)

    Liu, Zhe

    We apply a diagrammatic approach to study Higgs boson, a color-neutral heavy particle, pro- duction in nucleus-nucleus collisions in the saturation framework without quantum evolution. We assume the strong coupling constant much smaller than one. Due to the heavy mass and colorless nature of Higgs particle, final state interactions are absent in our calculation. In order to treat the two nuclei dynamically symmetric, we use the Coulomb gauge which gives the appropriate light cone gauge for each nucleus. To further eliminate initial state interactions we choose specific prescriptions in the light cone propagators. We start the calculation from only two nucleons in each nucleus and then demonstrate how to generalize the calculation to higher orders diagrammatically. We simplify the diagrams by the Slavnov-Taylor-Ward identities. The resulting cross section is factorized into a product of two Weizsacker-Williams gluon distributions of the two nuclei when the transverse momentum of the produced scalar particle is around the saturation momentum. To our knowledge this is the first process where an exact analytic formula has been formed for a physical process, involving momenta on the order of the saturation momentum, in nucleus-nucleus collisions in the quasi-classical approximation. Since we have performed the calculation in an unconventional gauge choice, we further confirm our results in Feynman gauge where the Weizsacker-Williams gluon distribution is interpreted as a transverse momentum broadening of a hard gluons traversing a nuclear medium. The transverse momentum factorization manifests itself in light cone gauge but not so clearly in Feynman gauge. In saturation physics there are two different unintegrated gluon distributions usually encountered in the literature: the Weizsacker-Williams gluon distribution and the dipole gluon distribution. The first gluon distribution is constructed by solving classical Yang-Mills equation of motion in the Mc

  5. Single nucleon emission in relativistic nucleus-nucleus reactions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Townsend, Lawrence W.

    1992-01-01

    Significant discrepancies between theory and experiment have previously been noted for nucleon emission via electromagnetic processes in relativistic nucleus-nucleus collisions. The present work investigates the hypothesis that these discrepancies have arisen due to uncertainties about how to deduce the experimental electromagnetic cross section from the total measured cross section. An optical-model calculation of single neutron removal is added to electromagnetic cross sections and compared to the total experimental cross sections. Good agreement is found thereby resolving some of the earlier noted discrepancies. A detailed comparison to the recent work of Benesh, Cook, and Vary is made for both the impact parameter and the nuclear cross section. Good agreement is obtained giving an independent confirmation of the parameterized formulas developed by those authors.

  6. Analysis of relativistic nucleus-nucleus interactions in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Mcguire, Stephen C.

    1987-01-01

    The development of a computer-assisted method is reported for the determination of the angular distribution data for secondary particles produced in relativistic nucleus-nucleus collisions in emulsions. The method is applied to emulsion detectors that were placed in a constant, uniform magnetic field and exposed to beams of 60 and 200 GeV/nucleon O-16 ions at the Super Proton Synchrotron (SPS) of the European Center for Nuclear Research (CERN). Linear regression analysis is used to determine the azimuthal and polar emission angles from measured track coordinate data. The software, written in BASIC, is designed to be machine independent, and adaptable to an automated system for acquiring the track coordinates. The fitting algorithm is deterministic, and takes into account the experimental uncertainty in the measured points. Further, a procedure for using the track data to estimate the linear momenta of the charged particles observed in the detectors is included.

  7. Dynamical nucleus-nucleus potential at short distances

    SciTech Connect

    Jiang Yongying; Wang Ning; Li Zhuxia; Scheid, Werner

    2010-04-15

    The dynamical nucleus-nucleus potentials for fusion reactions {sup 40}Ca+{sup 40}Ca, {sup 48}Ca+{sup 208}Pb, and {sup 126}Sn+{sup 130}Te are studied with the improved quantum molecular dynamics model together with the extended Thomas-Fermi approximation for the kinetic energies of nuclei. The obtained fusion barrier for {sup 40}Ca+{sup 40}Ca is in good agreement with the extracted fusion barrier from the measured fusion excitation function, and the depths of the fusion pockets are close to the results of time-dependent Hartree-Fock calculations. The energy dependence of the fusion barrier is also investigated. The fusion pocket becomes shallow for a heavy fusion system and almost disappears for heavy nearly symmetric systems, and the obtained potential at short distances is higher than the adiabatic potential.

  8. Azimuthal correlation and collective behavior in nucleus-nucleus collisions

    SciTech Connect

    Mali, P.; Mukhopadhyay, A. Sarkar, S.; Singh, G.

    2015-03-15

    Various flow effects of nuclear and hadronic origin are investigated in nucleus-nucleus collisions. Nuclear emulsion data collected from {sup 84}Kr + Ag/Br interaction at an incident energy of 1.52 GeV per nucleon and from {sup 28}Si + Ag/Br interaction at an incident energy of 14.5 GeV per nucleon are used in the investigation. The transverse momentum distribution and the flow angle analysis show that collective behavior, like a bounce-off effect of the projectile spectators and a sidesplash effect of the target spectators, are present in our event samples. From an azimuthal angle analysis of the data we also see a direct flow of the projectile fragments and of the produced charged particles. On the other hand, for both data samples the target fragments exhibit a reverse flow, while the projectile fragments exhibit an elliptic flow. Relevant flow parameters are measured.

  9. Hummingbird Comet Nucleus Analysis Mission

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel; Carle, Glenn C.; Lasher, Larry E.

    2000-01-01

    Hummingbird is a highly focused scientific mission, proposed to NASA s Discovery Program, designed to address the highest priority questions in cometary science-that of the chemical composition of the cometary nucleus. After rendezvous with the comet, Hummingbird would first methodically image and map the comet, then collect and analyze dust, ice and gases from the cometary atmosphere to enrich characterization of the comet and support landing site selection. Then, like its namesake, Hummingbird would carefully descend to a pre-selected surface site obtaining a high-resolution image, gather a surface material sample, acquire surface temperature and then immediately return to orbit for detailed chemical and elemental analyses followed by a high resolution post-sampling image of the site. Hummingbird s analytical laboratory contains instrumentation for a comprehensive molecular and elemental analysis of the cometary nucleus as well as an innovative surface sample acquisition device.

  10. Checkerboard Theory of the Nucleus.

    NASA Astrophysics Data System (ADS)

    Lach, Theodore

    2006-04-01

    The Checker Board Model (CBM) is a 2D model of the nucleus that proposes that the synchronization of the 2 outer rotating quarks in the nucleons accounts for magnetic moment of the nucleons and that the magnetic flux from the nucleons couples (weaves) into the 2D checker board array structures and this magnetic coupling in addition to electrostatic forces of the rotating and stationary quarks accounts for the apparent strong nuclear force. The symmetry of the He nucleus helps explain why this 2D structure is so stable. This model explain the mass of the proton and neutron, along with their magnetic moments and their absolute and relative sizes in terms of the above structure and predict the masses of two newly proposed quarks ^(1): the ``up'' and the ``dn'' quarks. Since the masses of the ``up'' and ``dn'' quark determined by the CBM (237.31 MeV and 42.392 MeV respectively) did not fit within the standard model as candidates for u and d, a new model (New Physics) had to be invented. This new particle physics model predicts that nature has 5 generations not 3. (1). T.M. Lach, Checkerboard Structure of the Nucleus, Infinite Energy, Vol. 5, issue 30, (2000). (2). T.M. Lach, Masses of the Sub-Nuclear Particles, nucl-th/0008026, @http://xxx.lanl.gov/

  11. The anatomical perspective of human occipital condyle in relation to the hypoglossal canal, condylar canal, and jugular foramen and its surgical significance

    PubMed Central

    Verma, Ranjana; Kumar, Shalini; Rai, Arpita Mahajan; Mansoor, Iqra; Mehra, Raj D

    2016-01-01

    Background: The transcondylar approach (TCA) has gained importance in recent era which enables shorter and direct route to access the lesions ventral to the brainstem. The important step in this approach is resection of the occipital condyle (OC). The detailed knowledge of bony anatomy of OC and its relation to the hypoglossal canal (HC), condylar canal (CC), and jugular foramen (JF) is very important to avoid any iatrogenic injury during craniovertebral surgeries. The aim of the present study is to conduct a morphometric and morphological study and note the variations of the OC and the structures surrounding it in North Indian population. Materials and Methods: The study was carried out on 100 OC. Morphometric measurements of OC and the distances of HC and JF from the posterior end of OC were noted. In addition, the extent of the HC and JF in relation to OC, presence or absence of CC, shape of the OC, and its articular facet were also noted. Results: The incidence of short OC was seen in 13% skulls. The most common shape of OC was oval or rhomboid. Even though the articular facet was convex in majority of skulls but flat (10%) and concave (1%) were also observed. The external and internal distance of HC from the posterior end of OC was13.83 mm and 10.66 mm on the right side and 15.02 mm and 11.89 mm on the left side. The OC was related in its middle 1/3 to the HC in 15% skulls and to the whole extent of JF in 3% skulls. Thirty-four percent skulls displayed the septa in the HC. The CC was present bilaterally in 38% skulls and unilaterally in 40% skulls. Conclusion: The OC and related structures such as HC, CC, and JF are likely to have variations in respect to morphometry and morphology. This study may prove helpful to neurosurgeons operating in this field, especially during TCA where neurovascular structures emerging from these canals and foramen are more vulnerable to injury. PMID:27891034

  12. Classifiers for centrality determination in proton-nucleus and nucleus-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Altsybeev, Igor; Kovalenko, Vladimir

    2017-03-01

    Centrality, as a geometrical property of the collision, is crucial for the physical interpretation of nucleus-nucleus and proton-nucleus experimental data. However, it cannot be directly accessed in event-by-event data analysis. Common methods for centrality estimation in A-A and p-A collisions usually rely on a single detector (either on the signal in zero-degree calorimeters or on the multiplicity in some semi-central rapidity range). In the present work, we made an attempt to develop an approach for centrality determination that is based on machine-learning techniques and utilizes information from several detector subsystems simultaneously. Different event classifiers are suggested and evaluated for their selectivity power in terms of the number of nucleons-participants and the impact parameter of the collision. Finer centrality resolution may allow to reduce impact from so-called volume fluctuations on physical observables being studied in heavy-ion experiments like ALICE at the LHC and fixed target experiment NA61/SHINE on SPS.

  13. Photoproduction of lepton pairs in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies

    SciTech Connect

    Moreira, B. D.; Goncalves, V. P.; De Santana Amaral, J. T.

    2013-03-25

    In this contribution we study coherent interactions as a probe of the nonlinear effects in the Quantum Electrodynamics (QED). In particular, we study the multiphoton effects in the production of leptons pairs for proton-nucleus and nucleus-nucleus collisions for heavy nuclei. In the proton-nucleus we assume the ultrarelativistic proton as a source of photons and estimate the photoproduction of lepton pairs on nuclei at RHIC and LHC energies considering the multiphoton effects associated to multiple rescattering of the projectile photon on the proton of the nucleus. In nucleus - nucleus colllisions we consider the two nuclei as a source of photons. As each scattering contributes with a factor {alpha}Z to the cross section, this contribution must be taken into account for heavy nuclei. We consider the Coulomb corrections to calculate themultiple scatterings and estimate the total cross section for muon and tau pair production in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies.

  14. Calcium-regulated import of myosin IC into the nucleus.

    PubMed

    Maly, Ivan V; Hofmann, Wilma A

    2016-06-01

    Myosin IC is a molecular motor involved in intracellular transport, cell motility, and transcription. Its mechanical properties are regulated by calcium via calmodulin binding, and its functions in the nucleus depend on import from the cytoplasm. The import has recently been shown to be mediated by the nuclear localization signal located within the calmodulin-binding domain. In the present paper, it is demonstrated that mutations in the calmodulin-binding sequence shift the intracellular distribution of myosin IC to the nucleus. The redistribution is displayed by isoform B, described originally as the "nuclear myosin," but is particularly pronounced with isoform C, the normally cytoplasmic isoform. Furthermore, experimental elevation of the intracellular calcium concentration induces a rapid import of myosin into the nucleus. The import is blocked by the importin β inhibitor importazole. These findings are consistent with a mechanism whereby calmodulin binding prevents recognition of the nuclear localization sequence by importin β, and the steric inhibition of import is released by cell signaling leading to the intracellular calcium elevation. The results establish a mechanistic connection between the calcium regulation of the motor function of myosin IC in the cytoplasm and the induction of its import into the nucleus. © 2016 Wiley Periodicals, Inc.

  15. Multivariate normality

    NASA Technical Reports Server (NTRS)

    Crutcher, H. L.; Falls, L. W.

    1976-01-01

    Sets of experimentally determined or routinely observed data provide information about the past, present and, hopefully, future sets of similarly produced data. An infinite set of statistical models exists which may be used to describe the data sets. The normal distribution is one model. If it serves at all, it serves well. If a data set, or a transformation of the set, representative of a larger population can be described by the normal distribution, then valid statistical inferences can be drawn. There are several tests which may be applied to a data set to determine whether the univariate normal model adequately describes the set. The chi-square test based on Pearson's work in the late nineteenth and early twentieth centuries is often used. Like all tests, it has some weaknesses which are discussed in elementary texts. Extension of the chi-square test to the multivariate normal model is provided. Tables and graphs permit easier application of the test in the higher dimensions. Several examples, using recorded data, illustrate the procedures. Tests of maximum absolute differences, mean sum of squares of residuals, runs and changes of sign are included in these tests. Dimensions one through five with selected sample sizes 11 to 101 are used to illustrate the statistical tests developed.

  16. Evidence for a motor somatotopy in the cerebellar dentate nucleus--an FMRI study in humans.

    PubMed

    Küper, Michael; Thürling, Markus; Stefanescu, Roxana; Maderwald, Stefan; Roths, Johannes; Elles, Hans G; Ladd, Mark E; Diedrichsen, Jörn; Timmann, Dagmar

    2012-11-01

    Previous anatomical studies in monkeys have shown that forelimb motor representation is located caudal to hindlimb representation within the dorso-rostral dentate nucleus. Here we investigate human dentate nucleus motor somatotopy by means of ultra-highfield (7 T) functional magnetic brain imaging (fMRI). Twenty five young healthy males participated in the study. Simple finger and foot movement tasks were performed to identify dentate nucleus motor areas. Recently developed normalization procedures for group analyses were used for the cerebellar cortex and the cerebellar dentate nucleus. Cortical activations were in good accordance with the known somatotopy of the human cerebellar cortex. Dentate nucleus activations following motor tasks were found in particular in the ipsilateral dorso-rostral nucleus. Activations were also present in other parts of the nucleus including the contralateral side, and there was some overlap between the body part representations. Within the ipsilateral dorso-rostral dentate, finger activations were located caudally compared to foot movement-related activations in fMRI group analysis. Likewise, the centre of gravity (COG) for the finger activation was more caudal than the COG of the foot activation across participants. A multivariate analysis of variance (MANOVA) on the x, y, and z coordinates of the COG indicated that this difference was significant (P = 0.043). These results indicate that in humans, the lower and upper limbs are arranged rostro-caudally in the dorsal aspect of the dentate nucleus, which is consistent with studies in non-human primates.

  17. Exceptionally bright, compact starburst nucleus

    SciTech Connect

    Margon, B.; Anderson, S.F.; Mateo, M.; Fich, M.; Massey, P.

    1988-11-01

    Observations are reported of a remarkably bright (V about 13) starburst nucleus, 0833 + 652, which has been detected at radio, infrared, optical, ultraviolet, and X-ray wavelengths. Despite an observed flux at each of these wavelengths which is comparable to that of NGC 7714, often considered the 'prototypical' example of the starburst phenomenon, 0833 + 652 appears to be a previously uncataloged object. Its ease of detectability throughout the electromagnetic spectrum should make it useful for a variety of problems in the study of compact emission-line galaxies. 30 references.

  18. Nucleus morphology of Comet Halley

    NASA Technical Reports Server (NTRS)

    Reitsema, H. J.; Delamere, W. A.; Huebner, W. F.; Keller, H. U.; Schmidt, W. K. H.; Wilhelm, K.; Schmidt, H. U.; Whipple, Fred L.

    1986-01-01

    Images obtained by the Halley multicolor camera were used to determine the projected size and shape of the nucleus. The location of the terminator and numerous surface features were determined. There is good correlation between the brightest surface features and the dust jets; however, many bright features are seen which are not associated with jets. Most of the observed features are circular and appear to be related to surface elevation. The angularity of the terminator gives an indication of the three-dimensional structure of the face which was observed.

  19. Projections from the central amygdaloid nucleus to the precuneiform nucleus in the mouse.

    PubMed

    Liang, Huazheng; Watson, Charles; Paxinos, George

    2015-01-01

    The mouse precuneiform nucleus has been proposed as the midbrain locomotion center, a function ascribed to its caudal neighbor, cuneiform nucleus, in the rat, cat and other species. The present study investigated the projections from the central amygdaloid nucleus to the precuneiform nucleus in the mouse using retrograde tracer injections (fluoro-gold) into the precuneiform nucleus and anterograde tracer injections (biotinylated dextran amine) into the central amygdaloid nucleus. The entire central amygdaloid nucleus except the rostral pole had retrogradely labeled neurons, especially in the middle portion where labeled neurons were densely packed. Anterogradely labeled amygdaloid fibers approached the precuneiform nucleus from the area ventrolateral to it and terminated in the entire precuneiform nucleus. Labeled fibers were also found in laminae 5 and 6 in the upper cervical cord on the ipsilateral side. The present study is the first demonstration of projections from the central amygdaloid nucleus to the precuneiform nucleus. This projection may underpin the role of the precuneiform nucleus in the modulation of the cardiovascular activity.

  20. Nucleus accumbens invulnerability to methamphetamine neurotoxicity.

    PubMed

    Kuhn, Donald M; Angoa-Pérez, Mariana; Thomas, David M

    2011-01-01

    Methamphetamine (Meth) is a neurotoxic drug of abuse that damages neurons and nerve endings throughout the central nervous system. Emerging studies of human Meth addicts using both postmortem analyses of brain tissue and noninvasive imaging studies of intact brains have confirmed that Meth causes persistent structural abnormalities. Animal and human studies have also defined a number of significant functional problems and comorbid psychiatric disorders associated with long-term Meth abuse. This review summarizes the salient features of Meth-induced neurotoxicity with a focus on the dopamine (DA) neuronal system. DA nerve endings in the caudate-putamen (CPu) are damaged by Meth in a highly delimited manner. Even within the CPu, damage is remarkably heterogeneous, with ventral and lateral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared the damage that accompanies binge Meth intoxication, but relatively subtle changes in the disposition of DA in its nerve endings can lead to dramatic increases in Meth-induced toxicity in the CPu and overcome the normal resistance of the NAc to damage. In contrast to the CPu, where DA neuronal deficiencies are persistent, alterations in the NAc show a partial recovery. Animal models have been indispensable in studies of the causes and consequences of Meth neurotoxicity and in the development of new therapies. This research has shown that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of Meth to include brain structures not normally targeted for damage. The resistance of the NAc to Meth-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of Meth neurotoxicity by alterations in DA homeostasis is significant in light of the numerous important roles played by this brain structure.

  1. Actomyosin contractility rotates the cell nucleus.

    PubMed

    Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G V

    2014-01-21

    The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells.

  2. Presynaptic and extrasynaptic regulation of posterior nucleus of thalamus.

    PubMed

    Park, Anthony; Li, Ying; Masri, Radi; Keller, Asaf

    2017-03-22

    The posterior nucleus of thalamus (PO) is a higher-order nucleus involved in sensorimotor processing, including nociception. An important characteristic of PO is its wide range of activity profiles that vary across states of arousal, thought to underlie differences in somatosensory perception subject to attention and degree of consciousness. Further, PO loses the ability to down-regulate its activity level in some forms of chronic pain, suggesting that regulatory mechanisms underlying the normal modulation of PO activity may be pathologically altered. Yet, the mechanisms responsible for regulating such a wide dynamic range of activity are unknown. Here, we test a series of hypotheses regarding the function of several presynaptic receptors on both GABAergic and glutamatergic afferents targeting PO in mouse, using acute slice electrophysiology. We found that presynaptic GABAB receptors are present on both GABAergic and glutamatergic terminals in PO, but only those on GABAergic terminals are tonically active. We also found that release from GABAergic terminals, but not glutamatergic terminals, is suppressed by cholinergic activation, and that a subpopulation of GABAergic terminals is regulated by cannabinoids. Finally, we discovered the presence of tonic currents mediated by extrasynaptic GABAA receptors in PO that are heterogeneously distributed across the nucleus. Thus, we demonstrate that multiple regulatory mechanisms concurrently exist in PO, and we propose that regulation of inhibition, rather than excitation, is the more consequential mechanism by which PO activity can be regulated.

  3. Music and the nucleus accumbens.

    PubMed

    Mavridis, Ioannis N

    2015-03-01

    Music is a universal feature of human societies over time, mainly because it allows expression and regulation of strong emotions, thus influencing moods and evoking pleasure. The nucleus accumbens (NA), the most important pleasure center of the human brain (dominates the reward system), is the 'king of neurosciences' and dopamine (DA) can be rightfully considered as its 'crown' due to the fundamental role that this neurotransmitter plays in the brain's reward system. Purpose of this article was to review the existing literature regarding the relation between music and the NA. Studies have shown that reward value for music can be coded by activity levels in the NA, whose functional connectivity with auditory and frontal areas increases as a function of increasing musical reward. Listening to music strongly modulates activity in a network of mesolimbic structures involved in reward processing including the NA. The functional connectivity between brain regions mediating reward, autonomic and cognitive processing provides insight into understanding why listening to music is one of the most rewarding and pleasurable human experiences. Musical stimuli can significantly increase extracellular DA levels in the NA. NA DA and serotonin were found significantly higher in animals exposed to music. Finally, passive listening to unfamiliar although liked music showed activations in the NA.

  4. Dynamic risk control by human nucleus accumbens.

    PubMed

    Nachev, Parashkev; Lopez-Sosa, Fernando; Gonzalez-Rosa, Javier Jesus; Galarza, Ana; Avecillas, Josue; Pineda-Pardo, Jose Angel; Lopez-Ibor, Juan José; Reneses, Blanca; Barcia, Juan Antonio; Strange, Bryan

    2015-12-01

    Real-world decisions about reward often involve a complex counterbalance of risk and value. Although the nucleus accumbens has been implicated in the underlying neural substrate, its criticality to human behaviour remains an open question, best addressed with interventional methodology that probes the behavioural consequences of focal neural modulation. Combining a psychometric index of risky decision-making with transient electrical modulation of the nucleus accumbens, here we reveal profound, highly dynamic alteration of the relation between probability of reward and choice during therapeutic deep brain stimulation in four patients with treatment-resistant psychiatric disease. Short-lived phasic electrical stimulation of the region of the nucleus accumbens dynamically altered risk behaviour, transiently shifting the psychometric function towards more risky decisions only for the duration of stimulation. A critical, on-line role of human nucleus accumbens in dynamic risk control is thereby established.

  5. Microtubules move the nucleus to quiescence.

    PubMed

    Laporte, Damien; Sagot, Isabelle

    2014-01-01

    The nucleus is a cellular compartment that hosts several macro-molecular machines displaying a highly complex spatial organization. This tight architectural orchestration determines not only DNA replication and repair but also regulates gene expression. In budding yeast microtubules play a key role in structuring the nucleus since they condition the Rabl arrangement in G1 and chromosome partitioning during mitosis through their attachment to centromeres via the kinetochore proteins. Recently, we have shown that upon quiescence entry, intranuclear microtubules emanating from the spindle pole body elongate to form a highly stable bundle that spans the entire nucleus. Here, we examine some molecular mechanisms that may underlie the formation of this structure. As the intranuclear microtubule bundle causes a profound re-organization of the yeast nucleus and is required for cell survival during quiescence, we discuss the possibility that the assembly of such a structure participates in quiescence establishment.

  6. Dynamic risk control by human nucleus accumbens

    PubMed Central

    Lopez-Sosa, Fernando; Gonzalez-Rosa, Javier Jesus; Galarza, Ana; Avecillas, Josue; Pineda-Pardo, Jose Angel; Lopez-Ibor, Juan José; Reneses, Blanca; Barcia, Juan Antonio

    2015-01-01

    Real-world decisions about reward often involve a complex counterbalance of risk and value. Although the nucleus accumbens has been implicated in the underlying neural substrate, its criticality to human behaviour remains an open question, best addressed with interventional methodology that probes the behavioural consequences of focal neural modulation. Combining a psychometric index of risky decision-making with transient electrical modulation of the nucleus accumbens, here we reveal profound, highly dynamic alteration of the relation between probability of reward and choice during therapeutic deep brain stimulation in four patients with treatment-resistant psychiatric disease. Short-lived phasic electrical stimulation of the region of the nucleus accumbens dynamically altered risk behaviour, transiently shifting the psychometric function towards more risky decisions only for the duration of stimulation. A critical, on-line role of human nucleus accumbens in dynamic risk control is thereby established. PMID:26428667

  7. Intermuscular coherence in Parkinson's disease: effects of subthalamic nucleus stimulation.

    PubMed

    Marsden, J; Limousin-Dowsey, P; Fraix, V; Pollak, P; Odin, P; Brown, P

    2001-05-08

    It remains unclear how high frequency stimulation of the subthalamic nucleus (STN) improves parkinsonism. We hypothesized that stimulation may affect the organization of the cortical drive to voluntarily activated muscle. Normally this is characterized by oscillations at 15-30 Hz, manifest in coherence between muscles in the same frequency band. We therefore investigated the effects of STN stimulation on electromyographic (EMG) activity in co-contracting distal arm muscles in nine subjects with Parkinson's disease off drugs. Without stimulation, coherence between EMG signals was diminished at 15-30 Hz compared with nine controls. STN stimulation increased coherence in the 15-30 Hz band, so that it approached that in healthy subjects. The results suggest that STN stimulation facilitates the normal cortical drive to muscles.

  8. Electron microscopic analysis of synaptic inputs from the median preoptic nucleus and adjacent regions to the supraoptic nucleus in the rat.

    PubMed

    Armstrong, W E; Tian, M; Wong, H

    1996-09-16

    The median preoptic nucleus (MnPo) is critical for normal fluid balance, mediating osmotically evoked drinking and neurohypophysial hormone secretion. The influence of the MnPo on vasopressin and oxytocin release is in part through direct connections to the supraoptic and paraventricular nucleus. In the present investigation the synaptic contacts between the MnPo and supraoptic neurons were investigated in rats by ultrastructural examination of terminals labeled anterogradely with the tracers Phaseolus vulgaris-leucoagglutinin or biotinylated dextran. At the light microscopic level, labeled fibers within the supraoptic nucleus branched frequently, were punctuated by varicosities, and were distributed throughout the nucleus without preference for the known distributions of oxytocin and vasopressin neurons. At the ultrastructural level, synapses were associated with many of these varicosities. The ratio of labeled axodendritic to axosomatic synapses encountered was roughly consistent with a uniform innervation of dendrites and somata. The great majority of synapses were characterized by symmetrical contacts. Similar results were found for a few injections made in the organum vasculosum of the lamina terminalis, just rostral to the MnPo, and in the immediately adjacent periventricular preoptic area. Coupled with other recent anatomical and electrophysiological evidence, these results suggest there is a strong monosynaptic pathway from structures along the ventral lamina terminalis to the supraoptic nucleus.

  9. Improved Cloud Condensation Nucleus Spectrometer

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun

    2010-01-01

    An improved thermal-gradient cloud condensation nucleus spectrometer (CCNS) has been designed to provide several enhancements over prior thermal- gradient counters, including fast response and high-sensitivity detection covering a wide range of supersaturations. CCNSs are used in laboratory research on the relationships among aerosols, supersaturation of air, and the formation of clouds. The operational characteristics of prior counters are such that it takes long times to determine aerosol critical supersaturations. Hence, there is a need for a CCNS capable of rapid scanning through a wide range of supersaturations. The present improved CCNS satisfies this need. The improved thermal-gradient CCNS (see Figure 1) incorporates the following notable features: a) The main chamber is bounded on the top and bottom by parallel thick copper plates, which are joined by a thermally conductive vertical wall on one side and a thermally nonconductive wall on the opposite side. b) To establish a temperature gradient needed to establish a supersaturation gradient, water at two different regulated temperatures is pumped through tubes along the edges of the copper plates at the thermally-nonconductive-wall side. Figure 2 presents an example of temperature and supersaturation gradients for one combination of regulated temperatures at the thermally-nonconductive-wall edges of the copper plates. c) To enable measurement of the temperature gradient, ten thermocouples are cemented to the external surfaces of the copper plates (five on the top plate and five on the bottom plate), spaced at equal intervals along the width axis of the main chamber near the outlet end. d) Pieces of filter paper or cotton felt are cemented onto the interior surfaces of the copper plates and, prior to each experimental run, are saturated with water to establish a supersaturation field inside the main chamber. e) A flow of monodisperse aerosol and a dilution flow of humid air are introduced into the main

  10. BFKL Pomeron calculus: solution to equations for nucleus-nucleus scattering in the saturation domain

    NASA Astrophysics Data System (ADS)

    Contreras, Carlos; Levin, Eugene; Meneses, Rodrigo

    2013-04-01

    In this paper we solve the equation for nucleus-nucleus scattering in the BFKL Pomeron calculus, suggested by Braun [1-3]. We find these solutions analytically at high energies as well as numerically in the entire region of energies inside the saturation region. The semi-classical approximation is used to select out the infinite set of the parasite solutions. The nucleus-nucleus cross sections at high energy are estimated and compared with the Glauber-Gribov approach. It turns out that the exact formula gives the estimates that are very close to the ones based on Glauber-Gribov formula which is important for the practical applications.

  11. A spatiotemporal analysis of gait freezing and the impact of pedunculopontine nucleus stimulation.

    PubMed

    Thevathasan, Wesley; Cole, Michael H; Graepel, Cara L; Hyam, Jonathan A; Jenkinson, Ned; Brittain, John-Stuart; Coyne, Terry J; Silburn, Peter A; Aziz, Tipu Z; Kerr, Graham; Brown, Peter

    2012-05-01

    Gait freezing is an episodic arrest of locomotion due to an inability to take normal steps. Pedunculopontine nucleus stimulation is an emerging therapy proposed to improve gait freezing, even where refractory to medication. However, the efficacy and precise effects of pedunculopontine nucleus stimulation on Parkinsonian gait disturbance are not established. The clinical application of this new therapy is controversial and it is unknown if bilateral stimulation is more effective than unilateral. Here, in a double-blinded study using objective spatiotemporal gait analysis, we assessed the impact of unilateral and bilateral pedunculopontine nucleus stimulation on triggered episodes of gait freezing and on background deficits of unconstrained gait in Parkinson's disease. Under experimental conditions, while OFF medication, Parkinsonian patients with severe gait freezing implanted with pedunculopontine nucleus stimulators below the pontomesencephalic junction were assessed during three conditions; off stimulation, unilateral stimulation and bilateral stimulation. Results were compared to Parkinsonian patients without gait freezing matched for disease severity and healthy controls. Pedunculopontine nucleus stimulation improved objective measures of gait freezing, with bilateral stimulation more effective than unilateral. During unconstrained walking, Parkinsonian patients who experience gait freezing had reduced step length and increased step length variability compared to patients without gait freezing; however, these deficits were unchanged by pedunculopontine nucleus stimulation. Chronic pedunculopontine nucleus stimulation improved Freezing of Gait Questionnaire scores, reflecting a reduction of the freezing encountered in patients' usual environments and medication states. This study provides objective, double-blinded evidence that in a specific subgroup of Parkinsonian patients, stimulation of a caudal pedunculopontine nucleus region selectively improves gait

  12. Dynamical evolution of comet nucleus rotation

    NASA Astrophysics Data System (ADS)

    Scheeres, D. J.; Sidorenko, V. V.; Neishtadt, A. I.; Vasiliev, A. A.

    2001-11-01

    The rotational dynamics of outgassing cometary nuclei are investigated analytically using dynamical systems theory. We develop a general theory for the averaged evolution of a comet nucleus rotation state assuming that the nucleus is a spheroid (either prolate or oblate) and that the outgassing torques are a function of solar insolation and heliocentric distance. The resulting solutions are a function of the comet outgassing properties, its heliocentric orbit, and the assumed distribution of active regions on its surface. We find that the long-term evolution of the comet nucleus rotation is a strong function of the distribution of active regions over its surface. Specifically, we find that a comet nucleus with a uniformly active surface will tend towards a rotation state with a nutation angle of ~ 55 degrees and an angular momentum perpendicular to the sun-perihelion direction. Conversely, a comet nucleus with an isolated active region will tend towards a zero nutation angle with its symmetry axis and angular momentum aligned parallel to the sun-perihelion direction. For active surface regions between these extremes we find 4 qualitatively different dynamical outcomes. In all cases, the theory predicts that the comet nucleus angular momentum will have a secular increase, a phenomenon that could contribute to nucleus splitting of active comets. These results can be used to discriminate between competing theories of comet outgassing based on a nucelus' rotation state. They also allow for a range of plausible a priori constraints to be placed on a comet's rotation state to aid in the interpretation of its outgassing structure. This work was supported by the NASA JURRISS program under Grant NAG5-8715. AIN, AAV and VVS acknowledge support from Russian Foundation for Basic research via Grants 00-01-00538 and 00-01-0174 respectively. DJS acknowledges support from the PG&G program via Grant NAG5-9017.

  13. The dynamic landscape of the cell nucleus.

    PubMed

    Austin, Christopher M; Bellini, Michel

    2010-01-01

    While the cell nucleus was described for the first time almost two centuries ago, our modern view of the nuclear architecture is primarily based on studies from the last two decades. This surprising late start coincides with the development of new, powerful strategies to probe for the spatial organization of nuclear activities in both fixed and live cells. As a result, three major principles have emerged: first, the nucleus is not just a bag filled with nucleic acids and proteins. Rather, many distinct functional domains, including the chromosomes, resides within the confines of the nuclear envelope. Second, all these nuclear domains are highly dynamic, with molecules exchanging rapidly between them and the surrounding nucleoplasm. Finally, the motion of molecules within the nucleoplasm appears to be mostly driven by random diffusion. Here, the emerging roles of several subnuclear domains are discussed in the context of the dynamic functions of the cell nucleus.

  14. Organisation of the human dorsomedial hypothalamic nucleus.

    PubMed

    Koutcherov, Yuri; Mai, Juergen K; Ashwell, Ken W; Paxinos, George

    2004-01-19

    This study used acetylcholinesterase (AChE) histochemistry to reveal the organization of the dorsomedial hypothalamic nucleus (DM) in the human. Topographically, the human DM is similar to DM in the monkey and rat. It is wedged between the paraventricular nucleus, dorsally, and the ventromedial nucleus, ventrally. Laterally, DM borders the lateral hypothalamic area while medially it approaches the 3rd ventricle. The AChE staining distinguished two subcompartments of the human DM: the larger diffuse and the smaller compact DM. The subcompartmental organization of the human DM appears homologous to that found in the monkey and less complex than that reported in rats. Understanding of the organization of DM creates meaningful anatomical reference for physiological and pharmacological studies in the human hypothalamus.

  15. The Effects of Disease Models of Nuclear Actin Polymerization on the Nucleus

    PubMed Central

    Serebryannyy, Leonid A.; Yuen, Michaela; Parilla, Megan; Cooper, Sandra T.; de Lanerolle, Primal

    2016-01-01

    Actin plays a crucial role in regulating multiple processes within the nucleus, including transcription and chromatin organization. However, the polymerization state of nuclear actin remains controversial, and there is no evidence for persistent actin filaments in a normal interphase nucleus. Further, several disease pathologies are characterized by polymerization of nuclear actin into stable filaments or rods. These include filaments that stain with phalloidin, resulting from point mutations in skeletal α-actin, detected in the human skeletal disease intranuclear rod myopathy, and cofilin/actin rods that form in response to cellular stressors like heatshock. To further elucidate the effects of these pathological actin structures, we examined the nucleus in both cell culture models as well as isolated human tissues. We find these actin structures alter the distribution of both RNA polymerase II and chromatin. Our data suggest that nuclear actin filaments result in disruption of nuclear organization, which may contribute to the disease pathology. PMID:27774069

  16. Nucleus model for periodic Comet Tempel 2

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek

    1991-01-01

    Observational data obtained primarily during 1988 are analyzed and synthesized to develop a comprehensive physical model for the nucleus of Periodic Comet Tempel 2, one of the best studied members of Jupiter's family of short-period comets. It is confirmed that a previous investigation provided reliable information on the comet's spin-axis orientation, which implies and obliquity of 54 degrees of the orbit plane to the equatorial plane and which appears to have varied little - if at all - with time. This conclusion is critical for fitting a triaxial ellipsoid to approximate the figure of the nucleus.

  17. UNCOVERING THE NUCLEUS CANDIDATE FOR NGC 253

    SciTech Connect

    Günthardt, G. I.; Camperi, J. A.; Agüero, M. P.; Díaz, R. J.; Gomez, P. L.; Schirmer, M.; Bosch, G. E-mail: camperi@oac.uncor.edu E-mail: rdiaz@gemini.edu E-mail: mschirmer@gemini.edu

    2015-11-15

    NGC 253 is the nearest spiral galaxy with a nuclear starburst that becomes the best candidate for studying the relationship between starburst and active galactic nucleus activity. However, this central region is veiled by large amounts of dust, and it has been so far unclear which is the true dynamical nucleus to the point that there is no strong evidence that the galaxy harbors a supermassive black hole co-evolving with the starburst as was supposed earlier. Near-infrared (NIR) spectroscopy, especially NIR emission line analysis, could be advantageous in shedding light on the true nucleus identity. Using Flamingos-2 at Gemini South we have taken deep K-band spectra along the major axis of the central structure and through the brightest infrared source. In this work, we present evidence showing that the brightest NIR and mid-infrared source in the central region, already known as radio source TH7 and so far considered just a large stellar supercluster, in fact presents various symptoms of a genuine galactic nucleus. Therefore, it should be considered a valid nucleus candidate. Mentioning some distinctive aspects, it is the most massive compact infrared object in the central region, located at 2.″0 of the symmetry center of the galactic bar, as measured in the K-band emission. Moreover, our data indicate that this object is surrounded by a large circumnuclear stellar disk and it is also located at the rotation center of the large molecular gas disk of NGC 253. Furthermore, a kinematic residual appears in the H{sub 2} rotation curve with a sinusoidal shape consistent with an outflow centered in the candidate nucleus position. The maximum outflow velocity is located about 14 pc from TH7, which is consistent with the radius of a shell detected around the nucleus candidate, observed at 18.3 μm (Qa) and 12.8 μm ([Ne ii]) with T-ReCS. Also, the Brγ emission line profile shows a pronounced blueshift and this emission line also has the highest equivalent width at this

  18. Uncovering the Nucleus Candidate for NGC 253

    NASA Astrophysics Data System (ADS)

    Günthardt, G. I.; Agüero, M. P.; Camperi, J. A.; Díaz, R. J.; Gomez, P. L.; Bosch, G.; Schirmer, M.

    2015-11-01

    NGC 253 is the nearest spiral galaxy with a nuclear starburst that becomes the best candidate for studying the relationship between starburst and active galactic nucleus activity. However, this central region is veiled by large amounts of dust, and it has been so far unclear which is the true dynamical nucleus to the point that there is no strong evidence that the galaxy harbors a supermassive black hole co-evolving with the starburst as was supposed earlier. Near-infrared (NIR) spectroscopy, especially NIR emission line analysis, could be advantageous in shedding light on the true nucleus identity. Using Flamingos-2 at Gemini South we have taken deep K-band spectra along the major axis of the central structure and through the brightest infrared source. In this work, we present evidence showing that the brightest NIR and mid-infrared source in the central region, already known as radio source TH7 and so far considered just a large stellar supercluster, in fact presents various symptoms of a genuine galactic nucleus. Therefore, it should be considered a valid nucleus candidate. Mentioning some distinctive aspects, it is the most massive compact infrared object in the central region, located at 2.″0 of the symmetry center of the galactic bar, as measured in the K-band emission. Moreover, our data indicate that this object is surrounded by a large circumnuclear stellar disk and it is also located at the rotation center of the large molecular gas disk of NGC 253. Furthermore, a kinematic residual appears in the H2 rotation curve with a sinusoidal shape consistent with an outflow centered in the candidate nucleus position. The maximum outflow velocity is located about 14 pc from TH7, which is consistent with the radius of a shell detected around the nucleus candidate, observed at 18.3 μm (Qa) and 12.8 μm ([Ne ii]) with T-ReCS. Also, the Brγ emission line profile shows a pronounced blueshift and this emission line also has the highest equivalent width at this

  19. A thalamic input to the nucleus accumbens mediates opiate dependence

    PubMed Central

    Zhu, Yingjie; Wienecke, Carl F.R.; Nachtrab, Gregory; Chen, Xiaoke

    2016-01-01

    Chronic opiate use induces opiate dependence, which is characterized by extremely unpleasant physical and emotional feelings after drug use is terminated. Both rewarding effects of drug and the desire to avoid withdrawal symptoms motivate continued drug use1-3, and the nucleus accumbens (NAc) is important for orchestrating both processes4,5. While multiple inputs to the NAc regulate reward6-9, little is known about the NAc circuitry underlying withdrawal. Here we identify the paraventricular nucleus of the thalamus (PVT) as a prominent input to the NAc mediating the expression of opiate withdrawal induced physical signs and aversive memory. Activity in the PVT to NAc pathway is necessary and sufficient to mediate behavioral aversion. Selectively silencing this pathway abolishes aversive symptoms in two different mouse models of opiate withdrawal. Chronic morphine exposure selectively potentiates excitatory transmission between the PVT and D2-receptor-expressing medium spiny neurons (D2-MSNs) via synaptic insertion of GluA2-lacking AMPA receptors. Notably, in vivo optogenetic depotentiation restores normal transmission at PVT→D2-MSNs synapses and robustly suppresses morphine withdrawal symptoms. These results link morphine-evoked pathway- and cell type-specific plasticity in the PVT→NAc circuit to opiate dependence, and suggest that reprogramming this circuit holds promise for treating opiate addiction. PMID:26840481

  20. Shape and Size of the Fission Yeast Nucleus are governed by Equilibrium Mechanics

    NASA Astrophysics Data System (ADS)

    Lim, Gerald; Huber, Greg; Miller, Jonathan; Sazer, Shelley

    2006-03-01

    Nuclear morphogenesis in the asexual reproduction of Schizosaccharomyces pombe (fission yeast) consists of two stages: (i) volume-doubling growth, in which a round nucleus inflates uniformly, and (ii) division, in which the nucleus undergoes shape changes from round to oblong to peanut to dumbbell before it resolves into two smaller, round daughter nuclei, driven by the formation and elongation of a microtubule-based spindle within the nucleus. The combined volume of the daughter nuclei immediately after division is the same as the volume of the single nucleus at the onset of division. Consequently, the nuclear envelope (NE) area must increase by 26% during division. We are developing a model in order to determine the mechanics governing these shape and size changes. It is based on current knowledge of the nuclear structure, insight from normal and abnormal nuclei, and concepts from the mechanics governing lipid-bilayer membranes. We predict that (a) the NE prefers to be flat, (b) the NE is under tension, (c) the nucleus has an internal pressure, (d) nuclear growth is governed by the Law of Laplace, and (e) some abnormal nuclei behave like vesicles with encapsulated microtubules.

  1. Fermi-motion effect on the intermediate energy nucleus-nucleus collision

    NASA Astrophysics Data System (ADS)

    Fan, G. W.; Kong, W. Y.; Han, T. F.; Li, X. C.; Ma, J. B.; Sheng, Z. Q.; Shi, G. Z.; Tian, F.; Wang, J.; Zhang, C.

    2016-11-01

    The Glauber model is modified with the Fermi-motion effect in the calculation of elastic differential cross-sections and momentum distributions of a fragment from mother nucleus. Different reaction systems at low energies are calculated with the modified Glauber model. It is found that calculations including the Fermi-motion provide a better prescription relating the model to a proper nuclear density distribution by comparing with the experimental data. On the basis of the studies, the influence of the correction on the extracted nuclear radius is quantified. The results further confirm the importance of the Fermi-motion in the nucleus-nucleus collision reactions at low energies.

  2. The Checkerboard Model of the Nucleus

    NASA Astrophysics Data System (ADS)

    Lach, Theodore

    2015-04-01

    The Checker Board Model (CBM) of the nucleus and the associated extended standard model predicts that nature has 5 generations of quarks not 3 and that Nucleus is 2 dimensional. The CBM theory began with an insight into the structure of the He nucleus around the year 1989. Details of how this theory evolved which took many years, and is found on my web site (http://checkerboard.dnsalias.net) or in the following references One independent check of this model is that the wavelength of the ``up'' quark orbiting inside the proton at 84.8123% the speed of light (around the ``dn'' quark in the center of the proton) turns out to be exactly one de Broglie wavelength something determined after the mass and speed of the up quark were determined by other means. This theory explains the mass of the proton and neutron and their magnetic moments and this along with the beautiful symmetric 2D structure of the He nucleus led to the evolution of this theory. When this theory was first presented at Argonne in 1996, it was the first time that anyone had predicted the quarks orbited inside the proton at relativistic speeds and it was met with skepticism.

  3. New developments in nucleus pulposus replacement technology.

    PubMed

    Carl, Allen; Ledet, Eric; Yuan, Hansen; Sharan, Alok

    2004-01-01

    Attempts to alleviate the pain attributed to degeneration of the nucleus pulposus using replacement or reinforcement techniques dating back to the 1950s are reviewed. The various materials and their insertion techniques are discussed as are results available from early clinical experiences. These techniques are in evolution and clinical outcomes will be necessary to establish the efficacy of these approaches.

  4. Nucleus-associated actin in Amoeba proteus.

    PubMed

    Berdieva, Mariia; Bogolyubov, Dmitry; Podlipaeva, Yuliya; Goodkov, Andrew

    2016-10-01

    The presence, spatial distribution and forms of intranuclear and nucleus-associated cytoplasmic actin were studied in Amoeba proteus with immunocytochemical approaches. Labeling with different anti-actin antibodies and staining with TRITC-phalloidin and fluorescent deoxyribonuclease I were used. We showed that actin is abundant within the nucleus as well as in the cytoplasm of A. proteus cells. According to DNase I experiments, the predominant form of intranuclear actin is G-actin which is associated with chromatin strands. Besides, unpolymerized actin was shown to participate in organization of a prominent actin layer adjacent to the outer surface of nuclear envelope. No significant amount of F-actin was found in the nucleus. At the same time, the amoeba nucleus is enclosed in a basket-like structure formed by circumnuclear actin filaments and bundles connected with global cytoplasmic actin cytoskeleton. A supposed architectural function of actin filaments was studied by treatment with actin-depolymerizing agent latrunculin A. It disassembled the circumnuclear actin system, but did not affect the intranuclear chromatin structure. The results obtained for amoeba cells support the modern concept that actin is involved in fundamental nuclear processes that have evolved in the cells of multicellular organisms.

  5. Nucleon-nucleus interactions from JACEE

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.; Jurak, A.; Lord, J. J.

    1985-01-01

    Results on hadron-nucleus interactions from the Japanese-American Cooperation Emulsion Experiment experiment are presented. Angular distributions for charged particles, and angular and transverse momentum spectra for photons have been measured for a sample of events with sigma epsilon sub gamma. Results on central rapidity density and transverse energy flow are discussed.

  6. Partial anxiolytic action of morphine sulphate following microinjection into the central nucleus of the amygdala in rats.

    PubMed

    File, S E; Rodgers, R J

    1979-09-01

    In the social interaction test of anxiety, bilateral microinjections of morphine sulphate (10 microgram) into the central nucleus of the amygdala counteracted the reduction in social interaction normally seen when the test arena is unfamiliar to rats. However, these injections did not counteract the decrease in social interaction that is observed as illuminance of the arena is increased. Morphine injections into the medial site depressed social interaction below the levels shown by control animals. In the open field test, morphine produced a facilitation of peripheral activity when injected into the central nucleus whilst a decrease in rearing was observed following similar injections into the medial nucleus. Overall, these data indicate a partial anxiolytic action of morphine in the central amygdaloid nucleus. Results are discussed in relation to possible differences in opioid peptide innervation of these two amygdaloid nuclei.

  7. The dentate nucleus in Friedreich's ataxia: the role of iron-responsive proteins.

    PubMed

    Koeppen, Arnulf H; Michael, Susan C; Knutson, Mitchell D; Haile, David J; Qian, Jiang; Levi, Sonia; Santambrogio, Paolo; Garrick, Michael D; Lamarche, Jacques B

    2007-08-01

    Frataxin deficiency in Friedreich's ataxia (FRDA) causes cardiac, endocrine, and nervous system manifestations. Frataxin is a mitochondrial protein, and adequate amounts are essential for cellular iron homeostasis. The main histological lesion in the brain of FRDA patients is neuronal atrophy and a peculiar proliferation of synaptic terminals in the dentate nucleus termed grumose degeneration. This cerebellar nucleus may be especially susceptible to FRDA because it contains abundant iron. We examined total iron and selected iron-responsive proteins in the dentate nucleus of nine patients with FRDA and nine normal controls by biochemical and microscopic techniques. Total iron (1.53 +/- 0.53 mumol/g wet weight) and ferritin (206.9 +/- 46.6 mug/g wet weight) in FRDA did not significantly differ from normal controls (iron: 1.78 +/- 0.88 mumol/g; ferritin: 210.9 +/- 9.0 mug/g) but Western blots exhibited a shift to light ferritin subunits. Immunocytochemistry of the dentate nucleus revealed loss of juxtaneuronal ferritin-containing oligodendroglia and prominent ferritin immunoreactivity in microglia and astrocytes. Mitochondrial ferritin was not detectable by immunocytochemistry. Stains for the divalent metal transporter 1 confirmed neuronal loss while endothelial cells reacting with antibodies to transferrin receptor 1 protein showed crowding of blood vessels due to collapse of the normal neuropil. Regions of grumose degeneration were strongly reactive for ferroportin. Purkinje cell bodies, their dendrites and axons, were also ferroportin-positive, and it is likely that grumose degeneration is the morphological manifestation of mitochondrial iron dysmetabolism in the terminals of corticonuclear fibers. Neuronal loss in the dentate nucleus is the likely result of trans-synaptic degeneration.

  8. The Double Nucleus and Central Black Hole of M31

    NASA Astrophysics Data System (ADS)

    Kormendy, John; Bender, Ralf

    1999-09-01

    parameters are tweaked so that the orbital eccentricity is made larger and the orientation of the orbits is made to point more nearly at us. (3) The model rotation curve is asymmetric; at perfect resolution, V is 60 km s-1 higher on the P2 side than on the P1 side. At σ*=0.27", we observe an asymmetry of 54+/-4 km s-1 after bulge subtraction. We regard this as confirmation of the model's essential idea that stellar orbits are eccentric and coherently aligned. (4) The model predicts that P1 and P2 should have the same stellar population. We confirm this: P1 is more similar to P2 than it is to the bulge or to a globular cluster or to M32. This makes it unlikely that P1 consists of accreted stars. (5) Our observation that there is cold light on both sides of the center implies, if the nucleus is an eccentric disk, that some stars have escaped from the P1-P2 alignment and have phase-mixed around the galaxy's center. The dispersion peak coincides with a cluster of ultraviolet-bright stars seen in Hubble Space Telescope images. We propose that the BH is in this cluster. Its center is displaced by 0.068"+/-0.010" from the bulge center. If we put a 3.3×107 Msolar dark object in the UV cluster and adopt the dynamically determined mass-to-light ratio of the stars, then the center of mass (COM) of the bulge, nucleus, and dark object coincides with the bulge center to within 0.017"+/-0.016". The COM also agrees with the velocity center of the bulge and outer nucleus. Therefore, the asymmetry of the stars in the double nucleus supports our suggestion that the BH is in the UV cluster. If the stars have a normal mass-to-light ratio, then the location of the COM also confirms the mass of the BH, largely independent of dynamical models. Tremaine's model implies that any dark cluster alternative to a BH is less than 0.13"+/-0.03"=0.49 pc in radius. The observed mass-to-light ratio is M/LV~=300 in a cylinder of radius r=0.13" and M/LV~=2200 in a sphere of radius r=0.13". This is much larger

  9. Average transverse momentum and energy density in high-energy nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.; Jurak, A.; Lord, J. J.

    1986-01-01

    Emulsion chambers were used to measure the transverse momenta of photons or pi(0) mesons produced in high-energy cosmic-ray nucleus-nucleus collisions. A group of events having large average transverse momenta has been found which apparently exceeds the expected limiting values. Analysis of the events at early interaction times, of the order of 1 fm/c, indicates that the observed transverse momentum increases with both rapidity density and energy density.

  10. Quantitative differences among EMG activities of muscles innervated by subpopulations of hypoglossal and upper spinal motoneurons during non-REM sleep - REM sleep transitions: a window on neural processes in the sleeping brain.

    PubMed

    Rukhadze, I; Kamani, H; Kubin, L

    2011-12-01

    In the rat, a species widely used to study the neural mechanisms of sleep and motor control, lingual electromyographic activity (EMG) is minimal during non-rapid eye movement (non-REM) sleep and then phasic twitches gradually increase after the onset of REM sleep. To better characterize the central neural processes underlying this pattern, we quantified EMG of muscles innervated by distinct subpopulations of hypoglossal motoneurons and nuchal (N) EMG during transitions from non-REM sleep to REM sleep. In 8 chronically instrumented rats, we recorded cortical EEG, EMG at sites near the base of the tongue where genioglossal and intrinsic muscle fibers predominate (GG-I), EMG of the geniohyoid (GH) muscle, and N EMG. Sleep-wake states were identified and EMGs quantified relative to their mean levels in wakefulness in successive 10 s epochs. During non-REM sleep, the average EMG levels differed among the three muscles, with the order being N>GH>GG-I. During REM sleep, due to different magnitudes of phasic twitches, the order was reversed to GG-I>GH>N. GG-I and GH exhibited a gradual increase of twitching that peaked at 70-120 s after the onset of REM sleep and then declined if the REM sleep episode lasted longer. We propose that a common phasic excitatory generator impinges on motoneuron pools that innervate different muscles, but twitching magnitudes are different due to different levels of tonic motoneuronal hyperpolarization. We also propose that REM sleep episodes of average durations are terminated by intense activity of the central generator of phasic events, whereas long REM sleep episodes end as a result of a gradual waning of the tonic disfacilitatory and inhibitory processes.

  11. The Neutrophil Nucleus and Its Role in Neutrophilic Function.

    PubMed

    Carvalho, Leonardo Olivieri; Aquino, Elaine Nascimento; Neves, Anne Caroline Dias; Fontes, Wagner

    2015-09-01

    The cell nucleus plays a key role in differentiation processes in eukaryotic cells. It is not the nucleus in particular, but the organization of the genes and their remodeling that provides the data for the adjustments to be made according to the medium. The neutrophil nucleus has a different morphology. It is a multi-lobed nucleus where some researchers argue no longer function. However, studies indicate that it is very probable the occurrence of chromatin remodeling during activation steps. It may be that the human neutrophil nucleus also contributes to the mobility of neutrophils through thin tissue spaces. Questions like these will be discussed in this small review. The topics include morphology of human neutrophil nucleus, maturation process and modifications of the neutrophil nucleus, neutrophil activation and chromatin modifications, causes and consequences of multi-lobulated segmented morphology, and importance of the nucleus in the formation of neutrophil extracellular traps (NETs).

  12. Why do we have a caudate nucleus?

    PubMed

    Villablanca, Jaime R

    2010-01-01

    In order to understand the physiological role of the caudate nucleus, we combine here our laboratory data on cats with reports of patients with selective damage to this nucleus. Cats with bilateral removal of the caudate nuclei showed a stereotyped behavior consisting of persistently approaching and then following a person, another cat, or any object, and attempting to contact the target. Simultaneously, the animals exhibited a friendly disposition and persistent docility together with purring and forelimbs treading/kneading. The magnitude and duration of this behavior was proportional to the extent of the removal reaching a maximum after ablations of 65% or more of the caudate tissue. These cats were hyperactive but they had lost the feline elegance of movements. Additional features of acaudate cats were: (1) postural and accuracy deficits (plus perseveration) in paw usage tasks including bar pressing for food reward; (2) cognitive and perceptual impairments on a T-maze battery of tasks and on the bar pressing tasks; (3) blockage or blunting of the species-specific behavioral response to a single injection of morphine; Unilateral caudate nucleus removal did not produce global behavioral effects, but only deficit in the contralateral paw contact placing reaction and paw usage/bar pressing. Moreover and surprisingly, we found hypertrophy of the ipsilateral caudate nucleus following prenatal focal neocortical removal. The findings in human were also behavioral (not neurological) and also occurred with unilateral caudate damage. The main manifestations consisted of loss of drive (apathy), obsessive-compulsive behavior, cognitive deficits, stimulus-bound perseverative behavior, and hyperactivity. Based on all of the above data we propose that the specific function of the caudate nucleus is to control approach-attachment behavior, ranging from plain approach to a target, to romantic love. This putative function would account well for the caudate involvement in the

  13. Collateral projections from the lateral parabrachial nucleus to the paraventricular thalamic nucleus and the central amygdaloid nucleus in the rat.

    PubMed

    Liang, Shao-Hua; Yin, Jun-Bin; Sun, Yi; Bai, Yang; Zhou, Kai-Xiang; Zhao, Wen-Jun; Wang, Wei; Dong, Yu-Lin; Li, Yun-Qing

    2016-08-26

    Combined the retrograde double tracing with immunofluorescence histochemical staining, we examined the neurons in the lateral parabrachial nucleus (LPB) sent collateral projections to the paraventricular thalamic nucleus (PVT) and central amygdaloid nucleus (CeA) and their roles in the nociceptive transmission in the rat. After the injection of Fluoro-gold (FG) into the PVT and tetramethylrhodamine-dextran (TMR) into the CeA, respectively, FG/TMR double-labeled neurons were observed in the LPB. The percentages of FG/TMR double-labeled neurons to the total number of FG- or TMR-labeled neurons were 6.18% and 9.09%, respectively. Almost all of the FG/TMR double-labeled neurons (95%) exhibited calcitonin gene-related peptide (CGRP) immunoreactivity. In the condition of neuropathic pain, 94% of these neurons showed FOS immunoreactivity. The present data indicates that some of CGRP-expressing neurons in the LPB may transmit nociceptive information toward the PVT and CeA by way of axon collaterals.

  14. Genetic inactivation of glutamate neurons in the rat sublaterodorsal tegmental nucleus recapitulates REM sleep behaviour disorder.

    PubMed

    Valencia Garcia, Sara; Libourel, Paul-Antoine; Lazarus, Michael; Grassi, Daniela; Luppi, Pierre-Hervé; Fort, Patrice

    2017-02-01

    SEE SCHENCK AND MAHOWALD DOI101093/AWW329 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Idiopathic REM sleep behaviour disorder is characterized by the enactment of violent dreams during paradoxical (REM) sleep in the absence of normal muscle atonia. Accumulating clinical and experimental data suggest that REM sleep behaviour disorder might be due to the neurodegeneration of glutamate neurons involved in paradoxical sleep and located within the pontine sublaterodorsal tegmental nucleus. The purpose of the present work was thus to functionally determine first, the role of glutamate sublaterodorsal tegmental nucleus neurons in paradoxical sleep and second, whether their genetic inactivation is sufficient for recapitulating REM sleep behaviour disorder in rats. For this goal, we first injected two retrograde tracers in the intralaminar thalamus and ventral medulla to disentangle neuronal circuits in which sublaterodorsal tegmental nucleus is involved; second we infused bilaterally in sublaterodorsal tegmental nucleus adeno-associated viruses carrying short hairpin RNAs targeting Slc17a6 mRNA [which encodes vesicular glutamate transporter 2 (vGluT2)] to chronically impair glutamate synaptic transmission in sublaterodorsal tegmental nucleus neurons. At the neuroanatomical level, sublaterodorsal tegmental nucleus neurons specifically activated during paradoxical sleep hypersomnia send descending efferents to glycine/GABA neurons within the ventral medulla, but not ascending projections to the intralaminar thalamus. These data suggest a crucial role of sublaterodorsal tegmental nucleus neurons rather in muscle atonia than in paradoxical sleep generation. In line with this hypothesis, 30 days after adeno-associated virus injections into sublaterodorsal tegmental nucleus rats display a decrease of 30% of paradoxical sleep daily quantities, and a significant increase of muscle tone during paradoxical sleep concomitant to a tremendous increase of abnormal motor dream

  15. Cell Nucleus-Targeting Zwitterionic Carbon Dots

    PubMed Central

    Jung, Yun Kyung; Shin, Eeseul; Kim, Byeong-Su

    2015-01-01

    An innovative nucleus-targeting zwitterionic carbon dot (CD) vehicle has been developed for anticancer drug delivery and optical monitoring. The zwitterionic functional groups of the CDs introduced by a simple one-step synthesis using β-alanine as a passivating and zwitterionic ligand allow cytoplasmic uptake and subsequent nuclear translocation of the CDs. Moreover, multicolor fluorescence improves the accuracy of the CDs as an optical code. The CD-based drug delivery system constructed by non-covalent grafting of doxorubicin, exhibits superior antitumor efficacy owing to enhanced nuclear delivery in vitro and tumor accumulation in vivo, resulting in highly effective tumor growth inhibition. Since the zwitterionic CDs are highly biocompatible and effectively translocated into the nucleus, it provides a compelling solution to a multifunctional nanoparticle for substantially enhanced nuclear uptake of drugs and optical monitoring of translocation. PMID:26689549

  16. Gustatory Reward and the Nucleus Accumbens

    PubMed Central

    Norgren, R.; Hajnal, A.; Mungarndee, S.S.

    2011-01-01

    The concept of reward is central to psychology, but remains a cipher for neuroscience. Considerable evidence implicates dopamine in the process of reward and much of the data derives from the nucleus accumbens. Gustatory stimuli are widely used for animal studies of reward, but the connections between the taste and reward systems are unknown. In a series of experiments, our laboratory has addressed this issue using functional neurochemistry and neuroanatomy. First, using microdialysis probes, we demonstrated that sapid sucrose releases dopamine in the nucleus accumbens. The effect is dependent on oral stimulation and concentration. We subsequently determined that this response was independent of the thalamocortical gustatory system, but substantially blunted by damage to the parabrachial limbic taste projection. Further experiments using c-fos histochemistry confirmed that the limbic pathway was the prime carrier for the gustatory afferent activity that drives accumbens dopamine release. PMID:16822531

  17. Cell Nucleus-Targeting Zwitterionic Carbon Dots.

    PubMed

    Jung, Yun Kyung; Shin, Eeseul; Kim, Byeong-Su

    2015-12-22

    An innovative nucleus-targeting zwitterionic carbon dot (CD) vehicle has been developed for anticancer drug delivery and optical monitoring. The zwitterionic functional groups of the CDs introduced by a simple one-step synthesis using β-alanine as a passivating and zwitterionic ligand allow cytoplasmic uptake and subsequent nuclear translocation of the CDs. Moreover, multicolor fluorescence improves the accuracy of the CDs as an optical code. The CD-based drug delivery system constructed by non-covalent grafting of doxorubicin, exhibits superior antitumor efficacy owing to enhanced nuclear delivery in vitro and tumor accumulation in vivo, resulting in highly effective tumor growth inhibition. Since the zwitterionic CDs are highly biocompatible and effectively translocated into the nucleus, it provides a compelling solution to a multifunctional nanoparticle for substantially enhanced nuclear uptake of drugs and optical monitoring of translocation.

  18. Core-nucleus distortation in hypernuclei

    SciTech Connect

    Bodmer, A.R.; Usmani, Q.N.

    1995-08-01

    We are completing a study of the effects of the spherical distortion of the {open_quotes}core{close_quotes} nucleus by the {Lambda} in a hypernucleus. The response of the core was determined by an appropriately chosen energy-density functional which depends, in particular, on the nuclear compressibility. The forcing action of the A is determined by the nuclear density dependence of the {Lambda} binding in nuclear matter which is obtained from our work on the {Lambda} single-particle energies. Because of the strongly repulsive {Lambda}NN forces, this {Lambda} binding {open_quotes}saturates{close_quotes} at a density close to the central density of nuclei, and results in a reduced core-nucleus distortion much less than would otherwise be obtained. The effects of the core distortion then turn out to be very small even for quite light hypernuclei. This result justifies the assumption that spherical core nuclei are effectively undistorted in a hypernucleus.

  19. Finite nucleus effects on relativistic energy corrections

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.; Faegri, Knut, Jr.

    1993-01-01

    The effect of using a finite nucleus model in quantum-chemical calculations is examined. Relativistic corrections from the first order Foldy-Wouthuysen terms are affected indirectly by the change in wavefunction, but also directly as a result of revised expressions for the Darwin and spin-orbit terms due to the change in nuclear potential. A calculation for the Rn atom indicates that the mass-velocity and Darwin corrections are much more sensitive to the finite nucleus than the non-relativistic total energy, but that the total contribution for these two terms is quite stable provided the revised form of the Darwin term is used. The spin-orbit interaction is not greatly affected by the choice of nuclear model.

  20. Physical Properties of Cometary Nucleus Candidates

    NASA Technical Reports Server (NTRS)

    Jewitt, David; Hillman, John (Technical Monitor)

    2003-01-01

    In this proposal we aim to study the physical properties of the Centaurs and the dead comets, these being the precursors to, and the remnants from, the active cometary nuclei. The nuclei themselves are very difficult to study, because of the contaminating effects of near-nucleus coma. Systematic investigation of the nuclei both before they enter the zone of strong sublimation and after they have depleted their near-surface volatiles should neatly bracket the properties of these objects, revealing evolutionary effects.

  1. Pygmy dipole response in 238U nucleus

    NASA Astrophysics Data System (ADS)

    Guliyev, Ekber; Kuliev, Ali Akbar; Quliyev, Huseynqulu

    2017-02-01

    The presence of the El pygmy dipole resonance (PDR) in the actinide nucleus 238U was shown via QRPA. Below the particle threshold energy, 24 excitation states were calculated. The calculations, is demonstrating the presence of a PDR with evidence for K splitting. The calculations further suggest that the PDR in 238U is predominantly K=0. The obtained results show universality of the PDR in atomic nuclei.

  2. Absolute cross sections of compound nucleus reactions

    NASA Astrophysics Data System (ADS)

    Capurro, O. A.

    1993-11-01

    The program SEEF is a Fortran IV computer code for the extraction of absolute cross sections of compound nucleus reactions. When the evaporation residue is fed by its parents, only cumulative cross sections will be obtained from off-line gamma ray measurements. But, if one has the parent excitation function (experimental or calculated), this code will make it possible to determine absolute cross sections of any exit channel.

  3. Development of a Mobile Ice Nucleus Counter

    SciTech Connect

    Kok, Gregory; Kulkarni, Gourihar

    2014-07-10

    An ice nucleus counter has been constructed. The instrument uses built-in refrigeration systems for wall cooling. A cascade refrigeration system will allow the cold wall to operate as low as -70°C, and a single stage system can operate the warm wall at -45C. A unique optical particle counter has been constructed using polarization detection of the scattered light. This allows differentiation of the particles exiting the chamber to determine if they are ice or liquid.

  4. How to build a yeast nucleus.

    PubMed

    Wong, Hua; Arbona, Jean-Michel; Zimmer, Christophe

    2013-01-01

    Biological functions including gene expression and DNA repair are affected by the 3D architecture of the genome, but the underlying mechanisms are still unknown. Notably, it remains unclear to what extent nuclear architecture is driven by generic physical properties of polymers or by specific factors such as proteins binding particular DNA sequences. The budding yeast nucleus has been intensely studied by imaging and biochemical techniques, resulting in a large quantitative data set on locus positions and DNA contact frequencies. We recently described a quantitative model of the interphase yeast nucleus in which chromosomes are represented as passively moving polymer chains. This model ignores the DNA sequence information except for specific constraints at the centromeres, telomeres, and the ribosomal DNA (rDNA). Despite its simplicity, the model accounts for a large majority of experimental data, including absolute and relative locus positions and contact frequency patterns at chromosomal and subchromosomal scales. Here, we also illustrate the model's ability to reproduce observed features of chromatin movements. Our results strongly suggest that the dynamic large-scale architecture of the yeast nucleus is dominated by statistical properties of randomly moving polymers with a few sequence-specific constraints, rather than by a large number of DNA-specific factors or epigenetic modifications. In addition, we show that our model accounts for recently measured variations in homologous recombination efficiency, illustrating its potential for quantitatively understanding functional consequences of nuclear architecture.

  5. Comet nucleus and asteroid sample return missions

    NASA Astrophysics Data System (ADS)

    1992-06-01

    Three Advanced Design Projects have been completed this academic year at Penn State. At the beginning of the fall semester the students were organized into eight groups and given their choice of either a comet nucleus or an asteroid sample return mission. Once a mission had been chosen, the students developed conceptual designs. These were evaluated at the end of the fall semester and combined into three separate mission plans, including a comet nucleus same return (CNSR), a single asteroid sample return (SASR), and a multiple asteroid sample return (MASR). To facilitate the work required for each mission, the class was reorganized in the spring semester by combining groups to form three mission teams. An integration team consisting of two members from each group was formed for each mission so that communication and information exchange would be easier among the groups. The types of projects designed by the students evolved from numerous discussions with Penn State faculty and mission planners at the Johnson Space Center Human/Robotic Spacecraft Office. Robotic sample return missions are widely considered valuable precursors to manned missions in that they can provide details about a site's environment and scientific value. For example, a sample return from an asteroid might reveal valuable resources that, once mined, could be utilized for propulsion. These missions are also more adaptable when considering the risk to humans visiting unknown and potentially dangerous locations, such as a comet nucleus.

  6. Theoretical predictions for the nucleus 296118

    NASA Astrophysics Data System (ADS)

    Sobiczewski, A.

    2016-11-01

    Theoretical predictions for the α -decay chain of the nucleus 296118 are performed. The synthesis of this nucleus is being attempted in experiments running in Dubna. The α -decay energies Qα, and the α -decay and spontaneous-fission half-lives, Tα and Tsf, are studied. The analysis of the α decay is based on a phenomenological model using only three parameters. The calculations are performed in nine variants using masses obtained within nine nuclear-mass models describing masses of the heaviest nuclei. The experimental Qα energies, known from earlier experiments for the potential daughter, 292Lv, and grand-daughter, 288Fl, nuclei are reproduced with an average of the absolute values of the discrepancies: from 0.13 to 1.52 MeV within the considered variants. Measured half-lives Tα are reconstructed within average ratios: from 1.7 to 1054. Within all variants considered, the half-life Tα of the nucleus 296118 is obtained larger than needed (around 1 μ s ) for its observation.

  7. Comet nucleus and asteroid sample return missions

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Three Advanced Design Projects have been completed this academic year at Penn State. At the beginning of the fall semester the students were organized into eight groups and given their choice of either a comet nucleus or an asteroid sample return mission. Once a mission had been chosen, the students developed conceptual designs. These were evaluated at the end of the fall semester and combined into three separate mission plans, including a comet nucleus same return (CNSR), a single asteroid sample return (SASR), and a multiple asteroid sample return (MASR). To facilitate the work required for each mission, the class was reorganized in the spring semester by combining groups to form three mission teams. An integration team consisting of two members from each group was formed for each mission so that communication and information exchange would be easier among the groups. The types of projects designed by the students evolved from numerous discussions with Penn State faculty and mission planners at the Johnson Space Center Human/Robotic Spacecraft Office. Robotic sample return missions are widely considered valuable precursors to manned missions in that they can provide details about a site's environment and scientific value. For example, a sample return from an asteroid might reveal valuable resources that, once mined, could be utilized for propulsion. These missions are also more adaptable when considering the risk to humans visiting unknown and potentially dangerous locations, such as a comet nucleus.

  8. Differential Gene Expression in the Developing Lateral Geniculate Nucleus and Medial Geniculate Nucleus Reveals Novel Roles for Zic4 and Foxp2 in Visual and Auditory Pathway Development

    PubMed Central

    Horng, Sam; Kreiman, Gabriel; Ellsworth, Charlene; Page, Damon; Blank, Marissa; Millen, Kathleen; Sur, Mriganka

    2010-01-01

    Primary sensory nuclei of the thalamus process and relay parallel channels of sensory input into the cortex. The developmental processes by which these nuclei acquire distinct functional roles are not well understood. To identify novel groups of genes with a potential role in differentiating two adjacent sensory nuclei, we performed a microarray screen comparing perinatal gene expression in the principal auditory relay nucleus, the medial geniculate nucleus (MGN), and principal visual relay nucleus, the lateral geniculate nucleus (LGN). We discovered and confirmed groups of highly ranked, differentially expressed genes with qRT-PCR and in situ hybridization. A functional role for Zic4, a transcription factor highly enriched in the LGN, was investigated using Zic4-null mice, which were found to have changes in topographic patterning of retinogeniculate projections. Foxp2, a transcriptional repressor expressed strongly in the MGN, was found to be positively regulated by activity in the MGN. These findings identify roles for two differentially expressed genes, Zic4 and Foxp2, in visual and auditory pathway development. Finally, to test whether modality-specific patterns of gene expression are influenced by extrinsic patterns of input, we performed an additional microarray screen comparing the normal MGN to “rewired” MGN, in which normal auditory afferents are ablated and novel retinal inputs innervate the MGN. Data from this screen indicate that rewired MGN acquires some patterns of gene expression that are present in the developing LGN, including an upregulation of Zic4 expression, as well as novel patterns of expression which may represent unique processes of cross-modal plasticity. PMID:19864579

  9. Dynamical evolution of comet nucleus rotation

    NASA Astrophysics Data System (ADS)

    Scheeres, D. J.; Sidorenko, V. V.; Neishtadt, A. I.; Vasiliev, A. A.

    2002-09-01

    The rotational dynamics of outgassing cometary nuclei are investigated analytically. We develop a general theory for the evolution of a comet nucleus' rotation state using averaging theory and assuming that the outgassing torques are a function of solar insolation and heliocentric distance. The resulting solutions are a function of the nucleus inertia ellipsoid, its outgassing properties, its heliocentric orbit, and the assumed distribution of active regions on its surface. We find that the long-term evolution of the comet nucleus rotation is a strong function of the distribution of active regions over its surface. In particular, we find that nuclei with nearly axisymmetric inertia ellipsoids and a uniformly active surface will tend towards a rotation state that has a nutation angle of ~ 55 degrees and its angular momentum perpendicular to the sun-perihelion direction. If such a comet nucleus has only one isolated active region, it will tend towards a zero nutation angle with its approximate symmetry axis and rotational angular momentum aligned parallel to the sun-perihelion direction. In the general case for an inertia ellipsoid that is not close to being axisymmetric we find a much richer set of possible steady-state solutions that are stable, ranging from rotation about the maximum moment of the inertia axis, to SAM and LAM non-principal axis rotation states. The resulting stable rotation states are a strong function of outgassing activity distribution, which we show using a simplified model of the comet Halley nucleus. Also, we demonstrate that comet Borrely observations are consistent with a stable rotation state. Our results can be used to discriminate between competing theories of comet outgassing based on a nucelus' rotation state. They also allow for a range of plausible a priori constraints to be placed on a comet's rotation state to aid in the interpretation of its outgassing structure. This work was supported by the NASA JURRISS program under Grant NAG5

  10. Nuclear radii calculations in various theoretical approaches for nucleus-nucleus interactions

    SciTech Connect

    Merino, C.; Novikov, I. S.; Shabelski, Yu.

    2009-12-15

    The information about sizes and nuclear density distributions in unstable (radioactive) nuclei is usually extracted from the data on interaction of radioactive nuclear beams with a nuclear target. We show that in the case of nucleus-nucleus collisions the values of the parameters depend somewhat strongly on the considered theoretical approach and on the assumption about the parametrization of the nuclear density distribution. The obtained values of root-mean-square radii (R{sub rms}) for stable nuclei with atomic weights A=12-40 vary by approximately 0.1 fm when calculated in the optical approximation, in the rigid target approximation, and using the exact expression of the Glauber theory. We present several examples of R{sub rms} radii calculations using these three theoretical approaches and compare these results with the data obtained from electron-nucleus scattering.

  11. Visible and infrared study of comet 2P/Encke's nucleus during its 2013 apparition

    NASA Astrophysics Data System (ADS)

    Fernandez, Y.; Mueller, B.; Samarasinha, N.; Woodney, L.; Abell, P.

    2014-07-01

    The 2013 apparition of comet 2P/Encke provided an opportunity to study the comet while it was relatively close to the Earth. The comet passed 0.48 au from the Earth on October 17, the closest such passage since 2003 and until 2030. We initiated a visible and infrared observational campaign for the apparition with the goal of further characterizing the physical, thermal, and rotational properties of the P/Encke nucleus. While thermal-emission data on the nucleus have been obtained in the past (e.g. [1--4]), observations in 2013 timed to coincide with an equator-on view afforded us the chance to have a rarely-seen vantage point of the nucleus. Low-resolution spectra over wavelengths from 0.7 to 2.5 μ m were obtained over four nights (UT Sept. 26, 28, 30, Oct. 1) that span all of the nucleus rotational longitudes. The spectra were acquired at the NASA Infrared Telescope Facility (IRTF) using its SpeX instrument, and they sample reflected sunlight at the short wavelengths and Wien-side thermal emission at the long wavelengths. We will present results on thermal inertia and albedo from a preliminary analysis of these data. We have shown through observations over the past 13 years that the rotation period of P/Encke's nucleus changes by about 4 minutes per orbit [5,6]. Furthermore, the typical lightcurve has the normal two-humped shape but with humps that have vastly different amplitudes (e.g., [7]). Thus, the equator-on view gave us the chance to further investigate P/Encke's rotation state and shape. We obtained visible-wavelength photometry of the nucleus in the R band at NASA/IRTF with the MORIS instrument on the aforementioned dates, at the NOAO Kitt Peak 2.1-meter telescope over UT Sept. 11, 12, 13, and 14, and at the CSUSB Murrillo Family Observatory 0.5-meter telescope over several dates in Sept. and Oct. [8]. The MORIS data in particular gave us the rotational context and absolute flux calibration for the spectra. We will present new, preliminary constraints on

  12. Pion and Kaon Lab Frame Differential Cross Sections for Intermediate Energy Nucleus-Nucleus Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Blattnig, Steve R.

    2008-01-01

    Space radiation transport codes require accurate models for hadron production in intermediate energy nucleus-nucleus collisions. Codes require cross sections to be written in terms of lab frame variables and it is important to be able to verify models against experimental data in the lab frame. Several models are compared to lab frame data. It is found that models based on algebraic parameterizations are unable to describe intermediate energy differential cross section data. However, simple thermal model parameterizations, when appropriately transformed from the center of momentum to the lab frame, are able to account for the data.

  13. Electromagnetic processes in nucleus-nucleus collisions relating to space radiation research

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Most of the papers within this report deal with electromagnetic processes in nucleus-nucleus collisions which are of concern in the space radiation program. In particular, the removal of one and two nucleons via both electromagnetic and strong interaction processes has been extensively investigated. The theory of relativistic Coulomb fission has also been developed. Several papers on quark models also appear. Finally, note that the theoretical methods developed in this work have been directly applied to the task of radiation protection of astronauts. This has been done by parameterizing the theoretical formalism in such a fashion that it can be used in cosmic ray transport codes.

  14. Observation of direct hadronic pairs in nucleus-nucleus collisions in JACEE emulsion chambers

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.; Jurak, A.

    1985-01-01

    In a number of high energy ( or = 1 TeV/amu) nucleus-nucleus collisions observed in Japanese-American Cooperative Emulsion Experiment (JACEE) emulsion chambers, nonrandom spatial association of produced charged particles, mostly hadronic pairs, are observed. Similar narrow pairs are observed in about 100 events at much low energy (20 to 60 GeV/amu). Analysis shows that 30 to 50% of Pair abundances are understood by the Hambury-Brown-Twiss effect, and the remainder seems to require other explanations.

  15. Distinct roles of oxidative stress and antioxidants in the nucleus dorsalis and red nucleus following spinal cord hemisection.

    PubMed

    Xu, Mei; Yip, George Wai-Cheong; Gan, Le-Ting; Ng, Yee-Kong

    2005-09-07

    Oxidative stress plays an important role in the pathogenesis of neurodegeneration after the acute central nervous system injury. We reported previously that increased nitric oxide (NO) production following spinal cord hemisection tends to lead to neurodegeneration in neurons of the nucleus dorsalis (ND) that normally lacks expression of neuronal NO synthase (nNOS) in opposition to those in the red nucleus (RN) that constitutively expresses nNOS. We wondered whether oxidative stress could be a mechanism underlying this NO involved neurodegeneration. In the present study, we examined oxidative damage evaluated by the presence of 4-hydroxynonenal (HNE) and iron accumulation and expression of putative antioxidant enzymes heme oxygenase-1 (HO-1) and superoxide dismutase (SOD) in neurons of the ND and RN after spinal cord hemisection. We found that HNE expression was induced in neurons of the ipsilateral ND from 1 to 14 days following spinal cord hemisection. Concomitantly, iron staining was seen from 7 to 14 days after lesion. HO-1, however, was only transiently induced in ipsilateral ND neurons between 3 and 7 days after lesion. In contrast to the ND neurons, HNE was undetectable and iron level was unaltered in the RN neurons after spinal cord hemisection. HO-1, SOD-Cu/Zn and SOD-Mn were constitutively expressed in RN neurons, and lesion to the spinal cord did not change their expression. These results suggest that oxidative stress is involved in the degeneration of the lesioned ND neurons; whereas constitutive antioxidant enzymes may protect the RN neurons from oxidative damage.

  16. The Checkerboard Model of the Nucleus

    NASA Astrophysics Data System (ADS)

    Lach, Theodore

    2014-03-01

    The Lach Checker Board Model (CBM) of the nucleus and the associated ESM predicts that nature has 5 generations of quarks not 3. The heaviest generation in the Extended Standard Model (ESM) has a t' quark of mass 65 GeV and a b' quark of 42.4 GeV. The lepton in this generation has a mass of 27 GeV. Part of this theory evolved because it appears that the quarks and lepton of each generation have masses related by the geometric mean. The Geometric mean of 65 and 27 is 42. Charge is conserved (+2/3 and -1 is -1/3). Details of how this theory evolved is found on my web site (http://checkerboard.dnsalias.net) or in the following references [T.M. Lach, Checkerboard Structure of the Nucleus, Infinite Energy, Vol. 5, issue 30, (2000); T.M. Lach, Masses of the Sub-Nuclear Particles, nucl-th/0008026, @http://xxx.lanl.gov/] One independent check of this CB model is that the wavelength of the ``up'' quark orbiting inside the proton at 84.8123% the speed of light around the ``dn'' quark in the center turns out to be exactly one DeBroglie wavelength. This explains the mass of the proton and neutron and their magnetic moments. This along with the beautiful symmetric 2D structure of the He nucleus led to the evolution of this theory. One would expect a t'-anti t' meson of mass of about 130 GeV.

  17. Surface Photometric Variation of Comet Borrelly's Nucleus

    NASA Astrophysics Data System (ADS)

    Li, J.; A'Hearn, M. F.; McFadden, L. A.

    2004-11-01

    Comet Borrelly was visited by Deep Space 1 in Sept. 2001 (Soderblom et al. 2004) The images of comet Borrelly's nucleus show large brightness variation over the surface even after the effect of shape is taken into account (Oberst et al. 2004, Kirk et al. 2004). It is not yet known whether this variation is caused by albedo variation (Oberst et al. 2004, Buratti et al. 2004) or the variation of other physical properties such as surface roughness (Kirk et al. 2004) or solar phase function. In our analysis, the disk-resolved images from the DS1 spacecraft (Soderblom et al. 2004) were used, coupled with the shape model of Borrelly's nucleus developed from stereo imaging (Oberst et al. 2004, Kirk et al. 2004), to fit the bidirectional reflectance as a function of local illumination and viewing geometry for individual terrains as defined by Britt et al. (2004). Results show that the surface reflectance variation is, contrary to previous interpretations, most likely due to the combination of albedo variation (a factor of 1.5) and the variation of the asymmetry factor (g) of the single-particle phase function. We find the roughness parameter (theta_bar) is <25o over the surface. The surface on Borrelly's nucleus can be highly back-scattering (g <= -0.7) for mottled terrain, and close to isotropic scattering (g -0.15) for smooth terrain, with single scattering albedo ranging from 0.05 to 0.07. This work is supported by NASA grant NNG04GA92G.

  18. Dust activity of Comet Halley's nucleus

    NASA Technical Reports Server (NTRS)

    Keller, H. U.; Delamere, W. A.; Huebner, W. F.; Reitsema, H.; Schmidt, H. U.; Schmidt, W. K. H.; Whipple, Fred L.; Wilhelm, K.

    1986-01-01

    Images obtained by the Halley multicolor camera using the clear filter with a pass band from 300 to 1000 nm were used to study dust activity in the comet nucleus. Comparisons with ground based observations confirm that dust production towards the Sun increases in activity relative to the southern background source while the Giotto spacecraft was approaching. This is in agreement with the assumption that the sunward activity becomes stronger when the source rotates towards the Sun. Estimated dust column density is 90 billion/sqm, with optical thickness less than or = 0.3. Surface reflectivity is less than 1%, indicating a very rough surface with large fractions of shadowed areas.

  19. [The perichromatin compartment of the cell nucleus].

    PubMed

    Bogoliubov, D S

    2014-01-01

    In this review, the data on the structure and composition of the perichromatin compartment, a special border area between the condensed chromatin and the interchromatin space of the cell nucleus, are discussed in the light of the concept of nuclear functions in complex nuclear architectonics. Morphological features, molecular composition and functions of main extrachromosomal structures of the perichromatin compartment, perichromatin fibrils (PFs) and perichromatin granules (PGs) including nuclear stress-bodies (nSBs) that are derivates of the PGs under heat shock, are presented. A special attention was paid to the features of the molecular compositions of PFs and PGs in different cell types and at different physiological conditions.

  20. Advocating for Normal Birth With Normal Clothes

    PubMed Central

    Waller-Wise, Renece

    2007-01-01

    Childbirth educators need to be aware that the clothes they wear when teaching classes send a nonverbal message to class participants. Regardless of who wears the clothing or what is worn, clothes send a message; thus, both the advantages and disadvantages related to clothing choice should be considered. Ultimately, the message should reflect the values of supporting normal birth. For childbirth educators who are allowed to choose their own apparel to wear in their classes, street clothes may be the benchmark for which to strive. This article discusses the many nonverbal messages that clothes convey and provides support for the choice of street clothes as the dress for the professional childbirth educator; thus, “normal clothes to promote normal birth.” PMID:18408807

  1. Nuclear mean field and double-folding model of the nucleus-nucleus optical potential

    NASA Astrophysics Data System (ADS)

    Khoa, Dao T.; Phuc, Nguyen Hoang; Loan, Doan Thi; Loc, Bui Minh

    2016-09-01

    Realistic density dependent CDM3Yn versions of the M3Y interaction have been used in an extended Hartree-Fock (HF) calculation of nuclear matter (NM), with the nucleon single-particle potential determined from the total NM energy based on the Hugenholtz-van Hove theorem that gives rise naturally to a rearrangement term (RT). Using the RT of the single-nucleon potential obtained exactly at different NM densities, the density and energy dependence of the CDM3Yn interactions was modified to account properly for both the RT and observed energy dependence of the nucleon optical potential. Based on a local density approximation, the double-folding model of the nucleus-nucleus optical potential has been extended to take into account consistently the rearrangement effect and energy dependence of the nuclear mean-field potential, using the modified CDM3Yn interactions. The extended double-folding model was applied to study the elastic 12C+12C and 16O+12C scattering at the refractive energies, where the Airy structure of the nuclear rainbow has been well established. The RT was found to affect significantly the real nucleus-nucleus optical potential at small internuclear distances, giving a potential strength close to that implied by the realistic optical model description of the Airy oscillation.

  2. Comet nucleus and asteroid sample return missions

    NASA Technical Reports Server (NTRS)

    Melton, Robert G.; Thompson, Roger C.; Starchville, Thomas F., Jr.; Adams, C.; Aldo, A.; Dobson, K.; Flotta, C.; Gagliardino, J.; Lear, M.; Mcmillan, C.

    1992-01-01

    During the 1991-92 academic year, the Pennsylvania State University has developed three sample return missions: one to the nucleus of comet Wild 2, one to the asteroid Eros, and one to three asteroids located in the Main Belt. The primary objective of the comet nucleus sample return mission is to rendezvous with a short period comet and acquire a 10 kg sample for return to Earth. Upon rendezvous with the comet, a tethered coring and sampler drill will contact the surface and extract a two-meter core sample from the target site. Before the spacecraft returns to Earth, a monitoring penetrator containing scientific instruments will be deployed for gathering long-term data about the comet. A single asteroid sample return mission to the asteroid 433 Eros (chosen for proximity and launch opportunities) will extract a sample from the asteroid surface for return to Earth. To limit overall mission cost, most of the mission design uses current technologies, except the sampler drill design. The multiple asteroid sample return mission could best be characterized through its use of future technology including an optical communications system, a nuclear power reactor, and a low-thrust propulsion system. A low-thrust trajectory optimization code (QuickTop 2) obtained from the NASA LeRC helped in planning the size of major subsystem components, as well as the trajectory between targets.

  3. Subthalamic Nucleus Stimulation Modulates Thalamic Neuronal Activity

    PubMed Central

    Xu, Weidong; Russo, Gary S.; Hashimoto, Takao; Zhang, Jianyu; Vitek, Jerrold L.

    2009-01-01

    Deep brain stimulation (DBS) in the subthalamic nucleus (STN) is an effective tool for the treatment of advanced Parkinson’s disease. The mechanism by which STN DBS elicits its beneficial effect, however, remains unclear. We previously reported STN stimulation increased the rate and produced a more regular and periodic pattern of neuronal activity in the internal segment of the globus pallidus (GPi). Here we extend our observations to neurons in the pallidal (ventralis lateralis pars oralis (VLo) and ventralis anterior (VA)) and cerebellar (ventralis lateralis posterior pars oralis (VPLo)) receiving areas of the motor thalamus during STN DBS. Stimulation parameters that produced improvement in rigidity and bradykinesia resulted in changes in the pattern and power of oscillatory activity of neuronal activity that were similar in both regions of the motor thalamus. Neurons in both VA/VLo and VPLo tended to become more periodic and regular with a shift in oscillatory activity from low to high frequencies. Burst activity was reduced in VA/VLo, but was not significantly changed in VPLo. There was also a significant shift in the population of VA/VLo neurons that were inhibited during STN DBS, while VPLo neurons tended to be activated. These data are consistent with the hypothesis that STN DBS increases output from the nucleus and produces a change in the pattern and periodicity of neuronal activity in the basal ganglia thalamic network, and that these changes include cerebellar pathways likely via activation of adjacent cerebello-thalamic fiber bundles. PMID:19005057

  4. On M31's Double Nucleus

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Smith, B. F.; Cuzzi, Jeffrey (Technical Monitor)

    1995-01-01

    The recent HST discovery of a double nucleus in M31 brings into prominence the question how long, a second core can survive within the nuclear regions of a galaxy. Physical conditions in the nuclear regions of a typical galaxy help a second core survive, so it can orbit for a long time. possibly for thousands of orbits. Given the nearly uniform mass density in a core, tidal forces within a core radius are compressive in all directions and help the core survive the buffeting it takes as it orbits near the center of the galaxy. We use numerical experiments to illustrate these physical principles. Our method allows the full power of the experiments to be concentrated on the nuclear regions. Spatial resolution of about 0.2 pc comfortably resolves detail within the 1.4 parsec core radius of the second, but brighter core (P1) in M31. We use these physical principles to discuss M31's double nucleus, but they apply to other galaxies as well. and in other astronomical situations such as dumbbell galaxies. galaxies orbiting near the center of a galaxy cluster, and subclustering in galaxy clusters. The experiments also illustrate that galaxy encounters and merging are quite sensitive to external tidal forces, such as those produced by the gravitational potential in a group or cluster of galaxies.

  5. Spectrin repeat proteins in the nucleus.

    PubMed

    Young, Kevin G; Kothary, Rashmi

    2005-02-01

    Spectrin repeat sequences are among the more common repeat elements identified in proteins, typically occurring in large structural proteins. Examples of spectrin repeat-containing proteins include dystrophin, alpha-actinin and spectrin itself--all proteins with well-demonstrated roles of establishing and maintaining cell structure. Over the past decade, it has become clear that, although these proteins display a cytoplasmic and plasma membrane distribution, several are also found both at the nuclear envelope, and within the intranuclear space. In this review, we provide an overview of recent work regarding various spectrin repeat-containing structural proteins in the nucleus. As well, we hypothesize about the regulation of their nuclear localization and possible nuclear functions based on domain architecture, known interacting proteins and evolutionary relationships. Given their large size, and their potential for interacting with multiple proteins and with chromatin, spectrin repeat-containing proteins represent strong candidates for important organizational proteins within the nucleus. Supplementary material for this article can be found on the BioEssays website (http://www.interscience.wiley.com/jpages/0265-9247/suppmat/index.html).

  6. Silencing of estrogen receptor α in the ventromedial nucleus of hypothalamus leads to metabolic syndrome

    PubMed Central

    Musatov, Sergei; Chen, Walter; Pfaff, Donald W.; Mobbs, Charles V.; Yang, Xue-Jun; Clegg, Deborah J.; Kaplitt, Michael G.; Ogawa, Sonoko

    2007-01-01

    Estrogen receptor α (ERα) plays a pivotal role in the regulation of food intake and energy expenditure by estrogens. Although it is well documented that a disruption of ERα signaling in ERα knockout (ERKO) mice leads to an obese phenotype, the sites of estrogen action and mechanisms underlying this phenomenon are still largely unknown. In the present study, we exploited RNA interference mediated by adeno-associated viral vectors to achieve focused silencing of ERα in the ventromedial nucleus of the hypothalamus, a key center of energy homeostasis. After suppression of ERα expression in this nucleus, female mice and rats developed a phenotype characteristic for metabolic syndrome and marked by obesity, hyperphagia, impaired tolerance to glucose, and reduced energy expenditure. This phenotype persisted despite normal ERα levels elsewhere in the brain. Although an increase in food intake preceded weight gain, our data suggest that a leading factor of obesity in this model is likely a decline in energy expenditure with all three major constituents being affected, including voluntary activity, basal metabolic rate, and diet-induced thermogenesis. Together, these findings indicate that ERα in the ventromedial nucleus of the hypothalamus neurons plays an essential role in the control of energy balance and the maintenance of normal body weight. PMID:17284595

  7. Odyssey Comet Nucleus Orbiter: The Next Step in Cometary Exploration

    NASA Technical Reports Server (NTRS)

    Weissman, P. R.; Nilsen, E. N.; Smythe, W. D.; Marriott, J.; Reinert, R.

    2001-01-01

    Cometary nuclei are the most primitive bodies in the solar system, containing a cosmo-chemical record of the primordial solar nebula. Flyby missions to comets, such as those that encountered Comet Halley in 1986, provide a glimpse at this record. However, to study a cometary nucleus in detail requires a rendezvous mission, i.e., a nucleus orbiter. Only an orbiter provides the ability to map the entire nucleus surface at high resolution, to study the complex chemistry in the cometary coma and its variation with time, and to determine the mass and bulk density of the nucleus, key parameters in understanding how small bodies first formed in the solar nebula. A nucleus orbiter also provides the opportunity to sense the nucleus surface in preparation for more ambitious landing and sample return missions in the future. Additional information is contained in the original extended abstract.

  8. A search for ϕ meson nucleus bound state using antiproton annihilation on nucleus

    NASA Astrophysics Data System (ADS)

    Ohnishi, H.; Bühler, P.; Cargnelli, M.; Curceanu, C.; Guaraldo, C.; Hartmann, O.; Hicks, K.; Iwasaki, M.; Ishiwatari, T.; Kienle, P.; Marton, J.; Muto, R.; Naruki, M.; Niiyama, M.; Noumi, H.; Okada, S.; Vidal, A. Romero; Sakaguchi, A.; Sakuma, F.; Sawada, S.; Sirghi, D.; Sirghi, F.; Suzuki, K.; Tsukada, K.; Doce, O. Vazquez; Widmann, E.; Yokkaichi, S.; Zmeskal, J.

    The mass shift of the vector mesons in nuclei is known to be a powerful tool for investigating the mechanism of generating hadron mass from the QCD vacuum. The mechanism is known to be the spontaneous breaking of chiral symmetry. In 2007, KEK-PS E325 experiment reported about 3.4 % mass reduction of the ϕ meson in medium-heavy nuclei (Cu). This result is possibly one of the indications of the partial restoration of chiral symmetry in nuclei, however, unfortunately it is hard to make strong conclusions from the data. One of the ways to conclude the strength of the ϕ meson mass shift in nuclei will be by trying to produce only slowly moving ϕ mesons where the maximum nuclear matter effect can be probed. The observed mass reduction of the ϕ meson in the nucleus can be translated as the existence of an attractive force between ϕ meson and nucleus. Thus, one of the extreme conditions that can be achieved in the laboratory is indeed the formation of a ϕ-nucleus bound state, where the ϕ meson is "trapped" in the nucleus. The purpose of the experiment is to search for a ϕ-nucleus bound state and measure the binding energy of the system. We will demonstrate that a completely background-free missing-mass spectrum can be obtained efficiently by (bar{p}, φ) spectroscopy together with K + Λ tagging, using the primary reaction channel bar{p} p rightarrow φ φ. This paper gives an overview of the physics motivation and the detector concept, and explains the direction of the initial research and development effort.

  9. A search for ϕ meson nucleus bound state using antiproton annihilation on nucleus

    NASA Astrophysics Data System (ADS)

    Ohnishi, H.; Bühler, P.; Cargnelli, M.; Curceanu, C.; Guaraldo, C.; Hartmann, O.; Hicks, K.; Iwasaki, M.; Ishiwatari, T.; Kienle, P.; Marton, J.; Muto, R.; Naruki, M.; Niiyama, M.; Noumi, H.; Okada, S.; Vidal, A. Romero; Sakaguchi, A.; Sakuma, F.; Sawada, S.; Sirghi, D.; Sirghi, F.; Suzuki, K.; Tsukada, K.; Doce, O. Vazquez; Widmann, E.; Yokkaichi, S.; Zmeskal, J.

    2012-12-01

    The mass shift of the vector mesons in nuclei is known to be a powerful tool for investigating the mechanism of generating hadron mass from the QCD vacuum. The mechanism is known to be the spontaneous breaking of chiral symmetry. In 2007, KEK-PS E325 experiment reported about 3.4 % mass reduction of the ϕ meson in medium-heavy nuclei (Cu). This result is possibly one of the indications of the partial restoration of chiral symmetry in nuclei, however, unfortunately it is hard to make strong conclusions from the data. One of the ways to conclude the strength of the ϕ meson mass shift in nuclei will be by trying to produce only slowly moving ϕ mesons where the maximum nuclear matter effect can be probed. The observed mass reduction of the ϕ meson in the nucleus can be translated as the existence of an attractive force between ϕ meson and nucleus. Thus, one of the extreme conditions that can be achieved in the laboratory is indeed the formation of a ϕ-nucleus bound state, where the ϕ meson is "trapped" in the nucleus. The purpose of the experiment is to search for a ϕ-nucleus bound state and measure the binding energy of the system. We will demonstrate that a completely background-free missing-mass spectrum can be obtained efficiently by (bar{p}, φ) spectroscopy together with K + Λ tagging, using the primary reaction channel bar{p} p rightarrow φ φ. This paper gives an overview of the physics motivation and the detector concept, and explains the direction of the initial research and development effort.

  10. The effects of osmotic stress on the structure and function of the cell nucleus.

    PubMed

    Finan, John D; Guilak, Farshid

    2010-02-15

    Osmotic stress is a potent regulator of the normal function of cells that are exposed to osmotically active environments under physiologic or pathologic conditions. The ability of cells to alter gene expression and metabolic activity in response to changes in the osmotic environment provides an additional regulatory mechanism for a diverse array of tissues and organs in the human body. In addition to the activation of various osmotically- or volume-activated ion channels, osmotic stress may also act on the genome via a direct biophysical pathway. Changes in extracellular osmolality alter cell volume, and therefore, the concentration of intracellular macromolecules. In turn, intracellular macromolecule concentration is a key physical parameter affecting the spatial organization and pressurization of the nucleus. Hyper-osmotic stress shrinks the nucleus and causes it to assume a convoluted shape, whereas hypo-osmotic stress swells the nucleus to a size that is limited by stretch of the nuclear lamina and induces a smooth, round shape of the nucleus. These behaviors are consistent with a model of the nucleus as a charged core/shell structure pressurized by uneven partition of macromolecules between the nucleoplasm and the cytoplasm. These osmotically-induced alterations in the internal structure and arrangement of chromatin, as well as potential changes in the nuclear membrane and pores are hypothesized to influence gene transcription and/or nucleocytoplasmic transport. A further understanding of the biophysical and biochemical mechanisms involved in these processes would have important ramifications for a range of fields including differentiation, migration, mechanotransduction, DNA repair, and tumorigenesis.

  11. Synaptic interactions between perifornical lateral hypothalamic area, locus coeruleus nucleus and the oral pontine reticular nucleus are implicated in the stage succession during sleep-wakefulness cycle.

    PubMed

    Tortorella, Silvia; Rodrigo-Angulo, Margarita L; Núñez, Angel; Garzón, Miguel

    2013-01-01

    The perifornical area in the posterior lateral hypothalamus (PeFLH) has been implicated in several physiological functions including the sleep-wakefulness regulation. The PeFLH area contains several cell types including those expressing orexins (Orx; also known as hypocretins), mainly located in the PeF nucleus. The aim of the present study was to elucidate the synaptic interactions between Orx neurons located in the PeFLH area and different brainstem neurons involved in the generation of wakefulness and sleep stages such as the locus coeruleus (LC) nucleus (contributing to wakefulness) and the oral pontine reticular nucleus (PnO) nucleus (contributing to REM sleep). Anatomical data demonstrated the existence of a neuronal network involving the PeFLH area, LC, and the PnO nuclei that would control the sleep-wake cycle. Electrophysiological experiments indicated that PeFLH area had an excitatory effect on LC neurons. PeFLH stimulation increased the firing rate of LC neurons and induced an activation of the EEG. The excitatory effect evoked by PeFLH stimulation in LC neurons was blocked by the injection of the Orx-1 receptor antagonist SB-334867 into the LC. Similar electrical stimulation of the PeFLH area evoked an inhibition of PnO neurons by activation of GABAergic receptors because the effect was blocked by bicuculline application into the PnO. Our data also revealed that the LC and PnO nuclei exerted a feedback control on neuronal activity of PeFLH area. Electrical stimulation of LC facilitated firing activity of PeFLH neurons by activation of catecholaminergic receptors whereas PnO stimulation inhibited PeFLH neurons by activation of GABAergic receptors. In conclusion, Orx neurons of the PeFLH area seem to be an important organizer of the wakefulness and sleep stages in order to maintain a normal succession of stages during the sleep-wakefulness cycle.

  12. Synaptic interactions between perifornical lateral hypothalamic area, locus coeruleus nucleus and the oral pontine reticular nucleus are implicated in the stage succession during sleep-wakefulness cycle

    PubMed Central

    Tortorella, Silvia; Rodrigo-Angulo, Margarita L.; Núñez, Angel; Garzón, Miguel

    2013-01-01

    The perifornical area in the posterior lateral hypothalamus (PeFLH) has been implicated in several physiological functions including the sleep-wakefulness regulation. The PeFLH area contains several cell types including those expressing orexins (Orx; also known as hypocretins), mainly located in the PeF nucleus. The aim of the present study was to elucidate the synaptic interactions between Orx neurons located in the PeFLH area and different brainstem neurons involved in the generation of wakefulness and sleep stages such as the locus coeruleus (LC) nucleus (contributing to wakefulness) and the oral pontine reticular nucleus (PnO) nucleus (contributing to REM sleep). Anatomical data demonstrated the existence of a neuronal network involving the PeFLH area, LC, and the PnO nuclei that would control the sleep-wake cycle. Electrophysiological experiments indicated that PeFLH area had an excitatory effect on LC neurons. PeFLH stimulation increased the firing rate of LC neurons and induced an activation of the EEG. The excitatory effect evoked by PeFLH stimulation in LC neurons was blocked by the injection of the Orx-1 receptor antagonist SB-334867 into the LC. Similar electrical stimulation of the PeFLH area evoked an inhibition of PnO neurons by activation of GABAergic receptors because the effect was blocked by bicuculline application into the PnO. Our data also revealed that the LC and PnO nuclei exerted a feedback control on neuronal activity of PeFLH area. Electrical stimulation of LC facilitated firing activity of PeFLH neurons by activation of catecholaminergic receptors whereas PnO stimulation inhibited PeFLH neurons by activation of GABAergic receptors. In conclusion, Orx neurons of the PeFLH area seem to be an important organizer of the wakefulness and sleep stages in order to maintain a normal succession of stages during the sleep-wakefulness cycle. PMID:24311996

  13. In vitro and in silico investigations of disc nucleus replacement.

    PubMed

    Reitmaier, Sandra; Shirazi-Adl, Aboulfazl; Bashkuev, Maxim; Wilke, Hans-Joachim; Gloria, Antonio; Schmidt, Hendrik

    2012-08-07

    Currently, numerous hydrogels are under examination as potential nucleus replacements. The clinical success, however, depends on how well the mechanical function of the host structure is restored. This study aimed to evaluate the extent to and mechanisms by which surgery for nucleus replacements influence the mechanical behaviour of the disc. The effects of an annulus defect with and without nucleus replacement on disc height and nucleus pressure were measured using 24 ovine motion segments. The following cases were considered: intact; annulus incision repaired by suture and glue; annulus incision with removal and re-implantation of nucleus tissue repaired by suture and glue or plug. To identify the likely mechanisms observed in vitro, a finite-element model of a human disc (L4-L5) was employed. Both studies were subjected to physiological cycles of compression and recovery. A repaired annulus defect did not influence the disc behaviour in vitro, whereas additional nucleus removal and replacement substantially decreased disc stiffness and nucleus pressure. Model predictions demonstrated the substantial effects of reductions in replaced nucleus water content, bulk modulus and osmotic potential on disc height loss and pressure, similar to measurements. In these events, the compression load transfer in the disc markedly altered by substantially increasing the load on the annulus when compared with the nucleus. The success of hydrogels for nucleus replacements is not only dependent on the implant material itself but also on the restoration of the environment perturbed during surgery. The substantial effects on the disc response of disruptions owing to nucleus replacements can be simulated by reduced nucleus water content, elastic modulus and osmotic potential.

  14. In vitro and in silico investigations of disc nucleus replacement

    PubMed Central

    Reitmaier, Sandra; Shirazi-Adl, Aboulfazl; Bashkuev, Maxim; Wilke, Hans-Joachim; Gloria, Antonio; Schmidt, Hendrik

    2012-01-01

    Currently, numerous hydrogels are under examination as potential nucleus replacements. The clinical success, however, depends on how well the mechanical function of the host structure is restored. This study aimed to evaluate the extent to and mechanisms by which surgery for nucleus replacements influence the mechanical behaviour of the disc. The effects of an annulus defect with and without nucleus replacement on disc height and nucleus pressure were measured using 24 ovine motion segments. The following cases were considered: intact; annulus incision repaired by suture and glue; annulus incision with removal and re-implantation of nucleus tissue repaired by suture and glue or plug. To identify the likely mechanisms observed in vitro, a finite-element model of a human disc (L4–L5) was employed. Both studies were subjected to physiological cycles of compression and recovery. A repaired annulus defect did not influence the disc behaviour in vitro, whereas additional nucleus removal and replacement substantially decreased disc stiffness and nucleus pressure. Model predictions demonstrated the substantial effects of reductions in replaced nucleus water content, bulk modulus and osmotic potential on disc height loss and pressure, similar to measurements. In these events, the compression load transfer in the disc markedly altered by substantially increasing the load on the annulus when compared with the nucleus. The success of hydrogels for nucleus replacements is not only dependent on the implant material itself but also on the restoration of the environment perturbed during surgery. The substantial effects on the disc response of disruptions owing to nucleus replacements can be simulated by reduced nucleus water content, elastic modulus and osmotic potential. PMID:22337630

  15. Thalamic neglect. Possible role of the medial thalamus and nucleus reticularis in behavior.

    PubMed

    Watson, R T; Valenstein, E; Heilman, K M

    1981-08-01

    A patient had an ischemic infarction of the right medial thalamus, with a resultant contralateral neglect syndrome. We propose that the medial thalamic nuclei, particularly centromedian and parafascicularis (CMPF), are normally involved in the arousal-activation process by which an organism can be aroused by and respond to novel or important stimuli. Specifically, we propose that (1) the mesencephalic reticular formation subserves tonic arousal to novel or painful stimuli by inhibiting the nucleus reticularis thalami (NR) and (2) that selective attention is mediated by cortical input to NR. The CMPF is closely associated with motor systems (basal ganglia, ventrolateral nucleus of the thalamus [VL], and frontal lobes). A pathway involving CMPF, the frontal cortex, and the portion of NR associated with VL may be important in preparing the tonically aroused organism for action. Unilateral lesions of CMPF therefore induce an asymmetric hypokinesia, and bilateral lesions may induce akinetic mutism.

  16. J/ψ production and suppression in high-energy proton-nucleus collisions

    SciTech Connect

    Ma, Yan -Qing; Venugopalan, Raju; Zhang, Hong -Fei

    2015-10-02

    In this study, we apply a color glass condensate+nonrelativistic QCD (CGC+NRQCD) framework to compute J/ψ production in deuteron-nucleus collisions at RHIC and proton-nucleus collisions at the LHC. Our results match smoothly at high p⊥ to a next-to-leading order perturbative QCD+NRQCD computation. Excellent agreement is obtained for p⊥ spectra at the RHIC and LHC for central and forward rapidities, as well as for the normalized ratio RpA of these results to spectra in proton-proton collisions. In particular, we observe that the RpA data are strongly bounded by our computations of the same for each of the individual NRQCD channels; this result provides strong evidence that our description is robust against uncertainties in initial conditions and hadronization mechanisms.

  17. J/ψ production and suppression in high-energy proton-nucleus collisions

    DOE PAGES

    Ma, Yan -Qing; Venugopalan, Raju; Zhang, Hong -Fei

    2015-10-02

    In this study, we apply a color glass condensate+nonrelativistic QCD (CGC+NRQCD) framework to compute J/ψ production in deuteron-nucleus collisions at RHIC and proton-nucleus collisions at the LHC. Our results match smoothly at high p⊥ to a next-to-leading order perturbative QCD+NRQCD computation. Excellent agreement is obtained for p⊥ spectra at the RHIC and LHC for central and forward rapidities, as well as for the normalized ratio RpA of these results to spectra in proton-proton collisions. In particular, we observe that the RpA data are strongly bounded by our computations of the same for each of the individual NRQCD channels; this resultmore » provides strong evidence that our description is robust against uncertainties in initial conditions and hadronization mechanisms.« less

  18. Analysis of Returned Comet Nucleus Samples

    NASA Astrophysics Data System (ADS)

    Chang, Sherwood

    1997-12-01

    This volume contains abstracts that have been accepted by the Program Committee for presentation at the Workshop on Analysis of Returned Comet Nucleus Samples, held in Milpitas, California, January 16-18, 1989. Conveners are Sherwood Chang (NASA Ames Research Center) and Larry Nyquist (NASA Johnson Space Center). Program Committee members are Thomas Ahrens (ex-officio; California Institute of Technology), Lou Allamandola (NASA Ames Research Center), David Blake (NASA Ames Research Center), Donald Brownlee (University of Washington, Seattle), Theodore E. Bunch (NASA Ames Research Center), Humberto Campins (Planetary Science Institute), Jeff Cuzzi (NASA Ames Research Center), Eberhard Griin (Max-Plank-Institut fiir Kemphysik), Martha Hanner (Jet Propulsion Laboratory), Alan Harris (Jet Propulsion Laboratory), John Kerrid-e (University of Califomia, Los Angeles), Yves Langevin (University of Paris), Gerhard Schwehm (ESTEC), and Paul Weissman (Jet Propulsion Laboratory). Logistics and administrative support for the workshop were provided by the Lunar and Planetary Institute Projects Office.

  19. Delta-nucleus dynamics: proceedings of symposium

    SciTech Connect

    Lee, T.S.H.; Geesaman, D.F.; Schiffer, J.P.

    1983-10-01

    The appreciation of the role in nuclear physics of the first excited state of the nucleon, the delta ..delta..(1232), has grown rapidly in the past decade. The delta resonance dominates nuclear reactions induced by intermediate energy pions, nucleons, and electromagnetic probes. It is also the most important non-nucleonic degree of freedom needed to resolve many fundamental problems encountered in the study of low-energy nuclear phenomena. Clearly, a new phase of nuclear physics has emerged and conventional thinking must be extended to account for this new dimension of nuclear dynamics. The most challenging problem we are facing is how a unified theory can be developed to describe ..delta..-nucleus dynamics at all energies. In exploring this new direction, it is important to have direct discussions among researchers with different viewpoints. Separate entries were prepared for the 49 papers presented. (WHK)

  20. In situ hybridization of suprachiasmatic nucleus slices.

    PubMed

    de la Iglesia, Horacio O

    2007-01-01

    The progress in the understanding of the molecular machinery of mammalian circadian clocks, in combination with the well-established role of the hypothalamic suprachiasmatic nucleus (SCN) as a master circadian clock, has provided an invaluable system for the study of the molecular basis of circadian rhythmicity. Using in situ hybridization (ISH) techniques that label specific clock-gene mRNAs within the SCN, researchers can now elucidate the core molecular oscillatory mechanisms underlying specific circadian physiological and behavioral phenotypes. In this chapter, two methods for ISH within the SCN are described. The first method is based on the fluorescent labeling of mRNA and is suitable for confocal microscopy analysis and double labeling techniques. The second method is based on the radioactive labeling of mRNA and is more sensitive and more adequate for the relative quantification of mRNA species.

  1. Nature of multiple-nucleus cluster galaxies

    SciTech Connect

    Merritt, D.

    1984-05-01

    In models for the evolution of galaxy clusters which include dynamical friction with the dark binding matter, the distribution of galaxies becomes more concentrated to the cluster center with time. In a cluster like Coma, this evolution could increase by a factor of approximately 3 the probability of finding a galaxy very close to the cluster center, without decreasing the typical velocity of such a galaxy significantly below the cluster mean. Such an enhancement is roughly what is needed to explain the large number of first-ranked cluster galaxies which are observed to have extra ''nuclei''; it is also consistent with the high velocities typically measured for these ''nuclei.'' Unlike the cannibalism model, this model predicts that the majority of multiple-nucleus systems are transient phenomena, and not galaxies in the process of merging.

  2. Nucleus of Comet P/Arend-Rigaux

    SciTech Connect

    Brooke, T.Y.; Knacke, R.F.

    1986-07-01

    Photometry data at 1-20 microns taken of Comet P/Arend-Rigaux are reported. The observations were carried out to test the possibility of observing the nuclei of low activity, nearly extinct comets at visible and IR wavelengths. The data were collected in February 1985 using the NASA 3 m IR telescope on Mauna Kea. The comet was at 1.67 AU heliocentric distance at the time. Attempts were made to detect rotation of the core on the bases of variations in the J, H and K light curves. The images obtained were those of a rotating nucleus with a radius of 4.0-6.2 km surrounded by a faint coma. The comet had a geometric albedo of 0.01-0.03 and a near-IR red slope that exhibited no evidence of the presence of ice. 32 references.

  3. Analysis of Returned Comet Nucleus Samples

    NASA Technical Reports Server (NTRS)

    Chang, Sherwood (Compiler)

    1997-01-01

    This volume contains abstracts that have been accepted by the Program Committee for presentation at the Workshop on Analysis of Returned Comet Nucleus Samples, held in Milpitas, California, January 16-18, 1989. Conveners are Sherwood Chang (NASA Ames Research Center) and Larry Nyquist (NASA Johnson Space Center). Program Committee members are Thomas Ahrens (ex-officio; California Institute of Technology), Lou Allamandola (NASA Ames Research Center), David Blake (NASA Ames Research Center), Donald Brownlee (University of Washington, Seattle), Theodore E. Bunch (NASA Ames Research Center), Humberto Campins (Planetary Science Institute), Jeff Cuzzi (NASA Ames Research Center), Eberhard Griin (Max-Plank-Institut fiir Kemphysik), Martha Hanner (Jet Propulsion Laboratory), Alan Harris (Jet Propulsion Laboratory), John Kerrid-e (University of Califomia, Los Angeles), Yves Langevin (University of Paris), Gerhard Schwehm (ESTEC), and Paul Weissman (Jet Propulsion Laboratory). Logistics and administrative support for the workshop were provided by the Lunar and Planetary Institute Projects Office.

  4. pH-activated size reduction of large compound nanoparticles for in vivo nucleus-targeted drug delivery.

    PubMed

    Fan, Yanbin; Li, Chunyan; Li, Fuyou; Chen, Daoyong

    2016-04-01

    Nucleus-targeted drug delivery is a promising strategy for anticancer therapy, but in vivo nucleus-targeted drug delivery has been challenging. Limited by the channel size of the nucleopore, vehicles that enter the nucleus via the nucleopore actively should be small and decorated with nuclear localization signal (NLS). However, the small vehicle size may promote leakage of vehicles into normal tissues, and the positively-charged NLS can lead to strong non-specific interactions in vivo. In the present study, we demonstrate an in vivo nucleus-targeted drug delivery using large compound nanoparticles with detachable PEG shell. The nanoparticles are composed of PEG-benzoic imine-oligo-l-lysine/iridium(III) metallodrug complex and formed in a kinetically-controlled fashion. Under physiological conditions (pH 7.4), the nanoparticles are large (ca. 150 nm) and protected by an inert PEG shell. When internalized into intracellular acidic endo/lysosomes of cancer cells, the nanoparticles dissociate into smaller ones (ca. 40 nm) and the PEG chains detach due to the cleavage of the benzoic imine bond at low pH. The small nanoparticles, with exposure of the oligo-l-lysine after the detachment of the PEG shield, then translocate into the nucleus via the nucleopore due to the small size and nuclear localization ability of the oligo-l-lysine. Importantly, the small particles could significantly release the contained drug into the nucleus, leading to ca. 20-fold higher cytotoxicity compared to the native drug in vitro. Further in vivo application of the nucleus-targeting nano-system in a nude-mice model showed significant tumor inhibition and remarkable life-span elongation.

  5. The egg nucleus regulates the behavior of sperm nuclei as well as cycling of MPF in physiologically polyspermic newt eggs.

    PubMed

    Iwao, Y; Sakamoto, N; Takahara, K; Yamashita, M; Nagahama, Y

    1993-11-01

    The possible role of the egg nucleus in regulating the behavior of sperm nuclei and the cycling of maturation-promoting factor (MPF) was investigated in the physiologically polyspermic eggs of the newt Cynops pyrrhogaster. Many sperm entered all areas of the egg, but only one sperm pronucleus, the principal sperm pronucleus, moved to the center of the animal hemisphere to form a zygote nucleus with the egg pronucleus. All sperm and egg pronuclei synthesized DNA, but the zygote nucleus completed the synthesis of DNA 0.5-1 hr earlier than the accessory sperm nuclei. Entrance into M phase by the accessory sperm nuclei was delayed to a greater and greater extent with increasing distance of these nuclei from the zygote nucleus. When DNA in the egg nucleus was damaged by uv irradiation, not only were both prophase and M phase in the zygote nucleus prolonged, but also the MPF cycle was delayed. Some accessory sperm nuclei in the animal hemisphere escaped degeneration to form additional bipolar spindles, so that delayed multipolar cleavage occurred. The MPF activity in the vegetal hemisphere was less than 25% of that found in the animal hemisphere at M phase in normally fertilized eggs. The levels of immunologically detectable proteins that contained the sequence PSTAIR in vegetal hemispheres were less than 25% of those in animal hemispheres. These results indicate that the egg nucleus of the Cynops egg is involved in the control of the activation of MPF and that the accessory sperm nuclei in the vegetal hemisphere degenerate as a result of the lack of components that are indispensable for entry into M phase.

  6. Novel associated hydrogels for nucleus pulposus replacement.

    PubMed

    Thomas, Jonathan; Lowman, Anthony; Marcolongo, Michele

    2003-12-15

    Hydrogels of poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) blends may provide a material suitable for replacement of the nucleus pulposus of the intervertebral disc. This research examined the stability of these hydrogels under simulated physiological conditions. Polymer dissolution and stability were characterized over 120 days immersion, chemical surface analysis over 56 days immersion, and tensile mechanical behavior over 56 days immersion. Rubber elasticity theory was used by combining mechanical results with swelling data to calculate network characteristics such as the molecular weight between physical crosslinks and density of crosslinks. Properties were examined as a function of PVA/PVP composition as well as PVA molecular weight and PVP molecular weight. Results indicated that PVA/PVP blends prepared with moderate amounts of PVP (0.5-5%) resulted in a polymer network stabilized through interchain hydrogen bonding between hydroxyl groups on PVA chains and carbonyl groups on PVP chains. Most notably, a significant decrease in percentage of polymer mass loss was seen for blends prepared with 143K molecular weight PVA. Surface chemical analysis revealed that PVP unincorporated in the network structure suffered significant dissolution out of the polymer network and into solution. The molecular weight of PVA and PVP were shown to have a significant influence on the blends' network properties. Gels prepared with lower molecular weight PVA resulted in a more stable blend containing a higher density of crosslinks. However, blends prepared with a higher molecular weight PVA showed superior polymer network stability in dissolution studies. The blend that had the best combination of network stability under physiological conditions and a relatively tight, stable, and crosslinked network was prepared with 99% PVA (143K) and 1% PVP (40K). This material is proposed as an implant material for replacement of the degenerated nucleus pulposus.

  7. Nonlinear osmotic properties of the cell nucleus

    PubMed Central

    Finan, John D.; Chalut, Kevin J.; Wax, Adam; Guilak, Farshid

    2009-01-01

    Summary In the absence of active volume regulation processes, cell volume is inversely proportional to osmolarity, as predicted by the Boyle Van’t Hoff relation. In this study, we tested the hypothesis that nuclear volume has a similar relationship with extracellular osmolarity in articular chondrocytes, cells that are exposed to changes in the osmotic environment in vivo, and furthermore, we explored the mechanism of the relationships between osmolarity and nuclear size and shape. Nuclear size was quantified using two independent techniques, confocal laser scanning microscopy and angle-resolved low coherence interferometry. Nuclear volume was osmotically-sensitive but this relationship was not linear, showing a decline in the osmotic sensitivity in the hypo-osmotic range. Nuclear shape was also influenced by extracellular osmolarity, becoming smoother as the osmolarity decreased. The osmotically-induced changes in nuclear size paralleled the changes in nuclear shape, suggesting that shape and volume are interdependent. The osmotic sensitivity of shape and volume persisted after disruption of the actin cytoskeleton. Isolated nuclei contracted in response to physiologic changes in macromolecule concentration but not in response to physiologic changes in ion concentration, suggesting solute size has an important influence on the osmotic pressurization of the nucleus. This finding in turn implies that the diffusion barrier that causes osmotic effects is not a semi-permeable membrane, but rather due to size constraints that prevent large solute molecules from entering small spaces in the nucleus. As nuclear morphology has been associated previously with cell phenotype, these findings may provide new insight into the role of mechanical and osmotic signals in regulating cell physiology. PMID:19107599

  8. The Nucleus Accumbens and Ketamine Treatment in Major Depressive Disorder.

    PubMed

    Abdallah, Chadi G; Jackowski, Andrea; Salas, Ramiro; Gupta, Swapnil; Sato, João R; Mao, Xiangling; Coplan, Jeremy D; Shungu, Dikoma C; Mathew, Sanjay J

    2017-03-29

    Animal models of depression repeatedly showed stress-induced nucleus accumbens (NAc) hypertrophy. Recently, ketamine was found to normalize this stress-induced NAc structural growth. Here, we investigated NAc structural abnormalities in major depressive disorder (MDD) in two cohorts. Cohort A included a cross-sectional sample of 34 MDD and 26 healthy control (HC) subjects, with high-resolution magnetic resonance imaging (MRI) to estimate NAc volumes. Proton MR spectroscopy ((1)H MRS) was used to divide MDD subjects into two subgroups: glutamate-based depression (GBD) and non-GBD. A separate longitudinal sample (cohort B) included 16 MDD patients who underwent MRI at baseline then 24 h following intravenous infusion of ketamine (0.5 mg/kg). In cohort A, we found larger left NAc volume in MDD compared to controls (Cohen's d=1.05), but no significant enlargement in the right NAc (d=0.44). Follow-up analyses revealed significant subgrouping effects on the left (d⩾1.48) and right NAc (d⩾0.95) with larger bilateral NAc in non-GBD compared to GBD and HC. NAc volumes were not different between GBD and HC. In cohort B, ketamine treatment reduced left NAc, but increased left hippocampal, volumes in patients achieving remission. The cross-sectional data provided the first evidence of enlarged NAc in patients with MDD. These NAc abnormalities were limited to patients with non-GBD. The pilot longitudinal data revealed a pattern of normalization of left NAc and hippocampal volumes particularly in patients who achieved remission following ketamine treatment, an intriguing preliminary finding that awaits replication.Neuropsychopharmacology advance online publication, 29 March 2017; doi:10.1038/npp.2017.49.

  9. Activated ErbB3 Translocates to the Nucleus via Clathrin-independent Endocytosis, Which Is Associated with Proliferating Cells*

    PubMed Central

    Reif, Raymond; Adawy, Alshaimaa; Vartak, Nachiket; Schröder, Jutta; Günther, Georgia; Ghallab, Ahmed; Schmidt, Marcus; Schormann, Wiebke; Hengstler, Jan G.

    2016-01-01

    Members of the receptor tyrosine kinase family (RTK) have been shown to be present in the nucleus of cells; however, the mechanisms underlying their trafficking to the nucleus, and their relevance once there are poorly understood. In the present study, we focus on the RTK ErbB3 and elucidate the mechanisms regulating its trafficking. We show that heregulin-stimulation induces trafficking of phosphorylated ErbB3 from the plasma membrane to the nucleus via a clathrin-independent mechanism. Nuclear import of ErbB3 occurs via importin β1, which drives the receptor through the nuclear pore complex. In the nucleus, ErbB3 interacts with transcription complexes, and thereby has a role in transcriptional regulation. Our results also demonstrate that ErbB3 nuclear localization is transient as it is exported out of the nucleus by the nuclear receptor protein crm-1. Analysis of normal, regenerating tissues, and tumors showed that ErbB3 nuclear translocation is a common event in proliferating tissues. PMID:26719328

  10. Pedunculopontine nucleus evoked potentials from subthalamic nucleus stimulation in Parkinson's disease.

    PubMed

    Neagu, Bogdan; Tsang, Eric; Mazzella, Filomena; Hamani, Clement; Moro, Elena; Hodaie, Mojgan; Lozano, Andres M; Chen, Robert

    2013-12-01

    The effects of subthalamic nucleus (STN) stimulation on the pedunculopontine nucleus area (PPNR) evoked activities were examined in two patients with Parkinson's disease. The patients had previously undergone bilateral STN deep brain stimulation (DBS) and subsequently received unilateral DBS electrodes in the PPNR. Evoked potentials were recorded from the local field potentials (LFP) from the PPNR with STN stimulation at different frequencies and bipolar contacts. Ipsilateral and contralateral short latency (<2ms) PPNR responses were evoked from left but not from right STN stimulation. In both patients, STN stimulation evoked contralateral PPNR responses at medium latencies between 41 and 45ms. Cortical evoked potentials to single pulse STN stimulation were observed at latencies between 18 and 27ms. These results demonstrate a functional connection between the STN and the PPNR. It likely involves direct projections between the STN and PPNR or polysynaptic pathways with thalamic or cortical relays.

  11. Experimental evidence and the Landau-Zener promotion in nucleus-nucleus collisions

    SciTech Connect

    Cindro, N.; Freeman, R.M.; Haas, F.

    1986-04-01

    Recent data from C+O collisions are analyzed in terms of the Landau-Zener promotion in nuclei. Evidence for the presence of this mechanism in nuclear collisions is of considerable interest, since it provides a signature of single-particle orbitals in molecular-type potentials and, at the same time, paves the way to a microscopic understanding of the collision dynamics, in particular of the energy dissipation rate. The analyzed data are of two types: integrated cross sections and angular distributions of inelastically scattered particles. The first set of data shows structure qualitatively consistent with recent calculations of the Landau-Zener effect; for this set of data no other reasonable explanation is presently available. The second set of data, while consistent with the presence of the Landau-Zener promotion, is examined in terms of other possible explanations too. The combined data show evidence favoring the presence of the Landau-Zener promotion in nucleus-nucleus collisions.

  12. Fluctuation analysis of relativistic nucleus-nucleus collisions in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Mcguire, Stephen C.

    1988-01-01

    An analytical technique was developed for identifying enhanced fluctuations in the angular distributions of secondary particles produced from relativistic nucleus-nucleus collisions. The method is applied under the assumption that the masses of the produced particles are small compared to their linear momenta. The importance of particles rests in the fact that enhanced fluctuations in the rapidity distributions is considered to be an experimental signal for the creation of the quark-gluon-plasma (QGP), a state of nuclear matter predicted from the quantum chromodynamics theory (QCD). In the approach, Monte Carlo simulations are employed that make use of a portable random member generator that allow the calculations to be performed on a desk-top computer. The method is illustrated with data taken from high altitude emulsion exposures and is immediately applicable to similar data from accelerator-based emulsion exposures.

  13. Nucleus and nucleus-cytoskeleton connections in 3D cell migration.

    PubMed

    Liu, Lingling; Luo, Qing; Sun, Jinghui; Song, Guanbin

    2016-10-15

    Cell migration plays an important role in many physiological and pathological settings, ranging from embryonic development to cancer metastasis. Currently, accumulating data suggest that cells migrating in three-dimensional (3D) environments show well-defined differences compared to their well-established two-dimensional (2D) counterparts. During 3D migration, the cell body and nucleus must deform to allow cellular passage through the available spaces, and the deformability of the relatively rigid nucleus may constitute a limiting step. Here, we highlight the key evidence regarding the role of the nuclear mechanics in 3D migration, including the molecular components that govern the stiffness of the nucleus and review how the nuclear dynamics are connected to and controlled by cytoskeleton-based migration machinery. Intriguingly, nuclear movement must be coordinated with the cytoskeletal dynamics at the leading and trailing edges, which in turn impact the cytoplasmic dynamics that affect the migration efficiency. Thus, we suggest that alterations in the nuclear structure may facilitate cellular reorganizations that are necessary for efficient migration.

  14. The Confined Hydrogen Atom with a Moving Nucleus

    ERIC Educational Resources Information Center

    Fernandez, Francisco M.

    2010-01-01

    We study the hydrogen atom confined to a spherical box with impenetrable walls but, unlike earlier pedagogical articles on the subject, we assume that the nucleus also moves. We obtain the ground-state energy approximately by means of first-order perturbation theory and show that it is greater than that for the case in which the nucleus is clamped…

  15. Mission CaMKIIγ: shuttle calmodulin from membrane to nucleus.

    PubMed

    Malik, Zulfiqar A; Stein, Ivar S; Navedo, Manuel F; Hell, Johannes W

    2014-10-09

    Neuronal plasticity depends on plasma membrane Ca(2+) influx, resulting in activity-dependent gene transcription. Calmodulin (CaM) activated by Ca(2+) initiates the nuclear events, but how CaM makes its way to the nucleus has remained elusive. Ma et al. now show that CaMKIIγ transports CaM from cell surface Ca(2+) channels to the nucleus.

  16. Glutamatergic projection from the nucleus incertus to the septohippocampal system.

    PubMed

    Cervera-Ferri, Ana; Rahmani, Yasamin; Martínez-Bellver, Sergio; Teruel-Martí, Vicent; Martínez-Ricós, Joana

    2012-05-31

    Recent findings support a relevant role of the nucleus incertus in the control of the hippocampal activity through the modulation of theta rhythm. Previous studies from our group have shown that this nucleus is a critical relay between reticularis pontis oralis and the medial septum/diagonal band, regarded as the main activator and the pacemaker of the hippocampal oscillations, respectively. Besides, the nucleus incertus is highly linked to activated states related to the arousal response. The neurotransmission of the nucleus incertus, however, remains uncertain. Only GABA and the neuromodulator relaxin 3 are usually considered to be involved in its contribution to the septohippocampal system. In this work, we have analyzed the existence of an excitatory projection from the nucleus incertus to the medial septum. We have found a group of glutamatergic neurons in the nucleus incertus projecting to the medial septum. Moreover, we were able to describe a segregated distribution of calbindin and calretinin neurons. While calretinin expression was restricted to the nucleus incertus pars compacta, calbindin positive neurons where observed both in the pars dissipata and the pars compacta of the nucleus. The present work provides innovative data supporting an excitatory component in the pontoseptal pathway.

  17. Normalized medical information visualization.

    PubMed

    Sánchez-de-Madariaga, Ricardo; Muñoz, Adolfo; Somolinos, Roberto; Castro, Antonio; Velázquez, Iker; Moreno, Oscar; García-Pacheco, José L; Pascual, Mario; Salvador, Carlos H

    2015-01-01

    A new mark-up programming language is introduced in order to facilitate and improve the visualization of ISO/EN 13606 dual model-based normalized medical information. This is the first time that visualization of normalized medical information is addressed and the programming language is intended to be used by medical non-IT professionals.

  18. Normal Shock Vortex Interaction

    DTIC Science & Technology

    2003-03-01

    Figure 9: Breakdown map for normal-shock vortex-interaction. References [1] O. Thomer, W. Schroder and M. Meinke , Numerical Simulation of Normal...and Oblique-Shock Vortex Interaction, ZAMM Band 80, Sub. 1, pp. 181-184, 2000. [2] O. Thomer, E. Krause, W. Schroder and M. Meinke , Computational

  19. Near-nucleus photometry of comets using archived NEAT data

    NASA Astrophysics Data System (ADS)

    Hicks, Michael D.; Bambery, Raymond J.; Lawrence, Kenneth J.; Kollipara, Priya

    2007-06-01

    Though optimized to discover and track fast moving Near-Earth Objects (NEOs), the Near-Earth Asteroid Tracking (NEAT) survey dataset can be mined to obtain information on the comet population observed serendipitously during the asteroid survey. We have completed analysis of over 400 CCD images of comets obtained during the autonomous operations of two 1.2-m telescopes: the first on the summit of Haleakala on the Hawaiian island of Maui and the second on Palomar Mountain in southern California. Photometric calibrations of each frame were derived using background catalog stars and the near-nucleus comet photometry measured. We measured dust production and normalized magnitudes for the coma and nucleus in order to explore cometary activity and comet size-frequency distributions. Our data over an approximately two-year time frame (2001 August-2003 February) include 52 comets: 12 periodic, 19 numbered, and 21 non-periodic, obtained over a wide range of viewing geometries and helio/geocentric distances. Nuclear magnitudes were estimated for a subset of comets observed. We found that for low-activity comets ( Afρ<100 cm) our model gave reasonable estimates for nuclear size and magnitude. The slope of the cumulative luminosity function of our sample of low-activity comets was 0.33 ± 0.04, consistent with the slope we measured for the Jupiter-family cometary nuclei collected by Fernández et al. [Fernández, J.A., Tancredi, G., Rickman, H., Licandro, J., 1999. Astron. Astrophys. 392, 327-340] of 0.38 ± 0.02. Our slopes of the cumulative size distribution α=1.50±0.08 agree well with the slopes measured by Whitman et al. [Whitman, K., Morbidelli, A., Jedicke, R., 2006. Icarus 183, 101-114], Meech et al. [Meech, K.J., Hainaut, O.R., Marsden, B.G., 2004. Icarus 170, 463-491], Lowry et al. [Lowry, S.C., Fitzsimmons, A., Collander-Brown, S., 2003. Astron. Astrophys. 397, 329-343], and Weissman and Lowry [Weissman, P.R., Lowry, S.C., 2003. Lunar Planet. Sci. 34. Abstract 34].

  20. Afferent projections to the deep mesencephalic nucleus in the rat

    SciTech Connect

    Veazey, R.B.; Severin, C.M.

    1982-01-10

    Afferent projections to the deep mesencephalic nucleus (DMN) of the rat were demonstrated with axonal transport techniques. Potential sources for projections to the DMN were first identified by injecting the nucleus with HRP and examining the cervical spinal cord, brain stem, and cortex for retrogradely labeled neurons. Areas consistently labeled were then injected with a tritiated radioisotope, the tissue processed for autoradiography, and the DMN examined for anterograde labeling. Afferent projections to the medial and/or lateral parts of the DMN were found to originate from a number of spinal, bulbar, and cortical centers. Rostral brain centers projecting to both medial and lateral parts of the DMN include the ipsilateral motor and somatosensory cortex, the entopeduncular nucleus, and zona incerta. at the level of the midbrain, the ipsilateral substantia nigra and contralateral DMN likewise project to the DMN. Furthermore, the ipsilateral superior colliculus projects to the DMN, involving mainly the lateral part of the nucleus. Afferents from caudal centers include bilateral projections from the sensory nucleus of the trigeminal complex and the nucleus medulla oblongata centralis, as well as from the contralateral dentate nucleus. The projections from the trigeminal complex and nucleus medullae oblongatae centralis terminate in the intermediate and medial parts of the DMN, whereas projections from the contralateral dentate nucleus terminate mainly in its lateral part. In general, the afferent connections of the DMN arise from diverse areas of the brain. Although most of these projections distribute throughout the entire extent of the DMN, some of them project mainly to either medial or lateral parts of the nucleus, thus suggesting that the organization of the DMN is comparable, at least in part, to that of the reticular formation of the pons and medulla, a region in which hodological differences between medial and lateral subdivisions are known to exist.

  1. Nucleon emission via electromagnetic excitation in relativistic nucleus-nucleus collisions: Re-analysis of the Weizsacker-Williams method

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1989-01-01

    Previous analyses of the comparison of Weizsacker-Williams (WW) theory to experiment for nucleon emission via electromagnetic (EM) excitations in nucleus-nucleus collisions were not definitive because of different assumptions concerning the value of the minimum impact parameter. This situation is corrected by providing criteria that allows definitive statements to be made concerning agreement or disagreement between WW theory and experiment.

  2. Glycine immunoreactivity of multipolar neurons in the ventral cochlear nucleus which project to the dorsal cochlear nucleus.

    PubMed

    Doucet, J R; Ross, A T; Gillespie, M B; Ryugo, D K

    1999-06-14

    Certain distinct populations of neurons in the dorsal cochlear nucleus are inhibited by a neural source that is responsive to a wide range of acoustic frequencies. In this study, we examined the glycine immunoreactivity of two types of ventral cochlear nucleus neurons (planar and radiate) in the rat which project to the dorsal cochlear nucleus (DCN) and thus, might be responsible for this inhibition. Previously, we proposed that planar neurons provided a tonotopic and narrowly tuned input to the DCN, whereas radiate neurons provided a broadly tuned input and thus, were strong candidates as the source of broadband inhibition (Doucet and Ryugo [1997] J. Comp. Neurol. 385:245-264). We tested this idea by combining retrograde labeling and glycine immunohistochemical protocols. Planar and radiate neurons were first retrogradely labeled by injecting biotinylated dextran amine into a restricted region of the dorsal cochlear nucleus. The labeled cells were visualized using streptavidin conjugated to indocarbocyanine (Cy3), a fluorescent marker. Sections that contained planar or radiate neurons were then processed for glycine immunocytochemistry using diaminobenzidine as the chromogen. Immunostaining of planar neurons was light, comparable to that of excitatory neurons (pyramidal neurons in the DCN), whereas immunostaining of radiate neurons was dark, comparable to that of glycinergic neurons (cartwheel cells in the dorsal cochlear nucleus and principal cells in the medial nucleus of the trapezoid body). These results are consistent with the hypothesis that radiate neurons in the ventral cochlear nucleus subserve the wideband inhibition observed in the dorsal cochlear nucleus.

  3. Biotinidase reveals the morphogenetic sequence in cochlea and cochlear nucleus of mice.

    PubMed

    Brumwell, Craig L; Hossain, Waheeda A; Morest, D Kent; Wolf, Barry

    2005-11-01

    Hearing loss affects children with biotinidase deficiency, an inherited metabolic disorder in the recycling of biotin. The deficit appears shortly after birth during development of the auditory system. Using a mouse model, we sought to discover where and when biotinidase is expressed in the normal development of the cochlea and cochlear nucleus. In the process, we reconstructed the normal morphogenetic sequences of the constituent cells. Immunolabeling for biotinidase was localized to neurons and other cells of the adult and immature mouse, including the embryonic precursors of these regions dating from the stage of the otocyst. Its distribution was compared to the particular morphological changes occurring at each developmental stage. Biotinidase was localized in cells and their processes at the critical stages in their proliferation, migration, structural differentiation, and innervation, covering the entire span of their development. The prevalence of immunostaining peaked in the adult animal, including hair cells and ganglion cells of the cochlea and neurons of the cochlear nucleus. The findings suggest that biotinidase plays a role in the normal development of the auditory system. Besides the pattern of localization of biotinidase, this study provides the first systematic account of each developmental stage in a mammalian auditory system.

  4. Experimental investigation of a linear-chain structure in the nucleus 14C

    NASA Astrophysics Data System (ADS)

    Yamaguchi, H.; Kahl, D.; Hayakawa, S.; Sakaguchi, Y.; Abe, K.; Nakao, T.; Suhara, T.; Iwasa, N.; Kim, A.; Kim, D. H.; Cha, S. M.; Kwag, M. S.; Lee, J. H.; Lee, E. J.; Chae, K. Y.; Wakabayashi, Y.; Imai, N.; Kitamura, N.; Lee, P.; Moon, J. Y.; Lee, K. B.; Akers, C.; Jung, H. S.; Duy, N. N.; Khiem, L. H.; Lee, C. S.

    2017-03-01

    It is a well-known fact that a cluster of nucleons can be formed in the interior of an atomic nucleus, and such clusters may occupy molecular-like orbitals, showing characteristics similar to normal molecules consisting of atoms. Chemical molecules having a linear alignment are commonly seen in nature, such as carbon dioxide. A similar linear alignment of the nuclear clusters, referred to as linear-chain cluster state (LCCS), has been studied since the 1950s, however, up to now there is no clear experimental evidence demonstrating the existence of such a state. Recently, it was proposed that an excess of neutrons may offer just such a stabilizing mechanism, revitalizing interest in the nuclear LCCS, specifically with predictions for their emergence in neutron-rich carbon isotopes. Here we present the experimental observation of α-cluster states in the radioactive 14C nucleus. Using the 10Be + α resonant scattering method with a radioactive beam, we observed a series of levels which completely agree with theoretically predicted levels having an explicit linear-chain cluster configuration. We regard this as the first strong indication of the linear-chain clustered nucleus.

  5. Stress Modulation of Opposing Circuits in the Bed Nucleus of the Stria Terminalis

    PubMed Central

    Daniel, Sarah E; Rainnie, Donald G

    2016-01-01

    The anterior bed nucleus of the stria terminalis (BNST) has been recognized as a critical structure in regulating trait anxiety, contextual fear memory, and appetitive behavior, and is known to be sensitive to stress manipulations. As one of the most complex structures in the central nervous system, the intrinsic circuitry of the BNST is largely unknown; however, recent technological developments have allowed researchers to begin to untangle the internal connections of the nucleus. This research has revealed the possibility of two opposing circuits, one anxiolytic and one anxiogenic, within the BNST, the relative strength of which determines the behavioral outcome. The balance of these pathways is critical in maintaining a normal physiological and behavioral state; however, stress and drugs of abuse can differentially affect the opposing circuitry within the nucleus to shift the balance to a pathological state. In this review, we will examine how stress interacts with the neuromodulators, corticotropin-releasing factor, norepinephrine, dopamine, and serotonin to affect the circuitry of the BNST as well as how synaptic plasticity in the BNST is modulated by stress, resulting in long-lasting changes in the circuit and behavioral state. PMID:26096838

  6. Arx is required for specification of the zona incerta and reticular nucleus of the thalamus

    PubMed Central

    Sunnen, C. Nicole; Simonet, Jacqueline C.; Marsh, Eric D.; Golden, Jeffrey A.

    2014-01-01

    Mutations in the aristaless-related homeobox (ARX) gene result in a spectrum of structural and functional nervous system disorders including lissencephaly, movement disorders, intellectual disabilities, and epilepsy. Some patients also have symptoms indicative of hypothalamic dysfunction, however, little is known about the role of ARX in diencephalic development. To begin evaluating diencephalic defects we examined the expression of a panel of known genes and gene products that label specific diencephalic nuclei in two different Arx mutant mouse lines. Male mice engineered to have a polyalanine expansion mutation (Arx(GCG)7/Y) revealed no expression differences in any diencephalic nucleus when compared to wildtype littermates. In contrast, mice null for Arx (Arx−/Y) lost expression of specific markers of the thalamic reticular nucleus (TRN) and zona incerta (ZI), while retaining expression in other thalamic nuclei and in the hypothalamus. Tyrosine hydroxylase, a marker of the ZI’s dopaminergic A13 sub-nucleus, was among those lost, suggesting a requirement for Arx in normal TRN and ZI development, and for A13 dopaminergic fate, specifically. Since the ZI and A13 regions make connections to several hypothalamic nuclei, such mis-specification may contribute to the “hypothalamic dysfunction” observed in some patients. PMID:24487799

  7. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin

    PubMed Central

    Dechat, Thomas; Pfleghaar, Katrin; Sengupta, Kaushik; Shimi, Takeshi; Shumaker, Dale K.; Solimando, Liliana; Goldman, Robert D.

    2008-01-01

    Over the past few years it has become evident that the intermediate filament proteins, the types A and B nuclear lamins, not only provide a structural framework for the nucleus, but are also essential for many aspects of normal nuclear function. Insights into lamin-related functions have been derived from studies of the remarkably large number of disease-causing mutations in the human lamin A gene. This review provides an up-to-date overview of the functions of nuclear lamins, emphasizing their roles in epigenetics, chromatin organization, DNA replication, transcription, and DNA repair. In addition, we discuss recent evidence supporting the importance of lamins in viral infections. PMID:18381888

  8. Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy

    SciTech Connect

    Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei

    2014-09-08

    We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.

  9. Distinct roles of dopamine and subthalamic nucleus in learning and probabilistic decision making

    PubMed Central

    Bogacz, Rafal; Javed, Shazia; Mooney, Lucy K.; Murphy, Gillian; Keeley, Sophie; Whone, Alan L.

    2012-01-01

    Even simple behaviour requires us to make decisions based on combining multiple pieces of learned and new information. Making such decisions requires both learning the optimal response to each given stimulus as well as combining probabilistic information from multiple stimuli before selecting a response. Computational theories of decision making predict that learning individual stimulus–response associations and rapid combination of information from multiple stimuli are dependent on different components of basal ganglia circuitry. In particular, learning and retention of memory, required for optimal response choice, are significantly reliant on dopamine, whereas integrating information probabilistically is critically dependent upon functioning of the glutamatergic subthalamic nucleus (computing the ‘normalization term’ in Bayes’ theorem). Here, we test these theories by investigating 22 patients with Parkinson’s disease either treated with deep brain stimulation to the subthalamic nucleus and dopaminergic therapy or managed with dopaminergic therapy alone. We use computerized tasks that probe three cognitive functions—information acquisition (learning), memory over a delay and information integration when multiple pieces of sequentially presented information have to be combined. Patients performed the tasks ON or OFF deep brain stimulation and/or ON or OFF dopaminergic therapy. Consistent with the computational theories, we show that stopping dopaminergic therapy impairs memory for probabilistic information over a delay, whereas deep brain stimulation to the region of the subthalamic nucleus disrupts decision making when multiple pieces of acquired information must be combined. Furthermore, we found that when participants needed to update their decision on the basis of the last piece of information presented in the decision-making task, patients with deep brain stimulation of the subthalamic nucleus region did not slow down appropriately to revise their

  10. Distinct roles of dopamine and subthalamic nucleus in learning and probabilistic decision making.

    PubMed

    Coulthard, Elizabeth J; Bogacz, Rafal; Javed, Shazia; Mooney, Lucy K; Murphy, Gillian; Keeley, Sophie; Whone, Alan L

    2012-12-01

    Even simple behaviour requires us to make decisions based on combining multiple pieces of learned and new information. Making such decisions requires both learning the optimal response to each given stimulus as well as combining probabilistic information from multiple stimuli before selecting a response. Computational theories of decision making predict that learning individual stimulus-response associations and rapid combination of information from multiple stimuli are dependent on different components of basal ganglia circuitry. In particular, learning and retention of memory, required for optimal response choice, are significantly reliant on dopamine, whereas integrating information probabilistically is critically dependent upon functioning of the glutamatergic subthalamic nucleus (computing the 'normalization term' in Bayes' theorem). Here, we test these theories by investigating 22 patients with Parkinson's disease either treated with deep brain stimulation to the subthalamic nucleus and dopaminergic therapy or managed with dopaminergic therapy alone. We use computerized tasks that probe three cognitive functions-information acquisition (learning), memory over a delay and information integration when multiple pieces of sequentially presented information have to be combined. Patients performed the tasks ON or OFF deep brain stimulation and/or ON or OFF dopaminergic therapy. Consistent with the computational theories, we show that stopping dopaminergic therapy impairs memory for probabilistic information over a delay, whereas deep brain stimulation to the region of the subthalamic nucleus disrupts decision making when multiple pieces of acquired information must be combined. Furthermore, we found that when participants needed to update their decision on the basis of the last piece of information presented in the decision-making task, patients with deep brain stimulation of the subthalamic nucleus region did not slow down appropriately to revise their plan, a

  11. Control of nucleus accumbens activity with neurofeedback.

    PubMed

    Greer, Stephanie M; Trujillo, Andrew J; Glover, Gary H; Knutson, Brian

    2014-08-01

    The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be presented as "neurofeedback." In an fMRI-based neurofeedback experiment designed to elicit NAcc activity, we found that subjects could increase their own NAcc activity, and that display of neurofeedback significantly enhanced their ability to do so. Subjects were not as capable of decreasing their NAcc activity, however, and enhanced control did not persist after subsequent removal of neurofeedback. Further analyses suggested that individuals who recruited positive aroused affect were better able to increase NAcc activity in response to neurofeedback, and that NAcc neurofeedback also elicited functionally correlated activity in the medial prefrontal cortex. Together, these findings suggest that humans can modulate their own NAcc activity and that fMRI-based neurofeedback may augment their efforts. The observed association between positive arousal and effective NAcc control further supports an anticipatory affect account of NAcc function.

  12. Functional network inference of the suprachiasmatic nucleus

    PubMed Central

    Abel, John H.; Meeker, Kirsten; Granados-Fuentes, Daniel; St. John, Peter C.; Wang, Thomas J.; Bales, Benjamin B.; Doyle, Francis J.; Herzog, Erik D.; Petzold, Linda R.

    2016-01-01

    In the mammalian suprachiasmatic nucleus (SCN), noisy cellular oscillators communicate within a neuronal network to generate precise system-wide circadian rhythms. Although the intracellular genetic oscillator and intercellular biochemical coupling mechanisms have been examined previously, the network topology driving synchronization of the SCN has not been elucidated. This network has been particularly challenging to probe, due to its oscillatory components and slow coupling timescale. In this work, we investigated the SCN network at a single-cell resolution through a chemically induced desynchronization. We then inferred functional connections in the SCN by applying the maximal information coefficient statistic to bioluminescence reporter data from individual neurons while they resynchronized their circadian cycling. Our results demonstrate that the functional network of circadian cells associated with resynchronization has small-world characteristics, with a node degree distribution that is exponential. We show that hubs of this small-world network are preferentially located in the central SCN, with sparsely connected shells surrounding these cores. Finally, we used two computational models of circadian neurons to validate our predictions of network structure. PMID:27044085

  13. Functional network inference of the suprachiasmatic nucleus

    SciTech Connect

    Abel, John H.; Meeker, Kirsten; Granados-Fuentes, Daniel; St. John, Peter C.; Wang, Thomas J.; Bales, Benjamin B.; Doyle, Francis J.; Herzog, Erik D.; Petzold, Linda R.

    2016-04-04

    In the mammalian suprachiasmatic nucleus (SCN), noisy cellular oscillators communicate within a neuronal network to generate precise system-wide circadian rhythms. Although the intracellular genetic oscillator and intercellular biochemical coupling mechanisms have been examined previously, the network topology driving synchronization of the SCN has not been elucidated. This network has been particularly challenging to probe, due to its oscillatory components and slow coupling timescale. In this work, we investigated the SCN network at a single-cell resolution through a chemically induced desynchronization. We then inferred functional connections in the SCN by applying the maximal information coefficient statistic to bioluminescence reporter data from individual neurons while they resynchronized their circadian cycling. Our results demonstrate that the functional network of circadian cells associated with resynchronization has small-world characteristics, with a node degree distribution that is exponential. We show that hubs of this small-world network are preferentially located in the central SCN, with sparsely connected shells surrounding these cores. Finally, we used two computational models of circadian neurons to validate our predictions of network structure.

  14. Development of the human dentate nucleus.

    PubMed

    Mihajlovic, P; Zecevic, N

    1986-01-01

    The developing human dentate nucleus (DN) was studied in a series of specimens of various pre- and postnatal ages ranging from 8 gestational weeks (gw) to 10 years, in Golgi-impregnated and Nissl-stained material. The DN emerges from the cerebellar white matter at around 16 gestational weeks (gw) as a thick band of cells (600-700 micron in width) that gradually attenuates to a final width of 150-250 micron as it undergoes extensive infolding beginning around 24 gw. The highly convoluted configuration of the adult DN is recognizable by 35 gw. Around 16 gw, two basic classes of DN neurons can be identified. Differentiation of these neurons is especially intensive during the mid-gestational period (20-25 gw). At this time the size of cell bodies increases, dendrites branch profusely and acquire spines. A second, slower phase of maturation consisting of addition of secondary and tertiary branches, continues into the postnatal period. At all prenatal ages examined, dentate neurons are morphologically more mature than the Purkinje cells in the overlying cortex. DN neurons of premature infants did not show cytomorphological differences when compared with babies born at term.

  15. Calretinin Neurons in the Rat Suprachiasmatic Nucleus.

    PubMed

    Moore, Robert Y

    2016-08-01

    The hypothalamic suprachiasmatic nucleus (SCN), a circadian pacemaker, is present in all mammalian brains. It has a complex organization of peptide-containing neurons that is similar among species, but calcium-binding proteins are expressed variably. Neurons containing calretinin have been described in the SCN in a number of species but not with association to circadian function. The objective of the present study is to characterize a calretinin neuron (CAR) group in the rat anterior hypothalamus anatomically and functionally with a detailed description of its location and a quantitative analysis of neuronal calretinin immunoreactivity at 3 times of day, 0600, 1400, and 1900 h, from animals in either light-dark or constant dark conditions. CAR neurons occupy a region in the dorsal and lateral SCN with a circadian rhythm in CAR immunoreactivity with a peak at 0600 h and a rhythm in cytoplasmic CAR distribution with a peak at 1400 h. CAR neurons should be viewed as an anatomical and functional component of the rat SCN that expands the definition from observations with cell stains. CAR neurons are likely to modulate temporal regulation of calcium in synaptic transmission.

  16. Comparing Realistic Subthalamic Nucleus Neuron Models

    NASA Astrophysics Data System (ADS)

    Njap, Felix; Claussen, Jens C.; Moser, Andreas; Hofmann, Ulrich G.

    2011-06-01

    The mechanism of action of clinically effective electrical high frequency stimulation is still under debate. However, recent evidence points at the specific activation of GABA-ergic ion channels. Using a computational approach, we analyze temporal properties of the spike trains emitted by biologically realistic neurons of the subthalamic nucleus (STN) as a function of GABA-ergic synaptic input conductances. Our contribution is based on a model proposed by Rubin and Terman and exhibits a wide variety of different firing patterns, silent, low spiking, moderate spiking and intense spiking activity. We observed that most of the cells in our network turn to silent mode when we increase the GABAA input conductance above the threshold of 3.75 mS/cm2. On the other hand, insignificant changes in firing activity are observed when the input conductance is low or close to zero. We thus reproduce Rubin's model with vanishing synaptic conductances. To quantitatively compare spike trains from the original model with the modified model at different conductance levels, we apply four different (dis)similarity measures between them. We observe that Mahalanobis distance, Victor-Purpura metric, and Interspike Interval distribution are sensitive to different firing regimes, whereas Mutual Information seems undiscriminative for these functional changes.

  17. Mechanical behavior of the human lumbar intervertebral disc with polymeric hydrogel nucleus implant: An experimental and finite element study

    NASA Astrophysics Data System (ADS)

    Joshi, Abhijeet Bhaskar

    The origin of the lower back pain is often the degenerated lumbar intervertebral disc (IVD). We are proposing replacement of the degenerated nucleus by a PVA/PVP polymeric hydrogel implant. We hypothesize that a polymeric hydrogel nucleus implant can restore the normal biomechanics of the denucleated IVD by mimicking the natural load transfer phenomenon as in case of the intact IVD. Lumbar IVDs (n = 15) were harvested from human cadavers. In the first part, specimens were tested in four different conditions for compression: Intact, bone in plug, denucleated and Implanted. Hydrogel nucleus implants were chosen to have line-to-line fit in the created nuclear cavity. In the second part, nucleus implant material (modulus) and geometric (height and diameter) parameters were varied and specimens (n = 9) were tested. Nucleus implants with line-to-line fit significantly restored (88%) the compressive stiffness of the denucleated IVD. The synergistic effect between the implant and the intact annulus resulted in the nonlinear increase in implanted IVD stiffness, where Poisson effect of the hydrogel played major role. Nucleus implant parameters were observed to have a significant effect on the compressive stiffness. All implants with modulus in the tested range restored the compressive stiffness. The undersize implants resulted in incomplete restoration while oversize implants resulted in complete restoration compared to the BI condition. Finite element models (FEM) were developed to simulate the actual test conditions and validated against the experimental results for all conditions. The annulus (defined as hyperelastic, isotropic) mainly determined the nonlinear response of the IVD. Validated FEMs predicted 120--3000 kPa as a feasible range for nucleus implant modulus. FEMs also predicted that overdiameter implant would be more effective than overheight implant in terms of stiffness restoration. Underdiameter implants, initially allowed inward deformation of the annulus and

  18. Normality in Analytical Psychology

    PubMed Central

    Myers, Steve

    2013-01-01

    Although C.G. Jung’s interest in normality wavered throughout his career, it was one of the areas he identified in later life as worthy of further research. He began his career using a definition of normality which would have been the target of Foucault’s criticism, had Foucault chosen to review Jung’s work. However, Jung then evolved his thinking to a standpoint that was more aligned to Foucault’s own. Thereafter, the post Jungian concept of normality has remained relatively undeveloped by comparison with psychoanalysis and mainstream psychology. Jung’s disjecta membra on the subject suggest that, in contemporary analytical psychology, too much focus is placed on the process of individuation to the neglect of applications that consider collective processes. Also, there is potential for useful research and development into the nature of conflict between individuals and societies, and how normal people typically develop in relation to the spectrum between individuation and collectivity. PMID:25379262

  19. Normal Pressure Hydrocephalus

    MedlinePlus

    ... techniques and neuroimaging, and finding improved treatments and preventions. Information from the National Library of Medicine’s MedlinePlus Normal Pressure Hydrocephalus × What research is being ...

  20. Normal Functioning Family

    MedlinePlus

    ... Spread the Word Shop AAP Find a Pediatrician Family Life Medical Home Family Dynamics Adoption & Foster Care ... Español Text Size Email Print Share Normal Functioning Family Page Content Article Body Is there any way ...

  1. Development of the human dorsal nucleus of the vagus.

    PubMed

    Cheng, Gang; Zhu, Hua; Zhou, Xiangtian; Qu, Jia; Ashwell, K W S; Paxinos, G

    2008-01-01

    The dorsal nucleus of the vagus nerve plays an integral part in the control of visceral function. The aim of the present study was to correlate structural and chemical changes in the developing nucleus with available data concerning functional maturation of human viscera and reflexes. The fetal development (ages 9 to 26 weeks) of the human dorsal nucleus of the vagus nerve has been examined with the aid of Nissl staining and immunocytochemistry for calbindin and tyrosine hydroxylase. By 13 weeks, the dorsal vagal nucleus emerges as a distinct structure with at least two subnuclei visible in Nissl stained preparations. By 15 weeks, three subnuclei (dorsal intermediate, centrointermediate and ventrointermediate) were clearly discernible at the open medulla level with caudal and caudointermediate subnuclei visible at the level of the area postrema. All subnuclei known to exist in the adult were visible by 21 weeks and cytoarchitectonic differentiation of the nucleus was largely completed by 25 weeks. The adult distribution pattern of calbindin and tyrosine hydroxylase immunoreactive neurons was also largely completed by 21 weeks, although morphological differentiation of labeled neurons continued until the last age examined (26 weeks). The structural development of the dorsal nucleus of the vagus nerve appears to occur in parallel with functional maturation of the cardiovascular and gastric movements, which the nucleus controls.

  2. Did Struve observe the nucleus of Halley's comet in 1835?

    NASA Astrophysics Data System (ADS)

    Wittmann, Axel D.

    During its apparition in 1835 Halley's comet reached its minimum distance from the earth (0.187 au) on 13 October in the constellation of Ursa Major. Telescopic visual observations were made, e.g., by F.W. Bessel at Königsberg and by F.G.W. Struve at Dorpat (Tartu). In particular a drawing made by Struve on 8 October of what he calls the `nucleus' and describes as a small, slightly yellowish glowing piece of coal of elongated shape bears such a striking resemblance to the images of Halley's nucleus obtained in 1986 by the Giotto spacecraft that it merits further examination: Could Struve, who had been using a 24.4 cm refractor at 254-fold magnification, possibly have observed the real nucleus? Closer examination shows that neither Struve's maximum possible resolution (0.13 arc seconds or 23 km at the comet), nor his measured size of the nucleus (160 x 400 km), nor his verbal description of the nucleus (as a bright object) support this idea: It rather seems that the term `nucleus' was used at the time for the brightest, innermost part of the coma. It is concluded that, nevertheless, Struve quite correctly envisaged the structure of the innermost coma, and to a considerable degree of accuracy anticipated the correct shape and structure of the nucleus (elongated, 1:2) and its localized sources of outstreaming gas.

  3. Angiotensin receptor binding and pressor effects in cat subretrofacial nucleus

    SciTech Connect

    Allen, A.M.; Dampney, R.A.L.; Mendelsohn, F.A.O. Univ. of Sydney )

    1988-11-01

    Central administration of angiotensin II (ANG II) increases arterial blood pressure via increased sympathetic activity. The authors have examined the possibility that one site of action of ANG II is the subretrofacial (SRF) nucleus in the rostral ventrolateral medulla, since this nucleus is known to play a critical role in the tonic and phasic control of arterial pressure. In vitro autoradiography, employing {sup 125}I-labeled (Sar{sup 1}, Ile{sup 8})ANG II as radioligand, was used to localize binding sites for ANG-II in the cat ventrolateral medulla. A high density of ANG II-receptor binding sites was found confined to the SRF nucleus. In a second group of experiments in anesthetized cats, microinjections of ANG II, in doses ranging from 10 to 50 pmol, were made into histologically identified sites within and outside the SRF nucleus. Microinjections into the nucleus resulted in a dose-dependent increase in arterial pressure, which was abolished by systemic administration of the ganglion-blocking drug hexamethonium bromide. In contrast, microinjections just outside the SRF nucleus had no effect on arterial pressure. It is concluded that activation of ANG II-receptor binding sites within the SRF nucleus leads to an increase in arterial pressure via increased sympathetic efferent activity.

  4. The Suprachiasmatic Nucleus Modulates the Sensitivity of Arcuate Nucleus to Hypoglycemia in the Male Rat.

    PubMed

    Herrera-Moro Chao, D; León-Mercado, L; Foppen, E; Guzmán-Ruiz, M; Basualdo, M C; Escobar, C; Buijs, R M

    2016-09-01

    The suprachiasmatic nucleus (SCN) and arcuate nucleus (ARC) have reciprocal connections; catabolic metabolic information activates the ARC and inhibits SCN neuronal activity. Little is known about the influence of the SCN on the ARC. Here, we investigated whether the SCN modulated the sensitivity of the ARC to catabolic metabolic conditions. ARC neuronal activity, as determined by c-Fos immunoreactivity, was increased after a hypoglycemic stimulus by 2-deoxyglucose (2DG). The highest ARC neuronal activity after 2DG was found at the end of the light period (zeitgeber 11, ZT11) with a lower activity in the beginning of the light period (zeitgeber 2, ZT2), suggesting the involvement of the SCN. The higher activation of ARC neurons after 2DG at ZT11 was associated with higher 2DG induced blood glucose levels as compared with ZT2. Unilateral SCN-lesioned animals, gave a mainly ipsilateral activation of ARC neurons at the lesioned side, suggesting an inhibitory role of the SCN on ARC neurons. The 2DG-induced counterregulatory glucose response correlated with increased ARC neuronal activity and was significantly higher in unilateral SCN-lesioned animals. Finally, the ARC as site where 2DG may, at least partly, induce a counterregulatory response was confirmed by local microdialysis of 2DG. 2DG administration in the ARC produced a higher increase in circulating glucose compared with 2DG administration in surrounding areas such as the ventromedial nucleus of the hypothalamus (VMH). We conclude that the SCN uses neuronal pathways to the ARC to gate sensory metabolic information to the brain, regulating ARC glucose sensitivity and counterregulatory responses to hypoglycemic conditions.

  5. Multiple pion and kaon production in high energy nucleus-nucleus collisions: measurements versus specific models

    NASA Astrophysics Data System (ADS)

    Guptaroy, P.; de, Bh.; Bhattacharyya, S.; Bhattacharyya, D. P.

    The pion and kaon rapidity densities and the nature of kaon-pion ratios offer two very prominent and crucial physical observables on which modestly sufficient data for heavy nucleus collisions are available to date. In the light of two sets of models - one purely phenomenological and the other with a modest degree of a dynamical basis - we try to examine the state of agreement between calculations and experimental results obtainable from the past and the latest measurements. Impact and implications of all these would also finally be spelt out.

  6. Apparent diffusion coefficient normalization of normal liver

    PubMed Central

    Zhu, Jie; Zhang, Jie; Gao, Jia-Yin; Li, Jin-Ning; Yang, Da-Wei; Chen, Min; Zhou, Cheng; Yang, Zheng-Han

    2017-01-01

    Abstract Apparent diffusion coefficient (ADC) measurement in diffusion-weighted imaging (DWI) has been reported to be a helpful biomarker for detection and characterization of lesion. In view of the importance of ADC measurement reproducibility, the aim of this study was to probe the variability of the healthy hepatic ADC values measured at 3 MR scanners from different vendors and with different field strengths, and to investigate the reproducibility of normalized ADC (nADC) value with the spleen as the reference organ. Thirty enrolled healthy volunteers received DWI with GE 1.5T, Siemens 1.5T, and Philips 3.0T magnetic resonance (MR) systems on liver and spleen (session 1) and were imaged again after 10 to 14 days using only GE 1.5T MR and Philips 3.0T MR systems (session 2). Interscan agreement and reproducibility of ADC measurements of liver and the calculated nADC values (ADCliver/ADCspleen) were statistically evaluated between 2 sessions. In session 1, ADC and nADC values of liver were evaluated for the scanner-related variability by 2-way analysis of variance and intraclass correlation coefficients (ICCs). Coefficients of variation (CVs) of ADCs and nADCs of liver were calculated for both 1.5 and 3.0-T MR system. Interscan agreement and reproducibility of ADC measurements of liver and related nADCs between 2 sessions were found to be satisfactory with ICC values of 0.773 to 0.905. In session 1, the liver nADCs obtained from different scanners were consistent (P = 0.112) without any significant difference in multiple comparison (P = 0.117 to >0.99) by using 2-way analysis of variance with post-hoc analysis of Bonferroni method, although the liver ADCs varied significantly (P < 0.001). nADCs measured by 3 scanners were in good interscanner agreements with ICCs of 0.685 to 0.776. The mean CV of nADCs of both 1.5T MR scanners (9.6%) was similar to that of 3.0T MR scanner (8.9%). ADCs measured at 3 MR scanners with different field strengths and vendors

  7. Quarkonium-nucleus bound states from lattice QCD

    SciTech Connect

    Beane, S.  R.; Chang, E.; Cohen, S.  D.; Detmold, W.; Lin, H. -W.; Orginos, K.; Parreño, A.; Savage, M.  J.

    2015-06-11

    Quarkonium-nucleus systems are composed of two interacting hadronic states without common valence quarks, which interact primarily through multi-gluon exchanges, realizing a color van der Waals force. We present lattice QCD calculations of the interactions of strange and charm quarkonia with light nuclei. Both the strangeonium-nucleus and charmonium-nucleus systems are found to be relatively deeply bound when the masses of the three light quarks are set equal to that of the physical strange quark. Extrapolation of these results to the physical light-quark masses suggests that the binding energy of charmonium to nuclear matter is B < 40 MeV.

  8. Determination of electron-nucleus collisions geometry with forward neutrons

    DOE PAGES

    Zheng, L.; Aschenauer, E.; Lee, J. H.

    2014-12-29

    There are a large number of physics programs one can explore in electron-nucleus collisions at a future electron-ion collider. Collision geometry is very important in these studies, while the measurement for an event-by-event geometric control is rarely discussed in the prior deep-inelastic scattering experiments off a nucleus. This paper seeks to provide some detailed studies on the potential of tagging collision geometries through forward neutron multiplicity measurements with a zero degree calorimeter. As a result, this type of geometry handle, if achieved, can be extremely beneficial in constraining nuclear effects for the electron-nucleus program at an electron-ion collider.

  9. HUBBLE DETECTION OF COMET NUCLEUS AT FRINGE OF SOLAR SYSTEM

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is sample data from NASA's Hubble Space Telescope that illustrates the detection of comets in the Kuiper Belt, a region of space beyond the orbit of the planet Neptune. This pair of images, taken with the Wide Field Planetary Camera 2 (WFPC2), shows one of the candidate Kuiper Belt objects found with Hubble. Believed to be an icy comet nucleus several miles across, the object is so distant and faint that Hubble's search is the equivalent of finding the proverbial needle-in-haystack. Each photo is a 5-hour exposure of a piece of sky carefully selected such that it is nearly devoid of background stars and galaxies that could mask the elusive comet. The left image, taken on August 22, 1994, shows the candidate comet object (inside circle) embedded in the background. The right picture, take of the same region one hour forty-five minutes later shows the object has apparently moved in the predicted direction and rate of motion for a kuiper belt member. The dotted line on the images is a possible orbit that this Kuiper belt comet is following. A star (lower right corner) and a galaxy (upper right corner) provide a static background reference. In addition, other objects in the picture have not moved during this time, indicating they are outside our solar system. Through this search technique astronomers have identified 29 candidate comet nuclei belonging to an estimated population of 200 million particles orbiting the edge of our solar system. The Kupier Belt was theorized 40 years ago, and its larger members detected several years ago. However, Hubble has found the underlying population of normal comet-sized bodies. Credit: A. Cochran (University of Texas) and NASA

  10. Observation of the antimatter helium-4 nucleus

    SciTech Connect

    Agakishiev, H.; Tang, A.; et al.

    2011-04-24

    High-energy nuclear collisions create an energy density similar to that of the Universe microseconds after the Big Bang; in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high-energy accelerator of heavy nuclei provides an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus ({sup 4}He), also known as the anti-{alpha} ({alpha}), consists of two antiprotons and two antineutrons (baryon number B = -4). It has not been observed previously, although the {alpha}-particle was identified a century ago by Rutherford and is present in cosmic radiation at the ten per cent level. Antimatter nuclei with B < -1 have been observed only as rare products of interactions at particle accelerators, where the rate of antinucleus production in high-energy collisions decreases by a factor of about 1,000 with each additional antinucleon. Here we report the observation of {sup 4}He, the heaviest observed antinucleus to date. In total, 18 {sup 4}He counts were detected at the STAR experiment at the Relativistic Heavy Ion Collider (RHIC) in 10{sup 9} recorded gold-on-gold (Au+Au) collisions at centre-of-mass energies of 200 GeV and 62 GeV per nucleon-nucleon pair. The yield is consistent with expectations from thermodynamic and coalescent nucleosynthesis models, providing an indication of the production rate of even heavier antimatter nuclei and a benchmark for possible future observations of {sup 4}He in cosmic radiation.

  11. Quantifying surface normal estimation

    NASA Astrophysics Data System (ADS)

    Reid, Robert B.; Oxley, Mark E.; Eismann, Michael T.; Goda, Matthew E.

    2006-05-01

    An inverse algorithm for surface normal estimation from thermal polarimetric imagery was developed and used to quantify the requirements on a priori information. Building on existing knowledge that calculates the degree of linear polarization (DOLP) and the angle of polarization (AOP) for a given surface normal in a forward model (from an object's characteristics to calculation of the DOLP and AOP), this research quantifies the impact of a priori information with the development of an inverse algorithm to estimate surface normals from thermal polarimetric emissions in long-wave infrared (LWIR). The inverse algorithm assumes a polarized infrared focal plane array capturing LWIR intensity images which are then converted to Stokes vectors. Next, the DOLP and AOP are calculated from the Stokes vectors. Last, the viewing angles, θ v, to the surface normals are estimated assuming perfect material information about the imaged scene. A sensitivity analysis is presented to quantitatively describe the a priori information's impact on the amount of error in the estimation of surface normals, and a bound is determined given perfect information about an object. Simulations explored the impact of surface roughness (σ) and the real component (n) of a dielectric's complex index of refraction across a range of viewing angles (θ v) for a given wavelength of observation.

  12. Pion production at 180/sup 0/ in nucleus-nucleus collisions

    SciTech Connect

    Chessin, S.A.

    1983-05-01

    A survey experiment of pion production at 180/sup 0/ in nucleus-nucleus collisions is presented. Beams of 1.05 GeV/A and 2.1 GeV/A protons, alphas, and carbon were used, as well as proton beams of 0.80 GeV, 3.5 GeV, and 4.89 GeV, and argon beams of 1.05 GeV/A and 1.83 GeV/A. This is the first such experiment to use the heavier beams. Targets used ranged from carbon to lead. An in-depth review of the literature, both experimental and theoretical, is also presented. The systematics of the data are discussed, and comparisons are made both with prior experiments and with the predictions of the models reviewed. The cross sections appear consistent with a simple single nucleon-nucleon collision picture, without the need for collective or other exotic effects. Suggestions for future work are made.

  13. Statistical analysis of secondary particle distributions in relativistic nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Mcguire, Stephen C.

    1987-01-01

    The use is described of several statistical techniques to characterize structure in the angular distributions of secondary particles from nucleus-nucleus collisions in the energy range 24 to 61 GeV/nucleon. The objective of this work was to determine whether there are correlations between emitted particle intensity and angle that may be used to support the existence of the quark gluon plasma. The techniques include chi-square null hypothesis tests, the method of discrete Fourier transform analysis, and fluctuation analysis. We have also used the method of composite unit vectors to test for azimuthal asymmetry in a data set of 63 JACEE-3 events. Each method is presented in a manner that provides the reader with some practical detail regarding its application. Of those events with relatively high statistics, Fe approaches 0 at 55 GeV/nucleon was found to possess an azimuthal distribution with a highly non-random structure. No evidence of non-statistical fluctuations was found in the pseudo-rapidity distributions of the events studied. It is seen that the most effective application of these methods relies upon the availability of many events or single events that possess very high multiplicities.

  14. Interaction between hypothalamic dorsomedial nucleus and the suprachiasmatic nucleus determines intensity of food anticipatory behavior

    PubMed Central

    Acosta-Galvan, Guadalupe; Yi, Chun-Xia; van der Vliet, Jan; Jhamandas, Jack H.; Panula, Pertti; Angeles-Castellanos, Manuel; del Carmen Basualdo, María; Escobar, Carolina; Buijs, Ruud M.

    2011-01-01

    Food anticipatory behavior (FAA) is induced by limiting access to food for a few hours daily. Animals anticipate this scheduled meal event even without the suprachiasmatic nucleus (SCN), the biological clock. Consequently, a food-entrained oscillator has been proposed to be responsible for meal time estimation. Recent studies suggested the dorsomedial hypothalamus (DMH) as the site for this food-entrained oscillator, which has led to considerable controversy in the literature. Herein we demonstrate by means of c-Fos immunohistochemistry that the neuronal activity of the suprachiasmatic nucleus (SCN), which signals the rest phase in nocturnal animals, is reduced when animals anticipate the scheduled food and, simultaneously, neuronal activity within the DMH increases. Using retrograde tracing and confocal analysis, we show that inhibition of SCN neuronal activity is the consequence of activation of GABA-containing neurons in the DMH that project to the SCN. Next, we show that DMH lesions result in a loss or diminution of FAA, simultaneous with increased activity in the SCN. A subsequent lesion of the SCN restored FAA. We conclude that in intact animals, FAA may only occur when the DMH inhibits the activity of the SCN, thus permitting locomotor activity. As a result, FAA originates from a neuronal network comprising an interaction between the DMH and SCN. Moreover, this study shows that the DMH–SCN interaction may serve as an intrahypothalamic system to gate activity instead of rest overriding circadian predetermined temporal patterns. PMID:21402951

  15. Quantitative analysis of the fusion cross sections using different microscopic nucleus-nucleus interactions

    NASA Astrophysics Data System (ADS)

    Adel, A.; Alharbi, T.

    2017-01-01

    The fusion cross sections for reactions involving medium and heavy nucleus-nucleus systems are investigated near and above the Coulomb barrier using the one-dimensional barrier penetration model. The microscopic nuclear interaction potential is computed by four methods, namely: the double-folding model based on a realistic density-dependent M3Y NN interaction with a finite-range exchange part, the Skyrme energy density functional in the semiclassical extended Thomas-Fermi approximation, the generalized Proximity potential, and the Akyüz-Winther interaction. The comparison between the calculated and the measured values of the fusion excitation functions indicates that the calculations of the DFM give quite satisfactory agreement with the experimental data, being much better than the other methods. New parameterized forms for the fusion barrier heights and positions are presented. Furthermore, the effects of deformation and orientation degrees of freedom on the distribution of the Coulomb barrier characteristics as well as the fusion cross sections are studied for the reactions 16 O + 70 Ge and 28 Si + 100 Mo. The calculated values of the total fusion cross sections are compared with coupled channel calculations using the code CCFULL and compared with the experimental data. Our results reveal that the inclusion of deformations and orientation degrees of freedom improves the comparison with the experimental data.

  16. Suprachiasmatic Nucleus Interaction with the Arcuate Nucleus; Essential for Organizing Physiological Rhythms

    PubMed Central

    Guzmán-Ruiz, Mara

    2017-01-01

    Abstract The suprachiasmatic nucleus (SCN) is generally considered the master clock, independently driving all circadian rhythms. We recently demonstrated the SCN receives metabolic and cardiovascular feedback adeptly altering its neuronal activity. In the present study, we show that microcuts effectively removing SCN-arcuate nucleus (ARC) interconnectivity in Wistar rats result in a loss of rhythmicity in locomotor activity, corticosterone levels, and body temperature in constant dark (DD) conditions. Elimination of these reciprocal connections did not affect SCN clock gene rhythmicity but did cause the ARC to desynchronize. Moreover, unilateral SCN lesions with contralateral retrochiasmatic microcuts resulted in identical arrhythmicity, proving that for the expression of physiological rhythms this reciprocal SCN-ARC interaction is essential. The unaltered SCN c-Fos expression following glucose administration in disconnected animals as compared to a significant decrease in controls demonstrates the importance of the ARC as metabolic modulator of SCN neuronal activity. Together, these results indicate that the SCN is more than an autonomous clock, and forms an essential component of a larger network controlling homeostasis. The present novel findings illustrate how an imbalance between SCN and ARC communication through circadian disruption could be involved in the etiology of metabolic disorders. PMID:28374011

  17. Low-energy antinucleon-nucleus interaction revisited

    NASA Astrophysics Data System (ADS)

    Friedman, E.

    2015-08-01

    Annihilation cross sections of antiprotons and antineutrons on the proton between 50 and 400 MeV/c show Coulomb focusing below 200 MeV/c and almost no charge-dependence above 200 MeV/c. Similar comparisons for heavier targets are not possible for lack of overlap between nuclear targets studied with and beams. Interpolating between -nucleus annihilation cross sections with the help of an optical potential to compare with -nucleus annihilation cross sections reveal unexpected features of Coulomb interactions in the latter. Direct comparisons between -nucleus and -nucleus annihilations at very low energies could be possible if cross sections are measured on the same targets and at the same energies as the available cross sections for . Such measurements may be feasible in the foreseeable future.

  18. 3D Protein Dynamics in the Cell Nucleus.

    PubMed

    Singh, Anand P; Galland, Rémi; Finch-Edmondson, Megan L; Grenci, Gianluca; Sibarita, Jean-Baptiste; Studer, Vincent; Viasnoff, Virgile; Saunders, Timothy E

    2017-01-10

    The three-dimensional (3D) architecture of the cell nucleus plays an important role in protein dynamics and in regulating gene expression. However, protein dynamics within the 3D nucleus are poorly understood. Here, we present, to our knowledge, a novel combination of 1) single-objective based light-sheet microscopy, 2) photoconvertible proteins, and 3) fluorescence correlation microscopy, to quantitatively measure 3D protein dynamics in the nucleus. We are able to acquire >3400 autocorrelation functions at multiple spatial positions within a nucleus, without significant photobleaching, allowing us to make reliable estimates of diffusion dynamics. Using this tool, we demonstrate spatial heterogeneity in Polymerase II dynamics in live U2OS cells. Further, we provide detailed measurements of human-Yes-associated protein diffusion dynamics in a human gastric cancer epithelial cell line.

  19. Cloud condensation nucleus-sulfate mass relationship and cloud albedo

    NASA Technical Reports Server (NTRS)

    Hegg, Dean A.

    1994-01-01

    Analysis of previously published, simultaneous measurements of cloud condensation nucleus number concentration and sulfate mass concentration suggest a nonlinear relationship between the two variables. This nonlinearity reduces the sensitivity of cloud albedo to changes in the sulfur cycle.

  20. Deconvolving the Nucleus of Centaurus A Using Chandra PSF Library

    NASA Technical Reports Server (NTRS)

    Karovska, Margarita

    2000-01-01

    Centaurus A (NGC 5128) is a giant early-type galaxy containing the nearest (at 3.5 Mpc) radio-bright Active Galactic Nucleus (AGN). Cen A was observed with the High Resolution Camera (HRC) on the Chandra X-ray Observatory on several occasions since the launch in July 1999. The high-angular resolution (less than 0.5 arcsecond) Chandra/HRC images reveal X ray multi-scale structures in this object with unprecedented detail and clarity, including the bright nucleus believed to be associated with a supermassive black hole. We explored the spatial extent of the Cen A nucleus using deconvolution techniques on the full resolution Chandra images. Model point spread functions (PSFs) were derived from the standard Chandra raytrace PSF library as well as unresolved point sources observed with Chandra. The deconvolved images show that the Cen A nucleus is resolved and asymmetric. We discuss several possible causes of this extended emission and of the asymmetries.

  1. Are Children "Normal"?

    PubMed

    Black, Dan A; Kolesnikova, Natalia; Sanders, Seth G; Taylor, Lowell J

    2013-03-01

    We examine Becker's (1960) contention that children are "normal." For the cross section of non-Hispanic white married couples in the U.S., we show that when we restrict comparisons to similarly-educated women living in similarly-expensive locations, completed fertility is positively correlated with the husband's income. The empirical evidence is consistent with children being "normal." In an effort to show causal effects, we analyze the localized impact on fertility of the mid-1970s increase in world energy prices - an exogenous shock that substantially increased men's incomes in the Appalachian coal-mining region. Empirical evidence for that population indicates that fertility increases in men's income.

  2. Under Pressure: Mechanical Stress Management in the Nucleus

    PubMed Central

    Belaadi, Néjma; Aureille, Julien; Guilluy, Christophe

    2016-01-01

    Cells are constantly adjusting to the mechanical properties of their surroundings, operating a complex mechanochemical feedback, which hinges on mechanotransduction mechanisms. Whereas adhesion structures have been shown to play a central role in mechanotransduction, it now emerges that the nucleus may act as a mechanosensitive structure. Here, we review recent advances demonstrating that mechanical stress emanating from the cytoskeleton can activate pathways in the nucleus which eventually impact both its structure and the transcriptional machinery. PMID:27314389

  3. Truncal ataxia from infarction involving the inferior olivary nucleus.

    PubMed

    Park, Jae Hyun; Ryoo, Sookyung; Moon, So Young; Seo, Sand Won; Na, Duk L

    2012-08-01

    Truncal ataxia in medullary infarction may be caused by involvement of the lateral part of the medulla; however, truncal ataxia in infarction involving the inferior olivary nucleus (ION) has received comparatively little attention. We report a patient with truncal ataxia due to medial medullary infarction located in the ION. A lesion in the ION could produce a contralateral truncal ataxia due to increased inhibitory input to the contralesional vestibular nucleus from the contralesional flocculus.

  4. Radiometric observations of the nucleus of Comet Halley

    NASA Technical Reports Server (NTRS)

    Delamere, W. A.; Reitsema, H. J.; Huebner, W. F.; Schmidt, H. U.; Keller, H. U.; Schmidt, W. K. H.; Wilhelm, K.; Whipple, Fred L.

    1986-01-01

    Images obtained by the Halley multicolor camera (HMC) were used to determine the surface brightness of the nucleus. Radiometric values of jet-free areas of the surface are presented and a range of possible surface brightness values are derived. These direct measures are compared with brightnesses derived from the size of the nucleus, as determined from HMC images, and ground-based observations obtained before the onset of coma activity.

  5. The Galactic nucleus: A unique region in the Galactic ecosystem

    NASA Technical Reports Server (NTRS)

    Genzel, Reinhard; Poglitsch, Albrecht

    1995-01-01

    The nucleus is a unique region in the Galactic ecosystem. It is also superb laboratory of modern astrophysics where astronomers can study, at unprecedented spatial resolution and across the entire electromagnetic spectrum, physical processes that may also happen at the cores of other galaxies. Infrared observations from the Kuiper Airborne Observatory have made important contributions to unraveling the mysteries of the Galactic nucleus and this review highlights some of these measurements, as well as recent results regarding the central parsec.

  6. Spinal cord neuron inputs to the cuneate nucleus that partially survive dorsal column lesions: a pathway that could contribute to recovery after spinal cord injury

    PubMed Central

    Liao, Chia-Chi; DiCarlo, Gabriella E.; Gharbawie, Omar A.; Qi, Hui-Xin; Kaas, Jon H.

    2015-01-01

    Dorsal column lesions at a high cervical level deprive the cuneate nucleus and much of the somatosensory system of its major cutaneous inputs. Over weeks of recovery, much of the hand representations in the contralateral cortex are reactivated. One possibility for such cortical reactivation by hand afferents is that preserved second-order spinal cord neurons reach the cuneate nucleus through pathways that circumvent the dorsal column lesions, contributing to cortical reactivation in an increasingly effective manner over time. To evaluate this possibility, we first injected anatomical tracers into the cuneate nucleus and plotted the distributions of labeled spinal cord neurons and fibers in control monkeys. Large numbers of neurons in the dorsal horn of the cervical spinal cord were labeled, especially unilaterally in lamina IV. Labeled fibers were distributed in the cuneate fasciculus and lateral funiculus. In three other squirrel monkeys, unilateral dorsal column lesions were placed at the cervical segment 4 (C4) level and tracers were injected into the ipsilateral cuneate nucleus. Two weeks later, a largely unresponsive hand representation in contralateral somatosensory cortex confirmed the effectiveness of the dorsal column lesion. However, tracer injections in the cuneate nucleus labeled only about 5% of the normal number of dorsal horn neurons, mainly in lamina IV, below the level of lesions. Our results revealed a small second-order pathway to the cuneate nucleus that survives high cervical dorsal column lesions by traveling in the lateral funiculus. This could be important for cortical reactivation by hand afferents, and recovery of hand use. PMID:25845707

  7. Spinal cord neuron inputs to the cuneate nucleus that partially survive dorsal column lesions: A pathway that could contribute to recovery after spinal cord injury.

    PubMed

    Liao, Chia-Chi; DiCarlo, Gabriella E; Gharbawie, Omar A; Qi, Hui-Xin; Kaas, Jon H

    2015-10-01

    Dorsal column lesions at a high cervical level deprive the cuneate nucleus and much of the somatosensory system of its major cutaneous inputs. Over weeks of recovery, much of the hand representations in the contralateral cortex are reactivated. One possibility for such cortical reactivation by hand afferents is that preserved second-order spinal cord neurons reach the cuneate nucleus through pathways that circumvent the dorsal column lesions, contributing to cortical reactivation in an increasingly effective manner over time. To evaluate this possibility, we first injected anatomical tracers into the cuneate nucleus and plotted the distributions of labeled spinal cord neurons and fibers in control monkeys. Large numbers of neurons in the dorsal horn of the cervical spinal cord were labeled, especially ipsilaterally in lamina IV. Labeled fibers were distributed in the cuneate fasciculus and lateral funiculus. In three other squirrel monkeys, unilateral dorsal column lesions were placed at the cervical segment 4 level and tracers were injected into the ipsilateral cuneate nucleus. Two weeks later, a largely unresponsive hand representation in contralateral somatosensory cortex confirmed the effectiveness of the dorsal column lesion. However, tracer injections in the cuneate nucleus labeled only about 5% of the normal number of dorsal horn neurons, mainly in lamina IV, below the level of lesions. Our results revealed a small second-order pathway to the cuneate nucleus that survives high cervical dorsal column lesions by traveling in the lateral funiculus. This could be important for cortical reactivation by hand afferents, and recovery of hand use.

  8. International Halley Watch: Discipline specialists for near-nucleus studies

    NASA Technical Reports Server (NTRS)

    Larson, S.; Sekanina, Z.; Rahe, J.

    1986-01-01

    The purpose of the Near-Nucleus Studies Net is to study the processes taking place in the near-nucleus environment as they relate to the nature of nucleus. This is accomplisghed by measuring the spatial and temporal distribution of dust, gases and ions in the coma on high resolution images taken from many observatories around the world. By modeling the motions of discrete dust features in Comet Halley, it is often possible to determine the locations of the emission sources on the surface and learn about the nucleus structure. In addition to the general goals shared by all IHW nets, the scientific goals of the net has been to determine (1)the gross surface structure of the nucleus, (2)the nucleus spin vector, (3)the distribution and evolution of jet sources and (4)the interrelationships between the gas, dust and ion components of the coma. An additional Comet Giacobini-Zinner watch was carried out by the NNSN in support of the NASA International Cometary Explorer flyby.

  9. A FIBER APPARATUS IN THE NUCLEUS OF THE YEAST CELL

    PubMed Central

    Robinow, C. F.; Marak, J.

    1966-01-01

    The structure and mode of division of the nucleus of budding yeast cells have been studied by phase-contrast microscopy during life and by ordinary microscopy after Helly fixation. The components of the nucleus were differentially stained by the Feulgen procedure, with Giemsa solution after hydrolysis, and with iron alum haematoxylin. New information was obtained in cells fixed in Helly's by directly staining them with 0.005% acid fuchsin in 1% acetic acid in water. Electron micrographs have been made of sections of cells that were first fixed with 3% glutaraldehyde, then divested of their walls with snail juice, and postfixed with osmium tetroxide. Light and electron microscopy have given concordant information about the organization of the yeast nucleus. A peripheral segment of the nucleus is occupied by relatively dense matter (the "peripheral cluster" of Mundkur) which is Feulgen negative. The greater part of the nucleus is filled with fine-grained Feulgen-positive matter of low density in which chromosomes could not be identified. Chromosomes become visible in this region under the light microscope at meiosis. In the chromatin lies a short fiber with strong affinity for acid fuchsin. The nucleus divides by elongation and constriction, and during this process the fiber becomes long and thin. Electron microscopy has resolved it into a bundle of dark-edged 150 to 180 A filaments which extends between "centriolar plaques" that are attached to the nuclear envelope. PMID:5331666

  10. Cytoarchitecture and saccular innervation of nucleus y in the mouse.

    PubMed

    Frederickson, C J; Trune, D R

    1986-10-15

    The cytoarchitecture and saccular innervation of the mouse nucleus y were investigated by using Golgi, Nissl, and myelin stains and anterograde axonal transport of horseradish peroxidase. Nucleus y was found to be a compact group of cells in a small fiber-free region dorsal to the restiform body. Qualitative and morphometric analyses showed that most (75%) of the nucleus y neurons could not be reliably subdivided into morphologic subgroups, but varied continuously in soma size (15-25 microns), shape (fusiform to stellate), and number of dendrites (two to four), and had sparsely branched dendrites with an average of 3 to 4 spines per 10 microns of length. Three groups of cells that were identified morphometrically accounted for 10% (type I: large stellate cells), 9% (type II: long-dendrite cells), and 6% (type III: elongated soma cells) of the y neurons. Vestibular nerve axons transporting horseradish peroxidase after injury at their origin in the saccular neuroepithelium were found to form a dense terminal meshwork that was virtually co-extensive with the cytoarchitectonic boundaries of nucleus y. Nucleus y was distinguished from the overlying infracerebellar nucleus on the basis of anatomical, cytoarchitectural, and hodological features.

  11. Suprachiasmatic Nucleus Neuropeptide Expression in Patients with Huntington's Disease

    PubMed Central

    van Wamelen, Daniel J.; Aziz, N. Ahmad; Anink, Jasper J.; van Steenhoven, Robin; Angeloni, Debora; Fraschini, Franco; Jockers, Ralf; Roos, Raymund A. C.; Swaab, Dick F.

    2013-01-01

    Study Objective: To study whether sleep and circadian rhythm disturbances in patients with Huntington's disease (HD) arise from dysfunction of the body's master clock, the hypothalamic suprachiasmatic nucleus. Design: Postmortem cohort study. Patients: Eight patients with HD and eight control subjects matched for sex, age, clock time and month of death, postmortem delay, and fixation time of paraffin-embedded hypothalamic tissue. Measurements and Results: Using postmortem paraffin-embedded tissue, we assessed the functional integrity of the suprachiasmatic nucleus in patients with HD and control subjects by determining the expression of two major regulatory neuropeptides, vasoactive intestinal polypeptide and arginine vasopressin. Additionally, we studied melatonin 1 and 2 receptor expression. Compared with control subjects, the suprachiasmatic nucleus contained 85% fewer neurons immunoreactive for vasoactive intestinal polypeptide and 33% fewer neurons for arginine vasopressin in patients with HD (P = 0.002 and P = 0.027). The total amount of vasoactive intestinal polypeptide and arginine vasopressin messenger RNA was unchanged. No change was observed in the number of melatonin 1 or 2 receptor immunoreactive neurons. Conclusions: These findings indicate posttranscriptional neuropeptide changes in the suprachiasmatic nucleus of patients with HD, and suggest that sleep and circadian rhythm disorders in these patients may at least partly arise from suprachiasmatic nucleus dysfunction. Citation: van Wamelen DJ; Aziz NA; Anink JJ; van Steenhoven R; Angeloni D; Fraschini F; Jockers R; Roos RAC; Swaab DF. Suprachiasmatic nucleus neuropeptide expression in patients with Huntington's disease. SLEEP 2013;36(1):117–125. PMID:23288978

  12. Normals to a Parabola

    ERIC Educational Resources Information Center

    Srinivasan, V. K.

    2013-01-01

    Given a parabola in the standard form y[superscript 2] = 4ax, corresponding to three points on the parabola, such that the normals at these three points P, Q, R concur at a point M = (h, k), the equation of the circumscribing circle through the three points P, Q, and R provides a tremendous opportunity to illustrate "The Art of Algebraic…

  13. 3200 Phaethon, Asteroid or Comet Nucleus?

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Benkhoff, Johannes

    2015-08-01

    Physico-chemical modeling is central to understand the important physical processes in small solar system bodies. We have developed a computer simulation, SUISEI, that includes the physico-chemical processes relevant to comets within a global modeling framework. Our goals are to gain valuable insights into the intrinsic properties of cometary nuclei so we can better understand observations and in situ measurements. SUISEI includes a 3-D model of gas and heat transport in porous sub-surface layers in the interior of the nucleus.We present results on the application of SUISEI to the near-Sun object, Phaethon. Discovered in 1983 and classified as an asteroid, it has recently exhibited an active dust coma. Phaethon has long been associated as the source of the Geminids meteor shower so the dust activity provides a clear link to the meteor shower. The observed dust activity would traditionally lead to Phaethon being also classified as a comet (e.g., 2060-95P/Chiron, 133P/Elst-Pizarro). This is unusual since the orbit of Phaethon has a perihelion of 0.14 AU, resulting in surface temperatures of more than 1025K, much too hot for water ice or other volatiles to exist near the surface and drive the activity. This situation and others such as the “Active Asteroids” necessitates a revision of how we understand and classify these small asteroid-comet transition objects.We conclude the following for Phaethon:1. It is likely to contain relatively pristine volatiles in its interior despite repeated near perihelion passages of 0.14 AU during its history in its present orbit,2. Steady water gas fluxes at perihelion and throughout its orbit are insufficient to entrain the currently observed dust production,3. Thermal gradients into the surface as well as those caused by diurnal rotation are consistent with the mechanism of dust release due to thermal fracture,4. The initial large gas release during the first perihelion passage may be sufficient to produce enough dust to explain

  14. Biophysical assays to probe the mechanical properties of the interphase cell nucleus: substrate strain application and microneedle manipulation.

    PubMed

    Lombardi, Maria L; Zwerger, Monika; Lammerding, Jan

    2011-09-14

    complement this assay and can yield additional information on intracellular force transmission between the nucleus and the cytoskeleton. Studying nuclear mechanics in intact living cells preserves the normal intracellular architecture and avoids potential artifacts that can arise when working with isolated nuclei. Furthermore, substrate strain application presents a good model for the physiological stress experienced by cells in muscle or other tissues (e.g., vascular smooth muscle cells exposed to vessel strain). Lastly, while these tools have been developed primarily to study nuclear mechanics, they can also be applied to investigate the function of cytoskeletal proteins and mechanotransduction signaling.

  15. Statokinesigram normalization method.

    PubMed

    de Oliveira, José Magalhães

    2017-02-01

    Stabilometry is a technique that aims to study the body sway of human subjects, employing a force platform. The signal obtained from this technique refers to the position of the foot base ground-reaction vector, known as the center of pressure (CoP). The parameters calculated from the signal are used to quantify the displacement of the CoP over time; there is a large variability, both between and within subjects, which prevents the definition of normative values. The intersubject variability is related to differences between subjects in terms of their anthropometry, in conjunction with their muscle activation patterns (biomechanics); and the intrasubject variability can be caused by a learning effect or fatigue. Age and foot placement on the platform are also known to influence variability. Normalization is the main method used to decrease this variability and to bring distributions of adjusted values into alignment. In 1996, O'Malley proposed three normalization techniques to eliminate the effect of age and anthropometric factors from temporal-distance parameters of gait. These techniques were adopted to normalize the stabilometric signal by some authors. This paper proposes a new method of normalization of stabilometric signals to be applied in balance studies. The method was applied to a data set collected in a previous study, and the results of normalized and nonnormalized signals were compared. The results showed that the new method, if used in a well-designed experiment, can eliminate undesirable correlations between the analyzed parameters and the subjects' characteristics and show only the experimental conditions' effects.

  16. Spatial organization of RNA polymerase II inside a mammalian cell nucleus revealed by reflected light-sheet superresolution microscopy

    PubMed Central

    Zhao, Ziqing W.; Roy, Rahul; Gebhardt, J. Christof M.; Suter, David M.; Chapman, Alec R.; Xie, X. Sunney

    2014-01-01

    Superresolution microscopy based on single-molecule centroid determination has been widely applied to cellular imaging in recent years. However, quantitative imaging of the mammalian nucleus has been challenging due to the lack of 3D optical sectioning methods for normal-sized cells, as well as the inability to accurately count the absolute copy numbers of biomolecules in highly dense structures. Here we report a reflected light-sheet superresolution microscopy method capable of imaging inside the mammalian nucleus with superior signal-to-background ratio as well as molecular counting with single-copy accuracy. Using reflected light-sheet superresolution microscopy, we probed the spatial organization of transcription by RNA polymerase II (RNAP II) molecules and quantified their global extent of clustering inside the mammalian nucleus. Spatiotemporal clustering analysis that leverages on the blinking photophysics of specific organic dyes showed that the majority (>70%) of the transcription foci originate from single RNAP II molecules, and no significant clustering between RNAP II molecules was detected within the length scale of the reported diameter of “transcription factories.” Colocalization measurements of RNAP II molecules equally labeled by two spectrally distinct dyes confirmed the primarily unclustered distribution, arguing against a prevalent existence of transcription factories in the mammalian nucleus as previously proposed. The methods developed in our study pave the way for quantitative mapping and stoichiometric characterization of key biomolecular species deep inside mammalian cells. PMID:24379392

  17. The nucleus of M81 - Simultaneous 2.3 and 8.3 GHz Mark III VLBI observations

    NASA Technical Reports Server (NTRS)

    Bartel, N.; Shapiro, I. I.; Corey, B. E.; Marcaide, J. M.; Rogers, A. E. E.; Whitney, A. R.; Cappallo, R. J.; Graham, D. A.; Romney, J. D.; Preston, R. A.

    1982-01-01

    Mark III very long baseline interferometry (VLBI) observations have been made of the nucleus in the normal galaxy M81 (NGC 3031) simultaneously at 2.3 and 8.3 GHz, and it was found that nearly 100% of the flux density of the nuclear region originates in an elongated radio core with linear dimensions 1000-4000 AU, dependent on frequency. This galactic nucleus is the most compact observed in any extragalactic source. The position coincides with that of the nucleus at optical and X-ray wavelengths within the larger uncertainties of the latter two. The position angle of the major axis of the M81 nucleus is within 3 deg of 75 deg at 2.3 GHz and within 6 deg of 50 deg at 8.3 GHz and is frequency dependent at the 4 sigma level. These values straddle the 62 deg position angle of the projection on the sky of the rotation axis of the galaxy. The spectrum of the core is slightly inverted, and the length of its major axis decreases with frequency. These results are consistent with the emission's being incoherent electron synchrotron radiation from an inhomogeneous region with an optical depth varying along the rotation axis of the galaxy.

  18. Neuronal activity correlated with checking behaviour in the subthalamic nucleus of patients with obsessive-compulsive disorder.

    PubMed

    Burbaud, Pierre; Clair, Anne-Hélène; Langbour, Nicolas; Fernandez-Vidal, Sara; Goillandeau, Michel; Michelet, Thomas; Bardinet, Eric; Chéreau, Isabelle; Durif, Franck; Polosan, Mircea; Chabardès, Stephan; Fontaine, Denys; Magnié-Mauro, Marie-Noelle; Houeto, Jean-Luc; Bataille, Benoît; Millet, Bruno; Vérin, Marc; Baup, Nicolas; Krebs, Marie-Odile; Cornu, Philippe; Pelissolo, Antoine; Arbus, Christophe; Simonetta-Moreau, Marion; Yelnik, Jérôme; Welter, Marie-Laure; Mallet, Luc

    2013-01-01

    Doubt, and its behavioural correlate, checking, is a normal phenomenon of human cognition that is dramatically exacerbated in obsessive-compulsive disorder. We recently showed that deep brain stimulation in the associative-limbic area of the subthalamic nucleus, a central core of the basal ganglia, improved obsessive-compulsive disorder. To understand the physiological bases of symptoms in such patients, we recorded the activity of individual neurons in the therapeutic target during surgery while subjects performed a cognitive task that gave them the possibility of unrestricted repetitive checking after they had made a choice. We postulated that the activity of neurons in this region could be influenced by doubt and checking behaviour. Among the 63/87 task-related neurons recorded in 10 patients, 60% responded to various combinations of instructions, delay, movement or feedback, thus highlighting their role in the integration of different types of information. In addition, task-related activity directed towards decision-making increased during trials with checking in comparison with those without checking. These results suggest that the associative-limbic subthalamic nucleus plays a role in doubt-related repetitive thoughts. Overall, our results not only provide new insight into the role of the subthalamic nucleus in human cognition but also support the fact that subthalamic nucleus modulation by deep brain stimulation reduced compulsive behaviour in patients with obsessive-compulsive disorder.

  19. Computational prediction of Mycoplasma hominis proteins targeting in nucleus of host cell and their implication in prostate cancer etiology.

    PubMed

    Khan, Shahanavaj; Zakariah, Mohammed; Palaniappan, Sellappan

    2016-08-01

    Cancer has long been assumed to be a genetic disease. However, recent evidence supports the enigmatic connection of bacterial infection with the growth and development of various types of cancers. The cause and mechanism of the growth and development of prostate cancer due to Mycoplasma hominis remain unclear. Prostate cancer cells are infected and colonized by enteroinvasive M. hominis, which controls several factors that can affect prostate cancer growth in susceptible persons. We investigated M. hominis proteins targeting the nucleus of host cells and their implications in prostate cancer etiology. Many vital processes are controlled in the nucleus, where the proteins targeting M. hominis may have various potential implications. A total of 29/563 M. hominis proteins were predicted to target the nucleus of host cells. These include numerous proteins with the capability to alter normal growth activities. In conclusion, our results emphasize that various proteins of M. hominis targeted the nucleus of host cells and were involved in prostate cancer etiology through different mechanisms and strategies.

  20. Spatial organization of RNA polymerase II inside a mammalian cell nucleus revealed by reflected light-sheet superresolution microscopy.

    PubMed

    Zhao, Ziqing W; Roy, Rahul; Gebhardt, J Christof M; Suter, David M; Chapman, Alec R; Xie, X Sunney

    2014-01-14

    Superresolution microscopy based on single-molecule centroid determination has been widely applied to cellular imaging in recent years. However, quantitative imaging of the mammalian nucleus has been challenging due to the lack of 3D optical sectioning methods for normal-sized cells, as well as the inability to accurately count the absolute copy numbers of biomolecules in highly dense structures. Here we report a reflected light-sheet superresolution microscopy method capable of imaging inside the mammalian nucleus with superior signal-to-background ratio as well as molecular counting with single-copy accuracy. Using reflected light-sheet superresolution microscopy, we probed the spatial organization of transcription by RNA polymerase II (RNAP II) molecules and quantified their global extent of clustering inside the mammalian nucleus. Spatiotemporal clustering analysis that leverages on the blinking photophysics of specific organic dyes showed that the majority (>70%) of the transcription foci originate from single RNAP II molecules, and no significant clustering between RNAP II molecules was detected within the length scale of the reported diameter of "transcription factories." Colocalization measurements of RNAP II molecules equally labeled by two spectrally distinct dyes confirmed the primarily unclustered distribution, arguing against a prevalent existence of transcription factories in the mammalian nucleus as previously proposed. The methods developed in our study pave the way for quantitative mapping and stoichiometric characterization of key biomolecular species deep inside mammalian cells.

  1. Stopping powers and cross sections due to two-photon processes in relativistic nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Cheung, Wang K.; Norbury, John W.

    1994-01-01

    The effects of electromagnetic-production processes due to two-photon exchange in nucleus-nucleus collisions are discussed. Feynman diagrams for two-photon exchange are evaluated using quantum electrodynamics. The total cross section and stopping power for projectile and target nuclei of identical charge are found to be significant for heavy nuclei above a few GeV per nucleon-incident energy.

  2. Homologous upregulation of sst2 somatostatin receptor expression in the rat arcuate nucleus in vivo.

    PubMed

    Tannenbaum, G S; Turner, J; Guo, F; Videau, C; Epelbaum, J; Beaudet, A

    2001-07-01

    In vitro studies using various cell systems have provided conflicting results regarding homologous regulation of somatostatin (SRIH) receptors, and information on whether SRIH regulates the expression of its own receptors in vivo is lacking. In the present study we examined, by in situ hybridization, the effects of pretreatment with the sst2-preferring SRIH analog, octreotide, in vivo, on mRNA levels of two SRIH receptor subtypes, sst1 and sst2, in rat brain and pituitary. (125)I-[DTrp(8)]-SRIH binding was also measured in these regions. Three hours after the iv injection of 50 microg octreotide to conscious adult male rats, there was a 46% increase (p < 0.01) in the labeling density of sst2 mRNA-expressing cells in the hypothalamic arcuate nucleus compared to normal saline-pretreated controls, but not in any of the other brain regions examined. Computer-assisted image analysis revealed that 3 h exposure to octreotide significantly (p < 0.01) augmented both the number and labeling density of sst2 mRNA-expressing cells in the arcuate nucleus, compared to those in saline-treated controls. By contrast, within the anterior pituitary gland, in vivo exposure to octreotide did not affect the expression of sst2 mRNA. No changes in sst1 mRNA-expressing cells were observed after octreotide treatment in any of the regions measured, indicating that the observed effects were homologous, i.e. specific of the receptor subtype stimulated. Octreotide pretreatment was also without effect on the density of (125)I-[DTrp(8)]-SRIH binding in either the arcuate nucleus or pituitary. These results demonstrate, for the first time, that SRIH preexposure in vivo upregulates the expression of a subtype of its own receptors, sst2, within the central nervous system. They further suggest that pretreatment with SRIH in vivo does not cause sst2 receptor desensitization in arcuate nucleus and pituitary. Such homologous regulatory mechanisms may play an important role in the neuroendocrine control

  3. Some morphological features of a visual thalamic nucleus in a reptile: observations on nucleus rotundus in Caiman crocodilus.

    PubMed

    Pritz, M B

    1997-01-01

    The morphology of nucleus rotundus, a visual thalamic nucleus, was investigated in one species of reptiles. Caiman crocodilus, using Nisst stained material in transverse, sagittal, and horizontal planes. The topographical location of nucleus rotundus and its relationship to surrounding thalamic nuclear groups are described. Nucleus rotundus in Caiman can be subdivided into three areas: (1) an outer shell; (2) an inner core; and (3) a cell poor zone located between the shell and core. Most rotundal core neurons were round, fusiform, triangular, pear-shaped, or elliptical. Core neurons were not distributed evenly throughout the nucleus but, in many instances, were arranged in clusters composed of two to ten neurons. Quantitative measurements of area, perimeter, and eccentricity (greatest width/greatest length), which served as an index of cell roundness, were made on rotundal core neuron profiles in transverse, sagittal, and horizontal planes of section. Qualitative and quantitative observations were not appreciably different regardless of the plane of orientation. Both qualitative and quantitative data suggest that relay cells located in the core of nucleus rotundus are not a homogeneous population of neurons but comprise several subtypes.

  4. The interfascicular trigeminal nucleus: a precerebellar nucleus in the mouse defined by retrograde neuronal tracing and genetic fate mapping.

    PubMed

    Fu, Yuhong; Tvrdik, Petr; Makki, Nadja; Machold, Robert; Paxinos, George; Watson, Charles

    2013-02-15

    We have found a previously unreported precerebellar nucleus located among the emerging fibers of the motor root of the trigeminal nerve in the mouse, which we have called the interfascicular trigeminal nucleus (IF5). This nucleus had previously been named the tensor tympani part of the motor trigeminal nucleus (5TT) in rodent brain atlases, because it was thought to be a subset of small motor neurons of the motor trigeminal nucleus innervating the tensor tympani muscle. However, following injection of retrograde tracer in the cerebellum, the labeled neurons in IF5 were found to be choline acetyltransferase (ChAT) negative, indicating that they are not motor neurons. The cells of IF5 are strongly labeled in mice from Wnt1Cre and Atoh1 CreER lineage fate mapping, in common with the major precerebellar nuclei that arise from the rhombic lip and that issue mossy fibers. Analysis of sections from mouse Hoxa3, Hoxb1, and Egr2 Cre labeled lineages shows that the neurons of IF5 arise from rhombomeres caudal to rhombomere 4, most likely from rhombomeres 6-8. We conclude that IF5 is a significant precerebellar nucleus in the mouse that shares developmental gene expression characteristics with mossy fiber precerebellar nuclei that arise from the caudal rhombic lip.

  5. The turtle thalamic anterior entopeduncular nucleus shares connectional and neurochemical characteristics with the mammalian thalamic reticular nucleus.

    PubMed

    Kenigfest, Natalia; Belekhova, Margarita; Repérant, Jacques; Rio, Jean Paul; Ward, Roger; Vesselkin, Nikolai

    2005-10-01

    Neurochemical and key connectional characteristics of the anterior entopeduncular nucleus (Enta) of the turtle (Testudo horsfieldi) were studied by axonal tracing techniques and immunohistochemistry of parvalbumin, gamma-aminobutyric acid (GABA) and glutamic acid decarboxylase (GAD). We showed that the Enta, which is located within the dorsal peduncle of the lateral forebrain bundle (Pedd), has roughly topographically organized reciprocal connections with the dorsal thalamic visual nuclei, the nucleus rotundus (Rot) and dorsal lateral geniculate nucleus (GLd). The Enta receives projections from visual telencephalic areas, the anterior dorsal ventricular ridge and dorsolateral cortex/pallial thickening. Most Enta neurons contained GABA and parvalbumin, and some of them were retrogradely labeled when the tracer was injected into the visual dorsal thalamic nuclei. Further experiments using double immunofluorescence revealed colocalization of GAD and parvalbumin in the vast majority of Enta neurons, and many of these cells showed retrograde labeling with Fluoro-gold injected into the Rot and/or GLd. According to these data, the Enta may be considered as a structural substrate for recurrent inhibition of the visual thalamic nuclei. Based on morphological and neurochemical similarity of the turtle Enta, caiman Pedd nucleus, the superior reticular nucleus in birds, and the thalamic reticular nucleus in mammals, we suggest that these structures represent a characteristic component which is common to the thalamic organization in amniotes.

  6. Nucleus-nucleus cold fusion reactions analyzed with the l-dependent 'fusion by diffusion' model

    SciTech Connect

    Cap, T.; Siwek-Wilczynska, K.; Wilczynski, J.

    2011-05-15

    We present a modified version of the Fusion by Diffusion (FBD) model aimed at describing the synthesis of superheavy nuclei in cold fusion reactions, in which a low excited compound nucleus emits only one neutron. The modified FBD model accounts for the angular momentum dependence of three basic factors determining the evaporation residue cross section: the capture cross section {sigma}{sub cap}(l), the fusion probability P{sub fus}(l), and the survival probability P{sub surv}(l). The fusion hindrance factor, the inverse of P{sub fus}(l), is treated in terms of thermal fluctuations in the shape degrees of freedom and is expressed as a solution of the Smoluchowski diffusion equation. The l dependence of P{sub fus}(l) results from the l-dependent potential energy surface of the colliding system. A new parametrization of the distance of starting point of the diffusion process is introduced. An analysis of a complete set of 27 excitation functions for production of superheavy nuclei in cold fusion reactions, studied in experiments at GSI Darmstadt, RIKEN Tokyo, and LBNL Berkeley, is presented. The FBD model satisfactorily reproduces shapes and absolute cross sections of all the cold fusion excitation functions. It is shown that the peak position of the excitation function for a given 1n reaction is determined by the Q value of the reaction and the height of the fission barrier of the final nucleus. This fact could possibly be used in future experiments (with well-defined beam energy) for experimental determination of the fission barrier heights.

  7. Dynamics of strange, charm and high momentum hadrons in relativistic nucleus-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Cassing, W.; Gallmeister, K.; Bratkovskaya, E. L.; Greiner, C.; Stöcker, H.

    2004-07-01

    We investigate hadron production and attenuation of hadrons with strange and charm quarks (or antiquarks) as well as high transverse momentum hadrons in relativistic nucleus-nucleus collisions from 2 A GeV to 21.3 A TeV within two independent transport approaches (UrQMD and HSD). Both transport models are based on quark, diquark, string and hadronic degrees of freedom, but do not include any explicit phase transition to a quark-gluon plasma. From our dynamical calculations we find that both models do not describe the maximum in the K+/ π+ ratio at 20-30 A GeV in central Au+Au collisions found experimentally, though the excitation functions of strange mesons are reproduced well in HSD and UrQMD. Furthermore, the transport calculations show that the charmonium recreation by D+ D¯→J/Ψ+ meson reactions is comparable to the dissociation by ‘comoving’ mesons at RHIC energies contrary to SPS energies. This leads to the final result that the total J/ Ψ suppression as a function of centrality at RHIC should be less than the suppression seen at SPS energies where the ‘comover’ dissociation is substantial and the backward channels play no role. Furthermore, our transport calculations-in comparison to experimental data on transverse momentum spectra from pp, d+Au and Au+Au reactions-show that pre-hadronic effects are responsible for both the hardening of the hadron spectra for low transverse momenta (Cronin effect) as well as the suppression of high pT hadrons. The mutual interactions of formed hadrons are found to be negligible in central Au+Au collisions at s=200 GeV for p T≥6 GeV/c and the sizeable suppression seen experimentally is attributed to a large extent to the interactions of ‘leading’ pre-hadrons with the dense environment.

  8. PREFACE: 11th International Conference on Nucleus-Nucleus Collisions (NN2012)

    NASA Astrophysics Data System (ADS)

    Li, Bao-An; Natowitz, Joseph B.

    2013-03-01

    The 11th International Conference on Nucleus-Nucleus Collisions (NN2012) was held from 27 May to 1 June 2012, in San Antonio, Texas, USA. It was jointly organized and hosted by The Cyclotron Institute at Texas A&M University, College Station and The Department of Physics and Astronomy at Texas A&M University-Commerce. Among the approximately 300 participants were a large number of graduate students and post-doctoral fellows. The Keynote Talk of the conference, 'The State of Affairs of Present and Future Nucleus-Nucleus Collision Science', was given by Dr Robert Tribble, University Distinguished Professor and Director of the TAMU Cyclotron Institute. During the conference a very well-received public lecture on neutrino astronomy, 'The ICEcube project', was given by Dr Francis Halzen, Hilldale and Gregory Breit Distinguished Professor at the University of Wisconsin, Madison. The Scientific program continued in the general spirit and intention of this conference series. As is typical of this conference a broad range of topics including fundamental areas of nuclear dynamics, structure, and applications were addressed in 42 plenary session talks, 150 parallel session talks, and 21 posters. The high quality of the work presented emphasized the vitality and relevance of the subject matter of this conference. Following the tradition, the NN2012 International Advisory Committee selected the host and site of the next conference in this series. The 12th International Conference on Nucleus-Nucleus Collisions (NN2015) will be held 21-26 June 2015 in Catania, Italy. It will be hosted by The INFN, Laboratori Nazionali del Sud, INFN, Catania and the Dipartimento di Fisica e Astronomia of the University of Catania. The NN2012 Proceedings contains the conference program and 165 articles organized into the following 10 sections 1. Heavy and Superheavy Elements 2. QCD and Hadron Physics 3. Relativistic Heavy-Ion Collisions 4. Nuclear Structure 5. Nuclear Energy and Applications of

  9. Idiopathic Normal Pressure Hydrocephalus

    PubMed Central

    Nassar, Basant R.; Lippa, Carol F.

    2016-01-01

    Idiopathic normal pressure hydrocephalus (iNPH) is a potentially reversible neurodegenerative disease commonly characterized by a triad of dementia, gait, and urinary disturbance. Advancements in diagnosis and treatment have aided in properly identifying and improving symptoms in patients. However, a large proportion of iNPH patients remain either undiagnosed or misdiagnosed. Using PubMed search engine of keywords “normal pressure hydrocephalus,” “diagnosis,” “shunt treatment,” “biomarkers,” “gait disturbances,” “cognitive function,” “neuropsychology,” “imaging,” and “pathogenesis,” articles were obtained for this review. The majority of the articles were retrieved from the past 10 years. The purpose of this review article is to aid general practitioners in further understanding current findings on the pathogenesis, diagnosis, and treatment of iNPH. PMID:28138494

  10. Studies of normal hearing.

    PubMed

    Catlin, F I

    1984-01-01

    Auditory function changes continually from birth to old age. A variety of methods to assess hearing have evolved since the invention of the audiometer. Types of measurement include: electrical response in the central nervous system, cochlear acuity and speech responses. While some of these tests correlate fairly well with each other, their ability to represent overall hearing function is questionable. Other attempts to improve the assessment of hearing have been made in the area of self-appraisal, but these, too, have significant limitations. Most self-report and peer appraisal questionnaires have been established by studies of hearing-impaired populations. Norms for these techniques in normal-hearing populations need to be established. There is still room for valid tests of everyday communication. What we have in measurement procedures does not achieve this goal. Research studies of today will hopefully produce better definition of normal auditory function.

  11. Normal-reflection image

    SciTech Connect

    Huang, L.; Fehler, Michael C.

    2003-01-01

    Common-angle wave-equation migration using the double-square-root is generally less accurate than the common-shot migration because the wavefield continuation equation for thc former involves additional approximations compared to that for the latter. We present a common-angle wave-equation migration that has the same accuracy as common-shot wave-equation migration. An image obtained from common-angle migration is a four- to five-dimensional output volume for 3D cases. We propose a normal-reflection imaging condition for common-angle migration to produce a 3D output volume for 3D migration. The image is closely related to the normal-reflection coefficients at interfaces. This imaging condition will allow amplitude-preserving migration to generate an image with clear physical meaning.

  12. The red nucleus and the rubrospinal projection in the mouse.

    PubMed

    Liang, Huazheng; Paxinos, George; Watson, Charles

    2012-04-01

    We studied the organization and spinal projection of the mouse red nucleus with a range of techniques (Nissl stain, immunofluorescence, retrograde tracer injections into the spinal cord, anterograde tracer injections into the red nucleus, and in situ hybridization) and counted the number of neurons in the red nucleus (3,200.9 ± 230.8). We found that the rubrospinal neurons were mainly located in the parvicellular region of the red nucleus, more lateral in the rostral part and more medial in the caudal part. Labeled neurons were least common in the rostral and caudal most parts of the red nucleus. Neurons projecting to the cervical cord were predominantly dorsomedially placed and neurons projecting to the lumbar cord were predominantly ventrolaterally placed. Immunofluorescence staining with SMI-32 antibody showed that ~60% of SMI-32-positive neurons were cervical cord-projecting neurons and 24% were lumbar cord-projecting neurons. SMI-32-positive neurons were mainly located in the caudomedial part of the red nucleus. A study of vGluT2 expression showed that the number and location of glutamatergic neurons matched with those of the rubrospinal neurons. In the anterograde tracing experiments, rubrospinal fibers travelled in the dorsal portion of the lateral funiculus, between the lateral spinal nucleus and the calretinin-positive fibers of the lateral funiculus. Rubrospinal fibers terminated in contralateral laminae 5, 6, and the dorsal part of lamina 7 at all spinal cord levels. A few fibers could be seen next to the neurons in the dorsolateral part of lamina 9 at levels of C8-T1 (hand motor neurons) and L5-L6 (foot motor neurons), which is consistent with a view that rubrospinal fibers may play a role in distal limb movement in rodents.

  13. The subthalamic nucleus influences visuospatial attention in humans.

    PubMed

    Schmalbach, Barbara; Günther, Veronika; Raethjen, Jan; Wailke, Stefanie; Falk, Daniela; Deuschl, Günther; Witt, Karsten

    2014-03-01

    Spatial attention is a lateralized feature of the human brain. Whereas the role of cortical areas of the nondominant hemisphere on spatial attention has been investigated in detail, the impact of the BG, and more precisely the subthalamic nucleus, on signs and symptoms of spatial attention is not well understood. Here we used unilateral deep brain stimulation of the subthalamic nucleus to reversibly, specifically, and intraindividually modify the neuronal BG outflow and its consequences on signs and symptoms of visuospatial attention in patients suffering from Parkinson disease. We tested 13 patients with Parkinson disease and chronic deep brain stimulation in three stimulation settings: unilateral right and left deep brain stimulation of the subthalamic nucleus as well as bilateral deep brain stimulation of the subthalamic nucleus. In all three stimulation settings, the patients viewed a set of pictures while an eye-tracker system recorded eye movements. During the exploration of the visual stimuli, we analyzed the time spent in each visual hemispace, as well as the number, duration, amplitude, peak velocity, acceleration peak, and speed of saccades. In the unilateral left-sided stimulation setting, patients show a shorter ipsilateral exploration time of the extrapersonal space, whereas number, duration, and speed of saccades did not differ between the different stimulation settings. These results demonstrated reduced visuospatial attention toward the side contralateral to the right subthalamic nucleus that was not being stimulated in a unilateral left-sided stimulation. Turning on the right stimulator, the reduced visuospatial attention vanished. These results support the involvement of the subthalamic nucleus in modulating spatial attention. Therefore, the subthalamic nucleus is part of the subcortical network that subserves spatial attention.

  14. Neuroethics beyond Normal.

    PubMed

    Shook, John R; Giordano, James

    2016-01-01

    An integrated and principled neuroethics offers ethical guidelines able to transcend conventional and medical reliance on normality standards. Elsewhere we have proposed four principles for wise guidance on human transformations. Principles like these are already urgently needed, as bio- and cyberenhancements are rapidly emerging. Context matters. Neither "treatments" nor "enhancements" are objectively identifiable apart from performance expectations, social contexts, and civic orders. Lessons learned from disability studies about enablement and inclusion suggest a fresh way to categorize modifications to the body and its performance. The term "enhancement" should be broken apart to permit recognition of enablements and augmentations, and kinds of radical augmentation for specialized performance. Augmentations affecting the self, self-worth, and self-identity of persons require heightened ethical scrutiny. Reversibility becomes the core problem, not the easy answer, as augmented persons may not cooperate with either decommissioning or displacement into unaccommodating societies. We conclude by indicating how our four principles of self-creativity, nonobsolescence, empowerment, and citizenship establish a neuroethics beyond normal that is better prepared for a future in which humans and their societies are going so far beyond normal.

  15. Calculated dynamical evolution of the nucleus of comet Hartley 2

    NASA Astrophysics Data System (ADS)

    Ksanfomality, Leonid

    2013-04-01

    The nucleus of comet Hartley 2 has a relatively regular dumbbell shape with unequal heads. The narrow part of elongated shape contains a relatively smooth region whose covering material is highly different in its shallow structure compared to other parts of this celestial body. The surface of crudely spherical parts of the nucleus is different from the surface of the "neck", which implies a hypothesis that the shape of the nucleus of Hartley 2 is indicative of destruction of this celestial body occurring in our days. The nucleus rotates around its axis passing through the center of mass, and centrifugal forces arise. This process is hindered by gravitation between parts of the nucleus and gradual slowing of rotation due to body lengthening because of the increase in the moment of inertia (proportional to R2) and due to friction losses in the neck material. We posed the task to determine centrifugal and gravitational forces in the neck (and, respectively, the strains of stretching and compression), the moment of inertia of the body and supply of its rotational energy E, the volume of the nucleus and its average density, and the position of the barycenter and center of rotation. It can be assumed that these forces cause slow but progressive lengthening of the neck which should eventually result in fragmentation of the nucleus. Centrifugal forces can be found as a result of summation of forces produced by parts of the body. According to the calculation model, the total stretching forces in the section passing through the narrowest cut of the neck are 1.21E6 N. The corresponding compression forces in the section passing through the narrow section are 1.04E6 N. The comparison of these values indicates a paradoxical result: stretching strains dominate in the neck, while compressions are dominant in the section passing through the common center of mass. The excess of stretching strains in the neck is 11%. The inference is as follows: the right part of the neck and the

  16. Nuclisome--targeting the tumor cell nucleus.

    PubMed

    Gedda, Lars; Edwards, Katarina

    2012-06-01

    The Nuclisome concept builds on a novel two-step targeting strategy with the aim to deliver short-range Auger-electron-emitting radionuclides to nuclear DNA of tumor cells. The concept is based on the use of Nuclisome-particles, i.e., tumor-targeted PEG-stabilized liposomes loaded with a unique DNA-intercalating compound that enables specific and effective delivery of radionuclides to DNA. The specific and potent two-step targeting leads to eradication of tumor cells while toxicity to normal organs is reduced to a minimum. Results of in vitro and in vivo studies point towards the Nuclisome concept as a promising strategy for the treatment of small tumor masses and, in particular, for the elimination of spread single cells and micrometastases.

  17. Development of the ventromedial nucleus of the hypothalamus.

    PubMed

    McClellan, Kristy M; Parker, Keith L; Tobet, Stuart

    2006-07-01

    The ventromedial nucleus of the hypothalamus (VMH) is important in the regulation of female sexual behavior, feeding, energy balance, and cardiovascular function. It is a highly conserved nucleus across species and a good model for studying neuronal organization into nuclei. Expression of various transcription factors, receptors, and neurotransmitters are important for the development of this nucleus and for mapping the position of identified cells within the nucleus. The VMH is subdivided into regions, all of which may project to specific locations to carry out various functions. For example, the ventrolateral quadrant contains a subset of neurons that highly express estrogen receptors. These neurons specifically are involved in the lordosis response pathway through projections to other estrogen receptor containing regions. In development, neurons that form the VMH generate from the proliferative zone surrounding the third ventricle. Neurons then migrate along radial glial fibers to final positions within the nucleus. Migration and positioning of neurons is an important step in setting up connections to and from the VMH and hence in its function. As compared to other developing brain regions, cell death may play a minor role in sculpting the VMH. We review the processes involved in forming a functional nuclear group and some of the factors known to be involved particularly focusing on the positioning of identified neurons within the VMH.

  18. Coordinated Dynamics of RNA Splicing Speckles in the Nucleus.

    PubMed

    Zhang, Qiao; Kota, Krishna P; Alam, Samer G; Nickerson, Jeffrey A; Dickinson, Richard B; Lele, Tanmay P

    2016-06-01

    Despite being densely packed with chromatin, nuclear bodies and a nucleoskeletal network, the nucleus is a remarkably dynamic organelle. Chromatin loops form and relax, RNA transcripts and transcription factors move diffusively, and nuclear bodies move. We show here that RNA splicing speckled domains (splicing speckles) fluctuate in constrained nuclear volumes and remodel their shapes. Small speckles move in a directed way toward larger speckles with which they fuse. This directed movement is reduced upon decreasing cellular ATP levels or inhibiting RNA polymerase II activity. The random movement of speckles is reduced upon decreasing cellular ATP levels, moderately reduced after inhibition of SWI/SNF chromatin remodeling and modestly increased upon inhibiting RNA polymerase II activity. To define the paths through which speckles can translocate in the nucleus, we generated a pressure gradient to create flows in the nucleus. In response to the pressure gradient, speckles moved along curvilinear paths in the nucleus. Collectively, our results demonstrate a new type of ATP-dependent motion in the nucleus. We present a model where recycling splicing factors return as part of small sub-speckles from distal sites of RNA processing to larger splicing speckles by a directed ATP-driven mechanism through interchromatin spaces.

  19. Growth dynamics of the developing lateral geniculate nucleus.

    PubMed

    Williams, A L; Jeffery, G

    2001-02-12

    Segregated binocular maps in the lateral geniculate nucleus (LGN) develop from stages where they initially completely overlap. Here, we show that segregation occurs at different rates across the depth of the nucleus and that the volume of the ipsilateral projection does not decrease significantly during this period, rather LGN volume expands markedly and its shape changes. Hence, we have examined the differential growth of the ferret LGN during the process of segregation by using novel shape modelling techniques. These have facilitated quantification of its three-dimensional structure at successive developmental stages as well as the definition of growth vectors which illustrate shape change. This has been undertaken in direct representations of the LGN and those normalised for size and orientation. Spatiotemporal aspects of shape change have then been compared with different measurements of its cellular population. Initial stages of segregation are associated with a large expansion of the rostrocaudal axis of the nucleus along which segregation takes place, and an expansion of caudal regions that will eventually contain the binocular representation. Later stages are associated with dorsoventral expansions and a consolidation of the rostrocaudal axis. The pace of shape change peaks toward the end of the period of segregation when the nucleus has adopted approximately 50% of its adult shape. After segregation, nuclear growth is mainly isotropic. The mature shape of the nucleus is achieved before it reaches its full size and while cell density and cell sizes are still changing.

  20. Differential molecular profiles of astrocytes in degeneration and re-innervation after sensory deafferentation of the adult rat cochlear nucleus.

    PubMed

    Fredrich, Michaela; Zeber, Anne C; Hildebrandt, Heika; Illing, Robert-Benjamin

    2013-07-01

    Ablating the cochlea causes total sensory deafferentation of the cochlear nucleus. Over the first postoperative week, degeneration of the auditory nerve and its synaptic terminals in the cochlear nucleus temporally overlaps with its re-innervation by axon collaterals of medial olivocochlear neurons. At the same time, astrocytes increase in size and density. We investigated the time courses of the expression of ezrin, polysialic acid, matrix metalloprotease-9 and matrix metalloprotease-2 within these astrocytes during the first week following cochlear ablation. All four proteins are known to participate in degeneration, regeneration, or both, following injury of the central nervous system. In a next step, stereotaxic injections of kainic acid were made into the ventral nucleus of the trapezoid body prior to cochlear ablation to destroy the neurons that re-innervate the deafferented cochlear nucleus by axon collaterals developing growth-associated protein 43 immunoreactivity. This experimental design allowed us to distinguish between molecular processes associated with degeneration and those associated with re-innervation. Under these conditions, astrocytic growth and proliferation showed an unchanged deafferentation-induced pattern. Similarly, the distribution and amount of ezrin and matrix metalloprotease-9 in astrocytes after cochlear ablation developed in the same way as under cochlear ablation alone. In sharp contrast, the astrocytic expression of polysialic acid and matrix metalloprotease-2 normally invoked by cochlear ablation collapsed when re-innervation of the cochlear nucleus was inhibited by lesioning medial olivocochlear neurons with kainic acid. In conclusion, re-innervation, including axonal growth and synaptogenesis, seems to prompt astrocytes to recompose their molecular profile, paving the way for tissue reorganisation after nerve degeneration and loss of synaptic contacts.

  1. Nucleus of Comet IRAS-Araki-Alcock (1983 VII)

    SciTech Connect

    Sekanina, Z.

    1988-06-01

    Optical, radar, infrared, UV, and microwave-continuum observations of Comet IRAS-Araki-Alcok were obtained in May 1983, the week of the comet's close approach to earth. The comet has a nucleus dimension and a rotation period which are similar to those of Comet Halley, but a different morphological signature (a persisting sunward fan-shaped coma). Time variations are noted in the projected nucleus cross section. Results suggest significant limb-darkening effects in the relevant domains of radio waves, and that the comet's interior must be extremely cold. It is found that the thermal-infrared fluxes from the inner coma of the comet are dominated by the nucleus. 63 references.

  2. The Potential Roles of Actin in The Nucleus

    PubMed Central

    Falahzadeh, Khadijeh; Banaei-Esfahani, Amir; Shahhoseini, Maryam

    2015-01-01

    Over the past few decades, actin’s presence in the nucleus has been demonstrated. Actin is a key protein necessary for different nuclear processes. Although actin is well known for its functional role in dynamic behavior of the cytoskeleton, emerging studies are now highlighting new roles for actin. At the present time there is no doubt about the presence of actin in the nucleus. A number of studies have uncovered the functional involvement of actin in nuclear processes. Actin as one of the nuclear components has its own structured and functional rules, such as nuclear matrix association, chromatin remodeling, transcription by RNA polymerases I, II, III and mRNA processing. In this historical review, we attempt to provide an overview of our current understanding of the functions of actin in the nucleus. PMID:25870830

  3. Reaction cross sections of the deformed halo nucleus 31Ne

    NASA Astrophysics Data System (ADS)

    Urata, Y.; Hagino, K.; Sagawa, H.

    2012-10-01

    Using the Glauber theory, we calculate reaction cross sections for the deformed halo nucleus 31Ne. To this end, we assume that the 31Ne nucleus takes the 30Ne+n structure. To take into account the rotational excitation of the core nucleus 30Ne, we employ the particle-rotor model (PRM). We compare the results to those in the adiabatic limit of PRM, that is, the Nilsson model, and show that the Nilsson model works reasonably well for the reaction cross sections of 31Ne. We also investigate the dependence of the reaction cross sections on the ground-state properties of 31Ne, such as the deformation parameter and the p-wave component in the ground-state wave function.

  4. Response Properties of Cochlear Nucleus Neurons in Monkeys

    PubMed Central

    Roth, G. Linn; Recio, A.

    2009-01-01

    Much of what is known about how the cochlear nuclei participate in mammalian hearing comes from studies of non-primate mammalian species. To determine to what extent the cochlear nuclei of primates resemble those of other mammalian orders, we have recorded responses to sound in three primate species: marmosets, Cynomolgus macaques, and squirrel monkeys. These recordings show that the same types of temporal firing patterns are found in primates that have been described in other mammals. Responses to tones of neurons in the ventral cochlear nucleus have similar tuning, latencies, post-stimulus time and interspike interval histograms as those recorded in non-primate cochlear nucleus neurons. In the dorsal cochlear nucleus, too, responses were similar. From these results it is evident that insights gained from non-primate studies can be applied to the peripheral auditory system of primates. PMID:19531377

  5. Pedunculopontine Nucleus Gamma Band Activity-Preconscious Awareness, Waking, and REM Sleep

    PubMed Central

    Urbano, Francisco J.; D’Onofrio, Stasia M.; Luster, Brennon R.; Beck, Paige B.; Hyde, James Robert; Bisagno, Veronica; Garcia-Rill, Edgar

    2014-01-01

    The pedunculopontine nucleus (PPN) is a major component of the reticular activating system (RAS) that regulates waking and REM sleep, states of high-frequency EEG activity. Recently, we described the presence of high threshold, voltage-dependent N- and P/Q-type calcium channels in RAS nuclei that subserve gamma band oscillations in the mesopontine PPN, intralaminar parafascicular nucleus (Pf), and pontine subcoeruleus nucleus dorsalis (SubCD). Cortical gamma band activity participates in sensory perception, problem solving, and memory. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. That is, the RAS may play an early permissive role in volition. Our latest results suggest that (1) the manifestation of gamma band activity during waking may employ a separate intracellular pathway compared to that during REM sleep, (2) neuronal calcium sensor (NCS-1) protein, which is over expressed in schizophrenia and bipolar disorder, modulates gamma band oscillations in the PPN in a concentration-dependent manner, (3) leptin, which undergoes resistance in obesity resulting in sleep dysregulation, decreases sodium currents in PPN neurons, accounting for its normal attenuation of waking, and (4) following our discovery of electrical coupling in the RAS, we hypothesize that there are cell clusters within the PPN that may act in concert. These results provide novel information on the mechanisms controlling high-frequency activity related to waking and REM sleep by elements of the RAS. PMID:25368599

  6. Reduced neuronal size and dendritic length in the medial superior olivary nucleus of albino rabbits.

    PubMed

    Conlee, J W; Parks, T N; Creel, D J

    1986-01-15

    We have previously demonstrated that circumscribed structural and functional abnormalities exist in the brainstem auditory system of albino cats. Anomalies in the auditory brainstem evoked response of albino cats were correlated with anatomical defects in the medial superior olivary nucleus (MSO) of the same animals. To examine whether a similar syndrome is present in other albino mammals, we studied the MSO of albino and pigmented rabbits using both Nissl-stained and Golgi-impregnated material. Neurons in the MSO of the albinos were significantly smaller (24%) than those in the pigmented rabbits and there was no overlap in the size distributions between the two groups. Neurons in the abducens nucleus of the albinos were also 14% smaller than in the pigmented rabbits, but this difference was not statistically reliable. The broad overlap in the distributions of neuronal size in the abducens nucleus between groups indicated that not all cells in the albino brainstem are significantly smaller than normal. In the Golgi-impregnated material, the mean total dendritic length for the 'marginal' cell type in the MSO was 39% shorter in albinos than in the pigmented animals. The branching density of dendrites was also significantly reduced in the albinos. Mean total dendritic length for cerebellar granule cells was a statistically insignificant 6% longer in the albinos, demonstrating that dendritic structure is not uniformly affected in all regions of the albino brain. The demonstration of similar anatomical differences in albino rabbits and cats indicates that whatever process produces these effects is not species-specific and may be common to the albinos of other mammalian species. The evidence that the amount of cochlear melanin may be related to differences in auditory function further suggests that the differences in the MSO of the albinos may ultimately be related to absence of inner ear pigmentation and not to other gene effects.

  7. Pedunculopontine Nucleus Gamma Band Activity-Preconscious Awareness, Waking, and REM Sleep.

    PubMed

    Urbano, Francisco J; D'Onofrio, Stasia M; Luster, Brennon R; Beck, Paige B; Hyde, James Robert; Bisagno, Veronica; Garcia-Rill, Edgar

    2014-01-01

    The pedunculopontine nucleus (PPN) is a major component of the reticular activating system (RAS) that regulates waking and REM sleep, states of high-frequency EEG activity. Recently, we described the presence of high threshold, voltage-dependent N- and P/Q-type calcium channels in RAS nuclei that subserve gamma band oscillations in the mesopontine PPN, intralaminar parafascicular nucleus (Pf), and pontine subcoeruleus nucleus dorsalis (SubCD). Cortical gamma band activity participates in sensory perception, problem solving, and memory. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. That is, the RAS may play an early permissive role in volition. Our latest results suggest that (1) the manifestation of gamma band activity during waking may employ a separate intracellular pathway compared to that during REM sleep, (2) neuronal calcium sensor (NCS-1) protein, which is over expressed in schizophrenia and bipolar disorder, modulates gamma band oscillations in the PPN in a concentration-dependent manner, (3) leptin, which undergoes resistance in obesity resulting in sleep dysregulation, decreases sodium currents in PPN neurons, accounting for its normal attenuation of waking, and (4) following our discovery of electrical coupling in the RAS, we hypothesize that there are cell clusters within the PPN that may act in concert. These results provide novel information on the mechanisms controlling high-frequency activity related to waking and REM sleep by elements of the RAS.

  8. Activation of metabotropic glutamate receptors regulates ribosomes of cochlear nucleus neurons.

    PubMed

    Carzoli, Kathryn L; Hyson, Richard L

    2014-01-01

    The brain stem auditory system of the chick is an advantageous model for examining changes that occur as a result of deafness. Elimination of acoustic input through cochlear ablation results in the eventual death of approximately 30% of neurons in the chick cochlear nucleus, nucleus magnocellularis (NM). One early change following deafness is an alteration in NM ribosomes, evidenced both by a decrease in protein synthesis and reduction in antigenicity for Y10B, a monoclonal antibody that recognizes a ribosomal epitope. Previous studies have shown that mGluR activation is necessary to maintain Y10B antigenicity and NM viability. What is still unclear, however, is whether or not mGluR activation is sufficient to prevent deafness-induced changes in these neurons, or if other activity-dependent factors are also necessary. The current study investigated the ability of mGluR activation to regulate cochlear nucleus ribosomes in the absence of auditory nerve input. In vitro methods were employed to periodically pressure eject glutamate or mGluR agonists over neurons on one side of a slice preparation leaving the opposite side of the same slice untreated. Immunohistochemistry was then performed using Y10B in order to assess ribosomal changes. Application of glutamate and both group I and II selective mGluR agonists effectively rescued ribosomal antigenicity on the treated side of the slice in comparison to ribosomes on the untreated side. These findings suggest that administration of mGluR agonists is sufficient to reduce the early interruption of normal ribosomal integrity that is typically seen following loss of auditory nerve activity.

  9. Eye Movements and Abducens Motoneuron Behavior after Cholinergic Activation of the Nucleus Reticularis Pontis Caudalis

    PubMed Central

    Márquez-Ruiz, Javier; Escudero, Miguel

    2010-01-01

    Study Objectives: The aim of this work was to characterize eye movements and abducens (ABD) motoneuron behavior after cholinergic activation of the nucleus reticularis pontis caudalis (NRPC). Methods: Six female adult cats were prepared for chronic recording of eye movements (using the scleral search-coil technique), electroencephalography, electromyography, ponto-geniculo-occipital (PGO) waves in the lateral geniculate nucleus, and ABD motoneuron activities after microinjections of the cholinergic agonist carbachol into the NRPC. Results: Unilateral microinjections of carbachol in the NRPC induced tonic and phasic phenomena in the oculomotor system. Tonic effects consisted of ipsiversive rotation to the injected side, convergence, and downward rotation of the eyes. Phasic effects consisted of bursts of rhythmic rapid eye movements directed contralaterally to the injected side along with PGO-like waves in the lateral geniculate and ABD nuclei. Although tonic effects were dependent on the level of drowsiness, phasic effects were always present and appeared along with normal saccades when the animal was vigilant. ABD motoneurons showed phasic activities associated with ABD PGO-like waves during bursts of rapid eye movements, and tonic and phasic activities related to eye position and velocity during alertness. Conclusion The cholinergic activation of the NRPC induces oculomotor phenomena that are somewhat similar to those described during REM sleep. A precise comparison of the dynamics and timing of the eye movements further suggests that a temporal organization of both NRPCs is needed to reproduce the complexity of the oculomotor behavior during REM sleep. Citation: Márquez-Ruiz J; Escudero M. Eye movements and abducens motoneuron behavior after cholinergic activation of the nucleus reticularis pontis caudalis. SLEEP 2010;33(11):1517-1527. PMID:21102994

  10. Gamma-ray spectroscopy of the nucleus 139Ce

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.; Căta-Danil, G.; Căta-Danil, I.; Ivaşcu, M.; Mărginean, N.; Mărginean, R.; Mihăilescu, L. C.; Rusu, C.; Suliman, G.

    2006-03-01

    Gamma-ray coincidence techniques are used to determine new level structures in the N = 81 nucleus 139Ce, at low spins and excitation energies with the 139La(p, nγ) reaction at 5.0 and 6.0MeV incident energy, and at high spins with the 130Te(12C, 3nγ) reaction at 50.5MeV, respectively. Lifetime determinations are also made in the (p, nγ) reaction with the centroid DSA method. The observed level structures are discussed by comparison with existing calculations and with those in the neighbouring nucleus 140Ce.

  11. Neutral current neutrino-nucleus interactions at high energies

    SciTech Connect

    Gay Ducati, M. B.; Machado, M. M.; Machado, M. V. T.

    2009-04-01

    We present a QCD analysis of the neutral current (NC) neutrino-nucleus interaction at the small-x region using the color dipole formalism. This phenomenological approach is quite successful in describing experimental results in deep inelastic ep scattering and charged current neutrino-nucleus interactions at high energies. We present theoretical predictions for the relevant structure functions and the corresponding implications for the total NC neutrino cross section. It is shown that at small x, the NC boson-nucleon cross section should exhibit the geometric scaling property that has important consequences for ultrahigh energy neutrino phenomenology.

  12. Figure Caption for pair of images of 'Comet Nucleus Q

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Figure Caption for pair of images of 'Comet Nucleus Q'. 21Jul94 Last Look at the Q-nuclei First image - March 30, 1994. Two Q-nuclei and a split nucleus, P. Second image - July 20, 1994. at T - 10 hours. Both nuclei still show no sign of further fragmentation, although the coma near each is being stretched out along the direction of motion. Both images were taken with the WFPC2 Planetary Camera using a red filter. Credit: H. A. Weaver and T. E. Smith

  13. Recent Developments in Neutrino/Antineutrino-Nucleus Interactions

    DOE PAGES

    Morfín, Jorge G.; Nieves, Juan; Sobczyk, Jan T.

    2012-01-01

    Recent experimental results and developments in the theoretical treatment of neutrino-nucleus interactions in the energy range of 1–10 GeV are discussed. Difficulties in extracting neutrino-nucleon cross sections from neutrino-nucleus scattering data are explained and significance of understanding nuclear effects for neutrino oscillation experiments is stressed. Detailed discussions of the status of two-body current contribution in the kinematic region dominated by quasielastic scattering and specific features of partonic nuclear effects in weak DIS scattering are presented.

  14. Recent Developments in Neutrino/Antineutrino-Nucleus Interactions

    SciTech Connect

    Morfín, Jorge G.; Nieves, Juan; Sobczyk, Jan T.

    2012-01-01

    Recent experimental results and developments in the theoretical treatment of neutrino-nucleus interactions in the energy range of 1–10 GeV are discussed. Difficulties in extracting neutrino-nucleon cross sections from neutrino-nucleus scattering data are explained and significance of understanding nuclear effects for neutrino oscillation experiments is stressed. Detailed discussions of the status of two-body current contribution in the kinematic region dominated by quasielastic scattering and specific features of partonic nuclear effects in weak DIS scattering are presented.

  15. The Development of Hypertrophic Inferior Olivary Nucleus in Oculopalatal Tremor.

    PubMed

    Jun, Bokkwan

    2016-12-01

    Oculopalatal tremor is an acquired clinical condition resulting from the interruption of the dentato-rubro-olivary neuronal pathway. The signal change in inferior olivary nucleus and its hypertrophy on magnetic resonance imaging (MRI) can be observed prior to the development of symptomatic oculopalatal tremor. This is a case of the fourth cranial nerve palsy followed by oculopalatal tremor, and increased signal intensity in inferior olivary nucleus on MRI was observed in 7 months after damage to the dentate-rubro-olivary pathway and 5 months prior to the development of oscillopsia and oculopalatal tremor.

  16. Ice crystal and ice nucleus measurements in cap clouds

    NASA Technical Reports Server (NTRS)

    Vali, G.; Rogers, D. C.; Deshler, T. L.

    1982-01-01

    Ice nucleation in cap clouds over a mountain in Wyoming was examined with airborne instrumentation. Crosswind and wind parallel passes were made through the clouds, with data being taken on the ice crystal concentrations and sizes. A total of 141 penetrations of 26 separate days in temperatures ranging from -7 to -24 C were performed. Subsequent measurements were also made 100 km away from the mountain. The ice crystal concentrations measured showed good correlation with the ice nucleus content in winter time, midcontinental air masses in Wyoming. Further studies are recommended to determine if the variations in the ice nucleus population are the cause of the variability if ice crystal content.

  17. Analysis of organic compounds in returned comet nucleus samples

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.

    1989-01-01

    Techniques for analysis of organic compounds in returned comet nucleus samples are described. Interstellar, chondritic and transitional organic components are discussed. Appropriate sampling procedures will be essential to the success of these analyses. It will be necessary to return samples that represent all the various regimes found in the nucleus, e.g., a complete core, volatile components (deep interior), and crustal components (surface minerals, rocks, processed organics such as macromolecular carbon and polymers). Furthermore, sampling, storage, return, and distribution of samples must be done under conditions that preclude contamination of the samples by terrestrial matter.

  18. Deep brain stimulation of the medial septum or nucleus accumbens alleviates psychosis-relevant behavior in ketamine-treated rats.

    PubMed

    Ma, Jingyi; Leung, L Stan

    2014-06-01

    Deep brain stimulation (DBS) has been shown to be effective for relief of Parkinson's disease, depression and obsessive-compulsive disorder in humans, but the effect of DBS on psychosis is largely unknown. In previous studies, we showed that inactivation of the medial septum or nucleus accumbens normalized the hyperactive and psychosis-related behaviors induced by psychoactive drugs. We hypothesized that DBS of the medial septum or nucleus accumbens normalizes the ketamine-induced abnormal behaviors and brain activity in freely moving rats. Male Long-Evans rats were subcutaneously injected with ketamine (3 mg/kg) alone, or given ketamine and DBS, or injected with saline alone. Subcutaneous injection of ketamine resulted in loss of gating of hippocampal auditory evoked potentials (AEPs), deficit in prepulse inhibition (PPI) and hyperlocomotion, accompanied by increased hippocampal gamma oscillations of 70-100 Hz. Continuous 130-Hz stimulation of the nucleus accumbens, or 100-Hz burst stimulation of the medial septum (1s on and 5s off) significantly attenuated ketamine-induced PPI deficit and hyperlocomotion. Medial septal stimulation also prevented the loss of gating of hippocampal AEPs and the increase in hippocampal gamma waves induced by ketamine. Neither septal or accumbens DBS alone without ketamine injection affected spontaneous locomotion or PPI. The results suggest that DBS of the medial septum or nucleus accumbens may be an effective method to alleviate psychiatric symptoms of schizophrenia. The effect of medial septal DBS in suppressing both hippocampal gamma oscillations and abnormal behaviors induced by ketamine suggests that hippocampal gamma oscillations are a correlate of disrupted behaviors.

  19. Normal osteoid tissue

    PubMed Central

    Raina, Vinita

    1972-01-01

    The results of a histological study of normal osteoid tissue in man, the monkey, the dog, and the rat, using thin microtome sections of plastic-embedded undecalcified bone, are described. Osteoid tissue covers the entire bone surface, except for areas of active resorption, although the thickness of the layer of osteoid tissue varies at different sites and in different species of animals. The histological features of osteoid tissue, apart from its amount, are the same in the different species studied. Distinct bands or zones are recognizable in some layers of osteoid tissue, particularly those of greatest thickness, and their significance is discussed. Some of the histological features of the calcification front are described. Images PMID:4111820

  20. Normal Untreated Jurkat Cells

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. The objective of the research was to define a way to differentiate between effects due to microgravity and those due to possible stress from non-optimal spaceflight conditions. These Jurkat cells, a human acute T-cell leukemia was obtained to evaluate three types of potential experimental stressors: a) Temperature elevation; b) Serum starvation; and c) Centrifugal force. The data from previous spaceflight experiments showed that actin filaments and cell shape are significantly different for the control. These normal cells serve as the baseline for future spaceflight experiments.

  1. Pornography, normalization, and empowerment.

    PubMed

    Weinberg, Martin S; Williams, Colin J; Kleiner, Sibyl; Irizarry, Yasmiyn

    2010-12-01

    Opponents and proponents of erotic representations (referred to hereafter as "pornography") have described the effects of pornography from their perspective. Little, however, has been done in the way of research to investigate these claims from the consumer's point of view. This especially has been so regarding the positive impact of such consumption on a person's sex life. Using a study group of 245 college students, we examined this question in a framework of scripting theory. We wanted to see whether viewing pornography appeared to expand sexual horizons through normalization and facilitate a willingness to explore new sexual behaviors and sexual relationships through empowerment. The data supported this viewpoint and further showed the effects to be mediated by gender and sexual preference identity. They suggested, however, that established scripts were extended rather than abandoned. We conclude with connections between our findings and the widespread viewing of pornography in contemporary society.

  2. Dual efferent projections of the trigeminal principal sensory nucleus to the thalamic ventroposteromedial nucleus in the squirrel monkey.

    PubMed

    Ganchrow, D; Mehler, W R

    1986-07-24

    Anterograde degeneration methods demonstrated two efferent components from the trigeminal principal sensory nucleus (PrV) to the thalamic ventroposteromedial nucleus (VPM) in the squirrel monkey: fibers from the dorsal PrV coursed within the central tegmental tract and terminated in a dorsoventromedial strip of the ipsilateral VPM; fibers from the ventral PrV mainly decussated caudal to the interpeduncular nucleus and terminated in the contralateral VPM exclusive of the sector receiving the dorsal PrV component, contralaterally. Adjacent Nissl sections showed an apparent increase in glial profiles accompanying an intense somal staining among the deafferented neuronal population in the VPM, coextensive with those regions in the VPM exhibiting terminal field degeneration.

  3. Local gene density predicts the spatial position of genetic loci in the interphase nucleus

    SciTech Connect

    Murmann, Andrea E.; Gao Juntao; Encinosa, Marissa; Peter, Marcus E.; Eils, Roland; Lichter, Peter . E-mail: m.macleod@dkfz.de; Rowley, Janet D.

    2005-11-15

    Specific chromosomal translocations are hallmarks of many human leukemias. The basis for these translocation events is poorly understood, but it has been assumed that spatial positioning of genes in the nucleus of hematopoietic cells is a contributing factor. Analysis of the nuclear 3D position of the gene MLL, frequently involved in chromosomal translocations and five of its translocation partners (AF4, AF6, AF9, ENL and ELL), and two control loci revealed a characteristic radial distribution pattern in all hematopoietic cells studied. Genes in areas of high local gene density were found positioned towards the nuclear center, whereas genes in regions of low gene density were detected closer to the nuclear periphery. The gene density within a 2 Mbp window was found to be a better predictor for the relative positioning of a genomic locus within the cell nucleus than the gene density of entire chromosomes. Analysis of the position of MLL, AF4, AF6 and AF9 in cell lines carrying chromosomal translocations involving these genes revealed that the position of the normal genes was different from that of the fusion genes, and this was again consistent with the changes in local gene density within a 2 Mbp window. Thus, alterations in gene density directly at translocation junctions could explain the change in the position of affected genes in leukemia cells.

  4. Reduced dopamine function within the medial shell of the nucleus accumbens enhances latent inhibition.

    PubMed

    Nelson, A J D; Thur, K E; Horsley, R R; Spicer, C; Marsden, C A; Cassaday, H J

    2011-03-01

    Latent inhibition (LI) manifests as poorer conditioning to a CS that has previously been presented without consequence. There is some evidence that LI can be potentiated by reduced mesoaccumbal dopamine (DA) function but the locus within the nucleus accumbens of this effect is as yet not firmly established. Experiment 1 tested whether 6-hydroxydopamine (6-OHDA)-induced lesions of DA terminals within the core and medial shell subregions of the nucleus accumbens (NAc) would enhance LI under conditions that normally disrupt LI in controls (weak pre-exposure). LI was measured in a thirst motivated conditioned emotional response procedure with 10 pre-exposures (to a noise CS) and 2 conditioning trials. The vehicle-injected and core-lesioned animals did not show LI and conditioned to the pre-exposed CS at comparable levels to the non-pre-exposed controls. 6-OHDA lesions to the medial shell, however, produced potentiation of LI, demonstrated across two extinction tests. In a subsequent experiment, haloperidol microinjected into the medial shell prior to conditioning similarly enhanced LI. These results underscore the dissociable roles of core and shell subregions of the NAc in mediating the expression of LI and indicate that reduced DA function within the medial shell leads to enhanced LI.

  5. Neuronal Entropy-Rate Feature of Entopeduncular Nucleus in Rat Model of Parkinson's Disease.

    PubMed

    Darbin, Olivier; Jin, Xingxing; Von Wrangel, Christof; Schwabe, Kerstin; Nambu, Atsushi; Naritoku, Dean K; Krauss, Joachim K; Alam, Mesbah

    2016-03-01

    The function of the nigro-striatal pathway on neuronal entropy in the basal ganglia (BG) output nucleus, i.e. the entopeduncular nucleus (EPN) was investigated in the unilaterally 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD). In both control subjects and subjects with 6-OHDA lesion of dopamine (DA) the nigro-striatal pathway, a histological hallmark for parkinsonism, neuronal entropy in EPN was maximal in neurons with firing rates ranging between 15 and 25 Hz. In 6-OHDA lesioned rats, neuronal entropy in the EPN was specifically higher in neurons with firing rates above 25 Hz. Our data establishes that the nigro-striatal pathway controls neuronal entropy in motor circuitry and that the parkinsonian condition is associated with abnormal relationship between firing rate and neuronal entropy in BG output nuclei. The neuronal firing rates and entropy relationship provide putative relevant electrophysiological information to investigate the sensory-motor processing in normal condition and conditions such as movement disorders.

  6. Identification of different subsets of lung cells using Raman microspectroscopy and whole cell nucleus isolation.

    PubMed

    Pijanka, Jacek K; Stone, Nicholas; Rutter, Abigail V; Forsyth, Nicholas; Sockalingum, Ganesh D; Yang, Ying; Sulé-Suso, Josep

    2013-09-07

    Raman spectroscopy has been widely used to study its possible clinical application in cancer diagnosis. However, in order to make it into clinical practice, it is important that this technique is able not only to identify cancer cells from their normal counterparts, but also from the array of cells present in human tissues. To this purpose, we used Raman spectroscopy to assess whether this technique was able to differentiate not only between lung cancer cells and lung epithelial cells but also from lung fibroblasts. Furthermore, we studied whether the differences were due to cell lineage (epithelial versus fibroblast) or to different proliferative characteristics of cells, and where in the cell compartment these differences might reside. To answer these questions we studied cell cytoplasm, cell nucleus and isolated whole cell nuclei. Our data suggests that Raman spectroscopy can differentiate between lung cancer, lung epithelial cells and lung fibroblasts. More important, it can also differentiate between 2 cells from the same lineage (fibroblast) but with one of them rendered immortal and with an increased proliferative activity. Finally, it seems that the main spectral differences reside in the cell nucleus and that the study of isolated nuclei strengthens the differences between cells.

  7. An Unusual Outburst from the Nucleus of the Quiescent Galaxy NGC 1589

    NASA Astrophysics Data System (ADS)

    Filippenko, Alex

    2010-09-01

    As part of the Lick Observatory Supernova Search {LOSS}, we have recently identified a highly unusual optical outburst from the nucleus {within 0.05", or 10 pc in projection} of the nearby {d 50 Mpc} spiral {S0/a} galaxy NGC 1589. Over a decade of photometric monitoring with LOSS, together with archival spectroscopy from the CfA Redshift Survey, suggest that the galaxy does not harbor an active nucleus. Likewise, the transient, bright observed X-ray emission and broad H-alpha emission-line profile do not appear to closely resemble those of any known Type II supernova. We therefore consider this transient source {dubbed NGC1589-OT} to be the most viable candidate for a tidal disruption flare {TDF} ever discovered in real time. Here we request UV {STIS} spectroscopy with HST to search for "smoking gun" evidence in favor of the TDF interpretation: photoionized stellar debris ejected by the disruption process. DD time is necessary because the outburst will almost certainly not be visible by the time Cycle 19 observations commence. We did not propose for analogous observations during the normal course of a previous GO cycle due to the extraordinarily small number of good, real-time TDF candidates detected in the past.

  8. Atypical nucleus accumbens morphology in psychopathy: another limbic piece in the puzzle.

    PubMed

    Boccardi, Marina; Bocchetta, Martina; Aronen, Hannu J; Repo-Tiihonen, Eila; Vaurio, Olli; Thompson, Paul M; Tiihonen, Jari; Frisoni, Giovanni B

    2013-01-01

    Psychopathy has been associated with increased putamen and striatum volumes. The nucleus accumbens - a key structure in reversal learning, less effective in psychopathy - has not yet received specific attention. Moreover, basal ganglia morphology has never been explored. We examined the morphology of the caudate, putamen and accumbens, manually segmented from magnetic resonance images of 26 offenders (age: 32.5 ± 8.4) with medium-high psychopathy (mean PCL-R=30 ± 5) and 25 healthy controls (age: 34.6 ± 10.8). Local differences were statistically modeled using a surface-based radial distance mapping method (p<0.05; multiple comparisons correction through permutation tests). In psychopathy, the caudate and putamen had normal global volume, but different morphology, significant after correction for multiple comparisons, for the right dorsal putamen (permutation test: p=0.02). The volume of the nucleus accumbens was 13% smaller in psychopathy (p corrected for multiple comparisons <0.006). The atypical morphology consisted of predominant anterior hypotrophy bilaterally (10-30%). Caudate and putamen local morphology displayed negative correlation with the lifestyle factor of the PCL-R (permutation test: p=0.05 and 0.03). From these data, psychopathy appears to be associated with an atypical striatal morphology, with highly significant global and local differences of the accumbens. This is consistent with the clinical syndrome and with theories of limbic involvement.

  9. Immunohistochemical characterization of FHIT expression in normal human tissues

    PubMed Central

    Kujan, Omar; Abuderman, Abdulwahab; Al-Shawaf, Ahmad Zahi

    2016-01-01

    Background Fragile histidine triad (FHIT) is a tumor suppressor gene that is commonly inactivated in human tumors. Interestingly, the normal pattern of FHIT expression is largely unknown. Aim This study is aimed to characterize the expression of FHIT protein in normal human tissues. Materials and methods A total of 119 normal human tissue specimens were analyzed for the FHIT expression using immunohistochemistry technique. The inclusion criteria included: normal/inflammatory tissue with no evidence of cellular atypia. Results All studied specimens were stained positively with FHIT and showed either nuclear or cytoplasmic expression. Interestingly, the pattern of FHIT staining was similar among different specimens from each organ. FHIT is located predominantly in the nucleus, although cytoplasmic staining is also present in some cell types. Oral squamous epithelium, breast ductal epithelium, squamous and tubal metaplastic epithelium of the uterine cervix, esophageal squamous epithelium, salivary glands, and bronchial epithelia all strongly expressed the nuclear protein. In connective tissue, FHIT has shown strong cytoplasmic expression in histocytes including macrophages and dendritic cells, fibroblasts, and myofibroblasts. Conclusion Documentation of the pattern of FHIT expression in normal tissues will contribute to our understanding of the normal function of this protein and to interpretation of potentially altered FHIT expression in human tumors. PMID:28250975

  10. High-spin states in the 94Nb nucleus

    NASA Astrophysics Data System (ADS)

    Mărginean, N.; Bucurescu, D.; Căta-Danil, Ghe.; Căta-Danil, I.; Ivaşcu, M.; Ur, C. A.

    2000-09-01

    High-spin states have been studied for the first time in the 94Nb nucleus with the reaction 82Se(19F,α3nγ) at 68 MeV. A cascade of transitions has been observed, based on the (6)+ ground state and extending up to 6.5 MeV excitation and spin of about 19.

  11. Motility proteins and the origin of the nucleus.

    PubMed

    Dolan, Michael F; Melnitsky, Hannah; Margulis, Lynn; Kolnicki, Robin

    2002-11-01

    Hypotheses on the origin of eukaryotic cells must account for the origin of the microtubular cytoskeletal structures (including the mitotic spindle, undulipodium/cilium (so-called flagellum) and other structures underlain by the 9(2)+2 microtubular axoneme) in addition to the membrane-bounded nucleus. Whereas bacteria with membrane-bounded nucleoids have been described, no precedent for mitotic, cytoskeletal, or axonemal microtubular structures are known in prokaryotes. Molecular phylogenetic analyses indicate that the cells of the earliest-branching lineages of eukaryotes contain the karyomastigont cytoskeletal system. These protist cells divide via an extranuclear spindle and a persistent nuclear membrane. We suggest that this association between the centriole/kinetosome axoneme (undulipodium) and the nucleus existed from the earliest stage of eukaryotic cell evolution. We interpret the karyomastigont to be a legacy of the symbiosis between thermoacidophilic archaebacteria and motile eubacteria from which the first eukaryote evolved. Mutually inconsistent hypotheses for the origin of the nucleus are reviewed and sequenced proteins of cell motility are discussed because of their potential value in resolving this problem. A correlation of fossil evidence with modern cell and microbiological studies leads us to the karyomastigont theory of the origin of the nucleus.

  12. High-energy pion-nucleus scattering at LAMPF

    SciTech Connect

    Morris, C.L.

    1993-01-01

    Recent data obtained for pion-nucleus interactions above the [triangle](1232) is presented. The expected long mean-free path at pion energies above the [3,3] resonance is demonstrated in elastic scattering. Evidence for unexpected nuclear transparency for outgoing pions at resonance energies is presented. A new technique measuring virtual [triangle] components of the nuclear wave function is suggested.

  13. High-energy pion-nucleus scattering at LAMPF

    SciTech Connect

    Morris, C.L.

    1993-02-01

    Recent data obtained for pion-nucleus interactions above the {triangle}(1232) is presented. The expected long mean-free path at pion energies above the [3,3] resonance is demonstrated in elastic scattering. Evidence for unexpected nuclear transparency for outgoing pions at resonance energies is presented. A new technique measuring virtual {triangle} components of the nuclear wave function is suggested.

  14. A continuing controversy: Has the cometary nucleus been resolved?

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1976-01-01

    Evidence is presented for classifying cometary nuclei into two basic types, described by core mantle and coreless models. Mass loss related nongravitational effects in a comet's motion as a function of time are included in considering gradual evaporation of an icy envelope surrounding the meteoric matrix in the core of the nucleus.

  15. Study of the variability of the nucleus of Centaurus A.

    NASA Astrophysics Data System (ADS)

    Fernandes de Mello Rabaca, D.; Abraham, Z.

    1990-11-01

    ABSTRACT. This work consists in the study of the variability of the nucleus of the peculiar galaxy NGC 5128 (Centaurus A) at the radio continuum frequency of 43 GHz. The data were obtained with the 13.7 m itapetinga Radiotelescope. The radio source presents a pair of inner radio lobes and a compact variable nucleus. The observational technique used was scans through the inner radio lobes and the nucleus. The quasi- simultaneous measurements of the flux density of each source allowed us to derive accurately the relative flux between them, and to obtain the real variability of the nucleus. RESUMO. Este trabalho consiste no estudo da variabilidade do nucleo da galaxia peculiar NGC 5128 (Centaurus A) no de radio na de 43 GHz. Os dados foram obtidos com 0 Radiotelescopio do Itapetinga. A radio fonte apresenta um par de lobulos internos e um nucleo compacto variavel. A tetnica observacional utilizada foi a de varreduras passando pelos lobulos e pelo nucleo. As medidas quase simultaneas da densidade de fluxo de cada fonte permitiu obter precisa- mente 0 fluxo relativo entre elas e a variabilidade real do nucleo. Keq woit : GALAXIES-RADIO

  16. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    SciTech Connect

    Gou, Ke-Mian; Chang, Chia-Chun; Shen, Qing-Ji; Sung, Li-Ying; Liu, Ji-Long

    2014-04-15

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus.

  17. Measuring neutrino-nucleus interactions with MINERνA

    SciTech Connect

    Rodrigues, P. A.

    2015-07-15

    We present results from the MINERνA experiment for neutrino-nucleus scattering in the few-GeV energy region. These measurements cover a range of processes that must be modeled correctly in neutrino oscillation experiments, and in which recent results from other experiments have suggested deficiencies in the models currently used.

  18. Antidromic activation of the isthmo-optic nucleus

    PubMed Central

    Holden, A. L.

    1968-01-01

    1. This paper describes experiments carried out to record from output cells in the isthmo-optic nucleus. 2. One-hundred and twenty-seven axonal responses were fired at fixed latency from the optic nerve-head. 3. Ninety-nine cell responses were fired trans-synaptically from the optic nerve-head. 4. Ninety-four cells were activated antidromically from the optic nerve-head. 5. Tectal tracks could be recognized by the field potential profile of the N-wave, R-wave and P-wave, and by the occurrence of fixed latency axonal responses and trans-synaptically fired cells. 6. Tectal tracks were verified histologically. 7. Tracks yielding antidromically activated cells were traced histologically to the isthmo-optic nucleus. 8. The antidromic A-wave could be recorded from the nucleus, corresponding in timing to the invasion of cell bodies. 9. Somatic records in the nucleus could be recognized by their duration, conformation, and A—B blocking. 10. When antidromic discharge was interacted with orthodromic firing, collision evidence could be provided, showing that the orthodromic impulse travels centrifugally to the retina. ImagesFig. 3Fig. 4 PMID:5675042

  19. Turn Up the Volume: Uncovering Nucleus Size Control Mechanisms.

    PubMed

    Good, Matthew C

    2015-06-08

    Reporting in Developmental Cell, Hara and Merten (2015) apply the use of microfabrication and in vitro analysis in cell-free extracts to the old problem of nuclear size control. The authors make insights into the regulation of nuclear growth that potentially explain the widely reported correlation between nucleus size and cell size.

  20. mRNA-Producing Pseudo-nucleus System.

    PubMed

    Shin, Seung Won; Park, Kyung Soo; Shin, Woo Jung; Um, Soong Ho

    2015-11-04

    A pseudo-eukaryotic nucleus (PEN) system consisting of a gene-containing DNA hydrogel encapsulated in a liposome is fabricated. Owing to the structural characteristics of gene-containing DNA hydrogel, mRNA transcription efficiency is promoted 2.57-fold. Through the use of PEN as a platform for mRNA delivery to the cytosol, prolonged protein translation is achieved.

  1. Synthesis of the Furan Nucleus Promoted by Ytterbium Triflate.

    PubMed

    Taddeo, Vito Alessandro; Genovese, Salvatore; Epifano, Francesco; Fiorito, Serena

    2015-11-01

    An efficient synthesis of differently substituted furans from acetylene dicarboxylates and β-dicarbonyl compounds is described. The furan nucleus was built by means of an Yb(OTf)3 catalyzed cycloaddition reaction yielding desired adducts in 91%-98% yield.

  2. Physical interrelation of volatile and refractories in a cometary nucleus

    NASA Astrophysics Data System (ADS)

    Fulle, Marco; Alice Team; Stern, Alan; CONSTERT Team; Kofman, Wlodek; COSIMA Team; Hilchenbach, Martin; GIADA Team; Rotundi, Alessandra; MIDAS Team; Bentley, Mark; MIRO Team; Hofstadter, Mark; OSIRIS Team; Sierks, Holger; ROSINA Team; Altwegg, Kathrin; RPC Team; Nilsson, Hans; Burch, James; Eriksson, Anders; Heinz-Glassmeier, Karl; Henri, Pierre; Carr, Christopher; RSI Team; Paetzold, Martin; , VIRTIS Team; Capaccioni, Fabrizio; Lander Team; Boehnhardt, Hermann; Bibring, Jean-Pierre; IDS Team; Gruen, Eberhard; Fulchignoni, Marcello; Weissman, Paul; Project Scientist Team; Taylor, Matt; Buratti, Bonnie; Altobelli, Nicolas; Choukroun, Mathieu; Ground-Based Observations Team; Snodgrass, Colin

    2016-10-01

    The Rosetta mission has been taking measurements of its target comet Comet 67P/Churyumov-Gerasimenko since early 2014 and will complete operations at the end of September 2016. The mission Science Management Plan, in 1994, laid out the the prime goals and themes of the mission. These five themes were: 1) To study the global characterisation of the Nuclues, the determination of the dynamics properties , surface morpholy and composition of the comet. 2) Examination of the Chemical, Mineralogical and isotopic compositions of volatiles and refractories in a cometary nucleus.3) Physical interrelation of volatile and refractories in a cometary nucleus4) Study the development of cometary activity and the process in the surface layer of the nucleus and in the inner coma5) The origins of comets, the relationship between cometary and interstellar material and the implications for the origin of the solar system,To cover all aspects of the Rosetta mission in this special Show case session, this abstracts is one of 5, with this particular presentation focusing on theme 3, in particular on a) The dust-to-gas ratio; b) distributed sources of volatiles; c) seasonal evolution of the dust size distribution.a) The dust-to-gas ratio has been provided by coma observations measuring the gas and dust loss rates from the nucleus surface. The ratio of these two loss rates provides a lower limit of the dust-to-gas ratio at the nucleus surface, since it does not take into account the largest chunks unable to leave the nucleus, or falling back due to the dominant gravity. We review the value inferred so far, its time evolution, and new techniques to directly measure it in the nucleus.b) Evidences offered by Rosetta observations of gas sublimating from dust particles are up to now faint. We report the few available observations and an estimate of the probable average water content in dust particles inferred by 3D gas-dynamical codes of 67P coma.c) The dust-size distribution tunes the sizes

  3. [Normal aging and cognition].

    PubMed

    Ska, Bernadette; Joanette, Yves

    2006-03-01

    It is now well documented that normal aging modifies the cognitive functioning and most observations suggest that cognition evolves in the direction of deterioration. The more frequently impaired functions are memory, attention and visual-spatial abilities. On the other hand, some abilities seem to increase, such as vocabulary. Considering the aging effect on cognition, questions remain regarding directionality, universality and reversibility. A great variability in aged related impacts is observed among subjects and among cognitive domains. Some individuals evolved more rapidly than others. Some cognitive functions are more affected by aging than others. General and specific factors are hypothesized to explain the aged related cognitive decline. Among them, educational level, health, cognitive style, life style, personality, are likely to modulate the aged related cognitive evolution by influencing attentional resources and cerebral plasticity. Cognitive resources are essential to develop adaptative strategies. During the life span, resources are activated and increased by learning and training. Considering the role of cognitive resources, successful aging is dependent on several conditions : absence of disease leading to a loss of autonomy, maintenance of cognitive and physical activities, and active and social engaged lifestyle.

  4. The nucleus basalis of Meynert in 20 definite cases of Creutzfeldt-Jakob disease.

    PubMed Central

    Cartier, L; Verdugo, R; Vergara, C; Galvez, S

    1989-01-01

    The population of neurons and the neuronal size in the nucleus basalis of Meynert (nbM) were studied in 20 patients with definite Creutzfeldt-Jakob disease (CJD). When compared with a normal control group, the 20 CJD brains showed a significant loss of neurons and reduction of neuronal size, mainly in the middle level of the nbM and mostly affecting the right side. Since these findings show some parallelism with the amount of cortical damage and given the scarce gliosis and spongiosis found in only six of the 20 CJD brains, we postulate that the involvement of the nbM in CJD is a retrograde abnormality secondary to the damage of the neocortex. Images PMID:2647906

  5. Capsaicin binds to prohibitin 2 and displaces it from the mitochondria to the nucleus

    SciTech Connect

    Kuramori, Chikanori; Azuma, Motoki; Kume, Kanako; Kaneko, Yuki; Inoue, Atsushi; Yamaguchi, Yuki; Kabe, Yasuaki; Hosoya, Takamitsu; Kizaki, Masahiro; Suematsu, Makoto; Handa, Hiroshi

    2009-02-06

    Capsaicin is widely used as a food additive and as an analgesic agent. Besides its well-known role in nociception, which is mediated by vanilloid receptor 1 specifically expressed in dorsal root ganglion neurons, capsaicin has also been considered as a potential anticancer agent, as it inhibits cell proliferation and induces apoptosis in various types of cancer cells. Here we identified a new molecular target of capsaicin from human myeloid leukemia cells. We show that capsaicin binds to prohibitin (PHB) 2, which is normally localized to the inner mitochondrial membrane, and induces its translocation to the nucleus. PHB2 is implicated in the maintenance of mitochondrial morphology and the control of apoptosis. We also provide evidence suggesting that capsaicin causes apoptosis directly through the mitochondria and that PHB2 contributes to capsaicin-induced apoptosis at multiple levels. This work will serve as an important foundation for further understanding of anticancer activity of capsaicin.

  6. Imaging Impulsivity in Parkinson's Disease and the Contribution of the Subthalamic Nucleus

    PubMed Central

    Ray, Nicola; Antonelli, Francesca; Strafella, Antonio P.

    2011-01-01

    Taking risks is a natural human response, but, in some, risk taking is compulsive and may be detrimental. The subthalamic nucleus (STN) is thought to play a large role in our ability to inhibit responses. Differences between individuals' ability to inhibit inappropriate responses may underlie both the normal variation in trait impulsivity in the healthy population, as well as the pathological compulsions experienced by those with impulse control disorders (ICDs). Thus, we review the role of the STN in response inhibition, with a particular focus on studies employing imaging methodology. We also review the latest evidence that disruption of the function of the STN by deep brain stimulation in patients with Parkinson's disease can increase impulsivity. PMID:21765999

  7. Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in parkinsonian patients.

    PubMed

    Magnin, M; Morel, A; Jeanmonod, D

    2000-01-01

    exhibiting random or rhythmic low-threshold calcium spike bursts were found preponderantly in the ventral anterior nucleus (53.4%) and in the ventral lateral anterior nucleus (52.7%). Tremor-locked units were confined to the ventral division of the ventral lateral posterior nucleus (35.4%). None of the random or rhythmic low-threshold calcium spike bursting units responded to somatosensory stimuli or voluntary movements, either in the medial or in the lateral thalamus. The presence of low-threshold calcium spike bursts at the thalamic level, together with the paucity (8%) of responses to voluntary movements compared to what is found in normal non-human primates, demonstrate a pathological state of inhibition due to the overactivity of the internal subdivision of the globus pallidus units. Activities of the thalamic cells producing low-threshold calcium spike bursts are not synchronized with each other or with the tremor. However, this does not exclude a causal role of these activities in the generation of tremor. Indeed, it has been demonstrated that even random electrical stimulations of the rolandic cortex in parkinsonian patients induce tremor episodes, probably due to the triggering of rhythmic, low-threshold calcium spike-dependent, thalamocortical activities. Similarly, low-threshold calcium spike bursts could be at the origin of rigidity and dystonia through an activation of the supplementary motor area and of akinesia when reaching the pre-supplementary motor area. We conclude that the intrinsic oscillatory properties of individual neurons, combined with the dynamic properties of the thalamocortical circuitry, are responsible for the three cardinal parkinsonian symptoms.

  8. Structures and functions in the crowded nucleus: new biophysical insights

    NASA Astrophysics Data System (ADS)

    Hancock, Ronald

    2014-09-01

    Concepts and methods from the physical sciences have catalysed remarkable progress in understanding the cell nucleus in recent years. To share this excitement with physicists and encourage their interest in this field, this review offers an overview of how the physics which underlies structures and functions in the nucleus is becoming more clear thanks to methods which have been developed to simulate and study macromolecules, polymers, and colloids. The environment in the nucleus is very crowded with macromolecules, making entropic (depletion) forces major determinants of interactions. Simulation and experiments are consistent with their key role in forming membraneless compartments such as nucleoli, PML and Cajal bodies, and discrete "territories" for chromosomes. The chromosomes, giant linear polyelectrolyte polymers, exist in vivo in a state like a polymer melt. Looped conformations are predicted in crowded conditions, and have been confirmed experimentally and are central to the regulation of gene expression. Polymer theory has revealed how the chromosomes are so highly compacted in the nucleus, forming a "crumpled globule" with fractal properties which avoids knots and entanglements in DNA while allowing facile accessibility for its replication and transcription. Entropic repulsion between looped polymers can explain the confinement of each chromosome to a discrete region of the nucleus. Crowding and looping are predicted to facilitate finding the specific targets of factors which modulate activities of DNA. Simulation shows that entropic effects contribute to finding and repairing potentially lethal double-strand breaks in DNA by increasing the mobility of the broken ends, favouring their juxtaposition for repair. Signaling pathways are strongly influenced by crowding, which favours a processive mode of response (consecutive reactions without releasing substrates). This new information contributes to understanding the sometimes counter-intuitive consequences.

  9. Ultrastructural study of the nucleus Cuneiformis in the cat.

    PubMed

    Gioia, M; Bianchi, R

    1987-01-01

    The Cuneiformis nucleus (Cu.n.) is a reticular nucleus of the mesencephalic tegmentum which is involved in several functions and particularly in locomotor activities. While the physiological properties and the nervous connections of the nucleus have been studied, there is no data about its ultrastructure. Therefore, we investigated this region in cat at the electron microscope and with morphoquantitative methods to clarify its ultrastructural organization and particularly the characteristics of its synaptic complex. The neurons are small and medium in size, with a high nucleo-cytoplasmic ratio and a modest rough endoplasmic reticulum organization. The neuropil is very extensive. Myelinated axons are very numerous. Dendritic profiles whose plasmalemma is almost completely covered by synaptic boutons are observed frequently. There are few somatic synapses; 81% have symmetrical junctions and 23% have round vesicles only. There are numerous synapses in the neuropil, 40% having asymmetrical junctions and 60% containing round vesicles only. The greater functional complexity indicated by the morphological data and the greater extension of the neuropil synapses with respect to that of the somatic ones, suggest that the neuropil is the main site of modulation and integration of the inputs to the nucleus. A highly significant statistical difference between the sizes of the somatic vesicles and those of the neuropil was found. This may point to the presence of distinct populations of vesicles, which may be correlated with the variety of substances (neurotransmitters, neuropeptides etc ...) found in the nucleus. The remarkable ultrastructural similarity between the Cu.n. and the periaqueductal gray matter is discussed.

  10. Cytoskeletal tension induces the polarized architecture of the nucleus

    PubMed Central

    Kim, Dong-Hwee; Wirtz, Denis

    2016-01-01

    The nuclear lamina is a thin filamentous meshwork that provides mechanical support to the nucleus and regulates essential cellular processes such as DNA replication, chromatin organization, cell division, and differentiation. Isolated horizontal imaging using fluorescence and electron microscopy has long suggested that the nuclear lamina is composed of structurally different A-type and B-type lamin proteins and nuclear lamin-associated membrane proteins that together form a thin layer that is spatially isotropic with no apparent difference in molecular content or density between the top and bottom of the nucleus. Chromosomes are condensed differently along the radial direction from the periphery of the nucleus to the nuclear center; therefore, chromatin accessibility for gene expression is different along the nuclear radius. However, 3D confocal reconstruction reveals instead that major lamin protein lamin A/C forms an apically polarized Frisbee-like dome structure in the nucleus of adherent cells. Here we show that both A-type lamins and transcriptionally active chromatins are vertically polarized by the tension exercised by the perinuclear actin cap (or actin cap) that is composed of highly contractile actomyosin fibers organized at the apical surface of the nucleus. Mechanical coupling between actin cap and lamina through LINC (linkers of nucleoskeleton and cytoskeleton) protein complexes induces an apical distribution of transcription-active subnucleolar compartments and epigenetic markers of transcription-active genes. This study reveals that intranuclear structures, such as nuclear lamina and chromosomal architecture, are apically polarized through the extranuclear perinuclear actin cap in a wide range of somatic adherent cells. PMID:25701041

  11. A gene delivery system containing nuclear localization signal: Increased nucleus import and transfection efficiency with the assistance of RanGAP1.

    PubMed

    Chen, Kang; Guo, Lingling; Zhang, Jiulong; Chen, Qing; Wang, Kuanglei; Li, Chenxi; Li, Weinan; Qiao, Mingxi; Zhao, Xiuli; Hu, Haiyang; Chen, Dawei

    2017-01-15

    In the present report, a degradable gene delivery system (PAMS/DNA/10NLS) containing nucleus location signal peptide (NLS) was prepared. The agarose gel electrophoresis, particle size and zeta potential of PAMS/DNA/10NLS were similar to those of PAMS/DNA, which proved that NLS did not affect the interaction between PAMS and DNA. PAMS/DNA/10NLS exhibited marked extracellular and intracellular degradation under acidic conditions. The degradation was believed to allow NLS to come into contact with importins easily, which was able to mediate the nucleus import. With the help of NLS, PAMS/DNA/10NLS exhibited a higher transfection capability than PAMS/DNA. Moreover, the transfection of PAMS/DNA/10NLS was less dependent on the breakdown of the nucleus envelope than PAMS/DNA. Considering that GTPase-activating protein 1 (RanGAP1) was able to activate the endogenous GTPase, which was necessary for NLS-mediated nucleus import, RanGAP1 overexpressed cells (RanGAP1 cells) were produced. This result showed that RanGAP1 cells had higher GTPase activities than normal cells. Both the nucleus import and transfection efficiency of PAMS/DNA/10NLS were markedly higher in RanGAP1 cells than that in normal cells. The in vivo transfection results also showed that the transfection efficiency of PAMS/DNA/10NLS was higher in RanGAP1 pre-treated mice than that in normal mice. These findings showed that PAMS/DNA/10NLS is a promising gene delivery system with the assistance of RanGAP1.

  12. N-methyl-norsalsolinol modulates serotonin metabolism in the rat caudate nucleus: correlation with behavioural changes.

    PubMed

    Thümen, Ansgar; Behnecke, Anne; Qadri, Fatimunnisa; Moser, Andreas

    2003-03-01

    In earlier studies the dihydroxylated tetrahydroisoquinoline derivative 2(N)-methyl-norsalsolinol (NMNorsal) was identified in patients with Parkinson's disease. In the present study, NMNorsal (20 or 40 mg/kg) was given intraperitoneally to rats kept under normal light-dark cycles. Using brain microdialysis technique, serotonin (5-HT), 5-hydroxyindolacetic acid (HIAA), dopamine (DA), and 3,4-dihydroxyphenylacetic acid (DOPAC) were determined in the dialysate from caudate nucleus in vivo and from tissue in vitro at various times following NMNorsal administration. Even after high-dose NMNorsal administration (40 mg/kg) and measurements up to 48 h after administration, levels of DA and its metabolite DOPAC were not modified. In contrast to the DA metabolism, 5-HT levels in the dialysate increased to approx. 2-fold during the 48 h following administration of a single high-dose of NMNorsal while HIAA decreased to approx. 50%. These changes of 5-HT and HIAA were nearly identical in the homogenate preparation of the caudate nucleus when compared to the amounts present in the dialysate. During assessment controls and low-dose-treated animals were almost always sleeping. Only high-dose NMNorsal-treated rats were active, with maximum activity after 48 h, however, behavioural activity was clearly different to the classical 5-HT behavioural syndrome. Taken together, increased 5-HT levels in the striatum found in our studies seem to be linked to the behavioural activity induced by high-dose NMNorsal, and NMNorsal appeared to perturb normal diurnal rhythms of spontaneous locomotor activity. The precise mechanism by which NMNorsal acts on 5-HT metabolism and behaviour is, however, unclear and further investigation is required.

  13. Studies of normal deformation in {sup 151}Dy

    SciTech Connect

    Nisius, D.; Janssens, R.V.F.; Crowell, B.

    1995-08-01

    The wealth of data collected in the study of superdeformation in {sup 151}Dy allowed for new information to be obtained on the normally deformed structures in this nucleus. At high spin several new yrast states have been identified for the first time. They were associated with single-particle excitations. Surprisingly, a sequence was identified with energy spacings characteristic of a rotational band of normal ({beta}2 {approximately} 0.2) deformation. The bandhead spin appears to be 15/2{sup -} and the levels extend up to a spin of 87/2{sup -}. A clear backbend is present at intermediate spins. While a similar band based on a bandhead of 6{sup +} is known in {sup 152}Dy, calculations suggest that this collective prolate band should not be seen in {sup 151}Dy. In the experiment described earlier in this report that is aimed at determining the deformations associated with the SD bands in this nucleus and {sup 152}Dy, the deformation associated with this band will be determined. This will provide further insight into the origin of this band.

  14. Eye-specific retinogeniculate segregation independent of normal neuronal activity.

    PubMed

    Huberman, Andrew D; Wang, Guo-Yong; Liets, Lauren C; Collins, Odell A; Chapman, Barbara; Chalupa, Leo M

    2003-05-09

    The segregation of initially intermingled left and right eye inputs to the dorsal lateral geniculate nucleus (DLGN) during development is thought to be in response to precise spatial and temporal patterns of spontaneous ganglion cell activity. To test this hypothesis, we disrupted the correlated activity of neighboring ganglion cells in the developing ferret retina through immunotoxin depletion of starburst amacrine cells. Despite the absence of this type of correlated activity, left and right eye inputs segregated normally in the DLGN. By contrast, when all spontaneous activity was blocked, the projections from the two eyes remained intermingled. Thus, certain features of normal neural activity patterns are not required for the formation of eye-specific projections to the DLGN.

  15. Critical evaluation of the anatomical location of the Barrington nucleus: relevance for deep brain stimulation surgery of pedunculopontine tegmental nucleus.

    PubMed

    Blanco, Lisette; Yuste, Jose Enrique; Carrillo-de Sauvage, María Angeles; Gómez, Aurora; Fernández-Villalba, Emiliano; Avilés-Olmos, Itciar; Limousin, Patricia; Zrinzo, Ludvic; Herrero, María Trinidad

    2013-09-05

    Deep brain stimulation (DBS) has become the standard surgical procedure for advanced Parkinson's disease (PD). Recently, the pedunculopontine tegmental nucleus (PPN) has emerged as a potential target for DBS in patients whose quality of life is compromised by freezing of gait and falls. To date, only a few groups have published their long-term clinical experience with PPN stimulation. Bearing in mind that the Barrington (Bar) nucleus and some adjacent nuclei (also known as the micturition centre) are close to the PPN and may be affected by DBS, the aim of the present study was to review the anatomical location of this structure in human and other species. To this end, the Bar nucleus area was analysed in mouse, monkey and human tissues, paying particular attention to the anatomical position in humans, where it has been largely overlooked. Results confirm that anatomical location renders the Bar nucleus susceptible to influence by the PPN DBS lead or to diffusion of electrical current. This may have an undesirable impact on the quality of life of patients.

  16. Normal Conducting CLIC Technology

    SciTech Connect

    Jensen, Erk

    2006-01-03

    The CLIC (Compact Linear Collider) multi-lateral study group based at CERN is studying the technology for an electron-positron linear collider with a centre-of-mass energy up to 5 TeV. In contrast to the International Linear Collider (ILC) study which has chosen to use super-conducting cavities with accelerating gradients in the range of 30-40 MV/m to obtain centre-of-mass collision energies of 0.5-1 TeV, the CLIC study aims to use a normal-conducting system based on two-beam technology with gradients of 150 MV/m. It is generally accepted that this change in technology is not only necessary but the only viable choice for a cost-effective multi-TeV collider. The CLIC study group is studying the technology issues of such a machine, and is in particular developing state-of-the-art 30 GHz molybdenum-iris accelerating structures and power extraction and transfer structures (PETS). The accelerating structure has a new geometry which includes fully-profiled RF surfaces optimised to minimize surface fields, and hybrid damping using both iris slots and radial waveguides. A newly-developed structure-optimisation procedure has been used to simultaneously balance surface fields, power flow, short and long-range transverse wakefields, RF-to-beam efficiency and the ratio of luminosity to input power. The slotted irises allow a simple structure fabrication by high-precision high-speed 3D milling of just four pieces, and an even easier bolted assembly in a vacuum chamber.

  17. Normal Conducting CLIC Technology

    NASA Astrophysics Data System (ADS)

    Jensen, Erk

    2006-01-01

    The CLIC (Compact Linear Collider) multi-lateral study group based at CERN is studying the technology for an electron-positron linear collider with a centre-of-mass energy up to 5 TeV. In contrast to the International Linear Collider (ILC) study which has chosen to use super-conducting cavities with accelerating gradients in the range of 30-40 MV/m to obtain centre-of-mass collision energies of 0.5-1 TeV, the CLIC study aims to use a normal-conducting system based on two-beam technology with gradients of 150 MV/m. It is generally accepted that this change in technology is not only necessary but the only viable choice for a cost-effective multi-TeV collider. The CLIC study group is studying the technology issues of such a machine, and is in particular developing state-of-the-art 30 GHz molybdenum-iris accelerating structures and power extraction and transfer structures (PETS). The accelerating structure has a new geometry which includes fully-profiled RF surfaces optimised to minimize surface fields, and hybrid damping using both iris slots and radial waveguides. A newly-developed structure-optimisation procedure has been used to simultaneously balance surface fields, power flow, short and long-range transverse wakefields, RF-to-beam efficiency and the ratio of luminosity to input power. The slotted irises allow a simple structure fabrication by high-precision high-speed 3D milling of just four pieces, and an even easier bolted assembly in a vacuum chamber.

  18. Oscillatory activity in the subthalamic nucleus during arm reaching in Parkinson's disease.

    PubMed

    Joundi, Raed A; Brittain, John-Stuart; Green, Alex L; Aziz, Tipu Z; Brown, Peter; Jenkinson, Ned

    2012-08-01

    Oscillatory activities in the brain within the beta (15-30 Hz) and gamma (70-90 Hz) ranges have been implicated in the generation of voluntary movement. However, their roles remain unclear. Here, we record local field potential activity from the region of the subthalamic nucleus during movement of the contralateral limb in 11 patients with Parkinson's disease. Patients were on their normal dopaminergic medication and were cued to perform arm-reaching movements after a delay period at three different speeds: 'slow', 'normal', and 'fast'. Beta activity desynchronized earlier in response to the cue indicating an upcoming fast reach than to the cues for slow or normal speed movement. There was no difference in the degree of beta desynchronization between reaching speeds and beta desynchronization was established prior to movement onset in all cases. In contrast, synchronization in the gamma range developed during the reaching movement, and was especially pronounced during fast reaching. Thus the timing of suppression in the beta band depended on task demands, whereas the degree of increase in gamma oscillations depended on movement speed. These findings point to functionally segregated roles for different oscillatory frequencies in motor preparation and performance.

  19. Association of basal forebrain volumes and cognition in normal aging.

    PubMed

    Wolf, D; Grothe, M; Fischer, F U; Heinsen, H; Kilimann, I; Teipel, S; Fellgiebel, A

    2014-01-01

    The basal forebrain cholinergic system (BFCS) is known to undergo moderate neurodegenerative alterations during normal aging and severe atrophy in Alzheimer's disease (AD). It has been suggested that functional and structural alterations of the BFCS mediate cognitive performance in normal aging and AD. But, it is still unclear to what extend age-associated cognitive decline can be related to BFCS in normal aging. We analyzed the relationship between BFCS volume and cognition using MRI and a comprehensive neuropsychological test battery in a cohort of 43 healthy elderly subjects spanning the age range from 60 to 85 years. Most notably, we found significant associations between general intelligence and BFCS volumes, specifically within areas corresponding to posterior nuclei of the nucleus basalis of Meynert (Ch4p) and the nucleus subputaminalis (NSP). Associations between specific cognitive domains and BFCS volumes were less pronounced. Supplementary analyses demonstrated that especially the volume of NSP but also the volume of Ch4p was related to the volume of widespread temporal, frontal, and parietal gray and white matter regions. Volumes of these gray and white matter regions were also related to general intelligence. Higher volumes of Ch4p and NSP may enhance the effectiveness of acetylcholine supply in related gray and white matter regions underlying general intelligence and hence explain the observed association between the volume of Ch4p as well as NSP and general intelligence. Since general intelligence is known to attenuate the degree of age-associated cognitive decline and the risk of developing late-onset AD, the BFCS might, besides the specific contribution to the pathophysiology in AD, constitute a mechanism of brain resilience in normal aging.

  20. Developmental potential of embryonic cells in a nucleocytoplasmic hybrid formed using a goldfish haploid nucleus and loach egg cytoplasm.

    PubMed

    Fujimoto, Takafumi; Saito, Taiju; Sakao, Suzu; Arai, Katsutoshi; Yamaha, Etsuro

    2010-01-01

    In teleosts, viable nucleocytoplasmic hybrids, formed by combining a nucleus from one species with the egg cytoplasm of another, have been used as one of the methods for breed improvement in aquaculture, but have been little exploited for developmental biology studies. Here, we used an artificial androgenesis technique to form nucleocytoplasmic hybrids comprising a goldfish haploid nucleus and loach egg cytoplasm. These hybrids were used to investigate interactions between the nucleus and cytoplasm during embryonic development. Additionally, the developmental characteristics of embryonic cells of nucleocytoplasmic hybrids were examined in chimeras produced by transplantation of blastomeres into recipient loach or goldfish embryos. We found that the nucleocytoplasmic hybrids arrested at the dome stage of embryonic development and did not form any gastrula structures. The goosecoid (gsc) and no tail (ntl) genes were expressed normally before gastrulation in nucleocytoplasmic hybrids, similar to diploid loach. However, expression of the gsc and ntl genes was not maintained in nucleocytoplasmic hybrids. In chimeric embryos, blastomeres derived from nucleocytoplasmic hybrids were found to mix with the cells of recipient loach embryos at the gastrula stage. The transplanted blastomeres formed small clusters at the somitogenesis stage and, finally, small spots at the hatching stage. In contrast, when the blastomeres were transplanted into goldfish embryos, the transplanted blastomeres aggregated in the chimeric embryos. Thus, embryonic cells from nucleocytoplasmic hybrids that arrest before gastrulation could survive beyond the somitogenesis stage depending on the cytoplasmic environment in the recipient embryos.

  1. Increased sucrose intake and corresponding c-Fos in amygdala and parabrachial nucleus of dietary obese rats.

    PubMed

    Li, Jinrong; Chen, Ke; Yan, Jianqun; Wang, Qian; Zhao, Xiaolin; Yang, Xuejuan; Yang, Dejun; Zhao, Shiru; Zhu, Guangjing; Sun, Bo

    2012-09-13

    The intake-excitatory effects of caloric foods are mainly due to the palatable taste and the ensuing positive postingestive effects. Dietary obese individuals are inclined to overeat high caloric foods. However, it is still unclear whether the taste or postingestive reinforcement mainly contributes to the excessive intake by obese individuals. In the present study, we measured 10- or 120-min sucrose solution drunk by dietary obese rats and measured c-Fos expression following 120-min tests in the central nucleus of amygdala (CeA), a forebrain nucleus involved in the hedonic reward and craving, and the parabrachial nucleus (PBN), a taste relay area responsive to positive postingestive effects. Dietary obese rats, compared with those fed normal chow, ingested larger amounts of sucrose solution (0.25 M) in the 120-min test, but not in the 10-min test. In addition, significantly more sucrose-induced c-Fos positive cells were found in the CeA, but much less in the external lateral subnucleus of the PBN of dietary obese rats. Our results demonstrate that increased sucrose intake in dietary obese rats is mainly due to the alteration of postingestive effects. The differences in these postingestive effects in obesity may involve greater positive/excitatory signals in which the CeA may play a role, and less negative/inhibitory signals in which the el-PBN may be involved.

  2. Responses of primate caudal parabrachial nucleus and Kolliker-fuse nucleus neurons to whole body rotation

    NASA Technical Reports Server (NTRS)

    Balaban, Carey D.; McGee, David M.; Zhou, Jianxun; Scudder, Charles A.

    2002-01-01

    The caudal aspect of the parabrachial (PBN) and Kolliker-Fuse (KF) nuclei receive vestibular nuclear and visceral afferent information and are connected reciprocally with the spinal cord, hypothalamus, amygdala, and limbic cortex. Hence, they may be important sites of vestibulo-visceral integration, particularly for the development of affective responses to gravitoinertial challenges. Extracellular recordings were made from caudal PBN cells in three alert, adult female Macaca nemestrina through an implanted chamber. Sinusoidal and position trapezoid angular whole body rotation was delivered in yaw, roll, pitch, and vertical semicircular canal planes. Sites were confirmed histologically. Units that responded during rotation were located in lateral and medial PBN and KF caudal to the trochlear nerve at sites that were confirmed anatomically to receive superior vestibular nucleus afferents. Responses to whole-body angular rotation were modeled as a sum of three signals: angular velocity, a leaky integration of angular velocity, and vertical position. All neurons displayed angular velocity and integrated angular velocity sensitivity, but only 60% of the neurons were position-sensitive. These responses to vertical rotation could display symmetric, asymmetric, or fully rectified cosinusoidal spatial tuning about a best orientation in different cells. The spatial properties of velocity and integrated velocity and position responses were independent for all position-sensitive neurons; the angular velocity and integrated angular velocity signals showed independent spatial tuning in the position-insensitive neurons. Individual units showed one of three different orientations of their excitatory axis of velocity rotation sensitivity: vertical-plane-only responses, positive elevation responses (vertical plane plus ipsilateral yaw), and negative elevation axis responses (vertical plane plus negative yaw). The interactions between the velocity and integrated velocity components

  3. Regional difference in sex steroid action on formation of morphological sex differences in the anteroventral periventricular nucleus and principal nucleus of the bed nucleus of the stria terminalis.

    PubMed

    Kanaya, Moeko; Tsuda, Mumeko C; Sagoshi, Shoko; Nagata, Kazuyo; Morimoto, Chihiro; Thu, Chaw Kyi Tha; Toda, Katsumi; Kato, Shigeaki; Ogawa, Sonoko; Tsukahara, Shinji

    2014-01-01

    Sex steroid action is critical to form sexually dimorphic nuclei, although it is not fully understood. We previously reported that masculinization of the principal nucleus of the bed nucleus of the stria terminalis (BNSTp), which is larger and has more neurons in males than in females, involves aromatized testosterone that acts via estrogen receptor-α (ERα), but not estrogen receptor-β (ERβ). Here, we examined sex steroid action on the formation of the anteroventral periventricular nucleus (AVPV) that is larger and has more neurons in females. Morphometrical analysis of transgenic mice lacking aromatase, ERα, or ERβ genes revealed that the volume and neuron number of the male AVPV were significantly increased by deletion of aromatase and ERα genes, but not the ERβ gene. We further examined the AVPV and BNSTp of androgen receptor knockout (ARKO) mice. The volume and neuron number of the male BNSTp were smaller in ARKO mice than those in wild-type mice, while no significant effect of ARKO was found on the AVPV and female BNSTp. We also examined aromatase, ERα, and AR mRNA levels in the AVPV and BNSTp of wild-type and ARKO mice on embryonic day (ED) 18 and postnatal day (PD) 4. AR mRNA in the BNSTp and AVPV of wild-type mice was not expressed on ED18 and emerged on PD4. In the AVPV, the aromatase mRNA level was higher on ED18, although the ERα mRNA level was higher on PD4 without any effect of AR gene deletion. Aromatase and ERα mRNA levels in the male BNSTp were significantly increased on PD4 by AR gene deletion. These results suggest that estradiol signaling via ERα during the perinatal period and testosterone signaling via AR during the postnatal period are required for masculinization of the BNSTp, whereas the former is sufficient to defeminize the AVPV.

  4. Regional Difference in Sex Steroid Action on Formation of Morphological Sex Differences in the Anteroventral Periventricular Nucleus and Principal Nucleus of the Bed Nucleus of the Stria Terminalis

    PubMed Central

    Kanaya, Moeko; Tsuda, Mumeko C.; Sagoshi, Shoko; Nagata, Kazuyo; Morimoto, Chihiro; Tha Thu, Chaw Kyi; Toda, Katsumi; Kato, Shigeaki; Ogawa, Sonoko; Tsukahara, Shinji

    2014-01-01

    Sex steroid action is critical to form sexually dimorphic nuclei, although it is not fully understood. We previously reported that masculinization of the principal nucleus of the bed nucleus of the stria terminalis (BNSTp), which is larger and has more neurons in males than in females, involves aromatized testosterone that acts via estrogen receptor-α (ERα), but not estrogen receptor-β (ERβ). Here, we examined sex steroid action on the formation of the anteroventral periventricular nucleus (AVPV) that is larger and has more neurons in females. Morphometrical analysis of transgenic mice lacking aromatase, ERα, or ERβ genes revealed that the volume and neuron number of the male AVPV were significantly increased by deletion of aromatase and ERα genes, but not the ERβ gene. We further examined the AVPV and BNSTp of androgen receptor knockout (ARKO) mice. The volume and neuron number of the male BNSTp were smaller in ARKO mice than those in wild-type mice, while no significant effect of ARKO was found on the AVPV and female BNSTp. We also examined aromatase, ERα, and AR mRNA levels in the AVPV and BNSTp of wild-type and ARKO mice on embryonic day (ED) 18 and postnatal day (PD) 4. AR mRNA in the BNSTp and AVPV of wild-type mice was not expressed on ED18 and emerged on PD4. In the AVPV, the aromatase mRNA level was higher on ED18, although the ERα mRNA level was higher on PD4 without any effect of AR gene deletion. Aromatase and ERα mRNA levels in the male BNSTp were significantly increased on PD4 by AR gene deletion. These results suggest that estradiol signaling via ERα during the perinatal period and testosterone signaling via AR during the postnatal period are required for masculinization of the BNSTp, whereas the former is sufficient to defeminize the AVPV. PMID:25398007

  5. Development of injectable hydrogels for nucleus pulposus replacement

    NASA Astrophysics Data System (ADS)

    Thomas, Jonathan D.

    Intervertebral disc degeneration has been reported as the underlying cause for 75% of cases of lower back pain and is marked by dehydration of the nucleus pulposus within the intervertebral disc. There have been many implant designs to replace the nucleus pulposus. Some researchers have proposed the replacement of the nucleus pulposus with hydrogel materials. The insertion of devices made from these materials further compromises the annulus of the disc. An ideal nucleus replacement could be injected into the disc space and form a solid in vivo. However, injectable replacements using curing elastomers and thermoplastic materials are not ideal because of the potentially harmful exothermic heat evolved from their reactions and the toxicity of the reactants used. We propose a hydrogel system that can be injected as a liquid at 25°C and solidified to yield a hydrogel within the intervertebral disc at 37°C. In aqueous solutions, these polymers have Lower Critical Solution Temperatures (LCST) between 25-37°C, making them unique candidate materials for this application. Poly(N-isopropylacrylamide) (PNIPAAm) is the most widely studied LCST polymer due to its drastic transition near body temperature. However, by itself, pure PNIPAAm forms a hydrogel that has low water content and can readily undergo plastic deformation. To increase the water content and impart elasticity to PNIPAAm hydrogels, grafted and branched hydrogel systems were created that incorporated the thermogelling PNIPAAm and hydrophilic poly(ethylene glycol) (PEG). In this research, the effects of polymer composition and monomer to initiator ratio, which controls polymer MW, on the in vitro swelling properties (mass, chemical, and compressive mechanical stability) of hydrogels formed from aqueous solutions of these polymers were evaluated. Immersion studies were also conducted in solutions to simulate the osmotic environment of the nucleus pulposus. The effects of repeated compression and unloading cycles

  6. WMAP normalization of inflationary cosmologies

    SciTech Connect

    Liddle, Andrew R.; Parkinson, David; Mukherjee, Pia; Leach, Samuel M.

    2006-10-15

    We use the three-year WMAP observations to determine the normalization of the matter power spectrum in inflationary cosmologies. In this context, the quantity of interest is not the normalization marginalized over all parameters, but rather the normalization as a function of the inflationary parameters n{sub S} and r with marginalization over the remaining cosmological parameters. We compute this normalization and provide an accurate fitting function. The statistical uncertainty in the normalization is 3%, roughly half that achieved by COBE. We use the k-l relation for the standard cosmological model to identify the pivot scale for the WMAP normalization. We also quote the inflationary energy scale corresponding to the WMAP normalization.

  7. The Nucleus of Translating as One Critical Concern in Translation Pedagogy and Assessment.

    ERIC Educational Resources Information Center

    Hu, Helen Chau

    1999-01-01

    Studies the translation of nonliterary texts. The objective is to associate the nucleus of translating with the value of a source-language text, advancing the claim that appropriately translating the nucleus is among the most important concerns, and to propose an approach to assessment for translation quality based on how the nucleus is rendered.…

  8. Actomyosin pulls to advance the nucleus in a migrating tissue cell.

    PubMed

    Wu, Jun; Kent, Ian A; Shekhar, Nandini; Chancellor, T J; Mendonca, Agnes; Dickinson, Richard B; Lele, Tanmay P

    2014-01-07

    The cytoskeletal forces involved in translocating the nucleus in a migrating tissue cell remain unresolved. Previous studies have variously implicated actomyosin-generated pushing or pulling forces on the nucleus, as well as pulling by nucleus-bound microtubule motors. We found that the nucleus in an isolated migrating cell can move forward without any trailing-edge detachment. When a new lamellipodium was triggered with photoactivation of Rac1, the nucleus moved toward the new lamellipodium. This forward motion required both nuclear-cytoskeletal linkages and myosin activity. Apical or basal actomyosin bundles were found not to translate with the nucleus. Although microtubules dampen fluctuations in nuclear position, they are not required for forward translocation of the nucleus during cell migration. Trailing-edge detachment and pulling with a microneedle produced motion and deformation of the nucleus suggestive of a mechanical coupling between the nucleus and the trailing edge. Significantly, decoupling the nucleus from the cytoskeleton with KASH overexpression greatly decreased the frequency of trailing-edge detachment. Collectively, these results explain how the nucleus is moved in a crawling fibroblast and raise the possibility that forces could be transmitted from the front to the back of the cell through the nucleus.

  9. Progressive activation of paratrigeminal nucleus during entrance to hibernation

    SciTech Connect

    Kilduff, T.S.; Sharp, F.R.; Heller, H.C. Univ. of California, San Francisco Veterans Administration Medical Center, San Francisco, CA )

    1988-07-01

    The paratrigeminal nucleus (Pa5) undergoes a progressive increase in its uptake of 2-({sup 14}C)deoxyglucose (2DG) relative to other brain structures during entrance to hibernation in the ground squirrel. This highly significant increase results in the Pa5 becoming the most highly labeled brain region during hibernation, even though it exhibits one of the lowest levels of 2DG uptake in the brain during the nonhibernating state. The progressive activation of the Pa5 observed during entrance is reversed during arousal from hibernation. These observations and the neuroanatomical projections of the Pa5 implicate this nucleus as playing a role in the entrance and maintenance of the hibernating state.

  10. Leading neutrons from polarized proton-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan

    2017-03-01

    Leading neutron production on protons is known to be subject to strong absorptive corrections, which have been under debate for a long time. On nuclear targets these corrections are significantly enhanced and push the partial cross sections of neutron production to the very periphery of the nucleus. As a result, the A-dependences of inclusive and diffractive neutron production turn out to be similar. The mechanism of π-a1 interference, which successfully explained the observed single-spin asymmetry of neutrons in polarized pp interactions, is extended here to polarized pA collisions. Corrected for nuclear effects it explains quite well the magnitude and sign of the asymmetry AN observed in inelastic events, resulting in a violent break up of the nucleus. However the excessive magnitude of AN observed in the diffractive sample, remains a challenge.

  11. Triple F - A Comet Nucleus Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Kueppers, Michael; Keller, Horst Uwe; Kuhrt, Ekkehard; A'Hearn, Michael; Altwegg, Kathrin; Betrand, Regis; Busemann, Henner; Capria, Maria Teresa; Colangeli, Luigi

    2008-01-01

    The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA s Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three samples of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-and-go sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.

  12. Triple F - A Comet Nucleus Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Kueppers, Michael; Keller, H. U.; Kuehrt, E.; A'Hearn, M. F.; Altwegg, K.; Bertrand, R.; Busemann, H.; Capria, M. T.; Colangeli, L.; Davidsson, B.; Ehrenfreund, P.; Knollenberg, J.; Mottola, S.; Weiss, P.; Zolensky, M.; Akim, E.; Basilevsky, A.; Galimov, E.; Gerasimov, M.; Korablev, O.; Charnley, S.; Nittler, L. R.; Sandford, S.; Weissman, P.

    2008-01-01

    The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA's Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three sample cores of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-andgo sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.

  13. Direct Observation of Nanoparticle-Cancer Cell Nucleus Interactions

    PubMed Central

    Dam, Duncan Hieu M.; Lee, Jung Heon; Sisco, Patrick N.; Co, Dick T.; Zhang, Ming; Wasielewski, Michael R.; Odom, Teri W.

    2012-01-01

    We report the direct visualization of interactions between drug-loaded nanoparticles and the cancer cell nucleus. Nanoconstructs composed of nucleolin-specific aptamers and gold nanostars were actively transported to the nucleus and induced major changes to the nuclear phenotype via nuclear envelope invaginations near the site of the construct. The number of local deformations could be increased by ultra-fast, light-triggered release of the aptamers from the surface of the gold nanostars. Cancer cells with more nuclear envelope folding showed increased caspase 3 and 7 activity (apoptosis) as well as decreased cell viability. This newly revealed correlation between drug-induced changes in nuclear phenotype and increased therapeutic efficacy could provide new insight for nuclear-targeted cancer therapy. PMID:22424173

  14. IC5063: A merger with a hidden luminous active nucleus

    NASA Technical Reports Server (NTRS)

    Colina, L.; Sparks, W. B.; Macchetto, F. D.

    1990-01-01

    IC5063 is a nearby galaxy classified as an SO and containing a system of dust lanes parallel to its major optical axis (Danziger, Goss and Wellington, 1981; Bergeron, Durret and Boksenberg, 1983). Extended emission line regions with high excitation properties have been detected over distances of up to 19 kpc from the nucleus. This galaxy has been classified as Seyfert 2 on the basis of its emission line spectrum. These characteristics make IC5063 one of the best candidates for a merger remnant and an excellent candidate for a hidden luminous active nucleus. Based on new broad and narrow band images and long-slit spectroscopy obtained at the ESO 3.6 m telescope, the authors present some preliminary results supporting this hypothesis.

  15. Volume regulation and shape bifurcation in the cell nucleus

    PubMed Central

    Kim, Dong-Hwee; Li, Bo; Si, Fangwei; Phillip, Jude M.; Wirtz, Denis; Sun, Sean X.

    2015-01-01

    ABSTRACT Alterations in nuclear morphology are closely associated with essential cell functions, such as cell motility and polarization, and correlate with a wide range of human diseases, including cancer, muscular dystrophy, dilated cardiomyopathy and progeria. However, the mechanics and forces that shape the nucleus are not well understood. Here, we demonstrate that when an adherent cell is detached from its substratum, the nucleus undergoes a large volumetric reduction accompanied by a morphological transition from an almost smooth to a heavily folded surface. We develop a mathematical model that systematically analyzes the evolution of nuclear shape and volume. The analysis suggests that the pressure difference across the nuclear envelope, which is influenced by changes in cell volume and regulated by microtubules and actin filaments, is a major factor determining nuclear morphology. Our results show that physical and chemical properties of the extracellular microenvironment directly influence nuclear morphology and suggest that there is a direct link between the environment and gene regulation. PMID:26243474

  16. K+-nucleus potentials from K+-nucleon amplitudes

    NASA Astrophysics Data System (ADS)

    Friedman, E.

    2016-10-01

    Optical potentials for K+-nucleus interactions are constructed from K+-nucleon amplitudes using recently developed algorithm based on K+-N kinematics in the nuclear medium. With the deep penetration of K+ mesons into the nucleus at momenta below 800 MeV / c it is possible to test this approach with greater sensitivity than hitherto done with K- and pions. The energy-dependence of experimental reaction and total cross sections on nuclei is better reproduced with this approach compared to fixed-energy amplitudes. The inclusion of Pauli correlations in the medium also improves the agreement between calculation and experiment. The absolute scale of the cross sections is reproduced very well for 6Li but for C, Si and Ca calculated cross sections are (23 ± 4)% smaller than experiment, in agreement with earlier analyses. Two phenomenological models that produce such missing strength suggest that the imaginary part of the potential needs about 40% enhancement.

  17. Cell Autonomy and Synchrony of Suprachiasmatic Nucleus Circadian Oscillators

    PubMed Central

    Mohawk, Jennifer A.; Takahashi, Joseph S.

    2013-01-01

    The suprachiasmatic nucleus (SCN) of the hypothalamus is the site of the master circadian pacemaker in mammals. The individual cells of the SCN are capable of functioning independently from one another and therefore must form a cohesive circadian network through intercellular coupling. The network properties of the SCN lead to coordination of circadian rhythms among its neurons and neuronal subpopulations. There is increasing evidence for multiple interconnected oscillators within the SCN, and in this Review, we will highlight recent advances in our understanding of the complex organization and function of the cellular and network-level SCN clock. Understanding the way in which synchrony is achieved between cells in the SCN will provide insight into the means by which this important nucleus orchestrates circadian rhythms throughout the organism. PMID:21665298

  18. Towards a Deeper Understanding of the Nucleus with Exotic Nuclei

    NASA Astrophysics Data System (ADS)

    Ormand, Erich

    2006-10-01

    Despite more than fifty years of study, many questions about now nuclei are put together remain. While nuclei near the valley of stability have provided a wealth of information, they are not sufficient to provide us with a comprehensive and unified description of the nucleus. Especially lacking is an accurate picture of those exotic species that are the basis of cosmic alchemy. The missing pieces in the puzzle can be filled in with a determined experimental and theoretical effort focusing on nuclei lying far from the valley of stability. Here, I will outline the intellectual challenges that can be addressed by proposed exotic-beam facilities, and how new experimental data will quide and refine theoretical descriptions of the nucleus.

  19. Deformations and magnetic rotations in the Ni60 nucleus

    NASA Astrophysics Data System (ADS)

    Torres, D. A.; Cristancho, F.; Andersson, L.-L.; Johansson, E. K.; Rudolph, D.; Fahlander, C.; Ekman, J.; Du Rietz, R.; Andreoiu, C.; Carpenter, M. P.; Seweryniak, D.; Zhu, S.; Charity, R. J.; Chiara, C. J.; Hoel, C.; Pechenaya, O. L.; Reviol, W.; Sarantites, D. G.; Sobotka, L. G.; Baktash, C.; Yu, C.-H.; Carlsson, B. G.; Ragnarsson, I.

    2008-11-01

    Data from three experiments using the heavy-ion fusion evaporation-reaction 36Ar+28Si have been combined to study high-spin states in the residual nucleus Ni60, which is populated via the evaporation of four protons from the compound nucleus Ge64. The GAMMASPHERE array was used for all the experiments in conjunction with a 4π charged-particle detector arrays (MICROBALL, LUWUSIA) and neutron detectors (NEUTRON SHELL) to allow for the detection of γ rays in coincidence with the evaporated particles. An extended Ni60 level scheme is presented, comprising more than 270γ-ray transitions and 110 excited states. Their spins and parities have been assigned via directional correlations of γ rays emitted from oriented states. Spherical shell-model calculations in the fp-shell characterize some of the low-spin states, while the experimental results of the rotational bands are analyzed with configuration-dependent cranked Nilsson-Strutinsky calculations.

  20. The abnormal nucleus as a cause of congenital facial palsy

    PubMed Central

    Jemec, B.; Grobbelaar, A.; Harrison, D.

    2000-01-01

    BACKGROUND—Congenital facial palsy (CFP) is clinically defined as facial palsy present at birth. It is associated with considerable disfigurement and causes functional and emotional problems for the affected child. The aetiology of the majority of cases however, remains elusive.
AIMS—To investigate the role of a neuroanatomical abnormality as a cause of unilateral CFP.
METHODS—Magnetic resonance imaging (MRI) scans were performed on 21 patients with unilateral CFP. Fifteen patients had unilateral CFP only; six suffered from syndromes which can include unilateral CFP.
RESULTS—Of the 15 patients with unilateral CFP only, four (27%) had an abnormal nucleus or an abnormal weighting of this area on the MRI scan, compared to one (17%) of the remaining six patients.
CONCLUSION—Developmental abnormalities of the facial nucleus itself constitute an important, and previously ignored, cause of monosymptomatic unilateral CFP.

 PMID:10952650

  1. Neutrino-nucleus interactions at the LBNF near detector

    SciTech Connect

    Mosel, Ulrich

    2015-10-15

    The reaction mechanisms for neutrino interactions with an {sup 40}Ar nucleus with the LBNF flux are calculated with the Giessen-Boltzmann-Uehling-Uhlenbeck (GiBUU) transport-theoretical implementation of these interactions. Quasielastic scattering, many-body effects, pion production and absorption and Deep Inelastic Scattering are discussed; they all play a role at the LBNF energies and are experimentally entangled with each other. Quasielastic scattering makes up for only about 1/3 of the total cross section whereas pion production channels make up about 2/3 of the total. This underlines the need for a consistent description of the neutrino-nucleus reaction that treats all channels on an equal, consistent footing. The results discussed here can also serve as useful guideposts for the Intermediate Neutrino Program.

  2. Coulomb Excitation of the N = 50 nucleus 80Zn

    NASA Astrophysics Data System (ADS)

    van de Walle, J.; Aksouh, F.; Ames, F.; Behrens, T.; Bildstein, V.; Blazhev, A.; Cederkäll, J.; Clément, E.; Cocolios, T. E.; Davinson, T.; Delahaye, P.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Gernhauser, R.; Georgiev, G.; Habs, D.; Heyde, K.; Huber, G.; Huyse, M.; Ibrahim, F.; Ivanov, O.; Iwanicki, J.; Jolie, J.; Kester, O.; Köster, U.; Kröll, T.; Krücken, R.; Lauer, M.; Lisetskiy, A. F.; Lutter, R.; Marsh, B. A.; Mayet, P.; Niedermaier, O.; Nilsson, T.; Pantea, M.; Perru, O.; Raabe, R.; Reiter, P.; Sawicka, M.; Scheit, H.; Schrieder, G.; Schwalm, D.; Seliverstov, M. D.; Sieber, T.; Sletten, G.; Smirnova, N.; Stanoiu, M.; Stefanescu, I.; Thomas, J.-C.; Valiente-Dobón, J. J.; van Duppen, P.; Verney, D.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Wolf, B. H.; Zielińska, M.

    2008-05-01

    Neutron rich Zinc isotopes, including the N = 50 nucleus 80Zn, were produced and post-accelerated at the Radioactive Ion Beam (RIB) facility REX-ISOLDE (CERN). Low-energy Coulomb excitation was induced on these isotopes after post-acceleration, yielding B(E2) strengths to the first excited 2+ states. For the first time, an excited state in 80Zn was observed and the 21+ state in 78Zn was established. The measured B(E2,21+-->01+) values are compared to two sets of large scale shell model calculations. Both calculations reproduce the observed B(E2) systematics for the full Zinc isotopic chain. The results for N = 50 isotones indicate a good N = 50 shell closure and a strong Z = 28 proton core polarization. The new results serve as benchmarks to establish theoretical models, predicting the nuclear properties of the doubly magic nucleus 78Ni.

  3. Control of cell nucleus shapes via micropillar patterns.

    PubMed

    Pan, Zhen; Yan, Ce; Peng, Rong; Zhao, Yingchun; He, Yao; Ding, Jiandong

    2012-02-01

    We herein report a material technique to control the shapes of cell nuclei by the design of the microtopography of substrates to which the cells adhere. Poly(D,L-lactide-co-glycolide) (PLGA) micropillars or micropits of a series of height or depth were fabricated, and some surprising self deformation of the nuclei of bone marrow stromal cells (BMSCs) was found in the case of micropillars with a sufficient height. Despite severe nucleus deformation, BMSCs kept the ability of proliferation and differentiation. We further demonstrated that the shapes of cell nuclei could be regulated by the appropriate micropillar patterns. Besides circular and elliptoid shapes, some unusual nucleus shapes of BMSCs have been achieved, such as square, cross, dumbbell, and asymmetric sphere-protrusion.

  4. Direct observation of nanoparticle-cancer cell nucleus interactions.

    PubMed

    Dam, Duncan Hieu M; Lee, Jung Heon; Sisco, Patrick N; Co, Dick T; Zhang, Ming; Wasielewski, Michael R; Odom, Teri W

    2012-04-24

    We report the direct visualization of interactions between drug-loaded nanoparticles and the cancer cell nucleus. Nanoconstructs composed of nucleolin-specific aptamers and gold nanostars were actively transported to the nucleus and induced major changes to the nuclear phenotype via nuclear envelope invaginations near the site of the construct. The number of local deformations could be increased by ultrafast, light-triggered release of the aptamers from the surface of the gold nanostars. Cancer cells with more nuclear envelope folding showed increased caspase 3 and 7 activity (apoptosis) as well as decreased cell viability. This newly revealed correlation between drug-induced changes in nuclear phenotype and increased therapeutic efficacy could provide new insight for nuclear-targeted cancer therapy.

  5. Volume regulation and shape bifurcation in the cell nucleus.

    PubMed

    Kim, Dong-Hwee; Li, Bo; Si, Fangwei; Phillip, Jude M; Wirtz, Denis; Sun, Sean X

    2015-09-15

    Alterations in nuclear morphology are closely associated with essential cell functions, such as cell motility and polarization, and correlate with a wide range of human diseases, including cancer, muscular dystrophy, dilated cardiomyopathy and progeria. However, the mechanics and forces that shape the nucleus are not well understood. Here, we demonstrate that when an adherent cell is detached from its substratum, the nucleus undergoes a large volumetric reduction accompanied by a morphological transition from an almost smooth to a heavily folded surface. We develop a mathematical model that systematically analyzes the evolution of nuclear shape and volume. The analysis suggests that the pressure difference across the nuclear envelope, which is influenced by changes in cell volume and regulated by microtubules and actin filaments, is a major factor determining nuclear morphology. Our results show that physical and chemical properties of the extracellular microenvironment directly influence nuclear morphology and suggest that there is a direct link between the environment and gene regulation.

  6. Electromagnetic properties of the Beryllium-11 nucleus in Halo EFT

    NASA Astrophysics Data System (ADS)

    Phillips, D. R.; Hammer, H.-W.

    2010-04-01

    We compute electromagnetic properties of the Beryllium-11 nucleus using an effective field theory that exploits the separation of scales in this halo system. We fix the parameters of the EFT from measured data on levels and scattering lengths in the 10Be plus neutron system. We then obtain predictions for the B(E1) strength of the 1/2+ to 1/2- transition in the 11Be nucleus. We also compute the charge radius of the ground state of 11Be. Agreement with experiment within the expected accuracy of a leading-order computation in this EFT is obtained. We also indicate how higher-order corrections that affect both s-wave and p-wave 10 Be-neutron interactions will affect our results.

  7. The cellular mastermind(?) – Mechanotransduction and the nucleus

    PubMed Central

    Kaminski, Ashley; Fedorchak, Gregory R.; Lammerding, Jan

    2015-01-01

    Cells respond to mechanical stimulation by activation of specific signaling pathways and genes that allow the cell to adapt to its dynamic physical environment. How cells sense the various mechanical inputs and translate them into biochemical signals remains an area of active investigation. Recent reports suggest that the cell nucleus may be directly implicated in this cellular mechanotransduction process. In this chapter, we discuss how forces applied to the cell surface and cytoplasm induce changes in nuclear structure and organization, which could directly affect gene expression, while also highlighting the complex interplay between nuclear structural proteins and transcriptional regulators that may further modulate mechanotransduction signaling. Taken together, these findings paint a picture of the nucleus as a central hub in cellular mechanotransduction—both structurally and biochemically—with important implications in physiology and disease. PMID:25081618

  8. Exporting RNA from the nucleus to the cytoplasm.

    PubMed

    Köhler, Alwin; Hurt, Ed

    2007-10-01

    The transport of RNA molecules from the nucleus to the cytoplasm is fundamental for gene expression. The different RNA species that are produced in the nucleus are exported through the nuclear pore complexes via mobile export receptors. Small RNAs (such as tRNAs and microRNAs) follow relatively simple export routes by binding directly to export receptors. Large RNAs (such as ribosomal RNAs and mRNAs) assemble into complicated ribonucleoprotein (RNP) particles and recruit their exporters via class-specific adaptor proteins. Export of mRNAs is unique as it is extensively coupled to transcription (in yeast) and splicing (in metazoa). Understanding the mechanisms that connect RNP formation with export is a major challenge in the field.

  9. Soluble spiroperidol binding factors from bovine caudate nucleus.

    PubMed

    Winkler, M H; Berl, S

    1982-09-01

    Several properties of soluble spiroperidol binding factors separated from bovine caudate nucleus have been investigated by a previously unreported procedure. Data consistent with high particle weight and rapid binding equilibration are reported for high-affinity (+)butaclamol-sensitive components of a digitonin extract. A slower sedimenting component is found that also exhibits high affinity for spiroperidol but is not sensitive to (+)butaclamol. Centrifugation of a caudate nucleus homogenate yields a supernatant that appears to contain a component that exhibits spiroperidol binding that is more sensitive to displacement by (-) than by (+)butaclamol. The procedure used effects rapid separation of bound from unbound tritiated ligand on short columns of Sephadex G-15 followed by extrusion and sectioning of the Sephadex. The radioactivity remaining with each section is determined. The procedure is very rapid; the addition of active phases or the changing of the ionic environment, which may disturb the equilibrium, is avoided; and recovery of the protein free of bound ligand is easily affected.

  10. High-spin states in the 96Tc nucleus

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.; Căta-Danil, Gh.; Căta-Danil, I.; Ivaşcu, M.; Mărginean, N.; Rusu, C.; Stroe, L.; Ur, C. A.; Gizon, A.; Gizon, J.; Nyakó, B.; Timár, J.; Zolnai, L.; Boston, A. J.; Joss, D. T.; Paul, E. S.; Semple, A. T.; Parry, C. M.

    High-spin states in the 96Tc nucleus have been studied with the reactions 82Se(19F,5nγ) at 68 MeV and Zn(36S,αpxn) at 130 MeV. Two γ-ray cascades (irregular bandlike structures) have been observed up to an excitation energy of about 10 MeV and spin 21-22?.

  11. High-spin states in the 97Tc nucleus

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.; Gadea, A.; Căta-Danil, Ghe.; Căta-Danil, I.; Ivaşcu, M.; Mărginean, N.; Rusu, C.; Stroe, L.; Ur, C. A.

    High-spin states in the 97Tc nucleus have been studied by in-beam γ-ray spectroscopy with the reaction 82Se(19F,4nγ) at 68 MeV incident energy. Excited states have been observed up to about 8 MeV excitation and spin 43/2ℎ. The observed level scheme is compared with results of shell model calculations.

  12. Dynamics of Galectin-3 in the Nucleus and Cytoplasm

    PubMed Central

    Haudek, Kevin C.; Spronk, Kimberly J.; Voss, Patricia G.; Patterson, Ronald J.; Wang, John L.; Arnoys, Eric J.

    2009-01-01

    This review summarizes selected studies on galectin-3 (Gal3) as an example of the dynamic behavior of a carbohydrate-binding protein in the cytoplasm and nucleus of cells. Within the 15-member galectin family of proteins, Gal3 (Mr ~30,000) is the sole representative of the chimera subclass in which a proline- and glycine-rich NH2-terminal domain is fused onto a COOH-terminal carbohydrate recognition domain responsible for binding galactose-containing glycoconjugates. The protein shuttles between the cytoplasm and nucleus on the basis of targeting signals that are recognized by importin(s) for nuclear localization and exportin-1 (CRM1) for nuclear export. Depending on the cell type, specific experimental conditions in vitro, or tissue location, Gal3 has been reported to be exclusively cytoplasmic, predominantly nuclear, or distributed between the two compartments. The nuclear versus cytoplasmic distribution of the protein must reflect, then, some balance between nuclear import and export, as well as mechanisms of cytoplasmic anchorage or binding to a nuclear component. Indeed, a number of ligands have been reported for Gal3 in the cytoplasm and in the nucleus. Most of the ligands appear to bind Gal3, however, through protein-protein interactions rather than through protein-carbohydrate recognition. In the cytoplasm, for example, Gal3 interacts with the apoptosis repressor Bcl-2 and this interaction may be involved in Gal3’s anti-apoptotic activity. In the nucleus, Gal3 is a required pre-mRNA splicing factor; the protein is incorporated into spliceosomes via its association with the U1 small nuclear ribonucleoprotein (snRNP) complex. Although the majority of these interactions occur via the carbohydrate recognition domain of Gal3 and saccharide ligands such as lactose can perturb some of these interactions, the significance of the protein’s carbohydrate-binding activity, per se, remains a challenge for future investigations. PMID:19616076

  13. Decay of the N =126 , 213Fr nucleus

    NASA Astrophysics Data System (ADS)

    Pragati, Deo, A. Y.; Podolyák, Zs.; Walker, P. M.; Algora, A.; Rubio, B.; Agramunt, J.; Fraile, L. M.; Al-Dahan, N.; Alkhomashi, N.; Briz, J. A.; Aguado, M. E. Estevez; Farrelly, G.; Gelletly, W.; Herlert, A.; Köster, U.; Maira, A.

    2016-12-01

    γ rays following the EC/β+ and α decay of the N = 126, 213Fr nucleus have been observed at the CERN isotope separator on-line (ISOLDE) facility with the help of γ -ray and conversion-electron spectroscopy. These γ rays establish several hitherto unknown excited states in 213Rn. Also, five new α -decay branches from the 213Fr ground state have been discovered. Shell model calculations have been performed to understand the newly observed states in 213Rn.

  14. K--Nucleus Potentials Consistent with Kaonic Atoms

    NASA Astrophysics Data System (ADS)

    Cieply, A.; Friedman, E.; Gal, A.; Mares, J.

    2004-03-01

    Various models of the K- nucleus potential have been compared and tested in fits to kaonic atom data. The calculations give basically two vastly different predictions for the depth of the K- optical potential at the nuclear density. The study of the (K-stop, π ) reaction could help to distinguish between K- optical potentials as the Λ -hypernuclear formation rates are sensitive to the details of the initial-state K- wave function.

  15. The Ionization Source in the Nucleus of M84

    NASA Technical Reports Server (NTRS)

    Bower, G. A.; Green, R. F.; Quillen, A. C.; Danks, A.; Malumuth, E. M.; Gull, T.; Woodgate, B.; Hutchings, J.; Joseph, C.; Kaiser, M. E.

    2000-01-01

    We have obtained new Hubble Space Telescope (HST) observations of M84, a nearby massive elliptical galaxy whose nucleus contains a approximately 1.5 X 10(exp 9) solar mass dark compact object, which presumably is a supermassive black hole. Our Space Telescope Imaging Spectrograph (STIS) spectrum provides the first clear detection of emission lines in the blue (e.g., [0 II] lambda 3727, HBeta and [0 III] lambda lambda4959,5007), which arise from a compact region approximately 0".28 across centered on the nucleus. Our Near Infrared Camera and MultiObject Spectrometer (NICMOS) images exhibit the best view through the prominent dust lanes evident at optical wavelengths and provide a more accurate correction for the internal extinction. The relative fluxes of the emission lines we have detected in the blue together with those detected in the wavelength range 6295 - 6867 A by Bower et al. indicate that the gas at the nucleus is photoionized by a nonstellar process, instead of hot stars. Stellar absorption features from cool stars at the nucleus are very weak. We update the spectral energy distribution of the nuclear point source and find that although it is roughly flat in most bands, the optical to UV continuum is very red, similar to the spectral energy distribution of BL Lac. Thus, the nuclear point source seen in high-resolution optical images is not a star cluster but is instead a nonstellar source. Assuming isotropic emission from this source, we estimate that the ratio of bolometric luminosity to Eddington luminosity is about 5 x 10(exp -7). However, this could be underestimated if this source is a misaligned BL Lac object, which is a possibility suggested by the spectral energy distribution and the evidence of optical variability we describe.

  16. Ion channels at the nucleus: electrophysiology meets the genome.

    PubMed

    Matzke, Antonius J M; Weiger, Thomas M; Matzke, Marjori

    2010-07-01

    The nuclear envelope is increasingly viewed from an electrophysiological perspective by researchers interested in signal transduction pathways that influence gene transcription and other processes in the nucleus. Here, we describe evidence for ion channels and transporters in the nuclear membranes and for possible ion gating by the nuclear pores. We argue that a systems-level understanding of cellular regulation is likely to require the assimilation of nuclear electrophysiology into molecular and biochemical signaling pathways.

  17. Nucleus incertus inactivation impairs spatial learning and memory in rats.

    PubMed

    Nategh, Mohsen; Nikseresht, Sara; Khodagholi, Fariba; Motamedi, Fereshteh

    2015-02-01

    Nucleus incertus (NI) is a pontine nucleus which releases mainly GABA and relaxin-3 in rats. Its suggested functions include response to stress, arousal, and modulation of hippocampal theta rhythm. Since the role of NI in learning and memory has not been well characterized, therefore the involvement of this nucleus in spatial learning and memory and the aftermath hippocampal levels of c-fos and pCREB were evaluated. NI was targeted by implanting cannula in male rats. For reference memory, NI was inactivated by lidocaine (0.4 μl, 4%) at three stages of acquisition, consolidation and retrieval in Morris water maze paradigm. For working memory, NI was inactivated in acquisition and retrieval phases. Injection of lidocaine prior to the first training session of reference memory significantly increased the distance moved, suggesting that inactivation of NI delays acquisition in this spatial task. Inactivation also interfered with the retrieval phase of spatial reference memory, as the time in target quadrant for lidocaine group was less, and the escape latency was higher compared to the control group. However, no difference was observed in the consolidation phase. In the working memory task, with inter-trial intervals of 75 min, the escape latency was higher when NI was inactivated in the retrieval phase. In addition, c-fos and pCREB/CREB levels decreased in NI-inhibited rats. This study suggests that nucleus incertus might participate in acquisition of spatial reference, and retrieval of both spatial reference and working memory. Further studies should investigate possible roles of NI in the hippocampal plasticity.

  18. Study of Comet Nucleus Gamma-Ray Spectrometer Penetration System

    NASA Technical Reports Server (NTRS)

    Adams, G. L.; Amundsen, R. J.; Beardsley, R. W.; Cash, R. H.; Clark, B. C.; Knight, T. C. D.; Martin, J. P.; Monti, P.; Outteridge, D. A.; Plaster, W. D.

    1986-01-01

    A penetrator system has been suggested as an approach for making in situ measurements of the composition and physical properties of the nucleus of a comet. This study has examined in detail the feasibility of implementing the penetrator concept. The penetrator system and mission designs have been developed and iterated in sufficient detail to provide a high level of confidence that the concept can be implemented within the constraints of the Mariner Mark 2 spacecraft.

  19. Analysis about the force of electrons revolve around the nucleus

    NASA Astrophysics Data System (ADS)

    Yongquan, Han

    1, Let's compare the difference of two algorithms: the electrostatic force between protons and electrons, F1 = ke2 / r2, r is the radius of the electron around the nucleus movement - within 10-10 meters; Electronic movement speed is close to the light- about 107 meters per second, the size of the centripetal force F2 = v2m/r. F1 should be approximately equal to F2,calculate the ratio of F1 and F2, F2 / F1 = (v2m/r) (ke2 / r2) / = (107 * 107 * 0.91 * 10-30 / r)/(9 * 109 * 1.6* 10-19*1.6*10-19 / r2) = 4 x 103.The calculation shows that not only the electrostatic force and other force. 2, The radius of the electron orbiting around the nucleus named r, F = Ke2 / r2 = 9 x 109 x #¨1.6 x 10 -19) 2 / r2 = v2m/r, r = 2.5 x 10-14 meters, namely that the radius of hydrogen atom is about 2.5 x 10- 14 meters, that is different with the observed result (10-10 meters).Electrons revolve around the nucleus may faster than 107 m/s, can almost reach 108 meters per second, if the electronic moves by 108 meters per second, hydrogen atom radius is approximately 2. 5 x 10 -16 meters, has converged in the interior of the nucleus, it is not possible. Use density to instead of electricity, can solve this problem. Author: hanyongquan TEL: 15611860790

  20. Theory and phenomenology of coherent neutrino-nucleus scattering

    SciTech Connect

    McLaughlin, Gail

    2015-07-15

    We review the theory and phenomenology of coherent elastic neutrino-nucleus scattering (CEνNS). After a brief introduction, we summarize the places where CEνNS is already in use and then turn to future physics opportunities from CEνNS. CEνNS has been proposed as a way to limit or discover beyond the standard model physics, measure the nuclear-neutron radius and constrain the Weinberg angle.

  1. Methods and compositions for targeting macromolecules into the nucleus

    SciTech Connect

    Chook, Yuh Min

    2013-06-25

    The present invention includes compositions, methods and kits for directing an agent across the nuclear membrane of a cell. The present invention includes a Karyopherin beta2 translocation motif in a polypeptide having a slightly positively charged region or a slightly hydrophobic region and one or more R/K/H-X.sub.(2-5)-P-Y motifs. The polypeptide targets the agent into the cell nucleus.

  2. Emission of charged particles from excited compound nucleus

    SciTech Connect

    Kalandarov, Sh. A.; Adamian, G. G.; Antonenko, N. V.

    2010-11-24

    The formation and decay of excited compound nucleus are studied within the dinuclear system model[1]. The cross sections of complex fragment emission are calculated and compared with experimental data for the reactions {sup 3}He+{sup 108}Ag, {sup 78,82}Kr+{sup 12}C. Angular momentum dependence of cluster emission in {sup 78}Kr+{sup 12}C and {sup 40}Ca+{sup 78}Kr reactions is demonstrated.

  3. Nucleus caudalis lesioning: Case report of chronic traumatic headache relief

    PubMed Central

    Sandwell, Stephen E.; El-Naggar, Amr O.

    2011-01-01

    Background: The nucleus caudalis dorsal root entry zone (DREZ) surgery is used to treat intractable central craniofacial pain. This is the first journal publication of DREZ lesioning used for the long-term relief of an intractable chronic traumatic headache. Case Description: A 40-year-old female experienced new-onset bi-temporal headaches following a traumatic head injury. Despite medical treatment, her pain was severe on over 20 days per month, 3 years after the injury. The patient underwent trigeminal nucleus caudalis DREZ lesioning. Bilateral single-row lesions were made at 1-mm interval between the level of the obex and the C2 dorsal nerve roots, using angled radiofrequency electrodes, brought to 80°C for 15 seconds each, along a path 1 to 1.2 mm posterior to the accessory nerve rootlets. The headache improved, but gradually returned. Five years later, her headaches were severe on over 24 days per month. The DREZ surgery was then repeated. Her headaches improved and the relief has continued for 5 additional years. She has remained functional, with no limitation in instrumental activities of daily living. Conclusions: The nucleus caudalis DREZ surgery brought long-term relief to a patient suffering from chronic traumatic headache. PMID:22059123

  4. Structure of Tz = 3 / 2 , 33P Nucleus

    NASA Astrophysics Data System (ADS)

    Lubna, Rebeka Sultana; Tripathi, Vandana; Tabor, Samuel; Tai, Pei-Laun; Bender, Peter

    2016-03-01

    The excited states of the nucleus 33P were populated by the 18O(18O, p-2n γ)33P fusion evaporation reaction at Elab = 25 MeV.Gammasphere was used along with the particle detector Microball to detect the γ emissions in coincidence with the emitted charged particles from the compound nucleus 36S. The auxiliary detector Microball was used to select the charged particle channel and to determine the exact position and the energy of the emitted proton. The purpose of finding the position and energy of proton was to determine a more precise angle between the recoil nucleus and the emitted γ which was later employed to get a better Doppler correction. Along with the selection of the proton channel, the γ- γ coincidence technique helped to isolate 33P from the other phosphorus isotopes and also reduced the contaminations from the dominant pure neutron channels. A number of transitions and states was identified that were not observed before. The 4 π arrangement of Gammasphere offered an excellent opportunity to measure the angular distribution of the electromagnetic emissions leading to the assignment of the spins for most of the new states. The experimental observations were compared to the shell model calculation using Work supported by the U.S. National Science Foundation under Grant No. 1401574.

  5. Relief memory consolidation requires protein synthesis within the nucleus accumbens.

    PubMed

    Bruning, Johann E A; Breitfeld, Tino; Kahl, Evelyn; Bergado-Acosta, Jorge R; Fendt, Markus

    2016-06-01

    Relief learning refers to the association of a stimulus with the relief from an aversive event. The thus-learned relief stimulus then can induce, e.g., an attenuation of the startle response or approach behavior, indicating positive valence. Previous studies revealed that the nucleus accumbens is essential for the acquisition and retrieval of relief memory. Here, we ask whether the nucleus accumbens is also the brain site for consolidation of relief memory into a long-term form. In rats, we blocked local protein synthesis within the nucleus accumbens by local infusions of anisomycin at different time points during a relief conditioning experiment. Accumbal anisomycin injections immediately after the relief conditioning session, but not 4 h later, prevented the consolidation into long-term relief memory. The retention of already consolidated relief memory was not affected by anisomycin injections. This identifies a time window and site for relief memory consolidation. These findings should complement our understanding of the full range of effects of adverse experiences, including cases of their distortion in humans such as post-traumatic stress disorder and/or phobias.

  6. Nucleus- and cell-specific gene expression in monkey thalamus.

    PubMed

    Murray, Karl D; Choudary, Prabhakara V; Jones, Edward G

    2007-02-06

    Nuclei of the mammalian thalamus are aggregations of neurons with unique architectures and input-output connections, yet the molecular determinants of their organizational specificity remain unknown. By comparing expression profiles of thalamus and cerebral cortex in adult rhesus monkeys, we identified transcripts that are unique to dorsal thalamus or to individual nuclei within it. Real-time quantitative PCR and in situ hybridization analyses confirmed the findings. Expression profiling of individual nuclei microdissected from the dorsal thalamus revealed additional subsets of nucleus-specific genes. Functional annotation using Gene Ontology (GO) vocabulary and Ingenuity Pathways Analysis revealed overrepresentation of GO categories related to development, morphogenesis, cell-cell interactions, and extracellular matrix within the thalamus- and nucleus-specific genes, many involved in the Wnt signaling pathway. Examples included the transcription factor TCF7L2, localized exclusively to excitatory neurons; a calmodulin-binding protein PCP4; the bone extracellular matrix molecules SPP1 and SPARC; and other genes involved in axon outgrowth and cell matrix interactions. Other nucleus-specific genes such as CBLN1 are involved in synaptogenesis. The genes identified likely underlie nuclear specification, cell phenotype, and connectivity during development and their maintenance in the adult thalamus.

  7. AN OFF-CENTERED ACTIVE GALACTIC NUCLEUS IN NGC 3115

    SciTech Connect

    Menezes, R. B.; Steiner, J. E.; Ricci, T. V.

    2014-11-20

    NGC 3115 is an S0 galaxy that has always been considered to have a pure absorption-line spectrum. Some recent studies have detected a compact radio-emitting nucleus in this object, coinciding with the photometric center and with a candidate for the X-ray nucleus. This is evidence of the existence of a low-luminosity active galactic nucleus (AGN) in the galaxy, although no emission line has ever been observed. We report the detection of an emission-line spectrum of a type 1 AGN in NGC 3115, with an Hα luminosity of L {sub Hα} = (4.2 ± 0.4) × 10{sup 37} erg s{sup –1}. Our analysis revealed that this AGN is located at a projected distance of ∼0.''29 ± 0.''05 (corresponding to ∼14.3 ± 2.5 pc) from the stellar bulge center, which is coincident with the kinematic center of this object's stellar velocity map. The black hole corresponding to the observed off-centered AGN may form a binary system with a black hole located at the stellar bulge center. However, it is also possible that the displaced black hole is the merged remnant of the binary system coalescence, after the ''kick'' caused by the asymmetric emission of gravitational waves. We propose that certain features in the stellar velocity dispersion map are the result of perturbations caused by the off-centered AGN.

  8. By moonlighting in the nucleus, villin regulates epithelial plasticity

    PubMed Central

    Patnaik, Srinivas; George, Sudeep P.; Pham, Eric; Roy, Swati; Singh, Kanchan; Mariadason, John M.; Khurana, Seema

    2016-01-01

    Villin is a tissue-specific, actin-binding protein involved in the assembly and maintenance of microvilli in polarized epithelial cells. Conversely, villin is also linked with the loss of epithelial polarity and gain of the mesenchymal phenotype in migrating, invasive cells. In this study, we describe for the first time how villin can switch between these disparate functions to change tissue architecture by moonlighting in the nucleus. Our study reveals that the moonlighting function of villin in the nucleus may play an important role in tissue homeostasis and disease. Villin accumulates in the nucleus during wound repair, and altering the cellular microenvironment by inducing hypoxia increases the nuclear accumulation of villin. Nuclear villin is also associated with mouse models of tumorigenesis, and a systematic analysis of a large cohort of colorectal cancer specimens confirmed the nuclear distribution of villin in a subset of tumors. Our study demonstrates that nuclear villin regulates epithelial–mesenchymal transition (EMT). Altering the nuclear localization of villin affects the expression and activity of Slug, a key transcriptional regulator of EMT. In addition, we find that villin directly interacts with a transcriptional corepressor and ligand of the Slug promoter, ZBRK1. The outcome of this study underscores the role of nuclear villin and its binding partner ZBRK1 in the regulation of EMT and as potential new therapeutic targets to inhibit tumorigenesis. PMID:26658611

  9. Dorsal raphe nucleus projecting retinal ganglion cells: Why Y cells?

    PubMed Central

    Pickard, Gary E.; So, Kwok-Fai; Pu, Mingliang

    2015-01-01

    Retinal ganglion Y (alpha) cells are found in retinas ranging from frogs to mice to primates. The highly conserved nature of the large, fast conducting retinal Y cell is a testament to its fundamental task, although precisely what this task is remained ill-defined. The recent discovery that Y-alpha retinal ganglion cells send axon collaterals to the serotonergic dorsal raphe nucleus (DRN) in addition to the lateral geniculate nucleus (LGN), medial interlaminar nucleus (MIN), pretectum and the superior colliculus (SC) has offered new insights into the important survival tasks performed by these cells with highly branched axons. We propose that in addition to its role in visual perception, the Y-alpha retinal ganglion cell provides concurrent signals via axon collaterals to the DRN, the major source of serotonergic afferents to the forebrain, to dramatically inhibit 5-HT activity during orientation or alerting/escape responses, which dis-facilitates ongoing tonic motor activity while dis-inhibiting sensory information processing throughout the visual system. The new data provide a fresh view of these evolutionarily old retinal ganglion cells. PMID:26363667

  10. Integration of sensory quanta in cuneate nucleus neurons in vivo.

    PubMed

    Bengtsson, Fredrik; Brasselet, Romain; Johansson, Roland S; Arleo, Angelo; Jörntell, Henrik

    2013-01-01

    Discriminative touch relies on afferent information carried to the central nervous system by action potentials (spikes) in ensembles of primary afferents bundled in peripheral nerves. These sensory quanta are first processed by the cuneate nucleus before the afferent information is transmitted to brain networks serving specific perceptual and sensorimotor functions. Here we report data on the integration of primary afferent synaptic inputs obtained with in vivo whole cell patch clamp recordings from the neurons of this nucleus. We find that the synaptic integration in individual cuneate neurons is dominated by 4-8 primary afferent inputs with large synaptic weights. In a simulation we show that the arrangement with a low number of primary afferent inputs can maximize transfer over the cuneate nucleus of information encoded in the spatiotemporal patterns of spikes generated when a human fingertip contact objects. Hence, the observed distributions of synaptic weights support high fidelity transfer of signals from ensembles of tactile afferents. Various anatomical estimates suggest that a cuneate neuron may receive hundreds of primary afferents rather than 4-8. Therefore, we discuss the possibility that adaptation of synaptic weight distribution, possibly involving silent synapses, may function to maximize information transfer in somatosensory pathways.

  11. The Nuclear Option: Evidence Implicating the Cell Nucleus in Mechanotransduction.

    PubMed

    Szczesny, Spencer E; Mauck, Robert L

    2017-02-01

    Biophysical stimuli presented to cells via microenvironmental properties (e.g., alignment and stiffness) or external forces have a significant impact on cell function and behavior. Recently, the cell nucleus has been identified as a mechanosensitive organelle that contributes to the perception and response to mechanical stimuli. However, the specific mechanotransduction mechanisms that mediate these effects have not been clearly established. Here, we offer a comprehensive review of the evidence supporting (and refuting) three hypothetical nuclear mechanotransduction mechanisms: physical reorganization of chromatin, signaling at the nuclear envelope, and altered cytoskeletal structure/tension due to nuclear remodeling. Our goal is to provide a reference detailing the progress that has been made and the areas that still require investigation regarding the role of nuclear mechanotransduction in cell biology. Additionally, we will briefly discuss the role that mathematical models of cell mechanics can play in testing these hypotheses and in elucidating how biophysical stimulation of the nucleus drives changes in cell behavior. While force-induced alterations in signaling pathways involving lamina-associated polypeptides (LAPs) (e.g., emerin and histone deacetylase 3 (HDAC3)) and transcription factors (TFs) located at the nuclear envelope currently appear to be the most clearly supported mechanism of nuclear mechanotransduction, additional work is required to examine this process in detail and to more fully test alternative mechanisms. The combination of sophisticated experimental techniques and advanced mathematical models is necessary to enhance our understanding of the role of the nucleus in the mechanotransduction processes driving numerous critical cell functions.

  12. The TLC: a novel auditory nucleus of the mammalian brain.

    PubMed

    Saldaña, Enrique; Viñuela, Antonio; Marshall, Allen F; Fitzpatrick, Douglas C; Aparicio, M-Auxiliadora

    2007-11-28

    We have identified a novel nucleus of the mammalian brain and termed it the tectal longitudinal column (TLC). Basic histologic stains, tract-tracing techniques and three-dimensional reconstructions reveal that the rat TLC is a narrow, elongated structure spanning the midbrain tectum longitudinally. This paired nucleus is located close to the midline, immediately dorsal to the periaqueductal gray matter. It occupies what has traditionally been considered the most medial region of the deep superior colliculus and the most medial region of the inferior colliculus. The TLC differs from the neighboring nuclei of the superior and inferior colliculi and the periaqueductal gray by its distinct connections and cytoarchitecture. Extracellular electrophysiological recordings show that TLC neurons respond to auditory stimuli with physiologic properties that differ from those of neurons in the inferior or superior colliculi. We have identified the TLC in rodents, lagomorphs, carnivores, nonhuman primates, and humans, which indicates that the nucleus is conserved across mammals. The discovery of the TLC reveals an unexpected level of longitudinal organization in the mammalian tectum and raises questions as to the participation of this mesencephalic region in essential, yet completely unexplored, aspects of multisensory and/or sensorimotor integration.

  13. Coexistence of central nucleus, cores, and rods: Diagnostic relevance

    PubMed Central

    Dhinakaran, Sathiyabama; Kumar, Rashmi Santhosh; Thakkar, Ravindra; Narayanappa, Gayathri

    2016-01-01

    Background: Congenital myopathies (CMs) though considered distinct disorders, simultaneous occurrence of central nucleus, nemaline rods, and cores in the same biopsy are scarcely reported. Objective: A retrospective reassessment of cases diagnosed as CMs to look for multiple pathologies missed, if any, during the initial diagnosis. Materials and Methods: Enzyme histochemical, and immunohistochemical-stained slides from 125 cases diagnosed as congenital myopathy were reassessed. Results: The study revealed 15 cases (12%) of congenital myopathy with more than one morphological feature. Central nucleus with cores (n = 11), central nucleus, nemaline rods and cores (n = 3), and nemaline rods with cores (n = 1). 4/11 cases were diagnosed as centronuclear myopathy (CNM) in the first instance; in addition, cores were revealed on reassessment. Discussion: The prevalence of CMs of all neuromuscular disorders is approximately 6 in 100,000 live births, with regional variations. Three main defined CMs include centro nuclear myopathy (CNM), nemaline rod myopathy (NRM), and central core disease (CCD). However, they are more diverse with overlapping clinical and histopathological features, thus broadening the spectra within each category of congenital myopathy. Conclusion: Identification of cases with overlap of pathological features has diagnostic relevance. PMID:27293330

  14. Experimental studies of pion-nucleus interactions at intermediate energies

    SciTech Connect

    Not Available

    1991-12-31

    This report summarizes the work on experimental research in intermediate energy nuclear physics carried out at New Mexico State University in 1991 under a great from the US Department of Energy. Most of these studies have involved investigations of various pion-nucleus interactions. The work has been carried out both with the LAMPF accelerator at the Los Alamos National Laboratory and with the cyclotron at the Paul Scherrer Institute (PSI) near Zurich, Switzerland. Part of the experimental work involves measurements of new data on double-charge-exchange scattering, using facilities at LAMPF which we helped modify, and on pion absorption, using a new detector system at PSI that covers nearly the full solid-angle region which we helped construct. Other work involved preparation for future experiments using polarized nuclear targets and a new high-resolution spectrometer system for detecting {pi}{sup 0} mesons. We also presented several proposals for works to be done in future years, involving studies related to pi-mesonic atoms, fundamental pion-nucleon interactions, studies of the difference between charged and neutral pion interactions with the nucleon, studies of the isospin structure of pion-nucleus interactions, and pion scattering from polarized {sup 3}He targets. This work is aimed at improving our understanding of the pion-nucleon interaction, of the pion-nucleus interaction mechanism, and of nuclear structure.

  15. Action at a Distance in the Cell's Nucleus

    NASA Astrophysics Data System (ADS)

    Kondev, Jane

    Various functions performed by chromosomes involve long-range communication between DNA sequences that are tens of thousands of bases apart along the genome, and microns apart in the nucleus. In this talk I will discuss experiments and theory relating to two distinct modes of long-range communication in the nucleus, chromosome looping and protein hopping along the chromosome, both in the context of DNA-break repair in yeast. Yeast is an excellent model system for studies that link chromosome conformations to their function as there is ample experimental evidence that yeast chromosome conformations are well described by a simple, random-walk polymer model. Using a combination of polymer physics theory and experiments on yeast cells, I will demonstrate that loss of polymer entropy due to chromosome looping is the driving force for homology search during repair of broken DNA by homologous recombination. I will also discuss the spread of histone modifications along the chromosome and away from the DNA break point in the context of simple physics models based on chromosome looping and kinase hopping, and show how combining physics theory and cell-biology experiment can be used to dissect the molecular mechanism of the spreading process. These examples demonstrate how combined theoretical and experimental studies can reveal physical principles of long-range communication in the nucleus, which play important roles in regulation of gene expression, DNA recombination, and chromatin modification. This work was supported by the NSF DMR-1206146.

  16. Discrimination between normal and malignant gastric epithelial cells by computer image analysis.

    PubMed

    Weinreb, M; Zajicek, G; Levij, I S

    1984-09-01

    The nuclei of 21 normal and 23 malignant epithelial cells from gastric smears obtained by brushing were analyzed by a black-and-white video camera under computer control. Each nucleus was digitized and its relief smoothed and displayed. A Sobel operator determined the nuclear boundaries and nuclear core area. Eighteen nuclear parameters (form descriptors and gray-value descriptors) were extracted for each nucleus and used as variables for discriminant analysis. Nine of these parameters proved useful for discrimination between normal and malignant gastric epithelial cells, with a correct classification rate of 100%. Of these, the best discriminating variables were the maximal gray value in the core, the maximal horizontal and vertical diameters, the core area and the mean derivative value in the core.

  17. Effects of bupropion on the forced swim test and release of dopamine in the nucleus accumbens in ACTH-treated rats.

    PubMed

    Kitamura, Yoshihisa; Yagi, Takahiko; Kitagawa, Kouhei; Shinomiya, Kazuaki; Kawasaki, Hiromu; Asanuma, Masato; Gomita, Yutaka

    2010-08-01

    The dopamine reuptake inhibitor bupropion has clinically been proven to improve depression and treatment-resistant depression. We examined its influence on the duration of immobility during the forced swim test in adrenocorticotropic hormone (ACTH)-treated rats and further analyzed the possible role of dopamine receptors in this effect. Additionally, the mechanism by which bupropion acts in this model was explored specifically in relation to the site of action through the use of microinjections into the medial prefrontal cortex and nucleus accumbens. Bupropion significantly decreased the duration of immobility in normal and ACTH-treated rats. This effect was blocked by D2 and D3 receptor antagonists in normal rats. Furthermore, infusions of bupropion into the nucleus accumbens, but not medial prefrontal cortex, decreased the immobility of normal and ACTH-treated rats during the forced swim test. Bupropion treatment plus repeated ACTH treatment significantly increased the extracellular dopamine concentration. These findings suggest the antidepressant-like effect of bupropion to be related to levels of dopamine in the rat nucleus accumbens.

  18. Distinct effect of orphanin FQ in nucleus raphe magnus and nucleus reticularis gigantocellularis on the rat tail flick reflex.

    PubMed

    Yang, Z; Zhang, Y; Wu, G

    2001-06-22

    The aim of the present study is to investigate the effects of orphanin FQ (OFQ) microinjected into the nucleus raphe magnus (NRM) and the nucleus reticularis gigantocellularis (NGC) on pain modulation. The tail-flick latency (TFL) was used as a behavioral index of nociceptive responsiveness. The result showed microinjection of OFQ into the NRM significantly increased the TFL, whereas microinjection of OFQ into the NGC decreased the TFL, suggesting the analgesic effect of OFQ in the NRM and the hyperalgesic effect of OFQ in the NGC. As there are three classes of putative pain modulating neurons in the rostral ventromedial medulla (RVM), the hyperalgesic or analgesic effect of OFQ in the RVM might depend upon the different class of the neurons being acted.

  19. [Extracellular aminoacids in the amygdala and nucleus accumbens in the rat during acute pain].

    PubMed

    Silva, Elizabeth; Hernández, Luis

    2007-06-01

    In the present experiments extracellular arginine, glutamate and aspartate were studied in the basolateral nucleus of the amygdala and core of the nucleus accumbens during the formalin test (phase I). A combination of capillary zone electrophoresis with laser induced fluorescence detection and microdialysis in freely moving rats was used. Glutamate and arginine significantly increased in the nucleus accumbens after formalin injection; glutamate, arginine and aspartate significantly increased in the basolateral nucleus of the amygdala, after formalin injection. These experiments suggest that rapid neurotransmitters changes observed in the nucleus accumbens and amygdala, are possibly related to immobility and emotional states such as anxiety, aversion and/or depression caused by pain.

  20. Effects of monocular deprivation in the nucleus rotundus of zebra finches: a Nissl and deoxyglucose study.

    PubMed

    Herrmann, K; Bischof, H J

    1986-01-01

    We evaluated in zebra finches the effects of monocular deprivation on morphological and physiological features of the nucleus rotundus, the thalamic relay station of the tectofugal pathway. In a first series of experiments neuron size and total volume were estimated in animals deprived for 20, 40 and at least 100 days and compared to values obtained from normally reared birds. Monocular closure for more than 40 days causes a marked hypertrophy in cells receiving their main input from the open eye, whereas the deprived cells are normal in size. However, with only 20 days of monocular deprivation both deprived and non-deprived rotundal neurons are larger than normal. This indicates that monocular closure has a biphasic effect: firstly, an unselective hypertrophy of deprived and non-deprived neurons, and secondly, a subsequent period of shrinkage of the deprived cells to normal values, while cells driven by the open eye remain hypertrophied. The total volume of the deprived n. rotundus turns out to be smaller in all age groups. In a second series of experiments the activity of the n. rotundus of animals monocularly deprived from birth for 100 days was investigated with the 2-deoxyglucose-method (Sokoloff et al. 1977). With binocular stimulation the activity of the deprived n. rotundus was reduced by about 40%. Depriving adult animals for 100 days does not result in asymmetric labeling of the n. rotundus. We interpretate the 2-DG data as evidence for the existence of a sensitive period for the effects of monocular deprivation. The anatomical data suggest, however, that the effects of monocular deprivation in birds are different from those observed in mammals.

  1. Nucleus-encoded periplastid-targeted EFL in chlorarachniophytes.

    PubMed

    Gile, Gillian H; Keeling, Patrick J

    2008-09-01

    Chlorarachniophytes are cercozoan amoeboflagellates that acquired photosynthesis by enslaving a green alga, which has retained a highly reduced nucleus called a nucleomorph. The nucleomorph lacks many genes necessary for its own maintenance and expression, suggesting that some genes have been moved to the host nucleus and their products are now targeted back to the periplastid compartment (PPC), the reduced eukaryotic cytoplasm of the endosymbiont. Protein trafficking in chlorarachniophytes is therefore complex, including nucleus-encoded plastid-targeted proteins, nucleomorph-encoded plastid-targeted proteins, and nucleus-encoded periplastid-targeted proteins. A major gap in our understanding of this system is the PPC-targeted proteins because none have been described in any chlorarachniophytes. Here we describe the first such protein, the GTPase EFL. EFL was characterized from 7 chlorarachniophytes, and 2 distinct types were found. One is related to foraminiferan EFL and lacks an amino-terminal extension. The second, distantly related, type encodes an amino-terminal extension consisting of a signal peptide followed by sequence sharing many characteristics with transit peptides from nucleus-encoded plastid-targeted proteins and which we conclude is most likely PPC targeted. Western blotting with antibodies specific to putative host and PPC-targeted EFL from the chlorarachniophytes Bigelowiella natans and Gymnochlora stellata is consistent with posttranslational cleavage of the leaders from PPC-targeted proteins. Immunolocalization of both proteins in B. natans confirmed the cytosolic location of the leaderless EFL and a distinct localization pattern for the PPC-targeted protein but could not rule out a plastid location (albeit very unlikely). We sought other proteins with a similar leader and identified a eukaryotic translation initiation factor 1 encoding a bipartite extension with the same properties. Transit peptide sequences were characterized from all 3

  2. Superscaling in electron-nucleus scattering and its link to CC and NC QE neutrino-nucleus scattering

    SciTech Connect

    Barbaro, M. B.; Amaro, J. E.; Caballero, J. A.; González-Jiménez, R.; Donnelly, T. W.; Ivanov, M.; Udías, J. M.

    2015-05-15

    The superscaling approach (SuSA) to neutrino-nucleus scattering, based on the assumed universality of the scaling function for electromagnetic and weak interactions, is reviewed. The predictions of the SuSA model for bot CC and NC differential and total cross sections are presented and compared with the MiniBooNE data. The role of scaling violations, in particular the contribution of meson exchange currents in the two-particle two-hole sector, is explored.

  3. Pion yields and the nature of kaon-pion ratios in high energy nucleus-nucleus collisons: models versus measurements

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; De, B.; Guptaroy, P.

    2001-08-01

    The pion densities and the nature of kaon-pion ratios offer two very prominent and crucial physical observables on which sufficient data for heavy nucleus collisions, to date, are available. In the light of two models - one purely phenomenological and the other with a sound dynamical basis - we would try to examine here the state of agreement between calculations and experimental results obtainable from the past and the latest measurements. Impact and implications of all these would also finally be spelt out.

  4. Superscaling in electron-nucleus scattering and its link to CC and NC QE neutrino-nucleus scattering

    NASA Astrophysics Data System (ADS)

    Barbaro, M. B.; Amaro, J. E.; Caballero, J. A.; Donnelly, T. W.; González-Jiménez, R.; Ivanov, M.; Udías, J. M.

    2015-05-01

    The superscaling approach (SuSA) to neutrino-nucleus scattering, based on the assumed universality of the scaling function for electromagnetic and weak interactions, is reviewed. The predictions of the SuSA model for bot CC and NC differential and total cross sections are presented and compared with the MiniBooNE data. The role of scaling violations, in particular the contribution of meson exchange currents in the two-particle two-hole sector, is explored.

  5. GABA and glycine receptors in the nucleus ambiguus mediate tachycardia elicited by chemical stimulation of the hypothalamic arcuate nucleus.

    PubMed

    Chitravanshi, Vineet C; Kawabe, Kazumi; Sapru, Hreday N

    2015-07-01

    We have previously reported that stimulation of the hypothalamic arcuate nucleus (ARCN) by microinjections of N-methyl-d-aspartic acid (NMDA) elicits tachycardia, which is partially mediated via inhibition of vagal inputs to the heart. The neuronal pools and neurotransmitters in them mediating tachycardia elicited from the ARCN have not been identified. We tested the hypothesis that the tachycardia elicited from the ARCN may be mediated by inhibitory neurotransmitters in the nucleus ambiguus (nAmb). Experiments were done in urethane-anesthetized, artificially ventilated, male Wistar rats. In separate groups of rats, unilateral and bilateral microinjections of muscimol (1 mM), gabazine (0.01 mM), and strychnine (0.5 mM) into the nAmb significantly attenuated tachycardia elicited by unilateral microinjections of NMDA (10 mM) into the ARCN. Histological examination of the brains showed that the microinjections sites were within the targeted nuclei. Retrograde anatomic tracing from the nAmb revealed direct bilateral projections from the ARCN and hypothalamic paraventricular nucleus to the nAmb. The results of the present study suggest that tachycardia elicited by stimulation of the ARCN by microinjections of NMDA is mediated via GABAA and glycine receptors located in the nAmb.

  6. A hypothalamic projection to the turtle red nucleus: an anterograde and retrograde tracing study.

    PubMed

    Herrick, J L; Keifer, J

    1997-10-01

    It is well known that the reptilian red nucleus lacks a descending motor cortical input to the red nucleus, but has a well-developed cerebellar input. The present study was undertaken to determine whether there is a descending rubral input that originates from the hypothalamus. Using an in vitro preparation from the turtle, injections of neurobiotin into the red nucleus resulted in retrograde labeling of neurons in the suprapeduncular nucleus of the hypothalamus. Injections of either neurobiotin or fluorescein dextran into the suprapeduncular nucleus resulted in anterograde labeling of axons and terminal boutons in the red nucleus. The majority of these terminations appeared to lie in the medial part of the red nucleus. These data have implications for the potential control of the somatic motor system of reptiles by limbic system inputs.

  7. Multimodal cross-talk of olfactory and gustatory information in the endopiriform nucleus in rats.

    PubMed

    Sugai, T; Yamamoto, R; Yoshimura, H; Kato, N

    2012-10-01

    The endopiriform nucleus (EPN) is a large group of multipolar cells located in the depth of the piriform cortex (PC). Although many studies have suggested that the EPN plays a role in temporal lobe epilepsy, the normal function of the EPN remains to be elucidated. By using optical imaging of coronal brain slice preparations with voltage-sensitive dye, we found signal propagation from the PC or gustatory cortex (GC) to the EPN in normal medium. In our previous research, we failed to elicit a reliable signal reproducibly in the EPN by single stimulation either to the PC or GC. In our current research, we found that a double-pulse stimulation to either the PC or GC (interpulse interval: 20-100 ms) induced robust signal propagation to the EPN through excitation in the agranular division of the insular cortex (AI), with further extension to the claustrum. Finally, double site paired-pulse stimulation to the PC and GC also evoked excitation in the AI, claustrum, and EPN. These results suggest that the EPN has dual roles: 1) further processing of modality-specific olfactory and gustatory information from the PC and GC, respectively and 2) synergistic integration of PC-derived olfactory information and GC-derived gustatory information.

  8. Retinoic acid influences the development of the inferior olivary nucleus in the rodent.

    PubMed

    Yamamoto, Miyuki; Fujinuma, Masahiro; Hirano, Shinji; Hayakawa, Yoshika; Clagett-Dame, Margaret; Zhang, Jinghua; McCaffery, Peter

    2005-04-15

    All-trans retinoic acid (atRA) is an endogenous morphogen that regulates gene transcription. Maternal exposure to atRA results in severe developmental abnormalities by disrupting normal patterns of atRA distribution. Previously, we have shown that the pontine nucleus, which originates from the rhombic lip, is severely atrophied in the mouse on exposure to atRA at gestational days 9 and 10. In this study, we show that this same period of atRA exposure has the contrary effect on the inferior olive and this rhombic lip derivative is expanded in volume and probably contains an increased number of cells. The posterior region of the inferior olive maintains a relatively normal shape but is significantly expanded in size. In contrast, the organization of the anterior inferior olive is severely disrupted. Because endogenous atRA levels are known to be higher in the region of the posterior inferior olive at the time of birth of inferior olivary neurons, these results suggest that endogenous atRA may promote the generation, or select the fate, of posterior neurons of the inferior olive. In support of this concept, a reduction in atRA resulting from vitamin A deficiency results in loss of cells of the posterior inferior olive.

  9. Early stress and chronic methylphenidate cross-sensitize dopaminergic responses in the adolescent medial prefrontal cortex and nucleus accumbens.

    PubMed

    Jezierski, Grzegorz; Zehle, Stefanie; Bock, Joerg; Braun, Katharina; Gruss, Michael

    2007-12-01

    Methylphenidate (MP) is widely used to treat attention deficit/hyperactivity disorder in children. However, basic research has been mainly focused on MP treatment in adult, behaviorally normal rodents. Here we analyzed MP-evoked changes of dopamine (DA) release in the limbic system of juvenile rodents with hyperactive and attention deficit-like symptoms. Using dual probe in vivo microdialysis, DA levels were quantified in the medial prefrontal cortex and nucleus accumbens of juvenile and adolescent degus (Octodon degus). Acute stress- and acute MP-evoked dopaminergic responses in normal juvenile and adolescent animals were compared with (i) animals showing symptoms of hyperactivity and attention deficits induced by early life stress, i.e. repeated parental separation during the first 3 weeks of life, and (ii) animals chronically treated with MP during pre-adolescence. Our main results revealed that (i) early life stress and (ii) chronic MP treatment during pre-adolescence cross-sensitize limbic dopaminergic functions in adolescent animals. Furthermore, we demonstrated a unique pattern of acute MP-evoked DA release in the juvenile compared with the adolescent medial prefrontal cortex and nucleus accumbens. Our findings that the functional maturation of dopaminergic limbic function is significantly altered by early life experience, i.e. repeated parental separation and chronic MP treatment, allow novel insights into the etiology of attention deficit/hyperactivity disorder and into the long-term consequences of MP treatment on brain development.

  10. Predicting value of pain and analgesia: nucleus accumbens response to noxious stimuli changes in the presence of chronic pain

    PubMed Central

    Baliki, M.N.; Geha, P.Y.; Fields, H.L.; Apkarian, A.V.

    2010-01-01

    We compared brain activations in response to acute noxious thermal stimuli in controls and chronic back pain (CBP) patients. Pain perception and related cortical activation patterns were similar in the two groups. However, nucleus accumbens (NAc) activity differentiated the groups at a very high accuracy, exhibiting phasic and tonic responses with distinct properties. Positive phasic NAc activations at stimulus onset and offset tracked stimulus salience and, in normal subjects predicted reward (pain relief) magnitude at stimulus offset. In CBP, NAc activity correlated with different cortical circuitry than normals and phasic activity at stimulus offset was negative in polarity, suggesting that the acute pain relieves the ongoing back pain. The relieving effect was confirmed in a separate psychophysical study in CBP. Therefore, in contrast to somatosensory pathways, which reflect sensory properties of acute noxious stimuli, NAc activity in humans encodes its predicted value and predicts its analgesic potential on chronic pain. PMID:20399736

  11. Theta synchronization between the hippocampus and the nucleus incertus in urethane-anesthetized rats.

    PubMed

    Cervera-Ferri, Ana; Guerrero-Martínez, Juan; Bataller-Mompeán, Manuel; Taberner-Cortes, Alida; Martínez-Ricós, Joana; Ruiz-Torner, Amparo; Teruel-Martí, Vicent

    2011-06-01

    Oscillatory coupling between distributed areas can constitute a mechanism for neuronal integration. Theta oscillations provide temporal windows for hippocampal processing and only appear during certain active states of animals. Since previous studies have demonstrated that nucleus incertus (NI) contributes to the generation of hippocampal theta activity, in this paper, we evaluated the oscillatory coupling between both structures. We compared hippocampal and NI field potentials that were simultaneously recorded in urethane-anesthetized rats. Electrical and cholinergic stimulations of the reticularis pontis oralis nucleus have been used as hippocampal theta generation models. The spectral analyses reveal that electrical stimulation induced an increase in theta oscillations in both channels, whose frequencies depended on the intensity of stimulation. The intensity range used simultaneously increased the normalized spectral energy in the fast theta band (6-12 Hz) in HPC and NI. Frequencies within the theta range were found to be very similar in both channels. In order to validate coupling, spectral coherence was inspected. The data reveal that coherence in the high theta band also increased while stimuli were applied. Cholinergic activation progressively increased the main frequency in both structures to reach an asymptotic period with stable peak frequency in the low theta range (3-6 Hz), which could be first observed in NI and lasted about 1,500 s. Coherence in this band reached values close to 1. Taken together, these results support an electrophysiological and functional coupling between the hippocampus and the reticular formation, suggesting NI to be part of a distributed network working at theta frequencies.

  12. Normal matter storage of antiprotons

    SciTech Connect

    Campbell, L.J.

    1987-01-01

    Various simple issues connected with the possible storage of anti p in relative proximity to normal matter are discussed. Although equilibrium storage looks to be impossible, condensed matter systems are sufficiently rich and controllable that nonequilibrium storage is well worth pursuing. Experiments to elucidate the anti p interactions with normal matter are suggested. 32 refs.

  13. Normalizing Catastrophe: An Educational Response

    ERIC Educational Resources Information Center

    Jickling, Bob

    2013-01-01

    Processes of normalizing assumptions and values have been the subjects of theoretical framing and critique for several decades now. Critique has often been tied to issues of environmental sustainability and social justice. Now, in an era of global warming, there is a rising concern that the results of normalizing of present values could be…

  14. Evidence for a motor and a non-motor domain in the human dentate nucleus--an fMRI study.

    PubMed

    Küper, M; Dimitrova, A; Thürling, M; Maderwald, S; Roths, J; Elles, H G; Gizewski, E R; Ladd, M E; Diedrichsen, J; Timmann, D

    2011-02-14

    Dum and Strick (J. Neurophysiol. 2003; 89, 634-639) proposed a division of the cerebellar dentate nucleus into a "motor" and "non-motor" area based on anatomical data in the monkey. We asked the question whether motor and non-motor domains of the dentate can be found in humans using functional magnetic resonance imaging (fMRI). Therefore dentate activation was compared in motor and cognitive tasks. Young, healthy participants were tested in a 1.5 T MRI scanner. Data from 13 participants were included in the final analysis. A block design was used for the experimental conditions. Finger tapping of different complexities served as motor tasks, while cognitive testing included a verbal working memory and a visuospatial task. To further confirm motor-related dentate activation, a simple finger movement task was tested in a supplementary experiment using ultra-highfield (7 T) fMRI in 23 participants. For image processing, a recently developed region of interest (ROI) driven normalization method of the deep cerebellar nuclei was used. Dorso-rostral dentate nucleus activation was associated with motor function, whereas cognitive tasks led to prominent activation of the caudal nucleus. The visuospatial task evoked activity bilaterally in the caudal dentate nucleus, whereas verbal working memory led to activation predominantly in the right caudal dentate. These findings are consistent with Dum and Strick's anatomical findings in the monkey.

  15. No Evidence for Sex Differences in the Electrophysiological Properties and Excitatory Synaptic Input onto Nucleus Accumbens Shell Medium Spiny Neurons123

    PubMed Central

    Will, Tyler; Hauser, Caitlin A.; Cao, Jinyan

    2016-01-01

    Sex differences exist in how the brain regulates motivated behavior and reward, both in normal and pathological contexts. Investigations into the underlying neural mechanisms have targeted the striatal brain regions, including the dorsal striatum and nucleus accumbens core and shell. These investigations yield accumulating evidence of sexually different electrophysiological properties, excitatory synaptic input, and sensitivity to neuromodulator/hormone action in select striatal regions both before and after puberty. It is unknown whether the electrical properties of neurons in the nucleus accumbens shell differ by sex, and whether sex differences in excitatory synaptic input are present before puberty. To test the hypothesis that these properties differ by sex, we performed whole-cell patch-clamp recordings on male and female medium spiny neurons (MSNs) in acute brain slices obtained from prepubertal rat nucleus accumbens shell. We analyzed passive and active electrophysiological properties, and miniature EPSCs (mEPSCs). No sex differences were detected; this includes those properties, such as intrinsic excitability, action potential afterhyperpolarization, threshold, and mEPSC frequency, that have been found to differ by sex in other striatal regions and/or developmental periods. These findings indicate that, unlike other striatal brain regions, the electrophysiological properties of nucleus accumbens shell MSNs do not differ by sex. Overall, it appears that sex differences in striatal function, including motivated behavior and reward, are likely mediated by other factors and striatal regions. PMID:27022621

  16. Managing incontinence: women's normalizing strategies.

    PubMed

    Skoner, M M; Haylor, M J

    1993-01-01

    Women's strategies for managing urinary incontinence were examined in a grounded-theory study. The women's basic social concern was dealing with incontinence in a manner that enabled them to feel normal. Feeling normal meant being able to do what they wanted to do and needed to do to have a normal life-style as they perceived it. This goal was accomplished by normalizing incontinence and its management. Normalization was achieved by directing its course through self-management, accounting for it in terms of personal history and life experiences, and delaying medical counsel. These strategies are described. The findings provide fresh insights about women's response to incontinence and their practice of self-managing its consequences.

  17. VIRTIS/Rosetta Observes Comet 67P/Churyumov-Gerasimenko: Nucleus and Coma Derived Composition and Physical Properties.

    NASA Astrophysics Data System (ADS)

    Capaccioni, F.; Filacchione, G.; Erard, S.; Arnold, G.; De Sanctis, M. C.; Bockelée-Morvan, D.; Leyrat, C.; Tosi, F.; Ciarniello, M.; Raponi, A.; Migliorini, A.; Quirico, E.; Rinaldi, G.; Schmitt, B.; Carlson, R. W.; Combi, M. R.; Fink, U.; Tozzi, G. P.; Palomba, E.; Longobardo, A.; Formisano, M.; Debout, V.; Drossart, P.; Piccioni, G.; Fougere, N.

    2015-12-01

    The paper will describe the major results obtained throughout the nominal mission by the instrument VIRTIS (Visible, Infrared and Thermal Imaging Spectrometer), the dual channel spectrometer onboard Rosetta, on the surface composition and thermal properties of the nucleus of comet 67P/Churyumov-Gerasimenko and on the 2D distribution of H2O and CO2 in the coma. VIRTIS is a dual channel spectrometer; VIRTIS-M (M for Mapper) is a hyper spectral imager covering a wide spectral range from 0.25 through 5μm. VIRTIS-M uses a slit and a scan mirror to generate images with spatial resolution of 250 μrad over a FOV of 3.7°. The second channel is VIRTIS-H (H for High-resolution), a point spectrometer with high spectral resolution (λ/Δλ=3000 @3μm) in the range 2-5 μm. The nucleus observations have been performed in a wide range of conditions with best spatial resolution of 2.5m. The surface temperature has been determined since the first distant observations when the nucleus filled one single VIRTIS-M pixel and continuously monitored since. Maximum temperature determined until April 2015 are as high as 300K at the subsolar point. Modeling of the thermophysical properties allowed to derive the thermal inertia of the crust. The VIRTIS composition analysis has showed evidence of carbon-bearing compounds on the nucleus of the comet 67P/Churyumov-Gerasimenko. The very low reflectance of the nucleus (normal albedo of 0.060 ± 0.003 at 0.55 μm), the spectral slopes in VIS and IR ranges (5-25 and 1.5-5 % kÅ-1) and the broad absorption feature in the 2.9-3.6 μm range present across the entire illuminated surface, are compatible with a surface crust made of a complex mixture of dark disordered poly-aromatic compounds, opaque minerals and several chemical species containing: -COOH, CH2 / CH3, -OH (in Alcohols) and possibly NH4+. Both channels are contributing to the determination of the spatial distribution of H2O and CO2 in the coma; their abundances as a function of altitude

  18. MATURATION OF FIRING PATTERN IN CHICK VESTIBULAR NUCLEUS NEURONS

    PubMed Central

    SHAO, M.; HIRSCH, J. C.; PEUSNER, K. D.

    2007-01-01

    The principal cells of the chick tangential nucleus are vestibular nucleus neurons participating in the vestibuloocular and vestibulocollic reflexes. In birds and mammals, spontaneous and stimulus-evoked firing of action potentials is essential for vestibular nucleus neurons to generate mature vestibular reflex activity. The emergence of spike-firing pattern and the underlying ion channels were studied in morphologically-identified principal cells using whole-cell patch-clamp recordings from brain slices of late-term embryos (embryonic day 16) and hatchling chickens (hatching day 1 and hatching day 5). Spontaneous spike activity emerged around the perinatal period, since at embryonic day 16 none of the principal cells generated spontaneous action potentials. However, at hatching day 1, 50% of the cells fired spontaneously (range, 3 to 32 spikes/s), which depended on synaptic transmission in most cells. By hatching day 5, 80% of the principal cells could fire action potentials spontaneously (range, 5 to 80 spikes/s), and this activity was independent of synaptic transmission and showed faster kinetics than at hatching day 1. Repetitive firing in response to depolarizing pulses appeared in the principal cells starting around embryonic day 16, when < 20% of the neurons fired repetitively. However, almost 90% of the principal cells exhibited repetitive firing on depolarization at hatching day 1, and 100% by hatching day 5. From embryonic day 16 to hatching day 5, the gain for evoked spike firing increased almost 10-fold. At hatching day 5, a persistent sodium channel was essential for the generation of spontaneous spike activity, while a small conductance, calcium-dependent potassium current modulated both the spontaneous and evoked spike firing activity. Altogether, these in vitro studies showed that during the perinatal period, the principal cells switched from displaying no spontaneous spike activity at resting membrane potential and generating one spike on

  19. Subthalamic nucleus, sensorimotor cortex and muscle interrelationships in Parkinson's disease.

    PubMed

    Marsden, J F; Limousin-Dowsey, P; Ashby, P; Pollak, P; Brown, P

    2001-02-01

    Ten patients with Parkinson's disease were seen following bilateral or unilateral implantation of macroelectrodes into the subthalamic nucleus. Local field potentials (LFPs) were recorded from adjacent subthalamic nucleus macroelectrode (STNME) contacts simultaneously with EEG activity over the supplementary motor (Cz-FCz) and sensorimotor (C3/4-FC3/4) areas and EMG activity from the contralateral wrist extensors during isometric and phasic wrist movements. Significant coherence was seen between STNME LFPs and Cz-FCz, STNME LFPs and C3/4-FC3/4, and STNME LFPs and EMG over the range 7-45 Hz. EEG phase-led STNME LFPs by 24.4 ms (95% confidence interval 19.8 to 29.0 ms). EMG also led STNME LFPs, but time differences tended to cluster around one of two values: 6.3 ms (-0.7 to 13.3 ms) and 46.5 ms (26.2 to 66.8 ms). Recordings from the STNME contact that demonstrated the most consistent coherence with Cz-FCz in the 15-30 Hz band coincided with the contact which, when electrically stimulated at high frequencies, produced the most effective clinical response in eight out of nine (89%) subjects (P < 0.01). Oscillatory activity at 15-30 Hz may therefore prove of use in localizing the subthalamic nucleus target that provides the best clinical effect on stimulation. These results extend the hypothesis that coherent activity may be useful in binding together related activities in simultaneously active motor centres. The presence of coherence between EEG and STNME LFPs in both the beta and the gamma band (as opposed to only the beta band between EEG and cerebellar thalamus) suggests that there may be some relative frequency selectivity in the communication between different motor structures.

  20. Tractography patterns of subthalamic nucleus deep brain stimulation.

    PubMed

    Vanegas-Arroyave, Nora; Lauro, Peter M; Huang, Ling; Hallett, Mark; Horovitz, Silvina G; Zaghloul, Kareem A; Lungu, Codrin

    2016-04-01

    Deep brain stimulation therapy is an effective symptomatic treatment for Parkinson's disease, yet the precise mechanisms responsible for its therapeutic effects remain unclear. Although the targets of deep brain stimulation are grey matter structures, axonal modulation is known to play an important role in deep brain stimulation's therapeutic mechanism. Several white matter structures in proximity to the subthalamic nucleus have been implicated in the clinical benefits of deep brain stimulation for Parkinson's disease. We assessed the connectivity patterns that characterize clinically beneficial electrodes in Parkinson's disease patients, after deep brain stimulation of the subthalamic nucleus. We evaluated 22 patients with Parkinson's disease (11 females, age 57 ± 9.1 years, disease duration 13.3 ± 6.3 years) who received bilateral deep brain stimulation of the subthalamic nucleus at the National Institutes of Health. During an initial electrode screening session, one month after deep brain stimulation implantation, the clinical benefits of each contact were determined. The electrode was localized by coregistering preoperative magnetic resonance imaging and postoperative computer tomography images and the volume of tissue activated was estimated from stimulation voltage and impedance. Brain connectivity for the volume of tissue activated of deep brain stimulation contacts was assessed using probabilistic tractography with diffusion-tensor data. Areas most frequently connected to clinically effective contacts included the thalamus, substantia nigra, brainstem and superior frontal gyrus. A series of discriminant analyses demonstrated that the strength of connectivity to the superior frontal gyrus and the thalamus were positively associated with clinical effectiveness. The connectivity patterns observed in our study suggest that the modulation of white matter tracts directed to the superior frontal gyrus and the thalamus is associated with favourable clinical

  1. The Ying and Yang of the M 83 Nucleus

    NASA Astrophysics Data System (ADS)

    Mast, Damián; Díaz, Rubén J.; Dottori, Horacio A.; Agüero, María P.; Rodrigues, Irapuán; Albacete-Colombo, Juan F.

    2010-05-01

    The spiral galaxy M 83, an SB(rs)b at only 4.5 Mpc, is a privileged case for study of the detailed physics on spatial scales of a tenth of a parsec. With 3-D spectroscopic observations using CIRPASS on Gemini-S, we studied the ionized gas properties in J-band with spatial resolution of 0.″5 (Figure 1). The Paβ velocity field shows two dynamical centers, neither of them coincident with the bulge center, identified with the optical nucleus (ON) and the hidden nucleus (HN), with masses, within a radius of 10 pc, of MON = (1.8±0.4)× 107 M⊙ and MHN = (1.0±0.4)× 107 M⊙. Using the Paβ equivalent width together with population synthesis models, we are able to estimate the ages of both mass concentrations, TON = 8 Myr and THN =6-7 Myr. Adding complexity to this puzzling scenario, we used GMOS+Gemini imaging and spectroscopy to study the radio source J133658.3-295105 (Dottori et al. 2008) and find that Hα emission at the position of this source is redshifted by ~130 km s-1 with respect to an M 83 H II region, leading us to face the possibility of that we are witnessing the ejection of an object by gravitational recoil from the M 83 nucleus. A fit to the X-ray spectrum obtained Chandra supports the association between this source and the disk of M 83 by the presence of the Fe Kα line at 6.7 keV.

  2. Maturation of firing pattern in chick vestibular nucleus neurons.

    PubMed

    Shao, M; Hirsch, J C; Peusner, K D

    2006-08-25

    The principal cells of the chick tangential nucleus are vestibular nucleus neurons participating in the vestibuloocular and vestibulocollic reflexes. In birds and mammals, spontaneous and stimulus-evoked firing of action potentials is essential for vestibular nucleus neurons to generate mature vestibular reflex activity. The emergence of spike-firing pattern and the underlying ion channels were studied in morphologically-identified principal cells using whole-cell patch-clamp recordings from brain slices of late-term embryos (embryonic day 16) and hatchling chickens (hatching day 1 and hatching day 5). Spontaneous spike activity emerged around the perinatal period, since at embryonic day 16 none of the principal cells generated spontaneous action potentials. However, at hatching day 1, 50% of the cells fired spontaneously (range, 3 to 32 spikes/s), which depended on synaptic transmission in most cells. By hatching day 5, 80% of the principal cells could fire action potentials spontaneously (range, 5 to 80 spikes/s), and this activity was independent of synaptic transmission and showed faster kinetics than at hatching day 1. Repetitive firing in response to depolarizing pulses appeared in the principal cells starting around embryonic day 16, when <20% of the neurons fired repetitively. However, almost 90% of the principal cells exhibited repetitive firing on depolarization at hatching day 1, and 100% by hatching day 5. From embryonic day 16 to hatching day 5, the gain for evoked spike firing increased almost 10-fold. At hatching day 5, a persistent sodium channel was essential for the generation of spontaneous spike activity, while a small conductance, calcium-dependent potassium current modulated both the spontaneous and evoked spike firing activity. Altogether, these in vitro studies showed that during the perinatal period, the principal cells switched from displaying no spontaneous spike activity at resting membrane potential and generating one spike on

  3. Active galactic nucleus feedback in clusters of galaxies

    PubMed Central

    Blanton, Elizabeth L.; Clarke, T. E.; Sarazin, Craig L.; Randall, Scott W.; McNamara, Brian R.

    2010-01-01

    Observations made during the last ten years with the Chandra X-ray Observatory have shed much light on the cooling gas in the centers of clusters of galaxies and the role of active galactic nucleus (AGN) heating. Cooling of the hot intracluster medium in cluster centers can feed the supermassive black holes found in the nuclei of the dominant cluster galaxies leading to AGN outbursts which can reheat the gas, suppressing cooling and large amounts of star formation. AGN heating can come in the form of shocks, buoyantly rising bubbles that have been inflated by radio lobes, and the dissipation of sound waves. PMID:20351250

  4. Nucleus lentiformis--a new model for psychiatry?

    PubMed

    Sperling, W; Müller, H

    2011-05-01

    In a regions of interest analysis (ROI) of the most frequent psychiatric disorders (schizophrenia, depression, anxiety, addiction), we found the nucleus lentiformis to be the topographical brain region most frequently cited in connection with these disorders in a regions of interest survey of publications between 1990-2010. This structure, which controls particularly motorics, appears to have a much greater importance than has thus far been assumed in the control and modulation of psychiatric disorders. The question of the extent to which this region has its own control function with respect to the disorders should be addressed in further studies along with clarification of possible influence factors on the activity.

  5. Current trajectory options for a comet nucleus sample return mission

    NASA Astrophysics Data System (ADS)

    Sauer, Carl G., Jr.

    1992-08-01

    A summary of the current trajectory options available for the ESA comet nucleus sample return mission, Rosetta, is presented. These options include direct trajectories, delta-V-EGA trajectories using a Titan IV/Centaur launch vehicle with upgraded solid rocket motors, a trajectory involving a gravity assist of the earth (VEGA) prior to comet rendezvous, and one involving an additional gravity assist of the earth (VEEGA). Other propulsion options proposed and discussed are solar electric propulsion/ballistic trajectory modes and nuclear electric propulsion trajectory modes. Tables of performance data for each of these trajectory options are given.

  6. A Numerical Modeling Approach to Cometary Nucleus Surface Roughness Determination

    NASA Astrophysics Data System (ADS)

    Höfner, S.; Vincent, J.-B.; Sierks, H.; Blum, J.

    2013-09-01

    Activity of cometary nuclei is closely linked with thermophysical processes. Main catalyst to activity is the diurnal temperature wave induced by solar heating. Highly resolved comet nucleus geometric models are used to model temperatures with flat surfacial facets taken from shape modeling approaches [1, 3]. Recent analyses of Groussin et al. [4] and Davidsson et al. [2] compared thermal inertia and surface temperatures of Tempel 1 and Hartley 2 synthetic models to those derived from spectral images. They outlined that applying beaming factors and radiative self-heating is not sufficient to understand the thermal behaviour of the nucleus surface. Regions with large incidence angles (e.g. at the morning terminator) distinctively deviate from predicted temperatures. One of the main contributions to this deviation is the effect of surface roughness with scals that are considerably smaller than the model facets. Combined with a relatively low thermal inertia, temperatures cover a wide range of values even at closest neighbourhood to each other. The radiative measurement for a distant observer unveils a smearing effect that indicates higher temperatures compared to average. The authors follow two numerical approaches to model small-scale surface roughness: (A) by using randomly generated fractal surfaces and (B) by downscaling groups of facets originating from larger shape models of Tempel 1. We apply a model that accounts for both radiative heat exchange for all facets and shadowing effects due to incoming solar radiation. These values are calculated in a thermal model. The revealed temperatures are analyzed with respect to average large-scale surface temperatures. Hence, they are compared to deviating temperatures that are measured by a distant observer that is unable to resolve sub-structure surface patterns. A parametric study varying thermal inertia and the degree of surface roughness then outlines a bandwidth of feasible surface structures and relates them to

  7. Magnetic Moment of Proton Drip-Line Nucleus (9)C

    NASA Technical Reports Server (NTRS)

    Matsuta, K.; Fukuda, M.; Tanigaki, M.; Minamisono, T.; Nojiri, Y.; Mihara, M.; Onishi, T.; Yamaguchi, T.; Harada, A.; Sasaki, M.

    1994-01-01

    The magnetic moment of the proton drip-line nucleus C-9(I(sup (pi)) = 3/2, T(sub 1/2) = 126 ms) has been measured for the first time, using the beta-NMR detection technique with polarized radioactive beams. The measure value for the magnetic moment is 1mu(C-9)! = 1.3914 +/- 0.0005 (mu)N. The deduced spin expectation value of 1.44 is unusually larger than any other ones of even-odd nuclei.

  8. Subthalamic nucleus neuronal activity in Parkinson's disease and epilepsy subjects.

    PubMed

    Montgomery, Erwin B

    2008-01-01

    Activity from 113 subthalamic nucleus (STN) neurons from two epilepsy patients and 103 neurons from 9 Parkinson's disease (PD) patients undergoing DBS surgery showed no significant differences in frequencies (PD, mean 7.5+/-7.0 spikes/s (sps), epilepsy mean 7.8+/-8.5 sps) or in the coefficients of variation of mean discharge frequencies per 1s epochs. A striking relationship between mean discharge frequencies per 1 s epochs and the standard deviations for both groups were consistent with a random Poisson processes. These and similar findings call into question theories that posit increased STN activity is causal to parkinsonism.

  9. Active galactic nucleus feedback in clusters of galaxies.

    PubMed

    Blanton, Elizabeth L; Clarke, T E; Sarazin, Craig L; Randall, Scott W; McNamara, Brian R

    2010-04-20

    Observations made during the last ten years with the Chandra X-ray Observatory have shed much light on the cooling gas in the centers of clusters of galaxies and the role of active galactic nucleus (AGN) heating. Cooling of the hot intracluster medium in cluster centers can feed the supermassive black holes found in the nuclei of the dominant cluster galaxies leading to AGN outbursts which can reheat the gas, suppressing cooling and large amounts of star formation. AGN heating can come in the form of shocks, buoyantly rising bubbles that have been inflated by radio lobes, and the dissipation of sound waves.

  10. Antinucleus-Nucleus Cross Sections Implemented in Geant4

    SciTech Connect

    Uzhinsky, V.; Apostolakis, J.; Galoyan, A.; Folger, G.; Grichine, V.M.; Ivanchenko, V.N.; Wright, D.H.; /SLAC

    2012-04-26

    Cross sections of antinucleus ({bar p}, {bar d}, {bar t}, {sup 3}{ovr He}, {sup 4}{ovr He}) interactions with nuclei in the energy range 100 MeV/c to 1000 GeV/c per antinucleon are calculated in the Glauber approximation which provides good description of all known {bar p}Across sections. The results were obtained using a new parameterization of the total and elastic {bar p}p cross sections. Simple parameterizations of the antinucleus-nucleus cross sections are proposed for use in estimating the efficiency of antinucleus detection and tracking in cosmic rays and accelerator experiments. These parameterizations are implemented in the Geant4 toolkit.

  11. [Mutations in the personality nucleus at puberty and adolescence].

    PubMed

    Schiopu, U

    1989-01-01

    The author considers that analysing the personality by means of concrete research, the axis "self-perceptual Ego and the prospective, ideal Ego" make up an operational axis included in personality nucleus. The selected interference of the alter image about the Ego permanently readjusts this axis. In this purpose an adjective checklist and the projective test TST in two alternative have been used. The author concludes that during puberty and adolescence several changes take place as far as the number of adjective used, descriptors prevailing characteristics, and affective finality are concerned.

  12. Coherent neutrino-nucleus scattering and new neutrino interactions

    NASA Astrophysics Data System (ADS)

    Lindner, Manfred; Rodejohann, Werner; Xu, Xun-Jie

    2017-03-01

    We investigate the potential to probe new neutrino physics with future experiments measuring coherent neutrino-nucleus scattering. Experiments with high statistics should become feasible soon and allow to constrain parameters with unprecedented precision. Using a benchmark setup for a future experiment probing reactor neutrinos, we study the sensitivity on neutrino non-standard interactions and new exotic neutral currents (scalar, tensor, etc). Compared to Fermi interaction, percent and permille level strengths of the new interactions can be probed, superseding for some observables the limits from future neutrino oscillation experiments by up to two orders of magnitude.

  13. Mineralogy and Petrology of COMET WILD2 Nucleus Samples

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael; Bland, Phil; Bradley, John; Brearley, Adrian; Brennan, Sean; Bridges, John; Brownlee, Donald; Butterworth, Anna; Dai, Zurong; Ebel, Denton

    2006-01-01

    The sample return capsule of the Stardust spacecraft will be recovered in northern Utah on January 15, 2006, and under nominal conditions it will be delivered to the new Stardust Curation Laboratory at the Johnson Space Center two days later. Within the first week we plan to begin the harvesting of aerogel cells, and the comet nucleus samples they contain for detailed analysis. By the time of the LPSC meeting we will have been analyzing selected removed grains for more than one month. This presentation will present the first results from the mineralogical and petrological analyses that will have been performed.

  14. Workshop on Analysis of Returned Comet Nucleus Samples

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This volume contains abstracts that were accepted by the Program Committee for presentation at the workshop on the analysis of returned comet nucleus samples held in Milpitas, California, January 16 to 18, 1989. The abstracts deal with the nature of cometary ices, cryogenic handling and sampling equipment, origin and composition of samples, and spectroscopic, thermal and chemical processing methods of cometary nuclei. Laboratory simulation experimental results on dust samples are reported. Some results obtained from Halley's comet are also included. Microanalytic techniques for examining trace elements of cometary particles, synchrotron x ray fluorescence and instrument neutron activation analysis (INAA), are presented.

  15. Moderate Hyperbilirubinemia Alters Neonatal Cardiorespiratory Control and Induces Inflammation in the Nucleus Tractus Solitarius

    PubMed Central

    Specq, Marie-Laure; Bourgoin-Heck, Mélisande; Samson, Nathalie; Corbin, François; Gestreau, Christian; Richer, Maxime; Kadhim, Hazim; Praud, Jean-Paul

    2016-01-01

    Hyperbilirubinemia (HB) occurs in 90% of preterm newborns. Moderate HB can induce acute neurological disorders while severe HB has been linked to a higher incidence of apneas of prematurity. The present study aimed to test the hypothesis that even moderate HB disrupts cardiorespiratory control in preterm lambs. Two groups of preterm lambs (born 14 days prior to term), namely control (n = 6) and HB (n = 5), were studied. At day 5 of life, moderate HB (150–250 μmol/L) was induced during 17 h in the HB group after which cardiorespiratory control as well as laryngeal and pulmonary chemoreflexes were assessed during baseline recordings and during hypoxia. Recordings were repeated 72 h after HB induction, just before euthanasia. In addition, neuropathological studies were performed to investigate for cerebral bilirubin deposition as well as for signs of glial reactivity in brainstem structures involved in cardiorespiratory control. Results revealed that sustained and moderate HB: (i) decreased baseline respiratory rate and increased the time spent in apnea; (ii) blunted the cardiorespiratory inhibition normally observed during both laryngeal and pulmonary chemoreflexes; and (iii) increased heart rate in response to acute hypoxia. These acute physiological changes were concurrent with an activation of Alzheimer type II astrocytes throughout the brain, including the brainstem. Concomitantly, bilirubin deposits were observed in the leptomeninges, but not in brain parenchyma. While most cardiorespiratory alterations returned to normal 72 h after HB normalization, the expression of glial fibrillary acid protein (GFAP) and ionized calcium binding adaptor molecule 1 (Iba1) was still increased within the nucleus tractus solitarius. In conclusion, moderate and sustained HB in preterm lambs induced cardiorespiratory alterations, the latter of which were associated with neurohistopathological changes. These changes are indicative of an inflammatory response in the brainstem

  16. Exogenous and endogenous cannabinoids control synaptic transmission in mice nucleus accumbens.

    PubMed

    Robbe, David; Alonso, Gerard; Manzoni, Oliver J

    2003-11-01

    Addictive drugs are thought to alter normal brain function and cause the remodeling of synaptic functions in areas important to memory and reward. Excitatory transmission to the nucleus accumbens (NAc) is involved in the actions of most drugs of abuse, including cannabis. We have explored the functions of the endocannabinoid system at the prefrontal cortex-NAc synapses. Immunocytochemistry showed cannabinoid receptor (CB1) expression on axonal terminals making contacts with NAc neurons. In NAc slices, synthetic cannabinoids inhibit spontaneous and evoked glutamate-mediated transmission through presynaptic activation of presynaptic K+ channels and GABA-mediated transmission most likely via a direct presynaptic action on the vesicular release machinery. How does synaptic activity lead to the production of endogenous cannabinoids (eCBs) in the NAc? More generally, do eCBs participate in long-term synaptic plasticity in the brain? We found that tetanic stimulation (mimicking naturally occurring frequencies) of prelimbic glutamatergic afferents induced a presynaptic LTD dependent on eCB and CB1 receptors (eCB-LTD). Induction of eCB-LTD required postsynaptic activation of mGlu5 receptors and a rise in postsynaptic Ca2+ from ryanodine-sensitive intracellular Ca2+ stores. This retrograde signaling cascade involved postsynaptic eCB release and activation of presynaptic CB1 receptors. In the NAc, eCB-LTD might be part of a negative feedback loop, reducing glutamatergic synaptic strength during sustained cortical activity. The fact that this new form of LTD was occluded by an exogenous cannabinoid suggested that cannabis derivatives, such as marijuana, may alter normal eCB-mediated synaptic plasticity. These data suggest a major role of the eCB system in long-term synaptic plasticity and give insights into how cannabis derivatives, such as marijuana, alter normal eCB functions in the brain reward system.

  17. Tunneling from super- to normal-deformed minima in nuclei.

    SciTech Connect

    Khoo, T. L.

    1998-01-08

    An excited minimum, or false vacuum, gives rise to a highly elongated superdeformed (SD) nucleus. A brief review of superdeformation is given, with emphasis on the tunneling from the false to the true vacuum, which occurs in the feeding and decay of SD bands. During the feeding process the tunneling is between hot states, while in the decay it is from a cold to a hot state. The {gamma} spectra connecting SD and normal-deformed (ND) states provide information on several physics issues: the decay mechanism; the spin/parity quantum numbers, energies and microscopic structures of SD bands; the origin of identical SD bands; the quenching of pairing with excitation energy; and the chaoticity of excited ND states at 2.5-5 MeV. Other examples of tunneling in nuclei, which are briefly described, include the possible role of tunneling in {Delta}I = 4 bifurcation in SD bands, sub-barrier fusion and proton emitters.

  18. Lateral habenula and the rostromedial tegmental nucleus innervate neurochemically distinct subdivisions of the dorsal raphe nucleus in the rat.

    PubMed

    Sego, Chemutai; Gonçalves, Luciano; Lima, Leandro; Furigo, Isadora C; Donato, Jose; Metzger, Martin

    2014-05-01

    The lateral habenula (LHb) is an epithalamic structure differentiated in a medial (LHbM) and a lateral division (LHbL). Together with the rostromedial tegmental nucleus (RMTg), the LHb has been implicated in the processing of aversive stimuli and inhibitory control of monoamine nuclei. The inhibitory LHb influence on midbrain dopamine neurons has been shown to be mainly mediated by the RMTg, a mostly GABAergic nucleus that receives a dominant input from the LHbL. Interestingly, the RMTg also projects to the dorsal raphe nucleus (DR), which also receives direct LHb projections. To compare the organization and transmitter phenotype of LHb projections to the DR, direct and indirect via the RMTg, we first placed injections of the anterograde tracer Phaseolus vulgaris leucoagglutinin into the LHb or the RMTg. We then confirmed our findings by retrograde tracing and investigated a possible GABAergic phenotype of DR-projecting RMTg neurons by combining retrograde tracing with in situ hybridization for GAD67. We found only moderate direct LHb projections to the DR, which mainly emerged from the LHbM and were predominantly directed to the serotonin-rich caudal DR. In contrast, RMTg projections to the DR were more robust, emerged from RMTg neurons enriched in GAD67 mRNA, and were focally directed to a distinctive DR subdivision immunohistochemically characterized as poor in serotonin and enriched in presumptive glutamatergic neurons. Thus, besides its well-acknowledged role as a GABAergic control center for the ventral tegmental area (VTA)-nigra complex, our findings indicate that the RMTg is also a major GABAergic relay between the LHb and the DR.

  19. Is My Child's Appetite Normal?

    MedlinePlus

    ... HEALTH 17 Nutrition Newsletters for Parents of Young Children, USDA, Food and Nutrition Service Is My Child’s Appetite Normal? ... HEALTH 17 Nutrition Newsletters for Parents of Young Children, USDA, Food and Nutrition Service

  20. Diverse Topics Advance Normal Birth

    PubMed Central

    Humenick, Sharron S.

    2006-01-01

    The editor of The Journal of Perinatal Education describes the contents of this issue, which offer a broad range of resources, research, and inspiration for childbirth educators in their efforts to promote normal birth.

  1. VIRTIS observations of the nucleus of 67P/Churyumov=Gerasimenko at low phase angle

    NASA Astrophysics Data System (ADS)

    Ciarniello, M.; Filacchione, G.; Capaccioni, F.; Raponi, A.; De Sanctis, M. C.; Tosi, F.; Piccioni, G.; Migliorini, A.; Cerroni, P.; Capria, M. T.; Erard, S.; Bockelee-Morvan, D.; Leyrat, C.; Arnold, G.; Barucci, M. A.; Schmitt, B.; Quirico, E.; Taylor, F.; Kappel, D.; Longobardo, A.

    2016-11-01

    On 9-10 of April 2016, the Rosetta orbiter completed a close flyby around the nucleus of 67P/Churyumov-Gerasimenko, when the comet was at heliocentric distance of 2.76 AU, along the outbound leg of its orbit around the Sun. This allowed the VIRTIS-M imaging spectrometer to observe the surface of 67P at visible wavelengths (0.2-1 μm) in the 0.93°-89.7° phase angle range with a spatial resolution ranging from 7 to 46 m/pix, resulting in a total of 105 hyperspectral images. Previous observations of the comet at low phase angle were acquired by VIRTIS-M during the approach phase on July 2014 (3.7 AU), with pixel resolution varying from 450 to 3200 m/pix, preventing disk-resolved imaging. The April 2016 observations fill this gap, allowing us to constrain the spectrophotometric properties of the surface at higher spatial resolution in the opposition surge geometry, therefore investigating both the 'shadow hiding' and 'coherent backscattering' opposition effect. Extrapolation to 0° phase angle of the reflectance measured during the flyby at latitude between -10° and 30° indicates a surface normal albedo of 0.06 at 0.55 μm. This result is close to the previous average value derived by Ciarniello et al. (2015) from a full-disk analysis giving 0.062+/-0.002 (3.7 AU, inbound orbit). Subsequent measurements by Filacchione et al. (2016) and Ciarniello et al. (submitted), derived from pre-perihelion observations at lower heliocentric distances, revealed a progressive enrichment of water ice abundance on the nucleus, in northern hemisphere regions, with a consequent brightening of the surface. The measured normal albedo derived from the 9-10 April 2016 dataset seems to indicate that during the post-perihelion phase the northern hemisphere has returned to albedo values compatible to the ones measured during the inbound part of the orbit, when the comet was at 3.7 AU from the Sun. This could be an indication that the northern hemisphere has been either covered by dust

  2. Cytoarchitectonic and quantitative Golgi study of the hedgehog supraoptic nucleus.

    PubMed Central

    Caminero, A A; Machín, C; Sanchez-Toscano, F

    1992-01-01

    A cytoarchitectural study was made of the supraoptic nucleus (SON) of the hedgehog with special attention to the quantitative comparison of its main neuronal types. The main purposes were (1) to relate the characteristics of this nucleus in the hedgehog (a primitive mammalian insectivorous brain) with those in the SONs of more evolutionarily advanced species; (2) to identify quantitatively the dendritic fields of the main neuronal types in the hedgehog SON and to study their synaptic connectivity. From a descriptive standpoint, 3 neuronal types were found with respect to the number of dendritic stems arising from the neuronal soma: bipolar neurons (48%), multipolar neurons (45.5%) and monopolar neurons (6.5%). Within the multipolar type 2 subtypes could be distinguished, taking into account the number of dendritic spines: (a) with few spines (93%) and (b) very spiny (7%). These results indicate that the hedgehog SON is similar to that in other species except for the very spiny neurons, the significance of which is discussed. In order to characterise the main types more satisfactorily (bipolar and multipolars with few spines) we undertook a quantitative Golgi study of their dendritic fields. Although the patterns of the dendritic field are similar in both neuronal types, the differences in the location of their connectivity can reflect functional changes and alterations in relation to the synaptic afferences. Images Fig. 2 Fig. 3 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 PMID:1452481

  3. Glucocorticoid signaling in the arcuate nucleus modulates hepatic insulin sensitivity.

    PubMed

    Yi, Chun-Xia; Foppen, Ewout; Abplanalp, William; Gao, Yuanqing; Alkemade, Anneke; la Fleur, Susanne E; Serlie, Mireille J; Fliers, Eric; Buijs, Ruud M; Tschöp, Matthias H; Kalsbeek, Andries

    2012-02-01

    Glucocorticoid receptors are highly expressed in the hypothalamic paraventricular nucleus (PVN) and arcuate nucleus (ARC). As glucocorticoids have pronounced effects on neuropeptide Y (NPY) expression and as NPY neurons projecting from the ARC to the PVN are pivotal for balancing feeding behavior and glucose metabolism, we investigated the effect of glucocorticoid signaling in these areas on endogenous glucose production (EGP) and insulin sensitivity by local retrodialysis of the glucocorticoid receptor agonist dexamethasone into the ARC or the PVN, in combination with isotope dilution and hyperinsulinemic-euglycemic clamp techniques. Retrodialysis of dexamethasone for 90 min into the ARC or the PVN did not have significant effects on basal plasma glucose concentration. During the hyperinsulinemic-euglycemic clamp, retrodialysis of dexamethasone into the ARC largely prevented the suppressive effect of hyperinsulinemia on EGP. Antagonizing the NPY1 receptors by intracerebroventricular infusion of its antagonist largely blocked the hepatic insulin resistance induced by dexamethasone in the ARC. The dexamethasone-ARC-induced inhibition of hepatic insulin sensitivity was also prevented by hepatic sympathetic denervation. These data suggest that glucocorticoid signaling specifically in the ARC neurons modulates hepatic insulin responsiveness via NPY and the sympathetic system, which may add to our understanding of the metabolic impact of clinical conditions associated with hypercortisolism.

  4. Hubble Imaging of the Nucleus of Comet ISON

    NASA Astrophysics Data System (ADS)

    Lamy, Philippe

    2013-10-01

    Comet C/2012 S1 {ISON} is both a new "nearly isotropic" and a sungrazing comet with anoutstanding apparition in cycle 21, passing within 0.42 AU of the Earth.We propose a 12-orbit Hubble postperihelion investigation of this comet that will provide a detailed view of its nucleus originating from the Oort cloud and of the possible consequences of its very close approach to the Sun at a perihelion distance of 0.012471 AU such as fragmentation.We will determine the size, shape, rotational period, and color {UBVRI} ofthe nucleus of C/2012 S1 or of its fragment should disruption occurs. This passage of a new "nearly isotropic" comet very close tothe Earth offers a rare opportunity to investigate this population ofobjects, and we expect many other observatories to attempt detecting itsnucleus in the mid-infrared, millimetric and centimetric domains.Combining the Hubble results with those from other observatories shouldyield a comprehensive picture of this NIC that can be compared to thedetailed data collected on ecliptic comets {ECs} during the past 3decades. The differences and similarities between NICs and ECs shouldyield valuable insights into the origin and evolution of comets.

  5. Extinction of a classically conditioned response: red nucleus and interpositus.

    PubMed

    Robleto, Karla; Thompson, Richard F

    2008-03-05

    It is well established that the cerebellum and its associated circuitry are essential for classical conditioning of the eyeblink response and other discrete motor responses (e.g., limb flexion, head turn, etc.) learned with an aversive unconditioned stimulus. However, brain mechanisms underlying extinction of these responses are still relatively unclear. Behavioral studies have demonstrated extinction to be an active learning process distinct from acquisition. Accordingly, this current understanding of extinction has guided neural studies that have tried to identify possible brain structures that could support this new learning. However, whether extinction engages the same brain sites necessary for acquisition is not yet clear. This poses an overriding problem for understanding brain mechanisms necessary for extinction because such analysis cannot be done without first identifying brain sites and pathways involved in this phenomenon. Equally elusive is the validity of a behavioral theory of extinction that can account for the properties of extinction. In this study, we looked at the involvement of the interpositus and the red nucleus in extinction. Results show that, although inactivation of both nuclei blocks response expression, only inactivation of the interpositus has a detrimental effect on extinction. Moreover, this detrimental effect was completely removed when inactivation of the interpositus was paired with electrical stimulation of the red nucleus. These findings speak to the important role of cerebellar structures in the extinction of discrete motor responses and provide important insight as to the validity of a particular theory of extinction.

  6. Order out of chaos in the hybrid plant nucleus.

    PubMed

    Jones, R N; Hegarty, M

    2009-01-01

    The plant nucleus is a highly ordered and dynamic structure, with a considerable level of variation between species in terms of genome size, genome organisation, chromosome territories and patterns associated with developmental changes. Diploids naturally represent the simplest state of affairs, but in the plant world more than 70% of species may have been involved in polyploidisation events at some stage during their evolution. Autopolyploids have multiple sets of chromosomes from a single species, and aside from the complexities of meiosis we may expect them to accommodate their polysomic state as well as their disomic relatives. Allopolyploids are at the other extreme, with multiple sets of chromosomes from 2 or more species, embedded in the cytoplasm of the maternal parent following hybridisation, and this presents the nucleus of nascent allopolyploids with certain zones of conflict. Nature has found ways to make the accommodation, and recent developments in molecular analysis have now opened a window for the experimenter to view the process of this adjustment, and to see how rapidly it takes place and what processes are involved. The nature of the resolution of nuclear conflicts in diploid hybrids and in allopolyploids is discussed.

  7. Nucleus-Dependent Valence-Space Approach to Nuclear Structure

    NASA Astrophysics Data System (ADS)

    Stroberg, S. R.; Calci, A.; Hergert, H.; Holt, J. D.; Bogner, S. K.; Roth, R.; Schwenk, A.

    2017-01-01

    We present a nucleus-dependent valence-space approach for calculating ground and excited states of nuclei, which generalizes the shell-model in-medium similarity renormalization group to an ensemble reference with fractionally filled orbitals. Because the ensemble is used only as a reference, and not to represent physical states, no symmetry restoration is required. This allows us to capture three-nucleon (3 N ) forces among valence nucleons with a valence-space Hamiltonian specifically targeted to each nucleus of interest. Predicted ground-state energies from carbon through nickel agree with results of other large-space ab initio methods, generally to the 1% level. In addition, we show that this new approach is required in order to obtain convergence for nuclei in the upper p and s d shells. Finally, we address the 1+/3+ inversion problem in 22Na and 46V. This approach extends the reach of ab initio nuclear structure calculations to essentially all light- and medium-mass nuclei.

  8. Neutrino-nucleus reactions based on recent structure studies

    SciTech Connect

    Suzuki, Toshio

    2015-05-15

    Neutrino-nucleus reactions are studied with the use of new shell model Hamiltonians, which have proper tensor components in the interactions and prove to be successful in the description of Gamow-Teller (GT) strengths in nuclei. The new Hamiltonians are applied to obtain new neutrino-nucleus reaction cross sections in {sup 12}C, {sup 13}C, {sup 56}Fe and {sup 56}Ni induced by solar and supernova neutrinos. The element synthesis by neutrino processes in supernova explosions is discussed with the new cross sections. The enhancement of the production yields of {sup 7}Li, {sup 11}B and {sup 55}Mn is obtained while fragmented GT strength in {sup 56}Ni with two-peak structure is found to result in smaller e-capture rates at stellar environments. The monopole-based universal interaction with tensor force of π+ρ meson exchanges is used to evaluate GT strength in {sup 40}Ar and ν-induced reactions on {sup 40}Ar. It is found to reproduce well the experimental GT strength in {sup 40}Ar.

  9. Tools for visualization of phosphoinositides in the cell nucleus.

    PubMed

    Kalasova, Ilona; Fáberová, Veronika; Kalendová, Alžběta; Yildirim, Sukriye; Uličná, Lívia; Venit, Tomáš; Hozák, Pavel

    2016-04-01

    Phosphoinositides (PIs) are glycerol-based phospholipids containing hydrophilic inositol ring. The inositol ring is mono-, bis-, or tris-phosphorylated yielding seven PIs members. Ample evidence shows that PIs localize both to the cytoplasm and to the nucleus. However, tools for direct visualization of nuclear PIs are limited and many studies thus employ indirect approaches, such as staining of their metabolic enzymes. Since localization and mobility of PIs differ from their metabolic enzymes, these approaches may result in incomplete data. In this paper, we tested commercially available PIs antibodies by light microscopy on fixed cells, tested their specificity using protein-lipid overlay assay and blocking assay, and compared their staining patterns. Additionally, we prepared recombinant PIs-binding domains and tested them on both fixed and live cells by light microscopy. The results provide a useful overview of usability of the tools tested and stress that the selection of adequate tools is critical. Knowing the localization of individual PIs in various functional compartments should enable us to better understand the roles of PIs in the cell nucleus.

  10. Capsaicin augments synaptic transmission in the rat medial preoptic nucleus.

    PubMed

    Karlsson, Urban; Sundgren-Andersson, Anna K; Johansson, Staffan; Krupp, Johannes J

    2005-05-10

    The medial preoptic nucleus (MPN) is the major nucleus of the preoptic area (POA), a hypothalamic area involved in the regulation of body-temperature. Injection of capsaicin into this area causes hypothermia in vivo. Capsaicin also causes glutamate release from hypothalamic slices. However, no data are available on the effect of capsaicin on synaptic transmission within the MPN. Here, we have studied the effect of exogenously applied capsaicin on spontaneous synaptic activity in hypothalamic slices of the rat. Whole-cell patch-clamp recordings were made from visually identified neurons located in the MPN. In a subset of the studied neurons, capsaicin enhanced the frequency of spontaneous glutamatergic EPSCs. Remarkably, capsaicin also increased the frequency of GABAergic IPSCs, an effect that was sensitive to removal of extracellular calcium, but insensitive to tetrodotoxin. This suggests an action of capsaicin at presynaptic GABAergic terminals. In contrast to capsaicin, the TRPV4 agonist 4alpha-PDD did not affect GABAergic IPSCs. Our results show that capsaicin directly affects synaptic transmission in the MPN, likely through actions at presynaptic terminals as well as on projecting neurons. Our data add to the growing evidence that capsaicin receptors are not only expressed in primary afferent neurons, but also contribute to synaptic processing in some CNS regions.

  11. Finding Hierarchical and Overlapping Dense Subgraphs using Nucleus Decompositions

    SciTech Connect

    Seshadhri, Comandur; Pinar, Ali; Sariyuce, Ahmet Erdem; Catalyurek, Umit

    2014-11-01

    Finding dense substructures in a graph is a fundamental graph mining operation, with applications in bioinformatics, social networks, and visualization to name a few. Yet most standard formulations of this problem (like clique, quasiclique, k-densest subgraph) are NP-hard. Furthermore, the goal is rarely to nd the \\true optimum", but to identify many (if not all) dense substructures, understand their distribution in the graph, and ideally determine a hierarchical structure among them. Current dense subgraph nding algorithms usually optimize some objective, and only nd a few such subgraphs without providing any hierarchy. It is also not clear how to account for overlaps in dense substructures. We de ne the nucleus decomposition of a graph, which represents the graph as a forest of nuclei. Each nucleus is a subgraph where smaller cliques are present in many larger cliques. The forest of nuclei is a hierarchy by containment, where the edge density increases as we proceed towards leaf nuclei. Sibling nuclei can have limited intersections, which allows for discovery of overlapping dense subgraphs. With the right parameters, the nuclear decomposition generalizes the classic notions of k-cores and k-trusses. We give provable e cient algorithms for nuclear decompositions, and empirically evaluate their behavior in a variety of real graphs. The tree of nuclei consistently gives a global, hierarchical snapshot of dense substructures, and outputs dense subgraphs of higher quality than other state-of-theart solutions. Our algorithm can process graphs with tens of millions of edges in less than an hour.

  12. Beam normal spin asymmetries: Theory

    SciTech Connect

    M. Vanderhaeghen

    2007-06-01

    The beam normal spin asymmetry in elastic electron-nucleon scattering is discussed. This beam normal spin asymmetry depends on the imaginary part of two-photon exchange processes between electron and nucleon, and measures the non-forward structure functions of the nucleon. After briefly reviewing the theoretical formalism, we discuss calculations in the threshold region, in the resonance region, as well as in the diffractive region, corresponding with high energy and forward angles.

  13. [Lateral motor nucleus in the lumbosacral segment of the spinal cord of the horse].

    PubMed

    Flieger, S; Sławomirski, J; Boratyński, Z; Jastrzebski, M

    1984-01-01

    Two medullae oblongatae of horses were cut into 15 microns cross-sections and stained according to the modified method of Nissel. The lateral motor nucleus lies in the lateral and median part of the ventral column of spinal cord grey matter. It adjoins medially nucleus motorius medialis of the spinal ventral column. Cells of this nucleus occur both along the whole lumbar and sacral segment of the spinal cord. In the lateral motor nucleus three cell groups are distinguished - median, basal and lateral. The latter is divided in some segments into subgroups - dorsal and ventral. Along the nucleus quite numerous constrictions and intervals are found, which are caused by various numbers of cells in particular cross-sections. Nucleus motorius lateralis is formed mainly of large and medium multipolar or single spindle cells.

  14. [Nucleus motorius lateralis in the lumbosacral segment of the spinal cord in horses].

    PubMed

    Flieger, S; Sławomirski, J; Boratyński, Z; Jastrzebski, M

    1984-01-01

    Two medullae oblongatae of horses were cut into 15 microns cross-sections and stained according to the modified method of Nissel. The lateral motor nucleus lies in the lateral and median part of the ventral column of spinal cord grey matter. It adjoins medially nucleus motorius medialis of the spinal ventral column. Cells of this nucleus occur both along the whole lumbar and sacral segment of the spinal cord. In the lateral motor nucleus three cell groups are distinguished-median, basal and lateral. The latter is divided in some segments into subgroups-dorsal and ventral. Along the nucleus quite numerous constrictions and intervals are found, which are caused by various numbers of cells in particular cross-sections. Nucleus motorius lateralis is formed mainly of large and medium multipolar or single spindle cells.

  15. Mu opioid receptor antagonism in the nucleus accumbens shell blocks consumption of a preferred sucrose solution in an anticipatory contrast paradigm.

    PubMed

    Katsuura, Y; Taha, S A

    2014-03-07

    Binge eating, a central feature of multiple eating disorders, is characterized by excessive consumption occurring during discrete, often brief, intervals. Highly palatable foods play an important role in these binge episodes - foods chosen during bingeing are typically higher in fat or sugar than those normally consumed. Multiple lines of evidence suggest a central role for signaling by endogenous opioids in promoting palatability-driven eating. This role extends to binge-like feeding studied in animal models, which is reduced by administration of opioid antagonists. However, the neural circuits and specific opioid receptors mediating these effects are not fully understood. In the present experiments, we tested the hypothesis that endogenous opioid signaling in the nucleus accumbens promotes consumption in a model of binge eating. We used an anticipatory contrast paradigm in which separate groups of rats were presented sequentially with 4% sucrose and then either 20% or 0% sucrose solutions. In rats presented with 4% and then 20% sucrose, daily training in this paradigm produced robust intake of 20% sucrose, preceded by learned hypophagia during access to 4% sucrose. We tested the effects of site-specific infusions of naltrexone (a nonspecific opioid receptor antagonist: 0, 1, 10, and 50μg/side in the nucleus accumbens core and shell), naltrindole (a delta opioid receptor antagonist: 0, 0.5, 5, and 10μg/side in the nucleus accumbens shell) and beta-funaltrexamine (a mu opioid receptor antagonist: 0 and 2.5μg/side in the nucleus accumbens shell) on consumption in this contrast paradigm. Our results show that signaling through the mu opioid receptor in the nucleus accumbens shell is dynamically modulated during formation of learned food preferences, and promotes binge-like consumption of palatable foods based on these learned preferences.

  16. Selective Stimulation and Measurement in the Cochlear Nucleus With the Spike Microelectrode Array

    DTIC Science & Technology

    2007-11-02

    Selective Stimulation and Measurement in the Cochlear Nucleus with the Spike Microelectrode Array F. MASE1, H. TAKAHASHI1, T. EJIRI1, M. NAKAO1, N...aren’t always effective, because we don’t have sufficient knowledge of the auditory pathways and the Cochlear Nucleus (CN) functions to stimulate the... Cochlear Nucleus functionally. Our goals are to enhance our understanding of such functions and to develop effective stimulating strategies of the CN

  17. Effects of systemic L-tyrosine on dopamine release from rat corpus striatum and nucleus accumbens

    NASA Technical Reports Server (NTRS)

    During, Matthew J.; Acworth, Ian N.; Wurtman, Richard J.

    1988-01-01

    Intracerebral dialysis was used to monitor extracellular fluid from rat striatum and nucleus accumbens following the intraperitoneal administration of tyrosine. Dopamine concentrations in dialysates from both the striatum and the nucleus accumbens increased significantly in response to the tyrosine. The magnitude of the tyrosine effect was greater in the nucleus accumbens than in the striatum. Hence, mesolimbic dopaminergic neurons may be especially responsive to precursor availability.

  18. Metabolic changes in the nucleus of the optic tract after monocular enucleation as revealed by cytochrome oxidase histochemistry.

    PubMed

    Vargas, C D; Sousa, A O; Santos, C M; Pereira, A; Bernardes, R F; Rocha-Miranda, C E; Volchan, E

    2001-03-01

    The histochemistry for the mitochondrial enzyme cytochrome oxidase (CO) was used to evaluate the levels of metabolic activity in neurons of the nucleus of the optic tract (NOT) and dorsal terminal nucleus (DTN) in the opossum (Didelphis aurita). The observations were performed in four groups: normal juveniles (4 months old), monocularly enucleated juveniles analysed when adults, normal adults (8 to 18 months old) and monocularly enucleated adults. CO labeled cells were observed to have a similar distribution along the NOT-DTN anteroposterior axis in both juvenile and adult normal animals. Monocular enucleation performed in adults produced a significant reduction of the reactive neuropil but not of the number of CO labeled cells in the deafferented NOT-DTN: the number of labeled neurons per section in the deafferented side matched those of the ipsilateral complex. In juveniles, however, this procedure caused a systematic reduction of the number of CO labeled cells in the contralateral NOT-DTN in comparison to the spared complex. The lack of reduction in the number of neurons found on the deafferented side of the NOT-DTN of monocularly enucleated adult opossums compared with the ipsilateral side might result from the presence of compensatory inputs to maintain their metabolic equivalence. However, when the monocular enucleation was performed in juvenile opossums, a statistically significant asymmetry of CO neurons in the NOT-DTN was observed. In other words, the compensatory mechanisms proposed for the adults were either absent or insufficient to achieve symmetry in juveniles, suggesting a more heavily reliance in the retinal input.

  19. Cell proliferation in normal epidermis

    SciTech Connect

    Weinstein, G.D.; McCullough, J.L.; Ross, P.

    1984-06-01

    A detailed examination of cell proliferation kinetics in normal human epidermis is presented. Using tritiated thymidine with autoradiographic techniques, proliferative and differentiated cell kinetics are defined and interrelated. The proliferative compartment of normal epidermis has a cell cycle duration (Tc) of 311 h derived from 3 components: the germinative labeling index (LI), the duration of DNA synthesis (ts), and the growth fraction (GF). The germinative LI is 2.7% +/- 1.2 and ts is 14 h, the latter obtained from a composite fraction of labeled mitoses curve obtained from 11 normal subjects. The GF obtained from the literature and from human skin xenografts to nude mice is estimated to be 60%. Normal-appearing epidermis from patients with psoriasis appears to have a higher proliferation rate. The mean LI is 4.2% +/- 0.9, approximately 50% greater than in normal epidermis. Absolute cell kinetic values for this tissue, however, cannot yet be calculated for lack of other information on ts and GF. A kinetic model for epidermal cell renewal in normal epidermis is described that interrelates the rate of birth/entry, transit, and/or loss of keratinocytes in the 3 epidermal compartments: proliferative, viable differentiated (stratum malpighii), and stratum corneum. Expected kinetic homeostasis in the epidermis is confirmed by the very similar ''turnover'' rates in each of the compartments that are, respectively, 1246, 1417, and 1490 cells/day/mm2 surface area. The mean epidermal turnover time of the entire tissue is 39 days. The Tc of 311 h in normal cells in 8-fold longer than the psoriatic Tc of 36 h and is necessary for understanding the hyperproliferative pathophysiologic process in psoriasis.

  20. Amygdaloid and basal forebrain direct connections with the nucleus of the solitary tract and the dorsal motor nucleus

    SciTech Connect

    Schwaber, J.S.; Kapp, B.S.; Higgins, G.A.; Rapp, P.R.

    1982-10-01

    Although the amygdala complex has long been known to exert a profound influence on cardiovascular activity, the neuronal and connectional substrate mediating these influences remains unclear. This paper describes a direct amygdaloid projection to medullary sensory and motor structures involved in cardiovascular regulation, the nucleus of the solitary tract (NTS) and the dorsal motor nucleus (DVN), by the use of autoradiographic anterograde transport and retrograde horseradish peroxidase (HRP) techniques in rabbits. Since all of these structures are highly heterogeneous structurally and functionally, details of the specific areas of the neuronal origin and efferent distribution of the projection were examined in relation to these features and with reference to a cytoarchitecture description of the relevant forebrain regions in the rabbit. The existence of such an extensive projection system connecting these specific regions found in these studies is significant evidence in support to its potential for participation in the amygdaloid expression of cardiovascular influences and has important implications for the cellular analysis of the functional role of these influences.

  1. Role of the red nucleus in suppressing the jaw-opening reflex following stimulation of the raphe magnus nucleus.

    PubMed

    Satoh, Yoshihide; Ishizuka, Ken'Ichi; Iwasaki, Shin-ichi

    2014-08-01

    In a previous study, we found that electrical and chemical stimulation of the red nucleus (RN) suppressed the high-threshold afferent-evoked jaw-opening reflex (JOR). It has been reported that the RN receives bilaterally projection fibers from the raphe magnus nucleus (RMg), and that stimulation of the RMg inhibits the tooth pulp-evoked nociceptive JOR. These facts imply that RMg-induced inhibition of the JOR could be mediated via the RN. The present study first examines whether stimulation of the RMg suppresses the high-threshold afferent-evoked JOR. The JOR was evoked by electrical stimulation of the inferior alveolar nerve (IAN), and was recorded as the electromyographic response of the anterior belly of the digastric muscle. The stimulus intensity was 4.0 (high-threshold) times the threshold. Conditioning electrical stimulation of the RMg significantly suppressed the JOR. A further study then examined whether electrically induced lesions of the RN or microinjection of muscimol into the RN affects RMg-induced suppression of the JOR. Electrically induced lesions of the bilateral RN and microinjection of muscimol into the bilateral RN both reduced the RMg-induced suppression of the JOR. These results suggest that RMg-induced suppression of the high-threshold afferent-evoked JOR is mediated by a relay in the RN.

  2. Chronic alcohol exposure alters transcription broadly in a key integrative brain nucleus for homeostasis: the nucleus tractus solitarius.

    PubMed

    Covarrubias, Maria Yolanda; Khan, Rishi L; Vadigepalli, Rajanikanth; Hoek, Jan B; Schwaber, James S

    2005-12-14

    Chronic exposure to alcohol modifies physiological processes in the brain, and the severe symptoms resulting from sudden removal of alcohol from the diet indicate that these modifications are functionally important. We investigated the gene expression patterns in response to chronic alcohol exposure (21-28 wk) in the rat nucleus tractus solitarius (NTS), a brain nucleus with a key integrative role in homeostasis and cardiorespiratory function. Using methods and an experimental design optimized for detecting transcriptional changes less than twofold, we found 575 differentially expressed genes. We tested these genes for significant associations with physiological functions and signaling pathways using Gene Ontology terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, respectively. Chronic alcohol exposure resulted in significant NTS gene regulation related to the general processes of synaptic transmission, intracellular signaling, and cation transport as well as specific neuronal functions including plasticity and seizure behavior that could be related to alcohol withdrawal symptoms. The differentially expressed genes were also significantly enriched for enzymes of lipid metabolism, glucose metabolism, oxidative phosphorylation, MAP kinase signaling, and calcium signaling pathways from KEGG. Intriguingly, many of the genes we found to be differentially expressed in the NTS are known to be involved in alcohol-induced oxidative stress and/or cell death. The study provides evidence of very extensive alterations of physiological gene expression in the NTS in the adapted state to chronic alcohol exposure.

  3. Topography and morphology of the inhibitory projection from superior olivary nucleus to nucleus laminaris in chickens (Gallus gallus).

    PubMed

    Tabor, Kathryn M; Wong, Rachel O L; Rubel, Edwin W

    2011-02-01

    The avian nucleus laminaris (NL) is involved in computation of interaural time differences (ITDs) that encode the azimuthal position of a sound source. Neurons in NL are bipolar, with dorsal and ventral dendritic arbors receiving input from separate ears. NL neurons act as coincidence detectors that respond maximally when input from each ear arrives at the two dendritic arbors simultaneously. Computational and physiological studies demonstrated that the sensitivity of NL neurons to coincident inputs is modulated by an inhibitory feedback circuit via the superior olivary nucleus (SON). To understand the mechanism of this modulation, the topography of the projection from SON to NL was mapped, and the morphology of the axon terminals of SON neurons in NL was examined in chickens (Gallus gallus). In vivo injection of AlexaFluor 568 dextran amine into SON demonstrated a coarse topographic projection from SON to NL. Retrogradely labeled neurons in NL were located within the zone of anterogradely labeled terminals, suggesting a reciprocal projection between SON to NL. In vivo extracellular physiological recording further demonstrated that this topography is consistent with tonotopic maps in SON and NL. In addition, three-dimensional reconstruction of single SON axon branches within NL revealed that individual SON neurons innervate a large area of NL and terminate on both dorsal and ventral dendritic arbors of NL neurons. The organization of the projection from SON to NL supports its proposed functions of controlling the overall activity level of NL and enhancing the specificity of frequency mapping and ITD detection.

  4. [Neuronal activity of the head of the caudate nucleus during formation of positive and inhibitory motor alimentary conditioned reflexes in cats].

    PubMed

    Driagin, Iu M

    1977-01-01

    Cellular activity of the caudate nucleus head was studied on 15 cats during motor alimentary conditioning, extinction and elaboration of differentiation response. Analysis of the dynamics of the appearance and stabilization of neuronal conditioned responses attests that the caudate nuclei are a part of the morpho-functional structure of the given conditioned reflex. A functional heterogeneity within the nuclels head has been shown on the basis of responses of the cells during conditioned and unconditioned behaviour. It has been assumed that cellular populations of the ventral segment of the caudate nucleus head are predominantly involved in providing for a normal course of the processes of extinction and detection of significant signals in this form of conditioned alimentary behaviour in cats.

  5. Formation of eye-specific retinogeniculate projections occurs prior to the innervation of the dorsal lateral geniculate nucleus by cholinergic fibers.

    PubMed

    Ballesteros, Jose M; VAN DER List, Deborah A; Chalupa, Leo M

    2005-01-01

    We compared the developmental periods in the mouse when projections from the two eyes become segregated in the dorsal lateral geniculate nucleus with the time when this nucleus becomes innervated by cholinergic fibers from the brainstem. Changes in labeling patterns of different tracers injected into each eye revealed that segregation of retinogeniculate inputs commences at postnatal day five (P5) and is largely complete by P8. Immunocytochemical staining showed that cholinergic neurons are present in the parabrachial region of the brain stem on the day of birth. However, cholinergic fibers are not evident in the geniculate until P5, and these are sparse at this age, increasing in density to form well-defined clusters by P12. These results indicate that segregation of eye-specific projections during normal development is unlikely to be regulated by cholinergic inputs from the brainstem.

  6. The quasirelativistic contact interaction and effective electron and spin densities at the nucleus: A model based on weighting the electron density with the finite Gaussian nucleus model

    NASA Astrophysics Data System (ADS)

    Malček, Michal; Bučinský, Lukáš; Biskupič, Stanislav; Jayatilaka, Dylan

    2013-08-01

    The Infinite Order Two Component quasirelativistic Hartree-Fock contact and effective electron/spin densities of Cu, Ag, Au atoms and the chemical shifts of HgF2, Cu+, Ag+ and Au+ are presented. The effective densities for the Gaussian nucleus model based on the weighted product of electron/spin density with the Gaussian distribution of the nucleus are reported for the first time. The effective (average) electron density obtained via the derivative of the energy of the system with respect to the size of the nucleus is shown for comparison. The finite-field difference method to obtain the derivative of the energy is also considered.

  7. [Chromatin in diapause of the silkworm Bombyx mori L.: thermal parthenogenesis and normal development].

    PubMed

    Klimenko, V V; Khaoiuan', Lian

    2012-01-01

    Having used hematoxylin as a stain, some features of silkworm embryo chromatin in diapause have been studied in normal and parthenogenetic development. With found direct correlation between the number of interphase chromatin grains and the number of chromosomes in the nucleus, we examined cell polyploidization in the embryo at diapause stage. Polyploidization by parthenogenesis is not reducible to endomitotic doubling of the chromosome set because it comprises 6n-nuclei. Explanation of more diverse range of polyploid cells in parthenogenesis needs to consider the fusion of cleavage nuclei that is carried out by the cytoplasmic karyogamic mechanism in the absence of fertilization. For the first time on squash preparations, in diapausing embryo, we have identified primary germ cells (PGC) that are characterized by less compact chromatin, especially in the zygotic form of development, a larger size of the nucleus and cytoplasm, and irregular number and size of nucleoli. Evaluation of PGC ploidy in parthenogenesis by calculation of "loose" chromatin grains in diapause is possible and testifies polyploidization in embryo germ-line. This explains the inevitable admixture of tetraploid eggs in diploid parthenoclone grain and its absence in normal development. Cytological method used has revealed a spiral arrangement of chromatin grains on the inner surface of the nucleus at different levels of ploidy.

  8. Epidermal growth factor receptors destined for the nucleus are internalized via a clathrin-dependent pathway

    SciTech Connect

    De Angelis Campos, Ana Carolina; Rodrigues, Michele Angela; Andrade, Carolina de; Miranda de Goes, Alfredo; Nathanson, Michael H.; Gomes, Dawidson A.

    2011-08-26

    Highlights: {yields} EGF and its receptor translocates to the nucleus in liver cells. {yields} Real time imaging shows that EGF moves to the nucleus. {yields} EGF moves with its receptor to the nucleus. {yields} Dynamin and clathrin are necessary for EGFR nuclear translocation. -- Abstract: The epidermal growth factor (EGF) transduces its actions via the EGF receptor (EGFR), which can traffic from the plasma membrane to either the cytoplasm or the nucleus. However, the mechanism by which EGFR reaches the nucleus is unclear. To investigate these questions, liver cells were analyzed by immunoblot of cell fractions, confocal immunofluorescence and real time confocal imaging. Cell fractionation studies showed that EGFR was detectable in the nucleus after EGF stimulation with a peak in nuclear receptor after 10 min. Movement of EGFR to the nucleus was confirmed by confocal immunofluorescence and labeled EGF moved with the receptor to the nucleus. Small interference RNA (siRNA) was used to knockdown clathrin in order to assess the first endocytic steps of EGFR nuclear translocation in liver cells. A mutant dynamin (dynamin K44A) was also used to determine the pathways for this traffic. Movement of labeled EGF or EGFR to the nucleus depended upon dynamin and clathrin. This identifies the pathway that mediates the first steps for EGFR nuclear translocation in liver cells.

  9. Excessive disgust caused by brain lesions or temporary inactivations: Mapping hotspots of nucleus accumbens and ventral pallidum

    PubMed Central

    Ho, Chao-Yi; Berridge, Kent C.

    2014-01-01

    Disgust is a prototypical type of negative affect. In animal models of excessive disgust, only a few brain sites are known in which localized dysfunction (lesions or neural inactivations) can induce intense ‘disgust reactions’ (e.g., gapes) to a normally pleasant sensation such as sweetness. Here we aimed to map forebrain candidates more precisely to identify where either local neuronal damage (excitotoxin lesions) or local pharmacological inactivation (muscimol-baclofen microinjections) caused rats to emit excessive sensory disgust reactions to sucrose. Our study compared subregions of nucleus accumbens shell, ventral pallidum, lateral hypothalamus and adjacent extended amygdala. Results indicated the posterior half of ventral pallidum to be the only forebrain site where intense sensory disgust gapes to sucrose were induced by both lesions and temporary inactivations (this site was previously identified as a hedonic hotspot for enhancements of sweetness ‘liking’). By comparison, for the nucleus accumbens, temporary GABA inactivations in the caudal half of the medial shell also generated sensory disgust but lesions never did at any site. Further, even inactivations failed to induce disgust in the rostral half of accumbens shell (which also contains a hedonic hotspot). In other structures, neither lesions nor inactivations induced disgust as long as the posterior ventral pallidum remained spared. We conclude that the posterior ventral pallidum is an especially crucial hotspot for producing excessive sensory disgust by local pharmacological/lesion dysfunction. By comparison, the nucleus accumbens appears to segregate sites for pharmacological disgust induction and hedonic enhancement into separate posterior versus rostral halves of medial shell. PMID:25229197

  10. Corticothalamic Axons Are Essential for Retinal Ganglion Cell Axon Targeting to the Mouse Dorsal Lateral Geniculate Nucleus

    PubMed Central

    Shanks, James A.; Ito, Shinya; Schaevitz, Laura; Yamada, Jena; Chen, Bin; Litke, Alan

    2016-01-01

    Retinal ganglion cells (RGCs) relay information about the outside world to multiple subcortical targets within the brain. This information is either used to dictate reflexive behaviors or relayed to the visual cortex for further processing. Many subcortical visual nuclei also receive descending inputs from projection neurons in the visual cortex. Most areas receive inputs from layer 5 cortical neurons in the visual cortex but one exception is the dorsal lateral geniculate nucleus (dLGN), which receives layer 6 inputs and is also the only RGC target that sends direct projections to the cortex. Here we ask how visual system development and function changes in mice that develop without a cortex. We find that the development of a cortex is essential for RGC axons to terminate in the dLGN, but is not required for targeting RGC axons to other subcortical nuclei. RGC axons also fail to target to the dLGN in mice that specifically lack cortical layer 6 projections to the dLGN. Finally, we show that when mice develop without a cortex they can still perform a number of vision-dependent tasks. SIGNIFICANCE STATEMENT The dorsal lateral geniculate nucleus (dLGN) is a sensory thalamic relay area that receives feedforward inputs from retinal ganglion cells (RGCs) in the retina, and feed back inputs from layer 6 neurons in the visual cortex. In this study we examined genetically manipulated mice that develop without a cortex or without cortical layer 6 axonal projections, and find that RGC axons fail to project to the dLGN. Other RGC recipient areas, such as the superior colliculus and suprachiasmatic nucleus, are targeted normally. These results provide support for a new mechanism of target selection that may be specific to the thalamus, whereby descending cortical axons provide an activity that promotes feedforward targeting of RGC axons to the dLGN. PMID:27170123

  11. A Study on Dispersion and Rate of Fat Infiltration in the Lumbar Spine of Patients with Herniated Nucleus Polpusus

    PubMed Central

    Kong, Bong-jun; Lim, Jong-soo; Kim, Kyung

    2014-01-01

    [Purpose] This study investigated the relationship between herniated nucleus pulposus (HNP) and fat infiltration of muscles around the spine by measuring body mass index (BMI) and fat infiltration of the muscles around the spine. [Subjects and Methods] Subjects were 82 people, both men and women they were divided into two groups, a normal group and a patient group who were suffering from serious HNP between L4 and L5. Of the anthropometric measurement, and fat infiltration muscles by measuring the cross-sectional area from the center of the disc to the muscle around the spine and the cross-sectional area of fat infiltration. [Results] Fat infiltration rate of each lumbar layer in the normal group was different L34–L45 and L45–L5S1, but not between L23–L34. Fat infiltration in the muscle between the normal group and patients with HNP was different in the layers and the difference was greatest in the L5–S1 layer. [Conclusion] We performed correlation analysis of BMI and the total fat infiltration rate in each group to find the relationship between obesity and fat infiltration in the lumbar spine. Fat infiltration increased, and normal people or patients with chronic back pain are considered to be exposed to other diseases as fat infiltration in the lumbar spine increases. PMID:24567672

  12. Normal probability plots with confidence.

    PubMed

    Chantarangsi, Wanpen; Liu, Wei; Bretz, Frank; Kiatsupaibul, Seksan; Hayter, Anthony J; Wan, Fang

    2015-01-01

    Normal probability plots are widely used as a statistical tool for assessing whether an observed simple random sample is drawn from a normally distributed population. The users, however, have to judge subjectively, if no objective rule is provided, whether the plotted points fall close to a straight line. In this paper, we focus on how a normal probability plot can be augmented by intervals for all the points so that, if the population distribution is normal, then all the points should fall into the corresponding intervals simultaneously with probability 1-α. These simultaneous 1-α probability intervals provide therefore an objective mean to judge whether the plotted points fall close to the straight line: the plotted points fall close to the straight line if and only if all the points fall into the corresponding intervals. The powers of several normal probability plot based (graphical) tests and the most popular nongraphical Anderson-Darling and Shapiro-Wilk tests are compared by simulation. Based on this comparison, recommendations are given in Section 3 on which graphical tests should be used in what circumstances. An example is provided to illustrate the methods.

  13. Clues to the Mystery of the M31 Nucleus

    NASA Astrophysics Data System (ADS)

    Crane, Ph.

    1995-03-01

    HST imaging of the nucleus of M31 (Lauer et al.,1993; King, Stanford, and Crane, 1995) revealed a double structure in which the brightest point in the V band(P1) is not centered on the outer isophotes but rather the fainter peak is. Interestingly, the fainter peak in V(P2) is the brightest point in the UV and is very close the center of the outer isophotes. The colour of P1 matches that of the reddened ''bowl'' of stars surrounding P2 found by King et al. Further complication is found in the spectra of the M31 nucleus (Bacon et al.,1994) where the symmetric rotation curve shows no evidence of the brightest point P1. Additionally, the peak in the velocity dispersion does not lie at either of these peaks, but is shifted along the line joining them to the side of P2 away from P1. A simple model of the nucleus of M31 apparently can resolve these anomalies. The model assumes that P1 is a low velocity dispersion object in the gravitational field of P2. P2 and the surrounding stars rotate about a line perpendicular to the line joining P1 and P2. The model generates a 2-dimensional array of spectra using the HST imaging data as a reference for the brightness at each point. The models are convolved with a seeing function and then observed. The symmetry of the rotation curve is easily reproduced. The shift of the velocity dispersion curve is also produced. The model can restrict the range of velocity dispersions of P1, and the velocity of P1 relative to P2. The main objection to the model is that it implies that we are seeing P1 as it is being tidally disrupted in the field of P2. However, some evidence that this is indeed the case comes from the observation of the ''bowl'' of stars surrounding P2 mentioned above. Bacon et al.,1994, A. & A. 281,691. Lauer et al.,1993, A.J. 106,1436. King, Stanford, and Crane, 1995, A.J. 109,164.

  14. Tonotopic Optimization for Temporal Processing in the Cochlear Nucleus

    PubMed Central

    Oline, Stefan N.; Ashida, Go

    2016-01-01

    In the auditory system, sounds are processed in parallel frequency-tuned circuits, beginning in the cochlea. Auditory nerve fibers reflect this tonotopy and encode temporal properties of acoustic stimuli by “locking” discharges to a particular stimulus phase. However, physiological constraints on phase-locking depend on stimulus frequency. Interestingly, low characteristic frequency (LCF) neurons in the cochlear nucleus improve phase-locking precision relative to their auditory nerve inputs. This is proposed to arise through synaptic integration, but the postsynaptic membrane's selectivity for varying levels of synaptic convergence is poorly understood. The chick cochlear nucleus, nucleus magnocellularis (NM), exhibits tonotopic distribution of both input and membrane properties. LCF neurons receive many small inputs and have low input thresholds, whereas high characteristic frequency (HCF) neurons receive few, large synapses and require larger currents to spike. NM therefore presents an opportunity to study how small membrane variations interact with a systematic topographic gradient of synaptic inputs. We investigated membrane input selectivity and observed that HCF neurons preferentially select faster input than their LCF counterparts, and that this preference is tolerant of changes to membrane voltage. We then used computational models to probe which properties are crucial to phase-locking. The model predicted that the optimal arrangement of synaptic and membrane properties for phase-locking is specific to stimulus frequency and that the tonotopic distribution of input number and membrane excitability in NM closely tracks a stimulus-defined optimum. These findings were then confirmed physiologically with dynamic-clamp simulations of inputs to NM neurons. SIGNIFICANCE STATEMENT One way that neurons represent temporal information is by phase-locking, which is discharging in response to a particular phase of the stimulus waveform. In the auditory system

  15. Gas streaming motions towards the nucleus of M81

    NASA Astrophysics Data System (ADS)

    Schnorr Müller, Allan; Storchi-Bergmann, Thaisa; Riffel, Rogemar A.; Ferrari, Fabricio; Steiner, J. E.; Axon, David J.; Robinson, Andrew

    2011-05-01

    We present two-dimensional stellar and gaseous kinematics of the inner 120 × 250 pc2 of the LINER/Seyfert 1 galaxy M81, from optical spectra obtained with the Gemini Multi-Object Spectrograph (GMOS) integral field spectrograph on the Gemini-North telescope at a spatial resolution of ≈10 pc. The stellar velocity field shows circular rotation and, overall, is very similar to the published large-scale velocity field, but deviations are observed close to the minor axis which can be attributed to stellar motions possibly associated with a nuclear bar. The stellar velocity dispersion of the bulge is 162 ± 15 km s-1, in good agreement with previous measurements and leading to a black hole mass of MBH= 5.5+3.6-2.0× 107 M⊙ based on the MBH-σ relationship. The gas kinematics is dominated by non-circular motions and the subtraction of the stellar velocity field reveals blueshifts of ≈-100 km s-1 on the far side of the galaxy and a few redshifts on the near side. These characteristics can be interpreted in terms of streaming towards the centre if the gas is in the plane. On the basis of the observed velocities and geometry of the flow, we estimate a mass inflow rate in ionized gas of ≈4.0 × 10-3 M⊙ yr-1, which is of the order of the accretion rate necessary to power the LINER nucleus of M81. We have also applied the technique of principal component analysis (PCA) to our data, which reveals the presence of a rotating nuclear gas disc within ≈50 pc from the nucleus and a compact outflow, approximately perpendicular to the disc. The PCA combined with the observed gas velocity field shows that the nuclear disc is being fed by gas circulating in the galaxy plane. The presence of the outflow is supported by a compact jet seen in radio observations at a similar orientation, as well as by an enhancement of the [O I]/Hα line ratio, probably resulting from shock excitation of the circumnuclear gas by the radio jet. With these observations we are thus resolving both the

  16. Probing the Nucleus with Deuteron+Gold Collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Citron, Zvi Hirsh

    2011-12-01

    The Relativistic Heavy Ion Collider (RHIC) was built to produce and study Quark Gluon Plasma (QGP), the phase of matter thought to exist under conditions sufficiently hot and dense to create a medium in which the degrees of freedom are quarks and gluons rather than color neutral hadrons. Already in its early years of running, the data from RHIC provided tantalizing evidence of QGP signatures in Au+Au collisions at sNN = 200 GeV. A crucial part of understanding the putative QGP in Au+Au collisions is to have both a well understood reference as well as a robust control experiment. Proton-proton collisions at the same sNN serve as the baseline for heavy ion collisions at RHIC, and play an invaluable role in setting our frame of reference in interactions that do not create any nuclear medium. For the control experiment, RHIC's ability to collide asymmetric beams is utilized and d+Au collisions are used. Unlike p+p collisions, in the d+Au system there is a nuclear medium present---the heavy Au nucleus---and so we may study this system to distinguish initial state cold nuclear matter effects from final state effects that occur in the hot dense medium of Au+Au collisions. Beyond its use as a control experiment, the d+Au collision system presents the opportunity for important study of nuclear and nucleonic structure, it is after all necessary for our colored parton theory to operate in the nucleus as well as in a QGP. Deuteron - gold collisions at RHIC are a powerful tool for shedding light on cold nuclear matter effects. This thesis describes two analyses of d+Au collisions measured by the PHENIX experiment at RHIC. The first is a measurement of the midrapidity yield of unidentified charged hadrons in the 2003 RHIC run. This is used a key baseline for understanding particle production in Au+Au collisions as well as a detailed look at the Cronin effect. The second analysis measures rapidity separated two-particle production where one of the particles is at either forward

  17. Alpha particle spectra in coincidence with normal and superdeformed states in {sup 150}Tb

    SciTech Connect

    Viesti, G.; Lunardon, M.; Bazzacco, D. |

    1996-12-31

    The study of correlations between particle evaporation from highly excited compound nuclei at large angular momenta and the states in the final evaporation residues (ER) is a field of investigation which has been opened, in the last years, with the advent of the new large {gamma}-ray arrays. It is now possible to correlate the evaporation spectra to various bands with shapes ranging from spherical to superdeformed (SD) in the same final nucleus. It is generally accepted that the particle evaporation from the compound nucleus is chaotic and that only in the near-yrast {gamma} cascade, where the feeding of different classes of states takes place, the ordered motion is restored. The sensitivity of the particle spectra on the feeding of specific states in the residual nuclei can be taken as an indication that additional degrees of freedom might be important in the evaporation process or that particular regions of the phase space open to the decay populate preferentially some selected structures in the final cold nucleus. This latter point is important for the understanding of the feeding mechanism of SD states. Several experiments performed so far did not find a clear dependence of the shapes of the particle spectra on the excited states having different deformations in the ER. For example, the proton spectra in coincidence with transitions in the SD bands of {sup 133}Nd and {sup 152}Dy nuclei were found to be similar to those in coincidence with transitions in the normal deformed (ND) bands. Alpha particles have been proposed since long as a sensitive probe of the deformation of the emitting nucleus. Results are presented here of an experiment in which the authors have measured the energy spectra of alpha particles associated with different classes of states (ND and SD) in the {sup 150}Tb nucleus populated in the reaction {sup 37}Cl({sup 120}Sn, {alpha}3n{gamma}){sup 150}Tb.

  18. Conductivity Modulation in a gated Normal-CDW-Normal configuration

    NASA Astrophysics Data System (ADS)

    Biswas, Saumya; Lake, Roger

    There is considerable interest in switching by exploiting a voltage controlled phase transition, and one such phase is the charge density wave phase that occurs in a number of quasi one dimensional and two dimensional transition metal dichalcogenides. Voltage controlled switching of the charge density wave transition in 1T-TaS2 has recently been demonstrated. We consider a transistor geometry with normal metal contacts and a channel of CDW material. The interaction is modeled with a negative U Hubbard term. Normal-CDW-temperature-U phase diagrams show the regime of the CDW in the ideal lattice. The wavelength of the CDW in the transistor channel is determined by both the conditions of Fermi surface nesting and also the condition of commensurability with the channel length between the two normal leads. Moving the Fermi level of the channel first results in phase boundaries within the CDW as the conditions of commensurability and Fermi surface nesting become incompatible. Moving the Fermi level from half filling by few tens of meV causes a collapsing of the CDW gap and an effective CDW-normal transition, leaving vestiges of the CDW in the channel. The transition is accompanied by one to two orders of magnitude increase in the conductivity. This work is supported by the National Science Foundation (NSF) Grant No. 1124733 and the Semiconductor Research Corporation (SRC) Nanoelectronic Research Initiative as a part of the Nanoelectronics for 2020 and Beyond (NEB-2020) program.

  19. 3j Symbols: To Normalize or Not to Normalize?

    ERIC Educational Resources Information Center

    van Veenendaal, Michel

    2011-01-01

    The systematic use of alternative normalization constants for 3j symbols can lead to a more natural expression of quantities, such as vector products and spherical tensor operators. The redefined coupling constants directly equate tensor products to the inner and outer products without any additional square roots. The approach is extended to…

  20. Mechanical stratigraphy and normal faulting

    NASA Astrophysics Data System (ADS)

    Ferrill, David A.; Morris, Alan P.; McGinnis, Ronald N.; Smart, Kevin J.; Wigginton, Sarah S.; Hill, Nicola J.

    2017-01-01

    Mechanical stratigraphy encompasses the mechanical properties, thicknesses, and interface properties of rock units. Although mechanical stratigraphy often relates directly to lithostratigraphy, lithologic description alone does not adequately describe mechanical behavior. Analyses of normal faults with displacements of millimeters to 10's of kilometers in mechanically layered rocks reveal that mechanical stratigraphy influences nucleation, failure mode, fault geometry, displacement gradient, displacement distribution, fault core and damage zone characteristics, and fault zone deformation processes. The relationship between normal faulting and mechanical stratigraphy can be used either to predict structural style using knowledge of mechanical stratigraphy, or conversely to interpret mechanical stratigraphy based on characterization of the structural style. This review paper explores a range of mechanical stratigraphic controls on normal faulting illustrated by natural and modeled examples.