Science.gov

Sample records for hyporheic zone affect

  1. Nutrient cycling in bedform induced hyporheic zones

    NASA Astrophysics Data System (ADS)

    Bardini, L.; Boano, F.; Cardenas, M. B.; Revelli, R.; Ridolfi, L.

    2012-05-01

    The hyporheic zone is an ecotone connecting the stream and groundwater ecosystem that plays a significant role for stream biogeochemistry. Water exchange across the stream-sediment interface and biogeochemical reactions in the streambed concur to affect subsurface solute concentrations and eventually nutrient cycling in the fluvial corridor. In this paper we investigate the interplay of hydrological and biogeochemical processes in a duned streambed and their effect on spatial distribution of solutes. We employ a numerical model to simulate the turbulent water flow and the pressure distribution over the dunes, and then to evaluate the flow field and the biogeochemical reactions in the hyporheic sediments. Sensitivity analyses are performed to analyze the influence of hydrological and chemical properties of the system on solute reaction rates. The results demonstrate the effect of stream velocity and sediment permeability on the chemical zonation. Changing sediment permeability as well as stream velocity directly affects the nutrient supply and the residence times in the streambed, thus controlling the reaction rates under the dune. Stream-water quality is also shown to influence the reactive behavior of the sediments. In particular, the availability of dissolved organic carbon determines whether the streambed acts as a net sink or source of nitrate. This study represents a step towards a better understanding of the complex interactions between hydrodynamical and biogeochemical processes in the hyporheic zone.

  2. Nitrogen processing in the hyporheic zone and its response to stream-groundwater interactions

    NASA Astrophysics Data System (ADS)

    Grant, Stanley; Azizian, Morvarid; Boano, Fulvio

    2016-04-01

    Modeling and experimental studies have shown that stream-groundwater interactions reduce hyporheic exchange, but the implications of this observation for hyporheic zone function are not yet clear. In this study we develop and test a simple process-based model for nitrate cycling in the hyporheic zone of a gaining or losing stream. Our model reproduces field measurements of nitrate uptake velocity and predicts that stream-groundwater interactions: (1) reduce hyporheic exchange; (2) reduce the residence time of water in the hyporheic zone; (3) slow denitrification; and (4) can cause stream sediments to switch from a net sink to source of nitrate. Stream-groundwater interactions attenuate denitrification across at least two scales of hyporheic exchange (fluvial dunes and riffle-pool bedforms). These results suggest that changes in regional groundwater hydrology (e.g., brought on by climate change) can indirectly affect stream nitrogen budgets by altering the form and function of the hyporheic zone.

  3. Temporal Hyporheic Zone Response to Water Table Fluctuations.

    PubMed

    Malzone, Jonathan M; Anseeuw, Sierra K; Lowry, Christopher S; Allen-King, Richelle

    2016-03-01

    Expansion and contraction of the hyporheic zone due to temporal hydrologic changes between stream and riparian aquifer influence the biogeochemical cycling capacity of streams. Theoretical studies have quantified the control of groundwater discharge on the depth of the hyporheic zone; however, observations of temporal groundwater controls are limited. In this study, we develop the concept of groundwater-dominated differential hyporheic zone expansion to explain the temporal control of groundwater discharge on the hyporheic zone in a third-order stream reach flowing through glacially derived terrain typical of the Great Lakes region. We define groundwater-dominated differential expansion of the hyporheic zone as: differing rates and magnitudes of hyporheic zone expansion in response to seasonal vs. storm-related water table fluctuation. Specific conductance and vertical hydraulic gradient measurements were used to map changes in the hyporheic zone during seasonal water table decline and storm events. Planar and riffle beds were monitored in order to distinguish the cause of increasing hyporheic zone depth. Planar bed seasonal expansion of the hyporheic zone was of a greater magnitude and longer in duration (weeks to months) than storm event expansion (hours to days). In contrast, the hyporheic zone beneath the riffle bed exhibited minimal expansion in response to seasonal groundwater decline compared to storm related expansion. Results indicated that fluctuation in the riparian water table controlled seasonal expansion of the hyporheic zone along the planar bed. This groundwater induced hyporheic zone expansion could increase the potential for biogeochemical cycling and natural attenuation.

  4. [Research advances in macroinvertebrate ecology of the stream hyporheic zone].

    PubMed

    Zhang, Yue-Wei; Yuan, Xing-Zhong; Liu, Hong; Ren, Hai-Qing

    2014-11-01

    The stream hyporheic zone is an ecotone of surface water-ground water interactions, which is rich in biodiversity, and is an important component of stream ecosystem. The macroinvertebrates, which are at the top of food webs in the hyporheic zone to directly influence the matter and energy dynamics of the hyporheic zone, and are potential indicators of river ecological health to adjust the function of environment purification and ecological buffer. The macroinvertebrates in the hyporheic zone are divided into three categories: stygoxenes, stygophiles and stygobites. The key factors which influenced macroinvertebrates distribution in the hyporheic zone are physical size of interstitial spaces, interstitial current velocity, dissolved oxygen (DO), water temperature, available organic matter, hydraulic conductivity and hydraulic retention time. A suitable sampling method should be used for diverse research purposes in the special ecological interface. In the future, some necessary researches should focus on the life-history and life history strategy of the macroinvertebrates in the hyporheic zone, the quantitative analysis on the matter and energy dynamics in the ecological system of stream, the assessment systems of river ecological health based on the macroinvertebrates of the stream hyporheic zone, and the ecological significance of the hyporheic zone as a refuge for distribution and evolution of the macroinvertebrates.

  5. Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance

    USGS Publications Warehouse

    Harvey, J.W.; Fuller, C.C.

    1998-01-01

    We determined the role of the hyporheic zone (the subsurface zone where stream water and shallow groundwater mix) in enhancing microbially mediated oxidation of dissolved manganese (to form manganese precipitates) in a drainage basin contaminated by copper mining. The fate of manganese is of overall importance to water quality in Pinal Creek Basin, Arizona, because manganese reactions affect the transport of trace metals. The basin-scale role of the hyporheic zone is difficult to quantify because stream-tracer studies do not always reliably characterize the cumulative effects of the hyporheic zone. This study determined cumulative effects of hyporheic reactions in Pinal Creek basin by characterizing manganese uptake at several spatial scales (stream-reach scale, hyporheicflow-path scale, and sediment-grain scale). At the stream-reach scale a one-dimensional stream-transport model (including storage zones to represent hyporheic flow paths) was used to determine a reach-averaged time constant for manganese uptake in hyporheic zones, 1/??(s), of 1.3 hours, which was somewhat faster but still similar to manganese uptake time constants that were measured directly in centimeter-scale hyporheic flow paths (1/??(h) = 2.6 hours), and in laboratory batch experiments using streambed sediment (1/?? = 2.7 hours). The modeled depths of subsurface storage zones (d(s) = 4-17 cm) and modeled residence times of water in storage zones (t(s) = 3-12 min) were both consistent with direct measurements in hyporheic flow paths (d(h) = 0-15 cm, and t(h) = 1-25 min). There was also good agreement between reach-scale modeling and direct measurements of the percentage removal of dissolved manganese in hyporheic flow paths (f(s) = 8.9%, and f(h) = 9.3%). Manganese uptake experiments in the laboratory using sediment from Pinal Creek demonstrated (through comparison of poisoned and unpoisoned treatments) that the manganese removal process was enhanced by microbially mediated oxidation. The

  6. Determining long time-scale hyporheic zone flow paths in Antarctic streams

    USGS Publications Warehouse

    Gooseff, M.N.; McKnight, Diane M.; Runkel, R.L.; Vaughn, B.H.

    2003-01-01

    hyporheic zones, in which slower biogeochemical reaction rates may affect stream-water chemistry at longer time-scales. Copyright ?? 2003 John Wiley & Sons, Ltd.

  7. Influence of the Hyporheic Zone on Supersaturated Gas Exposure to Incubating Chum Salmon

    SciTech Connect

    Arntzen, Evan V.; Geist, David R.; Murray, Katherine J.; Vavrinec, John; Dawley, Earl M.; Schwartz, Dennis E.

    2009-12-01

    Supersaturated total dissolved gas (TDG) is elevated seasonally in the lower Columbia River, with surface water concentrations approaching 120% saturation of TDG. Chum salmon (Oncorhynchus keta) embryos incubating in nearby spawning areas could be affected if depth-compensated TDG concentrations within the hyporheic zone exceed 103% TDG. The objective of this study was to determine if TDG of the hyporheic zone in two chum salmon spawning areas -- one in a side channel near Ives Island, Washington, and another on the mainstem Columbia River near Multnomah Falls, Oregon -- was affected by the elevated TDG of the surface water. Depth-compensated hyporheic TDG did not exceed 103% at the Multnomah Falls site. However, in the Ives Island area, chum salmon redds were exposed to TDG greater than 103% for more than 600 hours. In response to river depth fluctuations, TDG varied significantly in the Ives Island area, suggesting increased interaction between the hyporheic zone and surface water at that site. We conclude from this study that the interaction between surface water and the hyporheic zone affects the concentration of TDG within the hyporheic zone directly via physical mixing as well as indirectly by altering water chemistry and thus dissolved gas solubility. These interactions are important considerations when estimating TDG exposure within egg pocket environments, facilitating improved exposure estimates, and enabling managers to optimize recovery strategies.

  8. Flow regulation effects on the hydrogeochemistry of the hyporheic zone in boreal rivers.

    PubMed

    Siergieiev, D; Widerlund, A; Ingri, J; Lundberg, A; Öhlander, B

    2014-11-15

    River-aquifer interfaces are essential for ecosystem functioning in terms of nutrient exchange and biological habitat, but are greatly threatened world-wide. This study examined geochemical aspects of river-aquifer interaction in one regulated and one unregulated boreal river in Northern Sweden to determine whether the geochemical functioning of the hyporheic zone is affected by hydrological alterations, e.g. regulated river discharge and river-aquifer connectivity. In the unregulated Kalix River, the hyporheic pore water was well-oxygenated with orthogonal fluxes (≈0.6-0.7 m d(-1)) and acted as a sink for Fe, Mn, Al, NH4, and Ca, with fractional losses of 95%, 92%, 45%, 31%, and 15%, respectively. A corresponding elevation in the concentrations of these elements in the hyporheic sediment was observed, with higher saturation indices of Fe-, Mn-, and Al-bearing secondary minerals in hyporheic waters. In the regulated Lule River, hydraulic connectivity at the river-aquifer interface was altered by the presence of a clogging layer (0.04 m d(-1)). In addition, the river discharge oscillated daily, severely reducing exchange flows across the riverbed (<0.01 m d(-1)). As a result, the hyporheic pore water was suboxic, with elevated concentrations of filtered Fe and Mn (fractional increases of ≈3700% and ≈2500%, respectively) and other solutes (NH4, Si, S, Ca). A conceptual model revealed functional differences between geochemical features of the hyporheic zone of regulated and unregulated rivers. Overall, the results showed that hyporheic processes are altered along regulated rivers, with resulting impacts on the geochemistry of riverine, riparian and related marine ecosystems.

  9. Physicochemical characteristics of the hyporheic zone affect redd site selection of chum salmon and fall chinook salmon in the Columbia River

    SciTech Connect

    Geist, David R. ); Hanrahan, Timothy P. ); Arntzen, Evan V. ); McMichael, Geoffrey A. ); Murray, Christopher J. ); Chien, Yi-Ju )

    2002-11-01

    Chum salmon Oncorhynchus keta and fall chinook salmon O. tshawytscha spawned at different locations in the vicinity of Ives Island, Washington, a side channel to the Columbia River downstream of Bonneville Dam. We hypothesized that measurements of water depth, substrate size, and water velocity alone would not explain the separation in spawning areas and began a 2-year investigation of physicochemical characteristics of the hyporheic zone. We found that chum salmon spawned in upwelling water that was significantly warmer than the surrounding river water. In contrast, fall chinook salmon constructed redds at downwelling sites where there was no difference in temperature between the river and its bed. Understanding the specific features that are important for chum salmon and fall chinook salmon redd site selection at Ives Island will be useful to resource managers attempting to maximize available spawning habitat for these species within the constraints imposed by other water resource needs.

  10. MTBE, TBA, and TAME attenuation in diverse hyporheic zones.

    PubMed

    Landmeyer, James E; Bradley, Paul M; Trego, Donald A; Hale, Kevin G; Haas, Joseph E

    2010-01-01

    Groundwater contamination by fuel-related compounds such as the fuel oxygenates methyl tert-butyl ether (MTBE), tert-butyl alcohol (TBA), and tert-amyl methyl ether (TAME) presents a significant issue to managers and consumers of groundwater and surface water that receives groundwater discharge. Four sites were investigated on Long Island, New York, characterized by groundwater contaminated with gasoline and fuel oxygenates that ultimately discharge to fresh, brackish, or saline surface water. For each site, contaminated groundwater discharge zones were delineated using pore water geochemistry data from 15 feet (4.5 m) beneath the bottom of the surface water body in the hyporheic zone and seepage-meter tests were conducted to measure discharge rates. These data when combined indicate that MTBE, TBA, and TAME concentrations in groundwater discharge in a 5-foot (1.5-m) thick section of the hyporheic zone were attenuated between 34% and 95%, in contrast to immeasurable attenuation in the shallow aquifer during contaminant transport between 0.1 and 1.5 miles (0.1 to 2.4 km). The attenuation observed in the hyporheic zone occurred primarily by physical processes such as mixing of groundwater and surface water. Biodegradation also occurred as confirmed in laboratory microcosms by the mineralization of U- (14)C-MTBE and U-(14)C-TBA to (14)CO(2) and the novel biodegradation of U- (14)C-TAME to (14)CO(2) under oxic and anoxic conditions. The implication of fuel oxygenate attenuation observed in diverse hyporheic zones suggests an assessment of the hyporheic zone attenuation potential (HZAP) merits inclusion as part of site assessment strategies associated with monitored or engineered attenuation.

  11. MTBE, TBA, and TAME attenuation in diverse hyporheic zones

    USGS Publications Warehouse

    Landmeyer, J.E.; Bradley, P.M.; Trego, D.A.; Hale, K.G.; Haas, J.E.

    2010-01-01

    Groundwater contamination by fuel-related compounds such as the fuel oxygenates methyl tert-butyl ether (MTBE), tert-butyl alcohol (TBA), and tert-amyl methyl ether (TAME) presents a significant issue to managers and consumers of groundwater and surface water that receives groundwater discharge. Four sites were investigated on Long Island, New York, characterized by groundwater contaminated with gasoline and fuel oxygenates that ultimately discharge to fresh, brackish, or saline surface water. For each site, contaminated groundwater discharge zones were delineated using pore water geochemistry data from 15 feet (4.5 m) beneath the bottom of the surface water body in the hyporheic zone and seepage-meter tests were conducted to measure discharge rates. These data when combined indicate that MTBE, TBA, and TAME concentrations in groundwater discharge in a 5-foot (1.5-m) thick section of the hyporheic zone were attenuated between 34% and 95%, in contrast to immeasurable attenuation in the shallow aquifer during contaminant transport between 0.1 and 1.5 miles (0.1 to 2.4 km). The attenuation observed in the hyporheic zone occurred primarily by physical processes such as mixing of groundwater and surface water. Biodegradation also occurred as confirmed in laboratory microcosms by the mineralization of U- 14C-MTBE and U- 14C-TBA to 14CO2 and the novel biodegradation of U- 14C-TAME to 14CO2 under oxic and anoxic conditions. The implication of fuel oxygenate attenuation observed in diverse hyporheic zones suggests an assessment of the hyporheic zone attenuation potential (HZAP) merits inclusion as part of site assessment strategies associated with monitored or engineered attenuation. ?? 2009 National Ground Water Association.

  12. Hyporheic zone denitrification: controls on effective reaction depth and contribution to whole-stream mass balance

    USGS Publications Warehouse

    Harvey, Judson W.; Böhlke, John Karl; Voytek, Mary A.; Scott, Durelle; Tobias, Craig R.

    2013-01-01

    Stream denitrification is thought to be enhanced by hyporheic transport but there is little direct evidence from the field. To demonstrate at a field site, we injected 15NO3−, Br (conservative tracer), and SF6 (gas exchange tracer) and compared measured whole-stream denitrification with in situ hyporheic denitrification in shallow and deeper flow paths of contrasting geomorphic units. Hyporheic denitrification accounted for between 1 and 200% of whole-stream denitrification. The reaction rate constant was positively related to hyporheic exchange rate (greater substrate delivery), concentrations of substrates DOC and nitrate, microbial denitrifier abundance (nirS), and measures of granular surface area and presence of anoxic microzones. The dimensionless product of the reaction rate constant and hyporheic residence time, λhzτhz define a Damköhler number, Daden-hz that was optimal in the subset of hyporheic flow paths where Daden-hz ≈ 1. Optimal conditions exclude inefficient deep pathways transport where substrates are used up and also exclude inefficient shallow pathways that require repeated hyporheic entries and exits to complete the reaction. The whole-stream reaction significance, Rs (dimensionless), was quantified by multiplying Daden-hz by the proportion of stream discharge passing through the hyporheic zone. Together these two dimensionless metrics, one flow-path scale and the other reach-scale, quantify the whole-stream significance of hyporheic denitrification. One consequence is that the effective zone of significant denitrification often differs from the full depth of the hyporheic zone, which is one reason why whole-stream denitrification rates have not previously been explained based on total hyporheic-zone metrics such as hyporheic-zone size or residence time.

  13. Hyporheic Zone Management: Nitrate Removal from Treated Wastewater Effluent using an Engineered Hyporheic Zone as a Bioreactor

    NASA Astrophysics Data System (ADS)

    Esteban, M.; Herzog, S.; Jones, Z.; Sharp, J.

    2014-12-01

    The hyporheic zone (HZ) is a natural bioreactor within streambed sediments. The dynamic interface of streamwater and groundwater creates a diverse microbial community that has potential to provide substantial contaminant removal. However, insufficient water exchange between the stream and the HZ is often a limiting factor for improved streamwater quality. Modular subsurface hydraulic conductivity (K) modifications with the addition of organic carbon substrates have been proposed as a means to increase hyporheic exchange and enhance natural water treatment via denitrification. Subsurface K modification flow paths are well understood from previous computer modeling and tracer testing studies, but treatment capabilities have yet to be tested in physical systems. This research applied chemical and molecular biological techniques to investigate nitrate removal and microbial community structure in a bench-scale stream simulation with subsurface K and carbon modifications. The system received treated wastewater effluent containing soluble nitrogen primarily in the form of nitrate at concentrations fluctuating from 4-7mg/L. To gain insight into denitrification potential and relative microbial activity along hyporheic flow paths, profiles of nitrate fate, total bacterial presence and the density of the denitrification genes (nirS and nirK) were quantified spatially. Nitrate tests showed a decrease from ~7mg/L in the influent to less than 1mg/L along hyporheic flowpaths. This was accompanied by an increase in 16S rRNA copies (representative of total bacterial biomass) from approximately 200000 gene copies in the influent zone to 630000 gene copies in the effluent zone. Also, the bacterial communities had a greater presence in the upper 6cm of the sediment layer with nirS amplifying 4-5 cycles earlier than nirK in the PCR analysis. The nirS gene concentration was nearly an order of magnitude greater in the effluent zone than the carbon modified zone, suggesting that leached

  14. Mercury and methylmercury dynamics in the hyporheic zone of an Oregon stream

    USGS Publications Warehouse

    Hinkle, Stephen R.; Bencala, Kenneth E.; Wentz, Dennis A.; Krabbenhoft, David P.

    2014-01-01

    The role of the hyporheic zone in mercury (Hg) cycling has received limited attention despite the biogeochemically active nature of this zone and, thus, its potential to influence Hg behavior in streams. An assessment of Hg geochemistry in the hyporheic zone of a coarse-grained island in the Coast Fork Willamette River in Oregon, USA, illustrates the spatially dynamic nature of this region of the stream channel for Hg mobilization and attenuation. Hyporheic flow through the island was evident from the water-table geometry and supported by hyporheic-zone chemistry distinct from that of the bounding groundwater system. Redox-indicator species changed abruptly along a transect through the hyporheic zone, indicating a biogeochemically reactive stream/hyporheic-zone continuum. Dissolved organic carbon (DOC), total Hg, and methylmercury (MeHg) concentrations increased in the upgradient portion of the hyporheic zone and decreased in the downgradient region. Total Hg (collected in 2002 and 2003) and MeHg (collected in 2003) were correlated with DOC in hyporheic-zone samples: r2=0.63 (total Hg-DOC, 2002), 0.73 (total Hg-DOC, 2003), and 0.94 (MeHg-DOC, 2003). Weaker Hg/DOC association in late summer 2002 than in early summer 2003 may reflect seasonal differences in DOC reactivity. Observed correlations between DOC and both total Hg and MeHg reflect the importance of DOC for Hg mobilization, transport, and fate in this hyporheic zone. Correlations with DOC provide a framework for conceptualizing and quantifying Hg and MeHg dynamics in this region of the stream channel, and provide a refined conceptual model of the role hyporheic zones may play in aquatic ecosystems.

  15. Quantifying the Role of Hyporheic Zone of Gravel Bed Rivers in the Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Marzadri, A.; Tonina, D.; Bellin, A.

    2008-12-01

    The hyporheic exchange resulting from the interaction between the stream and its surrounding saturated streambed sediments, has a profound impact on fluvial ecosystems. Bedforms cause near bed pressure gradients that induce a complex flow pattern within the hyporheic zone. This surface-subsurface water exchange influences important processes occurring at the interface between surface and subsurface waters, including nutrients and solute export. In the present work, we focus on the export of ammonium (NH4+), nitrate (NO3-) and their fate within the streambed of a gravel bed river. We modelled the hyporheic exchange by combining analytical solutions of the intra-gravel flows induced by alternate bars with a set of transport equations for NH4+ and NO3- coupled with first order kinetics. Transport is solved by particle tracking, assuming that local dispersion is negligible and considering that temperature affects the reaction rate coefficients. With this simple, yet powerful, model, we studied the interplay between streambed morphology and nitrogen fate within the hyporheic zone. We observed that while the hyporheic zone acts as a sink of ammonium to an extent that depends on the nitrification rate, it may act as a source or a sink of nitrate. Additionally, it can influence the emission of nitrogen gases (N2 and N2O), depending on the ratio between ammonium and nitrate concentrations in the stream and on the role of biomass uptake. We also observed that because of the shorter residence time nitrification dominates in small steep streams, while denitrification plays a major role in low-gradient large streams. Furthermore, the emission of nitrogen gases increases with the pore water temperature in small steep streams, but not with the thickness of alluvium depth, due to fact that the hyporheic flow mostly develops near the surface. On the other hand, the emission of nitrogen gases increases with both temperature and alluvium depth in low-gradient streams. The overall

  16. Seasonal variation of water quality in a lateral hyporheic zone with response to dam operations

    NASA Astrophysics Data System (ADS)

    Chen, X.; Chen, L.; Zhao, J.

    2015-12-01

    Aquatic environment of lateral hyporheic zone in a regulated river were investigated seasonally under fluctuated water levels induced by dam operations. Groundwater levels variations in preassembled wells and changes in electronic conductivity (EC), dissolved oxygen (DO) concentration, water temperature and pH in the hyporheic zone were examined as environmental performance indicators for the water quality. Groundwater tables in wells were highly related to the river water levels that showed a hysteresis pattern, and the lag time is associated with the distances from wells to the river bank. The distribution of DO and EC were strongly related to the water temperature, indicating that the cold water released from up-reservoir could determine the biochemistry process in the hyporheic zone. Results also showed that the hyporheic water was weakly alkaline in the study area but had a more or less uniform spatial distribution. Dam release-storage cycles were the dominant factor in changing lateral hyporheic flow and water quality.

  17. Impact of artificial freshet releases on channel hydraulics and the hyporheic zone of a gravel bed river.

    NASA Astrophysics Data System (ADS)

    Gibbins, C.; Soulsby, C.; Malcolm, I.

    2009-04-01

    The hyporheic zone has been the focus of considerable research and management interest in the last decade. An area of particular interest has been the temporal variability of hyporheic exchange in relation to changing hydrological conditions. Recent studies have shown that the physical and chemical characteristics of the hyporheic zone are highly dynamic, with variations in water chemistry reflecting changing source water contributions in response to changing in-stream hydraulics and water table elevation.. While the implications of natural discharge variability for groundwater-surface water interactions and hyporheic chemistry are increasingly well studied, less attention has been paid to the effects of artificial changes in discharge such as those which occur in regulated rivers. Artificial reservoir releases are now made in many regulated rivers as part of environmental flow regimes. These releases may either be for geomorphic purposes (e.g. to ensure natural geomorphic processes such as sediment transport occur; so-called "flushing flows"), for water quality objectives (controlling stream water temperature or chemistry) or for ecological reasons (e.g. encourage the upstream migration of salmonids). Few studies have assessed whether such releases alter groundwater-surfacewater interactions and hence hyporheic water chemistry in affected reaches. Moreover, it is unclear how changes in post-impoundment sediment transport dynamics affect the physical structure of the hyporheic zone. This paper describes changes in stream hydraulics, hydraulic head and hyporheic water quality that occurred at sites in the River Lyon (Scotland) during an artificial summer freshet release from a HEP dam. The freshet lasted 12 hours and increased river discharge approximately 4-fold (from 1.2 to 5 m3 s-1). The magnitude of associated changes in velocity varied between riffle and pool habitats, with the maximum increase being from 0.2-0.6 m s-1. There were only subtle changes in

  18. Hydrology and Nitrogen Biogeochemistry in the Hyporheic Zone of a Geomorphically Degraded Urban Stream

    EPA Science Inventory

    Few studies have investigated the relationship between hydrology and nitrogen biogeochemistry in hyporheic zones of degraded urban streams despite significant national efforts to restore such streams. We examined relationships between hydrology and biogeochemistry in Minebank Ru...

  19. Hyporheic zone hydrologic science: A historical account of its emergence and a prospectus

    NASA Astrophysics Data System (ADS)

    Cardenas, M. Bayani

    2015-05-01

    The hyporheic zone, defined by shallow subsurface pathways through river beds and banks beginning and ending at the river, is an integral and unique component of fluvial systems. It hosts myriad hydrologically controlled processes that are potentially coupled in complex ways. Understanding these processes and the connections between them is critical since these processes are not only important locally but integrate to impact increasingly larger scale biogeochemical functioning of the river corridor up to the river network scale. Thus, the hyporheic zone continues to be a growing research focus for many hydrologists for more than half the history of Water Resources Research. This manuscript partly summarizes the historical development of hyporheic zone hydrologic science as gleaned from papers published in Water Resources Research, from the birth of the concept of the hyporheic zone as a hydrologic black box (sometimes referred to as transient storage zone), to its adolescent years of being torn between occasionally competing research perspectives of interrogating the hyporheic zone from a surface or subsurface view, to its mature emergence as an interdisciplinary research field that employs the wide array of state-of-the-art tools available to the modern hydrologist. The field is vibrant and moving in the right direction of addressing critical fundamental and applied questions with no clear end in sight in its growth. There are exciting opportunities for scientists that are able to tightly link the allied fields of geology, geomorphology, hydrology, geochemistry, and ecology to tackle the many open problems in hyporheic zone science.

  20. Carbon Dynamics in the Hyporheic Zone of a Headwater Mountain Stream in the Cascade Mountains, Oregon

    NASA Astrophysics Data System (ADS)

    Wondzell, S. M.; Corson-rikert, H.; Haggerty, R.; Dosch, N.

    2015-12-01

    We investigated carbon dynamics in the hyporheic zone of a steep, forested, headwater catchment in the Cascade Mountains of western Oregon, USA. Water samples were collected monthly from the stream and a well network between July and December 2013 and again in March 2014. Samples collected from the well network showed that DOC concentrations decreased, and that DIC concentrations increased, with median travel time through the hyporheic zone on all sample dates. Further, the magnitude of the observed increase in DIC was approximately 10-times too large to be explained by metabolism of stream-source DOC. We examined two alternative explanations: 1) that different source waters - either groundwater rich in DIC or lateral inputs of soil water rich in labile DOC that was subsequently metabolized to DIC - mixed with stream water and thereby accounted for the high concentrations of DIC observed in the hyporheic zone, or 2) that changes in the concentrations of DOC and DIC were best explained by in-situ biogeochemical processing of buried particulate organic matter. End-member mixing analyses showed that neither groundwater nor lateral inputs of soil water influenced carbon chemistry within the hyporheic zone. The analyses could not rule out leaching from the overlying unsaturated riparian soils as a potential source of DOC, but the rate of input from this source would have to be much smaller than the rate at which DOC was metabolized in the hyporheic zone because concentrations of DOC in the hyporheic zone were always lower than in the stream. Overall, our results suggest that particulate organic carbon, perhaps augmented with DOC leached from the overlying soils, is the primary source of organic carbon to the hyporheic zone. Further, these measurements suggest that riparian zones supply, via hyporheic exchange, a disproportionately large fraction of carbon to headwater streams and may therefore play an outsized role in the global carbon cycle.

  1. Cooling Along Hyporheic Pathlines in a Large River Riparian Zone

    EPA Science Inventory

    Floodplains can contribute to hyporheic cooling and moderation of temperature for rivers, but extent and magnitude are dependent on ground water hydrology. Here we illustrate the controls and dynamics of hyporheic cooling in the ground water of a large river floodplain with field...

  2. Focused groundwater controlled feedbacks into the hyporheic zone during baseflow recession.

    PubMed

    Malzone, Jonathan M; Lowry, Christopher S

    2015-01-01

    Groundwater surface water interaction in the hyporheic zone remains an important challenge for water resources management and ecosystem restoration. In heterogeneous stratified glacial sediments, reach-scale environments contain an uneven distribution of focused groundwater flow occurring simultaneously with diffusely discharging groundwater. This results in a variation of stream-aquifer interactions, where focused flow systems are able to temporally dominate exchange processes. The research presented here investigates the direct and indirect influences focused groundwater discharge exerts on the hyporheic zone during baseflow recession. Field results demonstrate that as diffuse sources of groundwater deplete during baseflow recession, focused groundwater discharge remains constant. During baseflow recession the hyporheic zone is unable to expand, while the high nitrate concentration from focused discharge changes the chemistry of the stream. The final result is a higher concentration of nitrate in the hyporheic zone as this altered surface water infiltrates into the subsurface. This indirect coupling of focused groundwater discharge and the hyporheic zone is unaccounted for in hyporheic studies at this time. Results indicate important implications for the potential reduction of agricultural degradation of water quality.

  3. Comparing the Biogeochemical Potential of Hyporheic Zones Driven by Different River Morphologies

    NASA Astrophysics Data System (ADS)

    Gomez, J. D.; Harvey, J. W.

    2013-12-01

    Channel morphology controls the hydrodynamics of hyporheic exchange and its residence times. As a result, it also constrains the hyporheic zone's biogeochemical processes that transform carbon, nutrients, metals, and contaminants and the hyporheic zone's net effect at the local, reach and watershed scales. Previous studies of different morphologies (e.g., meanders, bars, and smaller bedforms such as dunes) have mainly focused on the amount of exchange or, if biogeochemistry was involved, have been specific to a particular morphology. In this work, we present a quantitative intercomparison of the amount of exchange, residence time distributions (RTDs), and biogeochemical potential for four channel morphologies: ripples, dunes, bars, and meander bends. To this end, simple two-dimensional conceptualizations and semi-analytical solutions for the hyporheic zone's flow and transport are used. In general, all morphologies are characterized by heavy-tail RTDs, implying long-term memory to solute inputs. We hypothesize that even though meander bends induce larger hyporheic exchange per unit length of channel and longer residence times, substrate limitations result in less biogeochemical processing when compared with the cumulative effect of multiple bedforms. The models presented are a function of geometric and physical properties easily measured or constrained with field or remote sensing data. The simplicity of this approach allows for practical calculations of the hyporheic zone's exchange and biogeochemical potential over a broad range of scenarios and morphologies, making it a useful tool for experimental design, sampling, and watershed scale assessment.

  4. Reshaping of the hyporheic zone beneath river restoration structures: Flume and hydrodynamic experiments

    NASA Astrophysics Data System (ADS)

    Zhou, Tian; Endreny, Theodore A.

    2013-08-01

    In-channel stream restoration structures readjust surface water hydraulics, streambed pressure, and subsurface hyporheic exchange characteristics. In this study, we conducted flume experiments (pool-riffle amplitude of 0.03 m and wavelengths of 0.5 m) and computational fluid dynamic (CFD) simulations to quantify how restoration structures impacted hyporheic penetration depth, Dp, and hyporheic vertical discharge rate, Qv. Restoration structures were channel-spanning vanes with subsurface footers placed in the gravel bed at each riffle. Hyporheic vertical discharge rate was estimated by analyzing solute concentration decay data, and maximum hyporheic penetration depth was measured as the interface between hyporheic water and groundwater using dye tracing experiments. The CFD was verified with literature-based flume hydraulic data and with Dp and Qz observations, and the CFD was then used to document how Dp and Qz varied with flume discharge, Q, ranging from 1 to 15 L/s (3E + 03 < Re < 5E + 04). Flume experiments and CFD simulations showed that restoration structures increased Qz and decreased Dp, creating a shallower but higher flux hyporheic zone. Qz had a positive linear relationship with Q, while Dp initially grew as Q increased, but then shrunk when a hydraulic jump with low streambed pressured formed downstream of the structure. The restoration structures created counter-acting forces of increased downwelling head due to backwater effects, and increased upwelling due to low streambed pressure and standing waves downstream of the structure.

  5. Bacterial community structure and nitrogen transformation in hyporheic zones of arid-land streams

    NASA Astrophysics Data System (ADS)

    Zeglin, L. H.; Crenshaw, C. L.; Dahm, C. N.; Takacs-Vesbach, C.

    2007-12-01

    Hyporheic zones of desert streams can be areas of high biological activity and consequent nutrient transformation, particularly where land use change increases nutrient concentrations in a stream. Does hyporheic bacterial community composition vary, and does this biotic heterogeneity covary with water and nutrient supply? Bromide (Br-) and 15N-NO3- was injected for 24 hr in six streams (three "natural" reference streams, three streams in agricultural/urbanized catchments) in New Mexico and Arizona, USA. Four transects of 3 to 4 wells were placed along a longitudinal gradient within the study reach, and from these hyporheic water and gas samples were collected during and after each experiment. Gas samples were analyzed for O2, 15N2O, and 15N2. Hyporheic water samples were analyzed for major cations and anions, DOC, 15NO3- and 15NH4+. Bacterial diversity of hyporheic water was assessed using Denaturing Gradient Gel Electrophoresis (DGGE). There was high spatial and temporal variability in hyporheic bacterial community structure, connection with surface water and nutrient concentrations both within and among streams. For example, mean subsurface DGGE band richness per stream ranged from 9 to 21, and surface water comprised between 0 to 100 percent of hyporheic water in each well. There were strong differences in bacterial richness between streams (ANOVA, p < 0.001); however, this variability appeared related to salinity rather than differences in land use or nutrient concentration. 15NH4+ levels were higher in modified stream than reference stream subsurface waters, suggesting dissimilatory nitrate reduction to ammonium (DNRA) may be an important process in these hyporheic sediments. Our results to date suggest that though hyporheic microbial community structure is highly heterogeneous, this biological variability may be due to different factors than variability in stream nitrogen cycling function. Further work will identify dominant sequences within these bacterial

  6. Freeze core sampling to validate time-lapse resistivity monitoring of the hyporheic zone.

    PubMed

    Toran, Laura; Hughes, Brian; Nyquist, Jonathan; Ryan, Robert

    2013-01-01

    A freeze core sampler was used to characterize hyporheic zone storage during a stream tracer test. The pore water from the frozen core showed tracer lingered in the hyporheic zone after the tracer had returned to background concentration in collocated well samples. These results confirmed evidence of lingering subsurface tracer seen in time-lapse electrical resistivity tomographs. The pore water exhibited brine exclusion (ion concentrations in ice lower than source water) in a sediment matrix, despite the fast freezing time. Although freeze core sampling provided qualitative evidence of lingering tracer, it proved difficult to quantify tracer concentration because the amount of brine exclusion during freezing could not be accurately determined. Nonetheless, the additional evidence for lingering tracer supports using time-lapse resistivity to detect regions of low fluid mobility within the hyporheic zone that can act as chemically reactive zones of importance in stream health.

  7. Comparison of tracer methods to quantify hydrodynamic exchange within the hyporheic zone

    NASA Astrophysics Data System (ADS)

    Engelhardt, I.; Piepenbrink, M.; Trauth, N.; Stadler, S.; Kludt, C.; Schulz, M.; Schüth, C.; Ternes, T. A.

    2011-03-01

    SummaryHydrodynamic exchange between surface-water and groundwater was studied at a river located within the Rhine Valley in Germany. Piezometric pressure heads and environmental tracers such as temperature, stable isotopes, chloride, X-ray contrast media, and artificial sweetener were investigated within the hyporheic zone and river water plume. Vertical profiles of environmental tracers were collected using multi-level wells within the neutral up-gradient zone, beneath the river bed, and within the horizontal proximal and distal down-gradient zone. Infiltration velocities were calculated from pressure heads, temperature fluctuations and gradients. The amount of river water within groundwater was estimated from vertical profiles of chloride, stable isotopes, and persistent pharmaceuticals. Profiles of stable isotopes and chloride reveal the existence of down-welling within the shallow hyporheic zone that is generated by river bed irregularities. Due to down-welling an above-average migration of river water into the hyporheic zone establishes even under upward hydraulic pressure gradients. The investigated environmental tracers could not distinctively display short-time-infiltration velocities representative for flood waves, while average infiltration velocities calculated over several months are uniform displayed. Based on vertical temperature profiles the down-gradient migration of the river water plume could be observed even after long periods of effluent conditions and over a distance of 200 m from the river bank. X-ray contrast media and artificial sweeteners were observed in high concentrations within the proximal zone, but were not detected at a distance of 200 m from the river bank. Using temperature as environmental tracer within the hyporheic zone may result in overestimating the migration of pollutants within the river water plume as the process of natural attenuation will be neglected. Furthermore, temperature was not able to display the effect of down

  8. Tracking tracer breakthrough in the hyporheic zone using time‐lapse DC resistivity, Crabby Creek, Pennsylvania

    USGS Publications Warehouse

    Nyquist, Jonathan E.; Toran, Laura; Fang, Allison C.; Ryan, Robert J.; Rosenberry, Donald O.

    2010-01-01

    Characterization of the hyporheic zone is of critical importance for understanding stream ecology, contaminant transport, and groundwater‐surface water interaction. A salt water tracer test was used to probe the hyporheic zone of a recently re‐engineered portion of Crabby Creek, a stream located near Philadelphia, PA. The tracer solution was tracked through a 13.5 meter segment of the stream using both a network of 25 wells sampled every 5–15 minutes and time‐lapse electrical resistivity tomographs collected every 11 minutes for six hours, with additional tomographs collected every 100 minutes for an additional 16 hours. The comparison of tracer monitoring methods is of keen interest because tracer tests are one of the few techniques available for characterizing this dynamic zone, and logistically it is far easier to collect resistivity tomographs than to install and monitor a dense network of wells. Our results show that resistivity monitoring captured the essential shape of the breakthrough curve and may indicate portions of the stream where the tracer lingered in the hyporheic zone. Time‐lapse resistivity measurements, however, represent time averages over the period required to collect a tomographic data set, and spatial averages over a volume larger than captured by a well sample. Smoothing by the resistivity data inversion algorithm further blurs the resulting tomograph; consequently resistivity monitoring underestimates the degree of fine‐scale heterogeneity in the hyporheic zone.

  9. Differences in Hyporheic-Zone Microbial Community Structure along a Heavy-Metal Contamination Gradient

    PubMed Central

    Feris, Kevin; Ramsey, Philip; Frazar, Chris; Moore, Johnnie N.; Gannon, James E.; Holben, William E.

    2003-01-01

    The hyporheic zone of a river is nonphotic, has steep chemical and redox gradients, and has a heterotrophic food web based on the consumption of organic carbon entrained from downwelling surface water or from upwelling groundwater. The microbial communities in the hyporheic zone are an important component of these heterotrophic food webs and perform essential functions in lotic ecosystems. Using a suite of methods (denaturing gradient gel electrophoresis, 16S rRNA phylogeny, phospholipid fatty acid analysis, direct microscopic enumeration, and quantitative PCR), we compared the microbial communities inhabiting the hyporheic zone of six different river sites that encompass a wide range of sediment metal loads resulting from large base-metal mining activity in the region. There was no correlation between sediment metal content and the total hyporheic microbial biomass present within each site. However, microbial community structure showed a significant linear relationship with the sediment metal loads. The abundances of four phylogenetic groups (groups I, II, III, and IV) most closely related to α-, β-, and γ-proteobacteria and the cyanobacteria, respectively, were determined. The sediment metal content gradient was positively correlated with group III abundance and negatively correlated with group II abundance. No correlation was apparent with regard to group I or IV abundance. This is the first documentation of a relationship between fluvially deposited heavy-metal contamination and hyporheic microbial community structure. The information presented here may be useful in predicting long-term effects of heavy-metal contamination in streams and provides a basis for further studies of metal effects on hyporheic microbial communities. PMID:12957946

  10. Differences in hyporheic-zone microbial community structure along a heavy-metal contamination gradient.

    PubMed

    Feris, Kevin; Ramsey, Philip; Frazar, Chris; Moore, Johnnie N; Gannon, James E; Holben, William E

    2003-09-01

    The hyporheic zone of a river is nonphotic, has steep chemical and redox gradients, and has a heterotrophic food web based on the consumption of organic carbon entrained from downwelling surface water or from upwelling groundwater. The microbial communities in the hyporheic zone are an important component of these heterotrophic food webs and perform essential functions in lotic ecosystems. Using a suite of methods (denaturing gradient gel electrophoresis, 16S rRNA phylogeny, phospholipid fatty acid analysis, direct microscopic enumeration, and quantitative PCR), we compared the microbial communities inhabiting the hyporheic zone of six different river sites that encompass a wide range of sediment metal loads resulting from large base-metal mining activity in the region. There was no correlation between sediment metal content and the total hyporheic microbial biomass present within each site. However, microbial community structure showed a significant linear relationship with the sediment metal loads. The abundances of four phylogenetic groups (groups I, II, III, and IV) most closely related to alpha-, beta-, and gamma-proteobacteria and the cyanobacteria, respectively, were determined. The sediment metal content gradient was positively correlated with group III abundance and negatively correlated with group II abundance. No correlation was apparent with regard to group I or IV abundance. This is the first documentation of a relationship between fluvially deposited heavy-metal contamination and hyporheic microbial community structure. The information presented here may be useful in predicting long-term effects of heavy-metal contamination in streams and provides a basis for further studies of metal effects on hyporheic microbial communities.

  11. The dynamic response of hyporheic zone redox zonation after surface flow perturbation

    NASA Astrophysics Data System (ADS)

    Kaufman, M.; Zheng, L.; Cardenas, M. B.

    2015-12-01

    As water in a stream or river flows over ripples and other bedforms, differential surface pressures create bedform-induced hyporheic exchange. The oxygen, carbon, and nutrients carried into the bed by the surface water as well as those already existing in the bed material form the basis for microbial communities in the sediment.The resulting dissolved oxygen conditions are a critical control on the ecological function of the hyporheic zone (HZ), from both micro- and macro-biological habitat perspectives. Because hyporheic exchange rates are controlled by surface flow velocity, variations in surface flow have significant impact on the subsurface oxygen conditions. Most rivers are subject to flow velocity variations due to natural forcing including precipitation and variations in evapotranspiration as well as anthropogenic forces like dam releases. We use a large (10m x 0.7m x 0.3m) programmable flume instrumented with a bedform-scale high-resolution planar optode dissolved oxygen imaging system to observe the distribution of oxygenated sediment within the HZ over time. Using this system we characterize the rate at which hyporheic oxygen conditions reconfigure in response to changes in the surface flow velocity, particularly the time it takes for conditions to recover after a pulse of increased flow velocity. In addition, we make use of numerical models to further identify critical response time drivers. With these tools, we develop equations to describe the post-disturbance recovery time as a function of relative pulse magnitude and duration. Using these equations we can predict the time scale over which the hyporheic zone will recover following both natural and anthropogenic flow regime disturbances. Being able to predict the magnitude and duration of dissolved oxygen changes in the wake of flow perturbing events allows us to better understand the impact these disturbances have on the ecology of the hyporheic zone.

  12. Hydrologic connectivity increases denitrification in the hyporheic zone and restored floodplains of an agricultural stream

    NASA Astrophysics Data System (ADS)

    Roley, Sarah S.; Tank, Jennifer L.; Williams, Maureen A.

    2012-09-01

    Stream ecotones, specifically the lateral floodplain and subsurface hyporheic zone, can be important sites for nitrogen (N) removal via denitrification, but their role in streams with constructed floodplains has not been examined. We studied denitrification in the hyporheic zone and floodplains of an agriculturally influenced headwater stream in Indiana, USA, that had floodplains added as part of a "two-stage ditch" restoration project. To examine the potential for N removal in the hyporheic zone, we seasonally measured denitrification rates and nitrate concentrations by depth into the stream sediments. We found that nitrate concentration and denitrification rates declined with depth into the hyporheic zone, but denitrification was still measureable to a depth of at least 20 cm. We also measured denitrification rates on the restored floodplains over the course of a flood (pre, during, and post-inundation), and also compared denitrification rates between vegetated and non-vegetated areas of the floodplain. We found that floodplain denitrification rates increased over the course of a floodplain inundation event, and that the presence of surface water increased denitrification rates when vegetation was present. Stream ecotones in midwestern, agriculturally influenced streams have substantial potential for N removal via denitrification, particularly when they are hydrologically connected with high-nitrate surface water.

  13. Diurnal temperature effect on nitrate removal and production efficiency in bedform-induced hyporheic zones

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Cardenas, M. B.

    2014-12-01

    Rivers and aquifers are connected through the hyporheic zone (HZ). Pore water in the subsurface sediments is continuously exchanged with the overlying surface water. The exchange of water, mass and energy occurring along the surface-subsurface interface or within the HZ exerts a strong influence on the quality of both surface and subsurface waters, and fluvial ecology. Moreover, the HZ is rich in biologically active sediment, creating a favorable condition for microbially-facilitated reactions to occur, including organic carbon oxidation (aerobic respiration), nitrification, and denitrification. Inorganic N, especially NO3-, is of concern as a drinking water pollutant and as a cause for eutrophication that threatens ecosystems. The biogeochemical reactions in the HZ could produce or consume NO3- and thus the HZ could serve a nitrate source or sink role in the fluvial system. In addition, hyporheic exchange across the sediment-water interface (SWI) leads to penetration of diel temperature cycles from the river, leading to dynamic HZ temperature pattern. This in turn affects biogeochemical reactions in the HZ. The main objective of this study is to integrate all the processes that occur along the SWI to understand how diurnal temperature variations affect the biogeochemical function of the HZ. We conducted numerical simulations of coupled turbulent open-channel fluid flow, porous fluid flow, porous heat transport and reactive solute transport to study feedbacks and coupling between these processes. We assumed sinusoidally varying diurnal temperature variations. We studied the effects of different mean temperatures and different amplitudes of the diurnal temperature variations on nitrate removal or production efficiency in the HZ. The simulation results show that the average temperature effect on the HZ nitrate source-sink functionality and its associated efficiency has strong dependence on the [NO3-]/[NH4+ ] ratio in the river. However, the effects of the

  14. The hyporheic zone and its functions: revision and research status in Neotropical regions.

    PubMed

    Mugnai, R; Messana, G; Di Lorenzo, T

    2015-08-01

    The hyporheic zone (HZ), as the connecting ecotone between surface- and groundwater, is functionally part of both fluvial and groundwater ecosystems. Its hydrological, chemical, biological and metabolic features are specific of this zone, not belonging truly neither to surface- nor to groundwater. Exchanges of water, nutrients, and organic matter occur in response to variations in discharge and bed topography and porosity. Dynamic gradients exist at all scales and vary temporally. Across all scales, the functional significance of the HZ relates to its activity and connection with the surface stream. The HZ is a relatively rich environment and almost all invertebrate groups have colonized this habitat. This fauna, so-called hyporheos, is composed of species typical from interstitial environment, and also of benthic epigean and phreatic species. The hyporheic microbiocenose consists in bacteria, archaea, protozoa and fungi. The HZ provides several ecosystem services, playing a pivotal role in mediating exchange processes, including both matter and energy, between surface and subterranean ecosystems, functioning as regulator of water flow, benthic invertebrates refuge and place of storage, source and transformation of organic matter. The hyporheic zone is one of the most threatened aquatic environments, being strongly influenced by human activities, and the least protected by legislation worldwide. Its maintenance and conservation is compelling in order to preserve the ecological interconnectivity among the three spatial dimensions of the aquatic environment. Although several researchers addressed the importance of the hyporheic zone early, and most contemporary stream ecosystem models explicitly include it, very little is known about the HZ of Neotropical regions. From a biological standpoint, hyporheos fauna in Neotropical regions are still largely underestimated. This review focuses on a brief presentation of the hyporheic zone and its functions and significance as

  15. The hyporheic zone and its functions: revision and research status in Neotropical regions.

    PubMed

    Mugnai, R; Messana, G; Di Lorenzo, T

    2015-08-01

    The hyporheic zone (HZ), as the connecting ecotone between surface- and groundwater, is functionally part of both fluvial and groundwater ecosystems. Its hydrological, chemical, biological and metabolic features are specific of this zone, not belonging truly neither to surface- nor to groundwater. Exchanges of water, nutrients, and organic matter occur in response to variations in discharge and bed topography and porosity. Dynamic gradients exist at all scales and vary temporally. Across all scales, the functional significance of the HZ relates to its activity and connection with the surface stream. The HZ is a relatively rich environment and almost all invertebrate groups have colonized this habitat. This fauna, so-called hyporheos, is composed of species typical from interstitial environment, and also of benthic epigean and phreatic species. The hyporheic microbiocenose consists in bacteria, archaea, protozoa and fungi. The HZ provides several ecosystem services, playing a pivotal role in mediating exchange processes, including both matter and energy, between surface and subterranean ecosystems, functioning as regulator of water flow, benthic invertebrates refuge and place of storage, source and transformation of organic matter. The hyporheic zone is one of the most threatened aquatic environments, being strongly influenced by human activities, and the least protected by legislation worldwide. Its maintenance and conservation is compelling in order to preserve the ecological interconnectivity among the three spatial dimensions of the aquatic environment. Although several researchers addressed the importance of the hyporheic zone early, and most contemporary stream ecosystem models explicitly include it, very little is known about the HZ of Neotropical regions. From a biological standpoint, hyporheos fauna in Neotropical regions are still largely underestimated. This review focuses on a brief presentation of the hyporheic zone and its functions and significance as

  16. Attenuation of mining-derived pollutants in the hyporheic zone: a review.

    PubMed

    Gandy, C J; Smith, J W N; Jarvis, A P

    2007-02-15

    Mine water pollution is a major cause of surface- and groundwater pollution in former mining districts throughout Europe. It is a potential barrier to achieving good status water bodies, which is a requirement of the EU Water Framework Directive. In the UK, a concerted effort has been made over the last decade or so to address the scientific and practical challenges relating to the remediation of mine water pollution. However, most of this work has focused on remediation of point sources of pollution (typically arising from abandoned mines and shafts), while the behaviour of mine water at the groundwater-surface water interface (the "hyporheic zone") has received far less attention in relevant scientific and engineering literature. The extent of mine water pollution and capacity for its attenuation at the hyporheic zone has not been well quantified while, furthermore, the complex chemical and microbial processes occurring there (specifically with reference to mining-derived pollutants) have not been investigated in any depth. The absence of such data may relate, in a large part, to the difficulty in physically measuring volumes and concentrations associated with these river inputs/exports. A far greater body of literature addresses biogeochemical processes at the hyporheic zone (especially relating to manganese), albeit many such articles relate to aqueous metal dynamics in general, rather than mine water specifically. This paper presents a review of the natural attenuation processes that may limit the movement and availability of mining-derived pollutants at the groundwater-surface water (GW-SW) interface, and specifically within the hyporheic zone. A substantial part focuses on precipitation and adsorption processes at the hyporheic zone, as well as discussing the role of microbial processes in governing metal ion mobility.

  17. Groundwater and stream water exchange revealed by water chemistry data in a hyporheic zone

    NASA Astrophysics Data System (ADS)

    Kim, H.; Lee, J.; Lee, K.

    2011-12-01

    The groundwater and stream water exchange and mixing in a hyporheic zone were examined using water chemistry data and a multivariate statistical analysis. The study area was the Munsan stream in Paju city, Korea. Three rounds of water samplings (August, September and November, 2008) were conducted for 5 piezometer nests, with each having 3 different-depth piezometers along the stream flow. A simple comparison between the chemical compositions of the groundwater, stream water and hyporheic water indicated that those of the groundwater and stream water in the hyporheic zone controlled the chemical characteristics of the hyporheic water. More objective and convincing evidences for the mixing of groundwater and stream water was obtained from the statistical analyses, such as factor and cluster analyses. The factor analysis identified four main factors that explained 66% of the total variance of the chemistry data and also revealed that the parameters responsible for water quality variances were mainly related to the EC and HCO3 (groundwater signature), Na, Cl, NH3, NO3, and SO4 (anthropogenic contamination), as well as the DO and ORP (stream water signature). The cluster analysis produced three and four different groups in August, and in September and November, respectively, which revealed the water quality parameters of the three water body systems were very different.

  18. Multi-offset GPR methods for hyporheic zone investigations

    USGS Publications Warehouse

    Brosten, T.R.; Bradford, J.H.; McNamara, J.P.; Gooseff, M.N.; Zarnetske, J.P.; Bowden, W.B.; Johnston, M.E.

    2009-01-01

    Porosity of stream sediments has a direct effect on hyporheic exchange patterns and rates. Improved estimates of porosity heterogeneity will yield enhanced simulation of hyporheic exchange processes. Ground-penetrating radar (GPR) velocity measurements are strongly controlled by water content thus accurate measures of GPR velocity in saturated sediments provides estimates of porosity beneath stream channels using petrophysical relationships. Imaging the substream system using surface based reflection measurements is particularly challenging due to large velocity gradients that occur at the transition from open water to saturated sediments. The continuous multi-offset method improves the quality of subsurface images through stacking and provides measurements of vertical and lateral velocity distributions. We applied the continuous multi-offset method to stream sites on the North Slope, Alaska and the Sawtooth Mountains near Boise, Idaho, USA. From the continuous multi-offset data, we measure velocity using reflection tomography then estimate water content and porosity using the Topp equation. These values provide detailed measurements for improved stream channel hydraulic and thermal modelling. ?? 2009 European Association of Geoscientists & Engineers.

  19. Geomicrobial profile through the hyporheic zone of a historic mining flood plain

    SciTech Connect

    Wielinga, B.; Benner, S.; Brick, C.; Moore, J.; Gannon, J.

    1994-12-31

    A unique sampling method has been developed to assist the simultaneous sampling of the geochemical and microbiological stratigraphy from surface sediment into the underlying ground water at a highly contaminated historic mining site located near Butte, Montana. These waters often contain high levels of Fe and Mn in addition to elevated amounts of As, Cd, Cu, Pb, and Zn. The aqueous geochemical profile defined three zones: surface water with high pH (7.8) and low metal concentrations (Fe(II) = 0.2ppm); ground water zone with low pH (4.5) and high metal concentrations (Fe(II) = 350ppm); and hyporheic zone, intermediate in composition between surface and ground water. The behavior of metals within this sequence is primarily controlled by geochemical conditions of the aqueous phase and is strongly influenced by oxic inflow from surface waters. General heterotrophic bacterial numbers were high in the surface sediments ({approximately}10{sup 7}cfu/cm{sup 2}) but dropped significantly ({approximately}10{sup 4}cfu/cm{sup 2}) under the surface sediment layer. Manganese oxidizing bacteria represented a large subset of the total culturable heterotrophs throughout the hyporheic zone but not in the surface sediment. A sharp transition existed at the hyporheic zone/ground water interface. Throughout a steep 10 cm gradient the pH and the culturable bacteria each dropped two orders of magnitude. Geochemically this zone contained a dense band of precipitated metals species forming as a result of mixing between hyporheic water and ground water. The results presented suggest a strong correlation between geochemical events and the indigenous microflora.

  20. The Role of Hyporheic Zones in Cycling of Carbon and Nitrogen

    NASA Astrophysics Data System (ADS)

    Dwivedi, D.; Steefel, C. I.; Arora, B.; Bisht, G.; Williams, K. H.

    2015-12-01

    Hyporheic zones impact the biogeochemical cycling of carbon and nitrogen, both organic and inorganic. To investigate and develop a predictive understanding of the coupled carbon and nitrogen cycling in the subsurface, we integrated a genome inspired complex reaction network with a high-resolution, three-dimensional, reactive flow and transport code - PFLOTRAN. Three-dimensional reactive flow and transport simulations were performed, making use of the high performance computing platform provided by PFLOTRAN, to describe the biogeochemical zonation developed because of the organic carbon rich sediments and a gradient of dissolved oxygen and pH within the hyporheic zone. We conducted this study in the lower East River, a high elevation catchment in southwestern Colorado. The lower East River site displays a rolling-to-mountainous topography with multiple river meanders that extend over a distance of 11 km. We carried out simulations within two stream meanders to examine (1) the impact of hyporheic exchanges on the biogeochemical zonation of variables and (2) how carbon and nitrogen fluxes at the meander scale influence coupled carbon and nitrogen cycling at the river scale. Three-dimensional model domain - 330 m (X) by 400 m (Y) by 48 m (Z) - was uniformly discretized with 10 m horizontal (X and Y) and 0.25 m vertical (Z) resolutions using structured grids in PFLOTRAN. Simulation results show that the intra-meander hyporheic flow paths and biogeochemical reactions result in the lateral redox zonation, which considerably impact the carbon and nitrogen fluxes into the stream system. The meander-driven hyporheic flow paths enhance the denitrification because of relatively longer residence times in the organic carbon-rich sediments.

  1. Characterizing biogeochemical processes in the hyporheic zone using flume experiments and reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Quick, A. M.; Reeder, W. J.; Farrell, T. B.; Feris, K. P.; Tonina, D.; Benner, S. G.

    2015-12-01

    The hyporheic zones of streams are hotspots of biogeochemical cycling, where reactants from surface water and groundwater are continually brought into contact with microbial populations on the surfaces of stream sediments and reaction products are removed by hyporheic flow and degassing. Using large flume experiments we have documented the complex redox dynamics associated with dune-scale hyporheic flow. Observations, coupled with reactive transport modeling, provide insight into how flow dictates spatio-temporal distribution of redox reactions and the associated consumption and production of reactants and products. Dune hyporheic flow was experimentally produced by maintaining control over flow rates, slopes, sediment grain size, bedform geomorphology, and organic carbon content. An extensive in-situ monitoring array combined with sampling events over time elucidated redox-sensitive processes including constraints on the spatial distribution and magnitude of aerobic respiration, organic carbon consumption, sulfide deposition, and denitrification. Reactive transport modeling reveals further insight into the influence of system geometry and reaction rate. As an example application of the model, the relationship between residence times and reaction rates may be used to generate Damköhler numbers that are related to biogeochemical processes, such as the potential of streambed morphology and nitrate loading to influence production of the greenhouse gas nitrous oxide via incomplete denitrification.

  2. Response of the hyporheic zone to transient groundwater fluctuations on the annual and storm event time scales

    NASA Astrophysics Data System (ADS)

    Malzone, Jonathan M.; Lowry, Christopher S.; Ward, Adam S.

    2016-07-01

    The volume of the water stored in and exchanged with the hyporheic zone is an important factor in stream metabolism and biogeochemical cycling. Previous studies have identified groundwater direction and magnitude as one key control on the volume of the hyporheic zone, suggesting that fluctuation in the riparian water table could induce large changes under certain seasonal conditions. In this study, we analyze the transient drivers that control the volume of the hyporheic zone by coupling the Brinkman-Darcy equation to the Navier-Stokes equations to simulate annual and storm induced groundwater fluctuations. The expansion and contraction of the hyporheic zone was quantified based on temporally dynamic scenarios simulating annual groundwater fluctuations in a humid temperate climate. The amplitude of the groundwater signal was varied between scenarios to represent a range of annual hydrologic forcing. Storm scenarios were then superimposed on the annual scenario to simulate the response to short-term storm signals. Simulations used two different groundwater storm responses; one in-phase with the surface water response and one 14 h out-of-phase with the surface water response to represent our observed site conditions. Results show that annual groundwater fluctuation is a dominant control on the volume of the hyporheic zone, where increasing groundwater fluctuation increases the amount of annual variation. Storm responses depended on the antecedent conditions determined by annual scenarios, where the time of year dictated the duration and magnitude of the storm induced response of the hyporheic zone.

  3. Hydrogeomorphology of the hyporheic zone: stream solute and fine particle interactions with a dynamic streambed

    USGS Publications Warehouse

    Harvey, J.W.; Drummond, J.D.; Martin, R.L.; McPhillips, L.E.; Packman, A.I.; Jerolmack, D.J.; Stonedahl, S.H.; Aubeneau, A.F.; Sawyer, A.H.; Larsen, L.G.; Tobias, C.R.

    2012-01-01

    Hyporheic flow in streams has typically been studied separately from geomorphic processes. We investigated interactions between bed mobility and dynamic hyporheic storage of solutes and fine particles in a sand-bed stream before, during, and after a flood. A conservatively transported solute tracer (bromide) and a fine particles tracer (5 μm latex particles), a surrogate for fine particulate organic matter, were co-injected during base flow. The tracers were differentially stored, with fine particles penetrating more shallowly in hyporheic flow and retained more efficiently due to the high rate of particle filtration in bed sediment compared to solute. Tracer injections lasted 3.5 h after which we released a small flood from an upstream dam one hour later. Due to shallower storage in the bed, fine particles were rapidly entrained during the rising limb of the flood hydrograph. Rather than being flushed by the flood, we observed that solutes were stored longer due to expansion of hyporheic flow paths beneath the temporarily enlarged bedforms. Three important timescales determined the fate of solutes and fine particles: (1) flood duration, (2) relaxation time of flood-enlarged bedforms back to base flow dimensions, and (3) resulting adjustments and lag times of hyporheic flow. Recurrent transitions between these timescales explain why we observed a peak accumulation of natural particulate organic matter between 2 and 4 cm deep in the bed, i.e., below the scour layer of mobile bedforms but above the maximum depth of particle filtration in hyporheic flow paths. Thus, physical interactions between bed mobility and hyporheic transport influence how organic matter is stored in the bed and how long it is retained, which affects decomposition rate and metabolism of this southeastern Coastal Plain stream. In summary we found that dynamic interactions between hyporheic flow, bed mobility, and flow variation had strong but differential influences on base flow retention and

  4. Nitrogen dynamics in the Hyporheic zones of complex 3-D bedforms

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Cardenas, M. B.; Chen, X.

    2015-12-01

    The hyporheic zone (HZ) is a biogeochemically active zone that hosts the coupled reactions of organic carbon oxidation, nitrification, and denitrification. These N transformations could either produce or consume NO3- and thus the HZ could serve as a NO3-sink or source in the fluvial system. The reactants within the hyporheic zone are transported through advection by flow induced by bedform topography. However, most previous studies have focused on two-dimensional (2-D) and simple bedforms. Recent studies showed that even a simple 3-D bedform would have a higher hyporheic flux and a slightly larger volume or exchange zone depth, and thus a different residence time compared to its equivalent 2-D bedform. This implies that the competition between reactant supply and demand for the 3-D bedforms might be different from 2-D bedforms. In this study we will investigate the ecological role of HZ with much more complex and more natural 3-D bedforms through numerical simulations. We are investigating synthetic but realistic complex bedforms considering the superimposition of smaller dunes upon larger dunes. The goal of the study is improve our understanding and the prediction of the ecological function of HZ as a nitrate sink or source for a natural system.

  5. Nutrient Cycling in the Bank Hyporheic Zone of the Regulated Lower Colorado River, Austin, Texas

    NASA Astrophysics Data System (ADS)

    Briody, A.; Cardenas, M.

    2013-12-01

    Periodic releases from an upstream dam cause rapid stage fluctuations in the Colorado River near Austin, Texas. These daily pulses modulate fluid exchange and residence times in the hyporheic region, where biogeochemical reactions have been found to be more pronounced. We have installed two transects of wells perpendicular to the river in order to further examine the reactions occurring in this zone of surface-water and groundwater exchange. One well transect records physical water level fluctuations and allows us to map hydraulic head gradients and fluid movement. The second transect allows for water sample collection at three discrete depths. Samples were collected on a regular (approximately hourly) basis from 12 wells for at least 24-hours and were analyzed for nutrients, carbon, major ions, and stable isotopes. The results will provide a detailed picture of biogeochemical processes in hyporheic zones driven by upstream dam operations.

  6. Modeling and inverting reactive stream tracers undergoing two-site sorption and decay in the hyporheic zone

    NASA Astrophysics Data System (ADS)

    Liao, Zijie; Lemke, Dennis; Osenbrück, Karsten; Cirpka, Olaf A.

    2013-06-01

    Performing stream-tracer experiments is an accepted technique to assess transport characteristics of streams undergoing hyporheic exchange. Recently, combining conservative and reactive tracers, in which the latter presumably undergoes degradation exclusively within the hyporheic zone, has been suggested to study in-stream transport, hyporheic exchange, and the metabolic activity of the hyporheic zone. The combined quantitative analysis to adequately describe such tests, however, has been missing. In this paper, we present mathematical methods to jointly analyze breakthrough curves of a conservative tracer (fluorescein), a linearly degrading tracer (resazurin), and its daughter compound (resorufin), which are synchronously introduced into the stream as pulses. In-stream transport is described by the one-dimensional advection-dispersion equation, amended with a convolution term to account for transient storage within the hyporheic zone over a distribution of travel times, transformation of the reactive tracer in the hyporheic zone, and two-site sorption of the parent and daughter compounds therein. We use a shape-free approach of describing the hyporheic travel-time distribution, overcoming the difficulty of identifying the best functional parameterization for transient storage. We discuss how this model can be fitted to the breakthrough curves of all three compounds and demonstrate the method by an application to a tracer test in the third-order stream Goldersbach in Southern Germany. The entire river water passes once through the hyporheic zone over a travel distance of about 200 m with mean hyporheic residence times ranging between 16 and 23 min. We also observed a secondary peak in the transfer functions at about 1 h indicating a second hyporheic flow path. We could jointly fit the breakthrough curves of all compounds in three monitoring stations and evaluated the parameter uncertainty of the individual and joint fits by a method based on conditional

  7. Geoelectrical Response of a Hyporheic Zone within a Fractured Sedimentary Bedrock Riverbed

    NASA Astrophysics Data System (ADS)

    Steelman, C. M.; Kennedy, C. S.; Capes, D. C.; Parker, B. L.

    2015-12-01

    Fractured sedimentary bedrock aquifers represent an important source of water for many communities around the world. Although the effective porosities of these aquifers are extremely low relative to their unconsolidated counterparts, the existence of dense networks of interconnected fractures, dissolution-enhanced conduits or karst features can result in productive, yet heterogeneous and anisotropic, flow systems. Fluid-filled fractures remain connected to the porous matrix through advective-diffusive processes. This dual porosity concept is routinely applied to groundwater resource and contaminant transport studies; however, they have only recently been examined in shallow hyporheic environments, where groundwater and surface water influence one another through water and solute exchange across a streambed. Needless to say, there remains a gap in our conceptual understanding of hyporheic zones along rivers where water flowing through high-permeability fracture networks variably interacts with porewater residing in the low-permeability matrix. It is hypothesized that bedrock rivers will possess some measure of a hyporheic zone, albeit one that is governed by a vertical/horizontal fracture network but remains connected to the porous matrix. Hydrogeophysical methods provide a non-invasive means of assessing the scale and variability of critical zone dynamics. Here, we focus on the capacity of surface electrical resistivity for the detection and monitoring of a seasonally variable hyporheic zone at a field station located along the Eramosa River near Guelph, Ontario, Canada. Unlike conventional hydrogeological methods which potentially bias conduction in the fractures, surface resistivity is sensitive to the bulk electrical conductivity of the formation, making it more suited for detection of matrix conditions. Electrical resistivity data was collected along two 50 m profiles along a pool-riffle sequence on a daily to weekly interval from July 2014 to July 2015 and

  8. Response of invertebrates from the hyporheic zone of chalk rivers to eutrophication and land use.

    PubMed

    Pacioglu, Octavian; Moldovan, Oana Teodora

    2016-03-01

    Whereas the response of lotic benthic macroinvertebrates to different environmental stressors is a widespread practice nowadays in assessing the water and habitat quality, the use of hyporheic zone invertebrates is still in its infancy. In this study, classification and regression trees analysis were employed in order to assess the ecological requirements and the potential as bioindicators for the hyporheic zone invertebrates inhabiting four lowland chalk rivers (south England) with contrasting eutrophication levels (based on surface nitrate concentrations) and magnitude of land use (based on percentage of fine sediments load and median interstitial space). Samples of fauna, water and sediment were sampled twice, during low (summer) and high (winter) groundwater level, at depths of 20 and 35 cm. Certain groups of invertebrates (Glossosomatidae and Psychomyiidae caddisflies, and riffle beetles) proved to be good indicators of rural catchments, moderately eutrophic and with high fine sediment load. A diverse community dominated by microcrustaceans (copepods and ostracods) were found as good indicators of highly eutrophic urban streams, with moderate-high fine sediment load. However, the use of other taxonomic groups (e.g. chironomids, oligochaetes, nematodes, water mites and the amphipod Gammarus pulex), very widespread in the hyporheic zone of all sampled rivers, is of limited use because of their high tolerance to the analysed stressors. We recommend the use of certain taxonomic groups (comprising both meiofauna and macroinvertebrates) dwelling in the chalk hyporheic zone as indicators of eutrophication and colmation and, along with routine benthic sampling protocols, for a more comprehensive water and habitat quality assessment of chalk rivers.

  9. Response of invertebrates from the hyporheic zone of chalk rivers to eutrophication and land use.

    PubMed

    Pacioglu, Octavian; Moldovan, Oana Teodora

    2016-03-01

    Whereas the response of lotic benthic macroinvertebrates to different environmental stressors is a widespread practice nowadays in assessing the water and habitat quality, the use of hyporheic zone invertebrates is still in its infancy. In this study, classification and regression trees analysis were employed in order to assess the ecological requirements and the potential as bioindicators for the hyporheic zone invertebrates inhabiting four lowland chalk rivers (south England) with contrasting eutrophication levels (based on surface nitrate concentrations) and magnitude of land use (based on percentage of fine sediments load and median interstitial space). Samples of fauna, water and sediment were sampled twice, during low (summer) and high (winter) groundwater level, at depths of 20 and 35 cm. Certain groups of invertebrates (Glossosomatidae and Psychomyiidae caddisflies, and riffle beetles) proved to be good indicators of rural catchments, moderately eutrophic and with high fine sediment load. A diverse community dominated by microcrustaceans (copepods and ostracods) were found as good indicators of highly eutrophic urban streams, with moderate-high fine sediment load. However, the use of other taxonomic groups (e.g. chironomids, oligochaetes, nematodes, water mites and the amphipod Gammarus pulex), very widespread in the hyporheic zone of all sampled rivers, is of limited use because of their high tolerance to the analysed stressors. We recommend the use of certain taxonomic groups (comprising both meiofauna and macroinvertebrates) dwelling in the chalk hyporheic zone as indicators of eutrophication and colmation and, along with routine benthic sampling protocols, for a more comprehensive water and habitat quality assessment of chalk rivers. PMID:26531711

  10. Investigation of the Hyporheic Zone at the 300 Area,Hanford Site

    SciTech Connect

    Fritz, Brad G.; Kohn, Nancy P.; Gilmore, Tyler J.; McFarland, Doug; Arntzen, Evan V.; Mackley, Rob D.; Patton, Gregory W.; Mendoza, Donaldo P.; Bunn, Amoret L.

    2007-10-01

    The Remediation Task of the Science and Technology (S&T) Project is intended to provide research to meet several objectives concerning the discharge of groundwater contamination into the river at the 300 Area of the Hanford Site. This report serves to meet the research objectives by developing baseline data for future evaluation of remedial technologies, evaluating the effects changing river stage on near-shore groundwater chemistry, improving estimates of contaminant flux to the river, providing estimates on the extent of contaminant discharge areas along the shoreline, and providing data to support computer models used to evaluate remedial alternatives. This report summarizes the activities conducted to date and provides an overview of data collected through July 2006. Recent geologic investigations (funded through other U. S. Department of Energy (DOE) programs) have provided a more complete geologic interpretation of the 300 Area and a characterization of the vertical extent of uranium contamination. Extrapolation of this geologic interpretation into the hyporheic zone is possible, but there is little data to provide corroboration. Penetration testing was conducted along the shoreline to develop evidence to support the extrapolation of the mapping of the geologic facies. In general, this penetration testing provided evidence supporting the extrapolation of the most recent geologic interpretation, but it also provided some higher resolution detail on the shape of the layer than constrains contaminant movement. Information on this confining layer will provide a more detailed estimate of the area of river bed that has the potential to be impacted by uranium discharge to the river from groundwater transport. Water sampling in the hyporheic zone has provided results that illustrate the degree of mixing that occurs in the hyporheic zone. Uranium concentrations measured at individual sampling locations can vary by several orders of magnitude depending on the river and

  11. Quantifying hyporheic zones formed by large woody debris: Synthesis of numerical, laboratory flume, and field experiments

    NASA Astrophysics Data System (ADS)

    Sawyer, A. H.; Cardenas, M. B.; Buttles, J. L.

    2010-12-01

    The flow of river water around wood debris creates pressure gradients along the riverbed that drive a large zone of river-groundwater mixing, or hyporheic exchange. River water downwells into the riverbed upstream of a channel-spanning log and upwells downstream. Using laboratory flume experiments and coupled CFD-groundwater flow simulations, we develop a predictive relationship for the pressure wave created by a channel-spanning log and resulting hyporheic flow. Amplitude of the pressure wave (and thus hyporheic exchange) increases with channel Froude number and blockage ratio (log diameter:channel flow depth). This relationship can be used to predict losses or gains in river-groundwater connectivity due to removal or addition of instream wood debris. We tested this relationship in a second-order stream in Valles Caldera National Preserve (NM). Log additions created alternating zones of upwelling and downwelling in a reach that was previously losing throughout. Though losing conditions limited the magnitude of exchange, the fundamental shift in exchange patterns from losing to nested flows could influence habitat complexity and transport of nutrients and energy.

  12. Groundwater-surface water interactions in the hyporheic zone under climate change scenarios.

    PubMed

    Zhou, Shangbo; Yuan, Xingzhong; Peng, Shuchan; Yue, Junsheng; Wang, Xiaofeng; Liu, Hong; Williams, D Dudley

    2014-12-01

    Slight changes in climate, such as the rise of temperature or alterations of precipitation and evaporation, will dramatically influence nearly all freshwater and climate-related hydrological behavior on a global scale. The hyporheic zone (HZ), where groundwater (GW) and surface waters (SW) interact, is characterized by permeable sediments, low flow velocities, and gradients of physical, chemical, and biological characteristics along the exchange flows. Hyporheic metabolism, that is biogeochemical reactions within the HZ as well as various processes that exchange substances and energy with adjoining systems, is correlated with hyporheic organisms, habitats, and the organic matter (OM) supplied from GW and SW, which will inevitably be influenced by climate-related variations. The characteristics of the HZ in acting as a transition zone and in filtering and purifying exchanged water will be lost, resulting in a weakening of the self-purification capacity of natural water bodies. Thus, as human disturbances intensify in the future, GW and SW pollution will become a greater challenge for mankind than ever before. Biogeochemical processes in the HZ may favor the release of carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) under climate change scenarios. Future water resource management should consider the integrity of aquatic systems as a whole, including the HZ, rather than independently focusing on SW and GW.

  13. Denitrification in sediments from the hyporheic zone adjacent to a small forested stream

    USGS Publications Warehouse

    Duff, J.H.; Triska, F.J.

    1990-01-01

    Denitrifying potentials increased with increasing distance from the stream channel. Dissolved oxygen was 100% of the concentration expected in equilibrium with the atmosphere in water obtained from monitoring wells immediately adjacent to the stream but was as low as 7% of the expected value in water 11.4 m inland. Both nitrate and dissolved organic carbon decreased over summer in wells at the base of the alder-forested slope. A 48-h injection of nitrate-amended stream water into hyporheic water 8.4 m inland stimulated nitrous oxide production in the presence of acetylene. Nitrous oxide was generated as nitrate and acetylene were co-transported to a well 13 m down-gradient. Acetylene-block experiments coupled with the chemistry data suggest that denitrification can modify the chemistry of water during passage through the hyporheic zone. -from Authors

  14. Predicting mean residence time and exchange velocity in the hyporheic zone of restored streams

    NASA Astrophysics Data System (ADS)

    Morén, Ida; Wörman, Anders; Riml, Joakim

    2016-04-01

    The hyporheic zones of streams and rivers have been identified as hotspots for biogeochemical reactions in the aquatic environment, making the retention time and exchange velocity of the hyporheic zone essential parameters in the modelling of these processes. However, exact site-specific values of those parameters are often missing in stream restoration projects because there are no well-defined scaling relationships linking them to measurable reach characteristics. In this study we derive semi-analytical solutions for the retention time and exchange velocity in the hyporheic zone. In particular the effect on hyporheic exchange is expressed by the use of physically based models and by superimposing different geomorphologic features of different scales. It is suggested that all exchange phenomena can be modelled as head anomalies expressed with a harmonic distribution along the stream with specific wavelength and head amplitude. The maximum head of an exchange phenomena is either dominated by hydrodynamic or hydrostatic water pressure, depending on the size of the feature causing the exchange. The theory leads to constitutive relationships for exchange velocity and residence time expressed as functions of the distribution of wavelengths, distribution of head amplitude and hydraulic conductivity. In order to validate and evaluate certain empirical coefficients, a number of Rhodamine WT tracer tests were performed in a partly restored agricultural stream in the south of Sweden called the Tullstorps brook. To evaluate the tracer test in sections where remediation actions have been undertaken we used the method of temporal moments. In conjunction with the tracer tests a characterisation of the stream was carried out where hydraulic conductivity of the streambed and stream morphology was measured. The study verifies that the residence time in the hyporheic zone decreases with the maximum hydraulic head of the largest (dominating) geomorphic feature of the reach, and

  15. Stream discharge events increase the reaction efficiency of the hyporheic zone of an in-stream gravel bar

    NASA Astrophysics Data System (ADS)

    Fleckenstein, J. H.; Trauth, N.; Schmidt, C.

    2015-12-01

    Streambed structures such as dunes, pool-riffles or bars enhance the exchange of stream water and solutes with the subsurface, the hyporheic zone. Prior studies have evaluated the factors which control hyporheic exchange and biogeochemical processes for steady state hydrological conditions using numerical models. However, the impact of natural discharge variability on water and solute exchange, creating hydraulically specific conditions for the reactions in the shallow streambed, has not been studied so far. In our study, we set up a transient flow and reactive transport model to elucidate the impact of single stream discharge events on water exchange, solute transport and reactions within the hyporheic zone of an in-stream gravel bar. The discharge events were varied by their duration and the maximum stream discharge. Temporally variable hydraulic heads were assigned as hydraulic head boundary conditions at the top of the reactive groundwater model MIN3P. A steady ambient groundwater flow field was introduced by lateral upstream and downstream hydraulic head boundaries, generating in combination with the stream water level, losing, neutral, or gaining stream conditions. Stream water borne dissolved oxygen, dissolved organic carbon and nitrate can infiltrate into the modelling domain across the top boundary and can react with each other by aerobic respiration and denitrification. Our results show that water and solute exchange through the hyporheic zone (only stream water that infiltrates into the subsurface and exfiltrates back to the stream) is highly dependent on the interplay between event characteristics and the ambient groundwater level. In scenarios where the stream discharge shifts the hydraulic system to strong and long-lasting losing conditions, hyporheic flow paths are longer and the extent of the hyporheic zone are deeper than under base flow conditions and small events where gaining conditions prevail. Consequently, stream discharge events may

  16. Stream discharge events increase the reactive efficiency of the hyporheic zone of an in-stream gravel bar

    NASA Astrophysics Data System (ADS)

    Trauth, Nico; Schmidt, Christian; Fleckenstein, Jan H.

    2016-04-01

    Streambed structures such as dunes, pool-riffles or bars enhance the exchange of stream water and solutes with the subsurface, the hyporheic zone. Prior studies have evaluated the factors which control hyporheic exchange and biogeochemical processes for steady state hydrological conditions using numerical models. However, the impact of natural discharge variability on water and solute exchange, creating hydraulically specific conditions for the reactions in the shallow streambed, has received less attention to date. In our study, we set up a transient flow and reactive transport model to elucidate the impact of single stream discharge events on water exchange, solute transport and reactions within the hyporheic zone of an in-stream gravel bar. The discharge events were varied by their duration and the maximum stream discharge. Temporally varying hydraulic heads were assigned as hydraulic head boundary conditions at the top of the reactive groundwater model MIN3P. A steady ambient groundwater flow field was introduced by lateral upstream and downstream hydraulic head boundaries, resulting in losing, neutral, or gaining conditions in the stream with respect to exchange with groundwater. Stream water borne dissolved oxygen, dissolved organic carbon and nitrate can infiltrate across the top of the modelling domain, where aerobic respiration and denitrification are simulated. Our results show that water and solute exchange through the hyporheic zone (only stream water that infiltrates into the subsurface and exfiltrates back to the stream) is highly dependent on the interplay between event characteristics and the ambient groundwater level. In scenarios where the stream discharge shifts the hydraulic system to strong and long-lasting losing conditions, hyporheic flow paths are longer and the extent of the hyporheic zone deeper than under base flow conditions and small hydrologic events where gaining conditions prevail. Consequently, stream discharge events may

  17. Aquatic Hyphomycete Species Are Screened by the Hyporheic Zone of Woodland Streams

    PubMed Central

    Chauvet, Eric; Mermillod-Blondin, Florian; Assemat, Fiona; Elger, Arnaud

    2014-01-01

    Aquatic hyphomycetes strongly contribute to organic matter dynamics in streams, but their abilities to colonize leaf litter buried in streambed sediments remain unexplored. Here, we conducted field and laboratory experiments (slow-filtration columns and stream-simulating microcosms) to test the following hypotheses: (i) that the hyporheic habitat acting as a physical sieve for spores filters out unsuccessful strategists from a potential species pool, (ii) that decreased pore size in sediments reduces species dispersal efficiency in the interstitial water, and (iii) that the physicochemical conditions prevailing in the hyporheic habitat will influence fungal community structure. Our field study showed that spore abundance and species diversity were consistently reduced in the interstitial water compared with surface water within three differing streams. Significant differences occurred among aquatic hyphomycetes, with dispersal efficiency of filiform-spore species being much higher than those with compact or branched/tetraradiate spores. This pattern was remarkably consistent with those found in laboratory experiments that tested the influence of sediment pore size on spore dispersal in microcosms. Furthermore, leaves inoculated in a stream and incubated in slow-filtration columns exhibited a fungal assemblage dominated by only two species, while five species were codominant on leaves from the stream-simulating microcosms. Results of this study highlight that the hyporheic zone exerts two types of selection pressure on the aquatic hyphomycete community, a physiological stress and a physical screening of the benthic spore pool, both leading to drastic changes in the structure of fungal community. PMID:24441154

  18. Exploring controls on saline tracer movement within the hyporheic zone using finite-element modeling and electrical resistivity

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, P. B.; Singha, K.; Gooseff, M. N.

    2012-12-01

    The extent of the hyporheic zone is governed by complex physical processes and material properties that are difficult to characterize with well data or in-stream data alone. Here, we explore use of three dimensional electrical resistivity imaging (ERI) to provide spatially distributed information of stream solute transport and image the dominant pathways of solute movement into the hyporheic zone in a synthetic study. A fully coupled three-dimensional finite-element model of the surface and subsurface system is developed in COMSOL to explore the extent of the hyporheic zone given variations in a series of properties: (1) stream discharge, (2) changes in the hydraulic gradient between aquifer and stream and (3) the width of the stream. We also explore ERI's ability to image the hyporheic extent under these controls given differences in injected tracer concentration. ERI is found to be well correlated with solute transport data, and both data accurately predict the mean arrival time of stream water within the hyporheic zone and the solute extent into the subsurface.

  19. Engineered Hyporheic Zones as Novel Water Quality Best Management Practice: Flow and Contaminant Attenuation in Constructed Stream Experiments

    NASA Astrophysics Data System (ADS)

    Herzog, S.; McCray, J. E.; Higgins, C. P.

    2015-12-01

    The hyporheic zone is a hotspot for biogeochemical processing that can attenuate a variety of nonpoint source contaminants in streamwater. However, hyporheic zones in urban and agricultural streams are often degraded and poorly connected with surface water. In order to increase hyporheic exchange and improve water quality, we introduced engineered streambeds as a stormwater and restoration best management practice. Modifications to streambed hydraulic conductivity and reactivity are termed Biohydrochemical Enhancement structures for Streamwater Treatment (BEST). BEST are subsurface modules that utilize low- and high-permeability sediments to drive efficient hyporheic exchange, and reactive geomedia to increase reaction rates within the hyporheic zone. This work presents the first physical performance data of BEST modules at the pilot scale. BEST modules were installed in a constructed stream facility at the Colorado School of Mines in Golden, CO. This facility features two 15m artificial streams, which included an all sand control condition alongside the BEST test condition. Streams were continuously operated at a discharge of 1 L/s using recycled water. Time-lapse electrical resistivity surveys demonstrated that BEST modules provided substantially greater hyporheic exchange than the control condition. Water quality samples at the hyporheic and reach scales also revealed greater attenuation of nitrogen, coliforms, and select metals and trace organics by BEST modules relative to the control condition. These experimental results were also compared to previous numerical model simulations to evaluate model accuracy. Together, these results show that BEST may be an effective best management practice for improving streamwater quality in urban and agricultural settings.

  20. The negligible effect of bed form migration on denitrification in hyporheic zones of permeable sediments

    NASA Astrophysics Data System (ADS)

    Kessler, Adam J.; Cardenas, M. Bayani; Cook, Perran L. M.

    2015-03-01

    Bed form celerity, the migration rate of ripples along a sediment bed, has previously been shown to have dramatic effects on oxygen distribution and transport within the hyporheic zone of permeable sediments. This has the potential to influence denitrification rates—in particular by increasing the coupling of nitrification and denitrification. To further understand this, we numerically modeled nitrogen cycling under migrating ripples. While the simulated oxygen profiles match with expected behavior, almost no effect on denitrification or coupled nitrification-denitrification was observed with increasing celerity. Instead, denitrification rates were dominantly controlled by the flow velocity of water overlying the sediment.

  1. Residence time distributions in sinuosity-driven hyporheic zones and their biogeochemical effects

    NASA Astrophysics Data System (ADS)

    Gomez, Jesus D.; Wilson, John L.; Cardenas, M. Bayani

    2012-09-01

    Hyporheic exchange plays a key role in the biogeochemical evolution of water and in ecosystem functioning at the local, reach, and watershed scales. Residence time is a fundamental metric to describe the possible transformation taking place in this exchange zone. With this in mind, we use a simple conceptual model to explore the residence time distributions (RTDs) of sinuosity-driven hyporheic zones (HZs) and to discriminate the individual effect of sinuosity (σ), valley slope (Jx), hydraulic conductivity (K), aquifer dispersivity (αL), and the biogeochemical timescales (BTSs) that characterize the degradation of dissolved organic carbon in these hydrologic systems. We find that RTDs are characterized by one early mode and a late time power law behavior. For a given aquifer dispersivity, the shape of these distributions is stretched or compressed by changes in Jx, K, and σ, having a strong influence on the net biogeochemical transformations within the HZ. Using BTSs proposed in previous studies and sensitivity analyses, we show the potential of σ, Jx, and K to classify meander HZs as net sinks of nitrates or only modulators of the residence times in the subsurface where nitrate reduction is negligible. These findings can be used as predictive tools to quantify the potential of meanders as biogeochemical reactors at the watershed scale with the aid of remote sensing data and GIS processing techniques. These tools can guide experimental design, suggesting important locations to visit, sample, and/or instrument. Also, hyporheic restoration projects can use them for initial site selection and design of channel modifications.

  2. Argon concentration time-series as a tool to study gas dynamics in the hyporheic zone.

    PubMed

    Mächler, Lars; Brennwald, Matthias S; Kipfer, Rolf

    2013-07-01

    The oxygen dynamics in the hyporheic zone of a peri-alpine river (Thur, Switzerland), were studied through recording and analyzing the concentration time-series of dissolved argon, oxygen, carbon dioxide, and temperature during low flow conditions, for a period of one week. The argon concentration time-series was used to investigate the physical gas dynamics in the hyporheic zone. Differences in the transport behavior of heat and gas were determined by comparing the diel temperature evolution of groundwater to the measured concentration of dissolved argon. These differences were most likely caused by vertical heat transport which influenced the local groundwater temperature. The argon concentration time-series were also used to estimate travel times by cross correlating argon concentrations in the groundwater with argon concentrations in the river. The information gained from quantifying the physical gas transport was used to estimate the oxygen turnover in groundwater after water recharge. The resulting oxygen turnover showed strong diel variations, which correlated with the water temperature during groundwater recharge. Hence, the variation in the consumption rate was most likely caused by the temperature dependence of microbial activity.

  3. Mixing interfaces, fluxes, residence times and redox conditions of the hyporheic zones induced by dune-like bedforms and ambient groundwater flow

    NASA Astrophysics Data System (ADS)

    Marzadri, Alessandra; Tonina, Daniele; Bellin, Alberto; Valli, Alberto

    2016-02-01

    Recent studies highlighted the importance of the interface between streams and their surrounding sediment, known as the hyporheic zone, where stream waters flow through the alluvium. These pore water fluxes stem from the interaction among streambed morphology, stream hydraulics and surrounding groundwater flow. We analytically model the hyporheic hydraulics induced by a spatially uniform ambient groundwater flow made of a horizontal, underflow, and a vertical, basal, component, which mimics gaining and losing stream conditions. The proposed analytical solution allows to investigate the control of simple hydromorphological quantities on the extent, residence time and redox conditions of the hyporheic zone, and the thickness of the mixing interface between hyporheic and groundwater cells. Our analysis shows that the location of the mixing zone shallows or deepens in the sediment as a function of bedform geometry, surface hydraulic and groundwater flow. The point of stagnation, where hyporheic flow velocities vanish and where the separation surface passes through, is shallower than or coincides with the deepest point of the hyporheic zone only due to underflow. An increase of the ambient flow causes a reduction of the hyporheic zone volume similarly in both losing and gaining conditions. The hyporheic residence time is lognormally distributed under neutral, losing and gaining conditions, with the residence time moments depending on the same set of parameters describing dune morphology and stream flow.

  4. 3D Electrical resistivity tomography monitoring of an artificial tracer injected within the hyporheic zone

    NASA Astrophysics Data System (ADS)

    Houzé, Clémence; Pessel, Marc; Durand, Veronique

    2016-04-01

    Due to the high complexity level of hyporheic flow paths, hydrological and biogeochemical processes which occur in this mixing place are not fully understood yet. Some previous studies made in flumes show that hyporheic flow is strongly connected to the streambed morphology and sediment heterogeneity . There is still a lack of practical field experiment considering a natural environment and representation of natural streambed heterogeneities will be always limited in laboratories. The purpose of this project is to propose an innovative method using 3D Electrical Resistivity Tomography (ERT) monitoring of an artificial tracer injection directly within the streambed sediments in order to visualize the water pathways within the hyporheic zone. Field experiment on a small stream was conducted using a plastic tube as an injection piezometer and home-made electrodes strips arranged in a rectangular form made of 180 electrodes (15 strips of 12 electrodes each). The injection of tracer (NaCl) lasted approximatively 90 minutes, and 24h monitoring with increasing step times was performed. The physical properties of the water are controlled by CTD probes installed upstream and downstream within the river. Inverse time-lapse tomographs show development and persistence of a conductive water plume around the injection point. Due to the low hydraulic conductivity of streambed sediments (clay and overlying loess), the tracer movement is barely visible, as it dilutes gradually in the pore water. Impact of boundary conditions on inversion results can lead to significant differences on images, especially in the shallow part of the profiles. Preferential paths of transport are not highlighted here, but this experiment allows to follow spatially and temporarily the evolution of the tracer in a complex natural environment .

  5. Structure and seasonal dynamics of hyporheic zone microbial communities in free-stone rivers of the western United States.

    PubMed

    Feris, K P; Ramsey, P W; Frazar, C; Rillig, M C; Gannon, J E; Holben, W E

    2003-08-01

    The hyporheic zone of a river is characterized by being nonphotic, exhibiting chemical/redox gradients, and having a heterotrophic food web based on the consumption of organic carbon entrained from surface waters. Hyporheic microbial communities constitute the base of food webs in these environments and are important for maintaining a functioning lotic ecosystem. While microbial communities of rivers dominated by fine-grained sediments are relatively well studied, little is known about the structure and seasonal dynamics of microbial communities inhabiting the predominantly gravel and cobble hyporheic zones of rivers of the western United States. Here, we present the first molecular analysis of hyporheic microbial communities of three different stream types (based on mean base discharge, substratum type, and drainage area), in Montana. Utilizing 16S rDNA phylogeny, DGGE pattern analysis, and qPCR, we have analyzed the prokaryotic communities living on the 1.7 to 2.36 mm grain-size fraction of hyporheic sediments from three separate riffles in each stream. DGGE analysis showed clear seasonal community patterns, indicated similar community composition between different riffles within a stream (95.6-96.6% similarity), and allowed differentiation between communities in different streams. Each river supported a unique complement of species; however, several phylogenetic groups were conserved between all three streams including Pseudomonads and members of the genera Aquabacterium, Rhodoferax, Hyphomicrobium, and Pirellula. Each group showed pronounced seasonal trends in abundance, with peaks during the Fall. The Hyphomicrobium group was numerically dominant throughout the year in all three streams. This work provides a framework for investigating the effects of various environmental factors and anthropogenic effects on microbial communities inhabiting the hyporheic zone.

  6. The hyporheic zone as a source of dissolved organic carbon and carbon gases to a temperate forested stream

    USGS Publications Warehouse

    Schindler, J.E.; Krabbenhoft, D.P.

    1998-01-01

    The objective of this study was to examine chemical changes in porewaters that occur over small scales (cm) as groundwater flows through the hyporheic zone and discharges to a stream in a temperate forest of northern Wisconsin. Hyporheic-zone porewaters were sampled at discrete depths of 2, 10, 15, 61, and 183 cm at three study sites in the study basin. Chemical profiles of dissolved organic carbon (DOC), CO2, CH4, and pH show dramatic changes between 61 cm sediment depth and the water-sediment interface. Unless discrete samples at small depth intervals are taken, these chemical profiles are not accounted for. Similar trends were observed at the three study locations, despite each site having very different hydraulic-flow regimes. Increases in DOC concentration by an order of magnitude from 61 to 15 cm depth with a corresponding decrease in pH and rapid decreases in the molecular weight of the DOC suggest that aliphatic compounds (likely organic acids) are being generated in the hyporheic zone. Estimated efflux rates of DOC, CO2, and CH4 to the stream are 6.2, 0.79, 0.13 moles m2 d-1, respectively, with the vast majority of these materials produced in the hyporheic zone. Very little of these materials are accounted for by sampling stream water, suggesting rapid uptake and/or volatilization.

  7. Hydrology controls dissolved organic matter export and composition in an Alpine stream and its hyporheic zone

    PubMed Central

    Fasching, Christina; Ulseth, Amber J.; Schelker, Jakob; Steniczka, Gertraud

    2015-01-01

    Abstract Streams and rivers transport dissolved organic matter (DOM) from the terrestrial environment to downstream ecosystems. In light of climate and global change it is crucial to understand the temporal dynamics of DOM concentration and composition, and its export fluxes from headwaters to larger downstream ecosystems. We monitored DOM concentration and composition based on a diurnal sampling design for 3 years in an Alpine headwater stream. We found hydrologic variability to control DOM composition and the coupling of DOM dynamics in the streamwater and the hyporheic zone. High‐flow events increased DOM inputs from terrestrial sources (as indicated by the contributions of humic‐ and fulvic‐like fluorescence), while summer baseflow enhanced the autochthonous imprint of DOM. Diurnal and seasonal patterns of DOM composition were likely induced by biological processes linked to temperature and photosynthetic active radiation (PAR). Floods frequently interrupted diurnal and seasonal patterns of DOM, which led to a decoupling of streamwater and hyporheic water DOM composition and delivery of aromatic and humic‐like DOM to the streamwater. Accordingly, DOM export fluxes were largely of terrigenous origin as indicated by optical properties. Our study highlights the relevance of hydrologic and seasonal dynamics for the origin, composition and fluxes of DOM in an Alpine headwater stream. PMID:27478248

  8. Modeling the influence of varying hydraulic conditions on aerobic respiration and denitrification in the hyporheic zone

    NASA Astrophysics Data System (ADS)

    Trauth, N.; Schmidt, C.; Fleckenstein, J. H.

    2013-12-01

    Exchange of water and solutes across the stream-sediment interface is an important control for biogeochemical transformations in the hyporheic zone (HZ) with measurable impacts on nutrient cycling and solute attenuation in fluvial systems. Here we investigate the interplay between turbulent stream flow and HZ flow under various hydraulic conditions applied to two cases: a) three-dimensional generic pool-riffle sequences with different morphological properties, and b) a real mid-stream gravel-bar. Stream flow is simulated by the open source computational fluid dynamics (CFD) software OpenFOAM which provides the hydraulic head distribution at the streambed. It is sequentially coupled to the top of the groundwater model code MIN3P, simulating flow, solute transport, aerobic respiration (AR) and denitrification (DN) in the HZ. Flow in the HZ is directly influenced by the hydraulic head distribution at the streambed surface and the ambient groundwater flow. Three reactive transport scenarios are considered: 1) stream water as the primary source of dissolved oxygen (DO), nitrate (NO3) and dissolved organic carbon (DOC), 2) upwelling groundwater as an additionally source of NO3, and 3) upwelling groundwater as an additional source of DO in various concentrations. Results show an increase in hyporheic exchange flow for increasing stream discharge with a concurrent decrease in residence time. The fraction of circulating stream water through the HZ is in the range of 1x10-5 to 1x10-6 per unit stream length, decreasing with increasing discharge. Ambient groundwater flow in both the up- and downwelling direction diminishes significantly the hyporheic exchange flow and extent. Biogeochemical processes in the HZ are strongly controlled by ambient groundwater flow, even more so than by changes in stream discharge. AR and DN efficiencies of the HZ are significantly reduced by up- and downwelling groundwater and are positively correlated with median residence times. AR occurs in

  9. Storage and Transformation of Artificial and Natural Salmon-Derived Nutrients in the Hyporheic Zone of a Southeast Alaska Stream

    NASA Astrophysics Data System (ADS)

    Marshall, M. C.; Edwards, R. T.; Hall, R. O.; Norberg, E. C.

    2005-05-01

    Adding nutrients in organic pellets (analogs) or salmon carcasses (SDN) is one strategy resource managers use to enhance productivity in streams where natural salmon nutrient subsidies have been reduced. We compared hyporheic storage and transformation of nutrients from carcasses to those from analogs added to surface water of two tributaries of a salmon stream in Southeast Alaska. Hyporheic sediments responded differently to the two sources with some responses detectable the following summer. Average hyporheic and phreatic SRP concentrations in the analog treatment were 2.5 and 3.5 times greater, respectively, than controls one month after the August additions. Subsurface SRP was again higher the following spring and summer in the analog treatment. Surface water SRP was higher in the analog treatment in late summer a year after the addition. Respiration in phreatic zones in analog and control reaches remained under 1.1 mg DO L sediment-1 h-1. However, respiration rates were elevated in phreatic zones in the carcass treatment reach (3.0 mg DO L sediment-1 h-1) the summer after the addition, suggesting delayed use of stored carcass carbon. These results support the hypothesis that hyporheic zones provide long-term storage and remobilization of SDN thereby enhancing stream productivity in subsequent years.

  10. Residence time control on hot moments of net nitrate production and uptake in the hyporheic zone

    USGS Publications Warehouse

    Briggs, Martin A.; Lautz, Laura K.; Hare, Danielle K.

    2014-01-01

    moments of net production and uptake, enhancing NO3- production as residence times approach the anaerobic threshold, and changing zones of net NO3- production to uptake as residence times increase past the net sink threshold. The anaerobic and net sink thresholds for beaver-influenced streambed morphology occur at much shorter residence times (1.3 h and 2.3 h, respectively) compared to other documented hyporheic systems, and the net sink threshold compares favorably to the lower boundary of the anaerobic threshold determined for this system with the new oxygen Damkohler number. The consistency of the residence time threshold values of NO3- cycling in this study, despite environmental variability and disparate morphology, indicates that NO3- hot moment dynamics are primarily driven by changes in physical hydrology and associated residence times.

  11. Temperature dependent redox zonation and attenuation of wastewater-derived organic micropollutants in the hyporheic zone.

    PubMed

    Burke, Victoria; Greskowiak, Janek; Asmuß, Tina; Bremermann, Rebecca; Taute, Thomas; Massmann, Gudrun

    2014-06-01

    The hyporheic zone - a spatially fluctuating ecotone connecting surface water and groundwater - is considered to be highly reactive with regard to the attenuation of organic micropollutants. In the course of the presented study an undisturbed sediment core was taken from the infiltration zone of a bank filtration site in Berlin and operated under controlled laboratory conditions with wastewater-influenced surface water at two different temperatures, simulating winter and summer conditions. The aim was to evaluate the fate of site-relevant micropollutants, namely metoprolol, iopromide, diclofenac, carbamazepine, acesulfame, tolyltriazole, benzotriazole, phenazone and two phenazone type metabolites, within the first meter of infiltration dependent on the prevailing temperature. A change in temperature resulted in a development of significantly distinct redox conditions. Both temperature dependencies and related redox dependencies were identified for all micropollutants except for benzotriazole and carbamazepine, which behaved persistent under all conditions. For the remaining compounds degradation rate constants generally decreased from warm and oxic/penoxic/suboxic over cold and oxic/penoxic to warm and manganese reducing (transition zone). Individual degradation rate constants ranged from 0 (e.g. diclofenac, acesulfame and tolyltriazole in the transition zone) to 1.4×10(-4)s(-1) for metoprolol under warm conditions within the oxic to suboxic zone. PMID:24642095

  12. Modelling of transient river - aquifer exchange using pressure head and heat measurements: the hyporheic zone's dimension

    NASA Astrophysics Data System (ADS)

    Nuetzmann, Gunnar; Christian, Levers; Jörg, Lewandowski

    2010-05-01

    Water exchange processes in the floodplain of a lowland groundwater-surface water system are studied on the basis of a study site near Freienbrink, NE Germany. The surface water boundaries of this site are formed by an oxbow and the current bed of the river Spree, section Müggelspree. Surface and ground water levels and water temperatures were collected in 12 piezometers and 2 recording stage gauges of a 300 m long transect throughout a one-year-period. Due to water level fluctuations alternation of infiltration and exfiltration occurred. However, most of the time groundwater flux is directed into the river Spree and, river water infiltration events into the aquifer are usually short and of minor importance. Due to clogging of the oxbow bed with a mud layer of different thickness the hydraulic contact between the oxbow and the adjacent aquifer is heterogeneously distributed and partially marginal. These features are modelled quantitatively using SUTRA in order to simulate coupled ground water flow and heat transport. A two-dimensional vertical modelling approach along the piezometer transect is developed to study exchange processes close to the surface water bodies more in detail in order to quantify the hyporheic fluxes of both river sections and to identify the directions and quantities of mass and heat fluxes. With the results the following questions will be answered: (1) It is possible to identify and to quantify the hydraulic processes (in- and exfiltration) between both river sections and the aquifer? (2) How fast does the exchange between the surface water and the aquifer occur? (3) Is there a hyporheic zone between the river sections and the aquifer, where groundwater and surface water are mixed, and how much water and heat will be transferred through this zones?

  13. Trace Element Mobility in Water and Sediments in a Hyporheic Zone Adjacent to an Abandoned Uranium Mine

    NASA Astrophysics Data System (ADS)

    Roldan, C.; Blake, J.; Cerrato, J.; Ali, A.; Cabaniss, S.

    2015-12-01

    The legacy of abandoned uranium mines lead to community concerns about environmental and health effects. This study focuses on a cross section of the Rio Paguate, adjacent to the Jackpile Mine on the Laguna Reservation, west-central New Mexico. Often, the geochemical interactions that occur in the hyporheic zone adjacent to these abandoned mines play an important role in trace element mobility. In order to understand the mobility of uranium (U), arsenic (As), and vanadium (V) in the Rio Paguate; surface water, hyporheic zone water, and core sediment samples were analyzed using inductively coupled plasma mass spectroscopy (ICP-MS). All water samples were filtered through 0.45μm and 0.22μm filters and analyzed. The results show that there is no major difference in concentrations of U (378-496μg/L), As (0.872-6.78μg/L), and V (2.94-5.01μg/L) between the filter sizes or with depth (8cm and 15cm) in the hyporheic zone. The unfiltered hyporheic zone water samples were analyzed after acid digestion to assess the particulate fraction. These results show a decrease in U concentration (153-202μg/L) and an increase in As (33.2-219μg/L) and V (169-1130μg/L) concentrations compared to the filtered waters. Surface water concentrations of U(171-184μg/L) are lower than the filtered hyporheic zone waters while As(1.32-8.68μg/L) and V(1.75-2.38μg/L) are significantly lower than the hyporheic zone waters and particulates combined. Concentrations of As in the sediment core samples are higher in the first 15cm below the water-sediment interface (14.3-3.82μg/L) and decrease (0.382μg/L) with depth. Uranium concentrations are consistent (0.047-0.050μg/L) at all depths. The over all data suggest that U is mobile in the dissolved phase and both As and V are mobile in the particular phase as they travel through the system.

  14. The Dynamic Hyporheic Zone: Variability of Groundwater-Surface Water Exchange at Multiple Temporal Scales

    NASA Astrophysics Data System (ADS)

    Binley, A. M.; Dudley-Southern, M. J.

    2014-12-01

    The pathways of exchange of surface water and groundwater can have a significant influence on the delivery of nutrient-rich groundwater to streams. Many studies have revealed how the spatial variability of physical properties (sediment permeability, bedform structures, etc.) at the interface of groundwater and surface water can impact on flow pathways and residence times of hyporheic exchange flow. Here we explore the temporal variability of flow pathways at this interface. We focus on observations made on a study reach of the River Leith, UK but also provide evidence of dynamic exchanges at a number of other study sites. Under baseflow conditions, the study reach of the River Leith shows a predominance of upwelling of groundwater to the river, and in some sections of the reach a significant groundwater discharge zone in evident. However, from observations of piezometric heads made over a two year study period, repeated reversal of flow direction was observed during storm events. By deploying novel miniature electrode sensors in the river bed we were able to monitor the migration of surface water during these events. Penetration of river water to depths of 30cm was observed during monitored events, which support the reported reversal of hydraulic gradients. We, therefore, observed event-driven hyporheic exchange flow. The duration and frequency of such events may have significant impact on the biogeochemistry of shallow river bed sediments within this reach. Furthermore, temporal variability of exchange is not limited to such events: changes in regional groundwater flow pathways over longer time scales may have a significant impact on the location of localised upwelling; at much shorter timescales we see evidence of diurnal fluctuations in hydraulic heads due to evapotranspiration processes. We report on similar observations at companion study sites and discuss implications on the management of water quality in these groundwater fed systems.

  15. Time-lapse ERT and DTS for seasonal and short-term monitoring of an alpine river hyporheic zone

    NASA Astrophysics Data System (ADS)

    Boaga, Jacopo; Laura, Busato; Mariateresa, Perri; Giorgio, Cassiani

    2016-04-01

    The hyporheic zone (HZ) is the area located beneath and adjacent to rivers and streams, where the interactions between surface water and groundwater take place. This complex physical domain allows the transport of several substances from a stream to the unconfined aquifer below, and vice versa, thus playing a fundamental role in the river ecosystem. The importance of the hyporheic zone makes its characterization a goal shared by several disciplines, which range from applied geophysics to biogeochemistry, from hydraulics to ecology. The frontier field of HZ characterization stays in applied non-invasive methodologies as Electrical Resistivity Tomography - ERT - and Distributed Temperature Sensing - DTS. ERT is commonly applied in cross-well configuration or with a superficial electrodes deployment while DTS is used in hydro-geophysics in the last decade, revealing a wide applicability to the typical issues of this field of study. DTS for hydro-geophysics studies is based on Raman scattering and employs heat as tracer and uses a fiber-optic cable to acquire temperature values. We applied both techniques for an alpine river case studies located in Val di Sole, TN, Italy. The collected measurements allow high-resolution characterization of the hyporheic zone, overcoming the critical problem of invasive measurements under riverbeds. In this work, we present the preliminary results regarding the characterization of the hyporheic zone of the alpine river obtained combining ERT and DTS time-lapse measurements. The data collection benefits from an innovative instrumentation deployment, which consists of both an ERT multicore cable and a DTS fiber-optic located in two separated boreholes drilled 5m under the watercourse and perpendicular to it. In particular we present the first year monitoring results and a short time-lapse monitoring experiment conducted during summer 2015. The site and the results here described are part of the EU FP7 CLIMB (Climate Induced Changes on the

  16. Hyporheic zone exchange fluxes and residence times inferred from riverbed temperature and radon data

    NASA Astrophysics Data System (ADS)

    Cranswick, Roger H.; Cook, Peter G.; Lamontagne, Sebastien

    2014-11-01

    Vertical profiles of temperature, radon and electrical conductivity are used to characterise downwelling, neutral and upwelling hyporheic zones along a pool-riffle sequence in the Haughton River in north-eastern Australia. Water residence times and vertical fluxes are derived from temperature and radon data and then directly compared for downwelling profiles. Temperature and radon-derived fluxes in downwelling zones ranged from 0.02 to 24 m day-1 with a mean of 1.69 m day-1 while residence times across the study site ranged from tens of minutes to greater than 15 days. The radon approach has the lowest uncertainty for residence times between 0.1 and 15 days while the uncertainty of the temperature approach (using a diel river signal) is lowest for residence times that are less than a few days. For 83% of depths in downwelling profiles, radon-derived residence times were greater (some up to two orders of magnitude greater) than temperature-derived residence times. When the error bounds of the residence time estimates were accounted for, 57% of radon-derived residence times were considerably greater than temperature-derived residence times in downwelling profiles. We suggest that this disparity is due to the different influence of small scale heterogeneity on temperature and radon transport. These field based results indicate that small scale heterogeneity may play a far more important role than has been previously considered in groundwater-surface water interaction studies.

  17. A tale of two interfaces: Dynamic nitrate removal in the hyporheic zone of a tidal fresh river

    NASA Astrophysics Data System (ADS)

    Sawyer, A. H.; Knights, D. H.; Barnes, R. T.; Wallace, C.; Bray, S. N.; Musial, C.

    2015-12-01

    At the interface of rivers and oceans, tidal freshwater zones (TFZs) stretch for tens to hundreds of kilometers but are rarely monitored for nitrogen export due to their complex hydrodynamics. Field observations from the TFZ of White Clay Creek (Delaware, USA) show that river discharge and nitrate export rates decrease during rising tide, while hyporheic storage increases. During falling tide, river discharge and nitrate export rates increase, while stored hyporheic water is released to the river. We estimate that 11% of river water exchanges through the hyporheic zone of this TFZ due to tidal pumping alone. We developed a one-dimensional, coupled fluid flow and solute transport model to quantify the influence of tidal pumping on nitrate removal in the riverbed. Tidal pumping promotes a deep, oscillating zone of aerobic respiration that limits denitrification near the sediment-water interface. As tide rises, groundwater residence times in shallow riverbed sediments increase, which causes a doubling of denitrification rates relative to falling tide. Given a uniform substrate along TFZs, removal rates of groundwater-borne nitrate should decrease as tidal amplitude increases downstream. Denitrification hot spots should occur in less permeable, organic-rich sediment under low tidal ranges. Because TFZs connect lowland nitrogen sources to the ocean, it is imperative that we expand monitoring efforts and elucidate their role in nitrogen export to the coast.

  18. Experimental analysis and modelling of the oxygen balance in the hyporheic zone of the Kharaa River (Mongolia)

    NASA Astrophysics Data System (ADS)

    Hartwig, M.; Borchardt, D.

    2012-04-01

    The hyporheic zone has important functions for the aquatic ecosystem like beeing a habitat for a variety of organisms and a reactor for a multitude of transformation processes. But these functions are dependent on the availability of oxygen. Under oxygen depletion for example, the habitat for macroinvertebrates and fish gets lost, and denitrification or the dissolution of phosphorous occurs. Then again, the input, retention time and depletion of oxygen is for most of the part dependent on the morphology and the sediment properties. Therefor, the aim of the study is the process analysis of the oxygen balance within the compartments surface water column and hyporheic zone along a river gradient and under consideration of sediment input. The study area of the Kharaa River (Mongolia) is suitable for that reason as it is close to natural conditions and an identifiable point source of suspended sediment enables a causal analysis of the clogging problem. For the numerical analysis a two-compartment model on the riffle scale was conceptualized. According to that an intensive monitoring program was conducted in spring and late summer of 2010 and 2011 including methods for the characterization of the hydraulics, the exchange as well as biogeochemical properties. The model concept was implemented in AQUASIM and calibrated with the data. The data show a decreased interaction of surface and interstitial water along the river gradient, in particular the diversity of oxygenation and therefor potential transformation processes within the hyporheic zone decreased. And the functional loss for habitat and production could be proved to be impaired by suspended or infiltrated sediments. The results of the numerical analysis demonstrates, at which state the clogging process can become critical for the hyporheic functioning. This study provides important information in order to identify critical conditions for the aquatic ecology as well as for the self regulation of the river under

  19. Mixing effects on nitrogen and oxygen concentrations and the relationship to mean residence time in a hyporheic zone of a riffle-pool sequence

    USGS Publications Warehouse

    Naranjo, Ramon C.; Niswonger, Richard G.; Clinton Davis,

    2015-01-01

    Flow paths and residence times in the hyporheic zone are known to influence biogeochemical processes such as nitrification and denitrification. The exchange across the sediment-water interface may involve mixing of surface water and groundwater through complex hyporheic flow paths that contribute to highly variable biogeochemically active zones. Despite the recognition of these patterns in the literature, conceptualization and analysis of flow paths and nitrogen transformations beneath riffle-pool sequences often neglect to consider bed form driven exchange along the entire reach. In this study, the spatial and temporal distribution of dissolved oxygen (DO), nitrate (NO3-) and ammonium (NH4+) were monitored in the hyporheic zone beneath a riffle-pool sequence on a losing section of the Truckee River, NV. Spatially-varying hyporheic exchange and the occurrence of multi-scale hyporheic mixing cells are shown to influence concentrations of DO and NO3- and the mean residence time (MRT) of riffle and pool areas. Distinct patterns observed in piezometers are shown to be influenced by the first large flow event following a steady 8 month period of low flow conditions. Increases in surface water discharge resulted in reversed hydraulic gradients and production of nitrate through nitrification at small vertical spatial scales (0.10 to 0.25 m) beneath the sediment-water interface. In areas with high downward flow rates and low MRT, denitrification may be limited. The use of a longitudinal two-dimensional flow model helped identify important mechanisms such as multi-scale hyporheic mixing cells and spatially varying MRT, an important driver for nitrogen transformation in the riverbed. Our observations of DO and NO3- concentrations and model simulations highlight the role of multi-scale hyporheic mixing cells on MRT and nitrogen transformations in the hyporheic zone of riffle-pool sequences. This article is protected by copyright. All rights reserved.

  20. Small-scale oxygen distribution determines the vinyl chloride biodegradation pathway in surficial sediments of riverbed hyporheic zones.

    PubMed

    Atashgahi, Siavash; Maphosa, Farai; Doğan, Eylem; Smidt, Hauke; Springael, Dirk; Dejonghe, Winnie

    2013-04-01

    Surficial riverbed sediments are often characterized by sharp redox gradients between the aerobic benthic sediment and underlying anoxic sediment, potentially representing an ideal niche for aerobic and anaerobic vinyl chloride (VC) degraders. To test this, the fate of VC in aerobic and anaerobic microcosms containing surficial sediment of a riverbed hyporheic zone receiving VC-contaminated groundwater was explored. Quantitative PCR showed that Dehalococcoides 16S rRNA gene and VC reductive dehalogenase-encoding genes (vcrA, bvcA) were highly enriched in anaerobic microcosms, with stoichiometric conversion of VC to ethene. In aerobic microcosms, etnC and etnE involved in aerobic ethene/VC oxidation were enriched with concomitant low or no accumulation of ethene. However, Dehalococcoides 16S rRNA gene, vcrA and bvcA copy numbers were also enriched in oxygen-exposed microcosms containing sediment with high organic carbon and small grain size, whereas they were reduced in oxygen-exposed sediment with low organic carbon and larger grain size in line with extensive oxygen penetration into the sediment. These results suggest the coexistence and coactivity of anaerobic and aerobic VC degraders in the same small volume of surficial sediment and that oxygen distribution, as determined by sediment grain size and organic matter content, affects the local VC-degrading bacterial community and VC biodegradation pathway.

  1. Chemoautotrophic production and respiration in the hyporheic zone of a sonoran desert stream

    SciTech Connect

    Jones, J.B. Jr.; Holmes, R.M.; Fisher, S.G.; Grimm, N.B.

    1994-12-31

    Chemoautotrophic production and respiration (aerobic and anaerobic) were examined along flowpaths in three subsystems in Sycamore Creek, Arizona. Chemoautotrophic production was highest where surface waters enter parafluvial sediments (64 to 76 mgC{center_dot}m{sup {minus}2}{center_dot}d{sup {minus}1}) and lowest in anoxic bank sediments (14 to 16 mgC{center_dot}m{sup {minus}2}{center_dot}d{sup {minus}1}). Aerobic respiration was considerable greater than chemoautotrophy in oxygenated hyporheic and parafluvial zones (2,400 to 4,900 mgC{center_dot}m{sup {minus}2}{center_dot}d{sup {minus}1}). In anoxic bank sediments, respiration was also much greater than chemoautotrophy, but was entirely anaerobic (i.e., methane production; 3,500 mgC{center_dot}m{sup {minus}2}{center_dot}d{sup {minus}1}). Weighting subsystems by areal extent, the largest proportion of aerobic respiration and chemoautotrophic production occurred in parafluvial sediments (64 to 76%), whereas anoxic bank sediments were most important for anaerobic respiration (94% of total anaerobic respiration). Overall, chemoautotrophic production was only 1.0 to 1.3% of respiration and methane production was only 5% of total sediment respiration.

  2. Freeze shoe sampler for the collection of hyporheic zone sediments and porewater.

    PubMed

    Bianchin, M; Smith, L; Beckie, R

    2015-01-01

    The Starr and Ingleton (1992) drive point piston sampler (DPPS) design was modified by fitting it with a Murphy and Herkelrath (1996) type sample-freezing drive shoe (SFDS), which uses liquid carbon dioxide as a cryogen. Liquid carbon dioxide was used to freeze sediments in the lower 0.1 m of the core and the drive-point piston sealed the core at the top preserving the reductive-oxidation (redox) sensitive sediments from the atmosphere and maintaining natural stratigraphy. The use of nitrogen gas to provide positive pressure on the gas system blocked the ingress of water which froze on contact with the cryogen thus blocking the gas lines with ice. With this adaptation to the gas system cores could be collected at greater depths beneath the static water level. This tool was used to collect intact saturated sediment cores from the hyporheic zone of the tidally influenced Fraser River in Vancouver, British Columbia, Canada where steep geochemical and microbial gradients develop within the interface between discharging anaerobic groundwater and recharging aerobic river water. In total, 25 cores driven through a 1.5 m sampling interval were collected from the river bed with a mean core recovery of 75%. The ability to deploy this method from a fishing vessel makes the tool more cost effective than traditional marine-based drilling operations which often use barges, tug boats, and drilling rigs. PMID:24825508

  3. Freeze shoe sampler for the collection of hyporheic zone sediments and porewater.

    PubMed

    Bianchin, M; Smith, L; Beckie, R

    2015-01-01

    The Starr and Ingleton (1992) drive point piston sampler (DPPS) design was modified by fitting it with a Murphy and Herkelrath (1996) type sample-freezing drive shoe (SFDS), which uses liquid carbon dioxide as a cryogen. Liquid carbon dioxide was used to freeze sediments in the lower 0.1 m of the core and the drive-point piston sealed the core at the top preserving the reductive-oxidation (redox) sensitive sediments from the atmosphere and maintaining natural stratigraphy. The use of nitrogen gas to provide positive pressure on the gas system blocked the ingress of water which froze on contact with the cryogen thus blocking the gas lines with ice. With this adaptation to the gas system cores could be collected at greater depths beneath the static water level. This tool was used to collect intact saturated sediment cores from the hyporheic zone of the tidally influenced Fraser River in Vancouver, British Columbia, Canada where steep geochemical and microbial gradients develop within the interface between discharging anaerobic groundwater and recharging aerobic river water. In total, 25 cores driven through a 1.5 m sampling interval were collected from the river bed with a mean core recovery of 75%. The ability to deploy this method from a fishing vessel makes the tool more cost effective than traditional marine-based drilling operations which often use barges, tug boats, and drilling rigs.

  4. Dissolved Oxygen Concentration Profiles in the Hyporheic Zone Through the Use of a High-Density Fiber Optic Measurement Network

    NASA Astrophysics Data System (ADS)

    Reeder, William Jeffrey; Quick, Annika; Farrell, Tiffany B.; Benner, Shawn G.; Feris, Kevin P.; Tonina, Daniele

    2015-04-01

    The majority of chemical reactions in riverine systems occur within the hyporheic zone (HZ). Hyporheic exchange, flow into and out of the hyporheic zone, represents a primary control over those reactions because the flow rate will determine the residence time and amount of chemical constituents in the HZ. Hyporheic flow can be conceptualized as discreet streamlines that collectively represent a broad distribution of residence times. Within this context, dissolved oxygen (DO) concentration becomes a primary indicator of the redox and biochemical state of the HZ including, for example, the fate of carbon, contaminant behavior, nutrient cycling, stream DO levels and nitrous oxide (N2O) production. River systems have been identified as a significant source of N2O emissions, contributing an estimated 10% of anthropogenically generated N2O. The primary biochemical transformations that lead to N2O production are nitrification (NH4+ to NO3-) and denitrification (NO3- to N2) reactions that are mediated by microbes living in the HZ. Current theory describes a process in which DO enters the stoss side of the HZ and is consumed by respiration and nitrification in the upstream, oxic portion of the streamlines leading to a progressive partitioning of the HZ from oxic to anoxic. This conceptualization, however, has not been well validated in a physical sense, due to inherent difficulties associated with measuring chemical concentrations in the HZ. To test current theory, we measured HZ DO concentrations, in a large-scale flume experiment, almost continuously for five months using a multiplexed optical network and a precision robotic surface probe system. We were able to measure DO at higher spatial and temporal resolution than has been previously demonstrated. These measurements, coupled with detailed numerical modeling of HZ flowlines, allowed us to map HZ DO concentrations spatially and over time. Our findings validate the models that describe the consumption of DO through

  5. Hyporheic nitrogen dynamics in gravel bed rivers

    NASA Astrophysics Data System (ADS)

    Marzadri, A.; Tonina, D.; Bellin, A.

    2009-04-01

    Streams often suffer of excessive nitrogen inputs from agricultural and urban areas. These inputs are the major responsible of streamś eutrophication and may be a source of nitrous oxide an important greenhouse gas formed during same hyporheic processes. Consequently, hyporheic exchange, which mixes surface and pore waters, affects both fluvial and terrestrial ecosystems and its inclusion in nutrients and contaminant transport model is necessary. In general, in-stream water continuously exchange between stream and sediment through the ¨p umping¨m echanism, which stems primarily from near-bed pressure gradients. Alternate zones of high (downwelling) and low (upwelling) pressure induce a complex flow pattern within the hyporheic zone with in-stream and pore waters entering the stream and the sediment, respectively. In the present work, we focus on the export of ammonium (NH4+), nitrate (NO3-) and their fate within the streambed of gravel bed rivers with alternate bars. We model hyporheic exchange with analytical solutions of the intra-gravel flows induced by streambed morphology and the fate of the inorganic compounds of nitrogen with a set of transport equations coupled with first order kinetics. Transport is solved by particle tracking, assuming negligible local dispersion and temperature dependant reaction rate coefficients. Through a Lagrangian approach we present the transport equation in term of hyporheic residence time, which is the controlling parameter of both retention and nitrification-denitrificaton processes. We investigate the important factors controlling the export of ammonium, nitrate, and production of nitrogen gases by the hyporheic zone. Our results show that the hyporheic zone acts as a sink of ammonium to an extent that depends on the nitrification rate but it may act as a source or a sink of nitrate. Additionally, it can influence the emission of nitrogen gases (N2 and N2O), depending on the ratio between ammonium and nitrate concentrations

  6. Changes in distribution of fine sediments in the hyporheic zone during high flow events

    NASA Astrophysics Data System (ADS)

    Kasahara, T.; Yasuda, Y.; Otsuki, K.

    2013-12-01

    Streambed sediments are dynamic, influencing stream-groundwater exchange. Reduction of the exchange flow due to streambed clogging by fine sediments has been reported in impacted agricultural and urban streams. In natural streams, intrusion of fine sediments and subsequent clogging may occur, but its effects are expected to be temporary due to the periodical washout of fine sediments. Understanding the dynamics of fine sediments in shallow streambed in natural streams is important in studying stream-groundwater exchange and in designing of management practices of impacted streams. In this study, we focused on shallow streambed, less than 25cm depth, where hyporheic exchange occurs. The concentrations of fine sediments in interstitial water were measured, using PVC pipes, to study the change in fine sediments distribution in the streambed during high flow events. We also measured the sediment accumulation on the streambed, using mesh, to study the linkage between the locations of surface accumulation and fine sediment intrusion. The study site was located in a 3rd order stream with gravel-cobble bed and base flow of about 80 L/s in northern Kyushu Island of Japan. The concentration of fine sediments in the interstitial water varied considerably among sampling locations, ranging from 38mg/L to over 200mg/L with an average of 120mg/L. The concentrations increased after high flow event, with an average of 3g/L in some event, and they were higher in the locations with negative vertical head gradient, indicating that the downwelling flow carrying fine sediments into the interstitial zone. Streambed sediment accumulation showed relation with fine sediment concentration, and also with water depth and velocity, suggesting that the surface channel condition may indicate the locations of fine sediments intrusion in the interstitial zone. The results of this study showed that fine sediment distribution in the shallow streambed changes considerably during high flow events, and

  7. Dynamic Change of Water Quality in Hyporheic Zone at Water Curtain Cultivation Area, Cheongju, Korea

    NASA Astrophysics Data System (ADS)

    Moon, S. H.; Kim, Y.

    2015-12-01

    There has been recently growing numbers of facilities for water curtain cultivation of strawberry and lettuce in Korea. These areas are nearly all located in the fluvial deposits near streams which can replenish water resources into exhausted groundwater aquifers during peak season. The purpose of this study is on groundwater chemistry and the change in physical and chemical properties due to stream-groundwater exchange or mixing in the representative agricultural area among the Jurassic granitic terrain of Korea. In the study area, groundwater level continuously decreased from November through March due to intensive use of groundwater, which forced stream water into aquifer. After March, groundwater level was gradually recovered to the original state. To evaluate the extent and its variations of stream water mixing into aquifer, field parameters including T, pH, EC and DO values, concentrations of major ions and oxygen and hydrogen stable isotopic ratios were used. Field measurements and water sample collections were performed several times from 2012 to 2015 mainly during peak time of groundwater use. To compare the temporal variations and areal differences, 21 wells from four cross sections perpendicular to stream line were used. While water temperature, EC values and concentrations of Ca, Mg, Si, HCO3 showed roughly gradual increase from stream line to 150 m distance, pH and DO values showed reverse phenomenon. This can be used to evaluate the extent and limit of stream water introduction into aquifer. However, individual wells showed yearly variations in those parameters and this dynamic and unstable feature indicates that mixing intensity of stream water over groundwater in this hyporheic zone varied year by year according to amounts of groundwater use and decrease of groundwater level.

  8. Numerical model of hyporheic exchange and reactive transport dynamics from the perspective of residence time on upwelling and downwelling zones at River Bure, UK

    NASA Astrophysics Data System (ADS)

    Gokdemir, C.; Heppell, K.; Tonina, D.; Harvey, G.; Bellin, A.

    2013-12-01

    The hyporheic zone is often defined as where mixing of surface water and groundwater occurs in shallow sediments beneath and adjacent to rivers. This mixing is credited with creating unique biogeochemical conditions that can attenuate contaminants from either upstream surface water or groundwater under gaining and losing conditions. Hyporheic exchange often results from differences in the channel near-bed total pressures as they vary in response to interactions between the surface flow and bed topography and the nearby water table. Reactions of contaminants in groundwater also dependent on mixing from surface water. Therefore, representation of the profile of upwelling and downwelling exchange between surface water and groundwater have important consequences for contaminant transport. Here we are studying nitrogen fate within a restored reach of the River Bure, Norfolk, United Kingdom. We combine field measurements of surface flow properties, nearby groundwater table and nitrogen compound concentration with numerical simulation of the hyporheic flow path. We numerically model mixing between hyporheic flow paths induced by sediment, bedform, meanders on riverbed, and flow paths of adjacent upwelling of deeper groundwater. Preliminary results indicate that with the coarse topographical data and with limited surface water hydraulic data it is possible to define the spatial extent of hyporheic exchange and potential mixing zones for contaminants as a function of residence time. The proposed work has the potential to depict high residence time zones and biogeochemical reactivity in homogeneous and heterogeneous sediments. Furthermore, our results aim to clarify hyporheic zone definitions from the perspective of residence time and of upwelling and downwelling contaminants in order to understand real case biogeochemical dynamics.

  9. Functional and Structural Responses of Hyporheic Biofilms to Varying Sources of Dissolved Organic Matter

    PubMed Central

    Wagner, Karoline; Bengtsson, Mia M.; Besemer, Katharina; Sieczko, Anna; Burns, Nancy R.; Herberg, Erik R.

    2014-01-01

    Headwater streams are tightly connected with the terrestrial milieu from which they receive deliveries of organic matter, often through the hyporheic zone, the transition between groundwater and streamwater. Dissolved organic matter (DOM) from terrestrial sources (that is, allochthonous) enters the hyporheic zone, where it may mix with DOM from in situ production (that is, autochthonous) and where most of the microbial activity takes place. Allochthonous DOM is typically considered resistant to microbial metabolism compared to autochthonous DOM. The composition and functioning of microbial biofilm communities in the hyporheic zone may therefore be controlled by the relative availability of allochthonous and autochthonous DOM, which can have implications for organic matter processing in stream ecosystems. Experimenting with hyporheic biofilms exposed to model allochthonous and autochthonous DOM and using 454 pyrosequencing of the 16S rRNA (targeting the “active” community composition) and of the 16S rRNA gene (targeting the “bulk” community composition), we found that allochthonous DOM may drive shifts in community composition whereas autochthonous DOM seems to affect community composition only transiently. Our results suggest that priority effects based on resource-driven stochasticity shape the community composition in the hyporheic zone. Furthermore, measurements of extracellular enzymatic activities suggest that the additions of allochthonous and autochthonous DOM had no clear effect on the function of the hyporheic biofilms, indicative of functional redundancy. Our findings unravel possible microbial mechanisms that underlie the buffering capacity of the hyporheic zone and that may confer stability to stream ecosystems. PMID:25063654

  10. Linking hyporheic flow and nitrogen cycling near the Willamette River - A large river in Oregon, USA

    USGS Publications Warehouse

    Hinkle, S.R.; Duff, J.H.; Triska, F.J.; Laenen, A.; Gates, E.B.; Bencala, K.E.; Wentz, D.A.; Silva, S.R.

    2001-01-01

    strong vertical redox gradient was observed, with nitrate-limited denitrification potential in deeper sediment and both nitrification and denitrification potential in shallower sediment. Since nitrogen cycling is strongly affected by redox conditions, nitrogen cycling in the hyporheic zone of this large-river system likely is affected by dynamics of ground water/surface water interactions that control fluxes of nitrogen and other redox species to hyporheic zone sediment.

  11. Temperature effects on nitrogen cycling and nitrate removal-production efficiency in bed form-induced hyporheic zones

    NASA Astrophysics Data System (ADS)

    Zheng, Lizhi; Cardenas, M. Bayani; Wang, Lichun

    2016-04-01

    Hyporheic flow in aquatic sediment controls solute and heat transport thereby mediating the fate of nutrients and contaminants, dissolved oxygen, and temperature in the hyporheic zone (HZ). We conducted a series of numerical simulations of hyporheic processes within a dune with different uniform temperatures, coupling turbulent open channel fluid flow, porous fluid flow, and reactive solute transport to study the temperature dependence of nitrogen source/sink functionality and its efficiency. Two cases were considered: a polluted stream and a pristine stream. Sensitivity analysis was performed to investigate the influence of stream water [NO3-]/[NH4+]. The simulations showed that in both cases warmer temperatures resulted in shallower denitrification zones and oxic-anoxic zone boundaries, but the trend of net denitrification rate and nitrate removal or production efficiency of the HZ for these two cases differed. For both cases, at high [NO3-]/[NH4+], the HZ functioned as a NO3- sink with the nitrate removal efficiency increasing with temperature. But at low [NO3-]/[NH4+] for the polluted stream, the HZ is a NO3- sink at low temperature but then switches to a NO3- source at warmer temperatures. For the pristine stream case, the HZ was always a NO3- source, with the NO3- production efficiency increasing monotonically with temperature. In addition, although the interfacial fluid flux expectedly increased with increasing temperature due to decreasing fluid viscosity, the total nitrate flux into the HZ did not follow this trend. This is because when HZ nitrification is high, uniformly elevated [NO3-] lowers dispersive fluxes into the HZ. We found that there are numerous confounding and interacting factors that combined to lead to the final temperature dependence of N transformation reaction rates. Although the temperature effect on the rate constant can be considered as the dominant factor, simply using the Arrhenius equation to predict the reaction rate would lead to

  12. Processes of zinc attenuation by biogenic manganese oxides forming in the hyporheic zone of Pinal Creek, Arizona

    PubMed Central

    Fuller, Christopher C.; Bargar, John R.

    2014-01-01

    The distribution and speciation of Zn sorbed to biogenic Mn oxides forming in the hyporheic zone of Pinal Creek, AZ, was investigated using micro-focused Extended X-ray Absorption Fine Structure (EXAFS) and X-ray fluorescence (μSXRF) mapping , bulk EXAFS, and chemical extraction. μSXRF and chemical extractions show that contaminant Zn co-varied with Mn in streambed sediment grain coatings. Bulk and micro-focused EXAFS spectra of Zn in the biogenic Mn oxides coating are indicative of Zn forming triple corner sharing inner-sphere complexes over octahedral vacancies in the Mn oxide sheet structure. Zn desorbed in response to decreasing in pH in batch experiments and resulted in near-equal dissolved Zn at each pH over a 10-fold range in solid to solution ratio. The geometry of sorbed Zn was unchanged after 50% desorption at pH 5, indicating desorption is not controlled by dissolution of secondary Zn phases. In sum, these findings support the idea that Zn attenuation in Pinal Creek is largely controlled by sorption to microbial Mn oxides forming in the streambed during hyporheic exchange. Sorption to biogenic Mn oxides is likely an important process in Zn attenuation in circum-neutral pH reaches of many acid-mine drainage contaminated streams when dissolved Mn is present. PMID:24460038

  13. Processes of zinc attenuation by biogenic manganese oxides forming in the hyporheic zone of Pinal Creek, Arizona.

    PubMed

    Fuller, Christopher C; Bargar, John R

    2014-02-18

    The distribution and speciation of Zn sorbed to biogenic Mn oxides forming in the hyporheic zone of Pinal Creek, AZ, was investigated using extended X-ray absorption fine structure (EXAFS) and microfocused synchrotron X-ray fluorescence (μSXRF) mapping, and chemical extraction. μSXRF and chemical extractions show that contaminant Zn co-varied with Mn in streambed sediment grain coatings. Bulk and microfocused EXAFS spectra of Zn in the biogenic Mn oxide coating are indicative of Zn forming triple-corner-sharing inner-sphere complexes over octahedral vacancies in the Mn oxide sheet structure. Zn desorbed in response to the decrease in pH in batch experiments and resulted in near-equal dissolved Zn at each pH over a 10-fold range in the solid/solution ratio. The geometry of sorbed Zn was unchanged after 50% desorption at pH 5, indicating that desorption is not controlled by dissolution of secondary Zn phases. In summary, these findings support the idea that Zn attenuation in Pinal Creek is largely controlled by sorption to microbial Mn oxides forming in the streambed during hyporheic exchange. Sorption to biogenic Mn oxides is likely an important process of Zn attenuation in circum-neutral pH reaches of many acid-mine drainage contaminated streams when dissolved Mn is present.

  14. Processes of zinc attenuation by biogenic manganese oxides forming in the hyporheic zone of Pinal Creek, Arizona

    USGS Publications Warehouse

    Fuller, Christopher C.; Bargar, John R.

    2014-01-01

    The distribution and speciation of Zn sorbed to biogenic Mn oxides forming in the hyporheic zone of Pinal Creek, AZ, was investigated using extended X-ray absorption fine structure (EXAFS) and microfocused synchrotron X-ray fluorescence (μSXRF) mapping, and chemical extraction. μSXRF and chemical extractions show that contaminant Zn co-varied with Mn in streambed sediment grain coatings. Bulk and microfocused EXAFS spectra of Zn in the biogenic Mn oxide coating are indicative of Zn forming triple-corner-sharing inner-sphere complexes over octahedral vacancies in the Mn oxide sheet structure. Zn desorbed in response to the decrease in pH in batch experiments and resulted in near-equal dissolved Zn at each pH over a 10-fold range in the solid/solution ratio. The geometry of sorbed Zn was unchanged after 50% desorption at pH 5, indicating that desorption is not controlled by dissolution of secondary Zn phases. In summary, these findings support the idea that Zn attenuation in Pinal Creek is largely controlled by sorption to microbial Mn oxides forming in the streambed during hyporheic exchange. Sorption to biogenic Mn oxides is likely an important process of Zn attenuation in circum-neutral pH reaches of many acid-mine drainage contaminated streams when dissolved Mn is present.

  15. Use of an Instrumented Mini-Well Matrix to Document Hydraulic and Transport Fluctuations in the Hyporheic Zone

    NASA Astrophysics Data System (ADS)

    Hinlein, E. S.; Ostendorf, D. W.

    2010-12-01

    A matrix of mini-wells was installed and instrumented to monitor the hyporheic zone linking a river and its floodplain deposit in Eastern Massachusetts. The Neponset River is of small to moderate size with seasonal approximate depths ranging from 1-3 m, widths of 5-15 m, and flows varying from 0.3-28 m3/s in the study area adjacent to a major interstate highway. Transport in the hyporheic zone is governed by the floodplain deposit and the river which combine to induce diurnal timescale dispersive mixing. A low steady groundwater gradient drives transport toward the river at a rate of approximately 10 meters per year. The floodplain deposit is made up of silty sand to a depth of 21 m underlain by 9 m of low permeability medium silt. The mini-well installation is in the medium silt river bank. Because of the presence of conductive ions in the floodplain deposit, it is possible to use the mini-well matrix to document a front where groundwater and river water meet both through changes in hydraulic head and groundwater conductivity. Specific conductivity values are in the range of 500 uS/cm in the river and 1500 uS/cm in the adjacent 4.5 m deep well 15 m away. Four clusters of existing monitoring wells currently measure head and conductivity outside the hyporheic zone in 4.5 m deep wells along a line from 15-300 m away from the river. A monitoring station at the river measures river level and conductivity. The mini-well matrix captures the final 15 m between the last well cluster and the river. Data from the existing well cluster adjacent to the hyporheic zone shows response to high river levels on the order of 12-24 hrs, with a predicted excursion amplitude of 1 m in response to a hydrograph amplitude of 2 m from a storm of Feb, 2010. The mini-well matrix will measure the horizontal excursions as well as vertical gradients of head and conductivity. Due to complications associated with river bank topography and the sensitivity of the area, the mini-wells were installed

  16. The dark side of the hyporheic zone: Depth profiles of nitrogen and its processing in stream sediments

    USGS Publications Warehouse

    Stelzer, R.S.; Bartsch, L.A.; Richardson, W.B.; Strauss, E.A.

    2011-01-01

    1.Although it is well known that sediments can be hot spots for nitrogen transformation in streams, many previous studies have confined measurements of denitrification and nitrate retention to shallow sediments (<5cm deep). We determined the extent of nitrate processing in deeper sediments of a sand plains stream (Emmons Creek) by measuring denitrification in core sections to a depth of 25cm and by assessing vertical nitrate profiles, with peepers and piezometers, to a depth of 70cm. 2.Denitrification rates of sediment slurries based on acetylene block were higher in shallower core sections. However, core sections deeper than 5cm accounted for 68% of the mean depth-integrated denitrification rate. 3.Vertical hydraulic gradient and vertical profiles of pore water chloride concentration suggested that deep ground water upwelled through shallow sediments before discharging to the stream channel. The results of a two-source mixing model based on chloride concentrations suggested that the hyporheic zone was very shallow (<5cm) in Emmons Creek. 4.Vertical profiles showed that nitrate concentration in shallow ground water was about 10-60% of the nitrate concentration of deep ground water. The mean nitrate concentrations of deep and shallow ground water were 2.17 and 0.73mgNO3-NL-1, respectively. 5.Deep ground water tended to be oxic (6.9mgO2L-1) but approached anoxia (0.8mgO2L-1) after passing through shallow, organic carbon-rich sediments, which suggests that the decline in the nitrate concentrations of upwelling ground water was because of denitrification. 6.Collectively, our results suggest that there is substantial nitrate removal occurring in deep sediments, below the hyporheic zone, in Emmons Creek. Our findings suggest that not accounting for nitrate removal in deep sediments could lead to underestimates of nitrogen processing in streams and catchments. ?? 2011 Blackwell Publishing Ltd.

  17. Groundwater flow, nutrient, and stable isotope dynamics in the parafluvial-hyporheic zone of the regulated Lower Colorado River (Texas, USA) over the course of a small flood

    NASA Astrophysics Data System (ADS)

    Briody, Alyse C.; Cardenas, M. Bayani; Shuai, Pin; Knappett, Peter S. K.; Bennett, Philip C.

    2016-06-01

    Periodic releases from an upstream dam cause rapid stage fluctuations in the Lower Colorado River near Austin, Texas, USA. These daily pulses modulate fluid exchange and residence times in the hyporheic zone where biogeochemical reactions are typically pronounced. The effects of a small flood pulse under low-flow conditions on surface-water/groundwater exchange and biogeochemical processes were studied by monitoring and sampling from two dense transects of wells perpendicular to the river. The first transect recorded water levels and the second transect was used for water sample collection at three depths. Samples were collected from 12 wells every 2 h over a 24-h period which had a 16-cm flood pulse. Analyses included nutrients, carbon, major ions, and stable isotopes of water. The relatively small flood pulse did not cause significant mixing in the parafluvial zone. Under these conditions, the river and groundwater were decoupled, showed potentially minimal mixing at the interface, and did not exhibit any discernible denitrification of river-borne nitrate. The chemical patterns observed in the parafluvial zone can be explained by evaporation of groundwater with little mixing with river water. Thus, large pulses may be necessary in order for substantial hyporheic mixing and exchange to occur. The large regulated river under a low-flow and small flood pulse regime functioned mainly as a gaining river with little hydrologic connectivity beyond a narrow hyporheic zone.

  18. On the spatial variability of the hyporheic zone: in-situ investigation of porosity and grain size using diving bells and 3D photogrammetry

    NASA Astrophysics Data System (ADS)

    Frings, R. M.; Vollmer, S.

    2012-04-01

    In order to improve the ecological status of rivers, lakes and other water bodies, recent legislation, such as the European Water Framework Directive, requires for each water body an assessment of its suitability as habitat for organisms. Such an assessment, though, is not easy. This is especially true for the lowest part of the water body: the substrate or hyporheic zone. Even if it is known which kind of hyporheic zone is preferred by an organism, it remains difficult to determine where it can be found, because it is often impossible to observe the hyporheic zone from the banks or shores. It has become common to classify an entire water body as suitable or unsuitable as habitat, using only limited field observations of the hyporheic zone. This is a doubtful practice, which disregards the huge spatial variability of this zone. The objective of this study was to quantify the spatial variability in hyporheic-zone characteristics in the river Rhine. We focused on two basic characteristics: grain size and porosity, the latter being a primary control on the transport of nutrients, heat, oxygen and organic matter. A diving bell (caisson) was used to obtain access to the river bed, which enabled undisturbed sampling of the hyporheic zone. Between 1968 and 2009 6436 sediment samples were taken and sieved to determine their grain size distribution. Furthermore, in 2009 and 2011 about 100 porosity measurements were carried out, using a novel technique based on a combination of field measurements using three-dimensional photogrammetry and laboratory measurements using the water displacement method. The measurements revealed a strong cross-sectional variability in porosity and grain size. Each river cross-section contains spots with high porosity (order 0.40) and spots with low porosity (order 0.10). The large cross-sectional variability made it impossible to recognize systematic streamwise porosity trends from the data. Therefore we investigated if porosity was correlated to

  19. Fate of organic micropollutants in the hyporheic zone of a eutrophic lowland stream: results of a preliminary field study.

    PubMed

    Lewandowski, Jörg; Putschew, Anke; Schwesig, David; Neumann, Christiane; Radke, Michael

    2011-04-15

    Many rivers and streams worldwide are impacted by pharmaceuticals originating from sewage. The hyporheic zone underlying streams is often regarded as reactive bioreactor with the potential for eliminating such sewage-born micropollutants. The present study aims at checking the elimination potential and analyzing the coupling of hydrodynamics, biogeochemistry and micropollutant processing. To this end, two sites at the lowland stream Erpe, which receives a high sewage burden, were equipped and sampled with nested piezometers. From temperature depth profiles we determined that at one of the sites infiltration of surface water into the aquifer occurs while exfiltration dominates at the other site. Biogeochemical data reveal intense mineralization processes and strictly anoxic conditions in the streambed sediments at both sites. Concentrations of the pharmaceuticals indomethacin, diclofenac, ibuprofen, bezafibrate, ketoprofen, naproxen and clofibric acid were high in the surface water and also in the subsurface at the infiltrating site. The evaluation of the depth profiles indicates some attenuation but due to varying surface water composition the evaluation of subsurface processes is quite complex. Borate and non-geogenic gadolinium were measured as conservative wastewater indicators. To eliminate the influence of fluctuating sewage proportions in the surface water, micropollutant concentrations are related to these indicators. The indicators can cope with different dilutions of the sewage but not with temporally varying sewage composition. PMID:21349571

  20. Hydraulic controls of in-stream gravel bar hyporheic exchange and reactions

    NASA Astrophysics Data System (ADS)

    Trauth, Nico; Schmidt, Christian; Vieweg, Michael; Oswald, Sascha E.; Fleckenstein, Jan H.

    2015-04-01

    Hyporheic exchange transports solutes into the subsurface where they can undergo biogeochemical transformations, affecting fluvial water quality and ecology. A three-dimensional numerical model of a natural in-stream gravel bar (20 m × 6 m) is presented. Multiple steady state streamflow is simulated with a computational fluid dynamics code that is sequentially coupled to a reactive transport groundwater model via the hydraulic head distribution at the streambed. Ambient groundwater flow is considered by scenarios of neutral, gaining, and losing conditions. The transformation of oxygen, nitrate, and dissolved organic carbon by aerobic respiration and denitrification in the hyporheic zone are modeled, as is the denitrification of groundwater-borne nitrate when mixed with stream-sourced carbon. In contrast to fully submerged structures, hyporheic exchange flux decreases with increasing stream discharge, due to decreasing hydraulic head gradients across the partially submerged structure. Hyporheic residence time distributions are skewed in the log-space with medians of up to 8 h and shift to symmetric distributions with increasing level of submergence. Solute turnover is mainly controlled by residence times and the extent of the hyporheic exchange flow, which defines the potential reaction area. Although streamflow is the primary driver of hyporheic exchange, its impact on hyporheic exchange flux, residence times, and solute turnover is small, as these quantities exponentially decrease under losing and gaining conditions. Hence, highest reaction potential exists under neutral conditions, when the capacity for denitrification in the partially submerged structure can be orders of magnitude higher than in fully submerged structures.

  1. Characterization of Macroinvertebrate Communities in the Hyporheic Zone of River Ecosystems Reflects the Pump-Sampling Technique Used

    PubMed Central

    Dole-Olivier, Marie-José; Galassi, Diana M. P.; Hogan, John-Paul; Wood, Paul J.

    2016-01-01

    The hyporheic zone of river ecosystems provides a habitat for a diverse macroinvertebrate community that makes a vital contribution to ecosystem functioning and biodiversity. However, effective methods for sampling this community have proved difficult to establish, due to the inaccessibility of subsurface sediments. The aim of this study was to compare the two most common semi-quantitative macroinvertebrate pump-sampling techniques: Bou-Rouch and vacuum-pump sampling. We used both techniques to collect replicate samples in three contrasting temperate-zone streams, in each of two biogeographical regions (Atlantic region, central England, UK; Continental region, southeast France). Results were typically consistent across streams in both regions: Bou-Rouch samples provided significantly higher estimates of taxa richness, macroinvertebrate abundance, and the abundance of all UK and eight of 10 French common taxa. Seven and nine taxa which were rare in Bou-Rouch samples were absent from vacuum-pump samples in the UK and France, respectively; no taxon was repeatedly sampled exclusively by the vacuum pump. Rarefaction curves (rescaled to the number of incidences) and non-parametric richness estimators indicated no significant difference in richness between techniques, highlighting the capture of more individuals as crucial to Bou-Rouch sampling performance. Compared to assemblages in replicate vacuum-pump samples, multivariate analyses indicated greater distinction among Bou-Rouch assemblages from different streams, as well as significantly greater consistency in assemblage composition among replicate Bou-Rouch samples collected in one stream. We recommend Bou-Rouch sampling for most study types, including rapid biomonitoring surveys and studies requiring acquisition of comprehensive taxon lists that include rare taxa. Despite collecting fewer macroinvertebrates, vacuum-pump sampling remains an important option for inexpensive and rapid sample collection. PMID:27723819

  2. Floodplain Hyporheic Response under Dam Release Hydrographs

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Ward, A. S.; O'Connor, B. L.; Endreny, T. A.

    2012-12-01

    Hydropower operations cause altered hydrograph patterns downstream of dams, which regulates the direction and magnitude of floodplain and riverbed hyporheic flux. Periodic adjustments in river stage changes temporal and spatial patterns in hydraulic pressure, initiates propagation of lateral and vertical hyporheic flux, and affects the riparian ecological system by changing the hyporheic penetration distance, hyporheic flux rate, and thermal conditions in river banks. While this issue has been largely neglected by watershed scientists and managers, there is the potential to use hyporheic metrics in setting dam release rules and restoring downstream river reaches. In order to evaluate the hyporheic feedbacks of various dam release patterns, this study applied a computational fluid dynamics (CFD) model to simulate the interaction of open water hydrographs on porous media lateral hyporheic exchange for the Green River, Utah, downstream of Flaming Gorge Dam. The CFD initially represented the river as a straight channel with a thick porous media extending from the channel banks and bottom. The dam release hydrographs changed the patterns of hyporheic flux at the river banks, the penetration distance of the hyporheic flux, the subsurface thermal patterns, and the residence time of water in the subsurface. The results suggest the undulating river stage downstream of dam releases can initiate patterns of hyporheic exchange similar to those induced by restoration of river bed morphology.

  3. Thermal variability within the hyporheic zone of an Alpine stream gravel bar is influenced by solar radiation and other climatic factors

    NASA Astrophysics Data System (ADS)

    Boodoo, Kyle; Schelker, Jakob; Battin, Tom

    2016-04-01

    Gravel bars with largely unsubmerged surface areas exposed to the atmosphere are recipient to high levels of incoming radiation during the day, particularly during summer months. Transfer of heat from the atmosphere downward into the hyporheic zone (HZ) below a gravel bar (GB) can thus possibly lead to the alteration of the vertical temperature profile within its HZ, with implications for physical and biogeochemical processes therein. Here we present results from the analysis of seasonal, high frequency spatio-temporal data including, vertical hyporheic temperature, physical parameters and climatic data for a GB located within an Alpine cold water stream (Oberer Seebach, Austria). Vertical temperature profiles throughout the GB were analyzed together with corresponding climatic data for different seasons to elucidate the spatio-temporal variability of HZ temperature gradients in relation to air temperature, incoming global radiation and stream discharge.Initial analyses indicate a clear seasonal difference between Summer and Autumn temperature profiles throughout the GB, with a strongly developed, exponentially decreasing temperature-depth gradient throughout the GB during summer months. In contrast, this observed gradient substantially weakened or collapsed during autumn months. Furthermore, the highest absolute temperatures and steepest depth gradients within the HZ occurred during summer days, coinciding with the falling hydrograph,where hyporheic temperatures exceeded that of both surface water and groundwater. These findings point to the effect of solar radiation and/or air temperature as a contributor to GB temperatures, possibly influencing diurnal and seasonal GB temperature profiles.Overall, our results suggest that not only the mixing of groundwater and streamwater, but also heat transfer associated with solar radiation and/or air temperature may act as an important driver of HZ temperature, particularly during summer months. This may have implications

  4. The role of water exchange between a stream channel and its hyporheic zone in nitrogen cycling at the terrestrial-aquatic interface

    USGS Publications Warehouse

    Triska, F.J.; Duff, J.H.; Avanzino, R.J.

    1993-01-01

    The subsurface riparian zone was examined as an ecotone with two interfaces. Inland is a terrestrial boundary, where transport of water and dissolved solutes is toward the channel and controlled by watershed hydrology. Streamside is an aquatic boundary, where exchange of surface water and dissolved solutes is bi-directional and flux is strongly influenced by channel hydraulics. Streamside, bi-directional exchange of water was qualitatively defined using biologically conservative tracers in a third order stream. In several experiments, penetration of surface water extended 18 m inland. Travel time of water from the channel to bankside sediments was highly variable. Subsurface chemical gradients were indirectly related to the travel time. Sites with long travel times tended to be low in nitrate and DO (dissolved oxygen) but high in ammonium and DOC (dissolved organic carbon). Sites with short travel times tended to be high in nitrate and DO but low in ammonium and DOC. Ammonium concentration of interstitial water also was influenced by sorption-desorption processes that involved clay minerals in hyporheic sediments. Denitrification potential in subsurface sediments increased with distance from the channel, and was limited by nitrate at inland sites and by DO in the channel sediments. Conversely, nitrification potential decreased with distance from the channel, and was limited by DO at inland sites and by ammonium at channel locations. Advection of water and dissolved oxygen away from the channel resulted in an oxidized subsurface habitat equivalent to that previously defined as the hyporheic zone. The hyporheic zone is viewed as stream habitat because of its high proportion of surface water and the occurrence of channel organisms. Beyond the channel's hydrologic exchange zone, interstitial water is often chemically reduced. Interstitial water that has not previously entered the channel, groundwater, is viewed as a terrestrial component of the riparian ecotone. Thus

  5. A mini drivepoint sampler for measuring pore water solute concentrations in the hyporheic zone of sand-bottom streams

    USGS Publications Warehouse

    Duff, J.H.; Murphy, F.; Fuller, C.C.; Triska, F.J.

    1998-01-01

    A new method for collecting pore-water samples in sand and gravel streambeds is presented. We developed a mini drivepoint solution sampling (MINIPOINT) technique to collect pore-water samples at 2.5-cm vertical resolution. The sampler consisted of six small-diameter stainless steel drivepoints arranged in a 10-cm-diameter circular array. In a simple procedure, the sampler was installed in the streambed to preset drivepoint depths of 2.5, 5.0, 7.5, 10.0, 12.5, and 15.0 cm. Sampler performance was evaluated in the Shingobee River, Minnesota, and Pinal Creek, Arizona, by measuring the vertical gradient of chloride concentration in pore water beneath the streambed that was established by the uninterrupted injection to the stream for 3 d. Pore-water samples were withdrawn from all drivepoints simultaneously. In the first evaluation, the vertical chloride gradient was unchanged at withdrawal rates between 0.3 and 4.0 ml min-1 but was disturbed at higher rates. In the second evaluation, up to 70 ml of pore water was withdrawn from each drivepoint at a withdrawal rate of 2.5 ml min-1 without disturbing the vertical chloride gradient. Background concentrations of other solutes were also determined with MINIPOINT sampling. Steep vertical gradients were present for biologically reactive solutes such as DO, NH4/+, NO3/-, and dissolved organic C in the top 20 cm of the streambed. These detailed solute profiles in the hyporheic zone could not have been determined without a method for close interval vertical sampling that does not disturb natural hydrologic mixing between stream water and groundwater.

  6. Estimation of hydrological and thermal parameters in the hyporheic zone using a novel Bayesian inverse modeling approach

    NASA Astrophysics Data System (ADS)

    Cucchi, Karina; Flipo, Nicolas; Rivière, Agnès; Rubin, Yoram

    2016-04-01

    Hydrothermal properties of the stream-aquifer interface are key information for modeling water and heat transfers in hydrological basins. Our study introduces an algorithm to estimate hydrological and thermal parameters of the hyporheic zone (HZ), as well as their associated uncertainties. Properties of the HZ are inferred from a combination of head differential time series and vertically-distributed temperature time series measured continually in a HZ vertical profile. Head differential and two temperature time series are used as boundary conditions for the vertical profile; the other temperature time series are used as conditioning measurements. Following the Bayesian framework, model parameters are treated as random variables and we seek to characterize their probability density function (PDF) conditional on the temperature time series. Our algorithm follows the Method of Anchored Distributions (MAD) implemented in the MAD# software. In order to cut down the number of simulations needed, we develop a hybrid discrete-continuous inversion approach. We first identify the most sensitive parameters in a sensitivity analysis, these parameters are characterized with continuous PDFs. Less sensitive parameters are represented with a discrete PDFs using a finite number of discrete outcomes. We use a non-parametric likelihood function and time series dimension reduction techniques in order to calculate posterior PDFs of HZ parameters. We demonstrate the approach on a synthetic study using an analytical solution and then apply it to field measurements gathered in the Avenelles basin, France. We present one application of this approach, the uncertainty-quantified time series of localized stream-aquifer exchanges.

  7. The role of the benthic-hyporheic zone in controlling nitrous oxide emissions along two stream networks draining watersheds with contrasting land use

    NASA Astrophysics Data System (ADS)

    Marzadri, Alessandra; Dee, Martha M.; Tonina, Daniele; Tank, Jennifer L.; Bellin, Alberto

    2016-04-01

    Nitrous oxide (N2O) is a potent greenhouse gas responsible of stratospheric ozone destruction. Denitrification in stream ecosystems occurs within the benthic layer at the sediment-water interface and within subsurface environments such as the hyporheic zone and results in N2O production that could be eventually emitted to the atmosphere. Here, we quantify the role of benthic and hyporheic zones as sources of N2O gas and explore the dependence of emissions from stream morphology, flow hydraulics, land use and climate using a recently-developed fully analytical framework. Variations in N2O emissions within and among catchments of contrasting land use can be explained with a new denitrification Damköhler number (DaD) that accounts for denitrification processes within both benthic and hyporheic zones. For initial model development, we found a strong relationship between DaD and stream N2O emissions using field data collected from multiple headwater streams (i.e., LINXII project) from different biomes draining contrasting land use. We then tested its generality by comparing N2O emissions predicted with DaD to those measured using a synoptic sampling campaign in two stream networks draining contrasting land use: Manistee R (Michigan, USA) and Tippecanoe R (Indiana, USA). Our dimensionless analysis shows that the effect of land use disappears after making the emissions dimensionless with respect to the nitrogen load. Reliable predictions of N2O emissions at the stream network scale can be obtained from a limited amount of information, consisting in relatively easy to obtain biogeochemical and hydromorphological quantities.

  8. Storm-associated hydrodynamics drive transient solute and redox chemistry within the floodplain aquifer and hyporheic zone of a piedmont stream

    NASA Astrophysics Data System (ADS)

    Sawyer, A. H.; Kaplan, L. A.; Lazareva, O.; Michael, H. A.

    2013-12-01

    Riparian and hyporheic zones are dynamic settings where fluctuations in pore water flow influence redox-sensitive biogeochemical processes and solute transport. We instrumented a riparian-hyporheic zone transect with pressure transducers, redox probes, and pore water samplers to measure hydrology, redox potential, and water chemistry before, during and after Hurricane Sandy in October 2012. The transect spanned opposing, topographically distinct floodplains, consisting of a broad, flat western side and narrow, steep eastern side. The water table on both sides of the stream rose rapidly with rising stage and promoted continuous groundwater discharge to the stream throughout the storm hydrograph. Soil moisture and oxygen isotope data suggest that preferential recharge through macropores drove the rapid water table response. Macropore flow was also implicated in the delivery of oxygenated, carbon-rich water from the land surface into the floodplain aquifer, driving a shift in redox conditions at depth. Groundwater chemistry changed dramatically: DOC concentrations increased while nitrate and metal concentrations decreased. Greater shifts in groundwater chemistry occurred on the steep eastern side and required more time to reestablish after the storm. The eastern floodplain aquifer also drained more rapidly. Topographic variations across the floodplain transect influenced fluid flow paths and residence times that ultimately controlled the spatial and temporal dynamics of groundwater biogeochemistry. Use of paired sensors such as redox and pressure sensors can improve our understanding of hydrobiogeochemical dynamics during storms.

  9. Patterns of hydrological exchange and nutrient transformation in the hyporheic zone of a gravel-bottom stream: examining terrestrial- aquatic linkages

    USGS Publications Warehouse

    Triska, F.J.; Duff, J.H.; Avanzino, R.J.

    1993-01-01

    The terrestrial-aquatic interface beneath a riparian corridor was investigated as a region of hydrological and biological control of nutrient flux. Dissolved oxygen (DO) concentration in the hyporheic zone ranged from <1.0 to 9.5 mg l-1 due to permeability variations in bankside sediments. DO concentration was related to the proportion of stream water in the lateral hyporheic zone, indicating that the channel water was the DO source. The magnitude and timing of lateral water exchange was linked to previously published studies of nitrification and denitrification. Both nitrification potential and channel exchange decreased with distance from the channel and were absent at sites lacking effective exchange, due to low DO. Field amendment of ammonium to an aerobic flow path indicated nitrification potential under natural hydrological conditions. Denitrification potential was inversely related to channel exchange and was insignificant in channel sediments. Field amendment of acetylene plus nitrate to a flow path with low DO and minimal channel exchange indicated denitrification of amended nitrate. -from Authors

  10. Mixing between hyporheic flow cells and upwelling groundwater: laboratory simulations and implications for mixing-dependent reactions

    NASA Astrophysics Data System (ADS)

    Hester, E. T.; Nida, A.

    2014-12-01

    The hyporheic zone is the region where surface water and groundwater interact beneath and adjacent to stream and river systems. The hyporheic zone has been shown to affect water quality constituents such as heat, pollutants, and nutrients in this interfacial region. Recent modeling studies have shown that some compounds upwelling from groundwater toward surface water only react when water originating in surface water and groundwater mix at the edge of the hyporheic zone. These "mixing-dependent" reactions may be important for addressing upwelling pollution, yet depend on the extent of the mixing zone. Recent modeling studies have also shown this mixing zone to be thin, but this has not been confirmed in lab or field studies. Our current study took the first step toward such confirmation by simulating mixing between hyporheic flow cells and upwelling groundwater in a 1.7 m x 1m flow-through laboratory sediment mesocosm. We used tracer dyes and digital photographs taken through the glass wall of the mesocosm to quantify mixing zone thickness. We varied key hydraulic controls such as the surface water head drop that drives the hyporheic flow cells. Steady-state results confirm the thin mixing zones predicted by the earlier modeling. Mixing zone length increases with increasing surface water head drop, but mixing zone thickness appears to remain relatively constant. Furthermore, if the head drop in surface water changes rapidly, the mixing zone moves through riverbed sediments but does not appear to change appreciably in thickness. As a result, we conclude that mixing zones are probably thin under a range of field conditions. This has implications for one common definition of the hyporheic zone as an area of substantial mixing of surface water and groundwater. Thin mixing zones also may limit mixing-dependent reactions of upwelling contaminants, which bears further study.

  11. Hydrological Mechanism for Arsenic Deposits in Meghna River Hyporheic Zone Sediments

    NASA Astrophysics Data System (ADS)

    Knappett, Peter; Datta, Saugata; Dimova, Natasha; Myers, Kimberly; Hossain, Abrar; Berube, Michelle; Shuai, Pin; Rhodes, Kimberly; Jewell, Katrina; Lipsi, Mehtaz; Hossain, Saddam; Hosain, Alamgir; Peterson, Jacqeline; Ahmed, Kazi

    2016-04-01

    develop within one season. A 3-D numerical groundwater flow model indicates that river water preferentially moves into the seepage face under the influence of tidal fluctuations. This process, coupled with gaining conditions may be responsible for the formation of the high As zone. Sea level rise and increased groundwater pumping will convert many rivers throughout the world into losing rivers altering this process whereby heavy metals are deposited in river sediments along seepage faces. This may remove an important heavy metal sink and shut off the discharge of other important elements to the oceans.

  12. Hyporheic microbes: the unseen players in stream biogeochemistry

    NASA Astrophysics Data System (ADS)

    Battin, Tom J.; Bengtsson, Mia; Burns, Nancy; Besemer, Katharina; Hall, Ed; Rosentreter, Judith; Wagner, Karoline

    2013-04-01

    The hyporheic zone is the interface between the catchment and its stream. Here streamwater and groundwater interact along numerous flow paths, also conveying solutes and particles. Innumerable microorganisms colonize the large surface offered by the hyporheic sediments and potentially interact with the solute and particle fluxes. Despite our general appreciation of the hyporheic zone for biogeochemical processes in streams and even in rivers, the contributions of its microorganisms to biogeochemistry remain elusive. In this talk, I will present recent research aimed at unravelling the structure and function of hyporheic microorganisms and their involvement in carbon cycling. We experimented with bioreactors simulating the hyporheic zone in headwater streams, and using sequencing and proteomics, we unveiled the massive biodiversity of these microbial communities. Furthermore, using stable isotopes, we explored the contribution of microorganisms to the hyporheic carbon carbon cycle.

  13. Using heat as a tracer to estimate spatially distributed mean residence times in the hyporheic zone of a riffle-pool sequence

    USGS Publications Warehouse

    Naranjo, Ramon C.

    2013-01-01

    Biochemical reactions that occur in the hyporheic zone are highly dependent on the time solutes that are in contact with sediments of the riverbed. In this investigation, we developed a 2-D longitudinal flow and solute-transport model to estimate the spatial distribution of mean residence time in the hyporheic zone. The flow model was calibrated using observations of temperature and pressure, and the mean residence times were simulated using the age-mass approach for steady-state flow conditions. The approach used in this investigation includes the mixing of different ages and flow paths of water through advection and dispersion. Uncertainty of flow and transport parameters was evaluated using standard Monte Carlo and the generalized likelihood uncertainty estimation method. Results of parameter estimation support the presence of a low-permeable zone in the riffle area that induced horizontal flow at a shallow depth within the riffle area. This establishes shallow and localized flow paths and limits deep vertical exchange. For the optimal model, mean residence times were found to be relatively long (9–40.0 days). The uncertainty of hydraulic conductivity resulted in a mean interquartile range (IQR) of 13 days across all piezometers and was reduced by 24% with the inclusion of temperature and pressure observations. To a lesser extent, uncertainty in streambed porosity and dispersivity resulted in a mean IQR of 2.2 and 4.7 days, respectively. Alternative conceptual models demonstrate the importance of accounting for the spatial distribution of hydraulic conductivity in simulating mean residence times in a riffle-pool sequence.

  14. A Survey of Escherichia coli and Salmonella in the Hyporheic Zone of a Subtropical Stream: Their Bacteriological, Physicochemical and Environmental Relationships

    PubMed Central

    Mugnai, Riccardo; Sattamini, Ana; Albuquerque dos Santos, José Augusto; Regua-Mangia, Adriana Hamond

    2015-01-01

    The Hyporheic Zone is among the most important interstitial freshwater habitats, but the relationship between biotic and abiotic factors in this zone remains under-explored. Enterobacteria were expected to be present, but no specific studies had ever confirmed this prediction. The aim of this study was, therefore, to evaluate the total coliforms, Escherichia coli and Salmonella spp. in hyporheic water and to determine the relationship of the physical, chemical and environmental factors at different depths in a rainforest stream. To this end, thirty-six water samples were collected at three depths in sites located in the first, second and third orders in diverse substrates. The total coliforms, Escherichia coli and Salmonella sp. were evaluated in terms of their CFU/ml. In the interstitial samples, coliforms were detected in 100% of the samples. The total coliform counts had higher values at intermediate depths, while E. coli and Salmonella spp. instead had higher values at intermediate and large depths, often reaching or exceeding the values of the surface samples. Our results revealed that Salmonella spp. and the coliforms have different microhabitat preferences. Salmonella spp. and coliform species prefer deposition areas, such as lateral sides of pools, curves and bars, but they have a tendency to distribute into different depths, likely due to temperature differences. Salmonella spp. prefer compact substrata, with fewer fluids passing through and with upwelling areas with lower oxygen inflow. The coliform species showed the opposite preference. Our results suggest that bacterial variation is related to environmental factors and physical-chemical parameters within the HZ and may play a key role in the microbial diversity and distribution in these ecosystems. PMID:26067288

  15. A Survey of Escherichia coli and Salmonella in the Hyporheic Zone of a Subtropical Stream: Their Bacteriological, Physicochemical and Environmental Relationships.

    PubMed

    Mugnai, Riccardo; Sattamini, Ana; Albuquerque dos Santos, José Augusto; Regua-Mangia, Adriana Hamond

    2015-01-01

    The Hyporheic Zone is among the most important interstitial freshwater habitats, but the relationship between biotic and abiotic factors in this zone remains under-explored. Enterobacteria were expected to be present, but no specific studies had ever confirmed this prediction. The aim of this study was, therefore, to evaluate the total coliforms, Escherichia coli and Salmonella spp. in hyporheic water and to determine the relationship of the physical, chemical and environmental factors at different depths in a rainforest stream. To this end, thirty-six water samples were collected at three depths in sites located in the first, second and third orders in diverse substrates. The total coliforms, Escherichia coli and Salmonella sp. were evaluated in terms of their CFU/ml. In the interstitial samples, coliforms were detected in 100% of the samples. The total coliform counts had higher values at intermediate depths, while E. coli and Salmonella spp. instead had higher values at intermediate and large depths, often reaching or exceeding the values of the surface samples. Our results revealed that Salmonella spp. and the coliforms have different microhabitat preferences. Salmonella spp. and coliform species prefer deposition areas, such as lateral sides of pools, curves and bars, but they have a tendency to distribute into different depths, likely due to temperature differences. Salmonella spp. prefer compact substrata, with fewer fluids passing through and with upwelling areas with lower oxygen inflow. The coliform species showed the opposite preference. Our results suggest that bacterial variation is related to environmental factors and physical-chemical parameters within the HZ and may play a key role in the microbial diversity and distribution in these ecosystems. PMID:26067288

  16. A Survey of Escherichia coli and Salmonella in the Hyporheic Zone of a Subtropical Stream: Their Bacteriological, Physicochemical and Environmental Relationships.

    PubMed

    Mugnai, Riccardo; Sattamini, Ana; Albuquerque dos Santos, José Augusto; Regua-Mangia, Adriana Hamond

    2015-01-01

    The Hyporheic Zone is among the most important interstitial freshwater habitats, but the relationship between biotic and abiotic factors in this zone remains under-explored. Enterobacteria were expected to be present, but no specific studies had ever confirmed this prediction. The aim of this study was, therefore, to evaluate the total coliforms, Escherichia coli and Salmonella spp. in hyporheic water and to determine the relationship of the physical, chemical and environmental factors at different depths in a rainforest stream. To this end, thirty-six water samples were collected at three depths in sites located in the first, second and third orders in diverse substrates. The total coliforms, Escherichia coli and Salmonella sp. were evaluated in terms of their CFU/ml. In the interstitial samples, coliforms were detected in 100% of the samples. The total coliform counts had higher values at intermediate depths, while E. coli and Salmonella spp. instead had higher values at intermediate and large depths, often reaching or exceeding the values of the surface samples. Our results revealed that Salmonella spp. and the coliforms have different microhabitat preferences. Salmonella spp. and coliform species prefer deposition areas, such as lateral sides of pools, curves and bars, but they have a tendency to distribute into different depths, likely due to temperature differences. Salmonella spp. prefer compact substrata, with fewer fluids passing through and with upwelling areas with lower oxygen inflow. The coliform species showed the opposite preference. Our results suggest that bacterial variation is related to environmental factors and physical-chemical parameters within the HZ and may play a key role in the microbial diversity and distribution in these ecosystems.

  17. Relating hyporheic fluxes, residence times, and redox-sensitive biogeochemical processes upstream of beaver dams

    USGS Publications Warehouse

    Briggs, Martin A.; Lautz, Laura; Hare, Danielle K.

    2013-01-01

    ¨hler number seemed to overestimate the actual transition as indicated by multiple secondary electron acceptors, illustrating the gradient nature of anaerobic transition. Temporal flux variability in low-flux morphologies generated a much greater range in hyporheic redox conditions compared to high-flux zones, and chemical responses to changing flux rates were consistent with those predicted from the empirical relationship between redox condition and residence time. The Raz tracer revealed that hyporheic flow paths have strong net aerobic respiration, particularly at higher residence time, but this reactive exchange did not affect the net stream signal at the reach scale.

  18. Impact of a wastewater treatment plant on microbial community composition and function in a hyporheic zone of a eutrophic river

    NASA Astrophysics Data System (ADS)

    Atashgahi, Siavash; Aydin, Rozelin; Dimitrov, Mauricio R.; Sipkema, Detmer; Hamonts, Kelly; Lahti, Leo; Maphosa, Farai; Kruse, Thomas; Saccenti, Edoardo; Springael, Dirk; Dejonghe, Winnie; Smidt, Hauke

    2015-11-01

    The impact of the installation of a technologically advanced wastewater treatment plant (WWTP) on the benthic microbial community of a vinyl chloride (VC) impacted eutrophic river was examined two years before, and three and four years after installation of the WWTP. Reduced dissolved organic carbon and increased dissolved oxygen concentrations in surface water and reduced total organic carbon and total nitrogen content in the sediment were recorded in the post-WWTP samples. Pyrosequencing of bacterial 16S rRNA gene fragments in sediment cores showed reduced relative abundance of heterotrophs and fermenters such as Chloroflexi and Firmicutes in more oxic and nutrient poor post-WWTP sediments. Similarly, quantitative PCR analysis showed 1-3 orders of magnitude reduction in phylogenetic and functional genes of sulphate reducers, denitrifiers, ammonium oxidizers, methanogens and VC-respiring Dehalococcoides mccartyi. In contrast, members of Proteobacteria adapted to nutrient-poor conditions were enriched in post-WWTP samples. This transition in the trophic state of the hyporheic sediments reduced but did not abolish the VC respiration potential in the post-WWTP sediments as an important hyporheic sediment function. Our results highlight effective nutrient load reduction and parallel microbial ecological state restoration of a human-stressed urban river as a result of installation of a WWTP.

  19. Impact of a wastewater treatment plant on microbial community composition and function in a hyporheic zone of a eutrophic river

    PubMed Central

    Atashgahi, Siavash; Aydin, Rozelin; Dimitrov, Mauricio R.; Sipkema, Detmer; Hamonts, Kelly; Lahti, Leo; Maphosa, Farai; Kruse, Thomas; Saccenti, Edoardo; Springael, Dirk; Dejonghe, Winnie; Smidt, Hauke

    2015-01-01

    The impact of the installation of a technologically advanced wastewater treatment plant (WWTP) on the benthic microbial community of a vinyl chloride (VC) impacted eutrophic river was examined two years before, and three and four years after installation of the WWTP. Reduced dissolved organic carbon and increased dissolved oxygen concentrations in surface water and reduced total organic carbon and total nitrogen content in the sediment were recorded in the post-WWTP samples. Pyrosequencing of bacterial 16S rRNA gene fragments in sediment cores showed reduced relative abundance of heterotrophs and fermenters such as Chloroflexi and Firmicutes in more oxic and nutrient poor post-WWTP sediments. Similarly, quantitative PCR analysis showed 1–3 orders of magnitude reduction in phylogenetic and functional genes of sulphate reducers, denitrifiers, ammonium oxidizers, methanogens and VC-respiring Dehalococcoides mccartyi. In contrast, members of Proteobacteria adapted to nutrient-poor conditions were enriched in post-WWTP samples. This transition in the trophic state of the hyporheic sediments reduced but did not abolish the VC respiration potential in the post-WWTP sediments as an important hyporheic sediment function. Our results highlight effective nutrient load reduction and parallel microbial ecological state restoration of a human-stressed urban river as a result of installation of a WWTP. PMID:26607034

  20. Impact of a wastewater treatment plant on microbial community composition and function in a hyporheic zone of a eutrophic river.

    PubMed

    Atashgahi, Siavash; Aydin, Rozelin; Dimitrov, Mauricio R; Sipkema, Detmer; Hamonts, Kelly; Lahti, Leo; Maphosa, Farai; Kruse, Thomas; Saccenti, Edoardo; Springael, Dirk; Dejonghe, Winnie; Smidt, Hauke

    2015-11-26

    The impact of the installation of a technologically advanced wastewater treatment plant (WWTP) on the benthic microbial community of a vinyl chloride (VC) impacted eutrophic river was examined two years before, and three and four years after installation of the WWTP. Reduced dissolved organic carbon and increased dissolved oxygen concentrations in surface water and reduced total organic carbon and total nitrogen content in the sediment were recorded in the post-WWTP samples. Pyrosequencing of bacterial 16S rRNA gene fragments in sediment cores showed reduced relative abundance of heterotrophs and fermenters such as Chloroflexi and Firmicutes in more oxic and nutrient poor post-WWTP sediments. Similarly, quantitative PCR analysis showed 1-3 orders of magnitude reduction in phylogenetic and functional genes of sulphate reducers, denitrifiers, ammonium oxidizers, methanogens and VC-respiring Dehalococcoides mccartyi. In contrast, members of Proteobacteria adapted to nutrient-poor conditions were enriched in post-WWTP samples. This transition in the trophic state of the hyporheic sediments reduced but did not abolish the VC respiration potential in the post-WWTP sediments as an important hyporheic sediment function. Our results highlight effective nutrient load reduction and parallel microbial ecological state restoration of a human-stressed urban river as a result of installation of a WWTP.

  1. Impact of a wastewater treatment plant on microbial community composition and function in a hyporheic zone of a eutrophic river.

    PubMed

    Atashgahi, Siavash; Aydin, Rozelin; Dimitrov, Mauricio R; Sipkema, Detmer; Hamonts, Kelly; Lahti, Leo; Maphosa, Farai; Kruse, Thomas; Saccenti, Edoardo; Springael, Dirk; Dejonghe, Winnie; Smidt, Hauke

    2015-01-01

    The impact of the installation of a technologically advanced wastewater treatment plant (WWTP) on the benthic microbial community of a vinyl chloride (VC) impacted eutrophic river was examined two years before, and three and four years after installation of the WWTP. Reduced dissolved organic carbon and increased dissolved oxygen concentrations in surface water and reduced total organic carbon and total nitrogen content in the sediment were recorded in the post-WWTP samples. Pyrosequencing of bacterial 16S rRNA gene fragments in sediment cores showed reduced relative abundance of heterotrophs and fermenters such as Chloroflexi and Firmicutes in more oxic and nutrient poor post-WWTP sediments. Similarly, quantitative PCR analysis showed 1-3 orders of magnitude reduction in phylogenetic and functional genes of sulphate reducers, denitrifiers, ammonium oxidizers, methanogens and VC-respiring Dehalococcoides mccartyi. In contrast, members of Proteobacteria adapted to nutrient-poor conditions were enriched in post-WWTP samples. This transition in the trophic state of the hyporheic sediments reduced but did not abolish the VC respiration potential in the post-WWTP sediments as an important hyporheic sediment function. Our results highlight effective nutrient load reduction and parallel microbial ecological state restoration of a human-stressed urban river as a result of installation of a WWTP. PMID:26607034

  2. Impact of watershed topography on hyporheic exchange

    NASA Astrophysics Data System (ADS)

    Caruso, Alice; Ridolfi, Luca; Boano, Fulvio

    2016-08-01

    Among the interactions between surface water bodies and aquifers, hyporheic exchange has been recognized as a key process for nutrient cycling and contaminant transport. Even though hyporheic exchange is strongly controlled by groundwater discharge, our understanding of the impact of the regional groundwater flow on hyporheic fluxes is still limited because of the complexity arising from the multi-scale nature of these interactions. In this work, we investigate the role of watershed topography on river-aquifer interactions by way of a semi-analytical model, in which the landscape topography is used to approximate the groundwater head distribution. The analysis of a case study shows how the complex topographic structure is the direct cause of a substantial spatial variability of the aquifer-river exchange. Groundwater upwelling along the river corridor is estimated and its influence on the hyporheic zone is discussed. In particular, the fragmentation of the hyporeic corridor induced by groundwater discharge at the basin scale is highlighted.

  3. USE OF ELECTRICAL RESISTIVITY PROBE FOR DETERMINATION OF HYPORHEIC FLOW

    EPA Science Inventory

    The hyporheic zone can play a significant role in nutrient behavior in watersheds. Conceptual models describe the behavior of nutrients and biota for the hyporheic ecotone, but site characterization is needed to quantiiy effects at the restoration reach scale (hundreds of meters)...

  4. Fe(II)- and Sulfide-Facilitated Reduction of 99Tc(VII)O4- in Microbially Reduced Hyporheic Zone Sediments

    SciTech Connect

    Lee, Ji-Hoon; Zachara, John M.; Fredrickson, Jim K.; Heald, Steve M.; McKinley, James P.; Plymale, Andrew E.; Resch, Charles T.; Moore, Dean A.

    2014-07-01

    Redox-reactive, biogeochemical phases generated by reductive microbial activity in hyporheic zone sediments from a dynamic groundwater-river interaction zone were evaluated for their ability to reduce soluble pertechnetate [99Tc(VII)O4-] to less soluble Tc(IV). The sediments were bioreduced by indigenous microorganisms that were stimulated by organic substrate addition in synthetic groundwater with or without sulfate. In most treatments, 20 µmol L-1 initial aqueous Tc(VII) was reduced to near or below detection (3.82×10-9 mol L-1) over periods of days to months in suspensions of variable solids concentrations. Native sediments containing significant lithogenic Fe(II) in various phases were, in contrast, unreactive with Tc(VII). The reduction rates in the bioreduced sediments increased with increases in sediment mass, in proportion to weak acid-extractable Fe(II) and sediment-associated sulfide (AVS). The rate of Tc(VII) reduction was first order with respect to both aqueous Tc(VII) concentration and sediment mass, but correlations between specific reductant concentrations and reaction rate were not found. X-ray microprobe measurements revealed a strong correlation between Tc hot spots and Fe-containing mineral particles in the sediment. However, only a portion of Fe-containing particles were Tc-hosts. The Tc-hot spots displayed a chemical signature (by EDXRF) similar to pyroxene. The application of autoradiography and electron microprobe allowed further isolation of Tc-containing particles that were invariably found to be ca 100 µm aggregates of primary mineral material embedded within a fine-grained phyllosilicate matrix. EXAFS spectroscopy revealed that the Tc(IV) within these were a combination of a Tc(IV)O2-like phase and Tc(IV)-Fe surface clusters, with a significant fraction of a TcSx-like phase in sediments incubated with SO42-. AVS was implicated as a more selective reductant at low solids concentration even though its concentration was below that

  5. Assessment of hyporheic zone, flood-plain, soil-gas, soil, and surface-water contamination at the Old Incinerator Area, Fort Gordon, Georgia, 2009-2010

    USGS Publications Warehouse

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface-water for contaminants at the Old Incinerator Area at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Total petroleum hydrocarbons were detected above the method detection level in all 13 samplers deployed in the hyporheic zone and flood plain of an unnamed tributary to Spirit Creek. The combined concentrations of benzene, toluene, ethylbenzene, and total xylene were detected at 3 of the 13 samplers. Other organic compounds detected in one sampler included octane and trichloroethylene. In the passive soil-gas survey, 28 of the 60 samplers detected total petroleum hydrocarbons above the method detection level. Additionally, 11 of the 60 samplers detected the combined masses of benzene, toluene, ethylbenzene, and total xylene above the method detection level. Other compounds detected above the method detection level in the passive soil-gas survey included octane, trimethylbenzene, perchlorethylene, and chloroform. Subsequent to the passive soil-gas survey, six areas determined to have relatively high contaminant mass were selected, and soil-gas samplers were deployed, collected, and analyzed for explosives and chemical agents. No explosives or chemical agents were detected above

  6. Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications

    USGS Publications Warehouse

    Boano, Fulvio; Harvey, Judson W.; Marion, Andrea; Packman, Aaron I.; Revelli, Roberto; Ridolfi, Luca; Anders, Wörman

    2014-01-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed."

  7. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications

    NASA Astrophysics Data System (ADS)

    Boano, F.; Harvey, J. W.; Marion, A.; Packman, A. I.; Revelli, R.; Ridolfi, L.; Wörman, A.

    2014-12-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed.

  8. Short-term groundwater fluxes in the hyporheic zone as a consequence of changing river stages; numerical simulation by HYDRUS 2D/3D.

    NASA Astrophysics Data System (ADS)

    Wyseure, Guido; Chou, Po-Yi

    2010-05-01

    All hydrological handbooks contain methods for direct runoff and base-flow separation. The semi-log separation method is the most classical one. One can, however, question the physical base for such method. In addition, the water fluxes in the riverbed are important for ecology and water quality. In our study an 2-D cross-section including the river and the surrounding aquifer was set-up in HYDRUS 2D/3D. Initial conditions were a steady-state subsurface flow feeding the river with a recharge from the soil surface. A surface runoff event was simulated by a rise and recession of the water level in the river. Differences between summer and winter situation were explored by given representative temperatures to the different components of the river-aquifer system. The simulations show that the fluxes are very different along the riverbed. Even during steady state baseflow we see that the fluxes through the bottom were 2 to 3 times smaller as compared to the side banks. During the hydrographs the proportion can become up to 5 times. Another interesting result is that within the time frame of the hydrograph and its immediate recession relatively little water, which pentetrated in the aquifer, returns to the river. Most of the water replenishes the aquifer and there is only a very small rise of baseflow. In our simulation we returned to the original level as before the hydrograph, so in reality even less or no rise in baseflow may occur immediately after a hydrograph. Of course, in a longer time-frame the recharge of the aquifer will give a rise to the actual subsurface drainage. The change in seasonal temperatures within the river-aquifer system has a substantial effect. For identical river stage hydrograph changes the hyporheic exchange fluxes are more intense in summer than in winter. If we define the hyporheic zone as the extedn to which the water fluxes from the river can penetrate, then we see that this zone is wider on the sides as compared to the bottom of the

  9. The Importance of Biophysicochemical Transport Processes in Hyporheic Exchange

    NASA Astrophysics Data System (ADS)

    Packman, A. I.

    2001-12-01

    Hyporheic exchange processes are generally analyzed in terms of hydrologic stream-subsurface interactions, biogeochemical reactions in the hyporheic zone, or nutrient and carbon uptake in the context of stream metabolism. Often, investigations are motivated primarily by applications in hydrology, contaminant transport, or stream ecology, and thus focus on only one of these aspects of hyporheic exchange. However, it is important to consider the interrelationships between biological, physical, and chemical processes, which are inevitably and inextricably linked because the hyporheic zone represents an extraordinary complex environmental system. The nature of biophysicochemical linkages in the hyporheic zone will be discussed in general terms and illustrated with two important examples. The transport of microorganisms such as the pathogen Cryptosporidium parvum in streams is dependent on both physical transport processes and physicochemical interactions in the hyporheic zone. The transport of labile particulate organic matter to the hyporheic zone is dependent on similar processes, but also induces biologically-mediated alteration of the subsurface environment. In these types of studies, insufficient characterization of either physical, chemical, or biological processes can lead to errors in interpretation of overall system behavior.

  10. Hyporheic Flow and Heat Transport Within a Bed-to-Bank Transect of a Large Regulated River: Colorado River, Austin, TX

    NASA Astrophysics Data System (ADS)

    Gerecht, K.; Cardenas, B.; Guswa, A. J.; Sawyer, A. H.; Swanson, T.; Nowinski, J. D.

    2010-12-01

    The stage and discharge of the Lower Colorado River (LCR) near Austin, Texas is regulated by a series of dams for hydropower generation, flood management, water supply, and recreation. Daily releases from a dam, 23 km upstream of the study site, cause the stage at the site to fluctuate by more than 1.5 m with a mean depth of 1.3 m. These fluctuations cause the LCR at the study site to transition from a regionally gaining river to a river that both gains and loses over each daily cycle. To assess the effects of the flow management on river-groundwater exchange, we collected temperature and head measurements across a hyporheic-to-riparian transect that were highly resolved in both space and time over two campaigns of three days each. These observations show that river-groundwater exchange flux is consistently larger close to the bank and decreases with distance from the bank. Correspondingly, both the depth of the hyporheic zone and the exchange time are greatest near the bank. Adjacent to the bank streambed head response is hysteretic, with hysteresis dissipating with increased distance from the bank, indicating that transient bank storage affects the direction and magnitude of vertical exchange close to the bank. Hyporheic zone temperature is perturbed up to one meter below the bed. When the river stage is high, which coincides with when the river is coldest, downward advection of heat from a previous cycles’ warm-water pulse warms the hyporheic zone. When the river is at its lowest stage but warmest temperature, upwelling groundwater cools the hyporheic zone. These hydraulic and thermal alterations may change the biogeochemical and ecologic dynamics of the river and its hyporheic and riparian zones, including the hyporheic zone’s capacity to act as a biological filter and habitat.

  11. High Variance within Salmonid Spawning Gravels at Restoration Sites Creates More Suitable Habitat within the Hyporheic Zone

    NASA Astrophysics Data System (ADS)

    Janes, M. K.; Heffernan, J. E.; Rosenberry, J. W.; Horner, T.

    2012-12-01

    The Lower American River has historically provided natural spawning habitat for approximately one third of Northern California's salmon population. However, since the construction of Folsom and Nimbus Dams, downstream reaches have become sediment starved and periodic high outflow from the dam has caused channel armoring and incision, thereby degrading the natural spawning habitat. Restoration work on spawning sites in the Lower American River has consisted primarily of importing gravel to create riffles during periods of moderate flow. This is an effort to mitigate armoring of the riverbed and to rehabilitate salmonid spawning habitat by providing suitable grain size for all stages of spawning (redd construction, incubation, and emergence). Since restoration activities began, all rehabilitated sites have not been equally used for spawning. This study attempts to examine and compare the physical properties of each site in order to ascertain which characteristics create more suitable rehabilitated habitat. To do this, we compared restored areas to pre-restoration conditions through the assessment of three main aspects of the restored spawning habitat; grain size and its natural mobility, water flow in the surface and subsurface, and intragravel water quality. We found that some augmentation sites are more heterogeneous than others, and this correlates with higher spawning use. Most spawning was at fin height, and salmonids tend to use sites with higher depth variance (surface features) and higher variance in flow directions and velocities. With time, salmonids alter the spawning sites, creating small ridges and valleys perpendicular to flow. This creates more variable subsurface flow and generates hyporheic flow through the new gravel. This may have an effect on spawning as the more seasoned additions have a higher frequency of spawning than the newer augmentations. In order to efficiently rehabilitate a site and expedite the "seasoning process", creating variance

  12. Hydrological and geochemical consequences of river regulation - hyporheic perspective

    NASA Astrophysics Data System (ADS)

    Siergieiev, Dmytro; Lundberg, Angela; Widerlund, Anders

    2014-05-01

    River-aquifer interfaces, essential for ecosystem functioning in terms of nutrient exchange and biological habitat, appear greatly threatened worldwide. Although river regulation is a vast pressure on river-aquifer interaction, influencing entire watersheds, knowledge about hyporheic exchange in regulated rivers is rather limited. In this study, we combine two decades of research on hydrological and geochemical impacts of hydropower regulation on river water and hyporheic zone in two large boreal rivers, unregulated Kalix River and regulated Lule River. Altered river discharge, with reduced spring peaks, daily summer fluctuations and elevated winter base flow severely modified Lule River water geochemistry and thus the transport of solutes to the Bothnian Bay (Baltic Sea). Further, these river modifications changed the river-aquifer exchange on both daily and seasonal scale, which resulted in deteriorated hyporheic conditions with reduced riverbed hydraulic conductivity (formation of a clogging layer) reflected in a declined hyporheic flux. Altered hydrological regime of the hyporheic zone created quasi-stagnant conditions beneath the river-aquifer interface and promoted the formation of geochemically suboxic environment. Taken that hyporheic water is a mixture of river water and groundwater, mixing models for the regulated site demonstrate a considerable addition of Fe, Mn, Al, NH4 and removal of dissolved oxygen and nitrate, which suggests the hyporheic zone in the Lule River to be a source of solutes. This contradicts the observations from the hyporheic zone in the unregulated river, with opposite behaviour functioning as a barrier. These results suggest that the hyporheic zone function is dependent on the river discharge and the state of the river-aquifer connectivity. Improved knowledge about the latter on a watershed scale will substantially increase our understanding about the status and potential pressures of riverine ecosystems and assist management and

  13. Resolving hyporheic and groundwater components of streambed water flux

    USGS Publications Warehouse

    Bhaskar, Aditi S.; Harvey, Judson W.; Henry, Eric J.

    2012-01-01

    Hyporheic and groundwater fluxes typically occur together in permeable sediments beneath flowing stream water. However, streambed water fluxes quantified using the thermal method are usually interpreted as representing either groundwater or hyporheic fluxes. Our purpose was to improve understanding of co-occurring groundwater and hyporheic fluxes using streambed temperature measurements and analysis of one-dimensional heat transport in shallow streambeds. First, we examined how changes in hyporheic and groundwater fluxes affect their relative magnitudes by reevaluating previously published simulations. These indicated that flux magnitudes are largely independent until a threshold is crossed, past which hyporheic fluxes are diminished by much larger (1000-fold) groundwater fluxes. We tested accurate quantification of co-occurring fluxes using one-dimensional approaches that are appropriate for analyzing streambed temperature data collected at field sites. The thermal analytical method, which uses an analytical solution to the one-dimensional heat transport equation, was used to analyze results from a numerical heat transport model, in which hyporheic flow was represented as increased thermal dispersion at shallow depths. We found that co-occurring groundwater and hyporheic fluxes can be quantified in streambeds, although not always accurately. For example, using a temperature time series collected in a sandy streambed, we found that hyporheic and groundwater flow could both be detected when thermal dispersion due to hyporheic flow was significant compared to thermal conduction. We provide guidance for when thermal data can be used to quantify both hyporheic and groundwater fluxes, and we show that neglecting thermal dispersion may affect accuracy and interpretation of estimated streambed water fluxes.

  14. Effects of Discharge on Hyporheic Flow in a Pool-Riffle Channel: Implications for Aquatic Habitat

    NASA Astrophysics Data System (ADS)

    Tonina, D.; Buffington, J. M.

    2003-12-01

    The hyporheic zone is a band of saturated sediments that includes the riverbed, banks and the riparian zone. It is a rich habitat for benthic species and fish. The extraordinary variability of flora and fauna that utilize the hyporheic zone make it a crucial component of river ecosystems. We examine how changes in discharge affect downwelling and upwelling of river water through the sediments that comprise the hyporheic zone. These fluxes have multiple effects, bringing high concentrations of dissolved oxygen and other nutrients into the sediments, and at the same time, the sediments and the benthic species living in the streambed filter the water, reducing the biological and chemical loads (BOD, COD, P, C, NOx, etc.). The extent of this active zone is a function of the local topography and consequent spatial variation in the near-bed pressure distribution that drives subsurface flow. Analytical solutions for the piezometric head distribution, H, over two-dimensional dunes are known and can be expressed as a sinusoidal function, H=hm sin(2 π / λ x), where the amplitude, hm, is expressed by hm=0.28 U2 /(2g)(Δ /(0.34d))a . H depends on mean flow velocity, U, water depth, d, and dune wavelength, λ , and amplitude Δ . However, this sinusoidal distribution does not hold for pool-riffle morphologies because flow depths are typically shallow relative to bed form size. To explore this issue we coupled a computational fluid dynamics model (FLUENT) with a simple Darcy subsurface flow model to predict pressure distributions and hyporheic flow for two-dimensional pool-riffle morphologies. Results demonstrate that the intensity, shape, and extent of hyporheic flow paths strongly depend on discharge and its influence on the near-bed pressure distribution. We find that the position of the most intense downwelling moves from the top of the riffle at low discharge to the tail of the pool at high discharge. Our results suggest that aquatic habitat created by topographically

  15. Hyporheic exchange due to channel-spanning logs

    NASA Astrophysics Data System (ADS)

    Sawyer, Audrey H.; Bayani Cardenas, M.; Buttles, Jim

    2011-08-01

    The flow of river water around large woody debris (LWD) creates pressure gradients along the riverbed that drive a large zone of river-groundwater mixing, or hyporheic exchange. Flume experiments and numerical simulations show that river water downwells into the riverbed upstream of a channel-spanning log and upwells downstream. Exchange rates are greatest near the log and decay exponentially with distance upstream and downstream. We developed equations for bed pressure profiles and hyporheic exchange rates in the vicinity of a channel-spanning log that can be used to evaluate the impact of LWD removal or reintroduction on hyporheic mixing. The magnitude of pressure disturbance along the bed (and thus hyporheic exchange) increases with the fraction of channel depth blocked by the log and channel Froude number. Exchange rates are relatively insensitive to relative depth of the log (gap ratio). At natural densities, LWD in lowland streams drives reach-averaged hyporheic exchange rates similar to a ripple-covered bed. However, the length scales and residence times of hyporheic exchange due to LWD are greater. By removing LWD from streams, humans have altered patterns and rates of hyporheic exchange, which influence habitat distribution and quality for invertebrates and fish.

  16. Hyporheic flow pattern based on the coupling of regional and stream scales: Case of Krycklan Catchment area

    NASA Astrophysics Data System (ADS)

    Mojarrad, Morteza; Wörman, Anders; Riml, Joakim

    2016-04-01

    Water resources intense development within the past century has had an enormous impact on hydrological systems especially on rivers and groundwater resources. A river basin is a flow system involving the interaction between surface water and groundwater. This interaction occurs in terrestrial and coastal zone and even in arid and semi-arid areas, where surface water overlie on a permeable sediment. A key zone for the interaction between surface water and groundwater is the hyporheic zone, which forms by stream water that in- and exfiltrating in the permeable sediments surrounding the river corridor. Groundwater and hyporheic flows arise due to different range of topographical scales and their relative importance is investigated in this study. Krycklan is a well-monitored research catchment in which the data collection for more than 90 years has comprised hydrology, biochemistry, and aquatic ecology. The catchment is located in a boreal area of northern Sweden. The head-water streams begin in mountainous area and fall to the Baltic Sea near the city of Umea. In this paper, COMSOL Multi-physics simulation software has been used to model the subsurface flow of the whole Krycklan catchment in order to reach a comprehensive understanding of large-scale groundwater circulation and its impact of the stream hyporheic flows. The model statement is based on the 3D Laplace equation, which has been applied independently on two ranges of topographical scales to obtain a superimposed solution. Steady state simulation has been done based on the simplified assumption of constant boundary conditions of the groundwater surface and otherwise non-flow boundaries. The hydraulic head of the groundwater surface was taken as the topography, which apply as an approximation in wet climate with shallow soil layers. The results demonstrated how the ratio of the topographical amplitudes on different scales affect the size (depth) and fragmentation of the hyporheic zone. "Fragmentation" was

  17. Changes in Hydraulic Gradient, Hyporheic Exchange, and Patterns of Nutrient Concentration between Dry and Wet Season Flows for a Tropical Mountain Stream

    NASA Astrophysics Data System (ADS)

    Fabian, M.; Endreny, T.; Lautz, L.; Siegel, D.

    2009-05-01

    Mountain streams are a common source in Central America for community water supplies (CWS). These streams become dewatered by the CWS during dry season low flows, with potential impacts on hydraulic gradients, hyporheic exchange flow, terrestrial-aquatic linkages, and nutrient dynamics, which may ultimately affect aquatic and riparian micro-ecosystems. We are presenting preliminary results of a study conducted in Buena Vista, a village in Yoro, Honduras where the mountain stream was instrumented and manipulated to measure impacts of a CWS. Piezometric head and stream water levels were taken at 7 cross-sections along 30 m of step-pool stream, and water quality samples were retrieved from 48 pairs of riparian and stream piezometers and monitoring wells. We computed vertical hydraulic gradients, zones of hyporheic upwelling and downwelling, and nutrient patterns, and their change with streamflow. Streamflow ranged from 30 L/s in the wet-season high flow to about 2 L/s in the dry-season low flow, and were dewatered to about 1 L/s. A HEC- RAS water-surface profile model was calibrated to observed stages to establish gradients along the entire reach, and river head was then input as a boundary condition into a MODFLOW groundwater model to examine patterns of hyporheic exchange. Changes in hydraulic gradients and fluxes are compared with baseline conditions during the dry season low flow without dewatering. Noticeable changes in hydraulic gradient occurred between high and low flows, but changes in low flow to dewatered flow were negligible. Lengths and location of hyporheic upwelling and downwelling zones shifted slightly with changes in flow, but again the dewatering had a minor impact. Concentrations of nitrate, sulfate, chloride, fluoride and dissolved oxygen were detected in the hyporheic zone, the stream water, and adjacent ground water. We are exploring mixing models to assess the extent to which hyporheic exchange migrated to and from the creek to adjacent

  18. Nested patterns in hyporheic meta-communities: the role of body morphology and penetrability of sediment

    NASA Astrophysics Data System (ADS)

    Omesová, Marie; Horsák, Michal; Helešic, Jan

    2008-10-01

    Nestedness has been regarded as a common pattern of species distribution especially in terrestrial systems and vertebrate faunas. However, a significantly lower degree of nestedness has been reported for aquatic invertebrates. We analyzed the vertical distribution patterns of taxa in the upper 70 cm of the hyporheic zone. This biotope is abundantly inhabited by epigean fauna, which is morphologically pre-adapted to life within the limited space of sediment interstices. We tested the hypotheses that in the vertical profile of the hyporheic zone sediment acts as a physical barrier (filter), allowing only the morphologically pre-adapted and adapted (i.e., smaller, narrower, more flexible) taxa to penetrate to deeper layers. We demonstrated that this mechanism can promote a strongly nested and colonization-driven pattern at higher taxa levels. The sediment filter (1) constricted the body width: 0.50 mm appeared to be the upper limit for successful sediment colonization at the study site, and (2) favored elongated taxa against small sized taxa. We tested also the assumption that distribution of fine sediment affects the accessibility of hyporheic zone for fauna (“filter density”) and thereby influences nestedness. However, we found that nestedness could be sufficiently explained by the depth itself. Our study offers a possible explanation of depth patterns in hyporeic meta-communities as a result of morphological characteristics promoting nestedness at higher taxa level.

  19. Response of crayfish to hyporheic water availability and excess sedimentation

    USGS Publications Warehouse

    Dyer, Joseph J.; Worthington, Thomas A.; Brewer, Shannon K.

    2015-01-01

    Crayfish in many headwater streams regularly cope with seasonal drought. However, it is unclear how landscape changes affect the long-term persistence of crayfish populations. We designed two laboratory experiments to investigate the acute effects of common landscape stressors on crayfish: water withdrawal and sedimentation. The first experiment tested the interaction among water withdrawals (four 24-h water reductions of 0, 15, 30, or 45 cm) and two substrate treatments (pebble and cobble) on the burrowing depth of crayfish. The second experiment evaluated the effects of excess fine sediment (three treatments of 0, 45, and 90% sediment) and substrate type (cobble and pebble) on crayfish burrowing depth. Crayfish were able to burrow deeper into the simulated hyporheic zone in cobble substrate when compared to pebble. Crayfish subjected to greater water withdrawals in the pebble treatment were not able to reach the simulated hyporheic zone. Excess fine sediment reduced the depth that crayfish burrowed, regardless of substrate type. Results from this study suggest excess fine sediment may reduce crayfish persistence, particularly when seeking refuge during prolonged dry conditions.

  20. TRANSIENT STORAGE AND HYPORHEIC FLOW ALONG THE UPPER WILLAMETTE RIVER, OREGON: FIELD MEASUREMENTS AND MODEL ESTIMATES

    EPA Science Inventory

    Transient storage measures the exchange of main channel flow with subsurface hyporheic flow and surface water dead zones. Hyporheic flow, in which river water enters the channel bed and banks to emerge downstream, promotes biochemical processes that are iimportant for water qual...

  1. Cumulative Significance of Hyporheic Exchange and Biogeochemical Processing in River Networks

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; Gomez-Velez, J. D.

    2014-12-01

    Biogeochemical reactions in rivers that decrease excessive loads of nutrients, metals, organic compounds, etc. are enhanced by hydrologic interactions with microbially and geochemically active sediments of the hyporheic zone. The significance of reactions in individual hyporheic flow paths has been shown to be controlled by the contact time between river water and sediment and the intrinsic reaction rate in the sediment. However, little is known about how the cumulative effects of hyporheic processing in large river basins. We used the river network model NEXSS (Gomez-Velez and Harvey, submitted) to simulate hyporheic exchange through synthetic river networks based on the best available models of network topology, hydraulic geometry and scaling of geomorphic features, grain size, hydraulic conductivity, and intrinsic reaction rates of nutrients and metals in river sediment. The dimensionless reaction significance factor, RSF (Harvey et al., 2013) was used to quantify the cumulative removal fraction of a reactive solute by hyporheic processing. SF scales reaction progress in a single pass through the hyporheic zone with the proportion of stream discharge passing through the hyporheic zone for a specified distance. Reaction progress is optimal where the intrinsic reaction timescale in sediment matches the residence time of hyporheic flow and is less efficient in longer residence time hyporheic flow as a result of the decreasing proportion of river flow that is processed by longer residence time hyporheic flow paths. In contrast, higher fluxes through short residence time hyporheic flow paths may be inefficient because of the repeated surface-subsurface exchanges required to complete the reaction. Using NEXSS we found that reaction efficiency may be high in both small streams and large rivers, although for different reasons. In small streams reaction progress generally is dominated by faster pathways of vertical exchange beneath submerged bedforms. Slower exchange

  2. Hyporheic interactions under a hydropeaking scenario: a multi-scale approach

    NASA Astrophysics Data System (ADS)

    Casas-Mulet, R.; Alfredsen, K.

    2012-04-01

    Sudden flow changes caused by hydropeaking are likely to become more frequent with increasing demand for renewable energy. These sudden fluctuations affect both the surface and subsurface flow regime and change the hydrological interaction patterns occurring in the hyporheic zone. The hyporheos plays an important role in freshwater ecology, especially for early stages of salmon embryo development. Hydrological hyporheic interactions and associated larger scale hydrological processes have hardly been investigated in a hydropeaking scenario. The works presented aim (i) to investigate detailed hydrological processes occurring in the hyporheic zone at the micro-scale during hydropeaking; (ii) to upscale the findings at the meso-scale by repeating the same detailed experiments in differentiated morphologies; and (iii) to use the outputs for establishing more environmentally sound hydropower operations at the catchment scale. An experimental set-up was started in December 2011 in the river Lundesokna (central Norway). A total of 14 pipes were buried at several depths (from 20 to 70 cm) across and along a 5 x 20 m side bar subject to regular drying out and dewatering due to hydropeaking operations. Water pressure sensors were placed in the pipes to monitor the hyporheic water level and flow with 1-2 minutes time resolution. In addition, temperature, conductivity and dissolved oxygen are collected at the same site for an expected period of 3 months, coinciding with early stages of salmonid egg development in this catchment. Results to date show sudden and high groundwater dominated inflow as a consequence of the quick surface water drop during dewatering episodes. But slow reaction spots where surface water remains for longer periods in form of water pockets has been observed. Such processes have the potential to influence the survival of salmon eggs at both smaller and larger scales.

  3. Characterizing multiple timescales of stream and storage zone interaction that affect solute fate and transport in streams

    USGS Publications Warehouse

    Choi, J.; Harvey, J.W.; Conklin, M.H.

    2000-01-01

    The fate of contaminants in streams and rivers is affected by exchange and biogeochemical transformation in slowly moving or stagnant flow zones that interact with rapid flow in the main channel. In a typical stream, there are multiple types of slowly moving flow zones in which exchange and transformation occur, such as stagnant or recirculating surface water as well as subsurface hyporheic zones. However, most investigators use transport models with just a single storage zone in their modeling studies, which assumes that the effects of multiple storage zones can be lumped together. Our study addressed the following question: Can a single-storage zone model reliably characterize the effects of physical retention and biogeochemical reactions in multiple storage zones? We extended an existing stream transport model with a single storage zone to include a second storage zone. With the extended model we generated 500 data sets representing transport of nonreactive and reactive solutes in stream systems that have two different types of storage zones with variable hydrologic conditions. The one storage zone model was tested by optimizing the lumped storage parameters to achieve a best fit for each of the generated data sets. Multiple storage processes were categorized as possessing I, additive; II, competitive; or III, dominant storage zone characteristics. The classification was based on the goodness of fit of generated data sets, the degree of similarity in mean retention time of the two storage zones, and the relative distributions of exchange flux and storage capacity between the two storage zones. For most cases (> 90%) the one storage zone model described either the effect of the sum of multiple storage processes (category I) or the dominant storage process (category III). Failure of the one storage zone model occurred mainly for category II, that is, when one of the storage zones had a much longer mean retention time (t(s) ratio > 5.0) and when the dominance of

  4. Assessment of Hyporheic Zone, Flood-Plain, Soil-Gas, Soil, and Surface-Water Contamination at the McCoys Creek Chemical Training Area, Fort Gordon, Georgia, 2009-2010

    USGS Publications Warehouse

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface water for contaminants at the McCoys Creek Chemical Training Area (MCTA) at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of organic compounds classified as explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Ten passive samplers were deployed in the hyporheic zone and flood plain, and total petroleum hydrocarbons (TPH) and octane were detected above the method detection level in every sampler. Other organic compounds detected above the method detection level in the hyporheic zone and flood-plain samplers were trichloroethylene, and cis- and trans- 1, 2-dichloroethylene. One trip blank detected TPH below the method detection level but above the nondetection level. The concentrations of TPH in the samplers were many times greater than the concentrations detected in the blank; therefore, all other TPH concentrations detected are considered to represent environmental conditions. Seventy-one soil-gas samplers were deployed in a grid pattern across the MCTA. Three trip blanks and three method blanks were used and not deployed, and TPH was detected above the method detection level in two trip blanks and one method blank. Detection of TPH was observed at all 71 samplers, but because TPH was detected in the trip and method blanks, TPH was

  5. Hyporheic exchange in heterogeneous streambeds under losing and gaining flow conditions

    NASA Astrophysics Data System (ADS)

    Arnon, S.; Fox, A.; Laube, G.; Schmidt, C.; Fleckenstein, J. H.

    2015-12-01

    Recent studies have shown that stream-groundwater interactions (gaining or losing flow conditions) have a major impact on hyporheic exchange fluxes. However, the physical complexity of natural streams has limited our ability to study these types of interactions systematically in the field, and to evaluate their importance to biogeochemical processes and nutrient cycling. In this work we were able to quantify the effect of losing and gaining fluxes on hyporheic exchange in heterogeneous streambeds by combining experiments in a laboratory flume and modeling. Tracer experiments were conducted for measuring hyporheic exchange with using a dye and NaCl under various combinations of overlying water velocities and losing or gaining fluxes. The goal of the modeling was to extent and to supplement the hydraulic conditions covered by the flume experiments with a wide range of scenarios. In the model, the surface water domain was represented by a CFD model which generates the head distribution. Subsurface flow and transport is simulated in 3D using MIN3P. The flume experiments revealed that hyporheic exchange fluxes under losing and gaining flow conditions were similar, and became smaller in a comparable manner when the losing or gaining flux increases. Heterogeneity had little effect on hyporheic exchange under gaining flow conditions due to the compaction of the hyporheic zone. However, local hydraulic conductivity led to preferential flow paths of stream water under neutral conditions (strong horizontal flow component) and losing conditions (strong vertical flow component). Preferential flow paths were also evident under gaining conditions but affected mainly the upwelling groundwater. The model was set up to resemble the conditions in the flume, and reproduced the flume data very well. The propagation of dye fronts as observed in the flume is currently implemented into the model. The combination of experimental and modeling results enable us to systematically study the

  6. Effects of resource chemistry on the composition and function of stream hyporheic biofilms.

    USGS Publications Warehouse

    Hall, E.K.; Besemer, K.; Kohl, L.; Preiler, C.; Reidel, K.; Schneider, T.; Wanek, W.; Battin, T.J.

    2012-01-01

    Fluvial ecosystems process large quantities of dissolved organic matter as it moves from the headwater streams to the sea. In particular, hyporheic sediments are centers of high biogeochemical reactivity due to their elevated residence time and high microbial biomass and activity. However, the interaction between organic matter and microbial dynamics in the hyporheic zone remains poorly understood. We evaluated how variance in resource chemistry affected the microbial community and its associated activity in experimentally grown hyporheic biofilms. To do this we fed beech leaf leachates that differed in chemical composition to a series of bioreactors filled with sediment from a sub-alpine stream. Differences in resource chemistry resulted in differences in diversity and phylogenetic origin of microbial proteins, enzyme activity, and microbial biomass stoichiometry. Specifically, increased lignin, phenolics, and manganese in a single leachate resulted in increased phenoloxidase and peroxidase activity, elevated microbial biomass carbon:nitrogen ratio, and a greater proportion of proteins of Betaproteobacteria origin. We used this model system to attempt to link microbial form (community composition and metaproteome) with function (enzyme activity) in order to better understand the mechanisms that link resource heterogeneity to ecosystem function in stream ecosystems.

  7. Effects of Resource Chemistry on the Composition and Function of Stream Hyporheic Biofilms

    PubMed Central

    Hall, E. K.; Besemer, K.; Kohl, L.; Preiler, C.; Riedel, K.; Schneider, T.; Wanek, W.; Battin, T. J.

    2012-01-01

    Fluvial ecosystems process large quantities of dissolved organic matter as it moves from the headwater streams to the sea. In particular, hyporheic sediments are centers of high biogeochemical reactivity due to their elevated residence time and high microbial biomass and activity. However, the interaction between organic matter and microbial dynamics in the hyporheic zone remains poorly understood. We evaluated how variance in resource chemistry affected the microbial community and its associated activity in experimentally grown hyporheic biofilms. To do this we fed beech leaf leachates that differed in chemical composition to a series of bioreactors filled with sediment from a sub-alpine stream. Differences in resource chemistry resulted in differences in diversity and phylogenetic origin of microbial proteins, enzyme activity, and microbial biomass stoichiometry. Specifically, increased lignin, phenolics, and manganese in a single leachate resulted in increased phenoloxidase and peroxidase activity, elevated microbial biomass carbon:nitrogen ratio, and a greater proportion of proteins of Betaproteobacteria origin. We used this model system to attempt to link microbial form (community composition and metaproteome) with function (enzyme activity) in order to better understand the mechanisms that link resource heterogeneity to ecosystem function in stream ecosystems. PMID:22347877

  8. Hyporheic invertebrate assemblages at reach scale in a Neotropical stream in Brazil.

    PubMed

    Mugnai, R; Messana, G; Di Lorenzo, T

    2015-11-01

    In the Neotropical Region, information concerning hyporheic communities is virtually non-existent. We carried out a sampling survey in the hyporheic zone of the Tijuca River, in the Tijuca National Park, located in the urban area of the city of Rio de Janeiro. Biological samples from the hyporheic zone were collected in three different stream reaches, in June 2012. The main objectives were: 1) to describe the structure of invertebrate assemblages in the hyporheic zone of a neotropical stream; 2) to apply a reach-scale approach in order to investigate spatial patterns of the hyporheic assemblages in relation to hydrology, depth and microhabitat typology. A total of 1460 individuals were collected and identified in 31 taxa belonging to Nematoda, Annelida, Crustacea, Hydrachnidia and Insecta. The class Insecta dominated the upper layer of the hyporheic zone. Copepods were the most abundant taxon among crustaceans and occurred mostly in the upwelling areas of the reaches. The results of this study represent one of the few contributions so far about hyporheic invertebrate assemblages of the Neotropical Region.

  9. Mercury Methylation, Demethylation, and Bioavailability in the Hyporheic Sediments of a Northern Wisconsin Wetland

    NASA Astrophysics Data System (ADS)

    Creswell, J. E.; Babiarz, C. L.; Shafer, M. M.; Roden, E. E.; Armstrong, D. E.

    2007-12-01

    It is generally accepted that wetland sediments have a high potential to produce methylmercury, yet the factors controlling the relevant chemical transformations are poorly understood. Previous studies suggest that sulfate- reducing bacteria play an important role in methylation, but iron-reducing bacteria may also participate in this process. Methylation rates are influenced by both the concentration of Hg(II) and its speciation, which affects its bioavailability. Net accumulation depends also on demethylation rates, rates which may be significant in these systems. The objective of this study is to gain a better understanding of the main factors controlling the bioavailability of inorganic mercury for the production of methylmercury in wetland hyporheic zones. Stable isotopes of mercury are being used to investigate potential methylation and demethylation rates in the hyporheic sediments of Allequash Creek, near Boulder Junction, WI. Other techniques that are being applied to examine the chemical and biological drivers of mercury methylation and bioavailability include tin-reducible mercury "titrations" to measure the concentration of strong mercury-binding ligands in porewater, 14C-acetate uptake assays to determine the activity of the native microbial consortia , ion exchange resin experiments to explore the role of dissolved organic carbon in mercury binding, and inhibition studies (e.g. molybdenum amendments) of sulfate-reducing bacteria to assess their role in producing methylmercury. Manipulations of environmental conditions in laboratory microcosms are used to determine the relative importance of physical factors, such as temperature, and biogeochemical factors, such as sulfate, sulfide, dissolved organic carbon (DOC), and iron levels, on the fate of mercury in hyporheic systems. Preliminary results show that while significant levels of inorganic mercury are present in the hyporheic groundwater, strong mercury-binding ligands in the wetland porewaters at a

  10. Hydrology and Hyporheic Nitrogen Biogeochemistry in a Geomorphically Degraded Urban Stream

    EPA Science Inventory

    Few studies have investigated the relationship between hydrology and nitrogen biogeochemistry in hyporheic zones of degraded urban streams despite significant national efforts to restore such streams in attempts to improve the nutrient uptake functions in these ecosystems. We ex...

  11. Does streambed heterogeneity matter for hyporheic residence time distribution in sand-bedded streams?

    NASA Astrophysics Data System (ADS)

    Tonina, Daniele; de Barros, Felipe P. J.; Marzadri, Alessandra; Bellin, Alberto

    2016-10-01

    Stream water residence times within streambed sediments are key values to quantify hyporheic processes including sediment thermal regime, solute transient storage, dilution rates and biogeochemical transformations, such as those controlling degassing nitrous oxide. Heterogeneity of the streambed sediment hydraulic properties has been shown to be potentially an important factor to characterize hyporheic processes. Here, we quantify the importance of streambed heterogeneity on residence times of dune-like bedform induced hyporheic fluxes at the bedform and reach scales. We show that heterogeneity has a net effect of compression of the hyporheic zone (HZ) toward the streambed, changing HZ volume from the homogenous case and thus inducing remarkable differences in the flow field with respect to the homogeneous case. We unravel the physical conditions for which the commonly used homogenous field assumption is applicable for quantifying hyporheic processes thus explaining why predictive measures based on a characteristic residence time, like the Damköhler number, are robust in heterogeneous sand bedded streams.

  12. Hyporheic Exchange in Gravel-Bed Rivers with Pool-Riffle Morphology: A 3D Model

    NASA Astrophysics Data System (ADS)

    Tonina, D.; Buffington, J. M.

    2004-12-01

    The hyporheic zone is a saturated band of sediment that surrounds river flow and forms a linkage between the river and the aquifer. It is a rich ecotone where benthic, hyporheic, and groundwater species temporarily or permanently reside. Head gradients along the streambed draw river water into the hyporheic zone and expel pore water into the stream. This process, known as hyporheic exchange, is important for delivering nutrients, oxygen and other solutes to the sediment, and for washing away waste products to support this ecotone. It is an essential component of the carbon and nitrogen cycles, and it controls in-stream contaminant transport. Although hyporheic exchange has been studied in sand-bed rivers with two-dimensional dune morphology, few studies have been conducted for gravel-bed rivers with three-dimensional pool-riffle geometry. The hyporheic zone of gravel-bed rivers is particularly important for salmonids, many of which are currently at risk world wide. Salmon and trout lay their eggs within the hyporheic zone for incubation. After hatching, the alevins live in the gravel before emerging into the stream. The upwelling and downwelling hyporheic fluxes are intense in these streams due to the highly permeable sediment and strong head variations forced by shallow flow over high-amplitude bed forms. Moreover, gravel-bed rivers show a wide range of flow regimes that change seasonally and have strong effects on hyporheic exchange. To study this exchange, we used four sets of pool-riffle geometries in twelve recirculating flume experiments. We kept a constant bed-form wavelength, but changed the bed-form amplitude and imposed three discharges, covering a wide range of hydraulic and geometric characteristics. Hyporheic exchange was predicted from a three-dimensional model based on bedform-induced pumping transport, where the boundary head profile is the pressure head distribution at the sediment interface, measured with an array of mini-piezometers buried within

  13. Visualizing Hyporheic Flow Paths in Three Dimensions Using Time-Lapse Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Kohler, B.; Hall, R. O., Jr.; Carr, B.

    2015-12-01

    The hyporheic zone, the region underneath/surrounding a stream where surface and subsurface waters - and subsequently solutes - are exchanged and interact, is important for many biogeochemical, hydrological, and ecological processes. However, it has remained difficult for researchers to sufficiently describe solute transport within the hyporheic zone, due, in part, to the great degree of heterogeneity of the subsurface. Thus, more direct and invasive sampling techniques are limited in their usefulness. We used an indirect approach for measuring the hyporheic zone, employing 3D time-lapse electrical resistivity tomography (ERT), with a pole-dipole configuration, downstream of a constant-rate addition of an electrically conductive salt tracer (Cl-) as a solution via a high-precision peristaltic pump. This method allowed us to measure the extent of subsurface dynamics of streams in Wyoming's Laramie and Snowy Range mountains, as it yields a three-dimensional view of solute transport and exchange within the hyporheic zone. We found that the physical size of the hyporheic zone and the rate of exchange between the hyporheic and surface waters, as estimated from 3D ERT, are largely related to sediment properties (i.e. grain size distribution) and the extent of tailing of the solute's breakthrough curve (length of time for the solute to flush from the subsurface post cessation of the pump upstream). Coarser sediments with a relatively large porosity, such as gravels and sands, allowed for more subsurface exchange, and larger flow paths, than finer sediments with tighter packing structures, such as clays. Stream reaches that showed a higher degree of tailing in the breakthrough curve, traditionally implying a large transient storage zone, had larger and more active hyporheic zones as measured by 3D ERT. We therefore believe further investigations with 3D ERT will better our understanding of hyporheic exchange and stream solute transport.

  14. Effect of experimental wood addition on hyporheic exchange and thermal dynamics in a losing meadow stream

    NASA Astrophysics Data System (ADS)

    Sawyer, Audrey H.; Cardenas, M. Bayani

    2012-10-01

    Stream restoration structures such as large wood can enhance shallow river-groundwater exchange, or hyporheic exchange, and alter temperature dynamics in restored reaches. We added and then removed channel-spanning logs in a second-order mountain meadow stream to test short-term impacts on hyporheic exchange, streambed temperatures, and surface water temperatures. Based on vertical seepage measurements and numerical simulations of hyporheic fluid and heat flow, large wood addition increased hyporheic exchange and altered streambed temperatures. In this losing stream, meter-scale hyporheic exchange cells formed beneath large wood. Upwelling pore water downstream of logs stabilized diel temperature cycles across <8% of the streambed, creating localized but potentially valuable thermal refuge. Exchange rates were <0.1% of channel discharge—too small to impact the range of diel temperature signals in surface water. However, the lag between downstream and upstream diel temperature signals was slightly greater with large wood, which may indicate that surface storage zones rather than hyporheic storage zones increased thermal retardation. Losing conditions limited the spatial extent and rates of hyporheic exchange near large wood. Impacts of large wood reintroduction on hyporheic exchange depend on ambient groundwater discharge or recharge, streambed permeability, channel Froude number, large wood blockage ratio, and large wood spacing. In many streams, large wood reintroduction may increase hyporheic habitat volume and complexity but may not increase exchange rates enough to alter surface water temperature or chemistry. Surface storage zones such as eddies and pools can still influence heat and solute retention in the channel.

  15. Assessment of Hyporheic Zone, Flood-Plain, Soil-Gas, Soil, and Surface-Water Contamination at the McCoys Creek Chemical Training Area, Fort Gordon, Georgia, 2009-2010

    USGS Publications Warehouse

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface water for contaminants at the McCoys Creek Chemical Training Area (MCTA) at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of organic compounds classified as explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Ten passive samplers were deployed in the hyporheic zone and flood plain, and total petroleum hydrocarbons (TPH) and octane were detected above the method detection level in every sampler. Other organic compounds detected above the method detection level in the hyporheic zone and flood-plain samplers were trichloroethylene, and cis- and trans- 1, 2-dichloroethylene. One trip blank detected TPH below the method detection level but above the nondetection level. The concentrations of TPH in the samplers were many times greater than the concentrations detected in the blank; therefore, all other TPH concentrations detected are considered to represent environmental conditions. Seventy-one soil-gas samplers were deployed in a grid pattern across the MCTA. Three trip blanks and three method blanks were used and not deployed, and TPH was detected above the method detection level in two trip blanks and one method blank. Detection of TPH was observed at all 71 samplers, but because TPH was detected in the trip and method blanks, TPH was

  16. Monitoring hyporheic exchanges during a dam controlled experiment

    NASA Astrophysics Data System (ADS)

    Houzé, Clémence; Varnède, Lucie; Durand, Véronique; Pessel, Marc

    2016-04-01

    Precise understanding of the hyporheic exchanges response to stream flow fluctuations remains a great challenge for many environmental and hydrological problems. Multiplication of natural stream restoration programs and anthropic structures removal highlight that a better understanding of the hydrodynamic and ecological functioning of hyporheic exchanges is critical . The objective of this field experiment was to monitor the dynamic exchanges within the hyporheic zone due to an artificial stream head variation. Various types of measurements were performed, using natural tracers and electrical resistivity tomography (ERT). The dam downstream the studied river reach was successively lowered during two days, and raised during three days, implying river heads variations of about 15cm. The studied area was equipped with CTD probes (measuring the head and the conductivity) within the river, 2 multi-depths water sampling tubes inserted up to one meter depth within the riverbed deposits and 3 ERT profiles with various electrode spacing (20 cm, 25 cm, 50 cm). During the 5 days experiment, water sampling and ERT profiles were done regularly. Estimations of the sediments hydraulic conductivity were obtained by several slug tests in plastic tubes at different depths within the streambed. First results showed that stream fluctuation leads to a rapid hyporheic response according to chloride variations between stream and riverbed sediments. Similar results between geochemical and geophysical tools were found. A decrease in stream head leads to reduce the depth of the mixing zone, as the river gaining conditions intensify. On the contrary, we observed that an increased river head tends to deepen the hyporheic exchange zone.

  17. Physicochemical Characteristics of the Hyporheic Zone Affect Redd Site Selection of Chum and Fall Chinook Salmon, Columbia River.

    SciTech Connect

    Geist, David R.

    2001-10-01

    Chum salmon (Oncorhynchus keta) may historically have been the most abundant species of Columbia River salmon, contributing as much as 50% of the total biomass of all salmon in the Pacific Ocean prior to the 1940's (Neave 1961). By the 1950's, however, run sizes to the Columbia River dropped dramatically and in 1999 the National Marine Fisheries Service (NMFS) listed Columbia River chum salmon as threatened under the Endangered Species Act (ESA; NMFS 1999). Habitat degradation, water diversions, harvest, and artificial propagation are the major human-induced factors that have contributed to the species decline (NMFS 1998). Columbia River chum salmon spawn exclusively in the lower river below Bonneville Dam, including an area near Ives Island. The Ives Island chum salmon are part of the Columbia River evolutionary significant unit (ESU) for this species, and are included in the ESA listing. In addition to chum salmon, fall chinook salmon (O. tshawytscha) also spawn at Ives Island. Spawning surveys conducted at Ives Island over the last several years show that chum and fall chinook salmon spawned in clusters in different locations (US Fish and Wildlife Service and Washington Department of Fish and Wildlife, unpublished data). The presence of redd clusters suggested that fish were selecting specific habitat features within the study area (Geist and Dauble 1998). Understanding the specific features of these spawning areas is needed to quantify the amount of habitat available to each species so that minimum flows can be set to protect fish and maintain high quality habitat.

  18. The influence of stream thermal regimes and preferential flow paths on hyporheic exchange in a glacial meltwater stream

    USGS Publications Warehouse

    Cozzetto, Karen D.; Bencala, Kenneth E.; Gooseff, Michael N.; McKnight, Diane M.

    2013-01-01

    Given projected increases in stream temperatures attributable to global change, improved understanding of relationships between stream temperatures and hyporheic exchange would be useful. We conducted two conservative tracer injection experiments in a glacial meltwater stream, to evaluate the effects of hyporheic thermal gradients on exchange processes, including preferential flow paths (PFPs). The experiments were conducted on the same day, the first (a stream injection) during a cool, morning period and the second (dual stream and hyporheic injections) during a warm, afternoon period. In the morning, the hyporheic zone was thermally uniform at 4°C, whereas by the afternoon the upper 10 cm had warmed to 6–12°C and exhibited greater temperature heterogeneity. Solute transport modeling showed that hyporheic cross-sectional areas (As) at two downstream sites were two and seven times lower during the warm experiment. Exchange metrics indicated that the hyporheic zone had less influence on downstream solute transport during the warm, afternoon experiment. Calculated hyporheic depths were less than 5 cm, contrasting with tracer detection at 10 and 25 cm depths. The hyporheic tracer arrival at one downstream site was rapid, comparable to the in-stream tracer arrival, providing evidence for PFPs. We thus propose a conceptual view of the hyporheic zone in this reach as being dominated by discrete PFPs weaving through hydraulically isolated areas. One explanation for the simultaneous increase in temperature heterogeneity and As decrease in a warmer hyporheic zone may be a flow path preferentiality feedback mechanism resulting from a combination of temperature-related viscosity decreases and streambed heterogeneity.

  19. Hyporheic exchange flows induced by constructed riffles and steps in lowland streams in southern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Kasahara, Tamao; Hill, Alan R.

    2006-12-01

    Stream-subsurface water interaction induced by natural riffles and constructed riffles/steps was examined in lowland streams in southern Ontario, Canada. The penetration of stream water into the subsurface was analysed using hydrometric data, and the zone of > 10% stream water was calculated from a chemical mixing equation using tracer injection of bromide and background chloride concentrations. The constructed riffles studied induced more extensive hyporheic exchange than the natural riffles because of their steeper longitudinal hydraulic head gradients and coarser streambed sediments. The depth of > 10% stream water zone in a small and a large constructed riffle extended to > 0.2 m and > 1.4 m depths respectively. Flux and residence time distribution of hyporheic exchange were simulated in constructed riffles using MODFLOW, a finite-difference groundwater flow model. Hyporheic flux and residence time distribution varied along the riffles, and the exchange occurring upstream from the riffle crest was small in flux and had a long residence time. In contrast, hyporheic exchange occurring downstream from the riffle crest had a relatively short residence time and accounted for 83% and 70% of total hyporheic exchange flow in a small and large riffle respectively. Although stream restoration projects have not considered the hyporheic zone, our data indicate that constructed riffles and steps can promote vertical hydrologic exchange and increase the groundwater-surface water linkage in degraded lowland streams. Copyright

  20. Determining Rates of Change and Evaluating Group-Level Resiliency Differences in Hyporheic Microbial Communities in Response to Fluvial Heavy-Metal Deposition

    PubMed Central

    Feris, Kevin P.; Ramsey, Philip W.; Rillig, Matthias; Moore, Johnnie N.; Gannon, James E.; Holben, William E.

    2004-01-01

    Prior field studies by our group have demonstrated a relationship between fluvial deposition of heavy metals and hyporheic-zone microbial community structure. Here, we determined the rates of change in hyporheic microbial communities in response to heavy-metal contamination and assessed group-level differences in resiliency in response to heavy metals. A controlled laboratory study was performed using 20 flowthrough river mesocosms and a repeated-measurement factorial design. A single hyporheic microbial community was exposed to five different levels of an environmentally relevant metal treatment (0, 4, 8, 16, and 30% sterilized contaminated sediments). Community-level responses were monitored at 1, 2, 4, 8, and 12 weeks via denaturing gradient gel electrophoresis and quantitative PCR using group-specific primer sets for indigenous populations most closely related to the α-, β-, and γ-proteobacteria. There was a consistent, strong curvilinear relationship between community composition and heavy-metal contamination (R2 = 0.83; P < 0.001), which was evident after only 7 days of metal exposure (i.e., short-term response). The abundance of each phylogenetic group was negatively affected by the heavy-metal treatments; however, each group recovered from the metal treatments to a different extent and at a unique rate during the course of the experiment. The structure of hyporheic microbial communities responded rapidly and at contamination levels an order of magnitude lower than those shown to elicit a response in aquatic macroinvertebrate assemblages. These studies indicate that hyporheic microbial communities are a sensitive and useful indicator of heavy-metal contamination in streams. PMID:15294812

  1. Impact of debris dams on hyporheic interaction along a semi-arid stream

    NASA Astrophysics Data System (ADS)

    Lautz, Laura K.; Siegel, Donald I.; Bauer, Robert L.

    2006-01-01

    Hyporheic exchange increases the potential for solute retention in streams by slowing downstream transport and increasing solute contact with the substrate. Hyporheic exchange may be a major mechanism to remove nutrients in semi-arid watersheds, where livestock have damaged stream riparian zones and contributed nutrients to stream channels. Debris dams, such as beaver dams and anthropogenic log dams, may increase hyporheic interactions by slowing stream water velocity, increasing flow complexity and diverting water to the subsurface.Here, we report the results of chloride tracer injection experiments done to evaluate hyporheic interaction along a 320 m reach of Red Canyon Creek, a second order stream in the semi-arid Wind River Range of Wyoming. The study site is part of a rangeland watershed managed by The Nature Conservancy of Wyoming, and used as a hydrologic field site by the University of Missouri Branson Geologic Field Station. The creek reach we investigated has debris dams and tight meanders that hypothetically should enhance hyporheic interaction. Breakthrough curves of chloride measured during the field experiment were modelled with OTIS-P, a one-dimensional, surface-water, solute-transport model from which we extracted the storage exchange rate and cross-sectional area of the storage zone As for hyporheic exchange. Along gaining reaches of the stream reach, short-term hyporheic interactions associated with debris dams were comparable to those associated with severe meanders. In contrast, along the non-gaining reach, stream water was diverted to the subsurface by debris dams and captured by large-scale near-stream flow paths. Overall, hyporheic exchange rates along Red Canyon Creek during snowmelt recession equal or exceed exchange rates observed during baseflow at other streams.

  2. Experiments in Advective and Turbulent Hyporheic Pumping

    NASA Astrophysics Data System (ADS)

    Mccluskey, A. H.; Grant, S.; Stewardson, M. J.

    2014-12-01

    Hyporheic exchange (HE) is the mixing of stream and subsurface waters beneath the sediment-water interface (SWI). At the patch and reach scales, HE is dominated by periodic upwelling and downwelling zones, induced by pressure variation and processes within the turbulent boundary layer (TBL). This can be caused by (1) the geometry of the stream, imposing a stationary wave at the SWI or (2) by a travelling wave associated with the propagation of turbulent pressure waves generated from the TBL. Case (1) has generally been the favoured model of hyporheic exchange and has been referred to as hyporheic 'pumping' by Elliott and Brooks, and subsequently others. Case (2) can be termed turbulent pumping, and has been proposed as a mechanism to model the combined effects of turbulent dispersion alongside steady-state advection. While this has been represented numerically and analytically, conjecture remains about the physical representation of these combined processes. We present initial results from experiments undertaken to classify the spatial and temporal characteristics of pressure variation at and beneath the SWI, with a periodic sinusoidal geometry of wavelength 0.28m and height 0.02m. As an initial characterisation, the advective flow profile has been examined using time-lapse photography of dyes released across the span of a periodic downwelling zone. These tracer tests confirmed delineation of isolated upwelling and downwelling cells as noted by previous authors in modelling studies. However, their distribution deviates from the typical pumping pattern with increased discharge and stream gradient. Empirical orthogonal function (EOF) analysis of high frequency (250Hz) pressure measurements, sampled at an array along the centroid of the flume underneath one wavelength gave further insight into the spatial distribution of turbulent signatures arising from roughness-generated turbulence. A turbulent frequency of 6-10Hz dominates, however the penetration depth appears to

  3. A Comparison of Hyporheic Transport at a Cross-Vane Structure and Natural Riffle.

    PubMed

    Smidt, Samuel J; Cullin, Joseph A; Ward, Adam S; Robinson, Jesse; Zimmer, Margaret A; Lautz, Laura K; Endreny, Theodore A

    2015-01-01

    While restoring hyporheic flowpaths has been cited as a benefit to stream restoration structures, little documentation exists confirming that constructed restoration structures induce comparable hyporheic exchange to natural stream features. This study compares a stream restoration structure (cross-vane) to a natural feature (riffle) concurrently in the same stream reach using time-lapsed electrical resistivity (ER) tomography. Using this hydrogeophysical approach, we were able to quantify hyporheic extent and transport beneath the cross-vane structure and the riffle. We interpret from the geophysical data that the cross-vane and the natural riffle induced spatially and temporally unique hyporheic extent and transport, and the cross-vane created both spatially larger and temporally longer hyporheic flowpaths than the natural riffle. Tracer from the 4.67-h injection was detected along flowpaths for 4.6 h at the cross-vane and 4.2 h at the riffle. The spatial extent of the hyporheic zone at the cross-vane was 12% larger than that at the riffle. We compare ER results of this study to vertical fluxes calculated from temperature profiles and conclude significant differences in the interpretation of hyporheic transport from these different field techniques. Results of this study demonstrate a high degree of heterogeneity in transport metrics at both the cross-vane and the riffle and differences between the hyporheic flowpath networks at the two different features. Our results suggest that restoration structures may be capable of creating sufficient exchange flux and timescales of transport to achieve the same ecological functions as natural features, but engineering of the physical and biogeochemical environment may be necessary to realize these benefits.

  4. Drivers and Spatio-Temporal Extent of Hyporheic Patch Variation: Implications for Sampling

    PubMed Central

    Braun, Alexander; Auerswald, Karl; Geist, Juergen

    2012-01-01

    The hyporheic zone in stream ecosystems is a heterogeneous key habitat for species across many taxa. Consequently, it attracts high attention among freshwater scientists, but generally applicable guidelines on sampling strategies are lacking. Thus, the objective of this study was to develop and validate such sampling guidelines. Applying geostatistical analysis, we quantified the spatio-temporal variability of parameters, which characterize the physico-chemical substratum conditions in the hyporheic zone. We investigated eight stream reaches in six small streams that are typical for the majority of temperate areas. Data was collected on two occasions in six stream reaches (development data), and once in two additional reaches, after one year (validation data). In this study, the term spatial variability refers to patch contrast (patch to patch variance) and patch size (spatial extent of a patch). Patch contrast of hyporheic parameters (specific conductance, pH and dissolved oxygen) increased with macrophyte cover (r2 = 0.95, p<0.001), while patch size of hyporheic parameters decreased from 6 to 2 m with increasing sinuosity of the stream course (r2 = 0.91, p<0.001), irrespective of the time of year. Since the spatial variability of hyporheic parameters varied between stream reaches, our results suggest that sampling design should be adapted to suit specific stream reaches. The distance between sampling sites should be inversely related to the sinuosity, while the number of samples should be related to macrophyte cover. PMID:22860053

  5. Dynamics of hyporheic flow and heat transport across a bed-to-bank continuum in a large regulated river

    NASA Astrophysics Data System (ADS)

    Gerecht, Katelyn E.; Cardenas, M. Bayani; Guswa, Andrew J.; Sawyer, Audrey H.; Nowinski, John D.; Swanson, Travis E.

    2011-03-01

    The lower Colorado River (LCR) near Austin, Texas is heavily regulated for hydropower generation. Daily water releases from a dam located 23 km upstream of our study site in the LCR caused the stage to fluctuate by more than 1.5 m about a mean depth of 1.3 m. As a result, the river switches from gaining to losing over a dam storage-release cycle, driving exchange between river water and groundwater. We assessed the hydrologic impacts of this by simultaneous temperature and head monitoring across a bed-to-bank transect. River-groundwater exchange flux is largest close to the bank and decreases away from the bank. Correspondingly, both the depth of the hyporheic zone and the exchange time are largest close to the bank. Adjacent to the bank, the streambed head response is hysteretic, with the hysteresis disappearing with distance from the bank, indicating that transient bank storage affects the magnitude and direction of vertical exchange close to the bank. Pronounced changes in streambed temperature are observed down to a meter. When the river stage is high, which coincides with when the river is coldest, downward advection of heat from a previous cycles' warm-water pulse warms the streambed. When the river is at its lowest stage but warmest temperature, upwelling groundwater cools the streambed. Future research should consider and focus on a more thorough understanding of the impacts of dam regulation on the hydrologic, thermal, biogeochemical, and ecologic dynamics of rivers and their hyporheic and riparian zones.

  6. Modeling hyporheic exchange and in-stream transport with time-varying transit time distributions

    NASA Astrophysics Data System (ADS)

    Ball, A.; Harman, C. J.; Ward, A. S.

    2014-12-01

    Transit time distributions (TTD) are used to understand in-stream transport and exchange with the hyporheic zone by quantifying the probability of water (and of dissolved material) taking time T to traverse the stream reach control volume. However, many studies using this method assume a TTD that is time-invariant, despite the time-variability of the streamflow. Others assume that storage is 'randomly sampled' or 'well-mixed' with a fixed volume or fixed exchange rate. Here we present a formulation for a time-variable TTD that relaxes both the time-invariant and 'randomly sampled' assumptions and only requires a few parameters. The framework is applied to transient storage, representing some combination of in-stream and hyporheic storage, along a stream reach. This approach does not assume that hyporheic and dead-zone storage is fixed or temporally-invariant, and allows for these stores to be sampled in more physically representative ways determined by the system itself. Instead of using probability distributions of age, probability distributions of storage (ranked by age) called Ω functions are used to describe how the off-stream storage is sampled in the outflow. Here the Ω function approach is used to describe hyporheic exchange during diurnal fluctuations in streamflow in a gaining reach of the H.J. Andrews Experimental Forest. The breakthrough curves of salt slugs injected four hours apart over a 28-hour period show a systematic variation in transit time distribution. This new approach allows us to relate these salt slug TTDs to a corresponding time-variation in the Ω function, which can then be related to changes in in-stream storage and hyporheic zone mobilization under varying flow conditions. Thus, we can gain insights into how channel storage and hyporheic exchange are changing through time without having to specify difficult to measure or unmeasurable quantities of our system, such as total storage.

  7. Hydraulic and thermal effects of in-stream structure-induced hyporheic exchange across a range of hydraulic conductivities

    NASA Astrophysics Data System (ADS)

    Menichino, Garrett T.; Hester, Erich T.

    2014-06-01

    In-stream structure-induced hyporheic exchange and associated thermal dynamics affect stream ecosystems. Their importance is controlled by spatial variability of sediment hydraulic conductivity (K). We calibrated a computational fluid dynamics (CFD) model of surface and groundwater hydraulics near a channel-spanning weir (represents log dams, boulder weirs) to field data and varied K from 10-7 to 10-2 m/s (silt to gravel). Surface water stopped cresting the weir for K > 10-3 m/s. Non-Darcy hyporheic flow was also prevalent for K > 10-3 m/s, and velocity errors using non-CFD models ranged up to 32.2%. We also modeled weir-induced heat transport during summer. As K increased from 10-7 to 10-3 m/s, weir-induced hyporheic heat advection steadily increased. Cooling and buffering along hyporheic flow paths decreased with increasing K, particularly above K = 10-5 and 10-4 m/s, respectively. Vertical heat conduction between surface water and groundwater near the weir decreased with increasing K, particularly for K > 10-5 m/s. Conduction between hyporheic flow paths and adjacent groundwater helped cool hyporheic flow. Downstream surface water cooling by hyporheic advection increased steadily with K as increases in hyporheic flow overwhelmed decreases in cooling along hyporheic flow paths. Yet such effects were small (0.016°C) even at K = 10-3 m/s. The largest thermal effect of weir-induced exchange was therefore spatial expansion of subsurface diel variability (particularly for K > 10-5 m/s) which affects benthic habitat and chemical reactions. The specific values of K where such trend shifts occur is likely variable among streams based on flow conditions, but we expect the presence of such trend shifts to be widespread.

  8. Root-Zone Glyphosate Exposure Adversely Affects Two Ditch Species

    PubMed Central

    Saunders, Lyndsay E.; Koontz, Melissa B.; Pezeshki, Reza

    2013-01-01

    Glyphosate, one of the most applied herbicides globally, has been extensively studied for its effects on non-target organisms. In the field, following precipitation, glyphosate runs off into agricultural ditches where it infiltrates into the soil and thus may encounter the roots of vegetation. These edge-of-field ditches share many characteristics with wetlands, including the ability to reduce loads of anthropogenic chemicals through uptake, transformation, and retention. Different species within the ditches may have a differential sensitivity to exposure of the root zone to glyphosate, contributing to patterns of abundance of ruderal species. The present laboratory experiment investigated whether two species commonly found in agricultural ditches in southcentral United States were affected by root zone glyphosate in a dose-dependent manner, with the objective of identifying a sublethal concentration threshold. The root zone of individuals of Polygonum hydropiperoides and Panicum hemitomon were exposed to four concentrations of glyphosate. Leaf chlorophyll content was measured, and the ratio of aboveground biomass to belowground biomass and survival were quantified. The findings from this study showed that root zone glyphosate exposure negatively affected both species including dose-dependent reductions in chlorophyll content. P. hydropiperdoides showed the greatest negative response, with decreased belowground biomass allocation and total mortality at the highest concentrations tested. PMID:24833234

  9. Spatial and Temporal Dynamics of Hyporheic Respiration Under Variable Discharge Conditions

    NASA Astrophysics Data System (ADS)

    Kurz, M. J.; Schmidt, C.; Knapp, J.; Romeijn, P.; Blaen, P.; Klaar, M. J.; Keller, T.; Krause, S.; Ward, A. S.; Fleckenstein, J. H.; Larned, S.; Zarnetske, J. P.; Martí Roca, E.; Datry, T.

    2014-12-01

    The hyporheic zone is the site of intensive biogeochemical cycling in streams. However, the controls on spatio-temporal variability in hyporheic processing, and the impact of this hyporheic processing on reach-scale processing, are largely unknown. We aimed to evaluate spatial variability in hyporheic respiration along an upland river over the course of a flood event using the reactive tracer resazurin (Raz). Raz, a weakly fluorescent dye, irreversibly transforms to resorufin (Rru) under mildly reducing conditions, providing a proxy for aerobic respiration in the hyporheic zone. Eight conductivity loggers and in-situ fluorometers, measuring in-stream concentrations of Raz, Rru, fluorescein, and turbidity, were evenly spaced along a 1km reach of the Selke River, a gravelly, third-order river in north-central Germany. Sub-reaches between fluorometers differed in the number of streambed structures (ex. pool-riffle sequences and gravel bars) hypothesized to impact hyporheic exchange, residence time distributions, and the development of biogeochemical hotspots. Discharge over the 5 days of the experiment in the Selke River ranged from baseflow conditions of 0.3 m3/s to peak flows of 2.6 m3/s. Seven in-stream slug injections of Raz, NaCl and the conservative tracer fluorescein were conducted at discharge conditions of 0.3, 0.8, 2.5, 2.1, 1.3, 1.0, and 0.9 m3/s. Aerobic respiration rates and residence time distributions in the reach and sub-reaches are evaluated relative to the changing discharge conditions. Preliminary results indicate that although reach-scale tracer travel times decrease with increasing discharge, the reach-scale transformation of Raz to Rru is lowest at intermediate discharge and highest at during baseflow and peak flow conditions. This suggests that the highest transformation rates occur during high discharge.

  10. Mechanical Properties of Heat Affected Zone of High Strength Steels

    NASA Astrophysics Data System (ADS)

    Sefcikova, K.; Brtnik, T.; Dolejs, J.; Keltamaki, K.; Topilla, R.

    2015-11-01

    High Strength Steels became more popular as a construction material during last decade because of their increased availability and affordability. On the other hand, even though general use of Advanced High Strength Steels (AHSS) is expanding, the wide utilization is limited because of insufficient information about their behaviour in structures. The most widely used technique for joining steels is fusion welding. The welding process has an influence not only on the welded connection but on the area near this connection, the so-called heat affected zone, as well. For that reason it is very important to be able to determine the properties in the heat affected zone (HAZ). This area of investigation is being continuously developed in dependence on significant progress in material production, especially regarding new types of steels available. There are currently several types of AHSS on the world market. Two most widely used processes for AHSS production are Thermo-Mechanically Controlled Processing (TMCP) and Quenching in connection with Tempering. In the presented study, TMCP and QC steels grade S960 were investigated. The study is focused on the changes of strength, ductility, hardness and impact strength in heat affected zone based on the used amount of heat input.

  11. Relative Influence of Hyporheic and Surface Transient Storage on Total N Uptake Kinetics

    NASA Astrophysics Data System (ADS)

    Johnson, Z. C.; Warwick, J. J.; Schumer, R.

    2013-12-01

    Differences in N uptake between reaches of a stream may be explained by differences in plant communities, microbial communities, and/or geomorphic characteristics affecting transient storage. Chloride (conservative) and nitrate (non-conservative) tracer experiments were conducted in geomorphically distinct reaches of the lower Truckee River, NV. Despite many studies showing that asymptotic behavior of nitrogen (N) uptake rates (i.e. Michaelis-Menten) occurs in stream systems during tracer addition experiments, first order decay rates, which are appropriate for ambient concentrations, are more commonly used to model N uptake during these experiments. This complicates separation of the relative influence of hyporheic and surface transient storage zones on total uptake kinetics. In-stream concentrations were measured both in the main channel and surface transient storage zones and a modified-OTIS model (two transient storage zones) was used to fit the observed data. Dynamic total uptake kinetics were quantified from ambient to saturated conditions using a previously developed approach. The relative influence of the two transient storage zones on N uptake were compared using first-order and Michaelis-Menten uptake models.

  12. Temporal evolution of hyporheic dissolved organic carbon

    NASA Astrophysics Data System (ADS)

    Gabrielsen, P. J.

    2010-12-01

    Dissolved organic carbon (DOC) is a complex suite of organic compounds present in natural ecosystems, and is particularly studied in river systems. The hyporheic zone (HZ), a region of surface water-shallow groundwater exchange, has been identified as a hotspot of DOC processing and is generally regarded as a net sink of organic matter. More recent studies into riverine DOC have shifted to examining DOC quality rather than bulk quantity. DOC quality variability has been linked to hydrologic and climatic variability, both focuses of current climate change research. This presentation examines the effect of organic and inorganic HZ DOC processes, i.e. microbial uptake and sorption, respectively, on DOC quality as measured through molecular weight distributions (MWDs). Sediment and water samples from East Fork Jemez River in northern New Mexico are used to experimentally simulate DOC processes and observe the subsequent effect on MWD evolution. Parallel factor analysis (PARAFAC) of excitation-emission matrices (EEMs) is also used to examine fluorescent properties throughout DOC process experimentation, providing a second characterizing metric. Results from this study will be applied to a field sampling campaign in the summer of 2011 along the East Fork Jemez River to study temporal and spatial variability in organic and inorganic DOC processes.

  13. Where and why hyporheic exchange is important: Inferences from a parsimonious, physically-based river network model

    NASA Astrophysics Data System (ADS)

    Gomez-Velez, J. D.; Harvey, J. W.

    2014-12-01

    Hyporheic exchange has been hypothesized to have basin-scale consequences; however, predictions throughout river networks are limited by available geomorphic and hydrogeologic data as well as models that can analyze and aggregate hyporheic exchange flows across large spatial scales. We developed a parsimonious but physically-based model of hyporheic flow for application in large river basins: Networks with EXchange and Subsurface Storage (NEXSS). At the core of NEXSS is a characterization of the channel geometry, geomorphic features, and related hydraulic drivers based on scaling equations from the literature and readily accessible information such as river discharge, bankfull width, median grain size, sinuosity, channel slope, and regional groundwater gradients. Multi-scale hyporheic flow is computed based on combining simple but powerful analytical and numerical expressions that have been previously published. We applied NEXSS across a broad range of geomorphic diversity in river reaches and synthetic river networks. NEXSS demonstrates that vertical exchange beneath submerged bedforms dominates hyporheic fluxes and turnover rates along the river corridor. Moreover, the hyporheic zone's potential for biogeochemical transformations is comparable across stream orders, but the abundance of lower-order channels results in a considerably higher cumulative effect for low-order streams. Thus, vertical exchange beneath submerged bedforms has more potential for biogeochemical transformations than lateral exchange beneath banks, although lateral exchange through meanders may be important in large rivers. These results have implications for predicting outcomes of river and basin management practices.

  14. 49 CFR 222.42 - How does this rule affect Intermediate Quiet Zones and Intermediate Partial Quiet Zones?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... LOCOMOTIVE HORNS AT PUBLIC HIGHWAY-RAIL GRADE CROSSINGS Exceptions to the Use of the Locomotive Horn Silenced Horns at Groups of Crossings-Quiet Zones § 222.42 How does this rule affect Intermediate Quiet Zones...

  15. 49 CFR 222.42 - How does this rule affect Intermediate Quiet Zones and Intermediate Partial Quiet Zones?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... LOCOMOTIVE HORNS AT PUBLIC HIGHWAY-RAIL GRADE CROSSINGS Exceptions to the Use of the Locomotive Horn Silenced Horns at Groups of Crossings-Quiet Zones § 222.42 How does this rule affect Intermediate Quiet Zones...

  16. 49 CFR 222.42 - How does this rule affect Intermediate Quiet Zones and Intermediate Partial Quiet Zones?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... LOCOMOTIVE HORNS AT PUBLIC HIGHWAY-RAIL GRADE CROSSINGS Exceptions to the Use of the Locomotive Horn Silenced Horns at Groups of Crossings-Quiet Zones § 222.42 How does this rule affect Intermediate Quiet Zones...

  17. 49 CFR 222.42 - How does this rule affect Intermediate Quiet Zones and Intermediate Partial Quiet Zones?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... LOCOMOTIVE HORNS AT PUBLIC HIGHWAY-RAIL GRADE CROSSINGS Exceptions to the Use of the Locomotive Horn Silenced Horns at Groups of Crossings-Quiet Zones § 222.42 How does this rule affect Intermediate Quiet Zones...

  18. 49 CFR 222.42 - How does this rule affect Intermediate Quiet Zones and Intermediate Partial Quiet Zones?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... LOCOMOTIVE HORNS AT PUBLIC HIGHWAY-RAIL GRADE CROSSINGS Exceptions to the Use of the Locomotive Horn Silenced Horns at Groups of Crossings-Quiet Zones § 222.42 How does this rule affect Intermediate Quiet Zones...

  19. Hyporheic Temperature Dynamics: Predicting Hyporheic Temperatures Based on Travel Time Assuming Instantaneous Water-Sediment Conduction

    NASA Astrophysics Data System (ADS)

    Kraseski, K. A.

    2015-12-01

    Recently developed conceptual frameworks and new observations have improved our understanding of hyporheic temperature dynamics and their effects on channel temperatures. However, hyporheic temperature models that are both simple and useful remain elusive. As water moves through hyporheic pathways, it exchanges heat with hyporheic sediment through conduction, and this process dampens the diurnal temperature wave of the water entering from the channel. This study examined the mechanisms underlying this behavior, and utilized those findings to create two simple models that predict temperatures of water reentering the channel after traveling through hyporheic pathways for different lengths of time. First, we developed a laboratory experiment to represent this process and determine conduction rates for various sediment size classes (sand, fine gravel, coarse gravel, and a proportional mix of the three) by observing the time series of temperature changes between sediment and water of different initial temperatures. Results indicated that conductions rates were near-instantaneous, with heat transfer being completed on the scale of seconds to a few minutes of the initial interaction. Heat conduction rates between the sediment and water were therefore much faster than hyporheic flux rates, rendering reasonable an assumption of instantaneous conduction. Then, we developed two simple models to predict time series of hyporheic water based on the initial diurnal temperature wave and hyporheic travel distance. The first model estimates a damping coefficient based on the total water-sediment heat exchange through each diurnal cycle. The second model solves the heat transfer equation assuming instantaneous conduction using a simple finite difference algorithm. Both models demonstrated nearly complete damping of the sine wave over the distance traveled in four days. If hyporheic exchange is substantial and travel times are long, then hyporheic damping may have large effects on

  20. Dynamic hyporheic exchange at intermediate timescales: testing the relative importance of evapotranspiration and flood pulses

    USGS Publications Warehouse

    Larsen, Laurel G.; Harvey, Judson W.; Maglio, Morgan M.

    2014-01-01

    Hyporheic fluxes influence ecological processes across a continuum of timescales. However, few studies have been able to characterize hyporheic fluxes and residence time distributions (RTDs) over timescales of days to years, during which evapotranspiration (ET) and seasonal flood pulses create unsteady forcing. Here we present a data-driven, particle-tracking piston model that characterizes hyporheic fluxes and RTDs based on measured vertical head differences. We used the model to test the relative influence of ET and seasonal flood pulses in the Everglades (FL, USA), in a manner applicable to other low-energy floodplains or broad, shallow streams. We found that over the multiyear timescale, flood pulses that drive relatively deep (∼1 m) flow paths had the dominant influence on hyporheic fluxes and residence times but that ET effects were discernible at shorter timescales (weeks to months) as a break in RTDs. Cumulative RTDs on either side of the break were generally well represented by lognormal functions, except for when ET was strong and none of the standard distributions applied to the shorter timescale. At the monthly timescale, ET increased hyporheic fluxes by 1–2 orders of magnitude; it also decreased 6 year mean residence times by 53–87%. Long, slow flow paths driven by flood pulses increased 6 year hyporheic fluxes by another 1–2 orders of magnitude, to a level comparable to that induced over the short term by shear flow in streams. Results suggest that models of intermediate-timescale processes should include at least two-storage zones with different RTDs, and that supporting field data collection occur over 3–4 years.

  1. Identification of Methanogenic archaea in the Hyporheic Sediment of Sitka Stream

    PubMed Central

    Buriánková, Iva; Brablcová, Lenka; Mach, Václav; Dvořák, Petr; Chaudhary, Prem Prashant; Rulík, Martin

    2013-01-01

    Methanogenic archaea produce methane as a metabolic product under anoxic conditions and they play a crucial role in the global methane cycle. In this study molecular diversity of methanogenic archaea in the hyporheic sediment of the lowland stream Sitka (Olomouc, Czech Republic) was analyzed by PCR amplification, cloning and sequencing analysis of the methyl coenzyme M reductase alpha subunit (mcrA) gene. Sequencing analysis of 60 clones revealed 24 different mcrA phylotypes from hyporheic sedimentary layers to a depth of 50 cm. Phylotypes were affiliated with Methanomicrobiales, Methanosarcinales and Methanobacteriales orders. Only one phylotype remains unclassified. The majority of the phylotypes showed higher affiliation with uncultured methanogens than with known methanogenic species. The presence of relatively rich assemblage of methanogenic archaea confirmed that methanogens may be an important component of hyporheic microbial communities and may affect CH4 cycling in rivers. PMID:24278322

  2. The hyporheitron - a tool for measuring hyporheic processes along a discrete flow path in gravel bed streams

    NASA Astrophysics Data System (ADS)

    Beamer, J. P.; Wondzell, S. M.; Haggerty, R.

    2012-12-01

    Respiration in streams and rivers occurs primarily in streambed sediment due to the presence of microbial colonies growing as biofilms on sediment surfaces. Hyporheic exchange through this sediment is thus critical to stream ecosystem processes. However, attempts to study the respiration and other biogeochemical processes in the hyporheic zone continues to prove challenging. We developed a hyporheic mesocosm - or hyporheitron - allowing us to sample pore water along a defined hyporheic flowpath. The hyporheitron consists of a 15.24 cm (6 in) I. D. PVC pipe with a total length of 5.5 m packed with hyporheic sediment. Along the length of the pipe, set 1 m apart, are 5 fully penetrating vertical sampling pipes made from 3.81 cm (1.5 in) I. D. PVC slotted well screen which allow for instruments to be used to measure various hydrologic parameters in the streamtube. The hyporheitron was installed in a large gravel bar spanning a pool-riffle-pool sequence in Lookout Creek, at the H. J. Andrews Experimental Forest, Oregon, USA. The hyporheitron was naturally irrigated, provided a controlled environment for transport studies in the hyporheic zone, and could be altered to allow experiments at different residence times and pore water velocities. Performance of the hyporheitron was evaluated using a conservative tracer (NaCl) injection by measuring the electrical conductivity (EC) breakthrough curves at the sampling locations (1, 2, 3, and 4 m down gradient from injection site) allowing calculation of residence time and pore water velocity in the streamtube. We then examined the effects of stream temperature and residence time on metabolism. By changing the outflow rate of the hyporheitron, the pore water residence time and water temperature signal also changes. Hyporheic water with fast flow rates and short residence times can carry the diurnal fluctuations of the stream water temperature, while water with slow flow rates and longer residence times may have less fluctuation

  3. Hyporheic flow, solute transport, and heat flux in the stream bed around cross-vane restoration structures

    NASA Astrophysics Data System (ADS)

    Gordon, Ryan; Lautz, Laura; Daniluk, Timothy

    2010-05-01

    Natural channel design restoration projects in streams often include cross-vanes, which are low, stone, dam-like structures that span the active channel. The change in water elevation over a cross-vane decreases the static pressure head across the structure from upstream to downstream. It is hypothesized that, as a result, a cross-vane increases the local hyporheic exchange of water through the stream bed. Stream beds are the permeable interface between surface water in streams and groundwater in fluvial aquifers. The hyporheic zone includes the area of the bed where water from the active channel mixes with pore water in shallow sediments and returns to the channel. Channel forms, such as steps, pools, and riffles, intensify the flux of water through the hyporheic zone. Flow paths that redirect stream water through the hyporheic zone increase the residence time of dissolved oxygen, organic material, and nutrients in the stream bed, where enhanced geochemical and biological processes alter the water chemistry and create distinct gradients of redox-sensitive solutes. Hyporheic exchange therefore influences surface water quality, and impacts the health of aquatic species and ecosystems. Few studies have investigated the impact of static restoration structures on hyporheic exchange fluxes or water chemistry. Here we present the results of an investigation of hyporheic flow, solute transport, and heat flux at the locations of two cross-vanes and one natural riffle in a second-order stream in central New York State, USA. Pore water temperatures and water samples from the stream bed were collected in a meter-scale grid at 20-cm depth surrounding the structures and riffle. Temperature was also recorded every 10 minutes for over 2 weeks at several different depths at a subset of points at each site. The time-series temperature data and meter-scale grid temperature measurements were used to calculate vertical water flux rates using an analytical heat transport model. Water

  4. Characteristics of GTA fusion zones and heat affected zones in superalloy 713C

    NASA Astrophysics Data System (ADS)

    Lachowicz, M. B.; Dudziński, W.

    2012-09-01

    In this paper, metallographic examinations, characterising microstructural changes in the 713C superalloy subjected to remelting by GTA method, are presented. In the fusion zone, precipitation of M23C6 or M6C carbides based on chromium and molybdenum was observed. Eutectic mixtures of ( γ- gg')-M x C y type with highly developed morphology were also perceived. It was found that, in the matrix areas with non-homogeneous chemical composition, the eutectic reaction γ-γ' can occur at the temperature close to that of the precipitation of the M x C y carbides. The presence of silicon in the carbide phases can be conducive to lowering their solidification point by creating low-melting compound NbSi. Both in the fusion zone (FZ) and in the heat-affected zone (HAZ), the secondary precipitates of the Ni3(AlTi)- γ' phase, varying in size from 50 to 100 nm, were found. The lattice mismatch factor of the γ and γ' particles was +0.48 % to +0.71 %, which is characteristic of the coherent precipitates of the Ni3Al phase enriched with titanium. No dislocations or stacking faults were observed in the microstructure of the FZ. In the HAZ, some primary undissolved γ' precipitates, with a part of aluminium probably replaced with niobium were observed, which raised their melting point.

  5. The influence of streambed heterogeneity on hyporheic flow in gravelly rivers.

    PubMed

    Zhou, YaoQuan; Ritzi, Robert W; Soltanian, Mohamad Reza; Dominic, David F

    2014-01-01

    Deposits of open-framework gravel occurring in gravelly streambeds can exert a significant influence on hyporheic flow. The influence was quantified using a numerical model of the hyporheic zone. The model included open-framework gravel stratasets represented with commonly observed characteristics including a volume fraction of about one-third of the streambed sediment, a hydraulic conductivity two orders of magnitude greater than other strata present, and a spatial connectivity forming preferential-flow pathways. The influence of open-framework gravel stratasets on hyporheic flow was much greater than the influence of the channel morphology including meanders, point bars, dunes, and ripples. Seventy percent of the total hyporheic exchange occurred across 30% of the channel boundary at locations of open-framework gravel stratasets. The maximum local interfacial flux rates occurred at these locations, and were orders of magnitude greater than those at other locations. The local flux rates varied by six orders of magnitude over the channel boundary. The composite flow rate through the model with open-framework gravel stratsets was an order of magnitude greater than that through an equivalent but homogeneous model.

  6. Analyses of Bed Topography and Hyporheic Exchange Using a High-Resolution Bathymetric Lidar

    NASA Astrophysics Data System (ADS)

    McKean, J. A.; Tonina, D.; Marzadri, A.; Tiedemann, M.

    2011-12-01

    The hyporheic zone is a critical stream bed ecotone used by microorganisms, macroinvertebrates and spawning fish. Hyporheic exchange often results from differences in the channel near-bed total pressures as they vary in response to interactions between the surface flow and bed topography. The elevation head and the static and dynamic pressure heads are all sensitive to the spacing and amplitude of bed forms. We used a high resolution bathymetric lidar to describe the morphology of 30 km of a mountain river, and then defined the frequency and amplitude of bed forms in the channel with 1D wavelet transforms. We also mapped spatial variations in other important channel attributes, such as width and slope, using the River Bathymetry Toolkit (RBT), a freeware Arc-based GIS toolkit that automatically extracts hydrologic geometry and habitat information from high resolution DEMs of streams (http://www.fs.fed.us/rm/boise/AWAE/projects/river_bathymetry_toolkit.shtml). The wavelet transforms and geometry patterns were exploited to stratify the 30 km domain into hypothesized areas of consistent hyporheic exchange. The accuracy of our form-based hyporheic stratification is being tested with fluid dynamic models of surface and groundwater flow. The biological significance of the strata is also being evaluated by comparison with field samples of macroinvertebrate populations.

  7. Hyporheic exchange in a karst conduit and sediment system - A laboratory analog study

    NASA Astrophysics Data System (ADS)

    Wu, Yuexia; Hunkeler, Daniel

    2013-09-01

    Karst conduits are often partly filled by clastic sediments. Flow through such sediments can have a strong impact on the fate of sediment-entrapped contaminants. In contrast to stream bed sediments, hyporheic flow in karst sediments has received little attention so far. For karst sediments, conduit bends could induce hyporheic flow, in addition to bedforms or obstacles. The main aim of this study was to investigate flow processes in a conduit-sediment system using a laboratory model resembling a siphon and numerical modeling. In the laboratory system, zones with forward and reserve flow occurred in the sediment due to the conduit bends. As demonstrated with sediment-source tracer test, entrapped solutes were generally flushed out more rapidly at a higher flow rate and steeper conduit angle. Numerical modeling assuming pressure continuity across the conduit-sediment interface reproduced the flow patterns and breakthrough curves (BTCs) well. Based on the model, the magnitude of hyporheic exchange is expected to increase linearly with the flow rate and was higher for a steeper conduit angle. However, the increase in flushing intensity was not evenly distributed throughout the sediments but occurred mainly adjacent to the conduit bends consistent with observations from tracer tests. This study confirms that conduit bends could have a strong influence on hyporheic flow in karst sediments.

  8. Scaling Hyporheic Flow and Biogeochemical Reactions across a Wide Range of Flow and Sediment Conditions in Aquatic Systems

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; O'Connor, B. L.

    2008-12-01

    Aquatic ecosystems are strongly influenced by advective transport from surface water into shallow sediments of the hyporheic zone. The delivery of energy and nutrient-rich materials to microbially and geochemically reactive sediment stimulates high rates of biogeochemical reactions that influence the overall metabolism of the ecosystem as well as influencing the chemistry of downstream receiving waters. Predicting hyporheic flow is difficult because of the potential involvement of many physical processes, including diffusion, shear, bedform-scale advective pumping, bed mobility and bioturbation, turbulence penetration, and head potential- driven groundwater exchange. We used published data from carefully controlled laboratory flume experiments to develop a scaling relationship that predicts hyporheic exchange based on physical descriptors (e.g. shear stress velocity, roughness height, and sediment permeability) that summarize fluid- flow and sediment characteristics. We tested the scaling relationship's predictions by comparing them with more time and labor intensive measurements of solute and reactive tracer transport made in situ in hyporheic zones. In situ measurements were acquired using the USGS MINIPOINT sampler, which allows detailed subsurface measurements without significant disturbance of sediment or the ambient surface or subsurface water fluxes. Fieldwork was undertaken in several streams that varied widely in surface water flow velocities, grain type, median grain size, sediment porosity, sediment organic content, sediment hydraulic conductivity, and groundwater specific discharge. The comparison generally supported the predictive capability of the scaling relationship in complex field settings. The value of the scaling relationship is also indicated for improving rate measurements of biogeochemical reactions in hyporheic zones (e.g. oxygen uptake, denitrification, and manganese oxidation), as well as for estimating the cumulative influence of

  9. Effects of Hyporheic Exchange Flows on Egg Pocket Water Temperature in Snake River Fall Chinook Salmon Spawning Areas

    SciTech Connect

    Hanrahan, Timothy P.; Geist, David R.; Arntzen, Evan V.; Abernethy, Cary S.

    2004-09-24

    The development of the Snake River hydroelectric system has affected fall chinook salmon smolts by shifting their migration timing to a period when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations to improve water temperature and flow conditions during the juvenile chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by PNNL that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall chinook salmon spawning areas. The potential for improved survival would be gained by increasing the rate at which early life history events proceed (i.e., incubation and emergence), thereby allowing smolts to migrate through downstream reservoirs during early- to mid-summer when river conditions are more favorable for survival. PNNL implemented this research project throughout 160 km of the Hells Canyon Reach (HCR) of the Snake River. The hydrologic regime during the 2002?2003 sampling period exhibited one of the lowest, most stable daily discharge patterns of any of the previous 12 water years. The vertical hydraulic gradients (VHG) between the river and the riverbed suggested the potential for predominantly small magnitude vertical exchange. The VHG also showed little relationship to changes in river discharge at most sites. Despite the relatively small vertical hydraulic gradients at most sites, the results from the numerical modeling of riverbed pore water velocity and hyporheic zone temperatures

  10. Characterisation of transient storage biogeochemistry through groundwater models: the importance of considering microform hyporheic exchange in models at coarser scales

    NASA Astrophysics Data System (ADS)

    Käser, D.; Binley, A.; Heathwaite, L.

    2010-12-01

    Transient storage of stream water in the sediment, or hyporheic exchange flow (HEF), is a primary control on the ecological structure and functions of the hyporheic zone. Increasingly, river rehabilitation programmes require quantitative methods for evaluating its influence on the lotic system, particularly on its pollutant attenuation capacity. Previous studies have already shown the potential of groundwater numerical models to characterize HEF at the channel-unit or the reach scale, for example to compare different rehabilitation scenarios. Modellers and end-users, however, must consider these results with care. The predominant underlying concept implies that HEF is driven by geomorphological features such as pool-riffle or pool-step sequences, and meanders. Yet any degree of streambed roughness is also likely to induced small scale HEF through current-obstacle interaction. Both scales of exchange potentially play a crucial role in terms of biogeochemical transformations. Simulated conceptualisations show that ignoring current-obstacle interactions in groundwater models can lead to strong underestimations of short residence time flow paths or to a misrepresentation of biogeochemical 'hotspots'. For example, ‘Head to tail’ flow paths through riffles are sometimes thought to explain variations in stream water chemistry; however, because riffles are shallow zones of high stream water velocity, they have a potential for pumping exchange that would typically be characterized by a small depth, short residence times, and large fluxes. Little is known on the relative efficiency of these two scales of HEF systems. A sensitivity analysis shows how the interaction of pumping exchange and HEF caused by channel-unit structures may create various small-scale and complex patterns of downwelling and upwelling areas that may control in return the biogeochemical patchiness in the shallow subsurface. There is still much to learn about the interaction of HEF systems of different

  11. Hyporheic exchange and oxygen consumption under losing and gaining flow conditions

    NASA Astrophysics Data System (ADS)

    Arnon, S.; Fox, A.; De Falco, N.; Boano, F.

    2013-12-01

    The exchange of water between the surface and subsurface environments plays a crucial role in hydrological, biogeochemical, and ecological processes. The exchange of water is driven by the local morphology of the streambed (hyporheic exchange) and regional forcing of the hydraulic gradient, which results in losing or gaining flow conditions. We measured the effects of losing and gaining flow conditions on hyporheic exchange fluxes by conducting tracer experiments using a novel laboratory flume system (640 cm long and 30 cm wide) under various combinations of overlying velocities and losing/gaining fluxes. Tracer experiments for measuring hyporheic exchange were done using NaCl as conservative tracer, and dye tracer to visualize the active region where water exchange processes occur. Hyporheic exchange fluxes were analyzed based on a new conceptual framework, which relies on a solute mass balance with sink/source terms due to losing/gaining fluxes to evaluate water exchange between surface flow and streambed sediments. This combination of experimental observations and modeling revealed that hyporheic exchange fluxes under losing and gaining flow conditions was similar. Interfacial transport increases proportional to the square of the overlying velocity, and linearly with increasing fluxes of losing and gaining conditions in the sand bed. When the regional hydraulic forcing becomes larger, the hyporheic exchange becomes smaller. Thus, losing and gaining flow conditions becomes the dominant mechanism of water exchange at a certain flux, which depends on the competitive interaction between the overlying velocity in the stream and the losing/gaining fluxes. This type of coupling is expected to regulate nutrient and contaminant transport and microbial activity in streams and rivers. Indeed, we demonstrated using oxygen distribution along the bedform, which was measured using microelectrodes, that the local hydraulic conditions have a strong influent on microbial activity

  12. The significance of droughts for hyporheic dwellers: evidence from freshwater crayfish

    PubMed Central

    Kouba, Antonín; Tíkal, Jan; Císař, Petr; Veselý, Lukáš; Fořt, Martin; Příborský, Josef; Patoka, Jiří; Buřič, Miloš

    2016-01-01

    Freshwater biodiversity is globally threatened by various factors while severe weather events like long-term droughts may be substantially devastating. In order to remain in contact with the water or stay in a sufficiently humid environment at drying localities, the ability to withstand desiccation by dwelling in the hyporheic zone, particularly through vertical burrowing is crucial. We assessed the ability of three European native and five non-native crayfish as models to survive and construct vertical burrows in a humid sandy-clayey substrate under a simulated one-week drought. Three native species (Astacus astacus, A. leptodactylus, and Austropotamobius torrentium) suffered extensive mortalities. Survival of non-native species was substantially higher while all specimens of Cherax destructor and Procambarus clarkii survived. The native species and Pacifastacus leniusculus exhibited no ability to construct vertical burrows. Procambarus fallax f. virginalis and P. clarkii constructed bigger and deeper burrows than C. destructor and Orconectes limosus. In the context of predicted weather fluctuations, the ability to withstand desiccation through constructing vertical burrows into the hyporheic zone under drought conditions might play a significant role in the success of particular crayfish species, as well as a wide range of further hyporheic-dwelling aquatic organisms in general. PMID:27225308

  13. The significance of droughts for hyporheic dwellers: evidence from freshwater crayfish

    NASA Astrophysics Data System (ADS)

    Kouba, Antonín; Tíkal, Jan; Císař, Petr; Veselý, Lukáš; Fořt, Martin; Příborský, Josef; Patoka, Jiří; Buřič, Miloš

    2016-05-01

    Freshwater biodiversity is globally threatened by various factors while severe weather events like long-term droughts may be substantially devastating. In order to remain in contact with the water or stay in a sufficiently humid environment at drying localities, the ability to withstand desiccation by dwelling in the hyporheic zone, particularly through vertical burrowing is crucial. We assessed the ability of three European native and five non-native crayfish as models to survive and construct vertical burrows in a humid sandy-clayey substrate under a simulated one-week drought. Three native species (Astacus astacus, A. leptodactylus, and Austropotamobius torrentium) suffered extensive mortalities. Survival of non-native species was substantially higher while all specimens of Cherax destructor and Procambarus clarkii survived. The native species and Pacifastacus leniusculus exhibited no ability to construct vertical burrows. Procambarus fallax f. virginalis and P. clarkii constructed bigger and deeper burrows than C. destructor and Orconectes limosus. In the context of predicted weather fluctuations, the ability to withstand desiccation through constructing vertical burrows into the hyporheic zone under drought conditions might play a significant role in the success of particular crayfish species, as well as a wide range of further hyporheic-dwelling aquatic organisms in general.

  14. The significance of droughts for hyporheic dwellers: evidence from freshwater crayfish.

    PubMed

    Kouba, Antonín; Tíkal, Jan; Císař, Petr; Veselý, Lukáš; Fořt, Martin; Příborský, Josef; Patoka, Jiří; Buřič, Miloš

    2016-01-01

    Freshwater biodiversity is globally threatened by various factors while severe weather events like long-term droughts may be substantially devastating. In order to remain in contact with the water or stay in a sufficiently humid environment at drying localities, the ability to withstand desiccation by dwelling in the hyporheic zone, particularly through vertical burrowing is crucial. We assessed the ability of three European native and five non-native crayfish as models to survive and construct vertical burrows in a humid sandy-clayey substrate under a simulated one-week drought. Three native species (Astacus astacus, A. leptodactylus, and Austropotamobius torrentium) suffered extensive mortalities. Survival of non-native species was substantially higher while all specimens of Cherax destructor and Procambarus clarkii survived. The native species and Pacifastacus leniusculus exhibited no ability to construct vertical burrows. Procambarus fallax f. virginalis and P. clarkii constructed bigger and deeper burrows than C. destructor and Orconectes limosus. In the context of predicted weather fluctuations, the ability to withstand desiccation through constructing vertical burrows into the hyporheic zone under drought conditions might play a significant role in the success of particular crayfish species, as well as a wide range of further hyporheic-dwelling aquatic organisms in general. PMID:27225308

  15. Catchment-scale quantification of hyporheic denitrification using an isotopic and solute flux approach.

    PubMed

    Wexler, Sarah K; Hiscock, Kevin M; Dennis, Paul F

    2011-05-01

    A dual-isotope and solute flux mass-balance was used to elucidate the processes that lead to attenuation of nitrogen contamination in an agriculturally impacted river. The River Wensum drains a lowland catchment with an area of 570 km² in East Anglia, eastern England. Analysis of nitrate concentration, δ¹⁵N(NO₃) and δ¹⁸O(NO₃) of samples from the River Wensum collected from upstream locations to the catchment outlet through all seasons and flow conditions showed a consistent pattern of increasing isotope values with decreasing nitrate concentrations downstream. δ¹⁵N(NO₃) and δ¹⁸O(NO₃) of catchment surface water and groundwater samples revealed a dominant influence from microbially cycled and nitrified source-nitrogen, which results in high nitrate concentrations in Chalk groundwater and upstream in the River Wensum. Denitrification of Chalk groundwater-baseflow in the hyporheic zone results in the downstream trend observed in the river. Hyporheic denitrification is estimated to remove 931 kg/day of nitrate-nitrogen by the catchment outlet, representing 31% of the potential riverine nitrate load. The use of dual-isotope and solute flux modeling at the catchment scale is a novel application to quantify denitrification within the river valley, demonstrating the importance of hyporheic zone processes in attenuating the impacts of anthropogenic contamination of hydrologic systems.

  16. Product-to-parent reversion processes: Stream-hyporheic spiraling increases ecosystem exposure and environmental persistence

    NASA Astrophysics Data System (ADS)

    Ward, A. S.; Cwiertny, D. M.; Kolodziej, E. P.

    2014-12-01

    The product-to-parent reversion of metabolites of trenbolone acetate (TBA), a steroidal growth promoter used widely in beef cattle production, was recently observed to occur in environmental waters. The rapid forward reaction is by direct photolysis (i.e., photohydration), with the much slower reversion reaction occurring via dehydration in the dark. The objective of this study is to quantify the potential effect of this newly discovered reversible process on TBA metabolite concentrations and total bioactivity exposure in fluvial systems. Here, we demonstrate increased persistence of TBA metabolites in the stream and hyporheic zone due to the reversion process, increasing chronic and acute exposure to these endocrine-active compounds along a stream. The perpetually dark hyporheic zone is a key location for reversion in the system, ultimately providing a source of the parent compound to the stream and increasing mean in-stream concentration of 17α-trenbolone (17α-TBOH) by 40% of the input concentration under representative fluvial conditions. As such, regulatory frameworks for compounds undergoing product-to-parent reversion will require new approaches for assessing total exposure to bioactive compounds. Further, we demonstrate generalized cases for prediction of exposure for species with product-to-parent reversion in stream-hyporheic systems.

  17. Streambed sediment controls on hyporheic greenhouse gas production - a microcosm experiment

    NASA Astrophysics Data System (ADS)

    Romeijn, P.; Comer, S.; Krause, S.; Hannah, D. M.; Gooddy, D.

    2015-12-01

    Hyporheic zones, as the interfaces between groundwater and surface water, can contribute significantly to whole stream carbon respiration. The drivers and controls of rates and magnitude of hyporheic greenhouse gas (GHG) production remain poorly understood. Recent research has hypothesised that nitrous oxide emissions resulting from incomplete denitrification in nutrient rich agricultural streams may contribute substantially to GHG emissions. This paper reports on a controlled microcosm incubation experiment that has been set up to quantify the sensitivity of hyporheic zone GHG production to temperature and nutrient concentrations. Experiments were conducted with sediment from two contrasting UK lowland rivers (sandstone and chalk). Adopting a gradient approach, sediments with different organic matter and carbon content were analysed from both rivers. Our analytical approach integrated several novel methods, such as push-pull application of the Resazurin/Resorufin smart tracer system for estimation of sediment microbial metabolic activity, high-resolution gas sampling and analysis of methane, carbon dioxide and nitrous oxide by gas chromatography with mass spectrometry, coupled with and high precision in-situ dissolved oxygen measurements. Our results indicate strong temperature controls of GHG production rates, overlapping with the observed impacts of different sediment types. Experimental findings indicate that increased hyporheic temperatures during increasing baseflow and drought conditions may enhance substantially sediment respiration and thus, GHG emissions from the streambed interface. The presented results integrated with field experiments of respiration and GHG emission rates under different treatments. This research advances understanding of scale dependent drivers and controls of whole stream carbon and nitrogen budgets and the role of streambed interfaces in GHG emissions.

  18. Hydrogeochemical niches associated with hyporheic exchange beneath an acid mine drainage-contaminated stream

    NASA Astrophysics Data System (ADS)

    Larson, Lance N.; Fitzgerald, Michael; Singha, Kamini; Gooseff, Michael N.; Macalady, Jennifer L.; Burgos, William

    2013-09-01

    Biological low-pH Fe(II)-oxidation creates terraced iron formations (TIFs) that remove Fe(III) from solution. TIFs can be used for remediation of acid mine drainage (AMD), however, as sediment depth increases, Fe(III)-reduction in anoxic subsurface areas may compromise treatment effectiveness. In this study we used near-surface electrical resistivity imaging (ERI) and in situ pore-water samplers to spatially resolve bulk conductivity changes within a TIF formed in a stream emanating from a large abandoned deep clay mine in Cambria County, Pennsylvania, USA. Because of the high fluid electrical conductivity of the emergent AMD (1860 μS), fresh water (42 μS) was added as a dilution tracer to visualize the spatial and temporal extent of hyporheic exchange and to characterize subsurface flow paths. Distinct hydrogeochemical niches were identified in the shallow subsurface beneath the stream by overlaying relative groundwater velocities (derived from ERI) with pore-water chemistry profiles. Niches were classified based on relatively “fast” versus “slow” rates of hyporheic exchange and oxic versus anoxic conditions. Pore-water concentrations and speciation of iron, pH, and redox potential differed between subsurface flow regimes. The greatest extent of hyporheic exchange was beneath the center of the stream, where a shallower (<10 cm) Fe(II)-oxidizing zone was observed. Meanwhile, less hyporheic exchange was observed near the channel banks, concurrent with a more pronounced, deeper (>70 cm) Fe(II)-oxidizing zone. At these locations, relatively slower groundwater exchange may promote biotic Fe(II)-oxidation and improve the long-term stability of Fe sequestered in TIFs.

  19. Streambed sediment controls on hyporheic greenhouse gas production - a microcosm experiment

    NASA Astrophysics Data System (ADS)

    Romejn, Paul; Comer, Sophie; Gooddy, Daren; Ullah, Sami; Hannah, David; Krause, Stefan

    2016-04-01

    Hyporheic zones, as the interfaces between groundwater and surface water, can contribute significantly to whole stream carbon respiration. The drivers and controls of rates and magnitude of hyporheic greenhouse gas (GHG) production remain poorly understood. Recent research has hypothesised that nitrous oxide emissions resulting from incomplete denitrification in nutrient rich agricultural streams may contribute substantially to GHG emissions. This paper reports on a controlled microcosm incubation experiment that has been set up to quantify the sensitivity of hyporheic zone GHG production to temperature and nutrient concentrations. Experiments were conducted with sediment from two contrasting UK lowland rivers (sandstone and chalk). Adopting a gradient approach, sediments with different organic matter and carbon content were analysed from both rivers. Our analytical approach integrated several novel methods, such as push-pull application of the Resazurin/Resorufin smart tracer system for estimation of sediment microbial metabolic activity, high-resolution gas sampling and analysis of methane, carbon dioxide and nitrous oxide by gas chromatography with mass spectrometry, coupled with and high precision in-situ dissolved oxygen measurements. Our results indicate strong temperature controls of GHG production rates, overlapping with the observed impacts of different sediment types. Experimental findings indicate that increased hyporheic temperatures during increasing baseflow and drought conditions may enhance substantially sediment respiration and thus, GHG emissions from the streambed interface. The presented results integrated with field experiments of respiration and GHG emission rates under different treatments. This research advances understanding of scale dependent drivers and controls of whole stream carbon and nitrogen budgets and the role of streambed interfaces in GHG emissions.

  20. Variability and comparison of hyporheic water temperatures and seepage fluxes in a small Atlantic salmon stream.

    PubMed

    Alexander, Matthew D; Caissie, Daniel

    2003-01-01

    Ground water discharge is often a significant factor in the quality of fish spawning and rearing habitat and for highly biologically productive streams. In the present study, water temperatures (stream and hyporheic) and seepage fluxes were used to characterize shallow ground water discharge and recharge within thestreambed of Catamaran Brook, a small Atlantic salmon (Salmo salar) stream in central New Brunswick, Canada. Three study sites were instrumented using a total of 10 temperature sensors and 18 seepage meters. Highly variable mean seepage fluxes, ranging from 1.7 x 10(-4) to 2.5 cm3 m(-2) sec(-1), and mean hyporheic water temperatures, ranging from 10.5 degrees to 18.0 degrees C, at depths of 20 to 30 cm in the streambed were dependent on streambed location (left versus right stream bank and site location) and time during the summer sampling season. Temperature data were usefulfor determining if an area of the streambed was under discharge (positive flux), recharge (negative flux), or parallel flow (no flux) conditions and seepage meters were used to directly measure the quantity of water flux. Hyporheic water temperature measurements and specific conductance measurements of the seepage meter sample water, mean values ranging from 68.8 to 157.9 microS/cm, provided additional data for determining flux sources. Three stream banks were consistently under discharge conditions, while the other three stream banks showed reversal from discharge to recharge conditions over the sampling season. Results indicate that the majority of the water collected in the seepage meters was composed of surface water. The data obtained suggests that even though a positive seepage flux is often interpreted as ground water discharge, this discharging water may be of stream water origin that has recently entered the hyporheic zone.The measurement of seepage flux in conjunction with hyporheic water temperature or other indicators of water origin should be considered when attempting to

  1. Using multiple natural and injected tracers to evaluate spatial and temporal patterns of hyporheic flux and biogeochemistry

    NASA Astrophysics Data System (ADS)

    Briggs, M. A.; Lautz, L. K.; Gordon, R. P.; McKenzie, J. M.; Gonzalez Pinzon, R. A.; Hare, D. K.

    2011-12-01

    had weak, shallow flux (less than 0.4 md-1) that increased significantly as streamflow receded. The biogeochemical profiles at locations where flux had trends showed a transition to shallow oxic conditions when downward flux increased and residence times decreased; conversely, where flux decreased there was a transition to more anoxic conditions. Pools had persistently weak, shallow vertical flux and anoxic conditions, even when located very close to the dam step. The resazurin tracer revealed that hyporheic zones at glides were hotspots of aerobic microbial reactivity. These results show that comprehensive studies, making use of multiple natural and new injected tracers, can provide a more complete understanding of how patterns of physical hyporheic flux and biogeochemical processes are coupled in space and time.

  2. Hyporheic flow patterns in relation to large river floodplain attributes

    EPA Science Inventory

    Field-calibrated models of hyporheic flow have emphasized low-order headwater systems. In many cases, however, hyporheic flow in large lowland river floodplains may be an important contributor to ecosystem services such as maintenance of water quality and habitat. In this study, ...

  3. WATER QUALITY EFFECTS OF HYPORHEIC PROCESSING IN A LARGE RIVER

    EPA Science Inventory

    Water quality changes along hyporheic flow paths may have
    important effects on river water quality and aquatic habitat. Previous
    studies on the Willamette River, Oregon, showed that river water follows
    hyporheic flow paths through highly porous deposits created by river...

  4. Opportunities and Limitation of Hyporheic Restoration in a 4th Order Semi-Arid Floodplain: a Case Study of Meacham Creek, Oregon

    NASA Astrophysics Data System (ADS)

    O'Daniel, S. J.; Amerson, B. E.; Lambert, M. B.

    2014-12-01

    Persistent societal interest in improving water quality and recovering imperiled, native, aquatic species has expanded the scope of stream restoration to include the hyporheic zone as a focus. Despite the lack of detailed studies, hyporheic restoration is often invoked as a means to achieve multiple objectives including moderation of water temperature, delay of seasonal flows and increasing the localized volume of floodplain water. We present interim results from an ongoing case study that monitors the changes as a result of stream restoration of the hyporheic zone of a 4th order, alluvial floodplain in northeast Oregon, USA, Meacham Creek. Active and passive restoration of 2.5 km of Meacham Creek has altered the creek from a single-threaded, incised and bedrock-dominated channel to a perched, alluvial channel that seasonally exchanges overbank flows with the surrounding floodplain. Our results suggest that the stream restoration effort on Meacham Creek has increased the volume of annual hyporheic storage and created a more diverse distribution of flowpath lengths within the restoration site. Furthermore, our monitoring indicates that hyporheic process response to stream restoration, analogous to other geomorphic processes, conforms to a systematic hierarchy where nested flow paths range in length and residence time from meters and hours at the habitat scale to tens of meters and months at the floodplain scale. We assert that scale-explicit and measurement-focused restoration planning has a greater likelihood of meeting the stated objectives and result in improved water quality and encourage recovery of many native aquatic species.

  5. Agent-based modeling of hyporheic dissolved organic carbon transport and transformation

    NASA Astrophysics Data System (ADS)

    Gabrielsen, P. J.; Wilson, J. L.; Pullin, M.

    2011-12-01

    Dissolved organic carbon (DOC) is a complex suite of organic compounds present in natural ecosystems, and is particularly studied in river and stream systems. The hyporheic zone (HZ), a region of surface water-shallow groundwater exchange, has been identified as a hotspot of DOC processing and is generally regarded as a net sink of organic matter. More recent studies into stream DOC have shifted to examining DOC quality rather than bulk quantity. DOC quality variability has been linked to hydrologic and climatic variability, both focuses of current climate change research. A new agent-based model in the NetLogo modeling environment couples hydrologic transport with chemical and biological transformation of DOC to simulate changing DOC quality in hyporheic flow. A pore-scale model implements a Lattice Boltzmann fluid dynamic model and surficial interactions to simulate sorption and microbial uptake. Upscaled to a stream meander scale, this model displays spatial variation and evolution of DOC quality. Model output metrics are correlated to field sample analytical results from a hyporheic meander of the East Fork Jemez River, Sandoval Co., NM.

  6. [Distribution and species composition of hyporheic macroinvertebrates in a mountain stream].

    PubMed

    Zhang, Yue-wei; Yuan, Xing-zhong; Liu, Hong; Ren, Hai-qing; Deng, Wei; Wang, Xiao-feng

    2015-09-01

    Hyporheic macroinvertebrates are an important component of stream ecosystem. The composition and distribution of the hyporheic macroinvertebrates were investigated using artificial substrates in the upper reaches of Heishuitan River in August, December 2013 and April 2014. The results indicated that a total of 27 microinvertbrate species were identified in all three seasons. In summer, 22 species were identified, accounting for 81.8% of aquatic insects. 16 species were identified both in winter and spring, accounting for 75.0% and 62.5% of aquatic insects, respectively. The density of macroinvertebrate assemblage was significantly lower in summer than in winter and spring, and was the highest in spring. The biomass of macroinvertebrate assemblage was significantly higher in winter than in summer and spring, and was the lowest in summer. Species richness, Shannon index and Pielou index all had no significant difference among the three seasons. The density and richness of macroinvertebrates decreased with bed depth, and the maximum invertebrate density was found within the top 20 cm of the stream bed. Collector-filterer and collector-gatherer were the dominant functional feeding group in all three seasons. The community structure and temporal-spatial distribution of macroinvertebrates were determined by interactions and life history strategy of macroinvertebrates, and physical-chemical factors of hyporheic zone. PMID:26785569

  7. [Distribution and species composition of hyporheic macroinvertebrates in a mountain stream].

    PubMed

    Zhang, Yue-wei; Yuan, Xing-zhong; Liu, Hong; Ren, Hai-qing; Deng, Wei; Wang, Xiao-feng

    2015-09-01

    Hyporheic macroinvertebrates are an important component of stream ecosystem. The composition and distribution of the hyporheic macroinvertebrates were investigated using artificial substrates in the upper reaches of Heishuitan River in August, December 2013 and April 2014. The results indicated that a total of 27 microinvertbrate species were identified in all three seasons. In summer, 22 species were identified, accounting for 81.8% of aquatic insects. 16 species were identified both in winter and spring, accounting for 75.0% and 62.5% of aquatic insects, respectively. The density of macroinvertebrate assemblage was significantly lower in summer than in winter and spring, and was the highest in spring. The biomass of macroinvertebrate assemblage was significantly higher in winter than in summer and spring, and was the lowest in summer. Species richness, Shannon index and Pielou index all had no significant difference among the three seasons. The density and richness of macroinvertebrates decreased with bed depth, and the maximum invertebrate density was found within the top 20 cm of the stream bed. Collector-filterer and collector-gatherer were the dominant functional feeding group in all three seasons. The community structure and temporal-spatial distribution of macroinvertebrates were determined by interactions and life history strategy of macroinvertebrates, and physical-chemical factors of hyporheic zone.

  8. Metabolic and structural response of hyporheic microbial communities to variations in supply of dissolved organic matter

    USGS Publications Warehouse

    Findlay, S.E.G.; Sinsabaugh, R. L.; Sobczak, W.V.; Hoostal, M.

    2003-01-01

    Hyporheic sediment bacterial communities were exposed to dissolved organic matter (DOM) from a variety of sources to assess the interdependence of bacterial metabolism and community composition. Experiments ranged from small-scale core perfusions with defined compounds (glucose, bovine serum albumin) to mesocosms receiving natural leaf leachate or water from different streams. Response variables included bacterial production, oxygen consumption, extracellular enzyme activity, and community similarity as manifest by changes in banding patterns of randomly amplified polymorphic DNA (RAPD). All DOM manipulations generated responses in at least one metabolic variable. Additions of both labile and recalcitrant materials increased either oxygen consumption, production, or both depending on background DOM. Enzyme activities were affected by both types of carbon addition with largest effects from the labile mixture. Cluster analysis of RAPD data showed strong divergence of communities exposed to labile versus recalcitrant DOM. Additions of leaf leachate to mesocosms representing hyporheic flow-paths caused increases in oxygen consumption and some enzyme activities with weaker effects on production. Community structure yeas strongly affected; samples from the leachate-amended mesocosms clustered separately from the control samples. In mesocosms receiving water from streams ranging in DOC (0.5-4.5 mg L-1), there were significant differences in bacterial growth, oxygen consumption, and enzyme activities. RAPD analysis showed strongest clustering of samples by stream type with more subtle effects of position along the flowpaths. Responses in community metabolism were always accompanied by shifts in community composition, suggesting carbon supply affects both functional and structural attributes of hyporheic bacterial communities.

  9. Streambed Hydraulic Conductivity Structures: Enhanced Hyporheic Exchange and Contaminant Removal in Model and Constructed Stream

    NASA Astrophysics Data System (ADS)

    Herzog, S.; Higgins, C. P.; McCray, J. E.

    2014-12-01

    Urban- and agriculturally-impacted streams face widespread water quality challenges from excess nutrients, metals, and pathogens from nonpoint sources, which the hyporheic zone (HZ) can capture and treat. However, flow through the HZ is typically small relative to stream flow and thus water quality contributions from the HZ are practically insignificant. Hyporheic exchange is a prominent topic in stream biogeochemistry, but growing understanding of HZ processes has not been translated into practical applications. In particular, existing HZ restoration structures (i.e. cross-vanes) do not exchange water efficiently nor control the residence time (RT) of downwelling streamwater. Here we present subsurface modifications to streambed hydraulic conductivity (K) to drive efficient hyporheic exchange and control RT, thereby enhancing the effectiveness of the HZ. Coordinated high K (i.e. gravel) and low K (i.e. concrete, clay) modifications are termed Biohydrochemical Enhancement structures for Streamwater Treatment (BEST). BEST can simply use native sediments or may also incorporate reactive geomedia to enhance reactions. The contaminant mitigation potentials of BEST were estimated based on hyporheic flow and RT outputs from MODFLOW and MODPATH models and reported nutrient, metal, and pathogen removal rate constants from literature for specific porous media. Reactions of interest include denitrification and removal of phosphate, metals, and E. coli. Simulations showed that BEST structures in series can substantially improve water quality in small streams along reaches of tens of meters. The model results are compared to observed data in tank and constructed stream experiments. Preliminary results with BEST incorporating woodchip geomedia demonstrate rapid denitrification exceeding model predictions. These experiments should establish BEST as a novel stream restoration structure or Best Management Practice (BMP) option to help practitioners achieve stormwater compliance.

  10. Hyporheic Exchange: Analysis of Aquifer Heterogeneity, Channel Morphology and Bedforms- 2D and 3D Simulations Using MODFLOW and MODPATH

    NASA Astrophysics Data System (ADS)

    Matos, J. R.; Welty, C.; Packman, A.

    2005-12-01

    The main purpose of the simulations in this research is the analysis of three-dimensional surface-groundwater interchange in heterogeneous systems. The effects of channel pattern, bed forms and aquifer heterogeneity on flow interactions between stream and groundwater systems are examined in order to contribute for a better understanding of the hyporheic process. A two-dimensional approach was also adopted to allow comparisons with the three-dimensional results. The grid was designed using the correlation scales of the heterogeneous fields and the scale of the stream meanders. MODFLOW and MODPATH were used to evaluate magnitude, direction and spatial distribution of the exchange flow. PMWIN and PMPATH were used as pre and post-processors during the construction of the models and analysis of results. Gaining and losing streams as well as parallel flow and flow across streams were simulated as idealized cases intended to describe how properties of the streambed and aquifer in low-gradient lowland streams contribute to hyporheic exchange. At first a straight river was analyzed then meandering streams were created with a sine curve and variations on wavelength and amplitude. Bed forms were simulated assuming a sinusoidal distribution of pressure head in the bed surface. Aspects of the influence of bedforms on mechanisms such as "pumping" and "turnover" are expected to be addressed with simulations. Flow velocities between 20 and 40 cm/s in the channel were tested with the objective of showing the influence of river morphology and natural bed forms on the flow exchange in the hyporheic zone. Several meander cycles and four levels of hydraulic conductivity variance were analyzed. Results of flow variances along the cross-sections and wetted perimeter show the increasing on hyporheic exchange as the degree of heterogeneity increases. Particle tracking was performed to define hyporheic residence time distributions. When comparing the homogeneous fields with all degrees of

  11. Turbulent Hyporheic Exchange in Permeable Sediments

    NASA Astrophysics Data System (ADS)

    Roche, K. R.; Aubeneau, A. F.; Li, A.; Packman, A. I.

    2015-12-01

    Solute delivery from the water column into a streambed strongly influences metabolism in rivers. Current hydrological models simplify surface-subsurface (hyporheic) exchange by treating each domain separately, constraining turbulent flows to the water column. Studies have shown, however, that turbulence penetrates into permeable sediments. Evidence is lacking for how this highly coupled flow regime influences hyporheic exchange. We characterized the dynamics of turbulent exchange between surface and porewaters in a 2.5 m recirculating flume. The channel was packed with 3.8 cm PVC spheres to form a coarse gravel bed, with a total depth of 21 cm. We implanted microsensors onto an array of spheres to measure in situsalt concentrations within the streambed. Water was recirculated in the channel, and concentrated salt solution was continuously injected upstream of the sensor array. We observed solute exchange increased with free-stream Reynolds number and decreased with depth in the sediment bed. Mass of injected solute remaining in the bed decreased rapidly in all cases, with only 10-30% of mass recovered 50 cm downstream of the injection point at Re = 25,000. We observed high-frequency (1-10 Hz) concentration fluctuations at bed depths of at least 4.75 cm, and sporadic low-frequency fluctuations at depths of 12.5 cm. Spectral analysis revealed increased filtering of high frequencies with depth. We used particle-tracking simulations to fit depth-dependent turbulent diffusion profiles to experimental results. These results demonstrate that free-stream turbulence impacts hyporheic mixing deep into permeable streambeds, and mixing is strongly influenced by the coupled surface-subsurface flow field.

  12. Development and application of a heat pulse sensor for in-situ measurement of hyporheic flow

    NASA Astrophysics Data System (ADS)

    Angermann, L.; Lewandowski, J.; Fleckenstein, J. H.; Krause, S.; Nuetzmann, G.

    2011-12-01

    The riverine system represents a continuum of surface water (SW), shallow groundwater (GW) and the interconnecting hyporheic zone (HZ). Within this conceptual model, the HZ fulfills important ecological and biogeochemical functions caused by the high specific surface of sediment, the abundance of organic matter and steep and dynamic gradients in temperature, redox potential and oxygen content. These milieu conditions are controlled by the type and intensity of GW-SW interaction like GW-discharge, SW infiltration, alternating up- and downwelling or dominantly horizontal flow. Depending on flow regimes, the HZ either acts as mixing layer or transit zone with the respective end-member mixing ratios and residence times. Hyporheic exchange fluxes (HEF) at different scales potentially interact, superimpose and prevail each other. It is therefore crucial to understand the complex interactions of SW-GW exchange fluxes from patterns at stream reach scale down to shallow HEF in the top 20cm streambed. Field measurements of GW-SW exchange are technically challenging, especially at the decimeter scale and below. This study presents a novel heat pulse sensor (HPS) which was developed for measuring shallow HEF. The method is based on a short heat pulse which is emitted into the sediment in the depth of 5 to 10cm. Breakthrough curves of the heat propagating through the sediment are recorded by a 3D sensor array around the heat source and analyzed with an analytical solution of the advective-conductive heat transport equation in a cylindrical coordinate system. Theoretical breakthrough curves are calculated for every sensor and flow velocity and the position of the longitudinal axis, which is defined parallel to flow, are fitted. After validation in controlled lab environment, the method was applied in the streambed of 3 subsections of a 250m stream reach with heterogeneous patterns of mainly sandy sediments, representing characteristic streambed conditions of a meandering lowland

  13. Modelling hyporheic processes for regulated rivers under transient hydrological and hydrogeological conditions

    NASA Astrophysics Data System (ADS)

    Siergieiev, D.; Ehlert, L.; Reimann, T.; Lundberg, A.; Liedl, R.

    2014-08-01

    Understanding the effects of major hydrogeological controls on hyporheic exchange and bank storage is essential for river water management, groundwater abstraction, restoration and ecosystem sustainability. Analytical models cannot adequately represent complex settings with, for example, transient boundary conditions, varying geometry of surface water-groundwater interface, unsaturated and overland flow, etc. To understand the influence of parameters such as (1) sloping river banks, (2) varying hydraulic conductivity of the riverbed and (3) different river discharge wave scenarios on hyporheic exchange characteristics such as (a) bank storage, (b) return flows and (c) residence time, a 2-D hydrogeological conceptual model and, subsequently, an adequate numerical model were developed. The numerical model was calibrated against observations in the aquifer adjacent to the hydropower regulated Lule River, Northern Sweden, which has predominantly diurnal discharge fluctuations during summer and long-lasting discharge peaks during autumn and winter. Modelling results revealed that bank storage increased with river wave amplitude, wave duration and smaller slope of the river bank, while maximum exchange flux decreased with wave duration. When a homogeneous clogging layer covered the entire river-aquifer interface, hydraulic conductivity positively affected bank storage. The presence of a clogging layer with hydraulic conductivity < 0.001 m d-1 significantly reduced the exchange flows and virtually eliminated bank storage. The bank storage return/fill time ratio was positively related to wave amplitude and the hydraulic conductivity of the interface and negatively to wave duration and bank slope. Discharge oscillations with short duration and small amplitude decreased bank storage and, therefore, the hyporheic exchange, which has implications for solute fluxes, redox conditions and the spawning potential of riverbeds. Based on these results, river regulation strategies can

  14. Modelling hyporheic processes for regulated rivers under transient hydrological and hydrogeological conditions

    NASA Astrophysics Data System (ADS)

    Siergieiev, D.; Ehlert, L.; Reimann, T.; Lundberg, A.; Liedl, R.

    2015-01-01

    Understanding the effects of major hydrogeological controls on hyporheic exchange and bank storage is essential for river water management, groundwater abstraction, restoration and ecosystem sustainability. Analytical models cannot adequately represent complex settings with, for example, transient boundary conditions, varying geometry of surface water-groundwater interface, unsaturated and overland flow, etc. To understand the influence of parameters such as (1) sloping river banks, (2) varying hydraulic conductivity of the riverbed and (3) different river discharge wave scenarios on hyporheic exchange characteristics such as (a) bank storage, (b) return flows and (c) residence time, a 2-D hydrogeological conceptual model and, subsequently, an adequate numerical model were developed. The numerical model was calibrated against observations in the aquifer adjacent to the hydropower-regulated Lule River, northern Sweden, which has predominantly diurnal discharge fluctuations during summer and long-lasting discharge peaks during autumn and winter. Modelling results revealed that bank storage increased with river wave amplitude, wave duration and smaller slope of the river bank, while maximum exchange flux decreased with wave duration. When a homogeneous clogging layer covered the entire river-aquifer interface, hydraulic conductivity positively affected bank storage. The presence of a clogging layer with hydraulic conductivity < 0.001 m d-1 significantly reduced the exchange flows and virtually eliminated bank storage. The bank storage return/fill time ratio was positively related to wave amplitude and the hydraulic conductivity of the interface and negatively to wave duration and bank slope. Discharge oscillations with short duration and small amplitude decreased bank storage and, therefore, the hyporheic exchange, which has implications for solute fluxes, redox conditions and the potential of riverbeds as fish-spawning locations. Based on these results, river

  15. 49 CFR 222.41 - How does this rule affect Pre-Rule Quiet Zones and Pre-Rule Partial Quiet Zones?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... AT PUBLIC HIGHWAY-RAIL GRADE CROSSINGS Exceptions to the Use of the Locomotive Horn Silenced Horns at Groups of Crossings-Quiet Zones § 222.41 How does this rule affect Pre-Rule Quiet Zones and Pre-Rule... public highway-rail grade crossing within the quiet zone one or more SSMs identified in appendix A...

  16. 49 CFR 222.41 - How does this rule affect Pre-Rule Quiet Zones and Pre-Rule Partial Quiet Zones?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... AT PUBLIC HIGHWAY-RAIL GRADE CROSSINGS Exceptions to the Use of the Locomotive Horn Silenced Horns at Groups of Crossings-Quiet Zones § 222.41 How does this rule affect Pre-Rule Quiet Zones and Pre-Rule... public highway-rail grade crossing within the quiet zone one or more SSMs identified in appendix A...

  17. 49 CFR 222.41 - How does this rule affect Pre-Rule Quiet Zones and Pre-Rule Partial Quiet Zones?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... AT PUBLIC HIGHWAY-RAIL GRADE CROSSINGS Exceptions to the Use of the Locomotive Horn Silenced Horns at Groups of Crossings-Quiet Zones § 222.41 How does this rule affect Pre-Rule Quiet Zones and Pre-Rule... public highway-rail grade crossing within the quiet zone one or more SSMs identified in appendix A...

  18. 49 CFR 222.41 - How does this rule affect Pre-Rule Quiet Zones and Pre-Rule Partial Quiet Zones?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... AT PUBLIC HIGHWAY-RAIL GRADE CROSSINGS Exceptions to the Use of the Locomotive Horn Silenced Horns at Groups of Crossings-Quiet Zones § 222.41 How does this rule affect Pre-Rule Quiet Zones and Pre-Rule... public highway-rail grade crossing within the quiet zone one or more SSMs identified in appendix A...

  19. 49 CFR 222.41 - How does this rule affect Pre-Rule Quiet Zones and Pre-Rule Partial Quiet Zones?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... AT PUBLIC HIGHWAY-RAIL GRADE CROSSINGS Exceptions to the Use of the Locomotive Horn Silenced Horns at Groups of Crossings-Quiet Zones § 222.41 How does this rule affect Pre-Rule Quiet Zones and Pre-Rule... public highway-rail grade crossing within the quiet zone one or more SSMs identified in appendix A...

  20. Effects of hyporheic exchange flows on egg pocket water temperature in Snake River fall Chinook salmon spawning areas

    SciTech Connect

    Hanrahan, T. P.; Geist, D. R.; Arntzen, E. V.; Abernethy, C. S.

    2004-09-01

    The development of the Snake River hydroelectric system has affected fall Chinook salmon smolts by shifting their migration timing to a period (mid- to late-summer) when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River Chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations (e.g., summer flow augmentation) to improve water temperature and flow conditions during the juvenile Chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall Chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by the Pacific Northwest National Laboratory (PNNL) that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall Chinook salmon spawning areas. This was a pilot-scale study to evaluate these relationships under existing operations of Hells Canyon Dam (i.e., without any prescribed manipulations of river discharge) during the 2002–2003 water year.

  1. Hyporheic Exchange Flows and Biogeochemical Patterns near a Meandering Stream: East Fork of the Jemez River, Valles Caldera National Preserve, New Mexico

    NASA Astrophysics Data System (ADS)

    Christensen, H.; Wooten, J. P.; Swanson, E.; Senison, J. J.; Myers, K. D.; Befus, K. M.; Warden, J.; Zamora, P. B.; Gomez, J. D.; Wilson, J. L.; Groffman, A.; Rearick, M. S.; Cardenas, M. B.

    2012-12-01

    A study by the 2012 Hydrogeology Field Methods class of the University of Texas at Austin implemented multiple approaches to evaluate and characterize local hyporheic zone flow and biogeochemical trends in a highly meandering reach of the of the East Fork of the Jemez River, a fourth order stream in northwestern New Mexico. This section of the Jemez River is strongly meandering and exhibits distinct riffle-pool morphology. The high stream sinuosity creates inter-meander hyporheic flow that is also largely influenced by local groundwater gradients. In this study, dozens of piezometers were used to map the water table and flow vectors were then calculated. Surface water and ground water samples were collected and preserved for later geochemical analysis by ICPMS and HPLC, and unstable parameters and alkalinity were measured on-site. Additionally, information was collected from thermal monitoring of the streambed, stream gauging, and from a series of electrical resistivity surveys forming a network across the site. Hyporheic flow paths are suggested by alternating gaining and losing sections of the stream as determined by stream gauging at multiple locations along the reach. Water table maps and calculated fluxes across the sediment-water interface also indicate hyporheic flow paths. We find variability in the distribution of biogeochemical constituents (oxidation-reduction potential, nitrate, ammonium, and phosphate) along interpreted flow paths which is partly consistent with hyporheic exchange. The variability and heterogeneity of reducing and oxidizing conditions is interpreted to be a result of groundwater-surface water interaction. Two-dimensional mapping of biogeochemical parameters show redox transitions along interpreted flow paths. Further analysis of various measured unstable chemical parameters results in observable trends strongly delineated along these preferential flow paths that are consistent with the direction of groundwater flow and the assumed

  2. The dominating impact of small-scale streambed structural heterogeneity on hyporheic exchange and biogeochemical hotspots in lowland rivers

    NASA Astrophysics Data System (ADS)

    Krause, S.; Gomez, J. D.; Blume, T.; Weatherill, J.; Angermann, L.; Munz, M.; Tecklenburg, C.; Cassidy, N. J.; Wilson, J. L.

    2013-12-01

    Exchange fluxes and residence times of groundwater and surface water at aquifer-river interfaces are driven by hydrodynamic and hydrostatic forcing. While previous research, with a predominantly surface water perspective, has mainly focussed on the impact of bedform controlled advective pumping on hyporheic zone extent and residence times, little attention has been paid to the impact of streambed structural controls on groundwater up-welling patterns and its implications for hyporheic exchange. Following a combined experimental and model-based approach, this paper highlights the impact of small-scale streambed structural variability on spatial patterns of hyporheic exchange flow, residence time distribution and the development of hotspots of biogeochemical cycling in the hyporheic zone of a lowland river. Combining Fibre-optic DTS and active Heat Pulse Sensing, this study identified distinct low conductivities peat and clay structures in the streambed to determine patterns, quantity and temporal dynamics of groundwater up-welling. Model simulations confirmed that streambed structure controlled patterns of groundwater up-welling exceeded the impact of bedform driven fluxes on aquifer-river exchange flow patterns. In addition, enhanced residence times of up-welling groundwater in and around these organic rich structures lead to an increase in dissolved oxygen consumption and the development of anaerobic denitrification hotspots. The resulting increases in streambed nitrate attenuation as well as enhanced production of CO2, CH4 and N2O as respiration end products highlight the importance of biogeochemical hotspots at aquifer-river interfaces under the dominant impact of streambed structural heterogeneity. Conceptual model of streambed hydrofacies controlling groundwater up-welling in a typical lowland river including their effect on heat transport at the aquifer-river interface (the star indicates the temperature of the surface water). B: core logs of exemplary

  3. Is hyporheic flow an indicator for salmonid spawning site selection?

    NASA Astrophysics Data System (ADS)

    Benjankar, R. M.; Tonina, D.; Marzadri, A.; McKean, J. A.; Isaak, D.

    2015-12-01

    Several studies have investigated the role of hydraulic variables in the selection of spawning sites by salmonids. Some recent studies suggest that the intensity of the ambient hyporheic flow, that present without a salmon egg pocket, is a cue for spawning site selection, but others have argued against it. We tested this hypothesis by using a unique dataset of field surveyed spawning site locations and an unprecedented meter-scale resolution bathymetry of a 13.5 km long reach of Bear Valley Creek (Idaho, USA), an important Chinook salmon spawning stream. We used a two-dimensional surface water model to quantify stream hydraulics and a three-dimensional hyporheic model to quantify the hyporheic flows. Our results show that the intensity of ambient hyporheic flows is not a statistically significant variable for spawning site selection. Conversely, the intensity of the water surface curvature and the habitat quality, quantified as a function of stream hydraulics and morphology, are the most important variables for salmonid spawning site selection. KEY WORDS: Salmonid spawning habitat, pool-riffle system, habitat quality, surface water curvature, hyporheic flow

  4. Green Island and the Hyporheic Zone: Why Restoration matters

    EPA Science Inventory

    Large river floodplains present diverse benefits to communities, yet management strategies often fail to consider the broad suite of ecosystem services provided by these systems. The U.S. Environmental Protection Agency (EPA) is evaluating the benefits associated with restoring l...

  5. Aquifers and hyporheic zones: Towards an ecological understanding of groundwater

    NASA Astrophysics Data System (ADS)

    Hancock, Peter J.; Boulton, Andrew J.; Humphreys, William F.

    2005-03-01

    Ecological constraints in subsurface environments relate directly to groundwater flow, hydraulic conductivity, interstitial biogeochemistry, pore size, and hydrological linkages to adjacent aquifers and surface ecosystems. Groundwater ecology has evolved from a science describing the unique subterranean biota to its current form emphasising multidisciplinary studies that integrate hydrogeology and ecology. This multidisciplinary approach seeks to elucidate the function of groundwater ecosystems and their roles in maintaining subterranean and surface water quality. In aquifer-surface water ecotones, geochemical gradients and microbial biofilms mediate transformations of water chemistry. Subsurface fauna (stygofauna) graze biofilms, alter interstitial pore size through their movement, and physically transport material through the groundwater environment. Further, changes in their populations provide signals of declining water quality. Better integrating groundwater ecology, biogeochemistry, and hydrogeology will significantly advance our understanding of subterranean ecosystems, especially in terms of bioremediation of contaminated groundwaters, maintenance or improvement of surface water quality in groundwater-dependent ecosystems, and improved protection of groundwater habitats during the extraction of natural resources. Overall, this will lead to a better understanding of the implications of groundwater hydrology and aquifer geology to distributions of subsurface fauna and microbiota, ecological processes such as carbon cycling, and sustainable groundwater management. Les contraintes écologiques dans les environnements de subsurface sont en relation directe avec les écoulements des eaux souterraines, la conductivité hydraulique, la biogéochimie des milieux interstitiels, la taille des pores, et les liens hydrologiques avec les aquifères et les écosystèmes adjacents. L'écologie des eaux souterraines a évolué d'une science décrivant uniquement les biotopes souterrains à des études multidisciplinaires qui intègrent l'écologie et l'hydrogéologie. L'approche multidisciplinaire cherche à élucider le fonctionnement des écosystèmes souterrains et leur rôle consistant à maintenir la qualité des eaux souterraines et de surface. Dans les écotones des eaux de la surfaces des aquifères, les gradients géochimiques et les biofilms microbiologiques contrôlent les transformations de la qualité de l'eau. La faune de subsurface (stygofauna) construisent les biofilms, altèrent la taille des pores interstitiels à travers leur mouvement, et transportent physiquement des matériaux à travers l'environnement des eaux souterraines. Par ailleurs, les changements de leur population signalent un déclin de la qualité de l'eau. Une meilleure intégration de l'écologie des eaux souterraines, de la biogeochimie, et de l'hydrogéologie pourra faire avancer de manière efficace de notre compréhension des écosystèmes souterrains, et spécialement en terme de bioremédiation des eaux souterraines contaminées, de maintenance et d'amélioration de la qualité des eaux de surface dépendant des écosystèmes souterrains, et l'amélioration de la protection des habitats des eaux souterraines durant l'extraction des ressources naturelles. En général, cela conduira à une meilleure compréhension de l'implication de l'hydrogéologie et de la géologie des aquifères à la distribution de la faune de subsurface et aux microbiota, aux processus écologiques tels que les cycles du carbone, et la gestion durable des eaux souterraines. Los entornos ecológicos en ambientes subsuperficiales están relacionados directamente con el flujo de agua subterránea, la conductividad hidráulica, biogeoquímica intersticial, tamaño de los poros, y vínculos hidrológicos con acuíferos adyacentes y ecosistemas superficiales. La ecología del agua subterránea ha evolucionado a partir de una ciencia que describe la biota subterránea única hasta alcanzar la forma actual que enfatiza estudios multidisciplinarios que integran hidrogeolog

  6. Aquifers and hyporheic zones: Towards an ecological understanding of groundwater

    NASA Astrophysics Data System (ADS)

    Hancock, Peter J.; Boulton, Andrew J.; Humphreys, William F.

    2005-03-01

    Ecological constraints in subsurface environments relate directly to groundwater flow, hydraulic conductivity, interstitial biogeochemistry, pore size, and hydrological linkages to adjacent aquifers and surface ecosystems. Groundwater ecology has evolved from a science describing the unique subterranean biota to its current form emphasising multidisciplinary studies that integrate hydrogeology and ecology. This multidisciplinary approach seeks to elucidate the function of groundwater ecosystems and their roles in maintaining subterranean and surface water quality. In aquifer-surface water ecotones, geochemical gradients and microbial biofilms mediate transformations of water chemistry. Subsurface fauna (stygofauna) graze biofilms, alter interstitial pore size through their movement, and physically transport material through the groundwater environment. Further, changes in their populations provide signals of declining water quality. Better integrating groundwater ecology, biogeochemistry, and hydrogeology will significantly advance our understanding of subterranean ecosystems, especially in terms of bioremediation of contaminated groundwaters, maintenance or improvement of surface water quality in groundwater-dependent ecosystems, and improved protection of groundwater habitats during the extraction of natural resources. Overall, this will lead to a better understanding of the implications of groundwater hydrology and aquifer geology to distributions of subsurface fauna and microbiota, ecological processes such as carbon cycling, and sustainable groundwater management. Les contraintes écologiques dans les environnements de subsurface sont en relation directe avec les écoulements des eaux souterraines, la conductivité hydraulique, la biogéochimie des milieux interstitiels, la taille des pores, et les liens hydrologiques avec les aquifères et les écosystèmes adjacents. L'écologie des eaux souterraines a évolué d'une science décrivant uniquement les biotopes souterrains à des études multidisciplinaires qui intègrent l'écologie et l'hydrogéologie. L'approche multidisciplinaire cherche à élucider le fonctionnement des écosystèmes souterrains et leur rôle consistant à maintenir la qualité des eaux souterraines et de surface. Dans les écotones des eaux de la surfaces des aquifères, les gradients géochimiques et les biofilms microbiologiques contrôlent les transformations de la qualité de l'eau. La faune de subsurface (stygofauna) construisent les biofilms, altèrent la taille des pores interstitiels à travers leur mouvement, et transportent physiquement des matériaux à travers l'environnement des eaux souterraines. Par ailleurs, les changements de leur population signalent un déclin de la qualité de l'eau. Une meilleure intégration de l'écologie des eaux souterraines, de la biogeochimie, et de l'hydrogéologie pourra faire avancer de manière efficace de notre compréhension des écosystèmes souterrains, et spécialement en terme de bioremédiation des eaux souterraines contaminées, de maintenance et d'amélioration de la qualité des eaux de surface dépendant des écosystèmes souterrains, et l'amélioration de la protection des habitats des eaux souterraines durant l'extraction des ressources naturelles. En général, cela conduira à une meilleure compréhension de l'implication de l'hydrogéologie et de la géologie des aquifères à la distribution de la faune de subsurface et aux microbiota, aux processus écologiques tels que les cycles du carbone, et la gestion durable des eaux souterraines. Los entornos ecológicos en ambientes subsuperficiales están relacionados directamente con el flujo de agua subterránea, la conductividad hidráulica, biogeoquímica intersticial, tamaño de los poros, y vínculos hidrológicos con acuíferos adyacentes y ecosistemas superficiales. La ecología del agua subterránea ha evolucionado a partir de una ciencia que describe la biota subterránea única hasta alcanzar la forma actual que enfatiza estudios multidisciplinarios que integran hidrogeología y ecología. Este enfoque multidisciplinario busca clarificar la función de los ecosistemas de agua subterránea y sus roles en el mantenimiento de la calidad de agua superficialy subterránea. En ecotonos de agua superficial y de acuíferos, los gradientes geoquímicos y biopelículas microbiales median trans formaciones de calidad de agua. La fauna subsuperficial (estigofauna) se alimenta de biopeliculas, altera el tamaño de los poros intersticiales mediante su movimiento, y transporta físicamente material a través del ambiente de aguas subterráneas. Además, los cambios en sus poblaciones aportan señales de decadencia de calidad de agua. La mejor integración de ecología de aguas subterráneas, biogeoquímica, e hidrogeología incrementará significativamente nuestro entendimiento de ecosistemas subterráneos, especialmente en términos de bioremediación de aguas subterráneas contaminadas, mantenimiento o mejoramiento de calidad de agua superficial en ecosistemas dependientes de agua subterránea, y protección mejorada de habitats de agua subterránea durante la extracción de recursos naturales. Sobretodo, esto conducirá a un mejor entendimiento de las implicaciones de la hidrología de aguas subterráneas y geología del acuífero, de las distribuciones de fauna subsuperficial y microbiota, procesos ecológicos tal como ciclado de carbono, y gestión sostenible de aguas subterráneas.

  7. Systematic Analysis of the Effect of Small Scale Permeability Heterogeneity on Hyporheic Exchange Flux and Residence Times

    NASA Astrophysics Data System (ADS)

    Laube, G.; Schmidt, C.; Fleckenstein, J. H.

    2014-12-01

    The hyporheic zone (HZ) contributes significantly to whole stream biogeochemical cycling. Biogeochemical reactions within the HZ are often transport limited, thus, understanding these reactions requires knowledge about the magnitude of hyporheic fluxes (HF) and the residence time (RT) of these fluxes within the HZ. While the hydraulics of HF are relatively well understood, studies addressing the influence of permeability heterogeneity lack systematic analysis and have even produced contradictory results (e.g. [1] vs. [2]). In order to close this gap, this study uses a statistical numerical approach to elucidate the influence of permeability heterogeneity on HF and RT. We simulated and evaluated 3750 2D-scenarios of sediment heterogeneity by means of Gaussian random fields with focus on total HF and RT distribution. The scenarios were based on ten realizations of each of all possible combinations of 15 different correlation lengths, 5 dipping angles and 5 permeability variances. Roughly 500 hyporheic stream traces were analyzed per simulation, for a total of almost two million stream traces analyzed for correlations between permeability heterogeneity, HF, and RT. Total HF and the RT variance positively correlated with permeability variance while the mean RT negatively correlated with permeability variance. In contrast, changes in correlation lengths and dipping angles had little effect on the examined properties RT and HF. These results provide a possible explanation of the seemingly contradictory conclusions of recent studies, given that the permeability variances in these studies differ by several orders of magnitude. [1] Bardini, L., Boano, F., Cardenas, M.B, Sawyer, A.H, Revelli, R. and Ridolfi, L. "Small-Scale Permeability Heterogeneity Has Negligible Effects on Nutrient Cycling in Streambeds." Geophysical Research Letters, 2013. doi:10.1002/grl.50224. [2] Zhou, Y., Ritzi, R. W., Soltanian, M. R. and Dominic, D. F. "The Influence of Streambed Heterogeneity on

  8. A physical explanation for the development of redox microzones in hyporheic flow

    NASA Astrophysics Data System (ADS)

    Briggs, Martin A.; Day-Lewis, Frederick D.; Zarnetske, Jay P.; Harvey, Judson W.

    2015-06-01

    Recent observations reveal a paradox of anaerobic respiration occurring in seemingly oxic-saturated sediments. Here we demonstrate a residence time-based explanation for this paradox. Specifically, we show how microzones favorable to anaerobic respiration processes (e.g., denitrification, metal reduction, and methanogenesis) can develop in the embedded less mobile porosity of bulk-oxic hyporheic zones. Anoxic microzones develop when transport time from the streambed to the pore center exceeds a characteristic uptake time of oxygen. A two-dimensional pore-network model was used to quantify how anoxic microzones develop across a range of hyporheic flow and oxygen uptake conditions. Two types of microzones develop: flow invariant and flow dependent. The former is stable across variable hydrologic conditions, whereas the formation and extent of the latter are sensitive to flow rate and orientation. Therefore, pore-scale residence time heterogeneity, which can now be evaluated in situ, offers a simple explanation for anaerobic signals occurring in oxic pore waters.

  9. Inorganic N and P dynamics of Antarctic glacial meltwater streams as controlled by hyporheic exchange and benthic autotrophic communities

    USGS Publications Warehouse

    McKnight, Diane M.; Runkel, R.L.; Tate, C.M.; Duff, J.H.; Moorhead, D.L.

    2004-01-01

    The McMurdo Dry Valleys of South Victoria Land, Antarctica, contain numerous glacial meltwater streams that drain into lakes on the valley floors. Many of the streams have abundant perennial mats of filamentous cyanobacteria. The algal mats grow during streamflow in the austral summer and are in a dormant freeze-dried state during the rest of the year. NO3 and soluble reactive P (SRP) concentrations were lower in streams with abundant algal mats than in streams with sparse algal mats. NO3 and SRP concentrations were higher in the hyporheic zone of a stream with abundant algal mats than in the stream itself. An experimental injection of LiCl, NaNO3, and K3PO4 was conducted in Green Creek, which has abundant algal mats. Substantial hyporheic exchange occurred. The NO3 and PO4 concentrations at 50 m below the injection were 55 ??M and 18 ??M, respectively, during the experiment. NO3 and PO4 concentrations were below the detection limit of 1 to 2 ??M at a site 497 m below the injection during the Cl tracer arrival, indicating a high capacity for nutrient uptake by algal communities. NO2 and NH4 were present at sites 226 and 327 m below the injection, indicating that, in addition to denitrification and algal uptake, dissimilatory NO3 reduction to NO2 and NH4 may be a NO3 sink during transport. Transport modelling with nutrient uptake represented as a 1st-order process yielded reach-scale parameters of 4.3 ?? 10-5 to 3.9 ?? 10-4/s and 1.4 ?? 10-4 to 3.8 ?? 10 -4/s for uptake of NO3 and PO4, respectively. The best match with the observed data was a model in which PO4 uptake occurred only in the main channel and NO3 uptake occurred in the main channel and in the hyporheic zone. Hyporheic NO3 uptake was 7 to 16% of the total uptake for the different stream reaches. These results demonstrate that nutrient flux to the lakes is controlled by hyporheic exchange and nutrient uptake by algal mats in dry valley streams. Streams without algal mats contribute more nutrients to the

  10. Identification and Characterization of Intercritical Heat-Affected Zone in As-Welded Grade 91 Weldment

    NASA Astrophysics Data System (ADS)

    Wang, Yiyu; Kannan, Rangasayee; Li, Leijun

    2016-09-01

    A metallurgical method is proposed for locating the intercritical heat-affected zone in the as-welded Grade 91 steel. New austenitic grains, preferentially formed along the original prior austenite grain boundaries, are characterized to contain finer M23C6 carbides and higher strain levels than the original prior austenite grains. Kurdjumov-Sachs Group 1 variant pairs, with a low misorientation of 7 deg within a martensitic block, are identified as the dominant variants in the new PAGs.

  11. SCC Initiation in Alloy 600 Heat Affected Zones Exposed to High Temperature Water

    SciTech Connect

    E Richey; DS Morton; RA Etien; GA Young; RB Bucinell

    2006-11-03

    Studies have shown that grain boundary chromium carbides improve the stress corrosion cracking (SCC) resistance of nickel based alloys exposed to high temperature, high purity water. However, thermal cycles from welding can significantly alter the microstructure of the base material near the fusion line. In particular, the heat of welding can solutionize grain boundary carbides and produce locally high residual stresses and strains, reducing the SCC resistance of the Alloy 600 type material in the heat affected zone (HAZ). Testing has shown that the SCC growth rate in Alloy 600 heat affected zone samples can be {approx}30x faster than observed in the Alloy 600 base material under identical testing conditions due to fewer intergranular chromium rich carbides and increased plastic strain in the HAZ [1, 2]. Stress corrosion crack initiation tests were conducted on Alloy 600 HAZ samples at 360 C in hydrogenated, deaerated water to determine if these microstructural differences significantly affect the SCC initiation resistance of Alloy 600 heat affected zones compared to the Alloy 600 base material. Alloy 600 to EN82H to Alloy 600 heat-affected-zone (HAZ) specimens where fabricated from an Alloy 600 to Alloy 600 narrow groove weld with EN82H filler metal. The approximate middle third of the specimen gauge region was EN82H such that each specimen had two HAZ regions. Tests were conducted with in-situ monitored smooth tensile specimens under a constant load, and a direct current electric potential drop was used for in-situ detection of SCC. Test results suggest that the SCC initiation resistance of Alloy 600 and its weld metal follows the following order: EN82H > Alloy 600 HAZ > Alloy 600. The high SCC initiation resistance observed to date in Alloy 600 heat affected zones compared to wrought Alloy 600 is unexpected based on the microstructure of HAZ versus wrought material and based on prior SCC growth rate studies. The observed behavior for the HAZ specimens is likely

  12. Performance processes within affect-related performance zones: a multi-modal investigation of golf performance.

    PubMed

    van der Lei, Harry; Tenenbaum, Gershon

    2012-12-01

    Individual affect-related performance zones (IAPZs) method utilizing Kamata et al. (J Sport Exerc Psychol 24:189-208, 2002) probabilistic model of determining the individual zone of optimal functioning was utilized as idiosyncratic affective patterns during golf performance. To do so, three male golfers of a varsity golf team were observed during three rounds of golf competition. The investigation implemented a multi-modal assessment approach in which the probabilistic relationship between affective states and both, performance process and performance outcome, measures were determined. More specifically, introspective (i.e., verbal reports) and objective (heart rate and respiration rate) measures of arousal were incorporated to examine the relationships between arousal states and both, process components (i.e., routine consistency, timing), and outcome scores related to golf performance. Results revealed distinguishable and idiosyncratic IAPZs associated with physiological and introspective measures for each golfer. The associations between the IAPZs and decision-making or swing/stroke execution were strong and unique for each golfer. Results are elaborated using cognitive and affect-related concepts, and applications for practitioners are provided.

  13. Temperature data assimilation for hyporheic exchange: numerical studies and sandbox experiments

    NASA Astrophysics Data System (ADS)

    Ju, L.; Zeng, L.; Wu, L.

    2015-12-01

    Due to the temperature difference between groundwater and surface water (GW-SW), heat can be used as an ideal tracer in hyporheic zone. To quantify GW-SW interactions, existing methods are mainly based on the analytical solution of one-dimensional heat transport equation. However, the assumptions therein are usually violated in practical applications. Furthermore, there are relatively limited experimental sandbox studies regarding heat tracer for complicated GW-SW interactions. In this study, we developed a data assimilation method to quantify the GW-SW interaction in the presence of heterogeneous river bed. A numerical simulator was used to solve the groundwater and heat transport equation. Then the ensemble Kalman filter (EnKF) was employed to assimilate the temperature data to quantify the unknown interactions (velocity field) between GW-SW and heterogeneous hydraulic conductivity field. The validity of this method was verified by both numerical simulation and sandbox experiment for different scenarios.

  14. The effect of welding line heat-affected-zone on the formability of tube hydroforming process

    NASA Astrophysics Data System (ADS)

    ChiuHuang, Cheng-Kai; Hsu, Cheng-En; Lee, Ping-Kun

    2016-08-01

    Tube hydroforming has been used as a lightweight design approach to reduce CO2 emission for the automotive industry. For the high strength steel tube, the strength and quality of the welding line is very important for a successful tube hydroforming process. This paper aims to investigate the effect of the welding line's strength and the width of the heat-affected zone on the tube thinning during the hydroforming process. The simulation results show that both factors play an important role on the thickness distribution during the tube expansion.

  15. Microstructure characterization of heat affected zone after welding in Mod.9Cr–1Mo steel

    SciTech Connect

    Sawada, K.; Hara, T.; Tabuchi, M.; Kimura, K.; Kubushiro, K.

    2015-03-15

    The microstructure of the heat affected zone after welding was investigated in Mod.9Cr–1Mo steel, using TEM and STEM-EDX. The microstructure of thin foil was observed at the fusion line, and at the positions of 0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm, 3.0 mm and 3.5 mm to the base metal side of the fusion line. Martensite structure with very fine lath and high dislocation density was confirmed at all positions. Twins with a twin plane of (112) were locally observed at all positions. Elemental mapping was obtained for all positions by means of STEM-EDX. Inclusions of mainly Si were formed at the fusion line but not at the other positions. No precipitates could be detected at the fusion line or at the position of 0.5 mm. On the other hand, MX particles were observed at the positions of 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm, 3.0 mm and 3.5 mm even after welding. M{sub 23}C{sub 6} particles were also confirmed at the positions of 2.0 mm, 2.5 mm, 3.0 mm and 3.5 mm. Very fine equiaxed grains were locally observed at the positions of 2.0 mm and 2.5 mm. The Cr content of the equiaxed grains was about 12 mass%, although the martensite area included about 8 mass% Cr. - Graphical abstract: Display Omitted - Highlights: • Nonequilibrium microstructure of heat affected zone was observed after welding in Mod.9Cr–1Mo steel. • Inclusions containing Si were detected at the fusion line. • Undissolved M{sub 23}C{sub 6} and MX particles were confirmed in heat affected zone. • Twins with a twin plane of (112) were locally observed at all positions. • Very fine ferrite grains with high Cr content were observed in fine grained heat affected zone.

  16. TEM observation of the heat-affected zone in electron beam welded superalloy Inconel 713C

    SciTech Connect

    Lachowicz, Maciej Dudzinski, Wlodzimierz; Podrez-Radziszewska, Marzena

    2008-05-15

    The paper presents results of microstructural observations and phase analysis of electron-beam-welded fusion zones in superalloy Inconel 713C using transmission electron microscopy. In the fusion zone, a 90% fraction of fine-grained {gamma}' precipitates was found, with sizes up to 30 nm. No dislocations were observed in the precipitates or at the {gamma}-{gamma}' interface. Primary, undissolved inclusions of {gamma}' were found in the heat-affected zone (HAZ). In the HAZ, a very high concentration of dislocations was found at the {gamma}-{gamma}' boundaries, as well as inside the {gamma}' particles and in the {gamma} solid solution. The increased dislocation density indicates loss of coherence of that phase and the creation of a semi-coherent boundary, and is related to dissolution of the particles and intensified diffusion through the interphase {gamma}-{gamma}' boundary. The lattice misfit coefficient {delta}a/a between the {gamma}' particles and {gamma} solution in the HAZ indicates negative values from - 0.20% to - 0.06%. The presence of semi-coherent boundaries and the negative lattice misfit coefficient leads to dislocation locking and can result in cracking in the HAZ.

  17. Factors affecting the kinematic interpretation of asymmetric boudinage in shear zones

    NASA Astrophysics Data System (ADS)

    Goldstein, Arthur G.

    Based on work along a major mylonite zone in the northern Appalachians and scale model studies, a new mechanism for the origin of asymmetric boudins in shear zones is proposed. Along the Honey Hill Fault in southern Connecticut, granitic sills intruded into calc-silicate gneisses and schists were oblique to the boundaries of the mylonite zone and experienced the following sequence in the production of sigmoidal boudins: (1) as the calc-silicate schists experienced mylonitization and flow, the more competent, coarse-grained granitic sills deformed by extensional fracturing and quartz veining; (2) continued extension of granitic sills was accommodated by 'normal' shear on early-formed quartz veins; (3) continuing extension of sills and ductile modification of the corners of boudins resulted in granitic 'fish' with tails which stream from the top of the boudin in the 'down-dip' direction and from the bottom in the 'up-dip' direction. Based on a variety of kinematic indicators, the sense of asymmetry of the tails is identical to that expected for recrystallization tails on sheared augen (σ structure). Models composed of silicone putty and Plasticine were created to investigate the effect of pre-shearing geometry on boudin evolution, and were deformed in a simple shear device. The models reproduce the kinematics deduced from field relations and suggest that one of the primary factors in controlling the amount of extension is the angle which early veins make with the shear zone boundary. Varying the angular relationships in the models suggests that other pre-shearing geometric factors may affect the geometry of boudins formed in this way. Boudins formed through this mechanism appear very similar to Hanmer's type II asymmetric boudins. Because the pre-shearing geometry can exert a control on boudin asymmetry, caution should be used when attempting to deduce shear sense or shear strain values from asymmetric boudinage.

  18. In-situ Phase transformation study in fine grained heat affected zone of Grade 91 steels

    SciTech Connect

    Babu, Sudarsanam Suresh; Yamamoto, Yukinori; Santella, Michael L; Yu, Xinghua; Komizo, Prof. Y; Terasaki, Prof. H

    2014-01-01

    Creep strength-enhanced ferritic (CSEF) steels such as the 9 Cr steel [ASTM A387 Grade 91] are widely used as tubing and piping in the new generation of fossil fired power plants. Microstructures in the fine-grained heat affected zone (FGHAZ) may significantly reduce creep strength leading Type IV failures. Current research suggest that reducing pre-weld tempering temperature from 760 C (HTT) to 650 C (LTT) has the potential to double the creep life of these welds. To understand this improvement, time-resolved X-ray diffraction (TRXRD) measurement with synchrotron radiation was used to characterize the microstructure evolution during fine grained heat-affected zone (HAZ) thermal cycling of grade 91 steel. The measurements showed both M23C6 (M=Fe, Cr) and MX (M=Nb, V; X=C,N) are present in the sample after the HTT condition. Near equilibrium fraction of M23C6 was measured in high temperature tempering condition (HTT, 760 C). However, the amount of M23C6 in LTT condition was very low since the diffraction peaks are close to the background. During simulated FGHAZ thermal cycling, the M23C6 partially dissolved in HTT sample. Interestingly, MX did not dissolve in both LTT and HTT samples. Hypothesis for correlation of M23C6 carbide distribution and pre-mature creep failure in FGHAZ will be made.

  19. Hyporheic exchange and fulvic acid redox reactions in an alpine stream/wetland ecosystem, Colorado front range

    USGS Publications Warehouse

    Miller, M.P.; McKnight, Diane M.; Cory, R.M.; Williams, M.W.; Runkel, R.L.

    2006-01-01

    The influence of hyporheic zone interactions on the redox state of fulvic acids and other redox active species was investigated in an alpine stream and adjacent wetland, which is a more reducing environment. A tracer injection experiment using bromide (Br-) was conducted in the stream system. Simulations with a transport model showed that rates of exchange between the stream and hyporheic zone were rapid (?? ??? 10-3 s -1). Parallel factor analysis of fluorescence spectra was used to quantify the redox state of dissolved fulvic acids. The rate coefficient for oxidation of reduced fulvic acids (?? = 6.5 ?? 10-3 s -1) in the stream indicates that electron-transfer reactions occur over short time scales. The rate coefficients for decay of ammonium (?? = 1.2 ?? 10-3 s-1) and production of nitrate (?? = -1.0 ?? 10-3 s-1) were opposite in sign but almost equal in magnitude. Our results suggest that fulvic acids are involved in rapid electron-transfer processes in and near the stream channel and may be important in determining ecological energy flow at the catchment scale. ?? 2006 American Chemical Society.

  20. The use of multiobjective calibration and regional sensitivity analysis in simulating hyporheic exchange

    USGS Publications Warehouse

    Naranjo, Ramon C.; Niswonger, Richard G.; Stone, Mark; Davis, Clinton; McKay, Alan

    2012-01-01

    We describe an approach for calibrating a two-dimensional (2-D) flow model of hyporheic exchange using observations of temperature and pressure to estimate hydraulic and thermal properties. A longitudinal 2-D heat and flow model was constructed for a riffle-pool sequence to simulate flow paths and flux rates for variable discharge conditions. A uniform random sampling approach was used to examine the solution space and identify optimal values at local and regional scales. We used a regional sensitivity analysis to examine the effects of parameter correlation and nonuniqueness commonly encountered in multidimensional modeling. The results from this study demonstrate the ability to estimate hydraulic and thermal parameters using measurements of temperature and pressure to simulate exchange and flow paths. Examination of the local parameter space provides the potential for refinement of zones that are used to represent sediment heterogeneity within the model. The results indicate vertical hydraulic conductivity was not identifiable solely using pressure observations; however, a distinct minimum was identified using temperature observations. The measured temperature and pressure and estimated vertical hydraulic conductivity values indicate the presence of a discontinuous low-permeability deposit that limits the vertical penetration of seepage beneath the riffle, whereas there is a much greater exchange where the low-permeability deposit is absent. Using both temperature and pressure to constrain the parameter estimation process provides the lowest overall root-mean-square error as compared to using solely temperature or pressure observations. This study demonstrates the benefits of combining continuous temperature and pressure for simulating hyporheic exchange and flow in a riffle-pool sequence. Copyright 2012 by the American Geophysical Union.

  1. Bioenhanced DNAPL Dissolution: Understanding how Microbial Competition, Biostimulation, and Bioaugmentation Affect Source Zone Longevity

    NASA Astrophysics Data System (ADS)

    Becker, J. G.; Seagren, E. A.

    2006-12-01

    The presence of dense non-aqueous phase liquids (DNAPLs) at many chlorinated ethene-contaminated sites can greatly extend the time frames needed to reduce dissolved contaminants to regulatory levels using bioremediation. However, it has been demonstrated that mass removal from chlorinated ethene DNAPLs can potentially be enhanced through dehalorespiration of dissolved contaminants near the NAPL-water interface. Although promising, the amount of "bioenhancement" that can be achieved under optimal conditions is currently not known, and the real significance and engineering potential of this phenomenon currently are not well understood, in part because it can be influenced by a complex set of factors, including DNAPL properties, hydrodynamics, substrate concentrations, and microbial competition for growth substrates. In this study it is hypothesized that: (1) different chlorinated ethene-respiring strains may dominate within different zones of a contaminant plume emanating from a DNAPL source zone due to variations in substrate availability, and microbial competition for chlorinated ethenes and/or electron donors; and (2) the outcome of competitive interactions near the DNAPL source zone will affect the longevity of DNAPL source zones by influencing the degree of dissolution bioenhancement, while the outcome of competitive interactions further downgradient will determine the extent of contaminant dechlorination. To demonstrate the validity of the proposed hypothesis, a series of simple, "proof-of-concept," mathematical simulations evaluating the effects of competitive interactions on the distribution of dehalorespirers at the DNAPL-water interface, the dissolution of tetrachloroethene (PCE), and extent of PCE detoxification were performed in a model competition scenario, in which Dehalococcoides ethenogenes and another dehalorespirer (Desulfuromonas michiganensis) compete for the electron acceptor (PCE) and/or electron donor. The model domain for this evaluation

  2. Spatial changes of Extended De Martonne climatic zones affected by climate change in Iran

    NASA Astrophysics Data System (ADS)

    Rahimi, Jaber; Ebrahimpour, Meisam; Khalili, Ali

    2013-05-01

    In order to better understand the effect associated with global climate change on Iran's climate condition, it is important to quantify possible shifts in different climatic types in the future. To this end, monthly mean minimum and maximum temperature, and precipitation from 181 synoptic meteorological stations (average 1970-2005) have been collected from the meteorological organization of Iran. In this paper, to study spatial changes of Iran's climatic zones affected by climate changes, Extended De Martonne's classification (originally formulated by De Martonne and extended by Khalili (1992)) was used. Climate change scenarios were simulated in two future climates (average conditions during the 2050s and the 2080s) under each of the SRES A1B and A2, for the CSIRO-MK3, HadCM3, and CGCM3 climate models. Coarse outputs of GCMs were downscaled by delta method. We produced all maps for three time periods (one for the current and two for the future) according to Extended De Martonne's classification. Finally, for each climatic zone, changes between the current and the future were compared. As the main result, simulated changes indicate shifts to warmer and drier zones. For example, in the current, extra arid-cold ( A1.1m2) climate is covering the largest area of the country (21.4 %), whereas in both A1B and A2 scenarios in the 2050s and the 2080s, extra arid-moderate ( A1.1m3) and extra arid-warm ( A1.1m4) will be the climate and will occupy the largest area of the country, about 21 and 38 %, respectively. This analysis suggests that the global climate change will have a profound effect on the future distribution of severe aridity in Iran.

  3. Zones of impact around icebreakers affecting beluga whales in the Beaufort Sea.

    PubMed

    Erbe, C; Farmer, D M

    2000-09-01

    A software model estimating zones of impact on marine mammals around man-made noise [C. Erbe and D. M. Farmer, J. Acoust. Soc. Am. 108, 1327-1331 (2000)] is applied to the case of icebreakers affecting beluga whales in the Beaufort Sea. Two types of noise emitted by the Canadian Coast Guard icebreaker Henry Larsen are analyzed: bubbler system noise and propeller cavitation noise. Effects on beluga whales are modeled both in a deep-water environment and a near-shore environment. The model estimates that the Henry Larsen is audible to beluga whales over ranges of 35-78 km, depending on location. The zone of behavioral disturbance is only slightly smaller. Masking of beluga communication signals is predicted within 14-71-km range. Temporary hearing damage can occur if a beluga stays within 1-4 km of the Henry Larsen for at least 20 min. Bubbler noise impacts over the short ranges quoted; propeller cavitation noise accounts for all the long-range effects. Serious problems can arise in heavily industrialized areas where animals are exposed to ongoing noise and where anthropogenic noise from a variety of sources adds up.

  4. The role of fault zones in affecting multiphase flow at Yucca Mountain

    SciTech Connect

    Tsang, Y.W.; Pruess, K.; Wang, J.S.Y.

    1993-01-01

    Within Yucca Mountain, the potential High Level Nuclear-Waste Repository site, there are large scale fault zones, most notably the Ghost Dance Fault. The effect of such high-permeability, large scale discontinuities on the flow and transport is a question of concern in assessing the ability of the site to isolate radio-nuclides from the biosphere. In this paper, we present a numerical study to investigate the role of the fault in affecting both the liquid and gas phase flows in the natural state at Yucca Mountain prior to waste emplacement, as well as after the waste emplacement when the fluid flow is strongly heat-driven. Our study shows that if the characteristic curves of the Ghost Dance Fault obey the same relationship between saturated permeability and capillary scaling parameter, as is observed from the measured data of Yucca Mountain welded and nonwelded tuffs. Apache Leap tuffs, and Las Cruces soil, then a large saturated permeability of the Ghost Dance Fault will play little role in channeling water into the fault, or inenhancing the flow of water down the fault. However, the Fault may greatly enhance the upward gas flow after emplacement of waste. This may have implications on the transport of gaseous radio-nuclides such as C{sup 14}. The results of this study also focus attention on the need for field measurements of fluid flow in the fault zones.

  5. Plant hybrid zones affect biodiversity: Tools for a genetic-based understanding of community structure

    SciTech Connect

    Whitham, T.G.; Martinsen, G.D.; Keim, P.; Floate, K.D.; Dungey, H.S. |; Potts, B.M.

    1999-03-01

    Plant hybrid zones are dynamic centers of ecological and evolutionary processes for plants and their associated communities. Studies in the wild and in gardens with synthetic crosses showed that hybrid eucalypts supports the greatest species richness and abundances of insect and fungal taxa. In an updated review of 152 case studies of taxa associated with diverse hybridizing systems, there were 43 (28%) cases of hybrids being more susceptible than their parent species, 7 (5%) resistant, 35 (23%) additive, 35 (23%) dominant, and 32 (21%) showed no response to hybridization. Thus, most taxa respond to hybrids in ways that result in equal or greater abundance, and hybrids tend to accumulate the taxa of their parent species. These studies suggest that genetic-based plant traits affect the distribution of many species and that the variation in hybrids can be used as tools to examine the genetic components of community structure and biodiversity.

  6. Root-zone acidity affects relative uptake of nitrate and ammonium from mixed nitrogen sources

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; Henry, L. T.; Chaillou, S.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1990-01-01

    Soybean plants (Glycine max [L.] Merr. cv Ransom) were grown for 21 days on 4 sources of N (1.0 mM NO3-, 0.67 mM NO3- plus 0.33 mM NH4+, 0.33 mM NO3- plus 0.67 mM NH4+, and 1.0 mM NH4+) in hydroponic culture with the acidity of the nutrient solution controlled at pH 6.0, 5.5, 5.0, and 4.5. Dry matter and total N accumulation of the plants was not significantly affected by N-source at any of the pH levels except for decreases in these parameters in plants supplied solely with NH4+ at pH 4.5. Shoot-to-root ratios increased in plants which had an increased proportion [correction of proporiton] of NH4(+)-N in their nutrient solutions at all levels of root-zone pH. Uptake of NO3- and NH4+ was monitored daily by ion chromatography as depletion of these ions from the replenished hydroponic solutions. At all pH levels the proportion of either ion that was absorbed increased as the ratio of that ion increased in the nutrient solution. In plants which were supplied with sources of NO3- plus NH4+, NH4+ was absorbed at a ratio of 2:1 over NO3- at pH 6.0. As the pH of the root-zone declined, however, NH4+ uptake decreased and NO3- uptake increased. Thus, the NH4+ to NO3- uptake ratio declined with decreases in root-zone pH. The data indicate a negative effect of declining root-zone pH on NH4+ uptake and supports a hypothesis that the inhibition of growth of plants dependent on NH4(+)-N at low pH is due to a decline in NH4+ uptake and a consequential limitation of growth by N stress.

  7. Flavor of oranges as impacted by abscission zone formation for trees affected by huanglongbing disease and Lasiodiploida infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trees affected by Huanglongbing (HLB) exhibit excessive fruit drop, which is exacerbated by secondary infection of the abscission zone by the fungus Lasiodiplodia. ‘Hamlin’ orange trees, both healthy and affected by HLB, Candidatus Liberibacter asiaticus (CLas, determined by Polymerase chain reactio...

  8. Hyporheic flow patterns in relation to large river floodplain attributes Journal

    EPA Science Inventory

    Field-calibrated models of hyporheic flow have emphasized low-order headwater systems. In many cases, however, hyporheic flow in large lowland river floodplains may be an important contributor to ecosystem services such as maintenance of water quality and habitat. In this study, ...

  9. Characterization of microstructure, local deformation and microchemistry in Alloy 690 heat-affected zone and stress corrosion cracking in high temperature water

    NASA Astrophysics Data System (ADS)

    Lu, Zhanpeng; Chen, Junjie; Shoji, Tetsuo; Takeda, Yoichi; Yamazaki, Seiya

    2015-10-01

    With increasing the distance from the weld fusion line in an Alloy 690 heat-affected zone, micro-hardness decreases, kernel average misorientation decreases and the fraction of Σ3 boundaries increases. Chromium depletion at grain boundaries in the Alloy 690 heat-affected zone is less significant than that in an Alloy 600 heat-affected zone. Alloy 690 heat-affected zone exhibits much higher IGSCC resistance than Alloy 600 heat-affected zone in simulated pressurized water reactor primary water. Heavily cold worked Alloy 690 exhibits localized intergranular stress corrosion cracking. The effects of metallurgical and mechanical properties on stress corrosion cracking in Alloy 690 are discussed.

  10. Weathering reactions and hyporheic exchange controls on stream water chemistry in a glacial meltwater stream in the McMurdo Dry Valleys

    NASA Astrophysics Data System (ADS)

    Gooseff, Michael N.; McKnight, Diane M.; Lyons, W. Berry; Blum, Alex E.

    2002-12-01

    In the McMurdo Dry Valleys, Antarctica, dilute glacial meltwater flows down well-established streambeds to closed basin lakes during the austral summer. During the 6-12 week flow season, a hyporheic zone develops in the saturated sediment adjacent to the streams. Longer Dry Valley streams have higher concentrations of major ions than shorter streams. The longitudinal increases in Si and K suggest that primary weathering contributes to the downstream solute increase. The hypothesis that weathering reactions in the hyporheic zone control stream chemistry was tested by modeling the downstream increase in solute concentration in von Guerard Stream in Taylor Valley. The average rates of solute supplied from these sources over the 5.2 km length of the stream were 6.1 × 10-9 mol Si L-1 m-1 and 3.7 × 10-9 mol K L-1 m-1, yielding annual dissolved Si loads of 0.02-1.30 mol Si m-2 of watershed land surface. Silicate minerals in streambed sediment were analyzed to determine the representative surface area of minerals in the hyporheic zone subject to primary weathering. Two strategies were evaluated to compute sediment surface area normalized weathering rates. The first applies a best linear fit to synoptic data in order to calculate a constant downstream solute concentration gradient, dC/dx (constant weathering rate contribution, CRC method); the second uses a transient storage model to simulate dC/dx, representing both hyporheic exchange and chemical weathering (hydrologic exchange, HE method). Geometric surface area normalized dissolution rates of the silicate minerals in the stream ranged from 0.6 × 10-12 mol Si m-2 s-1 to 4.5 × 10-12 mol Si m-2 s-1 and 0.4 × 10-12 mol K m-2 s-1 to 1.9 × 10-12 mol K m-2 s-1. These values are an order of magnitude lower than geometric surface area normalized weathering rates determined in laboratory studies and are an order of magnitude greater than geometric surface area normalized weathering rates determined in a warmer, wetter

  11. Weathering reactions and hyporheic exchange controls on stream water chemistry in a glacial meltwater stream in the McMurdo Dry Valleys

    USGS Publications Warehouse

    Gooseff, M.N.; McKnight, Diane M.; Lyons, W.B.; Blum, A.E.

    2002-01-01

    In the McMurdo Dry Valleys, Antarctica, dilute glacial meltwater flows down well-established streambeds to closed basin lakes during the austral summer. During the 6-12 week flow season, a hyporheic zone develops in the saturated sediment adjacent to the streams. Longer Dry Valley streams have higher concentrations of major ions than shorter streams. The longitudinal increases in Si and K suggest that primary weathering contributes to the downstream solute increase. The hypothesis that weathering reactions in the hyporheic zone control stream chemistry was tested by modeling the downstream increase in solute concentration in von Guerard Stream in Taylor Valley. The average rates of solute supplied from these sources over the 5.2 km length of the stream were 6.1 ?? 10-9 mol Si L-1 m-1 and 3.7 ?? 10-9 mol K L-1 m-1, yielding annual dissolved Si loads of 0.02-1.30 tool Si m-2 of watershed land surface. Silicate minerals in streambed sediment were analyzed to determine the representative surface area of minerals in the hyporheic zone subject to primary weathering. Two strategies were evaluated to compute sediment surface area normalized weathering rates. The first applies a best linear fit to synoptic data in order to calculate a constant downstream solute concentration gradient, dC/dx (constant weathering rate contribution, CRC method); the second uses a transient storage model to simulate dC/dx, representing both hyporheic exchange and chemical weathering (hydrologic exchange, HE method). Geometric surface area normalized dissolution rates of the silicate minerals in the stream ranged from 0.6 ?? 10-12 mol Si m-2 s-1 to 4.5 ?? 10-12 mol Si m-2 s-1 and 0.4 ?? 10-12 mol K m-2 s-1 to 1.9 ?? 10-12 mol K m-2 s-1. These values are an order of magnitude lower than geometric surface area normalized weathering rates determined in laboratory studies and are an order of magnitude greater than geometric surface area normalized weathering rates determined in a warmer, wetter

  12. Geochemical Factors Affecting the Behavior of Antimony, Cobalt, Europium, Technetium, and Uranium in Vadose Zone Sediments

    SciTech Connect

    Krupka, Kenneth M.; Serne, R. Jeffrey

    2002-12-15

    In developing the Field Investigation Report (FIR) for the Waste Management Area (WMA) S-SX at the Hanford Site, cesium-137 was the only gamma emitting radionuclide of concern (Knepp 2002). However, in WMA B-BX-BY, the spectral gamma logging data identify seven gamma emitting radionuclides, cesium-137, antimony-125, europium-152 and -154, cobalt-60, uranium-235 and -238 (DOE-GJPO 1998). The geochemical behaviors of several of these radionuclides, antimony-125 and the two europium isotopes, have not been extensively investigated at the Hanford Site. This task was initiated to assure that our understanding of the geochemical properties affecting the environmental behavior of these radionuclides reflects the current state of knowledge. A literature review was conducted to assess the important oxidation/reduction, aqueous speciation, solubility, and adsorption processes affecting the environmental behavior of antimony, cobalt, europium, technetium, and uranium in vadose zone sediments with low-organic matter content in semi-arid environments such as those at the Hanford Site. Technetium-99 was included in this task because of its importance in the long-term risk calculations. This report presents the results of this literature review.

  13. Crack growth rates of irradiated austenitic stainless steel weld heat affected zone in BWR environments.

    SciTech Connect

    Chopra, O. K.; Alexandreanu, B.; Gruber, E. E.; Daum, R. S.; Shack, W. J.; Energy Technology

    2006-01-31

    Austenitic stainless steels (SSs) are used extensively as structural alloys in the internal components of reactor pressure vessels because of their superior fracture toughness. However, exposure to high levels of neutron irradiation for extended periods can exacerbate the corrosion fatigue and stress corrosion cracking (SCC) behavior of these steels by affecting the material microchemistry, material microstructure, and water chemistry. Experimental data are presented on crack growth rates of the heat affected zone (HAZ) in Types 304L and 304 SS weld specimens before and after they were irradiated to a fluence of 5.0 x 10{sup 20} n/cm{sup 2} (E > 1 MeV) ({approx} 0.75 dpa) at {approx}288 C. Crack growth tests were conducted under cycling loading and long hold time trapezoidal loading in simulated boiling water reactor environments on Type 304L SS HAZ of the H5 weld from the Grand Gulf reactor core shroud and on Type 304 SS HAZ of a laboratory-prepared weld. The effects of material composition, irradiation, and water chemistry on growth rates are discussed.

  14. Initial Evaluation of the Heat-Affected Zone, Local Embrittlement Phenomenon as it Applies to Nuclear Reactor Vessels

    SciTech Connect

    McCabe, D.E.

    1999-09-01

    The objective of this project was to determine if the local brittle zone (LBZ) problem, encountered in the testing of the heat-affected zone (HAZ) part of welds in offshore platform construction, can also be found in reactor pressure vessel (RPV) welds. Both structures have multipass welds and grain coarsening along the fusion line. Literature was obtained that described the metallurgical evidence and the type of research work performed on offshore structure welds.

  15. Effects of Hyporheic Exchange Flows on Egg Pocket Water Temperature in Snake River Fall Chinook Salmon Spawning Areas, 2002-2003 Final Report.

    SciTech Connect

    Hanrahan, T.; Geist, D.; Arntzen, C.

    2004-09-01

    The development of the Snake River hydroelectric system has affected fall Chinook salmon smolts by shifting their migration timing to a period (mid- to late-summer) when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River Chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations (e.g., summer flow augmentation) to improve water temperature and flow conditions during the juvenile Chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall Chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by the Pacific Northwest National Laboratory (PNNL) that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall Chinook salmon spawning areas. This was a pilot-scale study to evaluate these relationships under existing operations of Hells Canyon Dam (i.e., without any prescribed manipulations of river discharge) during the 2002-2003 water year. The project was initiated in the context of examining the potential for improving juvenile Snake River fall Chinook salmon survival by modifying the discharge operations of Hells Canyon Dam. The potential for improved survival would be gained by increasing the rate at which early life history events proceed (i.e., incubation and emergence), thereby allowing smolts to migrate through downstream reservoirs during early- to mid-summer when river conditions are more favorable for survival. PNNL implemented this research project at index sites throughout 160 km of the Hells Canyon Reach (HCR) of the Snake River. The HCR extends from Hells Canyon Dam (river kilometer [rkm] 399

  16. Effects of Notch Location on Heat-affected Zone Impact Properties of SA-516 Steels

    NASA Astrophysics Data System (ADS)

    Hong, Jaekeun; Park, Jihong; Kang, Chungyun

    In case of welding for pressure retaining parts on nuclear components, the verifications of heat affected zone (HAZ) impact properties are required according to application codes such as ASME Sec. III, RCC-M, KEPIC (Korea Electric Power Industry Code) MN, and JEA (Japan Electric Association) Code. Especially in case of Charpy V-notch tests of HAZ, the requirements of notch location and specimen direction have greatly impact on the reliability and consistency of the test results. For the establishment of newly adequate impact test requirements, the requirements about the HAZ impact tests of ASME Section III, RCC-M, KEPIC MN and JEA code were researched in this study. And also the HAZ impact test requirements about surveillance tests in nuclear reactor vessels were compared and investigated. For the effects of the notch location and specimen direction on the impact properties, SA-516 Gr.70 materials were investigated. The specimens were fabricated with using shielded metal-arc welding, and maximum heat inputs were controlled within the range of 16˜27 kJ/cm. Especially, this research showed the lateral expansion values and absorbed energies were not compatible and the impact test results were varied depending on notch location and specimen direction. Based on this study, newly adequate impact test requirements of HAZ were proposed.

  17. Microstructural response to heat affected zone cracking of prewelding heat-treated Inconel 939 superalloy

    SciTech Connect

    Gonzalez, M.A.; Garza, A.

    2011-12-15

    The microstructural response to cracking in the heat-affected zone (HAZ) of a nickel-based IN 939 superalloy after prewelding heat treatments (PWHT) was investigated. The PWHT specimens showed two different microstructures: 1) spherical ordered {gamma} Prime precipitates (357-442 nm), with blocky MC and discreet M{sub 23}C{sub 6} carbides dispersed within the coarse dendrites and in the interdendritic regions; and 2) ordered {gamma} Prime precipitates in 'ogdoadically' diced cube shapes and coarse MC carbides within the dendrites and in the interdendritic regions. After being tungsten inert gas welded (TIG) applying low heat input, welding speed and using a more ductile filler alloy, specimens with microstructures consisting of spherical {gamma} Prime precipitate particles and dispersed discreet MC carbides along the grain boundaries, displayed a considerably improved weldability due to a strong reduction of the intergranular HAZ cracking associated with the liquation microfissuring phenomena. - Highlights: Black-Right-Pointing-Pointer Homogeneous microstructures of {gamma} Prime spheroids and discreet MC carbides of Ni base superalloys through preweld heat treatments. Black-Right-Pointing-Pointer {gamma} Prime spheroids and discreet MC carbides reduce the intergranular HAZ liquation and microfissuring of Nickel base superalloys. Black-Right-Pointing-Pointer Microstructure {gamma} Prime spheroids and discreet blocky type MC carbides, capable to relax the stress generated during weld cooling. Black-Right-Pointing-Pointer Low welding heat input welding speeds and ductile filler alloys reduce the HAZ cracking susceptibility.

  18. Effect of welding parameters on the heat-affected zone of AISI409 ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Ranjbarnodeh, Eslam; Hanke, Stefanie; Weiss, Sabine; Fischer, Alfons

    2012-10-01

    One of the main problems during the welding of ferritic stainless steels is severe grain growth within the heat-affected zone (HAZ). In the present study, the microstructural characteristics of tungsten inert gas (TIG) welded AISI409 ferritic stainless steel were investigated by electron backscattered diffraction (EBSD), and the effects of welding parameters on the grain size, local misorientation, and low-angle grain boundaries were studied. A 3-D finite element model (FEM) was developed to predict the effects of welding parameters on the holding time of the HAZ above the critical temperature of grain growth. It is found that the base metal is not fully recrystallized. During the welding, complete recrystallization is followed by severe grain growth. A decrease in the number of low-angle grain boundaries is observed within the HAZ. FEM results show that the final state of residual strains is caused by competition between welding plastic strains and their release by recrystallization. Still, the decisive factor for grain growth is heat input.

  19. Factors Affecting Motivation and Job Satisfaction of Academic Staff of Universities in South-South Geopolitical Zone of Nigeria

    ERIC Educational Resources Information Center

    Osakwe, Regina N.

    2014-01-01

    This study determined the factors affecting motivation and job satisfaction of non-management academic staff of universities in South-South geopolitical zone of Nigeria. It employed an expost-facto research design. Three research questions and two hypotheses were raised for the study. A sample of four hundred and fifty non-management academic…

  20. Effect of acicular ferrite formation on grain refinement in the coarse-grained region of heat-affected zone

    SciTech Connect

    Wan, X.L.; Wei, R.; Wu, K.M.

    2010-07-15

    The microstructure of acicular ferrite and its formation for the grain refinement of coarse-grained region of heat-affected zone of high strength low-alloy bainite steels were studied using three-dimensional reconstruction technique. Crystallographic grain size was analyzed by means of electron backscatter diffraction. It was revealed that the microstructure in the coarse-grained region of the heat-affected zone consisted of predominantly bainite packets and a small proportion of acicular ferrite. Acicular ferrite was of lath or plate-like rather than needle or rod-like morphology. Tempering of the coarse-grained region of heat-affected zone showed that the acicular ferrite was more stable than the bainite, indicating that the acicular ferrite was formed prior to bainite. The acicular ferrite laths or plates divided the prior austenite grains into smaller and separate regions, and confining the bainite transformed at lower temperatures in the smaller regions and hence leading to the grain refinement in the coarse-grained region of the heat-affected zone.

  1. Factors affecting the dynamics of the honeybee (Apis mellifera) hybrid zone of South Africa.

    PubMed

    Beekman, M; Allsopp, M H; Wossler, T C; Oldroyd, B P

    2008-01-01

    Hybrid zones are found wherever two populations distinguishable on the basis of heritable characters overlap spatially and temporally and hybridization occurs. If hybrids have lower fitness than the parental types a tension zone may emerge, in which there is a barrier to gene flow between the two parental populations. Here we discuss a hybrid zone between two honeybee subspecies, Apis mellifera capensis and A. m. scutellata and argue that this zone is an example of a tension zone. This tension zone is particularly interesting because A. m. capensis can be a lethal social parasite of A. m. scutellata. However, despite its parasitic potential, A. m. capensis appears to be unable to increase its natural range unassisted. We propose three interlinked mechanisms that could maintain the South African honeybee hybrid zone: (1) low fitness of intercrossed and genetically mixed colonies arising from inadequate regulation of worker reproduction; (2) higher reproductive success of A. m. scutellata via both high dispersal rates into the hybrid zone and increased competitiveness of males, countered by (3) the parasitic nature of A. m. capensis.

  2. Evaluation of Heat-affected Zone Hydrogen-induced Cracking in High-strength Steels

    NASA Astrophysics Data System (ADS)

    Yue, Xin

    Shipbuilding is heavily reliant on welding as a primary fabrication technique. Any high performance naval steel must also possess good weldability. It is therefore of great practical importance to conduct weldability testing of naval steels. Among various weldability issues of high-strength steels, hydrogen-induced cracking (HIC) in the heat-affected zone (HAZ) following welding is one of the biggest concerns. As a result, in the present work, research was conducted to study the HAZ HIC susceptibility of several naval steels. Since the coarse-grained heat-affected zone (CGHAZ) is generally known to be the most susceptible to HIC in the HAZ region, the continuous cooling transformation (CCT) behavior of the CGHAZ of naval steels HSLA-65, HSLA-100, and HY-100 was investigated. The CGHAZ microstructure over a range of cooling rates was characterized, and corresponding CCT diagrams were constructed. It was found that depending on the cooling rate, martensite, bainite, ferrite and pearlite can form in the CGHAZ of HSLA-65. For HSLA-100 and HY-100, only martensite and bainite formed over the range of cooling rates that were simulated. The constructed CCT diagrams can be used as a reference to select welding parameters to avoid the formation of high-hardness martensite in the CGHAZ, in order to ensure resistance to hydrogen-induced cracking. Implant testing was conducted on the naval steels to evaluate their susceptibility to HAZ HIC. Stress vs. time to failure curves were plotted, and the lower critical stress (LCS), normalized critical stress ratio (NCSR) and embrittlement index (EI) for each steel were determined, which were used to quantitatively compare HIC susceptibility. The CGHAZ microstructure of the naval steels was characterized, and the HIC fracture behavior was studied. Intergranular (IG), quasi-cleavage (QC) and microvoid coalescence (MVC) fracture modes were found to occur in sequence during the crack initiation and propagation process. This was

  3. Effect of Preweld Heat Treatment on the Microstructure of Heat-Affected Zone (HAZ) and Weldability of Inconel 939 Superalloy

    NASA Astrophysics Data System (ADS)

    González Albarrán, M. A.; Martínez, D. I.; Díaz, E.; Díaz, J. C.; Guzman, I.; Saucedo, E.; Guzman, A. Ma.

    2014-04-01

    The effect of two preweld heat treatments on the final microstructure of a heat-affected zone (HAZ) and its effect on the weldability of the superalloy Inconel 939 have been analyzed. The HAZ cracking related to the mechanical driving force criteria during the cooling cycle was directly influenced by the strain state at this zone. Heat treatments result in the formation of (1) irregular γ' precipitates (more negative misfits) which showed higher strain (high density of interfacial dislocations) and (2) spherical precipitates (near-zero misfits) which as a result of their structure improve weldability by reducing weld HAZ cracking considerably.

  4. Factors affecting carbon-14 activity of unsaturated zone CO2 and implications for groundwater dating

    NASA Astrophysics Data System (ADS)

    Wood, Cameron; Cook, Peter G.; Harrington, Glenn A.; Meredith, Karina; Kipfer, Rolf

    2014-11-01

    Unsaturated zone processes may influence the carbon-14 (14C) activity of infiltrating groundwater and thus introduce error in derived groundwater residence times. However unsaturated zone 14C activities are rarely measured and there is little understanding of how they may vary spatially in a groundwater basin. In this study we measured 14C activity in unsaturated zone gas at five sites with different watertable depths (8.2-31.5 m) in the arid Ti Tree Basin, central Australia. We observed a relatively uniform decrease in 14C activity of unsaturated zone gas with depth at most sites, with variation in unsaturated zone depths leading to variation in 14C activities directly above the watertable at each site (ranging from 54 to 106 percent Modern Carbon (pMC)). Through modelling we show that the profiles are influenced by CO2 production at different depths from sources with different isotopic ratios, including production of ‘modern' CO2 in the root zone and production of ‘old' CO2 above the watertable. Scenario modelling showed that these processes are independent of recharge when recharge is low (0-10 mm y-1) but that higher recharge rates (>100 mm y-1) result in more advective transport of atmospheric CO2 to the watertable. The variation in 14C above the watertable was more sensitive to watertable depth and shallow and deep CO2 production rates. These findings offer insight into how unsaturated zone 14C activities may vary spatially and provide guidance as to when 14C depletion in unsaturated zone CO2 may become important for groundwater dating, particularly in arid settings.

  5. Interactions between hyporheic flow produced by stream meanders, bars, and dunes

    USGS Publications Warehouse

    Stonedahl, Susa H.; Harvey, Judson W.; Packman, Aaron I.

    2013-01-01

    Stream channel morphology from grain-scale roughness to large meanders drives hyporheic exchange flow. In practice, it is difficult to model hyporheic flow over the wide spectrum of topographic features typically found in rivers. As a result, many studies only characterize isolated exchange processes at a single spatial scale. In this work, we simulated hyporheic flows induced by a range of geomorphic features including meanders, bars and dunes in sand bed streams. Twenty cases were examined with 5 degrees of river meandering. Each meandering river model was run initially without any small topographic features. Models were run again after superimposing only bars and then only dunes, and then run a final time after including all scales of topographic features. This allowed us to investigate the relative importance and interactions between flows induced by different scales of topography. We found that dunes typically contributed more to hyporheic exchange than bars and meanders. Furthermore, our simulations show that the volume of water exchanged and the distributions of hyporheic residence times resulting from various scales of topographic features are close to, but not linearly additive. These findings can potentially be used to develop scaling laws for hyporheic flow that can be widely applied in streams and rivers.

  6. Mechanisms affecting the infiltration and distribution of ethanol-blended gasoline in the vadose zone.

    PubMed

    McDowell, Cory J; Powers, Susan E

    2003-05-01

    One- and two-dimensional experiments were conducted to examine differences in the behavior of gasoline and gasohol (10% ethanol by volume) as they infiltrate through the unsaturated zone and spread at the capillary fringe. Ethanol in the spilled gasohol quickly partitions into the residual water in the vadose zone and is retained there as the gasoline continues to infiltrate. Under the conditions tested, over 99% of the ethanol was initially retained in the vadose zone. Depending on the volume of gasoline spilled and the depth to the water table, this causes an increase in the aqueous-phase saturation and relative permeability, thus allowing the ethanol-laden water to drain into the gasoline pool. Under the conditions tested, the presence of ethanol does not have a significant impact on the overall size or shape of the resulting gasoline pool at the capillary fringe. Residual gasoline saturations in the vadose zone were significantly reduced however because of reduced surface and interfacial tensions associated with high ethanol concentrations. The flux of ethanol in the effluent of the column ranged from 1.4 x 10(-4) to 4.5 x 10(-7) g/(cm2 min) with the LNAPL and from 6 x 10(-3) to 3.0 x 10(-4) g/(cm2 min) after water was introduced to simulate rain infiltration. The experimental results presented here illustrate that the dynamic effects of ethanol partitioning into the aqueous phase in the vadose zone create an initial condition that is significantly different than previously understood.

  7. Visualization of microcrack anisotropy in granite affected by afault zone, using confocal laser scanning microscope

    SciTech Connect

    Onishi, Celia T.; Shimizu, Ichiko

    2004-01-02

    Brittle deformation in granite can generate a fracture system with different patterns. Detailed fracture analyses at both macroscopic and microscopic scales, together with physical property data from a drill-core, are used to classify the effects of reverse fault deformation in four domains: (1) undeformed granite, (2) fractured granite with cataclastic seams, (3) fractured granite from the damage zone, and (4) foliated cataclasite from the core of the fault. Intact samples from two orthogonal directions, horizontal (H) and vertical (V), from the four domains indicate a developing fracture anisotropy toward the fault, which is highly developed in the damage zone. As a specific illustration of this phenomenon, resin impregnation, using a confocal laser scanning microscope (CLSM) technique is applied to visualize the fracture anisotropy developed in the Toki Granite, Japan. As a result, microcrack networks have been observed to develop in H sections and elongate open cracks in V sections, suggesting that flow pathways can be determined by deformation.

  8. An investigation of reheat cracking in the weld heat affected zone of type 347 stainless steel

    NASA Astrophysics Data System (ADS)

    Phung-On, Isaratat

    2007-12-01

    microvoid corresponds to the size of precipitate that forms. In addition, there was intragranular cracking in some location indicating that another failure mechanism may also be possible. It was believed that failure may occur along a precipitate free zone. However, the distinct PFZ could not be detected. A SS-DTA technique was also implemented in order to determine precipitation temperatures of the material. The results showed the possible precipitation temperatures in the range of 850°C to 650°C. However, the results were not confidently reliable due to the small amount of carbide formed that affects the sensitivity of the SS-DTA. A simple grain boundary sliding model was generated proposing that the sliding is operated by the shear stress resulting from the formation of precipitate in the grain interior. Then, the sliding results in the microvoid formation and coalescence followed by cracking. In addition, a simple finite element model was generated to provide the illustration of the shear stress built up by the formation of precipitate. The model showed that shear stress can cause the grain boundary movement/sliding. Based on the results from this study, the recommendation for the selection of post weld heat treatment schedule as well as welding procedures can be determined for the prevention of the reheat cracking. A residual stress should be kept below the critical value during welding and post weld heat treating. The testing procedures used in this study can be applied as the guidelines to conduct the reheat cracking susceptibility test for material selection.

  9. Determination of elastoplastic mechanical properties of the weld and heat affected zone metals in tailor-welded blanks by nanoindentation test

    NASA Astrophysics Data System (ADS)

    Ma, Xiangdong; Guan, Yingping; Yang, Liu

    2015-09-01

    The elastoplastic mechanical properties of the weld and heat affected zone metals have comparatively major impact on the forming process of tailor-welded blanks. A few scholars investigated the elastoplastic mechanical properties of the weld and heat affected zone, but they only simply assumed that it was a uniform distribution elastoplastic material different from the base materials. Four types of tailor-welded blanks which consist of ST12 and 304 stainless steel plates are selected as the research objects, the elastoplastic mechanical properties of the tailor-welded blanks weld and heat affected zone metals are obtained based on the nanoindentation tests, and the Erichsen cupping tests are conducted by combining numerical simulation with physical experiment. The nanoindentation tests results demonstrate that the elastoplastic mechanical properties of the weld and heat affected zone metals are not only different from the base materials, but also varying between the weld metals and the heat affected zone metals. Comparing the Erichsen cupping test resulted from numerical with that from experimental method, it is found that the numerical value of Erichsen cupping test which consider the elastoplastic mechanical properties of the weld and heat affected zone metals have a good agreement with the experimental result, and the relative error is only 4.8%. The proposed research provides good solutions for the inhomogeneous elastoplastic mechanical properties of the tailor-welded blanks weld and heat affected zone metals, and improves the control performance of tailor-welded blanks forming accuracy.

  10. An inductive model of hyporheic flowpath geometry and dynamics during baseflow recession

    NASA Astrophysics Data System (ADS)

    Ward, Adam; Schmadel, Noah; Wondzell, Steven; Gooseff, Michael; Singha, Kamini; Harman, Ciaran; Haggerty, Roy

    2016-04-01

    Decades of effort have focused on hyporheic residence times as a key control on ecological processes. However, flowpath geometry has received relatively little attention despite a recognition that processes are expected to be heterogeneous in space. The objective of this study is to assess changes in hyporheic flowpath geometry and potential downwelling locations through baseflow recession in two headwater streams of contrasting geological control. Specifically, we address the questions (1) where do observed hyporheic flowpaths downwell from the stream?, and (2) does downwelling location change with in-stream discharge during seasonal baseflow recession? To answer these questions, we conducted four replicate solute tracer studies in each of two headwater mountain streams through baseflow recession, monitoring tracer concentrations in the stream and in a network of riparian and hyporheic piezometers. Using these data, we develop a simple model to calculate apparent downwelling locations of hyporheic flowpaths and estimate the associated probability of downwelling along the stream centerline. Key conclusions relate flowpath geometry and timescale to geological setting and hydrological forcing.

  11. Effect of homogenization heat treatment on the microstructure and heat- affected zone microfissuring in welded cast alloy 718

    NASA Astrophysics Data System (ADS)

    Huang, Xiao; Chaturvedi, M. C.; Richards, N. L.

    1996-03-01

    The effect of homogenization temperature on microfissuring in the heat-affected zones of electronwelded cast INCONEL 718 has been studied. The material was homogenized at various temperatures in the range of 1037 ° to 1163 ° and air-cooled. The homogenized material was then electron-beam welded by the bead-on-plate welding technique. The microstructures and microfissuring in the heat-affected zone (HAZ) were evaluated by analytical scanning electron microscopy (SEM). The grain boundary segregation of various elements was evaluated by secondary ion mass spectroscopy (SIMS). It was observed that the total crack length (TCL) of microfissures first decreases with homogenization temperature and then increases, with a minimum occurring in the specimen heat treated at 1163 °. This trend coincides with the variation in segregation of B at grain boundaries with homogenization temperature and has been explained by equilibrium and nonequilibrium segregation of B to grain boundaries during the homogenization heat treatment. No other element was observed to segregate at the grain boundaries. The variation in volume fraction of phases like δ-Ni3Nb, MC carbide, and Laves phases does not follow the same trend as that observed for TCL and B segregation at the grain boundaries. Therefore, microfissuring in HAZ of welded cast INCONEL 718 is attributed to the segregation of B at the grain boundaries.

  12. Enhancement of Heat-Affected Zone Toughness of a Low Carbon Steel by TiN Particle

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Li, Xiaobao; Ma, Han

    2016-08-01

    Enhancement of heat-affected zone toughness of a weight percentage of 0.014 pct Ti-bearing low carbon steel by TiN particle was investigated. An increase in nitrogen weight percentage from 0.0031 to 0.0083 pct results in increasing of number density of TiN precipitates from 4 × 103 to 3 × 105/mm2, and reduces prior austenite grain size from 850 to 350 μm with a soaking of 1673 K (1400 °C) for 2000 seconds. Effective refinement of austenite grain prohibits formation of ferrite side plate and/or upper bainite, and densely distributed TiN particles promote intra-granular ferrite formation, which is accompanied by an increase of 40 K to 60 K (40 °C to 60 °C) in austenite decomposition temperature during continuous cooling process. The changes in transformed products improved impact toughness of heat-affected zone efficiently, ex., increase absorbed energy of less than 42 J to more than 320 J with a simulated t 8/5 of 550 seconds.

  13. Waste storage in the vadose zone affected by water vapor condensation and leaching

    SciTech Connect

    Cary, J.W.; Gee, G.W.; Whyatt, G.A.

    1990-08-01

    One of the major concerns associated with waste storage in the vadose zone is that toxic materials may somehow be leached and transported by advecting water down to the water table and reach the accessible environment through either a well or discharge to a river. Consequently, care is taken to provide barriers over and around the storage sites to reduce contact between infiltrating water and the buried waste form. In some cases, it is important to consider the intrusion of water vapor as well as water in the liquid phase. Water vapor diffuses through porous material along vapor pressure gradients. A slightly low temperature, or the presence of water-soluble components in the waste, favors water condensation resulting in leaching of the waste form and advection of water-soluble components to the water table. A simple analysis is presented that allows one to estimate the rate of vapor condensation as a function of waste composition and backfill materials. An example using a waste form surrounded by concrete and gravel layers is presented. The use of thermal gradients to offset condensation effects of water-soluble components in the waste form is discussed. Thermal gradients may be controlled by design factors that alter the atmospheric energy exchange across the soil surface or that interrupt the geothermal heat field. 7 refs., 2 figs., 1 tab.

  14. Factors Affecting the Latitudinal Location of the Intertropical Convergence Zone in a GCM

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Chen, Baode

    2002-01-01

    The dominant role of the latitudinal peak of the sea surface temperature (SST) in determining the latitudinal location of the intertropical convergence zone (ITCZ) is well-known. However, the roles of the other factors are less well-known and are the topic of this study. These other factors include the inertial stability, the interaction between convection and surface fluxes and the interaction between convection and radiation. Since these interactions involve convection, in a model they involve the cumulus parameterization scheme. These factors are studied with a general circulation model with uniform SST and solar angle. Under the aforementioned model settings, the latitudinal location of the ITCZ is the latitude where the balance of two types of attraction on the ITCZ, both due to earth's rotation, exists. Directly related to the Coriolis parameter, the first type pulls the ITCZ toward the equator and is not sensitive to model design changes. Related to the convective circulation, the second type pulls the ITCZ poleward and is sensitive to model design changes. Due to the shape and the magnitude of the attractors, the balance of the two types of attractions is reached either at the equator or more than 10 degrees away from the equator. The former case results in a single ITCZ over the equator and the latter case a double ITCZ straddling the equator.

  15. Scaling hyporheic exchange and its influence on biogeochemical reactions in aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    O'Connor, Ben L.; Harvey, Judson W.

    2008-12-01

    Hyporheic exchange and biogeochemical reactions are difficult to quantify because of the range in fluid-flow and sediment conditions inherent to streams, wetlands, and nearshore marine ecosystems. Field measurements of biogeochemical reactions in aquatic systems are impeded by the difficulty of measuring hyporheic flow simultaneously with chemical gradients in sediments. Simplified models of hyporheic exchange have been developed using Darcy's law generated by flow and bed topography at the sediment-water interface. However, many modes of transport are potentially involved (molecular diffusion, bioturbation, advection, shear, bed mobility, and turbulence) with even simple models being difficult to apply in complex natural systems characterized by variable sediment sizes and irregular bed geometries. In this study, we synthesize information from published hyporheic exchange investigations to develop a scaling relationship for estimating mass transfer in near-surface sediments across a range in fluid-flow and sediment conditions. Net hyporheic exchange was quantified using an effective diffusion coefficient (De) that integrates all of the various transport processes that occur simultaneously in sediments, and dimensional analysis was used to scale De to shear stress velocity, roughness height, and permeability that describe fluid-flow and sediment characteristics. We demonstrated the value of the derived scaling relationship by using it to quantify dissolved oxygen (DO) uptake rates on the basis of DO profiles in sediments and compared them to independent flux measurements. The results support a broad application of the De scaling relationship for quantifying coupled hyporheic exchange and biogeochemical reaction rates in streams and other aquatic ecosystems characterized by complex fluid-flow and sediment conditions.

  16. Scaling hyporheic exchange and its influence on biogeochemical reactions in aquatic ecosystems

    USGS Publications Warehouse

    O'Connor, B.L.; Harvey, J.W.

    2008-01-01

    Hyporheic exchange and biogeochemical reactions are difficult to quantify because of the range in fluid-flow and sediment conditions inherent to streams, wetlands, and nearshore marine ecosystems. Field measurements of biogeochemical reactions in aquatic systems are impeded by the difficulty of measuring hyporheic flow simultaneously with chemical gradients in sediments. Simplified models of hyporheic exchange have been developed using Darcy's law generated by flow and bed topography at the sediment-water interface. However, many modes of transport are potentially involved (molecular diffusion, bioturbation, advection, shear, bed mobility, and turbulence) with even simple models being difficult to apply in complex natural systems characterized by variable sediment sizes and irregular bed geometries. In this study, we synthesize information from published hyporheic exchange investigations to develop a scaling relationship for estimating mass transfer in near-surface sediments across a range in fluid-flow and sediment conditions. Net hyporheic exchange was quantified using an effective diffusion coefficient (De) that integrates all of the various transport processes that occur simultaneously in sediments, and dimensional analysis was used to scale De to shear stress velocity, roughness height, and permeability that describe fluid-flow and sediment characteristics. We demonstrated the value of the derived scaling relationship by using it to quantify dissolved oxygen (DO) uptake rates on the basis of DO profiles in sediments and compared them to independent flux measurements. The results support a broad application of the De scaling relationship for quantifying coupled hyporheic exchange and biogeochemical reaction rates in streams and other aquatic ecosystems characterized by complex fluid-flow and sediment conditions.

  17. Health in the hot zone - How could global warming affect humans?

    SciTech Connect

    Monastersky, R.

    1996-04-06

    A soon-to-be-released report from the World Health Organization examines the health effects of global warming, calling climate change one of the largest public health challenges for the upcoming century. The issue extends beyond tropical illness: deaths caused directly by heat, dwindling agricultural yields etc. could all affect human health. This article looks at the following health related effects and gives an overview of the scientific information available on each: temperature and mortality; tropical trouble, including vecorborne diseases and increase in susceptable populations; and waterborne problems such as cholera, harmful algal bloomes, food shortages.

  18. Statistical analysis of factors affecting landslide distribution in the new Madrid seismic zone, Tennessee and Kentucky

    USGS Publications Warehouse

    Jibson, R.W.; Keefer, D.K.

    1989-01-01

    More than 220 large landslides along the bluffs bordering the Mississippi alluvial plain between Cairo, Ill., and Memphis, Tenn., are analyzed by discriminant analysis and multiple linear regression to determine the relative effects of slope height and steepness, stratigraphic variation, slope aspect, and proximity to the hypocenters of the 1811-12 New Madrid, Mo., earthquakes on the distribution of these landslides. Three types of landslides are analyzed: (1) old, coherent slumps and block slides, which have eroded and revegetated features and no active analogs in the area; (2) old earth flows, which are also eroded and revegetated; and (3) young rotational slumps, which are present only along near-river bluffs, and which are the only young, active landslides in the area. Discriminant analysis shows that only one characteristic differs significantly between bluffs with and without young rotational slumps: failed bluffs tend to have sand and clay at their base, which may render them more susceptible to fluvial erosion. Bluffs having old coherent slides are significantly higher, steeper, and closer to the hypocenters of the 1811-12 earthquakes than bluffs without these slides. Bluffs having old earth flows are likewise higher and closer to the earthquake hypocenters. Multiple regression analysis indicates that the distribution of young rotational slumps is affected most strongly by slope steepness: about one-third of the variation in the distribution is explained by variations in slope steepness. The distribution of old coherent slides and earth flows is affected most strongly by slope height, but the proximity to the hypocenters of the 1811-12 earthquakes also significantly affects the distribution. The results of the statistical analyses indicate that the only recently active landsliding in the area is along actively eroding river banks, where rotational slumps formed as bluffs are undercut by the river. The analyses further indicate that the old coherent slides

  19. Remote sensing for assessing the zone of benefit where deep drains improve productivity of land affected by shallow saline groundwater.

    PubMed

    Kobryn, H T; Lantzke, R; Bell, R; Admiraal, R

    2015-03-01

    The installation of deep drains is an engineering approach to remediate land salinised by the influence of shallow groundwater. It is a costly treatment and its economic viability is, in part, dependent on the lateral extent to which the drain increases biological productivity by lowering water tables and soil salinity (referred to as the drains' zone of benefit). Such zones may be determined by assessing the biological productivity response of adjacent vegetation over time. We tested a multi-temporal satellite remote sensing method to analyse temporal and spatial changes in vegetation condition surrounding deep drainage sites at five locations in the Western Australian wheatbelt affected by dryland salinity-Morawa, Pithara, Beacon, Narembeen and Dumbleyung. Vegetation condition as a surrogate for biological productivity was assessed by Normalised Difference Vegetation Index (NDVI) during the peak growing season. Analysis was at the site scale within a 1000 m buffer zone from the drains. There was clear evidence of NDVI increasing with elevation, slope and distance from the drain. After accounting for elevation, slope and distance from the drain, there was a significant increase in NDVI across the five locations after installation of deep drains. Changes in NDVI after drainage were broadly consistent with measured changes at each site in groundwater levels after installation of the deep drains. However, this study assessed the lateral extent of benefit for biological productivity and gave a measure of the area of benefit along the entire length of the drain. The method demonstrated the utility of spring NDVI images for rapid and relatively simple assessment of the change in site condition after implementation of drainage, but approaches for further improvement of the procedure were identified.

  20. Linking river, floodplain, and vadose zone hydrology to improve restoration of a coastal river affected by saltwater intrusion.

    PubMed

    Kaplan, D; Muñoz-Carpena, R; Wan, Y; Hedgepeth, M; Zheng, F; Roberts, R; Rossmanith, R

    2010-01-01

    Floodplain forests provide unique ecological structure and function, which are often degraded or lost when watershed hydrology is modified. Restoration of damaged ecosystems requires an understanding of surface water, groundwater, and vadose (unsaturated) zone hydrology in the floodplain. Soil moisture and porewater salinity are of particular importance for seed germination and seedling survival in systems affected by saltwater intrusion but are difficult to monitor and often overlooked. This study contributes to the understanding of floodplain hydrology in one of the last bald cypress [Taxodium distichum (L.) Rich.] floodplain swamps in southeast Florida. We investigated soil moisture and porewater salinity dynamics in the floodplain of the Loxahatchee River, where reduced freshwater flow has led to saltwater intrusion and a transition to salt-tolerant, mangrove-dominated communities. Twenty-four dielectric probes measuring soil moisture and porewater salinity every 30 min were installed along two transects-one in an upstream, freshwater location and one in a downstream tidal area. Complemented by surface water, groundwater, and meteorological data, these unique 4-yr datasets quantified the spatial variability and temporal dynamics of vadose zone hydrology. Results showed that soil moisture can be closely predicted based on river stage and topographic elevation (overall Nash-Sutcliffe coefficient of efficiency = 0.83). Porewater salinity rarely exceeded tolerance thresholds (0.3125 S m(-1)) for bald cypress upstream but did so in some downstream areas. This provided an explanation for observed vegetation changes that both surface water and groundwater salinity failed to explain. The results offer a methodological and analytical framework for floodplain monitoring in locations where restoration success depends on vadose zone hydrology and provide relationships for evaluating proposed restoration and management scenarios for the Loxahatchee River.

  1. Precipitate microstructures and resulting properties of Al-Zn-Mg metal inert gas-weld heat-affected zones

    NASA Astrophysics Data System (ADS)

    Nicolas, M.; Deschamps, A.

    2004-05-01

    Using the combination of small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM), the precipitate microstructure is quantitatively investigated in the heat-affected zones (HAZs) of Al-Zn-Mg metal inert gas (MIG)-welds, and the resulting mechanical properties are determined by hardness measurements. Three initial states prior to welding (T4, T6, and T7) are investigated, and the subsequent microstructure evolution during natural aging and postwelding heat treatments (PWHTs) is assessed. The critical part of the HAZ is shown to be the transition region where partial dissolution of the initially present precipitates occurs. In this transition zone, precipitate coarsening is shown to occur for the T6 and T7 initial states, contrarily to the T4 material. After PWHT, the T6 and T7 materials experience a weak region related to this coarsening behavior, whereas the T4 material HAZ is able to recover a homogeneous microstructure after a suitably chosen PWHT. Simple model ramp heat treatments are shown to describe the main phenomena involved in the HAZ. Finally, a precipitation hardening model is successfully applied to the microstructural data to describe the hardness profiles in the various HAZs.

  2. Modeling phase transformation behavior during thermal cycling in the heat-affected zone of stainless steel welds

    SciTech Connect

    Vitek, J.M.; Iskander, Y.S.; David, S.A.

    1995-12-31

    An implicit finite-difference analysis was used to model the diffusion-controlled transformation behavior in a ternary system. The present analysis extends earlier work by examining the transformation behavior under the influence of multiple thermal cycles. The analysis was applied to the Fe-Cr-Ni ternary system to simulate the microstructural development in austenitic stainless steel welds. The ferrite-to-austenite transformation was studied in an effort to model the response of the heat-affected zone to multiple thermal cycles experienced during multipass welding. Results show that under some conditions, a transformation ``inertia`` exists that delays the system`s response when changing from cooling to heating. Conditions under which this ``inertia`` is most influential were examined. It was also found that under some conditions, the transformation behavior does not follow the equilibrium behavior as a function of temperature. Results also provide some insight into effect of composition distribution on transformation behavior.

  3. Factors affecting the quality of fish caught by Native Americans in the Zone 6 fishery 1991 through 1993

    SciTech Connect

    Abernethy, C.S.

    1994-09-01

    A program to monitor the salmon and steelhead (Oncorhynchus spp.) fishery in the lower Columbia River (Zone 6 fishery) was initiated in 1991 to respond to questions and comments frequently made by Native Americans at public meetings. Native Americans were concerned that the quality of the Columbia River had deteriorated and that the poor environmental conditions had affected the health and quality of fish they relied on for subsistence, ceremonial, religious, and commercial purposes. They also feared that eating contaminated fish might endanger the health of their children and future generations. Operations at the Hanford Site were listed as one of many causes of the deteriorating environment. Fisheries pathologists concluded that most of the external symptoms on fish were related to bacterial infection of gill net abrasions and pre-spawning trauma, and were not caused by pollution or contamination of the Columbia River. The pathologists also stated that consumption of the fish posed no threat to human consumers.

  4. Cleavage initiation in the intercritically reheated coarse-grained heat affected zone. Part 2: Failure criteria and statistical effects

    SciTech Connect

    Davis, C.L.; King, J.E.

    1996-10-01

    In part 1 of this article, cleavage initiation in the intercritically reheated coarse-grained heat affected zone (IC CG HAZ) of high-strength low-alloy (HSLA) steels was determined to occur between two closely spaced blocky MA particles. Blunt notch, crack tip opening displacement (CTOD), and precracked Charpy testing were used in this investigation to determine the failure criteria required for cleavage initiation to occur by this mechanism in the IC CG HAZ. It was found that the attainment of a critical level of strain was required in addition to a critical level of stress. This does not occur in the case of high strain rate testing, for example, during precracked Charpy testing. A different cleavage initiation mechanism is then found to operate. The precise fracture criteria and microstructural requirements (described in part 1 of this article) result in competition between potential cleavage initiation mechanisms in the IC CG HAZ.

  5. Dissolved barium behavior in Louisiana Shelf waters affected by the Mississippi/Atchafalaya River mixing zone

    NASA Astrophysics Data System (ADS)

    Joung, DongJoo; Shiller, Alan M.

    2014-09-01

    a proxy for paleo-salinity changes. Barium input to bottom waters and the extent to which this is natural or anthropogenically-affected is a particular source of uncertainty. Thus, as is the case with nearly all paleoceanographic proxies, the planktonic foraminiferal Ba/Ca ratio should be used in conjunction with other constraining proxies.

  6. Physical controls and predictability of stream hyporheic flow evaluated with a multiscale model

    USGS Publications Warehouse

    Stonedahl, Susa H.; Harvey, Judson W.; Detty, Joel; Aubeneau, Antoine; Packman, Aaron I.

    2012-01-01

    Improved predictions of hyporheic exchange based on easily measured physical variables are needed to improve assessment of solute transport and reaction processes in watersheds. Here we compare physically based model predictions for an Indiana stream with stream tracer results interpreted using the Transient Storage Model (TSM). We parameterized the physically based, Multiscale Model (MSM) of stream-groundwater interactions with measured stream planform and discharge, stream velocity, streambed hydraulic conductivity and porosity, and topography of the streambed at distinct spatial scales (i.e., ripple, bar, and reach scales). We predicted hyporheic exchange fluxes and hyporheic residence times using the MSM. A Continuous Time Random Walk (CTRW) model was used to convert the MSM output into predictions of in stream solute transport, which we compared with field observations and TSM parameters obtained by fitting solute transport data. MSM simulations indicated that surface-subsurface exchange through smaller topographic features such as ripples was much faster than exchange through larger topographic features such as bars. However, hyporheic exchange varies nonlinearly with groundwater discharge owing to interactions between flows induced at different topographic scales. MSM simulations showed that groundwater discharge significantly decreased both the volume of water entering the subsurface and the time it spent in the subsurface. The MSM also characterized longer timescales of exchange than were observed by the tracer-injection approach. The tracer data, and corresponding TSM fits, were limited by tracer measurement sensitivity and uncertainty in estimates of background tracer concentrations. Our results indicate that rates and patterns of hyporheic exchange are strongly influenced by a continuum of surface-subsurface hydrologic interactions over a wide range of spatial and temporal scales rather than discrete processes.

  7. The importance of hyporheic sediment respiration in several mid-order Michigan rivers: Comparison between methods in estimates of lotic metabolism

    USGS Publications Warehouse

    Uzarski, D.G.; Stricker, C.A.; Burton, T.M.; King, D. K.; Steinman, A.D.

    2004-01-01

    Metabolism was measured in four Michigan streams, comparing estimates made using a flow-through chamber designed to include the hyporheic zone to a 20 cm depth and a traditional closed chamber that enclosed to a 5 cm depth. Mean levels of gross primary productivity and community respiration were consistently greater in the flow-through chamber than the closed chamber in all streams. Ratios of productivity to respiration (P/R) were consistently greater in the closed chambers than the flow-through chambers. P/R ratios were consistently <1 in all streams when estimated with flow-through chambers, suggesting heterotrophic conditions. Maintenance of stream ecosystem structure and function therefore is dependent on subsidies either from the adjacent terrestrial system or upstream sources. Our results suggest that stream metabolism studies that rely on extrapolation of closed chambers to the whole reach will most likely underestimate gross primary productivity and community respiration.

  8. Investigation of Hyporheic Microbial Biofilms as Indicators of Heavy Metal Toxicity in the Clark Fork Basin, Montana

    NASA Astrophysics Data System (ADS)

    Barnhart, E. P.; Hwang, C.; Bouskill, N.; Hornberger, M.; Fields, M. W.

    2015-12-01

    Water-saturated sediments that underlie a stream channel contain microbial biofilms that are often responsible for the majority of the metabolic activity in river and stream ecosystems. Metal contamination from mining effluent can modify the biofilm community structure, diversity, and activity. Developing a mechanistic understanding of the biofilm response to metal contamination could provide a useful bioindicator of metal toxicity due to the ease of standard biofilm sampling, environmental ubiquity of biofilms and the rapid response of biofilms to environmental perturbation and metal toxicity. Here we present data on the structure of the biofilm community (e.g., microbial population composition and diversity) and trace metal concentrations in water, bed sediment and biota (benthic insects) across 15 sites in the Clark Fork Basin. Sample sites were selected across a historically-monitored metal pollution gradient at shallow riffles with bed sediment predominantly composed of pebbles, cobbles, and sand. Bed-sediment samples (for biofilm analysis) were obtained from the top 20 centimeters of the hyporheic zone and sieved using sterile sieves to obtain homogeneous sediment samples with particle sizes ranging from 1.70 to 2.36 millimeters. Linear discriminant analysis and effect size statistical methods were used to integrate the metals concentration data (for water and benthic-insects samples) with the microbial community analysis to identify microbial biomarkers of metal toxicity. The development of rapid microbial biomarker tools could provide reproducible and quantitative insights into the effectiveness of remediation activities on metal toxicity and advances in the field of environmental biomonitoring.

  9. Neural Network approach to assess the thermal affected zone around the injection well in a groundwater heat pump system

    NASA Astrophysics Data System (ADS)

    Lo Russo, Stefano; Taddia, Glenda; Verda, Vittorio

    2014-05-01

    The common use of well doublets for groundwater-sourced heating or cooling results in a thermal plume of colder or warmer re-injected groundwater known as the Thermal Affected Zone(TAZ). The plumes may be regarded either as a potential anthropogenic geothermal resource or as pollution, depending on downstream aquifer usage. A fundamental aspect in groundwater heat pump (GWHP) plant design is the correct evaluation of the thermally affected zone that develops around the injection well. Temperature anomalies are detected through numerical methods. Crucial elements in the process of thermal impact assessment are the sizes of installations, their position, the heating/cooling load of the building, and the temperature drop/increase imposed on the re-injected water flow. For multiple-well schemes, heterogeneous aquifers, or variable heating and cooling loads, numerical models that simulate groundwater and heat transport are needed. These tools should consider numerous scenarios obtained considering different heating/cooling loads, positions, and operating modes. Computational fluid dynamic (CFD) models are widely used in this field because they offer the opportunity to calculate the time evolution of the thermal plume produced by a heat pump, depending on the characteristics of the subsurface and the heat pump. Nevertheless, these models require large computational efforts, and therefore their use may be limited to a reasonable number of scenarios. Neural networks could represent an alternative to CFD for assessing the TAZ under different scenarios referring to a specific site. The use of neural networks is proposed to determine the time evolution of the groundwater temperature downstream of an installation as a function of the possible utilization profiles of the heat pump. The main advantage of neural network modeling is the possibility of evaluating a large number of scenarios in a very short time, which is very useful for the preliminary analysis of future multiple

  10. A process model for the heat-affected zone microstructure evolution in duplex stainless steel weldments: Part I. The model

    SciTech Connect

    Hemmer, H.; Grong, O.

    1999-11-01

    The present investigation is concerned with modeling of the microstructure evolution in duplex stainless steels under thermal conditions applicable to welding. The important reactions that have been modeled are the dissolution of austenite during heating, subsequent grain growth in the delta ferrite regime, and finally, the decomposition of the delta ferrite to austenite during cooling. As a starting point, a differential formulation of the underlying diffusion problem is presented, based on the internal-state variable approach. These solutions are later manipulated and expressed in terms of the Scheil integral in the cases where the evolution equation is separable or can be made separable by a simple change of variables. The models have then been applied to describe the heat-affected zone microstructure evolution during both thick-plate and thin-plate welding of three commercial duplex stainless steel grades: 2205, 2304, and 2507. The results may conveniently be presented in the form of novel process diagrams, which display contours of constant delta ferrite grain size along with information about dissolution and reprecipitation of austenite for different combinations of weld input energy and peak temperature. These diagrams are well suited for quantitative readings and illustrate, in a condensed manner, the competition between the different variables that lead to structural changes during welding of duplex stainless steels.

  11. Green reconstruction of the tsunami-affected areas in India using the integrated coastal zone management concept.

    PubMed

    Sonak, Sangeeta; Pangam, Prajwala; Giriyan, Asha

    2008-10-01

    A tsunami, triggered by a massive undersea earthquake off Sumatra in Indonesia, greatly devastated the lives, property and infrastructure of coastal communities in the coastal states of India, Andaman and Nicobar Islands, Indonesia, Sri Lanka, Malaysia and Thailand. This event attracted the attention of environmental managers at all levels, local, national, regional and global. It also shifted the focus from the impact of human activities on the environment to the impacts of natural hazards. Recovery/reconstruction of these areas is highly challenging. A clear understanding of the complex dynamics of the coast and the types of challenges faced by the several stakeholders of the coast is required. Issues such as sustainability, equity and community participation assume importance. The concept of ICZM (integrated coastal zone management) has been effectively used in most parts of the world. This concept emphasizes the holistic assessment of the coast and a multidisciplinary analysis using participatory processes. It integrates anthropocentric and eco-centric approaches. This paper documents several issues involved in the recovery of tsunami-affected areas and recommends the application of the ICZM concept to the reconstruction efforts. PMID:17544565

  12. A process model for the heat-affected zone microstructure evolution in duplex stainless steel weldments: Part I. the model

    NASA Astrophysics Data System (ADS)

    Hemmer, H.; Grong, Ø.

    1999-11-01

    The present investigation is concerned with modeling of the microstructure evolution in duplex stainless steels under thermal conditions applicable to welding. The important reactions that have been modeled are the dissolution of austenite during heating, subsequent grain growth in the delta ferrite regime, and finally, the decomposition of the delta ferrite to austenite during cooling. As a starting point, a differential formulation of the underlying diffusion problem is presented, based on the internal-state variable approach. These solutions are later manipulated and expressed in terms of the Scheil integral in the cases where the evolution equation is separable or can be made separable by a simple change of variables. The models have then been applied to describe the heat-affected zone microstructure evolution during both thick-plate and thin-plate welding of three commercial duplex stainless steel grades: 2205, 2304, and 2507. The results may conveniently be presented in the form of novel process diagrams, which display contours of constant delta ferrite grain size along with information about dissolution and reprecipitation of austenite for different combinations of weld input energy and peak temperature. These diagrams are well suited for quantitative readings and illustrate, in a condensed manner, the competition between the different variables that lead to structural changes during welding of duplex stainless steels.

  13. Green reconstruction of the tsunami-affected areas in India using the integrated coastal zone management concept.

    PubMed

    Sonak, Sangeeta; Pangam, Prajwala; Giriyan, Asha

    2008-10-01

    A tsunami, triggered by a massive undersea earthquake off Sumatra in Indonesia, greatly devastated the lives, property and infrastructure of coastal communities in the coastal states of India, Andaman and Nicobar Islands, Indonesia, Sri Lanka, Malaysia and Thailand. This event attracted the attention of environmental managers at all levels, local, national, regional and global. It also shifted the focus from the impact of human activities on the environment to the impacts of natural hazards. Recovery/reconstruction of these areas is highly challenging. A clear understanding of the complex dynamics of the coast and the types of challenges faced by the several stakeholders of the coast is required. Issues such as sustainability, equity and community participation assume importance. The concept of ICZM (integrated coastal zone management) has been effectively used in most parts of the world. This concept emphasizes the holistic assessment of the coast and a multidisciplinary analysis using participatory processes. It integrates anthropocentric and eco-centric approaches. This paper documents several issues involved in the recovery of tsunami-affected areas and recommends the application of the ICZM concept to the reconstruction efforts.

  14. Characterization of Low Temperature Ferrite/Austenite Transformations in the Heat Affected Zone of 2205 Duplex Stainless Steel Arc Welds

    SciTech Connect

    Palmer, T A; Elmer, J W; Babu, S S; Vitek, J M

    2003-08-20

    Spatially Resolved X-Ray Diffraction (SRXRD) has been used to identify a previously unobserved low temperature ferrite ({delta})/austenite({gamma}) phase transformation in the heat affected zone (HAZ) of 2205 Duplex Stainless Steel (DSS) welds. In this ''ferrite dip'' transformation, the ferrite transforms to austenite during heating to peak temperatures on the order of 750 C, and re-transforms to ferrite during cooling, resulting in a ferrite volume fraction equivalent to that in the base metal. Time Resolved X-Ray Diffraction (TRXRD) and laser dilatometry measurements during Gleeble{reg_sign} thermal simulations are performed in order to verify the existence of this low temperature phase transformation. Thermodynamic and kinetic models for phase transformations, including both local-equilibrium and para-equilibrium diffusion controlled growth, show that diffusion of substitutional alloying elements does not provide a reasonable explanation for the experimental observations. On the other hand, the diffusion of interstitial alloying elements may be rapid enough to explain this behavior. Based on both the experimental and modeling results, two mechanisms for the ''ferrite dip'' transformation, including the formation and decomposition of secondary austenite and an athermal martensitic-type transformation of ferrite to austenite, are considered.

  15. Recovery approach affects soil quality in the water level fluctuation zone of the Three Gorges Reservoir, China: implications for revegetation.

    PubMed

    Ye, Chen; Cheng, Xiaoli; Zhang, Quanfa

    2014-02-01

    Plants in the water level fluctuation zone of the Three Gorges Reservoir Region disappeared due to winter-flooding and prolonged inundation. Revegetation (plantation and natural recovery) have been promoted to restore and protect the riparian ecosystem in recent years. Revegetation may affect soil qualities and have broad important implications both for ecological services and soil recovery. In this study, we investigated soil properties including soil pH values, bulk density, soil organic matter (SOM), soil nutrients and heavy metals, soil microbial community structure, microbial biomass, and soil quality index under plantation and natural recovery in the Three Gorges Reservoir Region. Most soil properties showed significant temporal and spatial variations in both the plantation and natural recovery areas. Higher contents of SOM and NO3-N were found in plantation area, while higher contents of soil pH values, bulk density, and total potassium were observed in the natural recovery area. However, there were no significant differences in plant richness and diversity and soil microbial community structure between the two restoration approaches. A soil quality index derived from SOM, bulk density, Zn, Cd, and Hg indicated that natural recovery areas with larger herbaceous coverage had more effective capacity for soil restoration. PMID:24019143

  16. Effect of boron segregation at grain boundaries on heat-affected zone cracking in wrought INCONEL 718

    NASA Astrophysics Data System (ADS)

    Chen, W.; Chaturvedi, M. C.; Richards, N. L.

    2001-04-01

    Susceptibility to heat-affected zone (HAZ) cracking during electron-beam welding was studied in two INCONEL 718-based alloys doped with different levels of boron. By lowering the carbon, sulfur, and phosphorous concentrations to be “as low as possible,” the occurrence of HAZ cracking was related directly to the level of segregation of boron at grain boundaries, which occurred by nonequilibrium segregation during a preweld heat treatment. The study has demonstrated a direct correlation between the amount of boron segregated at grain boundaries and their susceptibility to HAZ cracking, in terms of the total crack length and number of cracks observed in the HAZ. The analysis of results suggests that both the melting and resolidification temperatures of the boron-segregated grain boundaries can be about 100 °C to 200 °C lower than those of the grain boundaries that were susceptible to constitutional liquation of Nb carbides on them, making boron more deleterious in causing HAZ cracking.

  17. Recovery approach affects soil quality in the water level fluctuation zone of the Three Gorges Reservoir, China: implications for revegetation.

    PubMed

    Ye, Chen; Cheng, Xiaoli; Zhang, Quanfa

    2014-02-01

    Plants in the water level fluctuation zone of the Three Gorges Reservoir Region disappeared due to winter-flooding and prolonged inundation. Revegetation (plantation and natural recovery) have been promoted to restore and protect the riparian ecosystem in recent years. Revegetation may affect soil qualities and have broad important implications both for ecological services and soil recovery. In this study, we investigated soil properties including soil pH values, bulk density, soil organic matter (SOM), soil nutrients and heavy metals, soil microbial community structure, microbial biomass, and soil quality index under plantation and natural recovery in the Three Gorges Reservoir Region. Most soil properties showed significant temporal and spatial variations in both the plantation and natural recovery areas. Higher contents of SOM and NO3-N were found in plantation area, while higher contents of soil pH values, bulk density, and total potassium were observed in the natural recovery area. However, there were no significant differences in plant richness and diversity and soil microbial community structure between the two restoration approaches. A soil quality index derived from SOM, bulk density, Zn, Cd, and Hg indicated that natural recovery areas with larger herbaceous coverage had more effective capacity for soil restoration.

  18. Low-Temperature Sensitization Behavior of Base, Heat-Affected Zone, and Weld Pool in AISI 304LN

    NASA Astrophysics Data System (ADS)

    Singh, Raghuvir; Das, Gautam; Singh, P. K.; Chattoraj, I.

    2009-05-01

    Present investigations were focused on low-temperature sensitization (LTS) behavior of 304LN stainless steels considered from pipes of two different thicknesses. The specimens for the present study were taken from solution-annealed pipes (of varying thicknesses) and welded pipes (including the heat-affected zone (HAZ)). The specimens were subjected to thermal aging at 400 °C and 450 °C for different durations ranging from 125 to 8000 hours, to evaluate their sensitization susceptibility. The aging durations were worked out to simulate the 30-to-100-year life of the studied stainless steel at 300 °C using the Arrheneous equation and considering the activation energy of 150 kJ/mol. The thermally aged specimens were characterized for their degree of sensitization (DOS) and susceptibility to intergranular corrosion (IGC) by double-loop (DL) electrochemical potentiokinetic reactivation (EPR) and by methods given in the ASTM A262 practices A and E. It has been clearly shown that the weld pool is more sensitive to IGC than are the base and the HAZ at both the aging temperatures (LTS), because they showed IGC cracks during the bending subsequent to the boiling in H2SO4-CuSO4 solution. Both the base and the HAZ of the thicker pipe material showed susceptibility to sensitization, as indicated by the increasing DOS and “dual-type” microstructure during electrolytic oxalic acid (EOA) etching; however, they were found safe from IGC for the studied sensitization times. The susceptibility to sensitization and IGC in the weld pool is related to the presence of copious delta ferrite with chromium diffusivity that is accelerated compared to the austenite phase. The time-temperature-sensitization (TTS) curves were prepared accordingly, based on these results.

  19. A SYNCHROTRON DIFFRACTION STUDY OF TRANSFORMATION BEHAVIOUR IN 9 CR STEELS USING SIMULATED WELD HEAT-AFFECTED ZONE CONDITIONS

    SciTech Connect

    Santella, Michael L; Specht, Eliot D; Shingledecker, John P; Abe, Fujio

    2007-01-01

    Synchrotron diffraction experiments were conducted to examine the real-time transformation behaviours of an ex-perimental 9Cr-3W-3Co-NbV steel with high B and low N (N130B), and the commercial P92 steel under simulated weld heat-affected zone thermal cycles. When heated to peak temperatures near 1100 C, both steels rapidly trans-formed from ferrite to 100% austenite. During cooling, both transformed to martensite near 400 C. Both steels also retained untransformed austenite: 1.7% in N130B, and 5.8% in P92. The N130B was also heated to about 60 C above its A3 of 847 C. About 56% of the original ferrite never transformed to austenite. During cooling an additional 21% of ferrite and 23% of martensite formed. It retained no austenite. The P92 was heated to just above its A3 of 889 C. About 15% of the original ferrite never transformed to austenite. During cooling an additional 22% of ferrite and 60% of martensite formed. This steel retained about 2.3% austenite. Metallographic examina-tions indicated that the M23C6 in N130B was much more stable than that in P92 for heating to the lower peak tem-peratures. Analysis using equilibrium thermodynamics suggested that the more stable M23C6 in N130B could raise its apparent A3 by sequestering C. This could cause the ferrite-austenite transformation to appear sluggish. Ther-modynamic analysis also indicated that the M23C6 in N130B contained about 3.9 at% B compared to about 0.08 at% B in that of P92. In contrast, the refractory metal element content of the M23C6 was predicted to be higher in P92.

  20. Liquation Microfissuring in the Weld Heat-Affected Zone of an Overaged Precipitation-Hardened Nickel-Base Superalloy

    NASA Astrophysics Data System (ADS)

    Ojo, O. A.; Chaturvedi, M. C.

    2007-02-01

    The effect of preweld overaging heat treatment on the microstructural response in the heat-affected zone (HAZ) of a precipitation-hardened nickel-base superalloy INCONEL 738LC subjected to the welding thermal cycle ( i.e., rapid) was investigated. The overaging heat treatment resulted in the formation of an interfacial microconstituent containing M23X6 particles and coarsening of primary and secondary γ' precipitates. The HAZ microstructures around welds in the overaged alloy were simulated using the Gleeble thermomechanical simulation system. Microstructural examination of simulated HAZs and those present in tungsten inert gas (TIG) welded specimens showed the occurrence of extensive grain boundary liquation involving liquation reaction of the interfacial microconstituents containing M23X6 particles and MC-type carbides. In addition, the coarsened γ' precipitate particles present in the overaged alloy persisted well above their solvus temperature to temperatures where they constitutionally liquated and contributed to considerable liquation of grain boundaries, during continuous rapid heating. Intergranular HAZ microfissuring, with resolidified product formed mostly on one side of the microfissures, was observed in welded specimens. This suggested that the HAZ microfissuring generally occurred by decohesion across one of the solid-liquid interfaces during the grain boundary liquation stage of the weld thermal cycle. Correlation of simulated HAZ microstructures with hot ductility properties of the alloy revealed that the temperature at which the alloy exhibited zero ductility during heating was within the temperature range at which grain boundary liquation was observed. The on-cooling ductility of the alloy was significantly damaged by the on-heating liquation reaction, as reflected by the considerably low ductility recovery temperature (DRT). Important characteristics of the intergranular liquid that could influence HAZ microfissuring of the alloy in overaged

  1. From Hyporheic Science to River Restoration: The Contribution of Physically-Based Hydrological Models

    NASA Astrophysics Data System (ADS)

    Käser, D. H.; Binley, A. M.; Heathwaite, L.

    2014-12-01

    River managers need practical tools to promote appropriately hyporheic functions in restoration schemes. Hyporheic ecosystems are largely controlled by hydrological processes, which may be simulated through physically-based models. Despite their apparent limitations (sophisticated, data-hungry, and computationally demanding), these models offer substantial advantages that may pertain to the operational level of river management: representation of specific landscapes, process-based sensitivity analyses, and alternative restoration scenario testing. This presentation builds on idealized and field-based studies, as well as literature examples, to discuss how physically-based models of hyporheic exchange can be fully exploited for restoration purposes. Results suggest that these models are best suited to map spatial patterns of exchange at the sediment-water interface, rather than to estimate HEF fluxes and residence times. Because subsurface data are typically unavailable or sparse, an approach combining high-resolution topographic data combined with a sensitivity analysis appears as a promising approach for: (a) delineating potential areas of upwelling and downwelling along longitudinal and lateral channel sections; and (b) highlighting potential differences in HEF characteristics between reaches. To achieve satisfactory simulations, however, the challenge lies in the topographic representation of the channel and the discretization of the mesh. Here, common pitfalls are identified, and guidance to overcome these is provided.

  2. Effects of habitat quality and ambient hyporheic flows on salmon spawning site selection

    NASA Astrophysics Data System (ADS)

    Benjankar, Rohan; Tonina, Daniele; Marzadri, Alessandra; McKean, Jim; Isaak, Daniel J.

    2016-05-01

    Understanding the role of stream hydrologic and morphologic variables on the selection of spawning sites by salmonid fishes at high resolution across broad scales is needed for effective habitat restoration and protection. Here we used remotely sensed meter-scale channel bathymetry for a 13.5 km reach of Chinook salmon spawning stream in central Idaho to describe habitat quality and set boundary conditions for a two-dimensional surface water model coupled with a three-dimensional hyporheic flux model. Metrics describing ambient hyporheic flow intensity and habitat quality, which is quantified as a function of stream hydraulics and morphology, were compared to the locations of nests built by female salmon. Nest locations were predicted most accurately by habitat quality followed by channel morphology (i.e., riffles location). As a lesser degree than habitat quality, water surface curvature was also a good indicator of spawning location because its intensity can identify riffle morphology. The ambient hyporheic flow predicted at meter-scale resolution was not a strong predictor of redd site selection. Furthermore, the study suggests direct morphological measurements obtained from easily measured channel bathymetry data could enable effective and rapid assessments of salmon spawning channels across broad areas.

  3. Stochastic modeling of fine particle deposition, resuspension, and hyporheic exchange in rivers

    NASA Astrophysics Data System (ADS)

    Packman, Aaron; Drummond, Jennifer; Aubeneau, Antoine

    2013-04-01

    Fine suspended particles are responsible for substantial flux of organic matter and contaminants in rivers. Further, microorganisms delivered from the terrestrial system or resuspended from benthic and hyporheic biofilms also propagate downstream in rivers, providing connectivity in the river microbial community. Because fine particle concentrations are often similar along the length of rivers, there has been a tendency to think that their dynamics are simple. Historically, fine suspended particles have been considered to show little interaction with streambed sediments. This is a fallacy. Recent observations have demonstrated that fine particles show complex dynamics in rivers, including ongoing deposition and resuspension. This provides substantial opportunity for interaction with benthic and hyporheic sediments and biofilms, which can lead to enhanced processing of fine particulate organic carbon, accumulation of pathogens in riverbeds, and mixing of particle-bound contaminants into bed sediments. Here I will briefly review current understanding of fine particle deposition, resuspension, and hyporheic exchange processes, develop a conceptual model for fine particle dynamics in rivers, and present a stochastic modeling framework that can represent most of these processes. I will close by discussing the limits of current modeling capability and prospects for future development of more general models.

  4. Contents and toxicity of heavy metals in soils of the zone affected by aerial emissions from the Severonikel Enterprise

    NASA Astrophysics Data System (ADS)

    Evdokimova, G. A.; Kalabin, G. V.; Mozgova, N. P.

    2011-02-01

    In 2009, the zoning of the terrestrial ecosystems in the area exposed to aerial emissions from the Severonikel Enterprise (Murmansk oblast) was performed on the basis of the parameters characterizing the state of the soils, including the contents of the main heavy metal pollutants and exchangeable calcium and magnesium, the soils' pH, the ratio of the organic to mineral soil components, and the state of the soils' microbiota. Three zones differing in the degree of the soil pollution were delimited. These were the zones of heavy, moderate, and weak pollution, which extended for up to 3, 25, and 50 km from the emission source in the prevailing wind direction. The data on the amount of bacterial and fungal biomass provided evidence of the profound degradation of the soils in the heavily polluted zone. In particular, the biomass of the soil microbiota, including its prokaryotic and eukaryotic components, was two to six times lower in this zone than in the background (control) area. The soils of the heavily polluted zone can be classified as strongly toxic for plants, and most of the soils of the moderately polluted zone also fall into the same category.

  5. Calibrated heat flow model for the determination of different heat-affected zones in single-pass laser-cut CFRP using a cw CO2 laser

    NASA Astrophysics Data System (ADS)

    Mucha, P.; Berger, P.; Weber, R.; Speker, N.; Sommer, B.; Graf, T.

    2015-03-01

    Laser machining has great potential for automated manufacturing of parts made of carbon-fiber-reinforced plastic (CFRP) due to the nearly force and tool-wear free processing. The high vaporization temperatures and the large heat conductivity of the carbon fibers, however, lead to unintentional heat conduction into the material causing damage in zones close to the process. In this paper, the matrix damage zone (MDZ) is subdivided into a matrix sublimation zone (MSZ) where the matrix material was sublimated and a zone where the temperature temporarily exceeded a value causing structural damage in the matrix. In order to investigate the extent of these zones, a one-dimensional heat flow model was applied, which was calibrated by cutting experiments using temperature sensors embedded in the CFRP samples. The investigations showed that the extents of the MSZ and MDZ are dominated by a total interaction time, which includes the passage of the laser beam and the continued interaction of the cloud of hot ablation products with the carbon fibers at the kerf wall and that from a practical point of view, the experimentally determined effective heat conductivity is suitable for simple estimations of the heat-affected zones in CFRP.

  6. Preliminary simulation of hyporheic hydrology suggests systematic changes in hyporheic flow path length and residence time in response to reach-scale channel restoration in Meacham Creek, OR

    NASA Astrophysics Data System (ADS)

    Amerson, B. E.; Poole, G.

    2011-12-01

    Hyporheic hydrologic response to stream restoration has typically focused on hydrodynamics associated with individual features or habitat units rather than whole reaches. Here we present preliminary results from MODFLOW simulations that compare modeled hyporheic hydrology prior to and after major channel reconfiguration associated with a recently completed reach-scale channel restoration on Meacham Creek in northeastern Oregon. Our model was parameterized using LiDAR floodplain surface elevation data and empirically-derived estimates of aquifer properties. Results show that groundwater flow path length and cumulative residence time distributions are apt to be altered by channel reconfiguration. For example, our model shows that the relatively high-gradient and straight baseline channel is dominated by either short or long flow path lengths, with relatively few medium length flow paths. In contrast, the proposed restoration channel is more sinuous and has a lower gradient. Our modeling suggests that the restoration channel will have a broader distribution of flow path lengths and residence times. We used model results to select well locations for intensive monitoring of groundwater surface elevation and temperature. Monitoring will continue through 2012 and is designed to evaluate model predictions as well as to document the effects of the channel restoration on surface water-groundwater interactions and concomitant effects on water temperature.

  7. Using a spectral approach to compare dynamic and static head driven hyporheic exchange

    NASA Astrophysics Data System (ADS)

    Wörman, Anders; Morén, Ida; Riml, Joakim

    2016-04-01

    Hyporheic exchange is an important process controlling the transportation and fate of solutes in natural streams. The exchange is driven by the hydraulic head gradients over the stream bottom and occurs on a wide range of spatial scales. The hydraulic head gradient is either dominated by the static head, originating from water surface elevation differences or it is dominated by the dynamic head that is created when the velocity head of the stream is transformed to pressure variations along an uneven bed surface. This article uses a power spectral approach to compare the exchange due to the static and dynamic head occurring over a range of spatial scales in the Tullstorps Brook. Prediction of hyporheic exchange is restrained by the complications of performing measurements of high quality and quantity in the field. In this study bottom elevation and water depth was measured with a levelling instrument every 2.56 - 16.83 m along a 500 m long reach of the Tullstorps Brook. The velocity head was calculated at the same sections based on the measured cross section area of the stream and the average discharge during the day when the measurements were done. Parallel to the head investigations a Rhodamine WT tracer test was performed in the reach and the parameters controlling hyporheic exchange was estimated through inverse modelling. These tracer test parameters were compared with theoretical parameters obtained from a spectral model. Hyporheic exchange is often modelled by assuming the head variations to be harmonic with a certain wavelength and amplitude. In the reality the head variation cannot be represented by a single harmonic function, but the representation of head geometry can be improved by superimposing a large number of harmonic functions. Here, to be able to include the whole range of harmonics, we used a power spectral approach to analyse the hydraulic head measurements from the field. The Fourier power spectrum of the data was calculated for the water

  8. WATER QUALITY CHANGES IN HYPORHEIC FLOW PATHS BETWEEN A LARGE GRAVEL BED RIVER AND OFF-CHANNEL ALCOVES IN OREGON, USA

    EPA Science Inventory

    Changes in water quality that occur as water flows along hyporheic flow paths may have important effects on surface water quality and aquatic habitat, yet very few studies have examined these hyporheic processes along large gravel bed rivers. To determine water quality changes as...

  9. DIN retention-transport through four hydrologically connected zones in a headwater catchment of the Upper Mississippi River

    USGS Publications Warehouse

    Triska, F.J.; Duff, J.H.; Sheibley, R.W.; Jackman, A.P.; Avanzino, R.J.

    2007-01-01

    Dissolved inorganic nitrogen (DIN) retention-transport through a headwater catchment was synthesized from studies encompassing four distinct hydrologic zones of the Shingobee River Headwaters near the origin of the Mississippi River. The hydrologic zones included: (1) hillslope ground water (ridge to bankside riparian); (2) alluvial riparian ground water; (3) ground water discharged through subchannel sediments (hyporheic zone); and (4) channel surface water. During subsurface hillslope transport through Zone 1, DIN, primarily nitrate, decreased from ???3 mg-N/l to <0.1 mg-N/l. Ambient seasonal nitrate:chloride ratios in hillslope flow paths indicated both dilution and biotic processing caused nitrate loss. Biologically available organic carbon controlled biotic nitrate retention during hillslope transport. In the alluvial riparian zone (Zone 2) biologically available organic carbon controlled nitrate depletion although processing of both ambient and amended nitrate was faster during the summer than winter. In the hyporheic zone (Zone 3) and stream surface water (Zone 4) DIN retention was primarily controlled by temperature. Perfusion core studies using hyporheic sediment indicated sufficient organic carbon in bed sediments to retain ground water DIN via coupled nitrification-denitrification. Numerical simulations of seasonal hyporheic sediment nitrification-denitrification rates from perfusion cores adequately predicted surface water ammonium but not nitrate when compared to 5 years of monthly field data (1989-93). Mass balance studies in stream surface water indicated proportionally higher summer than winter N retention. Watershed DIN retention was effective during summer under the current land use of intermittently grazed pasture. However, more intensive land use such as row crop agriculture would decrease nitrate retention efficiency and increase loads to surface water. Understanding DIN retention capacity throughout the system, including special channel

  10. Aggregate-cement paste transition zone properties affecting the salt-frost damage of high-performance concretes

    SciTech Connect

    Cwirzen, Andrzej; Penttala, Vesa

    2005-04-01

    The influence of the cement paste-aggregate interfacial transition zone (ITZ) on the frost durability of high-performance silica fume concrete (HPSFC) has been studied. Investigation was carried out on eight non-air-entrained concretes having water-to-binder (W/B) ratios of 0.3, 0.35 and 0.42 and different additions of condensed silica fume. Studies on the microstructure and composition of the cement paste have been made by means of environmental scanning electron microscope (ESEM)-BSE, ESEM-EDX and mercury intrusion porosimetry (MIP) analysis. The results showed that the transition zone initiates and accelerates damaging mechanisms by enhancing movement of the pore solution within the concrete during freezing and thawing cycles. Cracks filled with ettringite were primarily formed in the ITZ. The test concretes having good frost-deicing salt durability featured a narrow transition zone and a decreased Ca/Si atomic ratio in the transition zone compared to the bulk cement paste. Moderate additions of silica fume seemed to densify the microstructure of the ITZ.

  11. Multi-scale interactions affecting transport, storage, and processing of solutes and sediments in stream corridors (Invited)

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; Packman, A. I.

    2010-12-01

    Surface water and groundwater flow interact with the channel geomorphology and sediments in ways that determine how material is transported, stored, and transformed in stream corridors. Solute and sediment transport affect important ecological processes such as carbon and nutrient dynamics and stream metabolism, processes that are fundamental to stream health and function. Many individual mechanisms of transport and storage of solute and sediment have been studied, including surface water exchange between the main channel and side pools, hyporheic flow through shallow and deep subsurface flow paths, and sediment transport during both baseflow and floods. A significant challenge arises from non-linear and scale-dependent transport resulting from natural, fractal fluvial topography and associated broad, multi-scale hydrologic interactions. Connections between processes and linkages across scales are not well understood, imposing significant limitations on system predictability. The whole-stream tracer experimental approach is popular because of the spatial averaging of heterogeneous processes; however the tracer results, implemented alone and analyzed using typical models, cannot usually predict transport beyond the very specific conditions of the experiment. Furthermore, the results of whole stream tracer experiments tend to be biased due to unavoidable limitations associated with sampling frequency, measurement sensitivity, and experiment duration. We recommend that whole-stream tracer additions be augmented with hydraulic and topographic measurements and also with additional tracer measurements made directly in storage zones. We present examples of measurements that encompass interactions across spatial and temporal scales and models that are transferable to a wide range of flow and geomorphic conditions. These results show how the competitive effects between the different forces driving hyporheic flow, operating at different spatial scales, creates a situation

  12. Effect of long-term aging on microstructure and local behavior in the heat-affected zone of a Ni–Cr–Mo–V steel welded joint

    SciTech Connect

    Zhu, Ming-Liang Wang, De-Qiang; Xuan, Fu-Zhen

    2014-01-15

    Evolution of microstructure, micro-hardness and micro-tensile strength behavior was investigated in the heat-affected zone of a Ni–Cr–Mo–V steel welded joint after the artificial aging at 350 °C for 3000 h. After detailed characterization of microstructures in optical microscopy, scanning electron microscopy and transmission electron microscopy, it is revealed that the change of martensite–bainite constituent promotes more homogeneous microstructure distribution. The aging treatment facilitates redistribution of carbon and chromium elements along the welded joint, and the micro-hardness is increased slightly through the welds due to enrichment of carbon. The types of precipitates in the weldment mainly include M{sub 3}C, MC, M{sub 2}C and M{sub 23}C{sub 6}. The carbides in base metal, weld metal and coarse-grained heat-affected zone are prone to change from ellipsoidal to platelet form whereas more uniform spherical carbides are observed in the fine-grained zone. Precipitation and coarsening of M{sub 23}C{sub 6} near the fusion line, and formation of MC and M{sub 2}C, are responsible for the tensile strength decrease and its smooth distribution in the aged heat-affected zone. This implies that the thermal aging can relieve strength mismatch in the weldments. - Highlights: • Microstructure homogeneity improved in HAZ after long-term aging. • Tensile strength decreased in HAZ due to precipitation and coarsening of M{sub 23}C{sub 6}. • Strength mismatch in NiCrMoV steel welds was relieved after aging at 350 °C × 3000 h.

  13. Tomato growth as affected by root-zone temperature and the addition of gibberellic acid and kinetin to nutrient solutions

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; White, J. W.; Salisbury, F. B. (Principal Investigator)

    1984-01-01

    The effect of root-zone temperature on young tomato plants (Lycopersicon esculentum Mill. cv. Heinz 1350) was evaluated in controlled environments using a recirculating solution culture system. Growth rates were measured at root-zone temperatures of 15 degrees, 20 degrees, 25 degrees, and 30 degrees C in a near optimum foliar environment. Optimum growth occurred at 25 degrees to 30 degrees during the first 4 weeks of growth and 20 degrees to 25 degrees during the 5th and 6th weeks. Growth was severely restricted at 15 degrees. Four concentrations of gibberellic acid (GA3) and kinetin were added to the nutrient solution in a separate trial; root-zone temperature was maintained at 15 degrees and 25 degrees. Addition of 15 micromoles GA3 to solutions increased specific leaf area, total leaf area, and dry weight production of plants in both temperature treatments. GA3-induced growth stimulation was greater at 15 degrees than at 25 degrees. GA3 may promote growth by increasing leaf area, enhancing photosynthesis per unit leaf area, or both. Kinetic was not useful in promoting growth at either temperature.

  14. Colloid formation and metal transport through two mixing zones affected by acid mine drainage near Silverton, Colorado

    USGS Publications Warehouse

    Schemel, L.E.; Kimball, B.A.; Bencala, K.E.

    2000-01-01

    Stream discharges and concentrations of dissolved and colloidal metals (Al, Ca, Cu, Fe, Mg, Mn, Pb, and Zn), SO4, and dissolved silica were measured to identify chemical transformations and determine mass transports through two mixing zones in the Animas River that receive the inflows from Cement and Mineral Creeks. The creeks were the dominant sources of Al, Cu, Fe, and Pb, whereas the upstream Animas River supplied about half of the Zn. With the exception of Fe, which was present in dissolved and colloidal forms, the metals were dissolved in the acidic, high-SO4 waters of Cement Creek (pH 3.8). Mixing of Cement Creek with the Animas River increased pH to near-neutral values and transformed Al and some additional Fe into colloids which also contained Cu and Pb. Aluminium and Fe colloids had already formed in the mildly acidic conditions in Mineral Creek (pH 6.6) upstream of the confluence with the Animas River. Colloidal Fe continued to form downstream of both mixing zones. The Fe- and Al-rich colloids were important for transport of Cu, Pb, and Zn, which appeared to have sorbed to them. Partitioning of Zn between dissolved and colloidal phases was dependent on pH and colloid concentration. Mass balances showed conservative transports for Ca, Mg, Mn, SO4, and dissolved silica through the two mixing zones and small losses (< 10%) of colloidal Al, Fe and Zn from the water column.

  15. High hydrogen peroxide concentration in the feed-zone affects bioreactor cell productivity with liquid phase oxygen supply strategy.

    PubMed

    Sarkar, Pritish; Ghosh, Kaushik; Suraishkumar, G K

    2008-06-01

    Liquid phase oxygen supply strategy (LPOS), in which hydrogen peroxide (H(2)O(2)) is used to supply oxygen to the bioreactor, leads to low cell productivity despite high specific productivities of relevant metabolites. We hypothesized that high H(2)O(2) concentrations in the feed-zone led to local cell death, which in turn, lead to lower cell productivity. To test the hypothesis, a mathematical model was developed. Bacillus subtilis 168 was used as the model system in this study. The model simulations of cell concentrations in the bioreactor-zone were verified with the experimental results. The feed-zone H(2)O(2) concentrations remained 12-14 times higher than bulk bioreactor concentrations. The high local concentrations are expected to cause local cell killing, which explains the decrease in overall cell production by 50% at 300 rpm compared to conventional cultivation. Further, among the four different feed strategies studied using the model, dissolved oxygen (DO) controlled H(2)O(2) feed strategy caused least local cell killing and improved overall cell production by 34%.

  16. Use of Continuous Real-Time Water Quality Sensors to Examine Hyporheic Exchange between Groundwater and an Alpine Stream: East Fork Jemez River, NM

    NASA Astrophysics Data System (ADS)

    Sherson, L. R.; van Horn, D.; Dahm, C.; Crossey, L. J.

    2010-12-01

    The hyporheic zone is a place for water and solute exchange in which critical biogeochemical processes involving both groundwater and surface water take place. Water quality and solute fluxes are dynamic across a variety of time scales and respond to changes in temperature and precipitation. Our objective is to utilize continuous water quality sensors to investigate how solute and nutrient transport processes in the hyporheic zone vary across the annual hydrograph in the East Fork Jemez River, a fourth order stream in northern New Mexico with a drainage area of 44 square miles and a strong spring snowmelt peak in flow. A network of 34 monitoring wells was installed at the study site in early June 2010 and two continuous water quality sensors (YSI sondes) have been deployed in surface water and groundwater wells since May 2010. Campaign sampling and field parameter measurements show significant spatial and temporal variability among wells. Preliminary continuous monitoring results exhibit substantial temporal variability in surface water dissolved oxygen concentration (3 to 10 mg/L), pH (7 to 9), and temperature (10 to 22 °C). Diurnal variation of the same parameters is not observed in the test well, indicating little connectivity at this location. Data loggers monitoring pressure and temperature are being used to identify potential areas of connectivity in which water quality sensors will be deployed to continuously monitor groundwater chemistry as the system returns to baseflow conditions from September through November. We will also report on initial results from the deployment of additional water quality sensors including YSI sondes and two state-of-the-art nutrient analyzers, an EnviroTech AutoLAB 4 and a Satlantic SUNA (Submersible Ultraviolet Nitrate Analyzer). Real-time nitrate plus nitrite, phosphate, and silica data will be compared with metabolism estimates obtained from YSI sondes in the surface water at the study site. The high resolution data

  17. Absence of functional active zone protein Bassoon affects assembly and transport of ribbon precursors during early steps of photoreceptor synaptogenesis.

    PubMed

    Regus-Leidig, Hanna; tom Dieck, Susanne; Brandstätter, Johann Helmut

    2010-06-01

    The retinal photoreceptor ribbon synapse is a structurally and functionally unique type of chemical synapse, specialized for tonic release of neurotransmitter in the dark. It is characterized by the presynaptic ribbon, an electron-dense organelle at the active zone, which is covered by hundreds of synaptic vesicles. Recently we showed that photoreceptor ribbon complexes are assembled from non-membranous, spherical densities--the precursor spheres--during the first two postnatal weeks of photoreceptor synaptogenesis. A core component of the precursor spheres and a key player in attaching the ribbon to the active zone is the presynaptic cytomatrix protein Bassoon. In this study, we examined in a comprehensive light and electron microscopic analysis whether Bassoon plays a role in the formation of the precursor spheres using Bassoon mutant mice lacking functional Bassoon. We report that developing Bassoon mutant photoreceptors contain fewer and smaller precursor spheres and that transport of precursor spheres to nascent synapses is delayed compared to wild-type controls. Moreover, western blot analyses of homogenates from postnatal day 0 (P0) to P14 Bassoon mutant retinae exhibit lower RIBEYE and Piccolo protein levels compared to the wild type, indicating elevated protein degradation in the absence of Bassoon. Our findings reveal a novel function of Bassoon in the early formation and delivery of precursor spheres to nascent ribbon synaptic sites in addition to its known role in ribbon anchoring during later stages of photoreceptor ribbon synaptogenesis.

  18. Rethinking hyporheic flow and transient storage to advance understanding of stream-catchment connections

    USGS Publications Warehouse

    Bencala, K.E.; Gooseff, M.N.; Kimball, B.A.

    2011-01-01

    Although surface water and groundwater are increasingly referred to as one resource, there remain environmental and ecosystem needs to study the 10 m to 1 km reach scale as one hydrologic system. Streams gain and lose water over a range of spatial and temporal scales. Large spatial scales (kilometers) have traditionally been recognized and studied as river-aquifer connections. Over the last 25 years hyporheic exchange flows (1-10 m) have been studied extensively. Often a transient storage model has been used to quantify the physical solute transport setting in which biogeochemical processes occur. At the longer 10 m to 1 km scale of stream reaches it is now clear that streams which gain water overall can coincidentally lose water to the subsurface. At this scale, the amounts of water transferred are not necessarily significant but the exchanges can, however, influence solute transport. The interpretation of seemingly straightforward questions about water, contaminant, and nutrient fluxes into and along a stream can be confounded by flow losses which are too small to be apparent in stream gauging and along flow paths too long to be detected in tracer experiments. We suggest basic hydrologic approaches, e.g., measurement of flow along the channel, surface and subsurface solute sampling, and routine measurements of the water table that, in our opinion, can be used to extend simple exchange concepts from the hyporheic exchange scale to a scale of stream-catchment connection. Copyright 2011 by the American Geophysical Union.

  19. Electrical characterization of non-Fickian transport in groundwater and hyporheic systems

    USGS Publications Warehouse

    Singha, K.; Pidlisecky, A.; Day-Lewis, F. D.; Gooseff, M.N.

    2010-01-01

    Recent work indicates that processes controlling solute mass transfer between mobile and less mobile domains in porous media may be quantified by combining electrical geophysical methods and electrically conductive tracers. Whereas direct geochemical measurements of solute preferentially sample the mobile domain, electrical geophysical methods are sensitive to changes in bulk electrical conductivity (bulk EC) and therefore sample EC in both the mobile and immobile domains. Consequently, the conductivity difference between direct geochemical samples and remotely sensed electrical geophysical measurements may provide an indication of mass transfer rates and mobile and immobile porosities in situ. Here we present (1) an overview of a theoretical framework for determining parameters controlling mass transfer with electrical resistivity in situ; (2) a review of a case study estimating mass transfer processes in a pilot-scale aquifer storage recovery test; and (3) an example application of this method for estimating mass transfer in watershed settings between streams and the hyporheic corridor. We demonstrate that numerical simulations of electrical resistivity studies of the stream/hyporheic boundary can help constrain volumes and rates of mobile-immobile mass transfer. We conclude with directions for future research applying electrical geophysics to understand field-scale transport in aquifer and fluvial systems subject to rate-limited mass transfer.

  20. Corrosion behavior in high heat input welded heat-affected zone of Ni-free high-nitrogen Fe–18Cr–10Mn–N austenitic stainless steel

    SciTech Connect

    Moon, Joonoh Ha, Heon-Young; Lee, Tae-Ho

    2013-08-15

    The pitting corrosion and interphase corrosion behaviors in high heat input welded heat-affected zone (HAZ) of a metastable high-nitrogen Fe–18Cr–10Mn–N austenitic stainless steel were explored through electrochemical tests. The HAZs were simulated using Gleeble simulator with high heat input welding condition of 300 kJ/cm and the peak temperature of the HAZs was changed from 1200 °C to 1350 °C, aiming to examine the effect of δ-ferrite formation on corrosion behavior. The electrochemical test results show that both pitting corrosion resistance and interphase corrosion resistance were seriously deteriorated by δ-ferrite formation in the HAZ and their aspects were different with increasing δ-ferrite fraction. The pitting corrosion resistance was decreased by the formation of Cr-depleted zone along δ-ferrite/austenite (γ) interphase resulting from δ-ferrite formation; however it didn't depend on δ-ferrite fraction. The interphase corrosion resistance depends on the total amount of Cr-depleted zone as well as ferrite area and thus continuously decreased with increasing δ-ferrite fraction. The different effects of δ-ferrite fraction on pitting corrosion and interphase corrosion were carefully discussed in terms of alloying elements partitioning in the HAZ based on thermodynamic consideration. - Highlights: • Corrosion behavior in the weld HAZ of high-nitrogen austenitic alloy was studied. • Cr{sub 2}N particle was not precipitated in high heat input welded HAZ of tested alloy. • Pitting corrosion and interphase corrosion show a different behavior. • Pitting corrosion resistance was affected by whether or not δ-ferrite forms. • Interphase corrosion resistance was affected by the total amount of δ-ferrite.

  1. Creep deformation and rupture behavior of 2.25Cr-1Mo steel weldments and its constituents (base metal, weld metal and simulated heat affected zones)

    SciTech Connect

    Laha, K.; Chandravathi, K.S.; Rao, K.B.S.; Mannan, S.L.

    1995-12-31

    Microstructure across a weldment base metal through transformed heat-affected zone (HAZ) to cast weld metal. HAZ of 2.25Cr-1Mo weldment consists of coarse-grain bainite, fine-grain bainite and intercritical region. These HAZ microstructures were simulated by isothermal heat-treatments. Creep tests were carried out on base metal, weld metal, weldment and the simulated HAZ structures. Creep deformation and fracture behavior of 2.25Cr-1Mo weldments has been assessed based on the properties of its constituents. Coarse-grain bainite with low ductility and intercritical structure with low strength are the critical components of HAZ determining performance of the weldments.

  2. Study of Reservoir Heterogencities and Structural Features Affecting Production in the Shallow Oil Zone, Eastern Elk Hills Area, California

    SciTech Connect

    Janice Gillespie

    2004-11-01

    Late Neogene (Plio-Pleistocene) shallow marine strata of the western Bakersfield Arch and Elk Hills produce hydrocarbons from several different reservoirs. This project focuses on the shallow marine deposits of the Gusher and Calitroleum reservoirs in the Lower Shallow Oil Zone (LSOZ). In the eastern part of the study area on the Bakersfield Arch at North and South Coles Levee field and in two wells in easternmost Elk Hills, the LSOZ reservoirs produce dry (predominantly methane) gas. In structurally higher locations in western Elk Hills, the LSOZ produces oil and associated gas. Gas analyses show that gas from the eastern LSOZ is bacterial and formed in place in the reservoirs, whereas gas associated with oil in the western part of the study area is thermogenic and migrated into the sands from deeper in the basin. Regional mapping shows that the gas-bearing LSOZ sands in the Coles Levee and easternmost Elk Hills area are sourced from the Sierra Nevada to the east whereas the oil-bearing sands in western Elk Hills appear to be sourced from the west. The eastern Elk Hills area occupied the basin depocenter, farthest from either source area. As a result, it collected mainly low-permeability offshore shale deposits. This sand-poor depocenter provides an effective barrier to the updip migration of gases from east to west. The role of small, listric normal faults as migration barriers is more ambiguous. Because our gas analyses show that the gas in the eastern LSOZ reservoirs is bacterial, it likely formed in-place near the reservoirs and did not have to migrate far. Therefore, the gas could have been generated after faulting and accumulated within the fault blocks as localized pools. However, bacterial gas is present in both the eastern AND western parts of Elk Hills in the Dry Gas Zone (DGZ) near the top of the stratigraphic section even though the measured fault displacement is greatest in this zone. Bacterial gas is not present in the west in the deeper LSOZ which

  3. Distribution of polychlorinated biphenyls in an urban riparian zone affected by wastewater treatment plant effluent and the transfer to terrestrial compartment by invertebrates.

    PubMed

    Yu, Junchao; Wang, Thanh; Han, Shanlong; Wang, Pu; Zhang, Qinghua; Jiang, Guibin

    2013-10-01

    In this study, we investigated the distribution of polychlorinated biphenyls (PCBs) in a riparian zone affected by the effluent from a wastewater treatment plant (WWTP). River water, sediment, aquatic invertebrates and samples from the surrounding terrestrial compartment such as soil, reed plants and several land based invertebrates were collected. A relatively narrow range of δ(13)C values was found among most invertebrates (except butterflies, grasshoppers), indicating a similar energy source. The highest concentration of total PCBs was observed in zooplankton (151.1 ng/g lipid weight), and soil dwelling invertebrates showed higher concentrations than phytophagous insects at the riparian zone. The endobenthic oligochaete Tubifex tubifex (54.28 ng/g lw) might be a useful bioindicator of WWTP derived PCBs contamination. High bioaccumulation factors (BAFs) were observed in collected aquatic invertebrates, although the biota-sediment/soil accumulation factors (BSAF) remained relatively low. Emerging aquatic insects such as chironomids could carry waterborne PCBs to the terrestrial compartment via their lifecycles. The estimated annual flux of PCBs for chironomids ranged from 0.66 to 265 ng⋅m(-2)⋅y(-1). Although a high prevalence of PCB-11 and PCB-28 was found for most aquatic based samples in this riparian zone, the mid-chlorinated congeners (e.g. PCB-153 and PCB-138) became predominant among chironomids and dragonflies as well as soil dwelling invertebrates, which might suggest a selective biodriven transfer of different PCB congeners.

  4. Mineralogical constraint for metamorphic conditions in a shear zone affecting the Archean Ngoulemakong tonalite, Congo craton (Southern Cameroon) and retentivity of U-Pb SHRIMP zircon dates

    NASA Astrophysics Data System (ADS)

    Tchameni, R.; Lerouge, C.; Penaye, J.; Cocherie, A.; Milesi, J. P.; Toteu, S. F.; Nsifa, N. E.

    2010-08-01

    In the Ngoulemakong region of the Ntem unit (South Cameroon), tonalite crops out as intrusions of various sizes cross-cutting the charnockite suite. Both of these granitoids are affected by NE-SW and WNW-ESE sinistral and dextral shear zones. Tonalite in the WNW-ESE shear zone are deformed and shows metamorphic assemblages represented by quartz-microcline-biotite-garnet-plagioclase-scapolite-fluoro-apatite and chlorite-sulfides-epidote-muscovite-quartz-calcite not recorded by the undeformed rocks outside it. These mineralogical assemblages provide evidence of decreasing pressure-temperature conditions from granulite-amphibolite-facies in the moderate deformed part to greenschist-facies in the central part of the shear plane. The higher fluid (H 2O, CO 2, S, F, Cl, K, and Na) activities and high-grade recrystallizations recorded in the shear zone favour a Pb loss hypothesis in the zircons. U-Pb SHRIMP zircon dating yield an emplacement age of 2865 ± 4 Ma for the tonalite but does not permit the determination of the age of the high-grade event responsible for the Pb loss. These results provide evidence of the retentivity of U-Pb zircon dates under high grade conditions.

  5. Morphological and mechanical characterization of the acid-base resistant zone at the adhesive-dentin interface of intact and caries-affected dentin.

    PubMed

    Inoue, Go; Tsuchiya, Satoko; Nikaido, Toru; Foxton, Richard M; Tagami, Junji

    2006-01-01

    This study examined the ultrastructure of both intact and caries affected dentin-adhesive interface after artificial secondary caries formation, using scanning electron microscopy and nanoindentation testing. Half of the prepared specimens were bonded with Clearfil SE Bond (Kuraray Medical, Japan) and a resin composite (Metafil Flo, Sun Medical, Japan) for the nanoindentation test. The other specimens were stored in a buffered demineralizing solution for 90 minutes, then observed using SEM. An acid-base resistant zone (ABRZ) was observed beneath the hybrid layer, distinguished by argon-ion etching. The ABRZ of caries-affected dentin was thicker than that of normal dentin, while its nanohardess was lower than normal dentin (p<0.05). It is suggested that the monomer of Clearfil SE Bond penetrated deeper than previously reported, creating a so-called "hybrid layer." However, its physical properties depended on the condition of the dentin.

  6. Evaluation of crack arrest fracture toughness of parent plate, weld metal and heat affected zone of BIS 812 EMA ship plate steel

    NASA Astrophysics Data System (ADS)

    Burch, I. A.

    1993-10-01

    The steel chosen for the pressure hull of the Collins class submarine has undergone evaluation to compare the crack arrest fracture toughness, K(Ia), of the parent plate with that of weld metal and heat affected zone. The tests were conducted over a range of subzero temperatures on specimens slightly outside the ASTM standard test method specimen configuration. Shallow face grooved specimens were used to vary the propagating crack velocity from that of non face grooved specimens and determine if K(Ia), is sensitive to changes in crack velocity. The weld metal, heat affected zone (HAZ), and parent plate were assessed to determine if the welding process had a deleterious effect on the crack arrest properties of this particular steel. Tests on each of these regions revealed that, for the combination of parent plate, welding procedure and consumables, no adverse effect on crack arrest properties was encountered. Crack arrest fracture toughness of the weld metal and HAZ was superior to that of the parent plate at comparable temperatures.

  7. Factors Affecting Nitrate Delivery to Streams from Shallow Ground Water in the North Carolina Coastal Plain

    USGS Publications Warehouse

    Harden, Stephen L.; Spruill, Timothy B.

    2008-01-01

    An analysis of data collected at five flow-path study sites between 1997 and 2006 was performed to identify the factors needed to formulate a comprehensive program, with a focus on nitrogen, for protecting ground water and surface water in the North Carolina Coastal Plain. Water-quality protection in the Coastal Plain requires the identification of factors that affect the transport of nutrients from recharge areas to streams through the shallow ground-water system. Some basins process or retain nitrogen more readily than others, and the factors that affect nitrogen processing and retention were the focus of this investigation to improve nutrient management in Coastal Plain streams and to reduce nutrient loads to coastal waters. Nitrate reduction in ground water was observed at all five flow-path study sites in the North Carolina Coastal Plain, although the extent of reduction at each site was influenced by various environmental, hydrogeologic, and geochemical factors. Denitrification was the most common factor responsible for decreases in nitrate along the ground-water flow paths. Specific factors, some of which affect denitrification rates, that appeared to influence ground-water nitrate concentrations along the flow paths or in the streams include soil drainage, presence or absence of riparian buffers, evapotranspiration, fertilizer use, ground-water recharge rates and residence times, aquifer properties, subsurface tile drainage, sources and amounts of organic matter, and hyporheic processes. The study data indicate that the nitrate-reducing capacity of the buffer zone combined with that of the hyporheic zone can substantially lower the amount of ground-water nitrate discharged to streams in agricultural settings of the North Carolina Coastal Plain. At the watershed scale, the effects of ground-water discharge on surface-water quality appear to be greatly influenced by streamflow conditions and the presence of extensive riparian vegetation. Streamflow statistics

  8. Living in the heart of a volcanic hazard zone and the issues that affect community vulnerability and resilience

    NASA Astrophysics Data System (ADS)

    Bird, Deanne; Gísladóttir, Guőrún; Dominey-Howes, Dale

    2010-05-01

    Volcanic risk mitigation strategies were revised for residents living in the eastern jökulhlaup hazard zone of Mýrdalsjökull, southern Iceland. These plans were trialled during a full-scale evacuation exercise on 25 March 2006. In order to assess residents' perception of and response to the exercise and proposed mitigation strategies a mixed methods survey was applied. This investigation consisted of field observations during the exercise and semi-structured interviews with emergency management officials and residents of a small rural community after the exercise. This community was the focus of this survey because these residents did not consider the previous plan appropriate to their beliefs and needs. The results of the survey revealed that residents are reluctant to evacuate and do not agree with the proposed strategies. Residents believe that the newly devised plans do not address the contextual issues of their community. Factors influencing the residents' perception are inherited knowledge, attachment to place and livelihood connections (i.e. concern for livestock). Residents' requests for alternative plans, in case adverse environmental conditions prevent evacuation, were ignored. Consequently, emergency managers failed to resolve residents' risk mitigation concerns prior to the evacuation exercise. We recommend that emergency managers should incorporate local knowledge and perceptions to ensure reduced vulnerability and enhanced community resilience.

  9. Surface Features Analysis in Salt-Affected Area Using Hyperspectral Data: A Case Study in the Zone of Chotts, Tunisia

    NASA Astrophysics Data System (ADS)

    Bouaziz, Moncef; Liesenberg, Veraldo; Bouaziz, Samir; Gloaguen, Richard

    2010-12-01

    Arid and semi-arid regions are most affected by Salinity. Chotts regions in southern Tunisia are such an area, where the excessive content of salt in the soil is a hard faced problem. Soil salinity in this area enforces several environmental problems such as limiting plant growth, reducing crop productivity, degrading soil quality and leads to accelerated rates rill and gully erosion . Remote sensing analysis by the mean of spectral analysis, geomorphologic aspect from digital elevation models and distribution of rainfall intensity from satellite data are used in this study to discern features and patterns of areas affected by salt. Correlation between these remote sensing indicators is made in order to assess the contribution of each indicator to identify the salt-affected area. The approach followed in this study was applied on Hyperspectral data from EO-1 Mission. Hyperion data are promoted due to their very high spectral resolution and wide enhanced spatial information. The present study highlighted the high correlation between the flat surfaces and the high content of salt in the soil (from soil salinity indices) on one hand and a low correlation between the high intensity of rainfall distribution and indicators of low salt content in the soil on the other hand.

  10. Differences in Water Vapor Radiative Transfer among 1D Models Can Significantly Affect the Inner Edge of the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Leconte, Jérémy; Wolf, Eric T.; Goldblatt, Colin; Feldl, Nicole; Merlis, Timothy; Wang, Yuwei; Koll, Daniel D. B.; Ding, Feng; Forget, François; Abbot, Dorian S.

    2016-08-01

    An accurate estimate of the inner edge of the habitable zone is critical for determining which exoplanets are potentially habitable and for designing future telescopes to observe them. Here, we explore differences in estimating the inner edge among seven one-dimensional radiative transfer models: two line-by-line codes (SMART and LBLRTM) as well as five band codes (CAM3, CAM4_Wolf, LMDG, SBDART, and AM2) that are currently being used in global climate models. We compare radiative fluxes and spectra in clear-sky conditions around G and M stars, with fixed moist adiabatic profiles for surface temperatures from 250 to 360 K. We find that divergences among the models arise mainly from large uncertainties in water vapor absorption in the window region (10 μm) and in the region between 0.2 and 1.5 μm. Differences in outgoing longwave radiation increase with surface temperature and reach 10-20 W m-2 differences in shortwave reach up to 60 W m-2, especially at the surface and in the troposphere, and are larger for an M-dwarf spectrum than a solar spectrum. Differences between the two line-by-line models are significant, although smaller than among the band models. Our results imply that the uncertainty in estimating the insolation threshold of the inner edge (the runaway greenhouse limit) due only to clear-sky radiative transfer is ≈10% of modern Earth’s solar constant (i.e., ≈34 W m-2 in global mean) among band models and ≈3% between the two line-by-line models. These comparisons show that future work is needed that focuses on improving water vapor absorption coefficients in both shortwave and longwave, as well as on increasing the resolution of stellar spectra in broadband models.

  11. Differences in Water Vapor Radiative Transfer among 1D Models Can Significantly Affect the Inner Edge of the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Leconte, Jérémy; Wolf, Eric T.; Goldblatt, Colin; Feldl, Nicole; Merlis, Timothy; Wang, Yuwei; Koll, Daniel D. B.; Ding, Feng; Forget, François; Abbot, Dorian S.

    2016-08-01

    An accurate estimate of the inner edge of the habitable zone is critical for determining which exoplanets are potentially habitable and for designing future telescopes to observe them. Here, we explore differences in estimating the inner edge among seven one-dimensional radiative transfer models: two line-by-line codes (SMART and LBLRTM) as well as five band codes (CAM3, CAM4_Wolf, LMDG, SBDART, and AM2) that are currently being used in global climate models. We compare radiative fluxes and spectra in clear-sky conditions around G and M stars, with fixed moist adiabatic profiles for surface temperatures from 250 to 360 K. We find that divergences among the models arise mainly from large uncertainties in water vapor absorption in the window region (10 μm) and in the region between 0.2 and 1.5 μm. Differences in outgoing longwave radiation increase with surface temperature and reach 10–20 W m‑2 differences in shortwave reach up to 60 W m‑2, especially at the surface and in the troposphere, and are larger for an M-dwarf spectrum than a solar spectrum. Differences between the two line-by-line models are significant, although smaller than among the band models. Our results imply that the uncertainty in estimating the insolation threshold of the inner edge (the runaway greenhouse limit) due only to clear-sky radiative transfer is ≈10% of modern Earth’s solar constant (i.e., ≈34 W m‑2 in global mean) among band models and ≈3% between the two line-by-line models. These comparisons show that future work is needed that focuses on improving water vapor absorption coefficients in both shortwave and longwave, as well as on increasing the resolution of stellar spectra in broadband models.

  12. Why person affected by leprosy did not look after their plantar ulcer? Experience from Pakokku zone, Myanmar.

    PubMed

    Win, Le Le; Shwe, San; Maw, Win; Ishida, Yutaka; Myint, Kyaw; Mar, Kyi Kyi; Min, Thandar; Oo, Phyo Min; Khine, Aye Win

    2010-09-01

    A cross-sectional study was carried out to identify methods of caring plantar ulcers in leprosy patients and the underlying causes of poor plantar ulcer care during January and February 2008. This was conducted in Pakokku zone as it was one of the "9 selected townships of the Disabilities survey, i.e., Basic Health Staff project 2003/4", which was funded by Japan International Cooperation Agency. After getting consent, all available leprosy cases, i.e., 101 cases with foot disability grade 2 were interviewed with the pre-tested questionnaire. Among 101 cases, 13 cases who took care of their ulcer poorly and 20 who did none of the recommended measures were recruited for in-depth interview (IDI). The subjects were largely old people, males and people with no marriage partner. The majority had earned money by doing sedentary job. Prolongation of ulcers was observed in 78 cases. Most had been suffering from ulcers for years. When asking face-to-face interview, all the recommended care measures were not reported. Among these recommended measures, a large number of respondents reported about soaking measure. However, these reported measures were contradicted to the preventive methods which they disclosed in IDI. Plantar ulcer care seemed to be an individualised practice. The individual ways of performing were related to their view of ulcer, the environment, and occupation, and custom, communication with family and health staff. The findings identified the actual practice of plantar ulcer care in study areas. It is suggested that the current performance of planar ulcer care is inadequate and more attention should be given to achieve the target set by the programme as a recommendation. PMID:20857653

  13. Natural Radiation for Identification and Evaluation of Risk Zones for Affectation of Activated Faults in Aquifer Overexploited.

    NASA Astrophysics Data System (ADS)

    Ramos-Leal, J.; Lopez-Loera, H.; Carbajal-Perez, N.

    2007-05-01

    In basins as Mexico, Michoacán, Guanajuato, Queretaro, Aguascalientes and San Luis Potosi, the existence of faults and fractures have affected the urban infrastructure, lines of conduction of drinkable water, pipelines, etc., that when not being identified and considered, they don't reflect the real impact that these cause also to the aquifer system, modifying the permeability of the means and in occasions they work as preferential conduits that communicate hydraulically potentially to the aquifer with substances pollutants (metals, fertilizers, hydrocarbons, waste waters, etc.) located in the surface. In the Valley of San Luis Potosi, Villa of Reyes, Arista, Ahualulco and recently The Huizache-Matehuala is being strongly affected by faulting and supposedly due cracking to subsidence, however, the regional tectonic could also be the origin of this phenomenon. To know the origin of the faults and affectation to the vulnerability of the aquifer few works they have been carried out in the area. A preliminary analysis indicates that it is possible that a tectonic component is affecting the area and that the vulnerability of the aquifer in that area you this increasing. Before such a situation, it is necessary to carry out the isotopic study of the same one, for this way to know among other things, isotopic characterization, recharge places and addresses of flow of the groundwater; quality of waters and the behavior hydrochemistry with relationship to the faults. High radon values were measured in San Luis Potosi Valley, the natural source of radon could be the riolites and however, these are located to almost a once thousand meters deep for what the migration of the gas is not very probable. The anomalies radiometrics was not correlation with the faults in this case. In some areas like the Valley of Celaya, the origin of the structures and the tectonic activity in the area was confirmed, identifying the structural arrangement of the faulting, the space relationships

  14. How do changes in the Diurnal Cycle affect Bi-stability and Climate Sensitivity in the Habitable Zone?

    NASA Astrophysics Data System (ADS)

    Boschi, R.; Valerio, L.

    2013-09-01

    fundamental properties of planets in the habitable zone from relatively simple observables.

  15. A new species of Metacyclops from a hyporheic habitat in North Vietnam (Crustacea, Copepoda, Cyclopidae)

    PubMed Central

    Kołaczyński, Andrzej

    2015-01-01

    Abstract A new species of Metacyclops is described from hyporheic waters and small rock depression with leaf litter in North Vietnam, the Tam Đao Mountains). Metacyclops amicitiae sp. n. can be distinguished from its congeners by the unique combination of the following characters: 12-segmented antennule, distal segment of P4 endopodite bearing a single apical spine, and the surface ornamentation of the intercoxal sclerites in P1–P4 (pilose on the distal margin of P1-P4 and spinulose on the caudal surface of P4). The latter character separates the new Metacyclops from its closest relative, Metacyclops ryukyuensis, known only from the Ryukyu Islands (Ishigaki). The genus Metacyclops with the new species described herein is also for the first time recorded from Vietnam. An identification key is provided to the south and east Asian species of the genus. PMID:26445932

  16. A new species of Metacyclops from a hyporheic habitat in North Vietnam (Crustacea, Copepoda, Cyclopidae).

    PubMed

    Kołaczyński, Andrzej

    2015-01-01

    A new species of Metacyclops is described from hyporheic waters and small rock depression with leaf litter in North Vietnam, the Tam Đao Mountains). Metacyclops amicitiae sp. n. can be distinguished from its congeners by the unique combination of the following characters: 12-segmented antennule, distal segment of P4 endopodite bearing a single apical spine, and the surface ornamentation of the intercoxal sclerites in P1-P4 (pilose on the distal margin of P1-P4 and spinulose on the caudal surface of P4). The latter character separates the new Metacyclops from its closest relative, Metacyclops ryukyuensis, known only from the Ryukyu Islands (Ishigaki). The genus Metacyclops with the new species described herein is also for the first time recorded from Vietnam. An identification key is provided to the south and east Asian species of the genus. PMID:26445932

  17. Hyporheic exchange induced by channel-spanning obstacles in a coarse, highly-permeable laboratory streambed

    NASA Astrophysics Data System (ADS)

    Lichtner, D.; Best, J.; Blois, G.; Kim, T.; Christensen, K. T.

    2014-12-01

    Knowledge of flow over and through a porous streambed is essential to understanding hyporheic exchange in coarse gravel-bed rivers, where turbulence in the stream flow can penetrate significantly into the streambed. To study the turbulent momentum exchange between a stream and gravel streambed, laboratory experiments were conducted in a 2.5 m long refractive-index matching (RIM) laboratory flume. A flat gravel bed was simulated using cubically packed acrylic spheres (Ds = 1.27 cm) with a refractive index, RI = 1.495, that matched that of the NaI solution in the flume. Thus, optical access to the pore spaces could be gained, and the flow field from the near-bed and into the pore spaces could be measured with particle image velocimetry (PIV). Dense 2-D velocity vector fields were measured for two bed configurations: (1) a flat, porous, bed composed of three layers of spheres and (2) a flat bed with a cylinder (Dc = 1.27 cm) placed atop it, to induce hyporheic exchange in the manner of a channel-spanning large woody debris. The flow over and through the bed produced by the cylinder is found to be dramaticallydifferent from that associated with a flat bed. The mean velocity field produced by the cylinder exhibited strong flow downwelling in the pore space immediately upstream of the cylinder and upwelling several pore spaces downstream. In particular, the shear layer separating from the cylinder remained parallel to the bed from the point of flow separation to the edge of the field of view, instead of reattaching several grain diameters downstream. The cylinder also promoted increased vertical momentum exchange as suggested by turbulent kinetic energy maps.

  18. Design requirements for ERD in diffusion-dominated media: how do injection interval, bioactive zones and reaction kinetics affect remediation performance?

    NASA Astrophysics Data System (ADS)

    Chambon, J.; Lemming, G.; Manoli, G.; Broholm, M. M.; Bjerg, P.; Binning, P. J.

    2011-12-01

    Enhanced Reductive Dechlorination (ERD) has been successfully used in high permeability media, such as sand aquifers, and is considered to be a promising technology for low permeability settings. Pilot and full-scale applications of ERD at several sites in Denmark have shown that the main challenge is to get contact between the injected bacteria and electron donor and the contaminants trapped in the low-permeability matrix. Sampling of intact cores from the low-permeability matrix has shown that the bioactive zones (where degradation occurs) are limited in the matrix, due to the slow diffusion transport processes, and this affects the timeframes for the remediation. Due to the limited ERD applications and the complex transport and reactive processes occurring in low-permeability media, design guidelines are currently not available for ERD in such settings, and remediation performance assessments are limited. The objective of this study is to combine existing knowledge from several sites with numerical modeling to assess the effect of the injection interval, development of bioactive zones and reaction kinetics on the remediation efficiency for ERD in diffusion-dominated media. A numerical model is developed to simulate ERD at a contaminated site, where the source area (mainly TCE) is located in a clayey till with fractures and interbedded sand lenses. Such contaminated sites are common in North America and Europe. Hydro-geological characterization provided information on geological heterogeneities and hydraulic parameters, which are relevant for clay till sites in general. The numerical model couples flow and transport in the fracture network and low-permeability matrix. Sequential degradation of TCE to ethene is modeled using Monod kinetics, and the kinetic parameters are obtained from laboratory experiments. The influence of the reaction kinetics on remediation efficiency is assessed by varying the biomass concentration of the specific degraders. The injected

  19. Hydrogeologic factors that affect the flowpath of water in selected zones of the Edwards Aquifer, San Antonio region, Texas

    USGS Publications Warehouse

    Groschen, G.E.

    1996-01-01

    The Edwards aquifer in the San Antonio region supplies drinking water for more than 1 million people. Proper development and protection of the aquifer is a high priority for local and State authorities. To better understand the flow of water in two major flowpaths in the Edwards aquifer, stratigraphic, structural, hydrologic, and geochemical data were analyzed. The western Medina flowpath is in parts of Uvalde, Medina, and Bexar Counties, and the eastern flowpath is in northern Bexar and central Comal Counties. A major hydrogeologic factor that affects the pattern of flow in the Edwards aquifer is the spatial and temporal distribution of recharge. Other hydrogeologic factors that affect flowpaths include internal boundaries and the location and rate of spring discharge. The relative displacement of faults and the high permeability layers have substantial control on the discharge at springs and on the flowpaths in the Edwards aquifer. Analysis of the estimated recharge to the Edwards aquifer during 1982 89 indicated that during years of substantial precipitation, a large part of the net recharge probably is diffuse infiltration of precipitation over large parts of the recharge area. During years with below-normal precipitation, most recharge is leakage from rivers and streams that drain the catchment subbasins. In the western Medina flowpath, concentrations of major ions indicate saturation of calcite and undersaturation of dolomite the two minerals that constitute most of the Edwards aquifer matrix. Concentrations of dissolved calcium, alkalinity, and dissolved chloride in the eastern flowpath are greater than those in the western Medina flowpath. These upward trends in concentrations might result in part from: (1) increased development in the recharge area, (2) mineralized effluent from developed areas, or (3) increased dissolution of aquifer material. Tritium data from wells sampled in and near the western Medina flowpath indicate no vertical stratification of

  20. Factors Affecting Utilization of Maternal Health Care Services in Kombolcha District, Eastern Hararghe Zone, Oromia Regional State, Eastern Ethiopia.

    PubMed

    Zelalem Ayele, Desalew; Belayihun, Bekele; Teji, Kedir; Admassu Ayana, Desalegn

    2014-01-01

    Introduction. World health organization estimates that more than half a million women lose their lives in the process of reproduction worldwide every year and most of these mortalities are avoidable if mothers have access to maternal health care services. Objectives. This study was conducted with objectives of determining the prevalence of utilization of maternal health care services and identifying factors affecting it. Methodology. A community based cross-sectional survey was conducted in six kebeles of Kombolcha district. A total of 495 women of reproductive age participated in the study and their selection was made using simple random sampling technique and data was collected using an interviewer-administered structured questionnaire. The data was analyzed using SPSS version 16. Results. A total of 495 women were included in this study and from these women about 86.1% had at least one ANC visit during their last pregnancy. About 61.7% of mothers had less than four visits which is less than the recommended and 46.2% started it in the second trimester. Only 25.3% of respondents gave birth in health institutions and rural women were less likely to use institutional delivery 20.9% compared to urban women 35.9%. Recommendations. More efforts should be given to educate society in general and mothers in particular, to strengthen community participation and to increase the accessibility of maternal health care services. Moreover, providing accurate information about the services provided in the health institutions is required from the concerned governmental and nongovernmental organizations.

  1. A process model for the heat-affected zone microstructure evolution in duplex stainless steel weldments: Part II. Application to electron beam welding

    NASA Astrophysics Data System (ADS)

    Hemmer, H.; Grong, Ø.; Klokkehaug, S.

    2000-03-01

    In the present investigation, a process model for electron beam (EB) welding of different grades of duplex stainless steels (i.e. SAF 2205 and 2507) has been developed. A number of attractive features are built into the original finite element code, including (1) a separate module for prediction of the penetration depth and distribution of the heat source into the plate, (2) adaptive refinement of the three-dimensional (3-D) element mesh for quick and reliable solution of the differential heat flow equation, and (3) special subroutines for calculation of the heat-affected zone (HAZ) microstructure evolution. The process model has been validated by comparison with experimental data obtained from in situ thermocouple measurements and optical microscope examinations. Subsequently, its aptness to alloy design and optimization of welding conditions for duplex stainless steels is illustrated in different numerical examples and case studies pertaining to EB welding of tubular joints.

  2. M3B2 and M5B3 Formation in Diffusion-Affected Zone During Transient Liquid Phase Bonding Single-Crystal Superalloys

    NASA Astrophysics Data System (ADS)

    Sheng, Naicheng; Hu, Xiaobing; Liu, Jide; Jin, Tao; Sun, Xiaofeng; Hu, Zhuangqi

    2015-04-01

    Precipitates in the diffusion-affected zone (DAZ) during transient liquid phase bonding (TLP) single-crystal superalloys were observed and investigated. Small size and dendritic-shaped precipitates were identified to be M3B2 borides and intergrowth of M3B2/M5B3 borides. The orientation relationships among M3B2, M5B3, and matrix were determined using transmission electron microscope (TEM). Composition characteristics of these borides were also analyzed by TEM energy-dispersive spectrometer. Because this precipitating phenomenon deviates from the traditional parabolic transient liquid phase bonding model which assumed a precipitates free DAZ during TLP bonding, some correlations between the deviation of the isothermal solidification kinetics and these newly observed precipitating behaviors were discussed and rationalized when bonding the interlayer containing the high diffusivity melting point depressant elements and substrates of low solubility.

  3. Estimation of the most influential factors on the laser cutting process heat affected zone (HAZ) by adaptive neuro-fuzzy technique

    NASA Astrophysics Data System (ADS)

    Petković, Dalibor; Nikolić, Vlastimir; Milovančević, Miloš; Lazov, Lyubomir

    2016-07-01

    Heat affected zone (HAZ) of the laser cutting process may be developed on the basis on combination of different factors. In this investigation was analyzed the HAZ forecasting based on the different laser cutting parameters. The main aim in this article was to analyze the influence of three inputs on the HAZ of the laser cutting process. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data in order to select the most influential factors for HAZ forecasting. Three inputs are considered: laser power, cutting speed and gas pressure. According the results the cutting speed has the highest influence on the HAZ forecasting (RMSE: 0.0553). Gas pressure has the smallest influence on the HAZ forecasting (RMSE: 0.0801). The results can be used in order to simplify HAZ prediction and analyzing.

  4. Inclusions and Microstructure of Ce-Added Weld Metal Coarse Grain Heat-Affected Zone in Twin-Wire Submerged-Arc Welding

    NASA Astrophysics Data System (ADS)

    Yu, S. F.; Yan, N.; Chen, Y.

    2016-06-01

    In high heat-input multi-pass twin-wire submerged-arc welding, weld metal of previous pass will be affected by the heat input of subsequent one and form coarse-grained heat-affected zone (CGHAZ). This study focused on the effects of welding thermal cycle on the inclusions and microstructure of Ce-alloyed weld metal CGHAZ. According to the study of inclusions and microstructure of weld metal CGHAZ, it was found that the composition and type of the inclusions did not change under the effect of welding thermal cycle. Although the inclusions were coarsened slightly, the promoting ability to acicular ferrite (AF) was not deprived after thermal cycling. There are three types of AF in weld metal CGHAZ, which include oxy-sulfides of Ce inclusions-promoted AF, home-position-precipitated AF, and sympathetic AF. Results showed more than 80% of microstructure was AF, which greatly benefited the mechanical properties of weld metal CGHAZ, even though granular bainite and M-A constituents were generated.

  5. Observations of Ferrite/Austenite Transformations in the Heat Affected Zone of 2205 Duplex Stainless Steel Spot Welds Using Time Resolved X-Ray Diffraction

    SciTech Connect

    Palmer, T; Elmer, J; Babu, S

    2003-10-29

    Time Resolved X-Ray Diffraction (TRXRD) measurements are made in the Heat Affected Zone (HAZ) of 2205 Duplex Stainless Steel (DSS) spot welds. Both the {gamma} {yields} {delta} and {delta} {yields} {gamma} transformations are monitored as a function of time during the rapid spot weld heating and cooling cycles. These observations are then correlated with calculated thermal cycles. Where the peak temperatures are highest ({approx}1342 C), the {gamma} {yields} {delta} transformation proceeds to completion, leaving a ferritic microstructure at the end of heating. With lower peak temperatures, the {gamma} {yields} {delta} transformation proceeds to only partial completion, resulting in a microstructure containing both transformed and untransformed austenite. Further analyses of the individual diffraction patterns show shifts in the peak positions and peak widths as a function of both time and temperature. In addition, these changes in the peak characteristics are correlated with measured changes in the ferrite volume fraction. Such changes in the peak positions and widths during the {gamma} {yields} {delta} transformation provide an indication of changes occurring in each phase. These changes in peak properties can be correlated with the diffusion of nitrogen and other substitutional alloying elements, which are recognized as the primary mechanisms for this transformation. Upon cooling, the {delta} {yields} {gamma} transformation is observed to proceed from both the completely and partially transformed microstructural regions in the TRXRD data. An examination of the resulting microstructures confirms the TRXRD observation as the evidence shows that austenite both nucleates and grows from the ferritic microstructure at locations closest to the fusion zone boundary and grows from untransformed austenite grains at locations further from this boundary.

  6. Evidence of multi-stage faulting by clay mineral analysis: Example in a normal fault zone affecting arkosic sandstones (Annot sandstones)

    NASA Astrophysics Data System (ADS)

    Buatier, Martine D.; Cavailhes, Thibault; Charpentier, Delphine; Lerat, Jérémy; Sizun, Jean Pierre; Labaume, Pierre; Gout, Claude

    2015-06-01

    Fault affecting silicoclastic sediments are commonly enriched in clay minerals. Clays are sensitive to fluid-rock interactions and deformation mechanisms; in this paper, they are used as proxy for fault activity and behavior. The present study focuses on clay mineral assemblages from the Point Vert normal fault zone located in the Annot sandstones, a Priabonian-Rupelian turbidite succession of the Alpine foredeep in SE France. In this area, the Annot sandstones were buried around 6-8 km below the front of Alpine nappes soon after their deposition and exhumed during the middle-late Miocene. The fault affects arkosic sandstone beds alternating with pelitic layers, and displays throw of about thirty meters. The fault core zone comprises intensely foliated sandstones bounding a corridor of gouge about 20 cm thick. The foliated sandstones display clay concentration along S-C structures characterized by dissolution of K-feldspar and their replacement by mica, associated with quartz pressure solution, intense microfracturation and quartz vein precipitation. The gouge is formed by a clayey matrix containing fragments of foliated sandstones and pelites. However, a detailed petrographical investigation suggests complex polyphase deformation processes. Optical and SEM observations show that the clay minerals fraction of all studied rocks (pelites and sandstones from the damage and core zones of the fault) is dominated by white micas and chlorite. These minerals have two different origins: detrital and newly-formed. Detrital micas are identified by their larger shape and their chemical composition with a lower Fe-Mg content than the newly-formed white micas. In the foliated sandstones, newly-formed white micas are concentrated along S-C structures or replace K-feldspar. Both types of newly formed micas display the same chemical composition confirmed microstructural observations suggesting that they formed in the same conditions. They have the following structural formulas: Na0

  7. Will changes in root-zone temperature in boreal spring affect recovery of photosynthesis in Picea mariana and Populus tremuloides in a future climate?

    PubMed

    Fréchette, Emmanuelle; Ensminger, Ingo; Bergeron, Yves; Gessler, Arthur; Berninger, Frank

    2011-11-01

    Future climate will alter the soil cover of mosses and snow depths in the boreal forests of eastern Canada. In field manipulation experiments, we assessed the effects of varying moss and snow depths on the physiology of black spruce (Picea -mariana (Mill.) B.S.P.) and trembling aspen (Populus tremuloides Michx.) in the boreal black spruce forest of western Québec. For 1 year, naturally regenerated 10-year-old spruce and aspen were grown with one of the following treatments: additional N fertilization, addition of sphagnum moss cover, removal of mosses, delayed soil thawing through snow and hay addition, or accelerated soil thawing through springtime snow removal. Treatments that involved the addition of insulating moss or snow in the spring caused lower soil temperature, while removing moss and snow in the spring caused elevated soil temperature and thus had a warming effect. Soil warming treatments were associated with greater temperature variability. Additional soil cover, whether moss or snow, increased the rate of photosynthetic recovery in the spring. Moss and snow removal, on the other hand, had the opposite effect and lowered photosynthetic activity, especially in spruce. Maximal electron transport rate (ETR(max)) was, for spruce, 39.5% lower after moss removal than with moss addition, and 16.3% lower with accelerated thawing than with delayed thawing. Impaired photosynthetic recovery in the absence of insulating moss or snow covers was associated with lower foliar N concentrations. Both species were affected in that way, but trembling aspen generally reacted less strongly to all treatments. Our results indicate that a clear negative response of black spruce to changes in root-zone temperature should be anticipated in a future climate. Reduced moss cover and snow depth could adversely affect the photosynthetic capacities of black spruce, while having only minor effects on trembling aspen. PMID:22021010

  8. Will changes in root-zone temperature in boreal spring affect recovery of photosynthesis in Picea mariana and Populus tremuloides in a future climate?

    PubMed

    Fréchette, Emmanuelle; Ensminger, Ingo; Bergeron, Yves; Gessler, Arthur; Berninger, Frank

    2011-11-01

    Future climate will alter the soil cover of mosses and snow depths in the boreal forests of eastern Canada. In field manipulation experiments, we assessed the effects of varying moss and snow depths on the physiology of black spruce (Picea -mariana (Mill.) B.S.P.) and trembling aspen (Populus tremuloides Michx.) in the boreal black spruce forest of western Québec. For 1 year, naturally regenerated 10-year-old spruce and aspen were grown with one of the following treatments: additional N fertilization, addition of sphagnum moss cover, removal of mosses, delayed soil thawing through snow and hay addition, or accelerated soil thawing through springtime snow removal. Treatments that involved the addition of insulating moss or snow in the spring caused lower soil temperature, while removing moss and snow in the spring caused elevated soil temperature and thus had a warming effect. Soil warming treatments were associated with greater temperature variability. Additional soil cover, whether moss or snow, increased the rate of photosynthetic recovery in the spring. Moss and snow removal, on the other hand, had the opposite effect and lowered photosynthetic activity, especially in spruce. Maximal electron transport rate (ETR(max)) was, for spruce, 39.5% lower after moss removal than with moss addition, and 16.3% lower with accelerated thawing than with delayed thawing. Impaired photosynthetic recovery in the absence of insulating moss or snow covers was associated with lower foliar N concentrations. Both species were affected in that way, but trembling aspen generally reacted less strongly to all treatments. Our results indicate that a clear negative response of black spruce to changes in root-zone temperature should be anticipated in a future climate. Reduced moss cover and snow depth could adversely affect the photosynthetic capacities of black spruce, while having only minor effects on trembling aspen.

  9. Prediction and characterization of heat-affected zone formation in tin-bismuth alloys due to nickel-aluminum multilayer foil reaction

    SciTech Connect

    Hooper, R. J.; Davis, C. G.; Johns, P. M.; Adams, D. P.; Hirschfeld, D.; Nino, J. C.; Manuel, M. V.

    2015-06-26

    Reactive multilayer foils have the potential to be used as local high intensity heat sources for a variety of applications. In this study, most of the past research effort concerning these materials have focused on understanding the structure-property relationships of the foils that govern the energy released during a reaction. To improve the ability of researchers to more rapidly develop technologies based on reactive multilayer foils, a deeper and more predictive understanding of the relationship between the heat released from the foil and microstructural evolution in the neighboring materials is needed. This work describes the development of a numerical model for the purpose of predicting heat affected zone size in substrate materials. The model is experimentally validated using a commercially available Ni-Al multilayer foils and alloys from the Sn-Bi binary system. To accomplish this, phenomenological models for predicting the variation of physical properties (i.e., thermal conductivity, density, and heat capacity) with temperature and composition in the Sn-Bi system were utilized using literature data.

  10. The use of supercomputer modelling of high-temperature failure in pipe weldments to optimize weld and heat affected zone materials property selection

    NASA Astrophysics Data System (ADS)

    Wang, Z. P.; Hayhurst, D. R.

    1994-07-01

    The creep deformation and damage evolution in a pipe weldment has been modeled by using the finite-element continuum damage mechanics (CDM) method. The finite-element CDM computer program DAMAGE XX has been adapted to run with increased speed on a Cray XMP/416 supercomputer. Run times are sufficiently short (20 min) to permit many parametric studies to be carried out on vessel lifetimes for different weld and heat affected zone (HAZ) materials. Finite-element mesh sensitivity was studied first in order to select a mesh capable of correctly predicting experimentally observed results using at least possible computer time. A study was then made of the effect on the lifetime of a butt welded vessel of each of the commomly measured material parameters for the weld and HAZ materials. Forty different ferritic steel welded vessels were analyzed for a constant internal pressure of 45.5 MPa at a temperature of 565 C; each vessel having the same parent pipe material but different weld and HAZ materials. A lifetime improvement has been demonstrated of 30% over that obtained for the initial materials property data. A methodology for weldment design has been established which uses supercomputer-based CDM analysis techniques; it is quick to use, provides accurate results, and is a viable design tool.

  11. Prediction and characterization of heat-affected zone formation in tin-bismuth alloys due to nickel-aluminum multilayer foil reaction

    DOE PAGES

    Hooper, R. J.; Davis, C. G.; Johns, P. M.; Adams, D. P.; Hirschfeld, D.; Nino, J. C.; Manuel, M. V.

    2015-06-26

    Reactive multilayer foils have the potential to be used as local high intensity heat sources for a variety of applications. In this study, most of the past research effort concerning these materials have focused on understanding the structure-property relationships of the foils that govern the energy released during a reaction. To improve the ability of researchers to more rapidly develop technologies based on reactive multilayer foils, a deeper and more predictive understanding of the relationship between the heat released from the foil and microstructural evolution in the neighboring materials is needed. This work describes the development of a numerical modelmore » for the purpose of predicting heat affected zone size in substrate materials. The model is experimentally validated using a commercially available Ni-Al multilayer foils and alloys from the Sn-Bi binary system. To accomplish this, phenomenological models for predicting the variation of physical properties (i.e., thermal conductivity, density, and heat capacity) with temperature and composition in the Sn-Bi system were utilized using literature data.« less

  12. Effect of welding conditions on transformation and properties of heat-affected zones in LWR (light-water reactor) vessel steels

    SciTech Connect

    Lundin, C.D.; Mohammed, S. . Welding Research and Engineering)

    1990-11-01

    The continuous cooling transformation behavior (CCT) and isothermal transformation (IT) behavior were determined for SA-508 and SA-533 materials for conditions pertaining to standard heat treatment and for the coarse-grained region of the heat-affected zone (HAZ). The resulting diagrams help to select welding conditions that produce the most favorable microconstituent for the development of optimum postweld heat treatment (PWHT) toughness levels. In the case of SA-508 and SA-533, martensite responds more favorably to PWHT than does bainite. Bainite is to be avoided for the optimum toughness characteristics of the HAZ. The reheat cracking tendency for both steels was evaluated by metallographic studies of simulated HAZ structures subjected to PWHT cycles and simultaneous restraint. Both SA-533, Grade B, Class 1, and SA-508, Class 2, cracked intergranularly. The stress rupture parameter (the product of the stress for a rupture life of 10 min and the corresponding reduction of area) calculated for both steels showed that SA-508, Class 2, was more susceptible to reheat cracking than SA-533, Grade B, Class 1. Cold cracking tests (Battelle Test and University of Tennessee modified hydrogen susceptibility test) indicated that a higher preheat temperature is required for SA-508, Class 2, to avoid cracking than is required for SA-533, Grade B, Class 1. Further, the Hydrogen Susceptibility Test showed that SA-508, Class 2, is more susceptible to hydrogen embrittlement than is SA-533, Grade B, Class 1.

  13. Laser cutting of graphite anodes for automotive lithium-ion secondary batteries: investigations in the edge geometry and heat-affected zone

    NASA Astrophysics Data System (ADS)

    Schmieder, Benjamin

    2012-03-01

    To serve the high need of lithium-ion secondary batteries of the automobile industry in the next ten years it is necessary to establish highly reliable, fast and non abrasive machining processes. In previous works [1] it was shown that high cutting speeds with several meters per second are achievable. For this, mainly high power single mode fibre lasers with up to several kilo watts were used. Since lithium-ion batteries are very fragile electro chemical systems, the cutting speed is not the only thing important. To guarantee a high cycling stability and a long calendrical life time the edge quality and the heat affected zone (HAZ) are equally important. Therefore, this paper tries to establish an analytical model for the geometry of the cutting edge based on the ablation thresholds of the different materials. It also deals with the composition of the HAZ in dependence of the pulse length, generated by laser remote cutting with pulsed fibre laser. The characterisation of the HAZ was done by optical microscopy, SEM, EDX and Raman microscopy.

  14. Untangling hyporheic residence time distributions and whole stream metabolisms using a hydrological process model

    NASA Astrophysics Data System (ADS)

    Altenkirch, Nora; Mutz, Michael; Molkenthin, Frank; Zlatanovic, Sanja; Trauth, Nico

    2016-04-01

    The interaction of the water residence time in hyporheic sediments with the sediment metabolic rates is believed to be a key factor controlling whole stream metabolism. However, due to the methodological difficulties, there is little data that investigates this fundamental theory of aquatic ecology. Here, we report on progress made to combine numerical modeling with a series of manipulation to laboratory flumes overcoming methodological difficulties. In these flumes, hydraulic conditions were assessed using non-reactive tracer and heat pulse sensor. Metabolic activity was measured as the consumption and production of oxygen and the turnover of reactive tracers. Residence time and metabolic processes were modeled using a multicomponent reactive transport code called Min3P and calibrated with regard to the hydraulic conditions using the results obtained from the flume experiments. The metabolic activity was implemented in the model via Monod type expressions e.g. for aerobic respiration rates. A number of sediment structures differing in residence time distributions were introduced in both, the model and the flumes, specifically to model the biogeochemical performance and to validate the model results. Furthermore, the DOC supply and surface water flow velocity were altered to test the whole stream metabolic response. Using the results of the hydrological process model, a sensitivity analysis of the impact of residence time distributions on the metabolic activity could yield supporting proof of an existing link between the two.

  15. Methanogenic archaea diversity in hyporheic sediments of a small lowland stream.

    PubMed

    Brablcová, Lenka; Buriánková, Iva; Badurová, Pavlína; Chaudhary, Prem Prashant; Rulík, Martin

    2015-04-01

    Abundance and diversity of methanogenic archaea were studied at five localities along a longitudinal profile of a Sitka stream (Czech Republic). Samples of hyporheic sediments were collected from two sediment depths (0-25 cm and 25-50 cm) by freeze-core method. Methanogen community was analyzed by fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE) and sequencing method. The proportion of methanogens to the DAPI-stained cells varied among all localities and depths with an average value 2.08 × 10(5) per g of dry sediment with the range from 0.37 to 4.96 × 10(5) cells per g of dry sediment. A total of 73 bands were detected at 19 different positions on the DGGE gel and the highest methanogen diversity was found at the downstream located sites. There was no relationship between methanogen diversity and sediment depth. Cluster analysis of DGGE image showed three main clusters consisting of localities that differed in the number and similarity of the DGGE bands. Sequencing analysis of representative DGGE bands revealed phylotypes affiliated with members belonging to the orders Methanosarcinales, Methanomicrobiales and Methanocellales. The knowledge about occurrence and diversity of methanogenic archaea in freshwater ecosystems are essential for methane dynamics in river sediments and can contribute to the understanding of global warming process.

  16. Methanogenic archaea diversity in hyporheic sediments of a small lowland stream

    NASA Astrophysics Data System (ADS)

    Brablcova, Lenka; Buriánková, Iva; Rulík, Martin

    2015-04-01

    Abundance and diversity of methanogenic archaea were studied at five localities along a longitudinal profile of a Sitka stream (Czech Republic). Samples of hyporheic sediments were collected from two sediment depths (0-25 cm and 25-50 cm) by freeze-core method. Methanogen community was analyzed by fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE) and sequencing method. The proportion of methanogens to the DAPI-stained cells varied among all localities and depths with an average value 2.08 × 105 per g of dry sediment. A total of 73 bands were detected at 19 different positions on the DGGE gel and the highest methanogen diversity was found at the downstream located sites. Cluster analysis of DGGE image showed three main clusters consisting of localities that differed in the number and similarity of the DGGE bands. Sequencing analysis of representative DGGE bands revealed phylotypes affiliated with members belonging to the orders Methanosarcinales, Methanomicrobiales and Methanocellales. The authors are thankful to the European Social Fund and state budget of the Czech Republic for providing the financial support during this study. This work is a part of the POSTUP II project CZ.1.07/2.3.00/30.0041, which is mutually financed by the previously stated funding agencies.

  17. Numerical modeling of coupled nitrification-denitrification in sediment perfusion cores from the hyporheic zone of the Shingobee River, MN

    USGS Publications Warehouse

    Sheibley, R.W.; Jackman, A.P.; Duff, J.H.; Triska, F.J.

    2003-01-01

    Nitrification and denitrification kinetics in sediment perfusion cores were numerically modeled and compared to experiments on cores from the Shingobee River MN, USA. The experimental design incorporated mixing groundwater discharge with stream water penetration into the cores, which provided a well-defined, one-dimensional simulation of in situ hydrologic conditions. Ammonium (NH+4) and nitrate (NO-3) concentration gradients suggested the upper region of the cores supported coupled nitrification-denitrification, where groundwater-derived NH+4 was first oxidized to NO-3 then subsequently reduced via denitrification to N2. Nitrification and denitrification were modeled using a Crank-Nicolson finite difference approximation to a one-dimensional advection-dispersion equation. Both processes were modeled using first-order reaction kinetics because substrate concentrations (NH+4 and NO-3) were much smaller than published Michaelis constants. Rate coefficients for nitrification and denitrification ranged from 0.2 to 15.8 h-1 and 0.02 to 8.0 h-1, respectively. The rate constants followed an Arrhenius relationship between 7.5 and 22 ??C. Activation energies for nitrification and denitrification were 162 and 97.3 kJ/mol, respectively. Seasonal NH+4 concentration patterns in the Shingobee River were accurately simulated from the relationship between perfusion core temperature and NH+4 flux to the overlying water. The simulations suggest that NH+4 in groundwater discharge is controlled by sediment nitrification that, consistent with its activation energy, is strongly temperature dependent. ?? 2003 Elsevier Ltd. All rights reserved.

  18. THE HYDRAULIC CHARACTERISTICS AND GEOCHEMISTRY OF HYPORHEIC AND PARAFLUVIAL ZONES IN ARCTIC TUNDRA STREAMS, NORTH SLOPE, ALASKA

    EPA Science Inventory

    Sodium bromide and Rhodamine WT were used as conservative tracers to examine the hydrologic characteristics of seven tundra streams in Arctic Alaska, during the summers of 1994-1996. Continuous tracer additions were conducted in seven rivers ranging from 1st to 5th order with sam...

  19. Effects of Oxides on Tensile and Charpy Impact Properties and Fracture Toughness in Heat Affected Zones of Oxide-Containing API X80 Linepipe Steels

    NASA Astrophysics Data System (ADS)

    Sung, Hyo Kyung; Sohn, Seok Su; Shin, Sang Yong; Oh, Kyung Shik; Lee, Sunghak

    2014-06-01

    This study is concerned with effects of complex oxides on acicular ferrite (AF) formation, tensile and Charpy impact properties, and fracture toughness in heat affected zones (HAZs) of oxide-containing API X80 linepipe steels. Three steels were fabricated by adding Mg and O2 to form oxides, and various HAZ microstructures were obtained by conducting HAZ simulation tests under different heat inputs. The no. of oxides increased with increasing amount of Mg and O2, while the volume fraction of AF present in the steel HAZs increased with increasing the no. of oxides. The strengths of the HAZ specimens were generally higher than those of the base metals because of the formation of hard microstructures of bainitic ferrite and granular bainite. When the total Charpy absorbed energy was divided into the fracture initiation and propagation energies, the fracture initiation energy was maintained constant at about 75 J at room temperature, irrespective of volume fraction of AF. The fracture propagation energy rapidly increased from 75 to 150 J and saturated when the volume fraction of AF exceeded 30 pct. At 253 K (-20 °C), the total absorbed energy increased with increasing volume fraction of AF, as the cleavage fracture was changed to the ductile fracture when the volume fraction of AF exceeded 45 pct. Thus, 45 vol pct of AF at least was needed to improve the Charpy impact energy, which could be achieved by forming a no. of oxides. The fracture toughness increased with increasing the no. of oxides because of the increased volume fraction of AF formed around oxides. The fracture toughness did not show a visible correlation with the Charpy absorbed energy at room temperature, because toughness properties obtained from these two toughness testing methods had different significations in view of fracture mechanics.

  20. The Stress-Relief Cracking Susceptibility of a New Ferritic Steel - Part I: Single-Pass Heat-Affected Zone Simulations

    SciTech Connect

    NAWROCKI,J.G.; DUPONT,J.N.; ROBINO,CHARLES V.; MARDER,A.R.

    1999-12-15

    The stress-relief cracking susceptibility of single-pass welds in a new ferritic steel, HCM2S, has been evaluated and compared to 2.25Cr-1Mo steel using Gleeble techniques. Simulated coarse-grained heat-affected zones (CGHAZ) were produced under a range of energy inputs and tested at various post-weld heat treatment (PWHT) temperatures. Both alloys were tested at a stress of 325 MPa. The 2.25 Cr-1Mo steel was also tested at 270 MPa to normalize for the difference in yield strength between the two materials. Light optical and scanning electron microscopy were used to characterize the CGHAZ microstructure. The ''as-welded'' CGHAZ of each alloy consisted of lath martensite or bainite and had approximately equal prior austenite grain sizes. The as-welded hardness of the 2.25Cr-1Mo steel CGHAZ was significantly higher than that of the HCM2S alloy. Over the range studied energy input had no effect on the as-welded microstructure or hardness of either alloy. The energy input also had no effect on the stress-relief cracking susceptibility of either material. Both alloys failed intergranularly along prior austenite grain boundaries under all test conditions. The 2.25Cr-1Mo steel samples experienced significant macroductility and some microductility when tested at 325 MPa. The ductility decreased significantly when tested at 270 MPa but was still higher that than of HCM2S at each test condition. The time to failure decreased with increasing PWHT Temperature for each material. There was no significant difference in the times to failure between the two materials. Varying energy input and stress had no effect on the time-to failure. The ductility, as measured by reduction in are% increased with increasing PWHT temperature for 2.25 Cr-1Mo steel tested at both stresses. However, PWHT temperature had no effect on the ductility of HCM2S. The hardness of the CGHAZ for 2.25Cr-1Mo steel decreased significantly after PWHT, but remained constant for HCM2S. The differences in stress

  1. Influences of microbial activity and sediment disturbance on hyporheic exchange in sandy sediments

    NASA Astrophysics Data System (ADS)

    Mendoza-Lera, C.; Mutz, M.

    2012-04-01

    Besides the vertical hydraulic gradient, sediment permeability is the main controlling factor of water exchange across the stream bed. Reduction of permeability by microbial activity is reported from unidirectional percolated sediment columns. We investigated effects of algal and bacterial activity on hyporheic exchange (vertical water flux, VWF) under semi-natural stream conditions in 16 outdoor sand-bed flumes during 30 day. Variability of bedform was considered by 8 flumes having plane-bed and 8 flumes ripple-bed. To gain information on the relative significance of algae and heterotrophic microorganisms, half of the flumes were operated under constant dark conditions (no-light flumes), while the others were exposed to daylight. After 21 days, the upper 2 cm of the sediments was manually disturbed simulating moderate sediment dynamics which frequently occurs in natural sand-bed streams. VWF was measured by tracing loss of uranine from the water column while flumes were operating in re-circulating mode. Algae and bacterial abundance, organic matter, and CaCO3 content in sediments were determined. Sediment potential respiration (SPR) was measured in flow through respiration chambers and oxygen bubbles from primary production were sampled. As expected, initial VWF was higher in ripple-bed. After 13 days, VWF was completely inhibited in both plane and ripple-bed flumes under daylight conditions. In no-light flumes reduction of VWF was moderate. Microbial precipitation of calcium carbonate and production of oxygen bubbles in the uppermost sediments blocked the pore space. After 3 weeks, abundance and biomass of algae and SPR in the upper 2 cm of sediment were higher in daylight flumes than in no-light flumes, while bacterial abundance was higher in no-light flumes. The sediment disturbance at day 21 released the oxygen bubbles increased bed permeability and therefore restored VWF to initial rates in day-light flumes. SPR was unaffected by the sediment disturbance. In

  2. Hot moments and hot spots in hyporheic nutrient transformation - To what degree does small-scale variability control stream-reach attenuation potential?

    NASA Astrophysics Data System (ADS)

    Krause, S.; Blume, T.; Binley, A.; Heathwaite, L.; Cassidy, N. J.; Munz, M.; Tecklenburg, C.; Kaeser, D.

    2011-12-01

    Concentrations of nutrients and contaminants in up-welling groundwater can significantly change along the passage through highly heterogeneous streambed sediments with substantial implications for the quality of connected surface water bodies. This study presents investigations into the physical drivers and chemical controls of nutrient transport and transformation at the aquifer-river interfaces of two upland and lowland UK rivers. It combines the application of in-stream geophysical exploration techniques, multi-level mini-piezometer networks, active and passive heat tracing methods (including fibre-optic distributed temperature sensing - FO-DTS) for identifying hyporheic exchange fluxes and residence time distributions with multi-scale approaches of hyporheic pore water sampling and reactive tracers for analysing the patterns of streambed redox conditions and chemical transformation rates. The analysis of hyporheic pore water from nested multi-level mini piezometers and passive gel probe samplers revealed significant spatial variability in streambed redox conditions and concentration changes of nitrogen species, dissolved oxygen and bioavailable organic carbon. Hot spots of increased nitrate attenuation were identified beneath semi-confining peat lenses in the streambed of the investigated lowland river. The intensity of concentration changes underneath the confining peat pockets correlated with the state of anoxia in the pore water as well as the supply of organic carbon and hyporheic residence times. In contrast, at locations where flow inhibiting peat layers were absent or disrupted - fast exchange between aquifer and river caused a break through of nitrate without significant concentration changes along the hyporheic flow path. Fibre-optic distributed temperature sensor networks and streambed electric resistivity tomography were applied for identifying exchange flow patterns between groundwater and surface water in dependency of streambed structural

  3. Groundwater-ocean interaction and its effects on coastal ecological processes - are there groundwater-dependant ecosystems in the coastal zone?

    NASA Astrophysics Data System (ADS)

    Stieglitz, T. C.

    2013-05-01

    Hydrological land-ocean connectivity is an important driver of coastal ecosystems. Rivers are obvious and visible pathways for terrestrial runoff. The critical role of surface water discharge from rivers to coastal ecosystems has been well documented. Hidden from view, 'downstream' effects of coastal (supra-tidal, intertidal and submarine) groundwater discharge are far less well understood. Whilst hydrological and geochemical processes associated with coastal groundwater discharge have received an increasing amount of scientific attention over the past decade or so, the effects of groundwater flow on productivity, composition, diversity and functioning of coastal ecosystems along the world's shorelines have received little attention to date. Coastal groundwater discharge includes both terrestrial (fresh) groundwater fluxes and the recirculation of seawater through sediments, analogous to hyporheic flow in rivers. I will present an overview over relevant coastal hydrological processes, and will illustrate their ecological effects on examples from diverse tropical coastal ecosystems, e.g. (1) perennial fresh groundwater discharge from coastal sand dune systems permitting growth of freshwater-dependent vegetation in the intertidal zone of the Great Barrier Reef (Australia), (2) recirculation of seawater through mangrove forest floors directly affecting tree health and providing a pathway for carbon export from these ecosystems, (3) the local hydrology of groundwater-fed coastal inlets on Mexico's Yucatan peninsula affecting the movement behaviour of and habitat use by the queen conch Strombus gigas, an economically important species in the Caribbean region. These examples for hydrological-ecological coupling in the coastal zone invite the question if we should not consider these coastal ecosystems to be groundwater-dependent, in analogy to groundwater-dependency in freshwater aquatic systems.

  4. FINIFLUX: An implicit finite element model for quantification of groundwater fluxes and hyporheic exchange in streams and rivers using radon

    NASA Astrophysics Data System (ADS)

    Frei, S.; Gilfedder, B. S.

    2015-08-01

    A quantitative understanding of groundwater-surface water interactions is vital for sustainable management of water quantity and quality. The noble gas radon-222 (Rn) is becoming increasingly used as a sensitive tracer to quantify groundwater discharge to wetlands, lakes, and rivers: a development driven by technical and methodological advances in Rn measurement. However, quantitative interpretation of these data is not trivial, and the methods used to date are based on the simplest solutions to the mass balance equation (e.g., first-order finite difference and inversion). Here we present a new implicit numerical model (FINIFLUX) based on finite elements for quantifying groundwater discharge to streams and rivers using Rn surveys at the reach scale (1-50 km). The model is coupled to a state-of-the-art parameter optimization code Parallel-PEST to iteratively solve the mass balance equation for groundwater discharge and hyporheic exchange. The major benefit of this model is that it is programed to be very simple to use, reduces nonuniqueness, and provides numerically stable estimates of groundwater fluxes and hyporheic residence times from field data. FINIFLUX was tested against an analytical solution and then implemented on two German rivers of differing magnitude, the Salzach (˜112 m3 s-1) and the Rote Main (˜4 m3 s-1). We show that using previous inversion techniques numerical instability can lead to physically impossible negative values, whereas the new model provides stable positive values for all scenarios. We hope that by making FINIFLUX freely available to the community that Rn might find wider application in quantifying groundwater discharge to streams and rivers and thus assist in a combined management of surface and groundwater systems.

  5. Zones of Peace.

    ERIC Educational Resources Information Center

    Evans, Judith L.; And Others

    1996-01-01

    Children affected by armed violence face a specific set of stressors and challenges which calls for appropriate programming. This Coordinator's Notebook focuses on how to work with children affected by organized violence in order to provide them the best possible early childhood experiences. It is divided into five sections. "Children as Zones of…

  6. Geochemical distribution of arsenic, cadmium, lead and zinc in river sediments affected by tailings in Zimapán, a historical polymetalic mining zone of México

    NASA Astrophysics Data System (ADS)

    Espinosa, Erik; Armienta, María Aurora; Cruz, Olivia; Aguayo, Alejandra; Ceniceros, Nora

    2009-10-01

    In the historical mining zone of Zimapán, México, unprotected tailings deposits are supplying contaminants to the local fluvial system. This research was conducted to assess the environmental hazard of these wastes and river sediments by determining the input, transport and seasonal variability of arsenic, cadmium, lead and zinc, and their speciation by an operationally defined scheme of decreasing lability: F1, fraction soluble in deionized water; F2, associated to carbonates; F3, oxides and hydroxides of iron; F4, sulfides and organic matter; F5, residual. Higher total concentrations of Cd, Pb and Zn were present in sediments in the dry season regarding the rainy season. In the dry season, As and Pb were principally associated with the more stable F3 and F5 fractions, whereas Cd was in F2 and F5, and Zn in F3, F2 and F5. In the rainy season the association was mainly F3 for As, while F2 and F3 contained most Cd, Pb and Zn. This fractionation indicates that the environmental hazard of Cd, Pb and Zn enhances upon a pH decrease due to their proportion in the carbonatic fraction, and shows a mobility increase during the rainy season.

  7. Bioturbation, geochemistry and geotechnics of sediments affected by the oxygen minimum zone on the Oman continental slope and abyssal plain, Arabian Sea

    NASA Astrophysics Data System (ADS)

    Meadows, Azra; Meadows, Peter S.; West, Fraser J. C.; Murray, John M. H.

    2000-01-01

    We investigate the way the oxygen minimum zone (OMZ) alters interactions between bioturbation and sediment geochemistry, and geotechnical properties. Sediments are compared within and below the OMZ on the Oman continental slope and adjacent abyssal plain during the post monsoonal autumn season. Quantitative measurements were made of Eh and pH, of total organic matter (TOM) and carbonate, of water content and shear strength, and of bioturbation structures in vertical profiles of subcores taken from spade-box core samples. The OMZ stations had distinctively low redox conditions and high carbonate content, and different geotechnical properties and different bioturbation structures than stations below the OMZ on the abyssal plain. These differences are related to the degree of anoxia and to water depth. Within the OMZ, Eh, pH and carbonate increased with water depth, and TOM and water content decreased. We also noted the presence of subsurface sediment heterogeneity on the continental slope within the OMZ. In the OMZ, Eh, water content and bioturbation decreased with increasing sediment depth. There was a slight decrease in pH in the top 5 cm at all stations. Shear strength nearly always increased with increasing sediment depth. At each water depth correlations show down-core trends in these parameters, while across all water depths correlations were significant at deeper sediment depths (20-30 cm). An Eh-pH diagram identified two water-depth groupings: 391-1008 and 1265-3396 m. Cluster analysis showed the upper and lower sediment depths form separate clusters, the break occurring at 4-7.5 cm; while there are also distinct clusters related to water depth. We relate our results to bottom-water oxygen concentrations reported by other investigators, and to regional-scale geochemical processes.

  8. Modelling vegetation water-use and groundwater recharge as affected by climate variability in an arid-zone Acacia savanna woodland

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Eamus, Derek; Cleverly, James; Boulain, Nicolas; Cook, Peter; Zhang, Lu; Cheng, Lei; Yu, Qiang

    2014-11-01

    For efficient and sustainable utilisation of limited groundwater resources, improved understanding of how vegetation water-use responds to climate variation and the corresponding controls on recharge is essential. This study investigated these responses using a modelling approach. The biophysically based model WAVES was calibrated and validated with more than two years of field experimental data conducted in Mulga (Acacia aneura) in arid central Australia. The validated model was then applied to simulate vegetation growth (as changes in overstory and understory leaf area index; LAI), vegetation water-use and groundwater recharge using observed climate data for the period 1981-2012. Due to large inter-annual climatic variability, especially precipitation, simulated annual mean LAI ranged from 0.12 to 0.35 for the overstory and 0.07 to 0.21 for the understory. These variations in simulated LAI resulted in vegetation water-use varying greatly from year-to-year, from 64 to 601 mm pa. Simulated vegetation water-use also showed distinct seasonal patterns. Vegetation dynamics affected by climate variability exerted significant controls on simulated annual recharge, which was greatly reduced to 0-48 mm compared to that (58-672 mm) only affected by climate. Understanding how climate variability and land use/land cover change interactively impact on groundwater recharge significantly improves groundwater resources management in arid and semi-arid regions.

  9. Factors affecting women’s intention to use long acting and permanent contraceptive methods in Wolaita Zone, Southern Ethiopia: A cross-sectional study

    PubMed Central

    2014-01-01

    Background The use of long acting and permanent contraceptive methods (LAPMs) has not kept step with that of short-acting methods such as oral pills and injectable in Africa. This study explores the association between women’s awareness, attitude and barriers with their intention to use LAPMs among users of short term methods, in Southern Ethiopia. Methods A cross-sectional study design of mixed methods was conducted in the public health facilities of Wolaita zone, Southern Ethiopia, in January 2013. Women who were using short term contraceptive methods were the study population (n = 416). Moreover, 12 in-depth interviews were conducted among family planning providers and women who have been using short term methods. Data were entered into EPI Info version 3.5.3 and exported to SPSS version 16.0 for analysis. The odds ratios in the binary logistic regression model along with 95% confidence interval were used. Results One hundred fifty six (38%) of women had the intention to use LAPMs while nearly half of them (n = 216) had a negative attitude to use such methods. Moreover, two-third of study participants (n = 276) held myths and misconceptions about such methods. The women who had a positive attitude were found to be 2.5 times more intention to use LAPMs compared to women who had a negative attitude (AOR =2. 47; 95% CI: 1.48- 4.11). Women who had no myths and misconceptions on LAPMs were found to be 1.7 times more intention to use LAPMs compared to women who had myths and misconceptions (AOR = 1.71; 95% CI: 1.08- 2.72). Likewise, women who attained secondary and higher level of education were found to be 2 and 2.8 times more intention to use LAPMs compared to women with no education, respectively (AOR = 2. 10; 95% CI: 1.11- 3.98) and AOR = 2. 80; 95% CI: 1.15- 6.77). Conclusions Intention to use LAPMs was low and nearly half of women had a negative attitude to use such methods. Positive attitude, absence of myths and misconceptions on

  10. Recent (2008-10) water quality in the Barton Springs segment of the Edwards aquifer and its contributing zone, central Texas, with emphasis on factors affecting nutrients and bacteria

    USGS Publications Warehouse

    Mahler, Barbara J.; Musgrove, MaryLynn; Sample, Thomas L.; Wong, Corinne I.

    2011-01-01

    The Barton Springs zone, which comprises the Barton Springs segment of the Edwards aquifer and the watersheds to the west that contribute to its recharge, is in south-central Texas, an area with rapid growth in population and increasing amounts of land area affected by development. During November 2008-March 2010, an investigation of factors affecting the fate and transport of nutrients and bacteria in the Barton Springs zone was conducted by the U.S. Geological Survey (USGS), in cooperation with the Texas Commission on Environmental Quality. The primary objectives of the study were to characterize occurrence of nutrients and bacteria in the Barton Springs zone under a range of flow conditions; to improve understanding of the interaction between surface-water quality and groundwater quality; and to evaluate how factors such as streamflow variability and dilution affect the fate and transport of nutrients and bacteria in the Barton Springs zone. The USGS collected and analyzed water samples from five streams (Barton, Williamson, Slaughter, Bear, and Onion Creeks), two groundwater wells (Marbridge and Buda), and the main orifice of Barton Springs in Austin, Texas. During the period of the study, during which the hydrologic conditions transitioned from exceptional drought to wetter than normal, water samples were collected routinely (every 3 to 4 weeks) from the streams, wells, and spring and, in response to storms, from the streams and spring. All samples were analyzed for major ions, nutrients, the bacterium Escherichia coli, and suspended sediment. During the dry period, the geochemistry of groundwater at the two wells and at Barton Springs was dominated by flow from the aquifer matrix and was relatively similar and unchanging at the three sites. At the onset of the wet period, when the streams began to flow, the geochemistry of groundwater samples from the Marbridge well and Barton Springs changed rapidly, and concentrations of most major ions and nutrients and

  11. Hydrogeology, Water Chemistry, and Factors Affecting the Transport of Contaminants in the Zone of Contribution of a Public-Supply Well in Modesto, Eastern San Joaquin Valley, California

    USGS Publications Warehouse

    Jurgens, Bryant C.; Burow, Karen R.; Dalgish, Barbara A.; Shelton, Jennifer L.

    2008-01-01

    Ground-water chemistry in the zone of contribution of a public-supply well in Modesto, California, was studied by the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program's topical team for Transport of Anthropogenic and Natural Contaminants (TANC) to supply wells. Twenty-three monitoring wells were installed in Modesto to record baseline hydraulic information and to collect water-quality samples. The monitoring wells were divided into four categories that represent the chemistry of different depths and volumes of the aquifer: (1) water-table wells were screened between 8.5 and 11.7 m (meter) (28 and 38.5 ft [foot]) below land surface (bls) and were within 5 m (16 ft) of the water table; (2) shallow wells were screened between 29 and 35 m (95 and 115 ft) bls; (3) intermediate wells were screened between 50.6 and 65.5 m (166 and 215 ft) bls; and (4) deep wells are screened between 100 to 106 m (328 and 348 ft) bls. Inorganic, organic, isotope, and age-dating tracers were used to characterize the geochemical conditions in the aquifer and understand the mechanisms of mobilization and movement of selected constituents from source areas to a public-supply well. The ground-water system within the study area has been significantly altered by human activities. Water levels in monitoring wells indicated that horizontal movement of ground water was generally from the agricultural areas in the northeast towards a regional water-level depression within the city in the southwest. However, intensive pumping and irrigation recharge in the study area has caused large quantities of ground water to move vertically downward within the regional and local flow systems. Analysis of age tracers indicated that ground-water age varied from recent recharge at the water table to more than 1,000 years in the deep part of the aquifer. The mean age of shallow ground water was determined to be between 30 and 40 years. Intermediate ground water was determined to be a mixture

  12. Impact of variable bed morphology on transient storage, hyporhic exchange and nutrient uptake in a field-scale flume

    NASA Astrophysics Data System (ADS)

    Orr, C. H.; Clark, J. J.; Wilcock, P. R.; Finlay, J. C.; Doyle, M. W.

    2006-12-01

    As part of an ongoing, multidisciplinary experimental effort coordinated by the National Center for Earth-surface Dynamics we investigated reach-scale interactions between, bed morphology, transient storage, nutrient cycling in a field-scale flume supplied with water from the Mississippi River. A combination of conservative salt tracer and soluble reactive phosphorous and nitrate additions was used to study the effects on these parameters of two bed morphologies (plane bed and alternate bar) and two sediment mixtures (clean gravel and sandy gravel) to determine how differences in sediment size and between plane-bed and laterally variable morphologies influence spatial heterogeneity in transport and uptake of nutrients. The goal was to partitioning reach-scale transient storage values between surface storage and hyporheic flow, determine how these values and their relative importance changed as we varied bed texture (or permeability) and added or removed surface features, and to then measure uptake of biologically available nitrogen and phosphorus individually and together along these surface and subsurface flow paths. In a final phase of the experiment, lights were added to the flume to determine how benthic algal abundance may change bed permeability and solute exchange with the bed as well as nutrient uptake rates. Initial results show that while mean water residence time varied by a factor of 2 across treatments (14 - 30 min) phosphorus uptake rates varied widely (5.5-2500 μg * m-2 * min-1 and the addition of light had a stronger impact on uptake rates than changes in geomorphic form.

  13. Developmental endpoints of chronic exposure to suspected endocrine-disrupting chemicals on benthic and hyporheic freshwater copepods.

    PubMed

    Di Marzio, W D; Castaldo, D; Di Lorenzo, T; Di Cioccio, A; Sáenz, M E; Galassi, D M P

    2013-10-01

    The aims of this study were: (i) to assess if carbamate pesticides and ammonium, widely detected in European freshwater bodies, can be considered ecologically relevant endocrine-disrupting chemicals (EDCs) for benthic and interstitial freshwater copepods; and (ii) to evaluate the potential of copepods as sentinels for monitoring ecosystem health. In order to achieve these objectives, four species belonging to the harpacticoid copepod genus Bryocamptus, namely B. (E.) echinatus, B. (R.) zschokkei, B. (R.) pygmaeus and B. (B.) minutus, were subjected to chronic exposures to Aldicarb and ammonium. A significant deviation from the developmental time of unexposed control cultures was observed for all the species in test cultures. Aldicarb caused an increase in generation time over 80% in both B. minutus and B. zschokkei, but less than 35% in B. pygmaeus and B. echinatus. Ammonium increased generation time over 33% in B. minutus, and 14, 12 and 3.5% for B. pygmaeus, B. zschokkei and B. echinatus, respectively. On the basis of these results it can be concluded that chronic exposure to carbamate pesticides and ammonium alters the post-naupliar development of the test-species and propose their potential role as EDCs, leaving open the basis to search what are the mechanism underlying. A prolonged developmental time would probably produce a detrimental effect on population attributes, such as age structure and population size. These deviations from a pristine population condition may be considered suitable biological indicators of ecosystem stress, particularly useful to compare polluted to unpolluted reference sites. Due to their dominance in both benthic and interstitial habitats, and their sensitivity as test organisms, freshwater benthic and hyporheic copepods can fully be used as sentinel species for assessing health condition of aquatic ecosystems as required by world-wide water legislation. PMID:23890366

  14. The importance of the riparian zone and in-stream processes in nitrate attenuation in undisturbed and agricultural watersheds – a review of the scientific literature

    USGS Publications Warehouse

    Ranalli, Anthony J.; MacAlady, Donald L.

    2010-01-01

    We reviewed published studies from primarily glaciated regions in the United States, Canada, and Europe of the (1) transport of nitrate from terrestrial ecosystems to aquatic ecosystems, (2) attenuation of nitrate in the riparian zone of undisturbed and agricultural watersheds, (3) processes contributing to nitrate attenuation in riparian zones, (4) variation in the attenuation of nitrate in the riparian zone, and (5) importance of in-stream and hyporheic processes for nitrate attenuation in the stream channel. Our objectives were to synthesize the results of these studies and suggest methodologies to (1) monitor regional trends in nitrate concentration in undisturbed 1st order watersheds and (2) reduce nitrate loads in streams draining agricultural watersheds. Our review reveals that undisturbed headwater watersheds have been shown to be very retentive of nitrogen, but the importance of biogeochemical and hydrological riparian zone processes in retaining nitrogen in these watersheds has not been demonstrated as it has for agricultural watersheds. An understanding of the role of the riparian zone in nitrate attenuation in undisturbed watersheds is crucial because these watersheds are increasingly subject to stressors, such as changes in land use and climate, wildfire, and increases in atmospheric nitrogen deposition. In general, understanding processes controlling the concentration and flux of nitrate is critical to identifying and mapping the vulnerability of watersheds to water quality changes due to a variety of stressors. In undisturbed and agricultural watersheds we propose that understanding the importance of riparian zone processes in 2nd order and larger watersheds is critical. Research is needed that addresses the relative importance of how the following sources of nitrate along any given stream reach might change as watersheds increase in size and with flow: (1) inputs upstream from the reach, (2) tributary inflow, (3) water derived from the riparian zone

  15. Effects of alloying elements on fracture toughness in the transition temperature region of base metals and simulated heat-affected zones of Mn-Mo-Ni low-alloy steels

    NASA Astrophysics Data System (ADS)

    Kim, Sangho; Im, Young-Roc; Lee, Sunghak; Lee, Hu-Chul; Kim, Sung-Joon; Hong, Jun Hwa

    2004-07-01

    This study is concerned with the effects of alloying elements on fracture toughness in the transition temperature region of base metals and heat-affected zones (HAZs) of Mn-Mo-Ni low-alloy steels. Three kinds of steels whose compositions were varied from the composition specification of SA 508 steel (grade 3) were fabricated by vacuum-induction melting and heat treatment, and their fracture toughness was examined using an ASTM E1921 standard test method. In the steels that have decreased C and increased Mo and Ni content, the number of fine M2C carbides was greatly increased and the number of coarse M3C carbides was decreased, thereby leading to the simultaneous improvement of tensile properties and fracture toughness. Brittle martensite-austenite (M-A) constituents were also formed in these steels during cooling, but did not deteriorate fracture toughness because they were decomposed to ferrite and fine carbides after tempering. Their simulated HAZs also had sufficient impact toughness after postweld heat treatment. These findings indicated that the reduction in C content to inhibit the formation of coarse cementite and to improve toughness and the increase in Mo and Ni to prevent the reduction in hardenability and to precipitate fine M2C carbides were useful ways to improve simultaneously the tensile and fracture properties of the HAZs as well as the base metals.

  16. Effects of sediment transport and seepage direction on hydraulic properties at the sediment-water interface of hyporheic settings

    USGS Publications Warehouse

    Rosenberry, D.O.; Pitlick, J.

    2009-01-01

    settings, this bias and its relation to fluvial processes will be relevant to many studies conducted in hyporheic settings that require determination of fluxes across the sediment-water interface.

  17. In situ quantification of spatial and temporal variability of hyporheic exchange in static and mobile gravel-bed rivers

    USGS Publications Warehouse

    Rosenberry, D.O.; Klos, P.Z.; Neal, A.

    2012-01-01

    Seepage meters modified for use in flowing water were used to directly measure rates of exchange between surface and subsurface water in a gravel- and cobble bed river in western Pennsylvania, USA (Allegheny River, Q mean = 190 m 3/s) and a sand- and gravel-bed river in Colorado, USA (South Platte River, Q mean = 9??7 m 3/s). Study reaches at the Allegheny River were located downstream from a dam. The bed was stable with moss, algae, and river grass present in many locations. Median seepage was + 0??28 m/d and seepage was highly variable among measurement locations. Upward and downward seepage greatly exceeded the median seepage rate, ranging from + 2??26 (upward) to - 3??76 (downward) m/d. At the South Platte River site, substantial local-scale bed topography as well as mobile bedforms resulted in spatial and temporal variability in seepage greatly in exceedence of the median groundwater discharge rate of 0??24 m/d. Both upward and downward seepage were recorded along every transect across the river with rates ranging from + 2??37 to - 3??40 m/d. Despite a stable bed, which commonly facilitates clogging by fine-grained or organic sediments, seepage rates at the Allegheny River were not reduced relative to those at the South Platte River. Seepage rate and direction depended primarily on measurement position relative to local- and meso-scale bed topography at both rivers. Hydraulic gradients were small at nearly all seepage-measurement locations and commonly were not a good indicator of seepage rate or direction. Therefore, measuring hydraulic gradient and hydraulic conductivity at in-stream piezometers may be misleading if used to determine seepage flux across the sediment-water interface. Such a method assumes that flow between the well screen and sediment-water interface is vertical, which appears to be a poor assumption in coarse-grained hyporheic settings. ?? 2011 John Wiley & Sons, Ltd.

  18. Impact of transient stream flow on water exchange and reactions in the hyporheic zone of an in-stream gravel bar

    NASA Astrophysics Data System (ADS)

    Trauth, Nico; Schmidt, Christian; Fleckenstein, Jan H.

    2015-04-01

    Groundwater-surface water exchange is an important process that can facilitate the degradation of critical substances like nitrogen-species and contaminants, supporting a healthy status of the aquatic ecosystem. In our study, we simulate water exchange, solute transport and reactions within a natural in-stream gravel bar using a coupled surface and subsurface numerical model. Stream water flow is simulated by computational fluid dynamics software that provides hydraulic head distributions at the streambed, which are used as an upper boundary condition for a groundwater model. In the groundwater model water exchange, solute transport, aerobic respiration and denitrification in the subsurface are simulated. Ambient groundwater flow is introduced by lateral upstream and downstream hydraulic head boundaries that generate neutral, losing or gaining stream conditions. Stream water transports dissolved oxygen, organic carbon (as the dominant electron donor) and nitrate into the subsurface, whereas an additional nitrate source exists in the ambient groundwater. Scenarios of stream flow events varying in duration and stream stage are simulated and compared with steady state scenarios with respect to water fluxes, residence times and the solute turn-over rates. Results show, that water exchange and solute turn-over rates highly depend on the interplay between event characteristics and ambient groundwater levels. For scenarios, where the stream flow event shifts the hydraulic system to a net-neutral hydraulic gradient between the average stream stage and the ambient groundwater level (minimal exchange between ground- and surface water), solute consumption is higher, compared to the steady losing or gaining case. In contrast, events that induce strong losing conditions lead to a lower potential of solute consumption.

  19. A High Order Element Based Method for the Simulation of Velocity Damping in the Hyporheic Zone of a High Mountain River

    NASA Astrophysics Data System (ADS)

    Preziosi-Ribero, Antonio; Peñaloza-Giraldo, Jorge; Escobar-Vargas, Jorge; Donado-Garzón, Leonardo

    2016-04-01

    Groundwater - Surface water interaction is a topic that has gained relevance among the scientific community over the past decades. However, several questions remain unsolved inside this topic, and almost all the research that has been done in the past regards the transport phenomena and has little to do with understanding the dynamics of the flow patterns of the above mentioned interactions. The aim of this research is to verify the attenuation of the water velocity that comes from the free surface and enters the porous media under the bed of a high mountain river. The understanding of this process is a key feature in order to characterize and quantify the interactions between groundwater and surface water. However, the lack of information and the difficulties that arise when measuring groundwater flows under streams make the physical quantification non reliable for scientific purposes. These issues suggest that numerical simulations and in-stream velocity measurements can be used in order to characterize these flows. Previous studies have simulated the attenuation of a sinusoidal pulse of vertical velocity that comes from a stream and goes into a porous medium. These studies used the Burgers equation and the 1-D Navier-Stokes equations as governing equations. However, the boundary conditions of the problem, and the results when varying the different parameters of the equations show that the understanding of the process is not complete yet. To begin with, a Spectral Multi Domain Penalty Method (SMPM) was proposed for quantifying the velocity damping solving the Navier - Stokes equations in 1D. The main assumptions are incompressibility and a hydrostatic approximation for the pressure distributions. This method was tested with theoretical signals that are mainly trigonometric pulses or functions. Afterwards, in order to test the results with real signals, velocity profiles were captured near the Gualí River bed (Honda, Colombia), with an Acoustic Doppler Velocimeter (ADV). These profiles were filtered, treated and set up to feed the SMPM that solves the Navier - Stokes equations for the theoretical case. Besides, the velocity fluctuations along the river bed were calculated according to the mesh that was proposed to solve the numerical problem. This mesh required more refinement near the boundary conditions in order to calculate all the turbulent flow scales near the boundary. As a result, the velocity damping inside the porous media with real velocity pulses behaves similarly to the damping of the theoretical signals. However, there is still doubt about the use of the Navier - Stokes equations with the assumptions of incompressibility and hydrostatic approximation for the pressure distributions. Furthermore, the boundary conditions of the model suggest a great theme of discussion because of their nature. To sum up, the quantification of the interactions of groundwater and surface water have to be studied using numerical models in order to observe the behavior of the flow. Our research suggests that the velocity damping of water when entering the porous media goes beyond the approximations used for the Navier-Stokes equations and that this is a pressure driven flow that does not hold the hydrostatic simplification.

  20. STRUCTURE AND SEASONAL DYNAMICS OF HYPORHEIC ZONE MICROBIAL COMMUNITIES IN FREE-STONE RIVERS OF THE WESTERN UNITED STATES. (R829400E02)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  1. Direct Observations of the (Alpha to Gamma) Transformation at Different Input Powers in the Heat Affected Zone of 1045 C-Mn Steel Arc Welds Observed by Spatially Resolved X-Ray Diffraction

    SciTech Connect

    Palmer, T A; Elmer, J W

    2005-03-16

    Spatially Resolved X-Ray Diffraction (SRXRD) experiments have been performed during Gas Tungsten Arc (GTA) welding of AISI 1045 C-Mn steel at input powers ranging from 1000 W to 3750 W. In situ diffraction patterns taken at discreet locations across the width of the heat affected zone (HAZ) near the peak of the heating cycle in each weld show regions containing austenite ({gamma}), ferrite and austenite ({alpha}+{gamma}), and ferrite ({alpha}). Changes in input power have a demonstrated effect on the resulting sizes of these regions. The largest effect is on the {gamma} phase region, which nearly triples in width with increasing input power, while the width of the surrounding two phase {alpha}+{gamma} region remains relatively constant. An analysis of the diffraction patterns obtained across this range of locations allows the formation of austenite from the base metal microstructure to be monitored. After the completion of the {alpha} {yields} {gamma} transformation, a splitting of the austenite peaks is observed at temperatures between approximately 860 C and 1290 C. This splitting in the austenite peaks results from the dissolution of cementite laths originally present in the base metal pearlite, which remain after the completion of the {alpha} {yields} {gamma} transformation, and represents the formation of a second more highly alloyed austenite constituent. With increasing temperatures, carbon, originally present in the cementite laths, diffuses from the second newly formed austenite constituent to the original austenite constituent. Eventually, a homogeneous austenitic microstructure is produced at temperatures of approximately 1300 C and above, depending on the weld input power.

  2. Twin Convergence Zones

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's QuikSCAT satellite has confirmed a 30-year old largely unproven theory that there are two areas near the equator where the winds converge year after year and drive ocean circulation south of the equator. By analyzing winds, QuikSCAT has found a year-round southern and northern Intertropical Convergence Zone. This find is important to climate modelers and weather forecasters because it provides more detail on how the oceans and atmosphere interact near the equator. The Intertropical Convergence Zone (ITCZ) is the region that circles the Earth near the equator, where the trade winds of both the Northern and Southern Hemispheres come together. North of the equator, strong sun and warm water of the equator heats the air in the ITCZ, drawing air in from north and south and causing the air to rise. As the air rises it cools, releasing the accumulated moisture in an almost perpetual series of thunderstorms. Satellite data, however, has confirmed that there is an ITCZ north of the equator and a parallel ITCZ south of the equator. Variation in the location of the ITCZ is important to people around the world because it affects the north-south atmospheric circulation, which redistributes energy. It drastically affects rainfall in many equatorial nations, resulting in the wet and dry seasons of the tropics rather than the cold and warm seasons of higher latitudes. Longer term changes in the ITCZ can result in severe droughts or flooding in nearby areas. 'The double ITCZ is usually only identified in the Pacific and Atlantic Oceans on a limited and seasonal basis,' said Timothy Liu, of NASA's Jet Propulsion Laboratory and California Institute of Technology, Pasadena, Calif., and lead researcher on the project. In the eastern Pacific Ocean, the southern ITCZ is usually seen springtime. In the western Atlantic Ocean, the southern ITCZ was recently clearly identified only in the summertime. However, QuikSCAT's wind data has seen the southern ITCZ in all seasons across the

  3. Relationship between crystallographic structure of the Ti{sub 2}O{sub 3}/MnS complex inclusion and microstructure in the heat-affected zone (HAZ) in steel processed by oxide metallurgy route and impact toughness

    SciTech Connect

    Xiong, Zhihui; Liu, Shilong; Wang, Xuemin; Shang, Chengjia; Misra, R.D.K.

    2015-08-15

    A new method based on electron back scattered diffraction (EBSD) is proposed to determine the structure of titanium oxide/MnS complex inclusion which induced the formation of intragranular acicular ferrite (IAF) in heat-affected zone (HAZ) in steel processed by oxide metallurgy route. It was found that the complex inclusion was Ti{sub 2}O{sub 3}/MnS, the orientation relationship between Ti{sub 2}O{sub 3} and MnS was also examined, and the crystallographic orientation relationship among IAF, Ti{sub 2}O{sub 3}/MnS complex inclusion, austenite, bainite formed at lower temperature is researched systematically. It was observed that MnS precipitated on Ti{sub 2}O{sub 3} at specific habit plane and direction and MnS had a specific orientation relationship ((0001) Ti{sub 2}O{sub 3}//(111) MnS), <10–10> Ti{sub 2}O{sub 3}//<110> MnS) with respect to Ti{sub 2}O{sub 3}. Intragranular acicular ferrite (IAF) nucleated on MnS part of the Ti{sub 2}O{sub 3}/MnS complex inclusion had no specific orientation relationship with MnS. IAF and the surrounding bainite had different Bain groups, so that there was an increase in high angle boundaries, which was beneficial for the toughness of HAZ. - Highlights: • The inclusion of TiO{sub x}/MnS that induced IAF formation is identified to be Ti{sub 2}O{sub 3}/MnS. • The inclusion is identified based on electron back scattered diffraction (EBSD). • MnS and Ti{sub 2}O{sub 3} had specific orientation relationship of Ti{sub 2}O{sub 3}/MnS complex inclusion. • The IAFs formed on the same inclusion tend to be in one Bain group. • IAF and the surrounding bainite tend to be in different Bain groups.

  4. 49 CFR 1105.9 - Coastal Zone Management Act requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false Coastal Zone Management Act requirements. 1105.9... ENVIRONMENTAL LAWS § 1105.9 Coastal Zone Management Act requirements. (a) If the proposed action affects land or water uses within a State coastal zone designated pursuant to the Coastal Zone Management Act (16...

  5. 32 CFR 643.33 - Policy-Coastal zone management.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Policy-Coastal zone management. 643.33 Section... PROPERTY REAL ESTATE Policy § 643.33 Policy—Coastal zone management. (a) The Coastal Zone Management Act of... affecting the coastal zone of a state, to conduct or support those activities in a manner which is, to...

  6. 36 CFR 13.430 - Determination of resident zones.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... public hearing in the affected local vicinity, a community or area near a national park or monument may be— (1) Added to a resident zone; or (2) Deleted from a resident zone, when such community or...

  7. Using monitoring, LiDAR and MODFLOW to Estimate Hyporheic Fluxes for a Dynamic Large River Riparian Area

    EPA Science Inventory

    In unrevetted reaches, the Willamette River in northwest Oregon is a dynamic anastomosing system. Riparian zones are frequently divided into multiple islands during most of the wet winter season. The dividing stream channels are mostly absent during the dry summer season. This po...

  8. Delineating and quantifying ground water discharge zones using streambed temperatures.

    PubMed

    Conant, Brewster

    2004-01-01

    Streambed temperature mapping, hydraulic testing using minipiezometers, and geochemical analyses of interstitial water of the streambed were used to delineate the pattern of ground water discharge in a sandy streambed and to develop a flux-based conceptual model for ground water/surface water interactions. A new and simple empirical method was used to relate fluxes obtained from minipiezometer data to streambed temperatures. The relationship allowed flux to be calculated at locations where only streambed temperature measurements were made. Slug testing and potentiomanometer measurements at 34 piezometers indicated ground water discharge ranged from 0.03 to 446 L/m2/day (and possibly as high as 7060 L/m2/day) along a 60 m long by 11 to 14 m wide reach of river. Complex but similar plan-view patterns of flux were calculated for both summer and winter using hundreds of streambed temperatures measured on a 1 by 2 m grid. The reach was dominated by ground water discharge and 5% to 7% of the area accounted for approximately 20% to 24% of the total discharge. < 12% of the total area consisted of recharge zones or no-discharge zones. A conceptual model for ground water/surface water interactions consisting of five different behaviors was developed based on the magnitude and direction of flux across the surface of the streambed. The behaviors include short-circuit discharge (e.g., high-flow springs), high discharge (e.g., preferential flowpaths), low to moderate discharge, no discharge (e.g., horizontal hyporheic or ground water flow), and recharge. Geological variations at depth played a key role in determining which type of flow behavior occurred in the streambed. PMID:15035588

  9. Climate change and dead zones.

    PubMed

    Altieri, Andrew H; Gedan, Keryn B

    2015-04-01

    Estuaries and coastal seas provide valuable ecosystem services but are particularly vulnerable to the co-occurring threats of climate change and oxygen-depleted dead zones. We analyzed the severity of climate change predicted for existing dead zones, and found that 94% of dead zones are in regions that will experience at least a 2 °C temperature increase by the end of the century. We then reviewed how climate change will exacerbate hypoxic conditions through oceanographic, ecological, and physiological processes. We found evidence that suggests numerous climate variables including temperature, ocean acidification, sea-level rise, precipitation, wind, and storm patterns will affect dead zones, and that each of those factors has the potential to act through multiple pathways on both oxygen availability and ecological responses to hypoxia. Given the variety and strength of the mechanisms by which climate change exacerbates hypoxia, and the rates at which climate is changing, we posit that climate change variables are contributing to the dead zone epidemic by acting synergistically with one another and with recognized anthropogenic triggers of hypoxia including eutrophication. This suggests that a multidisciplinary, integrated approach that considers the full range of climate variables is needed to track and potentially reverse the spread of dead zones.

  10. Climate change and dead zones.

    PubMed

    Altieri, Andrew H; Gedan, Keryn B

    2015-04-01

    Estuaries and coastal seas provide valuable ecosystem services but are particularly vulnerable to the co-occurring threats of climate change and oxygen-depleted dead zones. We analyzed the severity of climate change predicted for existing dead zones, and found that 94% of dead zones are in regions that will experience at least a 2 °C temperature increase by the end of the century. We then reviewed how climate change will exacerbate hypoxic conditions through oceanographic, ecological, and physiological processes. We found evidence that suggests numerous climate variables including temperature, ocean acidification, sea-level rise, precipitation, wind, and storm patterns will affect dead zones, and that each of those factors has the potential to act through multiple pathways on both oxygen availability and ecological responses to hypoxia. Given the variety and strength of the mechanisms by which climate change exacerbates hypoxia, and the rates at which climate is changing, we posit that climate change variables are contributing to the dead zone epidemic by acting synergistically with one another and with recognized anthropogenic triggers of hypoxia including eutrophication. This suggests that a multidisciplinary, integrated approach that considers the full range of climate variables is needed to track and potentially reverse the spread of dead zones. PMID:25385668

  11. Root apex transition zone as oscillatory zone.

    PubMed

    Baluška, František; Mancuso, Stefano

    2013-01-01

    Root apex of higher plants shows very high sensitivity to environmental stimuli. The root cap acts as the most prominent plant sensory organ; sensing diverse physical parameters such as gravity, light, humidity, oxygen, and critical inorganic nutrients. However, the motoric responses to these stimuli are accomplished in the elongation region. This spatial discrepancy was solved when we have discovered and characterized the transition zone which is interpolated between the apical meristem and the subapical elongation zone. Cells of this zone are very active in the cytoskeletal rearrangements, endocytosis and endocytic vesicle recycling, as well as in electric activities. Here we discuss the oscillatory nature of the transition zone which, together with several other features of this zone, suggest that it acts as some kind of command center. In accordance with the early proposal of Charles and Francis Darwin, cells of this root zone receive sensory information from the root cap and instruct the motoric responses of cells in the elongation zone.

  12. Root Apex Transition Zone As Oscillatory Zone

    PubMed Central

    Baluška, František; Mancuso, Stefano

    2013-01-01

    Root apex of higher plants shows very high sensitivity to environmental stimuli. The root cap acts as the most prominent plant sensory organ; sensing diverse physical parameters such as gravity, light, humidity, oxygen, and critical inorganic nutrients. However, the motoric responses to these stimuli are accomplished in the elongation region. This spatial discrepancy was solved when we have discovered and characterized the transition zone which is interpolated between the apical meristem and the subapical elongation zone. Cells of this zone are very active in the cytoskeletal rearrangements, endocytosis and endocytic vesicle recycling, as well as in electric activities. Here we discuss the oscillatory nature of the transition zone which, together with several other features of this zone, suggest that it acts as some kind of command center. In accordance with the early proposal of Charles and Francis Darwin, cells of this root zone receive sensory information from the root cap and instruct the motoric responses of cells in the elongation zone. PMID:24106493

  13. Vadose zone microbiology

    SciTech Connect

    Kieft, Thomas L.; Brockman, Fred J.

    2001-01-17

    The vadose zone is defined as the portion of the terrestrial subsurface that extends from the land surface downward to the water table. As such, it comprises the surface soil (the rooting zone), the underlying subsoil, and the capillary fringe that directly overlies the water table. The unsaturated zone between the rooting zone and the capillary fringe is termed the "intermediate zone" (Chapelle, 1993). The vadose zone has also been defined as the unsaturated zone, since the sediment pores and/or rock fractures are generally not completely water filled, but instead contain both water and air. The latter characteristic results in the term "zone of aeration" to describe the vadose zone. The terms "vadose zone," "unsaturated zone", and "zone of aeration" are nearly synonymous, except that the vadose zone may contain regions of perched water that are actually saturated. The term "subsoil" has also been used for studies of shallow areas of the subsurface immediately below the rooting zone. This review focuses almost exclusively on the unsaturated region beneath the soil layer since there is already an extensive body of literature on surface soil microbial communities and process, e.g., Paul and Clark (1989), Metting (1993), Richter and Markowitz, (1995), and Sylvia et al. (1998); whereas the deeper strata of the unsaturated zone have only recently come under scrutiny for their microbiological properties.

  14. Deciphering a multistage history affecting U-Cu(-Fe) mineralization in the Singhbhum Shear Zone, eastern India, using pyrite textures and compositions in the Turamdih U-Cu(-Fe) deposit

    NASA Astrophysics Data System (ADS)

    Pal, Dipak C.; Barton, Mark D.; Sarangi, A. K.

    2009-01-01

    The ˜200-km-long intensely deformed Singhbhum Shear Zone (SSZ) in eastern India hosts India’s largest U and Cu deposits and related Fe mineralization. The SSZ separates an Archaean cratonic nucleus to the south from a Mesoproterozoic fold belt in the North and has a complex geologic history that obscures the origin of the contained iron-oxide-rich mineral deposits. This study investigates aspects of the history of mineralization in the SSZ by utilizing new petrographic and electron microprobe observations of pyrite textures and zoning in the Turamdih U-Cu(-Fe) deposit. Mineralization at Turamdih is hosted in intensively deformed quartz-chlorite schist. Sulfides and oxides include, in inferred order of development: (a) magmatic Fe(-Ti-Cr) oxide and Fe-Cu(-Ni) sulfide minerals inferred to be magmatic (?) in origin; followed by (b) uranium, Fe-oxide, and Fe-Cu(-Co) sulfide minerals that predate most or all ductile deformation, and are inferred to be of hydrothermal origin; and (c) Fe-Cu sulfides that were generated during and postdating ductile deformation. These features are associated with the formation of three compositionally and texturally distinct pyrites. Pyrite (type-A), typically in globular-semiglobular composite inclusions of pyrite plus chalcopyrite in magnetite, is characterized by very high Ni content (up to 30,700 ppm) and low Co to Ni ratios (0.01-0.61). The textural and compositional characteristics of associated chalcopyrite and rare pyrrhotite suggest that this pyrite could be linked to the magmatic event via selective replacement of magmatic pyrrhotite. Alternatively, this pyrite and associated sulfide inclusions might be cogenetic with hydrothermal Fe-oxide. Type-B pyrite that forms elongate grains and irregular relics and cores of pyrite with high Co contents (up to 23,630 ppm) and high Co to Ni ratios (7.2-140.9) are interpreted to be related to hydrothermal mineralization predating ductile deformation. A third generation of pyrite (type C

  15. Investigation of Hyporheic Thermal Flux and Downstream Attenuation Driven by Hydropeaking in the Colorado River, Austin, Texas

    NASA Astrophysics Data System (ADS)

    Watson, J. A.; Cardenas, M. B.; Neilson, B. T.; Bennett, P. C.

    2015-12-01

    Thermal flux related to regulated river hydropeaking has been extensively researched at the single-study site scale, but little work has been done quantifying the downstream attenuation of a single regulated flood pulse at multiple sites. In order to better understand this flood pulse attenuation we instrumented four sites with temperature probes along a 91 km stretch of the Colorado River downstream of longhorn dam, Austin, TX. Piezometer transects perpendicular to the river at each site were instrumented with HOBO thermistors over a 1.4m screened interval within the saturated zone at 20cm spacing. As flood pulses are attenuated downstream, temperature gradients and distance of lateral temperature pulse penetration into the bank are hypothesized to decrease. The data collected in this investigation will test this hypothesis by providing 2D temperature cross-sections along an attenuating flood pulse, providing detailed spatial data on temperature gradients adjacent to the river.

  16. [Dynamics of Radioecological State of the Fresh-Water Ecosystems Affected by a Long-Term Impact from Nuclear Power Plant in the Frontiers of the Zone under Observation].

    PubMed

    Trapeznikov, A V; Trapeznikova, V N; Korjavin, A V

    2015-01-01

    The results of radioecological studies of six small rivers situated in the surveillance zone of the Beloyarskaya NPP (BNPP) and around the cooling pond of the power plant are presented. 21 radionuclides and the total α- and β-activity were studied in the main components of the aquatic ecosystems. It is shown that after the 1st and 2nd BN PP blocks decommissioning the content of 60Co and 137Cs in the Beloyarskoye storage pond water, sediments, fish fauna and macrophytes dropped tens and hundreds of times. The fundamental importance of this fact is that in a large range of time the aquatic ecosystem mechanism of self-purification from radionuclides is working due to radioactive substances decay as well as redistribution of radionuclides from water to other components, primarily to the sediments. Of 6 small rivers the maximum levels of radioactive substances is found in the river Olkhovka, which for several years has been subjected to the low-level radioactive water discharges from Beloyarskaya NPP. The radionuclide content in the main components of the aquatic ecosystems of the other five rivers studied after BNPP 47-year operation period corresponds to the regional background. PMID:26310022

  17. Zone Refining by Laser

    NASA Technical Reports Server (NTRS)

    Griner, D. B.

    1986-01-01

    System developed for studying use of laser beam for zone-refining semiconductors and metals. Specimen scanned with focused CO2 laser beam in such way that thin zone of molten material moves along specimen sweeps impurities with it. Zone-melting system comprises microcomputer, laser, electromechanical and optical components for beam control, vacuum chamber that holds specimen, and sensor for determining specimen temperature.

  18. Conservation of the Red Kite Milvus milvus (Aves: Accipitriformes) Is Not Affected by the Establishment of a Broad Hybrid Zone with the Black Kite Milvus migrans migrans in Central Europe

    PubMed Central

    Matušík, Hynek; Pfeiffer, Thomas; Nachtigall, Winfried; Bizos, Jiří; Šimčíková, Daniela; Literák, Ivan

    2016-01-01

    Among Accipitriformes sensu stricto, only a few species have been reported to form hybrid zones; these include the red kite Milvus milvus and black kite Milvus migrans migrans. M. milvus is endemic to the western Palearctic and has an estimated total population of 20–24,000 breeding pairs. The species was in decline until the 1970s due to persecution and has declined again since the 1990s due to ingestion of rodenticide-treated baits, illegal poisoning and changes in agricultural practices, particularly in its core range. Whereas F1 M. milvus × M. migr. migrans hybrid offspring have been found, F2 and F3 hybrids have only rarely been reported, with low nesting success rates of F1 hybrids and partial hybrid sterility likely playing a role. Here, we analyzed the mitochondrial (CO1 and CytB) and nuclear (Myc) DNA loci of 184 M. milvus, 124 M. migr. migrans and 3 F1 hybrid individuals collected across central Europe. In agreement with previous studies, we found low heterozygosity in M. milvus regardless of locus. We found that populations of both examined species were characterized by a high gene flow within populations, with all of the major haplotypes distributed across the entire examined area. Few haplotypes displayed statistically significant aggregation in one region over another. We did not find mitochondrial DNA of one species in individuals with the plumage of the other species, except in F1 hybrids, which agrees with Haldane´s Rule. It remains to be investigated by genomic methods whether occasional gene flow occurs through the paternal line, as the examined Myc gene displayed only marginal divergence between M. milvus and M. migr. migrans. The central European population of M. milvus is clearly subject to free intraspecific gene flow, which has direct implications when considering the origin of individuals in M. milvus re-introduction programs. PMID:27463515

  19. Conservation of the Red Kite Milvus milvus (Aves: Accipitriformes) Is Not Affected by the Establishment of a Broad Hybrid Zone with the Black Kite Milvus migrans migrans in Central Europe.

    PubMed

    Heneberg, Petr; Dolinay, Matej; Matušík, Hynek; Pfeiffer, Thomas; Nachtigall, Winfried; Bizos, Jiří; Šimčíková, Daniela; Literák, Ivan

    2016-01-01

    Among Accipitriformes sensu stricto, only a few species have been reported to form hybrid zones; these include the red kite Milvus milvus and black kite Milvus migrans migrans. M. milvus is endemic to the western Palearctic and has an estimated total population of 20-24,000 breeding pairs. The species was in decline until the 1970s due to persecution and has declined again since the 1990s due to ingestion of rodenticide-treated baits, illegal poisoning and changes in agricultural practices, particularly in its core range. Whereas F1 M. milvus × M. migr. migrans hybrid offspring have been found, F2 and F3 hybrids have only rarely been reported, with low nesting success rates of F1 hybrids and partial hybrid sterility likely playing a role. Here, we analyzed the mitochondrial (CO1 and CytB) and nuclear (Myc) DNA loci of 184 M. milvus, 124 M. migr. migrans and 3 F1 hybrid individuals collected across central Europe. In agreement with previous studies, we found low heterozygosity in M. milvus regardless of locus. We found that populations of both examined species were characterized by a high gene flow within populations, with all of the major haplotypes distributed across the entire examined area. Few haplotypes displayed statistically significant aggregation in one region over another. We did not find mitochondrial DNA of one species in individuals with the plumage of the other species, except in F1 hybrids, which agrees with Haldane´s Rule. It remains to be investigated by genomic methods whether occasional gene flow occurs through the paternal line, as the examined Myc gene displayed only marginal divergence between M. milvus and M. migr. migrans. The central European population of M. milvus is clearly subject to free intraspecific gene flow, which has direct implications when considering the origin of individuals in M. milvus re-introduction programs. PMID:27463515

  20. Conservation of the Red Kite Milvus milvus (Aves: Accipitriformes) Is Not Affected by the Establishment of a Broad Hybrid Zone with the Black Kite Milvus migrans migrans in Central Europe.

    PubMed

    Heneberg, Petr; Dolinay, Matej; Matušík, Hynek; Pfeiffer, Thomas; Nachtigall, Winfried; Bizos, Jiří; Šimčíková, Daniela; Literák, Ivan

    2016-01-01

    Among Accipitriformes sensu stricto, only a few species have been reported to form hybrid zones; these include the red kite Milvus milvus and black kite Milvus migrans migrans. M. milvus is endemic to the western Palearctic and has an estimated total population of 20-24,000 breeding pairs. The species was in decline until the 1970s due to persecution and has declined again since the 1990s due to ingestion of rodenticide-treated baits, illegal poisoning and changes in agricultural practices, particularly in its core range. Whereas F1 M. milvus × M. migr. migrans hybrid offspring have been found, F2 and F3 hybrids have only rarely been reported, with low nesting success rates of F1 hybrids and partial hybrid sterility likely playing a role. Here, we analyzed the mitochondrial (CO1 and CytB) and nuclear (Myc) DNA loci of 184 M. milvus, 124 M. migr. migrans and 3 F1 hybrid individuals collected across central Europe. In agreement with previous studies, we found low heterozygosity in M. milvus regardless of locus. We found that populations of both examined species were characterized by a high gene flow within populations, with all of the major haplotypes distributed across the entire examined area. Few haplotypes displayed statistically significant aggregation in one region over another. We did not find mitochondrial DNA of one species in individuals with the plumage of the other species, except in F1 hybrids, which agrees with Haldane´s Rule. It remains to be investigated by genomic methods whether occasional gene flow occurs through the paternal line, as the examined Myc gene displayed only marginal divergence between M. milvus and M. migr. migrans. The central European population of M. milvus is clearly subject to free intraspecific gene flow, which has direct implications when considering the origin of individuals in M. milvus re-introduction programs.

  1. Fluid processes in subduction zones.

    PubMed

    Peacock, S A

    1990-04-20

    Fluids play a critical role in subduction zones and arc magmatism. At shallow levels in subduction zones (<40 kilometers depth), expulsion of large volumes of pore waters and CH(4)-H(2)O fluids produced by diagenetic and low-grade metamorphic reactions affect the thermal and rheological evolution of the accretionary prism and provide nutrients for deep-sea biological communities. At greater depths, H(2)O and CO(2) released by metamorphic reactions in the subducting oceanic crust may alter the bulk composition in the overlying mantle wedge and trigger partial melting reactions. The location and conse-quences of fluid production in subduction zones can be constrained by consideration of phase diagrams for relevant bulk compositions in conjunction with fluid and rock pressure-temperature-time paths predicted by numerical heat-transfer models. Partial melting of subducting, amphibole-bearing oceanic crust is predicted only within several tens of million years of the initiation of subduction in young oceanic lithosphere. In cooler subduction zones, partial melting appears to occur primarily in the overlying mantle wedge as a result of fluid infiltration. PMID:17784486

  2. Fluid processes in subduction zones.

    PubMed

    Peacock, S A

    1990-04-20

    Fluids play a critical role in subduction zones and arc magmatism. At shallow levels in subduction zones (<40 kilometers depth), expulsion of large volumes of pore waters and CH(4)-H(2)O fluids produced by diagenetic and low-grade metamorphic reactions affect the thermal and rheological evolution of the accretionary prism and provide nutrients for deep-sea biological communities. At greater depths, H(2)O and CO(2) released by metamorphic reactions in the subducting oceanic crust may alter the bulk composition in the overlying mantle wedge and trigger partial melting reactions. The location and conse-quences of fluid production in subduction zones can be constrained by consideration of phase diagrams for relevant bulk compositions in conjunction with fluid and rock pressure-temperature-time paths predicted by numerical heat-transfer models. Partial melting of subducting, amphibole-bearing oceanic crust is predicted only within several tens of million years of the initiation of subduction in young oceanic lithosphere. In cooler subduction zones, partial melting appears to occur primarily in the overlying mantle wedge as a result of fluid infiltration.

  3. Coastal Zone Color Scanner

    NASA Technical Reports Server (NTRS)

    Johnson, B.

    1988-01-01

    The Coastal Zone Color Scanner (CZCS) spacecraft ocean color instrument is capable of measuring and mapping global ocean surface chlorophyll concentration. It is a scanning radiometer with multiband capability. With new electronics and some mechanical, and optical re-work, it probably can be made flight worthy. Some additional components of a second flight model are also available. An engineering study and further tests are necessary to determine exactly what effort is required to properly prepare the instrument for spaceflight and the nature of interfaces to prospective spacecraft. The CZCS provides operational instrument capability for monitoring of ocean productivity and currents. It could be a simple, low cost alternative to developing new instruments for ocean color imaging. Researchers have determined that with global ocean color data they can: specify quantitatively the role of oceans in the global carbon cycle and other major biogeochemical cycles; determine the magnitude and variability of annual primary production by marine phytoplankton on a global scale; understand the fate of fluvial nutrients and their possible affect on carbon budgets; elucidate the coupling mechanism between upwelling and large scale patterns in ocean basins; answer questions concerning the large scale distribution and timing of spring blooms in the global ocean; acquire a better understanding of the processes associated with mixing along the edge of eddies, coastal currents, western boundary currents, etc., and acquire global data on marine optical properties.

  4. How do hydrodynamics in the critical zone relate to stream temperature distribution?

    NASA Astrophysics Data System (ADS)

    Isaacson, M. R.; Boutt, D. F.

    2013-12-01

    Rising air temperature and decreasing stream flow trends are predicted to result in corresponding increases in stream temperatures. As a result, the future of ectothermic stream fishes, which rely on seasonal and spatial temperature distributions for growth and survival, could be in jeopardy. Fortunately, contradicting stream temperature trends in forested headwater catchments suggest that non-climatic variables, such as baseflow indices and catchment geologic structure, may have an important confounding influence on the future of stream temperature. Most significantly, the annual variability of groundwater temperature has long been recognized as an important contributor to the advective heat budget of streams. In this study we move beyond the hyporheic zone to investigate the drivers of shallow groundwater temperature variability in the recharge zone of a shallow bedrock/till-mantled headwater catchment. We use isotopic and hydrometric analyses to investigate the potential influence that near surface hydrodynamics have on how air and shallow groundwater temperatures relate to baseflow temperature distributions. We use field studies and numerical analysis to investigate how conductive heat signals in the near surface behave with respect to soil saturation, thermal conductivity, and threshold discharge events. We examine how antecedent moisture conditions in the near-surface impact the thermal conduction of air temperature into shallow water tables, and how that translates to temperature distributions in baseflow. Our results also document step increases in groundwater temperature that coincide with threshold recharge events from the till-overburden into the deep bedrock aquifer. Similarly, temperatures in the shallow water table showed high variability with weak or no correlation to air temperature. Our investigation to helps demonstrate how the coupling of air and stream temperature can be mitigated by the hydrologic dynamics of the critical zone interface.

  5. Effects of river discharge on hyporheic exchange flows in salmon spawning areas of a large gravel-bed river

    SciTech Connect

    Hanrahan, Timothy P.

    2008-01-01

    The flow magnitude and timing from hydroelectric dams in the Snake River basin of the Pacific northwestern United States is managed in part for the benefit of salmon. The objective of this research was to evaluate the effects of current Hells Canyon Dam discharge operations on hydrologic exchange flows between the river and riverbed in Snake River fall Chinook salmon spawning areas. Interactions between river water and pore water within the upper 1 m of the riverbed were quantified through the use of self-contained temperature and water level data loggers suspended inside of piezometers. The data were recorded at 20 min intervals over a period of 200 days when the mean daily discharge was 218–605 m3 s–1, with hourly stage changes as large as 1.9 m. Differences in head pressure between the river and riverbed were small, often within ±2 cm. Measured temperature gradients in the riverbed indicated significant interactions between the surface and subsurface water. Neither hydraulic nor temperature gradients at most sites were significantly affected by either short- or long-term changes in discharge operations from Hells Canyon Dam. Only 2 out of 14 study sites exhibited acute flux reversals between the river and riverbed resulting from short-term, large magnitude changes in discharge. The findings suggest small-scale piezometric head differences play a minor role in the hydrologic exchange between the river and riverbed at the study sites. The processes controlling hydrologic exchange at the study sites are likely to be bedform-induced advective pumping, turbulence at the riverbed surface, and large-scale hydraulic gradients along the longitudinal profile of the riverbed. By incorporating the knowledge of hydrologic exchange processes into water management planning, regional agencies will be better prepared to manage the limited water resources among competing priorities that include salmon recovery, flood control, irrigation supply, hydropower production, and

  6. Microgravity silicon zoning investigation

    NASA Technical Reports Server (NTRS)

    Kern, E. L.; Gill, G. L., Jr.

    1983-01-01

    A resistance heated zoner, suitable for early zoning experiments with silicon, was designed and put into operation. The initial power usage and size was designed for an shown to be compatible with payload carriers contemplated for the Shuttle. This equipment will be used in the definition and development of flight experiments and apparatus for float zoning silicon and other materials in microgravity.

  7. Float Zone Workshop

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1980-01-01

    A summary of the Analytical Float Zone Experiment System (AFZES) concept is presented. The types of experiments considered for such a facility are discussed. Reports from various industrial producers and users of float zone material are presented. Special emphasis is placed on state-of-the-art developments in low gravity manufacturing and their applications to space processing.

  8. Investigating Aquatic Dead Zones

    ERIC Educational Resources Information Center

    Testa, Jeremy; Gurbisz, Cassie; Murray, Laura; Gray, William; Bosch, Jennifer; Burrell, Chris; Kemp, Michael

    2010-01-01

    This article features two engaging high school activities that include current scientific information, data, and authentic case studies. The activities address the physical, biological, and chemical processes that are associated with oxygen-depleted areas, or "dead zones," in aquatic systems. Students can explore these dead zones through both…

  9. Coastal zone management

    NASA Technical Reports Server (NTRS)

    Tilton, E. L., III

    1975-01-01

    A panel of federal and state representatives concerned with coastal zone affairs discussed their problems in this area. In addition, several demonstrations of the application of remote sensing technology to coastal zone management were described. These demonstrations were performed by several agencies in a variety of geographical areas.

  10. Subduction of fracture zones

    NASA Astrophysics Data System (ADS)

    Constantin Manea, Vlad; Gerya, Taras; Manea, Marina; Zhu, Guizhi; Leeman, William

    2013-04-01

    Since Wilson proposed in 1965 the existence of a new class of faults on the ocean floor, namely transform faults, the geodynamic effects and importance of fracture zone subduction is still little studied. It is known that oceanic plates are characterized by numerous fracture zones, and some of them have the potential to transport into subduction zones large volumes of water-rich serpentinite, providing a fertile water source for magma generated in subduction-related arc volcanoes. In most previous geodynamic studies, subducting plates are considered to be homogeneous, and there is no clear indication how the subduction of a fracture zone influences the melting pattern in the mantle wedge and the slab-derived fluids distribution in the subarc mantle. Here we show that subduction of serpentinized fracture zones plays a significant role in distribution of melt and fluids in the mantle wedge above the slab. Using high-resolution tree-dimensional coupled petrological-termomechanical simulations of subduction, we show that fluids, including melts and water, vary dramatically in the region where a serpentinized fracture zone enters into subduction. Our models show that substantial hydration and partial melting tend to concentrate where fracture zones are being subducted, creating favorable conditions for partially molten hydrous plumes to develop. These results are consistent with the along-arc variability in magma source compositions and processes in several regions, as the Aleutian Arc, the Cascades, the Southern Mexican Volcanic Arc, and the Andean Southern Volcanic Zone.

  11. Multi-zone furnace system

    SciTech Connect

    Orbeck, G.A.

    1986-05-06

    A multi-zone furnace is described which consists of: a furnace chamber having at least one heat zone and at least one zone adjacent to the heat zone and disposed along the length of the furnace chamber; the heat zone having a hearth at a level different from the hearth level of the adjacent zone; a walking beam conveyor disposed in the furnace chamber and operative in a short stroke mode to convey a product along the hearth of the heat zone, and in a long stroke mode to convey a product from the heat zone to the adjacent zone.

  12. Fault zone hydrogeology

    NASA Astrophysics Data System (ADS)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (< 1 km) introduces permeability heterogeneity and anisotropy, which has an important impact on processes such as regional groundwater flow, hydrocarbon migration, and hydrothermal fluid circulation. Fault zones have the capacity to be hydraulic conduits connecting shallow and deep geological environments, but simultaneously the fault cores of many faults often form effective barriers to flow. The direct evaluation of the impact of faults to fluid flow patterns remains a challenge and requires a multidisciplinary research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and

  13. Megacities in the Coastal Zone

    NASA Astrophysics Data System (ADS)

    von Glasow, R.; Jickells, T.; Baklanov, A.; Carmichael, G. R.; Church, T. M.; Gallardo, L.; Hughes, C.; Kanakidou, M.; Liss, P. S.; Mee, L.; Raine, R.; Ramachandran, P.; Ramesh, R.; Sundseth, K.; Tsunogai, U.; Uematsu, M.; Zhu, T.

    2012-04-01

    Megacities have long been recognised as important drivers for socioeconomic development but also as sources of environmental challenges. A large number of megacities are located in the coastal zone where land, atmosphere and ocean meet, posing additional challenges for our understanding of the interactions. The atmospheric flow is complicated not only by urban heat island effects but also topographic flows and sea breezes which also lead to profound changes in clouds and precipitation. Inflow of oceanic air (rich in sea salt) into the polluted city's atmosphere and outflow of polluted air onto a much cleaner ocean lead to very specific interactions, the net effects of which are not well understood. The addition of contaminants to the coastal waters both by atmospheric deposition and fluvial inputs can affect the coastal ecosystems dramatically, limiting their ability to function and provide ecosystem services, e.g. fisheries and aquaculture. Changes to coastal ecosystems also affect fluxes of gases and particles to the atmosphere and can lead to harmful algal blooms. The scale of influence of megacities in the coastal zone is at least hundreds if not thousands of kilometres in the atmosphere and tens to hundreds of kilometres in the ocean, the latter strongly dependent on the hydrographic setting. Coastal megacities are at risk by sea level rise, floods and storms; they are at the forefront of change and scientifically well informed planning can improve livelihoods and ecosystem health but only if we take a holistic approach to study and monitor these regions.

  14. Growth recovery zones.

    PubMed

    Siffert, R S; Katz, J F

    1983-05-01

    Growth arrest lines and zones have been reinvestigated. Sequential studies after dietary deprivation reveal transformations of the physis with diminution in formation of the zone of cell columns, resorption of previously formed bone, and cessation of new bone formation. At 6 weeks post diet restriction, the physis is prominently narrowed with transversely oriented, thin bone plaque sealing it from the subjacent marrow. Initially, restoration of stock diet thickens the bony plaque, creating a growth arrest line. Later the zone of osteogenesis adds new bone as a dense metaphyseal band.

  15. Affective Learning.

    ERIC Educational Resources Information Center

    Brown, Charles T.

    This paper addresses itself to the question, "What does feeling have to do with knowing?" Two movements in affective education are discussed which have come into focus in recent years and which attempt to define the relationship between knowing and feeling. The first, a conscious application of the role of arousal in learning, emphasizes arousal…

  16. The gray zone.

    PubMed

    Kisner, H J

    1998-01-01

    Think for a minute about the terms equivocal and indeterminate. Equivocal is defined as "of uncertain significance", and indeterminate is defined as "indefinite, uncertain". Now think of the context in which laboratory results are reported: either by using the exact words equivocal or indeterminate or cloaked in technical jargon (e.g., cytologic diagnoses "ASCUS" or "AGUS"). Clinicians expect (or at least want) laboratory results to be black or white (i.e., bimodally distributed), whereas laboratorians strive for the perfect shade of gray because of data that often are bimodal but overlapping. A consequence of this color war is "the gray zone" (often confused with the "twilight zone"), a noncommittal zone that leaves laboratorians and clinicians alike plenty of wiggle room, allowing us to interpret results on either side of the fence. This article examines the root causes of the gray zone, with several clinical examples of how it permeates laboratory interpretation.

  17. The Ethical Tipping Points of Evaluators in Conflict Zones

    ERIC Educational Resources Information Center

    Duggan, Colleen; Bush, Kenneth

    2014-01-01

    What is different about the conduct of evaluations in conflict zones compared to nonconflict zones--and how do these differences affect (if at all) the ethical calculations and behavior of evaluators? When are ethical issues too risky, or too uncertain, for evaluators to accept--or to continue--an evaluation? These are the core questions guiding…

  18. Cascadia Subduction Zone

    USGS Publications Warehouse

    Frankel, Arthur D.; Petersen, Mark D.

    2008-01-01

    The geometry and recurrence times of large earthquakes associated with the Cascadia Subduction Zone (CSZ) were discussed and debated at a March 28-29, 2006 Pacific Northwest workshop for the USGS National Seismic Hazard Maps. The CSZ is modeled from Cape Mendocino in California to Vancouver Island in British Columbia. We include the same geometry and weighting scheme as was used in the 2002 model (Frankel and others, 2002) based on thermal constraints (Fig. 1; Fluck and others, 1997 and a reexamination by Wang et al., 2003, Fig. 11, eastern edge of intermediate shading). This scheme includes four possibilities for the lower (eastern) limit of seismic rupture: the base of elastic zone (weight 0.1), the base of transition zone (weight 0.2), the midpoint of the transition zone (weight 0.2), and a model with a long north-south segment at 123.8? W in the southern and central portions of the CSZ, with a dogleg to the northwest in the northern portion of the zone (weight 0.5). The latter model was derived from the approximate average longitude of the contour of the 30 km depth of the CSZ as modeled by Fluck et al. (1997). A global study of the maximum depth of thrust earthquakes on subduction zones by Tichelaar and Ruff (1993) indicated maximum depths of about 40 km for most of the subduction zones studied, although the Mexican subduction zone had a maximum depth of about 25 km (R. LaForge, pers. comm., 2006). The recent inversion of GPS data by McCaffrey et al. (2007) shows a significant amount of coupling (a coupling factor of 0.2-0.3) as far east as 123.8? West in some portions of the CSZ. Both of these lines of evidence lend support to the model with a north-south segment at 123.8? W.

  19. Dentin Caries Zones

    PubMed Central

    Pugach, M.K.; Strother, J.; Darling, C.L.; Fried, D.; Gansky, S.A.; Marshall, S.J.; Marshall, G.W.

    2009-01-01

    Caries Detector staining reveals 4 zones in dentin containing caries lesions, but characteristics of each zone are not well-defined. We therefore investigated the physical and microstructural properties of carious dentin in the 4 different zones to determine important differences revealed by Caries Detector staining. Six arrested dentin caries lesions and 2 normal controls were Caries-Detector-stained, each zone (pink, light pink, transparent, apparently normal) being analyzed by atomic force microscopy (AFM) imaging for microstructure, by AFM nano-indentation for mechanical properties, and by transverse digital microradiography (TMR) for mineral content. Microstructure changes, and nanomechanical properties and mineral content significantly decreased across zones. Hydrated elastic modulus and mineral content from normal dentin to pink Caries-Detector-stained dentin ranged from 19.5 [10.6-25.3] GPa to 1.6 [0.0-5.0] GPa and from 42.9 [39.8-44.6] vol% to 12.4 [9.1-14.2] vol%, respectively. Even the most demineralized pink zone contained considerable residual mineral. PMID:19131321

  20. Dead zones and extrasolar planetary properties

    NASA Astrophysics Data System (ADS)

    Matsumura, Soko; Pudritz, Ralph E.

    2006-01-01

    Most low-mass protostellar discs evolve in clustered environments where they are affected by external radiation fields, while others evolve in more isolated star-forming regions. Assuming that the magnetorotational instability (MRI) is the main source of viscosity, we calculate the size of a poorly ionized, MRI inactive and hence low viscosity region - the `dead zone'- in these protostellar discs. We include disc ionization by X-rays, cosmic rays, radioactive elements and thermal collisions, recombination by molecules, metals and grains, as well as the effect of turbulence stimulation in the dead zone by the active layers lying above it. We also calculate the gap-opening masses of planets, which are determined by a disc's viscosity and a disc aspect ratio, for discs in these environments and compare them with each other. We find that the dead zone is a robust feature of the protostellar discs that is largely independent of their environment, typically stretching out to ~15 au. We analyse the possible effects of dead zones on planet formation, migration and eccentricity evolution. We show that the gap-opening mass inside the dead zone is expected to be of the order of terrestrial and ice giant mass planets while that outside the dead zone is Jovian or super-Jovian mass planets, largely independent of the star-forming environment. We show that dead zones can significantly slow down both type I and type II planetary migration due to their lower viscosity. We also find that the growth of eccentricity of massive extrasolar planets is particularly favourable through the planet-disc interaction inside the dead zones due to the large gaps expected to be opened by planets.

  1. Flow, affect and visual creativity.

    PubMed

    Cseh, Genevieve M; Phillips, Louise H; Pearson, David G

    2015-01-01

    Flow (being in the zone) is purported to have positive consequences in terms of affect and performance; however, there is no empirical evidence about these links in visual creativity. Positive affect often--but inconsistently--facilitates creativity, and both may be linked to experiencing flow. This study aimed to determine relationships between these variables within visual creativity. Participants performed the creative mental synthesis task to simulate the creative process. Affect change (pre- vs. post-task) and flow were measured via questionnaires. The creativity of synthesis drawings was rated objectively and subjectively by judges. Findings empirically demonstrate that flow is related to affect improvement during visual creativity. Affect change was linked to productivity and self-rated creativity, but no other objective or subjective performance measures. Flow was unrelated to all external performance measures but was highly correlated with self-rated creativity; flow may therefore motivate perseverance towards eventual excellence rather than provide direct cognitive enhancement.

  2. Semiautomatic fracture zone tracking

    NASA Astrophysics Data System (ADS)

    Wessel, Paul; Matthews, Kara J.; Müller, R. Dietmar; Mazzoni, Aline; Whittaker, Joanne M.; Myhill, Robert; Chandler, Michael T.

    2015-07-01

    Oceanic fracture zone traces are widely used in studies of seafloor morphology and plate kinematics. Satellite altimetry missions have resulted in high-resolution gravity maps in which all major fracture zones and other tectonic fabric can be identified, and numerous scientists have digitized such lineaments. We have initiated a community effort to maintain low-cost infrastructure that allows seafloor fabric lineaments to be stored, accessed, and updated. A key improvement over past efforts is our processing software (released as a GMT5 supplement) that allows for semiautomatic corrections to previously digitized fracture zone traces given improved gridded data sets. Here we report on our seafloor fabric processing tools, which complement our database of seafloor fabric lineations, magnetic anomaly identifications, and plate kinematic models.

  3. Nuclear free zone

    SciTech Connect

    Christoffel, T.

    1987-07-01

    Health professionals have played a leading role in alerting and educating the public regarding the danger of nuclear war which has been described as the last epidemic our civilization will know. Having convinced most people that the use of nuclear weapons would mean intolerable consequences, groups such as Physicians for Social Responsibility have focused on the second critical question how likely is it that these weapons will be used. The oultlook is grim. This article describes the nuclear free zone movement, explores relevant legal questions, and shows how the political potential of nuclear free zones threatens to open a deep rift in the American constitutional system.

  4. [Affective dependency].

    PubMed

    Scantamburlo, G; Pitchot, W; Ansseau, M

    2013-01-01

    Affective dependency is characterized by emotional distress (insecure attachment) and dependency to another person with a low self-esteem and reassurance need. The paper proposes a reflection on the definition of emotional dependency and the confusion caused by various denominations. Overprotective and authoritarian parenting, cultural and socio-environmental factors may contribute to the development of dependent personality. Psychological epigenetic factors, such as early socio-emotional trauma could on neuronal circuits in prefronto-limbic regions that are essential for emotional behaviour.We also focus on the interrelations between dependent personality, domestic violence and addictions. The objective for the clinician is to propose a restoration of self-esteem and therapeutic strategies focused on autonomy.

  5. [Affective dependency].

    PubMed

    Scantamburlo, G; Pitchot, W; Ansseau, M

    2013-01-01

    Affective dependency is characterized by emotional distress (insecure attachment) and dependency to another person with a low self-esteem and reassurance need. The paper proposes a reflection on the definition of emotional dependency and the confusion caused by various denominations. Overprotective and authoritarian parenting, cultural and socio-environmental factors may contribute to the development of dependent personality. Psychological epigenetic factors, such as early socio-emotional trauma could on neuronal circuits in prefronto-limbic regions that are essential for emotional behaviour.We also focus on the interrelations between dependent personality, domestic violence and addictions. The objective for the clinician is to propose a restoration of self-esteem and therapeutic strategies focused on autonomy. PMID:23888587

  6. Fast aurora zone analysis

    NASA Technical Reports Server (NTRS)

    Booker, Mattie

    1992-01-01

    The Flight Dynamics Facility (FDF) of the Flight Dynamics Division (FDD), of the Goddard Space Flight Center provides acquisition data to tracking stations and orbit and attitude services to scientists and mission support personnel. The following paper explains how a method was determined that found spacecraft entry and exit times of the aurora zone.

  7. ON HYDRODYNAMIC MOTIONS IN DEAD ZONES

    SciTech Connect

    Oishi, Jeffrey S.; Mac Low, Mordecai-Mark E-mail: mordecai@amnh.or

    2009-10-20

    We investigate fluid motions near the midplane of vertically stratified accretion disks with highly resistive midplanes. In such disks, the magnetorotational instability drives turbulence in thin layers surrounding a resistive, stable dead zone. The turbulent layers in turn drive motions in the dead zone. We examine the properties of these motions using three-dimensional, stratified, local, shearing-box, non-ideal, magnetohydrodynamical simulations. Although the turbulence in the active zones provides a source of vorticity to the midplane, no evidence for coherent vortices is found in our simulations. It appears that this is because of strong vertical oscillations in the dead zone. By analyzing time series of azimuthally averaged flow quantities, we identify an axisymmetric wave mode particular to models with dead zones. This mode is reduced in amplitude, but not suppressed entirely, by changing the equation of state from isothermal to ideal. These waves are too low frequency to affect sedimentation of dust to the midplane, but may have significance for the gravitational stability of the resulting midplane dust layers.

  8. Can Supersaturation Affect Protein Crystal Quality?

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar

    2013-01-01

    In quiescent environments (microgravity, capillary tubes, gels) formation of a depletion zone is to be expected, due either to limited sedimentation, density driven convection or a combination of both. The formation of a depletion zone can: Modify solution supersaturation near crystal; Give rise to impurity partitioning. It is conjectured that both supersaturation and impurity partitioning affect protein crystal quality and size. Further detailed investigations on various proteins are needed to assess above hypothesis.

  9. Vadose zone water fluxmeter

    DOEpatents

    Faybishenko, Boris A.

    2005-10-25

    A Vadose Zone Water Fluxmeter (WFM) or Direct Measurement WFM provides direct measurement of unsaturated water flow in the vadose zone. The fluxmeter is a cylindrical device that fits in a borehole or can be installed near the surface, or in pits, or in pile structures. The fluxmeter is primarily a combination of tensiometers and a porous element or plate in a water cell that is used for water injection or extraction under field conditions. The same water pressure measured outside and inside of the soil sheltered by the lower cylinder of the fluxmeter indicates that the water flux through the lower cylinder is similar to the water flux in the surrounding soil. The fluxmeter provides direct measurement of the water flow rate in the unsaturated soils and then determines the water flux, i.e. the water flow rate per unit area.

  10. Trojans in habitable zones.

    PubMed

    Schwarz, Richard; Pilat-Lohinger, Elke; Dvorak, Rudolf; Erdi, Balint; Sándor, Zsolt

    2005-10-01

    With the aid of numerical experiments we examined the dynamical stability of fictitious terrestrial planets in 1:1 mean motion resonance with Jovian-like planets of extrasolar planetary systems. In our stability study of the so-called "Trojan" planets in the habitable zone, we used the restricted three-body problem with different mass ratios of the primary bodies. The application of the three-body problem showed that even massive Trojan planets can be stable in the 1:1 mean motion resonance. From the 117 extrasolar planetary systems only 11 systems were found with one giant planet in the habitable zone. Out of this sample set we chose four planetary systems--HD17051, HD27442, HD28185, and HD108874--for further investigation. To study the orbital behavior of the stable zone in the different systems, we used direct numerical computations (Lie Integration Method) that allowed us to determine the escape times and the maximum eccentricity of the fictitious "Trojan planets." PMID:16225431

  11. Radiant zone heated particulate filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2011-12-27

    A system includes a particulate matter (PM) filter including an upstream end for receiving exhaust gas and a downstream end. A radiant zoned heater includes N zones, where N is an integer greater than one, wherein each of the N zones includes M sub-zones, where M is an integer greater than or equal to one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones, restricts exhaust gas flow in a portion of the PM filter that corresponds to the selected one of the N zones, and deactivates non-selected ones of the N zones.

  12. On the use of rhodamine WT for the characterization of stream hydrodynamics and transient storage

    USGS Publications Warehouse

    Runkel, Robert L.

    2015-01-01

    Recent advances in fluorometry have led to increased use of rhodamine WT as a tracer in streams and rivers. In light of this increased use, a review of the dye's behavior in freshwater systems is presented. Studies in the groundwater literature indicate that rhodamine WT is transported nonconservatively, with sorption removing substantial amounts of tracer mass. Column studies document a two-step breakthrough curve in which two structural isomers are chromatographically separated. Although the potential for nonconservative transport is acknowledged in the surface water literature, many studies assume that sorptive losses will not affect the characterization of physical transport processes. A literature review and modeling analysis indicates that this assumption is valid for quantification of physical properties that are based on the bulk of the tracer mass (traveltime), and invalid for the characterization of processes represented by the tracer tail (transient storage attributable to hyporheic exchange). Rhodamine WT should be considered nonconservative in the hyporheic zone due to nonconservative behavior demonstrated for similar conditions in groundwater. As such, rhodamine WT should not be used as a quantitative tracer in hyporheic zone investigations, including the study of long flow paths and the development of models describing hyporheic zone processes. Rhodamine WT may be used to qualitatively characterize storage in large systems, where there are few practical alternatives. Qualitative investigations should rely on early portions of the tracer profile, making use of the temporal resolution afforded by in situ fluorometry, while discarding later parts of the tracer profile that are adversely affected by sorption.

  13. On the use of rhodamine WT for the characterization of stream hydrodynamics and transient storage

    NASA Astrophysics Data System (ADS)

    Runkel, Robert L.

    2015-08-01

    Recent advances in fluorometry have led to increased use of rhodamine WT as a tracer in streams and rivers. In light of this increased use, a review of the dye's behavior in freshwater systems is presented. Studies in the groundwater literature indicate that rhodamine WT is transported nonconservatively, with sorption removing substantial amounts of tracer mass. Column studies document a two-step breakthrough curve in which two structural isomers are chromatographically separated. Although the potential for nonconservative transport is acknowledged in the surface water literature, many studies assume that sorptive losses will not affect the characterization of physical transport processes. A literature review and modeling analysis indicates that this assumption is valid for quantification of physical properties that are based on the bulk of the tracer mass (traveltime), and invalid for the characterization of processes represented by the tracer tail (transient storage attributable to hyporheic exchange). Rhodamine WT should be considered nonconservative in the hyporheic zone due to nonconservative behavior demonstrated for similar conditions in groundwater. As such, rhodamine WT should not be used as a quantitative tracer in hyporheic zone investigations, including the study of long flow paths and the development of models describing hyporheic zone processes. Rhodamine WT may be used to qualitatively characterize storage in large systems, where there are few practical alternatives. Qualitative investigations should rely on early portions of the tracer profile, making use of the temporal resolution afforded by in situ fluorometry, while discarding later parts of the tracer profile that are adversely affected by sorption.

  14. 33 CFR 110.230 - Anchorages, Captain of the Port Puget Sound Zone, WA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... citations affecting § 110.230, see the List of CFR Sections Affected, which appears in the Finding Aids... Puget Sound Zone, WA. 110.230 Section 110.230 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Port Puget Sound Zone, WA. (a) Anchorage grounds. All coordinates are expressed in North American...

  15. 33 CFR 110.230 - Anchorages, Captain of the Port Puget Sound Zone, WA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... citations affecting § 110.230, see the List of CFR Sections Affected, which appears in the Finding Aids... Puget Sound Zone, WA. 110.230 Section 110.230 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Port Puget Sound Zone, WA. (a) Anchorage grounds. All coordinates are expressed in North American...

  16. Smartphones and Time Zones

    NASA Astrophysics Data System (ADS)

    Baird, William; Secrest, Jeffery; Padgett, Clifford; Johnson, Wayne; Hagrelius, Claire

    2016-09-01

    Using the Sun to tell time is an ancient idea, but we can take advantage of modern technology to bring it into the 21st century for students in astronomy, physics, or physical science classes. We have employed smartphones, Google Earth, and 3D printing to find the moment of local noon at two widely separated locations. By reviewing GPS time-stamped photos from each place, we are able to illustrate that local noon is longitude-dependent and therefore explain the need for time zones.

  17. Saturated Zone Colloid Transport

    SciTech Connect

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation

  18. Liquid zone seal

    DOEpatents

    Klebanoff, Leonard E.

    2001-01-01

    A seal assembly that provides a means for establishing multiple pressure zones within a system. The seal assembly combines a plate extending from the inner wall of a housing or inner enclosure that intersects with and is immersed in the fluid contained in a well formed in a tray contained within the enclosure. The fluid is a low vapor pressure oil, chemically inert and oxidation resistant. The use of a fluid as the sealing component provides a seal that is self-healing and mechanically robust not subject to normal mechanical wear, breakage, and formation of cracks or pinholes and decouples external mechanical vibrations from internal structural members.

  19. Spreading dead zones and consequences for marine ecosystems.

    PubMed

    Diaz, Robert J; Rosenberg, Rutger

    2008-08-15

    Dead zones in the coastal oceans have spread exponentially since the 1960s and have serious consequences for ecosystem functioning. The formation of dead zones has been exacerbated by the increase in primary production and consequent worldwide coastal eutrophication fueled by riverine runoff of fertilizers and the burning of fossil fuels. Enhanced primary production results in an accumulation of particulate organic matter, which encourages microbial activity and the consumption of dissolved oxygen in bottom waters. Dead zones have now been reported from more than 400 systems, affecting a total area of more than 245,000 square kilometers, and are probably a key stressor on marine ecosystems.

  20. Impact of contact lens zone geometry and ocular optics on bifocal retinal image quality

    PubMed Central

    Bradley, Arthur; Nam, Jayoung; Xu, Renfeng; Harman, Leslie; Thibos, Larry

    2014-01-01

    Purpose To examine the separate and combined influences of zone geometry, pupil size, diffraction, apodisation and spherical aberration on the optical performance of concentric zonal bifocals. Methods Zonal bifocal pupil functions representing eye + ophthalmic correction were defined by interleaving wavefronts from separate optical zones of the bifocal. A two-zone design (a central circular inner zone surrounded by an annular outer-zone which is bounded by the pupil) and a five-zone design (a central small circular zone surrounded by four concentric annuli) were configured with programmable zone geometry, wavefront phase and pupil transmission characteristics. Using computational methods, we examined the effects of diffraction, Stiles Crawford apodisation, pupil size and spherical aberration on optical transfer functions for different target distances. Results Apodisation alters the relative weighting of each zone, and thus the balance of near and distance optical quality. When spherical aberration is included, the effective distance correction, add power and image quality depend on zone-geometry and Stiles Crawford Effect apodisation. When the outer zone width is narrow, diffraction limits the available image contrast when focused, but as pupil dilates and outer zone width increases, aberrations will limit the best achievable image quality. With two-zone designs, balancing near and distance image quality is not achieved with equal area inner and outer zones. With significant levels of spherical aberration, multi-zone designs effectively become multifocals. Conclusion Wave optics and pupil varying ocular optics significantly affect the imaging capabilities of different optical zones of concentric bifocals. With two-zone bifocal designs, diffraction, pupil apodisation spherical aberration, and zone size influence both the effective add power and the pupil size required to balance near and distance image quality. Five-zone bifocal designs achieve a high degree of

  1. Earthquake ruptures modulated by waves in damaged fault zones

    NASA Astrophysics Data System (ADS)

    Huang, Yihe; Ampuero, Jean-Paul; Helmberger, Don V.

    2014-04-01

    Faults are usually surrounded by damaged zones of lower elastic moduli and seismic wave velocities than their host rocks. If the interface between the damaged rocks and host rocks is sharp enough, earthquakes happening inside the fault zone generate reflected waves and head waves, which can interact with earthquake ruptures and modulate rupture properties such as rupture speed, slip rate, and rise time. We find through 2-D dynamic rupture simulations the following: (1) Reflected waves can induce multiple slip pulses. The rise time of the primary pulse is controlled by fault zone properties, rather than by frictional properties. (2) Head waves can cause oscillations of rupture speed and, in a certain range of fault zone widths, a permanent transition to supershear rupture with speeds that would be unstable in homogeneous media. (3) Large attenuation smears the slip rate function and delays the initial acceleration of rupture speed but does not affect significantly the rise time or the period of rupture speed oscillations. (4) Fault zones cause a rotation of the background stress field and can induce plastic deformations on both extensional and compressional sides of the fault. The plastic deformations are accumulated both inside and outside the fault zone, which indicates a correlation between fault zone development and repeating ruptures. Spatially periodic patterns of plastic deformations are formed due to oscillating rupture speed, which may leave a permanent signature in the geological record. Our results indicate that damaged fault zones with sharp boundaries promote multiple slip pulses and supershear ruptures.

  2. Predicting groundwater flow system discharge in the river network at the watershed scale

    NASA Astrophysics Data System (ADS)

    Caruso, Alice; Ridolfi, Luca; Boano, Fulvio

    2016-04-01

    The interaction between rivers and aquifers affects the quality and the quantity of surface and subsurface water since it plays a crucial role for solute transport, nutrient cycling and microbial transformations. The groundwater-surface water interface, better known as hyporheic zone, has a functional significance for the biogeochemical and ecological conditions of the fluvial ecosystem since it controls the flux of groundwater solutes discharging into rivers, and vice versa. The hyporheic processes are affected by the complex surrounding aquifer because the groundwater flow system obstructs the penetration of stream water into the sediments. The impact of large-scale stream-aquifer interactions on small scale exchange has generally been analyzed at local scales of a river reach, or even smaller. However, a complete comprehension of how hyporheic fluxes are affected by the groundwater system at watershed scale is still missing. Evaluating this influence is fundamental to predict the consequences of hyporheic exchange on water quality and stream ecology. In order to better understand the actual structure of hyporheic exchange along the river network, we firstly examine the role of basin topography complexity in controlling river-aquifer interactions. To reach this target, we focus on the analysis of surface-subsurface water exchange at the watershed scale, taking into account the river-aquifer interactions induced by landscape topography. By way of a mathematical model, we aim to improve the estimation of the role of large scale hydraulic gradients on hyporheic exchange. The potential of the method is demonstrated by the analysis of a benchmark case's study, which shows how the topographic conformation influences the stream-aquifer interaction and induces a substantial spatial variability of the groundwater discharge even among adjacent reaches along the stream. The vertical exchange velocity along the river evidences a lack of autocorrelation. Both the groundwater

  3. Breathing zone air sampler

    DOEpatents

    Tobin, John

    1989-01-01

    A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  4. The zone diet and athletic performance.

    PubMed

    Cheuvront, S N

    1999-04-01

    The Zone diet is the latest eating regimen marketed to improve athletic performance by opposing traditional high carbohydrate sports diets. The 40/30/30 diet is centred primarily on protein intake (1.8 to 2.2 g/kg fat free mass; i.e. total bodyweight-fat weight) and promises a change in the body's insulin to glucagon ratio through its macronutrient alterations. Changes in the existing hormonal milieu are said to result in the production of more vasoactive eicosanoids, thus allowing greater oxygen delivery to exercising muscle. This favourable condition, known as the Zone, is anecdotally reported to benefit even the most elite endurance athletes. Applying the Zone's suggested protein needs and macronutrient distributions in practice, it is clear that it is a low carbohydrate diet by both relative and absolute standards, as well as calorie deficient by any standard. Reliable and abundant peer reviewed literature is in opposition to the suggestion that such a diet can support competitive athletic endeavours, much less improve them. The notion that a 40/30/30 diet can alter the pancreatic hormone response in favour of glucagon is also unfounded. The Zone is a mixed diet and not likely to affect pancreatic hormone release in the same way individual nutrients can. Although the postprandial insulin response is reduced when comparing a 40% with a 60% carbohydrate diet, it is still a sufficient stimulus to offset the lipolytic effects of glucagon. Many of the promised benefits of the Zone are based on selective information regarding hormonal influences on eicosanoid biology. Contradictory information is conveniently left out. The principle of vasodilating muscle arterioles by altering eicosanoid production is notably correct in theory. However, what little human evidence is available does not support any significant contribution of eicosanoids to active muscle vasodilation. In fact, the key eicosanoid reportedly produced in the Zone and responsible for improved muscle

  5. 15 CFR 921.4 - Relationship to other provisions of the Coastal Zone Management Act, and to the Marine Protection...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the Coastal Zone Management Act, and to the Marine Protection, Research and Sanctuaries Act. 921.4... provisions of the Coastal Zone Management Act, and to the Marine Protection, Research and Sanctuaries Act. (a... affecting the state's coastal zone, must be undertaken in a manner consistent to the maximum...

  6. 15 CFR 921.4 - Relationship to other provisions of the Coastal Zone Management Act, and to the Marine Protection...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the Coastal Zone Management Act, and to the Marine Protection, Research and Sanctuaries Act. 921.4... provisions of the Coastal Zone Management Act, and to the Marine Protection, Research and Sanctuaries Act. (a... affecting the state's coastal zone, must be undertaken in a manner consistent to the maximum...

  7. 15 CFR 921.4 - Relationship to other provisions of the Coastal Zone Management Act, and to the Marine Protection...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the Coastal Zone Management Act, and to the Marine Protection, Research and Sanctuaries Act. 921.4... provisions of the Coastal Zone Management Act, and to the Marine Protection, Research and Sanctuaries Act. (a... affecting the state's coastal zone, must be undertaken in a manner consistent to the maximum...

  8. 15 CFR 921.4 - Relationship to other provisions of the Coastal Zone Management Act, and to the Marine Protection...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the Coastal Zone Management Act, and to the Marine Protection, Research and Sanctuaries Act. 921.4... provisions of the Coastal Zone Management Act, and to the Marine Protection, Research and Sanctuaries Act. (a... affecting the state's coastal zone, must be undertaken in a manner consistent to the maximum...

  9. 15 CFR 921.4 - Relationship to other provisions of the Coastal Zone Management Act, and to the Marine Protection...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the Coastal Zone Management Act, and to the Marine Protection, Research and Sanctuaries Act. 921.4... provisions of the Coastal Zone Management Act, and to the Marine Protection, Research and Sanctuaries Act. (a... affecting the state's coastal zone, must be undertaken in a manner consistent to the maximum...

  10. Zone refining of plutonium metal

    SciTech Connect

    Blau, M.S.

    1994-08-01

    The zone refining process was applied to Pu metal containing known amounts of impurities. Rod specimens of plutonium metal were melted into and contained in tantalum boats, each of which was passed horizontally through a three-turn, high-frequency coil in such a manner as to cause a narrow molten zone to pass through the Pu metal rod 10 times. The impurity elements Co, Cr, Fe, Ni, Np, U were found to move in the same direction as the molten zone as predicted by binary phase diagrams. The elements Al, Am, and Ga moved in the opposite direction of the molten zone as predicted by binary phase diagrams. As the impurity alloy was zone refined, {delta}-phase plutonium metal crystals were produced. The first few zone refining passes were more effective than each later pass because an oxide layer formed on the rod surface. There was no clear evidence of better impurity movement at the slower zone refining speed. Also, constant or variable coil power appeared to have no effect on impurity movement during a single run (10 passes). This experiment was the first step to developing a zone refining process for plutonium metal.

  11. Detecting livestock production zones.

    PubMed

    Grisi-Filho, J H H; Amaku, M; Ferreira, F; Dias, R A; Neto, J S Ferreira; Negreiros, R L; Ossada, R

    2013-07-01

    Communities are sets of nodes that are related in an important way, most likely sharing common properties and/or playing similar roles within a network. Unraveling a network structure, and hence the trade preferences and pathways, could be useful to a researcher or a decision maker. We implemented a community detection algorithm to find livestock communities, which is consistent with the definition of a livestock production zone, assuming that a community is a group of farm premises in which an animal is more likely to stay during its lifetime than expected by chance. We applied this algorithm to the network of animal movements within the state of Mato Grosso for 2007. This database holds information concerning 87,899 premises and 521,431 movements throughout the year, totaling 15,844,779 animals moved. The community detection algorithm achieved a network partition that shows a clear geographical and commercial pattern, two crucial features for preventive veterinary medicine applications; this algorithm provides also a meaningful interpretation to trade networks where links emerge based on trader node choices.

  12. Capillary zone electrophoresis

    SciTech Connect

    Jorgenson, J.W.; Lukacs, K.D.

    1983-10-21

    Zone electrophoresis in capillaries is a technique complementary to electrophoresis in supporting media, and each approach has its own particular advantages. Efficient heat transfer from small-diameter capillaries permits use of unusually high voltages, resulting in both high resolution and rapid analysis. Capillaries also seem well suited for automation. Our present electromigration injection technique is relatively straightforward and should be simple to automate. Capillaries are reusable, which is an advantage over gels. On-line electronic detection permits good quantification, further enhancing possibilities for fully automatic operation. The greatest obstacle to further development and utilization of capillaries is the requirement of extremely sensitive detectors, and more types of detectors with higher sensitivity are greatly needed. A better understanding of capillary surface modification will also be important, both for improved capillary surface deactivation and for better control over electroosmotic flow. Capillaries should provide an ideal system in which to explore nonaqueous separation media. The prospects for nonaqueous media in electrophoresis are similar to those in electrochemistry, and capillaries should prove an excellent system in which to begin their study. 18 refs., 8 figs.

  13. Influence of the Amlia fracture zone on the evolution of the Aleutian Terrace forearc basin, central Aleutian subduction zone

    USGS Publications Warehouse

    Ryan, Holly F.; Draut, Amy E.; Keranen, Katie M.; Scholl, David W.

    2012-01-01

    During Pliocene to Quaternary time, the central Aleutian forearc basin evolved in response to a combination of tectonic and climatic factors. Initially, along-trench transport of sediment and accretion of a frontal prism created the accommodation space to allow forearc basin deposition. Transport of sufficient sediment to overtop the bathymetrically high Amlia fracture zone and reach the central Aleutian arc began with glaciation of continental Alaska in the Pliocene. As the obliquely subducting Amlia fracture zone swept along the central Aleutian arc, it further affected the structural evolution of the forearc basins. The subduction of the Amlia fracture zone resulted in basin inversion and loss of accommodation space east of the migrating fracture zone. Conversely, west of Amlia fracture zone, accommoda