Ramírez-Alejo, Noé; Alcántara-Montiel, Julio C; Yamazaki-Nakashimada, Marco; Duran-McKinster, Carola; Valenzuela-León, Paola; Rivas-Larrauri, Francisco; Cedillo-Barrón, Leticia; Hernández-Rivas, Rosaura; Santos-Argumedo, Leopoldo
2015-10-01
NF-κB essential modulator (NEMO) is a component of the IKK complex, which participates in the activation of the NF-κB pathway. Hypomorphic mutations in the IKBKG gene result in different forms of anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) in males without affecting carrier females. Here, we describe a hypomorphic and missense mutation, designated c.916G>A (p.D306N), which affects our patient, his mother, and his sister. This mutation did not affect NEMO expression; however, an immunoprecipitation assay revealed reduced ubiquitylation upon CD40-stimulation in the patient's cells. Functional studies have demonstrated reduced phosphorylation and degradation of IκBα, affecting NF-κB recruitment into the nucleus. The patient presented with clinical features of ectodermal dysplasia, immunodeficiency, and immune thrombocytopenic purpura, the latter of which has not been previously reported in a patient with NEMO deficiency. His mother and sister displayed incontinentia pigmenti indicating that, in addition to amorphic mutations, hypomorphic mutations in NEMO can affect females. Copyright © 2015 Elsevier Inc. All rights reserved.
Ngadjeua, Flora; Chiaravalli, Jeanne; Traincard, François; Raynal, Bertrand; Fontan, Elisabeth; Agou, Fabrice
2013-01-01
Hypomorphic mutations in the X-linked human NEMO gene result in various forms of anhidrotic ectodermal dysplasia with immunodeficiency. NEMO function is mediated by two distal ubiquitin binding domains located in the regulatory C-terminal domain of the protein: the coiled-coil 2-leucine zipper (CC2-LZ) domain and the zinc finger (ZF) domain. Here, we investigated the effect of the D406V mutation found in the NEMO ZF of an ectodermal dysplasia with immunodeficiency patients. This point mutation does not impair the folding of NEMO ZF or mono-ubiquitin binding but is sufficient to alter NEMO function, as NEMO-deficient fibroblasts and Jurkat T lymphocytes reconstituted with full-length D406V NEMO lead to partial and strong defects in NF-κB activation, respectively. To further characterize the ubiquitin binding properties of NEMO ZF, we employed di-ubiquitin (di-Ub) chains composed of several different linkages (Lys-48, Lys-63, and linear (Met-1-linked)). We showed that the pathogenic mutation preferentially impairs the interaction with Lys-63 and Met-1-linked di-Ub, which correlates with its ubiquitin binding defect in vivo. Furthermore, sedimentation velocity and gel filtration showed that NEMO ZF, like other NEMO related-ZFs, binds mono-Ub and di-Ub with distinct stoichiometries, indicating the presence of a new Ub site within the NEMO ZF. Extensive mutagenesis was then performed on NEMO ZF and characterization of mutants allowed the proposal of a structural model of NEMO ZF in interaction with a Lys-63 di-Ub chain. PMID:24100029
Mizukami, Tomoyuki; Obara, Megumi; Nishikomori, Ryuta; Kawai, Tomoki; Tahara, Yoshihiro; Sameshima, Naoki; Marutsuka, Kousuke; Nakase, Hiroshi; Kimura, Nobuhiro; Heike, Toshio; Nunoi, Hiroyuki
2012-02-01
X-linked anhidrotic ectodermal dysplasia with immunodeficiency (X-EDA-ID) is caused by hypomorphic mutations in the gene encoding nuclear factor-κB essential modulator protein (NEMO). Patients are susceptibile to diverse pathogens due to insufficient cytokine and frequently show severe chronic colitis. An 11-year-old boy with X-EDA-ID was hospitalized with autoimmune symptoms and severe chronic colitis which had been refractory to immunosuppressive drugs. Since tumor necrosis factor (TNF) α is responsible for the pathogenesis of NEMO colitis according to intestinal NEMO and additional TNFR1 knockout mice studies, and high levels of TNFα-producing mononuclear cells were detected in the patient due to the unexpected gene reversion mosaicism of NEMO, an anti-TNFα monoclonal antibody was administered to ameliorate his abdominal symptoms. Repeated administrations improved his colonoscopic findings as well as his dry skin along with a reduction of TNFα-expressing T cells. These findings suggest TNF blockade therapy is of value for refractory NEMO colitis with gene reversion.
Haverkamp, Margje H; Marciano, Beatriz E; Frucht, David M; Jain, Ashish; van de Vosse, Esther; Holland, Steven M
2014-05-01
Patients with hypomorphic mutations in Nuclear Factor-κB Essential Modulator (NEMO) are immunodeficient (ID) and most display ectodermal dysplasia and anhidrosis (EDA). We compared cytokine production by NEMO-ID patients with and without EDA. PBMCs of NEMO-ID patients, four with EDA carrying E315A, C417R, D311N and Q403X, and three without EDA carrying E315A, E311_L333del and R254G, were cultured with PHA, PHA plus IL-12p70, LPS, LPS plus IFN-γ, TNF and IL-1β. The production of various cytokines was measured in the supernatants. Fifty-nine healthy individuals served as controls. PBMCs of NEMO-ID patients without EDA produce subnormal amounts of IFN-γ after stimulation with PHA, but normal amounts of IFN-γ after PHA plus IL-12p70. In contrast, IFN-γ production by patients with EDA was low in both cases. Patients with EDA also generate lower PHA-stimulated IL-10 and IL-1β than controls, whereas the production of these cytokines by patients without EDA was normal. Responses of PBMCs in NEMO-ID patients with EDA to PHA with and without IL-12p70 appear less robust than in NEMO-ID patients without EDA. This possibly indicates a better preserved NEMO function in our patients without EDA.
Specific NEMO mutations impair CD40-mediated c-Rel activation and B cell terminal differentiation
Jain, Ashish; Ma, Chi A.; Lopez-Granados, Eduardo; Means, Gary; Brady, William; Orange, Jordan S.; Liu, Shuying; Holland, Steven; Derry, Jonathan M.J.
2004-01-01
Hypomorphic mutations in the zinc finger domain of NF-κB essential modulator (NEMO) cause X-linked hyper-IgM syndrome with ectodermal dysplasia (XHM-ED). Here we report that patient B cells are characterized by an absence of Ig somatic hypermutation (SHM) and defective class switch recombination (CSR) despite normal induction of activation-induced cytidine deaminase (AID) and Iε-Cε transcripts. This indicates that AID expression alone is insufficient to support neutralizing antibody responses. Furthermore, we show that patient B cells stimulated with CD40 ligand are impaired in both p65 and c-Rel activation, and whereas addition of IL-4 can enhance p65 activity, c-Rel activity remains deficient. This suggests that these NF-κB components have different activation requirements and that IL-4 can augment some but not all NEMO-dependent NF-κB signaling. Finally, using microarray analysis of patient B cells we identified downstream effects of impaired NF-κB activation and candidate factors that may be necessary for CSR and SHM in B cells. PMID:15578091
Noncanonical NF-κB Signaling Is Limited by Classical NF-κB Activity
Gray, Carolyn M.; Remouchamps, Caroline; McCorkell, Kelly A.; Solt, Laura A.; Dejardin, Emmanuel; Orange, Jordan S.; May, Michael J.
2014-01-01
Precise regulation of nuclear factor κB (NF-κB) signaling is crucial for normal immune responses, and defective NF-κB activity underlies a range of immunodeficiencies. NF-κB is activated through two signaling cascades: the classical and noncanonical pathways. The classical pathway requires inhibitor of κB kinase β (IKKβ) and NF-κB essential modulator (NEMO), and hypomorphic mutations in the gene encoding NEMO (ikbkg) lead to inherited immunodeficiencies, collectively termed NEMO-ID. Noncanonical NF-κB activation requires NF-κB–inducing kinase (NIK) and IKKα, but not NEMO. We found that noncanonical NF-κB was basally active in peripheral blood mononuclear cells from NEMO-ID patients, and that noncanonical NF-κB signaling was similarly enhanced in cell lines lacking functional NEMO. NIK, which normally undergoes constitutive degradation, was aberrantly present in resting NEMO-deficient cells, and regulation of its abundance was rescued by reconstitution with full-length NEMO, but not a mutant NEMO protein unable to physically associate with IKKα or IKKβ. Binding of NEMO to IKKα was not required for ligand-dependent stabilization of NIK or noncanonical NF-κB signaling. Rather, an intact and functional IKK complex was essential to suppress basal NIK activity in unstimulated cells. Despite interacting with IKKα and IKKβ to form an IKK complex, NEMO mutants associated with immunodeficiency failed to rescue classical NF-κB signaling or reverse the accumulation of NIK. Together, these findings identify a crucial role for classical NF-κB activity in the suppression of basal noncanonical NF-κB signaling. PMID:24497610
Genetic Analysis of X-Chromosome Dosage Compensation in Caenorhabditis elegans
Meneely, Philip M.; Wood, William B.
1987-01-01
We have shown that the phenotypes resulting from hypomorphic mutations (causing reduction but not complete loss of function) in two X-linked genes can be used as a genetic assay for X-chromosome dosage compensation in Caenorhabditis elegans between males ( XO) and hermaphrodites (XX). In addition we show that recessive mutations in two autosomal genes, dpy-21 V and dpy-26 IV, suppress the phenotypes resulting from the X-linked hypomorphic mutations, but not the phenotypes resulting from comparable autosomal hypomorphic mutations. This result strongly suggests that the dpy-21 and dpy-26 mutations cause increased X expression, implying that the normal function of these genes may be to lower the expression of X-linked genes. Recessive mutations in two other dpy genes, dpy-22 X and dpy-23 X, increase the severity of phenotypes resulting from some X-linked hypomorphic mutations, although dpy-23 may affect the phenotypes resulting from the autosomal hypomorphs as well. The mutations in all four of the dpy genes show their effects in both XO and XX animals, although to different degrees. Mutations in 18 other dpy genes do not show these effects. PMID:3666440
Russo, Roberta; Langella, Concetta; Esposito, Maria Rosaria; Gambale, Antonella; Vitiello, Francesco; Vallefuoco, Fara; Ek, Torben; Yang, Elizabeth; Iolascon, Achille
2013-01-01
Congenital dyserythropoietic anemia type II, a recessive disorder of erythroid differentiation, is due to mutations in SEC23B, a component of the core trafficking machinery COPII. In no case homozygosity or compound heterozygosity for nonsense mutation(s) was found. This study represents the first description of molecular mechanisms underlying SEC23B hypomorphic genotypes by the analysis of five novel mutations. Our findings suggest that reduction of SEC23B gene expression is not associated with CDA II severe clinical presentation; conversely, the combination of a hypomorphic allele with one functionally altered results in more severe phenotypes. We propose a mechanism of compensation SEC23A-mediated which justifies these observations. PMID:23453696
Autosomal dominant polycystic kidney disease in a family with mosaicism and hypomorphic allele.
Reiterová, Jana; Štekrová, Jitka; Merta, Miroslav; Kotlas, Jaroslav; Elišáková, Veronika; Lněnička, Petr; Korabečná, Marie; Kohoutová, Milada; Tesař, Vladimír
2013-03-15
Autosomal dominant polycystic kidney disease (ADPKD) is the most common form of inherited kidney disease that results in renal failure. ADPKD is a systemic disorder with cysts and connective tissue abnormalities involving many organs. ADPKD caused by mutations in PKD1 gene is significantly more severe than the cases caused by PKD2 gene mutations. The large intra-familial variability of ADPKD highlights a role for genetic background. Here we report a case of ADPKD family initially appearing unlinked to the PKD1 or PKD2 loci and the influence of mosaicism and hypomorphic allele on the variability of the clinical course of the disease. A grandmother with the PKD1 gene mutation in mosaicism (p.Val1105ArgfsX4) and with mild clinical course of ADPKD (end stage renal failure at the age of 77) seemed to have ADPKD because of PKD2 gene mutation. On the other hand, her grandson had a severe clinical course (end stage renal disease at the age of 45) in spite of the early treatment of mild hypertension. There was found by mutational analysis of PKD genes that the severe clinical course was caused by PKD1 gene frameshifting mutation inherited from his father and mildly affected grandmother in combination with inherited hypomorphic PKD1 allele with described missense mutation (p.Thr2250Met) from his clinically healthy mother. The sister with two cysts and with PKD1 hypomorphic allele became the kidney donor to her severely affected brother. We present the first case of ADPKD with the influence of mosaicism and hypomorphic allele of the PKD1 gene on clinical course of ADPKD in one family. Moreover, this report illustrates the role of molecular genetic testing in assessing young related kidney donors for patients with ADPKD.
Unusual Father-to-Daughter Transmission of Incontinentia Pigmenti Due to Mosaicism in IP Males.
Fusco, Francesca; Conte, Matilde Immacolata; Diociaiuti, Andrea; Bigoni, Stefania; Branda, Maria Francesca; Ferlini, Alessandra; El Hachem, Maya; Ursini, Matilde Valeria
2017-09-01
Incontinentia pigmenti (IP; Online Mendelian Inheritance in Man catalog #308300) is an X-linked dominant ectodermal disorder caused by mutations of the inhibitor of κ polypeptide gene enchancer in B cells, kinase γ ( IKBKG )/ nuclear factor κB, essential modulator ( NEMO ) gene. Hemizygous IKBKG/NEMO loss-of-function (LoF) mutations are lethal in males, thus patients are female, and the disease is always transmitted from an IP-affected mother to her daughter. We present 2 families with father-to-daughter transmission of IP and provide for the first time molecular evidence that the combination of somatic and germ-line mosaicism for IKBKG/NEMO loss of function mutations in IP males resulted in the transmission of the disease to a female child. We searched for the IKBKG/NEMO mutant allele in blood, urine, skin, and sperm DNA and found that the 2 fathers were somatic and germ-line mosaics for the p.Gln132×mutation or the exon 4-10 deletion of IKBKG/NEMO , respectively. The highest level of IKBKG/NEMO mutant cells was detected in the sperm, which might explain the recurrence of the disease. We therefore recommend careful clinical evaluation in IP male cases and the genetic investigation in sperm DNA to ensure correct genetic counseling and prevent the risk of paternal transmission of IP. Copyright © 2017 by the American Academy of Pediatrics.
Mechanism Underlying IκB Kinase Activation Mediated by the Linear Ubiquitin Chain Assembly Complex
Fujita, Hiroaki; Akita, Mariko; Kato, Ryuichi; Sasaki, Yoshiteru; Wakatsuki, Soichi
2014-01-01
The linear ubiquitin chain assembly complex (LUBAC) ligase, consisting of HOIL-1L, HOIP, and SHARPIN, specifically generates linear polyubiquitin chains. LUBAC-mediated linear polyubiquitination has been implicated in NF-κB activation. NEMO, a component of the IκB kinase (IKK) complex, is a substrate of LUBAC, but the precise molecular mechanism underlying linear chain-mediated NF-κB activation has not been fully elucidated. Here, we demonstrate that linearly polyubiquitinated NEMO activates IKK more potently than unanchored linear chains. In mutational analyses based on the crystal structure of the complex between the HOIP NZF1 and NEMO CC2-LZ domains, which are involved in the HOIP-NEMO interaction, NEMO mutations that impaired linear ubiquitin recognition activity and prevented recognition by LUBAC synergistically suppressed signal-induced NF-κB activation. HOIP NZF1 bound to NEMO and ubiquitin simultaneously, and HOIP NZF1 mutants defective in interaction with either NEMO or ubiquitin could not restore signal-induced NF-κB activation. Furthermore, linear chain-mediated activation of IKK2 involved homotypic interaction of the IKK2 kinase domain. Collectively, these results demonstrate that linear polyubiquitination of NEMO plays crucial roles in IKK activation and that this modification involves the HOIP NZF1 domain and recognition of NEMO-conjugated linear ubiquitin chains by NEMO on another IKK complex. PMID:24469399
Hypomorphic Rag1 mutations alter the pre-immune repertoire at early stages of lymphoid development.
Ott de Bruin, Lisa M; Bosticardo, Marita; Barbieri, Alessandro; Lin, Sherry G; Rowe, Jared H; Poliani, Pietro L; Ching, Kimberly; Eriksson, Daniel; Landegren, Nils; Kämpe, Olle; Manis, John P; Notarangelo, Luigi D
2018-05-09
Hypomorphic RAG1 mutations allowing residual T and B cell development have been found in patients presenting with delayed-onset combined immune deficiency with granulomas and/or autoimmunity (CID-G/AI) and abnormalities of the peripheral T and B cell repertoire. To examine how hypomorphic Rag1 mutations affect the earliest stages of lymphocyte development, we used CRISPR/Cas9 to generate mouse models with equivalent mutations found in patients with CID-G/AI. Immunological characterization showed partial development of T and B lymphocytes, with persistence of naïve cells, preserved serum immunoglobulin, but impaired antibody responses and presence of autoantibodies, thereby recapitulating the phenotype seen in patients with CID-G/AI. By using high throughput sequencing, we identified marked skewing of Igh V and Trb V gene usage in early progenitors, with a bias for productive Igh and Trb rearrangements after selection occurred and increased apoptosis of B cell progenitors. Rearrangement at the Igk locus was impaired, and polyreactive IgM antibodies were detected. This study provides novel insights in how hypomorphic Rag1 mutations alter the primary repertoire of T and B cells, setting the stage for immune dysregulation frequently seen in patients. Copyright © 2018 American Society of Hematology.
Patel, Maulik R; Miriyala, Ganesh K; Littleton, Aimee J; Yang, Heiko; Trinh, Kien; Young, Janet M; Kennedy, Scott R; Yamashita, Yukiko M; Pallanck, Leo J; Malik, Harmit S
2016-01-01
Due to their strict maternal inheritance in most animals and plants, mitochondrial genomes are predicted to accumulate mutations that are beneficial or neutral in females but harmful in males. Although a few male-harming mtDNA mutations have been identified, consistent with this ‘Mother’s Curse’, their effect on females has been largely unexplored. Here, we identify COIIG177S, a mtDNA hypomorph of cytochrome oxidase II, which specifically impairs male fertility due to defects in sperm development and function without impairing other male or female functions. COIIG177S represents one of the clearest examples of a ‘male-harming’ mtDNA mutation in animals and suggest that the hypomorphic mtDNA mutations like COIIG177S might specifically impair male gametogenesis. Intriguingly, some D. melanogaster nuclear genetic backgrounds can fully rescue COIIG177S -associated sterility, consistent with previously proposed models that nuclear genomes can regulate the phenotypic manifestation of mtDNA mutations. DOI: http://dx.doi.org/10.7554/eLife.16923.001 PMID:27481326
Alagappan, Uma; Pramono, Zacharias A D; Chong, Wei-Sheng
2017-03-01
Erythropoietic protoporphyria (EPP) is a rare inherited disorder of heme biosynthesis caused by decreased activity of the enzyme ferrochelatase (FECH ). The frequency of the hypomorphic c.333-48C allele in a population directly contributes to the prevalence of EPP in the same population. This study sought to identify the molecular basis of EPP in a Chinese patient from Singapore and the c.333-48C allele frequency among the Chinese population in Singapore. FECH gene was screened for mutation in the patient's DNA sample by polymerase chain reaction amplification and DNA sequencing. To validate the identified mutation, the FECH region harboring the mutation was screened in DNA samples from all healthy controls. One patient and 46 ethnically matched healthy controls were included in the study. A novel c.474dupC which leads to a frameshift and premature stop codon was identified in one allele, while the other allele showed to carry c.333-48C and c.337C>T variants in the patient's FECH. The frequency of the c.333-48C hypomorphic allele is 27% among Chinese population in Singapore. c.474dupC in one allele trans to hypomorphic c.333-48C and c.337C>T allele in FECH gene may be the underlying cause of the clinical EPP of the studied patient. The FECH hypomorphic c.333-48C allele frequency in Singapore is lower than the Han Chinese (41.3%) and Japanese (43%) populations but nearly the same as the Southeast Asian (31%) population and higher than the European (2.7-11%) population. © 2016 The International Society of Dermatology.
Bergeret, Evelyne; Pignot-Paintrand, Isabelle; Guichard, Annabel; Raymond, Karine; Fauvarque, Marie-Odile; Cazemajor, Michel; Griffin-Shea, Ruth
2001-01-01
Our analysis of rotund (rn) null mutations in Drosophila melanogaster revealed that deletion of the rn locus affects both spermatid and retinal differentiation. In the male reproductive system, the absence of RnRacGAP induced small testes, empty seminal vesicles, short testicular cysts, reduced amounts of interspermatid membrane, the absence of individualization complexes, and incomplete mitochondrial condensation. Flagellar growth continued within the short rn null cysts to produce large bulbous terminations of intertwined mature flagella. Organization of the retina was also severely perturbed as evidenced by grossly misshapen ommatidia containing reduced numbers of photoreceptor and pigment cells. These morphological phenotypes were rescued by genomic rnRacGAP transgenes, demonstrating that RnRacGAP function is critical to spermatid and retinal differentiation. The testicular phenotypes were suppressed by heterozygous hypomorphic mutations in the Dras1 and drk genes, indicating cross talk between RacGAP-regulated signaling and that of the Ras pathway. The observed genetic interactions are consistent with a model in which Rac signaling is activated by Ras and negatively regulated by RnRacGAP during spermatid differentiation. RnRacGAP and Ras cross talk also operated during retinal differentiation; however, while the heterozygous hypomorphic drk mutation continued to act as a suppressor of the rn null mutation, the heterozygous hypomorphic Dras1 mutation induced novel retinal phenotypes. PMID:11509670
Geier, Christoph B.; Piller, Alexander; Linder, Angela; Sauerwein, Kai M. T.; Eibl, Martha M.; Wolf, Hermann M.
2015-01-01
Loss of function mutations in the recombination activating genes RAG1 and RAG2 have been reported to cause a T-B-NK+ type of severe combined immunodeficiency. In addition identification of hypomorphic mutations in RAG1 and RAG2 has led to an expansion of the spectrum of disease to include Omenn syndrome, early onset autoimmunity, granuloma, chronic cytomegalovirus- or EBV-infection with expansion of gamma/delta T-cells, idiophatic CD4 lymphopenia and a phenotype resembling common variable immunodeficiency. Herein we describe a novel presentation of leaky RAG1 and RAG2 deficiency in two unrelated adult patients with impaired antibody production against bacterial polysaccharide antigens. Clinical manifestation included recurrent pneumonia, sinusitis, otitis media and in one patient recurrent cutaneous vasculitis. Both patients harbored a combination of a null mutation on one allele with a novel hypomorphic RAG1/2 mutation on the other allele. One of these novel mutations affected the start codon of RAG1 and resulted in an aberrant gene and protein expression. The second novel RAG2 mutation leads to a truncated RAG2 protein, lacking the C-terminus with intact core RAG2 and reduced VDJ recombination capacity as previously described in a mouse model. Both patients presented with severely decreased numbers of naïve CD4+ T cells and defective T independent IgG responses to bacterial polysaccharide antigens, while T cell-dependent IgG antibody formation e.g. after tetanus or TBEV vaccination was intact. In conclusion, hypomorphic mutations in genes responsible for SCID should be considered in adults with predominantly antibody deficiency. PMID:26186701
Brain endothelial TAK1 and NEMO safeguard the neurovascular unit
Ridder, Dirk A.; Wenzel, Jan; Müller, Kristin; Töllner, Kathrin; Tong, Xin-Kang; Assmann, Julian C.; Stroobants, Stijn; Weber, Tobias; Niturad, Cristina; Fischer, Lisanne; Lembrich, Beate; Wolburg, Hartwig; Grand’Maison, Marilyn; Papadopoulos, Panayiota; Korpos, Eva; Truchetet, Francois; Rades, Dirk; Sorokin, Lydia M.; Schmidt-Supprian, Marc; Bedell, Barry J.; Pasparakis, Manolis; Balschun, Detlef; D’Hooge, Rudi; Löscher, Wolfgang; Hamel, Edith
2015-01-01
Inactivating mutations of the NF-κB essential modulator (NEMO), a key component of NF-κB signaling, cause the genetic disease incontinentia pigmenti (IP). This leads to severe neurological symptoms, but the mechanisms underlying brain involvement were unclear. Here, we show that selectively deleting Nemo or the upstream kinase Tak1 in brain endothelial cells resulted in death of endothelial cells, a rarefaction of brain microvessels, cerebral hypoperfusion, a disrupted blood–brain barrier (BBB), and epileptic seizures. TAK1 and NEMO protected the BBB by activating the transcription factor NF-κB and stabilizing the tight junction protein occludin. They also prevented brain endothelial cell death in a NF-κB–independent manner by reducing oxidative damage. Our data identify crucial functions of inflammatory TAK1–NEMO signaling in protecting the brain endothelium and maintaining normal brain function, thus explaining the neurological symptoms associated with IP. PMID:26347470
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuji, Takehito; Kondo, Eri; Yasoda, Akihiro
2008-11-07
Long bone abnormality (lbab/lbab) is a spontaneous mutant mouse characterized by dwarfism with shorter long bones. A missense mutation was reported in the Nppc gene, which encodes C-type natriuretic peptide (CNP), but it has not been confirmed whether this mutation is responsible for the dwarf phenotype. To verify that the mutation causes the dwarfism of lbab/lbab mice, we first investigated the effect of CNP in lbab/lbab mice. By transgenic rescue with chondrocyte-specific expression of CNP, the dwarf phenotype in lbab/lbab mice was completely compensated. Next, we revealed that CNP derived from the lbab allele retained only slight activity to inducemore » cGMP production through its receptor. Histological analysis showed that both proliferative and hypertrophic zones of chondrocytes in the growth plate of lbab/lbab mice were markedly reduced. Our results demonstrate that lbab/lbab mice have a hypomorphic mutation in the Nppc gene that is responsible for dwarfism caused by impaired endochondral ossification.« less
Zhou, Li; Yeo, Alan T; Ballarano, Carmine; Weber, Urs; Allen, Karen N; Gilmore, Thomas D; Whitty, Adrian
2014-12-23
Human NEMO (NF-κB essential modulator) is a 419 residue scaffolding protein that, together with catalytic subunits IKKα and IKKβ, forms the IκB kinase (IKK) complex, a key regulator of NF-κB pathway signaling. NEMO is an elongated homodimer comprising mostly α-helix. It has been shown that a NEMO fragment spanning residues 44-111, which contains the IKKα/β binding site, is structurally disordered in the absence of bound IKKβ. Herein we show that enforcing dimerization of NEMO1-120 or NEMO44-111 constructs through introduction of one or two interchain disulfide bonds, through oxidation of the native Cys54 residue and/or at position 107 through a Leu107Cys mutation, induces a stable α-helical coiled-coil structure that is preorganized to bind IKKβ with high affinity. Chemical and thermal denaturation studies showed that, in the context of a covalent dimer, the ordered structure was stabilized relative to the denatured state by up to 3 kcal/mol. A full-length NEMO-L107C protein formed covalent dimers upon treatment of mammalian cells with H2O2. Furthermore, NEMO-L107C bound endogenous IKKβ in A293T cells, reconstituted TNF-induced NF-κB signaling in NEMO-deficient cells, and interacted with TRAF6. Our results indicate that the IKKβ binding domain of NEMO possesses an ordered structure in the unbound state, provided that it is constrained within a dimer as is the case in the constitutively dimeric full-length NEMO protein. The stability of the NEMO coiled coil is maintained by strong interhelix interactions in the region centered on residue 54. The disulfide-linked constructs we describe herein may be useful for crystallization of NEMO's IKKβ binding domain in the absence of bound IKKβ, thereby facilitating the structural characterization of small-molecule inhibitors.
Zebrafish cdc6 hypomorphic mutation causes Meier-Gorlin syndrome-like phenotype.
Yao, Likun; Chen, Jing; Wu, Xiaotong; Jia, Shunji; Meng, Anming
2017-11-01
Cell Division Cycle 6 (Cdc6) is a component of pre-replicative complex (preRC) forming on DNA replication origins in eukaryotes. Recessive mutations in ORC1, ORC4, ORC6, CDT1 or CDC6 of the preRC in human cause Meier-Gorlin syndrome (MGS) that is characterized by impaired post-natal growth, short stature and microcephaly. However, vertebrate models of MGS have not been reported. Through N-ethyl-N-nitrosourea mutagenesis and Cas9 knockout, we generate several cdc6 mutant lines in zebrafish. Loss-of-function mutations of cdc6, as manifested by cdc6tsu4305 and cdc6tsu7cd mutants, lead to embryonic lethality due to cell cycle arrest at the S phase and extensive apoptosis. Embryos homozygous for a cdc6 hypomorphic mutation, cdc6tsu21cd, develop normally during embryogenesis. Later on, compared with their wild-type (WT) siblings, cdc6tsu21cd mutant fish show growth retardation, and their body weight and length in adulthood are greatly reduced, which resemble human MGS. Surprisingly, cdc6tsu21cd mutant fish become males with a short life and fail to mate with WT females, suggesting defective reproduction. Overexpression of Cdc6 mutant forms, which mimic human CDC6(T323R) mutation found in a MGS patient, in zebrafish cdc6tsu4305 mutant embryos partially represses cell death phenotype, suggesting that the human CDC6(T323R) mutation is a hypomorph. cdc6tsu21cd mutant fish will be useful to detect more tissue defects and develop medical treatment strategies for MGS patients. © The Author 2017. Published by Oxford University Press.
TBX6 Null Variants and a Common Hypomorphic Allele in Congenital Scoliosis
Wu, N.; Ming, X.; Xiao, J.; Wu, Z.; Chen, X.; Shinawi, M.; Shen, Y.; Yu, G.; Liu, J.; Xie, H.; Gucev, Z.S.; Liu, S.; Yang, N.; Al-Kateb, H.; Chen, J.; Zhang, Jian; Hauser, N.; Zhang, T.; Tasic, V.; Liu, P.; Su, X.; Pan, X.; Liu, C.; Wang, L.; Shen, Joseph; Shen, Jianxiong; Chen, Y.; Zhang, T.; Zhang, Jianguo; Choy, K.W.; Wang, Jun; Wang, Q.; Li, S.; Zhou, W.; Guo, J.; Wang, Y.; Zhang, C.; Zhao, H.; An, Y.; Zhao, Y.; Wang, Jiucun; Liu, Z.; Zuo, Y.; Tian, Y.; Weng, X.; Sutton, V.R.; Wang, H.; Ming, Y.; Kulkarni, S.; Zhong, T.P.; Giampietro, P.F.; Dunwoodie, S.L.; Cheung, S.W.; Zhang, X.; Jin, L.; Lupski, J.R.; Qiu, G.; Zhang, F.
2015-01-01
BACKGROUND Congenital scoliosis is a common type of vertebral malformation. Genetic susceptibility has been implicated in congenital scoliosis. METHODS We evaluated 161 Han Chinese persons with sporadic congenital scoliosis, 166 Han Chinese controls, and 2 pedigrees, family members of which had a 16p11.2 deletion, using comparative genomic hybridization, quantitative polymerase-chain-reaction analysis, and DNA sequencing. We carried out tests of replication using an additional series of 76 Han Chinese persons with congenital scoliosis and a multi-center series of 42 persons with 16p11.2 deletions. RESULTS We identified a total of 17 heterozygous TBX6 null mutations in the 161 persons with sporadic congenital scoliosis (11%); we did not observe any null mutations in TBX6 in 166 controls (P<3.8×10−6). These null alleles include copy-number variants (12 instances of a 16p11.2 deletion affecting TBX6) and single-nucleotide variants (1 nonsense and 4 frame-shift mutations). However, the discordant intrafamilial phenotypes of 16p11.2 deletion carriers suggest that heterozygous TBX6 null mutation is insufficient to cause congenital scoliosis. We went on to identify a common TBX6 haplotype as the second risk allele in all 17 carriers of TBX6 null mutations (P<1.1×10−6). Replication studies involving additional persons with congenital scoliosis who carried a deletion affecting TBX6 confirmed this compound inheritance model. In vitro functional assays suggested that the risk haplotype is a hypomorphic allele. Hemivertebrae are characteristic of TBX6-associated congenital scoliosis. CONCLUSIONS Compound inheritance of a rare null mutation and a hypomorphic allele of TBX6 accounted for up to 11% of congenital scoliosis cases in the series that we analyzed. PMID:25564734
Zebrafish cdc6 hypomorphic mutation causes Meier-Gorlin syndrome-like phenotype
Yao, Likun; Chen, Jing; Wu, Xiaotong; Jia, Shunji; Meng, Anming
2017-01-01
Abstract Cell Division Cycle 6 (Cdc6) is a component of pre-replicative complex (preRC) forming on DNA replication origins in eukaryotes. Recessive mutations in ORC1, ORC4, ORC6, CDT1 or CDC6 of the preRC in human cause Meier-Gorlin syndrome (MGS) that is characterized by impaired post-natal growth, short stature and microcephaly. However, vertebrate models of MGS have not been reported. Through N-ethyl-N-nitrosourea mutagenesis and Cas9 knockout, we generate several cdc6 mutant lines in zebrafish. Loss-of-function mutations of cdc6, as manifested by cdc6tsu4305 and cdc6tsu7cd mutants, lead to embryonic lethality due to cell cycle arrest at the S phase and extensive apoptosis. Embryos homozygous for a cdc6 hypomorphic mutation, cdc6tsu21cd, develop normally during embryogenesis. Later on, compared with their wild-type (WT) siblings, cdc6tsu21cd mutant fish show growth retardation, and their body weight and length in adulthood are greatly reduced, which resemble human MGS. Surprisingly, cdc6tsu21cd mutant fish become males with a short life and fail to mate with WT females, suggesting defective reproduction. Overexpression of Cdc6 mutant forms, which mimic human CDC6(T323R) mutation found in a MGS patient, in zebrafish cdc6tsu4305 mutant embryos partially represses cell death phenotype, suggesting that the human CDC6(T323R) mutation is a hypomorph. cdc6tsu21cd mutant fish will be useful to detect more tissue defects and develop medical treatment strategies for MGS patients. PMID:28985365
Germline hypomorphic CARD11 mutations in severe atopic disease
Ma, Chi A; Stinson, Jeffrey R; Zhang, Yuan; Abbott, Jordan K; Weinreich, Michael A; Hauk, Pia J; Reynolds, Paul R; Lyons, Jonathan J; Nelson, Celeste G; Ruffo, Elisa; Dorjbal, Batsukh; Glauzy, Salomé; Yamakawa, Natsuko; Arjunaraja, Swadhinya; Voss, Kelsey; Stoddard, Jennifer; Niemela, Julie; Zhang, Yu; Rosenzweig, Sergio D; McElwee, Joshua J; DiMaggio, Thomas; Matthews, Helen F; Jones, Nina; Stone, Kelly D; Palma, Alejandro; Oleastro, Matías; Prieto, Emma; Bernasconi, Andrea R; Dubra, Geronimo; Danielian, Silvia; Zaiat, Jonathan; Marti, Marcelo A; Kim, Brian; Cooper, Megan A; Romberg, Neil D; Meffre, Eric; Gelfand, Erwin W; Snow, Andrew L; Milner, Joshua D
2017-01-01
Few monogenic causes for severe manifestations of common allergic diseases have been identified. Via next generation sequencing on a cohort of patients with severe atopic dermatitis, some with comorbid infections, we found 8 individuals from 4 families with novel heterozygous mutations in CARD11, a scaffolding protein involved in lymphocyte receptor signaling. Disease improved over time in most patients. Transfection of mutant expression constructs into T cell lines demonstrated both loss of function and dominant interfering activity upon antigen receptor-induced NF-κB and mTORC1 activation. Patient T-cells had similar defects, as well as diminished IFN-γ cytokine production. The mTORC1 and IFN-γ production defects could be partially rescued by supplementing with glutamine, which requires CARD11 for import into T cells. Our findings indicate a single hypomorphic gene mutation in CARD11 can cause potentially correctable cellular defects that lead to atopic dermatitis. PMID:28628108
Carlberg, Valerie M; Lofgren, Sabra M; Mann, Julianne A; Austin, Jared P; Nolt, Dawn; Shereck, Evan B; Davila-Saldana, Blachy; Zonana, Jonathan; Krol, Alfons L
2014-01-01
Osteopetrosis, lymphedema, hypohidrotic ectodermal dysplasia, and immunodeficiency (OL-HED-ID) is a rare X-linked disorder with only three reported prior cases in the English-language literature. We describe a case of OL-HED-ID in a male infant who initially presented with congenital lymphedema, leukocytosis, and thrombocytopenia of unknown etiology at 7 days of age. He subsequently developed gram-negative sepsis and multiple opportunistic infections including high-level cytomegalovirus viremia and Pneumocystis jiroveci pneumonia. The infant was noted to have mildly xerotic skin, fine sparse hair, and periorbital wrinkling, all features suggestive of ectodermal dysplasia. Skeletal imaging showed findings consistent with osteopetrosis, and immunologic investigation revealed hypogammaglobulinemia and mixed T- and B-cell dysfunction. Genetic testing revealed a novel mutation in the nuclear factor kappa beta (NF-KB) essential modulator (NEMO) gene, confirming the diagnosis of OL-HED-ID. Mutations in the NEMO gene have been reported in association with hypohidrotic ectodermal dysplasia with immunodeficiency (HED-ID), OL-HED-ID, and incontinentia pigmenti. In this case, we report a novel mutation in the NEMO gene associated with OL-HED-ID. This article highlights the dermatologic manifestations of a rare disorder, OL-HED-ID, and underscores the importance of early recognition and prompt intervention to prevent life-threatening infections. © 2013 Wiley Periodicals, Inc.
Control of Cell Morphology: Signalling by the Receptor Notch.
1996-10-01
missense mutations or small deletions at the extreme C-terminus of NOTCH, and lie within the minimal region that includes the C-terminal binding site for...20 Figure 4. Genetic interaction of null and hypomorphic alleles of Notch with abl mutations ...wide variety of cell types during Drosophila embryogenesis [1, 2]. Mutations in the Notch gene lead to severe defects in cell identity in the nervous
A Hypomorphic RAG1 Mutation Resulting in a Phenotype Resembling Common Variable Immunodeficiency
Abolhassani, Hassan; Wang, Ning; Aghamohammadi, Asghar; Rezaei, Nima; Lee, Yu Nee; Frugoni, Francesco; Notrangelo, Luigi D.; Pan-Hammarström, Qiang; Hammarström, Lennart
2014-01-01
Background RAG1 deficiency presents a varied spectrum of combined immunodeficiency, ranging from a T−B−NK+type of disease to a T+B+NK+ phenotype. Objective To assess the genetic background of common variable immunodeficiency (CVID) patients. Methods A patient diagnosed with CVID, who was born in a consanguineous family and thus would be expected to show an autosomal recessive inheritance, was subjected to clinical evaluation, immunological assays, homozygosity gene mapping, exome sequencing, Sanger sequencing and functional analysis. Results The 14-year-old patient, who suffered from liver granuloma, extranodal marginal zone B cell lymphoma and autoimmune neutropenia, is presented with a clinical picture resembling CVID. Genetic analysis of this patient showed a homozygous hypomorphic RAG1 mutation (c.1073 G>A, p.C358Y) with a residual functional capacity of 48% of wild-type protein. Conclusion Our finding broadens the range of disorders associated with RAG1 mutations and may have important therapeutic implications. PMID:24996264
Nemo: an evolutionary and population genetics programming framework.
Guillaume, Frédéric; Rougemont, Jacques
2006-10-15
Nemo is an individual-based, genetically explicit and stochastic population computer program for the simulation of population genetics and life-history trait evolution in a metapopulation context. It comes as both a C++ programming framework and an executable program file. Its object-oriented programming design gives it the flexibility and extensibility needed to implement a large variety of forward-time evolutionary models. It provides developers with abstract models allowing them to implement their own life-history traits and life-cycle events. Nemo offers a large panel of population models, from the Island model to lattice models with demographic or environmental stochasticity and a variety of already implemented traits (deleterious mutations, neutral markers and more), life-cycle events (mating, dispersal, aging, selection, etc.) and output operators for saving data and statistics. It runs on all major computer platforms including parallel computing environments. The source code, binaries and documentation are available under the GNU General Public License at http://nemo2.sourceforge.net.
A novel human autoimmune syndrome caused by combined hypomorphic and activating mutations in ZAP-70
Chan, Alice Y.; Punwani, Divya; Kadlecek, Theresa A.; Cowan, Morton J.; Olson, Jean L.; Mathes, Erin F.; Sunderam, Uma; Man Fu, Shu; Srinivasan, Rajgopal; Kuriyan, John; Brenner, Steven E.; Weiss, Arthur
2016-01-01
A brother and sister developed a previously undescribed constellation of autoimmune manifestations within their first year of life, with uncontrollable bullous pemphigoid, colitis, and proteinuria. The boy had hemophilia due to a factor VIII autoantibody and nephrotic syndrome. Both children required allogeneic hematopoietic cell transplantation (HCT), which resolved their autoimmunity. The early onset, severity, and distinctive findings suggested a single gene disorder underlying the phenotype. Whole-exome sequencing performed on five family members revealed the affected siblings to be compound heterozygous for two unique missense mutations in the 70-kD T cell receptor ζ-chain associated protein (ZAP-70). Healthy relatives were heterozygous mutation carriers. Although pre-HCT patient T cells were not available, mutation effects were determined using transfected cell lines and peripheral blood from carriers and controls. Mutation R192W in the C-SH2 domain exhibited reduced binding to phosphorylated ζ-chain, whereas mutation R360P in the N lobe of the catalytic domain disrupted an autoinhibitory mechanism, producing a weakly hyperactive ZAP-70 protein. Although human ZAP-70 deficiency can have dysregulated T cells, and autoreactive mouse thymocytes with weak Zap-70 signaling can escape tolerance, our patients’ combination of hypomorphic and activating mutations suggested a new disease mechanism and produced previously undescribed human ZAP-70–associated autoimmune disease. PMID:26783323
Hypomorphic PCNA mutation underlies a human DNA repair disorder
Baple, Emma L.; Chambers, Helen; Cross, Harold E.; Fawcett, Heather; Nakazawa, Yuka; Chioza, Barry A.; Harlalka, Gaurav V.; Mansour, Sahar; Sreekantan-Nair, Ajith; Patton, Michael A.; Muggenthaler, Martina; Rich, Phillip; Wagner, Karin; Coblentz, Roselyn; Stein, Constance K.; Last, James I.; Taylor, A. Malcolm R.; Jackson, Andrew P.; Ogi, Tomoo; Lehmann, Alan R.; Green, Catherine M.; Crosby, Andrew H.
2014-01-01
Numerous human disorders, including Cockayne syndrome, UV-sensitive syndrome, xeroderma pigmentosum, and trichothiodystrophy, result from the mutation of genes encoding molecules important for nucleotide excision repair. Here, we describe a syndrome in which the cardinal clinical features include short stature, hearing loss, premature aging, telangiectasia, neurodegeneration, and photosensitivity, resulting from a homozygous missense (p.Ser228Ile) sequence alteration of the proliferating cell nuclear antigen (PCNA). PCNA is a highly conserved sliding clamp protein essential for DNA replication and repair. Due to this fundamental role, mutations in PCNA that profoundly impair protein function would be incompatible with life. Interestingly, while the p.Ser228Ile alteration appeared to have no effect on protein levels or DNA replication, patient cells exhibited marked abnormalities in response to UV irradiation, displaying substantial reductions in both UV survival and RNA synthesis recovery. The p.Ser228Ile change also profoundly altered PCNA’s interaction with Flap endonuclease 1 and DNA Ligase 1, DNA metabolism enzymes. Together, our findings detail a mutation of PCNA in humans associated with a neurodegenerative phenotype, displaying clinical and molecular features common to other DNA repair disorders, which we showed to be attributable to a hypomorphic amino acid alteration. PMID:24911150
Miyasaka, Yuki; Suzuki, Sari; Ohshiba, Yasuhiro; Watanabe, Kei; Sagara, Yoshihiko; Yasuda, Shumpei P; Matsuoka, Kunie; Shitara, Hiroshi; Yonekawa, Hiromichi; Kominami, Ryo; Kikkawa, Yoshiaki
2013-01-01
The waltzer (v) mouse mutant harbors a mutation in Cadherin 23 (Cdh23) and is a model for Usher syndrome type 1D, which is characterized by congenital deafness, vestibular dysfunction, and prepubertal onset of progressive retinitis pigmentosa. In mice, functionally null Cdh23 mutations affect stereociliary morphogenesis and the polarity of both cochlear and vestibular hair cells. In contrast, the murine Cdh23(ahl) allele, which harbors a hypomorphic mutation, causes an increase in susceptibility to age-related hearing loss in many inbred strains. We produced congenic mice by crossing mice carrying the v niigata (Cdh23(v-ngt)) null allele with mice carrying the hypomorphic Cdh23(ahl) allele on the C57BL/6J background, and we then analyzed the animals' balance and hearing phenotypes. Although the Cdh23(v-ngt/ahl) compound heterozygous mice exhibited normal vestibular function, their hearing ability was abnormal: the mice exhibited higher thresholds of auditory brainstem response (ABR) and rapid age-dependent elevation of ABR thresholds compared with Cdh23(ahl/ahl) homozygous mice. We found that the stereocilia developed normally but were progressively disrupted in Cdh23(v-ngt/ahl) mice. In hair cells, CDH23 localizes to the tip links of stereocilia, which are thought to gate the mechanoelectrical transduction channels in hair cells. We hypothesize that the reduction of Cdh23 gene dosage in Cdh23(v-ngt/ahl) mice leads to the degeneration of stereocilia, which consequently reduces tip link tension. These findings indicate that CDH23 plays an important role in the maintenance of tip links during the aging process.
Walter, Jolan E.; Schuetz, Catherina; Chen, Karin; Abraham, Roshini S.; Bonfim, Carmem; Boyce, Thomas G.; Joshi, Avni Y.; Kang, Elizabeth; Carvalho, Beatriz Tavares Costa; Mahajerin, Arash; Nugent, Diane; Puthenveetil, Geetha; Soni, Amit; Su, Helen; Cowan, Morton J.; Notarangelo, Luigi; Buchbinder, David
2016-01-01
The use of HLA-identical hematopoietic stem cell transplantation (HSCT) demonstrates overall survival rates greater than 75 % for T-B-NK+ severe combined immunodeficiency secondary to pathogenic mutation of recombinase activating genes 1 and 2 (RAG1/2). Limited data exist regarding the use of HSCT in patients with hypomorphic RAG variants marked by greater preservation of RAG activity and associated phenotypes such as granulomatous disease in combination with autoimmunity. We describe a 17-year-old with combined immunodeficiency and immune dysregulation characterized by granulomatous lung disease and autoimmunity secondary to compound heterozygous RAG mutations. A myeloablative reduced toxicity HSCTwas completed using an unrelated bone marrow donor. With the increasing cases of immune dysregulation being discovered with hypomorphic RAG variants, the use of HSCT may advance to the forefront of treatment. This case serves to discuss indications of HSCT, approaches to preparative therapy, and the potential complications in this growing cohort of patients with immune dysregulation and RAG deficiency. PMID:27539235
John, Tami; Walter, Jolan E; Schuetz, Catherina; Chen, Karin; Abraham, Roshini S; Bonfim, Carmem; Boyce, Thomas G; Joshi, Avni Y; Kang, Elizabeth; Carvalho, Beatriz Tavares Costa; Mahajerin, Arash; Nugent, Diane; Puthenveetil, Geetha; Soni, Amit; Su, Helen; Cowan, Morton J; Notarangelo, Luigi; Buchbinder, David
2016-10-01
The use of HLA-identical hematopoietic stem cell transplantation (HSCT) demonstrates overall survival rates greater than 75 % for T-B-NK+ severe combined immunodeficiency secondary to pathogenic mutation of recombinase activating genes 1 and 2 (RAG1/2). Limited data exist regarding the use of HSCT in patients with hypomorphic RAG variants marked by greater preservation of RAG activity and associated phenotypes such as granulomatous disease in combination with autoimmunity. We describe a 17-year-old with combined immunodeficiency and immune dysregulation characterized by granulomatous lung disease and autoimmunity secondary to compound heterozygous RAG mutations. A myeloablative reduced toxicity HSCT was completed using an unrelated bone marrow donor. With the increasing cases of immune dysregulation being discovered with hypomorphic RAG variants, the use of HSCT may advance to the forefront of treatment. This case serves to discuss indications of HSCT, approaches to preparative therapy, and the potential complications in this growing cohort of patients with immune dysregulation and RAG deficiency.
König, Hans-Georg; Fenner, Beau J; Byrne, Jennifer C; Schwamborn, Robert F; Bernas, Tytus; Jefferies, Caroline A; Prehn, Jochen H M
2012-12-15
Neuronal survival and plasticity critically depend on constitutive activity of the transcription factor nuclear factor-κB (NF-κB). We here describe a role for a small intracellular fibroblast growth factor homologue, the fibroblast growth factor homologous factor 1 (FHF1/FGF12), in the regulation of NF-κB activity in mature neurons. FHFs have previously been described to control neuronal excitability, and mutations in FHF isoforms give rise to a form of progressive spinocerebellar ataxia. Using a protein-array approach, we identified FHF1b as a novel interactor of the canonical NF-κB modulator IKKγ/NEMO. Co-immunoprecipitation, pull-down and GAL4-reporter experiments, as well as proximity ligation assays, confirmed the interaction of FHF1 and NEMO and demonstrated that a major site of interaction occurred within the axon initial segment. Fhf1 gene silencing strongly activated neuronal NF-κB activity and increased neurite lengths, branching patterns and spine counts in mature cortical neurons. The effects of FHF1 on neuronal NF-κB activity and morphology required the presence of NEMO. Our results imply that FHF1 negatively regulates the constitutive NF-κB activity in neurons.
Rein, Katrin; Yanez, Diana A.; Terré, Berta; Palenzuela, Lluís; Aivio, Suvi; Wei, Kaichun; Edelmann, Winfried; Stark, Jeremy M.; Stracker, Travis H.
2015-01-01
The maintenance of genome stability is critical for the suppression of diverse human pathologies that include developmental disorders, premature aging, infertility and predisposition to cancer. The DNA damage response (DDR) orchestrates the appropriate cellular responses following the detection of lesions to prevent genomic instability. The MRE11 complex is a sensor of DNA double strand breaks (DSBs) and plays key roles in multiple aspects of the DDR, including DNA end resection that is critical for signaling and DNA repair. The MRE11 complex has been shown to function both upstream and in concert with the 5′-3′ exonuclease EXO1 in DNA resection, but it remains unclear to what extent EXO1 influences DSB responses independently of the MRE11 complex. Here we examine the genetic relationship of the MRE11 complex and EXO1 during mammalian development and in response to DNA damage. Deletion of Exo1 in mice expressing a hypomorphic allele of Nbs1 leads to severe developmental impairment, embryonic death and chromosomal instability. While EXO1 plays a minimal role in normal cells, its loss strongly influences DNA replication, DNA repair, checkpoint signaling and damage sensitivity in NBS1 hypomorphic cells. Collectively, our results establish a key role for EXO1 in modulating the severity of hypomorphic MRE11 complex mutations. PMID:26160886
Runaway Train: A Leaky Radiosensitive SCID with Skin Lesions and Multiple Lymphomas.
Fevang, Børre; Fagerli, Unn Merete; Sorte, Hanne; Aarset, Harald; Hov, Håkon; Langmyr, Marit; Keil, Thomas Morten; Bjørge, Ellen; Aukrust, Pål; Stray-Pedersen, Asbjørg; Gedde-Dahl, Tobias
2018-01-01
The nuclease Artemis is essential for the development of T-cell and B-cell receptors and repair of DNA double-strand breaks, and a loss of expression or function will lead to a radiosensitive severe combined immunodeficiency with no functional T-cells or B-cells (T-B-SCID). Hypomorphic mutations in the Artemis gene can lead to a functional, but reduced, T-cell and B-cell repertoire with a more indolent clinical course called "leaky" SCID. Here, we present the case of a young man who had increasingly aggressive lymphoproliferative skin lesions from 2 years of age which developed into multiple EBV+ B-cell lymphomas, where a hypomorphic mutation in the Artemis gene was found in a diagnostic race against time using whole exome sequencing. The patient was given a haploidentical stem cell transplant while in remission for his lymphomas and although the initial course was successful, he succumbed to a serious Pneumocystis jirovecii pneumonia 5 months after the transplant. The case underscores the importance of next-generation sequencing in the diagnosis of patients with suspected severe immunodeficiency.
Rein, Katrin; Yanez, Diana A; Terré, Berta; Palenzuela, Lluís; Aivio, Suvi; Wei, Kaichun; Edelmann, Winfried; Stark, Jeremy M; Stracker, Travis H
2015-09-03
The maintenance of genome stability is critical for the suppression of diverse human pathologies that include developmental disorders, premature aging, infertility and predisposition to cancer. The DNA damage response (DDR) orchestrates the appropriate cellular responses following the detection of lesions to prevent genomic instability. The MRE11 complex is a sensor of DNA double strand breaks (DSBs) and plays key roles in multiple aspects of the DDR, including DNA end resection that is critical for signaling and DNA repair. The MRE11 complex has been shown to function both upstream and in concert with the 5'-3' exonuclease EXO1 in DNA resection, but it remains unclear to what extent EXO1 influences DSB responses independently of the MRE11 complex. Here we examine the genetic relationship of the MRE11 complex and EXO1 during mammalian development and in response to DNA damage. Deletion of Exo1 in mice expressing a hypomorphic allele of Nbs1 leads to severe developmental impairment, embryonic death and chromosomal instability. While EXO1 plays a minimal role in normal cells, its loss strongly influences DNA replication, DNA repair, checkpoint signaling and damage sensitivity in NBS1 hypomorphic cells. Collectively, our results establish a key role for EXO1 in modulating the severity of hypomorphic MRE11 complex mutations. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Stijnen, P; Brouwers, B; Dirkx, E; Ramos-Molina, B; Van Lommel, L; Schuit, F; Thorrez, L; Declercq, J; Creemers, J W M
2016-06-01
The proprotein convertase 1/3 (PC1/3), encoded by proprotein convertase subtilisin/kexin type 1 (PCSK1), cleaves and hence activates several orexigenic and anorexigenic proproteins. Congenital inactivation of PCSK1 leads to obesity in human but not in mice. However, a mouse model harboring the hypomorphic mutation N222D is obese. It is not clear why the mouse models differ in phenotype. Gene expression analysis was performed with pancreatic islets from Pcsk1(N222D/N222D) mice. Subsequently, biosynthesis, maturation, degradation and activity were studied in islets, pituitary, hypothalamus and cell lines. Coimmunoprecipitation of PC1/3-N222D and human PC1/3 variants associated with obesity with the endoplasmic reticulum (ER) chaperone BiP was studied in cell lines. Gene expression analysis of islets of Pcsk1(N222D/N222D) mice showed enrichment of gene sets related to the proteasome and the unfolded protein response. Steady-state levels of PC1/3-N222D and in particular the carboxy-terminally processed form were strongly reduced in islets, pituitary and hypothalamus. However, impairment of substrate cleavage was tissue dependent. Proinsulin processing was drastically reduced, while processing of proopiomelanocortin (POMC) to adrenocorticotropic hormone (ACTH) in pituitary was only mildly impaired. Growth hormone expression and IGF-1 levels were normal, indicating near-normal processing of hypothalamic proGHRH. PC1/3-N222D binds to BiP and is rapidly degraded by the proteasome. Analysis of human PC1/3 obesity-associated mutations showed increased binding to BiP and prolonged intracellular retention for all investigated mutations, in particular for PC1/3-T175M, PC1/3-G226R and PC1/3-G593R. This study demonstrates that the hypomorphic mutation in Pcsk1(N222D) mice has an effect on catalytic activity in pancreatic islets, pituitary and hypothalamus. Reduced substrate processing activity in Pcsk1(N222D/N222D) mice is due to enhanced degradation in addition to reduced catalytic activity of the mutant. PC1/3-N222D binds to BiP, suggesting impaired folding and reduced stability. Enhanced BiP binding is also observed in several human obesity-associated PC1/3 variants, suggesting a common mechanism.
Hypomorphic mutations in TRNT1 cause retinitis pigmentosa with erythrocytic microcytosis
DeLuca, Adam P.; Whitmore, S. Scott; Barnes, Jenna; Sharma, Tasneem P.; Westfall, Trudi A.; Scott, C. Anthony; Weed, Matthew C.; Wiley, Jill S.; Wiley, Luke A.; Johnston, Rebecca M.; Schnieders, Michael J.; Lentz, Steven R.; Tucker, Budd A.; Mullins, Robert F.; Scheetz, Todd E.; Stone, Edwin M.; Slusarski, Diane C.
2016-01-01
Retinitis pigmentosa (RP) is a highly heterogeneous group of disorders characterized by degeneration of the retinal photoreceptor cells and progressive loss of vision. While hundreds of mutations in more than 100 genes have been reported to cause RP, discovering the causative mutations in many patients remains a significant challenge. Exome sequencing in an individual affected with non-syndromic RP revealed two plausibly disease-causing variants in TRNT1, a gene encoding a nucleotidyltransferase critical for tRNA processing. A total of 727 additional unrelated individuals with molecularly uncharacterized RP were completely screened for TRNT1 coding sequence variants, and a second family was identified with two members who exhibited a phenotype that was remarkably similar to the index patient. Inactivating mutations in TRNT1 have been previously shown to cause a severe congenital syndrome of sideroblastic anemia, B-cell immunodeficiency, recurrent fevers and developmental delay (SIFD). Complete blood counts of all three of our patients revealed red blood cell microcytosis and anisocytosis with only mild anemia. Characterization of TRNT1 in patient-derived cell lines revealed reduced but detectable TRNT1 protein, consistent with partial function. Suppression of trnt1 expression in zebrafish recapitulated several features of the human SIFD syndrome, including anemia and sensory organ defects. When levels of trnt1 were titrated, visual dysfunction was found in the absence of other phenotypes. The visual defects in the trnt1-knockdown zebrafish were ameliorated by the addition of exogenous human TRNT1 RNA. Our findings indicate that hypomorphic TRNT1 mutations can cause a recessive disease that is almost entirely limited to the retina. PMID:26494905
McCabe, Mark J.; Gaston-Massuet, Carles; Tziaferi, Vaitsa; Gregory, Louise C.; Alatzoglou, Kyriaki S.; Signore, Massimo; Puelles, Eduardo; Gerrelli, Dianne; Farooqi, I. Sadaf; Raza, Jamal; Walker, Joanna; Kavanaugh, Scott I.; Tsai, Pei-San; Pitteloud, Nelly; Martinez-Barbera, Juan-Pedro
2011-01-01
Context: Fibroblast growth factor (FGF) 8 is important for GnRH neuronal development with human mutations resulting in Kallmann syndrome. Murine data suggest a role for Fgf8 in hypothalamo-pituitary development; however, its role in the etiology of wider hypothalamo-pituitary dysfunction in humans is unknown. Objective: The objective of this study was to screen for FGF8 mutations in patients with septo-optic dysplasia (n = 374) or holoprosencephaly (HPE)/midline clefts (n = 47). Methods: FGF8 was analyzed by PCR and direct sequencing. Ethnically matched controls were then screened for mutated alleles (n = 480–686). Localization of Fgf8/FGF8 expression was analyzed by in situ hybridization in developing murine and human embryos. Finally, Fgf8 hypomorphic mice (Fgf8loxPNeo/−) were analyzed for the presence of forebrain and hypothalamo-pituitary defects. Results: A homozygous p.R189H mutation was identified in a female patient of consanguineous parentage with semilobar HPE, diabetes insipidus, and TSH and ACTH insufficiency. Second, a heterozygous p.Q216E mutation was identified in a female patient with an absent corpus callosum, hypoplastic optic nerves, and Moebius syndrome. FGF8 was expressed in the ventral diencephalon and anterior commissural plate but not in Rathke's pouch, strongly suggesting early onset hypothalamic and corpus callosal defects in these patients. This was consolidated by significantly reduced vasopressin and oxytocin staining neurons in the hypothalamus of Fgf8 hypomorphic mice compared with controls along with variable hypothalamo-pituitary defects and HPE. Conclusion: We implicate FGF8 in the etiology of recessive HPE and potentially septo-optic dysplasia/Moebius syndrome for the first time to our knowledge. Furthermore, FGF8 is important for the development of the ventral diencephalon, hypothalamus, and pituitary. PMID:21832120
Cherezov, Roman O.; Vorontsova, Julia E.; Slezinger, Mikhail S.; Zatsepina, Olga G.; Simonova, Olga B.; Enikolopov, Grigori N.; Savvateeva-Popova, Elena V.
2014-01-01
Aryl hydrocarbon receptor is essential for biological responses to endogenous and exogenous toxins in mammals. Its Drosophila homolog spineless plays an important role in fly morphogenesis. We have previously shown that during morphogenesis spineless genetically interacts with CG5017 gene, which encodes a nucleosome assembly factor and may affect cognitive function of the fly. We now demonstrate synergistic interactions of spineless and CG5017 in pathways controlling oxidative stress response and long-term memory formation in Drosophila melanogaster. Oxidative stress was induced by low doses of X-ray irradiation of flies carrying hypomorphic mutation of spineless, mutation of CG5017, and their combination. To determine the sensitivity of these mutants to pharmacological modifiers of the irradiation effect, we irradiated flies growing on standard medium supplemented by radiosensitizer furazidin and radioprotector serotonin. The effects of irradiation were investigated by analyzing leg and antenna morphological structures and by using real-time PCR to measure mRNA expression levels for spineless, Cyp6g1 and Gst-theta genes. We also examined long-term memory in these mutants using conditioned courtship suppression paradigm. Our results show that the interaction of spineless and CG5017 is important for regulation of morphogenesis, long-term memory formation, and detoxification during oxidative stress. Since spineless and CG5017 are evolutionary conserved, these results must be considered when evaluating the risk of combining similar mutations in other organisms, including humans. PMID:24736732
Kuzin, Boris A; Nikitina, Ekaterina A; Cherezov, Roman O; Vorontsova, Julia E; Slezinger, Mikhail S; Zatsepina, Olga G; Simonova, Olga B; Enikolopov, Grigori N; Savvateeva-Popova, Elena V
2014-01-01
Aryl hydrocarbon receptor is essential for biological responses to endogenous and exogenous toxins in mammals. Its Drosophila homolog spineless plays an important role in fly morphogenesis. We have previously shown that during morphogenesis spineless genetically interacts with CG5017 gene, which encodes a nucleosome assembly factor and may affect cognitive function of the fly. We now demonstrate synergistic interactions of spineless and CG5017 in pathways controlling oxidative stress response and long-term memory formation in Drosophila melanogaster. Oxidative stress was induced by low doses of X-ray irradiation of flies carrying hypomorphic mutation of spineless, mutation of CG5017, and their combination. To determine the sensitivity of these mutants to pharmacological modifiers of the irradiation effect, we irradiated flies growing on standard medium supplemented by radiosensitizer furazidin and radioprotector serotonin. The effects of irradiation were investigated by analyzing leg and antenna morphological structures and by using real-time PCR to measure mRNA expression levels for spineless, Cyp6g1 and Gst-theta genes. We also examined long-term memory in these mutants using conditioned courtship suppression paradigm. Our results show that the interaction of spineless and CG5017 is important for regulation of morphogenesis, long-term memory formation, and detoxification during oxidative stress. Since spineless and CG5017 are evolutionary conserved, these results must be considered when evaluating the risk of combining similar mutations in other organisms, including humans.
Walter, Jolan E.; Rucci, Francesca; Patrizi, Laura; Recher, Mike; Regenass, Stephan; Paganini, Tiziana; Keszei, Marton; Pessach, Itai; Lang, Philipp A.; Poliani, Pietro Luigi; Giliani, Silvia; Al-Herz, Waleed; Cowan, Morton J.; Puck, Jennifer M.; Bleesing, Jack; Niehues, Tim; Schuetz, Catharina; Malech, Harry; DeRavin, Suk See; Facchetti, Fabio; Gennery, Andrew R.; Andersson, Emma; Kamani, Naynesh R.; Sekiguchi, JoAnn; Alenezi, Hamid M.; Chinen, Javier; Dbaibo, Ghassan; ElGhazali, Gehad; Fontana, Adriano; Pasic, Srdjan; Detre, Cynthia; Terhorst, Cox
2010-01-01
The contribution of B cells to the pathology of Omenn syndrome and leaky severe combined immunodeficiency (SCID) has not been previously investigated. We have studied a mut/mut mouse model of leaky SCID with a homozygous Rag1 S723C mutation that impairs, but does not abrogate, V(D)J recombination activity. In spite of a severe block at the pro–B cell stage and profound B cell lymphopenia, significant serum levels of immunoglobulin (Ig) G, IgM, IgA, and IgE and a high proportion of Ig-secreting cells were detected in mut/mut mice. Antibody responses to trinitrophenyl (TNP)-Ficoll and production of high-affinity antibodies to TNP–keyhole limpet hemocyanin were severely impaired, even after adoptive transfer of wild-type CD4+ T cells. Mut/mut mice produced high amounts of low-affinity self-reactive antibodies and showed significant lymphocytic infiltrates in peripheral tissues. Autoantibody production was associated with impaired receptor editing and increased serum B cell–activating factor (BAFF) concentrations. Autoantibodies and elevated BAFF levels were also identified in patients with Omenn syndrome and leaky SCID as a result of hypomorphic RAG mutations. These data indicate that the stochastic generation of an autoreactive B cell repertoire, which is associated with defects in central and peripheral checkpoints of B cell tolerance, is an important, previously unrecognized, aspect of immunodeficiencies associated with hypomorphic RAG mutations. PMID:20547827
Ashburner, Michael
1982-01-01
A lethal locus (l(2)br7;35B6-10), near Adh on chromosome arm 2L of D. melanogaster, is identified with Plunkett's dominant suppressor of Hairless (H). Of eight new alleles, seven act as dominant suppressors of H, the eighth is a dominant enhancer of H. One of the suppressor alleles is both a leaky lethal and a weak suppressor of H. Confirming Nash (1970), deletions of l(2)br7 are dominant suppressors, and duplications are dominant enhancers of H. A simple model is proposed to account for the interaction of l(2)br7 and H, assuming that amorphic (or hypomorphic) alleles of l(2)br7 suppress H and that hypermorphic alleles enhance H. PMID:6816670
Bauché, Stéphanie; Boerio, Delphine; Davoine, Claire-Sophie; Bernard, Véronique; Stum, Morgane; Bureau, Cécile; Fardeau, Michel; Romero, Norma Beatriz; Fontaine, Bertrand; Koenig, Jeanine; Hantaï, Daniel; Gueguen, Antoine; Fournier, Emmanuel; Eymard, Bruno; Nicole, Sophie
2013-12-01
Schwartz-Jampel syndrome (SJS) is a recessive disorder with muscle hyperactivity that results from hypomorphic mutations in the perlecan gene, a basement membrane proteoglycan. Analyses done on a mouse model have suggested that SJS is a congenital form of distal peripheral nerve hyperexcitability resulting from synaptic acetylcholinesterase deficiency, nerve terminal instability with preterminal amyelination, and subtle peripheral nerve changes. We investigated one adult patient with SJS to study this statement in humans. Perlecan deficiency due to hypomorphic mutations was observed in the patient biological samples. Electroneuromyography showed normal nerve conduction, neuromuscular transmission, and compound nerve action potentials while multiple measures of peripheral nerve excitability along the nerve trunk did not detect changes. Needle electromyography detected complex repetitive discharges without any evidence for neuromuscular transmission failure. The study of muscle biopsies containing neuromuscular junctions showed well-formed post-synaptic element, synaptic acetylcholinesterase deficiency, denervation of synaptic gutters with reinnervation by terminal sprouting, and long nonmyelinated preterminal nerve segments. These data support the notion of peripheral nerve hyperexcitability in SJS, which would originate distally from synergistic actions of peripheral nerve and neuromuscular junction changes as a result of perlecan deficiency. Copyright © 2013 Elsevier B.V. All rights reserved.
Tbx5 Buffers Inherent Left/Right Asymmetry Ensuring Symmetric Forelimb Formation
Nishimoto, Satoko; Kucharska, Anna; Newbury-Ecob, Ruth; Logan, Malcolm P. O.
2016-01-01
The forelimbs and hindlimbs of vertebrates are bilaterally symmetric. The mechanisms that ensure symmetric limb formation are unknown but they can be disrupted in disease. In Holt-Oram Syndrome (HOS), caused by mutations in TBX5, affected individuals have left-biased upper/forelimb defects. We demonstrate a role for the transcription factor Tbx5 in ensuring the symmetric formation of the left and right forelimb. In our mouse model, bilateral hypomorphic levels of Tbx5 produces asymmetric forelimb defects that are consistently more severe in the left limb than the right, phenocopying the left-biased limb defects seen in HOS patients. In Tbx hypomorphic mutants maintained on an INV mutant background, with situs inversus, the laterality of defects is reversed. Our data demonstrate an early, inherent asymmetry in the left and right limb-forming regions and that threshold levels of Tbx5 are required to overcome this asymmetry to ensure symmetric forelimb formation. PMID:27992425
Genotype-phenotype correlation in boys with X-linked hypohidrotic ectodermal dysplasia.
Burger, Kristin; Schneider, Anne-Theres; Wohlfart, Sigrun; Kiesewetter, Franklin; Huttner, Kenneth; Johnson, Ramsey; Schneider, Holm
2014-10-01
X-linked hypohidrotic ectodermal dysplasia (XLHED), the most frequent form of ectodermal dysplasia, is a genetic disorder of ectoderm development characterized by malformation of multiple ectodermal structures such as skin, hair, sweat and sebaceous glands, and teeth. The disease is caused by a broad spectrum of mutations in the gene EDA. Although XLHED symptoms show inter-familial and intra-familial variability, genotype-phenotype correlation has been demonstrated with respect to sweat gland function. In this study, we investigated to which extent the EDA genotype correlates with the severity of XLHED-related skin and hair signs. Nineteen male children with XLHED (age range 3-14 years) and seven controls (aged 6-14 years) were examined by confocal microscopy of the skin, quantification of pilocarpine-induced sweating, semi-quantitative evaluation of full facial photographs with respect to XLHED-related skin issues, and phototrichogram analysis. All eight boys with known hypomorphic EDA mutations were able to produce at least some sweat and showed less severe cutaneous signs of XLHED than the anhidrotic XLHED patients (e.g., perioral and periorbital eczema or hyperpigmentation, regional hyperkeratosis, characteristic wrinkles under the eyes). As expected, individuals with XLHED had significantly less and thinner hair than healthy controls. However, there were also significant differences in hair number, diameter, and other hair characteristics between the group with hypomorphic EDA mutations and the anhidrotic patients. In summary, this study indicated a remarkable genotype-phenotype correlation of skin and hair findings in prepubescent males with XLHED. © 2014 Wiley Periodicals, Inc.
Torkamandi, Shahram; Gholami, Milad; Mohammadi-Asl, Javad; Rezaie, Somaye; Zaimy, Mohammad Ali; Omrani, Mir Davood
2016-01-01
Hypohidrotic ectodermal dysplasia (HED) is a rare congenital disorder arising from deficient development of ectoderm-derived structures including skin, nails, glands and teeth. The phenotype of HED is associated with mutation in EDA, EDAR, EDARADD and NEMO genes, all of them disruptingNF-κB signaling cascade necessary for initiation, formation and differentiation in the embryo and adult. Here we describe a novel acceptor splice site mutation c.730-2 A>G(IVS 8-2 A>G) in EDAR gene in homozygous form in all affected members of a family,and in heterozygous form in carriers. Bioinformatics analysis showed that this mutation can create a new broken splicing site and lead to aberrant splicing.
Bergmann, Carsten; Fliegauf, Manfred; Brüchle, Nadina Ortiz; Frank, Valeska; Olbrich, Heike; Kirschner, Jan; Schermer, Bernhard; Schmedding, Ingolf; Kispert, Andreas; Kränzlin, Bettina; Nürnberg, Gudrun; Becker, Christian; Grimm, Tiemo; Girschick, Gundula; Lynch, Sally A.; Kelehan, Peter; Senderek, Jan; Neuhaus, Thomas J.; Stallmach, Thomas; Zentgraf, Hanswalter; Nürnberg, Peter; Gretz, Norbert; Lo, Cecilia; Lienkamp, Soeren; Schäfer, Tobias; Walz, Gerd; Benzing, Thomas; Zerres, Klaus; Omran, Heymut
2008-01-01
Many genetic diseases have been linked to the dysfunction of primary cilia, which occur nearly ubiquitously in the body and act as solitary cellular mechanosensory organelles. The list of clinical manifestations and affected tissues in cilia-related disorders (ciliopathies) such as nephronophthisis is broad and has been attributed to the wide expression pattern of ciliary proteins. However, little is known about the molecular mechanisms leading to this dramatic diversity of phenotypes. We recently reported hypomorphic NPHP3 mutations in children and young adults with isolated nephronophthisis and associated hepatic fibrosis or tapetoretinal degeneration. Here, we chose a combinatorial approach in mice and humans to define the phenotypic spectrum of NPHP3/Nphp3 mutations and the role of the nephrocystin-3 protein. We demonstrate that the pcy mutation generates a hypomorphic Nphp3 allele that is responsible for the cystic kidney disease phenotype, whereas complete loss of Nphp3 function results in situs inversus, congenital heart defects, and embryonic lethality in mice. In humans, we show that NPHP3 mutations can cause a broad clinical spectrum of early embryonic patterning defects comprising situs inversus, polydactyly, central nervous system malformations, structural heart defects, preauricular fistulas, and a wide range of congenital anomalies of the kidney and urinary tract (CAKUT). On the functional level, we show that nephrocystin-3 directly interacts with inversin and can inhibit like inversin canonical Wnt signaling, whereas nephrocystin-3 deficiency leads in Xenopus laevis to typical planar cell polarity defects, suggesting a role in the control of canonical and noncanonical (planar cell polarity) Wnt signaling. PMID:18371931
A novel frameshift variant in the CADASIL gene NOTCH3: pathogenic or not?
Schubert, V; Bender, B; Kinzel, M; Peters, N; Freilinger, T
2018-06-01
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) represents the most common monogenic cause of adult-onset ischemic stroke and vascular dementia. It is caused by heterozygous missense mutations in the NOTCH3 gene, encoding a transmembrane receptor protein on vascular smooth muscle cells. Classical CADASIL mutations affect conserved cysteine residues of the Notch3 protein. By contrast, the role of non-canonical genetic variation in NOTCH3, in particular of variants causing a hypomorphic Notch3 protein, is subject to an ongoing scientific debate. In this context, we here report a novel NOTCH3 frameshift variant in exon 18 (NM_000435.2: c.2853_2857delTCCCG), causing a frameshift and introducing a premature stop codon, which was detected in a 43-year-old woman and her father. Both carriers of the variant were carefully evaluated, including serial follow-up in the index. Neither clinical nor imaging features provided convincing evidence for a classical CADASIL phenotype, thus reinforcing the concept of hypomorphic NOTCH3 variants most likely not being causative for CADASIL. Our finding, which is discussed in the light of the published literature, has practical implications for interpreting results of NOTCH3 molecular genetic testing as well as patient counseling.
Torkamandi, Shahram; Gholami, Milad; Mohammadi-asl, Javad; Rezaie, Somaye; Zaimy, Mohammad Ali; Omrani, Mir Davood
2016-01-01
Hypohidrotic ectodermal dysplasia (HED) is a rare congenital disorder arising from deficient development of ectoderm-derived structures including skin, nails, glands and teeth. The phenotype of HED is associated with mutation in EDA, EDAR, EDARADD and NEMO genes, all of them disruptingNF-κB signaling cascade necessary for initiation, formation and differentiation in the embryo and adult. Here we describe a novel acceptor splice site mutation c.730-2 A>G(IVS 8-2 A>G) in EDAR gene in homozygous form in all affected members of a family,and in heterozygous form in carriers. Bioinformatics analysis showed that this mutation can create a new broken splicing site and lead to aberrant splicing. PMID:28357203
Common mechanisms regulating dark noise and quantum bump amplification in Drosophila photoreceptors
Chu, Brian; Liu, Che-Hsiung; Sengupta, Sukanya; Gupta, Amit; Raghu, Padinjat
2013-01-01
Absolute visual thresholds are limited by “dark noise,” which in Drosophila photoreceptors is dominated by brief (∼10 ms), small (∼2 pA) inward current events, occurring at ∼2/s, believed to reflect spontaneous G protein activations. These dark events were increased in rate and amplitude by a point mutation in myosin III (NINAC), which disrupts its interaction with the scaffolding protein, INAD. This phenotype mimics that previously described in null mutants of ninaC (no inactivation no afterpotential; encoding myosin III) and an associated protein, retinophilin (rtp). Dark noise was similarly increased in heterozygote mutants of diacylglycerol kinase (rdgA/+). Dark noise in ninaC, rtp, and rdgA/+ mutants was greatly suppressed by mutations of the Gq α-subunit (Gαq) and the major light-sensitive channel (trp) but not rhodopsin. ninaC, rtp, and rdgA/+ mutations also all facilitated residual light responses in Gαq and PLC hypomorphs. Raising cytosolic Ca2+ in the submicromolar range increased dark noise, facilitated activation of transient receptor potential (TRP) channels by exogenous agonist, and again facilitated light responses in Gαq hypomorphs. Our results indicate that RTP, NINAC, INAD, and diacylglycerol kinase, together with a Ca2+-dependent threshold, share common roles in suppressing dark noise and regulating quantum bump generation; consequently, most spontaneous G protein activations fail to generate dark events under normal conditions. By contrast, quantum bump generation is reliable but delayed until sufficient G proteins and PLC are activated to overcome threshold, thereby ensuring generation of full-size bumps with high quantum efficiency. PMID:23365183
Mutations in DONSON disrupt replication fork stability and cause microcephalic dwarfism
Reynolds, John J; Bicknell, Louise S; Carroll, Paula; Higgs, Martin R; Shaheen, Ranad; Murray, Jennie E; Papadopoulos, Dimitrios K; Leitch, Andrea; Murina, Olga; Tarnauskaitė, Žygimantė; Wessel, Sarah R; Zlatanou, Anastasia; Vernet, Audrey; von Kriegsheim, Alex; Mottram, Rachel MA; Logan, Clare V; Bye, Hannah; Li, Yun; Brean, Alexander; Maddirevula, Sateesh; Challis, Rachel C; Skouloudaki, Kassiani; Almoisheer, Agaadir; Alsaif, Hessa S; Amar, Ariella; Prescott, Natalie J; Bober, Michael B; Duker, Angela; Faqeih, Eissa; Seidahmed, Mohammed Zain; Al Tala, Saeed; Alswaid, Abdulrahman; Ahmed, Saleem; Al-Aama, Jumana Yousuf; Altmüller, Janine; Al Balwi, Mohammed; Brady, Angela F; Chessa, Luciana; Cox, Helen; Fischetto, Rita; Heller, Raoul; Henderson, Bertram D; Hobson, Emma; Nürnberg, Peter; Percin, E Ferda; Peron, Angela; Spaccini, Luigina; Quigley, Alan J; Thakur, Seema; Wise, Carol A; Yoon, Grace; Alnemer, Maha; Tomancak, Pavel; Yigit, Gökhan; Taylor, A Malcolm R; Reijns, Martin AM; Simpson, Michael A; Cortez, David; Alkuraya, Fowzan S; Mathew, Christopher G; Jackson, Andrew P; Stewart, Grant S
2017-01-01
To ensure efficient genome duplication, cells have evolved numerous factors that promote unperturbed DNA replication, and protect, repair and restart damaged forks. Here we identify DONSON as a novel fork protection factor, and report biallelic DONSON mutations in 29 individuals with microcephalic dwarfism. We demonstrate that DONSON is a replisome component that stabilises forks during genome replication. Loss of DONSON leads to severe replication-associated DNA damage arising from nucleolytic cleavage of stalled replication forks. Furthermore, ATR-dependent signalling in response to replication stress is impaired in DONSON-deficient cells, resulting in decreased checkpoint activity, and potentiating chromosomal instability. Hypomorphic mutations substantially reduce DONSON protein levels and impair fork stability in patient cells, consistent with defective DNA replication underlying the disease phenotype. In summary, we identify mutations in DONSON as a common cause of microcephalic dwarfism, and establish DONSON as a critical replication fork protein required for mammalian DNA replication and genome stability. PMID:28191891
NASA Astrophysics Data System (ADS)
Islam, Shayla; Abdalla, Aisha H.; Habaebi, Mohamed H.; Latif, Suhaimi A.; Hassan, Wan H.; Hasan, Mohammad K.; Ramli, H. A. M.; Khalifa, Othman O.
2013-12-01
NEMO BSP is an upgraded addition to Mobile IPv6 (MIPv6). As MIPv6 and its enhancements (i.e. HMIPv6) possess some limitations like higher handoff latency, packet loss, NEMO BSP also faces all these shortcomings by inheritance. Network Mobility (NEMO) is involved to handle the movement of Mobile Router (MR) and it's Mobile Network Nodes (MNNs) during handoff. Hence it is essential to upgrade the performance of mobility management protocol to obtain continuous session connectivity with lower delay and packet loss in NEMO environment. The completion of handoff process in NEMO BSP usually takes longer period since MR needs to register its single primary care of address (CoA) with home network that may cause performance degradation of the applications running on Mobile Network Nodes. Moreover, when a change in point of attachment of the mobile network is accompanied by a sudden burst of signaling messages, "Signaling Storm" occurs which eventually results in temporary congestion, packet delays or even packet loss. This effect is particularly significant for wireless environment where a wireless link is not as steady as a wired link since bandwidth is relatively limited in wireless link. Hence, providing continuous Internet connection without any interruption through applying multihoming technique and route optimization mechanism in NEMO are becoming the center of attention to the current researchers. In this paper, we propose a handoff cost model to compare the signaling cost of MM-NEMO with NEMO Basic Support Protocol (NEMO BSP) and HMIPv6.The numerical results shows that the signaling cost for the MM-NEMO scheme is about 69.6 % less than the NEMO-BSP and HMIPv6.
Hansen, Lars; Tawamie, Hasan; Murakami, Yoshiko; Mang, Yuan; ur Rehman, Shoaib; Buchert, Rebecca; Schaffer, Stefanie; Muhammad, Safia; Bak, Mads; Nöthen, Markus M; Bennett, Eric P; Maeda, Yusuke; Aigner, Michael; Reis, André; Kinoshita, Taroh; Tommerup, Niels; Baig, Shahid Mahmood; Abou Jamra, Rami
2013-04-04
PGAP2 encodes a protein involved in remodeling the glycosylphosphatidylinositol (GPI) anchor in the Golgi apparatus. After synthesis in the endoplasmic reticulum (ER), GPI anchors are transferred to the proteins and are remodeled while transported through the Golgi to the cell membrane. Germline mutations in six genes (PIGA, PIGL, PIGM, PIGV, PIGN, and PIGO) in the ER-located part of the GPI-anchor-biosynthesis pathway have been reported, and all are associated with phenotypes extending from malformation and lethality to severe intellectual disability, epilepsy, minor dysmorphisms, and elevated alkaline phosphatase (ALP). We performed autozygosity mapping and ultra-deep sequencing followed by stringent filtering and identified two homozygous PGAP2 alterations, p.Tyr99Cys and p.Arg177Pro, in seven offspring with nonspecific autosomal-recessive intellectual disability from two consanguineous families. Rescue experiments with the altered proteins in PGAP2-deficient Chinese hamster ovary cell lines showed less expression of cell-surface GPI-anchored proteins DAF and CD59 than of the wild-type protein, substantiating the pathogenicity of the identified alterations. Furthermore, we observed a full rescue when we used strong promoters before the mutant cDNAs, suggesting a hypomorphic effect of the mutations. We report on alterations in the Golgi-located part of the GPI-anchor-biosynthesis pathway and extend the phenotypic spectrum of the GPI-anchor deficiencies to isolated intellectual disability with elevated ALP. GPI-anchor deficiencies can be interpreted within the concept of a disease family, and we propose that the severity of the phenotype is dependent on the location of the altered protein in the biosynthesis chain. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Kensche, Tobias; Tokunaga, Fuminori; Ikeda, Fumiyo; Goto, Eiji; Iwai, Kazuhiro; Dikic, Ivan
2012-01-01
Nuclear factor-κB (NF-κB) essential modulator (NEMO), a component of the inhibitor of κB kinase (IKK) complex, controls NF-κB signaling by binding to ubiquitin chains. Structural studies of NEMO provided a rationale for the specific binding between the UBAN (ubiquitin binding in ABIN and NEMO) domain of NEMO and linear (Met-1-linked) di-ubiquitin chains. Full-length NEMO can also interact with Lys-11-, Lys-48-, and Lys-63-linked ubiquitin chains of varying length in cells. Here, we show that purified full-length NEMO binds preferentially to linear ubiquitin chains in competition with lysine-linked ubiquitin chains of defined length, including long Lys-63-linked deca-ubiquitins. Linear di-ubiquitins were sufficient to activate both the IKK complex in vitro and to trigger maximal NF-κB activation in cells. In TNFα-stimulated cells, NEMO chimeras engineered to bind exclusively to Lys-63-linked ubiquitin chains mediated partial NF-κB activation compared with cells expressing NEMO that binds to linear ubiquitin chains. We propose that NEMO functions as a high affinity receptor for linear ubiquitin chains and a low affinity receptor for long lysine-linked ubiquitin chains. This phenomenon could explain quantitatively distinct NF-κB activation patterns in response to numerous cell stimuli. PMID:22605335
Phenotypic and Genetic Analysis of Clock, a New Circadian Rhythm Mutant in Drosophila Melanogaster
Dushay, M. S.; Konopka, R. J.; Orr, D.; Greenacre, M. L.; Kyriacou, C. P.; Rosbash, M.; Hall, J. C.
1990-01-01
Clock is a semidominant X-linked mutation that results in shortening the period of Drosophila melanogaster's free-running locomotor activity rhythm from ca. 24.0 to ca. 22.5 hr. This mutation similarly shortened the phase response curve, determined by resetting activity rhythms with light pulses. Eclosion peaks for Clk cultures were separated by only 22.5 hr instead of the normal 24 hr. Clk was mapped close to, but separable from, another rhythm mutation--period(01)--by recombination. The estimated distance between these two mutations was short enough to suggest that Clk could be a per allele. If this is the case, the new mutant is unique in that it, unlike other per variants, is associated with essentially normal 1-min courtship song rhythms when Clk is expressed in males. Also, the new rhythm variant could not, in contrast to a short-period per mutation, have its effects on free-running activity rhythms uncovered by deletions. This result, and the lack of coverage of Clk's effects by duplications, suggest that it is not a simple hypomorphic or amorphic mutation. PMID:2116357
NF-κB Essential Modulator (NEMO) Is Critical for Thyroid Function.
Reale, Carla; Iervolino, Anna; Scudiero, Ivan; Ferravante, Angela; D'Andrea, Luca Egildo; Mazzone, Pellegrino; Zotti, Tiziana; Leonardi, Antonio; Roberto, Luca; Zannini, Mariastella; de Cristofaro, Tiziana; Shanmugakonar, Muralitharan; Capasso, Giovambattista; Pasparakis, Manolis; Vito, Pasquale; Stilo, Romania
2016-03-11
The I-κB kinase (IKK) subunit NEMO/IKKγ (NEMO) is an adapter molecule that is critical for canonical activation of NF-κB, a pleiotropic transcription factor controlling immunity, differentiation, cell growth, tumorigenesis, and apoptosis. To explore the functional role of canonical NF-κB signaling in thyroid gland differentiation and function, we have generated a murine strain bearing a genetic deletion of the NEMO locus in thyroid. Here we show that thyrocyte-specific NEMO knock-out mice gradually develop hypothyroidism after birth, which leads to reduced body weight and shortened life span. Histological and molecular analysis indicate that absence of NEMO in thyrocytes results in a dramatic loss of the thyroid gland cellularity, associated with down-regulation of thyroid differentiation markers and ongoing apoptosis. Thus, NEMO-dependent signaling is essential for normal thyroid physiology. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Nor-ursodeoxycholic acid reverses hepatocyte-specific nemo-dependent steatohepatitis.
Beraza, Naiara; Ofner-Ziegenfuss, Lisa; Ehedego, Haksier; Boekschoten, Mark; Bischoff, Stephan C; Mueller, Michael; Trauner, Michael; Trautwein, Christian
2011-03-01
Hepatocyte-specific NEMO/NF-κB deleted mice (NEMO(Δhepa)) develop spontaneous non-alcoholic steatohepatitis (NASH). Free fatty acids and bile acids promote DR5 expression. TRAIL/NK cell-mediated activation of TRAIL-R2/DR5 plays an important role during acute injury in NEMO(Δhepa) mice. To inhibit the progression of NASH in the absence of hepatocyte-NEMO/NF-kB signaling. NEMOf/f and NEMO(Δhepa) mice were fed with a low-fat diet, and with two anticholestatic diets; UDCA and NorUDCA. The impact of these treatments on the progression of NASH was evaluated. We show that high expression of DR5 in livers from NEMO(Δhepa) mice is accompanied by an abundant presence of bile acids (BAs), misregulation of BA transporters and significant alteration of lipid metabolism-related genes. Additionally, mice lacking NEMO in hepatocytes spontaneously showed ductular response at young age. Unexpectedly, feeding of NEMO(Δhepa) mice with low-fat diet failed to improve chronic liver injury. Conversely, anti-cholestatic treatment with nor-ursodeoxycholic acid (NorUDCA), but not with ursodeoxycholic acid (UDCA), led to a significant attenuation of liver damage in NEMO(Δhepa) mice. The strong therapeutic effect of NorUDCA relied on a significant downregulation of LXR-dependent lipogenesis and the normalisation of BA metabolism through mechanisms involving cross-talk between Cyp7a1 and SHP. This was associated with the significant improvement of liver histology, NEMO(Δhepa)/NorUDCA-treated mice showed lower apoptosis and reduced CyclinD1 expression, indicating attenuation of the compensatory proliferative response to hepatocellular damage. Finally, fibrosis and ductular reaction markers were significantly reduced in NorUDCA-treated NEMO(Δhepa) mice. Overall, our work demonstrates the contribution of bile acids metabolism to the progression of NASH in the absence of hepatocyte-NF-kB through mechanisms involving DR5-apoptosis, inflammation and fibrosis. Our work suggests a potential therapeutic effect of NorUDCA in attenuating the progression of NASH.
Darbinyan, Armine; Major, Eugene O; Morgello, Susan; Holland, Steven; Ryschkewitsch, Caroline; Monaco, Maria Chiara; Naidich, Thomas P; Bederson, Joshua; Malaczynska, Joanna; Ye, Fei; Gordon, Ronald; Cunningham-Rundles, Charlotte; Fowkes, Mary; Tsankova, Nadejda M
2016-07-13
Human BK polyomavirus (BKV) is reactivated under conditions of immunosuppression leading most commonly to nephropathy or cystitis; its tropism for the brain is rare and poorly understood. We present a unique case of BKV-associated encephalopathy in a man with hypohidrotic ectodermal dysplasia and immunodeficiency (HED-ID) due to IKK-gamma (NEMO) mutation, who developed progressive neurological symptoms. Brain biopsy demonstrated polyomavirus infection of gray and white matter, with predominant involvement of cortex and distinct neuronal tropism, in addition to limited demyelination and oligodendroglial inclusions. Immunohistochemistry demonstrated polyoma T-antigen in neurons and glia, but expression of VP1 capsid protein only in glia. PCR analysis on both brain biopsy tissue and cerebrospinal fluid detected high levels of BKV DNA. Sequencing studies further identified novel BKV variant and disclosed unique rearrangements in the noncoding control region of the viral DNA (BKVN NCCR). Neuropathological analysis also demonstrated an unusual form of obliterative fibrosing vasculopathy in the subcortical white matter with abnormal lysosomal accumulations, possibly related to the patient's underlying ectodermal dysplasia. Our report provides the first neuropathological description of HED-ID due to NEMO mutation, and expands the diversity of neurological presentations of BKV infection in brain, underscoring the importance of its consideration in immunodeficient patients with unexplained encephalopathy. We also document novel BKVN NCCR rearrangements that may be associated with the unique neuronal tropism in this patient.
Ratbi, Ilham; Jaouad, Imane Cherkaoui; Elorch, Hamza; Al-Sheqaih, Nada; Elalloussi, Mustapha; Lyahyai, Jaber; Berraho, Amina; Newman, William G; Sefiani, Abdelaziz
2016-10-01
Heimler syndrome (HS) is a rare recessive disorder characterized by sensorineural hearing loss (SNHL), amelogenesis imperfecta, nail abnormalities, and occasional or late-onset retinal pigmentation. It is the mildest form known to date of peroxisome biogenesis disorder caused by hypomorphic mutations of PEX1 and PEX6 genes. We report on a second Moroccan family with Heimler syndrome with early onset, severe visual impairment and important phenotypic overlap with Usher syndrome. The patient carried a novel homozygous missense variant c.3140T > C (p.Leu1047Pro) of PEX1 gene. As standard biochemical screening of blood for evidence of a peroxisomal disorder did not provide a diagnosis in the individuals with HS, patients with SNHL and retinal pigmentation should have mutation analysis of PEX1 and PEX6 genes. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Huckert, Mathilde; Stoetzel, Corinne; Morkmued, Supawich; Laugel-Haushalter, Virginie; Geoffroy, Véronique; Muller, Jean; Clauss, François; Prasad, Megana K.; Obry, Frédéric; Raymond, Jean Louis; Switala, Marzena; Alembik, Yves; Soskin, Sylvie; Mathieu, Eric; Hemmerlé, Joseph; Weickert, Jean-Luc; Dabovic, Branka Brukner; Rifkin, Daniel B.; Dheedene, Annelies; Boudin, Eveline; Caluseriu, Oana; Cholette, Marie-Claude; Mcleod, Ross; Antequera, Reynaldo; Gellé, Marie-Paule; Coeuriot, Jean-Louis; Jacquelin, Louis-Frédéric; Bailleul-Forestier, Isabelle; Manière, Marie-Cécile; Van Hul, Wim; Bertola, Debora; Dollé, Pascal; Verloes, Alain; Mortier, Geert; Dollfus, Hélène; Bloch-Zupan, Agnès
2015-01-01
Inherited dental malformations constitute a clinically and genetically heterogeneous group of disorders. Here, we report on four families, three of them consanguineous, with an identical phenotype, characterized by significant short stature with brachyolmia and hypoplastic amelogenesis imperfecta (AI) with almost absent enamel. This phenotype was first described in 1996 by Verloes et al. as an autosomal recessive form of brachyolmia associated with AI. Whole-exome sequencing resulted in the identification of recessive hypomorphic mutations including deletion, nonsense and splice mutations, in the LTBP3 gene, which is involved in the TGF-beta signaling pathway. We further investigated gene expression during mouse development and tooth formation. Differentiated ameloblasts synthesizing enamel matrix proteins and odontoblasts expressed the gene. Study of an available knockout mouse model showed that the mutant mice displayed very thin to absent enamel in both incisors and molars, hereby recapitulating the AI phenotype in the human disorder. PMID:25669657
Mutations in DONSON disrupt replication fork stability and cause microcephalic dwarfism.
Reynolds, John J; Bicknell, Louise S; Carroll, Paula; Higgs, Martin R; Shaheen, Ranad; Murray, Jennie E; Papadopoulos, Dimitrios K; Leitch, Andrea; Murina, Olga; Tarnauskaitė, Žygimantė; Wessel, Sarah R; Zlatanou, Anastasia; Vernet, Audrey; von Kriegsheim, Alex; Mottram, Rachel M A; Logan, Clare V; Bye, Hannah; Li, Yun; Brean, Alexander; Maddirevula, Sateesh; Challis, Rachel C; Skouloudaki, Kassiani; Almoisheer, Agaadir; Alsaif, Hessa S; Amar, Ariella; Prescott, Natalie J; Bober, Michael B; Duker, Angela; Faqeih, Eissa; Seidahmed, Mohammed Zain; Al Tala, Saeed; Alswaid, Abdulrahman; Ahmed, Saleem; Al-Aama, Jumana Yousuf; Altmüller, Janine; Al Balwi, Mohammed; Brady, Angela F; Chessa, Luciana; Cox, Helen; Fischetto, Rita; Heller, Raoul; Henderson, Bertram D; Hobson, Emma; Nürnberg, Peter; Percin, E Ferda; Peron, Angela; Spaccini, Luigina; Quigley, Alan J; Thakur, Seema; Wise, Carol A; Yoon, Grace; Alnemer, Maha; Tomancak, Pavel; Yigit, Gökhan; Taylor, A Malcolm R; Reijns, Martin A M; Simpson, Michael A; Cortez, David; Alkuraya, Fowzan S; Mathew, Christopher G; Jackson, Andrew P; Stewart, Grant S
2017-04-01
To ensure efficient genome duplication, cells have evolved numerous factors that promote unperturbed DNA replication and protect, repair and restart damaged forks. Here we identify downstream neighbor of SON (DONSON) as a novel fork protection factor and report biallelic DONSON mutations in 29 individuals with microcephalic dwarfism. We demonstrate that DONSON is a replisome component that stabilizes forks during genome replication. Loss of DONSON leads to severe replication-associated DNA damage arising from nucleolytic cleavage of stalled replication forks. Furthermore, ATM- and Rad3-related (ATR)-dependent signaling in response to replication stress is impaired in DONSON-deficient cells, resulting in decreased checkpoint activity and the potentiation of chromosomal instability. Hypomorphic mutations in DONSON substantially reduce DONSON protein levels and impair fork stability in cells from patients, consistent with defective DNA replication underlying the disease phenotype. In summary, we have identified mutations in DONSON as a common cause of microcephalic dwarfism and established DONSON as a critical replication fork protein required for mammalian DNA replication and genome stability.
Aerosol Monitoring Mission using an Advanced Nanosatellite
NASA Astrophysics Data System (ADS)
Pranajaya, Freddy; Zee, Robert E.
The Space Flight Laboratory (SFL) at the University of Toronto Institute for Aerospace Studies (UTIAS) is currently developing a nanosatellite for the purpose of monitoring aerosol content in the atmosphere. The NEMO-AM (Nanosatellite for Earth Monitoring and Observation -Aerosol Monitoring) spacecraft is designed to perform multi-angle, dual-polarization observa-tions in three visible bands. The satellite is designed to detect aerosol content in the atmosphere over a specific region with a nominal ground resolution of up to 200 m and a minimum swath of 120 km. NEMO-AM is being built under a collaborative agreement between SFL and the Indian Space Research Organization (ISRO). SFL is responsible for the design, manufacturing and qualification of the spacecraft and the optical instrument. The NEMO-AM is based on the NEMO bus, which is the next evolution to the SFL Generic Nanosatellite Bus (GNB) technology. The NEMO bus has a primary structure measuring 20 cm by 20 cm by 40 cm and is capable of peak power generation up to 80W. A minimum of 30W is available to the payload. The high peak power generation enables the NEMO bus to support a dedicated state-of-the-art high speed transmitter. The NEMO bus is designed with a total mass of 15 kg, 9 kg of which is dedicated to the payload. It can be configured for full three-axis control with up to 1 arcmin pointing stability. NEMO spacecraft will be secured to launch vehicles using the XPOD Duo separation system. This paper will summarize the NEMO-AM mission and the innovative aspects of the NEMO bus.
Hypomorphic NOTCH3 mutation in an Italian family with CADASIL features.
Moccia, Marcello; Mosca, Lorena; Erro, Roberto; Cervasio, Mariarosaria; Allocca, Roberto; Vitale, Carmine; Leonardi, Antonio; Caranci, Ferdinando; Del Basso-De Caro, Maria Laura; Barone, Paolo; Penco, Silvana
2015-01-01
The cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) is because of NOTCH3 mutations affecting the number of cysteine residues. In this view, the role of atypical NOTCH3 mutations is still debated. Therefore, we investigated a family carrying a NOTCH3 nonsense mutation, with dominantly inherited recurrent cerebrovascular disorders. Among 7 family members, 4 received a clinical diagnosis of CADASIL. A heterozygous truncating mutation in exon 3 (c.307C>T, p.Arg103X) was found in the 4 clinically affected subjects and in one 27-year old lady, only complaining of migraine with aura. Magnetic resonance imaging scans found typical signs of small-vessel disease in the 4 affected subjects, supporting the clinical diagnosis. Skin biopsies did not show the typical granular osmiophilic material, but only nonspecific signs of vascular damage, resembling those previously described in Notch3 knockout mice. Interestingly, messenger RNA (mRNA) analysis supports the hypothesis of an atypical NOTCH3 mutation, suggesting a nonsense-mediated mRNA decay. In conclusion, the present study broadens the spectrum of CADASIL mutations, and, therefore, opens new insights about Notch3 signaling. Copyright © 2015 Elsevier Inc. All rights reserved.
Familial cardiofaciocutaneous syndrome in a father and a son with a novel MEK2 mutation.
Karaer, Kadri; Lissewski, Christina; Zenker, Martin
2015-02-01
Cardiofaciocutaneous (CFC) syndrome is a rare genetic disorder belonging to the group of RASopathies. It is typically characterized by congenital heart defects, short stature, dysmorphic craniofacial features, intellectual disability, failure to thrive, and ectodermal abnormalities such as hyperkeratosis and sparse, brittle, curly hair. CFC syndrome is caused by dominant mutations in one of the four genes BRAF, MEK1, MEK2, and KRAS. Only three familial cases of CFC syndrome have been reported to date, whereas the vast majorities are sporadic cases due to de novo mutations. We report on a fourth familial case with transmission of CFC syndrome from father to son due to a novel heterozygous sequence change c.376A>G (p.N126D) in exon 3 of MEK2 gene. This observation further documents the possibility of vertical transmission of CFC syndrome, which appears to be associated with rare mutations and relatively mild intellectual disability in affected individual. The hypomorphic effect of specific mutations particularly regarding neurocognitive issues may be related to the variable fertility of affected individuals. © 2014 Wiley Periodicals, Inc.
Sakowicz, Agata; Hejduk, Paulina; Pietrucha, Tadeusz; Nowakowska, Magdalena; Płuciennik, Elżbieta; Pospiech, Karolina; Gach, Agnieszka; Rybak-Krzyszkowska, Magda; Sakowicz, Bartosz; Kaminski, Marek; Krasomski, Grzegorz; Biesiada, Lidia
2016-04-01
The mechanism of preeclampsia and its way of inheritance are still a mystery. Biochemical and immunochemical studies reveal a substantial increase in tumor necrosis factor alpha, interleukin-1 beta, and interleukin-6 concentrations in the blood of women with preeclampsia. The level of these factors is regulated by nuclear facxtor-kappa B, whose activation in a classical pathway requires inhibitory kappa B kinase gamma (known as NEMO or IKBKG). Moreover, NEMO can schedule between cytoplasma and the nucleus. In the nucleus, IKBKG interacts with other proteins, and thus, it is implicated in the regulation of different gene expressions, which are related to cell cycle progression, proliferation, differentiation, and apoptosis. This is the first study investigating the association between the level of NEMO gene expression and the presence of preeclampsia. We tested the hypothesis that the simultaneous increase in NEMO gene expression both in the mother and her fetus may be responsible for the preeclampsia development. Moreover, the relationships between clinical risk factors of preeclampsia and the levels of NEMO gene expression in blood, umbilical cord blood, and placentas were investigated. A total of 91 women (43 preeclamptic women and 48 controls) and their children were examined. Real-time reverse transcription-polymerase chain reaction was used to assess the amount total NEMO messenger ribonucleic acid (mRNA) content and the mRNA level of each NEMO transcript from exons 1A, 1B, and 1C in maternal blood, umbilical cord blood, and placentas. Univariate analyses and correlation tests were performed to examine the association between NEMO gene expression and preeclampsia. Newborn weight and height, maternal platelet number, and gestational age (week of delivery) were lower in the group of women with preeclampsia than controls. NEMO gene expression level was found to be almost 7 times higher in the group of women with preeclampsia than healthy controls. The correlation analysis found that a simultaneous increase in the expression level of total NEMO mRNA in maternal blood and the mRNA for total NEMO (Rs = 0.311, P < .05), transcripts 1A (Rs = 0.463, P < .01), 1B (Rs = 0.454, P < .01), and 1C (Rs = 0.563, P < .001) in fetal blood was observed in preeclamptic pregnancies. In addition, the mRNA levels for total NEMO and transcripts 1A, 1B, and 1C were lower in placentas derived from pregnancies complicated by preeclampsia. Simultaneous increase of NEMO gene expression in maternal and fetal blood seems to be relevant for preeclampsia development. The results of our study also suggest that a decreased NEMO gene expression level in preeclamptic placentas may be the main reason for their intensified apoptosis. Copyright © 2016 Elsevier Inc. All rights reserved.
Simulation of double beta decay in the ''SeXe'' TPC
NASA Astrophysics Data System (ADS)
Mauger, F.
2007-04-01
In 2004, the NEMO collaboration has started some preliminary studies for a next-generation double beta decay experiment: SuperNEMO. The possibility to use a large gaseous TPC has been investigated using simulation and extrapolation of former experiments. In this talk, I report on the reasons why such techniques have not been selected in 2004 and led the NEMO collaboration to reuse the techniques implemented within the NEMO3 detector.
Arimoto, Kei-ichiro; Funami, Kenji; Saeki, Yasushi; Tanaka, Keiji; Okawa, Katsuya; Takeuchi, Osamu; Akira, Shizuo; Murakami, Yoshiki; Shimotohno, Kunitada
2010-01-01
The rapid induction of type I IFN is a central event of the innate defense against viral infections and is tightly regulated by a number of cellular molecules. Viral components induce strong type I IFN responses through the activation of toll-like receptors (TLRs) and intracellular cytoplasmic receptors such as an RNA helicase RIG-I and/or MDA5. According to recent studies, the NF-κB essential modulator (NEMO, also called IKKγ) is crucial for this virus-induced antiviral response. However, the precise roles of signal activation by NEMO adaptor have not been elucidated. Here, we show that virus-induced IRF3 and NF-κB activation depends on the K(lys)-27-linked polyubiquitination to NEMO by the novel ubiquitin E3 ligase triparite motif protein 23 (TRIM23). Virus-induced IRF3 and NF-κB activation, as well as K27-linked NEMO polyubiquitination, were abrogated in TRIM23 knockdown cells, whereas TRIM23 knockdown had no effect on TNFα-mediated NF-κB activation. Furthermore, in NEMO-deficient mouse embryo fibroblast cells, IFN-stimulated response element-driven reporter activity was restored by ectopic expression of WT NEMO, as expected, but only partial recovery by NEMO K165/309/325/326/344R multipoints mutant on which TRIM23-mediated ubiquitin conjugation was substantially reduced. Thus, we conclude that TRIM23-mediated ubiquitin conjugation to NEMO is essential for TLR3- and RIG-I/MDA5-mediated antiviral innate and inflammatory responses. PMID:20724660
Effects of hypo-O-GlcNAcylation on Drosophila development.
Mariappa, Daniel; Ferenbach, Andrew T; van Aalten, Daan M F
2018-05-11
Post-translational modification of serine/threonine residues in nucleocytoplasmic proteins with GlcNAc ( O -GlcNAcylation) is an essential regulatory mechanism in many cellular processes. In Drosophila , null mutants of the Polycomb gene O -GlcNAc transferase ( OGT ; also known as super sex combs ( sxc )) display homeotic phenotypes. To dissect the requirement for O -GlcNAc signaling in Drosophila development, we used CRISPR/Cas9 gene editing to generate rationally designed sxc catalytically hypomorphic or null point mutants. Of the fertile males derived from embryos injected with the CRISPR/Cas9 reagents, 25% produced progeny carrying precise point mutations with no detectable off-target effects. One of these mutants, the catalytically inactive sxc K872M , was recessive lethal, whereas a second mutant, the hypomorphic sxc H537A , was homozygous viable. We observed that reduced total protein O -GlcNAcylation in the sxc H537A mutant is associated with a wing vein phenotype and temperature-dependent lethality. Genetic interaction between sxc H537A and a null allele of Drosophila host cell factor ( dHcf ), encoding an extensively O -GlcNAcylated transcriptional coactivator, resulted in abnormal scutellar bristle numbers. A similar phenotype was also observed in sxc H537A flies lacking a copy of skuld ( skd ), a Mediator complex gene known to affect scutellar bristle formation. Interestingly, this phenotype was independent of OGT Polycomb function or dHcf downstream targets. In conclusion, the generation of the endogenous OGT hypomorphic mutant sxc H537A enabled us to identify pleiotropic effects of globally reduced protein O -GlcNAc during Drosophila development. The mutants generated and phenotypes observed in this study provide a platform for discovery of OGT substrates that are critical for Drosophila development. © 2018 Mariappa et al.
Franckaert, Dean; Dooley, James; Roos, Evelyne; Floess, Stefan; Huehn, Jochen; Luche, Herve; Fehling, Hans Joerg; Liston, Adrian; Linterman, Michelle A; Schlenner, Susan M
2015-04-01
Costimulatory signals by CD28 are critical for thymic regulatory T-cell (Treg) development. To determine the functional relevance of CD28 for peripheral Treg post thymic selection, we crossed the widely used Forkhead box protein 3 (Foxp3)-CreYFP mice to mice bearing a conditional Cd28 allele. Treg-specific CD28 deficiency provoked a severe autoimmune syndrome as a result of a strong disadvantage in competitive fitness and proliferation of CD28-deficient Tregs. By contrast, Treg survival and lineage integrity were not affected by the lack of CD28. This data demonstrate that, even after the initial induction requirement, Treg maintain a higher dependency on CD28 signalling than conventional T cells for homeostasis. In addition, we found the Foxp3-CreYFP allele to be a hypomorph, with reduced Foxp3 protein levels. Furthermore, we report here the stochastic activity of the Foxp3-CreYFP allele in non-Tregs, sufficient to recombine some conditional alleles (including Cd28) but not others (including R26-RFP). This hypomorphism and 'leaky' expression of the Foxp3-CreYFP allele should be considered when analysing the conditionally mutated Treg.
Sotolongo-Lopez, Mailin; Alvarez-Delfin, Karen; Saade, Carole J.; Vera, Daniel L.; Fadool, James M.
2016-01-01
The visual system of a particular species is highly adapted to convey detailed ecological and behavioral information essential for survival. The consequences of structural mutations of opsins upon spectral sensitivity and environmental adaptation have been studied in great detail, but lacking is knowledge of the potential influence of alterations in gene regulatory networks upon the diversity of cone subtypes and the variation in the ratio of rods and cones observed in numerous diurnal and nocturnal species. Exploiting photoreceptor patterning in cone-dominated zebrafish, we uncovered two independent mechanisms by which the sine oculis homeobox homolog 7 (six7) regulates photoreceptor development. In a genetic screen, we isolated the lots-of-rods-junior (ljrp23ahub) mutation that resulted in an increased number and uniform distribution of rods in otherwise normal appearing larvae. Sequence analysis, genome editing using TALENs and knockdown strategies confirm ljrp23ahub as a hypomorphic allele of six7, a teleost orthologue of six3, with known roles in forebrain patterning and expression of opsins. Based on the lack of predicted protein-coding changes and a deletion of a conserved element upstream of the transcription start site, a cis-regulatory mutation is proposed as the basis of the reduced expression of six7 in ljrp23ahub. Comparison of the phenotypes of the hypomorphic and knock-out alleles provides evidence of two independent roles in photoreceptor development. EdU and PH3 labeling show that the increase in rod number is associated with extended mitosis of photoreceptor progenitors, and TUNEL suggests that the lack of green-sensitive cones is the result of cell death of the cone precursor. These data add six7 to the small but growing list of essential genes for specification and patterning of photoreceptors in non-mammalian vertebrates, and highlight alterations in transcriptional regulation as a potential source of photoreceptor variation across species. PMID:27058886
Li, Yan; Yu, Shirley; Duncan, Todd; Li, Yichao; Liu, Pinghu; Gene, Erelda; Cortes-Pena, Yoel; Qian, Haohua; Dong, Lijin; Redmond, T Michael
2015-08-01
Human RPE65 mutations cause a spectrum of blinding retinal dystrophies from severe early-onset disease to milder manifestations. The RPE65 P25L missense mutation, though having <10% of wild-type (WT) activity, causes relatively mild retinal degeneration. To better understand these mild forms of RPE65-related retinal degeneration, and their effect on cone photoreceptor survival, we generated an Rpe65/P25L knock-in (KI/KI) mouse model. We found that, when subject to the low-light regime (∼100 lux) of regular mouse housing, homozygous Rpe65/P25L KI/KI mice are morphologically and functionally very similar to WT siblings. While mutant protein expression is decreased by over 80%, KI/KI mice retinae retain comparable 11-cis-retinal levels with WT. Consistently, the scotopic and photopic electroretinographic (ERG) responses to single-flash stimuli also show no difference between KI/KI and WT mice. However, the recovery of a-wave response following moderate visual pigment bleach is delayed in KI/KI mice. Importantly, KI/KI mice show significantly increased resistance to high-intensity (20 000 lux for 30 min) light-induced retinal damage (LIRD) as compared with WT, indicating impaired rhodopsin regeneration in KI/KI. Taken together, the Rpe65/P25L mutant produces sufficient chromophore under normal conditions to keep opsins replete and thus manifests a minimal phenotype. Only when exposed to intensive light is this hypomorphic mutation manifested physiologically, as its reduced expression and catalytic activity protects against the successive cycles of opsin regeneration underlying LIRD. These data also help define minimal requirements of chromophore for photoreceptor survival in vivo and may be useful in assessing a beneficial therapeutic dose for RPE65 gene therapy in humans. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Mutations in the Human Laminin β2 (LAMB2) Gene and the Associated Phenotypic Spectrum
Matejas, Verena; Hinkes, Bernward; Alkandari, Faisal; Al-Gazali, Lihadh; Annexstad, Ellen; Aytac, Mehmet B.; Barrow, Margaret; Bláhová, Kvĕta; Bockenhauer, Detlef; Cheong, Hae Il; Maruniak-Chudek, Iwona; Cochat, Pierre; Dötsch, Jörg; Gajjar, Priya; Hennekam, Raoul C.; Janssen, Françoise; Kagan, Mikhail; Kariminejad, Ariana; Kemper, Markus J.; Koenig, Jens; Kogan, Jillene; Kroes, Hester Y.; Kuwertz-Bröking, Eberhard; Lewanda, Amy F.; Medeira, Ana; Muscheites, Jutta; Niaudet, Patrick; Pierson, Michel; Saggar, Anand; Seaver, Laurie; Suri, Mohnish; Tsygin, Alexey; Wühl, Elke; Zurowska, Aleksandra; Uebe, Steffen; Hildebrandt, Friedhelm; Antignac, Corinne; Zenker, Martin
2010-01-01
Mutations of LAMB2 typically cause autosomal recessive Pierson syndrome, a disorder characterized by congenital nephrotic syndrome, ocular and neurologic abnormalities, but may occasionally be associated with milder or oligosymptomatic disease variants. LAMB2 encodes the basement membrane protein laminin β2 which is incorporated in specific heterotrimeric laminin isoforms and has an expression pattern corresponding to the pattern of organ manifestations in Pierson syndrome. Herein we review all previously reported and several novel LAMB2 mutations in relation to the associated phenotype in patients from 39 unrelated families. The majority of disease-causing LAMB2 mutations are truncating, consistent with the hypothesis that loss of laminin β2 function is the molecular basis of Pierson syndrome. While truncating mutations are distributed across the entire gene, missense mutations are clearly clustered in the N-terminal LN domain, which is important for intermolecular interactions. There is an association of missense mutations and small in frame deletions with a higher mean age at onset of renal disease and with absence of neurologic abnormalities, thus suggesting that at least some of these may represent hypomorphic alleles. Nevertheless, genotype alone does not appear to explain the full range of clinical variability, and therefore hitherto unidentified modifiers are likely to exist. PMID:20556798
Sudden Cardiac Death Due to Deficiency of the Mitochondrial Inorganic Pyrophosphatase PPA2.
Kennedy, Hannah; Haack, Tobias B; Hartill, Verity; Mataković, Lavinija; Baumgartner, E Regula; Potter, Howard; Mackay, Richard; Alston, Charlotte L; O'Sullivan, Siobhan; McFarland, Robert; Connolly, Grainne; Gannon, Caroline; King, Richard; Mead, Scott; Crozier, Ian; Chan, Wandy; Florkowski, Chris M; Sage, Martin; Höfken, Thomas; Alhaddad, Bader; Kremer, Laura S; Kopajtich, Robert; Feichtinger, René G; Sperl, Wolfgang; Rodenburg, Richard J; Minet, Jean Claude; Dobbie, Angus; Strom, Tim M; Meitinger, Thomas; George, Peter M; Johnson, Colin A; Taylor, Robert W; Prokisch, Holger; Doudney, Kit; Mayr, Johannes A
2016-09-01
We have used whole-exome sequencing in ten individuals from four unrelated pedigrees to identify biallelic missense mutations in the nuclear-encoded mitochondrial inorganic pyrophosphatase (PPA2) that are associated with mitochondrial disease. These individuals show a range of severity, indicating that PPA2 mutations may cause a spectrum of mitochondrial disease phenotypes. Severe symptoms include seizures, lactic acidosis, cardiac arrhythmia, and death within days of birth. In the index family, presentation was milder and manifested as cardiac fibrosis and an exquisite sensitivity to alcohol, leading to sudden arrhythmic cardiac death in the second decade of life. Comparison of normal and mutant PPA2-containing mitochondria from fibroblasts showed that the activity of inorganic pyrophosphatase was significantly reduced in affected individuals. Recombinant PPA2 enzymes modeling hypomorphic missense mutations had decreased activity that correlated with disease severity. These findings confirm the pathogenicity of PPA2 mutations and suggest that PPA2 is a cardiomyopathy-associated protein, which has a greater physiological importance in mitochondrial function than previously recognized. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Smit, Judith J.; van Dijk, Willem J.; El Atmioui, Dris; Merkx, Remco; Ovaa, Huib; Sixma, Titia K.
2013-01-01
The ubiquitination of NEMO with linear ubiquitin chains by the E3-ligase LUBAC is important for the activation of the canonical NF-κB pathway. NEMO ubiquitination requires a dual target specificity of LUBAC, priming on a lysine on NEMO and chain elongation on the N terminus of the priming ubiquitin. Here we explore the minimal requirements for these specificities. Effective linear chain formation requires a precise positioning of the ubiquitin N-terminal amine in a negatively charged environment on the top of ubiquitin. Whereas the RBR-LDD region on HOIP is sufficient for targeting the ubiquitin N terminus, the priming lysine modification on NEMO requires catalysis by the RBR domain of HOIL-1L as well as the catalytic machinery of the RBR-LDD domains of HOIP. Consequently, target specificity toward NEMO is determined by multiple LUBAC components, whereas linear ubiquitin chain elongation is realized by a specific interplay between HOIP and ubiquitin. PMID:24030825
Huckert, Mathilde; Stoetzel, Corinne; Morkmued, Supawich; Laugel-Haushalter, Virginie; Geoffroy, Véronique; Muller, Jean; Clauss, François; Prasad, Megana K; Obry, Frédéric; Raymond, Jean Louis; Switala, Marzena; Alembik, Yves; Soskin, Sylvie; Mathieu, Eric; Hemmerlé, Joseph; Weickert, Jean-Luc; Dabovic, Branka Brukner; Rifkin, Daniel B; Dheedene, Annelies; Boudin, Eveline; Caluseriu, Oana; Cholette, Marie-Claude; Mcleod, Ross; Antequera, Reynaldo; Gellé, Marie-Paule; Coeuriot, Jean-Louis; Jacquelin, Louis-Frédéric; Bailleul-Forestier, Isabelle; Manière, Marie-Cécile; Van Hul, Wim; Bertola, Debora; Dollé, Pascal; Verloes, Alain; Mortier, Geert; Dollfus, Hélène; Bloch-Zupan, Agnès
2015-06-01
Inherited dental malformations constitute a clinically and genetically heterogeneous group of disorders. Here, we report on four families, three of them consanguineous, with an identical phenotype, characterized by significant short stature with brachyolmia and hypoplastic amelogenesis imperfecta (AI) with almost absent enamel. This phenotype was first described in 1996 by Verloes et al. as an autosomal recessive form of brachyolmia associated with AI. Whole-exome sequencing resulted in the identification of recessive hypomorphic mutations including deletion, nonsense and splice mutations, in the LTBP3 gene, which is involved in the TGF-beta signaling pathway. We further investigated gene expression during mouse development and tooth formation. Differentiated ameloblasts synthesizing enamel matrix proteins and odontoblasts expressed the gene. Study of an available knockout mouse model showed that the mutant mice displayed very thin to absent enamel in both incisors and molars, hereby recapitulating the AI phenotype in the human disorder. © The Author 2015. Published by Oxford University Press.
Seven functional classes of Barth syndrome mutation.
Whited, Kevin; Baile, Matthew G; Currier, Pamela; Claypool, Steven M
2013-02-01
Patients with Barth syndrome (BTHS), a rare X-linked disease, suffer from skeletal and cardiomyopathy and bouts of cyclic neutropenia. The causative gene encodes tafazzin, a transacylase, which is the major determinant of the final acyl chain composition of the mitochondrial-specific phospholipid, CL. In addition to numerous frame shift and splice-site mutations, 36 missense mutations have been associated with BTHS. Previously, we established a BTHS-mutant panel in the yeast Saccharomyces cerevisiae that successfully models 18/21 conserved pathogenic missense mutations and defined the loss-of-function mechanism associated with a subset of the mutant tafazzins. Here, we report the biochemical and cell biological characterization of the rest of the yeast BTHS-mutant panel and in so doing identify three additional modes of tafazzin dysfunction. The largest group of mutant tafazzins is catalytically null, two mutants encode hypomorphic alleles, and another two mutants are temperature sensitive. Additionally, we have expanded the defects associated with previously characterized matrix-mislocalized-mutant tafazzins to include the rapid degradation of aggregation-prone polypeptides that correctly localize to the mitochondrial IMS. In sum, our in-depth characterization of the yeast BTHS-mutant panel has identified seven functional classes of BTHS mutation.
Peng, Yanyan; Shinde, Deepali N; Valencia, C Alexander; Mo, Jun-Song; Rosenfeld, Jill; Truitt Cho, Megan; Chamberlin, Adam; Li, Zhuo; Liu, Jie; Gui, Baoheng; Brockhage, Rachel; Basinger, Alice; Alvarez-Leon, Brenda; Heydemann, Peter; Magoulas, Pilar L; Lewis, Andrea M; Scaglia, Fernando; Gril, Solange; Chong, Shuk Ching; Bower, Matthew; Monaghan, Kristin G; Willaert, Rebecca; Plona, Maria-Renee; Dineen, Rich; Milan, Francisca; Hoganson, George; Helbig, Katherine L; Keller-Ramey, Jennifer; Harris, Belinda; Anderson, Laura C; Green, Torrian; Sukoff Rizzo, Stacey J; Kaylor, Julie; Chen, Jiani; Guan, Min-Xin; Sellars, Elizabeth; Sparagana, Steven P; Gibson, James B; Reinholdt, Laura G; Tang, Sha; Huang, Taosheng
2017-01-01
Abstract Iron–sulfur (Fe-S) clusters are ubiquitous cofactors essential to various cellular processes, including mitochondrial respiration, DNA repair, and iron homeostasis. A steadily increasing number of disorders are being associated with disrupted biogenesis of Fe–S clusters. Here, we conducted whole-exome sequencing of patients with optic atrophy and other neurological signs of mitochondriopathy and identified 17 individuals from 13 unrelated families with recessive mutations in FDXR, encoding the mitochondrial membrane-associated flavoprotein ferrodoxin reductase required for electron transport from NADPH to cytochrome P450. In vitro enzymatic assays in patient fibroblast cells showed deficient ferredoxin NADP reductase activity and mitochondrial dysfunction evidenced by low oxygen consumption rates (OCRs), complex activities, ATP production and increased reactive oxygen species (ROS). Such defects were rescued by overexpression of wild-type FDXR. Moreover, we found that mice carrying a spontaneous mutation allelic to the most common mutation found in patients displayed progressive gait abnormalities and vision loss, in addition to biochemical defects consistent with the major clinical features of the disease. Taken together, these data provide the first demonstration that germline, hypomorphic mutations in FDXR cause a novel mitochondriopathy and optic atrophy in humans. PMID:29040572
Peng, Yanyan; Shinde, Deepali N; Valencia, C Alexander; Mo, Jun-Song; Rosenfeld, Jill; Truitt Cho, Megan; Chamberlin, Adam; Li, Zhuo; Liu, Jie; Gui, Baoheng; Brockhage, Rachel; Basinger, Alice; Alvarez-Leon, Brenda; Heydemann, Peter; Magoulas, Pilar L; Lewis, Andrea M; Scaglia, Fernando; Gril, Solange; Chong, Shuk Ching; Bower, Matthew; Monaghan, Kristin G; Willaert, Rebecca; Plona, Maria-Renee; Dineen, Rich; Milan, Francisca; Hoganson, George; Powis, Zoe; Helbig, Katherine L; Keller-Ramey, Jennifer; Harris, Belinda; Anderson, Laura C; Green, Torrian; Sukoff Rizzo, Stacey J; Kaylor, Julie; Chen, Jiani; Guan, Min-Xin; Sellars, Elizabeth; Sparagana, Steven P; Gibson, James B; Reinholdt, Laura G; Tang, Sha; Huang, Taosheng
2017-12-15
Iron-sulfur (Fe-S) clusters are ubiquitous cofactors essential to various cellular processes, including mitochondrial respiration, DNA repair, and iron homeostasis. A steadily increasing number of disorders are being associated with disrupted biogenesis of Fe-S clusters. Here, we conducted whole-exome sequencing of patients with optic atrophy and other neurological signs of mitochondriopathy and identified 17 individuals from 13 unrelated families with recessive mutations in FDXR, encoding the mitochondrial membrane-associated flavoprotein ferrodoxin reductase required for electron transport from NADPH to cytochrome P450. In vitro enzymatic assays in patient fibroblast cells showed deficient ferredoxin NADP reductase activity and mitochondrial dysfunction evidenced by low oxygen consumption rates (OCRs), complex activities, ATP production and increased reactive oxygen species (ROS). Such defects were rescued by overexpression of wild-type FDXR. Moreover, we found that mice carrying a spontaneous mutation allelic to the most common mutation found in patients displayed progressive gait abnormalities and vision loss, in addition to biochemical defects consistent with the major clinical features of the disease. Taken together, these data provide the first demonstration that germline, hypomorphic mutations in FDXR cause a novel mitochondriopathy and optic atrophy in humans. © The Author 2017. Published by Oxford University Press.
Takeda, Kazuki; Kou, Ikuyo; Kawakami, Noriaki; Iida, Aritoshi; Nakajima, Masahiro; Ogura, Yoji; Imagawa, Eri; Miyake, Noriko; Matsumoto, Naomichi; Yasuhiko, Yukuto; Sudo, Hideki; Kotani, Toshiaki; Nakamura, Masaya; Matsumoto, Morio; Watanabe, Kota; Ikegawa, Shiro
2017-03-01
Congenital scoliosis (CS) occurs as a result of vertebral malformations and has an incidence of 0.5-1/1,000 births. Recently, TBX6 on chromosome 16p11.2 was reported as a disease gene for CS; about 10% of Chinese CS patients were compound heterozygotes for rare null mutations and a common haplotype defined by three SNPs in TBX6. All patients had hemivertebrae. We recruited 94 Japanese CS patients, investigated the TBX6 locus for both mutations and the risk haplotype, examined transcriptional activities of mutant TBX6 in vitro, and evaluated clinical and radiographic features. We identified TBX6 null mutations in nine patients, including a missense mutation that had a loss of function in vitro. All had the risk haplotype in the opposite allele. One of the mutations showed dominant negative effect. Although all Chinese patients had one or more hemivertebrae, two Japanese patients did not have hemivertebra. The compound heterozygosity of null mutations and the common risk haplotype in TBX6 also causes CS in Japanese patients with similar incidence. Hemivertebra was not a specific type of spinal malformation in TBX6-associated CS (TACS). A heterozygous TBX6 loss-of-function mutation has been reported in a family with autosomal-dominant spondylocostal dysostosis, but it may represent a spectrum of the same disease with TACS. © 2017 WILEY PERIODICALS, INC.
Cdc20 hypomorphic mice fail to counteract de novo synthesis of cyclin B1 in mitosis
Malureanu, Liviu; Jeganathan, Karthik B.; Jin, Fang; Baker, Darren J.; van Ree, Janine H.; Gullon, Oliver; Chen, Zheyan; Henley, John R.
2010-01-01
Cdc20 is an activator of the anaphase-promoting complex/cyclosome that initiates anaphase onset by ordering the destruction of cyclin B1 and securin in metaphase. To study the physiological significance of Cdc20 in higher eukaryotes, we generated hypomorphic mice that express small amounts of this essential cell cycle regulator. In this study, we show that these mice are healthy and not prone to cancer despite substantial aneuploidy. Cdc20 hypomorphism causes chromatin bridging and chromosome misalignment, revealing a requirement for Cdc20 in efficient sister chromosome separation and chromosome–microtubule attachment. We find that cyclin B1 is newly synthesized during mitosis via cytoplasmic polyadenylation element–binding protein-dependent translation, causing its rapid accumulation between prometaphase and metaphase of Cdc20 hypomorphic cells. Anaphase onset is significantly delayed in Cdc20 hypomorphic cells but not when translation is inhibited during mitosis. These data reveal that Cdc20 is particularly rate limiting for cyclin B1 destruction because of regulated de novo synthesis of this cyclin after prometaphase onset. PMID:20956380
Mutations in the human UBR1 gene and the associated phenotypic spectrum.
Sukalo, Maja; Fiedler, Ariane; Guzmán, Celina; Spranger, Stephanie; Addor, Marie-Claude; McHeik, Jiad N; Oltra Benavent, Manuel; Cobben, Jan M; Gillis, Lynette A; Shealy, Amy G; Deshpande, Charu; Bozorgmehr, Bita; Everman, David B; Stattin, Eva-Lena; Liebelt, Jan; Keller, Klaus-Michael; Bertola, Débora Romeo; van Karnebeek, Clara D M; Bergmann, Carsten; Liu, Zhifeng; Düker, Gesche; Rezaei, Nima; Alkuraya, Fowzan S; Oğur, Gönül; Alrajoudi, Abdullah; Venegas-Vega, Carlos A; Verbeek, Nienke E; Richmond, Erick J; Kirbiyik, Ozgür; Ranganath, Prajnya; Singh, Ankur; Godbole, Koumudi; Ali, Fouad A M; Alves, Crésio; Mayerle, Julia; Lerch, Markus M; Witt, Heiko; Zenker, Martin
2014-05-01
Johanson-Blizzard syndrome (JBS) is a rare, autosomal recessive disorder characterized by exocrine pancreatic insufficiency, typical facial features, dental anomalies, hypothyroidism, sensorineural hearing loss, scalp defects, urogenital and anorectal anomalies, short stature, and cognitive impairment of variable degree. This syndrome is caused by a defect of the E3 ubiquitin ligase UBR1, which is part of the proteolytic N-end rule pathway. Herein, we review previously reported (n = 29) and a total of 31 novel UBR1 mutations in relation to the associated phenotype in patients from 50 unrelated families. Mutation types include nonsense, frameshift, splice site, missense, and small in-frame deletions consistent with the hypothesis that loss of UBR1 protein function is the molecular basis of JBS. There is an association of missense mutations and small in-frame deletions with milder physical abnormalities and a normal intellectual capacity, thus suggesting that at least some of these may represent hypomorphic UBR1 alleles. The review of clinical data of a large number of molecularly confirmed JBS cases allows us to define minimal clinical criteria for the diagnosis of JBS. For all previously reported and novel UBR1 mutations together with their clinical data, a mutation database has been established at LOVD. © 2014 WILEY PERIODICALS, INC.
Ehlken, H; Krishna-Subramanian, S; Ochoa-Callejero, L; Kondylis, V; Nadi, N E; Straub, B K; Schirmacher, P; Walczak, H; Kollias, G; Pasparakis, M
2014-11-01
Hepatocellular carcinoma (HCC) usually develops in the context of chronic hepatitis triggered by viruses or toxic substances causing hepatocyte death, inflammation and compensatory proliferation of liver cells. Death receptors of the TNFR superfamily regulate cell death and inflammation and are implicated in liver disease and cancer. Liver parenchymal cell-specific ablation of NEMO/IKKγ, a subunit of the IκB kinase (IKK) complex that is essential for the activation of canonical NF-κB signalling, sensitized hepatocytes to apoptosis and caused the spontaneous development of chronic hepatitis and HCC in mice. Here we show that hepatitis and HCC development in NEMO(LPC-KO) mice is triggered by death receptor-independent FADD-mediated hepatocyte apoptosis. TNF deficiency in all cells or conditional LPC-specific ablation of TNFR1, Fas or TRAIL-R did not prevent hepatocyte apoptosis, hepatitis and HCC development in NEMO(LPC-KO) mice. To address potential functional redundancies between death receptors we generated and analysed NEMO(LPC-KO) mice with combined LPC-specific deficiency of TNFR1, Fas and TRAIL-R and found that also simultaneous lack of all three death receptors did not prevent hepatocyte apoptosis, chronic hepatitis and HCC development. However, LPC-specific combined deficiency in TNFR1, Fas and TRAIL-R protected the NEMO-deficient liver from LPS-induced liver failure, showing that different mechanisms trigger spontaneous and LPS-induced hepatocyte apoptosis in NEMO(LPC-KO) mice. In addition, NK cell depletion did not prevent liver damage and hepatitis. Moreover, NEMO(LPC-KO) mice crossed into a RAG-1-deficient genetic background-developed hepatitis and HCC. Collectively, these results show that the spontaneous development of hepatocyte apoptosis, chronic hepatitis and HCC in NEMO(LPC-KO) mice occurs independently of death receptor signalling, NK cells and B and T lymphocytes, arguing against an immunological trigger as the critical stimulus driving hepatocarcinogenesis in this model.
Petit, Johann; Bres, Cécile; Just, Daniel; Garcia, Virginie; Mauxion, Jean-Philippe; Marion, Didier; Bakan, Bénédicte; Joubès, Jérôme; Domergue, Frédéric; Rothan, Christophe
2014-02-01
The cuticle is a protective layer synthesized by epidermal cells of the plants and consisting of cutin covered and filled by waxes. In tomato (Solanum lycopersicum) fruit, the thick cuticle embedding epidermal cells has crucial roles in the control of pathogens, water loss, cracking, postharvest shelf-life, and brightness. To identify tomato mutants with modified cuticle composition and architecture and to further decipher the relationships between fruit brightness and cuticle in tomato, we screened an ethyl methanesulfonate mutant collection in the miniature tomato cultivar Micro-Tom for mutants with altered fruit brightness. Our screen resulted in the isolation of 16 glossy and 8 dull mutants displaying changes in the amount and/or composition of wax and cutin, cuticle thickness, and surface aspect of the fruit as characterized by optical and environmental scanning electron microscopy. The main conclusions on the relationships between fruit brightness and cuticle features were as follows: (1) screening for fruit brightness is an effective way to identify tomato cuticle mutants; (2) fruit brightness is independent from wax load variations; (3) glossy mutants show either reduced or increased cutin load; and (4) dull mutants display alterations in epidermal cell number and shape. Cuticle composition analyses further allowed the identification of groups of mutants displaying remarkable cuticle changes, such as mutants with increased dicarboxylic acids in cutin. Using genetic mapping of a strong cutin-deficient mutation, we discovered a novel hypomorphic allele of GDSL lipase carrying a splice junction mutation, thus highlighting the potential of tomato brightness mutants for advancing our understanding of cuticle formation in plants.
Petit, Johann; Bres, Cécile; Just, Daniel; Garcia, Virginie; Mauxion, Jean-Philippe; Marion, Didier; Bakan, Bénédicte; Joubès, Jérôme; Domergue, Frédéric; Rothan, Christophe
2014-01-01
The cuticle is a protective layer synthesized by epidermal cells of the plants and consisting of cutin covered and filled by waxes. In tomato (Solanum lycopersicum) fruit, the thick cuticle embedding epidermal cells has crucial roles in the control of pathogens, water loss, cracking, postharvest shelf-life, and brightness. To identify tomato mutants with modified cuticle composition and architecture and to further decipher the relationships between fruit brightness and cuticle in tomato, we screened an ethyl methanesulfonate mutant collection in the miniature tomato cultivar Micro-Tom for mutants with altered fruit brightness. Our screen resulted in the isolation of 16 glossy and 8 dull mutants displaying changes in the amount and/or composition of wax and cutin, cuticle thickness, and surface aspect of the fruit as characterized by optical and environmental scanning electron microscopy. The main conclusions on the relationships between fruit brightness and cuticle features were as follows: (1) screening for fruit brightness is an effective way to identify tomato cuticle mutants; (2) fruit brightness is independent from wax load variations; (3) glossy mutants show either reduced or increased cutin load; and (4) dull mutants display alterations in epidermal cell number and shape. Cuticle composition analyses further allowed the identification of groups of mutants displaying remarkable cuticle changes, such as mutants with increased dicarboxylic acids in cutin. Using genetic mapping of a strong cutin-deficient mutation, we discovered a novel hypomorphic allele of GDSL lipase carrying a splice junction mutation, thus highlighting the potential of tomato brightness mutants for advancing our understanding of cuticle formation in plants. PMID:24357602
GeNemo: a search engine for web-based functional genomic data.
Zhang, Yongqing; Cao, Xiaoyi; Zhong, Sheng
2016-07-08
A set of new data types emerged from functional genomic assays, including ChIP-seq, DNase-seq, FAIRE-seq and others. The results are typically stored as genome-wide intensities (WIG/bigWig files) or functional genomic regions (peak/BED files). These data types present new challenges to big data science. Here, we present GeNemo, a web-based search engine for functional genomic data. GeNemo searches user-input data against online functional genomic datasets, including the entire collection of ENCODE and mouse ENCODE datasets. Unlike text-based search engines, GeNemo's searches are based on pattern matching of functional genomic regions. This distinguishes GeNemo from text or DNA sequence searches. The user can input any complete or partial functional genomic dataset, for example, a binding intensity file (bigWig) or a peak file. GeNemo reports any genomic regions, ranging from hundred bases to hundred thousand bases, from any of the online ENCODE datasets that share similar functional (binding, modification, accessibility) patterns. This is enabled by a Markov Chain Monte Carlo-based maximization process, executed on up to 24 parallel computing threads. By clicking on a search result, the user can visually compare her/his data with the found datasets and navigate the identified genomic regions. GeNemo is available at www.genemo.org. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Modelling turbulent vertical mixing sensitivity using a 1-D version of NEMO
NASA Astrophysics Data System (ADS)
Reffray, G.; Bourdalle-Badie, R.; Calone, C.
2014-08-01
Through two numerical experiments, a 1-D vertical model called NEMO1D was used to investigate physical and numerical turbulent-mixing behaviour. The results show that all the turbulent closures tested (k + l from Blanke and Delecluse, 1993 and two equation models: Generic Lengh Scale closures from Umlauf and Burchard, 2003) are able to correctly reproduce the classical test of Kato and Phillips (1969) under favourable numerical conditions while some solutions may diverge depending on the degradation of the spatial and time discretization. The performances of turbulence models were then compared with data measured over a one-year period (mid-2010 to mid-2011) at the PAPA station, located in the North Pacific Ocean. The modelled temperature and salinity were in good agreement with the observations, with a maximum temperature error between -2 and 2 °C during the stratified period (June to October). However the results also depend on the numerical conditions. The vertical RMSE varied, for different turbulent closures, from 0.1 to 0.3 °C during the stratified period and from 0.03 to 0.15 °C during the homogeneous period. This 1-D configuration at the PAPA station (called PAPA1D) is now available in NEMO as a reference configuration including the input files and atmospheric forcing set described in this paper. Thus, all the results described can be recovered by downloading and launching PAPA1D. The configuration is described on the NEMO site (http://www.nemo-ocean.eu/Using-NEMO/Configurations/C1D_PAPA). This package is a good starting point for further investigation of vertical processes.
Modelling turbulent vertical mixing sensitivity using a 1-D version of NEMO
NASA Astrophysics Data System (ADS)
Reffray, G.; Bourdalle-Badie, R.; Calone, C.
2015-01-01
Through two numerical experiments, a 1-D vertical model called NEMO1D was used to investigate physical and numerical turbulent-mixing behaviour. The results show that all the turbulent closures tested (k+l from Blanke and Delecluse, 1993, and two equation models: generic length scale closures from Umlauf and Burchard, 2003) are able to correctly reproduce the classical test of Kato and Phillips (1969) under favourable numerical conditions while some solutions may diverge depending on the degradation of the spatial and time discretization. The performances of turbulence models were then compared with data measured over a 1-year period (mid-2010 to mid-2011) at the PAPA station, located in the North Pacific Ocean. The modelled temperature and salinity were in good agreement with the observations, with a maximum temperature error between -2 and 2 °C during the stratified period (June to October). However, the results also depend on the numerical conditions. The vertical RMSE varied, for different turbulent closures, from 0.1 to 0.3 °C during the stratified period and from 0.03 to 0.15 °C during the homogeneous period. This 1-D configuration at the PAPA station (called PAPA1D) is now available in NEMO as a reference configuration including the input files and atmospheric forcing set described in this paper. Thus, all the results described can be recovered by downloading and launching PAPA1D. The configuration is described on the NEMO site (http://www.nemo-ocean.eu/Using-NEMO/Configurations/C1D_PAPA). This package is a good starting point for further investigation of vertical processes.
Martin, Carol-Anne; Murray, Jennie E.; Carroll, Paula; Leitch, Andrea; Mackenzie, Karen J.; Halachev, Mihail; Fetit, Ahmed E.; Keith, Charlotte; Bicknell, Louise S.; Fluteau, Adeline; Gautier, Philippe; Hall, Emma A.; Joss, Shelagh; Soares, Gabriela; Silva, João; Bober, Michael B.; Duker, Angela; Wise, Carol A.; Quigley, Alan J.; Phadke, Shubha R.; Wood, Andrew J.; Vagnarelli, Paola; Jackson, Andrew P.
2016-01-01
Compaction of chromosomes is essential for accurate segregation of the genome during mitosis. In vertebrates, two condensin complexes ensure timely chromosome condensation, sister chromatid disentanglement, and maintenance of mitotic chromosome structure. Here, we report that biallelic mutations in NCAPD2, NCAPH, or NCAPD3, encoding subunits of these complexes, cause microcephaly. In addition, hypomorphic Ncaph2 mice have significantly reduced brain size, with frequent anaphase chromatin bridge formation observed in apical neural progenitors during neurogenesis. Such DNA bridges also arise in condensin-deficient patient cells, where they are the consequence of failed sister chromatid disentanglement during chromosome compaction. This results in chromosome segregation errors, leading to micronucleus formation and increased aneuploidy in daughter cells. These findings establish “condensinopathies” as microcephalic disorders, with decatenation failure as an additional disease mechanism for microcephaly, implicating mitotic chromosome condensation as a key process ensuring mammalian cerebral cortex size. PMID:27737959
NEMO Inhibits Programmed Necrosis in an NFκB-Independent Manner by Restraining RIP1
Legarda, Diana; Ting, Adrian T.
2012-01-01
TNF can trigger two opposing responses: cell survival and cell death. TNFR1 activates caspases that orchestrate apoptosis but some cell types switch to a necrotic death when treated with caspase inhibitors. Several genes that are required to orchestrate cell death by programmed necrosis have been identified, such as the kinase RIP1, but very little is known about the inhibitory signals that keep this necrotic cell death pathway in check. We demonstrate that T cells lacking the regulatory subunit of IKK, NFκB essential modifier (NEMO), are hypersensitive to programmed necrosis when stimulated with TNF in the presence of caspase inhibitors. Surprisingly, this pro-survival activity of NEMO is independent of NFκB-mediated gene transcription. Instead, NEMO inhibits necrosis by binding to ubiquitinated RIP1 to restrain RIP1 from engaging the necrotic death pathway. In the absence of NEMO, or if ubiquitination of RIP1 is blocked, necrosis ensues when caspases are blocked. These results indicate that recruitment of NEMO to ubiquitinated RIP1 is a key step in the TNFR1 signaling pathway that determines whether RIP1 triggers a necrotic death response. PMID:22848449
Kehrer-Sawatzki, Hildegard; Farschtschi, Said; Mautner, Victor-Felix; Cooper, David N
2017-02-01
Schwannomatosis is characterized by the predisposition to develop multiple schwannomas and, less commonly, meningiomas. Despite the clinical overlap with neurofibromatosis type 2 (NF2), schwannomatosis is not caused by germline NF2 gene mutations. Instead, germline mutations of either the SMARCB1 or LZTR1 tumour suppressor genes have been identified in 86% of familial and 40% of sporadic schwannomatosis patients. In contrast to patients with rhabdoid tumours, which are due to complete loss-of-function SMARCB1 mutations, individuals with schwannomatosis harbour predominantly hypomorphic SMARCB1 mutations which give rise to the synthesis of mutant proteins with residual function that do not cause rhabdoid tumours. Although biallelic mutations of SMARCB1 or LZTR1 have been detected in the tumours of patients with schwannomatosis, the classical two-hit model of tumorigenesis is insufficient to account for schwannoma growth, since NF2 is also frequently inactivated in these tumours. Consequently, tumorigenesis in schwannomatosis must involve the mutation of at least two different tumour suppressor genes, an occurrence frequently mediated by loss of heterozygosity of large parts of chromosome 22q harbouring not only SMARCB1 and LZTR1 but also NF2. Thus, schwannomatosis is paradigmatic for a tumour predisposition syndrome caused by the concomitant mutational inactivation of two or more tumour suppressor genes. This review provides an overview of current models of tumorigenesis and mutational patterns underlying schwannomatosis that will ultimately help to explain the complex clinical presentation of this rare disease.
Efficient Mobility Management Signalling in Network Mobility Supported PMIPV6
Jebaseeli Samuelraj, Ananthi; Jayapal, Sundararajan
2015-01-01
Proxy Mobile IPV6 (PMIPV6) is a network based mobility management protocol which supports node's mobility without the contribution from the respective mobile node. PMIPV6 is initially designed to support individual node mobility and it should be enhanced to support mobile network movement. NEMO-BSP is an existing protocol to support network mobility (NEMO) in PMIPV6 network. Due to the underlying differences in basic protocols, NEMO-BSP cannot be directly applied to PMIPV6 network. Mobility management signaling and data structures used for individual node's mobility should be modified to support group nodes' mobility management efficiently. Though a lot of research work is in progress to implement mobile network movement in PMIPV6, it is not yet standardized and each suffers with different shortcomings. This research work proposes modifications in NEMO-BSP and PMIPV6 to achieve NEMO support in PMIPV6. It mainly concentrates on optimizing the number and size of mobility signaling exchanged while mobile network or mobile network node changes its access point. PMID:26366431
Phosphorylation and ubiquitination of the IkappaB kinase complex by two distinct signaling pathways.
Shambharkar, Prashant B; Blonska, Marzenna; Pappu, Bhanu P; Li, Hongxiu; You, Yun; Sakurai, Hiroaki; Darnay, Bryant G; Hara, Hiromitsu; Penninger, Josef; Lin, Xin
2007-04-04
The IkappaB kinase (IKK) complex serves as the master regulator for the activation of NF-kappaB by various stimuli. It contains two catalytic subunits, IKKalpha and IKKbeta, and a regulatory subunit, IKKgamma/NEMO. The activation of IKK complex is dependent on the phosphorylation of IKKalpha/beta at its activation loop and the K63-linked ubiquitination of NEMO. However, the molecular mechanism by which these inducible modifications occur remains undefined. Here, we demonstrate that CARMA1, a key scaffold molecule, is essential to regulate NEMO ubiquitination upon T-cell receptor (TCR) stimulation. However, the phosphorylation of IKKalpha/beta activation loop is independent of CARMA1 or NEMO ubiquitination. Further, we provide evidence that TAK1 is activated and recruited to the synapses in a CARMA1-independent manner and mediate IKKalpha/beta phosphorylation. Thus, our study provides the biochemical and genetic evidence that phosphorylation of IKKalpha/beta and ubiquitination of NEMO are regulated by two distinct pathways upon TCR stimulation.
Efficient Mobility Management Signalling in Network Mobility Supported PMIPV6.
Samuelraj, Ananthi Jebaseeli; Jayapal, Sundararajan
2015-01-01
Proxy Mobile IPV6 (PMIPV6) is a network based mobility management protocol which supports node's mobility without the contribution from the respective mobile node. PMIPV6 is initially designed to support individual node mobility and it should be enhanced to support mobile network movement. NEMO-BSP is an existing protocol to support network mobility (NEMO) in PMIPV6 network. Due to the underlying differences in basic protocols, NEMO-BSP cannot be directly applied to PMIPV6 network. Mobility management signaling and data structures used for individual node's mobility should be modified to support group nodes' mobility management efficiently. Though a lot of research work is in progress to implement mobile network movement in PMIPV6, it is not yet standardized and each suffers with different shortcomings. This research work proposes modifications in NEMO-BSP and PMIPV6 to achieve NEMO support in PMIPV6. It mainly concentrates on optimizing the number and size of mobility signaling exchanged while mobile network or mobile network node changes its access point.
Hatayama, Minoru; Ishiguro, Akira; Iwayama, Yoshimi; Takashima, Noriko; Sakoori, Kazuto; Toyota, Tomoko; Nozaki, Yayoi; Odaka, Yuri S.; Yamada, Kazuyuki; Yoshikawa, Takeo; Aruga, Jun
2011-01-01
ZIC2 is a causal gene for holoprosencephaly and encodes a zinc-finger-type transcriptional regulator. We characterized Zic2kd/+ mice with a moderate (40%) reduction in Zic2 expression. Zic2kd/+ mice showed increased locomotor activity in novel environments, cognitive and sensorimotor gating dysfunctions, and social behavioral abnormalities. Zic2kd/+ brain involved enlargement of the lateral ventricle, thinning of the cerebral cortex and corpus callosum, and decreased number of cholinergic neurons in the basal forebrain. Because these features are reminiscent of schizophrenia, we examined ZIC2 variant-carrying allele frequencies in schizophrenia patients and in controls in the Japanese population. Among three novel missense mutations in ZIC2, R409P was only found in schizophrenia patients, and was located in a strongly conserved position of the zinc finger domain. Mouse Zic2 with the corresponding mutation showed lowered transcription-activating capacity and had impaired target DNA-binding and co-factor-binding capacities. These results warrant further study of ZIC2 in the pathogenesis of schizophrenia. PMID:22355535
Bénit, Paule; Pelhaître, Alice; Saunier, Elise; Bortoli, Sylvie; Coulibaly, Assetou; Rak, Malgorzata; Schiff, Manuel; Kroemer, Guido; Zeviani, Massimo; Rustin, Pierre
2017-03-01
Mice with the hypomorphic AIF-Harlequin mutation exhibit a highly heterogeneous mitochondriopathy that mostly affects respiratory chain complex I, causing a cerebral pathology that resembles that found in patients with AIF loss-of-function mutations. Here we describe that the antidiabetic drug pioglitazone (PIO) can improve the phenotype of a mouse Harlequin (Hq) subgroup, presumably due to an inhibition of glycolysis that causes an increase in blood glucose levels. This glycolysis-inhibitory PIO effect was observed in cultured astrocytes from Hq mice, as well as in human skin fibroblasts from patients with AIF mutation. Glycolysis inhibition by PIO resulted from direct competitive inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Moreover, GAPDH protein levels were reduced in the cerebellum and in the muscle from Hq mice that exhibited an improved phenotype upon PIO treatment. Altogether, our results suggest that excessive glycolysis participates to the pathogenesis of mitochondriopathies and that pharmacological inhibition of glycolysis may have beneficial effects in this condition. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Naval EarthMap Observer: overview and data processing
NASA Astrophysics Data System (ADS)
Bowles, Jeffrey H.; Davis, Curtiss O.; Carney, Megan; Clamons, Dean; Gao, Bo-Cai; Gillis, David; Kappus, Mary E.; Lamela, G.; Montes, Marcos J.; Palmadesso, Peter J.; Rhea, J.; Snyder, William A.
1999-12-01
We present an overview of the Naval EarthMap Observer (NEMO) spacecraft and then focus on the processing of NEMO data both on-board the spacecraft and on the ground. The NEMO spacecraft provides for Joint Naval needs and demonstrates the use of hyperspectral imagery for the characterization of the littoral environment and for littoral ocean model development. NEMO is being funded jointly by the U.S. government and commercial partners. The Coastal Ocean Imaging Spectrometer (COIS) is the primary instrument on the NEMO and covers the spectral range from 400 to 2500 nm at 10-nm resolution with either 30 or 60 m work GSD. The hyperspectral data is processed on-board the NEMO using NRL's Optical Real-time Automated Spectral Identification System (ORASIS) algorithm that provides for real time analysis, feature extraction and greater than 10:1 data compression. The high compression factor allows for ground coverage of greater than 106 km2/day. Calibration of the sensor is done with a combination of moon imaging, using an onboard light source and vicarious calibration using a number of earth sites being monitored for that purpose. The data will be atmospherically corrected using ATREM. Algorithms will also be available to determine water clarity, bathymetry and bottom type.
Withaferin A disrupts ubiquitin-based NEMO reorganization induced by canonical NF-κB signaling.
Jackson, Shawn S; Oberley, Christopher; Hooper, Christopher P; Grindle, Kreg; Wuerzberger-Davis, Shelly; Wolff, Jared; McCool, Kevin; Rui, Lixin; Miyamoto, Shigeki
2015-02-01
The NF-κB family of transcription factors regulates numerous cellular processes, including cell proliferation and survival responses. The constitutive activation of NF-κB has also emerged as an important oncogenic driver in many malignancies, such as activated B-cell like diffuse large B cell lymphoma, among others. In this study, we investigated the impact and mechanisms of action of Withaferin A, a naturally produced steroidal lactone, against both signal-inducible as well as constitutive NF-κB activities. We found that Withaferin A is a robust inhibitor of canonical and constitutive NF-κB activities, leading to apoptosis of certain lymphoma lines. In the canonical pathway induced by TNF, Withaferin A did not disrupt RIP1 polyubiquitination or NEMO-IKKβ interaction and was a poor direct IKKβ inhibitor, but prevented the formation of TNF-induced NEMO foci which colocalized with TNF ligand. While GFP-NEMO efficiently formed TNF-induced foci, a GFP-NEMO(Y308S) mutant that is defective in binding to polyubiquitin chains did not form foci. Our study reveals that Withaferin A is a novel type of IKK inhibitor which acts by disrupting NEMO reorganization into ubiquitin-based signaling structures in vivo. Copyright © 2014 Elsevier Inc. All rights reserved.
Expanding the Substantial Interactome of NEMO Using Protein Microarrays
Fenner, Beau J.; Scannell, Michael; Prehn, Jochen H. M.
2010-01-01
Signal transduction by the NF-kappaB pathway is a key regulator of a host of cellular responses to extracellular and intracellular messages. The NEMO adaptor protein lies at the top of this pathway and serves as a molecular conduit, connecting signals transmitted from upstream sensors to the downstream NF-kappaB transcription factor and subsequent gene activation. The position of NEMO within this pathway makes it an attractive target from which to search for new proteins that link NF-kappaB signaling to additional pathways and upstream effectors. In this work, we have used protein microarrays to identify novel NEMO interactors. A total of 112 protein interactors were identified, with the most statistically significant hit being the canonical NEMO interactor IKKbeta, with IKKalpha also being identified. Of the novel interactors, more than 30% were kinases, while at least 25% were involved in signal transduction. Binding of NEMO to several interactors, including CALB1, CDK2, SAG, SENP2 and SYT1, was confirmed using GST pulldown assays and coimmunoprecipitation, validating the initial screening approach. Overexpression of CALB1, CDK2 and SAG was found to stimulate transcriptional activation by NF-kappaB, while SYT1 overexpression repressed TNFalpha-dependent NF-kappaB transcriptional activation in human embryonic kidney cells. Corresponding with this finding, RNA silencing of CDK2, SAG and SENP2 reduced NF-kappaB transcriptional activation, supporting a positive role for these proteins in the NF-kappaB pathway. The identification of a host of new NEMO interactors opens up new research opportunities to improve understanding of this essential cell signaling pathway. PMID:20098747
Withaferin A disrupts ubiquitin-based NEMO reorganization induced by canonical NF-κB signaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Shawn S.; Medical Scientist Training Program, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705; Cellular and Molecular Biology Program, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705
2015-02-01
The NF-κB family of transcription factors regulates numerous cellular processes, including cell proliferation and survival responses. The constitutive activation of NF-κB has also emerged as an important oncogenic driver in many malignancies, such as activated B-cell like diffuse large B cell lymphoma, among others. In this study, we investigated the impact and mechanisms of action of Withaferin A, a naturally produced steroidal lactone, against both signal-inducible as well as constitutive NF-κB activities. We found that Withaferin A is a robust inhibitor of canonical and constitutive NF-κB activities, leading to apoptosis of certain lymphoma lines. In the canonical pathway induced bymore » TNF, Withaferin A did not disrupt RIP1 polyubiquitination or NEMO–IKKβ interaction and was a poor direct IKKβ inhibitor, but prevented the formation of TNF-induced NEMO foci which colocalized with TNF ligand. While GFP-NEMO efficiently formed TNF-induced foci, a GFP-NEMO{sup Y308S} mutant that is defective in binding to polyubiquitin chains did not form foci. Our study reveals that Withaferin A is a novel type of IKK inhibitor which acts by disrupting NEMO reorganization into ubiquitin-based signaling structures in vivo. - Highlights: • Withaferin A, a NF-κB inhibitor, disrupts signaling induced NEMO localization, a novel point of inhibition. • NEMO can be localized to distinct signaling foci after treatment with TNF. • ABC-type DLCBL cells can be sensitized to apoptosis after treatment with Withaferin A.« less
Ballew, Bari J; Joseph, Vijai; De, Saurav; Sarek, Grzegorz; Vannier, Jean-Baptiste; Stracker, Travis; Schrader, Kasmintan A; Small, Trudy N; O'Reilly, Richard; Manschreck, Chris; Harlan Fleischut, Megan M; Zhang, Liying; Sullivan, John; Stratton, Kelly; Yeager, Meredith; Jacobs, Kevin; Giri, Neelam; Alter, Blanche P; Boland, Joseph; Burdett, Laurie; Offit, Kenneth; Boulton, Simon J; Savage, Sharon A; Petrini, John H J
2013-08-01
Dyskeratosis congenita (DC) is a heterogeneous inherited bone marrow failure and cancer predisposition syndrome in which germline mutations in telomere biology genes account for approximately one-half of known families. Hoyeraal Hreidarsson syndrome (HH) is a clinically severe variant of DC in which patients also have cerebellar hypoplasia and may present with severe immunodeficiency and enteropathy. We discovered a germline autosomal recessive mutation in RTEL1, a helicase with critical telomeric functions, in two unrelated families of Ashkenazi Jewish (AJ) ancestry. The affected individuals in these families are homozygous for the same mutation, R1264H, which affects three isoforms of RTEL1. Each parent was a heterozygous carrier of one mutant allele. Patient-derived cell lines revealed evidence of telomere dysfunction, including significantly decreased telomere length, telomere length heterogeneity, and the presence of extra-chromosomal circular telomeric DNA. In addition, RTEL1 mutant cells exhibited enhanced sensitivity to the interstrand cross-linking agent mitomycin C. The molecular data and the patterns of inheritance are consistent with a hypomorphic mutation in RTEL1 as the underlying basis of the clinical and cellular phenotypes. This study further implicates RTEL1 in the etiology of DC/HH and immunodeficiency, and identifies the first known homozygous autosomal recessive disease-associated mutation in RTEL1.
Ballew, Bari J.; Joseph, Vijai; De, Saurav; Sarek, Grzegorz; Vannier, Jean-Baptiste; Stracker, Travis; Schrader, Kasmintan A.; Small, Trudy N.; O'Reilly, Richard; Manschreck, Chris; Harlan Fleischut, Megan M.; Zhang, Liying; Sullivan, John; Stratton, Kelly; Yeager, Meredith; Jacobs, Kevin; Giri, Neelam; Alter, Blanche P.; Boland, Joseph; Burdett, Laurie; Offit, Kenneth; Boulton, Simon J.
2013-01-01
Dyskeratosis congenita (DC) is a heterogeneous inherited bone marrow failure and cancer predisposition syndrome in which germline mutations in telomere biology genes account for approximately one-half of known families. Hoyeraal Hreidarsson syndrome (HH) is a clinically severe variant of DC in which patients also have cerebellar hypoplasia and may present with severe immunodeficiency and enteropathy. We discovered a germline autosomal recessive mutation in RTEL1, a helicase with critical telomeric functions, in two unrelated families of Ashkenazi Jewish (AJ) ancestry. The affected individuals in these families are homozygous for the same mutation, R1264H, which affects three isoforms of RTEL1. Each parent was a heterozygous carrier of one mutant allele. Patient-derived cell lines revealed evidence of telomere dysfunction, including significantly decreased telomere length, telomere length heterogeneity, and the presence of extra-chromosomal circular telomeric DNA. In addition, RTEL1 mutant cells exhibited enhanced sensitivity to the interstrand cross-linking agent mitomycin C. The molecular data and the patterns of inheritance are consistent with a hypomorphic mutation in RTEL1 as the underlying basis of the clinical and cellular phenotypes. This study further implicates RTEL1 in the etiology of DC/HH and immunodeficiency, and identifies the first known homozygous autosomal recessive disease-associated mutation in RTEL1. PMID:24009516
Epithelial NEMO/IKKγ limits fibrosis and promotes regeneration during pancreatitis.
Chan, Lap Kwan; Gerstenlauer, Melanie; Konukiewitz, Björn; Steiger, Katja; Weichert, Wilko; Wirth, Thomas; Maier, Harald Jakob
2017-11-01
Inhibitory κB kinase (IKK)/nuclear factor κB (NF-κB) signalling has been implicated in the pathogenesis of pancreatitis, but its precise function has remained controversial. Here, we analyse the contribution of IKK/NF-κB signalling in epithelial cells to the pathogenesis of pancreatitis by targeting the IKK subunit NF-κB essential modulator (NEMO) (IKKγ), which is essential for canonical NF-κB activation. Mice with a targeted deletion of NEMO in the pancreas were subjected to caerulein pancreatitis. Pancreata were examined at several time points and analysed for inflammation, fibrosis, cell death, cell proliferation, as well as cellular differentiation. Human samples were used to corroborate findings established in mice. In acute pancreatitis, NEMO deletion in the pancreatic parenchyma resulted in minor changes during the early phase but led to the persistence of inflammatory and fibrotic foci in the recovery phase. In chronic pancreatitis, NEMO deletion aggravated inflammation and fibrosis, inhibited compensatory acinar cell proliferation, and enhanced acinar atrophy and acinar-ductal metaplasia. Gene expression analysis revealed sustained activation of profibrogenic genes and the CXCL12/CXCR4 axis in the absence of epithelial NEMO. In human chronic pancreatitis samples, the CXCL12/CXCR4 axis was activated as well, with CXCR4 expression correlating with the degree of fibrosis. The aggravating effects of NEMO deletion were attenuated by the administration of the CXCR4 antagonist AMD3100. Our results suggest that NEMO in epithelial cells exerts a protective effect during pancreatitis by limiting inflammation and fibrosis and improving acinar cell regeneration. The CXCL12/CXCR4 axis is an important mediator of that effect and may also be of importance in human chronic pancreatitis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Adapting NEMO for use as the UK operational storm surge forecasting model
NASA Astrophysics Data System (ADS)
Furner, Rachel; Williams, Jane; Horsburgh, Kevin; Saulter, Andrew
2016-04-01
The United Kingdom is an area vulnerable to damage due to storm surges, particularly the East Coast which suffered losses estimated at over £1 billion during the North Sea surge event of the 5th and 6th December 2013. Accurate forecasting of storm surge events for this region is crucial to enable government agencies to assess the risk of overtopping of coastal defences so they can respond appropriately, minimising risk to life and infrastructure. There has been an operational storm surge forecast service for this region since 1978, using a numerical model developed by the National Oceanography Centre (NOC) and run at the UK Met Office. This is also implemented as part of an ensemble prediction system, using perturbed atmospheric forcing to produce an ensemble surge forecast. In order to ensure efficient use of future supercomputer developments and to create synergy with existing operational coastal ocean models the Met Office and NOC have begun a joint project transitioning the storm surge forecast system from the current CS3X code base to a configuration based on the Nucleus for European Modelling of the Ocean (NEMO). This work involves both adapting NEMO to add functionality, such as allowing the drying out of ocean cells and changes allowing NEMO to run efficiently as a two-dimensional, barotropic model. As the ensemble surge forecast system is run with 12 members 4 times a day computational efficiency is of high importance. Upon completion this project will enable interesting scientific comparisons to be made between a NEMO based surge model and the full three-dimensional baroclinic NEMO based models currently run within the Met Office, facilitating assessment of the impact of baroclinic processes, and vertical resolution on sea surface height forecasts. Moving to a NEMO code base will also allow many future developments to be more easily used within the storm surge model due to the wide range of options which currently exist within NEMO or are planned for future NEMO releases, such as data assimilation, and surge-wave coupling. Assessment of tidal performance of the NEMO-surge configuration and comparison to the existing operational CS3X model has been carried out. Evaluation of the models focus on performance relative to the UK Class A tide gauge network, a dataset which was established following the devastating flood of 1953 and which is managed by the British Oceanographic Data Service (BODC) based at NOC. Trials of the NEMO model in tide-only mode have illustrated the importance of having a well specified bathymetry and, for the 7km scaled model, a secondary sensitivity to bed friction coefficient and the specification of the coastline. Preliminary results will also be presented from model runs with atmospheric (wind stress and pressure at mean sea-level) forcing.
Timing Calibration of the NEMO Optical Sensors
NASA Astrophysics Data System (ADS)
Circella, M.; de Marzo, C.; Megna, R.; Ruppi, M.
2006-04-01
This paper describes the timing calibration system for the NEMO underwater neutrino telescope. The NEMO Project aims at the construction of a km3 detector, equipped with a large number of photomultipliers, in the Mediterranean Sea. We foresee a redundant system to perform the time calibration of our apparatus: 1) A two-step procedure for measuring the offsets in the time measurements of the NEMO optical sensors, so as to measure separately the time delay for the synchronization signals to reach the offshore electronics and the response time of the photomultipliers to calibration signals delivered from optical pulsers through an optical fibre distribution system; 2) an all-optical procedure for measuring the differences in the time offsets of the different optical modules illuminated by calibration pulses. Such a system can be extended to work for a very large apparatus, even for complex arrangements of widely spaced sensors. The NEMO prototyping activities ongoing at a test site off the coast of Sicily will allow the system described in this work to be operated and tested in situ next year.
Gene therapy decreases seizures in a model of Incontinentia pigmenti.
Dogbevia, Godwin K; Töllner, Kathrin; Körbelin, Jakob; Bröer, Sonja; Ridder, Dirk A; Grasshoff, Hanna; Brandt, Claudia; Wenzel, Jan; Straub, Beate K; Trepel, Martin; Löscher, Wolfgang; Schwaninger, Markus
2017-07-01
Incontinentia pigmenti (IP) is a genetic disease leading to severe neurological symptoms, such as epileptic seizures, but no specific treatment is available. IP is caused by pathogenic variants that inactivate the Nemo gene. Replacing Nemo through gene therapy might provide therapeutic benefits. In a mouse model of IP, we administered a single intravenous dose of the adeno-associated virus (AAV) vector, AAV-BR1-CAG-NEMO, delivering the Nemo gene to the brain endothelium. Spontaneous epileptic seizures and the integrity of the blood-brain barrier (BBB) were monitored. The endothelium-targeted gene therapy improved the integrity of the BBB. In parallel, it reduced the incidence of seizures and delayed their occurrence. Neonate mice intravenously injected with the AAV-BR1-CAG-NEMO vector developed no hepatocellular carcinoma or other major adverse effects 11 months after vector injection, demonstrating that the vector has a favorable safety profile. The data show that the BBB is a target of antiepileptic treatment and, more specifically, provide evidence for the therapeutic benefit of a brain endothelial-targeted gene therapy in IP. Ann Neurol 2017;82:93-104. © 2017 American Neurological Association.
Inhibition of Canonical NF-κB Signaling by a Small Molecule Targeting NEMO-Ubiquitin Interaction
Vincendeau, Michelle; Hadian, Kamyar; Messias, Ana C.; Brenke, Jara K.; Halander, Jenny; Griesbach, Richard; Greczmiel, Ute; Bertossi, Arianna; Stehle, Ralf; Nagel, Daniel; Demski, Katrin; Velvarska, Hana; Niessing, Dierk; Geerlof, Arie; Sattler, Michael; Krappmann, Daniel
2016-01-01
The IκB kinase (IKK) complex acts as the gatekeeper of canonical NF-κB signaling, thereby regulating immunity, inflammation and cancer. It consists of the catalytic subunits IKKα and IKKβ and the regulatory subunit NEMO/IKKγ. Here, we show that the ubiquitin binding domain (UBAN) in NEMO is essential for IKK/NF-κB activation in response to TNFα, but not IL-1β stimulation. By screening a natural compound library we identified an anthraquinone derivative that acts as an inhibitor of NEMO-ubiquitin binding (iNUB). Using biochemical and NMR experiments we demonstrate that iNUB binds to NEMOUBAN and competes for interaction with methionine-1-linked linear ubiquitin chains. iNUB inhibited NF-κB activation upon UBAN-dependent TNFα and TCR/CD28, but not UBAN-independent IL-1β stimulation. Moreover, iNUB was selectively killing lymphoma cells that are addicted to chronic B-cell receptor triggered IKK/NF-κB activation. Thus, iNUB disrupts the NEMO-ubiquitin protein-protein interaction interface and thereby inhibits physiological and pathological NF-κB signaling. PMID:26740240
Krebs, Philippe; Fan, Weiwei; Chen, Yen-Hui; Tobita, Kimimasa; Downes, Michael R.; Wood, Malcolm R.; Sun, Lei; Xia, Yu; Ding, Ning; Spaeth, Jason M.; Moresco, Eva Marie Y.; Boyer, Thomas G.; Lo, Cecilia Wen Ya; Yen, Jeffrey; Evans, Ronald M.; Beutler, Bruce
2011-01-01
Deficiencies of subunits of the transcriptional regulatory complex Mediator generally result in embryonic lethality, precluding study of its physiological function. Here we describe a missense mutation in Med30 causing progressive cardiomyopathy in homozygous mice that, although viable during lactation, show precipitous lethality 2–3 wk after weaning. Expression profiling reveals pleiotropic changes in transcription of cardiac genes required for oxidative phosphorylation and mitochondrial integrity. Weaning mice to a ketogenic diet extends viability to 8.5 wk. Thus, we establish a mechanistic connection between Mediator and induction of a metabolic program for oxidative phosphorylation and fatty acid oxidation, in which lethal cardiomyopathy is mitigated by dietary intervention. PMID:22106289
Distinct downstream targets manifest p53-dependent pathologies in mice.
Pant, V; Xiong, S; Chau, G; Tsai, K; Shetty, G; Lozano, G
2016-11-03
Mdm2, the principal negative regulator of p53, is critical for survival, a fact clearly demonstrated by the p53-dependent death of germline or conditional mice following deletion of Mdm2. On the other hand, Mdm2 hypomorphic (Mdm2 Puro/Δ7-12 ) or heterozygous (Mdm2 +/- ) mice that express either 30 or 50% of normal Mdm2 levels, respectively, are viable but present distinct phenotypes because of increased p53 activity. Mdm2 levels are also transcriptionally regulated by p53. We evaluated the significance of this reciprocal relationship in a new hypomorphic mouse model inheriting an aberrant Mdm2 allele with insertion of the neomycin cassette and deletion of 184-bp sequence in intron 3. These mice also carry mutations in the Mdm2 P2-promoter and thus express suboptimal levels of Mdm2 entirely encoded from the P1-promoter. Resulting mice exhibit abnormalities in skin pigmentation and reproductive tissue architecture, and are subfertile. Notably, all these phenotypes are rescued on a p53-null background. Furthermore, these phenotypes depend on distinct p53 downstream activities as genetic ablation of the pro-apoptotic gene Puma reverts the reproductive abnormalities but not skin hyperpigmentation, whereas deletion of cell cycle arrest gene p21 does not rescue either phenotype. Moreover, p53-mediated upregulation of Kitl influences skin pigmentation. Altogether, these data emphasize tissue-specific p53 activities that regulate cell fate.
Ben-Salem, Salma; Gleeson, Joseph G; Al-Shamsi, Aisha M; Islam, Barira; Hertecant, Jozef; Ali, Bassam R; Al-Gazali, Lihadh
2015-06-01
Deficiency of Asparagine Synthetase (ASNSD, MIM 615574) is a very rare autosomal recessive disorder presenting with some brain abnormalities. Affected individuals have congenital microcephaly and progressive encephalopathy associated with severe intellectual disability and intractable seizures. The loss of function of the asparagine synthetase (ASNS, EC 6.3.5.4), particularly in the brain, is the major cause of this particular congenital microcephaly. In this study, we clinically evaluated an affected child from a consanguineous Emirati family presenting with congenital microcephaly and epileptic encephalopathy. In addition, whole-exome sequencing revealed a novel homozygous substitution mutation (c.1193A > C) in the ASNS gene. This mutation resulted in the substitution of highly conserved tyrosine residue by cysteine (p.Y398C). Molecular modeling analysis predicts hypomorphic and damaging effects of this mutation on the protein structure and altering its enzymatic activity. Therefore, we conclude that the loss of ASNS function is most likely the cause of this condition in the studied family. This report brings the number of reported families with this very rare disorder to five and the number of pathogenic mutations in the ASNS gene to four. This finding extends the ASNS pathogenic mutations spectrum and highlights the utility of whole-exome sequencing in elucidation the causes of rare recessive disorders that are heterogeneous and/or overlap with other conditions.
Feng, Weiguo; Choi, Irene; Clouthier, David E.; Niswander, Lee; Williams, Trevor
2013-01-01
Mouse models provide valuable opportunities for probing the underlying pathology of human birth defects. Employing an ENU-based screen for recessive mutations affecting craniofacial anatomy we isolated a mouse strain, Dogface-like (DL), with abnormal skull and snout morphology. Examination of the skull indicated that these mice developed craniosynostosis of the lambdoid suture. Further analysis revealed skeletal defects related to the pathology of basal cell nevus syndrome (BCNS) including defects in development of the limbs, scapula, ribcage, secondary palate, cranial base, and cranial vault. In humans, BCNS is often associated with mutations in the Hedgehog receptor PTCH1 and genetic mapping in DL identified a point mutation at a splice donor site in Ptch1. Using genetic complementation analysis we determined that DL is a hypomorphic allele of Ptch1, leading to increased Hedgehog signaling. Two aberrant transcripts are generated by the mutated Ptch1DL gene, which would be predicted to reduce significantly the levels of functional Patched1 protein. This new Ptch1 allele broadens the mouse genetic reagents available to study the Hedgehog pathway and provides a valuable means to study the underlying skeletal abnormalities in BCNS. In addition, these results strengthen the connection between elevated Hedgehog signaling and craniosynostosis. PMID:23897749
Gillmor, C. Stewart; Roeder, Adrienne H. K.; Sieber, Patrick; ...
2016-01-08
Cytokinesis in plants involves the formation of unique cellular structures such as the phragmoplast and the cell plate, both of which are required to divide the cell after nuclear division. In order to isolate genes that are involved in de novo cell wall formation, we performed a large-scale, microscope-based screen for Arabidopsis mutants that severely impair cytokinesis in the embryo. We recovered 35 mutations that form abnormally enlarged cells with multiple, often polyploid nuclei and incomplete cell walls. These mutants represent seven genes, four of which have previously been implicated in phragmoplast or cell plate function. Mutations in two locimore » show strongly reduced transmission through the haploid gametophytic generation. Molecular cloning of both corresponding genes reveals that one is represented by hypomorphic alleles of the kinesin-5 gene RADIALLY SWOLLEN 7 (homologous to tobacco kinesin-related protein TKRP125), and that the other gene corresponds to the Arabidopsis FUSED ortholog TWO-IN-ONE (originally identified based on its function in pollen development). No mutations that completely abolish the formation of cross walls in diploid cells were found. Lastly, our results support the idea that cytokinesis in the diploid and haploid generations involve similar mechanisms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillmor, C. Stewart; Roeder, Adrienne H. K.; Sieber, Patrick
Cytokinesis in plants involves the formation of unique cellular structures such as the phragmoplast and the cell plate, both of which are required to divide the cell after nuclear division. In order to isolate genes that are involved in de novo cell wall formation, we performed a large-scale, microscope-based screen for Arabidopsis mutants that severely impair cytokinesis in the embryo. We recovered 35 mutations that form abnormally enlarged cells with multiple, often polyploid nuclei and incomplete cell walls. These mutants represent seven genes, four of which have previously been implicated in phragmoplast or cell plate function. Mutations in two locimore » show strongly reduced transmission through the haploid gametophytic generation. Molecular cloning of both corresponding genes reveals that one is represented by hypomorphic alleles of the kinesin-5 gene RADIALLY SWOLLEN 7 (homologous to tobacco kinesin-related protein TKRP125), and that the other gene corresponds to the Arabidopsis FUSED ortholog TWO-IN-ONE (originally identified based on its function in pollen development). No mutations that completely abolish the formation of cross walls in diploid cells were found. Lastly, our results support the idea that cytokinesis in the diploid and haploid generations involve similar mechanisms.« less
Naval EarthMap Observer (NEMO) Hyperspectral Remote Sensing Program
2000-10-01
The NEMO hyperspectral remote sensing program will provide unclassified, space-based hyperspectral passive imagery at moderate resolution that offers substantial potential for direct use by Naval forces and the Civil Sector.
Mecp2 truncation in male mice promotes affiliative social behavior
Pearson, B.L.; Defensor, E.B.; Pobbe, R.L.H.; Yamamoto, L.H.L.; Bolivar, V.J.; Blanchard, D.C.; Blanchard, R.J.
2018-01-01
Mouse models of Rett syndrome, with targeted mutations in the Mecp2 gene, show a high degree of phenotypic consistency with the clinical syndrome. In addition to severe and age-specific regression in motor and cognitive abilities, a variety of studies have demonstrated that Mecp2 mutant mice display impaired social behavior. Conversely, other studies indicate complex enhancements of social behavior in Mecp2 mutant mice. Since social behavior is a complicated accumulation of constructs, we performed a series of classic and refined social behavior tasks and revealed a relatively consistent pattern of enhanced pro-social behavior in hypomorphic Mecp2308/Y mutant mice. Analyses of repetitive motor acts, and cognitive stereotypy did not reveal any profound differences due to genotype. Taken together, these results suggest that the mutations associated with Rett syndrome are not necessarily associated with autism-relevant social impairment in mice. However, this gene may be a valuable candidate for revealing basic mechanisms of affiliative behavior. PMID:21909962
Martin, Carol-Anne; Murray, Jennie E; Carroll, Paula; Leitch, Andrea; Mackenzie, Karen J; Halachev, Mihail; Fetit, Ahmed E; Keith, Charlotte; Bicknell, Louise S; Fluteau, Adeline; Gautier, Philippe; Hall, Emma A; Joss, Shelagh; Soares, Gabriela; Silva, João; Bober, Michael B; Duker, Angela; Wise, Carol A; Quigley, Alan J; Phadke, Shubha R; Wood, Andrew J; Vagnarelli, Paola; Jackson, Andrew P
2016-10-01
Compaction of chromosomes is essential for accurate segregation of the genome during mitosis. In vertebrates, two condensin complexes ensure timely chromosome condensation, sister chromatid disentanglement, and maintenance of mitotic chromosome structure. Here, we report that biallelic mutations in NCAPD2, NCAPH, or NCAPD3, encoding subunits of these complexes, cause microcephaly. In addition, hypomorphic Ncaph2 mice have significantly reduced brain size, with frequent anaphase chromatin bridge formation observed in apical neural progenitors during neurogenesis. Such DNA bridges also arise in condensin-deficient patient cells, where they are the consequence of failed sister chromatid disentanglement during chromosome compaction. This results in chromosome segregation errors, leading to micronucleus formation and increased aneuploidy in daughter cells. These findings establish "condensinopathies" as microcephalic disorders, with decatenation failure as an additional disease mechanism for microcephaly, implicating mitotic chromosome condensation as a key process ensuring mammalian cerebral cortex size. © 2016 Martin et al.; Published by Cold Spring Harbor Laboratory Press.
Male Fertility Defect Associated with Disrupted BRCA1-PALB2 Interaction in Mice*
Simhadri, Srilatha; Peterson, Shaun; Patel, Dharm S.; Huo, Yanying; Cai, Hong; Bowman-Colin, Christian; Miller, Shoreh; Ludwig, Thomas; Ganesan, Shridar; Bhaumik, Mantu; Bunting, Samuel F.; Jasin, Maria; Xia, Bing
2014-01-01
PALB2 links BRCA1 and BRCA2 in homologous recombinational repair of DNA double strand breaks (DSBs). Mono-allelic mutations in PALB2 increase the risk of breast, pancreatic, and other cancers, and biallelic mutations cause Fanconi anemia (FA). Like Brca1 and Brca2, systemic knock-out of Palb2 in mice results in embryonic lethality. In this study, we generated a hypomorphic Palb2 allele expressing a mutant PALB2 protein unable to bind BRCA1. Consistent with an FA-like phenotype, cells from the mutant mice showed hypersensitivity and chromosomal breakage when treated with mitomycin C, a DNA interstrand crosslinker. Moreover, mutant males showed reduced fertility due to impaired meiosis and increased apoptosis in germ cells. Interestingly, mutant meiocytes showed a significant defect in sex chromosome synapsis, which likely contributed to the germ cell loss and fertility defect. Our results underscore the in vivo importance of the PALB2-BRCA1 complex formation in DSB repair and male meiosis. PMID:25016020
Vazquez Fonseca, Luis; Doimo, Mara; Calderan, Cristina; Desbats, Maria Andrea; Acosta, Manuel J.; Cerqua, Cristina; Cassina, Matteo; Ashraf, Shazia; Hildebrandt, Friedhelm; Sartori, Geppo; Navas, Placido; Trevisson, Eva
2017-01-01
Abstract Mutations in COQ8B cause steroid‐resistant nephrotic syndrome with variable neurological involvement. In yeast, COQ8 encodes a protein required for coenzyme Q (CoQ) biosynthesis, whose precise role is not clear. Humans harbor two paralog genes: COQ8A and COQ8B (previously termed ADCK3 and ADCK4). We have found that COQ8B is a mitochondrial matrix protein peripherally associated with the inner membrane. COQ8B can complement a ΔCOQ8 yeast strain when its mitochondrial targeting sequence (MTS) is replaced by a yeast MTS. This model was employed to validate COQ8B mutations, and to establish genotype–phenotype correlations. All mutations affected respiratory growth, but there was no correlation between mutation type and the severity of the phenotype. In fact, contrary to the case of COQ2, where residual CoQ biosynthesis correlates with clinical severity, patients harboring hypomorphic COQ8B alleles did not display a different phenotype compared with those with null mutations. These data also suggest that the system is redundant, and that other proteins (probably COQ8A) may partially compensate for the absence of COQ8B. Finally, a COQ8B polymorphism, present in 50% of the European population (NM_024876.3:c.521A > G, p.His174Arg), affects stability of the protein and could represent a risk factor for secondary CoQ deficiencies or for other complex traits. PMID:29194833
Incontinentia pigmenti: learning disabilities are a fundamental hallmark of the disease.
Pizzamiglio, Maria Rosa; Piccardi, Laura; Bianchini, Filippo; Canzano, Loredana; Palermo, Liana; Fusco, Francesca; D'Antuono, Giovanni; Gelmini, Chiara; Garavelli, Livia; Ursini, Matilde Valeria
2014-01-01
Studies suggest that genetic factors are associated with the etiology of learning disabilities. Incontinentia Pigmenti (IP, OMIM#308300), which is caused by mutations of the IKBKG/NEMO gene, is a rare X-linked genomic disorder (1:10000/20:000) that affects the neuroectodermal tissues. It always affects the skin and sometimes the hair, teeth, nails, eyes and central nervous system (CNS). Data from IP patients demonstrate the heterogeneity of the clinical phenotype; about 30% have CNS manifestations. This extreme variability suggests that IP patients might also have learning disabilities. However, no studies in the literature have evaluated the cognitive profile of IP patients. In fact, the learning disability may go unnoticed in general neurological analyses, which focus on major disabling manifestations of the CNS. Here, we investigated the neuropsychological outcomes of a selected group of IP-patients by focusing on learning disabilities. We enrolled 10 women with IP (7 without mental retardation and 3 with mild to severe mental retardation) whose clinical diagnosis had been confirmed by the presence of a recurrent deletion in the IKBKG/NEMO gene. The participants were recruited from the Italian patients' association (I.P.A.SS.I. Onlus). They were submitted to a cognitive assessment that included the Wechsler Adult Intelligence scale and a battery of tests examining reading, arithmetic and writing skills. We found that 7 patients had deficits in calculation/arithmetic reasoning and reading but not writing skills; the remaining 3 had severe to mild intellectual disabilities. Results of this comprehensive evaluation of the molecular and psychoneurological aspects of IP make it possible to place "learning disabilities" among the CNS manifestations of the disease and suggest that the IKBKG/NEMO gene is a genetic determinant of this CNS defect. Our findings indicate the importance of an appropriate psychoneurological evaluation of IP patients, which includes early assessment of learning abilities, to prevent the onset of this deficit.
Zernant, Jana; Lee, Winston; Nagasaki, Takayuki; Collison, Frederick T; Fishman, Gerald A; Bertelsen, Mette; Rosenberg, Thomas; Gouras, Peter; Tsang, Stephen H; Allikmets, Rando
2018-05-30
Autosomal recessive Stargardt disease (STGD1, MIM 248200) is caused by mutations in the ABCA4 gene. Complete sequencing of the ABCA4 locus in STGD1 patients identifies two expected disease-causing alleles in ~75% of patients and only one mutation in ~15% of patients. Recently, many possibly pathogenic variants in deep intronic sequences of ABCA4 have been identified in the latter group. We extended our analyses of deep intronic ABCA4 variants and determined that one of these, c.4253+43G>A (rs61754045), is present in 29/1155 (2.6%) of STGD1 patients. The variant is found at statistically significantly higher frequency in patients with only one pathogenic ABCA4 allele, 23/160 (14.38%), MAF=0.072, compared to MAF=0.013 in all STGD1 cases and MAF=0.006 in the matching general population (P<1x10-7). The variant, which is not predicted to have any effect on splicing, is the first reported intronic "extremely hypomorphic allele" in the ABCA4 locus; i.e., it is pathogenic only when in trans with a loss-of-function ABCA4 allele. It results in a distinct clinical phenotype characterized by late-onset of symptoms and foveal sparing. In ~70% of cases the variant was allelic with the c.6006-609T>A (rs575968112) variant, which was deemed non-pathogenic. Another rare deep intronic variant, c.5196+1056A>G (rs886044749), found in 5/834 (0.6%) of STGD1 cases is, conversely, a severe allele. This study determines pathogenicity for three non-coding variants in STGD1 patients of European descent accounting for ~3% of the disease. Defining disease-associated alleles in the non-coding sequences of the ABCA4 locus can be accomplished by integrated clinical and genetic analyses. Cold Spring Harbor Laboratory Press.
AlignNemo: a local network alignment method to integrate homology and topology.
Ciriello, Giovanni; Mina, Marco; Guzzi, Pietro H; Cannataro, Mario; Guerra, Concettina
2012-01-01
Local network alignment is an important component of the analysis of protein-protein interaction networks that may lead to the identification of evolutionary related complexes. We present AlignNemo, a new algorithm that, given the networks of two organisms, uncovers subnetworks of proteins that relate in biological function and topology of interactions. The discovered conserved subnetworks have a general topology and need not to correspond to specific interaction patterns, so that they more closely fit the models of functional complexes proposed in the literature. The algorithm is able to handle sparse interaction data with an expansion process that at each step explores the local topology of the networks beyond the proteins directly interacting with the current solution. To assess the performance of AlignNemo, we ran a series of benchmarks using statistical measures as well as biological knowledge. Based on reference datasets of protein complexes, AlignNemo shows better performance than other methods in terms of both precision and recall. We show our solutions to be biologically sound using the concept of semantic similarity applied to Gene Ontology vocabularies. The binaries of AlignNemo and supplementary details about the algorithms and the experiments are available at: sourceforge.net/p/alignnemo.
Withaferin A disrupts ubiquitin-based NEMO reorganization induced by canonical NF-κB signaling
Jackson, Shawn S.; Oberley, Christopher; Hooper, Christopher P.; Grindle, Kreg; Wuerzberger-Davis, Shelly; Wolff, Jared; McCool, Kevin; Rui, Lixin; Miyamoto, Shigeki
2014-01-01
The NF-κB family of transcription factors regulates numerous cellular processes, including cell proliferation and survival responses. The constitutive activation of NF-κB has also emerged as an important oncogenic driver in many malignancies, such as activated B-cell like diffuse large B cell lymphoma, among others. In this study, we investigated the impact and mechanisms of action of Withaferin A, a naturally produced steroidal lactone, against both signal-inducible as well as constitutive NF-κB activities. We found that Withaferin A is a robust inhibitor of canonical and constitutive NF-κB activities, leading to apoptosis of certain lymphoma lines. In the canonical pathway induced by TNF, Withaferin A did not disrupt RIP1 polyubiquitination or NEMO-IKKβ interaction and was a poor direct IKKβ inhibitor, but prevented the formation of TNF induced NEMO foci which colocalized with TNF ligand. While GFP-NEMO efficiently formed TNF-induced foci, a GFP-NEMOY308S mutant that is defective in binding to polyubiquitin chains did not form foci. Our study reveals that Withaferin A is a novel type of IKK inhibitor which acts by disrupting NEMO reorganization into ubiquitin-based signaling structures in vivo. PMID:25304104
Open-Source Software for Modeling of Nanoelectronic Devices
NASA Technical Reports Server (NTRS)
Oyafuso, Fabiano; Hua, Hook; Tisdale, Edwin; Hart, Don
2004-01-01
The Nanoelectronic Modeling 3-D (NEMO 3-D) computer program has been upgraded to open-source status through elimination of license-restricted components. The present version functions equivalently to the version reported in "Software for Numerical Modeling of Nanoelectronic Devices" (NPO-30520), NASA Tech Briefs, Vol. 27, No. 11 (November 2003), page 37. To recapitulate: NEMO 3-D performs numerical modeling of the electronic transport and structural properties of a semiconductor device that has overall dimensions of the order of tens of nanometers. The underlying mathematical model represents the quantum-mechanical behavior of the device resolved to the atomistic level of granularity. NEMO 3-D solves the applicable quantum matrix equation on a Beowulf-class cluster computer by use of a parallel-processing matrix vector multiplication algorithm coupled to a Lanczos and/or Rayleigh-Ritz algorithm that solves for eigenvalues. A prior upgrade of NEMO 3-D incorporated a capability for a strain treatment, parameterized for bulk material properties of GaAs and InAs, for two tight-binding submodels. NEMO 3-D has been demonstrated in atomistic analyses of effects of disorder in alloys and, in particular, in bulk In(x)Ga(1-x)As and in In(0.6)Ga(0.4)As quantum dots.
Landles, Christian; Chalk, Sara; Steel, Jennifer H; Rosewell, Ian; Spencer-Dene, Bradley; Lalani, El-Nasir; Parker, Malcolm G
2003-12-01
Recent work indicates that thyroid hormone receptor-associated protein 220 (TRAP220), a subunit of the multiprotein TRAP coactivator complex, is essential for embryonic survival. We have generated TRAP220 conditional null mice that are hypomorphic and express the gene at reduced levels. In contrast to TRAP220 null mice, which die at embryonic d 11.5 (E11.5), hypomorphic mice survive until E13.5. The reduced expression in hypomorphs results in hepatic necrosis, defects in hematopoiesis, and hypoplasia of the ventricular myocardium, similar to that observed in TRAP220 null embryos at an earlier stage. The embryonic lethality of null embryos at E11.5 is due to placental insufficiency. Tetraploid aggregation assays partially rescues embryonic development until E13.5, when embryonic loss occurs due to hepatic necrosis coupled with poor myocardial development as observed in hypomorphs. These findings demonstrate that, for normal placental function, there is an absolute requirement for TRAP220 in extraembryonic tissues at E11.5, with an additional requirement in embryonic tissues for hepatic and cardiovascular development thereafter.
NASA Astrophysics Data System (ADS)
Migneco, E.; Aiello, S.; Amato, E.; Ambriola, M.; Ameli, F.; Andronico, G.; Anghinolfi, M.; Battaglieri, M.; Bellotti, R.; Bersani, A.; Boldrin, A.; Bonori, M.; Cafagna, F.; Capone, A.; Caponnetto, L.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Cordelli, M.; Costa, M.; Cuneo, S.; D'Amico, A.; D'Amico, V.; De Marzo, C.; De Vita, R.; Distefano, C.; Gabrielli, A.; Gandolfi, E.; Grimaldi, A.; Habel, R.; Italiano, A.; Leonardi, M.; Lo Nigro, L.; Lo Presti, D.; Margiotta, A.; Martini, A.; Masetti, M.; Masullo, R.; Montaruli, T.; Mosetti, R.; Musumeci, M.; Nicolau, C. A.; Occhipinti, R.; Papaleo, R.; Petta, C.; Piattelli, P.; Raia, G.; Randazzo, N.; Reito, S.; Ricco, G.; Riccobene, G.; Ripani, M.; Romita, M.; Rovelli, A.; Ruppi, M.; Russo, G. V.; Russo, M.; Sapienza, P.; Schuller, J. P.; Sedita, M.; Sokalski, I.; Spurio, M.; Taiuti, M.; Trasatti, L.; Ursella, L.; Valente, V.; Vicini, P.; Zanarini, G.
2004-11-01
The activities towards the realisation of a km3 Cherenkov neutrino detector, carried out by the NEMO Collaboration are described. Long term exploration of a 3500 m deep site close to the Sicilian coast has shown that it is optimal for the installation of the detector. A complete feasibility study, that has considered all the components of the detector as well as its deployment, has been carried out demonstrating that technological solutions exist for the realization of an underwater km3 detector. The realization of a technological demonstrator (the NEMO Phase 1 project) is under way.
Nemo:. a Project for a KM3 Underwater Detector for Astrophysical Neutrinos in the Mediterranean Sea
NASA Astrophysics Data System (ADS)
Amore, I.; Aiello, S.; Ambriola, M.; Ameli, F.; Anghinolfi, M.; Anzalone, A.; Barbarino, G.; Barbarito, E.; Battaglieri, M.; Bellotti, R.; Beverini, N.; Bonori, M.; Bouhadef, B.; Brescia, M.; Cacopardo, G.; Cafagna, F.; Capone, A.; Caponetto, L.; Castorina, E.; Ceres, A.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Cordelli, M.; Costa, M.; Cuneo, S.; D'Amico, A.; de Bonis, G.; de Marzo, C.; de Rosa, G.; de Vita, R.; Distefano, C.; Falchini, E.; Fiorello, C.; Flaminio, V.; Fratini, K.; Gabrielli, A.; Galeotti, S.; Gandolfi, E.; Giacomelli, G.; Giorgi, F.; Grimaldi, A.; Habel, R.; Leonora, E.; Lonardo, A.; Longo, G.; Lo Presti, D.; Lucarelli, F.; Maccioni, E.; Margiotta, A.; Martini, A.; Masullo, R.; Megna, R.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Musumeci, M. S.; Nicolau, C. A.; Orlando, A.; Osipenko, M.; Osteria, G.; Papaleo, R.; Pappalardo, V.; Petta, C.; Piattelli, P.; Raia, G.; Randazzo, N.; Reito, S.; Ricco, G.; Riccobene, G.; Ripani, M.; Rovelli, A.; Ruppi, M.; Russo, G. V.; Russo, S.; Sapienza, P.; Sedita, M.; Shirokov, E.; Simeone, F.; Sipala, V.; Spurio, M.; Taiuti, M.; Terreni, G.; Trasatti, L.; Urso, S.; Valente, V.; Vicini, P.
The status of the project is described: the activity on long term characterization of water optical and oceanographic parameters at the Capo Passero site candidate for the Mediterranean km3 neutrino telescope; the feasibility study; the physics performances and underwater technology for the km3; the activity on NEMO Phase 1, a technological demonstrator that has been deployed at 2000 m depth 25 km offshore Catania; the realization of an underwater infrastructure at 3500 m depth at the candidate site (NEMO Phase 2).
Bultman, Scott J.; Gebuhr, Thomas C.; Magnuson, Terry
2005-01-01
The Brg1 catalytic subunit of SWI/SNF-related complexes has been implicated in many developmental and physiological processes, but null homozygotes die as blastocysts prior to implantation. To circumvent this early embryonic lethality, we performed an ENU mutagenesis screen and generated a Brg1 hypomorph mutation in the ATPase domain. The mutant Brg1 protein is stable, assembles into SWI/SNF-related complexes, and exhibits normal ATPase activity but is unable to establish DNase I hypersensitivity sites characteristic of open chromatin. Mutant embryos develop normally until midgestation but then exhibit a distinct block in the development of the erythroid lineage, leading to anemia and death. The mutant Brg1 protein is recruited to the β-globin locus, but chromatin remodeling and transcription are perturbed. Histone acetylation and DNA methylation are also affected. To our knowledge, Brg1 is the first chromatin-modifying factor shown to be required for β-globin regulation and erythropoiesis in vivo. Not only does this mutation establish a role for Brg1 during organogenesis, it also demonstrates that ATPase activity can be uncoupled from chromatin remodeling. PMID:16287714
Vazquez Fonseca, Luis; Doimo, Mara; Calderan, Cristina; Desbats, Maria Andrea; Acosta, Manuel J; Cerqua, Cristina; Cassina, Matteo; Ashraf, Shazia; Hildebrandt, Friedhelm; Sartori, Geppo; Navas, Placido; Trevisson, Eva; Salviati, Leonardo
2018-03-01
Mutations in COQ8B cause steroid-resistant nephrotic syndrome with variable neurological involvement. In yeast, COQ8 encodes a protein required for coenzyme Q (CoQ) biosynthesis, whose precise role is not clear. Humans harbor two paralog genes: COQ8A and COQ8B (previously termed ADCK3 and ADCK4). We have found that COQ8B is a mitochondrial matrix protein peripherally associated with the inner membrane. COQ8B can complement a ΔCOQ8 yeast strain when its mitochondrial targeting sequence (MTS) is replaced by a yeast MTS. This model was employed to validate COQ8B mutations, and to establish genotype-phenotype correlations. All mutations affected respiratory growth, but there was no correlation between mutation type and the severity of the phenotype. In fact, contrary to the case of COQ2, where residual CoQ biosynthesis correlates with clinical severity, patients harboring hypomorphic COQ8B alleles did not display a different phenotype compared with those with null mutations. These data also suggest that the system is redundant, and that other proteins (probably COQ8A) may partially compensate for the absence of COQ8B. Finally, a COQ8B polymorphism, present in 50% of the European population (NM_024876.3:c.521A > G, p.His174Arg), affects stability of the protein and could represent a risk factor for secondary CoQ deficiencies or for other complex traits. © 2017 The Authors. Human Mutation published by Wiley Periodicals, Inc.
Surface wave effects in the NEMO ocean model: Forced and coupled experiments
NASA Astrophysics Data System (ADS)
Breivik, Øyvind; Mogensen, Kristian; Bidlot, Jean-Raymond; Balmaseda, Magdalena Alonso; Janssen, Peter A. E. M.
2015-04-01
The NEMO general circulation ocean model is extended to incorporate three physical processes related to ocean surface waves, namely the surface stress (modified by growth and dissipation of the oceanic wavefield), the turbulent kinetic energy flux from breaking waves, and the Stokes-Coriolis force. Experiments are done with NEMO in ocean-only (forced) mode and coupled to the ECMWF atmospheric and wave models. Ocean-only integrations are forced with fields from the ERA-Interim reanalysis. All three effects are noticeable in the extratropics, but the sea-state-dependent turbulent kinetic energy flux yields by far the largest difference. This is partly because the control run has too vigorous deep mixing due to an empirical mixing term in NEMO. We investigate the relation between this ad hoc mixing and Langmuir turbulence and find that it is much more effective than the Langmuir parameterization used in NEMO. The biases in sea surface temperature as well as subsurface temperature are reduced, and the total ocean heat content exhibits a trend closer to that observed in a recent ocean reanalysis (ORAS4) when wave effects are included. Seasonal integrations of the coupled atmosphere-wave-ocean model consisting of NEMO, the wave model ECWAM, and the atmospheric model of ECMWF similarly show that the sea surface temperature biases are greatly reduced when the mixing is controlled by the sea state and properly weighted by the thickness of the uppermost level of the ocean model. These wave-related physical processes were recently implemented in the operational coupled ensemble forecast system of ECMWF.
Advanced energy systems and technologies - National R and D programme
NASA Astrophysics Data System (ADS)
Lund, P. D.
1992-08-01
The energy R and D in Finland is accomplished through the energy research programs of the Ministry of Trade and Industry. Today there are some 12 R and D programs in operation covering the various aspects of the energy sector. The NEMO-program deals with advanced new energy technologies and systems. The NEMO-program was launched in 1988 and it ends at the end of 1992. Helsinki University of Technology has been responsible for the coordination and most of the universities, research centers, and companies on new advanced energy technologies have been involved in the realization of NEMO. The objectives of the program have been to assess the potential of new technologies in the Finnish energy supply system, encourage and support businesses, and to create necessary research tradition in Finland. At the beginning in year 1988, several new technologies were included, but as the knowledge has increased, focusing on the most promising fields has taken place. Wind and solar energy show the best promises in respect to business activities and possibilities for utilization in Finland. Energy storage some other advanced technologies such as fuel cells and hydrogen technologies represented in the NEMO-program have an important role, but the commercial applications lie more distant in the future. The NEMO-program has reached its objectives. The international evaluation in fall 1990 gave very positive feedback and the scientific quality of the work was found good. At the same time, the contents was still focused more on commercial applications to support national industries in the field. The descriptions of the ongoing NEMO research projects are included in this report.
Computational nanoelectronics towards: design, analysis, synthesis, and fundamental limits
NASA Technical Reports Server (NTRS)
Klimeck, G.
2003-01-01
This seminar will review the development of a comprehensive nanoelectronic modeling tool (NEMO 1-D and NEMO 3-D) and its application to high-speed electronics (resonant tunneling diodes) and IR detectors and lasers (quantum dots and 1-D heterostructures).
Drosophila nemo is an essential gene involved in the regulation of programmed cell death.
Mirkovic, Ivana; Charish, Kristi; Gorski, Sharon M; McKnight, Kristen; Verheyen, Esther M
2002-11-01
Nemo-like kinases define a novel family of serine/threonine kinases that are involved in integrating multiple signaling pathways. They are conserved regulators of Wnt/Wingless pathways, which may coordinate Wnt with TGFbeta-mediated signaling. Drosophila nemo was identified through its involvement in epithelial planar polarity, a process regulated by a non-canonical Wnt pathway. We have previously found that ectopic expression of Nemo using the Gal4-UAS system resulted in embryonic lethality associated with defects in patterning and head development. In this study we present our analyses of the phenotypes of germline clone-derived embryos. We observe lethality associated with head defects and reduction of programmed cell death and conclude that nmo is an essential gene. We also present data showing that nmo is involved in regulating apoptosis during eye development, based on both loss of function phenotypes and on genetic interactions with the pro-apoptotic gene reaper. Finally, we present genetic data from the adult wing that suggest the activity of ectopically expressed Nemo can be modulated by Jun N-terminal kinase (JNK) signaling. Such an observation supports the model that there is cross-talk between Wnt, TGFbeta and JNK signaling at multiple stages of development. Copyright 2002 Elsevier Science Ireland Ltd.
NASA Astrophysics Data System (ADS)
Pemberton, Per; Löptien, Ulrike; Hordoir, Robinson; Höglund, Anders; Schimanke, Semjon; Axell, Lars; Haapala, Jari
2017-08-01
The Baltic Sea is a seasonally ice-covered marginal sea in northern Europe with intense wintertime ship traffic and a sensitive ecosystem. Understanding and modeling the evolution of the sea-ice pack is important for climate effect studies and forecasting purposes. Here we present and evaluate the sea-ice component of a new NEMO-LIM3.6-based ocean-sea-ice setup for the North Sea and Baltic Sea region (NEMO-Nordic). The setup includes a new depth-based fast-ice parametrization for the Baltic Sea. The evaluation focuses on long-term statistics, from a 45-year long hindcast, although short-term daily performance is also briefly evaluated. We show that NEMO-Nordic is well suited for simulating the mean sea-ice extent, concentration, and thickness as compared to the best available observational data set. The variability of the annual maximum Baltic Sea ice extent is well in line with the observations, but the 1961-2006 trend is underestimated. Capturing the correct ice thickness distribution is more challenging. Based on the simulated ice thickness distribution we estimate the undeformed and deformed ice thickness and concentration in the Baltic Sea, which compares reasonably well with observations.
Li, Hong; Sheridan, Ryan; Williams, Trevor
2013-01-01
Multiple lines of evidence indicate that the AP-2 transcription factor family has an important regulatory function in human craniofacial development. Notably, mutations in TFAP2A, the gene encoding AP-2α, have been identified in patients with Branchio-Oculo-Facial Syndrome (BOFS). BOFS is an autosomal-dominant trait that commonly presents with facial clefting, eye defects and branchial skin anomalies. Examination of multiple cases has suggested either simple haploinsufficiency or more complex genetic causes for BOFS, especially as the clinical manifestations are variable, with no clear genotype–phenotype correlation. Mutations occur throughout TFAP2A, but mostly within conserved sequences within the DNA contact domain of AP-2α. However, the consequences of the various mutations for AP-2α protein function have not been evaluated. Therefore, it remains unclear if all BOFS mutations result in similar changes to the AP-2α protein or if they each produce specific alterations that underlie the spectrum of phenotypes. Here, we have investigated the molecular consequences of the mutations that localize to the DNA-binding region. We show that although individual mutations have different effects on DNA binding, they all demonstrate significantly reduced transcriptional activities. Moreover, all mutant derivatives have an altered nuclear:cytoplasmic distribution compared with the predominantly nuclear localization of wild-type AP-2α and several can exert a dominant-negative activity on the wild-type AP-2α protein. Overall, our data suggest that the individual TFAP2A BOFS mutations can generate null, hypomorphic or antimorphic alleles and that these differences in activity, combined with a role for AP-2α in epigenetic events, may influence the resultant pathology and the phenotypic variability. PMID:23578821
Biallelic UFM1 and UFC1 mutations expand the essential role of ufmylation in brain development.
Nahorski, Michael S; Maddirevula, Sateesh; Ishimura, Ryosuke; Alsahli, Saud; Brady, Angela F; Begemann, Anaïs; Mizushima, Tsunehiro; Guzmán-Vega, Francisco J; Obata, Miki; Ichimura, Yoshinobu; Alsaif, Hessa S; Anazi, Shams; Ibrahim, Niema; Abdulwahab, Firdous; Hashem, Mais; Monies, Dorota; Abouelhoda, Mohamed; Meyer, Brian F; Alfadhel, Majid; Eyaid, Wafa; Zweier, Markus; Steindl, Katharina; Rauch, Anita; Arold, Stefan T; Woods, C Geoffrey; Komatsu, Masaaki; Alkuraya, Fowzan S
2018-06-02
The post-translational modification of proteins through the addition of UFM1, also known as ufmylation, plays a critical developmental role as revealed by studies in animal models. The recent finding that biallelic mutations in UBA5 (the E1-like enzyme for ufmylation) cause severe early-onset encephalopathy with progressive microcephaly implicates ufmylation in human brain development. More recently, a homozygous UFM1 variant was proposed as a candidate aetiology of severe early-onset encephalopathy with progressive microcephaly. Here, we establish a locus for severe early-onset encephalopathy with progressive microcephaly based on two families, and map the phenotype to a novel homozygous UFM1 mutation. This mutation has a significantly diminished capacity to form thioester intermediates with UBA5 and with UFC1 (the E2-like enzyme for ufmylation), with resulting impaired ufmylation of cellular proteins. Remarkably, in four additional families where eight children have severe early-onset encephalopathy with progressive microcephaly, we identified two biallelic UFC1 mutations, which impair UFM1-UFC1 intermediate formation with resulting widespread reduction of cellular ufmylation, a pattern similar to that observed with UFM1 mutation. The striking resemblance between UFM1- and UFC1-related clinical phenotype and biochemical derangements strongly argues for an essential role for ufmylation in human brain development. The hypomorphic nature of UFM1 and UFC1 mutations and the conspicuous depletion of biallelic null mutations in the components of this pathway in human genome databases suggest that it is necessary for embryonic survival, which is consistent with the embryonic lethal nature of knockout models for the orthologous genes.
Evidence suggesting digenic inheritance of Waardenburg syndrome type II with ocular albinism.
Chiang, Pei-Wen; Spector, Elaine; McGregor, Tracy L
2009-12-01
Waardenburg syndrome (WS) is a series of auditory-pigmentary disorders inherited in an autosomal dominant manner. In most patients, WS2 results from mutations in the MITF gene. MITF encodes a basic helix-loop-helix transcription factor that activates transcription of tyrosinase and other melanocyte proteins. The clinical presentation of WS is highly variable, and we believe that Tietz syndrome and WS2 with ocular albinism (OA) are likely two variations of WS2 due to the presence of modifiers. One family with a molecular diagnosis of WS2 co-segregating with OA has previously been reported. A digenic mutation mechanism including both a MITF mutation and the TYR(R402Q) hypomorphic allele was proposed to be the cause of OA in this family. Here, we present a second WS2 family with OA and provide evidence suggesting the TYR(R402Q) allele does not cause OA in this family. We hypothesize the presence of a novel OCA3 mutation together with the MITF del p.R217 mutation account for the OA phenotype in this family. Since MITF is a transcription factor for pigmentation genes, a mutation in MITF plus a heterozygous mutation in OCA3 together provide an adverse effect crossing a quantitative threshold; therefore, WS2 with OA occurs. We have hypothesized previously that the clinical spectrum and mutation mechanism of OCA depend on the pigmentation threshold of an affected individual. This unique family has provided further evidence supporting this hypothesis. We suggest that by studying OCA patients alongside WS patients with various pigmentation profiles we can facilitate further understanding of the pigmentation pathway.
Golden, Mary S.; Cote, Shaun M.; Sayeg, Marianna; Zerbe, Brandon S.; Villar, Elizabeth A.; Beglov, Dmitri; Sazinsky, Stephen L.; Georgiadis, Rosina M.; Vajda, Sandor; Kozakov, Dima; Whitty, Adrian
2013-01-01
We report a comprehensive analysis of binding energy hot spots at the protein-protein interaction (PPI) interface between NF-κB Essential Modulator (NEMO) and IκB kinase subunit β (IKKβ), an interaction that is critical for NF-κB pathway signaling, using experimental alanine scanning mutagenesis and also the FTMap method for computational fragment screening. The experimental results confirm that the previously identified NBD region of IKKβ contains the highest concentration of hot spot residues, the strongest of which are W739, W741 and L742 (ΔΔG = 4.3, 3.5 and 3.2 kcal/mol, respectively). The region occupied by these residues defines a potentially druggable binding site on NEMO that extends for ~16 Å to additionally include the regions that bind IKKβ L737 and F734. NBD residues D738 and S740 are also important for binding but do not make direct contact with NEMO, instead likely acting to stabilize the active conformation of surrounding residues. We additionally found two previously unknown hot spot regions centered on IKKβ residues L708/V709 and L719/I723. The computational approach successfully identified all three hot spot regions on IKKβ. Moreover, the method was able to accurately quantify the energetic importance of all hot spots residues involving direct contact with NEMO. Our results provide new information to guide the discovery of small molecule inhibitors that target the NEMO/IKKβ interaction. They additionally clarify the structural and energetic complementarity between “pocket-forming” and “pocket occupying” hot spot residues, and further validate computational fragment mapping as a method for identifying hot spots at PPI interfaces. PMID:23506214
Alport syndrome: impact of digenic inheritance in patients management.
Fallerini, C; Baldassarri, M; Trevisson, E; Morbidoni, V; La Manna, A; Lazzarin, R; Pasini, A; Barbano, G; Pinciaroli, A R; Garosi, G; Frullanti, E; Pinto, A M; Mencarelli, M A; Mari, F; Renieri, A; Ariani, F
2017-07-01
Alport syndrome (ATS) is a genetically heterogeneous nephropathy with considerable phenotypic variability and different transmission patterns, including monogenic (X-linked/autosomal) and digenic inheritance (DI). Here we present a new series of families with DI and we discuss the consequences for genetic counseling and risk assessment. Out of five families harboring variants in more than one COL4 gene detected by next generation sequencing (NGS), minigene-splicing assay allowed us to identify four as true digenic. Two families showed COL4A3/A4 mutations in cis, mimicking an autosomal dominant inheritance with a more severe phenotype and one showed COL4A3/A4 mutations in trans, mimicking an autosomal recessive inheritance with a less severe phenotype. In a fourth family, a de novo mutation (COL4A5) combined with an inherited mutation (COL4A3) triggered a more severe phenotype. A fifth family, predicted digenic on the basis of silico tools, rather showed monogenic X-linked inheritance due to a hypomorphic mutation, in accordance with a milder phenotype. In conclusion, this study highlights the impact of DI in ATS and explains the associated atypical presentations. More complex inheritance should be therefore considered when reviewing prognosis and recurrence risks. On the other side, these findings emphasize the importance to accompany NGS with splicing assays in order to avoid erroneous identification of at risk members. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The role of molecular testing and enzyme analysis in the management of hypomorphic citrullinemia.
Dimmock, David P; Trapane, Pamela; Feigenbaum, Annette; Keegan, Catherine E; Cederbaum, Stephen; Gibson, James; Gambello, Michael J; Vaux, Keith; Ward, Patricia; Rice, Gregory M; Wolff, Jon A; O'Brien, William E; Fang, Ping
2008-11-15
Expanded newborn screening detects patients with modest elevations in citrulline; however it is currently unclear how to treat these patients and how to counsel their parents. In order to begin to address these issues, we compared the clinical, biochemical, and molecular features of 10 patients with mildly elevated citrulline levels. Three patients presented with clinical illness whereas seven came to attention as a result of expanded newborn screening. One patient presented during pregnancy and responded promptly to IV sodium phenylacetate/sodium benzoate and arginine therapy with no long-term adverse effects on mother or fetus. Two children presented with neurocognitive dysfunction, one of these responded dramatically to dietary protein reduction. ASS enzyme activity was not deficient in all patients with biallelic mutations suggesting this test cannot exclude the ASS1 locus in patients with mildly elevated plasma citrulline. Conversely, all symptomatic patients who were tested had deficient activity. We describe four unreported mutations (p.Y291S, p.R272H, p.F72L, and p.L88I), as well as the common p.W179R mutation. In silico algorithms were inconsistent in predicting the pathogenicity of mutations. The cognitive benefit in one patient of protein restriction and the lack of adverse outcome in seven others restricted from birth, suggest a role for protein restriction and continued monitoring to prevent neurocognitive dysfunction. (c) 2008 Wiley-Liss, Inc.
Volk, Timo; Pannicke, Ulrich; Reisli, Ismail; Bulashevska, Alla; Ritter, Julia; Björkman, Andrea; Schäffer, Alejandro A.; Fliegauf, Manfred; Sayar, Esra H.; Salzer, Ulrich; Fisch, Paul; Pfeifer, Dietmar; Di Virgilio, Michela; Cao, Hongzhi; Yang, Fang; Zimmermann, Karin; Keles, Sevgi; Caliskaner, Zafer; Güner, S¸ükrü; Schindler, Detlev; Hammarström, Lennart; Rizzi, Marta; Hummel, Michael; Pan-Hammarström, Qiang; Schwarz, Klaus; Grimbacher, Bodo
2015-01-01
Null mutations in genes involved in V(D)J recombination cause a block in B- and T-cell development, clinically presenting as severe combined immunodeficiency (SCID). Hypomorphic mutations in the non-homologous end-joining gene DCLRE1C (encoding ARTEMIS) have been described to cause atypical SCID, Omenn syndrome, Hyper IgM syndrome and inflammatory bowel disease—all with severely impaired T-cell immunity. By whole-exome sequencing, we investigated the molecular defect in a consanguineous family with three children clinically diagnosed with antibody deficiency. We identified perfectly segregating homozygous variants in DCLRE1C in three index patients with recurrent respiratory tract infections, very low B-cell numbers and serum IgA levels. In patients, decreased colony survival after irradiation, impaired proliferative response and reduced counts of naïve T cells were observed in addition to a restricted T-cell receptor repertoire, increased palindromic nucleotides in the complementarity determining regions 3 and long stretches of microhomology at switch junctions. Defective V(D)J recombination was complemented by wild-type ARTEMIS protein in vitro. Subsequently, homozygous or compound heterozygous DCLRE1C mutations were identified in nine patients from the same geographic region. We demonstrate that DCLRE1C mutations can cause a phenotype presenting as only antibody deficiency. This novel association broadens the clinical spectrum associated with ARTEMIS mutations. Clinicians should consider the possibility that an immunodeficiency with a clinically mild initial presentation could be a combined immunodeficiency, so as to provide appropriate care for affected patients. PMID:26476407
NEMOTAM: tangent and adjoint models for the ocean modelling platform NEMO
NASA Astrophysics Data System (ADS)
Vidard, A.; Bouttier, P.-A.; Vigilant, F.
2015-04-01
Tangent linear and adjoint models (TAMs) are efficient tools to analyse and to control dynamical systems such as NEMO. They can be involved in a large range of applications such as sensitivity analysis, parameter estimation or the computation of characteristic vectors. A TAM is also required by the 4D-Var algorithm, which is one of the major methods in data assimilation. This paper describes the development and the validation of the tangent linear and adjoint model for the NEMO ocean modelling platform (NEMOTAM). The diagnostic tools that are available alongside NEMOTAM are detailed and discussed, and several applications are also presented.
NEMOTAM: tangent and adjoint models for the ocean modelling platform NEMO
NASA Astrophysics Data System (ADS)
Vidard, A.; Bouttier, P.-A.; Vigilant, F.
2014-10-01
The tangent linear and adjoint model (TAM) are efficient tools to analyse and to control dynamical systems such as NEMO. They can be involved in a large range of applications such as sensitivity analysis, parameter estimation or the computation of characteristics vectors. TAM is also required by the 4-D-VAR algorithm which is one of the major method in Data Assimilation. This paper describes the development and the validation of the Tangent linear and Adjoint Model for the NEMO ocean modelling platform (NEMOTAM). The diagnostic tools that are available alongside NEMOTAM are detailed and discussed and several applications are also presented.
Ectodermal Dysplasia: A Genetic Review
Prashanth, S
2012-01-01
Abstract Ectodermal dysplasia is a rare hereditary disorder with a characteristic physiognomy. It is a genetic disorder affecting the development or function of the teeth, hair, nails and sweat glands. Depending on the particular syndrome ectodermal dysplasia can also affect the skin, the lens or retina of the eye, parts of the inner ear, the development of fingers and toes, the nerves and other parts of the body. Each syndrome usually involves a different combination of symptoms, which can range from mild to severe. The history and lessons learned from hypohidrotic ectodermal dysplasia (HED) may serve as an example for unraveling of the cause and pathogenesis of other ectodermal dysplasia syndromes by demonstrating that phenotypically identical syndromes can be caused by mutations in different genes (EDA, EDAR, EDARADD), that mutations in the same gene can lead to different phenotypes and that mutations in the genes further downstream in the same signaling pathway (NEMO) may modify the phenotype quite profoundly. The aim of this paper is to describe and discuss the etiology, genetic review, clinical manifestations and treatment options of this hereditary disorder. How to cite this article: Deshmukh S, Prashanth S. Ectodermal Dysplasia: A Genetic Review. Int J Clin Pediatr Dent 2012; 5(3):197-202. PMID:25206167
Ectodermal dysplasia: a genetic review.
Deshmukh, Seema; Prashanth, S
2012-09-01
Ectodermal dysplasia is a rare hereditary disorder with a characteristic physiognomy. It is a genetic disorder affecting the development or function of the teeth, hair, nails and sweat glands. Depending on the particular syndrome ectodermal dysplasia can also affect the skin, the lens or retina of the eye, parts of the inner ear, the development of fingers and toes, the nerves and other parts of the body. Each syndrome usually involves a different combination of symptoms, which can range from mild to severe. The history and lessons learned from hypohidrotic ectodermal dysplasia (HED) may serve as an example for unraveling of the cause and pathogenesis of other ectodermal dysplasia syndromes by demonstrating that phenotypically identical syndromes can be caused by mutations in different genes (EDA, EDAR, EDARADD), that mutations in the same gene can lead to different phenotypes and that mutations in the genes further downstream in the same signaling pathway (NEMO) may modify the phenotype quite profoundly. The aim of this paper is to describe and discuss the etiology, genetic review, clinical manifestations and treatment options of this hereditary disorder. How to cite this article: Deshmukh S, Prashanth S. Ectodermal Dysplasia: A Genetic Review. Int J Clin Pediatr Dent 2012; 5(3):197-202.
NEMO educational kit on micro-optics at the secondary school
NASA Astrophysics Data System (ADS)
Flores-Arias, M. T.; Bao-Varela, Carmen
2014-07-01
NEMO was the "Network of Excellence in Micro-Optics" granted in the "Sixth Framework Program" of the European Union. It aimed at providing Europe with a complete Micro-Optics food-chain, by setting up centers for optical modeling and design; measurement and instrumentation; mastering, prototyping and replication; integration and packaging and reliability and standardization. More than 300 researchers from 30 groups in 12 countries participated in the project. One of the objectives of NEMO was to spread excellence and disseminate knowledge on micro-optics and micro-photonics. To convince pupils, already from secondary school level on, about the crucial role of light and micro-optics and the opportunities this combination holds, several partners of NEMO had collaborate to create this Educational Kit. In Spain the partner involved in this aim was the "Microoptics and GRIN Optics Group" at the University of Santiago of Compostela (USC). The educational kits provided to the Secondary School were composed by two plastic cards with the following microoptical element: different kinds of diffractive optical elements or DOES and refractive optical elements or ROEs namely arrays of micro-lenses. The kit also included a DVD with a handbook for performing the experiments as well as a laser pointer source. This kit was distributed free of charge in the countries with partners in NEMO. In particular in Spain was offered to around 200 Secondary School Centers and only 80 answered accepting evaluate the kit.
Colombo, Elisa Adele; Spaccini, Luigina; Volpi, Ludovica; Negri, Gloria; Cittaro, Davide; Lazarevic, Dejan; Zirpoli, Salvatore; Farolfi, Andrea; Gervasini, Cristina; Cubellis, Maria Vittoria; Larizza, Lidia
2016-10-07
Integrin α3 (ITGA3) gene mutations are associated with Interstitial Lung disease, Nephrotic syndrome and Epidermolysis bullosa (ILNEB syndrome). To date only six patients are reported: all carried homozygous ITGA3 mutations and presented a dramatically severe phenotype leading to death before age 2 years, from multi-organ failure due to interstitial lung disease and congenital nephrotic syndrome. The involvement of skin and cutaneous adnexa was variable with sparse hair and nail dysplasia combined or not to skin lesions ranging from skin fragility to epidermolysis bullosa-like blistering. We report on two siblings of 13 and 9 years born to non-consanguineous healthy parents, who display growth delay, severe pulmonary fibrosis with fatigue, dyspnea on exertion and wheezing, atrophic skin with erythematosus lesions, rare eyelashes/eyebrows and pachyonychia. By exome sequencing, we identified two unreported ITGA3 missense mutations, c.373G>A (p.(G125R)) in exon 3 and c.821G>A (p.(R274Q)) in exon 6, affecting highly conserved residues in the integrin α3 extracellular N-terminal β-propeller domain. Homology modelling of α3β1 heterodimer fragment, encompassing the mutation sites, showed that G125 plays a pivotal structural role in the β-propeller, while R274 might prevent the interaction between integrin and urokinase complex. We report a variant of ILNEB syndrome in two siblings differing from the previously reported patients in the lack of nephrotic impairment and survival beyond childhood. Our siblings are the first reported compound heterozygous for ITGA3 mutations; this state as well as the hypomorphic nature of their p.(R274Q) mutation likely account for their survival.
Grover, Abhinav; Shandilya, Ashutosh; Punetha, Ankita; Bisaria, Virendra S; Sundar, Durai
2010-12-02
Nuclear Factor kappa B (NF-κB) is a transcription factor involved in the regulation of cell signaling responses and is a key regulator of cellular processes involved in the immune response, differentiation, cell proliferation, and apoptosis. The constitutive activation of NF-κB contributes to multiple cellular outcomes and pathophysiological conditions such as rheumatoid arthritis, asthma, inflammatory bowel disease, AIDS and cancer. Thus there lies a huge therapeutic potential beneath inhibition of NF-κB signalling pathway for reducing these chronic ailments. Withania somnifera, a reputed herb in ayurvedic medicine, comprises a large number of steroidal lactones known as withanolides which show plethora of pharmacological activities like anti- inflammatory, antitumor, antibacterial, antioxidant, anticonvulsive, and immunosuppressive. Though a few studies have been reported depicting the effect of WA (withaferin A) on suppression of NF-κB activation, the mechanism behind this is still eluding the researchers. The study conducted here is an attempt to explore NF-κB signalling pathway modulating capability of Withania somnifera's major constituent WA and to elucidate its possible mode of action using molecular docking and molecular dynamics simulations studies. Formation of active IKK (IκB kinase) complex comprising NEMO (NF-κB Essential Modulator) and IKKβ subunits is one of the essential steps for NF-κB signalling pathway, non-assembly of which can lead to prevention of the above mentioned vulnerable disorders. As observed from our semi-flexible docking analysis, WA forms strong intermolecular interactions with the NEMO chains thus building steric as well as thermodynamic barriers to the incoming IKKβ subunits, which in turn pave way to naive complex formation capability of NEMO with IKKβ. Docking of WA into active NEMO/IKKβ complex using flexible docking in which key residues of the complex were kept flexible also suggest the disruption of the active complex. Thus the molecular docking analysis of WA into NEMO and active NEMO/IKKβ complex conducted in this study provides significant evidence in support of the proposed mechanism of NF-κB activation suppression by inhibition or disruption of active NEMO/IKKβ complex formation being accounted by non-assembly of the catalytically active NEMO/IKKβ complex. Results from the molecular dynamics simulations in water show that the trajectories of the native protein and the protein complexed with WA are stable over a considerably long time period of 2.6 ns. NF-κB is one of the most attractive topics in current biological, biochemical, and pharmacological research, and in the recent years the number of studies focusing on its inhibition/regulation has increased manifolds. Small ligands (both natural and synthetic) are gaining particular attention in this context. Our computational analysis provided a rationalization of the ability of naturally occurring withaferin A to alter the NF-κB signalling pathway along with its proposed mode of inhibition of the pathway. The absence of active IKK multisubunit complex would prevent degradation of IκB proteins, as the IκB proteins would not get phosphorylated by IKK. This would ultimately lead to non-release of NF-κB and its further translocation to the nucleus thus arresting its nefarious acts. Conclusively our results strongly suggest that withaferin A is a potent anticancer agent as ascertained by its potent NF-κB modulating capability. Moreover the present MD simulations made clear the dynamic structural stability of NEMO/IKKβ in complex with the drug WA, together with the inhibitory mechanism.
Mutations in the Katnb1 gene cause left-right asymmetry and heart defects.
Furtado, Milena B; Merriner, D Jo; Berger, Silke; Rhodes, Danielle; Jamsai, Duangporn; O'Bryan, Moira K
2017-12-01
The microtubule-severing protein complex katanin is composed two subunits, the ATPase subunit, KATNA1, and the noncatalytic regulatory subunit, KATNB1. Recently, the Katnb1 gene has been linked to infertility, regulation of centriole and cilia formation in fish and mammals, as well as neocortical brain development. KATNB1 protein is expressed in germ cells in humans and mouse, mitotic/meiotic spindles and cilia, although the full expression pattern of the Katnb1 gene has not been described. Using a knockin-knockout mouse model of Katnb1 dysfunction we demonstrate that Katnb1 is ubiquitously expressed during embryonic development, although a stronger expression is seen in the crown cells of the gastrulation organizer, the murine node. Furthermore, null and hypomorphic Katnb1 gene mutations show a novel correlation between Katnb1 dysregulation and the development of impaired left-right signaling, including cardiac malformations. Katanin function is a critical regulator of heart development in mice. These findings are potentially relevant to human cardiac development. Developmental Dynamics 246:1027-1035, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Lee, Ju-Hyun; Yu, W Haung; Kumar, Asok; Lee, Sooyeon; Mohan, Panaiyur S; Peterhoff, Corrinne M; Wolfe, Devin M; Martinez-Vicente, Marta; Massey, Ashish C; Sovak, Guy; Uchiyama, Yasuo; Westaway, David; Cuervo, Ana Maria; Nixon, Ralph A
2010-06-25
Macroautophagy is a lysosomal degradative pathway essential for neuron survival. Here, we show that macroautophagy requires the Alzheimer's disease (AD)-related protein presenilin-1 (PS1). In PS1 null blastocysts, neurons from mice hypomorphic for PS1 or conditionally depleted of PS1, substrate proteolysis and autophagosome clearance during macroautophagy are prevented as a result of a selective impairment of autolysosome acidification and cathepsin activation. These deficits are caused by failed PS1-dependent targeting of the v-ATPase V0a1 subunit to lysosomes. N-glycosylation of the V0a1 subunit, essential for its efficient ER-to-lysosome delivery, requires the selective binding of PS1 holoprotein to the unglycosylated subunit and the Sec61alpha/oligosaccharyltransferase complex. PS1 mutations causing early-onset AD produce a similar lysosomal/autophagy phenotype in fibroblasts from AD patients. PS1 is therefore essential for v-ATPase targeting to lysosomes, lysosome acidification, and proteolysis during autophagy. Defective lysosomal proteolysis represents a basis for pathogenic protein accumulations and neuronal cell death in AD and suggests previously unidentified therapeutic targets.
Pott, Alexander; Bock, Sarah; Berger, Ina M; Frese, Karen; Dahme, Tillman; Keßler, Mirjam; Rinné, Susanne; Decher, Niels; Just, Steffen; Rottbauer, Wolfgang
2018-05-08
The genetic underpinnings that orchestrate the vertebrate heart rate are not fully understood yet, but of high clinical importance, since diseases of cardiac impulse formation and propagation are common and severe human arrhythmias. To identify novel regulators of the vertebrate heart rate, we deciphered the pathogenesis of the bradycardia in the homozygous zebrafish mutant hiphop (hip) and identified a missense-mutation (N851K) in Na + /K + -ATPase α1-subunit (atp1a1a.1). N851K affects zebrafish Na + /K + -ATPase ion transport capacity, as revealed by in vitro pump current measurements. Inhibition of the Na + /K + -ATPase in vivo indicates that hip rather acts as a hypomorph than being a null allele. Consequently, reduced Na + /K + -ATPase function leads to prolonged QT interval and refractoriness in the hip mutant heart, as shown by electrocardiogram and in vivo electrical stimulation experiments. We here demonstrate for the first time that Na + /K + -ATPase plays an essential role in heart rate regulation by prolonging myocardial repolarization. Copyright © 2018. Published by Elsevier Ltd.
Bravo-Alonso, Irene; Navarrete, Rosa; Arribas-Carreira, Laura; Perona, Almudena; Abia, David; Couce, María Luz; García-Cazorla, Angels; Morais, Ana; Domingo, Rosario; Ramos, María Antonia; Swanson, Michael A; Van Hove, Johan L K; Ugarte, Magdalena; Pérez, Belén; Pérez-Cerdá, Celia; Rodríguez-Pombo, Pilar
2017-06-01
The rapid analysis of genomic data is providing effective mutational confirmation in patients with clinical and biochemical hallmarks of a specific disease. This is the case for nonketotic hyperglycinemia (NKH), a Mendelian disorder causing seizures in neonates and early-infants, primarily due to mutations in the GLDC gene. However, understanding the impact of missense variants identified in this gene is a major challenge for the application of genomics into clinical practice. Herein, a comprehensive functional and structural analysis of 19 GLDC missense variants identified in a cohort of 26 NKH patients was performed. Mutant cDNA constructs were expressed in COS7 cells followed by enzymatic assays and Western blot analysis of the GCS P-protein to assess the residual activity and mutant protein stability. Structural analysis, based on molecular modeling of the 3D structure of GCS P-protein, was also performed. We identify hypomorphic variants that produce attenuated phenotypes with improved prognosis of the disease. Structural analysis allows us to interpret the effects of mutations on protein stability and catalytic activity, providing molecular evidence for clinical outcome and disease severity. Moreover, we identify an important number of mutants whose loss-of-functionality is associated with instability and, thus, are potential targets for rescue using folding therapeutic approaches. © 2017 Wiley Periodicals, Inc.
Boisson, Bertrand; Laplantine, Emmanuel; Dobbs, Kerry; Cobat, Aurélie; Tarantino, Nadine; Hazen, Melissa; Lidov, Hart G.W.; Hopkins, Gregory; Du, Likun; Belkadi, Aziz; Chrabieh, Maya; Itan, Yuval; Picard, Capucine; Fournet, Jean-Christophe; Eibel, Hermann; Tsitsikov, Erdyni; Pai, Sung-Yun; Abel, Laurent; Al-Herz, Waleed; Israel, Alain
2015-01-01
Inherited, complete deficiency of human HOIL-1, a component of the linear ubiquitination chain assembly complex (LUBAC), underlies autoinflammation, infections, and amylopectinosis. We report the clinical description and molecular analysis of a novel inherited disorder of the human LUBAC complex. A patient with multiorgan autoinflammation, combined immunodeficiency, subclinical amylopectinosis, and systemic lymphangiectasia, is homozygous for a mutation in HOIP, the gene encoding the catalytic component of LUBAC. The missense allele (L72P, in the PUB domain) is at least severely hypomorphic, as it impairs HOIP expression and destabilizes the whole LUBAC complex. Linear ubiquitination and NF-κB activation are impaired in the patient’s fibroblasts stimulated by IL-1β or TNF. In contrast, the patient’s monocytes respond to IL-1β more vigorously than control monocytes. However, the activation and differentiation of the patient’s B cells are impaired in response to CD40 engagement. These cellular and clinical phenotypes largely overlap those of HOIL-1-deficient patients. Clinical differences between HOIL-1- and HOIP-mutated patients may result from differences between the mutations, the loci, or other factors. Our findings show that human HOIP is essential for the assembly and function of LUBAC and for various processes governing inflammation and immunity in both hematopoietic and nonhematopoietic cells. PMID:26008899
Mineralocorticoid Receptor Mutations and a Severe Recessive Pseudohypoaldosteronism Type 1
Hubert, Edwige-Ludiwyne; Teissier, Raphaël; Fernandes-Rosa, Fábio L.; Fay, Michel; Rafestin-Oblin, Marie-Edith; Jeunemaitre, Xavier; Metz, Chantal; Escoubet, Brigitte
2011-01-01
Pseudohypoaldosteronism type 1 (PHA1) is a rare genetic disease of mineralocorticoid resistance characterized by salt wasting and failure to thrive in infancy. Here we describe the first case of a newborn with severe recessive PHA1 caused by two heterozygous mutations in NR3C2, gene coding for the mineralocorticoid receptor (MR). Independent segregation of the mutations occurred in the family, with p.Ser166X being transmitted from the affected father and p.Trp806X from the asymptomatic mother Whereas the truncated MR166X protein was degraded, MR806X was expressed both at the mRNA and protein level. Functional studies demonstrated that despite its inability to bind aldosterone, MR806X had partial ligand-independent transcriptional activity. Partial nuclear localization of MR806X in the absence of hormone was identified as a prerequisite to initiate transcription. This exceptional case broadens the spectrum of clinical phenotypes of PHA1 and demonstrates that minimal residual activity of MR is compatible with life. It also suggests that rare hypomorphic NR3C2 alleles may be more common than expected from the prevalence of detected PHA1 cases. This might prove relevant for patient's care in neonatal salt losing disorders and may affect renal salt handling and blood pressure in the general population. PMID:21903996
Pippucci, Tommaso; Maresca, Alessandra; Magini, Pamela; Cenacchi, Giovanna; Donadio, Vincenzo; Palombo, Flavia; Papa, Valentina; Incensi, Alex; Gasparre, Giuseppe; Valentino, Maria Lucia; Preziuso, Carmela; Pisano, Annalinda; Ragno, Michele; Liguori, Rocco; Giordano, Carla; Tonon, Caterina; Lodi, Raffaele; Parmeggiani, Antonia; Carelli, Valerio; Seri, Marco
2015-06-01
Notch signaling is essential for vascular physiology. Neomorphic heterozygous mutations in NOTCH3, one of the four human NOTCH receptors, cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Hypomorphic heterozygous alleles have been occasionally described in association with a spectrum of cerebrovascular phenotypes overlapping CADASIL, but their pathogenic potential is unclear. We describe a patient with childhood-onset arteriopathy, cavitating leukoencephalopathy with cerebral white matter abnormalities presented as diffuse cavitations, multiple lacunar infarctions and disseminated microbleeds. We identified a novel homozygous c.C2898A (p.C966*) null mutation in NOTCH3 abolishing NOTCH3 expression and causing NOTCH3 signaling impairment. NOTCH3 targets acting in the regulation of arterial tone (KCNA5) or expressed in the vasculature (CDH6) were downregulated. Patient's vessels were characterized by smooth muscle degeneration as in CADASIL, but without deposition of granular osmiophilic material (GOM), the CADASIL hallmark. The heterozygous parents displayed similar but less dramatic trends in decrease in the expression of NOTCH3 and its targets, as well as in vessel degeneration. This study suggests a functional link between NOTCH3 deficiency and pathogenesis of vascular leukoencephalopathies. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.
Irrinki, Krishna M.; Mallilankaraman, Karthik; Thapa, Roshan J.; Chandramoorthy, Harish C.; Smith, Frank J.; Jog, Neelakshi R.; Gandhirajan, Rajesh Kumar; Kelsen, Steven G.; Houser, Steven R.; May, Michael J.; Balachandran, Siddharth; Madesh, Muniswamy
2011-01-01
Necroptosis represents a form of alternative programmed cell death that is dependent on the kinase RIP1. RIP1-dependent necroptotic death manifests as increased reactive oxygen species (ROS) production in mitochondria and is accompanied by loss of ATP biogenesis and eventual dissipation of mitochondrial membrane potential. Here, we show that tumor necrosis factor alpha (TNF-α)-induced necroptosis requires the adaptor proteins FADD and NEMO. FADD was found to mediate formation of the TNF-α-induced pronecrotic RIP1-RIP3 kinase complex, whereas the IκB Kinase (IKK) subunit NEMO appears to function downstream of RIP1-RIP3. Interestingly, loss of RelA potentiated TNF-α-dependent necroptosis, indicating that NEMO regulates necroptosis independently of NF-κB. Using both pharmacologic and genetic approaches, we demonstrate that the overexpression of antioxidants alleviates ROS elevation and necroptosis. Finally, elimination of BAX and BAK or overexpression of Bcl-xL protects cells from necroptosis at a later step. These findings provide evidence that mitochondria play an amplifying role in inflammation-induced necroptosis. PMID:21746883
NASA Astrophysics Data System (ADS)
Loaiza, P.; SuperNemo Collaboration
2017-09-01
The SuperNemo collaboration is currently building the SuperNemo demonstrator at the Modane Underground Laboratory, as the proof of concept for the full SuperNemo program. The enriched ββ0ν source consisting of thin foils containing 7 kg of 82Se is enclosed by the gas tracker and the plastic scintillator calorimeter. The full reconstruction of the ββ0ν event topology ensures an excellent background rejection and points at a true zero-background search. One of the most critical sources of background is a contamination in the source foils. The required radiopurity is 208Tl < 2 µBq/kg and 214Bi < 10 µBq/kg to achieve the sensitivity T1/2(ββ0ν) > 1026 years. The collaboration has developed a dedicated detector to measure the ultra high natural radiopurities requested, the BiPo-3 detector, installed in the Canfranc Underground Laboratory. The experimental design and performances of BiPo-3 are presented. Dedicated background measurements have been performed. After an exposure of about 2 years.m2 the surface activities of the scintillators of A(208Tl) = 1.0 ± 0.2 µBq/m2 and A(214Bi) = 1.0 ± 0.3 µBq/m2 are measured. Results of the 208Tl and 214Bi activity measurements of the first enriched 82Se foils of SuperNemo are also presented.
Al-Awadi-Raas-Rothschild syndrome with dental anomalies and a novel WNT7A mutation.
Kantaputra, Piranit Nik; Kapoor, Seema; Verma, Prashant; Kaewgahya, Massupa; Kawasaki, Katsushige; Ohazama, Atsushi; Ketudat Cairns, James R
2017-12-01
Al-Awadi-Raas-Rothschild syndrome (AARRS; OMIM 276820) is a very rare autosomal recessive limb malformation syndrome caused by WNT7A mutations. AARRS is characterized by various degrees of limb aplasia and hypoplasia. Normal intelligence and malformations of urogenital system are frequent findings. Complete loss of WNT7A function has been shown to cause AARRS, however, its partial loss leads to the milder malformation, Fuhrmann syndrome. An Indian boy affected with AARRS is reported. A novel homozygous base substitution mutation c.550A > C (p.Asn184Asp) is identified in the patient. Parents were heterozygous for the mutation. In addition to the typical features of AARRS, the patient had agenesis of the mandibular left deciduous lateral incisor. The heterozygous parents had microdontia of the maxillary left permanent third molar and taurodontism (enlarged dental pulp chamber at the expense of root) in a number of their permanent molars. Whole exome sequencing of the patient and his parents ruled out mutations in 11 known hypodontia-associated genes including WNT10A, MSX1, EDA, EDAR, EDARADD, PAX9, AXIN2, GREM2, NEMO, KRT17, and TFAP2B. In situ hybridization during tooth development showed Wnt7a expression in wild-type tooth epithelium at E14.5. All lines of evidence suggest that WNT7A has important role in tooth development and its mutation may lead to tooth agenesis, microdontia, and taurodontism. Oral examination of patients with AARRS and Fuhrmann syndromes is highly recommended. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
SN-1 and NEMO: the Italian cabled observatories
NASA Astrophysics Data System (ADS)
Favali, P.; Beranzoli, L.; Calore, D.; D'Anna, G.; Gasparoni, F.; NEMO Collaboration Team
2003-04-01
A fruitful synergy between Geophysics, Environmental Sciences, Nuclear Physics and Marine Technology has started through ongoing projects within different Italian research frameworks. The Neutrino Mediterranean Observatory (NEMO) project, funded by INFN, aims at the realization of a deep-sea experiment for the detection of cosmic neutrinos using an array of towers equipped by photosensors. To test the technological solutions proposed for the realization of the project, the Laboratiori Nazionali del Sud have set up an underwater Test Site off-shore Catania. A 25 km long submarine electro-optical cable was deployed in September 2001, in order to supply power from land and receive data from the underwater site located at a depth of 2000 m. A shore station has also been realize inside the Catania port area. In October 2001, Submarine Network-1 (SN-1), the first Italian deep-sea multidisciplinary observatory for geophysical and environmental monitoring was deployed at a depth of 2105 m, in the area of the Ibleo-maltese escarpment, in proximity of the marine tail of the NEMO cable. SN-1, funded by the Italian Gruppo Nazionale di Difesa dai Terremoti and coordinated by INGV, is presently operating in local mode storing measurements on hard disks and is powered by lithium batteries with an autonomy of approximately 200 days. In the view of mutual assistance, the coordinator institutions of NEMO and SN-1 have agreed that part of the optic fibres and power lines of the NEMO-1 underwater cable be made available to power SN-1 from land and to transfer in real time the signals acquired by the geophysical and environmental sensor packages of SN-1. On this latter's side, time series of environmental parameters useful for the analysis and interpretation of NEMO-1 detections will be available. A description of the two projects and of the 'state of the art' will be given and the benefits of the development of a submarine Italian prone site will be pointed out.
NASA Astrophysics Data System (ADS)
Weiland, C.; Chadwick, W. W.; Embley, R. W.
2001-12-01
To help visualize the submarine volcanic landscape at NOAA's New Millennium Observatory (NeMO), we have created the NeMO Explorer web site: http://www.pmel.noaa.gov/vents/nemo/explorer.html. This web site takes visitors a mile down beneath the ocean surface to explore Axial Seamount, an active submarine volcano 300 miles off the Oregon coast. We use virtual reality to put visitors in a photorealistic 3-D model of the seafloor that lets them view hydrothermal vents and fresh lava flows as if they were really on the seafloor. At each of six virtual sites there is an animated tour and a 360o panorama in which users can view the volcanic landscape and see biological communities within a spatially accurate context. From the six sites there are hyperlinks to 50 video clips taken by a remotely operated vehicle. Each virtual site concentrates on a different topic, including the dynamics of the 1998 eruption at Axial volcano (Rumbleometer), high-temperature hydrothermal vents (CASM and ASHES), diffuse hydrothermal venting (Marker33), subsurface microbial blooms (The Pit), and the boundary between old and new lavas (Castle vent). In addition to exploring the region geographically, visitors can also explore the web site via geological concepts. The concepts gallery lets you quickly find information about mid-ocean ridges, hydrothermal vents, vent fauna, lava morphology, and more. Of particular interest is an animation of the January 1998 eruption, which shows the rapid inflation (by over 3 m) and draining of the sheet flow. For more info see Fox et al., Nature, v.412, p.727, 2001. This project was funded by NOAA's High Performance Computing and Communication (HPCC) and Vents Programs. Our goal is to present a representative portion of the vast collection of NOAA's multimedia imagery to the public in a way that is easy to use and understand. These data are particularly challenging to present because of their high data rates and low contextual information. The 3-D models create effective context and new video technology allows us to present good quality video at lower data rates. Related curriculum materials for middle- and high-school students are also available from the NeMO web site at http://www.pmel.noaa.gov/vents/nemo/education.html. >http://www.pmel.noaa.gov/vents/nemo/explorer.html
Primary cellular meningeal defects cause neocortical dysplasia and dyslamination
Hecht, Jonathan H.; Siegenthaler, Julie A.; Patterson, Katelin P.; Pleasure, Samuel J.
2010-01-01
Objective Cortical malformations are important causes of neurological morbidity, but in many cases their etiology is poorly understood. Mice with Foxc1 mutations have cellular defects in meningeal development. We use hypomorphic and null alleles of Foxc1 to study the effect of meningeal defects on neocortical organization. Methods Embryos with loss of Foxc1 activity were generated using the hypomorphic Foxc1hith allele and the null Foxc1lacZ allele. Immunohistologic analysis was used to assess cerebral basement membrane integrity, marginal zone heterotopia formation, neuronal overmigration, meningeal defects, and changes in basement membrane composition. Dysplasia severity was quantified using two measures. Results Cortical dysplasia resembling cobblestone cortex, with basement membrane breakdown and lamination defects, is seen in Foxc1 mutants. As Foxc1 activity was reduced, abnormalities in basement membrane integrity, heterotopia formation, neuronal overmigration, and meningeal development appeared earlier in gestation and were more severe. Surprisingly, the basement membrane appeared intact at early stages of development in the face of severe deficits in meningeal development. Prominent defects in basement membrane integrity appeared as development proceeded. Molecular analysis of basement membrane laminin subunits demonstrated that loss of the meninges led to changes in basement membrane composition. Interpretation Cortical dysplasia can be caused by cellular defects in the meninges. The meninges are not required for basement membrane establishment but are needed for remodeling as the brain expands. Specific changes in basement membrane composition may contribute to subsequent breakdown. Our study raises the possibility that primary meningeal defects may cortical dysplasia in some cases. PMID:20976766
Kuijpers, Taco W.; van Leeuwen, Ester M.M.; Barendregt, Barbara H.; Klarenbeek, Paul; aan de Kerk, Daan J.; Baars, Paul A.; Jansen, Machiel H.; de Vries, Niek; van Lier, René A.W.; van der Burg, Mirjam
2013-01-01
Mutations in the common gamma chain (γc, CD132, encoded by the IL2RG gene) can lead to B+T−NK− X-linked severe combined immunodeficiency, as a consequence of unresponsiveness to γc-cytokines such as interleukins-2, -7 and -15. Hypomorphic mutations in CD132 may cause combined immunodeficiencies with a variety of clinical presentations. We analyzed peripheral blood mononuclear cells of a 6-year-old boy with normal lymphocyte counts, who suffered from recurrent pneumonia and disseminated mollusca contagiosa. Since proliferative responses of T cells and NK cells to γc -cytokines were severely impaired, we performed IL2RG gene analysis, showing a heterozygous mutation in the presence of a single X-chromosome. Interestingly, an IL2RG reversion to normal predominated in both naïve and antigen-primed CD8+ T cells and increased over time. Only the revertant CD8+ T cells showed normal expression of CD132 and the various CD8+ T cell populations had a different T-cell receptor repertoire. Finally, a fraction of γδ+ T cells and differentiated CD4+CD27− effector-memory T cells carried the reversion, whereas NK or B cells were repeatedly negative. In conclusion, in a patient with a novel IL2RG mutation, gene-reverted CD8+ T cells accumulated over time. Our data indicate that selective outgrowth of particular T-cell subsets may occur following reversion at the level of committed T progenitor cells. PMID:23403317
Kuijpers, Taco W; van Leeuwen, Ester M M; Barendregt, Barbara H; Klarenbeek, Paul; aan de Kerk, Daan J; Baars, Paul A; Jansen, Machiel H; de Vries, Niek; van Lier, René A W; van der Burg, Mirjam
2013-07-01
Mutations in the common gamma chain (γc, CD132, encoded by the IL2RG gene) can lead to B(+)T(-)NK(-) X-linked severe combined immunodeficiency, as a consequence of unresponsiveness to γc-cytokines such as interleukins-2, -7 and -15. Hypomorphic mutations in CD132 may cause combined immunodeficiencies with a variety of clinical presentations. We analyzed peripheral blood mononuclear cells of a 6-year-old boy with normal lymphocyte counts, who suffered from recurrent pneumonia and disseminated mollusca contagiosa. Since proliferative responses of T cells and NK cells to γc -cytokines were severely impaired, we performed IL2RG gene analysis, showing a heterozygous mutation in the presence of a single X-chromosome. Interestingly, an IL2RG reversion to normal predominated in both naïve and antigen-primed CD8(+) T cells and increased over time. Only the revertant CD8(+) T cells showed normal expression of CD132 and the various CD8(+) T cell populations had a different T-cell receptor repertoire. Finally, a fraction of γδ(+) T cells and differentiated CD4(+)CD27(-) effector-memory T cells carried the reversion, whereas NK or B cells were repeatedly negative. In conclusion, in a patient with a novel IL2RG mutation, gene-reverted CD8(+) T cells accumulated over time. Our data indicate that selective outgrowth of particular T-cell subsets may occur following reversion at the level of committed T progenitor cells.
Zhang, Yu; Yu, Xiaomin; Ichikawa, Mie; Lyons, Jonathan J.; Datta, Shrimati; Lamborn, Ian T.; Jing, Huie; Kim, Emily S.; Biancalana, Matthew; Wolfe, Lynne A.; DiMaggio, Thomas; Matthews, Helen F.; Kranick, Sarah M.; Stone, Kelly D.; Holland, Steven M.; Reich, Daniel S.; Hughes, Jason D.; Mehmet, Huseyin; McElwee, Joshua; Freeman, Alexandra F.; Freeze, Hudson H.; Su, Helen C.; Milner, Joshua D.
2014-01-01
Background Identifying genetic syndromes that lead to significant atopic disease can open new pathways for investigation and intervention in allergy. Objective To define a genetic syndrome of severe atopy, elevated serum IgE, immune deficiency, autoimmunity, and motor and neurocognitive impairment. Methods Eight patients from two families who had similar syndromic features were studied. Thorough clinical evaluations, including brain MRI and sensory evoked potentials, were performed. Peripheral lymphocyte flow cytometry, antibody responses, and T cell cytokine production were measured. Whole exome sequencing was performed to identify disease-causing mutations. Immunoblotting, qRT-PCR, enzymatic assays, nucleotide sugar and sugar phosphate analyses along with MALDI-TOF mass spectrometry of glycans were used to determine the molecular consequences of the mutations. Results Marked atopy and autoimmunity were associated with increased TH2 and TH17 cytokine production by CD4+ T cells. Bacterial and viral infection susceptibility were noted along with T cell lymphopenia, particularly of CD8+ T cells, and reduced memory B cells. Apparent brain hypomyelination resulted in markedly delayed evoked potentials and likely contributed to neurological abnormalities. Disease segregated with novel autosomal recessive mutations in a single gene, phosphoglucomutase 3 (PGM3). Although PGM3 protein expression was variably diminished, impaired function was demonstrated by decreased enzyme activity and reduced UDP-GlcNAc, along with decreased O- and N-linked protein glycosylation in patients’ cells. These results define a new Congenital Disorder of Glycosylation. Conclusions Autosomal recessive, hypomorphic PGM3 mutations underlie a disorder of severe atopy, immune deficiency, autoimmunity, intellectual disability and hypomyelination. PMID:24589341
Volk, Timo; Pannicke, Ulrich; Reisli, Ismail; Bulashevska, Alla; Ritter, Julia; Björkman, Andrea; Schäffer, Alejandro A; Fliegauf, Manfred; Sayar, Esra H; Salzer, Ulrich; Fisch, Paul; Pfeifer, Dietmar; Di Virgilio, Michela; Cao, Hongzhi; Yang, Fang; Zimmermann, Karin; Keles, Sevgi; Caliskaner, Zafer; Güner, S Ükrü; Schindler, Detlev; Hammarström, Lennart; Rizzi, Marta; Hummel, Michael; Pan-Hammarström, Qiang; Schwarz, Klaus; Grimbacher, Bodo
2015-12-20
Null mutations in genes involved in V(D)J recombination cause a block in B- and T-cell development, clinically presenting as severe combined immunodeficiency (SCID). Hypomorphic mutations in the non-homologous end-joining gene DCLRE1C (encoding ARTEMIS) have been described to cause atypical SCID, Omenn syndrome, Hyper IgM syndrome and inflammatory bowel disease-all with severely impaired T-cell immunity. By whole-exome sequencing, we investigated the molecular defect in a consanguineous family with three children clinically diagnosed with antibody deficiency. We identified perfectly segregating homozygous variants in DCLRE1C in three index patients with recurrent respiratory tract infections, very low B-cell numbers and serum IgA levels. In patients, decreased colony survival after irradiation, impaired proliferative response and reduced counts of naïve T cells were observed in addition to a restricted T-cell receptor repertoire, increased palindromic nucleotides in the complementarity determining regions 3 and long stretches of microhomology at switch junctions. Defective V(D)J recombination was complemented by wild-type ARTEMIS protein in vitro. Subsequently, homozygous or compound heterozygous DCLRE1C mutations were identified in nine patients from the same geographic region. We demonstrate that DCLRE1C mutations can cause a phenotype presenting as only antibody deficiency. This novel association broadens the clinical spectrum associated with ARTEMIS mutations. Clinicians should consider the possibility that an immunodeficiency with a clinically mild initial presentation could be a combined immunodeficiency, so as to provide appropriate care for affected patients. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hasegawa, Kiyotoshi; Sasaki, Shinji; Sakamoto, Yoichi; Takano, Akifumi; Takayama, Megumi; Higashi, Tomoko; Sugimoto, Yoshikazu; Yasuda, Yasuaki
2017-10-01
Hydrallantois is the excessive accumulation of fluid in the allantoic cavity in a pregnant animal and is associated with fetal death. We recently identified a recessive missense mutation in the solute carrier family 12, member 1 (SLC12A1) gene (g.62382825G>A, p.Pro372Leu) that is associated with hydrallantois in Japanese Black cattle. Unexpectedly, we found a case of the homozygous risk-allele for SLC12A1 in a calf, using a PCR-based direct DNA sequencing test. The homozygote was outwardly healthy up to 3 months of age and the mother did not exhibit any clinical symptoms of hydrallantois. In order to validate these observations, we performed confirmation tests for the genotype and a diuretic loading test using furosemide, which inhibits the transporter activity of the SLC12A1 protein. The results showed that the calf was really homozygous for the risk-allele. In the homozygous calf, administration of furosemide did not alter urinary Na + or Cl - levels, in contrast to the heterozygote and wild-type calves in which these were significantly increased. These results demonstrate that the SLC12A1 (g.62382825G>A, p.Pro372Leu) is a hypomorphic or loss-of-function mutation and the hydrallantois with this mutation shows incomplete penetrance in Japanese Black cattle. © 2017 Japanese Society of Animal Science.
Reinstein, Eyal; Frentz, Sophia; Morgan, Tim; García-Miñaúr, Sixto; Leventer, Richard J; McGillivray, George; Pariani, Mitchel; van der Steen, Anthony; Pope, Michael; Holder-Espinasse, Muriel; Scott, Richard; Thompson, Elizabeth M; Robertson, Terry; Coppin, Brian; Siegel, Robert; Bret Zurita, Montserrat; Rodríguez, Jose I; Morales, Carmen; Rodrigues, Yuri; Arcas, Joaquín; Saggar, Anand; Horton, Margaret; Zackai, Elaine; Graham, John M; Rimoin, David L; Robertson, Stephen P
2013-01-01
Mutations conferring loss of function at the FLNA (encoding filamin A) locus lead to X-linked periventricular nodular heterotopia (XL-PH), with seizures constituting the most common clinical manifestation of this disorder in female heterozygotes. Vascular dilatation (mainly the aorta), joint hypermobility and variable skin findings are also associated anomalies, with some reports suggesting that this might represents a separate syndrome allelic to XL-PH, termed as Ehlers-Danlos syndrome-periventricular heterotopia variant (EDS-PH). Here, we report a cohort of 11 males and females with both hypomorphic and null mutations in FLNA that manifest a wide spectrum of connective tissue and vascular anomalies. The spectrum of cutaneous defects was broader than previously described and is inconsistent with a specific type of EDS. We also extend the range of vascular anomalies associated with XL-PH to included peripheral arterial dilatation and atresia. Based on these observations, we suggest that there is little molecular or clinical justification for considering EDS-PH as a separate entity from XL-PH, but instead propose that there is a spectrum of vascular and connective tissues anomalies associated with this condition for which all individuals with loss-of-function mutations in FLNA should be evaluated. In addition, since some patients with XL-PH can present primarily with a joint hypermobility syndrome, we propose that screening for cardiovascular manifestations should be offered to those patients when there are associated seizures or an X-linked pattern of inheritance. PMID:23032111
Rubio-Cabezas, Oscar; Jensen, Jan N.; Hodgson, Maria I.; Codner, Ethel; Ellard, Sian; Serup, Palle; Hattersley, Andrew T.
2011-01-01
OBJECTIVE NEUROG3 plays a central role in the development of both pancreatic islets and enteroendocrine cells. Homozygous hypomorphic missense mutations in NEUROG3 have been recently associated with a rare form of congenital malabsorptive diarrhea secondary to enteroendocrine cell dysgenesis. Interestingly, the patients did not develop neonatal diabetes but childhood-onset diabetes. We hypothesized that null mutations in NEUROG3 might be responsible for the disease in a patient with permanent neonatal diabetes and severe congenital malabsorptive diarrhea. RESEARCH DESIGN AND METHODS The single coding exon of NEUROG3 was amplified and sequenced from genomic DNA. The mutant protein isoforms were functionally characterized by measuring their ability to bind to an E-box element in the NEUROD1 promoter in vitro and to induce ectopic endocrine cell formation and cell delamination after in ovo chicken endoderm electroporation. RESULTS Two different heterozygous point mutations in NEUROG3 were identified in the proband [c.82G>T (p.E28X) and c.404T>C (p.L135P)], each being inherited from an unaffected parent. Both in vitro and in vivo functional studies indicated that the mutant isoforms are biologically inactive. In keeping with this, no enteroendocrine cells were detected in intestinal biopsy samples from the patient. CONCLUSIONS Severe deficiency of neurogenin 3 causes a rare novel subtype of permanent neonatal diabetes. This finding confirms the essential role of NEUROG3 in islet development and function in humans. PMID:21378176
Loss of circadian clock accelerates aging in neurodegeneration-prone mutants
Krishnan, Natraj; Rakshit, Kuntol; Chow, Eileen S.; Wentzell, Jill S.; Kretzschmar, Doris; Giebultowicz, Jadwiga M.
2012-01-01
Circadian clocks generate rhythms in molecular, cellular, physiological, and behavioral processes. Recent studies suggest that disruption of the clock mechanism accelerates organismal senescence and age-related pathologies in mammals. Impaired circadian rhythms are observed in many neurological diseases; however, it is not clear whether loss of rhythms is the cause or result of neurodegeneration, or both. To address this important question, we examined the effects of circadian disruption in Drosophila melanogaster mutants that display clock-unrelated neurodegenerative phenotypes. We combined a null mutation in the clock gene period (per01) that abolishes circadian rhythms, with a hypomorphic mutation in the carbonyl reductase gene sniffer (sni1), which displays oxidative stress induced neurodegeneration. We report that disruption of circadian rhythms in sni1 mutants significantly reduces their lifespan compared to single mutants. Shortened lifespan in double mutants was coupled with accelerated neuronal degeneration evidenced by vacuolization in the adult brain. In addition, per01 sni1 flies showed drastically impaired vertical mobility and increased accumulation of carbonylated proteins compared to age-matched single mutant flies. Loss of per function does not affect sni mRNA expression, suggesting that these genes act via independent pathways producing additive effects. Finally, we show that per01 mutation accelerates the onset of brain pathologies when combined with neurodegeneration-prone mutation in another gene, swiss cheese (sws1), which does not operate through the oxidative stress pathway. Taken together, our data suggest that the period gene may be causally involved in neuroprotective pathways in aging Drosophila. PMID:22227001
Doucette, Lance; Merner, Nancy D; Cooke, Sandra; Ives, Elizabeth; Galutira, Dante; Walsh, Vanessa; Walsh, Tom; MacLaren, Linda; Cater, Tracey; Fernandez, Bridget; Green, Jane S; Wilcox, Edward R; Shotland, Lawrence I; Shotland, Larry; Li, Xiaoyan Cindy; Li, X C; Lee, Ming; King, Mary-Claire; Young, Terry-Lynn
2009-05-01
We studied a consanguineous family (Family A) from the island of Newfoundland with an autosomal recessive form of prelingual, profound, nonsyndromic sensorineural hearing loss. A genome-wide scan mapped the deafness trait to 10q21-22 (max LOD score of 4.0; D10S196) and fine mapping revealed a 16 Mb ancestral haplotype in deaf relatives. The PCDH15 gene was mapped within the critical region and was an interesting candidate because truncating mutations cause Usher syndrome type IF (USH1F) and two missense mutations have been previously associated with isolated deafness (DFNB23). Sequencing of the PCDH15 gene revealed 33 sequencing variants. Three of these variants were homozygous exclusively in deaf siblings but only one of them was not seen in ethnically matched controls. This novel c.1583 T>A transversion predicts an amino-acid substitution of a valine with an aspartic acid at codon 528 (V528D). Like the two DFNB23 mutations, the V528D mutation in Family A occurs in a highly conserved extracellular cadherin (EC) domain of PCDH15 and is predicted to be more deleterious than the previously identified DFNB23 missense mutations (R134G and G262D). Physical assessment, vestibular and visual function testing in deaf adults ruled out syndromic deafness because of Usher syndrome. This study validates the DFNB23 designation and supports the hypothesis that missense mutations in conserved motifs of PCDH15 cause nonsyndromic hearing loss. This emerging genotype-phenotype correlation in USH1F is similar to that in several other USH1 genes and cautions against a prognosis of a dual sensory loss in deaf children found to be homozygous for hypomorphic mutations at the USH1F locus.
Zhou, Qing; Wang, Hongying; Schwartz, Daniella M.; Stoffels, Monique; Park, Yong Hwan; Zhang, Yuan; Yang, Dan; Demirkaya, Erkan; Takeuchi, Masaki; Tsai, Wanxia Li; Lyons, Jonathan J.; Yu, Xiaomin; Ouyang, Claudia; Chen, Celeste; Chin, David T.; Zaal, Kristien; Chandrasekharappa, Settara C.; Hanson, Eric P.; Yu, Zhen; Mullikin, James C.; Hasni, Sarfaraz A.; Wertz, Ingrid; Ombrello, Amanda K.; Stone, Deborah L.; Hoffmann, Patrycja; Jones, Anne; Barham, Beverly K.; Leavis, Helen L.; van Royen-Kerkof, Annet; Sibley, Cailin; Batu, Ezgi D.; Gül, Ahmet; Siegel, Richard M.; Boehm, Manfred; Milner, Joshua D.; Ozen, Seza; Gadina, Massimo; Chae, JaeJin; Laxer, Ronald M.; Kastner, Daniel L.; Aksentijevich, Ivona
2016-01-01
Systemic autoinflammatory diseases are driven by abnormal activation of innate immunity1. Herein we describe a new syndrome caused by high penetrance heterozygous germline mutations in the NFκB regulatory protein TNFAIP3 (A20) in six unrelated families with early onset systemic inflammation. The syndrome resembles Behçet’s disease (BD), which is typically considered a polygenic disorder with onset in early adulthood2. A20 is a potent inhibitor of the NFκB signaling pathway3. TNFAIP3 mutant truncated proteins are likely to act by haploinsufficiency since they do not exert a dominant-negative effect in overexpression experiments. Patients’ cells show increased degradation of IκBα and nuclear translocation of NFκB p65, and increased expression of NFκB-mediated proinflammatory cytokines. A20 restricts NFκB signals via deubiquitinating (DUB) activity. In cells expressing the mutant A20 protein, there is defective removal of K63-linked ubiquitin from TRAF6, NEMO, and RIP1 after TNF stimulation. NFκB-dependent pro-inflammatory cytokines are potential therapeutic targets for these patients. PMID:26642243
NASA Astrophysics Data System (ADS)
Viola, S.; Ardid, M.; Bertin, V.; Enzenhöfer, A.; Keller, P.; Lahmann, R.; Larosa, G.; Llorens, C. D.; NEMO Collaboration; SMO Collaboration
2013-10-01
Within the activities of the NEMO project, the installation of a 8-floors tower (NEMO-Phase II) at a depth of 3500 m is foreseen in 2012. The tower will be installed about 80 km off-shore Capo Passero, in Sicily. On board the NEMO tower, an array of 18 acoustic sensors will be installed, permitting acoustic detection of biological sources, studies for acoustic neutrino detection and primarily acoustic positioning of the underwater structures. For the latter purpose, the sensors register acoustic signals emitted by five acoustic beacons anchored on the sea-floor. The data acquisition system of the acoustic sensors is fully integrated with the detector data transport system and is based on an “all data to shore” philosophy. Signals coming from hydrophones are continuously sampled underwater at 192 kHz/24 bit and transmitted to shore through an electro-optical cable for real-time analysis. A novel technology for underwater GPS time-stamping of data has been implemented and tested. The operation of the acoustic array will permit long-term test of sensors and electronics technologies that are proposed for the acoustic positioning system of KM3NeT.
NASA Astrophysics Data System (ADS)
Adrián-Martínez, S.; Aiello, S.; Ameli, F.; Anghinolfi, M.; Ardid, M.; Barbarino, G.; Barbarito, E.; Barbato, F. C. T.; Beverini, N.; Biagi, S.; Biagioni, A.; Bouhadef, B.; Bozza, C.; Cacopardo, G.; Calamai, M.; Calì, C.; Calvo, D.; Capone, A.; Caruso, F.; Ceres, A.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Costa, M.; Cuttone, G.; D'Amato, C.; D'Amico, A.; De Bonis, G.; De Luca, V.; Deniskina, N.; De Rosa, G.; di Capua, F.; Distefano, C.; Enzenhöfer, A.; Fermani, P.; Ferrara, G.; Flaminio, V.; Fusco, L. A.; Garufi, F.; Giordano, V.; Gmerk, A.; Grasso, R.; Grella, G.; Hugon, C.; Imbesi, M.; Kulikovskiy, V.; Lahmann, R.; Larosa, G.; Lattuada, D.; Leismüller, K. P.; Leonora, E.; Litrico, P.; Llorens Alvarez, C. D.; Lonardo, A.; Longhitano, F.; Lo Presti, D.; Maccioni, E.; Margiotta, A.; Marinelli, A.; Martini, A.; Masullo, R.; Migliozzi, P.; Migneco, E.; Miraglia, A.; Mollo, C. M.; Mongelli, M.; Morganti, M.; Musico, P.; Musumeci, M.; Nicolau, C. A.; Orlando, A.; Orzelli, A.; Papaleo, R.; Pellegrino, C.; Pellegriti, M. G.; Perrina, C.; Piattelli, P.; Pugliatti, C.; Pulvirenti, S.; Raffaelli, F.; Randazzo, N.; Real, D.; Riccobene, G.; Rovelli, A.; Saldaña, M.; Sanguineti, M.; Sapienza, P.; Sciacca, V.; Sgura, I.; Simeone, F.; Sipala, V.; Speziale, F.; Spitaleri, A.; Spurio, M.; Stellacci, S. M.; Taiuti, M.; Terreni, G.; Trasatti, L.; Trovato, A.; Ventura, C.; Vicini, P.; Viola, S.; Vivolo, D.
2016-02-01
The NEMO Phase-2 tower is the first detector which was operated underwater for more than 1 year at the "record" depth of 3500 m. It was designed and built within the framework of the NEMO (NEutrino Mediterranean Observatory) project. The 380 m high tower was successfully installed in March 2013 80 km offshore Capo Passero (Italy). This is the first prototype operated on the site where the Italian node of the KM3NeT neutrino telescope will be built. The installation and operation of the NEMO Phase-2 tower has proven the functionality of the infrastructure and the operability at 3500 m depth. A more than 1 year long monitoring of the deep water characteristics of the site has been also provided. In this paper the infrastructure and the tower structure and instrumentation are described. The results of long term optical background measurements are presented. The rates show stable and low baseline values, compatible with the contribution of ^{40}K light emission, with a small percentage of light bursts due to bioluminescence. All these features confirm the stability and good optical properties of the site.
Development of novel NEMO-binding domain mimetics for inhibiting IKK/NF-κB activation.
Zhao, Jing; Zhang, Lei; Mu, Xiaodong; Doebelin, Christelle; Nguyen, William; Wallace, Callen; Reay, Daniel P; McGowan, Sara J; Corbo, Lana; Clemens, Paula R; Wilson, Gabriela Mustata; Watkins, Simon C; Solt, Laura A; Cameron, Michael D; Huard, Johnny; Niedernhofer, Laura J; Kamenecka, Theodore M; Robbins, Paul D
2018-06-11
Nuclear factor κB (NF-κB) is a transcription factor important for regulating innate and adaptive immunity, cellular proliferation, apoptosis, and senescence. Dysregulation of NF-κB and its upstream regulator IκB kinase (IKK) contributes to the pathogenesis of multiple inflammatory and degenerative diseases as well as cancer. An 11-amino acid peptide containing the NF-κB essential modulator (NEMO)-binding domain (NBD) derived from the C-terminus of β subunit of IKK, functions as a highly selective inhibitor of the IKK complex by disrupting the association of IKKβ and the IKKγ subunit NEMO. A structure-based pharmacophore model was developed to identify NBD mimetics by in silico screening. Two optimized lead NBD mimetics, SR12343 and SR12460, inhibited tumor necrosis factor α (TNF-α)- and lipopolysaccharide (LPS)-induced NF-κB activation by blocking the interaction between IKKβ and NEMO and suppressed LPS-induced acute pulmonary inflammation in mice. Chronic treatment of a mouse model of Duchenne muscular dystrophy (DMD) with SR12343 and SR12460 attenuated inflammatory infiltration, necrosis and muscle degeneration, demonstrating that these small-molecule NBD mimetics are potential therapeutics for inflammatory and degenerative diseases.
Numerical Modeling of Nanoelectronic Devices
NASA Technical Reports Server (NTRS)
Klimeck, Gerhard; Oyafuso, Fabiano; Bowen, R. Chris; Boykin, Timothy
2003-01-01
Nanoelectronic Modeling 3-D (NEMO 3-D) is a computer program for numerical modeling of the electronic structure properties of a semiconductor device that is embodied in a crystal containing as many as 16 million atoms in an arbitrary configuration and that has overall dimensions of the order of tens of nanometers. The underlying mathematical model represents the quantummechanical behavior of the device resolved to the atomistic level of granularity. The system of electrons in the device is represented by a sparse Hamiltonian matrix that contains hundreds of millions of terms. NEMO 3-D solves the matrix equation on a Beowulf-class cluster computer, by use of a parallel-processing matrix vector multiplication algorithm coupled to a Lanczos and/or Rayleigh-Ritz algorithm that solves for eigenvalues. In a recent update of NEMO 3-D, a new strain treatment, parameterized for bulk material properties of GaAs and InAs, was developed for two tight-binding submodels. The utility of the NEMO 3-D was demonstrated in an atomistic analysis of the effects of disorder in alloys and, in particular, in bulk In(x)Ga(l-x)As and in In0.6Ga0.4As quantum dots.
Yamanaka, Yasuhiro; Karuppaiah, Kannan; Abu-Amer, Yousef
2011-07-08
The pathologic response to implant wear-debris constitutes a major component of inflammatory osteolysis and remains under intense investigation. Polymethylmethacrylate (PMMA) particles, which are released during implant wear and loosening, constitute a major culprit by virtue of inducing inflammatory and osteolytic responses by macrophages and osteoclasts, respectively. Recent work by several groups has identified important cellular entities and secreted factors that contribute to inflammatory osteolysis. In previous work, we have shown that PMMA particles contribute to inflammatory osteolysis through stimulation of major pathways in monocytes/macrophages, primarily NF-κB and MAP kinases. The former pathway requires assembly of large IKK complex encompassing IKK1, IKK2, and IKKγ/NEMO. We have shown recently that interfering with the NF-κB and MAPK activation pathways, through introduction of inhibitors and decoy molecules, impedes PMMA-induced inflammation and osteolysis in mouse models of experimental calvarial osteolysis and inflammatory arthritis. In this study, we report that PMMA particles activate the upstream transforming growth factor β-activated kinase-1 (TAK1), which is a key regulator of signal transduction cascades leading to activation of NF-κB and AP-1 factors. More importantly, we found that PMMA particles induce TAK1 binding to NEMO and UBC13. In addition, we show that PMMA particles induce TRAF6 and UBC13 binding to NEMO and that lack of TRAF6 significantly attenuates NEMO ubiquitination. Altogether, these observations suggest that PMMA particles induce ubiquitination of NEMO, an event likely mediated by TRAF6, TAK1, and UBC13. Our findings provide important information for better understanding of the mechanisms underlying PMMA particle-induced inflammatory responses.
Aldinger, Kimberly A; Lehmann, Ordan J; Hudgins, Louanne; Chizhikov, Victor V; Bassuk, Alexander G; Ades, Lesley C; Krantz, Ian D; Dobyns, William B; Millen, Kathleen J
2010-01-01
Dandy-Walker malformation (DWM), the most common human cerebellar malformation, has only one characterized associated locus1,2. Here we characterize a second DWM-linked locus on 6p25.3, showing that deletions or duplications encompassing FOXC1 are associated with cerebellar and posterior fossa malformations including cerebellar vermis hypoplasia (CVH), mega-cisterna magna (MCM) and DWM. Foxc1-null mice have embryonic abnormalities of the rhombic lip due to loss of mesenchyme-secreted signaling molecules with subsequent loss of Atoh1 expression in vermis. Foxc1 homozygous hypomorphs have CVH with medial fusion and foliation defects. Human FOXC1 heterozygous mutations are known to affect eye development, causing a spectrum of glaucoma-associated anomalies (Axenfeld-Rieger syndrome, ARS; MIM no. 601631). We report the first brain imaging data from humans with FOXC1 mutations and show that these individuals also have CVH. We conclude that alteration of FOXC1 function alone causes CVH and contributes to MCM and DWM. Our results highlight a previously unrecognized role for mesenchyme-neuroepithelium interactions in the mid-hindbrain during early embryogenesis. PMID:19668217
Henderson, Ian R; Liu, Fuquan; Drea, Sinead; Simpson, Gordon G; Dean, Caroline
2005-08-01
The autonomous pathway functions to promote flowering in Arabidopsis by limiting the accumulation of the floral repressor FLOWERING LOCUS C (FLC). Within this pathway FCA is a plant-specific, nuclear RNA-binding protein, which interacts with FY, a highly conserved eukaryotic polyadenylation factor. FCA and FY function to control polyadenylation site choice during processing of the FCA transcript. Null mutations in the yeast FY homologue Pfs2p are lethal. This raises the question as to whether these essential RNA processing functions are conserved in plants. Characterisation of an allelic series of fy mutations reveals that null alleles are embryo lethal. Furthermore, silencing of FY, but not FCA, is deleterious to growth in Nicotiana. The late-flowering fy alleles are hypomorphic and indicate a requirement for both intact FY WD repeats and the C-terminal domain in repression of FLC. The FY C-terminal domain binds FCA and in vitro assays demonstrate a requirement for both C-terminal FY-PPLPP repeats during this interaction. The expression domain of FY supports its roles in essential and flowering-time functions. Hence, FY may mediate both regulated and constitutive RNA 3'-end processing.
Hypomorphic Temperature-Sensitive Alleles of NSDHL Cause CK Syndrome
McLarren, Keith W.; Severson, Tesa M.; du Souich, Christèle; Stockton, David W.; Kratz, Lisa E.; Cunningham, David; Hendson, Glenda; Morin, Ryan D.; Wu, Diane; Paul, Jessica E.; An, Jianghong; Nelson, Tanya N.; Chou, Athena; DeBarber, Andrea E.; Merkens, Louise S.; Michaud, Jacques L.; Waters, Paula J.; Yin, Jingyi; McGillivray, Barbara; Demos, Michelle; Rouleau, Guy A.; Grzeschik, Karl-Heinz; Smith, Raffaella; Tarpey, Patrick S.; Shears, Debbie; Schwartz, Charles E.; Gecz, Jozef; Stratton, Michael R.; Arbour, Laura; Hurlburt, Jane; Van Allen, Margot I.; Herman, Gail E.; Zhao, Yongjun; Moore, Richard; Kelley, Richard I.; Jones, Steven J.M.; Steiner, Robert D.; Raymond, F. Lucy; Marra, Marco A.; Boerkoel, Cornelius F.
2010-01-01
CK syndrome (CKS) is an X-linked recessive intellectual disability syndrome characterized by dysmorphism, cortical brain malformations, and an asthenic build. Through an X chromosome single-nucleotide variant scan in the first reported family, we identified linkage to a 5 Mb region on Xq28. Sequencing of this region detected a segregating 3 bp deletion (c.696_698del [p.Lys232del]) in exon 7 of NAD(P) dependent steroid dehydrogenase-like (NSDHL), a gene that encodes an enzyme in the cholesterol biosynthesis pathway. We also found that males with intellectual disability in another reported family with an NSDHL mutation (c.1098 dup [p.Arg367SerfsX33]) have CKS. These two mutations, which alter protein folding, show temperature-sensitive protein stability and complementation in Erg26-deficient yeast. As described for the allelic disorder CHILD syndrome, cells and cerebrospinal fluid from CKS patients have increased methyl sterol levels. We hypothesize that methyl sterol accumulation, not only cholesterol deficiency, causes CKS, given that cerebrospinal fluid cholesterol, plasma cholesterol, and plasma 24S-hydroxycholesterol levels are normal in males with CKS. In summary, CKS expands the spectrum of cholesterol-related disorders and insight into the role of cholesterol in human development. PMID:21129721
Martinelli, Paola; Cherukuri, Praveen F.; Teer, Jamie K.; Hansen, Nancy F.; Cruz, Pedro; Mullikin for the NISC Comparative Sequencing Program, James C.; Blakesley, Robert W.; Golas, Gretchen; Kwan, Justin; Sandler, Anthony; Fuentes Fajardo, Karin; Markello, Thomas; Tifft, Cynthia; Blackstone, Craig; Rugarli, Elena I.; Langer, Thomas; Gahl, William A.; Toro, Camilo
2011-01-01
We report an early onset spastic ataxia-neuropathy syndrome in two brothers of a consanguineous family characterized clinically by lower extremity spasticity, peripheral neuropathy, ptosis, oculomotor apraxia, dystonia, cerebellar atrophy, and progressive myoclonic epilepsy. Whole-exome sequencing identified a homozygous missense mutation (c.1847G>A; p.Y616C) in AFG3L2, encoding a subunit of an m-AAA protease. m-AAA proteases reside in the mitochondrial inner membrane and are responsible for removal of damaged or misfolded proteins and proteolytic activation of essential mitochondrial proteins. AFG3L2 forms either a homo-oligomeric isoenzyme or a hetero-oligomeric complex with paraplegin, a homologous protein mutated in hereditary spastic paraplegia type 7 (SPG7). Heterozygous loss-of-function mutations in AFG3L2 cause autosomal-dominant spinocerebellar ataxia type 28 (SCA28), a disorder whose phenotype is strikingly different from that of our patients. As defined in yeast complementation assays, the AFG3L2Y616C gene product is a hypomorphic variant that exhibited oligomerization defects in yeast as well as in patient fibroblasts. Specifically, the formation of AFG3L2Y616C complexes was impaired, both with itself and to a greater extent with paraplegin. This produced an early-onset clinical syndrome that combines the severe phenotypes of SPG7 and SCA28, in additional to other “mitochondrial” features such as oculomotor apraxia, extrapyramidal dysfunction, and myoclonic epilepsy. These findings expand the phenotype associated with AFG3L2 mutations and suggest that AFG3L2-related disease should be considered in the differential diagnosis of spastic ataxias. PMID:22022284
Measurement of the atmospheric muon flux with the NEMO Phase-1 detector
NASA Astrophysics Data System (ADS)
Aiello, S.; Ameli, F.; Amore, I.; Anghinolfi, M.; Anzalone, A.; Barbarino, G.; Battaglieri, M.; Bazzotti, M.; Bersani, A.; Beverini, N.; Biagi, S.; Bonori, M.; Bouhadef, B.; Brunoldi, M.; Cacopardo, G.; Capone, A.; Caponetto, L.; Carminati, G.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Cordelli, M.; Costa, M.; D'Amico, A.; De Bonis, G.; De Marzo, C.; De Rosa, G.; De Ruvo, G.; De Vita, R.; Distefano, C.; Falchini, E.; Flaminio, V.; Fratini, K.; Gabrielli, A.; Galatà, S.; Gandolfi, E.; Giacomelli, G.; Giorgi, F.; Giovanetti, G.; Grimaldi, A.; Habel, R.; Imbesi, M.; Kulikovsky, V.; Lattuada, D.; Leonora, E.; Lonardo, A.; Lo Presti, D.; Lucarelli, F.; Marinelli, A.; Margiotta, A.; Martini, A.; Masullo, R.; Migneco, E.; Minutoli, S.; Morganti, M.; Musico, P.; Musumeci, M.; Nicolau, C. A.; Orlando, A.; Osipenko, M.; Papaleo, R.; Pappalardo, V.; Piattelli, P.; Piombo, D.; Raia, G.; Randazzo, N.; Reito, S.; Ricco, G.; Riccobene, G.; Ripani, M.; Rovelli, A.; Ruppi, M.; Russo, G. V.; Russo, S.; Sapienza, P.; Sciliberto, D.; Sedita, M.; Shirokov, E.; Simeone, F.; Sipala, V.; Spurio, M.; Taiuti, M.; Trasatti, L.; Urso, S.; Vecchi, M.; Vicini, P.; Wischnewski, R.
2010-05-01
The NEMO Collaboration installed and operated an underwater detector including prototypes of the critical elements of a possible underwater km 3 neutrino telescope: a four-floor tower (called Mini-Tower) and a Junction Box. The detector was developed to test some of the main systems of the km 3 detector, including the data transmission, the power distribution, the timing calibration and the acoustic positioning systems as well as to verify the capabilities of a single tridimensional detection structure to reconstruct muon tracks. We present results of the analysis of the data collected with the NEMO Mini-Tower. The position of photomultiplier tubes (PMTs) is determined through the acoustic position system. Signals detected with PMTs are used to reconstruct the tracks of atmospheric muons. The angular distribution of atmospheric muons was measured and results compared to Monte Carlo simulations.
The trigger and data acquisition for the NEMO-Phase 2 tower
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pellegrino, C.; Biagi, S.; Fusco, L. A.
In the framework of the Phase 2 of the NEMO neutrino telescope project, a tower with 32 optical modules is being operated since march 2013. A new scalable Trigger and Data Acquisition System (TriDAS) has been developed and extensively tested with the data from this tower. Adopting the all-data-to-shore concept, the NEMO TriDAS is optimized to deal with a continuous data-stream from off-shore to on-shore with a large bandwidth. The TriDAS consists of four computing layers: (i) data aggregation of isochronal hits from all optical modules; (ii) data filtering by means of concurrent trigger algorithms; (iii) composition of the filteredmore » events into post-trigger files; (iv) persistent data storage. The TriDAS implementation is reported together with a review of dedicated on-line monitoring tools.« less
De Mori, Roberta; Romani, Marta; D'Arrigo, Stefano; Zaki, Maha S; Lorefice, Elisa; Tardivo, Silvia; Biagini, Tommaso; Stanley, Valentina; Musaev, Damir; Fluss, Joel; Micalizzi, Alessia; Nuovo, Sara; Illi, Barbara; Chiapparini, Luisa; Di Marcotullio, Lucia; Issa, Mahmoud Y; Anello, Danila; Casella, Antonella; Ginevrino, Monia; Leggins, Autumn Sa'na; Roosing, Susanne; Alfonsi, Romina; Rosati, Jessica; Schot, Rachel; Mancini, Grazia Maria Simonetta; Bertini, Enrico; Dobyns, William B; Mazza, Tommaso; Gleeson, Joseph G; Valente, Enza Maria
2017-10-05
The Sonic Hedgehog (SHH) pathway is a key signaling pathway orchestrating embryonic development, mainly of the CNS and limbs. In vertebrates, SHH signaling is mediated by the primary cilium, and genetic defects affecting either SHH pathway members or ciliary proteins cause a spectrum of developmental disorders. SUFU is the main negative regulator of the SHH pathway and is essential during development. Indeed, Sufu knock-out is lethal in mice, and recessive pathogenic variants of this gene have never been reported in humans. Through whole-exome sequencing in subjects with Joubert syndrome, we identified four children from two unrelated families carrying homozygous missense variants in SUFU. The children presented congenital ataxia and cerebellar vermis hypoplasia with elongated superior cerebellar peduncles (mild "molar tooth sign"), typical cranio-facial dysmorphisms (hypertelorism, depressed nasal bridge, frontal bossing), and postaxial polydactyly. Two siblings also showed polymicrogyria. Molecular dynamics simulation predicted random movements of the mutated residues, with loss of the native enveloping movement of the binding site around its ligand GLI3. Functional studies on cellular models and fibroblasts showed that both variants significantly reduced SUFU stability and its capacity to bind GLI3 and promote its cleavage into the repressor form GLI3R. In turn, this impaired SUFU-mediated repression of the SHH pathway, as shown by altered expression levels of several target genes. We demonstrate that germline hypomorphic variants of SUFU cause deregulation of SHH signaling, resulting in recessive developmental defects of the CNS and limbs which share features with both SHH-related disorders and ciliopathies. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Abdul-Sada, Hussein; Müller, Marietta; Mehta, Rajni; Toth, Rachel; Arthur, J Simon C; Whitehouse, Adrian; Macdonald, Andrew
2017-04-11
Merkel cell carcinoma (MCC) is a highly aggressive skin cancer with a high metastatic potential. The majority of MCC cases are caused by the Merkel cell polyomavirus (MCPyV), through expression of the virus-encoded tumour antigens. Whilst mechanisms attributing tumour antigen expression to transformation are being uncovered, little is known of the mechanisms by which MCPyV persists in the host. We previously identified the MCPyV small T antigen (tAg) as a novel inhibitor of nuclear factor kappa B (NF-kB) signalling and a modulator of the host anti-viral response. Here we demonstrate that regulation of NF-kB activation involves a previously undocumented interaction between tAg and regulatory sub-unit 1 of protein phosphatase 4 (PP4R1). Formation of a complex with PP4R1 and PP4c is required to bridge MCPyV tAg to the NEMO adaptor protein, allowing deactivation of the NF-kB pathway. Mutations in MCPyV tAg that fail to interact with components of this complex, or siRNA depletion of PP4R1, prevents tAg-mediated inhibition of NF-kB and pro-inflammatory cytokine production. Comparison of tAg binding partners from other human polyomavirus demonstrates that interactions with NEMO and PP4R1 are unique to MCPyV. Collectively, these data identify PP4R1 as a novel target for virus subversion of the host anti-viral response.
Comparative study of Arctic sea ice response from NEMO-LIM3 to two different atmospheric forcings
NASA Astrophysics Data System (ADS)
Massonnet, Francois; Fichefet, Thierry; Goosse, Hugues; Mathiot, Pierre; König Beatty, Christof; Vancoppenolle, Martin
2010-05-01
Sea ice plays a key role within the climate system as it is, e.g., an efficient barrier to transfers of heat, mass and momentum between atmosphere and ocean. In order to simulate the observed sea ice state, global Ocean General Circulation Models (OGCMs) must benefit from good quality atmospheric forcings. NEMO-LIM3 is one of those OGCMs. This model results from the coupling of the sea ice model LIM3 with the ocean model OPA. So far, the NCEP/NCAR reanalysis dataset (2-m atmospheric temperatures and 10-m wind speeds) has been used jointly with monthly climatologies of relative humidity, cloudiness and precipitation to set up and calibrate NEMO-LIM3. Clear biases in model outputs have been tentatively attributed to this forcing. Here, we investigate the consequences of using the ERA-40-based DFS4 forcing on an ORCA1 configuration (1° resolution), with focus on the Arctic sea ice. Using an adequate metric, we measure the discrepancies between the simulations resulting from the respective forcings. A particular attention is paid to the sea ice features along Siberia at the beginning of the 80s, as previous NEMO-LIM3 runs with the NCEP/NCAR forcing exhibit a significant overestimation of ice extent in this area during this time period.
Genetic variants in the LAMA5 gene in pediatric nephrotic syndrome.
Braun, Daniela A; Warejko, Jillian K; Ashraf, Shazia; Tan, Weizhen; Daga, Ankana; Schneider, Ronen; Hermle, Tobias; Jobst-Schwan, Tilman; Widmeier, Eugen; Majmundar, Amar J; Nakayama, Makiko; Schapiro, David; Rao, Jia; Schmidt, Johanna Magdalena; Hoogstraten, Charlotte A; Hugo, Hannah; Bakkaloglu, Sevcan A; Kari, Jameela A; El Desoky, Sherif; Daouk, Ghaleb; Mane, Shrikant; Lifton, Richard P; Shril, Shirlee; Hildebrandt, Friedhelm
2018-03-09
Nephrotic syndrome (NS), a chronic kidney disease, is characterized by significant loss of protein in the urine causing hypoalbuminemia and edema. In general, ∼15% of childhood-onset cases do not respond to steroid therapy and are classified as steroid-resistant NS (SRNS). In ∼30% of cases with SRNS, a causative mutation can be detected in one of 44 monogenic SRNS genes. The gene LAMA5 encodes laminin-α5, an essential component of the glomerular basement membrane. Mice with a hypomorphic mutation in the orthologous gene Lama5 develop proteinuria and hematuria. To identify additional monogenic causes of NS, we performed whole exome sequencing in 300 families with pediatric NS. In consanguineous families we applied homozygosity mapping to identify genomic candidate loci for the underlying recessive mutation. In three families, in whom mutations in known NS genes were excluded, but in whom a recessive, monogenic cause of NS was strongly suspected based on pedigree information, we identified homozygous variants of unknown significance (VUS) in the gene LAMA5. While all affected individuals had nonsyndromic NS with an early onset of disease, their clinical outcome and response to immunosuppressive therapy differed notably. We here identify recessive VUS in the gene LAMA5 in patients with partially treatment-responsive NS. More data will be needed to determine the impact of these VUS in disease management. However, familial occurrence of disease, data from genetic mapping and a mouse model that recapitulates the NS phenotypes suggest that these genetic variants may be inherited factors that contribute to the development of NS in pediatric patients.
Loss of circadian clock accelerates aging in neurodegeneration-prone mutants.
Krishnan, Natraj; Rakshit, Kuntol; Chow, Eileen S; Wentzell, Jill S; Kretzschmar, Doris; Giebultowicz, Jadwiga M
2012-03-01
Circadian clocks generate rhythms in molecular, cellular, physiological, and behavioral processes. Recent studies suggest that disruption of the clock mechanism accelerates organismal senescence and age-related pathologies in mammals. Impaired circadian rhythms are observed in many neurological diseases; however, it is not clear whether loss of rhythms is the cause or result of neurodegeneration, or both. To address this important question, we examined the effects of circadian disruption in Drosophila melanogaster mutants that display clock-unrelated neurodegenerative phenotypes. We combined a null mutation in the clock gene period (per(01)) that abolishes circadian rhythms, with a hypomorphic mutation in the carbonyl reductase gene sniffer (sni(1)), which displays oxidative stress induced neurodegeneration. We report that disruption of circadian rhythms in sni(1) mutants significantly reduces their lifespan compared to single mutants. Shortened lifespan in double mutants was coupled with accelerated neuronal degeneration evidenced by vacuolization in the adult brain. In addition, per(01)sni(1) flies showed drastically impaired vertical mobility and increased accumulation of carbonylated proteins compared to age-matched single mutant flies. Loss of per function does not affect sni mRNA expression, suggesting that these genes act via independent pathways producing additive effects. Finally, we show that per(01) mutation accelerates the onset of brain pathologies when combined with neurodegeneration-prone mutation in another gene, swiss cheese (sws(1)), which does not operate through the oxidative stress pathway. Taken together, our data suggest that the period gene may be causally involved in neuroprotective pathways in aging Drosophila. Copyright © 2011 Elsevier Inc. All rights reserved.
Dynamic hyper-editing underlies temperature adaptation in Drosophila
Ashwal-Fluss, Reut; Pandey, Varun; Levanon, Erez Y.; Kadener, Sebastian
2017-01-01
In Drosophila, A-to-I editing is prevalent in the brain, and mutations in the editing enzyme ADAR correlate with specific behavioral defects. Here we demonstrate a role for ADAR in behavioral temperature adaptation in Drosophila. Although there is a higher level of editing at lower temperatures, at 29°C more sites are edited. These sites are less evolutionarily conserved, more disperse, less likely to be involved in secondary structures, and more likely to be located in exons. Interestingly, hypomorph mutants for ADAR display a weaker transcriptional response to temperature changes than wild-type flies and a highly abnormal behavioral response upon temperature increase. In sum, our data shows that ADAR is essential for proper temperature adaptation, a key behavior trait that is essential for survival of flies in the wild. Moreover, our results suggest a more general role of ADAR in regulating RNA secondary structures in vivo. PMID:28746393
Structural and Functional Recovery of Sensory Cilia in C. elegans IFT Mutants upon Aging.
Cornils, Astrid; Maurya, Ashish K; Tereshko, Lauren; Kennedy, Julie; Brear, Andrea G; Prahlad, Veena; Blacque, Oliver E; Sengupta, Piali
2016-12-01
The majority of cilia are formed and maintained by the highly conserved process of intraflagellar transport (IFT). Mutations in IFT genes lead to ciliary structural defects and systemic disorders termed ciliopathies. Here we show that the severely truncated sensory cilia of hypomorphic IFT mutants in C. elegans transiently elongate during a discrete period of adult aging leading to markedly improved sensory behaviors. Age-dependent restoration of cilia morphology occurs in structurally diverse cilia types and requires IFT. We demonstrate that while DAF-16/FOXO is dispensable, the age-dependent suppression of cilia phenotypes in IFT mutants requires cell-autonomous functions of the HSF1 heat shock factor and the Hsp90 chaperone. Our results describe an unexpected role of early aging and protein quality control mechanisms in suppressing ciliary phenotypes of IFT mutants, and suggest possible strategies for targeting subsets of ciliopathies.
Structural and Functional Recovery of Sensory Cilia in C. elegans IFT Mutants upon Aging
Kennedy, Julie; Brear, Andrea G.; Prahlad, Veena; Blacque, Oliver E.; Sengupta, Piali
2016-01-01
The majority of cilia are formed and maintained by the highly conserved process of intraflagellar transport (IFT). Mutations in IFT genes lead to ciliary structural defects and systemic disorders termed ciliopathies. Here we show that the severely truncated sensory cilia of hypomorphic IFT mutants in C. elegans transiently elongate during a discrete period of adult aging leading to markedly improved sensory behaviors. Age-dependent restoration of cilia morphology occurs in structurally diverse cilia types and requires IFT. We demonstrate that while DAF-16/FOXO is dispensable, the age-dependent suppression of cilia phenotypes in IFT mutants requires cell-autonomous functions of the HSF1 heat shock factor and the Hsp90 chaperone. Our results describe an unexpected role of early aging and protein quality control mechanisms in suppressing ciliary phenotypes of IFT mutants, and suggest possible strategies for targeting subsets of ciliopathies. PMID:27906968
Shannon, Edward A
2010-01-01
Winsor McCay’s Little Nemo in Slumberland anticipates Robert Crumb’s work. McCay’s innocent dreamscapes seem antithetical to the sexually explicit work of anti-capitalist Crumb, but Nemo looks forward to Crumb in subject and form. Nemo’s presentation of class, gender, and race, and its pre-Freudian sensibility are ironic counterpoints to Crumb’s political, Freudian comix.
Fanconi anemia: causes and consequences of genetic instability.
Kalb, R; Neveling, K; Nanda, I; Schindler, D; Hoehn, H
2006-01-01
Fanconi anemia (FA) is a rare recessive disease that reflects the cellular and phenotypic consequences of genetic instability: growth retardation, congenital malformations, bone marrow failure, high risk of neoplasia, and premature aging. At the cellular level, manifestations of genetic instability include chromosomal breakage, cell cycle disturbance, and increased somatic mutation rates. FA cells are exquisitely sensitive towards oxygen and alkylating drugs such as mitomycin C or diepoxybutane, pointing to a function of FA genes in the defense against reactive oxygen species and other DNA damaging agents. FA is caused by biallelic mutations in at least 12 different genes which appear to function in the maintenance of genomic stability. Eight of the FA proteins form a nuclear core complex with a catalytic function involving ubiquitination of the central FANCD2 protein. The posttranslational modification of FANCD2 promotes its accumulation in nuclear foci, together with known DNA maintenance proteins such as BRCA1, BRCA2, and the RAD51 recombinase. Biallelic mutations in BRCA2 cause a severe FA-like phenotype, as do biallelic mutations in FANCD2. In fact, only leaky or hypomorphic mutations in this central group of FA genes appear to be compatible with life birth and survival. The newly discovered FANCJ (= BRIP1) and FANCM (= Hef ) genes correspond to known DNA-maintenance genes (helicase resp. helicase-associated endonuclease for fork-structured DNA). These genes provide the most convincing evidence to date of a direct involvement of FA genes in DNA repair functions associated with the resolution of DNA crosslinks and stalled replication forks. Even though genetic instability caused by mutational inactivation of the FANC genes has detrimental effects for the majority of FA patients, around 20% of patients appear to benefit from genetic instability since genetic instability also increases the chance of somatic reversion of their constitutional mutations. Intragenic crossover, gene conversion, back mutation and compensating mutations in cis have all been observed in revertant, and, consequently, mosaic FA-patients, leading to improved bone marrow function. There probably is no other experiment of nature in our species in which causes and consequences of genetic instability, including the role of reactive oxygen species, can be better documented and explored than in FA.
Fgfr1 regulates patterning of the pharyngeal region
Trokovic, Nina; Trokovic, Ras; Mai, Petra; Partanen, Juha
2003-01-01
Development of the pharyngeal region depends on the interaction and integration of different cell populations, including surface ectoderm, foregut endoderm, paraxial mesoderm, and neural crest. Mice homozygous for a hypomorphic allele of Fgfr1 have craniofacial defects, some of which appeared to result from a failure in the early development of the second branchial arch. A stream of neural crest cells was found to originate from the rhombomere 4 region and migrate toward the second branchial arch in the mutants. Neural crest cells mostly failed to enter the second arch, however, but accumulated in a region proximal to it. Both rescue of the hypomorphic Fgfr1 allele and inactivation of a conditional Fgfr1 allele specifically in neural crest cells indicated that Fgfr1 regulates the entry of neural crest cells into the second branchial arch non-cell-autonomously. Gene expression in the pharyngeal ectoderm overlying the developing second branchial arch was affected in the hypomorphic Fgfr1 mutants at a stage prior to neural crest entry. Our results indicate that Fgfr1 patterns the pharyngeal region to create a permissive environment for neural crest cell migration. PMID:12514106
Schmidts, Miriam; Arts, Heleen H; Bongers, Ernie M H F; Yap, Zhimin; Oud, Machteld M; Antony, Dinu; Duijkers, Lonneke; Emes, Richard D; Stalker, Jim; Yntema, Jan-Bart L; Plagnol, Vincent; Hoischen, Alexander; Gilissen, Christian; Forsythe, Elisabeth; Lausch, Ekkehart; Veltman, Joris A; Roeleveld, Nel; Superti-Furga, Andrea; Kutkowska-Kazmierczak, Anna; Kamsteeg, Erik-Jan; Elçioğlu, Nursel; van Maarle, Merel C; Graul-Neumann, Luitgard M; Devriendt, Koenraad; Smithson, Sarah F; Wellesley, Diana; Verbeek, Nienke E; Hennekam, Raoul C M; Kayserili, Hulya; Scambler, Peter J; Beales, Philip L; Knoers, Nine VAM; Roepman, Ronald; Mitchison, Hannah M
2013-01-01
Background Jeune asphyxiating thoracic dystrophy (JATD) is a rare, often lethal, recessively inherited chondrodysplasia characterised by shortened ribs and long bones, sometimes accompanied by polydactyly, and renal, liver and retinal disease. Mutations in intraflagellar transport (IFT) genes cause JATD, including the IFT dynein-2 motor subunit gene DYNC2H1. Genetic heterogeneity and the large DYNC2H1 gene size have hindered JATD genetic diagnosis. Aims and methods To determine the contribution to JATD we screened DYNC2H1 in 71 JATD patients JATD patients combining SNP mapping, Sanger sequencing and exome sequencing. Results and conclusions We detected 34 DYNC2H1 mutations in 29/71 (41%) patients from 19/57 families (33%), showing it as a major cause of JATD especially in Northern European patients. This included 13 early protein termination mutations (nonsense/frameshift, deletion, splice site) but no patients carried these in combination, suggesting the human phenotype is at least partly hypomorphic. In addition, 21 missense mutations were distributed across DYNC2H1 and these showed some clustering to functional domains, especially the ATP motor domain. DYNC2H1 patients largely lacked significant extra-skeletal involvement, demonstrating an important genotype–phenotype correlation in JATD. Significant variability exists in the course and severity of the thoracic phenotype, both between affected siblings with identical DYNC2H1 alleles and among individuals with different alleles, which suggests the DYNC2H1 phenotype might be subject to modifier alleles, non-genetic or epigenetic factors. Assessment of fibroblasts from patients showed accumulation of anterograde IFT proteins in the ciliary tips, confirming defects similar to patients with other retrograde IFT machinery mutations, which may be of undervalued potential for diagnostic purposes. PMID:23456818
Zhou, Qing; Wang, Hongying; Schwartz, Daniella M; Stoffels, Monique; Park, Yong Hwan; Zhang, Yuan; Yang, Dan; Demirkaya, Erkan; Takeuchi, Masaki; Tsai, Wanxia Li; Lyons, Jonathan J; Yu, Xiaomin; Ouyang, Claudia; Chen, Celeste; Chin, David T; Zaal, Kristien; Chandrasekharappa, Settara C; P Hanson, Eric; Yu, Zhen; Mullikin, James C; Hasni, Sarfaraz A; Wertz, Ingrid E; Ombrello, Amanda K; Stone, Deborah L; Hoffmann, Patrycja; Jones, Anne; Barham, Beverly K; Leavis, Helen L; van Royen-Kerkof, Annet; Sibley, Cailin; Batu, Ezgi D; Gül, Ahmet; Siegel, Richard M; Boehm, Manfred; Milner, Joshua D; Ozen, Seza; Gadina, Massimo; Chae, JaeJin; Laxer, Ronald M; Kastner, Daniel L; Aksentijevich, Ivona
2016-01-01
Systemic autoinflammatory diseases are driven by abnormal activation of innate immunity. Herein we describe a new disease caused by high-penetrance heterozygous germline mutations in TNFAIP3, which encodes the NF-κB regulatory protein A20, in six unrelated families with early-onset systemic inflammation. The disorder resembles Behçet's disease, which is typically considered a polygenic disorder with onset in early adulthood. A20 is a potent inhibitor of the NF-κB signaling pathway. Mutant, truncated A20 proteins are likely to act through haploinsufficiency because they do not exert a dominant-negative effect in overexpression experiments. Patient-derived cells show increased degradation of IκBα and nuclear translocation of the NF-κB p65 subunit together with increased expression of NF-κB-mediated proinflammatory cytokines. A20 restricts NF-κB signals via its deubiquitinase activity. In cells expressing mutant A20 protein, there is defective removal of Lys63-linked ubiquitin from TRAF6, NEMO and RIP1 after stimulation with tumor necrosis factor (TNF). NF-κB-dependent proinflammatory cytokines are potential therapeutic targets for the patients with this disease.
Gros, C-I; Clauss, F; Obry, F; Manière, M C; Schmittbuhl, M
2010-04-01
The aim of this study was to provide a quantification of taurodontism in Hypohidrotic Ectodermal Dysplasia (HED) and to report its occurrence in a cohort of HED patients to assess phenotypic-genotypic correlations. Of 68 HED patients retrospectively reviewed, 16 patients aged 7-51 years were selected and compared with a control sample (n = 351). The pulp surface index of the first lower permanent molar was calculated from the panoramic radiograph of each individual, and statistical comparisons between the HED patients and the control sample were performed. Whatever the genetic disorder, 81.25% of the HED patients exhibited a relative enlargement (>or=1 s.d.) of the pulp. Major deviations (>5 s.d.) were respectively related to men affected by large deletion of the EDA gene or missense mutation. The autosomal recessive form was linked to a relative moderate pulp enlargement (3.44 s.d.). In NEMO forms, the increase of pulp size in men appeared to be less marked than in EDA mutations. This study provides for the first time an objective assessment of pulp enlargement in HED patients, and the various degrees of taurodontism depicted could be interesting dental phenotypic markers of HED forms.
Slp-76 is a critical determinant of NK-cell mediated recognition of missing-self targets.
Lampe, Kristin; Endale, Mehari; Cashman, Siobhan; Fang, Hao; Mattner, Jochen; Hildeman, David; Hoebe, Kasper
2015-07-01
Absence of MHC class I expression is an important mechanism by which NK cells recognize a variety of target cells, yet the pathways underlying "missing-self" recognition, including the involvement of activating receptors, remain poorly understood. Using ethyl-N-nitrosourea mutagenesis in mice, we identified a germline mutant, designated Ace, with a marked defect in NK cell mediated recognition and elimination of "missing-self" targets. The causative mutation was linked to chromosome 11 and identified as a missense mutation (Thr428Ile) in the SH2 domain of Slp-76-a critical adapter molecule downstream of ITAM-containing surface receptors. The Slp-76 Ace mutation behaved as a hypomorphic allele-while no major defects were observed in conventional T-cell development/function, a marked defect in NK cell mediated elimination of β2-microglobulin (β2M) deficient target cells was observed. Further studies revealed Slp-76 to control NK-cell receptor expression and maturation; however, activation of Slp-76(ace/ace) NK cells through ITAM-containing NK-cell receptors or allogeneic/tumor target cells appeared largely unaffected. Imagestream analysis of the NK-β2M(-/-) target cell synapse revealed a specific defect in actin recruitment to the conjugate synapse in Slp-76(ace/ace) NK cells. Overall these studies establish Slp-76 as a critical determinant of NK-cell development and NK cell mediated elimination of missing-self target cells in mice. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Slp-76 is a critical determinant of NK cell-mediated recognition of missing-self targets
Lampe, Kristin; Endale, Mehari; Cashman, Siobhan; Fang, Hao; Mattner, Jochen; Hildeman, David; Hoebe, Kasper
2015-01-01
Absence of MHC class I expression is an important mechanism by which NK cells recognize a variety of target cells, yet the pathways underlying “missing-self” recognition, including the involvement of activating receptors, remain poorly understood. Using ENU mutagenesis in mice, we identified a germline mutant, designated Ace, with a marked defect in NK cell-mediated recognition and elimination of “missing-self” targets. The causative mutation was linked to chromosome 11 and identified as a missense mutation [Thr428Ile] in the SH2 domain of Slp-76—a critical adapter molecule downstream of ITAM-containing surface receptors. The Slp-76 Ace mutation behaved as a hypomorphic allele—while no major defects were observed in conventional T cell development/function, a marked defect in NK cell-mediated elimination of β2-Microglobulin (β2M)-deficient target cells was observed. Further studies revealed Slp-76 to control NK cell receptor expression and maturation, however, activation of Slp-76ace/ace NK cells through ITAM-containing NK cell receptors or allogeneic/tumor target cells appeared largely unaffected. Imagestream analysis of the NK-β2M−/− target cell synapse, revealed a specific defect in actin recruitment to the conjugate synapse in Slp-76ace/ace NK cells. Overall these studies establish Slp-76 as a critical determinant of NK cell development and NK cell-mediated elimination of missing-self target cells. PMID:25929249
Blanchette, Cassandra R; Thackeray, Andrea; Perrat, Paola N; Hekimi, Siegfried; Bénard, Claire Y
2017-01-01
The regulation of cell migration is essential to animal development and physiology. Heparan sulfate proteoglycans shape the interactions of morphogens and guidance cues with their respective receptors to elicit appropriate cellular responses. Heparan sulfate proteoglycans consist of a protein core with attached heparan sulfate glycosaminoglycan chains, which are synthesized by glycosyltransferases of the exostosin (EXT) family. Abnormal HS chain synthesis results in pleiotropic consequences, including abnormal development and tumor formation. In humans, mutations in either of the exostosin genes EXT1 and EXT2 lead to osteosarcomas or multiple exostoses. Complete loss of any of the exostosin glycosyltransferases in mouse, fish, flies and worms leads to drastic morphogenetic defects and embryonic lethality. Here we identify and study previously unavailable viable hypomorphic mutations in the two C. elegans exostosin glycosyltransferases genes, rib-1 and rib-2. These partial loss-of-function mutations lead to a severe reduction of HS levels and result in profound but specific developmental defects, including abnormal cell and axonal migrations. We find that the expression pattern of the HS copolymerase is dynamic during embryonic and larval morphogenesis, and is sustained throughout life in specific cell types, consistent with HSPGs playing both developmental and post-developmental roles. Cell-type specific expression of the HS copolymerase shows that HS elongation is required in both the migrating neuron and neighboring cells to coordinate migration guidance. Our findings provide insights into general principles underlying HSPG function in development.
Borbon, Ivan; Campbell, Erin; Ke, Wangjing; Erickson, Robert P
2012-08-01
We have previously shown that decreased dosage of Niemann-Pick C1 (Npc1) protein, caused by heterozygosity at the null mutation, Npc1 (nih), locus, causes altered lipid metabolism in mice. When studied on the "lean" BALB/cJ genetic background, the decreased protein was associated with no weight changes in either males or females when on a regular diet but increased weights and adiposity when on a high fat diet Jelinek et al. (Obesity 18: 1457-1459, 2010, Gene 491:128-134, 2012). When the heterozygotes were studied on a mixed C57BL/6J, BALB/cJ background, increased weight and adiposity were also found on a regular diet (sexes pooled Jelinek et al. [Hum Molec Genet 20:312-321, 2011]). We find somewhat different results when the hypomorphic Npc1 mutation, Npc1 (nmf164), is studied on a pure C57BL/6J, "metabolic syndrome" genetic background with male, but not female, heterozygotes having lower weights on the regular diet. The result does not seem to be due to the difference in the two mutations as heterozygous Npc1 (nmf164) mice on the BALB/cJ background acted like the null mutant heterozygotes. Studies of glucose tolerance, liver enzymes, liver triglycerides and fat deposition, and adipose tissue caveolin 1 levels did not disclose reasons for these differing results.
Wang, Jinyong; Liu, Yangang; Li, Zeyang; Wang, Zhongde; Tan, Li Xuan; Ryu, Myung-Jeom; Meline, Benjamin; Du, Juan; Young, Ken H.; Ranheim, Erik; Chang, Qiang
2011-01-01
Both monoallelic and biallelic oncogenic NRAS mutations are identified in human leukemias, suggesting a dose-dependent role of oncogenic NRAS in leukemogenesis. Here, we use a hypomorphic oncogenic Nras allele and a normal oncogenic Nras allele (Nras G12Dhypo and Nras G12D, respectively) to create a gene dose gradient ranging from 25% to 200% of endogenous Nras G12D/+. Mice expressing Nras G12Dhypo/G12Dhypo develop normally and are tumor-free, whereas early embryonic expression of Nras G12D/+ is lethal. Somatic expression of Nras G12D/G12D but not Nras G12D/+ leads to hyperactivation of ERK, excessive proliferation of myeloid progenitors, and consequently an acute myeloproliferative disease. Using a bone marrow transplant model, we previously showed that ∼ 95% of animals receiving Nras G12D/+ bone marrow cells develop chronic myelomonocytic leukemia (CMML), while ∼ 8% of recipients develop acute T-cell lymphoblastic leukemia/lymphoma [TALL] (TALL-het). Here we demonstrate that 100% of recipients transplanted with Nras G12D/G12D bone marrow cells develop TALL (TALL-homo). Although both TALL-het and -homo tumors acquire Notch1 mutations and are sensitive to a γ-secretase inhibitor, endogenous Nras G12D/+ signaling promotes TALL through distinct genetic mechanism(s) from Nras G12D/G12D. Our data indicate that the tumor transformation potential of endogenous oncogenic Nras is both dose- and cell type-dependent. PMID:21586752
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bin; He, Lei; Dong, Hongbin
2011-07-01
Highlights: {yields} The mouse Slc39a8 gene encodes the ZIP8 transporter. {yields} ZIP8 functions endogenously as a electroneutral Zn{sup 2+}/(HCO{sub 3}{sup -}){sub 2} symporter. {yields} A Slc39a8(neo/neo) hypomorph mouse, due to retention of the neo mini-gene, has been created. {yields} ZIP8 expression in utero is {approx}90% decreased in all tissues examined. {yields} This mouse model will be useful for studying developmental and in utero physiological functions of ZIP8. -- Abstract: Previously this laboratory has identified the mouse Slc39a8 gene encoding the ZIP8 transporter, important in cadmium uptake. ZIP8 functions endogenously as a electroneutral Zn{sup 2+}/(HCO{sub 3}{sup -}){sub 2} symporter, moving bothmore » ions into the cell. The overall physiological importance of ZIP8 remains unclear. Herein we describe generation of a mouse line carrying the Slc39a8(neo) allele, containing the Frt-flanked neomycin-resistance (neo) mini-cassette in intron 3 and loxP sites in introns 3 and 6. Cre recombinase functions correctly in Escherichia coli and in adeno-Cre-infected mouse fetal fibroblasts, but does not function in the intact mouse for reasons not clear. Slc39a8(neo) is a hypomorphic allele, because Slc39a8(neo/neo) homozygotes exhibit dramatically decreased ZIP8 expression in embryo, fetus, and visceral yolk sac - in comparison to their littermate wild-type controls. This ZIP8 hypomorph will be instrumental in studying developmental and in utero physiological functions of the ZIP8 transporter.« less
Korner, Germaine; Noain, Daniela; Ying, Ming; Hole, Magnus; Flydal, Marte I; Scherer, Tanja; Allegri, Gabriella; Rassi, Anahita; Fingerhut, Ralph; Becu-Villalobos, Damasia; Pillai, Samyuktha; Wueest, Stephan; Konrad, Daniel; Lauber-Biason, Anna; Baumann, Christian R; Bindoff, Laurence A; Martinez, Aurora; Thöny, Beat
2015-10-01
Tyrosine hydroxylase catalyses the hydroxylation of L-tyrosine to l-DOPA, the rate-limiting step in the synthesis of catecholamines. Mutations in the TH gene encoding tyrosine hydroxylase are associated with the autosomal recessive disorder tyrosine hydroxylase deficiency, which manifests phenotypes varying from infantile parkinsonism and DOPA-responsive dystonia, also termed type A, to complex encephalopathy with perinatal onset, termed type B. We generated homozygous Th knock-in mice with the mutation Th-p.R203H, equivalent to the most recurrent human mutation associated with type B tyrosine hydroxylase deficiency (TH-p.R233H), often unresponsive to l-DOPA treatment. The Th knock-in mice showed normal survival and food intake, but hypotension, hypokinesia, reduced motor coordination, wide-based gate and catalepsy. This phenotype was associated with a gradual loss of central catecholamines and the serious manifestations of motor impairment presented diurnal fluctuation but did not improve with standard l-DOPA treatment. The mutant tyrosine hydroxylase enzyme was unstable and exhibited deficient stabilization by catecholamines, leading to decline of brain tyrosine hydroxylase-immunoreactivity in the Th knock-in mice. In fact the substantia nigra presented an almost normal level of mutant tyrosine hydroxylase protein but distinct absence of the enzyme was observed in the striatum, indicating a mutation-associated mislocalization of tyrosine hydroxylase in the nigrostriatal pathway. This hypomorphic mouse model thus provides understanding on pathomechanisms in type B tyrosine hydroxylase deficiency and a platform for the evaluation of novel therapeutics for movement disorders with loss of dopaminergic input to the striatum. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hypomorphic temperature-sensitive alleles of NSDHL cause CK syndrome.
McLarren, Keith W; Severson, Tesa M; du Souich, Christèle; Stockton, David W; Kratz, Lisa E; Cunningham, David; Hendson, Glenda; Morin, Ryan D; Wu, Diane; Paul, Jessica E; An, Jianghong; Nelson, Tanya N; Chou, Athena; DeBarber, Andrea E; Merkens, Louise S; Michaud, Jacques L; Waters, Paula J; Yin, Jingyi; McGillivray, Barbara; Demos, Michelle; Rouleau, Guy A; Grzeschik, Karl-Heinz; Smith, Raffaella; Tarpey, Patrick S; Shears, Debbie; Schwartz, Charles E; Gecz, Jozef; Stratton, Michael R; Arbour, Laura; Hurlburt, Jane; Van Allen, Margot I; Herman, Gail E; Zhao, Yongjun; Moore, Richard; Kelley, Richard I; Jones, Steven J M; Steiner, Robert D; Raymond, F Lucy; Marra, Marco A; Boerkoel, Cornelius F
2010-12-10
CK syndrome (CKS) is an X-linked recessive intellectual disability syndrome characterized by dysmorphism, cortical brain malformations, and an asthenic build. Through an X chromosome single-nucleotide variant scan in the first reported family, we identified linkage to a 5 Mb region on Xq28. Sequencing of this region detected a segregating 3 bp deletion (c.696_698del [p.Lys232del]) in exon 7 of NAD(P) dependent steroid dehydrogenase-like (NSDHL), a gene that encodes an enzyme in the cholesterol biosynthesis pathway. We also found that males with intellectual disability in another reported family with an NSDHL mutation (c.1098 dup [p.Arg367SerfsX33]) have CKS. These two mutations, which alter protein folding, show temperature-sensitive protein stability and complementation in Erg26-deficient yeast. As described for the allelic disorder CHILD syndrome, cells and cerebrospinal fluid from CKS patients have increased methyl sterol levels. We hypothesize that methyl sterol accumulation, not only cholesterol deficiency, causes CKS, given that cerebrospinal fluid cholesterol, plasma cholesterol, and plasma 24S-hydroxycholesterol levels are normal in males with CKS. In summary, CKS expands the spectrum of cholesterol-related disorders and insight into the role of cholesterol in human development. Copyright © 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Hypomorphism in human NSMCE2 linked to primordial dwarfism and insulin resistance
Payne, Felicity; Colnaghi, Rita; Rocha, Nuno; Seth, Asha; Harris, Julie; Carpenter, Gillian; Bottomley, William E.; Wheeler, Eleanor; Wong, Stephen; Saudek, Vladimir; Savage, David; O’Rahilly, Stephen; Carel, Jean-Claude; Barroso, Inês; O’Driscoll, Mark; Semple, Robert
2014-01-01
Structural maintenance of chromosomes (SMC) complexes are essential for maintaining chromatin structure and regulating gene expression. Two the three known SMC complexes, cohesin and condensin, are important for sister chromatid cohesion and condensation, respectively; however, the function of the third complex, SMC5–6, which includes the E3 SUMO-ligase NSMCE2 (also widely known as MMS21) is less clear. Here, we characterized 2 patients with primordial dwarfism, extreme insulin resistance, and gonadal failure and identified compound heterozygous frameshift mutations in NSMCE2. Both mutations reduced NSMCE2 expression in patient cells. Primary cells from one patient showed increased micronucleus and nucleoplasmic bridge formation, delayed recovery of DNA synthesis, and reduced formation of foci containing Bloom syndrome helicase (BLM) after hydroxyurea-induced replication fork stalling. These nuclear abnormalities in patient dermal fibroblast were restored by expression of WT NSMCE2, but not a mutant form lacking SUMO-ligase activity. Furthermore, in zebrafish, knockdown of the NSMCE2 ortholog produced dwarfism, which was ameliorated by reexpression of WT, but not SUMO-ligase–deficient NSMCE. Collectively, these findings support a role for NSMCE2 in recovery from DNA damage and raise the possibility that loss of its function produces dwarfism through reduced tolerance of replicative stress. PMID:25105364
Hypomorphism in human NSMCE2 linked to primordial dwarfism and insulin resistance.
Payne, Felicity; Colnaghi, Rita; Rocha, Nuno; Seth, Asha; Harris, Julie; Carpenter, Gillian; Bottomley, William E; Wheeler, Eleanor; Wong, Stephen; Saudek, Vladimir; Savage, David; O'Rahilly, Stephen; Carel, Jean-Claude; Barroso, Inês; O'Driscoll, Mark; Semple, Robert
2014-09-01
Structural maintenance of chromosomes (SMC) complexes are essential for maintaining chromatin structure and regulating gene expression. Two the three known SMC complexes, cohesin and condensin, are important for sister chromatid cohesion and condensation, respectively; however, the function of the third complex, SMC5-6, which includes the E3 SUMO-ligase NSMCE2 (also widely known as MMS21) is less clear. Here, we characterized 2 patients with primordial dwarfism, extreme insulin resistance, and gonadal failure and identified compound heterozygous frameshift mutations in NSMCE2. Both mutations reduced NSMCE2 expression in patient cells. Primary cells from one patient showed increased micronucleus and nucleoplasmic bridge formation, delayed recovery of DNA synthesis, and reduced formation of foci containing Bloom syndrome helicase (BLM) after hydroxyurea-induced replication fork stalling. These nuclear abnormalities in patient dermal fibroblast were restored by expression of WT NSMCE2, but not a mutant form lacking SUMO-ligase activity. Furthermore, in zebrafish, knockdown of the NSMCE2 ortholog produced dwarfism, which was ameliorated by reexpression of WT, but not SUMO-ligase-deficient NSMCE. Collectively, these findings support a role for NSMCE2 in recovery from DNA damage and raise the possibility that loss of its function produces dwarfism through reduced tolerance of replicative stress.
GPR48 Increases Mineralocorticoid Receptor Gene Expression
Wang, Jiqiu; Li, Xiaoying; Ke, Yingying; Lu, Yan; Wang, Feng; Fan, Nengguang; Sun, Haiyan; Zhang, Huijie; Liu, Ruixin; Yang, Jun; Ye, Lei; Liu, Mingyao
2012-01-01
Aldosterone and the mineralocorticoid receptor (MR) are critical to the maintenance of electrolyte and BP homeostasis. Mutations in the MR cause aldosterone resistance known as pseudohypoaldosteronism type 1 (PHA1); however, some cases consistent with PHA1 do not exhibit known gene mutations, suggesting the possibility of alternative genetic variants. We observed that G protein–coupled receptor 48 (Gpr48/Lgr4) hypomorphic mutant (Gpr48m/m) mice had hyperkalemia and increased water loss and salt excretion despite elevated plasma aldosterone levels, suggesting aldosterone resistance. When we challenged the mice with a low-sodium diet, these features became more obvious; the mice also developed hyponatremia and increased renin expression and activity, resembling a mild state of PHA1. There was marked renal downregulation of MR and its downstream targets (e.g., the α-subunit of the amiloride-sensitive epithelial sodium channel), which could provide a mechanism for the aldosterone resistance. We identified a noncanonical cAMP-responsive element located in the MR promoter and demonstrated that GPR48 upregulates MR expression via the cAMP/protein kinase A pathway in vitro. Taken together, our data demonstrate that GPR48 enhances aldosterone responsiveness by activating MR expression, suggesting that GPR48 contributes to homeostasis of electrolytes and BP and may be a candidate gene for PHA1. PMID:22135314
A Hop-Sensitive Mechanism to Establish Route Optimization in Mobile Networks
NASA Astrophysics Data System (ADS)
Gnanaraj, J. Isac; Newton, P. Calduwel; Arockiam, L.; Kim, Tai-Hoon
The mobile network plays a vital role in mobile communications. It supports both host mobility and network mobility. The mobile network which supports network mobility can be called as NEMO. The NEMO refers to NEtwork MObility or mobile network that moves. Though NEMO provides many supports, it also suffers due to Quality of Service (QoS) issues. One such issue is Route Optimization (RO). When a Mobile Node (MN) is away from Home Network (HN), it will send a binding update to Home Agent (HA) in HN to inform its movement. If the Correspondent Node (CN) wants to send data to MN, it will send data through HA. In this scenario, three networks such as HN, Foreign Network (FN) and Correspondent Network are involved in data transfer. The involvement of these three networks affects the QoS. This paper concentrates on some of the QoS parameters to propose a QoS mechanism to establish RO among these three networks and significantly increases performance of the mobile network.
Evaluation of the coupled COSMO-CLM+NEMO-Nordic model with focus on North and Baltic seas
NASA Astrophysics Data System (ADS)
Lenhardt, J.; Pham, T. V.; Früh, B.; Brauch, J.
2017-12-01
The region east of the Baltic Sea has been identified as a hot-spot of climate change by Giorgi, 2006, on the base of temperature and precipitation variability. For this purpose, the atmosphere model COSMO-CLM has been coupled to the ocean model NEMO, including the sea ice model LIM3, via the OASIS3-MCT coupler (Pham et al., 2014). The coupler interpolates heat, fresh water, momentum fluxes, sea level pressure and the fraction of sea ice at the interface in space and time. Our aim is to find an optimal configuration of the already existing coupled regional atmospheric-ocean model COSMO-CLM+NEMO-Nordic. So far results for the North- and Baltic seas show that the coupled run has large biases compared with the E-OBS reference data. Therefore, additional simulation evaluations are planned by the use of independent satellite observation data (e.g. Copernicus, EURO4M). We have performed a series of runs with the coupled COSMO-CLM+NEMO-Nordic model to find out about differences of model outputs due to different coupling time steps. First analyses of COSMO-CLM 2m temperatures let presume that different coupling time steps have an impact on the results of the coupled model run. Additional tests over a longer period of time are conducted to understand whether the signal-to-noise ratio could influence the bias. The results will be presented in our poster.
James, Steven W.; Banta, Travis; Barra, James; Ciraku, Lorela; Coile, Clifford; Cuda, Zach; Day, Ryan; Dixit, Cheshil; Eastlack, Steven; Giang, Anh; Goode, James; Guice, Alexis; Huff, Yulon; Humbert, Sara; Kelliher, Christina; Kobie, Julie; Kohlbrenner, Emily; Mwambutsa, Faustin; Orzechowski, Amanda; Shingler, Kristin; Spell, Casey; Anglin, Sarah Lea
2014-01-01
Control of the eukaryotic G2/M transition by CDC2/CYCLINB is tightly regulated by protein–protein interactions, protein phosphorylations, and nuclear localization of CDC2/CYCLINB. We previously reported a screen, in Aspergillus nidulans, for extragenic suppressors of nimX2cdc2 that resulted in the identification of the cold-sensitive snxA1 mutation. We demonstrate here that snxA1 suppresses defects in regulators of the CDK1 mitotic induction pathway, including nimX2cdc2, nimE6cyclinB, and nimT23cdc25, but does not suppress G2-arresting nimA1/nimA5 mutations, the S-arresting nimE10cyclinB mutation, or three other G1/S phase mutations. snxA encodes the A. nidulans homolog of Saccharomyces cerevisiae Hrb1/Gbp2; nonessential shuttling messenger RNA (mRNA)-binding proteins belonging to the serine-arginine-rich (SR) and RNA recognition motif (RRM) protein family; and human heterogeneous ribonucleoprotein-M, a spliceosomal component involved in pre-mRNA processing and alternative splicing. snxAHrb1 is nonessential, its deletion phenocopies the snxA1 mutation, and its overexpression rescues snxA1 and ΔsnxA mutant phenotypes. snxA1 and a second allele isolated in this study, snxA2, are hypomorphic mutations that result from decreased transcript and protein levels, suggesting that snxA acts normally to restrain cell cycle progression. SNXAHRB1 is predominantly nuclear, but is not retained in the nucleus during the partially closed mitosis of A. nidulans. We show that the snxA1 mutation does not suppress nimX2 by altering NIMX2CDC2/NIMECYCLINB kinase activity and that snxA1 or ΔsnxA alter localization patterns of NIMECYCLINB at the restrictive temperatures for snxA1 and nimX2. Together, these findings suggest a novel and previously unreported role of an SR/RRM family protein in cell cycle regulation, specifically in control of the CDK1 mitotic induction pathway. PMID:25104516
A defect in myoblast fusion underlies Carey-Fineman-Ziter syndrome
Di Gioia, Silvio Alessandro; Connors, Samantha; Matsunami, Norisada; Cannavino, Jessica; Rose, Matthew F.; Gilette, Nicole M.; Artoni, Pietro; de Macena Sobreira, Nara Lygia; Chan, Wai-Man; Webb, Bryn D.; Robson, Caroline D.; Cheng, Long; Van Ryzin, Carol; Ramirez-Martinez, Andres; Mohassel, Payam; Leppert, Mark; Scholand, Mary Beth; Grunseich, Christopher; Ferreira, Carlos R.; Hartman, Tyler; Hayes, Ian M.; Morgan, Tim; Markie, David M.; Fagiolini, Michela; Swift, Amy; Chines, Peter S.; Speck-Martins, Carlos E.; Collins, Francis S.; Jabs, Ethylin Wang; Bönnemann, Carsten G.; Olson, Eric N.; Andrews, Caroline V.; Barry, Brenda J.; Hunter, David G.; Mackinnon, Sarah E.; Shaaban, Sherin; Erazo, Monica; Frempong, Tamiesha; Hao, Ke; Naidich, Thomas P.; Rucker, Janet C.; Zhang, Zhongyang; Biesecker, Barbara B.; Bonnycastle, Lori L.; Brewer, Carmen C.; Brooks, Brian P.; Butman, John A.; Chien, Wade W.; Farrell, Kathleen; FitzGibbon, Edmond J.; Gropman, Andrea L.; Hutchinson, Elizabeth B.; Jain, Minal S.; King, Kelly A.; Lehky, Tanya J.; Lee, Janice; Liberton, Denise K.; Narisu, Narisu; Paul, Scott M.; Sadeghi, Neda; Snow, Joseph; Solomon, Beth; Summers, Angela; Toro, Camilo; Thurm, Audrey; Zalewski, Christopher K.; Carey, John C.; Robertson, Stephen P.; Manoli, Irini; Engle, Elizabeth C.
2017-01-01
Multinucleate cellular syncytial formation is a hallmark of skeletal muscle differentiation. Myomaker, encoded by Mymk (Tmem8c), is a well-conserved plasma membrane protein required for myoblast fusion to form multinucleated myotubes in mouse, chick, and zebrafish. Here, we report that autosomal recessive mutations in MYMK (OMIM 615345) cause Carey-Fineman-Ziter syndrome in humans (CFZS; OMIM 254940) by reducing but not eliminating MYMK function. We characterize MYMK-CFZS as a congenital myopathy with marked facial weakness and additional clinical and pathologic features that distinguish it from other congenital neuromuscular syndromes. We show that a heterologous cell fusion assay in vitro and allelic complementation experiments in mymk knockdown and mymkinsT/insT zebrafish in vivo can differentiate between MYMK wild type, hypomorphic and null alleles. Collectively, these data establish that MYMK activity is necessary for normal muscle development and maintenance in humans, and expand the spectrum of congenital myopathies to include cell-cell fusion deficits. PMID:28681861
Canonical wnt signaling regulates hematopoiesis in a dosage-dependent fashion.
Luis, Tiago C; Naber, Brigitta A E; Roozen, Paul P C; Brugman, Martijn H; de Haas, Edwin F E; Ghazvini, Mehrnaz; Fibbe, Willem E; van Dongen, Jacques J M; Fodde, Riccardo; Staal, Frank J T
2011-10-04
Canonical Wnt signaling has been implicated in the regulation of hematopoiesis. By employing a Wnt-reporter mouse, we observed that Wnt signaling is differentially activated during hematopoiesis, suggesting an important regulatory role for specific Wnt signaling levels. To investigate whether canonical Wnt signaling regulates hematopoiesis in a dosage-dependent fashion, we analyzed the effect of different mutations in the Adenomatous polyposis coli gene (Apc), a negative modulator of the canonical Wnt pathway. By combining different targeted hypomorphic alleles and a conditional deletion allele of Apc, a gradient of five different Wnt signaling levels was obtained in vivo. We here show that different, lineage-specific Wnt dosages regulate hematopoietic stem cells (HSCs), myeloid precursors, and T lymphoid precursors during hematopoiesis. Differential, lineage-specific optimal Wnt dosages provide a unifying concept that explains the differences reported among inducible gain-of-function approaches, leading to either HSC expansion or depletion of the HSC pool. Copyright © 2011 Elsevier Inc. All rights reserved.
A defect in myoblast fusion underlies Carey-Fineman-Ziter syndrome.
Di Gioia, Silvio Alessandro; Connors, Samantha; Matsunami, Norisada; Cannavino, Jessica; Rose, Matthew F; Gilette, Nicole M; Artoni, Pietro; de Macena Sobreira, Nara Lygia; Chan, Wai-Man; Webb, Bryn D; Robson, Caroline D; Cheng, Long; Van Ryzin, Carol; Ramirez-Martinez, Andres; Mohassel, Payam; Leppert, Mark; Scholand, Mary Beth; Grunseich, Christopher; Ferreira, Carlos R; Hartman, Tyler; Hayes, Ian M; Morgan, Tim; Markie, David M; Fagiolini, Michela; Swift, Amy; Chines, Peter S; Speck-Martins, Carlos E; Collins, Francis S; Jabs, Ethylin Wang; Bönnemann, Carsten G; Olson, Eric N; Carey, John C; Robertson, Stephen P; Manoli, Irini; Engle, Elizabeth C
2017-07-06
Multinucleate cellular syncytial formation is a hallmark of skeletal muscle differentiation. Myomaker, encoded by Mymk (Tmem8c), is a well-conserved plasma membrane protein required for myoblast fusion to form multinucleated myotubes in mouse, chick, and zebrafish. Here, we report that autosomal recessive mutations in MYMK (OMIM 615345) cause Carey-Fineman-Ziter syndrome in humans (CFZS; OMIM 254940) by reducing but not eliminating MYMK function. We characterize MYMK-CFZS as a congenital myopathy with marked facial weakness and additional clinical and pathologic features that distinguish it from other congenital neuromuscular syndromes. We show that a heterologous cell fusion assay in vitro and allelic complementation experiments in mymk knockdown and mymk insT/insT zebrafish in vivo can differentiate between MYMK wild type, hypomorphic and null alleles. Collectively, these data establish that MYMK activity is necessary for normal muscle development and maintenance in humans, and expand the spectrum of congenital myopathies to include cell-cell fusion deficits.
Reijns, Martin A.M.; Rabe, Björn; Rigby, Rachel E.; Mill, Pleasantine; Astell, Katy R.; Lettice, Laura A.; Boyle, Shelagh; Leitch, Andrea; Keighren, Margaret; Kilanowski, Fiona; Devenney, Paul S.; Sexton, David; Grimes, Graeme; Holt, Ian J.; Hill, Robert E.; Taylor, Martin S.; Lawson, Kirstie A.; Dorin, Julia R.; Jackson, Andrew P.
2012-01-01
Summary The presence of ribonucleotides in genomic DNA is undesirable given their increased susceptibility to hydrolysis. Ribonuclease (RNase) H enzymes that recognize and process such embedded ribonucleotides are present in all domains of life. However, in unicellular organisms such as budding yeast, they are not required for viability or even efficient cellular proliferation, while in humans, RNase H2 hypomorphic mutations cause the neuroinflammatory disorder Aicardi-Goutières syndrome. Here, we report that RNase H2 is an essential enzyme in mice, required for embryonic growth from gastrulation onward. RNase H2 null embryos accumulate large numbers of single (or di-) ribonucleotides embedded in their genomic DNA (>1,000,000 per cell), resulting in genome instability and a p53-dependent DNA-damage response. Our findings establish RNase H2 as a key mammalian genome surveillance enzyme required for ribonucleotide removal and demonstrate that ribonucleotides are the most commonly occurring endogenous nucleotide base lesion in replicating cells. PMID:22579044
Interaction between AIF and CHCHD4 Regulates Respiratory Chain Biogenesis.
Hangen, Emilie; Féraud, Olivier; Lachkar, Sylvie; Mou, Haiwei; Doti, Nunzianna; Fimia, Gian Maria; Lam, Ngoc-Vy; Zhu, Changlian; Godin, Isabelle; Muller, Kevin; Chatzi, Afroditi; Nuebel, Esther; Ciccosanti, Fabiola; Flamant, Stéphane; Bénit, Paule; Perfettini, Jean-Luc; Sauvat, Allan; Bennaceur-Griscelli, Annelise; Ser-Le Roux, Karine; Gonin, Patrick; Tokatlidis, Kostas; Rustin, Pierre; Piacentini, Mauro; Ruvo, Menotti; Blomgren, Klas; Kroemer, Guido; Modjtahedi, Nazanine
2015-06-18
Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein that, beyond its apoptotic function, is required for the normal expression of major respiratory chain complexes. Here we identified an AIF-interacting protein, CHCHD4, which is the central component of a redox-sensitive mitochondrial intermembrane space import machinery. Depletion or hypomorphic mutation of AIF caused a downregulation of CHCHD4 protein by diminishing its mitochondrial import. CHCHD4 depletion sufficed to induce a respiratory defect that mimicked that observed in AIF-deficient cells. CHCHD4 levels could be restored in AIF-deficient cells by enforcing its AIF-independent mitochondrial localization. This modified CHCHD4 protein reestablished respiratory function in AIF-deficient cells and enabled AIF-deficient embryoid bodies to undergo cavitation, a process of programmed cell death required for embryonic morphogenesis. These findings explain how AIF contributes to the biogenesis of respiratory chain complexes, and they establish an unexpected link between the vital function of AIF and the propensity of cells to undergo apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.
Moore, Daniel J.; Onoufriadis, Alexandros; Shoemark, Amelia; Simpson, Michael A.; zur Lage, Petra I.; de Castro, Sandra C.; Bartoloni, Lucia; Gallone, Giuseppe; Petridi, Stavroula; Woollard, Wesley J.; Antony, Dinu; Schmidts, Miriam; Didonna, Teresa; Makrythanasis, Periklis; Bevillard, Jeremy; Mongan, Nigel P.; Djakow, Jana; Pals, Gerard; Lucas, Jane S.; Marthin, June K.; Nielsen, Kim G.; Santoni, Federico; Guipponi, Michel; Hogg, Claire; Antonarakis, Stylianos E.; Emes, Richard D.; Chung, Eddie M.K.; Greene, Nicholas D.E.; Blouin, Jean-Louis; Jarman, Andrew P.; Mitchison, Hannah M.
2013-01-01
Primary ciliary dyskinesia (PCD) is a ciliopathy characterized by airway disease, infertility, and laterality defects, often caused by dual loss of the inner dynein arms (IDAs) and outer dynein arms (ODAs), which power cilia and flagella beating. Using whole-exome and candidate-gene Sanger resequencing in PCD-affected families afflicted with combined IDA and ODA defects, we found that 6/38 (16%) carried biallelic mutations in the conserved zinc-finger gene BLU (ZMYND10). ZMYND10 mutations conferred dynein-arm loss seen at the ultrastructural and immunofluorescence level and complete cilia immotility, except in hypomorphic p.Val16Gly (c.47T>G) homozygote individuals, whose cilia retained a stiff and slowed beat. In mice, Zmynd10 mRNA is restricted to regions containing motile cilia. In a Drosophila model of PCD, Zmynd10 is exclusively expressed in cells with motile cilia: chordotonal sensory neurons and sperm. In these cells, P-element-mediated gene silencing caused IDA and ODA defects, proprioception deficits, and sterility due to immotile sperm. Drosophila Zmynd10 with an equivalent c.47T>G (p.Val16Gly) missense change rescued mutant male sterility less than the wild-type did. Tagged Drosophila ZMYND10 is localized primarily to the cytoplasm, and human ZMYND10 interacts with LRRC6, another cytoplasmically localized protein altered in PCD. Using a fly model of PCD, we conclude that ZMYND10 is a cytoplasmic protein required for IDA and ODA assembly and that its variants cause ciliary dysmotility and PCD with laterality defects. PMID:23891471
Intoh, Atsushi; Suzuki, Naoki; Koszka, Kathryn; Eggan, Kevin
2016-01-01
Riboflavin, also known as vitamin B2, is essential for cellular reduction-oxidation reactions, but is not readily synthesized by mammalian cells. It has been proposed that riboflavin absorption occurs through solute carrier family 52 members (SLC52) A1, A2 and A3. These transporters are also candidate genes for the childhood onset-neural degenerative syndrome Brown–Vialetto–Van Laere (BVVL). Although riboflavin is an essential nutrient, why mutations in its transporters result in a neural cell-specific disorder remains unclear. Here, we provide evidence that Slc52a3 is the mouse ortholog of SLC52A3 and show that Slc52a3 deficiency results in early embryonic lethality. Loss of mutant embryos was associated with both defects in placental formation and increased rates of apoptosis in embryonic cells. In contrast, Slc52a3 −/− embryonic stem cell lines could be readily established and differentiated into motor neurons, suggesting that this transporter is dispensable for neural differentiation and short-term maintenance. Consistent with this finding, examination of Slc52a3 gene products in adult tissues revealed expression in the testis and intestine but little or none in the brain and spinal cord. Our results suggest that BVVL patients with SCL52A3 mutations may be good candidates for riboflavin replacement therapy and suggests that either the mutations these individuals carry are hypomorphic, or that in these cases alternative transporters act during human embryogenesis to allow full-term development. PMID:26976849
Kasuya, Junko; Ueda, Atsushi; Iyengar, Atulya; Wu, Chun-Fang
2016-01-01
Abstract Shudderer (Shu) is an X-linked dominant mutation in Drosophila melanogaster identified more than 40 years ago. A previous study showed that Shu caused spontaneous tremors and defects in reactive climbing behavior, and that these phenotypes were significantly suppressed when mutants were fed food containing lithium, a mood stabilizer used in the treatment of bipolar disorder (Williamson, 1982). This unique observation suggested that the Shu mutation affects genes involved in lithium-responsive neurobiological processes. In the present study, we identified Shu as a novel mutant allele of the voltage-gated sodium (Nav) channel gene paralytic (para). Given that hypomorphic para alleles and RNA interference–mediated para knockdown reduced the severity of Shu phenotypes, Shu was classified as a para hypermorphic allele. We also demonstrated that lithium could improve the behavioral abnormalities displayed by other Nav mutants, including a fly model of the human generalized epilepsy with febrile seizures plus. Our electrophysiological analysis of Shu showed that lithium treatment did not acutely suppress Nav channel activity, indicating that the rescue effect of lithium resulted from chronic physiological adjustments to this drug. Microarray analysis revealed that lithium significantly alters the expression of various genes in Shu, including those involved in innate immune responses, amino acid metabolism, and oxidation-reduction processes, raising the interesting possibility that lithium-induced modulation of these biological pathways may contribute to such adjustments. Overall, our findings demonstrate that Nav channel mutants in Drosophila are valuable genetic tools for elucidating the effects of lithium on the nervous system in the context of neurophysiology and behavior. PMID:27844061
NASA Technical Reports Server (NTRS)
Zhang, Ying; Lim, Chang U K.; Williams, Eli S.; Zhou, Junqing; Zhang, Qinming; Fox, Michael H.; Bailey, Susan M.; Liber, Howard L.
2005-01-01
Hypomorphic mutations which lead to decreased function of the NBS1 gene are responsible for Nijmegen breakage syndrome, a rare autosomal recessive hereditary disorder that imparts an increased predisposition to development of malignancy. The NBS1 protein is a component of the MRE11/RAD50/NBS1 complex that plays a critical role in cellular responses to DNA damage and the maintenance of chromosomal integrity. Using small interfering RNA transfection, we have knocked down NBS1 protein levels and analyzed relevant phenotypes in two closely related human lymphoblastoid cell lines with different p53 status, namely wild-type TK6 and mutated WTK1. Both TK6 and WTK1 cells showed an increased level of ionizing radiation-induced mutation at the TK and HPRT loci, impaired phosphorylation of H2AX (gamma-H2AX), and impaired activation of the cell cycle checkpoint regulating kinase, Chk2. In TK6 cells, ionizing radiation-induced accumulation of p53/p21 and apoptosis were reduced. There was a differential response to ionizing radiation-induced cell killing between TK6 and WTK1 cells after NBS1 knockdown; TK6 cells were more resistant to killing, whereas WTK1 cells were more sensitive. NBS1 deficiency also resulted in a significant increase in telomere association that was independent of radiation exposure and p53 status. Our results provide the first experimental evidence that NBS1 deficiency in human cells leads to hypermutability and telomere associations, phenotypes that may contribute to the cancer predisposition seen among patients with this disease.
Naval EarthMap Observer (NEMO) science and naval products
NASA Astrophysics Data System (ADS)
Davis, Curtiss O.; Kappus, Mary E.; Gao, Bo-Cai; Bissett, W. Paul; Snyder, William A.
1998-11-01
A wide variety of applications of imaging spectrometry have been demonstrated using data from aircraft systems. Based on this experience the Navy is pursuing the Hyperspectral Remote Sensing Technology (HRST) Program to use hyperspectral imagery to characterize the littoral environment, for scientific and environmental studies and to meet Naval needs. To obtain the required space based hyperspectral imagery the Navy has joined in a partnership with industry to build and fly the Naval EarthMap Observer (NEMO). The NEMO spacecraft has the Coastal Ocean Imaging Spectrometer (COIS) a hyperspectral imager with adequate spectral and spatial resolution and a high signal-to- noise ratio to provide long term monitoring and real-time characterization of the coastal environment. It includes on- board processing for rapid data analysis and data compression, a large volume recorder, and high speed downlink to handle the required large volumes of data. This paper describes the algorithms for processing the COIS data to provide at-launch ocean data products and the research and modeling that are planned to use COIS data to advance our understanding of the dynamics of the coastal ocean.
Bowman, Caitlyn E.; Hartung, Thomas
2016-01-01
Glucose and oxygen are two of the most important molecules transferred from mother to fetus during eutherian pregnancy, and the metabolic fates of these nutrients converge at the transport and metabolism of pyruvate in mitochondria. Pyruvate enters the mitochondrial matrix through the mitochondrial pyruvate carrier (MPC), a complex in the inner mitochondrial membrane that consists of two essential components, MPC1 and MPC2. Here, we define the requirement for mitochondrial pyruvate metabolism during development with a progressive allelic series of Mpc1 deficiency in mouse. Mpc1 deletion was homozygous lethal in midgestation, but Mpc1 hypomorphs and tissue-specific deletion of Mpc1 presented as early perinatal lethality. The allelic series demonstrated that graded suppression of MPC resulted in dose-dependent metabolic and transcriptional changes. Steady-state metabolomics analysis of brain and liver from Mpc1 hypomorphic embryos identified compensatory changes in amino acid and lipid metabolism. Flux assays in Mpc1-deficient embryonic fibroblasts also reflected these changes, including a dramatic increase in mitochondrial alanine utilization. The mitochondrial alanine transaminase GPT2 was found to be necessary and sufficient for increased alanine flux upon MPC inhibition. These data show that impaired mitochondrial pyruvate transport results in biosynthetic deficiencies that can be mitigated in part by alternative anaplerotic substrates in utero. PMID:27215380
NASA Astrophysics Data System (ADS)
Migneco, E.; Aiello, S.; Ambriola, M.; Ameli, F.; Amore, I.; Anghinolfi, M.; Anzalone, A.; Barbarino, G.; Barbarito, E.; Battaglieri, M.; Bellotti, R.; Beverini, N.; Bonori, M.; Bouhdaef, B.; Brescia, M.; Cacopardo, G.; Cafagna, F.; Capone, A.; Caponetto, L.; Castorina, E.; Ceres, A.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Cordelli, M.; Costa, M.; Cuneo, S.; D'Amico, A.; De Bonis, G.; De Marzo, C.; De Rosa, G.; De Vita, R.; Distefano, C.; Falchini, E.; Fiorello, C.; Flaminio, V.; Fratini, K.; Galeotti, S.; Gabrielli, A.; Gandolfi, E.; Giacomelli, G.; Grimaldi, A.; Habel, R.; Leonora, E.; Lonardo, A.; Longo, G.; Lo Presti, D.; Lucarelli, F.; Maccione, L.; Margiotta, A.; Martini, A.; Masullo, R.; Megna, R.; Mongelli, M.; Morganti, M.; Montaruli, T.; Musumeci, M.; Nicolau, C. A.; Orlando, A.; Osipenko, M.; Osteria, G.; Papaleo, R.; Pappalardo, V.; Petta, C.; Piattelli, P.; Raffaelli, F.; Raia, G.; Randazzo, N.; Reito, S.; Ricco, G.; Riccobene, G.; Ripani, M.; Rovelli, A.; Ruppi, M.; Russo, G. V.; Russo, S.; Sapienza, P.; Sedita, M.; Schuller, J.-P.; Shirokov, E.; Simeone, F.; Sipala, V.; Spurio, M.; Taiuti, M.; Terreni, G.; Trasatti, L.; Urso, S.; Valente, V.; Vicini, P.
2006-11-01
The activities towards the realization of a km3 Cherenkov neutrino detector carried out by the NEMO Collaboration are described. Long-term exploration of a 3500 m deep-sea site close to the Sicilian coast has shown that it is optimal for the installation of the detector. The realization of a Phase-1 project, which is under way, will validate the proposed technologies for the realization of the km3 detector on a Test Site at 2000 m depth. The realization of a new infrastructure on the candidate site (Phase-2 project) will provide the possibility to test detector components at 3500 m depth.
Robust and Cost-Efficient Communication Based on SNMP in Mobile Networks
NASA Astrophysics Data System (ADS)
Ryu, Sang-Hoon; Baik, Doo-Kwon
A main challenge in the design of this mobile network is the development of dynamic routing protocols that can efficiently find routes between two communicating nodes. Multimedia streaming services are receiving considerable interest in the mobile network business. An entire mobile network may change its point of attachment to the Internet. The mobile network is operated by a basic specification to support network mobility called Network Mobility (NEMO) Basic Support. However, NEMO basic Support mechanism has some problem in continuous communication. In this paper, we propose robust and cost-efficient algorithm. And we simulate proposed method and conclude some remarks.
Congenital Heart Disease–Causing Gata4 Mutation Displays Functional Deficits In Vivo
Misra, Chaitali; Sachan, Nita; McNally, Caryn Rothrock; Koenig, Sara N.; Nichols, Haley A.; Guggilam, Anuradha; Lucchesi, Pamela A.; Pu, William T.; Srivastava, Deepak; Garg, Vidu
2012-01-01
Defects of atrial and ventricular septation are the most frequent form of congenital heart disease, accounting for almost 50% of all cases. We previously reported that a heterozygous G296S missense mutation of GATA4 caused atrial and ventricular septal defects and pulmonary valve stenosis in humans. GATA4 encodes a cardiac transcription factor, and when deleted in mice it results in cardiac bifida and lethality by embryonic day (E)9.5. In vitro, the mutant GATA4 protein has a reduced DNA binding affinity and transcriptional activity and abolishes a physical interaction with TBX5, a transcription factor critical for normal heart formation. To characterize the mutation in vivo, we generated mice harboring the same mutation, Gata4 G295S. Mice homozygous for the Gata4 G295S mutant allele have normal ventral body patterning and heart looping, but have a thin ventricular myocardium, single ventricular chamber, and lethality by E11.5. While heterozygous Gata4 G295S mutant mice are viable, a subset of these mice have semilunar valve stenosis and small defects of the atrial septum. Gene expression studies of homozygous mutant mice suggest the G295S protein can sufficiently activate downstream targets of Gata4 in the endoderm but not in the developing heart. Cardiomyocyte proliferation deficits and decreased cardiac expression of CCND2, a member of the cyclin family and a direct target of Gata4, were found in embryos both homozygous and heterozygous for the Gata4 G295S allele. To further define functions of the Gata4 G295S mutation in vivo, compound mutant mice were generated in which specific cell lineages harbored both the Gata4 G295S mutant and Gata4 null alleles. Examination of these mice demonstrated that the Gata4 G295S protein has functional deficits in early myocardial development. In summary, the Gata4 G295S mutation functions as a hypomorph in vivo and leads to defects in cardiomyocyte proliferation during embryogenesis, which may contribute to the development of congenital heart defects in humans. PMID:22589735
Popp, Bernt; Støve, Svein I; Endele, Sabine; Myklebust, Line M; Hoyer, Juliane; Sticht, Heinrich; Azzarello-Burri, Silvia; Rauch, Anita; Arnesen, Thomas; Reis, André
2015-01-01
Recent studies revealed the power of whole-exome sequencing to identify mutations in sporadic cases with non-syndromic intellectual disability. We now identified de novo missense variants in NAA10 in two unrelated individuals, a boy and a girl, with severe global developmental delay but without any major dysmorphism by trio whole-exome sequencing. Both de novo variants were predicted to be deleterious, and we excluded other variants in this gene. This X-linked gene encodes N-alpha-acetyltransferase 10, the catalytic subunit of the NatA complex involved in multiple cellular processes. A single hypomorphic missense variant p.(Ser37Pro) was previously associated with Ogden syndrome in eight affected males from two different families. This rare disorder is characterized by a highly recognizable phenotype, global developmental delay and results in death during infancy. In an attempt to explain the discrepant phenotype, we used in vitro N-terminal acetylation assays which suggested that the severity of the phenotype correlates with the remaining catalytic activity. The variant in the Ogden syndrome patients exhibited a lower activity than the one seen in the boy with intellectual disability, while the variant in the girl was the most severe exhibiting only residual activity in the acetylation assays used. We propose that N-terminal acetyltransferase deficiency is clinically heterogeneous with the overall catalytic activity determining the phenotypic severity. PMID:25099252
Barazzuol, Lara; Rickett, Nicole; Ju, Limei; Jeggo, Penny A
2015-10-01
The embryonic neural stem cell compartment is characterised by rapid proliferation from embryonic day (E)11 to E16.5, high endogenous DNA double-strand break (DSB) formation and sensitive activation of apoptosis. Here, we ask whether DSBs arise in the adult neural stem cell compartments, the sub-ventricular zone (SVZ) of the lateral ventricles and the sub-granular zone (SGZ) of the hippocampal dentate gyrus, and whether they activate apoptosis. We used mice with a hypomorphic mutation in DNA ligase IV (Lig4(Y288C)), ataxia telangiectasia mutated (Atm(-/-)) and double mutant Atm(-/-)/Lig4(Y288C) mice. We demonstrate that, although DSBs do not arise at a high frequency in adult neural stem cells, the low numbers of DSBs that persist endogenously in Lig4(Y288C) mice or that are induced by low radiation doses can activate apoptosis. A temporal analysis shows that DSB levels in Lig4(Y288C) mice diminish gradually from the embryo to a steady state level in adult mice. The neonatal SVZ compartment of Lig4(Y288C) mice harbours diminished DSBs compared to its differentiated counterpart, suggesting a process selecting against unfit stem cells. Finally, we reveal high endogenous apoptosis in the developing SVZ of wild-type newborn mice. © 2015. Published by The Company of Biologists Ltd.
Drosophila Spastin Regulates Synaptic Microtubule Networks and Is Required for Normal Motor Function
Sherwood, Nina Tang; Sun, Qi; Xue, Mingshan; Zhang, Bing
2004-01-01
The most common form of human autosomal dominant hereditary spastic paraplegia (AD-HSP) is caused by mutations in the SPG4 (spastin) gene, which encodes an AAA ATPase closely related in sequence to the microtubule-severing protein Katanin. Patients with AD-HSP exhibit degeneration of the distal regions of the longest axons in the spinal cord. Loss-of-function mutations in the Drosophila spastin gene produce larval neuromuscular junction (NMJ) phenotypes. NMJ synaptic boutons in spastin mutants are more numerous and more clustered than in wild-type, and transmitter release is impaired. spastin-null adult flies have severe movement defects. They do not fly or jump, they climb poorly, and they have short lifespans. spastin hypomorphs have weaker behavioral phenotypes. Overexpression of Spastin erases the muscle microtubule network. This gain-of-function phenotype is consistent with the hypothesis that Spastin has microtubule-severing activity, and implies that spastin loss-of-function mutants should have an increased number of microtubules. Surprisingly, however, we observed the opposite phenotype: in spastin-null mutants, there are fewer microtubule bundles within the NMJ, especially in its distal boutons. The Drosophila NMJ is a glutamatergic synapse that resembles excitatory synapses in the mammalian spinal cord, so the reduction of organized presynaptic microtubules that we observe in spastin mutants may be relevant to an understanding of human Spastin's role in maintenance of axon terminals in the spinal cord. PMID:15562320
The km 3 Mediterranean neutrino observatory - the NEMO.RD project
NASA Astrophysics Data System (ADS)
De Marzo, C. N.
2001-05-01
The NEMO.RD Project is a feasibility study of a km 3 underwater telescope for high energy astrophysical neutrinos to be located in the Mediterranean Sea. Results on various issues of this project are presented on: i) Monte Carlo simulation study of the capabilities of various arrays of phototubes in order to determine the detector geometry that can optimize performance and cost; ii) oceanographic survey of various sites in search of the optimal one; iii) feasibility study of mechanics, deployment, connections and maintenance of such a detector. Parameters of a site near Capo Passero, Sicily, where depth, transparency and other water parameters seem optimal are shown.
Search for Neutrinoless Quadruple-β Decay of
NASA Astrophysics Data System (ADS)
Arnold, R.; Augier, C.; Barabash, A. S.; Basharina-Freshville, A.; Blondel, S.; Blot, S.; Bongrand, M.; Boursette, D.; Brudanin, V.; Busto, J.; Caffrey, A. J.; Calvez, S.; Cascella, M.; Cerna, C.; Cesar, J. P.; Chapon, A.; Chauveau, E.; Chopra, A.; Dawson, L.; Duchesneau, D.; Durand, D.; Egorov, V.; Eurin, G.; Evans, J. J.; Fajt, L.; Filosofov, D.; Flack, R.; Garrido, X.; Gómez, H.; Guillon, B.; Guzowski, P.; Hodák, R.; Huber, A.; Hubert, P.; Hugon, C.; Jullian, S.; Klimenko, A.; Kochetov, O.; Konovalov, S. I.; Kovalenko, V.; Lalanne, D.; Lang, K.; Lemière, Y.; Le Noblet, T.; Liptak, Z.; Liu, X. R.; Loaiza, P.; Lutter, G.; Macko, M.; Macolino, C.; Mamedov, F.; Marquet, C.; Mauger, F.; Morgan, B.; Mott, J.; Nemchenok, I.; Nomachi, M.; Nova, F.; Nowacki, F.; Ohsumi, H.; Patrick, C.; Pahlka, R. B.; Perrot, F.; Piquemal, F.; Povinec, P.; Přidal, P.; Ramachers, Y. A.; Remoto, A.; Reyss, J. L.; Riddle, C. L.; Rukhadze, E.; Saakyan, R.; Salazar, R.; Sarazin, X.; Shitov, Yu.; Simard, L.; Šimkovic, F.; Smetana, A.; Smolek, K.; Smolnikov, A.; Söldner-Rembold, S.; Soulé, B.; Štefánik, D.; Štekl, I.; Suhonen, J.; Sutton, C. S.; Szklarz, G.; Thomas, J.; Timkin, V.; Torre, S.; Tretyak, Vl. I.; Tretyak, V. I.; Umatov, V. I.; Vanushin, I.; Vilela, C.; Vorobel, V.; Waters, D.; Xie, F.; Žukauskas, A.; NEMO-3 Collaboration
2017-07-01
We report the results of a first experimental search for lepton number violation by four units in the neutrinoless quadruple-β decay of
Measurement of the BB Decay Half-Life of 130Te with the NEMO-3 Detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. J. Caffrey
2011-08-01
We report results from the NEMO-3 experiment based on an exposure of 1275 days with 661 g of 130Te in the form of enriched and natural tellurium foils. The double B decay rate of 130Te is found to be greater than zero with a significance of 7.7 standard deviations and the half-life is measured to be T2v 1/2 = [7.0 +/- 0.9(stat) +/- 1.1 (syst)] x 10{sup 20} yr. This represents the most precise measurement of this half-life yet published and the first real-time observation of this decay.
I Feel You: The Design and Evaluation of a Domotic Affect-Sensitive Spoken Conversational Agent
Lutfi, Syaheerah Lebai; Fernández-Martínez, Fernando; Lorenzo-Trueba, Jaime; Barra-Chicote, Roberto; Montero, Juan Manuel
2013-01-01
We describe the work on infusion of emotion into a limited-task autonomous spoken conversational agent situated in the domestic environment, using a need-inspired task-independent emotion model (NEMO). In order to demonstrate the generation of affect through the use of the model, we describe the work of integrating it with a natural-language mixed-initiative HiFi-control spoken conversational agent (SCA). NEMO and the host system communicate externally, removing the need for the Dialog Manager to be modified, as is done in most existing dialog systems, in order to be adaptive. The first part of the paper concerns the integration between NEMO and the host agent. The second part summarizes the work on automatic affect prediction, namely, frustration and contentment, from dialog features, a non-conventional source, in the attempt of moving towards a more user-centric approach. The final part reports the evaluation results obtained from a user study, in which both versions of the agent (non-adaptive and emotionally-adaptive) were compared. The results provide substantial evidences with respect to the benefits of adding emotion in a spoken conversational agent, especially in mitigating users' frustrations and, ultimately, improving their satisfaction. PMID:23945740
The BiPo-3 detector for the measurement of ultra low natural radioactivities of thin materials
NASA Astrophysics Data System (ADS)
Barabash, A. S.; Basharina-Freshville, A.; Birdsall, E.; Blondel, S.; Blot, S.; Bongrand, M.; Boursette, D.; Brudanin, V.; Busto, J.; Caffrey, A. J.; Calvez, S.; Cascella, M.; Cebrián, S.; Cerna, C.; Cesar, J. P.; Chauveau, E.; Chopra, A.; Dafní, T.; De Capua, S.; Duchesneau, D.; Durand, D.; Egorov, V.; Eurin, G.; Evans, J. J.; Fajt, L.; Filosofov, D.; Flack, R.; Garrido, X.; Gómez, H.; Guillon, B.; Guzowski, P.; Holý, K.; Hodák, R.; Huber, A.; Hugon, C.; Iguaz, F. J.; Irastorza, I. G.; Jeremie, A.; Jullian, S.; Kauer, M.; Klimenko, A.; Kochetov, O.; Konovalov, S. I.; Kovalenko, V.; Lang, K.; Lemière, Y.; Le Noblet, T.; Liptak, Z.; Liu, X. R.; Loaiza, P.; Lutter, G.; Luzón, G.; Macko, M.; Mamedov, F.; Marquet, C.; Mauger, F.; Morgan, B.; Mott, J.; Nemchenok, I.; Nomachi, M.; Nova, F.; Ohsumi, H.; Oliviéro, G.; Ortiz de Solórzano, A.; Pahlka, R. B.; Pater, J.; Perrot, F.; Piquemal, F.; Povinec, P.; Přidal, P.; Ramachers, Y. A.; Remoto, A.; Richards, B.; Riddle, C. L.; Rukhadze, E.; Saakyan, R.; Salazar, R.; Sarazin, X.; Shitov, Yu.; Simard, L.; Šimkovic, F.; Smetana, A.; Smolek, K.; Smolnikov, A.; Söldner-Rembold, S.; Soulé, B.; Štekl, I.; Thomas, J.; Timkin, V.; Torre, S.; Tretyak, Vl. I.; Tretyak, V. I.; Umatov, V. I.; Vilela, C.; Vorobel, V.; Waters, D.; Žukauskas, A.
2017-06-01
The BiPo-3 detector, running at the Canfranc Underground Laboratory (Laboratorio Subterr&aposaneo de Canfranc, LSC, Spain) since 2013, is a low-radioactivity detector dedicated to measuring ultra low natural radionuclide contaminations of 208Tl (232Th chain) and 214Bi (238U chain) in thin materials. The total sensitive surface area of the detector is 3.6 m2. The detector has been developed to measure the radiopurity of the selenium double β-decay source foils of the SuperNEMO experiment. In this paper the design and performance of the detector, and results of the background measurements in 208Tl and 214Bi, are presented, and the validation of the BiPo-3 measurement with a calibrated aluminium foil is discussed. Results of the 208Tl and 214Bi activity measurements of the first enriched 82Se foils of the double β-decay SuperNEMO experiment are reported. The sensitivity of the BiPo-3 detector for the measurement of the SuperNEMO 82Se foils is Script A(208Tl) <2 μBq/kg (90% C.L.) and Script A(214Bi) <140 μBq/kg (90% C.L.) after 6 months of measurement.
Conformational Analysis on structural perturbations of the zinc finger NEMO
NASA Astrophysics Data System (ADS)
Godwin, Ryan; Salsbury, Freddie; Salsbury Group Team
2014-03-01
The NEMO (NF-kB Essential Modulator) Zinc Finger protein (2jvx) is a functional Ubiquitin-binding domain, and plays a role in signaling pathways for immune/inflammatory responses, apoptosis, and oncogenesis [Cordier et al., 2008]. Characterized by 3 cysteines and 1 histidine residue at the active site, the biologically occurring, bound zinc configuration is a stable structural motif. Perturbations of the zinc binding residues suggest conformational changes in the 423-atom protein characterized via analysis of all-atom molecular dynamics simulations. Structural perturbations include simulations with and without a zinc ion and with and without de-protonated cysteines, resulting in four distinct configurations. Simulations of various time scales show consistent results, yet the longest, GPU driven, microsecond runs show more drastic structural and dynamic fluctuations when compared to shorter duration time-scales. The last cysteine residue (26 of 28) and the helix on which it resides exhibit a secondary, locally unfolded conformation in addition to its normal bound conformation. Combined analytics elucidate how the presence of zinc and/or protonated cysteines impact the dynamics and energetic fluctuations of NEMO. Comprehensive Cancer Center of Wake Forest University Computational Biosciences shared resource supported by NCI CCSG P30CA012197.
Mechanistic Assessment of DNA Ligase as an Antibacterial Target in Staphylococcus aureus
Podos, Steven D.; Thanassi, Jane A.
2012-01-01
We report the use of a known pyridochromanone inhibitor with antibacterial activity to assess the validity of NAD+-dependent DNA ligase (LigA) as an antibacterial target in Staphylococcus aureus. Potent inhibition of purified LigA was demonstrated in a DNA ligation assay (inhibition constant [Ki] = 4.0 nM) and in a DNA-independent enzyme adenylation assay using full-length LigA (50% inhibitory concentration [IC50] = 28 nM) or its isolated adenylation domain (IC50 = 36 nM). Antistaphylococcal activity was confirmed against methicillin-susceptible and -resistant S. aureus (MSSA and MRSA) strains (MIC = 1.0 μg/ml). Analysis of spontaneous resistance potential revealed a high frequency of emergence (4 × 10−7) of high-level resistant mutants (MIC > 64) with associated ligA lesions. There were no observable effects on growth rate in these mutants. Of 22 sequenced clones, 3 encoded point substitutions within the catalytic adenylation domain and 19 in the downstream oligonucleotide-binding (OB) fold and helix-hairpin-helix (HhH) domains. In vitro characterization of the enzymatic properties of four selected mutants revealed distinct signatures underlying their resistance to inhibition. The infrequent adenylation domain mutations altered the kinetics of adenylation and probably elicited resistance directly. In contrast, the highly represented OB fold domain mutations demonstrated a generalized resistance mechanism in which covalent LigA activation proceeds normally and yet the parameters of downstream ligation steps are altered. A resulting decrease in substrate Km and a consequent increase in substrate occupancy render LigA resistant to competitive inhibition. We conclude that the observed tolerance of staphylococcal cells to such hypomorphic mutations probably invalidates LigA as a viable target for antistaphylococcal chemotherapy. PMID:22585221
SCN3A deficiency associated with increased seizure susceptibility
Lamar, Tyra; Vanoye, Carlos G.; Calhoun, Jeffrey; Wong, Jennifer C.; Dutton, Stacey B.B.; Jorge, Benjamin S.; Velinov, Milen; Escayg, Andrew; Kearney, Jennifer A.
2017-01-01
Mutations in voltage-gated sodium channels expressed highly in the brain (SCN1A, SCN2A, SCN3A, and SCN8A) are responsible for an increasing number of epilepsy syndromes. In particular, mutations in the SCN3A gene, encoding the pore-forming Nav1.3 α subunit, have been identified in patients with focal epilepsy. Biophysical characterization of epilepsy-associated SCN3A variants suggests that both gain- and loss-of-function SCN3A mutations may lead to increased seizure susceptibility. In this report, we identified a novel SCN3A variant (L247P) by whole exome sequencing of a child with focal epilepsy, developmental delay, and autonomic nervous system dysfunction. Voltage clamp analysis showed no detectable sodium current in a heterologous expression system expressing the SCN3A-L247P variant. Furthermore, cell surface biotinylation demonstrated a reduction in the amount of SCN3A-L247P at the cell surface, suggesting the SCN3A-L247P variant is a trafficking-deficient mutant. To further explore the possible clinical consequences of reduced SCN3A activity, we investigated the effect of a hypomorphic Scn3a allele (Scn3aHyp) on seizure susceptibility and behavior using a gene trap mouse line. Heterozygous Scn3a mutant mice (Scn3a+/Hyp) did not exhibit spontaneous seizures nor were they susceptible to hyperthermia-induced seizures. However, they displayed increased susceptibility to electroconvulsive (6 Hz) and chemiconvulsive (flurothyl and kainic acid) induced seizures. Scn3a+/Hyp mice also exhibited deficits in locomotor activity and motor learning. Taken together, these results provide evidence that loss-of-function of SCN3A caused by reduced protein expression or deficient trafficking to the plasma membrane may contribute to increased seizure susceptibility. PMID:28235671
Sheu, Yi-Jun; Kinney, Justin B.; Stillman, Bruce
2016-01-01
Eukaryotic chromosomes initiate DNA synthesis from multiple replication origins in a temporally specific manner during S phase. The replicative helicase Mcm2-7 functions in both initiation and fork progression and thus is an important target of regulation. Mcm4, a helicase subunit, possesses an unstructured regulatory domain that mediates control from multiple kinase signaling pathways, including the Dbf4-dependent Cdc7 kinase (DDK). Following replication stress in S phase, Dbf4 and Sld3, an initiation factor and essential target of Cyclin-Dependent Kinase (CDK), are targets of the checkpoint kinase Rad53 for inhibition of initiation from origins that have yet to be activated, so-called late origins. Here, whole-genome DNA replication profile analysis is used to access under various conditions the effect of mutations that alter the Mcm4 regulatory domain and the Rad53 targets, Sld3 and Dbf4. Late origin firing occurs under genotoxic stress when the controls on Mcm4, Sld3, and Dbf4 are simultaneously eliminated. The regulatory domain of Mcm4 plays an important role in the timing of late origin firing, both in an unperturbed S phase and in dNTP limitation. Furthermore, checkpoint control of Sld3 impacts fork progression under replication stress. This effect is parallel to the role of the Mcm4 regulatory domain in monitoring fork progression. Hypomorph mutations in sld3 are suppressed by a mcm4 regulatory domain mutation. Thus, in response to cellular conditions, the functions executed by Sld3, Dbf4, and the regulatory domain of Mcm4 intersect to control origin firing and replication fork progression, thereby ensuring genome stability. PMID:26733669
Copb2 is essential for embryogenesis and hypomorphic mutations cause human microcephaly.
DiStasio, Andrew; Driver, Ashley; Sund, Kristen; Donlin, Milene; Muraleedharan, Ranjith M; Pooya, Shabnam; Kline-Fath, Beth; Kaufman, Kenneth M; Prows, Cynthia A; Schorry, Elizabeth; Dasgupta, Biplab; Stottmann, Rolf W
2017-12-15
Primary microcephaly is a congenital brain malformation characterized by a head circumference less than three standard deviations below the mean for age and sex and results in moderate to severe mental deficiencies and decreased lifespan. We recently studied two children with primary microcephaly in an otherwise unaffected family. Exome sequencing identified an autosomal recessive mutation leading to an amino acid substitution in a WD40 domain of the highly conserved Coatomer Protein Complex, Subunit Beta 2 (COPB2). To study the role of Copb2 in neural development, we utilized genome-editing technology to generate an allelic series in the mouse. Two independent null alleles revealed that Copb2 is essential for early stages of embryogenesis. Mice homozygous for the patient variant (Copb2R254C/R254C) appear to have a grossly normal phenotype, likely due to differences in corticogenesis between the two species. Strikingly, mice heterozygous for the patient mutation and a null allele (Copb2R254C/Zfn) show a severe perinatal phenotype including low neonatal weight, significantly increased apoptosis in the brain, and death within the first week of life. Immunostaining of the Copb2R254C/Zfnbrain revealed a reduction in layer V (CTIP2+) neurons, while the overall cell density of the cortex is unchanged. Moreover, neurospheres derived from animals with Copb2 variants grew less than control. These results identify a general requirement for COPB2 in embryogenesis and a specific role in corticogenesis. We further demonstrate the utility of CRISPR-Cas9 generated mouse models in the study of potential pathogenicity of variants of potential clinical interest. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Clinical heterogeneity of mitochondrial NAD kinase deficiency caused by a NADK2 start loss variant.
Pomerantz, Daniel J; Ferdinandusse, Sacha; Cogan, Joy; Cooper, David N; Reimschisel, Tyler; Robertson, Amy; Bican, Anna; McGregor, Tracy; Gauthier, Jackie; Millington, David S; Andrae, Jaime L W; Tschannen, Michael R; Helbling, Daniel C; Demos, Wendy M; Denis, Simone; Wanders, Ronald J A; Newman, John N; Hamid, Rizwan; Phillips, John A
2018-03-01
Mitochondrial NAD kinase deficiency (NADK2D, OMIM #615787) is a rare autosomal recessive disorder of NADPH biosynthesis that can cause hyperlysinemia and dienoyl-CoA reductase deficiency (DECRD, OMIM #616034). NADK2 deficiency has been reported in only three unrelated patients. Two had severe, unremitting disease; one died at 4 months and the other at 5 years of age. The third was a 10 year old female with CNS anomalies, ataxia, and incoordination. In two cases mutations in NADK2 have been demonstrated. Here, we report the fourth known case, a 15 year old female with normal intelligence and a mild clinical and biochemical phenotype presumably without DECRD. Her clinical symptoms, which are now stable, became evident at the age of 9 with the onset of decreased visual acuity, bilateral optic atrophy, nystagmus, episodic lower extremity weakness, peripheral neuropathy, and gait abnormalities. Plasma amino acid levels were within normal limits except for mean lysine and proline levels that were 3.7 and 2.5 times the upper limits of normal. Whole exome sequencing (WES) revealed homozygosity for a g.36241900 A>G p. Met1Val start loss mutation in the primary NADK2 transcript (NM_001085411.1) encoding the 442 amino acid isoform. This presumed hypomorphic mutation has not been previously reported and is absent from the v1000GP, EVS, and ExAC databases. Our patient's normal intelligence and stable disease expands the clinical heterogeneity and the prognosis associated with NADK2 deficiency. Our findings also clarify the mechanism underlying NADK2 deficiency and suggest that this disease should be ruled out in cases of hyperlysinemia, especially those with visual loss, and neurological phenotypes. © 2018 Wiley Periodicals, Inc.
Friedland-Little, Joshua M; Hoffmann, Andrew D; Ocbina, Polloneal Jymmiel R; Peterson, Mike A; Bosman, Joshua D; Chen, Yan; Cheng, Steven Y; Anderson, Kathryn V; Moskowitz, Ivan P
2011-10-01
The primary cilium is emerging as a crucial regulator of signaling pathways central to vertebrate development and human disease. We identified atrioventricular canal 1 (avc1), a mouse mutation that caused VACTERL association with hydrocephalus, or VACTERL-H. We showed that avc1 is a hypomorphic mutation of intraflagellar transport protein 172 (Ift172), required for ciliogenesis and Hedgehog (Hh) signaling. Phenotypically, avc1 caused VACTERL-H but not abnormalities in left-right (L-R) axis formation. Avc1 resulted in structural cilia defects, including truncated cilia in vivo and in vitro. We observed a dose-dependent requirement for Ift172 in ciliogenesis using an allelic series generated with Ift172(avc1) and Ift172(wim), an Ift172 null allele: cilia were present on 42% of avc1 mouse embryonic fibroblast (MEF) and 28% of avc1/wim MEFs, in contrast to >90% of wild-type MEFs. Furthermore, quantitative cilium length analysis identified two specific cilium populations in mutant MEFS: a normal population with normal IFT and a truncated population, 50% of normal length, with disrupted IFT. Cells from wild-type embryos had predominantly full-length cilia, avc1 embryos, with Hh signaling abnormalities but not L-R abnormalities, had cilia equally divided between full-length and truncated, and avc1/wim embryos, with both Hh signaling and L-R abnormalities, were primarily truncated. Truncated Ift172 mutant cilia showed defects of the distal ciliary axoneme, including disrupted IFT88 localization and Hh-dependent Gli2 localization. We propose a model in which mutation of Ift172 results in a specific class of abnormal cilia, causing disrupted Hh signaling while maintaining L-R axis determination, and resulting in the VACTERL-H phenotype.
Mignot, Cyril; Lambert, Laetitia; Pasquier, Laurent; Bienvenu, Thierry; Delahaye-Duriez, Andrée; Keren, Boris; Lefranc, Jérémie; Saunier, Aline; Allou, Lila; Roth, Virginie; Valduga, Mylène; Moustaïne, Aissa; Auvin, Stéphane; Barrey, Catherine; Chantot-Bastaraud, Sandra; Lebrun, Nicolas; Moutard, Marie-Laure; Nougues, Marie-Christine; Vermersch, Anne-Isabelle; Héron, Bénédicte; Pipiras, Eva; Héron, Delphine; Olivier-Faivre, Laurence; Guéant, Jean-Louis; Jonveaux, Philippe; Philippe, Christophe
2015-01-01
Homozygous mutations in WWOX were reported in eight individuals of two families with autosomal recessive spinocerebellar ataxia type 12 and in two siblings with infantile epileptic encephalopathy (IEE), including one who deceased prior to DNA sampling. By combining array comparative genomic hybridisation, targeted Sanger sequencing and next generation sequencing, we identified five further patients from four families with IEE due to biallelic alterations of WWOX. We identified eight deleterious WWOX alleles consisting in four deletions, a four base-pair frameshifting deletion, one missense and two nonsense mutations. Genotype-phenotype correlation emerges from the seven reported families. The phenotype in four patients carrying two predicted null alleles was characterised by (1) little if any psychomotor acquisitions, poor spontaneous motility and absent eye contact from birth, (2) pharmacoresistant epilepsy starting in the 1st weeks of life, (3) possible retinal degeneration, acquired microcephaly and premature death. This contrasted with the less severe autosomal recessive spinocerebellar ataxia type 12 phenotype due to hypomorphic alleles. In line with this correlation, the phenotype in two siblings carrying a null allele and a missense mutation was intermediate. Our results obtained by a combination of different molecular techniques undoubtedly incriminate WWOX as a gene for recessive IEE and illustrate the usefulness of high throughput data mining for the identification of genes for rare autosomal recessive disorders. The structure of the WWOX locus encompassing the FRA16D fragile site might explain why constitutive deletions are recurrently reported in genetic databases, suggesting that WWOX-related encephalopathies, although likely rare, may not be exceptional. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Simulation-based performance analysis of EC-Earth 3.2.0 using Dimemas
NASA Astrophysics Data System (ADS)
Yepes Arbós, Xavier; César Acosta Cobos, Mario; Serradell Maronda, Kim; Sanchez Lorente, Alicia; Doblas Reyes, Francisco Javier
2017-04-01
Earth System Models (ESMs) are complex applications executed in supercomputing facilities due to their high demand on computing resources. However, not all these models perform a good resources usage and the energy efficiency can be well below a minimum acceptable. One example is EC-Earth, a global coupled climate model which integrates different component models to simulate the Earth system. The two main components used in this analysis are IFS as atmospheric model and NEMO as ocean model, both coupled via the OASIS3-MCT coupler. Preliminary results proved that EC-Earth does not have a good computational performance. For example, the scalability of this model using the T255L91 grid with 512 MPI processes for IFS and the ORCA1L75 grid with 128 MPI processes for NEMO achieves 40.3 of speedup. This means that the 81.2% of the resources are wasted. Therefore, it is necessary a performance analysis to find the bottlenecks of the model and thus, determine the most appropriate optimization techniques. Using traces of the model collected with profiling tools such as Extrae, Paraver and Dimemas, allow us to simulate the model behaviour on a configurable parallel platform and extrapolate the impact of hardware changes in the performance of EC-Earth. In this document we propose a state-of-art procedure which makes possible to evaluate the different characteristics of climate models in a very efficient way. Accordingly, the performance of EC-Earth in different scenarios, namely assuming an ideal machine, model sensitivity and limiting model due to coupling has been shown. By simulating these scenarios, we realized that each model has different characteristics. With the ideal machine, we have seen that there are some sources of inefficiency: about a 20.59% of the execution time is communication; and there are workload imbalances produced by data dependences both between IFS and NEMO and within each model. In addition, in the model sensitivity simulations, we have described the types of messages and detected data dependencies. In IFS, we have observed that latency affects the coupling between models due to a large amount of small communications, whereas bandwidth affects another region of the code with a few big messages. In NEMO, results show that the simulated latencies and bandwidths only affect slightly to its execution time. However, it has data dependencies solved inefficiently and workload imbalances. The last simulation performed to detect the slowest model due to coupling has revealed that IFS is slower than NEMO. Moreover, there is not enough bandwidth to transfer all the data in IFS, whereas in NEMO there is almost no contention. This study is useful to improve the computational efficiency of the model, adapt it to support ultra-high resolution (UHR) experiments and future exascale supercomputers, and help code developers to design new algorithms more machine-independent.
Miao, Jinxin; Ying, Baoling; Li, Rong; Tollefson, Ann E; Spencer, Jacqueline F; Wold, William S M; Song, Seok-Hwan; Kong, Il-Keun; Toth, Karoly; Wang, Yaohe; Wang, Zhongde
2018-05-06
The accumulating evidence demonstrates that Syrian hamsters have advantages as models for various diseases. To develop a Syrian hamster ( Mesocricetus auratus ) model of human immunodeficiency caused by RAG1 gene mutations, we employed the CRISPR/Cas9 system and introduced an 86-nucleotide frameshift deletion in the hamster RAG1 gene encoding part of the N-terminal non-core domain of RAG1. Histological and immunohistochemical analyses demonstrated that these hamsters (referred herein as RAG1-86nt hamsters) had atrophic spleen and thymus, and developed significantly less white pulp and were almost completely devoid of splenic lymphoid follicles. The RAG1-nt86 hamsters had barely detectable CD3⁺ and CD4⁺ T cells. The expression of B and T lymphocyte-specific genes (CD3γ and CD4 for T cell-specific) and (CD22 and FCMR for B cell-specific) was dramatically reduced, whereas the expression of macrophage-specific (CD68) and natural killer (NK) cell-specific (CD94 and KLRG1) marker genes was increased in the spleen of RAG1-nt86 hamsters compared to wildtype hamsters. Interestingly, despite the impaired development of B and T lymphocytes, the RAG1-86nt hamsters still developed neutralizing antibodies against human adenovirus type C6 (HAdV-C6) upon intranasal infection and were capable of clearing the infectious viruses, albeit with slower kinetics. Therefore, the RAG1-86nt hamster reported herein (similar to the hypomorphic RAG1 mutations in humans that cause Omenn syndrome), may provide a useful model for studying the pathogenesis of the specific RAG1-mutation-induced human immunodeficiency, the host immune response to adenovirus infection and other pathogens as well as for evaluation of cell and gene therapies for treatment of this subset of RAG1 mutation patients.
The controversial p.Met34Thr variant in GJB2 gene: Two siblings, one genotype, two phenotypes.
Lameiras, Ana Rita; Gonçalves, Ana Cláudia; Santos, Ricardo; O'Neill, Assunção; Reis, Luís Roque Dos; Matos, Tiago Daniel; Fialho, Graça; Caria, Helena; Escada, Pedro
2015-08-01
Recent advances in molecular genetics have increased the identification of genes and mutations responsible for inherited forms of hearing loss (HL), enabling early detection of these cases. Approximately, 60% of early-onset HL cases are due to genetic causes, of which 70% are non-syndromic. Of these, 75-80% are inherited in an autosomal recessive pattern (DFNB). Mutations in GJB2 gene, coding for connexin 26 (Cx26), are the major cause of autosomal recessive hereditary HL, but some GJB2 mutations are yet of unclear or controversial significance. The aim of the present study was to identify the etiology of hearing loss, and correlate genotype-phenotype, in two Portuguese siblings with profound and moderate non-syndromic sensorineural bilateral HL. The affected subjects and their parents underwent audiological and genetic study. Molecular analysis of GJB2 gene was performed, searching for mutations in the coding region and receptor splicing site by automated sequencing. The onset and the degree of HL were different in the two affected subjects. However, the same GJB2 genotype [p.Met34Thr]+[p.Arg184Pro] was identified in both siblings. The c.551G>C (p.Arg184Pro) and c.101T>C (p.Met34Thr) missense variants were inherited from the father and mother, respectively, both heterozygous carriers of these variants. The clinical and genetic data here presented suggest that the non-syndromic sensorineural HL of these two Portuguese siblings might be due to the presence of p.Met34Thr and p.Arg184Pro variants in compound heterozygosity. If so, p.Met34Thr variant could have function as a hypomorphic allele that may cause HL depending on the opposing GJB2 allele. The observed phenotypic variability may not, however, be solely explained by variable expression of this genotype. A putative modifier gene or mutations in another HL-associated gene could probably be contributing to the severe HL in one of the siblings. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
c-Myb is required for progenitor cell homeostasis in colonic crypts
Malaterre, Jordane; Carpinelli, Marina; Ernst, Matthias; Alexander, Warren; Cooke, Michael; Sutton, Susan; Dworkin, Sebastian; Heath, Joan K.; Frampton, Jon; McArthur, Grant; Clevers, Hans; Hilton, Douglas; Mantamadiotis, Theo; Ramsay, Robert G.
2007-01-01
The colonic crypt is the functional unit of the colon mucosa with a central role in ion and water reabsorption. Under steady-state conditions, the distal colonic crypt harbors a single stem cell at its base that gives rise to highly proliferative progenitor cells that differentiate into columnar, goblet, and endocrine cells. The role of c-Myb in crypt homeostasis has not been elucidated. Here we have studied three genetically distinct hypomorphic c-myb mutant mouse strains, all of which show reduced colonic crypt size. The mutations target the key domains of the transcription factor: the DNA binding, transactivation, and negative regulatory domains. In vivo proliferation and cell cycle marker studies suggest that these mice have a progenitor cell proliferation defect mediated in part by reduced Cyclin E1 expression. To independently assess the extent to which c-myb is required for colonic crypt homeostasis we also generated a novel tissue-specific mouse model to allow the deletion of c-myb in adult colon, and using these mice we show that c-Myb is required for crypt integrity, normal differentiation, and steady-state proliferation. PMID:17360438
The Oak Ridge Polycystic Kidney mouse: modeling ciliopathies of mice and men.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehman, J M; Michaud III, Edward J; Schoeb, T
2008-08-01
The Oak Ridge Polycystic Kidney (ORPK) mouse was described nearly 14 years ago as a model for human recessive polycystic kidney disease. The ORPK mouse arose through integration of a transgene into an intron of the Ift88 gene resulting in a hypomorphic allele (Ift88Tg737Rpw). The Ift88Tg737Rpw mutation impairs intraflagellar transport (IFT), a process required for assembly of motile and immotile cilia. Historically, the primary immotile cilium was thought to have minimal importance for human health; however, a rapidly expanding number of human disorders have now been attributed to ciliary defects. Importantly, many of these phenotypes are present and can bemore » analyzed using the ORPK mouse. In this review, we highlight the research conducted using the OPRK mouse and the phenotypes shared with human cilia disorders. Furthermore, we describe an additional follicular dysplasia phenotype in the ORPK mouse, which alongside the ectodermal dysplasias seen in human Ellis-van Creveld and Sensenbrenner's syndromes, suggests an unappreciated role for primary cilia in the skin and hair follicle.« less
Handschuh, Karen; Feenstra, Jennifer; Koss, Matthew; Ferretti, Elisabetta; Risolino, Maurizio; Zewdu, Rediet; Sahai, Michelle A; Bénazet, Jean-Denis; Peng, Xiao P; Depew, Michael J; Quintana, Laura; Sharpe, James; Wang, Baolin; Alcorn, Heather; Rivi, Roberta; Butcher, Stephen; Manak, J Robert; Vaccari, Thomas; Weinstein, Harel; Anderson, Kathryn V; Lacy, Elizabeth; Selleri, Licia
2014-10-23
Sorting and degradation of receptors and associated signaling molecules maintain homeostasis of conserved signaling pathways during cell specification and tissue development. Yet, whether machineries that sort signaling proteins act preferentially on different receptors and ligands in different contexts remains mysterious. Here, we show that Vacuolar protein sorting 25, Vps25, a component of ESCRT-II (Endosomal Sorting Complex Required for Transport II), directs preferential endosome-mediated modulation of FGF signaling in limbs. By ENU-induced mutagenesis, we isolated a polydactylous mouse line carrying a hypomorphic mutation of Vps25 (Vps25(ENU)). Unlike Vps25-null embryos we generated, Vps25(ENU/ENU) mutants survive until late gestation. Their limbs display FGF signaling enhancement and consequent hyperactivation of the FGF-SHH feedback loop causing polydactyly, whereas WNT and BMP signaling remain unperturbed. Notably, Vps25(ENU/ENU) Mouse Embryonic Fibroblasts exhibit aberrant FGFR trafficking and degradation; however, SHH signaling is unperturbed. These studies establish that the ESCRT-II machinery selectively limits FGF signaling in vertebrate skeletal patterning.
Remedying excessive numerical diapycnal mixing in a global 0.25° NEMO configuration
NASA Astrophysics Data System (ADS)
Megann, Alex; Nurser, George; Storkey, Dave
2016-04-01
If numerical ocean models are to simulate faithfully the upwelling branches of the global overturning circulation, they need to have a good representation of the diapycnal mixing processes which contribute to conversion of the bottom and deep waters produced in high latitudes into less dense watermasses. It is known that the default class of depth-coordinate ocean models such as NEMO and MOM5, as used in many state-of-the art coupled climate models and Earth System Models, have excessive numerical diapycnal mixing, resulting from irreversible advection across coordinate surfaces. The GO5.0 configuration of the NEMO ocean model, on an "eddy-permitting" 0.25° global grid, is used in the current UK GC1 and GC2 coupled models. Megann and Nurser (2016) have shown, using the isopycnal watermass analysis of Lee et al (2002), that spurious numerical mixing is substantially larger than the explicit mixing prescribed by the mixing scheme used by the model. It will be shown that increasing the biharmonic viscosity by a factor of three tends to suppress small-scale noise in the vertical velocity in the model. This significantly reduces the numerical mixing in GO5.0, and we shall show that it also leads to large-scale improvements in model biases.
A comparison of linear and non-linear data assimilation methods using the NEMO ocean model
NASA Astrophysics Data System (ADS)
Kirchgessner, Paul; Tödter, Julian; Nerger, Lars
2015-04-01
The assimilation behavior of the widely used LETKF is compared with the Equivalent Weight Particle Filter (EWPF) in a data assimilation application with an idealized configuration of the NEMO ocean model. The experiments show how the different filter methods behave when they are applied to a realistic ocean test case. The LETKF is an ensemble-based Kalman filter, which assumes Gaussian error distributions and hence implicitly requires model linearity. In contrast, the EWPF is a fully nonlinear data assimilation method that does not rely on a particular error distribution. The EWPF has been demonstrated to work well in highly nonlinear situations, like in a model solving a barotropic vorticity equation, but it is still unknown how the assimilation performance compares to ensemble Kalman filters in realistic situations. For the experiments, twin assimilation experiments with a square basin configuration of the NEMO model are performed. The configuration simulates a double gyre, which exhibits significant nonlinearity. The LETKF and EWPF are both implemented in PDAF (Parallel Data Assimilation Framework, http://pdaf.awi.de), which ensures identical experimental conditions for both filters. To account for the nonlinearity, the assimilation skill of the two methods is assessed by using different statistical metrics, like CRPS and Histograms.
Tuning without over-tuning: parametric uncertainty quantification for the NEMO ocean model
NASA Astrophysics Data System (ADS)
Williamson, Daniel B.; Blaker, Adam T.; Sinha, Bablu
2017-04-01
In this paper we discuss climate model tuning and present an iterative automatic tuning method from the statistical science literature. The method, which we refer to here as iterative refocussing (though also known as history matching), avoids many of the common pitfalls of automatic tuning procedures that are based on optimisation of a cost function, principally the over-tuning of a climate model due to using only partial observations. This avoidance comes by seeking to rule out parameter choices that we are confident could not reproduce the observations, rather than seeking the model that is closest to them (a procedure that risks over-tuning). We comment on the state of climate model tuning and illustrate our approach through three waves of iterative refocussing of the NEMO (Nucleus for European Modelling of the Ocean) ORCA2 global ocean model run at 2° resolution. We show how at certain depths the anomalies of global mean temperature and salinity in a standard configuration of the model exceeds 10 standard deviations away from observations and show the extent to which this can be alleviated by iterative refocussing without compromising model performance spatially. We show how model improvements can be achieved by simultaneously perturbing multiple parameters, and illustrate the potential of using low-resolution ensembles to tune NEMO ORCA configurations at higher resolutions.
COP9 Signalosome Subunit Csn8 Is Involved in Maintaining Proper Duration of the G1 Phase*
Liu, Cheng; Guo, Li-Quan; Menon, Suchithra; Jin, Dan; Pick, Elah; Wang, Xuejun; Deng, Xing Wang; Wei, Ning
2013-01-01
The COP9 signalosome (CSN) is a conserved protein complex known to be involved in developmental processes of eukaryotic organisms. Genetic disruption of a CSN gene causes arrest during early embryonic development in mice. The Csn8 subunit is the smallest and the least conserved subunit, being absent from the CSN complex of several fungal species. Nevertheless, Csn8 is an integral component of the CSN complex in higher eukaryotes, where it is essential for life. By characterizing the mouse embryonic fibroblasts (MEFs) that express Csn8 at a low level, we found that Csn8 plays an important role in maintaining the proper duration of the G1 phase of the cell cycle. A decreased level of Csn8, either in Csn8 hypomorphic MEFs or following siRNA-mediated knockdown in HeLa cells, accelerated cell growth rate. Csn8 hypomorphic MEFs exhibited a shortened G1 duration and affected expression of G1 regulators. In contrast to Csn8, down-regulation of Csn5 impaired cell proliferation. Csn5 proteins were found both as a component of the CSN complex and outside of CSN (Csn5-f), and the amount of Csn5-f relative to CSN was increased in the Csn8 hypomorphic cells. We conclude that CSN harbors both positive and negative regulators of the cell cycle and therefore is poised to influence the fate of a cell at the crossroad of cell division, differentiation, and senescence. PMID:23689509
The Buoyancy Budget With a Nonlinear Equation of State
NASA Astrophysics Data System (ADS)
Hieronymus, M. H.; Nycander, J.
2012-12-01
There has been a number of studies focusing on different aspects of having a nonlinear equation of state for seawater. Amongst other things it has been shown that the nonlinear equation of state has implications for the oceanic energy budget and that nonlinear processes can be a significant source of dense water production. This presentation will focus on the oceanic buoyancy budget. The nonlinear equation of state of seawater can introduce a sink or source of buoyancy when water parcels of unequal salinities and temperatures are mixed. A common example is the process known as cabbeling, which is responsible for forming a water mass that is denser than the original constituents in a mixture of two water masses with equal densities but different salinities and temperatures. This presentation will contain quantitative estimates of these nonlinear effects on the buoyancy budget of the global ocean. Because of these nonlinear effects there is a net sink of buoyancy in the oceans interior and the size of this sink can be determined from the buoyancy fluxes at the ocean boundaries. These boundary buoyancy fluxes are calculated using two surface heat flux climatologies one based on in situ measurements, the other on a reanalysis and in both cases using a nonlinear equation of state. The presentation also treats the buoyancy budget in the State of the art ocean model Nucleus for European Modelling of the Ocean (NEMO) and the results from NEMO are seen to be in good agreement with the buoyancy budgets based on the heat flux climatologies. Using the ocean model is a good complement to the surface flux climatologies, because in NEMO the buoyancy fluxes can be evaluated at all vertical model levels. This means that the vertical distribution of the buoyancy sink can be looked into. The results from NEMO shows that in large parts of the ocean the nonlinear buoyancy sink is the largest contribution to the buoyancy budget.
Evaluation of QoS supported in Network Mobility NEMO environments
NASA Astrophysics Data System (ADS)
Hussien, L. F.; Abdalla, A. H.; Habaebi, M. H.; Khalifa, O. O.; Hassan, W. H.
2013-12-01
Network mobility basic support (NEMO BS) protocol is an entire network, roaming as a unit which changes its point of attachment to the Internet and consequently its reachability in the network topology. NEMO BS doesn't provide QoS guarantees to its users same as traditional Internet IP and Mobile IPv6 as well. Typically, all the users will have same level of services without considering about their application requirements. This poses a problem to real-time applications that required QoS guarantees. To gain more effective control of the network, incorporated QoS is needed. Within QoS-enabled network the traffic flow can be distributed to various priorities. Also, the network bandwidth and resources can be allocated to different applications and users. Internet Engineering Task Force (IETF) working group has proposed several QoS solutions for static network such as IntServ, DiffServ and MPLS. These QoS solutions are designed in the context of a static environment (i.e. fixed hosts and networks). However, they are not fully adapted to mobile environments. They essentially demands to be extended and adjusted to meet up various challenges involved in mobile environments. With existing QoS mechanisms many proposals have been developed to provide QoS for individual mobile nodes (i.e. host mobility). In contrary, research based on the movement of the whole mobile network in IPv6 is still undertaking by the IETF working groups (i.e. network mobility). Few researches have been done in the area of providing QoS for roaming networks. Therefore, this paper aims to review and investigate (previous /and current) related works that have been developed to provide QoS in mobile network. Consequently, a new proposed scheme will be introduced to enhance QoS within NEMO environment, achieving by which seamless mobility to users of mobile network node (MNN).
Feasibility Studies for a Mediterranean Neutrino Observatory - The NEMO.RD Project
NASA Astrophysics Data System (ADS)
de Marzo, C.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Calicchio, M.; Ciacio, F.; Circella, M.; de Marzo, C.; Montaruli, T.; Falchieri, D.; Gabrielli, A.; Gandolfi, E.; Masetti, M.; Vitullo, C.; Zanarini, G.; Habel, R.; Usai, I.; Aiello, S.; Burrafato, G.; Caponetto, L.; Costanzo, E.; Lopresti, D.; Pappalardo, L.; Petta, C.; Randazzo, N.; Russo, G. V.; Troia, O.; Barnà, R.; D'Amico, V.; de Domenico, E.; de Pasquale, D.; Giacobbe, S.; Italiano, A.; Migliardo, F.; Salvato, G.; Trafirò, A.; Trimarchi, M.; Ameli, F.; Bonori, M.; Bottai, S.; Capone, A.; Desiati, P.; Massa, F.; Masullo, R.; Salusti, E.; Vicini, M.; Coniglione, R.; Migneco, E.; Piattelli, P.; Riccobene, R.; Sapienza, P.; Cordelli, M.; Trasatti, L.; Valente, V.; de Marchis, G.; Piccari, L.; Accerboni, E.; Mosetti, R.; Astraldi, M.; Gasparini, G. P.; Ulzega, A.; Orrù, P.
2000-06-01
The NEMO.RD Project is a feasibility study of a km3 underwater telescope for high energy astrophysical neutrinos to be located in the Mediterranea Sea. At present this study concerns: i) Monte Carlo simulation study of the capabilities of various arrays of phototubes in order to determine the detector geometry that can optimize performance and cost; ii) design of low power consumption electronic cards for data acquisition and transmission to shore; iii) feasibility study of mechanics, deployment, connection and maintenance of such a detector in collaboration with petrol industries having experience of undersea operations; iv) oceanographic exploration of various sites in search for the optimal one. A brief report on the status of points i) and iv) is presented here
Study of water masses variability in the Mediterranean Sea using in-situ data / NEMO-Med12 model.
NASA Astrophysics Data System (ADS)
Margirier, Félix; Testor, Pierre; Mortier, Laurent; Arsouze, Thomas; Bosse, Anthony; Houpert, Loic; Hayes, Dan
2016-04-01
In the past 10 years, numerous observation programs in the Mediterranean deployed autonomous platforms (moorings, argo floats, gliders) and thus considerably increased the number of in-situ observations and the data coverage. In this study, we analyse time series built with profile data on interannual scales. Sorting data in regional boxes, we follow the evolution of different water masses in the basin and generate indexes to characterize their evolution. We then put those indexes in relation with external (atmospheric) forcings and present an intercomparison with the NEMO-Med12 model to estimate both the skill of the model and the relevance of the data-sampling in reproducing the evolution of water masses properties.
REQUIREMENT OF ARGININOSUCCINATE LYASE FOR SYSTEMIC NITRIC OXIDE PRODUCTION
Erez, Ayelet; Nagamani, Sandesh CS.; Shchelochkov, Oleg A.; Premkumar, Muralidhar H.; Campeau, Philippe M.; Chen, Yuqing; Garg, Harsha K.; Li, Li; Mian, Asad; Bertin, Terry K.; Black, Jennifer O.; Zeng, Heng; Tang, Yaoping; Reddy, Anilkumar K.; Summar, Marshall; O’Brien, William E.; Harrison, David G.; Mitch, William E.; Marini, Juan C.; Aschner, Judy L.; Bryan, Nathan S.; Lee, Brendan
2012-01-01
Nitric Oxide (NO) plays a critical role in diverse physiological and pathological processes. We show that a hypomorphic mouse model of argininosuccinate lyase (Asl) deficiency exhibits a distinct phenotype manifest by multi-organ dysfunction and NO deficiency. Loss of Asl leads to reduced NO synthesis due to decreased endogenous arginine synthesis as well as reduced utilization of extracellular arginine for NO production in both humans and mice. Hence, ASL as seen in other species through evolution has a structural function in addition to its catalytic activity. Importantly, therapy with nitrite rescued the tissue autonomous NO deficiency in hypomorphic Asl mice, while a NOS independent NO donor restored NO-dependent vascular reactivity in subjects with ASL deficiency. Our data demonstrate a previously unappreciated role for ASL in NOS function and NO homeostasis. Hence, ASL may serve as a target for manipulating NO production in experimental models, as well as treatment of NO-related diseases. PMID:22081021
2012-01-01
Background During a viral infection, the intracellular RIG-I-like receptors (RLRs) sense viral RNA and signal through the mitochondrial antiviral signaling adaptor MAVS (also known as IPS-1, Cardif and VISA) whose activation triggers a rapid production of type I interferons (IFN) and of pro-inflammatory cytokines through the transcription factors IRF3/IRF7 and NF-κB, respectively. While MAVS is essential for this signaling and known to operate through the scaffold protein NEMO and the protein kinase TBK1 that phosphorylates IRF3, its mechanism of action and regulation remain unclear. Results We report here that RLR activation triggers MAVS ubiquitination on lysine 7 and 10 by the E3 ubiquitin ligase TRIM25 and marks it for proteasomal degradation concomitantly with downstream signaling. Inhibition of this MAVS degradation with a proteasome inhibitor does not affect NF-κB signaling but it hampers IRF3 activation, and NEMO and TBK1, two essential mediators in type I IFN production, are retained at the mitochondria. Conclusions These results suggest that MAVS functions as a recruitment platform that assembles a signaling complex involving NEMO and TBK1, and that the proteasome-mediated MAVS degradation is required to release the signaling complex into the cytosol, allowing IRF3 phosphorylation by TBK1. PMID:22626058
Castanier, Céline; Zemirli, Naima; Portier, Alain; Garcin, Dominique; Bidère, Nicolas; Vazquez, Aimé; Arnoult, Damien
2012-05-24
During a viral infection, the intracellular RIG-I-like receptors (RLRs) sense viral RNA and signal through the mitochondrial antiviral signaling adaptor MAVS (also known as IPS-1, Cardif and VISA) whose activation triggers a rapid production of type I interferons (IFN) and of pro-inflammatory cytokines through the transcription factors IRF3/IRF7 and NF-κB, respectively. While MAVS is essential for this signaling and known to operate through the scaffold protein NEMO and the protein kinase TBK1 that phosphorylates IRF3, its mechanism of action and regulation remain unclear. We report here that RLR activation triggers MAVS ubiquitination on lysine 7 and 10 by the E3 ubiquitin ligase TRIM25 and marks it for proteasomal degradation concomitantly with downstream signaling. Inhibition of this MAVS degradation with a proteasome inhibitor does not affect NF-κB signaling but it hampers IRF3 activation, and NEMO and TBK1, two essential mediators in type I IFN production, are retained at the mitochondria. These results suggest that MAVS functions as a recruitment platform that assembles a signaling complex involving NEMO and TBK1, and that the proteasome-mediated MAVS degradation is required to release the signaling complex into the cytosol, allowing IRF3 phosphorylation by TBK1.
NBodyLab: A Testbed for Undergraduates Utilizing a Web Interface to NEMO and MD-GRAPE2 Hardware
NASA Astrophysics Data System (ADS)
Johnson, V. L.; Teuben, P. J.; Penprase, B. E.
An N-body simulation testbed called NBodyLab was developed at Pomona College as a teaching tool for undergraduates. The testbed runs under Linux and provides a web interface to selected back-end NEMO modeling and analysis tools, and several integration methods which can optionally use an MD-GRAPE2 supercomputer card in the server to accelerate calculation of particle-particle forces. The testbed provides a framework for using and experimenting with the main components of N-body simulations: data models and transformations, numerical integration of the equations of motion, analysis and visualization products, and acceleration techniques (in this case, special purpose hardware). The testbed can be used by students with no knowledge of programming or Unix, freeing such students and their instructor to spend more time on scientific experimentation. The advanced student can extend the testbed software and/or more quickly transition to the use of more advanced Unix-based toolsets such as NEMO, Starlab and model builders such as GalactICS. Cosmology students at Pomona College used the testbed to study collisions of galaxies with different speeds, masses, densities, collision angles, angular momentum, etc., attempting to simulate, for example, the Tadpole Galaxy and the Antenna Galaxies. The testbed framework is available as open-source to assist other researchers and educators. Recommendations are made for testbed enhancements.
NASA Astrophysics Data System (ADS)
McGovern, Scott; Alici, Gursel; Truong, Van-Tan; Spinks, Geoffrey
2009-09-01
This paper presents the development of an autonomously powered and controlled robotic fish that incorporates an active flexural joint tail fin, activated through conducting polymer actuators based on polypyrrole (PPy). The novel electromaterial muscle oscillator (NEMO) tail fin assembly on the fish could be controlled wirelessly in real time by varying the frequency and duty cycle of the voltage signal supplied to the PPy bending-type actuators. Directional control was achieved by altering the duty cycle of the voltage input to the NEMO tail fin, which shifted the axis of oscillation and enabled turning of the robotic fish. At low speeds, the robotic fish had a turning circle as small as 15 cm (or 1.1 body lengths) in radius. The highest speed of the fish robot was estimated to be approximately 33 mm s-1 (or 0.25 body lengths s-1) and was achieved with a flapping frequency of 0.6-0.8 Hz which also corresponded with the most hydrodynamically efficient mode for tail fin operation. This speed is approximately ten times faster than those for any previously reported artificial muscle based device that also offers real-time speed and directional control. This study contributes to previously published studies on bio-inspired functional devices, demonstrating that electroactive polymer actuators can be real alternatives to conventional means of actuation such as electric motors.
Suppression of nemo-like kinase by miR-71 in Echinococcus multilocularis.
Guo, Xiaola; Zhang, Xueyong; Yang, Jing; Jin, Xiaoliang; Ding, Juntao; Xiang, Haitao; Ayaz, Mazhar; Luo, Xuenong; Zheng, Yadong
2017-12-01
Echinococcus multilocularis metacestodes are a causative pathogen for alveolar echinococcosis in human beings, and have been found to express miRNAs including emu-miR-71. miR-71 is evolutionarily conserved and highly expressed across platyhelminths, but little is known about its role. Here it was shown that emu-miR-71 was differentially expressed in protoscoleces and was unlikely to be expressed in neoblasts. The results of the luciferase assay indicated that emu-miR-71 was able to bind in vitro to the 3'-UTR of emu-nlk, encoding a key regulator of cell division, causing significant downregulation of luciferase activity (p < 0.01) compared to the negative control and the construct with mutations in the binding site. Consistent with the decreased luciferase activity, transfection of emu-miR-71 mimics into protoscoleces notably repressed emu-NLK (p < 0.05). These results demonstrate the suppression of emu-nlk by emu-miR-71, potentially involved in the protoscolex development. Copyright © 2017 Elsevier Inc. All rights reserved.
ADVANCES IN BASIC AND CLINICAL IMMUNOLOGY 2013
Chinen, Javier; Notarangelo, Luigi D.; Shearer, William T.
2014-01-01
A significant number of contributions to our understanding of primary immunodeficiencies in pathogenesis, diagnosis and treatment were published in the Journal in 2013. For example, deficiency of mast cell degranulation due to STAT3 deficiency was demonstrated to contribute to the difference on frequency of severe allergic reactions in AD-HIES patients, compared to atopic individuals with similar high IgE serum levels. High levels of non-glycosylated IgA were found in WAS patients and these abnormal antibodies might contribute to nephropathy in WAS. New described genes causing immunodeficiency included caspase recruitment domain 11 (CARD11), mucosa-associated lymphoid tissue 1 (MALT1) for combined immunodeficiencies, and tetratricopeptide repeat domain 7A (TTC7A) for mutations associated to multiple atresia with combined immunodeficiency. Other observations expand the spectrum of clinical presentation of specific genes. (e.g., adult onset idiopathic T-cell lymphopenia and early onset autoimmunity might be due to hypomorphic mutations of the RAG genes). Newborn screening in California established incidence of SCID at 1/66,250 live births. The use of HSCT for primary immunodeficiencies was reviewed, with recommendations to give priority to research oriented to establish best regimens to improve safety and efficacy of bone marrow transplantation. These represent only a fraction of significant research done in primary immunodeficiencies that has accelerated the quality of care of these patients. Genetic analysis of patients has demonstrated multiple phenotypic expressions of immune deficiency in patients with nearly identical genotypes, suggesting that additional genetic factors, possibly gene dosage, or environmental factors are responsible for this diversity. PMID:24589342
The Drosophila HEM-2/NAP1 homolog KETTE controls axonal pathfinding and cytoskeletal organization.
Hummel, T; Leifker, K; Klämbt, C
2000-04-01
In Drosophila, the correct formation of the segmental commissures depends on neuron-glial interactions at the midline. The VUM midline neurons extend axons along which glial cells migrate in between anterior and posterior commissures. Here, we show that the gene kette is required for the normal projection of the VUM axons and subsequently disrupts glial migration. Axonal projection defects are also found for many other moto- and interneurons. In addition, kette affects the cell morphology of mesodermal and epidermal derivatives, which show an abnormal actin cytoskeleton. The KETTE protein is homologous to the transmembrane protein HEM-2/NAP1 evolutionary conserved from worms to vertebrates. In vitro analysis has shown a specific interaction of the vertebrate HEM-2/NAP1 with the SH2-SH3 adapter protein NCK and the small GTPase RAC1, which both have been implicated in regulating cytoskeleton organization and axonal growth. Hypomorphic kette mutations lead to axonal defects similar to mutations in the Drosophila NCK homolog dreadlocks. Furthermore, we show that kette and dock mutants genetically interact. NCK is thought to interact with the small G proteins RAC1 and CDC42, which play a role in axonal growth. In line with these observations, a kette phenocopy can be obtained following directed expression of mutant DCDC42 or DRAC1 in the CNS midline. In addition, the kette mutant phenotype can be partially rescued by expression of an activated DRAC1 transgene. Our data suggest an important role of the HEM-2 protein in cytoskeletal organization during axonal pathfinding.
The Drosophila HEM-2/NAP1 homolog KETTE controls axonal pathfinding and cytoskeletal organization
Hummel, Thomas; Leifker, Karin; Klämbt, Christian
2000-01-01
In Drosophila, the correct formation of the segmental commissures depends on neuron–glial interactions at the midline. The VUM midline neurons extend axons along which glial cells migrate in between anterior and posterior commissures. Here, we show that the gene kette is required for the normal projection of the VUM axons and subsequently disrupts glial migration. Axonal projection defects are also found for many other moto- and interneurons. In addition, kette affects the cell morphology of mesodermal and epidermal derivatives, which show an abnormal actin cytoskeleton. The KETTE protein is homologous to the transmembrane protein HEM-2/NAP1 evolutionary conserved from worms to vertebrates. In vitro analysis has shown a specific interaction of the vertebrate HEM-2/NAP1 with the SH2–SH3 adapter protein NCK and the small GTPase RAC1, which both have been implicated in regulating cytoskeleton organization and axonal growth. Hypomorphic kette mutations lead to axonal defects similar to mutations in the Drosophila NCK homolog dreadlocks. Furthermore, we show that kette and dock mutants genetically interact. NCK is thought to interact with the small G proteins RAC1 and CDC42, which play a role in axonal growth. In line with these observations, a kette phenocopy can be obtained following directed expression of mutant DCDC42 or DRAC1 in the CNS midline. In addition, the kette mutant phenotype can be partially rescued by expression of an activated DRAC1 transgene. Our data suggest an important role of the HEM-2 protein in cytoskeletal organization during axonal pathfinding. PMID:10766742
Additional targets of the Arabidopsis autonomous pathway members, FCA and FY.
Marquardt, S; Boss, P K; Hadfield, J; Dean, C
2006-01-01
A central player in the Arabidopsis floral transition is the floral repressor FLC, the MADS-box transcriptional regulator that inhibits the activity of genes required to switch the meristem from vegetative to floral development. One of the many pathways that regulate FLC expression is the autonomous promotion pathway composed of FCA, FY, FLD, FPA, FVE, LD, and FLK. Rather than a hierarchical set of activities the autonomous promotion pathway comprises sub-pathways of genes with different biochemical functions that all share FLC as a target. One sub-pathway involves FCA and FY, which interact to regulate RNA processing of FLC. Several of the identified components (FY, FVE, and FLD) are homologous to yeast and mammalian proteins with rather generic roles in gene regulation. So why do mutations in these genes specifically show a late-flowering phenotype in Arabidopsis? One reason, found during the analysis of fy alleles, is that the mutant alleles identified in flowering screens can be hypomorphic, they still have partial function. A broader role for the autonomous promotion pathway is supported by a microarray analysis which has identified genes mis-regulated in fca mutants, and whose expression is also altered in fy mutants.
MacDiarmid, Colin W.; Taggart, Janet; Jeong, Jeeyon; Kerdsomboon, Kittikhun; Eide, David J.
2016-01-01
Stability of many proteins requires zinc. Zinc deficiency disrupts their folding, and the ubiquitin-proteasome system may help manage this stress. In Saccharomyces cerevisiae, UBI4 encodes five tandem ubiquitin monomers and is essential for growth in zinc-deficient conditions. Although UBI4 is only one of four ubiquitin-encoding genes in the genome, a dramatic decrease in ubiquitin was observed in zinc-deficient ubi4Δ cells. The three other ubiquitin genes were strongly repressed under these conditions, contributing to the decline in ubiquitin. In a screen for ubi4Δ suppressors, a hypomorphic allele of the RPT2 proteasome regulatory subunit gene (rpt2E301K) suppressed the ubi4Δ growth defect. The rpt2E301K mutation also increased ubiquitin accumulation in zinc-deficient cells, and by using a ubiquitin-independent proteasome substrate we found that proteasome activity was reduced. These results suggested that increased ubiquitin supply in suppressed ubi4Δ cells was a consequence of more efficient ubiquitin release and recycling during proteasome degradation. Degradation of a ubiquitin-dependent substrate was restored by the rpt2E301K mutation, indicating that ubiquitination is rate-limiting in this process. The UBI4 gene was induced ∼5-fold in low zinc and is regulated by the zinc-responsive Zap1 transcription factor. Surprisingly, Zap1 controls UBI4 by inducing transcription from an intragenic promoter, and the resulting truncated mRNA encodes only two of the five ubiquitin repeats. Expression of a short transcript alone complemented the ubi4Δ mutation, indicating that it is efficiently translated. Loss of Zap1-dependent UBI4 expression caused a growth defect in zinc-deficient conditions. Thus, the intragenic UBI4 promoter is critical to preventing ubiquitin deficiency in zinc-deficient cells. PMID:27432887
Ultra-low level radon assays in gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xin Ran
The SuperNEMO experiment aims to search for the neutrinoless double beta decay (0νβ β) to T{sub 1{sub /{sub 2}}}(0ν) > 10{sup 26} years, this corresponds to an effective neutrino mass of 50-100 meV. The extremely rare event rate means the minimisation of background is of critical concern. The stringent strategy instigated to ensure detector radiopurity is outlined here for all construction materials. In particular the large R&D programme undertaken to reach the challengingly low level of radon, < 0.15 mBq/m{sup 3}, required inside the SuperNEMO gaseous tracker will be detailed. This includes an experiment designed to measure radon diffusion throughmore » various materials. A “Radon Concentration Line” (RnCL) was developed to be used in conjunction with a state-of-the-art radon detector in order to achieve world leading sensitivity to {sup 222}Rn content in large gas volumes at the level of a few µBq/m{sup 3}. A radon purification system was developed and installed which has demonstrated radon suppression by several orders of magnitude depending on the carrier gas. This apparatus has now been commissioned and measurements of cylindered gas have been made to confirm radon suppression by a factor 20 when using nitrogen as the carrier gas. The results from measurements of radon content in various gases, used inside SuperNEMO, using the RnCL will be presented.« less
NASA Astrophysics Data System (ADS)
Raulier, Jonathan; Dansereau, Véronique; Fichefet, Thierry; Legat, Vincent; Weiss, Jérôme
2017-04-01
Sea ice is a highly dynamical environment characterized by a dense mesh of fractures or leads, constantly opening and closing over short time scales. This characteristic geomorphology is linked to the existence of linear kinematic features, which consist of quasi-linear patterns emerging from the observed strain rate field of sea ice. Standard rheologies used in most state-of-the-art sea ice models, like the well-known elastic-viscous-plastic rheology, are thought to misrepresent those linear kinematic features and the observed statistical distribution of deformation rates. Dedicated rheologies built to catch the processes known to be at the origin of the formation of leads are developed but still need evaluations on the global scale. One of them, based on a Maxwell elasto-brittle formulation, is being integrated in the NEMO-LIM3 global ocean-sea ice model (www.nemo-ocean.eu; www.elic.ucl.ac.be/lim). In the present study, we compare the results of the sea ice model LIM3 obtained with two different rheologies: the elastic-viscous-plastic rheology commonly used in LIM3 and a Maxwell elasto-brittle rheology. This comparison is focused on the statistical characteristics of the simulated deformation rate and on the ability of the model to reproduce the existence of leads within the ice pack. The impact of the lead representation on fluxes between ice, atmosphere and ocean is also assessed.
Schaevitz, Laura R; Picker, Jonathan D; Rana, Jasmine; Kolodny, Nancy H; Shane, Barry; Berger-Sweeney, Joanne E; Coyle, Joseph T
2012-06-01
Interactions between genetic and environmental risk factors underlie a number of neuropsychiatric disorders, including schizophrenia (SZ) and autism (AD). Due to the complexity and multitude of the genetic and environmental factors attributed to these disorders, recent research strategies focus on elucidating the common molecular pathways through which these multiple risk factors may function. In this study, we examine the combined effects of a haplo-insufficiency of glutamate carboxypeptidase II (GCPII) and dietary folic acid deficiency. In addition to serving as a neuropeptidase, GCPII catalyzes the absorption of folate. GCPII and folate depletion interact within the one-carbon metabolic pathway and/or of modulate the glutamatergic system. Four groups of mice were tested: wild-type, GCPII hypomorphs, and wild-types and GCPII hypomorphs both fed a folate deficient diet. Due to sex differences in the prevalence of SZ and AD, both male and female mice were assessed on a number of behavioral tasks including locomotor activity, rotorod, social interaction, prepulse inhibition, and spatial memory. Wild-type mice of both sexes fed a folic acid deficient diet showed motor coordination impairments and cognitive deficits, while social interactions were decreased only in males. GCPII mutant mice of both sexes also exhibited reduced social propensities. In contrast, all folate-depleted GCPII hypomorphs performed similarly to untreated wild-type mice, suggesting that reduced GCPII expression and folate deficiency are mutually protective. Analyses of folate and neurometabolite levels associated with glutamatergic function suggest several potential mechanisms through which GCPII and folate may be interacting to create this protective effect. Copyright © 2011 Wiley Periodicals, Inc.
Cyclone: java-based querying and computing with Pathway/Genome databases.
Le Fèvre, François; Smidtas, Serge; Schächter, Vincent
2007-05-15
Cyclone aims at facilitating the use of BioCyc, a collection of Pathway/Genome Databases (PGDBs). Cyclone provides a fully extensible Java Object API to analyze and visualize these data. Cyclone can read and write PGDBs, and can write its own data in the CycloneML format. This format is automatically generated from the BioCyc ontology by Cyclone itself, ensuring continued compatibility. Cyclone objects can also be stored in a relational database CycloneDB. Queries can be written in SQL, and in an intuitive and concise object-oriented query language, Hibernate Query Language (HQL). In addition, Cyclone interfaces easily with Java software including the Eclipse IDE for HQL edition, the Jung API for graph algorithms or Cytoscape for graph visualization. Cyclone is freely available under an open source license at: http://sourceforge.net/projects/nemo-cyclone. For download and installation instructions, tutorials, use cases and examples, see http://nemo-cyclone.sourceforge.net.
PORFIDO on the NEMO Phase 2 tower
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciaffoni, Orlando; Cordelli, Marco; Habel, Roberto
We have designed and built an underwater measurement system, PORFIDO (Physical Oceanography by RFID Outreach) to gather oceanographic data from the Optical Modules of a neutrino telescope with a minimum of disturbance to the main installation. PORFIDO is composed of a sensor glued to the outside of an Optical Module, in contact with seawater, and of a reader placed inside the sphere, facing the sensor. Data are transmitted to the reader through the glass by RFID and to shore in real time for periods of years. The sensor gathers power from the radio frequency, thus eliminating the need for batteriesmore » or connectors through the glass. We have deployed four PORFIDO probes measuring temperatures with the NEMO-KM3Net-Italy Phase 2 tower in april 2013. The four probes are operative and are transmitting temperature data from 3500 m depth.« less
"Genetically Engineered" Nanoelectronics
NASA Technical Reports Server (NTRS)
Klimeck, Gerhard; Salazar-Lazaro, Carlos H.; Stoica, Adrian; Cwik, Thomas
2000-01-01
The quantum mechanical functionality of nanoelectronic devices such as resonant tunneling diodes (RTDs), quantum well infrared-photodetectors (QWIPs), quantum well lasers, and heterostructure field effect transistors (HFETs) is enabled by material variations on an atomic scale. The design and optimization of such devices requires a fundamental understanding of electron transport in such dimensions. The Nanoelectronic Modeling Tool (NEMO) is a general-purpose quantum device design and analysis tool based on a fundamental non-equilibrium electron transport theory. NEW was combined with a parallelized genetic algorithm package (PGAPACK) to evolve structural and material parameters to match a desired set of experimental data. A numerical experiment that evolves structural variations such as layer widths and doping concentrations is performed to analyze an experimental current voltage characteristic. The genetic algorithm is found to drive the NEMO simulation parameters close to the experimentally prescribed layer thicknesses and doping profiles. With such a quantitative agreement between theory and experiment design synthesis can be performed.
The Nanoelectric Modeling Tool (NEMO) and Its Expansion to High Performance Parallel Computing
NASA Technical Reports Server (NTRS)
Klimeck, G.; Bowen, C.; Boykin, T.; Oyafuso, F.; Salazar-Lazaro, C.; Stoica, A.; Cwik, T.
1998-01-01
Material variations on an atomic scale enable the quantum mechanical functionality of devices such as resonant tunneling diodes (RTDs), quantum well infrared photodetectors (QWIPs), quantum well lasers, and heterostructure field effect transistors (HFETs).
DNA Replication Origin Function Is Promoted by H3K4 Di-methylation in Saccharomyces cerevisiae
Rizzardi, Lindsay F.; Dorn, Elizabeth S.; Strahl, Brian D.; Cook, Jeanette Gowen
2012-01-01
DNA replication is a highly regulated process that is initiated from replication origins, but the elements of chromatin structure that contribute to origin activity have not been fully elucidated. To identify histone post-translational modifications important for DNA replication, we initiated a genetic screen to identify interactions between genes encoding chromatin-modifying enzymes and those encoding proteins required for origin function in the budding yeast Saccharomyces cerevisiae. We found that enzymes required for histone H3K4 methylation, both the histone methyltransferase Set1 and the E3 ubiquitin ligase Bre1, are required for robust growth of several hypomorphic replication mutants, including cdc6-1. Consistent with a role for these enzymes in DNA replication, we found that both Set1 and Bre1 are required for efficient minichromosome maintenance. These phenotypes are recapitulated in yeast strains bearing mutations in the histone substrates (H3K4 and H2BK123). Set1 functions as part of the COMPASS complex to mono-, di-, and tri-methylate H3K4. By analyzing strains lacking specific COMPASS complex members or containing H2B mutations that differentially affect H3K4 methylation states, we determined that these replication defects were due to loss of H3K4 di-methylation. Furthermore, histone H3K4 di-methylation is enriched at chromosomal origins. These data suggest that H3K4 di-methylation is necessary and sufficient for normal origin function. We propose that histone H3K4 di-methylation functions in concert with other histone post-translational modifications to support robust genome duplication. PMID:22851644
DNA replication origin function is promoted by H3K4 di-methylation in Saccharomyces cerevisiae.
Rizzardi, Lindsay F; Dorn, Elizabeth S; Strahl, Brian D; Cook, Jeanette Gowen
2012-10-01
DNA replication is a highly regulated process that is initiated from replication origins, but the elements of chromatin structure that contribute to origin activity have not been fully elucidated. To identify histone post-translational modifications important for DNA replication, we initiated a genetic screen to identify interactions between genes encoding chromatin-modifying enzymes and those encoding proteins required for origin function in the budding yeast Saccharomyces cerevisiae. We found that enzymes required for histone H3K4 methylation, both the histone methyltransferase Set1 and the E3 ubiquitin ligase Bre1, are required for robust growth of several hypomorphic replication mutants, including cdc6-1. Consistent with a role for these enzymes in DNA replication, we found that both Set1 and Bre1 are required for efficient minichromosome maintenance. These phenotypes are recapitulated in yeast strains bearing mutations in the histone substrates (H3K4 and H2BK123). Set1 functions as part of the COMPASS complex to mono-, di-, and tri-methylate H3K4. By analyzing strains lacking specific COMPASS complex members or containing H2B mutations that differentially affect H3K4 methylation states, we determined that these replication defects were due to loss of H3K4 di-methylation. Furthermore, histone H3K4 di-methylation is enriched at chromosomal origins. These data suggest that H3K4 di-methylation is necessary and sufficient for normal origin function. We propose that histone H3K4 di-methylation functions in concert with other histone post-translational modifications to support robust genome duplication.
Muñoz-Nortes, Tamara; Pérez-Pérez, José Manuel; Ponce, María Rosa; Candela, Héctor; Micol, José Luis
2017-03-01
The characterization of mutants with altered leaf shape and pigmentation has previously allowed the identification of nuclear genes that encode plastid-localized proteins that perform essential functions in leaf growth and development. A large-scale screen previously allowed us to isolate ethyl methanesulfonate-induced mutants with small rosettes and pale green leaves with prominent marginal teeth, which were assigned to a phenotypic class that we dubbed Angulata. The molecular characterization of the 12 genes assigned to this phenotypic class should help us to advance our understanding of the still poorly understood relationship between chloroplast biogenesis and leaf morphogenesis. In this article, we report the phenotypic and molecular characterization of the angulata7-1 (anu7-1) mutant of Arabidopsis thaliana, which we found to be a hypomorphic allele of the EMB2737 gene, which was previously known only for its embryonic-lethal mutations. ANU7 encodes a plant-specific protein that contains a domain similar to the central cysteine-rich domain of DnaJ proteins. The observed genetic interaction of anu7-1 with a loss-of-function allele of GENOMES UNCOUPLED1 suggests that the anu7-1 mutation triggers a retrograde signal that leads to changes in the expression of many genes that normally function in the chloroplasts. Many such genes are expressed at higher levels in anu7-1 rosettes, with a significant overrepresentation of those required for the expression of plastid genome genes. Like in other mutants with altered expression of plastid-encoded genes, we found that anu7-1 exhibits defects in the arrangement of thylakoidal membranes, which appear locally unappressed. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
NMDA Receptors Mediate Olfactory Learning and Memory in Drosophila
Xia, Shouzhen; Miyashita, Tomoyuki; Fu, Tsai-Feng; Lin, Wei-Yong; Wu, Chia-Lin; Pyzocha, Lori; Lin, Inn-Ray; Saitoe, Minoru; Tully, Tim; Chiang, Ann-Shyn
2011-01-01
Summary Background Molecular and electrophysiological properties of NMDARs suggest that they may be the Hebbian “coincidence detectors” hypothesized to underlie associative learning. Because of the nonspecificity of drugs that modulate NMDAR function or the relatively chronic genetic manipulations of various NMDAR subunits from mammalian studies, conclusive evidence for such an acute role for NMDARs in adult behavioral plasticity, however, is lacking. Moreover, a role for NMDARs in memory consolidation remains controversial. Results The Drosophila genome encodes two NMDAR homologs, dNR1 and dNR2. When coexpressed in Xenopus oocytes or Drosophila S2 cells, dNR1 and dNR2 form functional NMDARs with several of the distinguishing molecular properties observed for vertebrate NMDARs, including voltage/Mg2+-dependent activation by glutamate. Both proteins are weakly expressed throughout the entire brain but show preferential expression in several neurons surrounding the dendritic region of the mushroom bodies. Hypomorphic mutations of the essential dNR1 gene disrupt olfactory learning, and this learning defect is rescued with wild-type transgenes. Importantly, we show that Pavlovian learning is disrupted in adults within 15 hr after transient induction of a dNR1 antisense RNA transgene. Extended training is sufficient to overcome this initial learning defect, but long-term memory (LTM) specifically is abolished under these training conditions. Conclusions Our study uses a combination of molecular-genetic tools to (1) generate genomic mutations of the dNR1 gene, (2) rescue the accompanying learning deficit with a dNR1+ transgene, and (3) rapidly and transiently knockdown dNR1+ expression in adults, thereby demonstrating an evolutionarily conserved role for the acute involvement of NMDARs in associative learning and memory. PMID:15823532
Zolov, Sergey N.; Bridges, Dave; Zhang, Yanling; Lee, Wei-Wei; Riehle, Ellen; Verma, Rakesh; Lenk, Guy M.; Converso-Baran, Kimber; Weide, Thomas; Albin, Roger L.; Saltiel, Alan R.; Meisler, Miriam H.; Russell, Mark W.; Weisman, Lois S.
2012-01-01
Mutations that cause defects in levels of the signaling lipid phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] lead to profound neurodegeneration in mice. Moreover, mutations in human FIG4 predicted to lower PI(3,5)P2 levels underlie Charcot–Marie–Tooth type 4J neuropathy and are present in selected cases of amyotrophic lateral sclerosis. In yeast and mammals, PI(3,5)P2 is generated by a protein complex that includes the lipid kinase Fab1/Pikfyve, the scaffolding protein Vac14, and the lipid phosphatase Fig4. Fibroblasts cultured from Vac14−/− and Fig4−/− mouse mutants have a 50% reduction in the levels of PI(3,5)P2, suggesting that there may be PIKfyve-independent pathways that generate this lipid. Here, we characterize a Pikfyve gene-trap mouse (Pikfyveβ-geo/β-geo), a hypomorph with ∼10% of the normal level of Pikfyve protein. shRNA silencing of the residual Pikfyve transcript in fibroblasts demonstrated that Pikfyve is required to generate all of the PI(3,5)P2 pool. Surprisingly, Pikfyve also is responsible for nearly all of the phosphatidylinositol-5-phosphate (PI5P) pool. We show that PI5P is generated directly from PI(3,5)P2, likely via 3′-phosphatase activity. Analysis of tissues from the Pikfyveβ-geo/β-geo mouse mutants reveals that Pikfyve is critical in neural tissues, heart, lung, kidney, thymus, and spleen. Thus, PI(3,5)P2 and PI5P have major roles in multiple organs. Understanding the regulation of these lipids may provide insights into therapies for multiple diseases. PMID:23047693
NMDA receptors mediate olfactory learning and memory in Drosophila.
Xia, Shouzhen; Miyashita, Tomoyuki; Fu, Tsai-Feng; Lin, Wei-Yong; Wu, Chia-Lin; Pyzocha, Lori; Lin, Inn-Ray; Saitoe, Minoru; Tully, Tim; Chiang, Ann-Shyn
2005-04-12
Molecular and electrophysiological properties of NMDARs suggest that they may be the Hebbian "coincidence detectors" hypothesized to underlie associative learning. Because of the nonspecificity of drugs that modulate NMDAR function or the relatively chronic genetic manipulations of various NMDAR subunits from mammalian studies, conclusive evidence for such an acute role for NMDARs in adult behavioral plasticity, however, is lacking. Moreover, a role for NMDARs in memory consolidation remains controversial. The Drosophila genome encodes two NMDAR homologs, dNR1 and dNR2. When coexpressed in Xenopus oocytes or Drosophila S2 cells, dNR1 and dNR2 form functional NMDARs with several of the distinguishing molecular properties observed for vertebrate NMDARs, including voltage/Mg(2+)-dependent activation by glutamate. Both proteins are weakly expressed throughout the entire brain but show preferential expression in several neurons surrounding the dendritic region of the mushroom bodies. Hypomorphic mutations of the essential dNR1 gene disrupt olfactory learning, and this learning defect is rescued with wild-type transgenes. Importantly, we show that Pavlovian learning is disrupted in adults within 15 hr after transient induction of a dNR1 antisense RNA transgene. Extended training is sufficient to overcome this initial learning defect, but long-term memory (LTM) specifically is abolished under these training conditions. Our study uses a combination of molecular-genetic tools to (1) generate genomic mutations of the dNR1 gene, (2) rescue the accompanying learning deficit with a dNR1+ transgene, and (3) rapidly and transiently knockdown dNR1+ expression in adults, thereby demonstrating an evolutionarily conserved role for the acute involvement of NMDARs in associative learning and memory.
Requirement of argininosuccinate lyase for systemic nitric oxide production.
Erez, Ayelet; Nagamani, Sandesh C S; Shchelochkov, Oleg A; Premkumar, Muralidhar H; Campeau, Philippe M; Chen, Yuqing; Garg, Harsha K; Li, Li; Mian, Asad; Bertin, Terry K; Black, Jennifer O; Zeng, Heng; Tang, Yaoping; Reddy, Anilkumar K; Summar, Marshall; O'Brien, William E; Harrison, David G; Mitch, William E; Marini, Juan C; Aschner, Judy L; Bryan, Nathan S; Lee, Brendan
2011-11-13
Nitric oxide (NO) is crucial in diverse physiological and pathological processes. We show that a hypomorphic mouse model of argininosuccinate lyase (encoded by Asl) deficiency has a distinct phenotype of multiorgan dysfunction and NO deficiency. Loss of Asl in both humans and mice leads to reduced NO synthesis, owing to both decreased endogenous arginine synthesis and an impaired ability to use extracellular arginine for NO production. Administration of nitrite, which can be converted into NO in vivo, rescued the manifestations of NO deficiency in hypomorphic Asl mice, and a nitric oxide synthase (NOS)-independent NO donor restored NO-dependent vascular reactivity in humans with ASL deficiency. Mechanistic studies showed that ASL has a structural function in addition to its catalytic activity, by which it contributes to the formation of a multiprotein complex required for NO production. Our data demonstrate a previously unappreciated role for ASL in NOS function and NO homeostasis. Hence, ASL may serve as a target for manipulating NO production in experimental models, as well as for the treatment of NO-related diseases.
Domsch, Katrin; Acs, Andreas; Obermeier, Claudia; Nguyen, Hanh T; Reim, Ingolf
2017-01-01
The proper differentiation and maintenance of myofibers is fundamental to a functional musculature. Disruption of numerous mostly structural factors leads to perturbations of these processes. Among the limited number of known regulatory factors for these processes is Mind bomb2 (Mib2), a muscle-associated E3 ubiquitin ligase, which was previously established to be required for maintaining the integrity of larval muscles. In this study, we have examined the mechanistic aspects of Mib2 function by performing a detailed functional dissection of the Mib2 protein. We show that the ankyrin repeats, in its entirety, and the hitherto uncharacterized Mib-specific domains (MIB), are important for the major function of Mib2 in skeletal and visceral muscles in the Drosophila embryo. Furthermore, we characterize novel mib2 alleles that have arisen from a forward genetic screen aimed at identifying regulators of myogenesis. Two of these alleles are viable, but flightless hypomorphic mib2 mutants, and harbor missense mutations in the MIB domain and RING finger, respectively. Functional analysis of these new alleles, including in vivo imaging, demonstrates that Mib2 plays an additional important role in the development of adult thorax muscles, particularly in maintaining the larval templates for the dorsal longitudinal indirect flight muscles during metamorphosis.
Ishizaki, Hironori; Spitzer, Michaela; Wildenhain, Jan; Anastasaki, Corina; Zeng, Zhiqiang; Dolma, Sonam; Shaw, Michael; Madsen, Erik; Gitlin, Jonathan; Marais, Richard; Tyers, Mike; Patton, E Elizabeth
2010-01-01
Hypopigmentation is a feature of copper deficiency in humans, as caused by mutation of the copper (Cu(2+)) transporter ATP7A in Menkes disease, or an inability to absorb copper after gastric surgery. However, many causes of copper deficiency are unknown, and genetic polymorphisms might underlie sensitivity to suboptimal environmental copper conditions. Here, we combined phenotypic screens in zebrafish for compounds that affect copper metabolism with yeast chemical-genetic profiles to identify pathways that are sensitive to copper depletion. Yeast chemical-genetic interactions revealed that defects in intracellular trafficking pathways cause sensitivity to low-copper conditions; partial knockdown of the analogous Ap3s1 and Ap1s1 trafficking components in zebrafish sensitized developing melanocytes to hypopigmentation in low-copper environmental conditions. Because trafficking pathways are essential for copper loading into cuproproteins, our results suggest that hypomorphic alleles of trafficking components might underlie sensitivity to reduced-copper nutrient conditions. In addition, we used zebrafish-yeast screening to identify a novel target pathway in copper metabolism for the small-molecule MEK kinase inhibitor U0126. The zebrafish-yeast screening method combines the power of zebrafish as a disease model with facile genome-scale identification of chemical-genetic interactions in yeast to enable the discovery and dissection of complex multigenic interactions in disease-gene networks.
Disease Mechanisms and Therapeutic Approaches in Spinal Muscular Atrophy
Tisdale, Sarah
2015-01-01
Motor neuron diseases are neurological disorders characterized primarily by the degeneration of spinal motor neurons, skeletal muscle atrophy, and debilitating and often fatal motor dysfunction. Spinal muscular atrophy (SMA) is an autosomal-recessive motor neuron disease of high incidence and severity and the most common genetic cause of infant mortality. SMA is caused by homozygous mutations in the survival motor neuron 1 (SMN1) gene and retention of at least one copy of the hypomorphic gene paralog SMN2. Early studies established a loss-of-function disease mechanism involving ubiquitous SMN deficiency and suggested SMN upregulation as a possible therapeutic approach. In recent years, greater knowledge of the central role of SMN in RNA processing combined with deep characterization of animal models of SMA has significantly advanced our understanding of the cellular and molecular basis of the disease. SMA is emerging as an RNA disease not limited to motor neurons, but one that involves dysfunction of motor circuits that comprise multiple neuronal subpopulations and possibly other cell types. Advances in SMA research have also led to the development of several potential therapeutics shown to be effective in animal models of SMA that are now in clinical trials. These agents offer unprecedented promise for the treatment of this still incurable neurodegenerative disease. PMID:26063904
Hematopoietic stem cells are acutely sensitive to Acd shelterin gene inactivation
Jones, Morgan; Osawa, Gail; Regal, Joshua A.; Weinberg, Daniel N.; Taggart, James; Kocak, Hande; Friedman, Ann; Ferguson, David O.; Keegan, Catherine E.; Maillard, Ivan
2013-01-01
The shelterin complex plays dual functions in telomere homeostasis by recruiting telomerase and preventing the activation of a DNA damage response at telomeric ends. Somatic stem cells require telomerase activity, as evidenced by progressive stem cell loss leading to bone marrow failure in hereditary dyskeratosis congenita. Recent work demonstrates that dyskeratosis congenita can also arise from mutations in specific shelterin genes, although little is known about shelterin functions in somatic stem cells. We found that mouse hematopoietic stem cells (HSCs) are acutely sensitive to inactivation of the shelterin gene Acd, encoding TPP1. Homozygosity for a hypomorphic acd allele preserved the emergence and expansion of fetal HSCs but led to profoundly defective function in transplantation assays. Upon complete Acd inactivation, HSCs expressed p53 target genes, underwent cell cycle arrest, and were severely depleted within days, leading to hematopoietic failure. TPP1 loss induced increased telomeric fusion events in bone marrow progenitors. However, unlike in epidermal stem cells, p53 deficiency did not rescue TPP1-deficient HSCs, indicating that shelterin dysfunction has unique effects in different stem cell populations. Because the consequences of telomere shortening are progressive and unsynchronized, acute loss of shelterin function represents an attractive alternative for studying telomere crisis in hematopoietic progenitors. PMID:24316971
Mutations in the cofilin partner Aip1/Wdr1 cause autoinflammatory disease and macrothrombocytopenia
Panopoulos, Athanasia D.; Stirzaker, Roslynn A.; Hacking, Douglas F.; Tahtamouni, Lubna H.; Willson, Tracy A.; Mielke, Lisa A.; Henley, Katya J.; Zhang, Jian-Guo; Wicks, Ian P.; Stevenson, William S.; Nurden, Paquita; Watowich, Stephanie S.; Justice, Monica J.
2007-01-01
A pivotal mediator of actin dynamics is the protein cofilin, which promotes filament severing and depolymerization, facilitating the breakdown of existing filaments, and the enhancement of filament growth from newly created barbed ends. It does so in concert with actin interacting protein 1 (Aip1), which serves to accelerate cofilin's activity. While progress has been made in understanding its biochemical functions, the physiologic processes the cofilin/Aip1 complex regulates, particularly in higher organisms, are yet to be determined. We have generated an allelic series for WD40 repeat protein 1 (Wdr1), the mammalian homolog of Aip1, and report that reductions in Wdr1 function produce a dramatic phenotype gradient. While severe loss of function at the Wdr1 locus causes embryonic lethality, macrothrombocytopenia and autoinflammatory disease develop in mice carrying hypomorphic alleles. Macrothrombocytopenia is the result of megakaryocyte maturation defects, which lead to a failure of normal platelet shedding. Autoinflammatory disease, which is bone marrow–derived yet nonlymphoid in origin, is characterized by a massive infiltration of neutrophils into inflammatory lesions. Cytoskeletal responses are impaired in Wdr1 mutant neutrophils. These studies establish an essential requirement for Wdr1 in megakaryocytes and neutrophils, indicating that cofilin-mediated actin dynamics are critically important to the development and function of both cell types. PMID:17515402
ATR suppresses endogenous DNA damage and allows completion of homologous recombination repair.
Brown, Adam D; Sager, Brian W; Gorthi, Aparna; Tonapi, Sonal S; Brown, Eric J; Bishop, Alexander J R
2014-01-01
DNA replication fork stalling or collapse that arises from endogenous damage poses a serious threat to genome stability, but cells invoke an intricate signaling cascade referred to as the DNA damage response (DDR) to prevent such damage. The gene product ataxia telangiectasia and Rad3-related (ATR) responds primarily to replication stress by regulating cell cycle checkpoint control, yet it's role in DNA repair, particularly homologous recombination (HR), remains unclear. This is of particular interest since HR is one way in which replication restart can occur in the presence of a stalled or collapsed fork. Hypomorphic mutations in human ATR cause the rare autosomal-recessive disease Seckel syndrome, and complete loss of Atr in mice leads to embryonic lethality. We recently adapted the in vivo murine pink-eyed unstable (pun) assay for measuring HR frequency to be able to investigate the role of essential genes on HR using a conditional Cre/loxP system. Our system allows for the unique opportunity to test the effect of ATR loss on HR in somatic cells under physiological conditions. Using this system, we provide evidence that retinal pigment epithelium (RPE) cells lacking ATR have decreased density with abnormal morphology, a decreased frequency of HR and an increased level of chromosomal damage.
2014-01-01
Background The Drosophila heart (dorsal vessel) is a relatively simple tubular organ that serves as a model for several aspects of cardiogenesis. Cardiac morphogenesis, proper heart function and stability require structural components whose identity and ways of assembly are only partially understood. Structural components are also needed to connect the myocardial tube with neighboring cells such as pericardial cells and specialized muscle fibers, the so-called alary muscles. Results Using an EMS mutagenesis screen for cardiac and muscular abnormalities in Drosophila embryos we obtained multiple mutants for two genetically interacting complementation groups that showed similar alary muscle and pericardial cell detachment phenotypes. The molecular lesions underlying these defects were identified as domain-specific point mutations in LamininB1 and Cg25C, encoding the extracellular matrix (ECM) components laminin β and collagen IV α1, respectively. Of particular interest within the LamininB1 group are certain hypomorphic mutants that feature prominent defects in cardiac morphogenesis and cardiac ECM layer formation, but in contrast to amorphic mutants, only mild defects in other tissues. All of these alleles carry clustered missense mutations in the laminin LN domain. The identified Cg25C mutants display weaker and largely temperature-sensitive phenotypes that result from glycine substitutions in different Gly-X-Y repeats of the triple helix-forming domain. While initial basement membrane assembly is not abolished in Cg25C mutants, incorporation of perlecan is impaired and intracellular accumulation of perlecan as well as the collagen IV α2 chain is detected during late embryogenesis. Conclusions Assembly of the cardiac ECM depends primarily on laminin, whereas collagen IV is needed for stabilization. Our data underscore the importance of a correctly assembled ECM particularly for the development of cardiac tissues and their lateral connections. The mutational analysis suggests that the β6/β3/β8 interface of the laminin β LN domain is highly critical for formation of contiguous cardiac ECM layers. Certain mutations in the collagen IV triple helix-forming domain may exert a semi-dominant effect leading to an overall weakening of ECM structures as well as intracellular accumulation of collagen and other molecules, thus paralleling observations made in other organisms and in connection with collagen-related diseases. PMID:24935095
Social deficits and perseverative behaviors, but not overt aggression, in MAO-A hypomorphic mice.
Bortolato, Marco; Chen, Kevin; Godar, Sean C; Chen, Gao; Wu, Weihua; Rebrin, Igor; Farrell, Mollee R; Scott, Anna L; Wellman, Cara L; Shih, Jean C
2011-12-01
Monoamine oxidase (MAO)-A is a key enzyme for the degradation of brain serotonin (5-hydroxytryptamine, 5-HT) and norepinephrine (NE). In humans and mice, total MAO-A deficiency results in high 5-HT and NE levels, as well as elevated reactive aggression. Here we report the generation of MAO-A(Neo) mice, a novel line of hypomorphic MAO-A mutants featuring the insertion of a floxed neomycin-resistance cassette in intron-12 of the Maoa gene. This construct resulted in a chimeric, non-functional variant of the Maoa-Neo transcript, with a truncated C-terminus, likely due to aberrant splicing; these deficits notwithstanding, small amounts of functional Maoa transcript were found in the brain of MAO-A(Neo) mice. In the prefrontal cortex and amygdala, MAO-A(Neo) mice showed low, yet detectable, MAO-A catalytic activity, as well as 5-HT levels equivalent to WT littermates; conversely, the hippocampus and midbrain of MAO-A(Neo) mice featured a neurochemical profile akin to MAO-A-knockout (KO) mice, with undetectable MAO-A activity and high 5-HT concentrations. MAO-A(Neo) mice showed significant increases in dendritic length in the pyramidal neurons of orbitofrontal cortex, but not basolateral amygdala, in comparison with WT littermates; by contrast, the orbitofrontal cortex of MAO-A KO mice showed significant reductions in basilar dendritic length, as well as a profound increase in apical dendritic length. MAO-A(Neo) mice showed a unique set of behavioral abnormalities, encompassing reduced open-field locomotion, perseverative responses, such as marble burying and water mist-induced grooming, and a lack of anxiety-like behaviors in the elevated plus-maze and light-dark box paradigms. Notably, whereas MAO-A(Neo) and KO mice showed significant reductions in social interaction, only the latter genotype showed increases in resident-intruder aggression. Taken together, our findings indicate that MAO A hypomorphism results in behavioral and morphological alterations distinct from those featured by MAO-A KO mice.
Reynolds, Gloria E; Gao, Qing; Miller, Douglas; Snow, Bryan E; Harrington, Lea A; Murnane, John P
2011-11-10
Telomerase serves to maintain telomeric repeat sequences at the ends of chromosomes. However, telomerase can also add telomeric repeat sequences at DNA double-strand breaks (DSBs), a process called chromosome healing. Here, we employed a method of inducing DSBs near telomeres to query the role of two proteins, PIF1 and NBS1, in chromosome healing in mammalian cells. PIF1 was investigated because the PIF1 homolog in Saccharomyces cerevisiae inhibits chromosome healing, as shown by a 1000-fold increase in chromosome in PIF1-deficient cells. NBS1 was investigated because the functional homolog of NBS1 in S. cerevisiae, Xrs2, is part of the Mre11/Rad50/Xrs2 complex that is required for chromosome healing due to its role in the processing of DSBs and recruitment of telomerase. We found that disruption of mPif1 had no detectable effect on the frequency of chromosome healing at DSBs near telomeres in murine embryonic stem cells. Moreover, the Nbs1(ΔB) hypomorph, which is defective in the processing of DSBs, also had no detectable effect on the frequency of chromosome healing, DNA degradation, or gross chromosome rearrangements (GCRs) that result from telomeric DSBs. Although we cannot rule out small changes in chromosome healing using this system, it is clear from our results that knockout of PIF1 or the Nbs1(ΔB) hypomorph does not result in large differences in chromosome healing in murine cells. These results represent the first genetic assessment of the role of these proteins in chromosome healing in mammals, and suggest that murine cells have evolved mechanisms to ensure the functional redundancy of Pif1 or Nbs1 in the regulation of chromosome healing. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ayache, Mohamed; Dutay, Jean-claude; Mouchet, Anne; Tisnérat-Laborde, Nadine; Houma-Bachari, Fouzia; Louanchi, Ferial; jean-baptiste, Philippe
2016-04-01
The radiocarbon isotope of carbon "14C", which a half-life of 5730 years, is continually formed naturally in the atmosphere by the neutron bombardment of 14N atoms. However, in the 1950s and early1960s, the atmospheric testing of thermonuclear weapons added a large amount of 14C into the atmosphere. The gradual infusion and spread of this "bomb" 14C through the oceans has provided a unique opportunity to gain insight into the specific rates characterizing the carbon cycle and ocean ventilations on such timescales. This numerical study provides, for the first time in the Mediterranean Sea, a simulation of the anthropogenic 14C invasion covers a 70-years period spanning the entire 14C generated by the bomb test, by using a high resolution regional model NEMO-MED12 (1/12° of horizontal resolution). This distribution and evolution of Δ14C of model is compared with recent high resolution 14C measurements obtained from surface water corals (Tisnérat-Laborde et al, 2013). In addition to providing constraints on the air-sea transfer of 14C, our work provides information on the thermohaline circulation and the ventilation of the deep waters to constrain the degree to which the NEMO-MED12 can reproduce correctly the main hydrographic features of the Mediterranean Sea circulation and its variations estimated from corals 14C time series measurements. This study is part of the work carried out to assess the robustness of the NEMO-MED12 model, which will be used to study the evolution of the climate and its effect on the biogeochemical cycles in the Mediterranean Sea, and to improve our ability to predict the future evolution of the Mediterranean Sea under the increasing anthropogenic pressure.
NEMO: Extraction and normalization of organization names from PubMed affiliations.
Jonnalagadda, Siddhartha Reddy; Topham, Philip
2010-10-04
Today, there are more than 18 million articles related to biomedical research indexed in MEDLINE, and information derived from them could be used effectively to save the great amount of time and resources spent by government agencies in understanding the scientific landscape, including key opinion leaders and centers of excellence. Associating biomedical articles with organization names could significantly benefit the pharmaceutical marketing industry, health care funding agencies and public health officials and be useful for other scientists in normalizing author names, automatically creating citations, indexing articles and identifying potential resources or collaborators. Large amount of extracted information helps in disambiguating organization names using machine-learning algorithms. We propose NEMO, a system for extracting organization names in the affiliation and normalizing them to a canonical organization name. Our parsing process involves multi-layered rule matching with multiple dictionaries. The system achieves more than 98% f-score in extracting organization names. Our process of normalization that involves clustering based on local sequence alignment metrics and local learning based on finding connected components. A high precision was also observed in normalization. NEMO is the missing link in associating each biomedical paper and its authors to an organization name in its canonical form and the Geopolitical location of the organization. This research could potentially help in analyzing large social networks of organizations for landscaping a particular topic, improving performance of author disambiguation, adding weak links in the co-author network of authors, augmenting NLM's MARS system for correcting errors in OCR output of affiliation field, and automatically indexing the PubMed citations with the normalized organization name and country. Our system is available as a graphical user interface available for download along with this paper.
Sambataro, Domenico; Sambataro, Gianluca; Zaccara, Eleonora; Maglione, Wanda; Polosa, Riccardo; Afeltra, Antonella M V; Vitali, Claudio; Del Papa, Nicoletta
2014-10-09
Nailfold videocapillaroscopy (NVC) in systemic sclerosis (SSc) is a procedure commonly used for patient classification and subsetting, but not to define disease activity (DA). This study aimed to evaluate whether the number of micro-haemorrhages (MHE), micro-thrombosis (MT), giant capillaries (GC), and normal/dilated capillaries (Cs) in NVC could predict DA in SSc. Eight-finger NVC was performed in 107 patients with SSc, and the total number of MHE/MT, GC, and the mean number of Cs were counted and defined as number of micro-haemorrhages (NEMO), GC and Cs scores, respectively. The European Scleroderma Study Group (ESSG) index constituted the gold standard for DA assessment, and scores ≥ 3.5 and = 3 were considered indicative of high and moderate activity, respectively. NEMO and GC scores were positively correlated with ESSG index (R = 0.65, P < 0.0001, and R = 0.47, P <0.0001, respectively), whilst Cs score showed a negative correlation with that DA index (R = -0.30, P <0.001). The area under the curve (AUC) of receiver operating characteristic plots, obtained by NEMO score sensitivity and specificity values in classifying patients with ESSG index ≥ 3.5, was significantly higher than the corresponding AUC derived from either GC or Cs scores (P <0.03 and P <0.0006, respectively). A modified score, defined by the presence of a given number of MHE/MT and GC, had a good performance in classifying active patients (ESSG index ≥ 3, sensitivity 95.1%, specificity 84.8%, accuracy 88.7%). MHE/MT and GC appear to be good indicators of DA in SSc, and enhances the role of NVC as an easy technique to identify active patients.
Assessing activity of Hepatitis A virus 3C protease using a cyclized luciferase-based biosensor.
Zhou, Junwei; Wang, Dang; Xi, Yongqiang; Zhu, Xinyu; Yang, Yuting; Lv, Mengting; Luo, Chuanzhen; Chen, Jiyao; Ye, Xu; Fang, Liurong; Xiao, Shaobo
2017-07-08
Hepatitis A is an acute infection caused by Hepatitis A virus (HAV), which is widely distributed throughout the world. The HAV 3C cysteine protease (3C pro ), an important nonstructural protein, is responsible for most cleavage within the viral polyprotein and is critical for the processes of viral replication. Our group has previously demonstrated that HAV 3C pro cleaves human NF-κB essential modulator (NEMO), a kinase required in interferon signaling. Based on this finding, we generated four luciferase-based biosensors containing the NEMO sequence (PVLKAQ↓ADIYKA) that is cleaved by HAV 3C pro and/or the Nostoc punctiforme DnaE intein, to monitor the activity of HAV 3C pro in human embryonic kidney cells (HEK-293T). Western blotting showed that HAV 3C pro recognized and cleaved the NEMO cleavage sequence incorporated in the four biosensors, whereas only one cyclized luciferase-based biosensor (233-DnaE-HAV, 233DH) showed a measurable and reliable increase in firefly luciferase activity, with very low background, in the presence of HAV 3C pro . With this biosensor (233DH), we monitored HAV 3C pro activity in HEK-293T cells, and tested it against a catalytically deficient mutant HAV 3C pro and other virus-encoded proteases. The results showed that the activity of this luciferase biosensor is specifically dependent on HAV 3C pro . Collectively, our data demonstrate that the luciferase biosensor developed here might provide a rapid, sensitive, and efficient evaluation of HAV 3C pro activity, and should extend our better understanding of the biological relevance of HAV 3C pro . Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lo Bue, N.; Sgroi, T.; Giovinetti, G.; Marinaro, G.; Favali, P.
2014-12-01
The Acoustic Doppler Current Profiler (ADCP) is one of the most useful sensor used to measure speed and direction of sea currents in the water column. More often ADCPs are being also used to monitor concentration of suspended matter in rivers or in marine environments by the analysis of the acoustic backscatter intensity. In the framework of the European Research Infrastructure EMSO (European Multidisciplinary Seafloor and water-column Observatory, www.emso-eu.org), its cabled node, the NEMO-SN1 multidisciplinary seafloor observatory, was deployed in the Western Ionian Sea (Southern Italy) at a depth of 2100 m, about 25 km off-shore Eastern Sicily close to the submarine slope of the Mt. Etna volcano. Starting from February 2013, the Mt. Etna was interested by thirteen different parossistic events producing intense eruption followed by pyroclastic fallout that reached distances of tens kilometres from the eruptive centre. Four of these events affected the ESE sector with a consequent fallout in the Western Ionian Sea and they were detected by NEMO-SN1. In fact, its scientific payload also included an ADCP (RDI WorkHorse 600 kHz) with the main aim to monitor the hydrodynamic conditions of about 30 metres of the water column above the station. Surprisingly, this sensor offered spectacular recordings of the Mt. Etna pyroclastic activity occurred on 2013 wich affected the ESE sector. This work aims to present new records of pyroclastic fallout associated to explosive events observed at sea bottom by the analysis of backscatter signal of the ADCP. A multidisciplinary approach taking into account the Mt. Etna eruptive activity as well as the local oceanographic dynamic is necessary to describe marine processes involved in volcanic ash sedimentation.
First results from the NEMO Test Site
NASA Astrophysics Data System (ADS)
Riccobene, Giorgio; NEMO Collaboration
2007-03-01
The NEMO (NEutrino Mediterranean Observatory) Collaboration is constructing, 25 km E from Catania (Sicily) at 2000 m depth, an underwater test site to perform long-term tests of prototypes and new technologies for an underwater high energy neutrino detector in the Mediterranean Sea. In this framework the collaboration deployed and operated an experimental apparatus for on-line monitoring of deep-sea noise. The station is equipped with 4 hydrophones operational in the range 30 Hz - 40 kHz. This interval of frequencies matches the range suitable for acoustic detection of high energy neutrino-induced showers in water. Hydrophone signals are digitized underwater at 96 kHz sampling frequency and 24 bits resolution. A custom software was developed to record data on high resolution 4-channels PCM .le. Data are used to model underwater acoustic noise as a function of frequency and time, a mandatory parametre for future acoustic neutrino detectors. Results indicate that the average noise in the site is compatible with noise produced in condition of sea surface agitation (sea state.)
Endocrine Therapy of Breast Cancer
2006-06-01
Becker muscular dystrophy (BMD, hypomorphic for dys- trophin, n = 5), Dysferlin deficiency (putative vesicle traf- fic defect, n = 9), and Calpain III...this study. (1) Limb-girdle muscular dystrophy (LGMD, provided by Children National Medical Center, Center for Genetic Medicine): 4 diagnostic...groups, Fukutin related protein de- ficiency (FKRP) (homozygous missense for glycosylation enzyme, limb-girdle muscular dystrophy sub-type, n = 7
NASA Astrophysics Data System (ADS)
Sparnocchia, Stefania; Beranzoli, Laura; Borghini, Mireno; Durante, Sara; Favali, Paolo; Giovanetti, Gabriele; Italiano, Francesco; Marinaro, Giuditta; Meccia, Virna; Papaleo, Riccardo; Riccobene, Giorgio; Schroeder, Katrin
2015-04-01
A prototype of cabled deep-sea observatory has been operating in real-time since 2005 in Southern Italy (East Sicily, 37°30' N - 15°06'E), at 2100 m water depth, 25 km from the harbor of the city of Catania. It is the first-established real-time node of the "European Multidisciplinary Seafloor and water column Observatory" (EMSO, http://www.emso-eu.org) a research infrastructure of the Sector Environment of ESFRI. In the present configuration it consists of two components: the multi-parametric station NEMO-SN1 (TSN branch) equipped with geophysical and environmental sensors for measurements at the seafloor, and the NEMO-OνDE station (TSS branch) equipped with 4 wideband hydrophones. A 28 km long electro-optical cable connects the observatory to a shore laboratory in the Catania harbor, hosting the data acquisition system and supplying power and data transmission to the underwater instrumentation. The NEMO-SN1 observatory is located in an area particularly suited to multidisciplinary studies. The site is one of the most seismically active areas of the Mediterranean (some of the strongest earthquakes occurred in 1169, 1693 and 1908, also causing very intense tsunami waves) and is close to Mount Etna, one of the largest and most active volcanoes in Europe. The deployment area is also a key site for monitoring deep-water dynamics in the Ionian Sea, connecting the Levantine basin to the southern Adriatic basin where intermediate and deep waters are formed, and finally to the western Mediterranean Sea via the Strait of Sicily. The observatory is being further developed under EMSO MedIT (http://www.emso-medit.it/en/), a structural enhancement project contributing to the consolidation and enhancement of the European research infrastructure EMSO in Italian Convergence Regions. In this framework, a new Junction Box will be connected to the TSN branch and will provide wired and wireless (acoustic connections) for seafloor platforms and moorings. This will allow the implementation of new measurement capabilities at seafloor and along the water column with sensors for measurements of physical-chemical (pressure, temperature, salinity, dissolved oxygen, turbidity, pCO2, currents) and geophysical (magnetometer, seismometer and gravity meter) parameters. An imaging system for deep sea fauna will be deployed very soon at TSS. Furthermore, the data acquisition/elaboration system will be enhanced, and data will be shared in near real time through the Catania node of the high-speed telecommunication network for University and Scientific Research. An Open Access policy is adopted to favour the access of the international scientific community. According to the EMSO business plan and EC recommendations, the enhanced infrastructure will be open to scientists, companies and public actors on excellence research basis, for the development of innovative scientific and technological research products. The existing seafloor module is already offering this service under the TNA program of FixO3 EC Project (www.fixo3.eu). The ongoing development of NEMO-SN1 will strengthen its capabilities to monitor long-term variability of key physical, geophysical and biogeochemical parameters, with applications, for example, in studies on modifications of the properties of water masses and the marine circulation, changes in marine chemistry, with particular emphasis on the carbon system and its role in ocean acidification, evolving trends in global sea level, and to address geo-hazards issues, such as earthquake and tsunami risks, volcanic risk, instability and collapse of the slopes.
Huang, Jianhua; Li, Li; Yuan, Weifeng; Zheng, Linxin
2016-01-01
The aim of the present study is to investigate the protective effects and relevant mechanisms exerted by NEMO-binding domain peptide (NBD) against lipopolysaccharide- (LPS-) induced acute lung injury (ALI) in mice. The ALI model was induced by intratracheally administered atomized LPS (5 mg/kg) to BABL/c mice. Half an hour before LPS administration, we treated the mice with increasing concentrations of intratracheally administered NBD or saline aerosol. Two hours after LPS administration, each group of mice was sacrificed. We observed that NBD pretreatment significantly attenuated LPS-induced lung histopathological injury in a dose-dependent manner. Western blotting established that NBD pretreatment obviously attenuated LPS-induced IκB-α and NF-κBp65 activation and NOX1, NOX2, and NOX4 overexpression. Furthermore, NBD pretreatment increased SOD and T-AOC activity and decreased MDA levels in lung tissue. In addition, NBD also inhibited TNF-α and IL-1β secretion in BALF after LPS challenge. In conclusion, NBD protects against LPS-induced ALI in mice. PMID:27956761
Data transmission and acquisition in NEMO
NASA Astrophysics Data System (ADS)
Bunkheila, G.
2006-11-01
A comprehensive system for data transmission and acquisition has been developed for an "à la NEMO" underwater neutrino telescope based on Čerenkov light detection using photomultipliers (PMTs) as sensors. Signals generated by each sensor are triggered, sampled and tagged by an electronics board, called Front End Module (FEM). Data streams from up to eight FEMs located on one tower floor are collected by a concentration board called Floor Control Module (FCM) and sent to a twin FCM board—located at the onshore station and plugged into an interface machine (FCM Interface, or FCMI) via a PCI bus—through a DWDM-compliant optical fiber and using a self-synchronous serial protocol. All sensor data reach the onshore lab through FCMI where they are made available to subsequent elaboration processes, such as time-wise alignment and muon track event-triggering. To meet requirements of the latter, onshore data unpacking is carried out with respect to their topological origin. The system promised, and keeps on showing, very light charges on power consumption and infrastructure complexity, while having recently proved to behave at high performance levels in its optical part.
Frishkoff, Gwen; Sydes, Jason; Mueller, Kurt; Frank, Robert; Curran, Tim; Connolly, John; Kilborn, Kerry; Molfese, Dennis; Perfetti, Charles; Malony, Allen
2011-01-01
We present MINEMO (Minimal Information for Neural ElectroMagnetic Ontologies), a checklist for the description of event-related potentials (ERP) studies. MINEMO extends MINI (Minimal Information for Neuroscience Investigations)to the ERP domain. Checklist terms are explicated in NEMO, a formal ontology that is designed to support ERP data sharing and integration. MINEMO is also linked to an ERP database and web application (the NEMO portal). Users upload their data and enter MINEMO information through the portal. The database then stores these entries in RDF (Resource Description Framework), along with summary metrics, i.e., spatial and temporal metadata. Together these spatial, temporal, and functional metadata provide a complete description of ERP data and the context in which these data were acquired. The RDF files then serve as inputs to ontology-based labeling and meta-analysis. Our ultimate goal is to represent ERPs using a rich semantic structure, so results can be queried at multiple levels, to stimulate novel hypotheses and to promote a high-level, integrative account of ERP results across diverse study methods and paradigms. PMID:22180824
Viola, S; Grammauta, R; Sciacca, V; Bellia, G; Beranzoli, L; Buscaino, G; Caruso, F; Chierici, F; Cuttone, G; D'Amico, A; De Luca, V; Embriaco, D; Favali, P; Giovanetti, G; Marinaro, G; Mazzola, S; Filiciotto, F; Pavan, G; Pellegrino, C; Pulvirenti, S; Simeone, F; Speziale, F; Riccobene, G
2017-08-15
Acoustic noise levels were measured in the Gulf of Catania (Ionian Sea) from July 2012 to May 2013 by a low frequency (<1000Hz) hydrophone, installed on board the NEMO-SN1 multidisciplinary observatory. NEMO-SN1 is a cabled node of EMSO-ERIC, which was deployed at a water depth of 2100m, 25km off Catania. The study area is characterized by the proximity of mid-size harbors and shipping lanes. Measured noise levels were correlated with the passage of ships tracked with a dedicated AIS antenna. Noise power was measured in the frequency range between 10Hz and 1000Hz. Experimental data were compared with the results of a fast numerical model based on AIS data to evaluate the contribution of shipping noise in six consecutive 1/3 octave frequency bands, including the 1/3 octave frequency bands centered at 63Hz and 125Hz, indicated by the Marine Strategy Framework Directive (2008/56/EC). Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Initialization methods and ensembles generation for the IPSL GCM
NASA Astrophysics Data System (ADS)
Labetoulle, Sonia; Mignot, Juliette; Guilyardi, Eric; Denvil, Sébastien; Masson, Sébastien
2010-05-01
The protocol used and developments made for decadal and seasonal predictability studies at IPSL (Paris, France) are presented. The strategy chosen is to initialize the IPSL-CM5 (NEMO ocean and LMDZ atmosphere) model only at the ocean-atmosphere interface, following the guidance and expertise gained from ocean-only NEMO experiments. Two novel approaches are presented for initializing the coupled system. First, a nudging of sea surface temperature and wind stress towards available reanalysis is made with the surface salinity climatologically restored. Second, the heat, salt and momentum fluxes received by the ocean model are computed as a linear combination of the fluxes computed by the atmospheric model and by a CORE-style bulk formulation using up-to-date reanalysis. The steps that led to these choices are presented, as well as a description of the code adaptation and a comparison of the computational cost of both methods. The strategy for the generation of ensembles at the end of the initialization phase is also presented. We show how the technical environment of IPSL-CM5 (LibIGCM) was modified to achieve these goals.
The Scaffold Protein TANK/I-TRAF Inhibits NF-κB Activation by Recruiting Polo-like Kinase 1
Zhang, Wanqiao; Zhang, Ying; Yuan, Yanzhi; Guan, Wei; Jin, Chaozhi; Chen, Hui; Wang, Xiaohui
2010-01-01
TANK/I-TRAF is a TRAF-binding protein that negatively regulates NF-κB activation. The underlying mechanism of this activity remains unclear. Here we show that TANK directly interacts with PLK1, a conserved cell cycle–regulated kinase. PLK1 inhibits NF-κB transcriptional activation induced by TNF-α, IL-1β, or several activators, but not by nuclear transcription factor p65. PLK1 expression reduces the DNA-binding activity of NF-κB induced by TNF-α. Moreover, endogenous activation of PLK1 reduces the TNF-induced phosphorylation of endogenous IκBα. PLK1 is bound to NEMO (IKKγ) through TANK to form a ternary complex in vivo. We describe a new regulatory mechanism for PLK1: PLK1 negatively regulates TNF-induced IKK activation by inhibiting the ubiquitination of NEMO. These findings reveal that the scaffold protein TANK recruits PLK1 to negatively regulate NF-κB activation and provide direct evidence that PLK1 is required for the repression function of TANK. PMID:20484576
DOE Office of Scientific and Technical Information (OSTI.GOV)
Argyriades, J.; Augier, C.; Bongrand, M.
2009-09-15
The half-life for double-{beta} decay of {sup 150}Nd has been measured by the NEMO-3 experiment at the Modane Underground Laboratory. Using 924.7 days of data recorded with 36.55 g of {sup 150}Nd, we measured the half-life for 2{nu}{beta}{beta} decay to be T{sub 1/2}{sup 2{nu}}=(9.11{sub -0.22}{sup +0.25}(stat.){+-}0.63(syst.))x10{sup 18} yr. The observed limit on the half-life for neutrinoless double-{beta} decay is found to be T{sub 1/2}{sup 0{nu}}>1.8x10{sup 22} yr at 90% confidence level. This translates into a limit on the effective Majorana neutrino mass of
Disruption of mouse Cenpj, a regulator of centriole biogenesis, phenocopies Seckel syndrome.
McIntyre, Rebecca E; Lakshminarasimhan Chavali, Pavithra; Ismail, Ozama; Carragher, Damian M; Sanchez-Andrade, Gabriela; Forment, Josep V; Fu, Beiyuan; Del Castillo Velasco-Herrera, Martin; Edwards, Andrew; van der Weyden, Louise; Yang, Fengtang; Ramirez-Solis, Ramiro; Estabel, Jeanne; Gallagher, Ferdia A; Logan, Darren W; Arends, Mark J; Tsang, Stephen H; Mahajan, Vinit B; Scudamore, Cheryl L; White, Jacqueline K; Jackson, Stephen P; Gergely, Fanni; Adams, David J
2012-01-01
Disruption of the centromere protein J gene, CENPJ (CPAP, MCPH6, SCKL4), which is a highly conserved and ubiquitiously expressed centrosomal protein, has been associated with primary microcephaly and the microcephalic primordial dwarfism disorder Seckel syndrome. The mechanism by which disruption of CENPJ causes the proportionate, primordial growth failure that is characteristic of Seckel syndrome is unknown. By generating a hypomorphic allele of Cenpj, we have developed a mouse (Cenpj(tm/tm)) that recapitulates many of the clinical features of Seckel syndrome, including intrauterine dwarfism, microcephaly with memory impairment, ossification defects, and ocular and skeletal abnormalities, thus providing clear confirmation that specific mutations of CENPJ can cause Seckel syndrome. Immunohistochemistry revealed increased levels of DNA damage and apoptosis throughout Cenpj(tm/tm) embryos and adult mice showed an elevated frequency of micronucleus induction, suggesting that Cenpj-deficiency results in genomic instability. Notably, however, genomic instability was not the result of defective ATR-dependent DNA damage signaling, as is the case for the majority of genes associated with Seckel syndrome. Instead, Cenpj(tm/tm) embryonic fibroblasts exhibited irregular centriole and centrosome numbers and mono- and multipolar spindles, and many were near-tetraploid with numerical and structural chromosomal abnormalities when compared to passage-matched wild-type cells. Increased cell death due to mitotic failure during embryonic development is likely to contribute to the proportionate dwarfism that is associated with CENPJ-Seckel syndrome.
Angiopoietin-1 is required for Schlemm’s canal development in mice and humans
Thomson, Benjamin R.; Tompson, Stuart W.; Kizhatil, Krishnakumar; Yanovitch, Tammy L.; Kalaydjieva, Luba; Azmanov, Dimitar N.; Finzi, Simone; Tanna, Christine E.; Mackey, David A.; Bradfield, Yasmin S.; Javadiyan, Shari; Wiggs, Janey L.; Pasutto, Francesca; John, Simon W.M.; Craig, Jamie E.; Jin, Jing; Young, Terri L.
2017-01-01
Primary congenital glaucoma (PCG) is a leading cause of blindness in children worldwide and is caused by developmental defects in 2 aqueous humor outflow structures, Schlemm’s canal (SC) and the trabecular meshwork. We previously identified loss-of-function mutations in the angiopoietin (ANGPT) receptor TEK in families with PCG and showed that ANGPT/TEK signaling is essential for SC development. Here, we describe roles for the major ANGPT ligands in the development of the aqueous outflow pathway. We determined that ANGPT1 is essential for SC development, and that Angpt1-knockout mice form a severely hypomorphic canal with elevated intraocular pressure. By contrast, ANGPT2 was dispensable, although mice deficient in both Angpt1 and Angpt2 completely lacked SC, indicating that ANGPT2 compensates for the loss of ANGPT1. In addition, we identified 3 human subjects with rare ANGPT1 variants within an international cohort of 284 PCG patients. Loss of function in 2 of the 3 patient alleles was observed by functional analysis of ANGPT1 variants in a combined in silico, in vitro, and in vivo approach, supporting a causative role for ANGPT1 in disease. By linking ANGPT1 with PCG, these results highlight the importance of ANGPT/TEK signaling in glaucoma pathogenesis and identify a candidate target for therapeutic development. PMID:29106382
Azevedo, Jacinthe; Garcia, Damien; Pontier, Dominique; Ohnesorge, Stephanie; Yu, Agnes; Garcia, Shahinez; Braun, Laurence; Bergdoll, Marc; Hakimi, Mohamed Ali; Lagrange, Thierry; Voinnet, Olivier
2010-01-01
In plants and invertebrates, viral-derived siRNAs processed by the RNaseIII Dicer guide Argonaute (AGO) proteins as part of antiviral RNA-induced silencing complexes (RISC). As a counterdefense, viruses produce suppressor proteins (VSRs) that inhibit the host silencing machinery, but their mechanisms of action and cellular targets remain largely unknown. Here, we show that the Turnip crinckle virus (TCV) capsid, the P38 protein, acts as a homodimer, or multiples thereof, to mimic host-encoded glycine/tryptophane (GW)-containing proteins normally required for RISC assembly/function in diverse organisms. The P38 GW residues bind directly and specifically to Arabidopsis AGO1, which, in addition to its role in endogenous microRNA-mediated silencing, is identified as a major effector of TCV-derived siRNAs. Point mutations in the P38 GW residues are sufficient to abolish TCV virulence, which is restored in Arabidopsis ago1 hypomorphic mutants, uncovering both physical and genetic interactions between the two proteins. We further show how AGO1 quenching by P38 profoundly impacts the cellular availability of the four Arabidopsis Dicers, uncovering an AGO1-dependent, homeostatic network that functionally connects these factors together. The likely widespread occurrence and expected consequences of GW protein mimicry on host silencing pathways are discussed in the context of innate and adaptive immunity in plants and metazoans. PMID:20439431
Domsch, Katrin; Acs, Andreas; Obermeier, Claudia; Nguyen, Hanh T.
2017-01-01
The proper differentiation and maintenance of myofibers is fundamental to a functional musculature. Disruption of numerous mostly structural factors leads to perturbations of these processes. Among the limited number of known regulatory factors for these processes is Mind bomb2 (Mib2), a muscle-associated E3 ubiquitin ligase, which was previously established to be required for maintaining the integrity of larval muscles. In this study, we have examined the mechanistic aspects of Mib2 function by performing a detailed functional dissection of the Mib2 protein. We show that the ankyrin repeats, in its entirety, and the hitherto uncharacterized Mib-specific domains (MIB), are important for the major function of Mib2 in skeletal and visceral muscles in the Drosophila embryo. Furthermore, we characterize novel mib2 alleles that have arisen from a forward genetic screen aimed at identifying regulators of myogenesis. Two of these alleles are viable, but flightless hypomorphic mib2 mutants, and harbor missense mutations in the MIB domain and RING finger, respectively. Functional analysis of these new alleles, including in vivo imaging, demonstrates that Mib2 plays an additional important role in the development of adult thorax muscles, particularly in maintaining the larval templates for the dorsal longitudinal indirect flight muscles during metamorphosis. PMID:28282454
Disruption of Mouse Cenpj, a Regulator of Centriole Biogenesis, Phenocopies Seckel Syndrome
McIntyre, Rebecca E.; Lakshminarasimhan Chavali, Pavithra; Forment, Josep V.; Fu, Beiyuan; Del Castillo Velasco-Herrera, Martin; Edwards, Andrew; van der Weyden, Louise; Yang, Fengtang; Ramirez-Solis, Ramiro; Estabel, Jeanne; Gallagher, Ferdia A.; Logan, Darren W.; Arends, Mark J.; Tsang, Stephen H.; Mahajan, Vinit B.; Scudamore, Cheryl L.; White, Jacqueline K.; Jackson, Stephen P.; Gergely, Fanni; Adams, David J.
2012-01-01
Disruption of the centromere protein J gene, CENPJ (CPAP, MCPH6, SCKL4), which is a highly conserved and ubiquitiously expressed centrosomal protein, has been associated with primary microcephaly and the microcephalic primordial dwarfism disorder Seckel syndrome. The mechanism by which disruption of CENPJ causes the proportionate, primordial growth failure that is characteristic of Seckel syndrome is unknown. By generating a hypomorphic allele of Cenpj, we have developed a mouse (Cenpjtm/tm) that recapitulates many of the clinical features of Seckel syndrome, including intrauterine dwarfism, microcephaly with memory impairment, ossification defects, and ocular and skeletal abnormalities, thus providing clear confirmation that specific mutations of CENPJ can cause Seckel syndrome. Immunohistochemistry revealed increased levels of DNA damage and apoptosis throughout Cenpjtm/tm embryos and adult mice showed an elevated frequency of micronucleus induction, suggesting that Cenpj-deficiency results in genomic instability. Notably, however, genomic instability was not the result of defective ATR-dependent DNA damage signaling, as is the case for the majority of genes associated with Seckel syndrome. Instead, Cenpjtm/tm embryonic fibroblasts exhibited irregular centriole and centrosome numbers and mono- and multipolar spindles, and many were near-tetraploid with numerical and structural chromosomal abnormalities when compared to passage-matched wild-type cells. Increased cell death due to mitotic failure during embryonic development is likely to contribute to the proportionate dwarfism that is associated with CENPJ-Seckel syndrome. PMID:23166506
humpty dumpty is required for developmental DNA amplification and cell proliferation in Drosophila.
Bandura, Jennifer L; Beall, Eileen L; Bell, Maren; Silver, Hannah R; Botchan, Michael R; Calvi, Brian R
2005-04-26
The full complement of proteins required for the proper regulation of genome duplication are yet to be described. We employ a genetic DNA-replication model system based on developmental amplification of Drosophila eggshell (chorion) genes [1]. Hypomorphic mutations in essential DNA replication genes result in a distinct thin-eggshell phenotype owing to reduced amplification [2]. Here, we molecularly identify the gene, which we have named humpty dumpty (hd), corresponding to the thin-eggshell mutant fs(3)272-9 [3]. We confirm that hd is essential for DNA amplification in the ovary and show that it also is required for cell proliferation during development. Mosaic analysis of hd mutant cells during development and RNAi in Kc cells reveal that depletion of Hd protein results in severe defects in genomic replication and DNA damage. Most Hd protein is found in nuclear foci, and some may traverse the nuclear envelope. Consistent with a role in DNA replication, expression of Hd protein peaks during late G1 and S phase, and it responds to the E2F1/Dp transcription factor. Hd protein sequence is conserved from plants to humans, and published microarrays indicate that expression of its putative human ortholog also peaks at G1/S [4]. Our data suggest that hd defines a new gene family likely required for cell proliferation in all multicellular eukaryotes.
Radon emanation based material measurement and selection for the SuperNEMO double beta experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerna, Cédric, E-mail: cerna@cenbg.in2p3.fr; Soulé, Benjamin; Perrot, Frédéric
The SuperNEMO Demonstrator experiment aims to study the neutrinoless double beta decay of 7 kg of {sup 82}Se in order to reach a limit on the light Majorana neutrino mass mechanism T{sub 1/2} (ββ0ν) > 6.5 10{sup 24} years (90%CL) equivalent to a mass sensitivity mβ{sub β} < 0.20 - 0.40 eV (90%CL) in two years of data taking. The detector construction started in 2014 and its installation in the Laboratoire Souterrain de Modane (LSM) is expected during the course of 2015. The remaining level of {sup 226}Ra ({sup 238}U chain) in the detector components can lead to the emanationmore » of {sup 222}Rn gas. This isotope should be controlled and reduced down to the level of a 150 µBq/m{sup 3} in the tracker chamber of the detector to achieve the physics goals. Besides the HPGe selection of the detector materials for their radiopurity, the most critical materials have been tested and selected in a dedicated setup facility able to measure their {sup 222}Rn emanation level. The operating principle relies on a large emanation tank (0.7m{sup 3}) that allows measuring large material surfaces or large number of construction pieces. The emanation tank is coupled to an electrostatic detector equipped with a silicon diode to perform the alpha spectroscopy of the gas it contains and extract the {sup 222}Rn daughters. The transfer efficiency and the detector efficiency have been carefully calibrated through different methods. The intrinsic background of the system allows one to measure 222Rn activities down to 3 mBq, leading to a typical emanation sensitivity of 20 µBq/m{sup 2}/day for a 30 m{sup 2} surface sample. Several construction materials have been measured and selected, such as nylon and aluminized Mylar films, photomultipliers and tracking of the SuperNEMO Demonstrator.« less
Coarsening of physics for biogeochemical model in NEMO
NASA Astrophysics Data System (ADS)
Bricaud, Clement; Le Sommer, Julien; Madec, Gurvan; Deshayes, Julie; Chanut, Jerome; Perruche, Coralie
2017-04-01
Ocean mesoscale and submesoscale turbulence contribute to ocean tracer transport and to shaping ocean biogeochemical tracers distribution. Representing adequately tracer transport in ocean models therefore requires to increase model resolution so that the impact of ocean turbulence is adequately accounted for. But due to supercomputers power and storage limitations, global biogeochemical models are not yet run routinely at eddying resolution. Still, because the "effective resolution" of eddying ocean models is much coarser than the physical model grid resolution, tracer transport can be reconstructed to a large extent by computing tracer transport and diffusion with a model grid resolution close to the effective resolution of the physical model. This observation has motivated the implementation of a new capability in NEMO ocean model (http://www.nemo-ocean.eu/) that allows to run the physical model and the tracer transport model at different grid resolutions. In a first time, we present results obtained with this new capability applied to a synthetic age tracer in a global eddying model configuration. In this model configuration, ocean dynamic is computed at ¼° resolution but tracer transport is computed at 3/4° resolution. The solution obtained is compared to 2 reference setup ,one at ¼° resolution for both physics and passive tracer models and one at 3/4° resolution for both physics and passive tracer model. We discuss possible options for defining the vertical diffusivity coefficient for the tracer transport model based on information from the high resolution grid. We describe the impact of this choice on the distribution and one the penetration of the age tracer. In a second time we present results obtained by coupling the physics with the biogeochemical model PISCES. We look at the impact of this methodology on some tracers distribution and dynamic. The method described here can found applications in ocean forecasting, such as the Copernicus Marine service operated by Mercator-Ocean, and in Earth System Models for climate applications.
NASA Astrophysics Data System (ADS)
Verrier, Sébastien; Crépon, Michel; Thiria, Sylvie
2014-09-01
Spectral scaling properties have already been evidenced on oceanic numerical simulations and have been subject to several interpretations. They can be used to evaluate classical turbulence theories that predict scaling with specific exponents and to evaluate the quality of GCM outputs from a statistical and multiscale point of view. However, a more complete framework based on multifractal cascades is able to generalize the classical but restrictive second-order spectral framework to other moment orders, providing an accurate description of probability distributions of the fields at multiple scales. The predictions of this formalism still needed systematic verification in oceanic GCM while they have been confirmed recently for their atmospheric counterparts by several papers. The present paper is devoted to a systematic analysis of several oceanic fields produced by the NEMO oceanic GCM. Attention is focused to regional, idealized configurations that permit to evaluate the NEMO engine core from a scaling point of view regardless of limitations involved by land masks. Based on classical multifractal analysis tools, multifractal properties were evidenced for several oceanic state variables (sea surface temperature and salinity, velocity components, etc.). While first-order structure functions estimated a different nonconservativity parameter H in two scaling ranges, the multiorder statistics of turbulent fluxes were scaling over almost the whole available scaling range. This multifractal scaling was then parameterized with the help of the universal multifractal framework, providing parameters that are coherent with existing empirical literature. Finally, we argue that the knowledge of these properties may be useful for oceanographers. The framework seems very well suited for the statistical evaluation of OGCM outputs. Moreover, it also provides practical solutions to simulate subpixel variability stochastically for GCM downscaling purposes. As an independent perspective, the existence of multifractal properties in oceanic flows seems also interesting for investigating scale dependencies in remote sensing inversion algorithms.
Estimating the numerical diapycnal mixing in the GO5.0 ocean model
NASA Astrophysics Data System (ADS)
Megann, Alex; Nurser, George
2014-05-01
Constant-depth (or "z-coordinate") ocean models such as MOM and NEMO have become the de facto workhorse in climate applications, and have attained a mature stage in their development and are well understood. A generic shortcoming of this model type, however, is a tendency for the advection scheme to produce unphysical numerical diapycnal mixing, which in some cases may exceed the explicitly parameterised mixing based on observed physical processes (e.g. Hofmann and Maqueda, 2006), and this is likely to have effects on the long-timescale evolution of the simulated climate system. Despite this, few quantitative estimations have been made of the typical magnitude of the effective diapycnal diffusivity due to numerical mixing in these models. GO5.0 is the latest ocean model configuration developed jointly by the UK Met Office and the National Oceanography Centre (Megann et al, 2013). It uses version 3.4 of the NEMO model, on the ORCA025 global tripolar grid. Two approaches to quantifying the numerical diapycnal mixing in this model are described: the first is based on the isopycnal watermass analysis of Lee et al (2002), while the second uses a passive tracer to diagnose mixing across density surfaces. Results from these two methods will be compared and contrasted. Hofmann, M. and Maqueda, M. A. M., 2006. Performance of a second-order moments advection scheme in an ocean general circulation model. JGR-Oceans, 111(C5). Lee, M.-M., Coward, A.C., Nurser, A.G., 2002. Spurious diapycnal mixing of deep waters in an eddy-permitting global ocean model. JPO 32, 1522-1535 Megann, A., Storkey, D., Aksenov, Y., Alderson, S., Calvert, D., Graham, T., Hyder, P., Siddorn, J., and Sinha, B., 2013: GO5.0: The joint NERC-Met Office NEMO global ocean model for use in coupled and forced applications, Geosci. Model Dev. Discuss., 6, 5747-5799,.
NASA Astrophysics Data System (ADS)
Andrzejewski, Jan
2017-04-01
After the Second World War, during the Potsdam Conference a decision about demilitarization of Germany was made, and as a consequence, ammunition including chemical warfare agents (CWA) was dumped into the basins of the Baltic Sea. This type of weapon was stored in metal barrels that were under strong influence of electrochemical oxidation, also known as corrosion. Several tens years later, scientists were wondering what consequences for marine ecosystem could a leakage from this weapon bring. Although over 70 years passed since the Second World War, the influence of potential leakage of the CWA has not been properly estimated. Thus, the main goal of this work is to estimate dangerous area caused by potential leakage using the NEMO (Nucleus for European Modelling of the Ocean) ocean model. The NEMO ocean model is developed by the European Consortium including research institutes from France, England and Italy. The first step of this work is to implement the model for the area of the Baltic Sea. It requires generation of horizontal and vertical grid, bathymetry, atmospheric forces and lateral boundary conditions. Implemented model will have to be checked - it means it will have to pass a validation process. The Baltic Sea is one of the best measured sea in the World - as a consequence a lot of data are freely available for researchers. After validation and tuning up the model, implementation of passive tracer is planned. Passive tracer is the prognostic variable that could represent concentration of potential leakage and does not have influence on the density of the model. Based on distribution of the passive tracer, dangerous areas in the locations of dumpsites will be assessed. The research work was funded by the European Union (European Regional Development Fund) under the Interreg Baltic Sea Region Programme 2014-2020, project #R013 DAIMON (Decision Aid for Marine Munitions).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nifuji, Akira, E-mail: nifuji-a@tsurumi-u.ac.jp; Department of Pharmacology, Tsurumi University School of Dental Medicine, Yokohama; Ideno, Hisashi
2010-04-15
Mitogen-activated protein kinases (MAPKs) regulate proliferation and differentiation in osteoblasts. The vertebral homologue of nemo, nemo-like kinase (NLK), is an atypical MAPK that targets several signaling components, including the T-cell factor/lymphoid enhancer factor (TCF/Lef1) transcription factor. Recent studies have shown that NLK forms a complex with the histone H3-K9 methyltransferase SETDB1 and suppresses peroxisome proliferator-activated receptor (PPAR)-gamma:: action in the mesenchymal cell line ST2. Here we investigated whether NLK regulates osteoblastic differentiation. We showed that NLK mRNA is expressed in vivo in osteoblasts at embryonic day 18.5 (E18.5) mouse calvariae. By using retrovirus vectors, we performed forced expression of NLKmore » in primary calvarial osteoblasts (pOB cells) and the mesenchymal cell line ST2. Wild-type NLK (NLK-WT) suppressed alkaline phosphatase activity and expression of bone marker genes such as alkaline phosphatase, type I procollagen, runx2, osterix, steopontin and osteocalcin in these cells. NLK-WT also decreased type I collagen protein expression in pOB and ST2 cells. Furthermore, mineralized nodule formation was reduced in pOB cells overexpressing NLK-WT. In contrast, kinase-negative form of NLK (NLK-KN) did not suppress or partially suppress ALP activity and bone marker gene expression in pOB and ST2 cells. NLK-KN did not suppress nodule formation in pOB cells. In addition to forced expression, suppression of endogenous NLK expression by siRNA increased bone marker gene expression in pOB and ST2 cells. Finally, transcriptional activity analysis of gene promoters revealed that NLK-WT suppressed Wnt1 activation of TOP flash promoter and Runx2 activation of the osteocalcin promoter. Taken together, these results suggest that NLK negatively regulates osteoblastic differentiation.« less
Mediterranea Forecasting System: a focus on wave-current coupling
NASA Astrophysics Data System (ADS)
Clementi, Emanuela; Delrosso, Damiano; Pistoia, Jenny; Drudi, Massimiliano; Fratianni, Claudia; Grandi, Alessandro; Pinardi, Nadia; Oddo, Paolo; Tonani, Marina
2016-04-01
The Mediterranean Forecasting System (MFS) is a numerical ocean prediction system that produces analyses, reanalyses and short term forecasts for the entire Mediterranean Sea and its Atlantic Ocean adjacent areas. MFS became operational in the late 90's and has been developed and continuously improved in the framework of a series of EU and National funded programs and is now part of the Copernicus Marine Service. The MFS is composed by the hydrodynamic model NEMO (Nucleus for European Modelling of the Ocean) 2-way coupled with the third generation wave model WW3 (WaveWatchIII) implemented in the Mediterranean Sea with 1/16 horizontal resolution and forced by ECMWF atmospheric fields. The model solutions are corrected by the data assimilation system (3D variational scheme adapted to the oceanic assimilation problem) with a daily assimilation cycle, using a background error correlation matrix varying seasonally and in different sub-regions of the Mediterranean Sea. The focus of this work is to present the latest modelling system upgrades and the related achieved improvements. In order to evaluate the performance of the coupled system a set of experiments has been built by coupling the wave and circulation models that hourly exchange the following fields: the sea surface currents and air-sea temperature difference are transferred from NEMO model to WW3 model modifying respectively the mean momentum transfer of waves and the wind speed stability parameter; while the neutral drag coefficient computed by WW3 model is passed to NEMO that computes the turbulent component. In order to validate the modelling system, numerical results have been compared with in-situ and remote sensing data. This work suggests that a coupled model might be capable of a better description of wave-current interactions, in particular feedback from the ocean to the waves might assess an improvement on the prediction capability of wave characteristics, while suggests to proceed toward a fully coupled modelling system in order to achieve stronger enhancements of the hydrodynamic fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noda, Saori; Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba; Takahashi, Atsushi
SHP2, encoded by the PTPN11 gene, is a protein tyrosine phosphatase that plays a key role in the proliferation of cells via RAS-ERK activation. SHP2 also promotes Wnt signaling by dephosphorylating parafibromin. Germline missense mutations of PTPN11 are found in more than half of patients with Noonan syndrome (NS) and LEOPARD syndrome (LS), both of which are congenital developmental disorders with multiple common symptoms. However, whereas NS-associated PTPN11 mutations give rise to gain-of-function SHP2 mutants, LS-associated SHP2 mutants are reportedly loss-of-function mutants. To determine the phosphatase activity of LS-associated SHP2 more appropriately, we performed an in vitro phosphatase assay using tyrosine-phosphorylatedmore » parafibromin, a biologically relevant substrate of SHP2 and the positive regulator of Wnt signaling that is activated through SHP2-mediated dephosphorylation. We found that LS-associated SHP2 mutants (Y279C, T468M, Q506P, and Q510E) exhibited a substantially reduced phosphatase activity toward parafibromin when compared with wild-type SHP2. Furthermore, each of the LS-associated mutants displayed a differential degree of decrease in phosphatase activity. Deviation of the SHP2 catalytic activity from a certain range, either too strong or too weak, may therefore lead to similar clinical outcomes in NS and LS, possibly through an imbalanced Wnt signal caused by inadequate dephosphorylation of parafibromin. - Highlights: • LS-associated SHP2 mutants dephosphorylate parafibromin on Y290, Y293, and Y315. • LS-associated SHP2 mutants display a reduced tyrosine phosphatase activity. • LS-specific SHP2-Y279C is catalytically less active than LS-specific SHP2-T468M. • NS/LS-associated SHP2-Q506P has both hyper- and hypomorphic enzymatic properties.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-07
... on sexual behavior deferrals and their impact on blood safety. The two main study aims are: (1) To assess infectious disease marker prevalence in donors who are deferred for higher risk sexual and non.... George Nemo, Project Officer, NHLBI, Two Rockledge Center, Suite 10042, 6701 Rockledge Drive, Bethesda...
Stanewsky, R.; Rendahl, K. G.; Dill, M.; Saumweber, H.
1993-01-01
We have performed a genetic analysis of the 14C region of the X chromosome of Drosophila melanogaster to isolate loss of function alleles of no-on-transient A (nonA; 14C1-2; 1-52.3). NONA is a nuclear protein common to many cell types, which is present in many puffs on polytene chromosomes. Sequence data suggest that the protein contains a pair of RNA binding motifs (RRM) found in many single-strand nucleic acid binding proteins. Hypomorphic alleles of this gene, which lead to aberrant visual and courtship song behavior, still contain normally distributed nonA RNA and NONA protein in embryos, and in all available alleles NONA protein is present in puffs of third instar larval polytene chromosomes. We find that complete loss of this general nuclear protein is semilethal in hemizygous males and homozygous cell lethal in the female germline. Surviving males show more extreme defects in nervous system function than have been described for the hypomorphic alleles. Five other essential genes that reside within this region have been partially characterized. PMID:8244005
The Sea around Us: Social Climbing in "Seabiscuit," "Whale Rider," and "Finding Nemo"
ERIC Educational Resources Information Center
Beck, Bernard
2004-01-01
All life begins in the sea, people are taught, and a great transformation extends it to new places on land. The sea has always echoed this transformation in images of human aspiration in myths and metaphors. In the summer of 2003, this powerful image appeared again in the movies. In three very different films, "Seabiscuit," "Whale Rider," and…
Finding Difference: Nemo and Friends Opening the Door to Disability Theory
ERIC Educational Resources Information Center
Preston, Daniel L.
2010-01-01
While middle school and high school students may have watched the Disney and Disney/Pixar films when they were younger, chances are they did not do so with a critical eye toward difference and disability, despite the fact that these films serve as excellent tools for teaching about difference. Recent estimates label 20% of the world's population…
Godwin, Ryan C; Melvin, Ryan L; Gmeiner, William H; Salsbury, Freddie R
2017-01-31
Zinc-finger proteins are regulators of critical signaling pathways for various cellular functions, including apoptosis and oncogenesis. Here, we investigate how binding site protonation states and zinc coordination influence protein structure, dynamics, and ultimately function, as these pivotal regulatory proteins are increasingly important for protein engineering and therapeutic discovery. To better understand the thermodynamics and dynamics of the zinc finger of NEMO (NF-κB essential modulator), as well as the role of zinc, we present results of 20 μs molecular dynamics trajectories, 5 μs for each of four active site configurations. Consistent with experimental evidence, the zinc ion is essential for mechanical stabilization of the functional, folded conformation. Hydrogen bond motifs are unique for deprotonated configurations yet overlap in protonated cases. Correlated motions and principal component analysis corroborate the similarity of the protonated configurations and highlight unique relationships of the zinc-bound configuration. We hypothesize a potential mechanism for zinc binding from results of the thiol configurations. The deprotonated, zinc-bound configuration alone predominantly maintains its tertiary structure throughout all 5 μs and alludes rare conformations potentially important for (im)proper zinc-finger-related protein-protein or protein-DNA interactions.
Shao, Lan; Zhou, Huanjiao Jenny; Zhang, Haifeng; Qin, Lingfeng; Hwa, John; Yun, Zhong; Ji, Weidong; Min, Wang
2015-01-01
Adipocyte dysfunction correlates with the development of diabetes. Here we show that mice with a adipocyte-specific deletion of the SUMO-specific protease SENP1 gene develop symptoms of type-1 diabetes mellitus (T1DM), including hyperglycaemia and glucose intolerance with mild insulin resistance. Peri-pancreatic adipocytes from SENP1-deficient mice exhibit heightened NF-κB activity and production of proinflammatory cytokines, which induce CCL5 expression in adjacent pancreatic islets and direct cytotoxic effects on pancreatic islets. Mechanistic studies show that SENP1 deletion in adipocytes enhances SUMOylation of the NF-κB essential molecule, NEMO, at lysine 277/309, leading to increased NF-κB activity, cytokine production and pancreatic inflammation. We further show that NF-κB inhibitors could inhibit pre-diabetic cytokine production, β-cell damages and ameliorate the T1DM phenotype in SENP1-deficient mice. Feeding a high-fat diet augments both type-1 and type-2 diabetes phenotypes in SENP1-deficient mice, consistent with the effects on adipocyte-derived NF-κB and cytokine signalling. Our study reveals previously unrecognized mechanism regulating the onset and progression of T1DM associated with adipocyte dysfunction. PMID:26596471
Shao, Lan; Zhou, Huanjiao Jenny; Zhang, Haifeng; Qin, Lingfeng; Hwa, John; Yun, Zhong; Ji, Weidong; Min, Wang
2015-11-24
Adipocyte dysfunction correlates with the development of diabetes. Here we show that mice with a adipocyte-specific deletion of the SUMO-specific protease SENP1 gene develop symptoms of type-1 diabetes mellitus (T1DM), including hyperglycaemia and glucose intolerance with mild insulin resistance. Peri-pancreatic adipocytes from SENP1-deficient mice exhibit heightened NF-κB activity and production of proinflammatory cytokines, which induce CCL5 expression in adjacent pancreatic islets and direct cytotoxic effects on pancreatic islets. Mechanistic studies show that SENP1 deletion in adipocytes enhances SUMOylation of the NF-κB essential molecule, NEMO, at lysine 277/309, leading to increased NF-κB activity, cytokine production and pancreatic inflammation. We further show that NF-κB inhibitors could inhibit pre-diabetic cytokine production, β-cell damages and ameliorate the T1DM phenotype in SENP1-deficient mice. Feeding a high-fat diet augments both type-1 and type-2 diabetes phenotypes in SENP1-deficient mice, consistent with the effects on adipocyte-derived NF-κB and cytokine signalling. Our study reveals previously unrecognized mechanism regulating the onset and progression of T1DM associated with adipocyte dysfunction.
Recognition Memory for Realistic Synthetic Faces
Yotsumoto, Yuko; Kahana, Michael J.; Wilson, Hugh R.; Sekuler, Robert
2006-01-01
A series of experiments examined short-term recognition memory for trios of briefly-presented, synthetic human faces derived from three real human faces. The stimuli were graded series of faces, which differed by varying known amounts from the face of the average female. Faces based on each of the three real faces were transformed so as to lie along orthogonal axes in a 3-D face space. Experiment 1 showed that the synthetic faces' perceptual similarity stucture strongly influenced recognition memory. Results were fit by NEMo, a noisy exemplar model of perceptual recognition memory. The fits revealed that recognition memory was influenced both by the similarity of the probe to series items, and by the similarities among the series items themselves. Non-metric multi-dimensional scaling (MDS) showed that faces' perceptual representations largely preserved the 3-D space in which the face stimuli were arrayed. NEMo gave a better account of the results when similarity was defined as perceptual, MDS similarity rather than physical proximity of one face to another. Experiment 2 confirmed the importance of within-list homogeneity directly, without mediation of a model. We discuss the affinities and differences between visual memory for synthetic faces and memory for simpler stimuli. PMID:17948069
Approximate Stokes Drift Profiles and their use in Ocean Modelling
NASA Astrophysics Data System (ADS)
Breivik, Oyvind; Bidlot, Jea-Raymond; Janssen, Peter A. E. M.; Mogensen, Kristian
2016-04-01
Deep-water approximations to the Stokes drift velocity profile are explored as alternatives to the monochromatic profile. The alternative profiles investigated rely on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons against parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profiles give a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. Of the two Stokes drift profiles explored here, the profile based on the Phillips spectrum is by far the best. In particular, the shear near the surface is almost identical to that influenced by the f-5 tail of spectral wave models. The NEMO general circulation ocean model was recently extended to incorporate the Stokes-Coriolis force along with two other wave-related effects. The ECWMF coupled atmosphere-wave-ocean ensemble forecast system now includes these wave effects in the ocean model component (NEMO).
NASA Astrophysics Data System (ADS)
Alari, Victor; Staneva, Joanna; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian; Janssen, Peter
2016-04-01
The effects of wind waves on the Baltic Sea water temperature has been studied by coupling the hydrodynamical model NEMO with the wave model WAM. The wave forcing terms that have been taken into consideration are: Stokes-Coriolis force, seastate dependent energy flux and sea-state dependent momentum flux. The combined role of these processes as well as their individual contributions on simulated temperature is analysed. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwellinǵs. In northern parts of the Baltic Sea a warming of the surface layer occurs in the wave included simulations. This in turn reduces the cold bias between simulated and measured data. The warming is primarily caused by sea-state dependent energy flux. Wave induced cooling is mostly observed in near coastal areas and is mainly due to Stokes-Coriolis forcing. The latter triggers effect of intensifying upwellings near the coasts, depending on the direction of the wind. The effect of sea-state dependent momentum flux is predominantly to warm the surface layer. During the summer the wave induced water temperature changes were up to 1 °C.
USDA-ARS?s Scientific Manuscript database
Mdm2 is an E3 ubiquitin ligase that targets p53 for degradation. p53(515C) (encoding p53R172P) is a hypomorphic allele of p53 that rescues the embryonic lethality of Mdm2(-/-) mice. Mdm2(-/-) p53(515C/515C) mice, however, die by postnatal day 13 resulting from hematopoietic failure. Hematopoietic st...
Andralojc, Karolina M.; Kelly, Ashley L.; Tanner, Paige C.
2017-01-01
Germ cells contain non-membrane bound cytoplasmic organelles that help maintain germline integrity. In C. elegans they are called P granules; without them, the germline undergoes partial masculinization and aberrant differentiation. One key P-granule component is the Argonaute CSR-1, a small-RNA binding protein that antagonizes accumulation of sperm-specific transcripts in developing oocytes and fine-tunes expression of proteins critical to early embryogenesis. Loss of CSR-1 complex components results in a very specific, enlarged P-granule phenotype. In a forward screen to identify mutants with abnormal P granules, ten alleles were recovered with a csr-1 P-granule phenotype, eight of which contain mutations in known components of the CSR-1 complex (csr-1, ego-1, ekl-1, and drh-3). The remaining two alleles are in a novel gene now called elli-1 (enlarged germline granules). ELLI-1 is first expressed in primordial germ cells during mid-embryogenesis, and continues to be expressed in the adult germline. While ELLI-1 forms cytoplasmic aggregates, they occasionally dock, but do not co-localize with P granules. Instead, the majority of ELLI-1 aggregates accumulate in the shared germline cytoplasm. In elli-1 mutants, several genes that promote RNAi and P-granule accumulation are upregulated, and embryonic lethality, sterility, and RNAi resistance in a hypomorphic drh-3 allele is enhanced, suggesting that ELLI-1 functions with CSR-1 to modulate RNAi activity, P-granule accumulation, and post-transcriptional expression in the germline. PMID:28182654
Sajedi, Ezat; Gaston-Massuet, Carles; Signore, Massimo; Andoniadou, Cynthia L.; Kelberman, Daniel; Castro, Sandra; Etchevers, Heather C.; Gerrelli, Dianne; Dattani, Mehul T.; Martinez-Barbera, Juan Pedro
2008-01-01
SUMMARY A homozygous substitution of the highly conserved isoleucine at position 26 by threonine (I26T) in the transcriptional repressor HESX1 has been associated with anterior pituitary hypoplasia in a human patient, with no forebrain or eye defects. Two individuals carrying a homozygous substitution of the conserved arginine at position 160 by cysteine (R160C) manifest septo-optic dysplasia (SOD), a condition characterised by pituitary abnormalities associated with midline telencephalic structure defects and optic nerve hypoplasia. We have generated two knock-in mouse models containing either the I26T or R160C substitution in the genomic locus. Hesx1I26T/I26T embryos show pituitary defects comparable with Hesx1−/− mouse mutants, with frequent occurrence of ocular abnormalities, although the telencephalon develops normally. Hesx1R160C/R160C mutants display forebrain and pituitary defects that are identical to those observed in Hesx1−/− null mice. We also show that the expression pattern of HESX1 during early human development is very similar to that described in the mouse, suggesting that the function of HESX1 is conserved between the two species. Together, these results suggest that the I26T mutation yields a hypomorphic allele, whereas R160C produces a null allele and, consequently, a more severe phenotype in both mice and humans. PMID:19093031
Jiang, Jieyun; Creasy, Kate Townsend; Purnell, Justin; Peterson, Martha L.; Spear, Brett T.
2017-01-01
The mouse major urinary proteins (Mups) are encoded by a large family of highly related genes clustered on chromosome 4. Mups, synthesized primarily and abundantly in the liver and secreted through the kidneys, exhibit male-biased expression. Mups bind a variety of volatile ligands; these ligands, and Mup proteins themselves, influence numerous behavioral traits. Although urinary Mup protein levels vary between inbred mouse strains, this difference is most pronounced in BALB/cJ mice, which have dramatically low urinary Mup levels; this BALB/cJ trait had been mapped to a locus on chromosome 15. We previously identified Zhx2 (zinc fingers and homeoboxes 2) as a regulator of numerous liver-enriched genes. Zhx2 is located on chromosome 15, and a natural hypomorphic mutation in the BALB/cJ Zhx2 allele dramatically reduces Zhx2 expression. Based on these data, we hypothesized that reduced Zhx2 levels are responsible for lower Mup expression in BALB/cJ mice. Using both transgenic and knock-out mice along with in vitro assays, our data show that Zhx2 binds Mup promoters and is required for high levels of Mup expression in the adult liver. In contrast to previously identified Zhx2 targets that appear to be repressed by Zhx2, Mup genes are positively regulated by Zhx2. These data identify Zhx2 as a novel regulator of Mup expression and indicate that Zhx2 activates as well as represses expression of target genes. PMID:28258223
Lee, Jia-Jye; Galatioto, Josephine; Rao, Satish; Ramirez, Francesco; Costa, Kevin D.
2018-01-01
Marfan syndrome (MFS) is an autosomal dominant disease of the connective tissue due to mutations in the fibrillin-1 gene (FBN1). This study aimed at characterizing microelastic properties of the ascending aorta wall and lung parenchyma tissues from wild type (WT) and age-matched Fbn1 hypomorphic mice (Fbn1mgR/mgR mice) to identify tissue-specific biomechanical effects of aging and disease in MFS. Atomic force microscopy (AFM) was used to indent lung parenchyma and aortic wall tissues, using Hybrid Eshelby Decomposition analysis to extract layer-specific properties of the intima and media. The intima stiffened with age and was not different between WT and Fbn1mgR/mgR tissues, whereas the media layer of mutant aortas showed progressive structural and mechanical degradation with a modulus that was 50% softer than WT by 3.5 months of age. Similarly, mutant mice displayed progressive structural and mechanical deterioration of lung tissue, which was over 85% softer than WT by 3.5 months of age. Chronic treatment with the angiotensin type I receptor antagonist, losartan, attenuated the aorta and lung tissue degradation, resulting in structural and mechanical properties not significantly different from age-matched WT controls. By revealing micromechanical softening of elastin-rich aorta and lung tissues with disease progression in fibrillin-1 deficient mice, our findings support the use of losartan as a prophylactic treatment that may abrogate the life-threatening symptoms of MFS. PMID:27090893
Xu, YH; Sun, Y; Ran, H; Quinn, B; Witte, D; Grabowski, GA
2011-01-01
Gaucher disease, a prevalent lysosomal storage disease, is caused by insufficient activity of acid β-glucosidase (GCase) and resultant glucosylceramide accumulation. Recently in Parkinson disease (PD) patients, heterozygous mutations in GCase have been associated with earlier onset and more progressive PD. To understand the pathogenic relationships between GCase variants and Parkinsonism, α-synuclein and ubiquitin distributions and levels in the brains of several mouse models containing GCase variants were evaluated by immunohistochemistry. Progressive α-synuclein and ubiquitin aggregate accumulations were observed in the cortex, hippocampus, basal ganglia, brainstem, and some cerebellar regions between 4-24 wks in mice that were homozygous for GCase [D409H (9H) or V394L (4L)] variants and also had a prosaposin hypomorphic (PS-NA) transgene. In 4L/PS-NA and 9H/PS-NA mice, this was coincident with progressive neurological manifestations and brain glucosylceramide accumulation. Ultrastructural studies showed electron dense inclusion bodies in neurons and axons of 9H/PS-NA brains. α-Synuclein aggregates were also observed in ventricular, brainstem, and cerebellar regions of older mice (>42-wk) with the GCase variant (D409H/D409H) without overt neurological disease. In a chemically induced GCase deficiency, α-synuclein aggregates and glucosylceramide accumulation also occurred. These studies demonstrate a relationship between glucosylceramide accumulation and α-synuclein aggregates, and implicate glucosylceramide accumulation as risk factor for the α-synucleinopathies. PMID:21257328
DNA-repair scaffolds dampen checkpoint signalling by counteracting the adaptor Rad9.
Ohouo, Patrice Y; Bastos de Oliveira, Francisco M; Liu, Yi; Ma, Chu Jian; Smolka, Marcus B
2013-01-03
In response to genotoxic stress, a transient arrest in cell-cycle progression enforced by the DNA-damage checkpoint (DDC) signalling pathway positively contributes to genome maintenance. Because hyperactivated DDC signalling can lead to a persistent and detrimental cell-cycle arrest, cells must tightly regulate the activity of the kinases involved in this pathway. Despite their importance, the mechanisms for monitoring and modulating DDC signalling are not fully understood. Here we show that the DNA-repair scaffolding proteins Slx4 and Rtt107 prevent the aberrant hyperactivation of DDC signalling by lesions that are generated during DNA replication in Saccharomyces cerevisiae. On replication stress, cells lacking Slx4 or Rtt107 show hyperactivation of the downstream DDC kinase Rad53, whereas activation of the upstream DDC kinase Mec1 remains normal. An Slx4-Rtt107 complex counteracts the checkpoint adaptor Rad9 by physically interacting with Dpb11 and phosphorylated histone H2A, two positive regulators of Rad9-dependent Rad53 activation. A decrease in DDC signalling results from hypomorphic mutations in RAD53 and H2A and rescues the hypersensitivity to replication stress of cells lacking Slx4 or Rtt107. We propose that the Slx4-Rtt107 complex modulates Rad53 activation by a competition-based mechanism that balances the engagement of Rad9 at replication-induced lesions. Our findings show that DDC signalling is monitored and modulated through the direct action of DNA-repair factors.
Lee, Jia-Jye; Galatioto, Josephine; Rao, Satish; Ramirez, Francesco; Costa, Kevin D
2016-10-01
Marfan syndrome (MFS) is an autosomal dominant disease of the connective tissue due to mutations in the fibrillin-1 gene (FBN1). This study aimed at characterizing microelastic properties of the ascending aortic wall and lung parenchyma tissues from wild type (WT) and age-matched Fbn1 hypomorphic mice (Fbn1(mgR/mgR) mice) to identify tissue-specific biomechanical effects of aging and disease in MFS. Atomic force microscopy was used to indent lung parenchyma and aortic wall tissues, using Hybrid Eshelby Decomposition analysis to extract layer-specific properties of the intima and media. The intima stiffened with age and was not different between WT and Fbn1(mgR/mgR) tissues, whereas the media layer of MFS aortas showed progressive structural and mechanical degradation with a modulus that was 50% softer than WT by 3.5 months of age. Similarly, MFS mice displayed progressive structural and mechanical deterioration of lung tissue, which was over 85% softer than WT by 3.5 months of age. Chronic treatment with the angiotensin type I receptor antagonist, losartan, attenuated the aorta and lung tissue degradation, resulting in structural and mechanical properties not significantly different from age-matched WT controls. By revealing micromechanical softening of elastin-rich aorta and lung tissues with disease progression in fibrillin-1 deficient mice, our findings support the use of losartan as a prophylactic treatment that may abrogate the life-threatening symptoms of MFS.
Fibroblast growth factor deficiencies impact anxiety-like behavior and the serotonergic system.
Brooks, Leah R; Enix, Courtney L; Rich, Samuel C; Magno, Jinno A; Lowry, Christopher A; Tsai, Pei-San
2014-05-01
Serotonergic neurons in the dorsal raphe nucleus (DR) are organized in anatomically distinct subregions that form connections with specific brain structures to modulate diverse behaviors, including anxiety-like behavior. It is unclear if the functional heterogeneity of these neurons is coupled to their developmental heterogeneity, and if abnormal development of specific DR serotonergic subregions can permanently impact anxiety circuits and behavior. The goal of this study was to examine if deficiencies in different components of fibroblast growth factor (Fgf) signaling could preferentially impact the development of specific populations of DR serotonergic neurons to alter anxiety-like behavior in adulthood. Wild-type and heterozygous male mice globally hypomorphic for Fgf8, Fgfr1, or both (Fgfr1/Fgf8) were tested in an anxiety-related behavioral battery. Both Fgf8- and Fgfr1/Fgf8-deficient mice display increased anxiety-like behavior as measured in the elevated plus-maze and the open-field tests. Immunohistochemical staining of a serotonergic marker, tryptophan hydroxylase (Tph), revealed reductions in specific populations of serotonergic neurons in the ventral, interfascicular, and ventrolateral/ventrolateral periaqueductal gray subregions of the DR in all Fgf-deficient mice, suggesting a neuroanatomical basis for increased anxiety-like behavior. Overall, this study suggests Fgf signaling selectively modulates the development of different serotonergic neuron subpopulations. Further, it suggests anxiety-like behavior may stem from developmental disruption of these neurons, and individuals with inactivating mutations in Fgf signaling genes may be predisposed to anxiety disorders. Published by Elsevier B.V.
The PICALM Protein Plays a Key Role in Iron Homeostasis and Cell Proliferation
Scotland, Paula B.; Heath, Jessica L.; Conway, Amanda E.; Porter, Natasha B.; Armstrong, Michael B.; Walker, Jennifer A.; Klebig, Mitchell L.; Lavau, Catherine P.; Wechsler, Daniel S.
2012-01-01
The ubiquitously expressed phosphatidylinositol binding clathrin assembly (PICALM) protein associates with the plasma membrane, binds clathrin, and plays a role in clathrin-mediated endocytosis. Alterations of the human PICALM gene are present in aggressive hematopoietic malignancies, and genome-wide association studies have recently linked the PICALM locus to late-onset Alzheimer's disease. Inactivating and hypomorphic Picalm mutations in mice cause different degrees of severity of anemia, abnormal iron metabolism, growth retardation and shortened lifespan. To understand PICALM’s function, we studied the consequences of PICALM overexpression and characterized PICALM-deficient cells derived from mutant fit1 mice. Our results identify a role for PICALM in transferrin receptor (TfR) internalization and demonstrate that the C-terminal PICALM residues are critical for its association with clathrin and for the inhibitory effect of PICALM overexpression on TfR internalization. Murine embryonic fibroblasts (MEFs) that are deficient in PICALM display several characteristics of iron deficiency (increased surface TfR expression, decreased intracellular iron levels, and reduced cellular proliferation), all of which are rescued by retroviral PICALM expression. The proliferation defect of cells that lack PICALM results, at least in part, from insufficient iron uptake, since it can be corrected by iron supplementation. Moreover, PICALM-deficient cells are particularly sensitive to iron chelation. Taken together, these data reveal that PICALM plays a critical role in iron homeostasis, and offer new perspectives into the pathogenesis of PICALM-associated diseases. PMID:22952941
Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells.
Fraietta, Joseph A; Nobles, Christopher L; Sammons, Morgan A; Lundh, Stefan; Carty, Shannon A; Reich, Tyler J; Cogdill, Alexandria P; Morrissette, Jennifer J D; DeNizio, Jamie E; Reddy, Shantan; Hwang, Young; Gohil, Mercy; Kulikovskaya, Irina; Nazimuddin, Farzana; Gupta, Minnal; Chen, Fang; Everett, John K; Alexander, Katherine A; Lin-Shiao, Enrique; Gee, Marvin H; Liu, Xiaojun; Young, Regina M; Ambrose, David; Wang, Yan; Xu, Jun; Jordan, Martha S; Marcucci, Katherine T; Levine, Bruce L; Garcia, K Christopher; Zhao, Yangbing; Kalos, Michael; Porter, David L; Kohli, Rahul M; Lacey, Simon F; Berger, Shelley L; Bushman, Frederic D; June, Carl H; Melenhorst, J Joseph
2018-06-01
Cancer immunotherapy based on genetically redirecting T cells has been used successfully to treat B cell malignancies 1-3 . In this strategy, the T cell genome is modified by integration of viral vectors or transposons encoding chimaeric antigen receptors (CARs) that direct tumour cell killing. However, this approach is often limited by the extent of expansion and persistence of CAR T cells 4,5 . Here we report mechanistic insights from studies of a patient with chronic lymphocytic leukaemia treated with CAR T cells targeting the CD19 protein. Following infusion of CAR T cells, anti-tumour activity was evident in the peripheral blood, lymph nodes and bone marrow; this activity was accompanied by complete remission. Unexpectedly, at the peak of the response, 94% of CAR T cells originated from a single clone in which lentiviral vector-mediated insertion of the CAR transgene disrupted the methylcytosine dioxygenase TET2 gene. Further analysis revealed a hypomorphic mutation in this patient's second TET2 allele. TET2-disrupted CAR T cells exhibited an epigenetic profile consistent with altered T cell differentiation and, at the peak of expansion, displayed a central memory phenotype. Experimental knockdown of TET2 recapitulated the potency-enhancing effect of TET2 dysfunction in this patient's CAR T cells. These findings suggest that the progeny of a single CAR T cell induced leukaemia remission and that TET2 modification may be useful for improving immunotherapies.
Parent, Jean-Sébastien; Jauvion, Vincent; Bouché, Nicolas; Béclin, Christophe; Hachet, Mélanie; Zytnicki, Matthias; Vaucheret, Hervé
2015-01-01
Although post-transcriptional gene silencing (PTGS) has been studied for more than a decade, there is still a gap in our understanding of how de novo silencing is initiated against genetic elements that are not supposed to produce double-stranded (ds)RNA. Given the pervasive transcription occurring throughout eukaryote genomes, we tested the hypothesis that unintended transcription could produce antisense (as)RNA molecules that participate to the initiation of PTGS triggered by sense transgenes (S-PTGS). Our results reveal a higher level of asRNA in Arabidopsis thaliana lines that spontaneously trigger S-PTGS than in lines that do not. However, PTGS triggered by antisense transgenes (AS-PTGS) differs from S-PTGS. In particular, a hypomorphic ago1 mutation that suppresses S-PTGS prevents the degradation of asRNA but not sense RNA during AS-PTGS, suggesting a different treatment of coding and non-coding RNA by AGO1, likely because of AGO1 association to polysomes. Moreover, the intended asRNA produced during AS-PTGS is capped whereas the asRNA produced during S-PTGS derives from 3′ maturation of a read-through transcript and is uncapped. Thus, we propose that uncapped asRNA corresponds to the aberrant RNA molecule that is converted to dsRNA by RNA-DEPENDENT RNA POLYMERASE 6 in siRNA-bodies to initiate S-PTGS, whereas capped asRNA must anneal with sense RNA to produce dsRNA that initiate AS-PTGS. PMID:26209135
Löfstedt, Alexandra; Chiang, Samuel C C; Onelöv, Erik; Bryceson, Yenan T; Meeths, Marie; Henter, Jan-Inge
2015-12-01
Mutations in genes for perforin-dependent lymphocyte cytotoxicity are associated with haemophagocytic lymphohistiocytosis, a rare disease of severe hyperinflammation that typically becomes evident in early childhood. It has been suggested that individuals with hypomorphic biallelic mutations in genes associated with haemophagocytic lymphohistiocytosis are at increased risk of developing haematological malignancies. We aimed to assess whether relatives of patients with primary haemophagocytic lymphohistiocytosis (ie, heterozygous carriers of these mutated genes) were more likely to develop cancer. In this retrospective cohort study, we used a multigeneration registry to identify relatives (parents and grandparents) of 79 Swedish children (<15 years) with primary haemophagocytic lymphohistiocytosis diagnosed between 1971 and 2011. For each relative, we randomly selected eight matched individuals from the Swedish total population registry, stratified for sex, birth year, and birth region. Relatives and matched controls were cross-linked with the Swedish Cancer Registry to establish cancer incidence rate. We then calculated the incidence rate ratio between first-degree and second-degree relatives and the matched controls. Additionally, we assessed natural-killer-cell-mediated cytotoxicity in a subgroup of first-degree relatives using standard 4 h (51)Cr assay and flow cytometry quantification of the upregulation of surface CD107a. We identified 346 first-degree and second-degree relatives from 67 families (67 mothers, 66 fathers, 106 grandmothers, and 107 grandfathers) and 2768 matched controls. Median follow-up was 49 years, range 0-54 years. By death or last follow-up (Dec 31, 2012), first-degree relatives had a significantly increased incidence rate of malignancies than did controls (incidence rate per 1000 person-years 2.78 [95% CI 1.42-4.15] vs 1.56 [1.16-1.95]; incidence rate ratio 1.79 [95% CI 1.06-3.03]; p=0.030). Mothers had a particularly increased risk (incidence rate per 1000 person-years 4.43 [95% CI 1.99-6.87] vs 1.60 [1.08-2.11]; incidence rate ratio 2.78 [95% CI 1.48-5.21]; p=0.0014), whereas no difference was found between fathers and controls (1.24 [0.00-2.51] vs 1.52 [0.89-2.15]; 0.82 [0.29-2.29]; p=0.70) or between grandparents and controls (7.24 [5.44-9.04] vs 6.36 [5.70-7.03]; 1.14 [0.88-1.48]; p=0.33). Functional analysis of heterozygous carriers of mutations associated with haemophagocytic lymphohistiocytosis could not show significantly reduced lymphocyte cytotoxicity. Heterozygous mutations in genes associated with haemophagocytic lymphohistiocytosis might be a new risk factor for cancer. The increased risk of cancer might imply haploinsufficiency of cytotoxic lymphocyte-mediated immunosurveillance of cancer in carriers of these mutations. Our findings might support intensified screening for malignancies in relatives of patients with haemophagocytic lymphohistiocytosis. Swedish Children's Cancer Foundation, Swedish Research Council, Histiocytosis Association, Swedish Cancer Society, Swedish Cancer and Allergy Foundation, Mary Béve Foundation, Karolinska Institutet Research Foundation, Stockholm County Council (ALF-project). Copyright © 2015 Elsevier Ltd. All rights reserved.
Yu, Lianbo; Zhang, Xiaoli; Majumder, Sarmila; Motiwala, Tasneem; Khan, Nuzhat; Belury, Martha; McClain, Craig; Jacob, Samson; Ghoshal, Kalpana
2012-01-01
Background Methylation at C-5 (5-mdC) of CpG base pairs, the most abundant epigenetic modification of DNA, is catalyzed by 3 essential DNA methyltransferases (Dnmt1, Dnmt3a and Dnmt3b). Aberrations in DNA methylation and Dnmts are linked to different diseases including cancer. However, their role in alcoholic liver disease (ALD) has not been elucidated. Methodology/Principal Findings Dnmt1 wild type (Dnmt1 +/+) and hypomorphic (Dnmt1 N/+) male mice that express reduced level of Dnmt1 were fed Lieber-DeCarli liquid diet containing ethanol for 6 weeks. Control mice were pair-fed calorie-matched alcohol-free liquid diet, and Dnmtase activity, 5-mdC content, gene expression profile and liver histopathology were evaluated. Ethanol feeding caused pronounced decrease in hepatic Dnmtase activity in Dnmt1 +/+ mice due to decrease in Dnmt1 and Dnmt3b protein levels and upregulation of miR-148 and miR-152 that target both Dnmt1 and Dnmt3b. Microarray and qPCR analysis showed that the genes involved in lipid, xenobiotic and glutathione metabolism, mitochondrial function and cell proliferation were dysregulated in the wild type mice fed alcohol. Surprisingly, Dnmt1 N/+ mice were less susceptible to alcoholic steatosis compared to Dnmt1 +/+ mice. Expression of several key genes involved in alcohol (Aldh3b1), lipid (Ppara, Lepr, Vldlr, Agpat9) and xenobiotic (Cyp39a1) metabolism, and oxidative stress (Mt-1, Fmo3) were significantly (P<0.05) altered in Dnmt1 N/+ mice relative to the wild type mice fed alcohol diet. However, CpG islands encompassing the promoter regions of Agpat9, Lepr, Mt1 and Ppara were methylation-free in both genotypes irrespective of the diet, suggesting that promoter methylation does not regulate their expression. Similarly, 5-mdC content of the liver genome, as measured by LC-MS/MS analysis, was not affected by alcohol diet in the wild type or hypomorphic mice. Conclusions/Significance Although feeding alcohol diet reduced Dnmtase activity, the loss of one copy of Dnmt1 protected mice from alcoholic hepatosteatosis by dysregulating genes involved in lipid metabolism and oxidative stress. PMID:22905112
NASA Astrophysics Data System (ADS)
Gehlen, M.; Racapé, V.; Zunino, P.; Lherminier, P.; Bopp, L.; Mercier, H.
2016-02-01
Authors: Racapé V., Zunino P., Lherminier P., Bopp L., Mercier, H. and Gehlen M. At present, the ocean takes up approximately one-third of total anthropogenic carbon dioxide emissions. The North Atlantic Ocean is a major sink region for anthropogenic carbon (CANT) and a major contributor to its storage and transport. While evidence is growing that storage and transport are variable on interannual to decadal timescales, their evolution in recent decades and in the future remains uncertain. The variability is thought to be controlled in large part by the intensity of the meridional overturning circulation (MOC), which is suggested to slow down over the 21st century. This study aims to investigate the relationship between CANT transport across the Greenland-Portugal OVIDE section and Cant storage in the North Atlantic basin, as well as their combined evolution over the past 40 years. It relies on the combination of a pluriannual data set and output from the global biogeochemical ocean general circulation model NEMO/PISCES at 1/2° spatial resolution forced by the atmospheric reanalysis DFS4.2. Based on an observation-model comparison, the CANT advective transport is largely underestimated by the model (5 times) compared to the data-based estimate. However, the vertical gradient of CANT in the water column is well reproduced by NEMO/PISCES, supporting the use of a novel indicator computed by Zunino et al. (2014) to express the variability of CANT transport (T°CANT). Following the approach by Zunino et al. (2014), the estimator, T°CANT, was first derived in the model from MOCσ and DELTA-CANT (the vertical gradient of CANT between the upper and the lower branch of MOCσ) averaged over the month of June. Next, the representativity of T°CANT derived from a single sampling event per year was evaluated against estimates computed from annual mean values of MOCσ and DELTA-CANT. After evaluation of the model skill over the period covered by observations, the model is used to extrapolate backward and forward in time. Here the approach was applied to the analyses of the interannual variability of CANT transport and storage over the past 40 years.
The Mediterranean Forecasting System: recent developments
NASA Astrophysics Data System (ADS)
Tonani, Marina; Oddo, Paolo; Korres, Gerasimos; Clementi, Emanuela; Dobricic, Srdjan; Drudi, Massimiliano; Pistoia, Jenny; Guarnieri, Antonio; Romaniello, Vito; Girardi, Giacomo; Grandi, Alessandro; Bonaduce, Antonio; Pinardi, Nadia
2014-05-01
Recent developments of the Mediterranean Monitoring and Forecasting Centre of the EU-Copernicus marine service, the Mediterranean Forecasting System (MFS), are presented. MFS provides forecast, analysis and reanalysis for the physical and biogeochemical parameters of the Mediterranean Sea. The different components of the system are continuously updated in order to provide to the users the best available product. This work is focus on the physical component of the system. The physical core of MFS is composed by an ocean general circulation model (NEMO) coupled with a spectral wave model (Wave Watch-III). The NEMO model provides to WW-III surface currents and SST fields, while WW-III returns back to NEMO the neutral component of the surface drag coefficient. Satellite Sea Level Anomaly observations and in-situ T & S vertical profiles are assimilated into this system using a variational assimilation scheme based on 3DVAR (Dobricic, 2008) . Sensitive experiments have been performed in order to assess the impact of the assimilation of the latest available SLA missions, Altika and Cryosat together with the long term available mission of Jason2. The results show a significant improvement of the MFS skill due to the multi-mission along track assimilation. The primitive equations module has been recently upgraded with the introduction of the atmospheric pressure term and a new, explicit, numerical scheme has been adopted to solve the barotropic component of the equations of motion. The SLA satellite observations for data assimilation have been consequently modified in order to account for the new atmospheric pressure term introduced in the equations. This new system has been evaluated using tide gauge coastal buoys and the satellite along track data. The quality of the SSH has improved significantly while a minor impact has been observed on the other state variables (temperature, salinity and currents). Experiments with a higher resolution NWP (numerical weather prediction) forcing provided by the COSMO-MED system (provided by the Italian Meteorological Office), have been performed and a pre-operational 3-day forecast production system has been developed. The comparison between this system and the official one forced by the ECMWF NWP data will be discussed.
Brooks, Leah R.; Pals, Heide L.; Enix, Courtney L.; Woolaver, Rachel A.; Paul, Evan D.; Lowry, Christopher A.; Tsai, Pei-San
2014-01-01
Functionally heterogeneous populations of serotonergic neurons, located within the dorsal raphe nucleus (DR), play a role in stress-related behaviors and neuropsychiatric illnesses such as anxiety and depression. Abnormal development of these neurons may permanently alter their structure and connections, making the organism more susceptible to anxiety-related disorders. A factor that critically regulates the development of serotonergic neurons is fibroblast growth factor 8 (Fgf8). In this study, we used acute restraint stress followed by behavioral testing to examine whether Fgf8 signaling during development is important for establishing functional stress- and anxiety-related DR neurocircuits in adulthood. Wild-type and heterozygous male mice globally hypomorphic for Fgf8 were exposed to acute restraint stress and then tested for anxiety-like behavior on the elevated plus-maze. Further, we measured c-Fos immunostaining as a marker of serotonergic neuronal activation and tissue 5-hydroxyindoleacetic acid concentrations as a marker of serotonin functional output. Results showed that Fgf8 hypomorphs exhibited 1) an exaggerated response of DR anxiety-promoting circuits and 2) a blunted response of a DR panic-inhibiting circuit to stress, effects that together were associated with increased baseline anxiety-like behavior. Overall, our results provide a neural substrate upon which Fgf8 deficiency could affect stress response and support the hypothesis that developmental disruptions of serotonergic neurons affect their postnatal functional integrity. PMID:24992493
Brooks, Leah R; Pals, Heide L; Enix, Courtney L; Woolaver, Rachel A; Paul, Evan D; Lowry, Christopher A; Tsai, Pei-San
2014-01-01
Functionally heterogeneous populations of serotonergic neurons, located within the dorsal raphe nucleus (DR), play a role in stress-related behaviors and neuropsychiatric illnesses such as anxiety and depression. Abnormal development of these neurons may permanently alter their structure and connections, making the organism more susceptible to anxiety-related disorders. A factor that critically regulates the development of serotonergic neurons is fibroblast growth factor 8 (Fgf8). In this study, we used acute restraint stress followed by behavioral testing to examine whether Fgf8 signaling during development is important for establishing functional stress- and anxiety-related DR neurocircuits in adulthood. Wild-type and heterozygous male mice globally hypomorphic for Fgf8 were exposed to acute restraint stress and then tested for anxiety-like behavior on the elevated plus-maze. Further, we measured c-Fos immunostaining as a marker of serotonergic neuronal activation and tissue 5-hydroxyindoleacetic acid concentrations as a marker of serotonin functional output. Results showed that Fgf8 hypomorphs exhibited 1) an exaggerated response of DR anxiety-promoting circuits and 2) a blunted response of a DR panic-inhibiting circuit to stress, effects that together were associated with increased baseline anxiety-like behavior. Overall, our results provide a neural substrate upon which Fgf8 deficiency could affect stress response and support the hypothesis that developmental disruptions of serotonergic neurons affect their postnatal functional integrity.
Campfield, Brian T; Nolder, Christi L; Marinov, Anthony; Bushnell, Daniel; Davis, Amy; Spychala, Caressa; Hirsch, Raphael; Nowalk, Andrew J
2014-08-01
Follistatin-like protein 1 (FSTL-1) has recently been described as a critical mediator of CIA and a marker of disease activity. Lyme arthritis, caused by Borrelia burgdorferi, shares similarities with autoimmune arthritis and the experimental murine model collagen-induced arthritis (CIA). Because FSTL-1 is important in CIA and autoimmune arthritides, and Lyme arthritis shares similarities with CIA, we hypothesized that FSTL-1 may be an important mediator of Lyme arthritis. We demonstrate for the first time that FSTL-1 is induced by B. burgdorferi infection and is required for the development of Lyme arthritis in a murine model, utilizing a gene insertion to generate FSTL-1 hypomorphic mice. Using qPCR and qRT-PCR, we found that despite similar early infectious burden, FSTL-1 hypomorphic mice have improved spirochetal clearance in the face of attenuated arthritis and inflammatory cytokine production. Further, FSTL-1 mediates pathogen-specific antibody production and antigen recognition when assessed by ELISA and one- and two-dimensional immunoblotting. This study is the first to describe a role for FSTL-1 in the development of Lyme arthritis and anti-Borrelia response, and the first to demonstrate a role for FSTL-1 in response to infection, highlighting the potential for FSTL-1 as a target in the treatment of B. burgdorferi infection. Copyright © 2014. Published by Elsevier Ltd.
Generation of a Hypomorphic Model of Propionic Acidemia Amenable to Gene Therapy Testing
Guenzel, Adam J; Hofherr, Sean E; Hillestad, Matthew; Barry, Mary; Weaver, Eric; Venezia, Sarah; Kraus, Jan P; Matern, Dietrich; Barry, Michael A
2013-01-01
Propionic acidemia (PA) is a recessive genetic disease that results in an inability to metabolize certain amino acids and odd-chain fatty acids. Current treatment involves restricting consumption of these substrates or liver transplantation. Deletion of the Pcca gene in mice mimics the most severe forms of the human disease. Pcca− mice die within 36 hours of birth, making it difficult to test intravenous systemic therapies in them. We generated an adult hypomorphic model of PA in Pcca− mice using a transgene bearing an A138T mutant of the human PCCA protein. Pcca−/−(A138T) mice have 2% of wild-type PCC activity, survive to adulthood, and have elevations in propionyl-carnitine, methylcitrate, glycine, alanine, lysine, ammonia, and markers associated with cardiomyopathy similar to those in patients with PA. This adult model allowed gene therapy testing by intravenous injection with adenovirus serotype 5 (Ad5) and adeno-associated virus 2/8 (AAV8) vectors. Ad5-mediated more rapid increases in PCCA protein and propionyl-CoA carboxylase (PCC) activity in the liver than AAV8 and both vectors reduced propionylcarnitine and methylcitrate levels. Phenotypic correction was transient with first generation Ad whereas AAV8-mediated long-lasting effects. These data suggest that this PA model may be a useful platform for optimizing systemic intravenous therapies for PA. PMID:23648696
20th Annual Systems Engineering Conference, Thursday, Volume 4
2017-10-26
Daniel Dault, Air Force Research Lab 19809 Physics Based Modeling & Simulation For Shock and Vulnerability Assessments - Navy Enhanced Sierra...19811 Version 1.0 of the New INCOSE Competency Framework u Mr. Don Gelosh 19515 A Proposed Engineering Training Framework and Competency Methodology...nonlinearity ▪ QEV, Transient, Frequency Domain ▪ Inverse Methods Capability ▪ Coupled Physics ▪ Fluids: nemo, aero and sigma ▪ Thermal (unidirection): fuego
Reay, Daniel P; Yang, Michele; Watchko, Jon F; Daood, Molly; O'Day, Terrence L; Rehman, Khaleel K; Guttridge, Denis C; Robbins, Paul D; Clemens, Paula R
2011-09-01
The activation of nuclear factor κB (NF-κB) contributes to muscle degeneration that results from dystrophin deficiency in human Duchenne muscular dystrophy (DMD) and in the mdx mouse. In dystrophic muscle, NF-κB participates in inflammation and failure of muscle regeneration. Peptides containing the NF-κB Essential Modulator (NEMO) binding domain (NBD) disrupt the IκB kinase complex, thus blocking NF-κB activation. The NBD peptide, which is linked to a protein transduction domain to achieve in vivo peptide delivery to muscle tissue, was systemically delivered to mdx mice for 4 or 7 weeks to study NF-κB activation, histological changes in hind limb and diaphragm muscle and ex vivo function of diaphragm muscle. Decreased NF-κB activation, decreased necrosis and increased regeneration were observed in hind limb and diaphragm muscle in mdx mice treated systemically with NBD peptide, as compared to control mdx mice. NBD peptide treatment resulted in improved generation of specific force and greater resistance to lengthening activations in diaphragm muscle ex vivo. Together these data support the potential of NBD peptides for the treatment of DMD by modulating dystrophic pathways in muscle that are downstream of dystrophin deficiency. Published by Elsevier Inc.
Design and first tests of an acoustic positioning and detection system for KM3NeT
NASA Astrophysics Data System (ADS)
Simeone, F.; Ameli, F.; Ardid, M.; Bertin, V.; Bonori, M.; Bou-Cabo, M.; Calì, C.; D'Amico, A.; Giovanetti, G.; Imbesi, M.; Keller, P.; Larosa, G.; Llorens, C. D.; Masullo, R.; Randazzo, N.; Riccobene, G.; Speziale, F.; Viola, S.; KM3NeT Consortium
2012-01-01
In a deep-sea neutrino telescope it is mandatory to locate the position of the optical sensors with a precision of about 10 cm. To achieve this requirement, an innovative Acoustic Positioning System (APS) has been designed in the frame work of the KM3NeT neutrino telescope. The system will also be able to provide an acoustic guide during the deployment of the telescope’s components and seafloor infrastructures (junction boxes, cables, etc.). A prototype of the system based on the successful acoustic systems of ANTARES and NEMO is being developed. It will consist of an array of hydrophones and a network of acoustic transceivers forming the Long Baseline. All sensors are connected to the telescope data acquisition system and are in phase and synchronised with the telescope master clock. Data from the acoustic sensors, continuously sampled at 192 kHz, will be sent to shore where signal recognition and analysis will be carried out. The design and first tests of the system elements will be presented. This new APS is expected to have better precision compared to the systems used in ANTARES and NEMO, and can also be used as a real-time monitor of acoustic sources and environmental noise in deep sea.
NASA Astrophysics Data System (ADS)
Docquier, David; Massonnet, François; Raulier, Jonathan; Lecomte, Olivier; Fichefet, Thierry
2016-04-01
Sea ice concentration and thickness have substantially decreased in the Arctic since the beginning of the satellite era. As a result, mechanical strength has decreased allowing more fracturing and leading to increased sea ice drift. However, recent studies have highlighted that the interplay between sea ice thermodynamics and dynamics is poorly represented in contemporary global climate model (GCM) simulations. Thus, the considerable inter-model spread in terms of future sea ice extent projections could be reduced by better understanding the interactions between drift, concentration and thickness. This study focuses on the results coming from the global coupled ocean-sea ice model NEMO-LIM3 between 1979 and 2012. Three different simulations are forced by the Drakkar Forcing Set (DFS) 5.2 and run on the global tripolar ORCA grid at spatial resolutions of 0.25, 1° and 2°. The relation between modeled sea ice drift, concentration and thickness is further analyzed, compared to observations and discussed in the framework of the above-mentioned poor representation. It is proposed as a process-based metric for evaluating model performance. This study forms part of the EU Horizon 2020 PRIMAVERA project aiming at developing a new generation of advanced and well-evaluated high-resolution GCMs.
Bonif, Marianne; Meuwis, Marie-Alice; Close, Pierre; Benoit, Valérie; Heyninck, Karen; Chapelle, Jean-Paul; Bours, Vincent; Merville, Marie-Paule; Piette, Jacques; Beyaert, Rudi; Chariot, Alain
2005-01-01
Pro-inflammatory cytokines trigger signalling cascades leading to NF-κB (nuclear factor-κB)-dependent gene expression through IKK [IκB (inhibitory κB) kinase]-dependent phosphorylation and subsequent degradation of the IκB proteins and via induced phosphorylation of p65. These signalling pathways rely on sequentially activated kinases which are assembled by essential and non-enzymatic scaffold proteins into functional complexes. Here, we show that the pro-inflammatory cytokine TNFα (tumour necrosis factor α) promotes TANK [TRAF (TNF receptor-associated factor) family member associated NF-κB activator] recruitment to the IKK complex via a newly characterized C-terminal zinc finger. Moreover, we show that TANK is phosphorylated by IKKβ upon TNFα stimulation and that this modification negatively regulates TANK binding to NEMO (NF-κB essential modulator). Interestingly, reduced TANK expression by RNA interference attenuates TNFα-mediated induction of a subset of NF-κB target genes through decreased p65 transactivation potential. Therefore the scaffold protein TANK is required for the cellular response to TNFα by connecting upstream signalling molecules to the IKKs and p65, and its subsequent IKKβ-mediated phosphorylation may be a mechanism to terminate the TANK-dependent wave of NF-κB activation. PMID:16336209
CIKS, a connection to Ikappa B kinase and stress-activated protein kinase.
Leonardi, A; Chariot, A; Claudio, E; Cunningham, K; Siebenlist, U
2000-09-12
Pathogens, inflammatory signals, and stress cause acute transcriptional responses in cells. The induced expression of genes in response to these signals invariably involves transcription factors of the NF-kappaB and AP-1/ATF families. Activation of NF-kappaB factors is thought to be mediated primarily via IkappaB kinases (IKK), whereas that of AP-1/ATF can be mediated by stress-activated protein kinases (SAPKs; also named Jun kinases or JNKs). IKKalpha and IKKbeta are two catalytic subunits of a core IKK complex that also contains the regulatory subunit NEMO (NF-kappaB essential modulator)/IKKgamma. The latter protein is essential for activation of the IKKs, but its mechanism of action is not known. Here we describe the molecular cloning of CIKS (connection to IKK and SAPK/JNK), a previously unknown protein that directly interacts with NEMO/IKKgamma in cells. When ectopically expressed, CIKS stimulates IKK and SAPK/JNK kinases and it transactivates an NF-kappaB-dependent reporter. Activation of NF-kappaB is prevented in the presence of kinase-deficient, interfering mutants of the IKKs. CIKS may help to connect upstream signaling events to IKK and SAPK/JNK modules. CIKS could coordinate the activation of two stress-induced signaling pathways, functions reminiscent of those noted for tumor necrosis factor receptor-associated factor adaptor proteins.
A parapoxviral virion protein inhibits NF-κB signaling early in infection
Khatiwada, Sushil; Delhon, Gustavo; Nagendraprabhu, Ponnuraj; Chaulagain, Sabal; Luo, Shuhong; Diel, Diego G.; Flores, Eduardo F.
2017-01-01
Poxviruses have evolved unique proteins and mechanisms to counteract the nuclear factor κB (NF-κB) signaling pathway, which is an essential regulatory pathway of host innate immune responses. Here, we describe a NF-κB inhibitory virion protein of orf virus (ORFV), ORFV073, which functions very early in infected cells. Infection with ORFV073 gene deletion virus (OV-IA82Δ073) led to increased accumulation of NF-κB essential modulator (NEMO), marked phosphorylation of IκB kinase (IKK) subunits IKKα and IKKβ, IκBα and NF-κB subunit p65 (NF-κB-p65), and to early nuclear translocation of NF-κB-p65 in virus-infected cells (≤ 30 min post infection). Expression of ORFV073 alone was sufficient to inhibit TNFα induced activation of the NF-κB signaling in uninfected cells. Consistent with observed inhibition of IKK complex activation, ORFV073 interacted with the regulatory subunit of the IKK complex NEMO. Infection of sheep with OV-IA82Δ073 led to virus attenuation, indicating that ORFV073 is a virulence determinant in the natural host. Notably, ORFV073 represents the first poxviral virion-associated NF-κB inhibitor described, highlighting the significance of viral inhibition of NF-κB signaling very early in infection. PMID:28787456
Analysis of twitter users' sharing of official new york storm response messages.
Genes, Nicholas; Chary, Michael; Chason, Kevin
2014-01-01
Twitter is a social network where users read, send, and share snippets of text ("tweets"). Tweets can be disseminated through multiple means; on desktop computers, laptops, and mobile devices, over ethernet, Wi-Fi or cellular networks. This redundancy positions Twitter as a useful tool for disseminating information to the public during emergencies or disasters. Previous research on dissemination of information using Twitter has mostly investigated the characteristics of tweets that are most effective in raising consumer awareness about a new product or event. In particular, they describe characteristics that increase the chance the messages will be shared ("retweeted") by users. In comparison, little has been published on how information from municipal or state government agencies spreads on Twitter during emergency situations. Retweeting these messages is a way to enhance public awareness of potentially important instructions from public officials in a disaster. The aim of this study is to (1) describe the tweets of select New York State and New York City agencies by public officials surrounding two notable recent winter storms that required a large-scale emergency response, and (2) identify the characteristics of the tweets of public officials that were most disseminated (retweeted). For one week surrounding Superstorm Sandy (October 2012) and the winter blizzard Nemo (February 2013), we collected (1) tweets from the official accounts for six New York governmental agencies, and (2) all tweets containing the hashtags #sandy (or #nemo) and #nyc. From these data we calculated how many times a tweet was retweeted, controlling for differences in baseline activity in each account. We observed how many hashtags and links each tweet contained. We also calculated the lexical diversity of each tweet, a measure of the range of vocabulary used. During the Sandy storm, 3242 shared (retweeted) messages from public officials were collected. The lexical diversity of official tweets was similar (2.25-2.49) and well below the average for non-official tweets mentioning #sandy and #nyc (3.82). Most official tweets were with substantial retweets including a link for further reading. Of the 448 tweets analyzed from six official city and state Twitter accounts from the Nemo blizzard, 271 were related to the storm, and 174 had actionable information for the public. Actionable storm messages were retweeted approximately 24x per message, compared to 31x per message for general storm information. During two weather emergencies, New York public officials were able to convey storm-related information that was shared widely beyond existing follower bases, potentially improving situational awareness and disaster response. Official Sandy tweets, characterized by a lower lexical diversity score than other city- and Sandy-related tweets, were likely easier to understand, and often linked to further information and resources. Actionable information in the Nemo blizzard, such as specific instructions and cancellation notices, was not shared as often as more general warnings and "fun facts," suggesting agencies mix important instructions with more general news and trivia, as a way of reaching the broadest audience during a disaster.
Differential effects of collagen prolyl 3-hydroxylation on skeletal tissues.
Homan, Erica P; Lietman, Caressa; Grafe, Ingo; Lennington, Jennifer; Morello, Roy; Napierala, Dobrawa; Jiang, Ming-Ming; Munivez, Elda M; Dawson, Brian; Bertin, Terry K; Chen, Yuqing; Lua, Rhonald; Lichtarge, Olivier; Hicks, John; Weis, Mary Ann; Eyre, David; Lee, Brendan H L
2014-01-01
Mutations in the genes encoding cartilage associated protein (CRTAP) and prolyl 3-hydroxylase 1 (P3H1 encoded by LEPRE1) were the first identified causes of recessive Osteogenesis Imperfecta (OI). These proteins, together with cyclophilin B (encoded by PPIB), form a complex that 3-hydroxylates a single proline residue on the α1(I) chain (Pro986) and has cis/trans isomerase (PPIase) activity essential for proper collagen folding. Recent data suggest that prolyl 3-hydroxylation of Pro986 is not required for the structural stability of collagen; however, the absence of this post-translational modification may disrupt protein-protein interactions integral for proper collagen folding and lead to collagen over-modification. P3H1 and CRTAP stabilize each other and absence of one results in degradation of the other. Hence, hypomorphic or loss of function mutations of either gene cause loss of the whole complex and its associated functions. The relative contribution of losing this complex's 3-hydroxylation versus PPIase and collagen chaperone activities to the phenotype of recessive OI is unknown. To distinguish between these functions, we generated knock-in mice carrying a single amino acid substitution in the catalytic site of P3h1 (Lepre1(H662A) ). This substitution abolished P3h1 activity but retained ability to form a complex with Crtap and thus the collagen chaperone function. Knock-in mice showed absence of prolyl 3-hydroxylation at Pro986 of the α1(I) and α1(II) collagen chains but no significant over-modification at other collagen residues. They were normal in appearance, had no growth defects and normal cartilage growth plate histology but showed decreased trabecular bone mass. This new mouse model recapitulates elements of the bone phenotype of OI but not the cartilage and growth phenotypes caused by loss of the prolyl 3-hydroxylation complex. Our observations suggest differential tissue consequences due to selective inactivation of P3H1 hydroxylase activity versus complete ablation of the prolyl 3-hydroxylation complex.
TLR3 deficiency in herpes simplex encephalitis: high allelic heterogeneity and recurrence risk.
Lim, Hye Kyung; Seppänen, Mikko; Hautala, Timo; Ciancanelli, Michael J; Itan, Yuval; Lafaille, Fabien G; Dell, William; Lorenzo, Lazaro; Byun, Minji; Pauwels, Elodie; Rönnelid, Ylva; Cai, Xin; Boucherit, Soraya; Jouanguy, Emmanuelle; Paetau, Anders; Lebon, Pierre; Rozenberg, Flore; Tardieu, Marc; Abel, Laurent; Yildiran, Alisan; Vergison, Anne; Roivainen, Reina; Etzioni, Amos; Tienari, Pentti J; Casanova, Jean-Laurent; Zhang, Shen-Ying
2014-11-18
To determine the proportion of children with herpes simplex encephalitis (HSE) displaying TLR3 deficiency, the extent of TLR3 allelic heterogeneity, and the specific clinical features of TLR3 deficiency. We determined the sequence of all exons of TLR3 in 110 of the 120 patients with HSE enrolled in our study who do not carry any of the previously described HSE-predisposing mutations of TLR3 pathway genes (TLR3, UNC93B1, TRIF, TRAF3, and TBK1). All the new mutant TLR3 alleles detected were characterized experimentally in-depth to establish the causal relationship between the genotype and phenotype. In addition to the 3 previously reported TLR3-deficient patients from the same cohort, 6 other children or young adults with HSE carry 1 of 5 unique or extremely rare (minor allele frequency <0.001) missense TLR3 alleles. Two alleles (M374T, D592N) heterozygous in 3 patients are not deleterious in vitro. The other 3 are deleterious via different mechanisms: G743D+R811I and L360P heterozygous in 2 patients are loss-of-function due to low levels of expression and lack of cleavage, respectively, and R867Q homozygous in 1 patient is hypomorphic. The 3 patients' fibroblasts display impaired TLR3 responses and enhanced herpes simplex virus 1 susceptibility. Overall, TLR3 deficiency is therefore found in 6 (5%) of the 120 patients studied. There is high allelic heterogeneity, with 3 forms of autosomal dominant partial defect by negative dominance or haploinsufficiency, and 2 forms of autosomal recessive defect with complete or partial deficiency. Finally, 4 (66%) of the 6 TLR3-deficient patients had at least 1 late relapse of HSE, whereas relapse occurred in only 12 (10%) of the total cohort of 120 patients. Childhood-onset HSE is due to TLR3 deficiency in a traceable fraction of patients, in particular the ones with HSE recurrence. Mutations in TLR3 and TLR3 pathway genes should be searched and experimentally studied in children with HSE, and patients with proven TLR3 deficiency should be followed carefully. © 2014 American Academy of Neurology.
Sullivan, Eileen; Santiago, Carlos; Parker, Emily D.; Dominski, Zbigniew; Yang, Xiaocui; Lanzotti, David J.; Ingledue, Tom C.; Marzluff, William F.; Duronio, Robert J.
2001-01-01
Replication-associated histone genes encode the only metazoan mRNAs that lack polyA tails, ending instead in a conserved 26-nt sequence that forms a stem–loop. Most of the regulation of mammalian histone mRNA is posttranscriptional and mediated by this unique 3′ end. Stem–loop–binding protein (SLBP) binds to the histone mRNA 3′ end and is thought to participate in all aspects of histone mRNA metabolism, including cell cycle regulation. To examine SLBP function genetically, we have cloned the gene encoding Drosophila SLBP (dSLBP) by a yeast three-hybrid method and have isolated mutations in dSLBP. dSLBP function is required both zygotically and maternally. Strong dSLBP alleles cause zygotic lethality late in development and result in production of stable histone mRNA that accumulates in nonreplicating cells. These histone mRNAs are cytoplasmic and have polyadenylated 3′ ends like other polymerase II transcripts. Hypomorphic dSLBP alleles support zygotic development but cause female sterility. Eggs from these females contain dramatically reduced levels of histone mRNA, and mutant embryos are not able to complete the syncytial embryonic cycles. This is in part because of a failure of chromosome condensation at mitosis that blocks normal anaphase. These data demonstrate that dSLBP is required in vivo for 3′ end processing of histone pre-mRNA, and that this is an essential function for development. Moreover, dSLBP-dependent processing plays an important role in coupling histone mRNA production with the cell cycle. PMID:11157774
Carlin, Dan; Sepich, Diane; Grover, Vandana K; Cooper, Michael K; Solnica-Krezel, Lilianna; Inbal, Adi
2012-07-01
Six3 exerts multiple functions in the development of anterior neural tissue of vertebrate embryos. Whereas complete loss of Six3 function in the mouse results in failure of forebrain formation, its hypomorphic mutations in human and mouse can promote holoprosencephaly (HPE), a forebrain malformation that results, at least in part, from abnormal telencephalon development. However, the roles of Six3 in telencephalon patterning and differentiation are not well understood. To address the role of Six3 in telencephalon development, we analyzed zebrafish embryos deficient in two out of three Six3-related genes, six3b and six7, representing a partial loss of Six3 function. We found that telencephalon forms in six3b;six7-deficient embryos; however, ventral telencephalic domains are smaller and dorsal domains are larger. Decreased cell proliferation or excess apoptosis cannot account for the ventral deficiency. Instead, six3b and six7 are required during early segmentation for specification of ventral progenitors, similar to the role of Hedgehog (Hh) signaling in telencephalon development. Unlike in mice, we observe that Hh signaling is not disrupted in embryos with reduced Six3 function. Furthermore, six3b overexpression is sufficient to compensate for loss of Hh signaling in isl1- but not nkx2.1b-positive cells, suggesting a novel Hh-independent role for Six3 in telencephalon patterning. We further find that Six3 promotes ventral telencephalic fates through transient regulation of foxg1a expression and repression of the Wnt/β-catenin pathway.
Carlin, Dan; Sepich, Diane; Grover, Vandana K.; Cooper, Michael K.; Solnica-Krezel, Lilianna; Inbal, Adi
2012-01-01
Six3 exerts multiple functions in the development of anterior neural tissue of vertebrate embryos. Whereas complete loss of Six3 function in the mouse results in failure of forebrain formation, its hypomorphic mutations in human and mouse can promote holoprosencephaly (HPE), a forebrain malformation that results, at least in part, from abnormal telencephalon development. However, the roles of Six3 in telencephalon patterning and differentiation are not well understood. To address the role of Six3 in telencephalon development, we analyzed zebrafish embryos deficient in two out of three Six3-related genes, six3b and six7, representing a partial loss of Six3 function. We found that telencephalon forms in six3b;six7-deficient embryos; however, ventral telencephalic domains are smaller and dorsal domains are larger. Decreased cell proliferation or excess apoptosis cannot account for the ventral deficiency. Instead, six3b and six7 are required during early segmentation for specification of ventral progenitors, similar to the role of Hedgehog (Hh) signaling in telencephalon development. Unlike in mice, we observe that Hh signaling is not disrupted in embryos with reduced Six3 function. Furthermore, six3b overexpression is sufficient to compensate for loss of Hh signaling in isl1- but not nkx2.1b-positive cells, suggesting a novel Hh-independent role for Six3 in telencephalon patterning. We further find that Six3 promotes ventral telencephalic fates through transient regulation of foxg1a expression and repression of the Wnt/β-catenin pathway. PMID:22736245
O'Driscoll, Mark
2017-01-01
Accurate and efficient replication of the human genome occurs in the context of an array of constitutional barriers, including regional topological constraints imposed by chromatin architecture and processes such as transcription, catenation of the helical polymer and spontaneously generated DNA lesions, including base modifications and strand breaks. DNA replication is fundamentally important for tissue development and homeostasis; differentiation programmes are intimately linked with stem cell division. Unsurprisingly, impairments of the DNA replication machinery can have catastrophic consequences for genome stability and cell division. Functional impacts on DNA replication and genome stability have long been known to play roles in malignant transformation through a variety of complex mechanisms, and significant further insights have been gained from studying model organisms in this context. Congenital hypomorphic defects in components of the DNA replication machinery have been and continue to be identified in humans. These disorders present with a wide range of clinical features. Indeed, in some instances, different mutations in the same gene underlie different clinical presentations. Understanding the origin and molecular basis of these features opens a window onto the range of developmental impacts of suboptimal DNA replication and genome instability in humans. Here, I will briefly overview the basic steps involved in DNA replication and the key concepts that have emerged from this area of research, before switching emphasis to the pathological consequences of defects within the DNA replication network; the human disorders. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Loss of the Spectraplakin Short Stop Activates the DLK Injury Response Pathway in Drosophila
Valakh, Vera; Walker, Lauren J.; Skeath, James B.
2013-01-01
The MAPKKK dual leucine zipper-containing kinase (DLK, Wallenda in Drosophila) is an evolutionarily conserved component of the axonal injury response pathway. After nerve injury, DLK promotes degeneration of distal axons and regeneration of proximal axons. This dual role in coordinating degeneration and regeneration suggests that DLK may be a sensor of axon injury, and so understanding how DLK is activated is important. Two mechanisms are known to activate DLK. First, increasing the levels of DLK via overexpression or loss of the PHR ubiquitin ligases that target DLK activate DLK signaling. Second, in Caenorhabditis elegans, a calcium-dependent mechanism, can activate DLK. Here we describe a new mechanism that activates DLK in Drosophila: loss of the spectraplakin short stop (shot). In a genetic screen for mutants with defective neuromuscular junction development, we identify a hypomorphic allele of shot that displays synaptic terminal overgrowth and a precocious regenerative response to nerve injury. We demonstrate that both phenotypes are the result of overactivation of the DLK signaling pathway. We further show that, unlike mutations in the PHR ligase Highwire, loss of function of shot activates DLK without a concomitant increase in the levels of DLK. As a spectraplakin, Shot binds to both actin and microtubules and promotes cytoskeletal stability. The DLK pathway is also activated by downregulation of the TCP1 chaperonin complex, whose normal function is to promote cytoskeletal stability. These findings support the model that DLK is activated by cytoskeletal instability, which is a shared feature of both spectraplakin mutants and injured axons. PMID:24198375
GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes
Aglietti, Robin A.; Estevez, Alberto; Gupta, Aaron; Ramirez, Monica Gonzalez; Liu, Peter S.; Kayagaki, Nobuhiko; Ciferri, Claudio; Dixit, Vishva M.; Dueber, Erin C.
2016-01-01
Gasdermin-D (GsdmD) is a critical mediator of innate immune defense because its cleavage by the inflammatory caspases 1, 4, 5, and 11 yields an N-terminal p30 fragment that induces pyroptosis, a death program important for the elimination of intracellular bacteria. Precisely how GsdmD p30 triggers pyroptosis has not been established. Here we show that human GsdmD p30 forms functional pores within membranes. When liberated from the corresponding C-terminal GsdmD p20 fragment in the presence of liposomes, GsdmD p30 localized to the lipid bilayer, whereas p20 remained in the aqueous environment. Within liposomes, p30 existed as higher-order oligomers and formed ring-like structures that were visualized by negative stain electron microscopy. These structures appeared within minutes of GsdmD cleavage and released Ca2+ from preloaded liposomes. Consistent with GsdmD p30 favoring association with membranes, p30 was only detected in the membrane-containing fraction of immortalized macrophages after caspase-11 activation by lipopolysaccharide. We found that the mouse I105N/human I104N mutation, which has been shown to prevent macrophage pyroptosis, attenuated both cell killing by p30 in a 293T transient overexpression system and membrane permeabilization in vitro, suggesting that the mutants are actually hypomorphs, but must be above certain concentration to exhibit activity. Collectively, our data suggest that GsdmD p30 kills cells by forming pores that compromise the integrity of the cell membrane. PMID:27339137
Mutation of von Hippel–Lindau Tumour Suppressor and Human Cardiopulmonary Physiology
Smith, Thomas G; Brooks, Jerome T; Balanos, George M; Lappin, Terence R; Layton, D. Mark; Leedham, Dawn L; Liu, Chun; Maxwell, Patrick H; McMullin, Mary F; McNamara, Christopher J; Percy, Melanie J; Pugh, Christopher W; Ratcliffe, Peter J; Talbot, Nick P; Treacy, Marilyn; Robbins, Peter A
2006-01-01
Background The von Hippel–Lindau tumour suppressor protein–hypoxia-inducible factor (VHL–HIF) pathway has attracted widespread medical interest as a transcriptional system controlling cellular responses to hypoxia, yet insights into its role in systemic human physiology remain limited. Chuvash polycythaemia has recently been defined as a new form of VHL-associated disease, distinct from the classical VHL-associated inherited cancer syndrome, in which germline homozygosity for a hypomorphic VHL allele causes a generalised abnormality in VHL–HIF signalling. Affected individuals thus provide a unique opportunity to explore the integrative physiology of this signalling pathway. This study investigated patients with Chuvash polycythaemia in order to analyse the role of the VHL–HIF pathway in systemic human cardiopulmonary physiology. Methods and Findings Twelve participants, three with Chuvash polycythaemia and nine controls, were studied at baseline and during hypoxia. Participants breathed through a mouthpiece, and pulmonary ventilation was measured while pulmonary vascular tone was assessed echocardiographically. Individuals with Chuvash polycythaemia were found to have striking abnormalities in respiratory and pulmonary vascular regulation. Basal ventilation and pulmonary vascular tone were elevated, and ventilatory, pulmonary vasoconstrictive, and heart rate responses to acute hypoxia were greatly increased. Conclusions The features observed in this small group of patients with Chuvash polycythaemia are highly characteristic of those associated with acclimatisation to the hypoxia of high altitude. More generally, the phenotype associated with Chuvash polycythaemia demonstrates that VHL plays a major role in the underlying calibration and homeostasis of the respiratory and cardiovascular systems, most likely through its central role in the regulation of HIF. PMID:16768548
Parent, Jean-Sébastien; Jauvion, Vincent; Bouché, Nicolas; Béclin, Christophe; Hachet, Mélanie; Zytnicki, Matthias; Vaucheret, Hervé
2015-09-30
Although post-transcriptional gene silencing (PTGS) has been studied for more than a decade, there is still a gap in our understanding of how de novo silencing is initiated against genetic elements that are not supposed to produce double-stranded (ds)RNA. Given the pervasive transcription occurring throughout eukaryote genomes, we tested the hypothesis that unintended transcription could produce antisense (as)RNA molecules that participate to the initiation of PTGS triggered by sense transgenes (S-PTGS). Our results reveal a higher level of asRNA in Arabidopsis thaliana lines that spontaneously trigger S-PTGS than in lines that do not. However, PTGS triggered by antisense transgenes (AS-PTGS) differs from S-PTGS. In particular, a hypomorphic ago1 mutation that suppresses S-PTGS prevents the degradation of asRNA but not sense RNA during AS-PTGS, suggesting a different treatment of coding and non-coding RNA by AGO1, likely because of AGO1 association to polysomes. Moreover, the intended asRNA produced during AS-PTGS is capped whereas the asRNA produced during S-PTGS derives from 3' maturation of a read-through transcript and is uncapped. Thus, we propose that uncapped asRNA corresponds to the aberrant RNA molecule that is converted to dsRNA by RNA-DEPENDENT RNA POLYMERASE 6 in siRNA-bodies to initiate S-PTGS, whereas capped asRNA must anneal with sense RNA to produce dsRNA that initiate AS-PTGS. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Astrophysics Data System (ADS)
Weiland, C.; Chadwick, W. W.; Hanshumaker, W.; Osis, V.; Hamilton, C.
2002-12-01
We have created a new interactive exhibit in which the user can sit down and simulate that they are making a dive to the seafloor with the remotely operated vehicle (ROV) named ROPOS. The exhibit immerses the user in an interactive experience that is naturally fun but also educational. This new public display is located at the Hatfield Marine Science Visitor Center in Newport, Oregon. The exhibit is designed to look like the real ROPOS control console and includes three video monitors, a PC, a DVD player, an overhead speaker, graphic panels, buttons, lights, dials, and a seat in front of a joystick. The dives are based on real seafloor settings at Axial seamount, an active submarine volcano on the Juan de Fuca Ridge (NE Pacific) that is also the location of a seafloor observatory called NeMO. The user can choose between 1 of 3 different dives sites in the caldera of Axial Volcano. Once a dive is chosen, then the user watches ROPOS being deployed and then arrives into a 3-D computer-generated seafloor environment that is based on the real world but is easier to visualize and navigate. Once on the bottom, the user is placed within a 360 degree panorama and can look in all directions by manipulating the joystick. By clicking on markers embedded in the scene, the user can then either move to other panorama locations via movies that travel through the 3-D virtual environment, or they can play video clips from actual ROPOS dives specifically related to that scene. Audio accompanying the video clips informs the user where they are going or what they are looking at. After the user is finished exploring the dive site they end the dive by leaving the bottom and watching the ROV being recovered onto the ship at the surface. The user can then choose a different dive or make the same dive again. Within the three simulated dives there are a total of 6 arrival and departure movies, 7 seafloor panoramas, 12 travel movies, and 23 ROPOS video clips. The exhibit software was created with Macromedia Director using Apple Quicktime and Quicktime VR. The exhibit is based on the NeMO Explorer web site (http://www.pmel.noaa.gov/vents/nemo/explorer.html).
Salamone, Francesco; Belussi, Lorenzo; Danza, Ludovico; Ghellere, Matteo; Meroni, Italo
2015-01-01
The Indoor Environmental Quality (IEQ) refers to the quality of the environment in relation to the health and well-being of the occupants. It is a holistic concept, which considers several categories, each related to a specific environmental parameter. This article describes a low-cost and open-source hardware architecture able to detect the indoor variables necessary for the IEQ calculation as an alternative to the traditional hardware used for this purpose. The system consists of some sensors and an Arduino board. One of the key strengths of Arduino is the possibility it affords of loading the script into the board’s memory and letting it run without interfacing with computers, thus granting complete independence, portability and accuracy. Recent works have demonstrated that the cost of scientific equipment can be reduced by applying open-source principles to their design using a combination of the Arduino platform and a 3D printer. The evolution of the 3D printer has provided a new means of open design capable of accelerating self-directed development. The proposed nano Environmental Monitoring System (nEMoS) instrument is shown to have good reliability and it provides the foundation for a more critical approach to the use of professional sensors as well as for conceiving new scenarios and potential applications. PMID:26053749
Yuan, Shaochun; Dong, Xiangru; Tao, Xin; Xu, Liqun; Ruan, Jie; Peng, Jian; Xu, Anlong
2014-05-06
In the past decade, ubiquitination has been well documented to have multifaceted roles in regulating NF-κB activation in mammals. However, its function, especially how deubiquitinating enzymes balance the NF-κB activation, remains largely elusive in invertebrates. Investigating bbtA20 and its binding proteins, bbt A20-binding inhibitor of NF-κB (bbtABIN1) and bbtABIN2, in Chinese amphioxus Branchiostoma belcheri tsingtauense, we found that bbtABIN2 can colocalize and compete with bbt TNF receptor-associated factor 6 to connect the K63-linked polyubiquitin chains, whereas bbtABIN1 physically links bbtA20 to bbt NF-κB essential modulator (bbtNEMO) to facilitate the K48-linked ubiquitination of bbtNEMO. Similar to human A20, bbtA20 is a dual enzyme that removes the K63-linked polyubiquitin chains and builds the K48-linked polyubiquitin chains on bbt receptor-interacting serine/threonine protein kinase 1b, leading to the inhibition of NF-κB signaling. Our study not only suggests that ubiquitination is an ancient strategy in regulating NF-κB activation but also provides the first evidence, to our knowledge, for ABINs/A20-mediated inhibition of NF-κB via modifying the ubiquitinated proteins in a basal chordate, adding information on the stepwise development of vertebrate innate immune signaling.
Estimating the Numerical Diapycnal Mixing in the GO5.0 Ocean Model
NASA Astrophysics Data System (ADS)
Megann, A.; Nurser, G.
2014-12-01
Constant-depth (or "z-coordinate") ocean models such as MOM4 and NEMO have become the de facto workhorse in climate applications, and have attained a mature stage in their development and are well understood. A generic shortcoming of this model type, however, is a tendency for the advection scheme to produce unphysical numerical diapycnal mixing, which in some cases may exceed the explicitly parameterised mixing based on observed physical processes, and this is likely to have effects on the long-timescale evolution of the simulated climate system. Despite this, few quantitative estimations have been made of the magnitude of the effective diapycnal diffusivity due to numerical mixing in these models. GO5.0 is the latest ocean model configuration developed jointly by the UK Met Office and the National Oceanography Centre (Megann et al, 2014), and forms part of the GC1 and GC2 climate models. It uses version 3.4 of the NEMO model, on the ORCA025 ¼° global tripolar grid. We describe various approaches to quantifying the numerical diapycnal mixing in this model, and present results from analysis of the GO5.0 model based on the isopycnal watermass analysis of Lee et al (2002) that indicate that numerical mixing does indeed form a significant component of the watermass transformation in the ocean interior.
Earth Observations taken by Expedition 26 crewmember
2011-01-09
ISS026-E-016287 (9 Jan. 2011) --- Onekotan Island, part of the Russian Federation in the western Pacific Ocean, is featured in this image photographed by an Expedition 26 crew member on the International Space Station. Snow cover highlights calderas and volcanic cones that form the northern and southern ends of the island. Calderas are depressions formed when a volcano empties its magma chamber in an explosive eruption, followed by collapse of the overlaying material into the newly evacuated space. The northern end of the island is dominated by the Nemo Peak volcano that began forming within an older caldera approximately 9,500 years ago, according to scientists. The last recorded eruptive activity at Nemo Peak occurred in the early 18th century. The southern end of the island is formed by the 7.5 kilometer wide Tao-Rusyr Caldera. The caldera is filled by Kal’tsevoe Lake and Krenitzyn Peak, a volcano that has only erupted once in recorded history during 1952. Extending between northeastern Japan and the Kamchatka Peninsula of Russia, the Kuril Islands are an island arc located along the Pacific “Ring of Fire”. Island arcs form along an active boundary between two tectonic plates where one plate is being driven beneath the other (subduction). Magma generated by the subduction process feeds volcanoes—which eventually form volcanic islands—over the subduction boundary.
CIKS, a connection to IκB kinase and stress-activated protein kinase
Leonardi, Antonio; Chariot, Alain; Claudio, Estefania; Cunningham, Kirk; Siebenlist, Ulrich
2000-01-01
Pathogens, inflammatory signals, and stress cause acute transcriptional responses in cells. The induced expression of genes in response to these signals invariably involves transcription factors of the NF-κB and AP-1/ATF families. Activation of NF-κB factors is thought to be mediated primarily via IκB kinases (IKK), whereas that of AP-1/ATF can be mediated by stress-activated protein kinases (SAPKs; also named Jun kinases or JNKs). IKKα and IKKβ are two catalytic subunits of a core IKK complex that also contains the regulatory subunit NEMO (NF-κB essential modulator)/IKKγ. The latter protein is essential for activation of the IKKs, but its mechanism of action is not known. Here we describe the molecular cloning of CIKS (connection to IKK and SAPK/JNK), a previously unknown protein that directly interacts with NEMO/IKKγ in cells. When ectopically expressed, CIKS stimulates IKK and SAPK/JNK kinases and it transactivates an NF-κB-dependent reporter. Activation of NF-κB is prevented in the presence of kinase-deficient, interfering mutants of the IKKs. CIKS may help to connect upstream signaling events to IKK and SAPK/JNK modules. CIKS could coordinate the activation of two stress-induced signaling pathways, functions reminiscent of those noted for tumor necrosis factor receptor-associated factor adaptor proteins. PMID:10962033
Salamone, Francesco; Belussi, Lorenzo; Danza, Ludovico; Ghellere, Matteo; Meroni, Italo
2015-06-04
The Indoor Environmental Quality (IEQ) refers to the quality of the environment in relation to the health and well-being of the occupants. It is a holistic concept, which considers several categories, each related to a specific environmental parameter. This article describes a low-cost and open-source hardware architecture able to detect the indoor variables necessary for the IEQ calculation as an alternative to the traditional hardware used for this purpose. The system consists of some sensors and an Arduino board. One of the key strengths of Arduino is the possibility it affords of loading the script into the board's memory and letting it run without interfacing with computers, thus granting complete independence, portability and accuracy. Recent works have demonstrated that the cost of scientific equipment can be reduced by applying open-source principles to their design using a combination of the Arduino platform and a 3D printer. The evolution of the 3D printer has provided a new means of open design capable of accelerating self-directed development. The proposed nano Environmental Monitoring System (nEMoS) instrument is shown to have good reliability and it provides the foundation for a more critical approach to the use of professional sensors as well as for conceiving new scenarios and potential applications.
Study of strain boundary conditions and GaAs buffer sizes in InGaAs quantum dots
NASA Technical Reports Server (NTRS)
Oyafuso, F.; Klimeck, G.; Boykin, T. B.; Bowen, R. C.; Allmen, P. von
2003-01-01
NEMO 3-D has been developed for the simulation of electronic structure in self-assembled InGaAs quantum dots on GaAs substrates. Typical self-assembled quantum dots in that material system contain about 0.5 to 1 million atoms. Effects of strain by the surrounding GaAs buffer modify the electronic structure inside the quantum dot significantly and a large GaAs buffer must be included in the strain and electronic structure.
Icing Characteristics of Low Altitude, Supercooled Layer Clouds. Revision
1980-05-01
Droplet Size Distribution 5. Icing Rate Meters C. Accuracy and Sources of Error in the Measurements from the Period 1944-1950 11 1. Rotating...whether currently available LWC meters and icing rate detectors will give re- liable results when flown on helicopters. Concerning the forecasting...Max Dia. Size Distrib. Meter Samples 4 1944 MSP DP -- Al .... 4 6 1946 OR 2,4RC 2,4RHC Al 4RMC -- 3 7 1946-47 NEMO, 4RMC 4RMC AI 4RMC - 31 TN,OH, IN
Earth observations taken from shuttle orbiter Atlantis during STS-84 mission
1997-05-20
STS084-712-003 (15-24 May 1997) --- Early morning sun highlights the volcanic features on Onekotan Island which is one of several volcanic islands in the Russian owned Kurile Island chain. Onekotan lies just south of Kamchatka. Two volcanoes are active on the island -- the small island surrounded by a moat-like lake in the south (Tao-Rusyr caldera) last erupted in 1952, and the cone-shaped peak at the north end of the island, Nemo peak, erupted in 1938.
Jmjd5 functions as a regulator of p53 signaling during mouse embryogenesis.
Ishimura, Akihiko; Terashima, Minoru; Tange, Shoichiro; Suzuki, Takeshi
2016-03-01
Genetic studies have shown that aberrant activation of p53 signaling leads to embryonic lethality. Maintenance of a fine balance of the p53 protein level is critical for normal development. Previously, we have reported that Jmjd5, a member of the Jumonji C (JmjC) family, regulates embryonic cell proliferation through the control of Cdkn1a expression. Since Cdkn1a is the representative p53-regulated gene, we have examined whether the expression of other p53 target genes is coincidentally upregulated with Cdkn1a in Jmjd5-deficient embryos. The expression of a subset of p53-regulated genes was increased in both Jmjd5 hypomorphic mouse embryonic fibroblasts (MEFs) and Jmjd5-deficient embryos at embryonic day 8.25 without the induced expression of Trp53. Intercrossing of Jmjd5-deficient mice with Trp53 knockout mice showed that the growth defect of Jmjd5 mutant cells was significantly recovered under a Trp53 null genetic background. Chromatin immunoprecipitation analysis in Jmjd5 hypomorphic MEFs indicated the increased recruitment of p53 at several p53 target gene loci, such as Cdkn1a, Pmaip1, and Mdm2. These results suggest that Jmjd5 is involved in the transcriptional regulation of a subset of p53-regulated genes, possibly through the control of p53 recruitment at the gene loci. In Jmjd5-deficient embryos, the enhanced recruitment of p53 might result in the abnormal activation of p53 signaling leading to embryonic lethality.
Incontinentia pigmenti (IP2): familiar case report with affected men. Literature review.
Arenas-Sordo, María de la Luz; Vallejo-Vega, Bárbara; Hernández-Zamora, Edgar; Gálvez-Rosas, Arturo; Montoya-Pérez, Luis Alberto
2005-07-01
Incontinentia pigmenti is a genodermatosis described by Garrod and in 1920 by Bloch, Sulzberger, Siemens y Bardach. It is an ectodermic disorder that affects skin, teeth, eyes and may also have neurological problems. The IP2 name describes the histological characteristics, the incontinence of melanin into the melanocytes cells in the epidermal basal layer and its presence in superficial dermis. IP2 is an x-linked dominant condition but genetic heterogeneity may exist. The patient was 4 yrs 5 months old when she came for the first time. In a physical exploration she presented sparse and thin hair, eyelashes and eyebrows, beaked nose, labial protrusion, the four central teeth have a conic crown and there was also a delayed eruption of other teeth, right eye strabismus, hipoacusia, language defects and a trunk, legs, feet, and face dermatosis characterized by grouped vesicles, hyperkeratotic and warty lesions and brownish-gray lesions in a lineal pattern. The patient s father had hypopigmented lesions in the posterior regions of both legs. The oral clinical and radiographic exams showed diverse anomalies. Both the patient's and the father's chromosomal studies were normal. In the present case we can see that the father has IP2 without supernumeraries X, with the antecedent that his mother had something similar. It is possible that the inheritance was autosomic dominant or it is a different mutation of NEMO (NF-kappa-B essential modulator) gene to a classical one, which was found in some affected men. It is necessary to carry out a molecular study of these patients.
2010-01-01
Background Identifying developmental processes regulated by Notch1 can be addressed in part by characterizing mice with graded levels of Notch1 signaling strength. Here we examine development in embryos expressing various combinations of Notch1 mutant alleles. Mice homozygous for the hypomorphic Notch112f allele, which removes the single O-fucose glycan in epidermal growth factor-like repeat 12 (EGF12) of the Notch1 ligand binding domain (lbd), exhibit reduced growth after weaning and defective T cell development. Mice homozygous for the inactive Notch1lbd allele express Notch1 missing an ~20 kDa internal segment including the canonical Notch1 ligand binding domain, and die at embryonic day ~E9.5. The embryonic and vascular phenotypes of compound heterozygous Notch112f/lbd embryos were compared with Notch1+/12f, Notch112f/12f, and Notch1lbd/lbd embryos. Embryonic stem (ES) cells derived from these embryos were also examined in Notch signaling assays. While Notch1 signaling was stronger in Notch112f/lbd compound heterozygotes compared to Notch1lbd/lbd embryos and ES cells, Notch1 signaling was even stronger in embryos carrying Notch112f and a null Notch1 allele. Results Mouse embryos expressing the hypomorphic Notch112f allele, in combination with the inactive Notch1lbd allele which lacks the Notch1 ligand binding domain, died at ~E11.5-12.5. Notch112f/lbd ES cells signaled less well than Notch112f/12f ES cells but more strongly than Notch1lbd/lbd ES cells. However, vascular defects in Notch112f/lbd yolk sac were severe and similar to Notch1lbd/lbd yolk sac. By contrast, vascular disorganization was milder in Notch112f/lbd compared to Notch1lbd/lbd embryos. The expression of Notch1 target genes was low in Notch112f/lbd yolk sac and embryo head, whereas Vegf and Vegfr2 transcripts were increased. The severity of the compound heterozygous Notch112f/lbd yolk sac phenotype suggested that the allelic products may functionally interact. By contrast, compound heterozygotes with Notch112f in combination with a Notch1 null allele (Notch1tm1Con) were capable of surviving to birth. Conclusions Notch1 signaling in Notch112f/lbd compound heterozygous embryos is more defective than in compound heterozygotes expressing a hypomorphic Notch112f allele and a Notch1 null allele. The data suggest that the gene products Notch1lbd and Notch112f interact to reduce the activity of Notch112f. PMID:20346184
Wang, Ying; D'Urso, Giulia
2012-01-01
Degenerin/epithelial Na+ channels (DEG/ENaCs) are voltage-independent Na+ or Na+/Ca2+ channels expressed in many tissues and are needed for a wide range of physiological functions, including sensory perception and transepithelial Na+ transport. In the nervous system, DEG/ENaCs are expressed in both neurons and glia. However, the role of glial vs. neuronal DEG/ENaCs remains unclear. We recently reported the characterization of a novel DEG/ENaC in Caenorhabditis elegans that we named ACD-1. ACD-1 is expressed in glial amphid sheath cells. The glial ACD-1, together with the neuronal DEG/ENaC DEG-1, is necessary for acid avoidance and attraction to lysine. We report presently that knockout of acd-1 in glia exacerbates sensory deficits caused by another mutant: the hypomorphic allele of the cGMP-gated channel subunit tax-2. Furthermore, sensory deficits caused by mutations in Gi protein odr-3 and guanylate cyclase daf-11, which regulate the activity of TAX-2/TAX-4 channels, are worsened by knockout of acd-1. We also show that sensory neurons of acd-1 tax-2(p694) double mutants fail to undergo changes in intracellular Ca2+ when animals are exposed to low concentrations of attractant. Finally, we show that exogenous expression of TRPV1 in sensory neurons and exposure to capsaicin rescue sensory deficits of acd-1 tax-2(p694) mutants, suggesting that sensory deficits of these mutants are bypassed by increasing neuronal excitability. Our data suggest a role of glial DEG/ENaC channel ACD-1 in supporting neuronal activity. PMID:21994266
In vivo sensitivity of the embryonic and adult neural stem cell compartments to low-dose radiation.
Barazzuol, Lara; Jeggo, Penny A
2016-08-01
The embryonic brain is radiation-sensitive, with cognitive deficits being observed after exposure to low radiation doses. Exposure of neonates to radiation can cause intracranial carcinogenesis. To gain insight into the basis underlying these outcomes, we examined the response of the embryonic, neonatal and adult brain to low-dose radiation, focusing on the neural stem cell compartments. This review summarizes our recent findings. At E13.5-14.5 the embryonic neocortex encompasses rapidly proliferating stem and progenitor cells. Exploiting mice with a hypomorphic mutation in DNA ligase IV (Lig4(Y288C) ), we found a high level of DNA double-strand breaks (DSBs) at E14.5, which we attribute to the rapid proliferation. We observed endogenous apoptosis in Lig4(Y288C) embryos and in WT embryos following exposure to low radiation doses. An examination of DSB levels and apoptosis in adult neural stem cell compartments, the subventricular zone (SVZ) and the subgranular zone (SGZ) revealed low DSB levels in Lig4(Y288C) mice, comparable with the levels in differentiated neuronal tissues. We conclude that the adult SVZ does not incur high levels of DNA breakage, but sensitively activates apoptosis; apoptosis was less sensitively activated in the SGZ, and differentiated neuronal tissues did not activate apoptosis. P5/P15 mice showed intermediate DSB levels, suggesting that DSBs generated in the embryo can be transmitted to neonates and undergo slow repair. Interestingly, this analysis revealed a stage of high endogenous apoptosis in the neonatal SVZ. Collectively, these studies reveal that the adult neural stem cell compartment, like the embryonic counterpart, can sensitively activate apoptosis. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Wang, Ying; D'Urso, Giulia; Bianchi, Laura
2012-01-01
Degenerin/epithelial Na(+) channels (DEG/ENaCs) are voltage-independent Na(+) or Na(+)/Ca(2+) channels expressed in many tissues and are needed for a wide range of physiological functions, including sensory perception and transepithelial Na(+) transport. In the nervous system, DEG/ENaCs are expressed in both neurons and glia. However, the role of glial vs. neuronal DEG/ENaCs remains unclear. We recently reported the characterization of a novel DEG/ENaC in Caenorhabditis elegans that we named ACD-1. ACD-1 is expressed in glial amphid sheath cells. The glial ACD-1, together with the neuronal DEG/ENaC DEG-1, is necessary for acid avoidance and attraction to lysine. We report presently that knockout of acd-1 in glia exacerbates sensory deficits caused by another mutant: the hypomorphic allele of the cGMP-gated channel subunit tax-2. Furthermore, sensory deficits caused by mutations in G(i) protein odr-3 and guanylate cyclase daf-11, which regulate the activity of TAX-2/TAX-4 channels, are worsened by knockout of acd-1. We also show that sensory neurons of acd-1 tax-2(p694) double mutants fail to undergo changes in intracellular Ca(2+) when animals are exposed to low concentrations of attractant. Finally, we show that exogenous expression of TRPV1 in sensory neurons and exposure to capsaicin rescue sensory deficits of acd-1 tax-2(p694) mutants, suggesting that sensory deficits of these mutants are bypassed by increasing neuronal excitability. Our data suggest a role of glial DEG/ENaC channel ACD-1 in supporting neuronal activity.
Long-lived Min mice develop advanced intestinal cancers through a genetically conservative pathway.
Halberg, Richard B; Waggoner, Jesse; Rasmussen, Kristen; White, Alanna; Clipson, Linda; Prunuske, Amy J; Bacher, Jeffery W; Sullivan, Ruth; Washington, Mary Kay; Pitot, Henry C; Petrini, John H J; Albertson, Donna G; Dove, William F
2009-07-15
C57BL/6J mice carrying the Min allele of Adenomatous polyposis coli (Apc) develop numerous adenomas along the entire length of the intestine and consequently die at an early age. This short lifespan would prevent the accumulation of somatic genetic mutations or epigenetic alterations necessary for tumor progression. To overcome this limitation, we generated F(1) Apc(Min/+) hybrids by crossing C57BR/cdcJ and SWR/J females to C57BL/6J Apc(Min/+) males. These hybrids developed few intestinal tumors and often lived longer than 1 year. Many of the tumors (24-87%) were invasive adenocarcinomas, in which neoplastic tissue penetrated through the muscle wall into the mesentery. In a few cases (3%), lesions metastasized by extension to regional lymph nodes. The development of these familial cancers does not require chromosomal gains or losses, a high level of microsatellite instability, or the presence of Helicobacter. To test whether genetic instability might accelerate tumor progression, we generated Apc(Min/+) mice homozygous for the hypomorphic allele of the Nijmegen breakage syndrome gene (Nbs1(DeltaB)) and also treated Apc(Min/+) mice with a strong somatic mutagen. These imposed genetic instabilities did not reduce the time required for cancers to form nor increase the percentage of cancers nor drive progression to the point of distant metastasis. In summary, we have found that the Apc(Min/+) mouse model for familial intestinal cancer can develop frequent invasive cancers in the absence of overt genomic instability. Possible factors that promote invasion include age-dependent epigenetic changes, conservative somatic recombination, or direct effects of alleles in the F(1) hybrid genetic background.
IFT88 influences chondrocyte actin organization and biomechanics.
Wang, Z; Wann, A K T; Thompson, C L; Hassen, A; Wang, W; Knight, M M
2016-03-01
Primary cilia are microtubule based organelles which control a variety of signalling pathways important in cartilage development, health and disease. This study examines the role of the intraflagellar transport (IFT) protein, IFT88, in regulating fundamental actin organisation and mechanics in articular chondrocytes. The study used an established chondrocyte cell line with and without hypomorphic mutation of IFT88 (IFT88(orpk)). Confocal microscopy was used to quantify F-actin and myosin IIB organisation. Viscoelastic cell and actin cortex mechanics were determined using micropipette aspiration with actin dynamics visualised in live cells transfected with LifeACT-GFP. IFT88(orpk) cells exhibited a significant increase in acto-myosin stress fibre organisation relative to wild-type (WT) cells in monolayer and an altered response to cytochalasin D. Rounded IFT88(orpk) cells cultured in suspension exhibited reduced cortical actin expression with reduced cellular equilibrium modulus. Micropipette aspiration resulted in reduced membrane bleb formation in IFT88(orpk) cells. Following membrane blebbing, IFT88(orpk) cells exhibited slower reformation of the actin cortex. IFT88(orpk) cells showed increased actin deformability and reduced cortical tension confirming that IFT regulates actin cortex mechanics. The reduced cortical tension is also consistent with the reduced bleb formation. This study demonstrates for the first time that the ciliary protein IFT88 regulates fundamental actin organisation and the stiffness of the actin cortex leading to alterations in cell deformation, mechanical properties and blebbing in an IFT88 chondrocyte cell line. This adds to the growing understanding of the role of primary cilia and IFT in regulating cartilage biology. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Sm protein methylation is dispensable for snRNP assembly in Drosophila melanogaster.
Gonsalvez, Graydon B; Praveen, Kavita; Hicks, Amanda J; Tian, Liping; Matera, A Gregory
2008-05-01
Sm proteins form stable ribonucleoprotein (RNP) complexes with small nuclear (sn)RNAs and are core components of the eukaryotic spliceosome. In vivo, the assembly of Sm proteins onto snRNAs requires the survival motor neurons (SMN) complex. Several reports have shown that SMN protein binds with high affinity to symmetric dimethylarginine (sDMA) residues present on the C-terminal tails of SmB, SmD1, and SmD3. This post-translational modification is thought to play a crucial role in snRNP assembly. In human cells, two distinct protein arginine methyltransferases (PRMT5 and PRMT7) are required for snRNP biogenesis. However, in Drosophila, loss of Dart5 (the fruit fly PRMT5 ortholog) has little effect on snRNP assembly, and homozygous mutants are completely viable. To resolve these apparent differences, we examined this topic in detail and found that Drosophila Sm proteins are also methylated by two methyltransferases, Dart5/PRMT5 and Dart7/PRMT7. Unlike dart5, we found that dart7 is an essential gene. However, the lethality associated with loss of Dart7 protein is apparently unrelated to defects in snRNP assembly. To conclusively test the requirement for sDMA modification of Sm proteins in Drosophila snRNP assembly, we constructed a fly strain that exclusively expresses an isoform of SmD1 that cannot be sDMA modified. Interestingly, these flies were viable, and snRNP assays revealed no defects in comparison to wild type. In contrast, dart5 mutants displayed a strong synthetic lethal phenotype in the presence of a hypomorphic Smn mutation. We therefore conclude that dart5 is required for viability when SMN is limiting.
Fernandez-Moreno, Josefina-Patricia; Tzfadia, Oren; Forment, Javier; Presa, Silvia; Rogachev, Ilana; Meir, Sagit; Orzaez, Diego; Aharoni, Aspah; Granell, Antonio
2016-07-01
The identification and characterization of new tomato (Solanum lycopersicum) mutants affected in fruit pigmentation and nutritional content can provide valuable insights into the underlying biology, as well as a source of new alleles for breeding programs. To date, all characterized pink-pigmented tomato fruit mutants appear to result from low SlMYB12 transcript levels in the fruit skin. Two new mutant lines displaying a pink fruit phenotype (pf1 and pf2) were characterized in this study. In the pf mutants, SlMYB12 transcripts accumulated to wild-type levels but exhibited the same truncation, which resulted in the absence of the essential MYB activation domain coding region. Allelism and complementation tests revealed that both pf mutants were allelic to the y locus and showed the same recessive null allele in homozygosis: Δy A set of molecular and metabolic effects, reminiscent of those observed in the Arabidopsis (Arabidopsis thaliana) myb11 myb12 myb111 triple mutant, were found in the tomato Δy mutants. To our knowledge, these have not been described previously, and our data support the idea of their being null mutants, in contrast to previously described transcriptional hypomorphic pink fruit lines. We detected a reduction in the expression of several flavonol glycosides and some associated glycosyl transferases. Transcriptome analysis further revealed that the effects of the pf mutations extended beyond the flavonoid pathway into the interface between primary and secondary metabolism. Finally, screening for Myb-binding sites in the candidate gene promoter sequences revealed that 141 of the 152 co-down-regulated genes may be direct targets of SlMYB12 regulation. © 2016 American Society of Plant Biologists. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Graham, Jennifer A.; O'Dea, Enda; Holt, Jason; Polton, Jeff; Hewitt, Helene T.; Furner, Rachel; Guihou, Karen; Brereton, Ashley; Arnold, Alex; Wakelin, Sarah; Castillo Sanchez, Juan Manuel; Mayorga Adame, C. Gabriela
2018-02-01
This paper describes the next-generation ocean forecast model for the European north-west shelf, which will become the basis of operational forecasts in 2018. This new system will provide a step change in resolution and therefore our ability to represent small-scale processes. The new model has a resolution of 1.5 km compared with a grid spacing of 7 km in the current operational system. AMM15 (Atlantic Margin Model, 1.5 km) is introduced as a new regional configuration of NEMO v3.6. Here we describe the technical details behind this configuration, with modifications appropriate for the new high-resolution domain. Results from a 30-year non-assimilative run using the AMM15 domain demonstrate the ability of this model to represent the mean state and variability of the region.
Overall, there is an improvement in the representation of the mean state across the region, suggesting similar improvements may be seen in the future operational system. However, the reduction in seasonal bias is greater off-shelf than on-shelf. In the North Sea, biases are largely unchanged. Since there has been no change to the vertical resolution or parameterization schemes, performance improvements are not expected in regions where stratification is dominated by vertical processes rather than advection. This highlights the fact that increased horizontal resolution will not lead to domain-wide improvements. Further work is needed to target bias reduction across the north-west shelf region.
NASA Astrophysics Data System (ADS)
Kuhlbrodt, T.; Jones, C.
2016-02-01
The UK Earth System Model (UKESM) is currently being developed by the UK Met Office and the academic community in the UK. The low-resolution version of UKESM has got a nominal grid cell size of 150 km in the atmosphere (Unified Model [UM], N96) and 1° in the ocean (NEMO, ORCA1). In several preliminary test configurations of UKESM-N96-ORCA1, we find a significant cold bias in the northern hemisphere in comparison with HadGEM2 (N96-ORCA025, i.e. 0.25° resolution in the ocean). The sea surface is too cold by more than 2 K, and up to 6 K, in large parts of the North Atlantic and the northwest Pacific. In addition to the cold bias, the maximum AMOC transport (diagnosed below 500 m depth) decreases in all the configurations, displaying values between 11 and 14 Sv after 50 years run length. Transport at 26°N is even smaller and hence too weak in relation to observed values (approx. 18 Sv). The mixed layer is too deep within the North Atlantic Current and the Kuroshio, but too shallow north of these currents. The cold bias extends to a depth of several hundred metres. In the North Atlantic, it is accompanied by a freshening of up to 1.5 psu, compared to present-day climatology, along the path of the North Atlantic Current. A core problem appears to be the cessation of deep-water formation in the Labrador Sea. Remarkably, using earlier versions of NEMO and the UM, the AMOC is stable at around 16 or 17 Sv in the N96-ORCA1 configuration. We report on various strategies to reduce the cold bias and enhance the AMOC transport. Changing various parameters that affect the vertical mixing in NEMO has no significant effect. Modifying the bathymetry to deepen and widen the channels across the Greenland-Iceland-Scotland sill leads to a short-term improvement in AMOC transport, but only for about ten years. Strikingly, in a configuration with longer time steps for the atmosphere model we find a climate that is even colder, but has got a more vigorous maximum AMOC transport (14 Sv instead of 12 Sv). Conversely, if the isopycnal diffusivity is augmented by a factor of 1.5, we find a warming and an even weaker AMOC transport. This brings us to further strategies to modify the atmosphere-ocean fluxes of heat and freshwater.
Kishi, Shuji
2011-09-01
Senescence may be considered the antithesis of early development, but yet there may be factors and mechanisms in common between these two phenomena during the process of aging. We investigated whether any relationship exists between the regulatory mechanisms that function in early development and in senescence using the zebrafish (Danio rerio), a small freshwater fish and a useful model animal for genetic studies. We conducted experiments to isolate zebrafish mutants expressing an apparent senescence phenotype during embryogenesis (embryonic senescence). Some of the genes we thereby identified had already been associated with cellular senescence and chronological aging in other organisms, but many had not yet been linked to these processes. Complete loss-of-function of developmentally essential genes induce embryonic (or larval) lethality, whereas it seems like their partial loss-of-function (i.e., decrease-of-function by heterozygote or hypomorphic mutations) still remains sufficient to go through the early developmental process because of its adaptive plasticity or rather heterozygote advantage. However, in some cases, such partial loss-of-function of genes compromise normal homeostasis due to haploinsufficiency later in adult life having many environmental stress challenges. By contrast, any heterozygote-advantageous genes might gain a certain benefit(s) (much more fitness) by such partial loss-of-function later in life. Physiological senescence may evolutionarily arise from both genetic and epigenetic drifts as well as from losing adaptive developmental plasticity in face of stress signals from the external environment that interacts with functions of multiple genes rather than effects of only a single gene mutation or defect. Previously uncharacterized developmental genes may thus mediate the aging process and play a pivotal role in senescence. Moreover, unexpected senescence-related genes might also be involved in the early developmental process and regulation. We wish to ascertain whether we can identify such genes promptly in a comprehensive manner. The ease of manipulation using the zebrafish system allows us to conduct an exhaustive exploration of novel genes and small molecular compounds that can be linked to the senescence phenotype and thereby facilitates searching for the evolutionary and developmental origins of aging in vertebrates. Copyright © 2011 Wiley-Liss, Inc.
Acosta-Andrade, Carlos; Lambertos, Ana; Urdiales, José L; Sánchez-Jiménez, Francisca; Peñafiel, Rafael; Fajardo, Ignacio
2016-10-01
Antizymes and antizyme inhibitors are key regulatory proteins of polyamine levels by affecting ornithine decarboxylase and polyamine uptake. Our previous studies indicated a metabolic interplay among polyamines, histamine and serotonin in mast cells, and demonstrated that polyamines are present in mast cell secretory granules, being important for histamine storage and serotonin levels. Recently, the novel antizyme inhibitor-2 (AZIN2) was proposed as a local regulator of polyamine biosynthesis in association with mast cell serotonin-containing granules. To gain insight into the role of AZIN2 in the biosynthesis and storage of serotonin and histamine, we have generated bone marrow derived mast cells (BMMCs) from both wild-type and transgenic Azin2 hypomorphic mice, and have analyzed polyamines, serotonin and histamine contents, and some elements of their metabolisms. Azin2 hypomorphic BMMCs did not show major mast cell phenotypic alterations as judged by morphology and specific mast cell proteases. However, compared to wild-type controls, these cells showed reduced spermidine and spermine levels, and diminished growth rate. Serotonin levels were also reduced, whereas histamine levels tended to increase. Accordingly, tryptophan hydroxylase-1 (TPH1; the key enzyme for serotonin biosynthesis) mRNA expression and protein levels were reduced, whereas histidine decarboxylase (the enzyme responsible for histamine biosynthesis) enzymatic activity was increased. Furthermore, microphtalmia-associated transcription factor, an element involved in the regulation of Tph1 expression, was reduced. Taken together, our results show, for the first time, an element of polyamine metabolism -AZIN2-, so far described as exclusively devoted to the control of polyamine concentrations, involved in regulating the biosynthesis and content of other amines like serotonin and histamine.
Hypomorphic alleles reveal FCA-independent roles for FY in the regulation of FLOWERING LOCUS C.
Feng, Wei; Jacob, Yannick; Veley, Kira M; Ding, Lei; Yu, Xuhong; Choe, Goh; Michaels, Scott D
2011-03-01
The autonomous floral promotion pathway plays a key role in the regulation of flowering in rapid-cycling Arabidopsis (Arabidopsis thaliana) by providing constitutive repression of the floral inhibitor FLOWERING LOCUS C (FLC). As a result, autonomous pathway mutants contain elevated levels of FLC and are late flowering. Winter annual Arabidopsis, in contrast, contain functional alleles of FRIGIDA (FRI), which acts epistatically to the autonomous pathway to up-regulate FLC and delay flowering. To further explore the relationship between FRI and the autonomous pathway, we placed autonomous pathway mutants in a FRI-containing background. Unexpectedly, we found that a hypomorphic allele of the autonomous pathway gene fy (fy null alleles are embryo lethal) displayed background-specific effects on FLC expression and flowering time; in a rapid-cycling background fy mutants contained elevated levels of FLC and were late flowering, whereas in a winter annual background fy decreased FLC levels and partially suppressed the late-flowering phenotype conferred by FRI. Because FY has been shown to have homology to polyadenylation factors, we examined polyadenylation site selection in FLC transcripts. In wild type, two polyadenylation sites were detected and used at similar levels. In fy mutant backgrounds, however, the ratio of products was shifted to favor the distally polyadenylated form. FY has previously been shown to physically interact with another member of the autonomous pathway, FCA. Interestingly, we found that fy can partially suppress FLC expression in an fca null background and promote proximal polyadenylation site selection usage in the absence of FCA. Taken together, these results indicate novel and FCA-independent roles for FY in the regulation of FLC.
Feng, Wei; Jacob, Yannick; Veley, Kira M.; Ding, Lei; Yu, Xuhong; Choe, Goh; Michaels, Scott D.
2011-01-01
The autonomous floral promotion pathway plays a key role in the regulation of flowering in rapid-cycling Arabidopsis (Arabidopsis thaliana) by providing constitutive repression of the floral inhibitor FLOWERING LOCUS C (FLC). As a result, autonomous pathway mutants contain elevated levels of FLC and are late flowering. Winter annual Arabidopsis, in contrast, contain functional alleles of FRIGIDA (FRI), which acts epistatically to the autonomous pathway to up-regulate FLC and delay flowering. To further explore the relationship between FRI and the autonomous pathway, we placed autonomous pathway mutants in a FRI-containing background. Unexpectedly, we found that a hypomorphic allele of the autonomous pathway gene fy (fy null alleles are embryo lethal) displayed background-specific effects on FLC expression and flowering time; in a rapid-cycling background fy mutants contained elevated levels of FLC and were late flowering, whereas in a winter annual background fy decreased FLC levels and partially suppressed the late-flowering phenotype conferred by FRI. Because FY has been shown to have homology to polyadenylation factors, we examined polyadenylation site selection in FLC transcripts. In wild type, two polyadenylation sites were detected and used at similar levels. In fy mutant backgrounds, however, the ratio of products was shifted to favor the distally polyadenylated form. FY has previously been shown to physically interact with another member of the autonomous pathway, FCA. Interestingly, we found that fy can partially suppress FLC expression in an fca null background and promote proximal polyadenylation site selection usage in the absence of FCA. Taken together, these results indicate novel and FCA-independent roles for FY in the regulation of FLC. PMID:21209277
Luzius, Anne; Saggau, Carina; Ruder, Barbara; Bolik, Julia; Schmidt-Arras, Dirk; Linkermann, Andreas; Becker, Christoph; Rosenstiel, Philip; Rose-John, Stefan; Adam, Dieter
2018-01-01
The disintegrin metalloprotease ADAM17 has a critical role in intestinal inflammation and regeneration in mice, as illustrated by the dramatically increased susceptibility of ADAM17 hypomorphic (ADAM17ex/ex) mice to dextran sulfate sodium (DSS)-induced colitis. Similarly, necroptosis has been implicated in inflammatory responses in the intestine. In this study, we have investigated the contribution of necroptosis to ADAM17-regulated intestinal inflammation in vivo by crossing ADAM17ex/ex mice with mice that lack the necroptotic core protein RIPK3. Despite the loss of RIPK3, ADAM17ex/ex/RIPK3−/− mice showed the same increased susceptibility as ADAM17ex/ex mice in both acute and chronic models of DSS-induced colitis. Mice of both genotypes revealed comparable results with regard to weight loss, disease activity index and colitis-associated changes of inner organs. Histopathological analyses confirmed similar tissue destruction, loss of barrier integrity, immune cell infiltration, and cell death; serum analyses revealed similar levels of the pro-inflammatory cytokine KC. Resolving these unexpected findings, ADAM17ex/ex mice did not show phosphorylation of RIPK3 and its necroptotic interaction partner MLKL during DSS-induced colitis, although both proteins were clearly expressed. Consistent with these findings, murine embryonic fibroblasts derived from ADAM17ex/ex mice were protected from tumor necrosis factor (TNF)-induced necroptosis and failed to show phosphorylation of MLKL and RIPK3 after induction of necroptosis by TNF, revealing a novel, undescribed role of the protease ADAM17 in necroptosis. PMID:29560122
Fuchslocher Chico, Johaiber; Falk-Paulsen, Maren; Luzius, Anne; Saggau, Carina; Ruder, Barbara; Bolik, Julia; Schmidt-Arras, Dirk; Linkermann, Andreas; Becker, Christoph; Rosenstiel, Philip; Rose-John, Stefan; Adam, Dieter
2018-02-27
The disintegrin metalloprotease ADAM17 has a critical role in intestinal inflammation and regeneration in mice, as illustrated by the dramatically increased susceptibility of ADAM17 hypomorphic (ADAM17 ex/ex ) mice to dextran sulfate sodium (DSS)-induced colitis. Similarly, necroptosis has been implicated in inflammatory responses in the intestine. In this study, we have investigated the contribution of necroptosis to ADAM17-regulated intestinal inflammation in vivo by crossing ADAM17 ex/ex mice with mice that lack the necroptotic core protein RIPK3. Despite the loss of RIPK3, ADAM17 ex/ex /RIPK3 -/- mice showed the same increased susceptibility as ADAM17 ex/ex mice in both acute and chronic models of DSS-induced colitis. Mice of both genotypes revealed comparable results with regard to weight loss, disease activity index and colitis-associated changes of inner organs. Histopathological analyses confirmed similar tissue destruction, loss of barrier integrity, immune cell infiltration, and cell death; serum analyses revealed similar levels of the pro-inflammatory cytokine KC. Resolving these unexpected findings, ADAM17 ex/ex mice did not show phosphorylation of RIPK3 and its necroptotic interaction partner MLKL during DSS-induced colitis, although both proteins were clearly expressed. Consistent with these findings, murine embryonic fibroblasts derived from ADAM17 ex/ex mice were protected from tumor necrosis factor (TNF)-induced necroptosis and failed to show phosphorylation of MLKL and RIPK3 after induction of necroptosis by TNF, revealing a novel, undescribed role of the protease ADAM17 in necroptosis.
Regulation of AMP-activated protein kinase by LKB1 and CaMKK in adipocytes.
Gormand, Amélie; Henriksson, Emma; Ström, Kristoffer; Jensen, Thomas Elbenhardt; Sakamoto, Kei; Göransson, Olga
2011-05-01
AMP-activated protein kinase (AMPK) is a serine/threonine kinase that regulates cellular and whole body energy homeostasis. In adipose tissue, activation of AMPK has been demonstrated in response to a variety of extracellular stimuli. However, the upstream kinase that activates AMPK in adipocytes remains elusive. Previous studies have identified LKB1 as a major AMPK kinase in muscle, liver, and other tissues. In certain cell types, Ca(2+) /calmodulin-dependent protein kinase kinase β (CaMKKβ) has been shown to activate AMPK in response to increases of intracellular Ca(2+) levels. Our aim was to investigate if LKB1 and/or CaMKK function as AMPK kinases in adipocytes. We used adipose tissue and isolated adipocytes from mice in which the expression of LKB1 was reduced to 10-20% of that of wild-type (LKB1 hypomorphic mice). We show that adipocytes from LKB1 hypomorphic mice display a 40% decrease in basal AMPK activity and a decrease of AMPK activity in the presence of the AMPK activator phenformin. We also demonstrate that stimulation of 3T3L1 adipocytes with intracellular [Ca(2+) ]-raising agents results in an activation of the AMPK pathway. The inhibition of CaMKK isoforms, particularly CaMKKβ, by the inhibitor STO-609 or by siRNAs, blocked Ca(2+) -, but not phenformin-, AICAR-, or forskolin-induced activation of AMPK, indicating that CaMKK activated AMPK in response to Ca(2+) . Collectively, we show that LKB1 is required to maintain normal AMPK-signaling in non-stimulated adipocytes and in the presence of phenformin. In addition, we demonstrate the existence of a Ca(2+) /CaMKK signaling pathway that can also regulate the activity of AMPK in adipocytes. Copyright © 2011 Wiley-Liss, Inc.
High sensitivity detectors for measurement of diffusion, emanation and low activity of radon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamedov, Fadahat; Štekl, Ivan; Smolek, Karel
Today's underground experiments require ultra-low background conditions. One of the most important source of background is radon. It is necessary to suppress it and consequently to detect very low radon concentration. In the frame of SuperNEMO collaboration experimental setups for measurement of low radon activity, radon diffusion through shielding foils and radon emanation from construction materials have been constructed in IEAP CTU in Prague and the obtained results are presented. The application of Timepix device in radon detection is briefly discussed.
R&D for an innovative acoustic positioning system for the KM3NeT neutrino telescope
NASA Astrophysics Data System (ADS)
Ameli, F.; Ardid, M.; Bertin, V.; Bonori, M.; Bou-Cabo, M.; Calì, C.; D'Amico, A.; Giovanetti, G.; Imbesi, M.; Keller, P.; Larosa, G.; Llorens, C. D.; Masullo, R.; Randazzo, N.; Riccobene, G.; Speziale, F.; Viola, S.; KM3NeT Consortium
2011-01-01
An innovative Acoustic Positioning System for the km3-scale neutrino telescope has been designed and is under realization within the KM3NeT Consortium. Compared to the Acoustic Positioning Systems used for the km3 demonstrators, ANTARES and NEMO Phase 1, this new system is based on the “all data to shore” concept and it will permit the enhancement of detector positioning performances, reduction of costs and its use as real-time monitor of environmental acoustic noise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NEMO Collaboration
Double beta decay of {sup 100}Mo (172g) is studied with the NEMO 2 detector in the Frejus Underground Laboratory. The experiment has now accumulated 2485 hours of data taking. A clear signal of 380 events for 2{beta}2{nu} decay has been obtained corresponding to a half-life of T{sub {1/2}} = 1.0 {plus_minus} 0.08 (syst.) 10{sup 19} y. Limits are presented for 2{beta}(0{nu}, {chi}), 2{beta}0{nu} (ground state and excited states 2{sub 1}{sup +} and 0{sub 1}{sup +}). The experiment will run til October 1993.
NASA Astrophysics Data System (ADS)
Bull, Christopher Y. S.; Kiss, Andrew E.; van Sebille, Erik; Jourdain, Nicolas C.; England, Matthew H.
2018-02-01
The East Australian Current (EAC) plays a major role in regional climate, circulation, and ecosystems, but predicting future changes is hampered by limited understanding of the factors controlling EAC separation. While there has been speculation that the presence of New Zealand may be important for the EAC separation, the prevailing view is that the time-mean partial separation is set by the ocean's response to gradients in the wind stress curl. This study focuses on the role of New Zealand, and the associated adjacent bathymetry, in the partial separation of the EAC and ocean circulation in the Tasman Sea. Here utilizing an eddy-permitting ocean model (NEMO), we find that the complete removal of the New Zealand plateau leads to a smaller fraction of EAC transport heading east and more heading south, with the mean separation latitude shifting >100 km southward. To examine the underlying dynamics, we remove New Zealand with two linear models: the Sverdrup/Godfrey Island Rule and NEMO in linear mode. We find that linear processes and deep bathymetry play a major role in the mean Tasman Front position, whereas nonlinear processes are crucial for the extent of the EAC retroflection. Contrary to past work, we find that meridional gradients in the basin-wide wind stress curl are not the sole factor determining the latitude of EAC separation. We suggest that the Tasman Front location is set by either the maximum meridional gradient in the wind stress curl or the northern tip of New Zealand, whichever is furthest north.
In-surface confinement of topological insulator nanowire surface states
NASA Astrophysics Data System (ADS)
Chen, Fan W.; Jauregui, Luis A.; Tan, Yaohua; Manfra, Michael; Klimeck, Gerhard; Chen, Yong P.; Kubis, Tillmann
2015-09-01
The bandstructures of [110] and [001] Bi2Te3 nanowires are solved with the atomistic 20 band tight binding functionality of NEMO5. The theoretical results reveal: The popular assumption that all topological insulator (TI) wire surfaces are equivalent is inappropriate. The Fermi velocity of chemically distinct wire surfaces differs significantly which creates an effective in-surface confinement potential. As a result, topological insulator surface states prefer specific surfaces. Therefore, experiments have to be designed carefully not to probe surfaces unfavorable to the surface states (low density of states) and thereby be insensitive to the TI-effects.
AGAMA: Action-based galaxy modeling framework
NASA Astrophysics Data System (ADS)
Vasiliev, Eugene
2018-05-01
The AGAMA library models galaxies. It computes gravitational potential and forces, performs orbit integration and analysis, and can convert between position/velocity and action/angle coordinates. It offers a framework for finding best-fit parameters of a model from data and self-consistent multi-component galaxy models, and contains useful auxiliary utilities such as various mathematical routines. The core of the library is written in C++, and there are Python and Fortran interfaces. AGAMA may be used as a plugin for the stellar-dynamical software packages galpy (ascl:1411.008), AMUSE (ascl:1107.007), and NEMO (ascl:1010.051).
Spectroscopic Studies of Double Beta Decays and MOON
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ejiri, H.; Nuclear Science, Czech Technical University, Brehova, Prague, Czech Republic, National Institute of Radiological Sciences, Chiba, 263-8555
2007-10-12
This is a brief review of future spectroscopic experiments of neutrino-less double beta decays (0{nu}{beta}{beta}) and the MOON (Mo Observatory Of Neutrinos) project. Spectroscopic 0{nu}{beta}{beta} experiments of MOON, SuperNEMO and DCBA are planned to study Majorana masses in the quasi-degenerate (QD) and inverted mass hierarchy (IH) regions. MOON aims at 0{nu}{beta}{beta} studies with the {nu}-mass sensitivities of 100-30 meV by means of a super ensemble of multi-layer modules, each being consist of a scintillator plate, two tracking detector planes and a thin {beta}{beta} source film.
Correcting Biases in a lower resolution global circulation model with data assimilation
NASA Astrophysics Data System (ADS)
Canter, Martin; Barth, Alexander
2016-04-01
With this work, we aim at developping a new method of bias correction using data assimilation. This method is based on the stochastic forcing of a model to correct bias. First, through a preliminary run, we estimate the bias of the model and its possible sources. Then, we establish a forcing term which is directly added inside the model's equations. We create an ensemble of runs and consider the forcing term as a control variable during the assimilation of observations. We then use this analysed forcing term to correct the bias of the model. Since the forcing is added inside the model, it acts as a source term, unlike external forcings such as wind. This procedure has been developed and successfully tested with a twin experiment on a Lorenz 95 model. It is currently being applied and tested on the sea ice ocean NEMO LIM model, which is used in the PredAntar project. NEMO LIM is a global and low resolution (2 degrees) coupled model (hydrodynamic model and sea ice model) with long time steps allowing simulations over several decades. Due to its low resolution, the model is subject to bias in area where strong currents are present. We aim at correcting this bias by using perturbed current fields from higher resolution models and randomly generated perturbations. The random perturbations need to be constrained in order to respect the physical properties of the ocean, and not create unwanted phenomena. To construct those random perturbations, we first create a random field with the Diva tool (Data-Interpolating Variational Analysis). Using a cost function, this tool penalizes abrupt variations in the field, while using a custom correlation length. It also decouples disconnected areas based on topography. Then, we filter the field to smoothen it and remove small scale variations. We use this field as a random stream function, and take its derivatives to get zonal and meridional velocity fields. We also constrain the stream function along the coasts in order not to have currents perpendicular to the coast. The randomly generated stochastic forcing are then directly injected into the NEMO LIM model's equations in order to force the model at each timestep, and not only during the assimilation step. Results from a twin experiment will be presented. This method is being applied to a real case, with observations on the sea surface height available from the mean dynamic topography of CNES (Centre national d'études spatiales). The model, the bias correction, and more extensive forcings, in particular with a three dimensional structure and a time-varying component, will also be presented.
Background noise levels and correlation with ship traffic in the Gulf of Catania
NASA Astrophysics Data System (ADS)
Viola, Salvatore; Buscaino, Giuseppa; Caruso, Francesco; Chierici, Francesco; Embriaco, Davide; Favali, Paolo; Giovanetti, Gabriele; Grammauta, Roasario; Larosa, Giuseppina; Pavan, Gianni; Pellegrino, Carmelo; Pulvirenti, Sara; Riccobene, Giorgio; Sciacca, Virginia; Simeone, Francesco; Beranzoli, Laura; Marinaro, Giuditta
2015-04-01
In the last decades the growing interest in the evaluation of the underwater acoustic noise for studies in the fields of geology, biology and high-energy physics is driving the scientific community to collaborate towards a multidisciplinary approach to the topic. In June 2012 in the framework of the European project EMSO, a multidisciplinary underwater observatory, named NEMO-SN1, was installed 25 km off-shore the port of Catania, at a depth of 2100 m and operated until May 2013 by INFN (Istituto Nazionale di Fisica Nucleare) and INGV (Istituto Nazionale di Geofisica e Vulcanologia). NEMO-SN1 hosted aboard geophysical, oceanographic and acoustic sensors: among these a seismic hydrophone model SMID DT-405D(V). In this work, conducted within the activity of the SMO project, the results on the evaluation of the underwater acoustic pollution in the Gulf of Catania through SMID DT-405D(V) recordings are presented. The seismic hydrophone provided a data set of about 11 months of continuous (24/7) recordings. Underwater sounds have been continuously digitized at a sampling frequency of 2 kHz and the acquired data have been stored in 10min long files for off-line analysis. To describe one-year background noise levels, the mean integrated acoustic noise was measured every second (sampling frequency 2000, NFFT 2048) in the 1/3 octave bands with centre frequency 63 Hz and for each 10 minutes-long file the 5th, the 50th and the 98th percentiles were calculated. Measured noise was correlated with the shipping traffic in the area, thanks to the data provided by an AIS receiver installed at the INFN-Laboratori Nazionali del Sud. An acoustic noise increment was measured in coincidence with the passing of crafts in the area and it was possible to identify the characteristic spectrum of each ship. A simple model for the estimation of the acoustic noise induced by the ships passing through the area was developed. The model was applied by using AIS data acquired during the operation of the NEMO-SN1 and the results of the model were compared with the experimental acoustic data. This approach paves the way for further studies on the acoustic identification of the ships producing high noise levels to find solutions to mitigate the underwater acoustic pollution. Further studies on the whole water column are foreseen, taking advantage of the data provided by the acoustic antennas that are going to be installed between 3500 m and 3000 m water depth, off-shore Portopalo di Capo Passero, in South-East Sicily.
Roy, A; Mondal, S; Kordower, J H; Pahan, K
2015-08-27
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). Despite intense investigations, little is known about its pathological mediators. Here, we report the marked upregulation of RANTES (regulated on activation, normal T cell expressed and secreted) and eotaxin, chemokines that are involved in T cell trafficking, in the serum of hemiparkinsonian monkeys. Interestingly, 1-methyl-4-phenylpyridinium (MPP(+)), a Parkinsonian toxin, increased the expression of RANTES and eotaxin in mouse microglial cells. The presence of NF-κB binding sites in promoters of RANTES and eotaxin and down-regulation of these genes by NEMO-binding domain (NBD) peptide, selective inhibitor of induced NF-κB activation, in MPP(+)-stimulated microglial cells suggest that the activation of NF-κB plays an important role in the upregulation of these two chemokines. Consistently, serum enzyme-linked immuno assay (ELISA) and nigral immunohistochemistry further confirmed that these chemokines were strongly upregulated in MPTP-induced hemiparkinsonian monkeys and that treatment with NBD peptides effectively inhibited the level of these chemokines. Furthermore, the microglial upregulation of RANTES in the nigra of hemiparkinsonian monkeys could be involved in the altered adaptive immune response in the brain as we observed greater infiltration of CD8(+) T cells around the perivascular niche and deep brain parenchyma of hemiparkinsonian monkeys as compared to control. The treatment of hemiparkinsonian monkeys with NBD peptides decreased the microglial expression of RANTES and attenuated the infiltration of CD8(+) T cells in nigra. These results indicate the possible involvement of chemokine-dependent adaptive immune response in Parkinsonism. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Muñoz-Soriano, Verónica; Ruiz, Carlos; Pérez-Alonso, Manuel; Mlodzik, Marek; Paricio, Nuria
2013-01-01
Ommatidial rotation is one of the most important events for correct patterning of the Drosophila eye. Although several signaling pathways are involved in this process, few genes have been shown to specifically affect it. One of them is nemo (nmo), which encodes a MAP-like protein kinase that regulates the rate of rotation throughout the entire process, and serves as a link between core planar cell polarity (PCP) factors and the E-cadherin–β-catenin complex. To determine more precisely the role of nmo in ommatidial rotation, live-imaging analyses in nmo mutant and wild-type early pupal eye discs were performed. We demonstrate that ommatidial rotation is not a continuous process, and that rotating and non-rotating interommatidial cells are very dynamic. Our in vivo analyses also show that nmo regulates the speed of rotation and is required in cone cells for correct ommatidial rotation, and that these cells as well as interommatidial cells are less dynamic in nmo mutants. Furthermore, microarray analyses of nmo and wild-type larval eye discs led us to identify new genes and signaling pathways related to nmo function during this process. One of them, miple, encodes the Drosophila ortholog of the midkine/pleiotrophin secreted cytokines that are involved in cell migration processes. miple is highly up-regulated in nmo mutant discs. Indeed, phenotypic analyses reveal that miple overexpression leads to ommatidial rotation defects. Genetic interaction assays suggest that miple is signaling through Ptp99A, the Drosophila ortholog of the vertebrate midkine/pleiotrophin PTPζ receptor. Accordingly, we propose that one of the roles of Nmo during ommatial rotation is to repress miple expression, which may in turn affect the dynamics in E-cadherin–β-catenin complexes. PMID:23428616
Su, Yanxin; Shi, Peidian; Zhang, Lilin; Lu, Dong; Zhao, Chengxue; Li, Ruiqiao; Zhang, Lei; Huang, Jinhai
2018-05-01
Linear ubiquitination plays an important role in the regulation of the immune response by regulating nuclear factor κB (NF-κB). The linear ubiquitination-specific deubiquitinase ovarian tumor domain deubiquitinase with linear linkage specificity (OTULIN) can control the immune signaling transduction pathway by restricting the Met1-linked ubiquitination process. In our study, the porcine OTLLIN gene was cloned and deubiquitin functions were detected in a porcine reproductive and respiratory syndrome virus (PRRSV)-infected-cell model. PRRSV infection promotes the expression of the OTULIN gene; in turn, overexpression of OTULIN contributes to PRRSV proliferation. There is negative regulation of innate immunity with OTULIN during viral infection. The cooperative effects of swine OTULIN and PRRSV Nsp11 potentiate the ability to reduce levels of cellular protein ubiquitin associated with innate immunity. Importantly, PRRSV Nsp11 recruits OTULIN through a nonenzymatic combination to enhance its ability to remove linear ubiquitination targeting NEMO, resulting in a superimposed effect that inhibits the production of type I interferons (IFNs). Our report presents a new model of virus utilization of the ubiquitin-protease system in vivo from the perspective of the viral proteins that interact with cell deubiquitination enzymes, providing new ideas for prevention and control of PRRSV. IMPORTANCE Deubiquitination effects of swine OTULIN were identified. The interaction between porcine OTULIN and PRRSV Nsp11 is dependent on the OTU domain. PRRSV Nsp11 recruits OTULIN through a nonenzymatic combination to promote removal of linear ubiquitination targeting NEMO, resulting in a superimposed effect that inhibits the production of type I IFNs. Copyright © 2018 American Society for Microbiology.
Intestinal exposure to PCB 153 induces inflammation via the ATM/NEMO pathway.
Phillips, Matthew C; Dheer, Rishu; Santaolalla, Rebeca; Davies, Julie M; Burgueño, Juan; Lang, Jessica K; Toborek, Michal; Abreu, Maria T
2018-01-15
Polychlorinated biphenyls (PCBs) are persistent organic pollutants that adversely affect human health. PCBs bio-accumulate in organisms important for human consumption. PCBs accumulation in the body leads to activation of the transcription factor NF-κB, a major driver of inflammation. Despite dietary exposure being one of the main routes of exposure to PCBs, the gut has been widely ignored when studying the effects of PCBs. We investigated the effects of PCB 153 on the intestine and addressed whether PCB 153 affected intestinal permeability or inflammation and the mechanism by which this occurred. Mice were orally exposed to PCB 153 and gut permeability was assessed. Intestinal epithelial cells (IECs) were collected and evaluated for evidence of genotoxicity and inflammation. A human IEC line (SW480) was used to examine the direct effects of PCB 153 on epithelial function. NF-кB activation was measured using a reporter assay, DNA damage was assessed, and cytokine expression was ascertained with real-time PCR. Mice orally exposed to PCB 153 had an increase in intestinal permeability and inflammatory cytokine expression in their IECs; inhibition of NF-кB ameliorated both these effects. This inflammation was associated with genotoxic damage and NF-кB activation. Exposure of SW480 cells to PCB 153 led to similar effects as seen in vivo. We found that activation of the ATM/NEMO pathway by genotoxic stress was upstream of NF-kB activation. These results demonstrate that oral exposure to PCB 153 is genotoxic to IECs and induces downstream inflammation and barrier dysfunction in the intestinal epithelium. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Alari, Victor; Staneva, Joanna; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian; Janssen, Peter
2016-08-01
Coupled circulation (NEMO) and wave model (WAM) system was used to study the effects of surface ocean waves on water temperature distribution and heat exchange at regional scale (the Baltic Sea). Four scenarios—including Stokes-Coriolis force, sea-state dependent energy flux (additional turbulent kinetic energy due to breaking waves), sea-state dependent momentum flux and the combination these forcings—were simulated to test the impact of different terms on simulated temperature distribution. The scenario simulations were compared to a control simulation, which included a constant wave-breaking coefficient, but otherwise was without any wave effects. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwelling's. Overall, when all three wave effects were accounted for, did the estimates of temperature improve compared to control simulation. During the summer, the wave-induced water temperature changes were up to 1 °C. In northern parts of the Baltic Sea, a warming of the surface layer occurs in the wave included simulations in summer months. This in turn reduces the cold bias between simulated and measured data, e.g. the control simulation was too cold compared to measurements. The warming is related to sea-state dependent energy flux. This implies that a spatio-temporally varying wave-breaking coefficient is necessary, because it depends on actual sea state. Wave-induced cooling is mostly observed in near-coastal areas and is the result of intensified upwelling in the scenario, when Stokes-Coriolis forcing is accounted for. Accounting for sea-state dependent momentum flux results in modified heat exchange at the water-air boundary which consequently leads to warming of surface water compared to control simulation.
NASA Astrophysics Data System (ADS)
Ducousso, Nicolas; Le Sommer, J.; Molines, J.-M.; Bell, M.
2017-12-01
The energy- and enstrophy-conserving momentum advection scheme (EEN) used over the last 10 years in NEMO is subject to a spurious numerical instability. This instability, referred to as the Symmetric Instability of the Computational Kind (SICK), arises from a discrete imbalance between the two components of the vector-invariant form of momentum advection. The properties and the method for removing this instability have been documented by Hollingsworth et al. (1983), but the extent to which the SICK may interfere with processes of interest at mesoscale- and submesoscale-permitting resolutions is still unkown. In this paper, the impact of the SICK in realistic ocean model simulations is assessed by comparing model integrations with different versions of the EEN momentum advection scheme. Investigations are undertaken with a global mesoscale-permitting resolution (1/4 °) configuration and with a regional North Atlantic Ocean submesoscale-permitting resolution (1/60 °) configuration. At both resolutions, the instability is found to alter primarily the most energetic current systems, such as equatorial jets, western boundary currents and coherent vortices. The impact of the SICK is found to increase with model resolution with a noticeable impact at mesoscale-permitting resolution and a dramatic impact at submesoscale-permitting resolution. The SICK is shown to distort the normal functioning of current systems, by redirecting the slow energy transfer between balanced motions to a spurious energy transfer to internal inertia-gravity waves and to dissipation. Our results indicate that the SICK is likely to have significantly corrupted NEMO solutions (when run with the EEN scheme) at mesocale-permitting and finer resolutions over the last 10 years.
Habineza Ndikuyeze, Georges; Gaurnier-Hausser, Anita; Patel, Reema; Baldwin, Albert S.; May, Michael J.; Flood, Patrick; Krick, Erika; Propert, Kathleen J.; Mason, Nicola J.
2014-01-01
Activated B-Cell (ABC) Diffuse Large B-Cell Lymphoma (DLBCL) is a common, aggressive and poorly chemoresponsive subtype of DLBCL, characterized by constitutive canonical NF-κB signaling. Inhibition of NF-κB signaling leads to apoptosis of ABC-DLBCL cell lines, suggesting targeted disruption of this pathway may have therapeutic relevance. The selective IKK inhibitor, NEMO Binding Domain (NBD) peptide effectively blocks constitutive NF-κB activity and induces apoptosis in ABC-DLBCL cells in vitro. Here we used a comparative approach to determine the safety and efficacy of systemic NBD peptide to inhibit constitutive NF-κB signaling in privately owned dogs with spontaneous newly diagnosed or relapsed ABC-like DLBCL. Malignant lymph nodes biopsies were taken before and twenty-four hours after peptide administration to determine biological effects. Intravenous administration of <2 mg/kg NBD peptide was safe and inhibited constitutive canonical NF-κB activity in 6/10 dogs. Reductions in mitotic index and Cyclin D expression also occurred in a subset of dogs 24 hours post peptide and in 3 dogs marked, therapeutically beneficial histopathological changes were identified. Mild, grade 1 toxicities were noted in 3 dogs at the time of peptide administration and one dog developed transient subclinical hepatopathy. Long term toxicities were not identified. Pharmacokinetic data suggested rapid uptake of peptide into tissues. No significant hematological or biochemical toxicities were identified. Overall the results from this phase I study indicate that systemic administration of NBD peptide is safe and effectively blocks constitutive NF-κB signaling and reduces malignant B cell proliferation in a subset of dogs with ABC-like DLBCL. These results have potential translational relevance for human ABC-DLBCL. PMID:24798348
Rad50S alleles of the Mre11 complex: questions answered and questions raised.
Usui, Takehiko; Petrini, John H J; Morales, Monica
2006-08-15
We find that Rad50S mutations in yeast and mammals exhibit constitutive PIKK (PI3-kinase like kinase)-dependent signaling [T. Usui, H. Ogawa, J.H. Petrini, A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol. Cell 7 (2001) 1255-1266.; M. Morales, J.W. Theunissen, C.F. Kim, R. Kitagawa, M.B. Kastan, J.H. Petrini, The Rad50S allele promotes ATM-dependent DNA damage responses and suppresses ATM deficiency: implications for the Mre11 complex as a DNA damage sensor. Genes Dev. 19 (2005) 3043-4354.]. The signaling depends on Mre11 complex functions, consistent with its role as a DNA damage sensor. Rad50S is distinct from hypomorphic mutations of Mre11 and Nbs1 in mammals [M. Morales, J.W. Theunissen, C.F. Kim, R. Kitagawa, M.B. Kastan, J.H. Petrini, The Rad50S allele promotes ATM-dependent DNA damage responses and suppresses ATM deficiency: implications for the Mre11 complex as a DNA damage sensor. Genes Dev. 19 (2005) 3043-3054.; J.P. Carney, R.S. Maser, H. Olivares, E.M. Davis, Le M. Beau, J.R. Yates, III, L. Hays, W.F. Morgan, J.H. Petrini, The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93 (1998) 477-486.; G.S. Stewart, R.S. Maser, T. Stankovic, D.A. Bressan, M.I. Kaplan, N.G. Jaspers, A. Raams, P.J. Byrd, J.H. Petrini, A.M. Taylor, The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99 (1999) 577-587.; B.R. Williams, O.K. Mirzoeva, W.F. Morgan, J. Lin, W. Dunnick, J.H. Petrini, A murine model of nijmegen breakage syndrome. Curr. Biol. 12 (2002) 648-653.; J.W. Theunissen, M.I. Kaplan, P.A. Hunt, B.R. Williams, D.O. Ferguson, F.W. Alt, J.H. Petrini, Checkpoint failure and chromosomal instability without lymphomagenesis in Mre11(ATLD1/ATLD1) mice. Mol. Cell 12 (2003) 1511-1523.] and the Mre11 complex deficiency in yeast [T. Usui, H. Ogawa, J.H. Petrini, A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol. Cell 7 (2001) 1255-1266.; D'D. Amours, S.P. Jackson, The yeast Xrs2 complex functions in S phase checkpoint regulation. Genes Dev. 15 (2001) 2238-49. ; M. Grenon, C. Gilbert, N.F. Lowndes, Checkpoint activation in response to double-strand breaks requires the Mre11/Rad50/Xrs2 complex. Nat. Cell Biol. 3 (2001) 844-847. ] where the signaling is compromised. Herein, we describe evidence for chronic signaling by Rad50S and discuss possible mechanisms.
Muona, Mikko; Ishimura, Ryosuke; Laari, Anni; Ichimura, Yoshinobu; Linnankivi, Tarja; Keski-Filppula, Riikka; Herva, Riitta; Rantala, Heikki; Paetau, Anders; Pöyhönen, Minna; Obata, Miki; Uemura, Takefumi; Karhu, Thomas; Bizen, Norihisa; Takebayashi, Hirohide; McKee, Shane; Parker, Michael J; Akawi, Nadia; McRae, Jeremy; Hurles, Matthew E; Kuismin, Outi; Kurki, Mitja I; Anttonen, Anna-Kaisa; Tanaka, Keiji; Palotie, Aarno; Waguri, Satoshi; Lehesjoki, Anna-Elina; Komatsu, Masaaki
2016-09-01
The ubiquitin fold modifier 1 (UFM1) cascade is a recently identified evolutionarily conserved ubiquitin-like modification system whose function and link to human disease have remained largely uncharacterized. By using exome sequencing in Finnish individuals with severe epileptic syndromes, we identified pathogenic compound heterozygous variants in UBA5, encoding an activating enzyme for UFM1, in two unrelated families. Two additional individuals with biallelic UBA5 variants were identified from the UK-based Deciphering Developmental Disorders study and one from the Northern Finland Intellectual Disability cohort. The affected individuals (n = 9) presented in early infancy with severe irritability, followed by dystonia and stagnation of development. Furthermore, the majority of individuals display postnatal microcephaly and epilepsy and develop spasticity. The affected individuals were compound heterozygous for a missense substitution, c.1111G>A (p.Ala371Thr; allele frequency of 0.28% in Europeans), and a nonsense variant or c.164G>A that encodes an amino acid substitution p.Arg55His, but also affects splicing by facilitating exon 2 skipping, thus also being in effect a loss-of-function allele. Using an in vitro thioester formation assay and cellular analyses, we show that the p.Ala371Thr variant is hypomorphic with attenuated ability to transfer the activated UFM1 to UFC1. Finally, we show that the CNS-specific knockout of Ufm1 in mice causes neonatal death accompanied by microcephaly and apoptosis in specific neurons, further suggesting that the UFM1 system is essential for CNS development and function. Taken together, our data imply that the combination of a hypomorphic p.Ala371Thr variant in trans with a loss-of-function allele in UBA5 underlies a severe infantile-onset encephalopathy. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Assessing the sampling strategy in the Northwestern Mediterranean Sea
NASA Astrophysics Data System (ADS)
Margirier, Félix; Testor, Pierre; Bosse, Anthony; Heslop, Emma; L'Hévéder, Blandine; Arsouze, Thomas; Houpert, Loic; Mortier, Laurent
2017-04-01
The deployment of numerous autonomous platforms (gliders, argo floats, moorings) added to the repeated ship cruises in the Northwestern Mediterranean Sea account for a considerable data coverage of the area through the past 10 years. In this study, we analyse the in-situ observations' ability to assess for the changes in the Northwester Mediterranean basin water masses properties over time. Comparing the observed time series for the different regions and different water masses to that of a glider simulator in the NEMO-Med12 model, we estimate both the quality of the model and the skill of the in-situ observations in reproducing the evolution of the basin properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fajt, L.; Kouba, P.; Mamedov, F.
Suppression of radon background is one of main tasks in ultra-low background experiments. The most promising technique for suppression of radon is its adsorption on charcoal. Within the frame of the NEMO-3 experiment, radon trapping facility (RTF) was installed in Modane underground laboratory in 2004. Based on long-term experience with this facility a new compact transportable anti-radon facility was constructed in cooperation among IEAP CTU, SÚRO and ATEKO company. The device provides 20m{sup 3}/h of purified air (air radon activity at the output ∼10mBq/m{sup 3}). The basic features and preliminary results of anti-radon device testing are presented.
Shirinian, Margret; Kambris, Zakaria; Hamadeh, Lama; Grabbe, Caroline; Journo, Chloé; Mahieux, Renaud
2015-01-01
Human T-cell lymphotropic virus type 1 (HTLV-1)-induced adult T-cell leukemia/lymphoma is an aggressive malignancy. HTLV-2 is genetically related to HTLV-1 but does not cause any malignant disease. HTLV-1 Tax transactivator (Tax-1) contributes to leukemogenesis via NF-κB. We describe transgenic Drosophila models expressing Tax in the compound eye and plasmatocytes. We demonstrate that Tax-1 but not Tax-2 induces ommatidial perturbation and increased plasmatocyte proliferation and that the eye phenotype is dependent on Kenny (IKKγ/NEMO), thus validating this new in vivo model. PMID:25995252
A Caenorhabditis elegans RNA polymerase II gene, ama-1 IV, and nearby essential genes.
Rogalski, T M; Riddle, D L
1988-01-01
The amanitin-binding subunit of RNA polymerase II in Caenorhabditis elegans is encoded by the ama-1 gene, located approximately 0.05 map unit to the right of dpy-13 IV. Using the amanitin-resistant ama-1(m118) strain as a parent, we have isolated amanitin-sensitive mutants that carry recessive-lethal ama-1 alleles. Of the six ethyl methanesulfonate-induced mutants examined, two are arrested late in embryogenesis. One of these is a large deficiency, mDf9, but the second may be a novel point mutation. The four other mutants are hypomorphs, and presumably produce altered RNA polymerase II enzymes with some residual function. Two of these mutants develop into sterile adults at 20 degrees but are arrested as larvae at 25 degrees, and two others are fertile at 20 degrees and sterile at 25 degrees. Temperature-shift experiments performed with the adult sterile mutant, ama-1(m118m238ts), have revealed a temperature-sensitive period that begins late in gonadogenesis and is centered around the initiation of egg-laying. Postembryonic development at 25 degrees is slowed by 30%. By contrast, the amanitin-resistant allele of ama-1 has very little effect on developmental rate or fertility. We have identified 15 essential genes in an interval of 4.5 map units surrounding ama-1, as well as four gamma-ray-induced deficiencies and two duplications that include the ama-1 gene. The larger duplication, mDp1, may include the entire left arm of chromosome IV, and it recombines with the normal homologue at a low frequency. The smallest deficiency, mDf10, complements all but three identified genes: let-278, dpy-13 and ama-1, which define an interval of only 0.1 map unit. The terminal phenotype of mDf10 homozygotes is developmental arrest during the first larval stage, suggesting that there is sufficient maternal RNA polymerase II to complete embryonic development.
Esteve-Bruna, David; Pérez-Pérez, José Manuel; Ponce, María Rosa; Micol, José Luis
2013-01-01
Auxin plays a pivotal role in plant development by modulating the activity of SCF ubiquitin ligase complexes. Here, we positionally cloned Arabidopsis (Arabidopsis thaliana) incurvata13 (icu13), a mutation that causes leaf hyponasty and reduces leaf venation pattern complexity and auxin responsiveness. We found that icu13 is a novel recessive allele of AUXIN RESISTANT6 (AXR6), which encodes CULLIN1, an invariable component of the SCF complex. Consistent with a role for auxin in vascular specification, the vascular defects in the icu13 mutant were accompanied by reduced expression of auxin transport and auxin perception markers in provascular cells. This observation is consistent with the expression pattern of AXR6, which we found to be restricted to vascular precursors and hydathodes in wild-type leaf primordia. AXR1, RELATED TO UBIQUITIN1-CONJUGATING ENZYME1, CONSTITUTIVE PHOTOMORPHOGENIC9 SIGNALOSOME5A, and CULLIN-ASSOCIATED NEDD8-DISSOCIATED1 participate in the covalent modification of CULLIN1 by RELATED TO UBIQUITIN. Hypomorphic alleles of these genes also display simple venation patterns, and their double mutant combinations with icu13 exhibited a synergistic, rootless phenotype reminiscent of that caused by loss of function of MONOPTEROS (MP), which forms an auxin-signaling module with BODENLOS (BDL). The phenotypes of double mutant combinations of icu13 with either a gain-of-function allele of BDL or a loss-of-function allele of MP were synergistic. In addition, a BDL:green fluorescent protein fusion protein accumulated in icu13, and BDL loss of function or MP overexpression suppressed the phenotype of icu13. Our results demonstrate that the MP-BDL module is required not only for root specification in embryogenesis and vascular postembryonic development but also for leaf flatness. PMID:23319550
The Anaphase-Promoting Complex (APC) ubiquitin ligase affects chemosensory behavior in C. elegans.
Wang, Julia; Jennings, Alexandra K; Kowalski, Jennifer R
2016-01-01
The regulation of fundamental aspects of neurobiological function has been linked to the ubiquitin signaling system (USS), which regulates the degradation and activity of proteins and is catalyzed by E1, E2, and E3 enzymes. The Anaphase-Promoting Complex (APC) is a multi-subunit E3 ubiquitin ligase that controls diverse developmental and signaling processes in post-mitotic neurons; however, potential roles for the APC in sensory function have yet to be explored. In this study, we examined the effect of the APC ubiquitin ligase on chemosensation in Caenorhabditis elegans by testing chemotaxis to the volatile odorants, diacetyl, pyrazine, and isoamyl alcohol, to which wild-type worms are attracted. Animals with loss of function mutations in either of two alleles (g48 and ye143) of the gene encoding the APC subunit EMB-27 APC6 showed increased chemotaxis towards diacetyl and pyrazine, odorants sensed by AWA neurons, but exhibited normal chemotaxis to isoamyl alcohol, which is sensed by AWC neurons. The statistically significant increase in chemotaxis in the emb-27 APC6 mutants suggests that the APC inhibits AWA-mediated chemosensation in C. elegans. Increased chemotaxis to pyrazine was also seen with mutants lacking another essential APC subunit, MAT-2 APC1; however, mat-2 APC1 mutants exhibited wild type responses to diacetyl. The difference in responsiveness of these two APC subunit mutants may be due to differential strength of these hypomorphic alleles or may indicate the presence of functional sub-complexes of the APC at work in this process. These findings are the first evidence for APC-mediated regulation of chemosensation and lay the groundwork for further studies aimed at identifying the expression levels, function, and targets of the APC in specific sensory neurons. Because of the similarity between human and C. elegans nervous systems, the role of the APC in sensory neurons may also advance our understanding of human sensory function and disease.
A high resolution Adriatic-Ionian Sea circulation model for operational forecasting
NASA Astrophysics Data System (ADS)
Ciliberti, Stefania Angela; Pinardi, Nadia; Coppini, Giovanni; Oddo, Paolo; Vukicevic, Tomislava; Lecci, Rita; Verri, Giorgia; Kumkar, Yogesh; Creti', Sergio
2015-04-01
A new numerical regional ocean model for the Italian Seas, with focus on the Adriatic-Ionian basin, has been implemented within the framework of Technologies for Situational Sea Awareness (TESSA) Project. The Adriatic-Ionian regional model (AIREG) represents the core of the new Adriatic-Ionian Forecasting System (AIFS), maintained operational by CMCC since November 2014. The spatial domain covers the Adriatic and the Ionian Seas, extending eastward until the Peloponnesus until the Libyan coasts; it includes also the Tyrrhenian Sea and extends westward, including the Ligurian Sea, the Sardinia Sea and part of the Algerian basin. The model is based on the NEMO-OPA (Nucleus for European Modeling of the Ocean - Ocean PArallelise), version 3.4 (Madec et al. 2008). NEMO has been implemented for AIREG at 1/45° resolution model in horizontal using 121 vertical levels with partial steps. It solves the primitive equations using the time-splitting technique for solving explicitly the external gravity waves. The model is forced by momentum, water and heat fluxes interactively computed by bulk formulae using the 6h-0.25° horizontal-resolution operational analysis and forecast fields from the European Centre for Medium-Range Weather Forecast (ECMWF) (Tonani et al. 2008, Oddo et al. 2009). The atmospheric pressure effect is included as surface forcing for the model hydrodynamics. The evaporation is derived from the latent heat flux, while the precipitation is provided by the Climate Prediction Centre Merged Analysis of Precipitation (CMAP) data. Concerning the runoff contribution, the model considers the estimate of the inflow discharge of 75 rivers that flow into the Adriatic-Ionian basin, collected by using monthly means datasets. Because of its importance as freshwater input in the Adriatic basin, the Po River contribution is provided using daily average observations from ARPA Emilia Romagna observational network. AIREG is one-way nested into the Mediterranean Forecasting System (MFS, http://medforecast.bo.ingv.it/) using daily means fields computed from daily outputs of the 1/16° general circulation model. One-way nesting is done by a novel pre-processing tool for an on-the-fly computation of boundary datasets compatible with BDY module provided by NEMO. It imposes the interpolation constraint and correction as in Pinardi et al. (2003) on the total velocity, ensuring that the total volume transport across boundaries is preserved after the interpolation procedures. In order to compute the lateral open boundary conditions, the model applies the Flow Relaxation Scheme (Engerdhal, 1995) for temperature, salinity and velocities and the Flather's radiation condition (Flather, 1976) for the depth-mean transport. Concerning the forecasting production cycle, AIFS produces 9-days forecast every day, producing hourly and daily means of temperature, salinity, surface currents, heat flux, water flux and shortwave radiation fields. AIREG model performances have been verified by using statistics (root mean square errors and BIAS) with respect to observed data (ARGO and CDT datasets)
Shirinian, Margret; Kambris, Zakaria; Hamadeh, Lama; Grabbe, Caroline; Journo, Chloé; Mahieux, Renaud; Bazarbachi, Ali
2015-08-01
Human T-cell lymphotropic virus type 1 (HTLV-1)-induced adult T-cell leukemia/lymphoma is an aggressive malignancy. HTLV-2 is genetically related to HTLV-1 but does not cause any malignant disease. HTLV-1 Tax transactivator (Tax-1) contributes to leukemogenesis via NF-κB. We describe transgenic Drosophila models expressing Tax in the compound eye and plasmatocytes. We demonstrate that Tax-1 but not Tax-2 induces ommatidial perturbation and increased plasmatocyte proliferation and that the eye phenotype is dependent on Kenny (IKKγ/NEMO), thus validating this new in vivo model. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
KM3NeT tower data acquisition and data transport electronics
NASA Astrophysics Data System (ADS)
Nicolau, C. A.; Ameli, F.; Biagioni, A.; Capone, A.; Frezza, O.; Lonardo, A.; Masullo, R.; Mollo, C. M.; Orlando, A.; Simeone, F.; Vicini, P.
2016-04-01
In the framework of the KM3Net European project, the production stage of a large volume underwater neutrino telescope has started. The forthcoming installation includes 8 towers and 24 strings, that will be installed 100 km off-shore Capo Passero (Italy) at 3500 m depth. The KM3NeT tower, whose layout is strongly based on the NEMO Phase-2 prototype tower deployed in March 2013, has been re-engineered and partially re-designed in order to optimize production costs, power consumption, and usability. This contribution gives a description of the main electronics, including front-end, data transport and clock distribution system, of the KM3NeT tower detection unit.
Akt3 is a privileged first responder in isozyme-specific electrophile response.
Long, Marcus J C; Parvez, Saba; Zhao, Yi; Surya, Sanjna L; Wang, Yiran; Zhang, Sheng; Aye, Yimon
2017-03-01
Isozyme-specific post-translational regulation fine tunes signaling events. However, redundancy in sequence or activity renders links between isozyme-specific modifications and downstream functions uncertain. Methods to study this phenomenon are underdeveloped. Here we use a redox-targeting screen to reveal that Akt3 is a first-responding isozyme sensing native electrophilic lipids. Electrophile modification of Akt3 modulated downstream pathway responses in cells and Danio rerio (zebrafish) and markedly differed from Akt2-specific oxidative regulation. Digest MS sequencing identified Akt3 C119 as the privileged cysteine that senses 4-hydroxynonenal. A C119S Akt3 mutant was hypomorphic for all downstream phenotypes shown by wild-type Akt3. This study documents isozyme-specific and chemical redox signal-personalized physiological responses.
South Atlantic meridional transports from NEMO-based simulations and reanalyses
NASA Astrophysics Data System (ADS)
Mignac, Davi; Ferreira, David; Haines, Keith
2018-02-01
The meridional heat transport (MHT) of the South Atlantic plays a key role in the global heat budget: it is the only equatorward basin-scale ocean heat transport and it sets the northward direction of the global cross-equatorial transport. Its strength and variability, however, are not well known. The South Atlantic transports are evaluated for four state-of-the-art global ocean reanalyses (ORAs) and two free-running models (FRMs) in the period 1997-2010. All products employ the Nucleus for European Modelling of the Oceans (NEMO) model, and the ORAs share very similar configurations. Very few previous works have looked at ocean circulation patterns in reanalysis products, but here we show that the ORA basin interior transports are consistently improved by the assimilated in situ and satellite observations relative to the FRMs, especially in the Argo period. The ORAs also exhibit systematically higher meridional transports than the FRMs, which is in closer agreement with observational estimates at 35 and 11° S. However, the data assimilation impact on the meridional transports still greatly varies among the ORAs, leading to differences up to ˜ 8 Sv and 0.4 PW in the South Atlantic Meridional Overturning Circulation and the MHTs, respectively. We narrow this down to large inter-product discrepancies in the western boundary currents (WBCs) at both upper and deep levels explaining up to ˜ 85 % of the inter-product differences in MHT. We show that meridional velocity differences, rather than temperature differences, in the WBCs drive ˜ 83 % of this MHT spread. These findings show that the present ocean observation network and data assimilation schemes can be used to consistently constrain the South Atlantic interior circulation but not the overturning component, which is dominated by the narrow western boundary currents. This will likely limit the effectiveness of ORA products for climate or decadal prediction studies.
NASA Astrophysics Data System (ADS)
Zehr, J.; Mills, M. M.; Shilova, I. N.; Turk-Kubo, K.; Robidart, J.; van Dijken, G.; Bjorkman, K. M.; Whitt, D. B.; Wai, B.; Pampin Baro, J.; Hogan, M.; Rapp, I.; Zakem, E.; Fredrickson, A.; Leahy, B.; Linney, M.; Santiago, A.; Follows, M. J.; Achterberg, E. P.; Kolber, Z.; Church, M. J.; Arrigo, K. R.
2016-02-01
We conducted the research cruise: Nutrient Effects on Marine microOrganisms (NEMO) onboard the R/V New Horizon (NH1417: August 18 to September 16, 2014) between the ports of San Diego, CA and Honolulu, HI. The three major objectives of the cruise were to: 1) evaluate genetic, physiological and phylogenetic responses of marine phytoplankton communities in the North Pacific Subtropical Gyre to different nitrogen (N) substrates and to determine how other nutrients (iron, phosphorus) impact N utilization; 2) characterize the physical processes and dynamics in support of the biological processes; and 3) characterize the diversity and activities of microbial communities in the upper water column in relation to the nutrient availability. Several incubation experiments were conducted along the cruise transect to assess the effect of nutrients on microbial communities. The results showed that N addition resulted in increased chlorophyll a (chl a) and rates of CO2 fixation at most sites, but Prochlorococcus, Synechococcus and picoekaryotic phytoplankton had different responses to urea, ammonium and nitrate. In contrast, chl a and CO2 fixation did not respond to additions of single nutrient (e.g. N, P or Fe alone) at the westernmost experiment (151°W), where the simultaneous addition of N and P was required for stimulation. The physical dynamics were studied through high-resolution surveys of eddy dipole features as well as diel sampling at two locations. Additionally, we characterized an extensive bloom that occurred near the critical latitude (29°N, 140°W) from mid July to the end of September; a typical but still enigmatic event. Here, we present a summary of the initial observations and findings from the NEMO cruise with data including physics, nutrient concentrations, chl a, primary productivity and microbial community composition. The results of this research cruise will help in assessing how ocean N cycling and ecosystem functions will respond to global climate change.
He, Xiao-Yan; Tan, Zheng-Lan; Mou, Qin; Liu, Fang-Jie; Liu, Shan; Yu, Chao-Wen; Zhu, Jin; Lv, Lin-Ya; Zhang, Jun; Wang, Shan; Bao, Li-Ming; Peng, Bin; Zhao, Hui; Zou, Lin
2017-06-01
Purpose: MYCN is one of the most well-characterized genetic markers of neuroblastoma. However, the mechanisms as to how MYCN mediate neuroblastoma tumorigenesis are not fully clear. Increasing evidence has confirmed that the dysregulation of miRNAs is involved in MYCN-mediated neuroblastoma tumorigenesis, supporting their potential as therapeutic targets for neuroblastoma. Although miR-221 has been reported as one of the upregulated miRNAs, the interplay between miR-221 and MYCN-mediated neuroblastoma progression remains largely elusive. Experimental Design: The expression of miR-221 in the formalin-fixed, paraffin-embedded tissues from 31 confirmed patients with neuroblastoma was detected by locked nucleic acid- in situ hybridization and qRT-PCR. The correlation between miR-221 expression and clinical features in patients with neuroblastoma was assessed. The mechanisms as to how miR-221 regulate MYCN in neuroblastoma were addressed. The effect of miR-221 on cellular proliferation in neuroblastoma was determined both in vitro and in vivo Results: miR-221 was significantly upregulated in neuroblastoma tumor cells and tissues that overexpress MYCN, and high expression of miR-221 was positively associated with poor survival in patients with neuroblastoma. Nemo-like kinase (NLK) as a direct target of miR-221 in neuroblastoma was verified. In addition, overexpression of miR-221 decreased LEF1 phosphorylation but increased the expression of MYCN via targeting of NLK and further regulated cell cycle, particularly in S-phase, promoting the growth of neuroblastoma cells. Conclusions: This study provides a novel insight for miR-221 in the control of neuroblastoma cell proliferation and tumorigenesis, suggesting potentials of miR-221 as a prognosis marker and therapeutic target for patients with MYCN overexpressing neuroblastoma. Clin Cancer Res; 23(11); 2905-18. ©2016 AACR . ©2016 American Association for Cancer Research.
NASA Astrophysics Data System (ADS)
Bouttier, Pierre-Antoine; Brankart, Jean-Michel; Candille, Guillem; Vidard, Arthur; Blayo, Eric; Verron, Jacques; Brasseur, Pierre
2015-04-01
In this project, the response of a variational data assimilation system based on NEMO and its linear tangent and adjoint model is investigated using a 4DVAR algorithm into a North-Atlantic model at eddy-permitting resolution. The assimilated data consist of Jason-2 and SARAL/AltiKA dataset collected during the 2013-2014 period. The main objective is to explore the robustness of the 4DVAR algorithm in the context of a realistic turbulent oceanic circulation at mid-latitude constrained by multi-satellite altimetry missions. This work relies on two previous studies. First, a study with similar objectives was performed based on academic double-gyre turbulent model and synthetic SARAL/AltiKA data, using the same DA experimental framework. Its main goal was to investigate the impact of turbulence on variational DA methods performance. The comparison with this previous work will bring to light the methodological and physical issues encountered by variational DA algorithms in a realistic context at similar, eddy-permitting spatial resolution. We also have demonstrated how a dataset mimicking future SWOT observations improves 4DVAR incremental performances at eddy-permitting resolution. Then, in the context of the OSTST and FP7 SANGOMA projects, an ensemble DA experiment based on the same model and observational datasets has been realized (see poster by Brasseur et al.). This work offers the opportunity to compare efficiency, pros and cons of both DA methods in the context of KA-band altimetric data, at spatial resolution commonly used today for research and operational applications. In this poster we will present the validation plan proposed to evaluate the skill of variational experiment vs. ensemble assimilation experiments covering the same period using independent observations (e.g. from Cryosat-2 mission).
Estimating the numerical diapycnal mixing in an eddy-permitting ocean model
NASA Astrophysics Data System (ADS)
Megann, Alex
2018-01-01
Constant-depth (or "z-coordinate") ocean models such as MOM4 and NEMO have become the de facto workhorse in climate applications, having attained a mature stage in their development and are well understood. A generic shortcoming of this model type, however, is a tendency for the advection scheme to produce unphysical numerical diapycnal mixing, which in some cases may exceed the explicitly parameterised mixing based on observed physical processes, and this is likely to have effects on the long-timescale evolution of the simulated climate system. Despite this, few quantitative estimates have been made of the typical magnitude of the effective diapycnal diffusivity due to numerical mixing in these models. GO5.0 is a recent ocean model configuration developed jointly by the UK Met Office and the National Oceanography Centre. It forms the ocean component of the GC2 climate model, and is closely related to the ocean component of the UKESM1 Earth System Model, the UK's contribution to the CMIP6 model intercomparison. GO5.0 uses version 3.4 of the NEMO model, on the ORCA025 global tripolar grid. An approach to quantifying the numerical diapycnal mixing in this model, based on the isopycnal watermass analysis of Lee et al. (2002), is described, and the estimates thereby obtained of the effective diapycnal diffusivity in GO5.0 are compared with the values of the explicit diffusivity used by the model. It is shown that the effective mixing in this model configuration is up to an order of magnitude higher than the explicit mixing in much of the ocean interior, implying that mixing in the model below the mixed layer is largely dominated by numerical mixing. This is likely to have adverse consequences for the representation of heat uptake in climate models intended for decadal climate projections, and in particular is highly relevant to the interpretation of the CMIP6 class of climate models, many of which use constant-depth ocean models at ¼° resolution
The Met Office Coupled Atmosphere/Land/Ocean/Sea-Ice Data Assimilation System
NASA Astrophysics Data System (ADS)
Lea, Daniel; Mirouze, Isabelle; Martin, Matthew; Hines, Adrian; Guiavarch, Catherine; Shelly, Ann
2014-05-01
The Met Office has developed a weakly-coupled data assimilation (DA) system using the global coupled model HADGEM3 (Hadley Centre Global Environment Model, version 3). This model combines the atmospheric model UM (Unified Model) at 60 km horizontal resolution on 85 vertical levels, the ocean model NEMO (Nucleus for European Modeling of the Ocean) at 25 km (at the equator) horizontal resolution on 75 vertical levels, and the sea-ice model CICE at the same resolution as NEMO. The atmosphere and the ocean/sea-ice fields are coupled every 1-hour using the OASIS coupler. The coupled model is corrected using two separate 6-hour window data assimilation systems: a 4D-Var for the atmosphere with associated soil moisture content nudging and snow analysis schemes on the one hand, and a 3D-Var FGAT for the ocean and sea-ice on the other hand. The background information in the DA systems comes from a previous 6-hour forecast of the coupled model. To show the impact of coupled DA, one-month experiments have been carried out, including 1) a full atmosphere/land/ocean/sea-ice coupled DA run, 2) an atmosphere-only run forced by OSTIA SSTs and sea-ice with atmosphere and land DA, and 3) an ocean-only run forced by atmospheric fields from run 2 with ocean and sea-ice DA. In addition, 5-day forecast runs, started twice a day, have been produced from initial conditions generated by either run 1 or a combination of runs 2 and 3. The different results have been compared to each other and, whenever possible, to other references such as the Met Office atmosphere and ocean operational analyses or the OSTIA data. These all show the coupled DA system functioning well. Evidence of imbalances and initialisation shocks has also been looked for.
Sciacca, Virginia; Caruso, Francesco; Beranzoli, Laura; Chierici, Francesco; De Domenico, Emilio; Embriaco, Davide; Favali, Paolo; Giovanetti, Gabriele; Larosa, Giuseppina; Marinaro, Giuditta; Papale, Elena; Pavan, Gianni; Pellegrino, Carmelo; Pulvirenti, Sara; Simeone, Francesco; Viola, Salvatore; Riccobene, Giorgio
2015-01-01
In recent years, an increasing number of surveys have definitively confirmed the seasonal presence of fin whales (Balaenoptera physalus) in highly productive regions of the Mediterranean Sea. Despite this, very little is yet known about the routes that the species seasonally follows within the Mediterranean basin and, particularly, in the Ionian area. The present study assesses for the first time fin whale acoustic presence offshore Eastern Sicily (Ionian Sea), throughout the processing of about 10 months of continuous acoustic monitoring. The recording of fin whale vocalizations was made possible by the cabled deep-sea multidisciplinary observatory, “NEMO-SN1”, deployed 25 km off the Catania harbor at a depth of about 2,100 meters. NEMO-SN1 is an operational node of the European Multidisciplinary Seafloor and water-column Observatory (EMSO) Research Infrastructure. The observatory was equipped with a low-frequency hydrophone (bandwidth: 0.05 Hz–1 kHz, sampling rate: 2 kHz) which continuously acquired data from July 2012 to May 2013. About 7,200 hours of acoustic data were analyzed by means of spectrogram display. Calls with the typical structure and patterns associated to the Mediterranean fin whale population were identified and monitored in the area for the first time. Furthermore, a background noise analysis within the fin whale communication frequency band (17.9–22.5 Hz) was conducted to investigate possible detection-masking effects. The study confirms the hypothesis that fin whales are present in the Ionian Sea throughout all seasons, with peaks in call detection rate during spring and summer months. The analysis also demonstrates that calls were more frequently detected in low background noise conditions. Further analysis will be performed to understand whether observed levels of noise limit the acoustic detection of the fin whales vocalizations, or whether the animals vocalize less in the presence of high background noise. PMID:26581104
Kaldenbach, Michaela; Cubero, Francisco Javier; Erschfeld, Stephanie; Liedtke, Christian; Trautwein, Christian; Streetz, Konrad
2014-01-01
Hepatocyte transplantation (HT) is a promising alternative treatment strategy for end-stage liver diseases compared with orthotopic liver transplantation. A limitation for this approach is the low engraftment of donor cells. The deletion of the I-kappa B kinase-regulatory subunit IKKγ/NEMO in hepatocytes prevents nuclear factor (NF)-kB activation and triggers spontaneous liver apoptosis, chronic hepatitis and the development of liver fibrosis and hepatocellular carcinoma. We hypothesized that NEMOΔhepa mice may therefore serve as an experimental model to study HT. Pre-conditioned NEMOΔhepa mice were transplanted with donor-hepatocytes from wildtype (WT) and mice deficient for the pro-apoptotic mediator Caspase-8 (Casp8Δhepa). Transplantation of isolated WT-hepatocytes into pre-conditioned NEMOΔhepa mice resulted in a 6-7 fold increase of donor cells 12 weeks after HT, while WT-recipients showed no liver repopulation. The use of apoptosis-resistant Casp8Δhepa-derived donor cells further enhanced the selection 3-fold after 12-weeks and up to 10-fold increase after 52 weeks compared with WT donors. While analysis of NEMOΔhepa mice revealed strong liver injury, HT-recipient NEMOΔhepa mice showed improved liver morphology and decrease in serum transaminases. Concomitant with these findings, the histological examination elicited an improved liver tissue architecture associated with significantly lower levels of apoptosis, decreased proliferation and a lesser amount of liver fibrogenesis. Altogether, our data clearly support the therapeutic benefit of the HT procedure into NEMOΔhepa mice. This study demonstrates the feasibility of the NEMOΔhepa mouse as an in vivo tool to study liver repopulation after HT. The improvement of the characteristic phenotype of chronic liver injury in NEMOΔhepa mice after HT suggests the therapeutic potential of HT in liver diseases with a chronic inflammatory phenotype and opens a new door for the applicability of this technique to combat liver disease in the human clinic.
Kaldenbach, Michaela; Cubero, Francisco Javier; Erschfeld, Stephanie; Liedtke, Christian; Trautwein, Christian; Streetz, Konrad
2014-01-01
Background Hepatocyte transplantation (HT) is a promising alternative treatment strategy for end-stage liver diseases compared with orthotopic liver transplantation. A limitation for this approach is the low engraftment of donor cells. The deletion of the I-kappa B kinase-regulatory subunit IKKγ/NEMO in hepatocytes prevents nuclear factor (NF)-kB activation and triggers spontaneous liver apoptosis, chronic hepatitis and the development of liver fibrosis and hepatocellular carcinoma. We hypothesized that NEMOΔhepa mice may therefore serve as an experimental model to study HT. Methods Pre-conditioned NEMOΔhepa mice were transplanted with donor-hepatocytes from wildtype (WT) and mice deficient for the pro-apoptotic mediator Caspase-8 (Casp8Δhepa). Results Transplantation of isolated WT-hepatocytes into pre-conditioned NEMOΔhepa mice resulted in a 6-7 fold increase of donor cells 12 weeks after HT, while WT-recipients showed no liver repopulation. The use of apoptosis-resistant Casp8Δhepa-derived donor cells further enhanced the selection 3-fold after 12-weeks and up to 10-fold increase after 52 weeks compared with WT donors. While analysis of NEMOΔhepa mice revealed strong liver injury, HT-recipient NEMOΔhepa mice showed improved liver morphology and decrease in serum transaminases. Concomitant with these findings, the histological examination elicited an improved liver tissue architecture associated with significantly lower levels of apoptosis, decreased proliferation and a lesser amount of liver fibrogenesis. Altogether, our data clearly support the therapeutic benefit of the HT procedure into NEMOΔhepa mice. Conclusion This study demonstrates the feasibility of the NEMOΔhepa mouse as an in vivo tool to study liver repopulation after HT. The improvement of the characteristic phenotype of chronic liver injury in NEMOΔhepa mice after HT suggests the therapeutic potential of HT in liver diseases with a chronic inflammatory phenotype and opens a new door for the applicability of this technique to combat liver disease in the human clinic. PMID:24979756
Gaurnier-Hausser, Anita; Patel, Reema; Baldwin, Albert S.; May, Michael J.; Mason, Nicola J.
2011-01-01
Purpose Activated B-Cell Diffuse Large B-Cell Lymphoma (ABC-DLBCL) is an aggressive, poorly chemoresponsive lymphoid malignancy characterized by constitutive canonical NF-κB activity that promotes lymphomagenesis and chemotherapy resistance via over-expression of anti-apoptotic NF-κB target genes. Inhibition of the canonical NF-κB pathway may therefore have therapeutic relevance in ABC-DLBCL. Here we set out to determine whether dogs with spontaneous DLBCL have comparative aberrant constitutive NF-κB activity and to determine the therapeutic relevance of NF-κB inhibition in dogs with relapsed, resistant DLBCL. Experimental Design Canonical NF-κB activity was evaluated by electrophoretic mobility shift assays and immunoblot analyses, and NF-κB target gene expression was measured by qRT-PCR. Primary malignant canine B lymphocytes were treated with the selective IKK complex inhibitor Nemo Binding Domain (NBD) peptide, and evaluated for NF-κB activity and apoptosis. NBD peptide was administered intra-nodally to dogs with relapsed B-cell lymphoma and NF-κB target gene expression and tumor burden were evaluated pre and post treatment. Results Constitutive canonical NF-κB activity and increased NF-κB target gene expression was detected in primary DLBCL tissue. NBD peptide inhibited this activity and induced apoptosis of primary malignant B cells in vitro. Intra-tumoral injections of NBD peptide to dogs with relapsed DLBCL inhibited NF-κB target gene expression and reduced tumor burden. Conclusions This work shows that dogs with spontaneous DLBCL represent a clinically relevant, spontaneous, large animal model for human ABC-DLBCL and demonstrates the therapeutic relevance of NF-κB inhibition in the treatment of ABC-DLBCL. These results have important translational relevance for ABC-DLBCL treatment in human patients. PMID:21610150
Genomic analysis of NF-κB signaling pathway reveals its complexity in Crassostrea gigas.
Yu, Mingjia; Chen, Jianming; Bao, Yongbo; Li, Jun
2018-01-01
NF-κB signaling pathway is an evolutionarily conserved pathway that plays highly important roles in several developmental, cellular and immune response processes. With the recent release of the draft Pacific oyster (Crassostra gigas) genome sequence, we have sought to identify the various components of the NF-κB signaling pathway in these mollusks and investigate their gene structure. We further constructed phylogenetic trees to establish the evolutionary relationship of the oyster proteins with their homologues in vertebrates and invertebrates using BLASTX and neighbor-joining method. We report the presence of two classic NF-κB/Rel homologues in the pacific oyster namely Cgp100 and CgRel, which possess characteristic RHD domain and a consensus nuclear localization signal, similar to mammalian homologues and an additional CgRel-like protein, unique to C. gigas. Further, in addition to two classical IκB homologues, CgIκB1 and CgIκB2, we have identified three atypical IκB family members namely CgIκB3, CgIκB4 and CgBCL3 which lack the IκB degradation motif and consist of only one exon that might have arisen by retrotransposition from CgIκB1. Finally, we report the presence of three IKKs and one NEMO genes in oyster genome, named CgIKK1, CgIKK2, CgIKK3 and CgNEMO, respectively. While CgIKK1 and CgIKK3 domain structure is similar to their mammalian homologues, CgIKK2 was found to lack the HLH and NBD domains. Overall, the high conservation of the NF-κB/Rel, IκB and IKK family components in the pacific oyster and their structural similarity to the vertebrate and invertebrate homologues underline the functional importance of this pathway in regulation of critical cellular processes across species. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bard-Chapeau, Emilie A.; Szumska, Dorota; Jacob, Bindya; Chua, Belinda Q. L.; Chatterjee, Gouri C.; Zhang, Yi; Ward, Jerrold M.; Urun, Fatma; Kinameri, Emi; Vincent, Stéphane D.; Ahmed, Sayadi; Bhattacharya, Shoumo; Osato, Motomi; Perkins, Archibald S.; Moore, Adrian W.; Jenkins, Nancy A.; Copeland, Neal G.
2014-01-01
The ecotropic viral integration site 1 (Evi1) oncogenic transcription factor is one of a number of alternative transcripts encoded by the Mds1 and Evi1 complex locus (Mecom). Overexpression of Evi1 has been observed in a number of myeloid disorders and is associated with poor patient survival. It is also amplified and/or overexpressed in many epithelial cancers including nasopharyngeal carcinoma, ovarian carcinoma, ependymomas, and lung and colorectal cancers. Two murine knockout models have also demonstrated Evi1's critical role in the maintenance of hematopoietic stem cell renewal with its absence resulting in the death of mutant embryos due to hematopoietic failure. Here we characterize a novel mouse model (designated Evi1fl3) in which Evi1 exon 3, which carries the ATG start, is flanked by loxP sites. Unexpectedly, we found that germline deletion of exon3 produces a hypomorphic allele due to the use of an alternative ATG start site located in exon 4, resulting in a minor Evi1 N-terminal truncation and a block in expression of the Mds1-Evi1 fusion transcript. Evi1δex3/δex3 mutant embryos showed only a mild non-lethal hematopoietic phenotype and bone marrow failure was only observed in adult Vav-iCre/+, Evi1fl3/fl3 mice in which exon 3 was specifically deleted in the hematopoietic system. Evi1δex3/δex3 knockout pups are born in normal numbers but die during the perinatal period from congenital heart defects. Database searches identified 143 genes with similar mutant heart phenotypes as those observed in Evi1δex3/δex3 mutant pups. Interestingly, 42 of these congenital heart defect genes contain known Evi1-binding sites, and expression of 18 of these genes are also effected by Evi1 siRNA knockdown. These results show a potential functional involvement of Evi1 target genes in heart development and indicate that Evi1 is part of a transcriptional program that regulates cardiac development in addition to the development of blood. PMID:24586749
Promises and pitfalls of a Pannexin1 transgenic mouse line.
Hanstein, Regina; Negoro, Hiromitsu; Patel, Naman K; Charollais, Anne; Meda, Paolo; Spray, David C; Suadicani, Sylvia O; Scemes, Eliana
2013-01-01
Gene targeting strategies have become a powerful technology for elucidating mammalian gene function. The recently generated knockout (KO)-first strategy produces a KO at the RNA processing level and also allows for the generation of conditional KO alleles by combining FLP/FRT and Cre/loxP systems, thereby providing high flexibility in gene manipulation. However, this multipurpose KO-first cassette might produce hypomorphic rather than complete KOs if the RNA processing module is bypassed. Moreover, the generation of a conditional phenotype is also dependent on specific activity of Cre recombinase. Here, we report the use of an efficient molecular biological approach to test pannexin1 (Panx1) mRNA expression in global and conditional Panx1 KO mice derived from the KO-first mouse line, Panx1(tm1a(KOMP)Wtsi). Using qRT-PCR, we demonstrate that tissues from wild-type (WT) mice show a range of Panx1 mRNA expression levels, with highest expression in trigeminal ganglia, bladder and spleen. Unexpectedly, we found that in mice homozygous for the KO-first allele, Panx1 mRNA expression is not abolished but reduced by 70% compared to that of WT tissues. Thus, Panx1 KO-first mice present a hypomorphic phenotype. Crosses of Panx1 KO-first with FLP deleter mice generated Panx1(f/f) mice. Further crosses of the latter mice with mGFAP-Cre or NFH-Cre mice were used to generate astrocyte- and neuron-specific Panx1 deletions, respectively. A high incidence of ectopic Cre expression was found in offspring of both types of conditional Panx1 KO mice. Our study demonstrates that Panx1 expression levels in the global and conditional Panx1 KO mice derived from KO-first mouse lines must be carefully characterized to ensure modulation of Panx1 gene expression. The precise quantitation of Panx1 expression and its relation to function is expected to provide a foundation for future efforts aimed at deciphering the role of Panx1 under physiological and pathological conditions.
Skorobogata, Olga; Escobar-Restrepo, Juan M.; Rocheleau, Christian E.
2014-01-01
LET-23 Epidermal Growth Factor Receptor (EGFR) signaling specifies the vulval cell fates during C. elegans larval development. LET-23 EGFR localization on the basolateral membrane of the vulval precursor cells (VPCs) is required to engage the LIN-3 EGF-like inductive signal. The LIN-2 Cask/LIN-7 Veli/LIN-10 Mint (LIN-2/7/10) complex binds LET-23 EGFR, is required for its basolateral membrane localization, and therefore, vulva induction. Besides the LIN-2/7/10 complex, the trafficking pathways that regulate LET-23 EGFR localization have not been defined. Here we identify vh4, a hypomorphic allele of agef-1, as a strong suppressor of the lin-2 mutant Vulvaless (Vul) phenotype. AGEF-1 is homologous to the mammalian BIG1 and BIG2 Arf GTPase guanine nucleotide exchange factors (GEFs), which regulate secretory traffic between the Trans-Golgi network, endosomes and the plasma membrane via activation of Arf GTPases and recruitment of the AP-1 clathrin adaptor complex. Consistent with a role in trafficking we show that AGEF-1 is required for protein secretion and that AGEF-1 and the AP-1 complex regulate endosome size in coelomocytes. The AP-1 complex has previously been implicated in negative regulation of LET-23 EGFR, however the mechanism was not known. Our genetic data indicate that AGEF-1 is a strong negative regulator of LET-23 EGFR signaling that functions in the VPCs at the level of the receptor. In line with AGEF-1 being an Arf GEF, we identify the ARF-1.2 and ARF-3 GTPases as also negatively regulating signaling. We find that the agef-1(vh4) mutation results in increased LET-23 EGFR on the basolateral membrane in both wild-type and lin-2 mutant animals. Furthermore, unc-101(RNAi), a component of the AP-1 complex, increased LET-23 EGFR on the basolateral membrane in lin-2 and agef-1(vh4); lin-2 mutant animals. Thus, an AGEF-1/Arf GTPase/AP-1 ensemble functions opposite the LIN-2/7/10 complex to antagonize LET-23 EGFR basolateral membrane localization and signaling. PMID:25329472
Skorobogata, Olga; Escobar-Restrepo, Juan M; Rocheleau, Christian E
2014-10-01
LET-23 Epidermal Growth Factor Receptor (EGFR) signaling specifies the vulval cell fates during C. elegans larval development. LET-23 EGFR localization on the basolateral membrane of the vulval precursor cells (VPCs) is required to engage the LIN-3 EGF-like inductive signal. The LIN-2 Cask/LIN-7 Veli/LIN-10 Mint (LIN-2/7/10) complex binds LET-23 EGFR, is required for its basolateral membrane localization, and therefore, vulva induction. Besides the LIN-2/7/10 complex, the trafficking pathways that regulate LET-23 EGFR localization have not been defined. Here we identify vh4, a hypomorphic allele of agef-1, as a strong suppressor of the lin-2 mutant Vulvaless (Vul) phenotype. AGEF-1 is homologous to the mammalian BIG1 and BIG2 Arf GTPase guanine nucleotide exchange factors (GEFs), which regulate secretory traffic between the Trans-Golgi network, endosomes and the plasma membrane via activation of Arf GTPases and recruitment of the AP-1 clathrin adaptor complex. Consistent with a role in trafficking we show that AGEF-1 is required for protein secretion and that AGEF-1 and the AP-1 complex regulate endosome size in coelomocytes. The AP-1 complex has previously been implicated in negative regulation of LET-23 EGFR, however the mechanism was not known. Our genetic data indicate that AGEF-1 is a strong negative regulator of LET-23 EGFR signaling that functions in the VPCs at the level of the receptor. In line with AGEF-1 being an Arf GEF, we identify the ARF-1.2 and ARF-3 GTPases as also negatively regulating signaling. We find that the agef-1(vh4) mutation results in increased LET-23 EGFR on the basolateral membrane in both wild-type and lin-2 mutant animals. Furthermore, unc-101(RNAi), a component of the AP-1 complex, increased LET-23 EGFR on the basolateral membrane in lin-2 and agef-1(vh4); lin-2 mutant animals. Thus, an AGEF-1/Arf GTPase/AP-1 ensemble functions opposite the LIN-2/7/10 complex to antagonize LET-23 EGFR basolateral membrane localization and signaling.
Shields, Alicia R.; Spence, Allyson C.; Yamashita, Yukiko M.; Davies, Erin L.; Fuller, Margaret T.
2014-01-01
Specialized microenvironments, or niches, provide signaling cues that regulate stem cell behavior. In the Drosophila testis, the JAK-STAT signaling pathway regulates germline stem cell (GSC) attachment to the apical hub and somatic cyst stem cell (CySC) identity. Here, we demonstrate that chickadee, the Drosophila gene that encodes profilin, is required cell autonomously to maintain GSCs, possibly facilitating localization or maintenance of E-cadherin to the GSC-hub cell interface. Germline specific overexpression of Adenomatous Polyposis Coli 2 (APC2) rescued GSC loss in chic hypomorphs, suggesting an additive role of APC2 and F-actin in maintaining the adherens junctions that anchor GSCs to the niche. In addition, loss of chic function in the soma resulted in failure of somatic cyst cells to maintain germ cell enclosure and overproliferation of transit-amplifying spermatogonia. PMID:24346697
Deletion Analysis of the Tumorous-Head (tuh–3) Gene in DROSOPHILA MELANOGASTER
Kuhn, David T.; Woods, Daniel F.; Andrew, Deborah J.
1981-01-01
In the presence of the naturally occurring maternal-effect alleles tuh-1h or tuh-1g, the tuh-3 mutant gene can cause the tumorous-head trait or the sac-testis trait. The tuh-3 gene functions as a semidominant in the presence of the tuh-1h maternal effect. Eye-antennal structures are replaced by posterior abdominal tergites and genital structures. If tuh-1h is replaced by its naturally occurring allele tuh-1g, tuh-3 functions as a recessive hypomorph and the defect switches from anterior to posterior structures, with a male genital-disc defect appearing with variable penetrance. Function and regulation of tuh-3+ may better be understood in light of the cytological localization of tuh-3 either adjacent to or as part of the bithorax complex. The tuh-3+ gene product appears to be essential for normal development, at least in the posterior end of the embryo. PMID:6804305
Schwerd, Tobias; Khaled, Andrea V; Schürmann, Manfred; Chen, Hannah; Händel, Norman; Reis, André; Gillessen-Kaesbach, Gabriele; Uhlig, Holm H; Abou Jamra, Rami
2016-06-01
PTEN hamartoma tumour syndrome (PHTS) is caused by heterozygous variants in PTEN and is characterised by tumour predisposition, macrocephaly, and cognition impairment. Bi-allelic loss of PTEN activity has not been reported so far and animal models suggest that bi-allelic loss of PTEN activity is embryonically lethal. Here, we report the identification of a novel homozygous variant in PTEN, NM_000314.4; c.545T>C; p.Leu182Ser, in two adolescent siblings with severe macrocephaly and mild intellectual disability. The variant is predicted to be damaging and is associated with significantly increased phospho-S6 downstream of PTEN. The absence of tumours in the two homozygous siblings as well as lack of symptoms of PHTS in the heterozygous carriers of the family suggest that this particular variant is functionally hypomorphic rather than deleterious.
Schwerd, Tobias; Khaled, Andrea V; Schürmann, Manfred; Chen, Hannah; Händel, Norman; Reis, André; Gillessen-Kaesbach, Gabriele; Uhlig, Holm H; Abou Jamra, Rami
2016-01-01
PTEN hamartoma tumour syndrome (PHTS) is caused by heterozygous variants in PTEN and is characterised by tumour predisposition, macrocephaly, and cognition impairment. Bi-allelic loss of PTEN activity has not been reported so far and animal models suggest that bi-allelic loss of PTEN activity is embryonically lethal. Here, we report the identification of a novel homozygous variant in PTEN, NM_000314.4; c.545T>C; p.Leu182Ser, in two adolescent siblings with severe macrocephaly and mild intellectual disability. The variant is predicted to be damaging and is associated with significantly increased phospho-S6 downstream of PTEN. The absence of tumours in the two homozygous siblings as well as lack of symptoms of PHTS in the heterozygous carriers of the family suggest that this particular variant is functionally hypomorphic rather than deleterious. PMID:26443266
NASA Astrophysics Data System (ADS)
Hu, Xianmin; Sun, Jingfan; Chan, Ting On; Myers, Paul G.
2018-04-01
Sea ice thickness evolution within the Canadian Arctic Archipelago (CAA) is of great interest to science, as well as local communities and their economy. In this study, based on the NEMO numerical framework including the LIM2 sea ice module, simulations at both 1/4 and 1/12° horizontal resolution were conducted from 2002 to 2016. The model captures well the general spatial distribution of ice thickness in the CAA region, with very thick sea ice (˜ 4 m and thicker) in the northern CAA, thick sea ice (2.5 to 3 m) in the west-central Parry Channel and M'Clintock Channel, and thin ( < 2 m) ice (in winter months) on the east side of CAA (e.g., eastern Parry Channel, Baffin Island coast) and in the channels in southern areas. Even though the configurations still have resolution limitations in resolving the exact observation sites, simulated ice thickness compares reasonably (seasonal cycle and amplitudes) with weekly Environment and Climate Change Canada (ECCC) New Ice Thickness Program data at first-year landfast ice sites except at the northern sites with high concentration of old ice. At 1/4 to 1/12° scale, model resolution does not play a significant role in the sea ice simulation except to improve local dynamics because of better coastline representation. Sea ice growth is decomposed into thermodynamic and dynamic (including all non-thermodynamic processes in the model) contributions to study the ice thickness evolution. Relatively smaller thermodynamic contribution to ice growth between December and the following April is found in the thick and very thick ice regions, with larger contributions in the thin ice-covered region. No significant trend in winter maximum ice volume is found in the northern CAA and Baffin Bay while a decline (r2 ≈ 0.6, p < 0.01) is simulated in Parry Channel region. The two main contributors (thermodynamic growth and lateral transport) have high interannual variabilities which largely balance each other, so that maximum ice volume can vary interannually by ±12 % in the northern CAA, ±15 % in Parry Channel, and ±9 % in Baffin Bay. Further quantitative evaluation is required.
NASA Astrophysics Data System (ADS)
Tranchant, Benoît; Reffray, Guillaume; Greiner, Eric; Nugroho, Dwiyoga; Koch-Larrouy, Ariane; Gaspar, Philippe
2016-03-01
INDO12 is a 1/12° regional version of the NEMO physical ocean model covering the whole Indonesian EEZ (Exclusive Economic Zone). It has been developed and is now running every week in the framework of the INDESO (Infrastructure Development of Space Oceanography) project implemented by the Indonesian Ministry of Marine Affairs and Fisheries. The initial hydrographic conditions as well as open-boundary conditions are derived from the operational global ocean forecasting system at 1/4° operated by Mercator Océan. Atmospheric forcing fields (3-hourly ECMWF (European Centre for Medium-Range Weather Forecast) analyses) are used to force the regional model. INDO12 is also forced by tidal currents and elevations, and by the inverse barometer effect. The turbulent mixing induced by internal tides is taken into account through a specific parameterisation. In this study we evaluate the model skill through comparisons with various data sets including outputs of the parent model, climatologies, in situ temperature and salinity measurements, and satellite data. The biogeochemical model results assessment is presented in a companion paper (Gutknecht et al., 2015). The simulated and altimeter-derived Eddy Kinetic Energy fields display similar patterns and confirm that tides are a dominant forcing in the area. The volume transport of the Indonesian throughflow (ITF) is in good agreement with the INSTANT estimates while the transport through Luzon Strait is, on average, westward but probably too weak. Compared to satellite data, surface salinity and temperature fields display marked biases in the South China Sea. Significant water mass transformation occurs along the main routes of the ITF and compares well with observations. Vertical mixing is able to modify the South and North Pacific subtropical water-salinity maximum as seen in T-S diagrams. In spite of a few weaknesses, INDO12 proves to be able to provide a very realistic simulation of the ocean circulation and water mass transformation through the Indonesian Archipelago. Work is ongoing to reduce or eliminate the remaining problems in the second INDO12 version.
Optimal boundary conditions for ORCA-2 model
NASA Astrophysics Data System (ADS)
Kazantsev, Eugene
2013-08-01
A 4D-Var data assimilation technique is applied to ORCA-2 configuration of the NEMO in order to identify the optimal parametrization of boundary conditions on the lateral boundaries as well as on the bottom and on the surface of the ocean. The influence of boundary conditions on the solution is analyzed both within and beyond the assimilation window. It is shown that the optimal bottom and surface boundary conditions allow us to better represent the jet streams, such as Gulf Stream and Kuroshio. Analyzing the reasons of the jets reinforcement, we notice that data assimilation has a major impact on parametrization of the bottom boundary conditions for u and v. Automatic generation of the tangent and adjoint codes is also discussed. Tapenade software is shown to be able to produce the adjoint code that can be used after a memory usage optimization.
NASA Astrophysics Data System (ADS)
2006-11-01
WE RECOMMEND Critical mass Philip Ball explores the idea of the physics of society. Eurekas and Euphorias A humorous yet insightful collection of scientific anecdotes. Wind turbine Low-cost wind turbine produces excellent results. Science Center Nemo Hands-on science centre has some great displays for teenagers. Crocodile Physics There’s something for everyone in this lesson software package. Wireless Dynamics Sensor System A fun way to measure and record altitude and acceleration. WORTH A LOOK Climate Change Begins at Home This well researched book tackles the issue of saving our planet. The Little Doctor Datalogger Datalogger has lots of facilities but needs some manual processing. HANDLE WITH CARE The Physics of Basketball Only of interest to budding physicists obsessed with basketball. Virtual Physics This package offers nice simulations but not a lot else. WEB WATCH An eclectic mix of nuclear- and general-physics websites.
Scharbert, Gerhard
2010-01-01
Taking Johannes Müller's still little examined school education in then French Koblenz at its starting point, this paper argues that Miiller's pre-academic training in the applied sciences as well as in the old languages--which Müller saw as a basic essential for the philosophically educated naturalist--had a profound impact on the scientific-philosophical views he put forward in his Dissertatio inauguralis physiologica sistens commentarios de phoronomia animalium published in 1822. The Dissertatio was influenced, in particular, by the work of Pierre-Jean-Georges Cabanis (1757-1808) and can be read as a physiological application of French Enlightenment sensualist philosophy. It shows that Müller already at early moment took up decisive impulses from revolutionary France. Also, a traditional mistake is shown to have falsified a fundamental aspect of this earliest work already with lasting effect.
Measurement of the radon diffusion through a nylon foil for different air humidities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamedov, Fadahat; Štekl, Ivan; Smolek, Karel
The dependency of the radon penetration through a nylon foil on air humidity was measured. Such information is needed for the tracking part of the SuperNEMO detector, which is planned to be shielded against radon by nylon foil and in which the air humidity is not negligible. The long term measurements of radon penetration through nylon foils for different air humidities were performed with the radon diffusion setup constructed at the IEAP, CTU in Prague. The setup consists of two stainless steel hemispheres with Si detector in each of them. Both hemispheres are separated by the tested foil. While themore » left hemisphere contains high Rn activity, the right part contains only activity caused by the radon penetration through the tested foil. Obtained results of this study with a nylon foil with the thickness of 50 µm are presented.« less
MANEMO Routing in Practice: Protocol Selection, Expected Performance, and Experimental Evaluation
NASA Astrophysics Data System (ADS)
Tazaki, Hajime; van Meter, Rodney; Wakikawa, Ryuji; Wongsaardsakul, Thirapon; Kanchanasut, Kanchana; Dias de Amorim, Marcelo; Murai, Jun
Motivated by the deployment of post-disaster MANEMO (MANET for NEMO) composed of mobile routers and stations, we evaluate two candidate routing protocols through network simulation, theoretical performance analysis, and field experiments. The first protocol is the widely adopted Optimized Link State Routing protocol (OLSR) and the second is the combination of the Tree Discovery Protocol (TDP) with Network In Node Advertisement (NINA). To the best of our knowledge, this is the first time that these two protocols are compared in both theoretical and practical terms. We focus on the control overhead generated when mobile routers perform a handover. Our results confirm the correctness and operational robustness of both protocols. More interestingly, although in the general case OLSR leads to better results, TDP/NINA outperforms OLSR both in the case of sparse networks and in highly mobile networks, which correspond to the operation point of a large set of post-disaster scenarios.
Variability of the volume and thickness of sea ice in the Bay of Bothnia
NASA Astrophysics Data System (ADS)
Ronkainen, Iina; Lehtiranta, Jonni; Lensu, Mikko; Rinne, Eero; Hordoir, Robinson; Haapala, Jari
2017-04-01
Variability of the volume and thickness of sea ice in the Bay of Bothnia In our study, we want to quantify the variability of sea ice volume and thickness in the Bay of Bothnia and to introduce the drivers of the observed variability. There has been similar studies, but only for fast ice. We use various different data sets: in-situ ice thickness data, remote sensing data, model data and ice charts. In-situ data is from the regular monitoring stations in the coastal fast ice zone and from field campaigns. The remote sensing data is helicopter-borne and ship-borne electromagnetic data. The models we use are HELMI and NEMO-Nordic. We analyze the different data sets and compare them to each other to solve the inter-annual variability and to discuss the ratio of level and deformed ice.
Deep seawater inherent optical properties in the Southern Ionian Sea
NASA Astrophysics Data System (ADS)
Riccobene, G.; Capone, A.; Aiello, S.; Ambriola, M.; Ameli, F.; Amore, I.; Anghinolfi, M.; Anzalone, A.; Avanzini, C.; Barbarino, G.; Barbarito, E.; Battaglieri, M.; Bellotti, R.; Beverini, N.; Bonori, M.; Bouhadef, B.; Brescia, M.; Cacopardo, G.; Cafagna, F.; Caponetto, L.; Castorina, E.; Ceres, A.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Cordelli, M.; Costa, M.; Cuneo, S.; D'Amico, A.; de Bonis, G.; de Marzo, C.; de Rosa, G.; de Vita, R.; Distefano, C.; Falchini, E.; Fiorello, C.; Flaminio, V.; Fratini, K.; Gabrielli, A.; Galeotti, S.; Gandolfi, E.; Grimaldi, A.; Habel, R.; Leonora, E.; Lonardo, A.; Longo, G.; Lo Presti, D.; Lucarelli, F.; Maccioni, E.; Margiotta, A.; Martini, A.; Masullo, R.; Megna, R.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Musumeci, M.; Nicolau, C. A.; Orlando, A.; Osipenko, M.; Osteria, G.; Papaleo, R.; Pappalardo, V.; Petta, C.; Piattelli, P.; Raffaelli, F.; Raia, G.; Randazzo, N.; Reito, S.; Ricco, G.; Ripani, M.; Rovelli, A.; Ruppi, M.; Russo, G. V.; Russo, S.; Russo, S.; Sapienza, P.; Sedita, M.; Schuller, J.-P.; Shirokov, E.; Simeone, F.; Sipala, V.; Spurio, M.; Taiuti, M.; Terreni, G.; Trasatti, L.; Urso, S.; Valente, V.; Vicini, P.
2007-02-01
The NEMO (NEutrino Mediterranean Observatory) Collaboration has been carrying out since 1998 an evaluation programme of deep sea sites suitable for the construction of the future Mediterranean km3 Čerenkov neutrino telescope. We investigated the seawater optical and oceanographic properties of several deep sea marine areas close to the Italian Coast. Inherent optical properties (light absorption and attenuation coefficients) have been measured as a function of depth using an experimental apparatus equipped with standard oceanographic probes and the commercial transmissometer AC9 manufactured by WETLabs. This paper reports on the visible light absorption and attenuation coefficients measured in deep seawater of a marine region located in the Southern Ionian Sea, 60 100 km SE of Capo Passero (Sicily). Data show that blue light absorption coefficient is about 0.015 m-1 (corresponding to an absorption length of 67 m) close to the one of optically pure water and it does not show seasonal variation.
DUV phase mask for 100 nm period grating printing
NASA Astrophysics Data System (ADS)
Jourlin, Y.; Bourgin, Y.; Reynaud, S.; Parriaux, O.; Talneau, A.; Karvinen, P.; Passilly, N.; Zain, A. Md.; De La Rue, R. M.
2008-04-01
Whereas microelectronic lithography is heading to the 32 nm node and discussing immersion and double-patterning strategies, there is much which can be done with the 45 nm node in microoptics for white light processing. For instance, one of the most demanding applications in terms of achievable period is the LCD lossless polarizer, which can transmit the TM polarization and reflect the TE polarization evenly all through the visible spectrum - provided that a 1D metal grid of 100 nm period can be fabricated. The manufacture of such polarizing panels cannot resort to the step & repeat cameras of microelectronics since the substrates are too large, too thin, too wavy and full of contaminants. There is therefore a need for specific fabrication techniques. It is one of these techniques that a subgroup of partners belonging to two of the Networks of Excellence of the European Community, NEMO and ePIXnet, have decided to explore together.
Studying Si/SiGe disordered alloys within effective mass theory
NASA Astrophysics Data System (ADS)
Gamble, John; Montaño, Inès; Carroll, Malcolm S.; Muller, Richard P.
Si/SiGe is an attractive material system for electrostatically-defined quantum dot qubits due to its high-quality crystalline quantum well interface. Modeling the properties of single-electron quantum dots in this system is complicated by the presence of alloy disorder, which typically requires atomistic techniques in order to treat properly. Here, we use the NEMO-3D empirical tight binding code to calibrate a multi-valley effective mass theory (MVEMT) to properly handle alloy disorder. The resulting MVEMT simulations give good insight into the essential physics of alloy disorder, while being extremely computationally efficient and well-suited to determining statistical properties. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.
Haldipur, Parthiv; Dang, Derek; Aldinger, Kimberly A; Janson, Olivia K; Guimiot, Fabien; Adle-Biasette, Homa; Dobyns, William B; Siebert, Joseph R; Russo, Rosa; Millen, Kathleen J
2017-01-16
FOXC1 loss contributes to Dandy-Walker malformation (DWM), a common human cerebellar malformation. Previously, we found that complete Foxc1 loss leads to aberrations in proliferation, neuronal differentiation and migration in the embryonic mouse cerebellum (Haldipur et al., 2014). We now demonstrate that hypomorphic Foxc1 mutant mice have granule and Purkinje cell abnormalities causing subsequent disruptions in postnatal cerebellar foliation and lamination. Particularly striking is the presence of a partially formed posterior lobule which echoes the posterior vermis DW 'tail sign' observed in human imaging studies. Lineage tracing experiments in Foxc1 mutant mouse cerebella indicate that aberrant migration of granule cell progenitors destined to form the posterior-most lobule causes this unique phenotype. Analyses of rare human del chr 6p25 fetal cerebella demonstrate extensive phenotypic overlap with our Foxc1 mutant mouse models, validating our DWM models and demonstrating that many key mechanisms controlling cerebellar development are likely conserved between mouse and human.
Dual roles for FY in the regulation of FLC
Feng, Wei
2011-01-01
In Arabidopsis, the flowering decision is determined by multiple pathways that integrate information from both endogenous signals and environmental cues. The genes of the autonomous pathway promote flowering by suppressing the expression of the floral repressor FLOWERING LOCUS C (FLC). Thus, autonomous-pathway mutants have elevated levels of FLC and are late flowering. Previous work has shown that two autonomous pathway proteins, FCA and FY, physically interact and this interaction is important in the repression of FLC. Recent work from our laboratory has shown that a hypomorphic allele of FY (fy-5) can cause earlier or later flowering, depending on the genetic background. These results suggest that FY has the potential to act as both an activator and a repressor of FLC. The FLC-activating activity of FY appears to be FCA-independent, as fy-5 causes earlier flowering in an fca-null background. Here we present a speculative model that reconciles these opposing phenotypes by proposing a dual role for FY in the regulation of flowering time. PMID:21633188
Dual roles for FY in the regulation of FLC.
Feng, Wei; Michaels, Scott D
2011-05-01
In Arabidopsis, the flowering decision is determined by multiple pathways that integrate information from both endogenous signals and environmental cues. The genes of the autonomous pathway promote flowering by suppressing the expression of the floral repressor FLOWERING LOCUS C (FLC). Thus, autonomous-pathway mutants have elevated levels of FLC and are late flowering. Previous work has shown that two autonomous pathway proteins, FCA and FY, physically interact and this interaction is important in the repression of FLC. Recent work from our laboratory has shown that a hypomorphic allele of FY (fy-5) can cause earlier or later flowering, depending on the genetic background. These results suggest that FY has the potential to act as both an activator and a repressor of FLC. The FLC-activating activity of FY appears to be FCA-independent, as fy-5 causes earlier flowering in an fca-null background. Here we present a speculative model that reconciles these opposing phenotypes by proposing a dual role for FY in the regulation of flowering time.
Pashkova, Natasha; Gakhar, Lokesh; Winistorfer, Stanley; Sunshine, Anna B.; Rich, Matthew; Dunham, Maitreya J.; Yu, Liping; Piper, Robert
2013-01-01
SUMMARY Sorting of ubiquitinated membrane proteins into lumenal vesicles of multivesicular bodies is mediated by the ESCRT apparatus and accessory proteins such as Bro1, which recruits the deubiquitinating enzyme Doa4 to remove ubiquitin from cargo. Here we propose that Bro1 works as a receptor for the selective sorting of ubiquitinated cargos. We found synthetic genetic interactions between BRO1 and ESCRT-0, suggesting Bro1 functions similarly to ESCRT-0. Multiple structural approaches demonstrated that Bro1 binds ubiquitin via the N-terminal trihelical arm of its middle V domain. Mutants of Bro1 that lack the ability to bind Ub were dramatically impaired in their ability to sort Ub-cargo membrane proteins, but only when combined with hypomorphic alleles of ESCRT-0. These data suggest that Bro1 and other Bro1 family members function in parallel with ESCRT-0 to recognize and sort Ub-cargos. PMID:23726974
Altered Cerebellar Organization and Function in Monoamine Oxidase A Hypomorphic Mice
Alzghoul, Loai; Bortolato, Marco; Delis, Foteini; Thanos, Panayotis K.; Darling, Ryan D.; Godar, Sean C; Zhang, Junlin; Grant, Samuel; Wang, Gene-Jack; Simpson, Kimberly L.; Chen, Kevin; Volkow, Nora D.; Lin, Rick C.S.; Shih, Jean C.
2012-01-01
Monoamine oxidase A (MAO-A) is the key enzyme for the degradation of brain serotonin (5-hydroxytryptamine, 5-HT), norepinephrine (NE) and dopamine (DA). We recently generated and characterized a novel line of MAO-A hypormorphic mice (MAO-ANeo), featuring elevated monoamine levels, social deficits and perseverative behaviors as well as morphological changes in the basolateral amygdala and orbitofrontal cortex. Here we showed that MAO-ANeo mice displayed deficits in motor control, manifested as subtle disturbances in gait, motor coordination, and balance. Furthermore, magnetic resonance imaging of the cerebellum revealed morphological changes and a moderate reduction in the cerebellar size of MAO- ANeo mice compared to wild type (WT) mice. Histological and immunohistochemical analyses using calbindin-D-28k (CB) expression of Purkinje cells revealed abnormal cerebellar foliation with vermal hypoplasia and decreased in Purkinje cell count and their dendritic density in MAO- ANeo mice compared to WT. Our current findings suggest that congenitally low MAO-A activity leads to abnormal development of the cerebellum. PMID:22971542
T-lymphoid, megakaryocyte, and granulocyte development are sensitive to decreases in CBFβ dosage.
Talebian, Laleh; Li, Zhe; Guo, Yalin; Gaudet, Justin; Speck, Maren E.; Sugiyama, Daisuke; Kaur, Prabhjot; Pear, Warren S.; Maillard, Ivan; Speck, Nancy A.
2007-01-01
The family of core-binding factors includes the DNA-binding subunits Runx1-3 and their common non–DNA-binding partner CBFβ. We examined the collective role of core-binding factors in hematopoiesis with a hypomorphic Cbfb allelic series. Reducing CBFβ levels by 3- or 6-fold caused abnormalities in bone development, megakaryocytes, granulocytes, and T cells. T-cell development was very sensitive to an incremental reduction of CBFβ levels: mature thymocytes were decreased in number upon a 3-fold reduction in CBFβ levels, and were virtually absent when CBFβ levels were 6-fold lower. Partially penetrant consecutive differentiation blocks were found among early T-lineage progenitors within the CD4−CD8− double-negative 1 and downstream double-negative 2 thymocyte subsets. Our data define a critical CBFβ threshold for normal T-cell development, and situate an essential role for core-binding factors during the earliest stages of T-cell development. PMID:16940420
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mavrakis, K. J.; McDonald, E. R.; Schlabach, M. R.
5-Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway. The MTAP gene is frequently deleted in human cancers because of its chromosomal proximity to the tumor suppressor gene CDKN2A. By interrogating data from a large-scale short hairpin RNA–mediated screen across 390 cancer cell line models, we found that the viability of MTAP-deficient cancer cells is impaired by depletion of the protein arginine methyltransferase PRMT5. MTAP-deleted cells accumulate the metabolite methylthioadenosine (MTA), which we found to inhibit PRMT5 methyltransferase activity. Deletion of MTAP in MTAP-proficient cells rendered them sensitive to PRMT5 depletion. Conversely, reconstitution of MTAP in anmore » MTAP-deficient cell line rescued PRMT5 dependence. Thus, MTA accumulation in MTAP–deleted cancers creates a hypomorphic PRMT5 state that is selectively sensitized toward further PRMT5 inhibition. Inhibitors of PRMT5 that leverage this dysregulated metabolic state merit further investigation as a potential therapy for MTAP/CDKN2A-deleted tumors.« less
Progress on wave-ice interactions: satellite observations and model parameterizations
NASA Astrophysics Data System (ADS)
Ardhuin, Fabrice; Boutin, Guillaume; Dumont, Dany; Stopa, Justin; Girard-Ardhuin, Fanny; Accensi, Mickael
2017-04-01
In the open ocean, numerical wave models have their largest errors near sea ice, and, until recently, virtually no wave data was available in the sea ice to. Further, wave-ice interaction processes may play an important role in the Earth system. In particular, waves may break up an ice layer into floes, with significant impact on air-sea fluxes. With thinner Arctic ice, this process may contribut to the growing similarity between Arctic and Antarctic sea ice. In return, the ice has a strong damping impact on the waves that is highly variable and not understood. Here we report progress on parameterizations of waves interacting with a single ice layer, as implemented in the WAVEWATCH III model (WW3 Development Group, 2016), and based on few in situ observations, but extensive data derived from Synthetic Aperture Radars (SARs). Our parameterizations combine three processes. First a parameterization for the energy-conserving scattering of waves by ice floes (assuming isotropic back-scatter), which has very little effect on dominant waves of periods larger than 7 s, consistent with the observed narrow directional spectra and short travel times. Second, we implemented a basal friction below the ice layer (Stopa et al. The Cryosphere, 2016). Third, we use a secondary creep associated with ice flexure (Cole et al. 1998) adapted to random waves. These three processes (scattering, friction and creep) are strongly dependent on the maximum floe size. We have thus included an estimation of the potential floe size based on an ice flexure failure estimation adapted from Williams et al. (2013). This combination of dissipation and scattering is tested against measured patterns of wave height and directional spreading, and evidence of ice break-up, all obtained from SAR imagery (Ardhuin et al. 2017), and some in situ data (Collins et al. 2015). The combination of creep and friction is required to reproduce a strong reduction in wave attenuation in broken ice as observed by Collins et al. (2015). Ongoing developments include the coupling of WAVEWATCH III to the NEMO-LIM3 and NEMO-CICE models using the OASIS3-MCT communicator. This coupled system will provide a meaningful memory of the ice floe sizes, as the ice is advected. It will also make possible the investigation of feedback processes on the ice.
NASA Astrophysics Data System (ADS)
Will, Andreas; Akhtar, Naveed; Brauch, Jennifer; Breil, Marcus; Davin, Edouard; Ho-Hagemann, Ha T. M.; Maisonnave, Eric; Thürkow, Markus; Weiher, Stefan
2017-04-01
We developed a coupled regional climate system model based on the CCLM regional climate model. Within this model system, using OASIS3-MCT as a coupler, CCLM can be coupled to two land surface models (the Community Land Model (CLM) and VEG3D), the NEMO-MED12 regional ocean model for the Mediterranean Sea, two ocean models for the North and Baltic seas (NEMO-NORDIC and TRIMNP+CICE) and the MPI-ESM Earth system model.We first present the different model components and the unified OASIS3-MCT interface which handles all couplings in a consistent way, minimising the model source code modifications and defining the physical and numerical aspects of the couplings. We also address specific coupling issues like the handling of different domains, multiple usage of the MCT library and exchange of 3-D fields.We analyse and compare the computational performance of the different couplings based on real-case simulations over Europe. The usage of the LUCIA tool implemented in OASIS3-MCT enables the quantification of the contributions of the coupled components to the overall coupling cost. These individual contributions are (1) cost of the model(s) coupled, (2) direct cost of coupling including horizontal interpolation and communication between the components, (3) load imbalance, (4) cost of different usage of processors by CCLM in coupled and stand-alone mode and (5) residual cost including i.a. CCLM additional computations.Finally a procedure for finding an optimum processor configuration for each of the couplings was developed considering the time to solution, computing cost and parallel efficiency of the simulation. The optimum configurations are presented for sequential, concurrent and mixed (sequential+concurrent) coupling layouts. The procedure applied can be regarded as independent of the specific coupling layout and coupling details.We found that the direct cost of coupling, i.e. communications and horizontal interpolation, in OASIS3-MCT remains below 7 % of the CCLM stand-alone cost for all couplings investigated. This is in particular true for the exchange of 450 2-D fields between CCLM and MPI-ESM. We identified remaining limitations in the coupling strategies and discuss possible future improvements of the computational efficiency.
An efficient climate model with water isotope physics: NEEMY
NASA Astrophysics Data System (ADS)
Hu, J.; Emile-Geay, J.
2015-12-01
This work describes the development of an isotope-enabled atmosphere-ocean global climate model, NEEMY. This is a model of intermediate complexity, which can run 100 model years in 30 hours using 33 CPUs. The atmospheric component is the SPEEDY-IER (Molteni et al. 2003; Dee et al. 2015a), which is a water isotope-enabled (with equilibrium and kinetic fractionation schemes in precipitation, evaporation and soil moisture) simplified atmospheric general circulation model, with T30 horizontal resolution and 8 vertical layers. The oceanic component is NEMO 3.4 (Madec 2008), a state-of-the-art oceanic model (~2° horizontal resolution and 31 vertical layers) with an oceanic isotope module (a passive tracer scheme). A 1000-year control run shows that NEEMY is stable and its energy is conserved. The mean state is comparable to that of CMIP3-era CGCMs, though much cheaper to run. Atmospheric teleconnections such as the NAO and PNA are simulated very well. NEEMY also simulates the oceanic meridional overturning circulation well. The tropical climate variability is weaker than observations, and the climatology exhibits a double ITCZ problem despite bias corrections. The standard deviation of the monthly mean Nino3.4 index is 0.61K, compared to 0.91K in observations (Reynolds et al. 2002). We document similarities and differences with a close cousin, SPEEDY-NEMO (Kucharski et al. 2015). With its fast speed and relatively complete physical processes, NEEMY is suitable for paleoclimate studies ; we will present some forced simulations of the past millennium and their use in forward-modeling climate proxies, via proxy system models (PSMs, Dee et al 2015b). References Dee, S., D. Noone, N. Buenning, J. Emile-Geay, and Y. Zhou, 2015a: SPEEDY-IER: A fast atmospheric GCM with water isotope physics. J. Geophys. Res. Atmos., 120: 73-91. doi:10.1002/2014JD022194. Dee, S. G., J. Emile-Geay, M. N. Evans, Allam, A., D. M. Thompson, and E. J. Steig, 2015b: PRYSM: an open-source framework for proxy system modeling, with applications to oxygen-isotope systems, J. Adv. Mod. Earth Sys., 07, doi:10.1002/2015MS000447. Kucharski et al., 2015: Atlantic forcing of Pacific decadal variability. Clim. Dyn., doi:10.1007/s00382-015-2705-z.
The CNRM-CM5.1 global climate model: description and basic evaluation
NASA Astrophysics Data System (ADS)
Voldoire, A.; Sanchez-Gomez, E.; Salas y Mélia, D.; Decharme, B.; Cassou, C.; Sénési, S.; Valcke, S.; Beau, I.; Alias, A.; Chevallier, M.; Déqué, M.; Deshayes, J.; Douville, H.; Fernandez, E.; Madec, G.; Maisonnave, E.; Moine, M.-P.; Planton, S.; Saint-Martin, D.; Szopa, S.; Tyteca, S.; Alkama, R.; Belamari, S.; Braun, A.; Coquart, L.; Chauvin, F.
2013-05-01
A new version of the general circulation model CNRM-CM has been developed jointly by CNRM-GAME (Centre National de Recherches Météorologiques—Groupe d'études de l'Atmosphère Météorologique) and Cerfacs (Centre Européen de Recherche et de Formation Avancée) in order to contribute to phase 5 of the Coupled Model Intercomparison Project (CMIP5). The purpose of the study is to describe its main features and to provide a preliminary assessment of its mean climatology. CNRM-CM5.1 includes the atmospheric model ARPEGE-Climat (v5.2), the ocean model NEMO (v3.2), the land surface scheme ISBA and the sea ice model GELATO (v5) coupled through the OASIS (v3) system. The main improvements since CMIP3 are the following. Horizontal resolution has been increased both in the atmosphere (from 2.8° to 1.4°) and in the ocean (from 2° to 1°). The dynamical core of the atmospheric component has been revised. A new radiation scheme has been introduced and the treatments of tropospheric and stratospheric aerosols have been improved. Particular care has been devoted to ensure mass/water conservation in the atmospheric component. The land surface scheme ISBA has been externalised from the atmospheric model through the SURFEX platform and includes new developments such as a parameterization of sub-grid hydrology, a new freezing scheme and a new bulk parameterisation for ocean surface fluxes. The ocean model is based on the state-of-the-art version of NEMO, which has greatly progressed since the OPA8.0 version used in the CMIP3 version of CNRM-CM. Finally, the coupling between the different components through OASIS has also received a particular attention to avoid energy loss and spurious drifts. These developments generally lead to a more realistic representation of the mean recent climate and to a reduction of drifts in a preindustrial integration. The large-scale dynamics is generally improved both in the atmosphere and in the ocean, and the bias in mean surface temperature is clearly reduced. However, some flaws remain such as significant precipitation and radiative biases in many regions, or a pronounced drift in three dimensional salinity.
NASA Astrophysics Data System (ADS)
Lo Bue, Nadia; Sgroi, Tiziana; Giovanetti, Gabriele; Marinaro, Giuditta; Embriaco, Davide; Beranzoli, Laura; Favali, Paolo
2015-04-01
In the framework of the European Research Infrastructure EMSO (European Multidisciplinary Seafloor and water-column Observatory, www.emso-eu.org), the cabled multidisciplinary seafloor observatory node NEMO-SN1 was deployed in the Western Ionian Sea (Southern Italy) at a depth of 2100 m, about 25 km off-shore Eastern Sicily, close to the Mt. Etna volcano system. The oceanographic payload mounted on this observatory was originally designed to monitor possible variations of the local hydrodynamic playing a crucial role on the redistribution of deep water in the Eastern Mediterranean Sea. In particular the Acoustic Doppler Current Profiler (ADCP RDI WorkHorse 600 kHz) was configured with the main aim to record the bottom dynamics, watching few meters of water column above the station (about 30 m). Surprisingly, this sensor offered a spectacular recording of the Mt.Etna pyroclastic activity occurred on 2013 which affected the ESE sector of the volcano. Although the ADCP sensor is commonly used to measure speed and direction of sea currents, it is more often used to monitor concentration suspended matter of controlled areas, such as rivers or coastal marine environments, by the analysis of the acoustic backscatter intensity. This standard condition entails some a-priori knowledge (i.e. suspended sediment concentration, particle size, echo intensity calibration) useful to well configure the sensors before starting its acquisition. However, in the case of Mt. Etna pyroclastic activity, due to the unexpected recording, these information were not available and it was necessary to work in a post-processing mode considering all acquired data. In fact, several different parameters contribute to complete the comprehension of the observed phenomenon: the ADCP acoustic wavelength able to indirectly provide information on the detectable particle size, the intensity of the explosive activity useful to define the starting energy of the volcanic system, the oceanographic local dynamics indispensable to know possible ash dispersion in seawater. This work aims to present a new perspective of observation for pyroclastic fallout in benthic seafloor areas using alternative sensors normally designed for other investigation such as the ADCP. Also, it highlights the possibility to optimize the instrumental resources used within the benthic observatories and opens new possibilities for the study of benthic processes, as volcanic ash sedimentation, through multiparametric analysis.
Vigueira, Patrick A; McCommis, Kyle S; Hodges, Wesley T; Schweitzer, George G; Cole, Serena L; Oonthonpan, Lalita; Taylor, Eric B; McDonald, William G; Kletzien, Rolf F; Colca, Jerry R; Finck, Brian N
2017-08-01
What is the central question of this study? The antidiabetic effects of thiazolidinedione (TZD) drugs may be mediated in part by a molecular interaction with the constituent proteins of the mitochondrial pyruvate carrier complex (MPC1 and MPC2). We examined the ability of a mutant mouse strain expressing an N-terminal truncation of MPC2 (Mpc2Δ16 mice) to respond to TZD treatment. What is the main finding and its importance? The response of Mpc2Δ16 mice to TZD treatment was not significantly different from that of wild-type C57BL6/J control animals, suggesting that the 16 N-terminal amino acids of MPC2 are dispensable for the effects of TZD treatment. Rosiglitazone and pioglitazone are thiazolidinedione (TZD) compounds that have been used clinically as insulin-sensitizing drugs and are generally believed to mediate their effects via activation of the peroxisome proliferator-activated receptor γ (PPARγ). Recent work has shown that it is possible to synthesize TZD compounds with potent insulin-sensitizing effects and markedly diminished affinity for PPARγ. Both clinically used TZDs and investigational PPARγ-sparing TZDs, such as MSDC-0602, interact with the mitochondrial pyruvate carrier (MPC) and inhibit its activity. The MPC complex is composed of two proteins, MPC1 and MPC2. Herein, we used mice expressing a hypomorphic MPC2 protein missing 16 amino acids in the N-terminus (Mpc2Δ16 mice) to determine the effects of these residues in mediating the insulin-sensitizing effects of TZDs in diet-induced obese mice. We found that both pioglitazone and MSDC-0602 elicited their beneficial metabolic effects, including improvement in glucose tolerance, attenuation of hepatic steatosis, reduction of adipose tissue inflammation and stimulation of adipocyte browning, in both wild-type and Mpc2Δ16 mice after high-fat diet feeding. In addition, truncation of MPC2 failed to attenuate the interaction between TZDs and the MPC in a bioluminescence resonance energy transfer-based assay or to affect the suppression of pyruvate-stimulated respiration in cells. Collectively, these data suggest that the interaction between TZDs and MPC2 is not affected by loss of the N-terminal 16 amino acids nor are these residues required for the insulin-sensitizing effects of these compounds. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Neutrinoless double-β decay of Se82 in the shell model: Beyond the closure approximation
NASA Astrophysics Data System (ADS)
Sen'kov, R. A.; Horoi, M.; Brown, B. A.
2014-05-01
We recently proposed a method [R. A. Senkov and M. Horoi, Phys. Rev. C 88, 064312 (2013), 10.1103/PhysRevC.88.064312] to calculate the standard nuclear matrix elements for neutrinoless double-β decay (0νββ) of Ca48 going beyond the closure approximation. Here we extend this analysis to the important case of Se82, which was chosen as the base isotope for the upcoming SuperNEMO experiment. We demonstrate that by using a mixed method that considers information from closure and nonclosure approaches, one can get excellent convergence properties for the nuclear matrix elements, which allows one to avoid unmanageable computational costs. We show that in contrast with the closure approximation the mixed approach has a very weak dependence on the average closure energy. The matrix elements for the heavy neutrino-exchange mechanism that could contribute to the 0νββ decay of Se82 are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamaluy, Denis; Gao, Xujiao; Tierney, Brian David
We created a highly efficient, universal 3D quant um transport simulator. We demonstrated that the simulator scales linearly - both with the problem size (N) and number of CPUs, which presents an important break-through in the field of computational nanoelectronics. It allowed us, for the first time, to accurately simulate and optim ize a large number of realistic nanodevices in a much shorter time, when compared to other methods/codes such as RGF[%7EN 2.333 ]/KNIT, KWANT, and QTBM[%7EN 3 ]/NEMO5. In order to determine the best-in-class for different beyond-CMOS paradigms, we performed rigorous device optimization for high-performance logic devices at 6-,more » 5- and 4-nm gate lengths. We have discovered that there exists a fundamental down-scaling limit for CMOS technology and other Field-Effect Transistors (FETs). We have found that, at room temperatures, all FETs, irre spective of their channel material, will start experiencing unacceptable level of thermally induced errors around 5-nm gate lengths.« less
Sensitivity of an underwater Čerenkov km 3 telescope to TeV neutrinos from Galactic microquasars
NASA Astrophysics Data System (ADS)
Aiello, S.; Ambriola, M.; Ameli, F.; Amore, I.; Anghinolfi, M.; Anzalone, A.; Barbarino, G.; Barbarito, E.; Battaglieri, M.; Bellotti, R.; Beverini, N.; Bonori, M.; Bouhadef, B.; Brescia, M.; Cacopardo, G.; Cafagna, F.; Capone, A.; Caponetto, L.; Castorina, E.; Ceres, A.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Cordelli, M.; Costa, M.; Cuneo, S.; D'Amico, A.; De Bonis, G.; De Marzo, C.; De Rosa, G.; De Vita, R.; Distefano, C.; Falchini, E.; Fiorello, C.; Flaminio, V.; Fratini, K.; Gabrielli, A.; Galeotti, S.; Gandolfi, E.; Giacomelli, G.; Giorgi, F.; Grimaldi, A.; Habel, R.; Leonora, E.; Lonardo, A.; Longo, G.; Lo Presti, D.; Lucarelli, F.; Maccioni, E.; Margiotta, A.; Martini, A.; Masullo, R.; Megna, R.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Musumeci, M.; Nicolau, C. A.; Orlando, A.; Osipenko, M.; Osteria, G.; Papaleo, R.; Pappalardo, V.; Petta, C.; Piattelli, P.; Raia, G.; Randazzo, N.; Reito, S.; Ricco, G.; Riccobene, G.; Ripani, M.; Rovelli, A.; Ruppi, M.; Russo, G. V.; Russo, S.; Sapienza, P.; Sedita, M.; Shirokov, E.; Simeone, F.; Sipala, V.; Spurio, M.; Taiuti, M.; Terreni, G.; Trasatti, L.; Urso, S.; Valente, V.; Vicini, P.
2007-09-01
In this paper are presented the results of Monte Carlo simulations on the capability of the proposed NEMO-km 3 telescope to detect TeV muon neutrinos from Galactic microquasars. For each known microquasar we compute the number of detectable events, together with the atmospheric neutrino and muon background events. We also discuss the detector sensitivity to neutrino fluxes expected from known microquasars, optimizing the event selection also to reject the background; the number of events surviving the event selection are given. The best candidates are the steady microquasars SS433 and GX339-4 for which we estimate a sensitivity of about 5 × 10 -11 erg/cm 2 s; the predicted fluxes are expected to be well above this sensitivity. For bursting microquasars the most interesting candidates are Cygnus X-3, GRO J1655-40 and XTE J1118+480: their analyses are more complicated because of the stochastic nature of the bursts.
Osorio, Fernando G; Bárcena, Clea; Soria-Valles, Clara; Ramsay, Andrew J; de Carlos, Félix; Cobo, Juan; Fueyo, Antonio; Freije, José M P; López-Otín, Carlos
2012-10-15
Alterations in the architecture and dynamics of the nuclear lamina have a causal role in normal and accelerated aging through both cell-autonomous and systemic mechanisms. However, the precise nature of the molecular cues involved in this process remains incompletely defined. Here we report that the accumulation of prelamin A isoforms at the nuclear lamina triggers an ATM- and NEMO-dependent signaling pathway that leads to NF-κB activation and secretion of high levels of proinflammatory cytokines in two different mouse models of accelerated aging (Zmpste24(-/-) and Lmna(G609G/G609G) mice). Causal involvement of NF-κB in accelerated aging was demonstrated by the fact that both genetic and pharmacological inhibition of NF-κB signaling prevents age-associated features in these animal models, significantly extending their longevity. Our findings provide in vivo proof of principle for the feasibility of pharmacological modulation of the NF-κB pathway to slow down the progression of physiological and pathological aging.
Approximate Stokes Drift Profiles and their use in Ocean Modelling
NASA Astrophysics Data System (ADS)
Breivik, O.; Biblot, J.; Janssen, P. A. E. M.
2016-02-01
Deep-water approximations to the Stokes drift velocity profile are explored as alternatives to the monochromatic profile. The alternative profiles investigated rely on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons with parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profiles give a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. The NEMO general circulation ocean model was recently extended to incorporate the Stokes-Coriolis force along with two other wave-related effects. I will show some results from the coupled atmosphere-wave-ocean ensemble forecast system of ECMWF where these wave effects are now included in the ocean model component.
NBodyLab Simulation Experiments with GRAPE-6a AND MD-GRAPE2 Acceleration
NASA Astrophysics Data System (ADS)
Johnson, V.; Ates, A.
2005-12-01
NbodyLab is an astrophysical N-body simulation testbed for student research. It is accessible via a web interface and runs as a backend framework under Linux. NbodyLab can generate data models or perform star catalog lookups, transform input data sets, perform direct summation gravitational force calculations using a variety of integration schemes, and produce analysis and visualization output products. NEMO (Teuben 1994), a popular stellar dynamics toolbox, is used for some functions. NbodyLab integrators can optionally utilize two types of low-cost desktop supercomputer accelerators, the newly available GRAPE-6a (125 Gflops peak) and the MD-GRAPE2 (64-128 Gflops peak). The initial version of NBodyLab was presented at ADASS 2002. This paper summarizes software enhancements developed subsequently, focusing on GRAPE-6a related enhancements, and gives examples of computational experiments and astrophysical research, including star cluster and solar system studies, that can be conducted with the new testbed functionality.
Agm1/Pgm3-Mediated Sugar Nucleotide Synthesis Is Essential for Hematopoiesis and Development▿
Greig, Kylie T.; Antonchuk, Jennifer; Metcalf, Donald; Morgan, Phillip O.; Krebs, Danielle L.; Zhang, Jian-Guo; Hacking, Douglas F.; Bode, Lars; Robb, Lorraine; Kranz, Christian; de Graaf, Carolyn; Bahlo, Melanie; Nicola, Nicos A.; Nutt, Stephen L.; Freeze, Hudson H.; Alexander, Warren S.; Hilton, Douglas J.; Kile, Benjamin T.
2007-01-01
Carbohydrate modification of proteins includes N-linked and O-linked glycosylation, proteoglycan formation, glycosylphosphatidylinositol anchor synthesis, and O-GlcNAc modification. Each of these modifications requires the sugar nucleotide UDP-GlcNAc, which is produced via the hexosamine biosynthesis pathway. A key step in this pathway is the interconversion of GlcNAc-6-phosphate (GlcNAc-6-P) and GlcNAc-1-P, catalyzed by phosphoglucomutase 3 (Pgm3). In this paper, we describe two hypomorphic alleles of mouse Pgm3 and show there are specific physiological consequences of a graded reduction in Pgm3 activity and global UDP-GlcNAc levels. Whereas mice lacking Pgm3 die prior to implantation, animals with less severe reductions in enzyme activity are sterile, exhibit changes in pancreatic architecture, and are anemic, leukopenic, and thrombocytopenic. These phenotypes are accompanied by specific rather than wholesale changes in protein glycosylation, suggesting that while universally required, the functions of certain proteins and, as a consequence, certain cell types are especially sensitive to reductions in Pgm3 activity. PMID:17548465
Haldipur, Parthiv; Dang, Derek; Aldinger, Kimberly A; Janson, Olivia K; Guimiot, Fabien; Adle-Biasette, Homa; Dobyns, William B; Siebert, Joseph R; Russo, Rosa; Millen, Kathleen J
2017-01-01
FOXC1 loss contributes to Dandy-Walker malformation (DWM), a common human cerebellar malformation. Previously, we found that complete Foxc1 loss leads to aberrations in proliferation, neuronal differentiation and migration in the embryonic mouse cerebellum (Haldipur et al., 2014). We now demonstrate that hypomorphic Foxc1 mutant mice have granule and Purkinje cell abnormalities causing subsequent disruptions in postnatal cerebellar foliation and lamination. Particularly striking is the presence of a partially formed posterior lobule which echoes the posterior vermis DW 'tail sign' observed in human imaging studies. Lineage tracing experiments in Foxc1 mutant mouse cerebella indicate that aberrant migration of granule cell progenitors destined to form the posterior-most lobule causes this unique phenotype. Analyses of rare human del chr 6p25 fetal cerebella demonstrate extensive phenotypic overlap with our Foxc1 mutant mouse models, validating our DWM models and demonstrating that many key mechanisms controlling cerebellar development are likely conserved between mouse and human. DOI: http://dx.doi.org/10.7554/eLife.20898.001 PMID:28092268
Bramwell, Kenneth K C; Mock, Kelton; Ma, Ying; Weis, John H; Teuscher, Cory; Weis, Janis J
2015-08-15
The lysosomal enzyme β-glucuronidase (Gusb) is a key regulator of Lyme-associated and K/B×N-induced arthritis severity. The luminal enzymes present in lysosomes provide essential catabolic functions for the homeostatic degradation of a variety of macromolecules. In addition to this essential catabolic function, lysosomes play important roles in the inflammatory response following infection. Secretory lysosomes and related vesicles can participate in the inflammatory response through fusion with the plasma membrane and release of bioactive contents into the extracellular milieu. In this study, we show that GUSB hypomorphism potentiates lysosomal exocytosis following inflammatory stimulation. This leads to elevated secretion of lysosomal contents, including glycosaminoglycans, lysosomal hydrolases, and matrix metalloproteinase 9, a known modulator of Lyme arthritis severity. This mechanistic insight led us to test the efficacy of rapamycin, a drug known to suppress lysosomal exocytosis. Both Lyme and K/B×N-associated arthritis were suppressed by this treatment concurrent with reduced lysosomal release. Copyright © 2015 by The American Association of Immunologists, Inc.
Ting, Stephen B; Wilanowski, Tomasz; Auden, Alana; Hall, Mark; Voss, Anne K; Thomas, Tim; Parekh, Vishwas; Cunningham, John M; Jane, Stephen M
2003-12-01
The neural tube defects (NTDs) spina bifida and anencephaly are widely prevalent severe birth defects. The mouse mutant curly tail (ct/ct) has served as a model of NTDs for 50 years, even though the responsible genetic defect remained unrecognized. Here we show by gene targeting, mapping and genetic complementation studies that a mouse homolog of the Drosophila grainyhead (grh) gene, grainyhead-like-3 (Grhl3), is a compelling candidate for the gene underlying the curly tail phenotype. The NTDs in Grhl3-null mice are more severe than those in the curly tail strain, as the Grhl3 alleles in ct/ct mice are hypomorphic. Spina bifida in ct/ct mice is folate resistant, but its incidence can be markedly reduced by maternal inositol supplementation periconceptually. The NTDs in Grhl3-/- embryos are also folate resistant, but unlike those in ct/ct mice, they are resistant to inositol. These findings suggest that residual Grhl3 expression in ct/ct mice may be required for inositol rescue of folate-resistant NTDs.
Fetal and post-natal lung defects reveal a novel and required role for Fgf8 in lung development
Yu, Shibin; Poe, Bryan; Schwarz, Margaret; Elliot, Sarah; Albertine, Kurt H.; Fenton, Stephen; Garg, Vidu; Moon, Anne M.
2016-01-01
The fibroblast growth factor, FGF8, has been shown to be essential for vertebrate cardiovascular, craniofacial, brain and limb development. Here we report that Fgf8 function is required for normal progression through the late fetal stages of lung development that culminate in alveolar formation. Budding, lobation and branching morphogenesis are unaffected in early stage Fgf8 hypomorphic and conditional mutant lungs. Excess proliferation during fetal development disrupts distal airspace formation, mesenchymal and vascular remodeling, and Type I epithelial cell differentiation resulting in postnatal respiratory failure and death. Our findings reveal a previously unknown, critical role for Fgf8 function in fetal lung development and suggest that this factor may also contribute to postnatal alveologenesis. Given the high number of premature infants with alveolar dysgenesis and lung dysplasia, and the accumulating evidence that short-term benefits of available therapies may be outweighed by long term detrimental effects on postnatal alveologenesis, the therapeutic implications of identifying a factor or pathway that can be targeted to stimulate normal alveolar development are profound. PMID:20727874
Da Silva, Fabio; Massa, Filippo; Motamedi, Fariba Jian; Vidal, Valerie; Rocha, Ana Sofia; Gregoire, Elodie P; Cai, Chen-Leng; Wagner, Kay Dietrich; Schedl, Andreas
2018-05-31
Coronary artery anomalies are common congenital disorders with serious consequences in adult life. Coronary circulation begins when the coronary stems form connections between the aorta and the developing vascular plexus. We recently identified the WNT signaling modulator R-spondin 3 (Rspo3), as a crucial regulator of coronary stem proliferation. Using expression analysis and tissue-specific deletion we now demonstrate that Rspo3 is primarily produced by cardiomyocytes. Moreover, we have employed CRISPR/Cas9 technology to generate novel Lgr4-null alleles that showed a significant decrease in coronary stem proliferation and thus phenocopied the coronary artery defects seen in Rspo3 mutants. Interestingly, Lgr4 mutants displayed slightly hypomorphic right ventricles, an observation also made after myocardial specific deletion of Rspo3. These results shed new light on the role of Rspo3 in heart development and demonstrate that LGR4 is the principal R-spondin 3 receptor in the heart. Copyright © 2018 Elsevier Inc. All rights reserved.
Miao, Yong; Bhushan, Jaya; Dani, Adish; Vig, Monika
2017-05-11
T cell effector functions require sustained calcium influx. However, the signaling and phenotypic consequences of non-specific sodium permeation via calcium channels remain unknown. α-SNAP is a crucial component of Orai1 channels, and its depletion disrupts the functional assembly of Orai1 multimers. Here we show that α-SNAP hypomorph, hydrocephalus with hopping gait, Napa hyh/hyh mice harbor significant defects in CD4 T cell gene expression and Foxp3 regulatory T cell (Treg) differentiation. Mechanistically, TCR stimulation induced rapid sodium influx in Napa hyh/hyh CD4 T cells, which reduced intracellular ATP, [ATP] i . Depletion of [ATP] i inhibited mTORC2 dependent NFκB activation in Napa hyh/hyh cells but ablation of Orai1 restored it. Remarkably, TCR stimulation in the presence of monensin phenocopied the defects in Napa hyh/hyh signaling and Treg differentiation, but not IL-2 expression. Thus, non-specific sodium influx via bonafide calcium channels disrupts unexpected signaling nodes and may provide mechanistic insights into some divergent phenotypes associated with Orai1 function.
M6 membrane protein plays an essential role in Drosophila oogenesis.
Zappia, María Paula; Brocco, Marcela Adriana; Billi, Silvia C; Frasch, Alberto C; Ceriani, María Fernanda
2011-01-01
We had previously shown that the transmembrane glycoprotein M6a, a member of the proteolipid protein (PLP) family, regulates neurite/filopodium outgrowth, hence, M6a might be involved in neuronal remodeling and differentiation. In this work we focused on M6, the only PLP family member present in Drosophila, and ortholog to M6a. Unexpectedly, we found that decreased expression of M6 leads to female sterility. M6 is expressed in the membrane of the follicular epithelium in ovarioles throughout oogenesis. Phenotypes triggered by M6 downregulation in hypomorphic mutants included egg collapse and egg permeability, thus suggesting M6 involvement in eggshell biosynthesis. In addition, RNAi-mediated M6 knockdown targeted specifically to follicle cells induced an arrest of egg chamber development, revealing that M6 is essential in oogenesis. Interestingly, M6-associated phenotypes evidenced abnormal changes of the follicle cell shape and disrupted follicular epithelium in mid- and late-stage egg chambers. Therefore, we propose that M6 plays a role in follicular epithelium maintenance involving membrane cell remodeling during oogenesis in Drosophila.
M6 Membrane Protein Plays an Essential Role in Drosophila Oogenesis
Zappia, María Paula; Brocco, Marcela Adriana; Billi, Silvia C.; Frasch, Alberto C.; Ceriani, María Fernanda
2011-01-01
We had previously shown that the transmembrane glycoprotein M6a, a member of the proteolipid protein (PLP) family, regulates neurite/filopodium outgrowth, hence, M6a might be involved in neuronal remodeling and differentiation. In this work we focused on M6, the only PLP family member present in Drosophila, and ortholog to M6a. Unexpectedly, we found that decreased expression of M6 leads to female sterility. M6 is expressed in the membrane of the follicular epithelium in ovarioles throughout oogenesis. Phenotypes triggered by M6 downregulation in hypomorphic mutants included egg collapse and egg permeability, thus suggesting M6 involvement in eggshell biosynthesis. In addition, RNAi-mediated M6 knockdown targeted specifically to follicle cells induced an arrest of egg chamber development, revealing that M6 is essential in oogenesis. Interestingly, M6-associated phenotypes evidenced abnormal changes of the follicle cell shape and disrupted follicular epithelium in mid- and late-stage egg chambers. Therefore, we propose that M6 plays a role in follicular epithelium maintenance involving membrane cell remodeling during oogenesis in Drosophila. PMID:21603606
Reduced Gut Acidity Induces an Obese-Like Phenotype in Drosophila melanogaster and in Mice
Yen, Jui-Hung; Kuo, Ping-Chang; Yeh, Sheng-Rong; Lin, Hung-Yu; Fu, Tsai-Feng; Wu, Ming-Shiang; Wang, Horng-Dar; Wang, Pei-Yu
2015-01-01
In order to identify genes involved in stress and metabolic regulation, we carried out a Drosophila P-element-mediated mutagenesis screen for starvation resistance. We isolated a mutant, m2, that showed a 23% increase in survival time under starvation conditions. The P-element insertion was mapped to the region upstream of the vha16-1 gene, which encodes the c subunit of the vacuolar-type H+-ATPase. We found that vha16-1 is highly expressed in the fly midgut, and that m2 mutant flies are hypomorphic for vha16-1 and also exhibit reduced midgut acidity. This deficit is likely to induce altered metabolism and contribute to accelerated aging, since vha16-1 mutant flies are short-lived and display increases in body weight and lipid accumulation. Similar phenotypes were also induced by pharmacological treatment, through feeding normal flies and mice with a carbonic anhydrase inhibitor (acetazolamide) or proton pump inhibitor (PPI, lansoprazole) to suppress gut acid production. Our study may thus provide a useful model for investigating chronic acid suppression in patients. PMID:26436771
RPA Stabilization of Single-Stranded DNA Is Critical for Break-Induced Replication.
Ruff, Patrick; Donnianni, Roberto A; Glancy, Eleanor; Oh, Julyun; Symington, Lorraine S
2016-12-20
DNA double-strand breaks (DSBs) are cytotoxic lesions that must be accurately repaired to maintain genome stability. Replication protein A (RPA) plays an important role in homology-dependent repair of DSBs by protecting the single-stranded DNA (ssDNA) intermediates formed by end resection and by facilitating Rad51 loading. We found that hypomorphic mutants of RFA1 that support intra-chromosomal homologous recombination are profoundly defective for repair processes involving long tracts of DNA synthesis, in particular break-induced replication (BIR). The BIR defects of the rfa1 mutants could be partially suppressed by eliminating the Sgs1-Dna2 resection pathway, suggesting that Dna2 nuclease attacks the ssDNA formed during end resection when not fully protected by RPA. Overexpression of Rad51 was also found to suppress the rfa1 BIR defects. We suggest that Rad51 binding to the ssDNA formed by excessive end resection and during D-loop migration can partially compensate for dysfunctional RPA. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
The development of an advanced vertical discretisation scheme for a regional ocean model
NASA Astrophysics Data System (ADS)
Bruciaferri, Diego; Shapiro, Georgy; Wobus, Fred
2017-04-01
When designing an ocean model, the choice of the vertical coordinate system must be pursued very carefully (Griffies et al., 2000); especially in those regional areas where local multi-scale processes interact with large-scale oceanographic features. Three main vertical coordinates are usually used in ocean modelling, namely the geopotential, terrain-following and isopycnic, but each one presents its own limitations and strengths. In the last decades, much research has been spent to investigate and develop hybrid approaches able to combine the advantages of each vertical coordinate system but minimising their disadvantages. Here we propose the hybrid s-s-z vertical discretisation scheme, an advanced version of the approach used by Shapiro et al. (2013). In our new scheme, the vertical domain is divided into three zones: in the upper and middle zones use s-coordinates while the deeper zone uses z-levels. The s-s-z vertical grid is introduced into the NEMO (Nucleus for European Modelling of the Ocean) model code and we compare the model skill of our new vertical discretisation scheme with the NEMO vertical grid using z-levels with partial steps through a set of idealized numerical experiments for which analytical solutions or theoretical models exist. Modelling results demonstrate that the magnitude of spurious currents arising from the horizontal pressure gradient errors are of the same order (10 ^ -3 m/s ) both with z-partial steps or with s-s-z vertical grids for the conditions favourable for the geopotential grids ( horizontal initial density levels). For a number of more realistic conditions representing a general cyclonic circulation in the sea, the new discretisation scheme produces smaller spurious currents and hence is more accurate than the z-level approach. Moreover, the enhanced capability of the s-s-z scheme to reproduce dense water cascades as compared to the z-partial steps grid is shown. Finally, we show how the new s-s-z grid can be useful to improve lateral sub-grid-physics parametrisation in ocean model with s-levels. References: Griffies, S. M., Boning, C., Bryan, F. O., Chassignet, E. P., Gerdes, R., Hasumi, H., Hirst, A., Treguier, A.-M., and Webb, D., 2000. Developments in Ocean Climate Modelling, Ocean Modelling, 2, 123-192. Shapiro, G., Luneva, M., Pickering, J., and Storkey, D.: The effect of various vertical discretisation schemes and horizontal diffusion parameterisation on the performance of a 3-D ocean model: the Black Sea case study, Ocean Sci., 9, 377-390, doi:10.5194/os-9-377-2013, 2013.
Dummer, Reinhard; Schadendorf, Dirk; Ascierto, Paolo A; Arance, Ana; Dutriaux, Caroline; Di Giacomo, Anna Maria; Rutkowski, Piotr; Del Vecchio, Michele; Gutzmer, Ralf; Mandala, Mario; Thomas, Luc; Demidov, Lev; Garbe, Claus; Hogg, David; Liszkay, Gabriella; Queirolo, Paola; Wasserman, Ernesto; Ford, James; Weill, Marine; Sirulnik, L Andres; Jehl, Valentine; Bozón, Viviana; Long, Georgina V; Flaherty, Keith
2017-04-01
There are no established therapies specific for NRAS-mutant melanoma despite the emergence of immunotherapy. We aimed to assess the efficacy and safety of the MEK inhibitor binimetinib versus that of dacarbazine in patients with advanced NRAS-mutant melanoma. NEMO is an ongoing, randomised, open-label phase 3 study done at 118 hospitals in 26 countries. Patients with advanced, unresectable, American Joint Committee on Cancer stage IIIC or stage IV NRAS-mutant melanoma who were previously untreated or had progressed on or after previous immunotherapy were randomised (2:1) to receive either binimetinib 45 mg orally twice daily or dacarbazine 1000 mg/m 2 intravenously every 3 weeks. Randomisation was stratified by stage, performance status, and previous immunotherapy. The primary endpoint was progression-free survival assessed by blinded central review in the intention-to-treat population. Safety analyses were done in the safety population, consisting of all patients who received at least one study drug dose and one post-baseline safety assessment. This study is registered with ClinicalTrials.gov, number NCT01763164 and with EudraCT, number 2012-003593-51. Between Aug 19, 2013, and April 28, 2015, 402 patients were enrolled and randomly assigned, 269 to binimetinib and 133 to dacarbazine. Median follow-up was 1·7 months (IQR 1·4-4·1). Median progression-free survival was 2·8 months (95% CI 2·8-3·6) in the binimetinib group and 1·5 months (1·5-1·7) in the dacarbazine group (hazard ratio 0·62 [95% CI 0·47-0·80]; one-sided p<0·001). Grade 3-4 adverse events seen in at least 5% of patients the safety population in either group were increased creatine phosphokinase (52 [19%] of 269 patients in the binimetinib group vs none of 114 in the dacarbazine group), hypertension (20 [7%] vs two [2%]), anaemia (five [2%] vs six [5%]), and neutropenia (two [1%] vs ten [9%]). Serious adverse events (all grades) occurred in 91 (34%) patients in the binimetinib group and 25 (22%) patients in the dacarbazine group. Binimetinib improved progression-free survival compared with dacarbazine and was tolerable. Binimetinib might represent a new treatment option for patients with NRAS-mutant melanoma after failure of immunotherapy. Array BioPharma and Novartis Pharmaceuticals Corporation. Copyright © 2017 Elsevier Ltd. All rights reserved.
ESONET LIDO Demonstration Mission: the East Sicily node
NASA Astrophysics Data System (ADS)
Riccobene, Giorgio; Favali, Paolo; Andrè, Michel; Chierici, Francesco; Pavan, Gianni; Esonet Lido Demonstration Mission Team
2010-05-01
Off East Sicily (at 2100 m depth, 25 km off the harbour of Catania) a prototype of a cabled deep-sea observatory (NEMO-SN1) was set up and has been operational in real-time since 2005 (the cabled deep-sea multi-parameter station SN1, equipped with geophysical and environmental sensors and the cabled NEMO-OνDE, equipped with 4 broadband hydrophones). The Western Ionian Sea is one of the node sites for the upcoming European permanent underwater network (EMSO). Within the activities of the EC project ESONET-NoE some demonstration missions have been funded. The LIDO-DM (Listening to the Deep Ocean-Demonstration Mission) is one of these and is related to two sites, East Sicily and Iberian Margin (Gulf of Cadiz), the main aims being geo-hazards monitoring and warning (seismic, tsunami, and volcanic) and bio-acoustics. The LIDO-DM East Sicily installation represents a further major step within ESONET-NoE, resulting in a fully integrated system for multidisciplinary deep-sea science, capable to transmit and distribute data in real time to the scientific community and to the general public. LIDO-DM East Sicily hosts a large number of sensors aimed at monitoring and studying oceanographic and environmental parameters (by means of CTD, ADCP, 3-C single point current meter, turbidity meter), geophysical phenomena (low frequency hydrophones, accelerometer, gravity meter, vector and scalar magnetometers, seismometer, absolute and differential pressure gauges), ocean noise monitoring and identification and tracking of biological acoustic sources in deep sea. The latter will be performed using two tetrahedral arrays of 4 hydrophones, located at a relative distance of about 5 km, and at about 25 km from the shore. The whole system will be connected and powered from shore, by means of the electro-optical cable net installed at the East Sicily Site Infrastructure, and synchronised with GPS. Sensors data sampling is performed underwater and transmitted via optical fibre link, with optimal S/N ratio for all signals. This will also permit real-time data acquisition, analysis and distribution on-shore. Innovative electronics for the off-shore data acquisition and transmission systems has been designed, built and tested. A dedicated computing and networking infrastructure for data acquisition, storage and distribution through the internet has been also created. The deployment and connection of the deep sea structures will be performed using the dedicated ROV and Deep Sea Shuttle handling facilities (PEGASO, owned by INGV and INFN). LIDO-DM constitutes the enhancement of the Western Ionian site in view of the EMSO Research Infrastructure.
Exchanges between the shelf and the deep Black Sea: an integrated analysis of physical mechanisms
NASA Astrophysics Data System (ADS)
Shapiro, Georgy; Wobus, Fred; Zatsepin, Andrei; Akivis, Tatiana; Zhou, Feng
2017-04-01
This study provides an integrated analysis of exchanges of water, salt and heat between the north-western Black Sea shelf and the deep basin. Three contributing physical mechanisms are quantified, namely: Ekman drift, transport by mesoscale eddies at the edge of the NW Black Sea shelf and non-local cascading assisted by the rim current and mesoscale eddies. The semi-enclosed nature of the Black Sea together with its unique combination of an extensive shelf area in the North West and the deep central part make it sensitive to natural variations of fluxes, including the fluxes between the biologically productive shelf and predominantly anoxic deep sea. Exchanges between the shelf and deep sea play an important role in forming the balance of waters, nutrients and pollution within the coastal areas, and hence the level of human-induced eutrophication of coastal waters (MSFD Descriptor 5). In this study we analyse physical mechanisms and quantify shelf-deep sea exchange processes in the Black Sea sector using the NEMO ocean circulation model. The model is configured and optimized taking into account specific features of the Black Sea, and validated against in-situ and satellite observations. The study uses NEMO-BLS24 numerical model which is based on the NEMO codebase v3.2.1 with amendments introduced by the UK Met Office. The model has a horizontal resolution of 1/24×1/24° and a hybrid s-on-top-of-z vertical coordinate system with a total of 33 layers. The horizontal viscosity/diffusivity operator is rotated to reduce the contamination of vertical diffusion/viscosity by large values of their horizontal counterparts. The bathymetry is processed from ETOPO5 and capped to 1550m. Atmospheric forcing for the period 1989-2012 is given by the Drakkar Forcing Set v5.2. For comparison, the NCEP atmospheric forcing also used for 2005. The climatological runoff from 8 major rivers is included. We run the model individually for 24 calendar years without data assimilation. For the analysis of propagation of cold waters formed on the NW Black Sea shelf we use a passive tracer method. The tracer is treated as an artificial dye that "stains" a water parcel within the defined area as soon as it cooled below a 7°C temperature. To quantify the shelf-deep sea exchange, the transport of water, salt and heat between the NW shelf and deep-sea regions is calculated across an enclosed boundary (a "fence") approximating the 200 m isobath on the NW shelf plus two short segments connected to the coast. Partial transports are also calculated for the surface layer (top 20 m) and the under-surface layer (from 20 m to the bottom). The 20 m level is approximately equal to the Ekman depth in summer. It is also close to the depth of the biologically active euphotic layer. For validation of the NEMO-BLS24 configuration we present comparisons of the model with satellite-derived sea surface temperature measurements and with ship-derived cross-sections that show the vertical structure. We also compare the model to observations carried out during Black Sea cruises in 2004, 2007 and 2008. The model represents well the sea surface temperature, the depth of the upper mixed layer and the depth of the CIL, while overestimating the temperature in the core of the CIL by approx. 0.5 °C. Mechanism 1: exchanges due to a frontal eddy. Numerical simulations for the year 2005 (for which comprehensive remote sensed data is available) shows that a significant cross-shelf transport was generated by a long-lived anticyclonic eddy impinging on the shelf, sometimes assisted by a cyclonic meander of the Rim Current. Over 69 days between April 23 and June 30, 2005, a volume of 2.84×10^12 m3 of water (102% of the entire volume of the shelf waters) was transported out of the shelf and a similar amount onto the shelf (see details in Zhou et al. 2014). Mechanism 2: exchanges due to Ekman drift. During the short but intensive wind events of April 15 - 22 and July 1 - 4, 2005, 23% and 16% of shelf waters, were moved into the deep-sea region, respectively. Due to the high intensity of cross-shelf exchanges, the average renewal time for the NW shelf in the Black Sea was only 28 days in the summer of 2005 (Zhou et al. 2014). Mechanism 3: exchanges due to assisted cascading. Using the model run for 2003 as an example, we examine the fate of the tracer after 5.5 months of model integration. At 100m depth we identify four anti-cyclonic eddies: two eddies west of the Crimea peninsula, one north of Sinop and one west of Batumi. These eddies can be seen to assist cascading into the basin interior of cold waters formed on a shallow NW shelf to a depth greater than at which they were originally formed. The important result is that for many of the 24 studied years a significant proportion of dense shelf water does not cascade locally off the NW shelf, but is transported by the Rim Current over hundreds of kilometres before cascading into the deep basin in the southern and southeastern Black Sea. This work has been supported by EU FP7 PERSEUS, EU H2020 Sea Basin checkpoints Lot4 - Black Sea and a number of Chinese and Russian national projects. References Zhou, F., G. I. Shapiro, and F. Wobus, 2014: Cross-shelf exchange in the northwestern Black Sea. Journal of Geophysical Research: Oceans, 119, 2143-2164.
NASA Astrophysics Data System (ADS)
Jung, H. C.; Moon, B. K.; Wie, J.; Park, H. S.; Kim, K. Y.; Lee, J.; Byun, Y. H.
2017-12-01
This research is motivated by a need to develop a new coupled ocean-biogeochemistry model, a key tool for climate projections. The Modular Ocean Model (MOM5) is a global ocean/ice model developed by the Geophysical Fluid Dynamics Laboratory (GFDL) in the US, and it incorporates Tracers of Phytoplankton with Allometric Zooplankton (TOPAZ), which simulates the marine biota associated with carbon cycles. We isolated TOPAZ from MOM5 into a stand-alone version (TOPAZ-SA), and had it receive initial data and ocean physical fields required. Then, its reliability was verified by comparing the simulation results from the TOPAZ-SA with the MOM5/TOPAZ. This stand-alone version of TOPAZ is to be coupled to the Nucleus for European Modelling of the Ocean (NEMO). Here we present the preliminary results. Acknowledgements This research was supported by the project "Research and Development for KMA Weather, Climate, and Earth system Services" (NIMS-2016-3100) of the National Institute of Meteorological Sciences/Korea Meteorological Administration.
NASA Astrophysics Data System (ADS)
Balkanov, V.; Belolaptikov, I.; Bezrukov, L.; Budnev, N.; Capone, A.; Chensky, A.; Danilchenko, I.; Domogatsky, G.; Dzhilkibaev, Zh.-A.; Fialkovsky, S.; Gaponenko, O.; Gress, O.; Gress, T.; Il'Yasov, R.; Klabukov, A.; Klimov, A.; Klimushin, S.; Konischev, K.; Koshechkin, A.; Kuznetzov, Vy.; Kuzmichev, L.; Kulepov, V.; Lubsandorzhiev, B.; Masullo, R.; Migneco, E.; Mikheyev, S.; Milenin, M.; Mirgazov, R.; Moseiko, N.; Osipova, E.; Panfilov, A.; Pan'kov, L.; Parfenov, Yu.; Pavlov, A.; Petruccetti, M.; Pliskovsky, E.; Pokhil, P.; Poleschuk, V.; Popova, E.; Prosin, V.; Riccobene, G.; Rozanov, M.; Rubtzov, V.; Semeney, Yu.; Spiering, Ch.; Streicher, O.; Tarashansky, B.; Vasiljev, R.; Wischnewski, R.; Yashin, I.; Zhukov, V.
2003-02-01
Measurements of optical properties in media enclosing Cherenkov neutrino telescopes are important not only at the moment of the selection of an adequate site, but also for the continuous characterization of the medium as a function of time. Over the two last decades, the Baikal collaboration has been measuring the optical properties of the deep water in Lake Baikal (Siberia) where, since April 1998, the neutrino telescope NT-200 is in operation. Measurements have been made with custom devices. The NEMO Collaboration, aiming at the construction of a km3 Cherenkov neutrino detector in the Mediterranean Sea, has developed an experimental setup for the measurement of oceanographic and optical properties of deep sea water. This setup is based on a commercial transmissometer. During a joint campaign of the two collaborations in March and April 2001, light absorption, scattering and attenuation in water have been measured. The results are compatible with previous ones reported by the Baikal Collaboration and show convincing agreement between the two experimental techniques.
TAB2 Is Essential for Prevention of Apoptosis in Fetal Liver but Not for Interleukin-1 Signaling
Sanjo, Hideki; Takeda, Kiyoshi; Tsujimura, Tohru; Ninomiya-Tsuji, Jun; Matsumoto, Kunihiro; Akira, Shizuo
2003-01-01
The proinflammatory cytokine interleukin-1 (IL-1) transmits a signal via several critical cytoplasmic proteins such as MyD88, IRAKs and TRAF6. Recently, serine/threonine kinase TAK1 and TAK1 binding protein 1 and 2 (TAB1/2) have been identified as molecules involved in IL-1-induced TRAF6-mediated activation of AP-1 and NF-κB via mitogen-activated protein (MAP) kinases and IκB kinases, respectively. However, their physiological functions remain to be clarified. To elucidate their roles in vivo, we generated TAB2-deficient mice. The TAB2 deficiency was embryonic lethal due to liver degeneration and apoptosis. This phenotype was similar to that of NF-κB p65-, IKKβ-, and NEMO/IKKγ-deficient mice. However, the IL-1-induced activation of NF-κB and MAP kinases was not impaired in TAB2-deficient embryonic fibroblasts. These findings demonstrate that TAB2 is essential for embryonic development through prevention of liver apoptosis but not for the IL-1 receptor-mediated signaling pathway. PMID:12556483
Salamone, Francesco; Danza, Ludovico; Meroni, Italo; Pollastro, Maria Cristina
2017-04-11
nEMoS (nano Environmental Monitoring System) is a 3D-printed device built following the Do-It-Yourself (DIY) approach. It can be connected to the web and it can be used to assess indoor environmental quality (IEQ). It is built using some low-cost sensors connected to an Arduino microcontroller board. The device is assembled in a small-sized case and both thermohygrometric sensors used to measure the air temperature and relative humidity, and the globe thermometer used to measure the radiant temperature, can be subject to thermal effects due to overheating of some nearby components. A thermographic analysis was made to rule out this possibility. The paper shows how the pervasive technique of additive manufacturing can be combined with the more traditional thermographic techniques to redesign the case and to verify the accuracy of the optimized system in order to prevent instrumental systematic errors in terms of the difference between experimental and actual values of the above-mentioned environmental parameters.
Osorio, Fernando G.; Bárcena, Clea; Soria-Valles, Clara; Ramsay, Andrew J.; de Carlos, Félix; Cobo, Juan; Fueyo, Antonio; Freije, José M.P.; López-Otín, Carlos
2012-01-01
Alterations in the architecture and dynamics of the nuclear lamina have a causal role in normal and accelerated aging through both cell-autonomous and systemic mechanisms. However, the precise nature of the molecular cues involved in this process remains incompletely defined. Here we report that the accumulation of prelamin A isoforms at the nuclear lamina triggers an ATM- and NEMO-dependent signaling pathway that leads to NF-κB activation and secretion of high levels of proinflammatory cytokines in two different mouse models of accelerated aging (Zmpste24−/− and LmnaG609G/G609G mice). Causal involvement of NF-κB in accelerated aging was demonstrated by the fact that both genetic and pharmacological inhibition of NF-κB signaling prevents age-associated features in these animal models, significantly extending their longevity. Our findings provide in vivo proof of principle for the feasibility of pharmacological modulation of the NF-κB pathway to slow down the progression of physiological and pathological aging. PMID:23019125
Wante, Solomon Peter; Leung, David W M
2018-06-17
Tagetes patula (marigold) and Petunia grandiflora (petunia) have been shown to exhibit potential in phytoremediation of environmental pollutants including heavy metals and textile dyes. To investigate their phytoremediation potential of diesel, it was necessary to evaluate diesel phytotoxicity of these two ornamental plants. Marigold and petunia seeds were incubated, for 10 and 15 days, respectively, in deionised water contaminated with 0 to 4%, v/v, diesel in Petri dishes in a growth room with continuous lighting at 25 °C. It was found that as far as seed germination was concerned, petunia was less sensitive than marigold to 4% diesel in water. In contrast, petunia exhibited poorer seedling root growth than marigold in the presence of diesel contamination. This finding of differential sensitivity of these two ornamental plants to diesel-contaminated water during germination and seedling growth has not been reported before. Therefore, the implications of phytotoxicity evaluation and comparison between different species or genotypes of plants at both seed germination and postgermination seedling growth should both be taken into consideration in screening tolerant plants for phytoremediation.
Salamone, Francesco; Danza, Ludovico; Meroni, Italo; Pollastro, Maria Cristina
2017-01-01
nEMoS (nano Environmental Monitoring System) is a 3D-printed device built following the Do-It-Yourself (DIY) approach. It can be connected to the web and it can be used to assess indoor environmental quality (IEQ). It is built using some low-cost sensors connected to an Arduino microcontroller board. The device is assembled in a small-sized case and both thermohygrometric sensors used to measure the air temperature and relative humidity, and the globe thermometer used to measure the radiant temperature, can be subject to thermal effects due to overheating of some nearby components. A thermographic analysis was made to rule out this possibility. The paper shows how the pervasive technique of additive manufacturing can be combined with the more traditional thermographic techniques to redesign the case and to verify the accuracy of the optimized system in order to prevent instrumental systematic errors in terms of the difference between experimental and actual values of the above-mentioned environmental parameters. PMID:28398225
Chen, Te-Hao; Hsieh, Chun-Yu
2017-11-30
Aggressive behavior is crucial for maintaining social hierarchy in anemonefish. Endocrine disrupting chemicals such as EE2 may affect fish social hierarchy via disrupting their aggression. In this study, we aimed to characterize the effects of 17α-ethinylestradiol (EE2) on aggressive behavior and social hierarchy in the false clown anemonefish (Amphiprion ocellaris). In the laboratory experiment, juvenile anemonefish were randomly distributed to separated tanks to form small colonies of three individuals and were fed with EE2-dosed diet (100ng/g food) or a control diet for 90d. Through the experiment, each tank was videotaped and behavioral indicators of social status, including aggressive behavior, submissive response, and shelter utilization, were quantitatively analyzed from the videos. The EE2 exposure caused a higher frequency of intra-colonial aggressive interactions and a less stable social hierarchy. Our findings demonstrate the importance of examining the effects of endocrine disrupting chemicals on the social behavior of coral reef fish. Copyright © 2016 Elsevier Ltd. All rights reserved.
The role of satellite directional wave spectra for the improvement of the ocean-waves coupling
NASA Astrophysics Data System (ADS)
Aouf, Lotfi; Hauser, Danièle; Chapron, Bertrand
2017-04-01
Swell waves are well captured by the Synthetic Aperture Radar (SAR) which provides the directional wave spectra for waves roughly larger than 200 m. Since the launch of sentinel-1A and 1B SAR directional wave spectra are available to improve the swell wave forecasting and the coupling processes at the air-sea interface. Moreover next year CFOSAT mission will provide directional wave spectra for waves with wavelengths comprised between 70 to 500 m. This study aims to evaluate the assimilation of SAR and synthetic CFOSAT wave spectra on the coupling between the wave model MFWAM and the ocean model NEMO. Three coupling processes as described in Breivik et al. (2014) of Stokes-Coriolis forcing, the ocean side stress and the turbulence injected by the wave breaking in the ocean mixed layer have been used. a coupling run is performed with and without assimilation of directional wave spectra. the impact of SAR wave data on key parameters such as surface sea temperature, currents and salinity is investigated. Particular attention is carried out for ocean areas with swell dominant wave climate.
Long-term measurements of acoustic background noise in very deep sea
NASA Astrophysics Data System (ADS)
Riccobene, G.; NEMO Collaboration
2009-06-01
The NEMO (NEutrino Mediterranean Observatory) Collaboration installed, 25 km E offshore the port of Catania (Sicily) at 2000 m depth, an underwater laboratory to perform long-term tests of prototypes and new technologies for an underwater high energy neutrino km-scale detector in the Mediterranean Sea. In this framework the Collaboration deployed and successfully operated for about two years, starting from January 2005, an experimental apparatus for on-line monitoring of deep-sea noise. The station was equipped with four hydrophones and it is operational in the range 30 Hz-43 kHz. This interval of frequencies matches the range suitable for the proposed acoustic detection technique of high energy neutrinos. Hydrophone signals were digitized underwater at 96 kHz sampling frequency and 24 bits resolution. The stored data library, consisting of more than 2000 h of recordings, is a unique tool to model underwater acoustic noise at large depth, to characterize its variations as a function of environmental parameters, biological sources and human activities (ship traffic, etc.), and to determine the presence of cetaceans in the area.
NASA Astrophysics Data System (ADS)
Marson, Juliana M.; Myers, Paul G.; Hu, Xianmin
2017-04-01
The Atlantic Meridional Overturning Circulation (AMOC) is well known for carrying heat from low to high latitudes, moderating local temperatures. Numerical studies have examined the AMOC's variability under the influence of freshwater input to subduction and deep convections sites. However, an important source of freshwater has often been overlooked or misrepresented: icebergs. While liquid runoff decreases the ocean salinity near the coast, icebergs are a gradual and remote source of freshwater - a difference that affects sea ice cover, temperature, and salinity distribution in ocean models. Icebergs originated from the Greenland ice sheet, in particular, can affect the subduction process in Labrador Sea by decreasing surface water density. Our study aims to evaluate the distribution of icebergs originated from Greenland and their contribution to freshwater input in the North Atlantic. To do that, we use an interactive iceberg module coupled with the Nucleus for European Modelling of the Ocean (NEMO v3.4), which will calve icebergs from Greenland according to rates established by Bamber et al. (2012). Details on the distribution and trajectory of icebergs within the model may also be of use for understanding potential navigation threats, as shipping increases in northern waters.
Olaparib in Treating Patients With Metastatic or Advanced Urothelial Cancer With DNA-Repair Defects
2018-06-14
Abnormal DNA Repair; ATM Gene Mutation; ATR Gene Mutation; BAP1 Gene Mutation; BARD1 Gene Mutation; BLM Gene Mutation; BRCA1 Gene Mutation; BRCA2 Gene Mutation; BRIP1 Gene Mutation; CHEK1 Gene Mutation; CHEK2 Gene Mutation; FANCC Gene Mutation; FANCD2 Gene Mutation; FANCE Gene Mutation; FANCF Gene Mutation; MEN1 Gene Mutation; Metastatic Urothelial Carcinoma; MLH1 Gene Mutation; MSH2 Gene Mutation; MSH6 Gene Mutation; MUTYH Gene Mutation; NPM1 Gene Mutation; PALB2 Gene Mutation; PMS2 Gene Mutation; POLD1 Gene Mutation; POLE Gene Mutation; PRKDC Gene Mutation; RAD50 Gene Mutation; RAD51 Gene Mutation; SMARCB1 Gene Mutation; Stage III Bladder Urothelial Carcinoma AJCC v6 and v7; Stage IV Bladder Urothelial Carcinoma AJCC v7; STK11 Gene Mutation; Urothelial Carcinoma
FGF signaling supports Drosophila fertility by regulating development of ovarian muscle tissues
Irizarry, Jihyun; Stathopoulos, Angelike
2015-01-01
The thisbe (ths) gene encodes a Drosophila fibroblast growth factor (FGF), and mutant females are viable but sterile suggesting a link between FGF signaling and fertility. Ovaries exhibit abnormal morphology including lack of epithelial sheaths, muscle tissues that surround ovarioles. Here we investigated how FGF influences Drosophila ovary morphogenesis and identified several roles. Heartless (Htl) FGF receptor was found expressed within somatic cells at the larval and pupal stages, and phenotypes were uncovered using RNAi. Differentiation of terminal filament cells was affected, but this effect did not alter ovariole number. In addition, proliferation of epithelial sheath progenitors, the apical cells, was decreased in both htl and ths mutants, while ectopic expression of the Ths ligand led to these cells’ over-proliferation suggesting that FGF signaling supports ovarian muscle sheath formation by controlling apical cell number in the developing gonad. Additionally, live imaging of adult ovaries was used to show that htl RNAi mutants, hypomorphic mutants in which epithelial sheaths are present, exhibit abnormal muscle contractions. Collectively, our results demonstrate that proper formation of ovarian muscle tissues is regulated by FGF signaling in the larval and pupal stages through control of apical cell proliferation and is required to support fertility. PMID:25958090
ERBB2 Deficiency Alters an E2F-1-Dependent Adaptive Stress Response and Leads to Cardiac Dysfunction
Perry, Marie-Claude; Dufour, Catherine R.; Eichner, Lillian J.; Tsang, David W. K.; Deblois, Geneviève; Muller, William J.
2014-01-01
The tyrosine kinase receptor ERBB2 is required for normal development of the heart and is a potent oncogene in breast epithelium. Trastuzumab, a monoclonal antibody targeting ERBB2, improves the survival of breast cancer patients, but cardiac dysfunction is a major side effect of the drug. The molecular mechanisms underlying how ERBB2 regulates cardiac function and why trastuzumab is cardiotoxic remain poorly understood. We show here that ERBB2 hypomorphic mice develop cardiac dysfunction that mimics the side effects observed in patients treated with trastuzumab. We demonstrate that this phenotype is related to the critical role played by ERBB2 in cardiac homeostasis and physiological hypertrophy. Importantly, genetic and therapeutic reduction of ERBB2 activity in mice, as well as ablation of ERBB2 signaling by trastuzumab or siRNAs in human cardiomyocytes, led to the identification of an impaired E2F-1-dependent genetic program critical for the cardiac adaptive stress response. These findings demonstrate the existence of a previously unknown mechanistic link between ERBB2 and E2F-1 transcriptional activity in heart physiology and trastuzumab-induced cardiac dysfunction. PMID:25246633
Rossi, Massimiliano; Chatron, Nicolas; Labalme, Audrey; Ville, Dorothée; Carneiro, Maryline; Edery, Patrick; des Portes, Vincent; Lemke, Johannes R; Sanlaville, Damien; Lesca, Gaetan
2017-02-01
We report on two consanguineous sibs affected with severe intellectual disability and autistic features due to a homozygous missense variant of GRIN1. Massive parallel sequencing was performed using a gene panel including 450 genes related to intellectual disability and autism spectrum disorders. We found a homozygous missense variation of GRIN1 (c.679G>C; p.(Asp227His)) in the two affected sibs, which was inherited from both unaffected heterozygous parents. Heterozygous variants of GRIN1, encoding the GluN1 subunit of the NMDA receptor, have been reported in patients with neurodevelopmental disorders including epileptic encephalopathy, severe intellectual disability, and movement disorders. The p.(Asp227His) variant is located in the same aminoterminal protein domain as the recently published p.(Arg217Trp), which was found at the homozygous state in two patients with a similar phenotype of severe intellectual disability and autistic features but without epilepsy. In silico predictions were consistent with a deleterious effect. The present findings further expand the clinical spectrum of GRIN1 variants and support the existence of hypomorphic variants causing severe neurodevelopmental impairment with autosomal recessive inheritance.