Sample records for hypoxanthine

  1. The influence of Cu+ binding to hypoxanthine on stabilization of mismatches involving hypoxanthine and DNA bases: A DFT study.

    PubMed

    Masoodi, Hamid Reza; Bagheri, Sotoodeh; Ghaderi, Zahra

    2018-05-14

    In the present work, the influence of Cu + binding to N3- and N7-positions of hypoxanthine on energetic, geometrical and topological properties of hypoxanthine-guanine, hypoxanthine-adenine, hypoxanthine-cytosine, hypoxanthine-thymine and hypoxanthine-hypoxanthine mismatches is theoretically investigated. The calculations, in gas phase, are performed at B3LYP/6-311++G(3df,3pd) level of theory. Unlike the other mispairs, Cu + binding to N3-position of hypoxanthine causes the proton transfer process from enol form of hypoxanthine to imino forms of adenine and cytosine. This process also occurs in all mismatches having enol form of hypoxanthine when Cu + binds to N7-position of hypoxanthine. The mismatches are stabilized by hydrogen bonds. The influence of Cu + on hydrogen bonds is also examined by atoms in molecules (AIM) and natural bond orbital (NBO) analyses.

  2. A kinetic study of hypoxanthine oxidation by milk xanthine oxidase.

    PubMed Central

    Escribano, J; Garcia-Canovas, F; Garcia-Carmona, F

    1988-01-01

    The course of the reaction sequence hypoxanthine----xanthine----uric acid catalysed by xanthine:oxygen oxidoreductase from milk was investigated on the basis of u.v. spectra taken during the course of hypoxanthine and xanthine oxidations. It was found that xanthine accumulated in the reaction mixture when hypoxanthine was used as a substrate. The time course of the concentrations of hypoxanthine, xanthine intermediate and uric acid product was simulated numerically. The mathematical model takes into account the competition of substrate, intermediate and product and the accumulation of the intermediate at the enzyme. This type of analysis permits the kinetic parameters of the enzyme for hypoxanthine and xanthine to be obtained. PMID:3196295

  3. Effects of Hypoxanthine Substitution in Peptide Nucleic Acids Targeting KRAS2 Oncogenic mRNA Molecules: Theory and Experiment

    PubMed Central

    Sanders, Jeffrey M.; Wampole, Matthew E.; Chen, Chang-Po; Sethi, Dalip; Singh, Amrita; Dupradeau, François-Yves; Wang, Fan; Gray, Brian D.; Thakur, Mathew L.; Wickstrom, Eric

    2013-01-01

    Genetic disorders can arise from single base substitutions in a single gene. A single base substitution for wild type guanine in the twelfth codon of KRAS2 mRNA occurs frequently to initiate lung, pancreatic, and colon cancer. We have observed single base mismatch specificity in radioimaging of mutant KRAS2 mRNA in tumors in mice by in vivo hybridization with radiolabeled peptide nucleic acid (PNA) dodecamers. We hypothesized that multi-mutant specificity could be achieved with a PNA dodecamer incorporating hypoxanthine, which can form Watson-Crick basepairs with adenine, cytosine, thymine, and uracil. Using molecular dynamics simulations and free energy calculations, we show that hypoxanthine substitutions in PNAs are tolerated in KRAS2 RNA-PNA duplexes where wild type guanine is replaced by mutant uracil or adenine in RNA. To validate our predictions, we synthesized PNA dodecamers with hypoxanthine, and then measured the thermal stability of RNA-PNA duplexes. Circular dichroism thermal melting results showed that hypoxanthine-containing PNAs are more stable in duplexes where hypoxanthine-adenine and hypoxanthine-uracil base pairs are formed than single mismatch duplexes or duplexes containing hypoxanthine-guanine opposition. PMID:23972113

  4. Acyclic Immucillin Phosphonates. Second-Generation Inhibitors of Plasmodium falciparum Hypoxanthine- Guanine-Xanthine Phosphoribosyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazelton, Keith Z.; Ho, Meng-Chaio; Cassera, Maria B.

    We found that Plasmodium falciparum is the primary cause of deaths from malaria. It is a purine auxotroph and relies on hypoxanthine salvage from the host purine pool. Purine starvation as an antimalarial target has been validated by inhibition of purine nucleoside phosphorylase. Hypoxanthine depletion kills Plasmodium falciparum in cell culture and in Aotus monkey infections. Hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) from P. falciparum is required for hypoxanthine salvage by forming inosine 5'-monophosphate, a branchpoint for all purine nucleotide synthesis in the parasite. We present a class of HGXPRT inhibitors, the acyclic immucillin phosphonates (AIPs), and cell permeable AIP prodrugs. The AIPsmore » are simple, potent, selective, and biologically stable inhibitors. The AIP prodrugs block proliferation of cultured parasites by inhibiting the incorporation of hypoxanthine into the parasite nucleotide pool and validates HGXPRT as a target in malaria.« less

  5. Molybdenum cofactor (chlorate-resistant) mutants of Klebsiella pneumoniae M5al can use hypoxanthine as the sole nitrogen source.

    PubMed Central

    Garzón, A; Li, J; Flores, A; Casadesus, J; Stewart, V

    1992-01-01

    Selection for chlorate resistance yields mol (formerly chl) mutants with defects in molybdenum cofactor synthesis. Complementation and genetic mapping analyses indicated that the Klebsiella pneumoniae mol genes are functionally homologous to those of Escherichia coli and occupy analogous genetic map positions. Hypoxanthine utilization in other organisms requires molybdenum cofactor as a component of xanthine dehydrogenase, and thus most chlorate-resistant mutants cannot use hypoxanthine as a sole source of nitrogen. Surprisingly, the K. pneumoniae mol mutants and the mol+ parent grew equally well with hypoxanthine as the sole nitrogen source, suggesting that K. pneumoniae has a molybdenum cofactor-independent pathway for hypoxanthine utilization. PMID:1400180

  6. Hypoxanthine enters human vascular endothelial cells (ECV 304) via the nitrobenzylthioinosine-insensitive equilibrative nucleoside transporter.

    PubMed Central

    Osses, N; Pearson, J D; Yudilevich, D L; Jarvis, S M

    1996-01-01

    The transport properties of the nucleobase hypoxanthine were examined in the human umbilical vein endothelial cell line ECV 304. Initial rates of hypoxanthine influx were independent of extracellular cations: replacement of Na+ with Li+, Rb+, N-methyl-D-glucamine or choline had no significant effect on hypoxanthine uptake by ECV 304 cells. Kinetic analysis demonstrated the presence of a single saturable system for the transport of hypoxanthine in ECV 304 cells with an apparent K(m) of 320 +/- 10 microM and a Vmax of 5.6 +/- 0.9 pmol/10(6) cells per s. Hypoxanthine uptake was inhibited by the nucleosides adenosine, uridine and thymidine (apparent Ki 41 +/- 6, 240 +/- 27 and 59 +/- 8 microM respectively) and the nucleoside transport inhibitors nitrobenzylthioinosine (NBMPR), dilazep and dipyridamole (apparent Ki 2.5 +/- 0.3, 11 +/- 3 and 0.16 +/- 0.006 microM respectively), whereas the nucleobases adenine, guanine and thymine had little effect (50% inhibition at > 1 mM). ECV 304 cells were also shown to transport adenosine via both the NBMPR-sensitive and -insensitive nucleoside carriers. Hypoxanthine specifically inhibited adenosine transport via the NBMPR-insensitive system in a competitive manner (apparent Ki 290 +/- 14 microM). These results indicate that hypoxanthine entry into ECV 304 endothelial cells is mediated by the NBMPR-insensitive nucleoside carrier present in these cells. PMID:8760371

  7. Transport of adenine, hypoxanthine and uracil into Escherichia coli.

    PubMed Central

    Burton, K

    1977-01-01

    Uptake of adenine, hypoxanthine and uracil by an uncA strain of Escherichia coli is inhibited by uncouplers or when phosphate in the medium is replaced by less than 1 mM-arsenate, indicating a need for both a protonmotive force and phosphorylated metabolites. The rate of uptake of adenine or hypoxanthine was not markedly affected by a genetic deficiency of purine nucleoside phosphorylase. In two mutants with undetected adenine phosphoribosyltransferase, the rate of adenine uptake was about 30% of that in their parent strain, and evidence was obtained to confirm that adenine had then been utilized via purine nucleoside phosphorylase. In a strain deficient in both enzymes adenine uptake was about 1% of that shown by wild-type strains. Uptake of hypoxanthine was similarly limited in a strain lacking purine nucleoside phosphorylase, hypoxanthine phosphoribosyltransferase and guanine phosphoribosyltransferase. Deficiency of uracil phosphoribosyltransferase severely limits uracil uptake, but the defect can be circumvented by addition of inosine, which presumably provides ribose 1-phosphate for reversal of uridine phosphorylase. The results indicate that there are porter systems for adenine, hypoxanthine and uracil dependent on a protonmotive force and facilitated by intracellular metabolism of the free bases. PMID:413544

  8. Hypoxanthine is a checkpoint stress metabolite in colonic epithelial energy modulation and barrier function.

    PubMed

    Lee, J Scott; Wang, Ruth X; Alexeev, Erica E; Lanis, Jordi M; Battista, Kayla D; Glover, Louise E; Colgan, Sean P

    2018-04-20

    Intestinal epithelial cells form a selectively permeable barrier to protect colon tissues from luminal microbiota and antigens and to mediate nutrient, fluid, and waste flux in the intestinal tract. Dysregulation of the epithelial cell barrier coincides with profound shifts in metabolic energy, especially in the colon, which exists in an energetically depleting state of physiological hypoxia. However, studies that systematically examine energy flux and adenylate metabolism during intestinal epithelial barrier development and restoration after disruption are lacking. Here, to delineate barrier-related energy flux, we developed an HPLC-based profiling method to track changes in energy flux and adenylate metabolites during barrier development and restoration. Cultured epithelia exhibited pooling of phosphocreatine and maintained ATP during barrier development. EDTA-induced epithelial barrier disruption revealed that hypoxanthine levels correlated with barrier resistance. Further studies uncovered that hypoxanthine supplementation improves barrier function and wound healing and that hypoxanthine appears to do so by increasing intracellular ATP, which improved cytoskeletal G- to F-actin polymerization. Hypoxanthine supplementation increased the adenylate energy charge in the murine colon, indicating potential to regulate adenylate energy charge-mediated metabolism in intestinal epithelial cells. Moreover, experiments in a murine colitis model disclosed that hypoxanthine loss during active inflammation correlates with markers of disease severity. In summary, our results indicate that hypoxanthine modulates energy metabolism in intestinal epithelial cells and is critical for intestinal barrier function. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Acyclic phosph(on)ate inhibitors of Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase

    PubMed Central

    Clinch, Keith; Crump, Douglas R.; Evans, Gary B.; Hazleton, Keith Z.; Mason, Jennifer M.; Schramm, Vern L.

    2013-01-01

    The pathogenic protozoa responsible for malaria lack enzymes for the de novo synthesis of purines and rely on purine salvage from the host. In Plasmodium falciparum (Pf), hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) converts hypoxanthine to inosine monophosphate and is essential for purine salvage making the enzyme an anti-malarial drug target. We have synthesized a number of simple acyclic aza-C- nucleosides and shown that some are potent inhibitors of Pf HGXPRT while showing excellent selectivity for the Pf versus the human enzyme. PMID:23810424

  10. Hypoxia modulates the purine salvage pathway and decreases red blood cell and supernatant levels of hypoxanthine during refrigerated storage.

    PubMed

    Nemkov, Travis; Sun, Kaiqi; Reisz, Julie A; Song, Anren; Yoshida, Tatsuro; Dunham, Andrew; Wither, Matthew J; Francis, Richard O; Roach, Robert C; Dzieciatkowska, Monika; Rogers, Stephen C; Doctor, Allan; Kriebardis, Anastasios; Antonelou, Marianna; Papassideri, Issidora; Young, Carolyn T; Thomas, Tiffany A; Hansen, Kirk C; Spitalnik, Steven L; Xia, Yang; Zimring, James C; Hod, Eldad A; D'Alessandro, Angelo

    2018-02-01

    Hypoxanthine catabolism in vivo is potentially dangerous as it fuels production of urate and, most importantly, hydrogen peroxide. However, it is unclear whether accumulation of intracellular and supernatant hypoxanthine in stored red blood cell units is clinically relevant for transfused recipients. Leukoreduced red blood cells from glucose-6-phosphate dehydrogenase-normal or -deficient human volunteers were stored in AS-3 under normoxic, hyperoxic, or hypoxic conditions (with oxygen saturation ranging from <3% to >95%). Red blood cells from healthy human volunteers were also collected at sea level or after 1-7 days at high altitude (>5000 m). Finally, C57BL/6J mouse red blood cells were incubated in vitro with 13 C 1 -aspartate or 13 C 5 -adenosine under normoxic or hypoxic conditions, with or without deoxycoformycin, a purine deaminase inhibitor. Metabolomics analyses were performed on human and mouse red blood cells stored for up to 42 or 14 days, respectively, and correlated with 24 h post-transfusion red blood cell recovery. Hypoxanthine increased in stored red blood cell units as a function of oxygen levels. Stored red blood cells from human glucose-6-phosphate dehydrogenase-deficient donors had higher levels of deaminated purines. Hypoxia in vitro and in vivo decreased purine oxidation and enhanced purine salvage reactions in human and mouse red blood cells, which was partly explained by decreased adenosine monophosphate deaminase activity. In addition, hypoxanthine levels negatively correlated with post-transfusion red blood cell recovery in mice and - preliminarily albeit significantly - in humans. In conclusion, hypoxanthine is an in vitro metabolic marker of the red blood cell storage lesion that negatively correlates with post-transfusion recovery in vivo Storage-dependent hypoxanthine accumulation is ameliorated by hypoxia-induced decreases in purine deamination reaction rates. Copyright© 2018 Ferrata Storti Foundation.

  11. Hypoxia modulates the purine salvage pathway and decreases red blood cell and supernatant levels of hypoxanthine during refrigerated storage

    PubMed Central

    Nemkov, Travis; Sun, Kaiqi; Reisz, Julie A.; Song, Anren; Yoshida, Tatsuro; Dunham, Andrew; Wither, Matthew J.; Francis, Richard O.; Roach, Robert C.; Dzieciatkowska, Monika; Rogers, Stephen C.; Doctor, Allan; Kriebardis, Anastasios; Antonelou, Marianna; Papassideri, Issidora; Young, Carolyn T.; Thomas, Tiffany A.; Hansen, Kirk C.; Spitalnik, Steven L.; Xia, Yang; Zimring, James C.; Hod, Eldad A.; D’Alessandro, Angelo

    2018-01-01

    Hypoxanthine catabolism in vivo is potentially dangerous as it fuels production of urate and, most importantly, hydrogen peroxide. However, it is unclear whether accumulation of intracellular and supernatant hypoxanthine in stored red blood cell units is clinically relevant for transfused recipients. Leukoreduced red blood cells from glucose-6-phosphate dehydrogenase-normal or -deficient human volunteers were stored in AS-3 under normoxic, hyperoxic, or hypoxic conditions (with oxygen saturation ranging from <3% to >95%). Red blood cells from healthy human volunteers were also collected at sea level or after 1–7 days at high altitude (>5000 m). Finally, C57BL/6J mouse red blood cells were incubated in vitro with 13C1-aspartate or 13C5-adenosine under normoxic or hypoxic conditions, with or without deoxycoformycin, a purine deaminase inhibitor. Metabolomics analyses were performed on human and mouse red blood cells stored for up to 42 or 14 days, respectively, and correlated with 24 h post-transfusion red blood cell recovery. Hypoxanthine increased in stored red blood cell units as a function of oxygen levels. Stored red blood cells from human glucose-6-phosphate dehydrogenase-deficient donors had higher levels of deaminated purines. Hypoxia in vitro and in vivo decreased purine oxidation and enhanced purine salvage reactions in human and mouse red blood cells, which was partly explained by decreased adenosine monophosphate deaminase activity. In addition, hypoxanthine levels negatively correlated with post-transfusion red blood cell recovery in mice and – preliminarily albeit significantly - in humans. In conclusion, hypoxanthine is an in vitro metabolic marker of the red blood cell storage lesion that negatively correlates with post-transfusion recovery in vivo. Storage-dependent hypoxanthine accumulation is ameliorated by hypoxia-induced decreases in purine deamination reaction rates. PMID:29079593

  12. Hypoxanthine as a predictor of performance in highly trained athletes.

    PubMed

    Zieliński, J; Krasińska, B; Kusy, K

    2013-12-01

    Purine metabolism reflects the exercise-induced muscle adaptations and training status. This study evaluated the utility of plasma hypoxanthine in the prediction of actual sport performance. We studied male athletes: 28 triathletes (21.4±2.9 years), 12 long-distance runners (23.2±1.9 years), 13 middle-distance runners (22.9±1.8 years) and 18 sprinters (22.0±2.7 years). Season-best race times were considered, achieved over standard triathlon, 5 000 m, 1 500 m and 100 m, respectively. Incremental treadmill test was administered to determine maximum and "threshold" oxygen uptake. Resting and post-exercise plasma concentrations of hypoxanthine, xanthine, uric acid and lactate were measured as well as resting erythrocyte hypoxanthine-guanine phosphoribosyltransferase activity. Simple and multiple regression analyses were used to identify significant contributors to the variance in performance. Hypoxanthine considered alone explained more variance in triathletes, long-distance runners, middle-distance runners and sprinters (r 2=0.81, 0.81, 0.88 and 0.78, respectively) than models based on aerobic capacity and lactate (R 2=0.51, 0.37, 0.59 and 0.31, respectively). Combining purine metabolites and cardiorespiratory variables resulted in the best prediction (R 2=0.86, 0.93, 0.93 and 0.91; r=0.93, 0.96, 0.96 and 0.95, respectively). In summary, hypoxanthine is a strong predictor of performance in highly trained athletes and its prediction ability is very high regardless of sport specialization, spanning the continuum from speed-power to endurance disciplines. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Probing the interaction of archaeal DNA polymerases with deaminated bases using X-ray crystallography and non-hydrogen bonding isosteric base analogues.

    PubMed

    Killelea, Tom; Ghosh, Samantak; Tan, Samuel S; Heslop, Pauline; Firbank, Susan J; Kool, Eric T; Connolly, Bernard A

    2010-07-13

    Archaeal family-B DNA polymerases stall replication on encountering the pro-mutagenic bases uracil and hypoxanthine. This publication describes an X-ray crystal structure of Thermococcus gorgonarius polymerase in complex with a DNA containing hypoxanthine in the single-stranded region of the template, two bases ahead of the primer-template junction. Full details of the specific recognition of hypoxanthine are revealed, allowing a comparison with published data that describe uracil binding. The two bases are recognized by the same pocket, in the N-terminal domain, and make very similar protein-DNA interactions. Specificity for hypoxanthine (and uracil) arises from a combination of polymerase-base hydrogen bonds and shape fit between the deaminated bases and the pocket. The structure with hypoxanthine at position 2 explains the stimulation of the polymerase 3'-5' proofreading exonuclease, observed with deaminated bases at this location. A beta-hairpin element, involved in partitioning the primer strand between the polymerase and exonuclease active sites, inserts between the two template bases at the extreme end of the double-stranded DNA. This denatures the two complementary primer bases and directs the resulting 3' single-stranded extension toward the exonuclease active site. Finally, the relative importance of hydrogen bonding and shape fit in determining selectivity for deaminated bases has been examined using nonpolar isosteres. Affinity for both 2,4-difluorobenzene and fluorobenzimidazole, non-hydrogen bonding shape mimics of uracil and hypoxanthine, respectively, is strongly diminished, suggesting polar protein-base contacts are important. However, residual interaction with 2,4-difluorobenzene is seen, confirming a role for shape recognition.

  14. Probing the interaction of archaeal DNA polymerases with deaminated bases using X-ray crystallography and non-hydrogen bonding isosteric base analogues†

    PubMed Central

    Killelea, Tom; Ghosh, Samantak; Tan, Samuel S.; Heslop, Pauline; Firbank, Susan; Kool, Eric T.; Connolly, Bernard A.

    2010-01-01

    Archaeal family-B DNA polymerases stall replication on encountering the pro-mutagenic bases uracil and hypoxanthine. This publication describes an X-ray crystal structure of Thermococcus gorgonarius polymerase in complex with a DNA containing hypoxanthine in the single-stranded region of the template, two bases ahead of the primer-template junction. Full details of the specific recognition of hypoxanthine are revealed, allowing a comparison with published data that describes uracil binding. The two bases are recognized by the same pocket, in the N-terminal domain, and make very similar protein-DNA interactions. Specificity for hypoxanthine (and uracil) arises from a combination of polymerase-base hydrogen bonds and shape fit between the deaminated bases and the pocket. The structure with hypoxanthine at the +2 position explains the stimulation of the polymerase 3′-5′ proof reading exonuclease, observed with deaminated bases at this location. A β hairpin element, involved in partitioning the primer strand between the polymerase and exonuclease active sites, inserts between the two template bases at the extreme end of the double stranded DNA. This denatures the two complementary primer bases and directs the resulting 3′ single-stranded extension towards the exonuclease active site. Finally the relative importance of hydrogen bonding and shape fit in determining selectivity for deaminated bases has been examined using non-polar isosteres. Affinity for both 2,4 difluorobenzene and fluorobenzimidazole, non-hydrogen bonding shape mimics of uracil and hypoxanthine respectively, is strongly diminished, suggesting polar protein-base contacts are important. However, residual interaction with 2,4 difluorobenzene is seen, confirming a role for shape recognition. PMID:20527806

  15. Lysinibacillus fusiformis M5 Induces Increased Complexity in Bacillus subtilis 168 Colony Biofilms via Hypoxanthine

    PubMed Central

    Kankel, Stefanie; Götze, Sebastian; Barnett, Robert

    2017-01-01

    ABSTRACT In recent years, biofilms have become a central subject of research in the fields of microbiology, medicine, agriculture, and systems biology, among others. The sociomicrobiology of multispecies biofilms, however, is still poorly understood. Here, we report a screening system that allowed us to identify soil bacteria which induce architectural changes in biofilm colonies when cocultured with Bacillus subtilis. We identified the soil bacterium Lysinibacillus fusiformis M5 as an inducer of wrinkle formation in B. subtilis colonies mediated by a diffusible signaling molecule. This compound was isolated by bioassay-guided chromatographic fractionation. The elicitor was identified to be the purine hypoxanthine using mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. We show that the induction of wrinkle formation by hypoxanthine is not dependent on signal recognition by the histidine kinases KinA, KinB, KinC, and KinD, which are generally involved in phosphorylation of the master regulator Spo0A. Likewise, we show that hypoxanthine signaling does not induce the expression of biofilm matrix-related operons epsABCDEFGHIJKLMNO and tasA-sipW-tapA. Finally, we demonstrate that the purine permease PbuO, but not PbuG, is necessary for hypoxanthine to induce an increase in wrinkle formation of B. subtilis biofilm colonies. Our results suggest that hypoxanthine-stimulated wrinkle development is not due to a direct induction of biofilm-related gene expression but rather is caused by the excess of hypoxanthine within B. subtilis cells, which may lead to cell stress and death. IMPORTANCE Biofilms are a bacterial lifestyle with high relevance regarding diverse human activities. Biofilms can be beneficial, for instance, in crop protection. In nature, biofilms are commonly found as multispecies communities displaying complex social behaviors and characteristics. The study of interspecies interactions will thus lead to a better understanding and use of biofilms as they occur outside laboratory conditions. Here, we present a screening method suitable for the identification of multispecies interactions and showcase L. fusiformis as a soil bacterium that is able to live alongside B. subtilis and modify the architecture of its biofilms. PMID:28583948

  16. Lysinibacillus fusiformis M5 Induces Increased Complexity in Bacillus subtilis 168 Colony Biofilms via Hypoxanthine.

    PubMed

    Gallegos-Monterrosa, Ramses; Kankel, Stefanie; Götze, Sebastian; Barnett, Robert; Stallforth, Pierre; Kovács, Ákos T

    2017-11-15

    In recent years, biofilms have become a central subject of research in the fields of microbiology, medicine, agriculture, and systems biology, among others. The sociomicrobiology of multispecies biofilms, however, is still poorly understood. Here, we report a screening system that allowed us to identify soil bacteria which induce architectural changes in biofilm colonies when cocultured with Bacillus subtilis We identified the soil bacterium Lysinibacillus fusiformis M5 as an inducer of wrinkle formation in B. subtilis colonies mediated by a diffusible signaling molecule. This compound was isolated by bioassay-guided chromatographic fractionation. The elicitor was identified to be the purine hypoxanthine using mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. We show that the induction of wrinkle formation by hypoxanthine is not dependent on signal recognition by the histidine kinases KinA, KinB, KinC, and KinD, which are generally involved in phosphorylation of the master regulator Spo0A. Likewise, we show that hypoxanthine signaling does not induce the expression of biofilm matrix-related operons epsABCDEFGHIJKLMNO and tasA-sipW-tapA Finally, we demonstrate that the purine permease PbuO, but not PbuG, is necessary for hypoxanthine to induce an increase in wrinkle formation of B. subtilis biofilm colonies. Our results suggest that hypoxanthine-stimulated wrinkle development is not due to a direct induction of biofilm-related gene expression but rather is caused by the excess of hypoxanthine within B. subtilis cells, which may lead to cell stress and death. IMPORTANCE Biofilms are a bacterial lifestyle with high relevance regarding diverse human activities. Biofilms can be beneficial, for instance, in crop protection. In nature, biofilms are commonly found as multispecies communities displaying complex social behaviors and characteristics. The study of interspecies interactions will thus lead to a better understanding and use of biofilms as they occur outside laboratory conditions. Here, we present a screening method suitable for the identification of multispecies interactions and showcase L. fusiformis as a soil bacterium that is able to live alongside B. subtilis and modify the architecture of its biofilms. Copyright © 2017 American Society for Microbiology.

  17. Inhibition of purine phosphoribosyltransferases of Ehrlich ascites-tumour cells by 6-mercaptopurine

    PubMed Central

    Atkinson, M. R.; Murray, A. W.

    1965-01-01

    1. The formation of adenosine 5′-phosphate, guanosine 5′-phosphate and inosine 5′-phosphate from [8-14C]adenine, [8-14C]guanine and [8-14C]hypoxanthine respectively in the presence of 5-phosphoribosyl pyrophosphate and an extract from Ehrlich ascites-tumour cells was assayed by a method involving liquid-scintillation counting of the radioactive nucleotides on diethylaminoethylcellulose paper. The results obtained with guanine were confirmed by a spectrophotometric assay which was also used to assay the conversion of 6-mercaptopurine and 5-phosphoribosyl pyrophosphate into 6-thioinosine 5′-phosphate in the presence of 6-mercaptopurine phosphoribosyltransferase from these cells. 2. At pH 7·8 and 25° the Michaelis constants for adenine, guanine and hypoxanthine were 0·9 μm, 2·9 μm and 11·0 μm in the assay with radioactive purines; the Michaelis constant for guanine in the spectrophotometric assay was 2·6 μm. At pH 7·9 the Michaelis constant for 6-mercaptopurine was 10·9 μm. 3. 25 μm-6-Mercaptopurine did not inhibit adenine phosphoribosyltransferase. 6-Mercaptopurine is a competitive inhibitor of guanine phosphoribosyltransferase (Ki 4·7 μm) and hypoxanthine phosphoribosyltransferase (Ki 8·3 μm). Hypoxanthine is a competitive inhibitor of guanine phosphoribosyltransferase (Ki 3·4 μm). 4. Differences in kinetic parameters and in the distribution of phosphoribosyltransferase activities after electrophoresis in starch gel indicate that different enzymes are involved in the conversion of adenine, guanine and hypoxanthine into their nucleotides. 5. From the low values of Ki for 6-mercaptopurine, and from published evidence that ascites-tumour cells require supplies of purines from the host tissues, it is likely that inhibition of hypoxanthine and guanine phosphoribosyltransferases by free 6-mercaptopurine is involved in the biological activity of this drug. PMID:14342250

  18. Development and Validation of a Simple High Performance Liquid Chromatography/UV Method for Simultaneous Determination of Urinary Uric Acid, Hypoxanthine, and Creatinine in Human Urine.

    PubMed

    Wijemanne, Nimanthi; Soysa, Preethi; Wijesundara, Sulochana; Perera, Hemamali

    2018-01-01

    Uric acid and hypoxanthine are produced in the catabolism of purine. Abnormal urinary levels of these products are associated with many diseases and therefore it is necessary to have a simple and rapid method to detect them. Hence, we report a simple reverse phase high performance liquid chromatography (HPLC/UV) technique, developed and validated for simultaneous analysis of uric acid, hypoxanthine, and creatinine in human urine. Urine was diluted appropriately and eluted with C-18 column 100 mm × 4.6 mm with a C-18 precolumn 25 mm × 4.6 mm in series. Potassium phosphate buffer (20 mM, pH 7.25) at a flow rate of 0.40 mL/min was employed as the solvent and peaks were detected at 235 nm. Tyrosine was used as the internal standard. The experimental conditions offered a good separation of analytes without interference of endogenous substances. The calibration curves were linear for all test compounds with a regression coefficient, r 2 > 0.99. Uric acid, creatinine, tyrosine, and hypoxanthine were eluted at 5.2, 6.1, 7.2, and 8.3 min, respectively. Intraday and interday variability were less than 4.6% for all the analytes investigated and the recovery ranged from 98 to 102%. The proposed HPLC procedure is a simple, rapid, and low cost method with high accuracy with minimum use of organic solvents. This method was successfully applied for the determination of creatinine, hypoxanthine, and uric acid in human urine.

  19. Specificity and Catalytic Mechanism in Family 5 Uracil DNA Glycosylase*

    PubMed Central

    Xia, Bo; Liu, Yinling; Li, Wei; Brice, Allyn R.; Dominy, Brian N.; Cao, Weiguo

    2014-01-01

    UDGb belongs to family 5 of the uracil DNA glycosylase (UDG) superfamily. Here, we report that family 5 UDGb from Thermus thermophilus HB8 is not only a uracil DNA glycosyase acting on G/U, T/U, C/U, and A/U base pairs, but also a hypoxanthine DNA glycosylase acting on G/I, T/I, and A/I base pairs and a xanthine DNA glycosylase acting on all double-stranded and single-stranded xanthine-containing DNA. Analysis of potentials of mean force indicates that the tendency of hypoxanthine base flipping follows the order of G/I > T/I, A/I > C/I, matching the trend of hypoxanthine DNA glycosylase activity observed in vitro. Genetic analysis indicates that family 5 UDGb can also act as an enzyme to remove uracil incorporated into DNA through the existence of dUTP in the nucleotide pool. Mutational analysis coupled with molecular modeling and molecular dynamics analysis reveals that although hydrogen bonding to O2 of uracil underlies the UDG activity in a dissociative fashion, Tth UDGb relies on multiple catalytic residues to facilitate its excision of hypoxanthine and xanthine. This study underscores the structural and functional diversity in the UDG superfamily. PMID:24838246

  20. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines

    PubMed Central

    López-Cruz, Roberto I.; Crocker, Daniel E.; Gaxiola-Robles, Ramón; Bernal, Jaime A.; Real-Valle, Roberto A.; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements. PMID:27375492

  1. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines.

    PubMed

    López-Cruz, Roberto I; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal, Jaime A; Real-Valle, Roberto A; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements.

  2. Human hybrid hybridoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiebout, R.F.; van Boxtel-Oosterhof, F.; Stricker, E.A.M.

    1987-11-15

    Hybrid hybridomas are obtained by fusion of two cells, each producing its own antibody. Several authors have reported the construction of murine hybrid hybridomas with the aim to obtain bispecific monoclonal antibodies. The authors have investigated, in a model system, the feasibility of constructing a human hybrid hybridoma. They fused two monoclonal cell lines: an ouabain-sensitive and azaserine/hypoxanthine-resistant Epstein-Barr virus-transformed human cell line that produces an IgG1kappa antibody directed against tetanus toxiod and an azaserine/hypoxanthine-sensitive and ouabain-resistant human-mouse xenohybrid cell line that produces a human IgG1lambda antibody directed against hepatitis-B surface antigen. Hybrid hybridoma cells were selected in culture mediummore » containing azaserine/hypoxanthine and ouabain. The hybrid nature of the secreted antibodies was analyzed by means of two antigen-specific immunoassay. The results show that it is possible, with the combined use of transformation and xenohybridization techniques, to construct human hybrid hybridomas that produce bispecific antibodies. Bispecific antibodies activity was measured by means of two radioimmunoassays.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santamaria, J.; Pasquier, C.; Ferradini, C.

    The oxidation in aqueous solutions of hypoxanthine into xanthine and xanthine into uric acid by OH radicals has been investigated using pulse radiolysis and fast kinetic absorption spectrophotometry. After hypoxanthine irradiations the spectrum of transient R/sub 1/ has been characterized. This radical is formed with a rate constant k/sub (Hyx+OH) = 6.5 x 10/sup 9/ M/sup -1/ sec/sup -1/ and disappears by disproportionation leading to xanthine and hypoxanthine with a rate constant 2K/sub (R/sub 1/+ r/sub 1// = 1.3 x 10/sup 8/ M/sup -1/ sec/sup -//sub 1/. After xanthine irradiations a radical intermediate R/sub 2/ is formed with a ratemore » constant k/sub(X+ OH)/= 5.2 x 10/sup 8/ M/sup -1/ sec/sup -1/ and disappears through a second-order reaction 2K/sub (R/sub 2/+ R/sub 2/)/ = 2.0 x 10/sup 8/ M/sup -1/ sec/sup -1/. Finally, after aeration only uric acid and xanthine are measured.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Hongnan; Pauff, James M.; Hille, Russ

    Xanthine oxidase is a molybdenum-containing enzyme catalyzing the hydroxylation of a sp{sup 2}-hybridized carbon in a broad range of aromatic heterocycles and aldehydes. Crystal structures of the bovine enzyme in complex with the physiological substrate hypoxanthine at 1.8 {angstrom} resolution and the chemotherapeutic agent 6-mercaptopurine at 2.6 {angstrom} resolution have been determined, showing in each case two alternate orientations of substrate in the two active sites of the crystallographic asymmetric unit. One orientation is such that it is expected to yield hydroxylation at C-2 of substrate, yielding xanthine. The other suggests hydroxylation at C-8 to give 6,8-dihydroxypurine, a putative productmore » not previously thought to be generated by the enzyme. Kinetic experiments demonstrate that >98% of hypoxanthine is hydroxylated at C-2 rather than C-8, indicating that the second crystallographically observed orientation is significantly less catalytically effective than the former. Theoretical calculations suggest that enzyme selectivity for the C-2 over C-8 of hypoxanthine is largely due to differences in the intrinsic reactivity of the two sites. For the orientation of hypoxanthine with C-2 proximal to the molybdenum center, the disposition of substrate in the active site is such that Arg880 and Glu802, previous shown to be catalytically important for the conversion of xanthine to uric acid, play similar roles in hydroxylation at C-2 as at C-8. Contrary to the literature, we find that 6,8-dihydroxypurine is effectively converted to uric acid by xanthine oxidase.« less

  5. The synthetic substance hypoxanthine 3-N-oxide elicits alarm reactions in zebrafish (Danio rerio)

    PubMed Central

    Parra, Kevin V.; Adrian, James C.; Gerlai, Robert

    2009-01-01

    Zebrafish, one of the preferred study species of geneticists, is gaining increasing popularity in behavioral neuroscience. This small and prolific species may be an excellent tool with which the biological mechanisms of vertebrate brain function and behavior are investigated. Zebrafish has been proposed as a model organism in the analysis of fear responses and human anxiety disorders. Species-specific cues signaling the presence of predators have been successfully utilized in such research. Zebrafish has been shown to respond to its natural alarm substance with species-typical fear reactions. However, the extraction of this alarm substance and ascertaining its consistent dosing has been problematic. A synthetic substance with a known chemical identity and molecular weight would allow precise dosing and experimental control. Previously, the chemical component, hypoxanthine 3-N-oxide, common to several fish alarm substances has been identified and has been shown to elicit alarm reactions in fish species belonging to the Osteriophysan superorder. In the current study we investigate the effect of hypoxanthine 3-N-oxide by exposing zebrafish to three different concentrations of this synthetic substance. Our results show that the substance efficaciously induces species-typical fear reactions increasing the number of erratic movement episodes and jumps in zebrafish. We discuss the translational relevance of our findings and conclude that hypoxanthine 3-N-oxide will have utility to elicit fear responses in the laboratory in a precisely controlled manner in zebrafish. PMID:19583985

  6. Formation and trapping of free radicals in irradiated purines: EPR and ENDOR of hypoxanthine derivatives studied as single crystals

    NASA Astrophysics Data System (ADS)

    Tokdemir, Sibel

    Four different derivatives of hypoxanthine (hypoxanthine-HCl·H 2O, Na+·Inosine-·2.5H 2O, sodium inosine monophosphate, and calcium inosine monophosphate) were irradiated in the form of single crystals with the objective of identifying the radical products. To do so, magnetic resonance methods (EPR, ENDOR experiments and EPR spectrum simulations) were used to study radical products in crystals following x-irradiation at ˜10 K without warming, and under conditions of controlled warming. Also, computational chemistry methods were used in combination with the experimental methods to assist in identifying the radical products. Immediately following irradiation at 10 K, at least three different radicals were observed for hypoxanthine·HCl·H2O. R5.1 was identified at the product of electron addition followed by protonation of the parent at N3. R5.2 was identified as the product of electron loss followed by deprotonation at N7, and R5.3 was tentatively identified as the product of electron gain followed by protonation at 06. On warming to room temperature, three new radicals were observed: R6.1 and R6.3 were the products of net H addition to C8 and C2 respectively, while R6.2 was the product of OH addition to C8. At least four different radical products of Na+·Inosine - were detected immediately after irradiation at 10 K. R7.1 was identified as the electron-loss product of the parent hypoxanthine base, and R7.2 was identified as the product of net H-abstraction from C5 ' of the sugar. R7.3 and R7.4 were tentatively identified as the products of net H-addition to 06 (probably via electron addition followed by protonation), and the (doubly-negative) product of electron-gain, respectively. R7.5, the C8-H addition radical, was the only product detected on warming sodium inosine crystals to room temperature. Because the ENDOR spectra from sodium IMP irradiated at 10K were complex, it was possible to identify only two radicals. R8.1 was identified as the purine base electron-abstraction product, and R8.2 was identified as the 06 hydrogen-addition product. ENDOR spectra could be obtained from calcium IMP only at a few orientations. Thus, all radical identifications in this system are based on EPR spectrum simulations using likely radical structures based on results from other hypoxanthine-based systems.

  7. The plasma membrane permease PfNT1 is essential for purine salvage in the human malaria parasite Plasmodium falciparum.

    PubMed

    El Bissati, Kamal; Zufferey, Rachel; Witola, William H; Carter, Nicola S; Ullman, Buddy; Ben Mamoun, Choukri

    2006-06-13

    The human malaria parasite Plasmodium falciparum relies on the acquisition of host purines for its survival within human erythrocytes. Purine salvage by the parasite requires specialized transporters at the parasite plasma membrane (PPM), but the exact mechanism of purine entry into the infected erythrocyte, and the primary purine source used by the parasite, remain unknown. Here, we report that transgenic parasites lacking the PPM transporter PfNT1 (P. falciparum nucleoside transporter 1) are auxotrophic for hypoxanthine, inosine, and adenosine under physiological conditions and are viable only if these normally essential nutrients are provided at excess concentrations. Transport measurements across the PPM revealed a severe reduction in hypoxanthine uptake in the knockout, whereas adenosine and inosine transport were only partially affected. These data provide compelling evidence for a sequential pathway for exogenous purine conversion into hypoxanthine using host enzymes followed by PfNT1-mediated transport into the parasite. The phenotype of the conditionally lethal mutant establishes PfNT1 as a critical component of purine salvage in P. falciparum and validates PfNT1 as a potential therapeutic target.

  8. Determination of purine contents in different parts of pork and beef by high performance liquid chromatography.

    PubMed

    Rong, Shengzhong; Zou, Lina; Zhang, Yannan; Zhang, Guangteng; Li, Xiaoxia; Li, Miaojing; Yang, Fenghua; Li, Chunmei; He, Yingjuan; Guan, Hongjun; Guo, Yupeng; Wang, Dong; Cui, Xinyu; Ye, Hongting; Liu, Fenghai; Pan, Hongzhi; Yang, Yuexin

    2015-03-01

    Determination of adenine, hypoxanthine, guanine and xanthine in different parts of pork and beef using high performance liquid chromatography was described. Chromatographic separation was carried out on Waters Atlantis T3 column (4.6 mm × 250 mm × 5 μm) with column temperature at 30 °C. The mobile phase contained 99% 10.0 mmol/L ammonium formate solution at pH 3.6 and 1.0% methanol. Chromatography was achieved at a flow rate of 1.0 mL/min and detection wavelength at 254 nm. The results indicated that total purine amounts in pork rump and beef sirloin were higher than those in other parts (P<0.05). The principal purine bases were hypoxanthine and adenine, and hypoxanthine content was the most highest in all samples (P<0.05). As pork rump and beef sirloin contain considerable amounts of total purine and uricogenic purine base, we suggest that excess consumption of them be avoid, whereas pork loin chop and beef rib eye are more suitable for a low-purine diet. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Genetic and physiological characterization of the purine salvage pathway in the archaebacterium Methanobacterium thermoautotrophicum Marburg.

    PubMed Central

    Worrell, V E; Nagle, D P

    1990-01-01

    The enzymes involved in the purine interconversion pathway of wild-type and purine analog-resistant strains of Methanobacterium thermoautotrophicum Marburg were assayed by radiometric and spectrophotometric methods. Wild-type cells incorporated labeled adenine, guanine, and hypoxanthine, whereas mutant strains varied in their ability to incorporate these bases. Adenine, guanine, hypoxanthine, and xanthine were activated by phosphoribosyltransferase activities present in wild-type cell extracts. Some mutant strains simultaneously lost the ability to convert both guanine and hypoxanthine to the respective nucleotide, suggesting that the same enzyme activates both bases. Adenosine, guanosine, and inosine phosphorylase activities were detected for the conversion of base to nucleoside. Adenine deaminase activity was detected at low levels. Guanine deaminase activity was not detected. Nucleoside kinase activities for the conversion of adenosine, guanosine, and inosine to the respective nucleotides were detected by a new assay. The nucleotide-interconverting enzymes AMP deaminase, succinyl-AMP synthetase, succinyl-AMP lyase, IMP dehydrogenase, and GMP synthetase were present in extracts; GMP reductase was not detected. The results indicate that this autotrophic methanogen has a complex system for the utilization of exogenous purines. PMID:2345148

  10. Genetic Separation of Hypoxanthine and Guanine-Xanthine Phosphoribosyltransferase Activities by Deletion Mutations in Salmonella typhimurium

    PubMed Central

    Gots, Joseph S.; Benson, Charles E.; Shumas, Susan R.

    1972-01-01

    Certain proAB deletion mutants of Salmonella typhimurium were found to be simultaneously deleted in a gene required for the utilization of guanine and xanthine (designated gxu). These mutants were resistant to 8-azaguanine and when carrying an additional pur mutation were unable to use guanine or xanthine as a purine source. The defect was correlated with deficiencies in the uptake and phosphoribosyltransferase activities for guanine and xanthine. Hypoxanthine and adenine activities were unaltered. The deficiency was restored to normal by transduction to pro+ and in F′ merodiploids. PMID:4563984

  11. Evolution of electron density towards the conical intersection of a nucleic acid purine

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Arzaluz, Luis; Ramírez-Palma, David; Buitrón-Cabrera, Frida; Rocha-Rinza, Tomás; Cortés-Guzmán, Fernando; Peon, Jorge

    2017-09-01

    We analyzed the evolution of the electron density across the S0 and S1 states potential energy curves of hypoxanthine (Hx) using the Quantum Theory of Atoms in Molecules (QTAIM). Examination of QTAIM energies and electronic populations indicates that charge transfer processes are important in the stabilization of the S1 state towards the Conical Intersection (CI) which confers to Hx its photostability. Our results point that the rise of energy of the S0 state approaching the CI is accompanied by a loss of aromaticity of hypoxanthine. Overall, the analyses presented herein give important insights on the photostability of nucleobases.

  12. Azathioprine and 6-mercaptopurine (6-MP) suppress the human mixed lymphocyte reaction (MLR) by different mechanisms.

    PubMed Central

    Al-Safi, S A; Maddocks, J L

    1984-01-01

    6-MP inhibitory effects on the MLR were reversed by AIC (46%), adenine (32%), hypoxanthine (89%), adenosine (86%) and inosine (93%). AIC, adenine, hypoxanthine and inosine had no effect on azathioprine inhibition of the MLR. Adenosine at 10 microM caused 29% reversal and had no effect at 100-400 microM on azathioprine inhibition of the MLR. Reversal of 6-MP suppression of the MLR was decreased with the delay of adenosine addition. Guanine, xanthine and guanosine caused no reversal of 6-MP or azathioprine inhibitory effects on the MLR. These results show that azathioprine and 6-MP suppress the MLR by different mechanisms. PMID:6232936

  13. Dietary purines in vegetarian meat analogues.

    PubMed

    Havlik, Jaroslav; Plachy, Vladimir; Fernandez, Javier; Rada, Vojtech

    2010-11-01

    The meat alternatives market offers a wide range of products resembling meat in taste, flavour or texture but based on vegetable protein sources. These high protein-low purine foods may find application in a low purine or purine-free diet, which is sometimes suggested for subjects with increased serum urate levels, i.e. hyperuricaemia. We determined purine content (uric acid, adenine, guanine, hypoxanthine, xanthine) in 39 commercially available meat substitutes and evaluated them in relation to their protein content. Some of the products contained a comparable sum of adenine and hypoxanthine per protein as meat. Analysis of variance showed an influence of protein source used. Mycoprotein-based products had significantly higher contents (2264 mg kg(-1)) of adenine and hypoxanthine per kg of 100% protein than soybean-based products (1648 mg kg(-1)) or mixtures consisting of soybean protein and wheat protein (1239 mg kg(-1)). Protein-rich vegetable-based meat substitutes might be generally accepted as meat alternatives for individuals on special diets. The type of protein used to manufacture these products determines the total content of purines, which is relatively higher in the case of mycoprotein or soybean protein, while appearing lower in wheat protein and egg white-based products. These are therefore more suitable for dietary considerations in a low-purine diet for hyperuricaemic subjects. 2010 Society of Chemical Industry

  14. Catalysis in human hypoxanthine-guanine phosphoribosyltransferase: Asp 137 acts as a general acid/base.

    PubMed

    Xu, Y; Grubmeyer, C

    1998-03-24

    Hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) catalyzes the reversible formation of IMP and GMP from their respective bases hypoxanthine (Hx) and guanine (Gua) and the phosphoribosyl donor 5-phosphoribosyl-1-pyrophosphate (PRPP). The net formation and cleavage of the nucleosidic bond requires removal/addition of a proton at the purine moiety, allowing enzymic catalysis to reduce the energy barrier associated with the reaction. The pH profile of kcat for IMP pyrophosphorolysis revealed an essential acidic group with pKa of 7.9 whereas those for IMP or GMP formation indicated involvement of essential basic groups. Based on the crystal structure of human HGPRTase, protonation/deprotonation is likely to occur at N7 of the purine ring, and Lys 165 or Asp 137 are each candidates for the general base/acid. We have constructed, purified, and kinetically characterized two mutant HGPRTases to test this hypothesis. D137N displayed an 18-fold decrease in kcat for nucleotide formation with Hx as substrate, a 275-fold decrease in kcat with Gua, and a 500-fold decrease in kcat for IMP pyrophosphorolysis. D137N also showed lower KD values for nucleotides and PRPP. The pH profiles of kcat for D137N were severely altered. In contrast to D137N, the kcat for K165Q was decreased only 2-fold in the forward reaction and was slightly increased in the reverse reaction. The Km and KD values showed that K165Q interacts with substrates more weakly than does the wild-type enzyme. Pre-steady-state experiments with K165Q indicated that the phosphoribosyl transfer step was fast in the forward reaction, as observed with the wild type. In contrast, D137N showed slower phosphoribosyl transfer chemistry, although guanine (3000-fold reduction) was affected much more than hypoxanthine (32-fold reduction). In conclusion, Asp137 acts as a general catalytic acid/base for HGPRTase and Lys165 makes ground-state interactions with substrates.

  15. Aag Hypoxanthine-DNA Glycosylase Is Synthesized in the Forespore Compartment and Involved in Counteracting the Genotoxic and Mutagenic Effects of Hypoxanthine and Alkylated Bases in DNA during Bacillus subtilis Sporulation.

    PubMed

    Ayala-García, Víctor M; Valenzuela-García, Luz I; Setlow, Peter; Pedraza-Reyes, Mario

    2016-12-15

    Aag from Bacillus subtilis has been implicated in in vitro removal of hypoxanthine and alkylated bases from DNA. The regulation of expression of aag in B. subtilis and the resistance to genotoxic agents and mutagenic properties of an Aag-deficient strain were studied here. A strain with a transcriptional aag-lacZ fusion expressed low levels of β-galactosidase during growth and early sporulation but exhibited increased transcription during late stages of this developmental process. Notably, aag-lacZ expression was higher inside the forespore than in the mother cell compartment, and this expression was abolished in a sigG-deficient background, suggesting a forespore-specific mechanism of aag transcription. Two additional findings supported this suggestion: (i) expression of an aag-yfp fusion was observed in the forespore, and (ii) in vivo mapping of the aag transcription start site revealed the existence of upstream regulatory sequences possessing homology to σ G -dependent promoters. In comparison with the wild-type strain, disruption of aag significantly reduced survival of sporulating B. subtilis cells following nitrous acid or methyl methanesulfonate treatments, and the Rif r mutation frequency was significantly increased in an aag strain. These results suggest that Aag protects the genome of developing B. subtilis sporangia from the cytotoxic and genotoxic effects of base deamination and alkylation. In this study, evidence is presented revealing that aag, encoding a DNA glycosylase implicated in processing of hypoxanthine and alkylated DNA bases, exhibits a forespore-specific pattern of gene expression during B. subtilis sporulation. Consistent with this spatiotemporal mode of expression, Aag was found to protect the sporulating cells of this microorganism from the noxious and mutagenic effects of base deamination and alkylation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Cloning and expression of the hypoxanthine-guanine phosphoribosyltransferase gene from Trypanosoma brucei.

    PubMed Central

    Allen, T E; Ullman, B

    1993-01-01

    The hypoxanthine-guanine phosphoribosyltransferase (HGPRT) enzyme of Trypanosoma brucei and related parasites provides a rational target for the treatment of African sleeping sickness and several other parasitic diseases. To characterize the T. brucei HGPRT enzyme in detail, the T. brucei hgprt was isolated within a 4.2 kb SalI-KpnI genomic insert and sequenced. Nucleotide sequence analysis revealed an open reading frame of 630 bp that encoded a protein of 210 amino acids with a M(r) = 23.4 kd. After gap alignment, the T. brucei HGPRT exhibited 21-23% amino acid sequence identity, mostly in three clustered regions, with the HGPRTs from human, S. mansoni, and P falciparum, indicating that the trypanosome enzyme was the most divergent of the group. Surprisingly, the T. brucei HGPRT was more homologous to the hypoxanthine phosphoribosyltransferase (HPRT) from the prokaryote V. harveyi than to the eukaryotic HGPRTs. Northern blot analysis revealed two trypanosome transcripts of 1.4 and 1.9 kb, each expressed to equivalent degrees in insect vector and mammalian forms of the parasite. The T. brucei hgprt was inserted into an expression plasmid and transformed into S phi 606 E. coli that are deficient in both HPRT and xanthine-guanine phosphoribosyltransferase activities. Soluble, enzymatically active recombinant T. brucei HGPRT was expressed to high levels and purified to homogeneity by GTP-agarose affinity chromatography. The purified recombinant enzyme recognized hypoxanthine, guanine, and allopurinol, but not xanthine or adenine, as substrates and was inhibited by a variety of nucleotide effectors. The availability of a molecular clone encoding the T. brucei hgprt and large quantities of homogeneous recombinant HGPRT enzyme provides an experimentally manipulable molecular and biochemical system for the rational design of novel therapeutic agents for the treatment of African sleeping sickness and other diseases of parasitic origin. Images PMID:8265360

  17. [Quality comparison of Hirudo before and after processed by French chalk].

    PubMed

    Zhang, Yong-Tai

    2008-04-01

    To evaluate the effects of processing methods of Hirudo. Both water and alcohol extracts of Hirudo were studied according to Chinese Pharmacopeia (Edition 2005). The content of hypoxanthine in Hirudo was measured by high performance liquid chromatography (HPLC) and Hirudin was determined by thrombin. The contents of water, water soluble extraction, ethanol soluble extraction and hirudin in crude Hirudo are higher than those in processed Hirudo. But the contents of hypoxanthine in processed Hirudo is higher than in crude Hirudo. Hirudo fried by French chalk can decrease the active components with high intensive drug property, accordingly the toxicity of Hirudo was decreased. As a result, the effects of Hirudo as invigorate the circulation of blood and stimulate the menstrual flow were abated.

  18. Purine-related metabolites and their converting enzymes are altered in frontal, parietal and temporal cortex at early stages of Alzheimer's disease pathology.

    PubMed

    Alonso-Andrés, Patricia; Albasanz, José Luis; Ferrer, Isidro; Martín, Mairena

    2018-01-24

    Adenosine, hypoxanthine, xanthine, guanosine and inosine levels were assessed by HPLC, and the activity of related enzymes 5'-nucleotidase (5'-NT), adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP) measured in frontal (FC), parietal (PC) and temporal (TC) cortices at different stages of disease progression in Alzheimer's disease (AD) and in age-matched controls. Significantly decreased levels of adenosine, guanosine, hypoxanthine and xanthine, and apparently less inosine, are found in FC from the early stages of AD; PC and TC show an opposing pattern, as adenosine, guanosine and inosine are significantly increased at least at determinate stages of AD whereas hypoxanthine and xanthine levels remain unaltered. 5'-NT is reduced in membranes and cytosol in FC mainly at early stages but not in PC, and only at advanced stages in cytosol in TC. ADA activity is decreased in AD when considered as a whole but increased at early stages in TC. Finally, PNP activity is increased only in TC at early stages. Purine metabolism alterations occur at early stages of AD independently of neurofibrillary tangles and β-amyloid plaques. Alterations are stage dependent and region dependent, the latter showing opposite patterns in FC compared with PC and TC. Adenosine is the most affected of the assessed purines. © 2018 International Society of Neuropathology.

  19. Patterns of expression of position-dependent integrated transgenes in mouse embryo.

    PubMed Central

    Bonnerot, C; Grimber, G; Briand, P; Nicolas, J F

    1990-01-01

    The abilities to introduce foreign DNA into the genome of mice and to visualize gene expression at the single-cell level underlie a method for defining individual elements of a genetic program. We describe the use of an Escherichia coli lacZ reporter gene fused to the promoter of the gene for hypoxanthine phosphoribosyl transferase that is expressed in all tissues. Most transgenic mice (six of seven) obtained with this construct express the lacZ gene from the hypoxanthine phosphoribosyltransferase promoter. Unexpectedly, however, the expression is temporally and spatially regulated. Each transgenic line is characterized by a specific, highly reproducible pattern of lacZ expression. These results show that, for expression, the integrated construct must be complemented by elements of the genome. These elements exert dominant developmental control on the hypoxanthine phosphoribosyltransferase promoter. The expression patterns in some transgenic mice conform to a typological marker and in others to a subtle combination of typology and topography. These observations define discrete heterogeneities of cell types and of certain structures, particularly in the nervous system and in the mesoderm. This system opens opportunities for developmental studies by providing cellular, molecular, and genetic markers of cell types, cell states, and cells from developmental compartments. Finally this method illustrates that genes transduced or transposed to a different position in the genome acquire different spatiotemporal specificities, a result that has implications for evolution. Images PMID:1696727

  20. Genetics Home Reference: Lesch-Nyhan syndrome

    MedlinePlus

    ... Potier MC, Dauphinot L, Shirley TL, Torero-Ibad R, Fuchs J, Jinnah HA. Hypoxanthine-guanine phosphoribosyl transferase regulates early developmental programming of dopamine neurons: implications for Lesch-Nyhan disease ...

  1. Erythrocytic adenosine monophosphate as an alternative purine source in Plasmodium falciparum.

    PubMed

    Cassera, María B; Hazleton, Keith Z; Riegelhaupt, Paul M; Merino, Emilio F; Luo, Minkui; Akabas, Myles H; Schramm, Vern L

    2008-11-21

    Plasmodium falciparum is a purine auxotroph, salvaging purines from erythrocytes for synthesis of RNA and DNA. Hypoxanthine is the key precursor for purine metabolism in Plasmodium. Inhibition of hypoxanthine-forming reactions in both erythrocytes and parasites is lethal to cultured P. falciparum. We observed that high concentrations of adenosine can rescue cultured parasites from purine nucleoside phosphorylase and adenosine deaminase blockade but not when erythrocyte adenosine kinase is also inhibited. P. falciparum lacks adenosine kinase but can salvage AMP synthesized in the erythrocyte cytoplasm to provide purines when both human and Plasmodium purine nucleoside phosphorylases and adenosine deaminases are inhibited. Transport studies in Xenopus laevis oocytes expressing the P. falciparum nucleoside transporter PfNT1 established that this transporter does not transport AMP. These metabolic patterns establish the existence of a novel nucleoside monophosphate transport pathway in P. falciparum.

  2. Genetic evidence for the essential role of PfNT1 in the transport and utilization of xanthine, guanine, guanosine and adenine by Plasmodium falciparum.

    PubMed

    El Bissati, Kamal; Downie, Megan J; Kim, Seong-Kyoun; Horowitz, Michael; Carter, Nicola; Ullman, Buddy; Ben Mamoun, Choukri

    2008-10-01

    The malaria parasite, Plasmodium falciparum, is unable to synthesize the purine ring de novo and is therefore wholly dependent upon purine salvage from the host for survival. Previous studies have indicated that a P. falciparum strain in which the purine transporter PfNT1 had been disrupted was unable to grow on physiological concentrations of adenosine, inosine and hypoxanthine. We have now used an episomally complemented pfnt1Delta knockout parasite strain to confirm genetically the functional role of PfNT1 in P. falciparum purine uptake and utilization. Episomal complementation by PfNT1 restored the ability of pfnt1Delta parasites to transport and utilize adenosine, inosine and hypoxanthine as purine sources. The ability of wild-type and pfnt1Delta knockout parasites to transport and utilize the other physiologically relevant purines adenine, guanine, guanosine and xanthine was also examined. Unlike wild-type and complemented P. falciparum parasites, pfnt1Delta parasites could not proliferate on guanine, guanosine or xanthine as purine sources, and no significant transport of these substrates could be detected in isolated parasites. Interestingly, whereas isolated pfnt1Delta parasites were still capable of adenine transport, these parasites grew only when adenine was provided at high, non-physiological concentrations. Taken together these results demonstrate that, in addition to hypoxanthine, inosine and adenosine, PfNT1 is essential for the transport and utilization of xanthine, guanine and guanosine.

  3. Surface-enhanced Raman scattering of whole human blood, blood plasma, and red blood cells: cellular processes and bioanalytical sensing.

    PubMed

    Premasiri, W R; Lee, J C; Ziegler, L D

    2012-08-09

    SERS spectra of whole human blood, blood plasma, and red blood cells on Au nanoparticle SiO(2) substrates excited at 785 nm have been observed. For the sample preparation procedure employed here, the SERS spectrum of whole blood arises from the blood plasma component only. This is in contrast to the normal Raman spectrum of whole blood excited at 785 nm and open to ambient air, which is exclusively due to the scattering of oxyhemoglobin. The SERS spectrum of whole blood shows a storage time dependence that is not evident in the non-SERS Raman spectrum of whole blood. Hypoxanthine, a product of purine degradation, dominates the SERS spectrum of blood after ~10-20 h of storage at 8 °C. The corresponding SERS spectrum of plasma isolated from the stored blood shows the same temporal release of hypoxanthine. Thus, blood cellular components (red blood cells, white blood cells, and/or platelets) are releasing hypoxanthine into the plasma over this time interval. The SERS spectrum of red blood cells (RBCs) excited at 785 nm is reported for the first time and exhibits well-known heme group marker bands as well as other bands that may be attributed to cell membrane components or protein denaturation contributions. SERS, as well as normal Raman spectra, of oxy- and met-RBCs are reported and compared. These SERS results can have significant impact in the area of clinical diagnostics, blood supply management, and forensics.

  4. Surface Enhanced Raman Scattering of Whole Human Blood, Blood Plasma and Red Blood Cells: Cellular Processes and Bioanalytical Sensing

    PubMed Central

    Premasiri, W. R.; Lee, J. C.; Ziegler, L. D.

    2013-01-01

    SERS spectra of whole human blood, blood plasma and red blood cells on Au nanoparticle SiO2 substrates excited at 785 nm have been observed. For the sample preparation procedure employed here, the SERS spectrum of whole blood arises from the blood plasma component only. This is in contrast to the normal Raman spectrum of whole blood excited at 785 nm and open to ambient air, which is exclusively due to the scattering of oxyhemoglobin. The SERS spectrum of whole blood shows a storage time dependence that is not evident in the non-SERS Raman spectrum of whole blood. Hypoxanthine, a product of purine degradation, dominates the SERS spectrum of blood after ~10 – 20 hours of storage at 8 °C. The corresponding SERS spectrum of plasma isolated from the stored blood shows the same temporal release of hypoxanthine. Thus, blood cellular components (red blood cells, white blood cells and/or platelets) are releasing hypoxanthine into the plasma over this time interval. The SERS spectrum of red blood cells (RBCs) excited at 785 nm is reported for the first time and exhibits well known heme group marker bands, as well as other bands that may be attributed to cell membrane components or protein denaturation contributions. SERS, as well as normal Raman spectra, of oxy- and met-RBCs are reported and compared. These SERS results can have significant impact in the area of clinical diagnostics, blood supply management and forensics. PMID:22780445

  5. Erythrocytic Adenosine Monophosphate as an Alternative Purine Source in Plasmodium falciparum*

    PubMed Central

    Cassera, María B.; Hazleton, Keith Z.; Riegelhaupt, Paul M.; Merino, Emilio F.; Luo, Minkui; Akabas, Myles H.; Schramm, Vern L.

    2008-01-01

    Plasmodium falciparum is a purine auxotroph, salvaging purines from erythrocytes for synthesis of RNA and DNA. Hypoxanthine is the key precursor for purine metabolism in Plasmodium. Inhibition of hypoxanthine-forming reactions in both erythrocytes and parasites is lethal to cultured P. falciparum. We observed that high concentrations of adenosine can rescue cultured parasites from purine nucleoside phosphorylase and adenosine deaminase blockade but not when erythrocyte adenosine kinase is also inhibited. P. falciparum lacks adenosine kinase but can salvage AMP synthesized in the erythrocyte cytoplasm to provide purines when both human and Plasmodium purine nucleoside phosphorylases and adenosine deaminases are inhibited. Transport studies in Xenopus laevis oocytes expressing the P. falciparum nucleoside transporter PfNT1 established that this transporter does not transport AMP. These metabolic patterns establish the existence of a novel nucleoside monophosphate transport pathway in P. falciparum. PMID:18799466

  6. Suppression of methanogenesis for hydrogen production in single-chamber microbial electrolysis cells using various antibiotics.

    PubMed

    Catal, Tunc; Lesnik, Keaton Larson; Liu, Hong

    2015-01-01

    Methanogens can utilize the hydrogen produced in microbial electrolysis cells (MECs), thereby decreasing the hydrogen generation efficiency. However, various antibiotics have previously been shown to inhibit methanogenesis. In the present study antibiotics, including neomycin sulfate, 2-bromoethane sulfonate, 2-chloroethane sulfonate, 8-aza-hypoxanthine, were examined to determine if hydrogen production could be improved through inhibition of methanogenesis but not hydrogen production in MECs. 1.1mM neomycin sulfate inhibited both methane and hydrogen production while 2-chloroethane sulfonate (20mM), 2-bromoethane sulfonate (20mM), and 8-aza-hypoxanthine (3.6mM) can inhibited methane generation and with concurrent increases in hydrogen production. Our results indicated that adding select antibiotics to the mixed species community in MECs could be a suitable method to enhance hydrogen production efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The substrate specificity of purine phosphoribosyltransferases in Schizosaccharomyces pombe

    PubMed Central

    De Groodt, A.; Whitehead, E. P.; Heslot, H.; Poirier, L.

    1971-01-01

    1. The activities of the purine phosphoribosyltransferases (EC 2.4.2.7 and 2.4.2.8) in purine-analogue-resistant mutants of Schizosaccharomyces pombe were checked. An 8-azathioxanthine-resistant mutant lacked hypoxanthine phosphoribosyltransferase, xanthine phosphoribosyltransferase and guanine phosphoribosyltransferase activities (EC 2.4.2.8) and appeared to carry a single mutation. Two 2,6-diaminopurine-resistant mutants retained these activities but lacked adenine phosphoribosyltransferase activity (EC 2.4.2.7). This evidence, together with data on purification and heat-inactivation patterns of phosphoribosyltransferase activities towards the various purines, strongly suggests that there are two phosphoribosyltransferase enzymes for purine bases in Schiz. pombe, one active with adenine, the other with hypoxanthine, xanthine and guanine. 2. Neither growth-medium supplements of purines nor mutations on genes involved in the pathway for new biosynthesis of purine have any influence on the amount of hypoxanthine–xanthine–guanine phosphoribosyltransferase produced by this organism. PMID:5123876

  8. Studies on the energy metabolism of opossum (Didelphis virginiana) erythrocytes: V. Utilization of hypoxanthine for the synthesis of adenine and guanine nucleotides in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethlenfalvay, N.C.; White, J.C.; Chadwick, E.

    1990-06-01

    High pressure liquid radiochromatography was used to test the ability of opossum erythrocytes to incorporate tracer amounts of (G-{sup 3}H) hypoxanthine (Hy) into ({sup 3}H) labelled triphosphates of adenine and guanine. In the presence of supraphysiologic (30 mM) phosphate which is optimal for PRPP synthesis, both ATP and GTP are extensively labelled. When physiologic (1 mM) medium phosphate is used, red cells incubated under an atmosphere of nitrogen accumulate ({sup 3}H) ATP in a linear fashion suggesting ongoing PRPP synthesis in red cells whose hemoglobin is deoxygenated. In contrast, a lesser increase of labelled ATP is observed in cells incubatedmore » under oxygen, suggesting that conditions for purine nucleotide formation from ambient Hy are more favorable in the venous circulation.« less

  9. Xanthine oxidase biosensor for monitoring meat spoilage

    NASA Astrophysics Data System (ADS)

    Vanegas, D. C.; Gomes, C.; McLamore, E. S.

    2014-05-01

    In this study, we have designed an electrochemical biosensor for real-time detection of specific biomarkers of bacterial metabolism related to meat spoilage (hypoxanthine and xanthine). The selective biosensor was developed by assembling a `sandwich' of nanomaterials and enzymes on a platinum-iridium electrode (1.6 mm tip diameter). The materials deposited on the sensor tip include amorphous platinum nanoclusters (i.e. Pt black), reduced graphene oxide, nanoceria, and xanthine oxidase. Xanthine oxidase was encapsulated in laponite hydrogel and used for the biorecognition of hypoxanthine and xanthine (two molecules involved in the rotting of meat by spoilage microorganisms). The developed biosensor demonstrated good electrochemical performance toward xanthine with sensitivity of 2.14 +/- 1.48 μA/mM, response time of 5.2 +/- 1.5 sec, lower detection limit of 150 +/- 39 nM, and retained at least 88% of its activity after 7 days of continuous use.

  10. Brain purine metabolism and xanthine dehydrogenase/oxidase conversion in hyperammonemia are under control of NMDA receptors and nitric oxide.

    PubMed

    Kaminsky, Yury; Kosenko, Elena

    2009-10-19

    In hyperammonemia, a decrease in brain ATP can be a result of adenine nucleotide catabolism. Xanthine dehydrogenase (XD) and xanthine oxidase (XO) are the end steps in the purine catabolic pathway and directly involved in depletion of the adenylate pool in the cell. Besides, XD can easily be converted to XO to produce reactive oxygen species in the cell. In this study, the effects of acute ammonia intoxication in vivo on brain adenine nucleotide pool and xanthine and hypoxanthine, the end degradation products of adenine nucleotides, during the conversion of XD to XO were studied. Injection of rats with ammonium acetate was shown to lead to the dramatic decrease in the ATP level, adenine nucleotide pool size and adenylate energy charge and to the great increase in hypoxanthine and xanthine 11 min after the lethal dose indicating rapid degradation of adenylates. Conversion of XD to XO in hyperammonemic rat brain was evidenced by elevated XO/XD activity ratio. Injection of MK-801, a NMDA receptor blocker, prevented ammonia-induced catabolism of adenine nucleotides and conversion of XD to XO suggesting that in vivo these processes are mediated by activation of NMDA receptors. The in vitro dose-dependent effects of sodium nitroprusside, a NO donor, on XD and XO activities are indicative of the direct modification of the enzymes by nitric oxide. This is the first report evidencing the increase in brain xanthine and hypoxanthine levels and adenine nucleotide breakdown in acute ammonia intoxication and NMDA receptor-mediated prevention of these alterations.

  11. The fidelity of replication of the three-base-pair set adenine/thymine, hypoxanthine/cytosine and 6-thiopurine/5-methyl-2-pyrimidinone with T7 DNA polymerase

    PubMed Central

    2004-01-01

    With the goal of constructing a genetic alphabet consisting of a set of three base pairs, the fidelity of replication of the three base pairs TH (5-methyl-2-pyrimidinone)/HS (6-thiopurine; thiohypoxanthine), C/H (hypoxanthine) and T/A was evaluated using T7 DNA polymerase, a polymerase with a strong 3′→5′ exonuclease activity. An evaluation of the suitability of a new base pair for replication should include both the contribution of the fidelity of a polymerase activity and the contribution of proofreading by a 3′→5′ exonuclease activity. Using a steady-state kinetics method that included the contribution of the 3′→5′ exonuclease activity, the fidelity of replication was determined. The method determined the ratio of the apparent rate constant for the addition of a deoxynucleotide to the primer across from a template base by the polymerase activity and the rate constant for removal of the added deoxynucleotide from the primer by the 3′→5′ exonuclease activity. This ratio was designated the eni (efficiency of net incorporation). The eni of the base pair C/H was equal to or greater than the eni of T/A. The eni of the base pair TH/HS was 0.1 times that of A/T for TH in the template and 0.01 times that of A/T for HS in the template. The ratio of the eni of a mismatched deoxynucleotide to the eni of a matched deoxynucleotide was a measure of the error frequency. The error frequencies were as follows: thymine or TH opposite a template hypoxanthine, 2×10−6; HS opposite a template cytosine, <3×10−4. The remaining 24 mismatched combinations of bases gave no detectable net incorporation. Two mismatches, hypoxanthine opposite a template thymine or a template TH, showed trace incorporation in the presence of a standard dNTP complementary to the next template base. T7 DNA polymerase extended the primer beyond each of the matched base pairs of the set. The level of fidelity of replication of the three base pairs with T7 DNA polymerase suggests that they are adequate for a three-base-pair alphabet for DNA replication. PMID:15078225

  12. Biochemistry of Trypanosomatidae of Importance in Africa.

    DTIC Science & Technology

    1983-12-01

    translocation of the substrate across the cytoplasmic menbrane . As a consequence of this trans- location, substrates may become available to intracellular...concentration in plasma (Arnold and Cysyk, 1983). These authors found that in rat liver the purines hypoxanthine, inosine, and adenine were all found

  13. Hypoxanthine-guanine phosphoribosyltransferase and inosine 5′-monophosphate dehydrogenase activities in three mammalian species: aquatic (Mirounga angustirostris), semi-aquatic (Lontra longicaudis annectens) and terrestrial (Sus scrofa)

    PubMed Central

    Barjau Pérez-Milicua, Myrna; Zenteno-Savín, Tania; Crocker, Daniel E.; Gallo-Reynoso, Juan P.

    2015-01-01

    Aquatic and semiaquatic mammals have the capacity of breath hold (apnea) diving. Northern elephant seals (Mirounga angustirostris) have the ability to perform deep and long duration dives; during a routine dive, adults can hold their breath for 25 min. Neotropical river otters (Lontra longicaudis annectens) can hold their breath for about 30 s. Such periods of apnea may result in reduced oxygen concentration (hypoxia) and reduced blood supply (ischemia) to tissues. Production of adenosine 5′-triphosphate (ATP) requires oxygen, and most mammalian species, like the domestic pig (Sus scrofa), are not adapted to tolerate hypoxia and ischemia, conditions that result in ATP degradation. The objective of this study was to explore the differences in purine synthesis and recycling in erythrocytes and plasma of three mammalian species adapted to different environments: aquatic (northern elephant seal) (n = 11), semiaquatic (neotropical river otter) (n = 4), and terrestrial (domestic pig) (n = 11). Enzymatic activity of hypoxanthine-guanine phosphoribosyltransferase (HGPRT) was determined by spectrophotometry, and activity of inosine 5′-monophosphate dehydrogenase (IMPDH) and the concentration of hypoxanthine (HX), inosine 5′-monophosphate (IMP), adenosine 5′-monophosphate (AMP), adenosine 5′-diphosphate (ADP), ATP, guanosine 5′-diphosphate (GDP), guanosine 5′-triphosphate (GTP), and xanthosine 5′-monophosphate (XMP) were determined by high-performance liquid chromatography (HPLC). The activities of HGPRT and IMPDH and the concentration of HX, IMP, AMP, ADP, ATP, GTP, and XMP in erythrocytes of domestic pigs were higher than in erythrocytes of northern elephant seals and river otters. These results suggest that under basal conditions (no diving, sleep apnea or exercise), aquatic, and semiaquatic mammals have less purine mobilization than their terrestrial counterparts. PMID:26283971

  14. Hypoxanthine-guanine phosphoribosyltransferase and inosine 5'-monophosphate dehydrogenase activities in three mammalian species: aquatic (Mirounga angustirostris), semi-aquatic (Lontra longicaudis annectens) and terrestrial (Sus scrofa).

    PubMed

    Barjau Pérez-Milicua, Myrna; Zenteno-Savín, Tania; Crocker, Daniel E; Gallo-Reynoso, Juan P

    2015-01-01

    Aquatic and semiaquatic mammals have the capacity of breath hold (apnea) diving. Northern elephant seals (Mirounga angustirostris) have the ability to perform deep and long duration dives; during a routine dive, adults can hold their breath for 25 min. Neotropical river otters (Lontra longicaudis annectens) can hold their breath for about 30 s. Such periods of apnea may result in reduced oxygen concentration (hypoxia) and reduced blood supply (ischemia) to tissues. Production of adenosine 5'-triphosphate (ATP) requires oxygen, and most mammalian species, like the domestic pig (Sus scrofa), are not adapted to tolerate hypoxia and ischemia, conditions that result in ATP degradation. The objective of this study was to explore the differences in purine synthesis and recycling in erythrocytes and plasma of three mammalian species adapted to different environments: aquatic (northern elephant seal) (n = 11), semiaquatic (neotropical river otter) (n = 4), and terrestrial (domestic pig) (n = 11). Enzymatic activity of hypoxanthine-guanine phosphoribosyltransferase (HGPRT) was determined by spectrophotometry, and activity of inosine 5'-monophosphate dehydrogenase (IMPDH) and the concentration of hypoxanthine (HX), inosine 5'-monophosphate (IMP), adenosine 5'-monophosphate (AMP), adenosine 5'-diphosphate (ADP), ATP, guanosine 5'-diphosphate (GDP), guanosine 5'-triphosphate (GTP), and xanthosine 5'-monophosphate (XMP) were determined by high-performance liquid chromatography (HPLC). The activities of HGPRT and IMPDH and the concentration of HX, IMP, AMP, ADP, ATP, GTP, and XMP in erythrocytes of domestic pigs were higher than in erythrocytes of northern elephant seals and river otters. These results suggest that under basal conditions (no diving, sleep apnea or exercise), aquatic, and semiaquatic mammals have less purine mobilization than their terrestrial counterparts.

  15. Toxic effect of a marine bacterium on aquatic organisms and its algicidal substances against Phaeocystis globosa.

    PubMed

    Yang, Qiuchan; Chen, Lina; Hu, Xiaoli; Zhao, Ling; Yin, Pinghe; Li, Qiang

    2015-01-01

    Harmful algal blooms have caused enormous damage to the marine ecosystem and the coastal economy in China. In this paper, a bacterial strain B1, which had strong algicidal activity against Phaeocystis globosa, was isolated from the coastal waters of Zhuhai in China. The strain B1 was identified as Bacillus sp. on the basis of 16S rDNA gene sequence and morphological characteristics. To evaluate the ecological safety of the algicidal substances produced by strain B1, their toxic effects on marine organisms were tested. Results showed that there were no adverse effects observed in the growth of Chlorella vulgaris, Chaetoceros muelleri, and Isochrystis galbana after exposure to the algicidal substances at a concentration of 1.0% (v/v) for 96 h. The 48h LC50 values for Brachionus plicatilis, Moina mongolica Daday and Paralichthys olivaceus were 5.7, 9.0 and 12.1% (v/v), respectively. Subsequently, the algicidal substances from strain B1 culture were isolated and purified by silica gel column, Sephadex G-15 column and high-performance liquid chromatography. Based on quadrupole time-of-flight mass spectrometry and PeakView Software, the purified substances were identified as prolyl-methionine and hypoxanthine. Algicidal mechanism indicated that prolyl-methionine and hypoxanthine inhibited the growth of P. globosa by disrupting the antioxidant systems. In the acute toxicity assessment using M. mongolica, 24h LC50 values of prolyl-methionine and hypoxanthine were 7.0 and 13.8 g/L, respectively. The active substances produced by strain B1 can be considered as ecologically and environmentally biological agents for controlling harmful algal blooms.

  16. Toxic Effect of a Marine Bacterium on Aquatic Organisms and Its Algicidal Substances against Phaeocystis globosa

    PubMed Central

    Yang, Qiuchan; Chen, Lina; Hu, Xiaoli; Zhao, Ling; Yin, Pinghe; Li, Qiang

    2015-01-01

    Harmful algal blooms have caused enormous damage to the marine ecosystem and the coastal economy in China. In this paper, a bacterial strain B1, which had strong algicidal activity against Phaeocystis globosa, was isolated from the coastal waters of Zhuhai in China. The strain B1 was identified as Bacillus sp. on the basis of 16S rDNA gene sequence and morphological characteristics. To evaluate the ecological safety of the algicidal substances produced by strain B1, their toxic effects on marine organisms were tested. Results showed that there were no adverse effects observed in the growth of Chlorella vulgaris, Chaetoceros muelleri, and Isochrystis galbana after exposure to the algicidal substances at a concentration of 1.0% (v/v) for 96 h. The 48h LC50 values for Brachionus plicatilis, Moina mongolica Daday and Paralichthys olivaceus were 5.7, 9.0 and 12.1% (v/v), respectively. Subsequently, the algicidal substances from strain B1 culture were isolated and purified by silica gel column, Sephadex G-15 column and high-performance liquid chromatography. Based on quadrupole time-of-flight mass spectrometry and PeakView Software, the purified substances were identified as prolyl-methionine and hypoxanthine. Algicidal mechanism indicated that prolyl-methionine and hypoxanthine inhibited the growth of P. globosa by disrupting the antioxidant systems. In the acute toxicity assessment using M. mongolica, 24h LC50 values of prolyl-methionine and hypoxanthine were 7.0 and 13.8 g/L, respectively. The active substances produced by strain B1 can be considered as ecologically and environmentally biological agents for controlling harmful algal blooms. PMID:25646807

  17. Uric acid, an important screening tool to detect inborn errors of metabolism: a case series.

    PubMed

    Jasinge, Eresha; Kularatnam, Grace Angeline Malarnangai; Dilanthi, Hewa Warawitage; Vidanapathirana, Dinesha Maduri; Jayasena, Kandana Liyanage Subhashinie Priyadarshika Kapilani Menike; Chandrasiri, Nambage Dona Priyani Dhammika; Indika, Neluwa Liyanage Ruwan; Ratnayake, Pyara Dilani; Gunasekara, Vindya Nandani; Fairbanks, Lynette Dianne; Stiburkova, Blanka

    2017-09-06

    Uric acid is the metabolic end product of purine metabolism in humans. Altered serum and urine uric acid level (both above and below the reference ranges) is an indispensable marker in detecting rare inborn errors of metabolism. We describe different case scenarios of 4 Sri Lankan patients related to abnormal uric acid levels in blood and urine. CASE 1: A one-and-half-year-old boy was investigated for haematuria and a calculus in the bladder. Xanthine crystals were seen in microscopic examination of urine sediment. Low uric acid concentrations in serum and low urinary fractional excretion of uric acid associated with high urinary excretion of xanthine and hypoxanthine were compatible with xanthine oxidase deficiency. CASE 2: An 8-month-old boy presented with intractable seizures, feeding difficulties, screaming episodes, microcephaly, facial dysmorphism and severe neuro developmental delay. Low uric acid level in serum, low fractional excretion of uric acid and radiological findings were consistent with possible molybdenum cofactor deficiency. Diagnosis was confirmed by elevated levels of xanthine, hypoxanthine and sulfocysteine levels in urine. CASE 3: A 3-year-10-month-old boy presented with global developmental delay, failure to thrive, dystonia and self-destructive behaviour. High uric acid levels in serum, increased fractional excretion of uric acid and absent hypoxanthine-guanine phosphoribosyltransferase enzyme level confirmed the diagnosis of Lesch-Nyhan syndrome. CASE 4: A 9-year-old boy was investigated for lower abdominal pain, gross haematuria and right renal calculus. Low uric acid level in serum and increased fractional excretion of uric acid pointed towards hereditary renal hypouricaemia which was confirmed by genetic studies. Abnormal uric acid level in blood and urine is a valuable tool in screening for clinical conditions related to derangement of the nucleic acid metabolic pathway.

  18. Rapid and High-Throughput Detection and Quantitation of Radiation Biomarkers in Human and Nonhuman Primates by Differential Mobility Spectrometry-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chen, Zhidan; Coy, Stephen L.; Pannkuk, Evan L.; Laiakis, Evagelia C.; Hall, Adam B.; Fornace, Albert J.; Vouros, Paul

    2016-10-01

    Radiation exposure is an important public health issue due to a range of accidental and intentional threats. Prompt and effective large-scale screening and appropriate use of medical countermeasures (MCM) to mitigate radiation injury requires rapid methods for determining the radiation dose. In a number of studies, metabolomics has identified small-molecule biomarkers responding to the radiation dose. Differential mobility spectrometry-mass spectrometry (DMS-MS) has been used for similar compounds for high-throughput small-molecule detection and quantitation. In this study, we show that DMS-MS can detect and quantify two radiation biomarkers, trimethyl-L-lysine (TML) and hypoxanthine. Hypoxanthine is a human and nonhuman primate (NHP) radiation biomarker and metabolic intermediate, whereas TML is a radiation biomarker in humans but not in NHP, which is involved in carnitine synthesis. They have been analyzed by DMS-MS from urine samples after a simple strong cation exchange-solid phase extraction (SCX-SPE). The dramatic suppression of background and chemical noise provided by DMS-MS results in an approximately 10-fold reduction in time, including sample pretreatment time, compared with liquid chromatography-mass spectrometry (LC-MS). DMS-MS quantitation accuracy has been verified by validation testing for each biomarker. Human samples are not yet available, but for hypoxanthine, selected NHP urine samples (pre- and 7-d-post 10 Gy exposure) were analyzed, resulting in a mean change in concentration essentially identical to that obtained by LC-MS (fold-change 2.76 versus 2.59). These results confirm the potential of DMS-MS for field or clinical first-level rapid screening for radiation exposure.

  19. Attenuated Variants of Lesch-Nyhan Disease

    ERIC Educational Resources Information Center

    Jinnah, H. A.; Ceballos-Picot, Irene; Torres, Rosa J.; Visser, Jasper E.; Schretlen, David J.; Verdu, Alfonso; Larovere, Laura E.; Chen, Chung-Jen; Cossu, Antonello; Wu, Chien-Hui; Sampat, Radhika; Chang, Shun-Jen; de Kremer, Raquel Dodelson; Nyhan, William; Harris, James C.; Reich, Stephen G.; Puig, Juan G.

    2010-01-01

    Lesch-Nyhan disease is a neurogenetic disorder caused by deficiency of the enzyme hypoxanthine-guanine phosphoribosyltransferase. The classic form of the disease is described by a characteristic syndrome that includes overproduction of uric acid, severe generalized dystonia, cognitive disability and self-injurious behaviour. In addition to the…

  20. Herpes simplex virus-mediated human hypoxanthine-guanine phosphoribosyltransferase gene transfer into neuronal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palella, T.D.; Silverman, L.J.; Schroll, C.T.

    1988-01-01

    The virtually complete deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) results in a devastating neurological disease, Lesch-Nyhan syndrome. Transfer of the HPRT gene into fibroblasts and lymphoblasts in vitro and into hematopoietic cells in vivo has been accomplished by other groups with retroviral-derived vectors. It appears to be necessary, however, to transfer the HPRT gene into neuronal cells to correct the neurological dysfunction of this disorder. The neurotropic virus herpes simplex virus type 1 has features that make it suitable for use as a vector to transfer the HPRT gene into neuronal tissue. This report describes the isolationmore » of an HPRT-deficient rat neuroma cell line, designated B103-4C, and the construction of a recombinant herpes simplex virus type 1 that contained human HPRT cDNA. These recombinant viruses were used to infect B103-4C cells. Infected cells expressed HPRT activity which was human in origin.« less

  1. Inhibition by 6-mercaptopurine of purine phosphoribosyltransferases from Ehrlich ascites-tumour cells that are resistant to this drug

    PubMed Central

    Atkinson, M. R.; Murray, A. W.

    1965-01-01

    1. A strain of Ehrlich ascites-tumour cells that showed little inhibition of growth in the presence of 6-mercaptopurine accumulated less than 5% as much 6-thioinosine 5′-phosphate in vivo, in the presence of 6-mercaptopurine, as did the sensitive strain from which it was derived. 2. Specific activities of the phosphoribosyltransferases that convert adenine, guanine, hypoxanthine and 6-mercaptopurine into AMP, GMP, IMP and 6-thioinosine 5′-phosphate were similar in extracts of the resistant and the sensitive cells. 3. As found previously with sensitive cells, 6-mercaptopurine is a competitive inhibitor of guanine phosphoribosyltransferase and hypoxanthine phosphoribosyltransferase from the resistant cells and does not inhibit the adenine phosphoribosyltransferase from these cells. Michaelis constants and inhibitor constants of the purine phosphoribosyltransferases from resistant cells did not differ significantly from those measured with the corresponding enzymes from sensitive cells. 4. Resistance to 6-mercaptopurine in this case is probably not due to qualitative or quantitative changes in these transferases. PMID:14342251

  2. Method for protection against genotoxic mutagenesis

    DOEpatents

    Grdina, David J.

    1996-01-01

    A method and pharmaceutical for protecting against genotoxic damage in irradiated cells. Reduction of mutations at the hypoxanthine-guanine phosphoribosyl transferase locus is accomplished by administering an effective dose of a compound having protected sulfhydryl groups which metabolize in vivo to produce both free sulfhydryl groups and disulfides.

  3. Method for protection against genotoxic mutagenesis

    DOEpatents

    Grdina, D.J.

    1996-01-30

    A method and pharmaceutical for protecting against genotoxic damage in irradiated cells are disclosed. Reduction of mutations at the hypoxanthine-guanine phosphoribosyl transferase locus is accomplished by administering an effective dose of a compound having protected sulfhydryl groups which metabolize in vivo to produce both free sulfhydryl groups and disulfides. 10 figs.

  4. Posttranslational ruling of xanthine oxidase activity in bovine milk by its substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silanikove, Nissim; Shapiro, Fira; Leitner, Gabriel

    The aims of this study were to test the hypothesis that the substrates of xanthine oxidase (XO), xanthine and hypoxanthine, are consumed while the milk is stored in the gland between milkings, and to explore how XO activity responds to bacteria commonly associated with subclinical infections in the mammary gland. Freshly secreted milk was obtained following complete evacuation of the gland and induction of milk ejection with oxytocin. In bacteria-free fresh milk xanthine and hypoxanthine were converted to uric acid within 30 min (T{sub 1/2} {approx} 10 min), which in turn provides electrons for formation of hydrogen peroxide and endowsmore » the alveolar lumen with passive protection against invading bacteria. On the other hand, the longer residence time of milk in the cistern compartment was not associated with oxidative stress as a result of XO idleness caused by exhaustion of its physiological fuels. The specific response of XO to bacteria species and the resulting bacteria-dependent nitrosative stress further demonstrates that it is part of the gland immune system.« less

  5. Effect of ethanol on metabolism of purine bases (hypoxanthine, xanthine, and uric acid).

    PubMed

    Yamamoto, Tetsuya; Moriwaki, Yuji; Takahashi, Sumio

    2005-06-01

    There are many factors that contribute to hyperuricemia, including obesity, insulin resistance, alcohol consumption, diuretic use, hypertension, renal insufficiency, genetic makeup, etc. Of these, alcohol (ethanol) is the most important. Ethanol enhances adenine nucleotide degradation and increases lactic acid level in blood, leading to hyperuricemia. In beer, purines also contribute to an increase in plasma uric acid. Although rare, dehydration and ketoacidosis (due to ethanol ingestion) are associated with the ethanol-induced increase in serum uric acid levels. Ethanol also increases the plasma concentrations and urinary excretion of hypoxanthine and xanthine via the acceleration of adenine nucleotide degradation and a possible weak inhibition of xanthine dehydrogenase activity. Since many factors such as the ALDH2*1 gene and ADH2*2 gene, daily drinking habits, exercise, and dehydration enhance the increase in plasma concentration of uric acid induced by ethanol, it is important to pay attention to these factors, as well as ingested ethanol volume, type of alcoholic beverage, and the administration of anti-hyperuricemic agents, to prevent and treat ethanol-induced hyperuricemia.

  6. Metabolism of Exogenous Purine Bases and Nucleosides by Salmonella typhimurium

    PubMed Central

    Hoffmeyer, J.; Neuhard, J.

    1971-01-01

    Purine-requiring mutants of Salmonella typhimurium LT2 containing additional mutations in either adenosine deaminase or purine nucleoside phosphorylase have been constructed. From studies of the ability of these mutants to utilize different purine compounds as the sole source of purines, the following conclusions may be drawn. (i) S. typhimurium does not contain physiologically significant amounts of adenine deaminase and adenosine kinase activities. (ii) The presence of inosine and guanosine kinase activities in vivo was established, although the former activity appears to be of minor significance for inosine metabolism. (iii) The utilization of exogenous purine deoxyribonucleosides is entirely dependent on a functional purine nucleoside phosphorylase. (iv) The pathway by which exogenous adenine is converted to guanine nucleotides in the presence of histidine requires a functional purine nucleoside phosphorylase. Evidence is presented that this pathway involves the conversion of adenine to adenosine, followed by deamination to inosine and subsequent phosphorolysis to hypoxanthine. Hypoxanthine is then converted to inosine monophosphate by inosine monophosphate pyrophosphorylase. The rate-limiting step in this pathway is the synthesis of adenosine from adenine due to lack of endogenous ribose-l-phosphate. PMID:4928005

  7. Purine metabolism in Toxoplasma gondii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krug, E.C.; Marr, J.J.; Berens, R.L.

    1989-06-25

    We have studied the incorporation and interconversion of purines into nucleotides by freshly isolated Toxoplasma gondii. They did not synthesize nucleotides from formate, glycine, or serine. The purine bases hypoxanthine, xanthine, guanine, and adenine were incorporated at 9.2, 6.2, 5.1, and 4.3 pmol/10(7) cells/h, respectively. The purine nucleosides adenosine, inosine, guanosine, and xanthosine were incorporated at 110, 9.0, 2.7, and 0.3 pmol/10(7) cells/h, respectively. Guanine, xanthine, and their respective nucleosides labeled only guanine nucleotides. Inosine, hypoxanthine, and adenine labeled both adenine and guanine nucleotide pools at nearly equal ratios. Adenosine kinase was greater than 10-fold more active than the nextmore » most active enzyme in vitro. This is consistent with the metabolic data in vivo. No other nucleoside kinase or phosphotransferase activities were found. Phosphorylase activities were detected for guanosine and inosine; no other cleavage activities were detected. Deaminases were found for adenine and guanine. Phosphoribosyltransferase activities were detected for all four purine nucleobases. Interconversion occurs only in the direction of adenine to guanine nucleotides.« less

  8. Simultaneous quantification by HPLC of purines in umami soup stock and evaluation of their effects on extracellular and intracellular purine metabolism.

    PubMed

    Fukuuchi, T; Iyama, N; Yamaoka, N; Kaneko, K

    2018-04-13

    Ribonucleotide flavor enhancers such as inosine monophosphate (IMP) and guanosine monophosphate (GMP) provide umami taste, similarly to glutamine. Japanese cuisine frequently uses soup stocks containing these nucleotides to enhance umami. We quantified 18 types of purines (nucleotides, nucleosides, and purine bases) in three soup stocks (chicken, consommé, and dried bonito soup). IMP was the most abundant purine in all umami soup stocks, followed by hypoxanthine, inosine, and GMP. The IMP content of dried bonito soup was the highest of the three soup stocks. We also evaluated the effects of these purines on extracellular and intracellular purine metabolism in HepG2 cells after adding each umami soup stock to the cells. An increase in inosine and hypoxanthine was evident 1 h and 4 h after soup stock addition, and a low amount of xanthine and guanosine was observed in the extracellular medium. The addition of chicken soup stock resulted in increased intracellular and extracellular levels of uric acid and guanosine. Purine metabolism may be affected by ingredients present in soups.

  9. Hypoxanthine enhances the cured meat taste

    PubMed Central

    Nakamura, Yukinobu; Yoshida, Yuka; Hattori, Akihito

    2016-01-01

    Abstract We evaluated the enhancement of cured meat taste during maturation by sensory analysis. We focused on the heat‐stable sarcoplasmic fraction (HSSF) to identify the factors related to cured meat taste. Because the dry matter of HSSF contained more than 30% nitrogen, nitrogen compounds such as free amino acids, small peptides and adenosine triphosphate‐related compounds seemed to be the important components of HSSF. The samples cured with HSSF for 2 h exhibited the same taste profile as ones cured without HSSF for 168 h. Therefore, the changes in the amount and fractions of nitrogen compounds were examined in HSSF during incubation from 0 to 168 h. The concentration of hypoxanthine (Hx) gradually increased, while inosine‐5′‐monophosphate decreased during the incubation. The samples cured with pickles containing various concentrations of Hx were subjected to sensory analysis. The addition of Hx, in a dose‐dependent fashion, enhanced cured meat taste by maturation for 2 h. It was concluded that Hx is essential for the enhancement of cured meat taste. PMID:27169902

  10. Enzymatic production of dietary nucleotides from low-soluble purine bases by an efficient, thermostable and alkali-tolerant biocatalyst.

    PubMed

    Del Arco, J; Cejudo-Sanches, J; Esteban, I; Clemente-Suárez, V J; Hormigo, D; Perona, A; Fernández-Lucas, J

    2017-12-15

    Traditionally, enzymatic synthesis of nucleoside-5'-monophosphates (5'-NMPs) using low water-soluble purine bases has been described as less efficient due to their low solubility in aqueous media. The use of enzymes from extremophiles, such as thermophiles or alkaliphiles, offers the potential to increase solubilisation of these bases by employing high temperatures or alkaline pH. This study describes the cloning, expression and purification of hypoxanthine-guanine-xanthine phosphoribosyltransferase from Thermus thermophilus (TtHGXPRT). Biochemical characterization indicates TtHGXPRT as a homotetramer with excellent activity and stability across a broad range of temperatures (50-90°C) and ionic strengths (0-500mMNaCl), but it also reveals an unusually high activity and stability under alkaline conditions (pH range 8-11). In order to explore the potential of TtHGXPRT as an industrial biocatalyst, enzymatic production of several dietary 5'-NMPs, such as 5'-GMP and 5'-IMP, was carried out at high concentrations of guanine and hypoxanthine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Control of biofouling by xanthine oxidase on seawater reverse osmosis membranes from a desalination plant: enzyme production and screening of bacterial isolates from the full-scale plant.

    PubMed

    Nagaraj, V; Skillman, L; Li, D; Xie, Z; Ho, G

    2017-07-01

    Control of biofouling on seawater reverse osmosis (SWRO) membranes is a major challenge as treatments can be expensive, damage the membrane material and often biocides do not remove the polymers in which bacteria are embedded. Biological control has been largely ignored for biofouling control. The objective of this study was to demonstrate the effectiveness of xanthine oxidase enzyme against complex fouling communities and then identify naturally occurring bacterial strains that produce the free radical generating enzyme. Initially, 64 bacterial strains were isolated from different locations of the Perth Seawater Desalination Plant. In our preceding study, 25/64 isolates were selected from the culture collection as models for biofouling studies, based on their prevalence in comparison to the genomic bacterial community. In this study, screening of these model strains was performed using a nitroblue tetrazolium assay in the presence of hypoxanthine as substrate. Enzyme activity was measured by absorbance. Nine of 25 strains tested positive for xanthine oxidase production, of which Exiguobacterium from sand filters and Microbacterium from RO membranes exhibited significant levels of enzyme production. Other genera that produced xanthine oxidase were Marinomonas, Pseudomonas, Bacillus, Pseudoalteromonas and Staphylococcus. Strain variations were observed between members of the genera Microbacterium and Bacillus. Xanthine oxidase, an oxidoreductase enzyme that generates reactive oxygen species, is endogenously produced by many bacterial species. In this study, production of the enzyme by bacterial isolates from a full-scale desalination plant was investigated for potential use as biological control of membrane fouling in seawater desalination. We have previously demonstrated that free radicals generated by a commercially available xanthine oxidase in the presence of a hypoxanthine substrate, effectively dispersed biofilm polysaccharides on industrially fouled membranes. Bacterial xanthine oxidase production in the presence of hypoxanthine may prove to be a cost effective, in situ method for alleviation of fouling. © 2017 The Society for Applied Microbiology.

  12. Prolonged fasting increases purine recycling in post-weaned northern elephant seals.

    PubMed

    Soñanez-Organis, José Guadalupe; Vázquez-Medina, José Pablo; Zenteno-Savín, Tania; Aguilar, Andres; Crocker, Daniel E; Ortiz, Rudy M

    2012-05-01

    Northern elephant seals are naturally adapted to prolonged periods (1-2 months) of absolute food and water deprivation (fasting). In terrestrial mammals, food deprivation stimulates ATP degradation and decreases ATP synthesis, resulting in the accumulation of purines (ATP degradation byproducts). Hypoxanthine-guanine phosphoribosyl transferase (HGPRT) salvages ATP by recycling the purine degradation products derived from xanthine oxidase (XO) metabolism, which also promotes oxidant production. The contributions of HGPRT to purine recycling during prolonged food deprivation in marine mammals are not well defined. In the present study we cloned and characterized the complete and partial cDNA sequences that encode for HGPRT and xanthine oxidoreductase (XOR) in northern elephant seals. We also measured XO protein expression and circulating activity, along with xanthine and hypoxanthine plasma content in fasting northern elephant seal pups. Blood, adipose and muscle tissue samples were collected from animals after 1, 3, 5 and 7 weeks of their natural post-weaning fast. The complete HGPRT and partial XOR cDNA sequences are 771 and 345 bp long and encode proteins of 218 and 115 amino acids, respectively, with conserved domains important for their function and regulation. XOR mRNA and XO protein expression increased 3-fold and 1.7-fold with fasting, respectively, whereas HGPRT mRNA (4-fold) and protein (2-fold) expression increased after 7 weeks in adipose tissue and muscle. Plasma xanthine (3-fold) and hypoxanthine (2.5-fold) levels, and XO (1.7- to 20-fold) and HGPRT (1.5- to 1.7-fold) activities increased during the last 2 weeks of fasting. Results suggest that prolonged fasting in elephant seal pups is associated with increased capacity to recycle purines, which may contribute to ameliorating oxidant production and enhancing the supply of ATP, both of which would be beneficial during prolonged food deprivation and appear to be adaptive in this species.

  13. Prolonged fasting increases purine recycling in post-weaned northern elephant seals

    PubMed Central

    Soñanez-Organis, José Guadalupe; Vázquez-Medina, José Pablo; Zenteno-Savín, Tania; Aguilar, Andres; Crocker, Daniel E.; Ortiz, Rudy M.

    2012-01-01

    SUMMARY Northern elephant seals are naturally adapted to prolonged periods (1–2 months) of absolute food and water deprivation (fasting). In terrestrial mammals, food deprivation stimulates ATP degradation and decreases ATP synthesis, resulting in the accumulation of purines (ATP degradation byproducts). Hypoxanthine-guanine phosphoribosyl transferase (HGPRT) salvages ATP by recycling the purine degradation products derived from xanthine oxidase (XO) metabolism, which also promotes oxidant production. The contributions of HGPRT to purine recycling during prolonged food deprivation in marine mammals are not well defined. In the present study we cloned and characterized the complete and partial cDNA sequences that encode for HGPRT and xanthine oxidoreductase (XOR) in northern elephant seals. We also measured XO protein expression and circulating activity, along with xanthine and hypoxanthine plasma content in fasting northern elephant seal pups. Blood, adipose and muscle tissue samples were collected from animals after 1, 3, 5 and 7 weeks of their natural post-weaning fast. The complete HGPRT and partial XOR cDNA sequences are 771 and 345 bp long and encode proteins of 218 and 115 amino acids, respectively, with conserved domains important for their function and regulation. XOR mRNA and XO protein expression increased 3-fold and 1.7-fold with fasting, respectively, whereas HGPRT mRNA (4-fold) and protein (2-fold) expression increased after 7 weeks in adipose tissue and muscle. Plasma xanthine (3-fold) and hypoxanthine (2.5-fold) levels, and XO (1.7- to 20-fold) and HGPRT (1.5- to 1.7-fold) activities increased during the last 2 weeks of fasting. Results suggest that prolonged fasting in elephant seal pups is associated with increased capacity to recycle purines, which may contribute to ameliorating oxidant production and enhancing the supply of ATP, both of which would be beneficial during prolonged food deprivation and appear to be adaptive in this species. PMID:22496280

  14. Slow ligand-induced conformational switch increases the catalytic rate in Plasmodium falciparum hypoxanthine guanine xanthine phosphoribosyltransferase.

    PubMed

    Roy, Sourav; Karmakar, Tarak; Prahlada Rao, Vasudeva S; Nagappa, Lakshmeesha K; Balasubramanian, Sundaram; Balaram, Hemalatha

    2015-05-01

    P. falciparum (Pf) hypoxanthine guanine xanthine phosphoribosyltransferase (HGXPRT) exhibits a unique mechanism of activation where the enzyme switches from a low activity (unactivated) to a high activity (activated) state upon pre-incubation with substrate/products. Xanthine phosphoribosylation by unactivated PfHGXPRT exhibits a lag phase, the duration of which reduces with an increase in concentration of the enzyme or substrate, PRPP·Mg(2+). Activated PfHGXPRT does not display the lag phase and exhibits a ten-fold drop in the Km value for PRPP·Mg(2+). These observations suggest the involvement of ligand-mediated oligomerization and conformational changes in the process of activation. The dipeptide Leu-Lys in the PPi binding site of human and T. gondii HG(X)PRT that facilitates PRPP·Mg(2+) binding by isomerization from trans to cis conformation is conserved in PfHGXPRT. Free energy calculations using the well-tempered metadynamics technique show the ligand-free enzyme to be more stable when this dipeptide is in the trans conformation than in the cis conformation. The high rotational energy barrier observed for the conformational change from experimental and computational studies permits delineation of the activation mechanism.

  15. Hypoxanthine enhances the cured meat taste.

    PubMed

    Ichimura, Sayaka; Nakamura, Yukinobu; Yoshida, Yuka; Hattori, Akihito

    2017-02-01

    We evaluated the enhancement of cured meat taste during maturation by sensory analysis. We focused on the heat-stable sarcoplasmic fraction (HSSF) to identify the factors related to cured meat taste. Because the dry matter of HSSF contained more than 30% nitrogen, nitrogen compounds such as free amino acids, small peptides and adenosine triphosphate-related compounds seemed to be the important components of HSSF. The samples cured with HSSF for 2 h exhibited the same taste profile as ones cured without HSSF for 168 h. Therefore, the changes in the amount and fractions of nitrogen compounds were examined in HSSF during incubation from 0 to 168 h. The concentration of hypoxanthine (Hx) gradually increased, while inosine-5'-monophosphate decreased during the incubation. The samples cured with pickles containing various concentrations of Hx were subjected to sensory analysis. The addition of Hx, in a dose-dependent fashion, enhanced cured meat taste by maturation for 2 h. It was concluded that Hx is essential for the enhancement of cured meat taste. © 2016 The Authors. Animal Science Journal published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Animal Science.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albertini, R.J.

    This work has focused on the development of in vitro T-cell mutation assays. Conditions have been defined to measure the in vitro induction of mutations at the hypoxanthine-guanine phosphoribosyl transferase (hprt) locus in human T-lymphocytes. This assay is a parallel to our in vivo hprt assay, in that the same cells are utilized. However, the in vitro assay allows for carefully controlled dose response studies. 21 refs., 16 figs., 13 tabs.

  17. Febuxostat for management of tumor lysis syndrome including its effects on levels of purine metabolites in patients with hematological malignancies - a single institution's, pharmacokinetic and pilot prospective study.

    PubMed

    Takai, Mihoko; Yamauchi, Takahiro; Ookura, Miyuki; Matsuda, Yasufumi; Tai, Katsunori; Kishi, Shinji; Yoshida, Akira; Iwasaki, Hiromichi; Nakamura, Toru; Ueda, Takanori

    2014-12-01

    Tumor lysis syndrome (TLS) is a life-threatening oncological emergency, and control of serum uric acid level (S-UA) is most important. In this single-institution, short-term and pilot prospective study, the efficacy of a new xanthine oxidase inhibitor, febuxostat, as an alternative to conventional allopurinol, including its effects on hypoxanthine and xanthine, was evaluated in 10 consecutive patients with hematological malignancies at intermediate risk for TLS. Febuxostat at 40 mg (n=7) or 60 mg (n=3) daily was administered according to renal function, and induction chemotherapy was started within 24 h. The primary end-point was the reduction of S-UA to ≤ 7.5 mg/dl by day 5. The median S-UA at base-line was 8.0 mg/dl (range=3.2-10.6 mg/dl). The median S-UA on day 5 after chemotherapy was 3.3 mg/dl (range=1.1-5.8 mg/dl) (p<0.0001, by paired t-test), indicating successful control of S-UA during chemotherapy. All patients achieved S-UA ≤ 7.5 mg/dl. A simultaneous decrease in serum creatinine and increase in estimated glomerular filtration rate were seen. Serum hypoxanthine and xanthine levels (as the consequence of inhibition of xanthine oxidase) were elevated along with the decrease in S-UA. Xanthine level was elevated higher compared to hypoxanthine level and reached the level reported to cause xanthine nephropathy, but no advance of renal impairment was observed. Serum febuxostat concentrations at 2 h after administration were 891.8 ± 285.0 ng/ml (mean ± SE) for the 40-mg dose and 770.6 ± 242.7 ng/ml for the 60-mg dose (p=0.80, unpaired t-test), showing no accumulation in patients with renal impairment. No febuxostat-related adverse reactions were noted. No patients experienced progressive TLS. Febuxostat is promising for the management of TLS of an intermediate-risk patient and further observation and reevaluation regarding xanthine nephropathy should be performed. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  18. Immobilization of xanthine oxidase on a polyaniline silicone support.

    PubMed

    Nadruz, W; Marques, E T; Azevedo, W M; Lima-Filho, J L; Carvalho, L B

    1996-03-01

    A polyaniline silicone support to immobilize xanthine oxidase is proposed as a reactor coil to monitor the action of xanthine oxidase on hypoxanthine, xanthine and 6-mercaptopurine. A purified xanthine oxidase immobilized on this support lost 80% of the initial activity after 12 min of use. Co-immobilization of superoxide dismutase and catalase increased the stability of immobilized xanthine oxidase so that the derivative maintained 79% of its initial activity after 4.6 h of continuous use in which 1.5 mumol purine bases were converted by the immobilized enzyme system. There is no evidence of either polyaniline or protein leaching from the coil during 3 h of continuous use. When solutions (10 ml) of hypoxanthine, xanthine and 6-mercaptopurine were circulated individually through the xanthine oxidase-superoxide dismutase-catalase-polyaniline coil (1 mm internal diameter and 3 m in length, 3 ml internal volume) activities of 8.12, 11.17 and 1.09 nmol min-1 coil-1, respectively, were obtained. The advantages of the reactor configuration and the redox properties of the polymer, particularly with respect to immobilized oxidoreductases, make this methodology attractive for similar enzyme systems. This immobilized enzyme system using polyaniline-silicone as support converted 6-mercaptopurine to 6-thiouric acid with equal efficiency as resins based on polyacrylamide and polyamide 11.

  19. Unequal homologous recombination between tandemly arranged sequences stably incorporated into cultured rat cells.

    PubMed Central

    Stringer, J R; Kuhn, R M; Newman, J L; Meade, J C

    1985-01-01

    Cultured rat cells deficient in endogenous thymidine kinase activity (tk) were stably transformed with a recombination-indicator DNA substrate constructed in vitro by rearrangement of the herpes simplex virus tk gene sequences into a partially redundant permutation of the functional gene. The recombination-indicator DNA did not express tk, but was designed to allow formation of a functional tk gene via homologous recombination. A clonal cell line (519) was isolated that harbored several permuted herpes simplex virus tk genes. 519 cells spontaneously produced progeny that survived in medium containing hypoxanthine, aminopterin, and thymidine. Acquisition of resistance to hypoxanthine, aminopterin, and thymidine was accompanied by the rearrangement of the defective tk gene to functional configuration. The rearrangement apparently occurred by unequal exchange between one permuted tk gene and a replicated copy of itself. Recombination was between 500-base-pair tracts of DNA sequence homology that were separated by 3.4 kilobases. Exchanges occurred spontaneously at a frequency of approximately 5 X 10(-6) events per cell per generation. Recombination also mediated reversion to the tk- phenotype; however, the predominant mechanism by which cells escaped death in the presence of drugs rendered toxic by thymidine kinase was not recombination, but rather inactivation of the intact tk gene. Images PMID:3016511

  20. Simultaneous determination of 16 purine derivatives in urinary calculi by gradient reversed-phase high-performance liquid chromatography with UV detection.

    PubMed

    Safranow, Krzysztof; Machoy, Zygmunt

    2005-05-25

    A reversed-phase high-performance liquid chromatography (HPLC) method with ultraviolet detection has been developed for the analysis of purines in urinary calculi. The method using gradient of methanol concentration and pH was able to separate 16 compounds: uric acid, 2,8-dihydroxyadenine, xanthine, hypoxanthine, allopurinol and oxypurinol as well as 10 methyl derivatives of uric acid or xanthine (1-, 3-, 7- and 9-methyluric acid, 1,3-, 1,7- and 3,7-dimethyluric acid, 1-, 3- and 7-methylxanthine). Limits of detection for individual compounds ranged from 0.006 to 0.035 mg purine/g of the stone weight and precision (CV%) was 0.5-2.4%. The method enabled us to detect in human uric acid stones admixtures of nine other purine derivatives: natural metabolites (hypoxanthine, xanthine, 2,8-dihydroxyadenine) and methylated purines (1-, 3- and 7-methyluric acid, 1,3-dimethyluric acid, 3- and 7-methylxanthine) originating from the metabolism of methylxanthines (caffeine, theophylline and theobromine). The method allows simultaneous quantitation of all known purine constituents of urinary stones, including methylated purines, and may be used as a reference one for diagnosing disorders of purine metabolism and research on the pathogenesis of urolithiasis.

  1. The use of primary rat hepatocytes to achieve metabolic activation of promutagens in the Chinese hamster ovary/hypoxanthine-guanine phosphoribosyl transferase mutational assay.

    PubMed

    Bermudez, E; Couch, D B; Tillery, D

    1982-01-01

    A method is described in which primary rat hepatocytes have been cocultured with Chinese hamster ovary (CHO) cells to provide metabolic activation of promutagens in the Chinese hamster ovary/hypoxanthine-guanine phosphoribosyl transferase (CHO/HGPRT) mutational assay. Single cell hepatocyte suspensions were prepared from male Fischer-344 rats using the in situ collagenase perfusion technique. Hepatocytes were allowed to attach for 1.5 hours in tissue culture dishes containing an approximately equal number of CHO cells in log growth. The cocultures were exposed to promutagens for up to 20 hours in serum-free medium. The survival and 6-thioguanine-resistant fraction of treated CHO cells were then determined as in the standard CHO/HGPRT assay. Aflatoxin B1 (AFB1) 7,12-dimethylbenz(a)anthracene (DMBA) and benzo(a)pyrene (B(A)P) were found to produce increases in the mutant fractions of treated CHO cells as a function of concentration. The time required for optimum expression of the mutant phenotype following exposure to DMBA and AFB1 was approximately 8 days. Primary cell-mediated mutagenesis may be useful in elucidating metabolic pathways important in the production and detoxification of genotoxic products in vivo.

  2. Distinct Distribution of Purines in CM and CR Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Callahan, Michael P.; Stern, Jennifer C.; Glavin, Daniel P.; Smith, Karen E.; Martin, Mildred G.; Dworkin, Jason P.

    2010-01-01

    Carbonaceous meteorites contain a diverse suite of organic molecules and delivered pre biotic organic compounds, including purines and pyrimidines, to the early Earth (and other planetary bodies), seeding it with the ingredients likely required for the first genetic material. We have investigated the distribution of nucleobases in six different CM and CR type carbonaceous chondrites, including fivc Antarctic meteorites never before analyzed for nucleobases. We employed a traditional formic acid extraction protocol and a recently developed solid phase extraction method to isolate nucleobases. We analyzed these extracts by high performance liquid chromatography with UV absorbance detection and tandem mass spectrometry (HPLC-UV -MS/MS) targeting the five canonical RNAIDNA bases and hypoxanthine and xanthine. We detected parts-per-billion levels of nucleobases in both CM and CR meteorites. The relative abundances of the purines found in Antarctic CM and CR meteorites were clearly distinct from each other suggesting that these compounds are not terrestrial contaminants. One likely source of these purines is formation by HCN oligomerization (with other small molecules) during aqueous alteration inside the meteorite parent body. The detection of the purines adenine (A), guanine (0), hypoxanthine (HX), and xanthine (X) in carbonaceous meteorites indicates that these compounds should have been available on the early Earth prior to the origin of the first genetic material.

  3. Radiation-induced hydroxyl addition to purine molecules: EPR and ENDOR study of hypoxanthine hydrochloride monohydrate single crystals.

    PubMed

    Tokdemir, Sibel; Nelson, William H

    2005-06-01

    Three radical species were detected in an EPR/ENDOR study of X-irradiated hypoxanthine.HCl.H2O single crystals at room temperature: RI was identified as the product of net H addition to C8, RII was identified as the product of net H addition to C2, and RIII was identified as the product of OH addition to C8. The observed set of radicals was the same for room-temperature irradiation as for irradiation at 10 K followed by warming the crystals to room temperature; however, the C2 H-addition and C8 OH-addition radicals were not detectable after storage of the crystals for about 2 months at room temperature. Use of selectively deuterated crystals permitted unique assignment of the observed hyperfine couplings, and results of density functional theory calculations on each of the radical structures were consistent with the experimental results. Comparison of these experimental results with others from previous crystal-based systems and model system computations provides insight into the mechanisms by which the biologically important purine C8 hydroxyl addition products are formed. The evidence from solid systems supports the mechanism of net water addition to one-electron oxidized purine bases and demonstrates the importance of a facial approach between the reactants.

  4. Effect of Chemicals on the Cell Membrane Transport of Nucleosides.

    DTIC Science & Technology

    1983-08-01

    hypoxanthine in the external buffer and the efflux mte is decreased by uric acid in tne buffer. Perfluorodecanoic acid ( PFDA ), adenine, or xanthlne...uric acid in the buffer. Perfluorodecanoic acid ( PFDA ), Sadenine, or xanthine in the external buffer have no direct effect on the rate of AP efflux, in...observed that perfluorooctanoic acid ( PFOA ) produces a transient weight N loss, but no mortality in young rats. By contrast, the treatment of rats with

  5. [Polymethylene derivatives of nucleic bases with omega-functional groups: VII. Cytotoxicity in the series of N-(2-oxocyclohexyl)-omega-oxoalkyl substituted purines and pyrimidines].

    PubMed

    Komissarov, V V; Volgareva, G M; Ol'shanskaia, Ia S; Chernyshova, M E; Zavalishina, L E; Frank, G A; Shtil', A A; Kritsyn, A M

    2009-01-01

    New polymethylene derivatives of nucleic bases with a beta-diketo function in the omega-position were obtained by alkylation of uracil, thymine, cytosine, hypoxanthine, adenine, and N(2)-isobutyryl guanine with 2-omega-chloroal-kanoyl)cyclohexanones. The physical and chemical characteristics of the compounds synthesized and their effect on the K562 and HCT116 tumor cell lines were studied.

  6. Extracellular cyclic AMP-adenosine pathway in isolated adipocytes and adipose tissue.

    PubMed

    Strouch, Marci B; Jackson, Edwin K; Mi, Zaichuan; Metes, Nicole A; Carey, Gale B

    2005-06-01

    Our goal was to evaluate the presence and lipolytic impact of the extracellular cyclic adenosine monophosphate (AMP)-adenosine pathway in adipose tissue. Sixteen miniature Yucatan swine (Sus scrofa) were used for these in vitro and in situ experiments. Four microdialysis probes were implanted into subcutaneous adipose tissue and perfused at 2 microL/min with Ringer's solution containing no addition, varying levels of cyclic AMP, 10 microM isoproterenol, or 10 microM isoproterenol plus 1 mM alpha,beta-methylene adenosine 5'-diphosphate (AMPCP), a 5'-nucleotidase inhibitor. Dialysate was assayed for AMP, adenosine, inosine, hypoxanthine, and glycerol. Freshly isolated adipocytes were incubated with buffer, 1 microM isoproterenol, or 1 microM isoproterenol plus 0.1 mM AMPCP, and extracellular levels of AMP, adenosine, inosine, hypoxanthine, and glycerol were measured. Perfusion of adipose tissue with exogenous cyclic AMP caused a significant increase in AMP and adenosine appearance. Perfusion with AMPCP, in the presence or absence of isoproterenol, significantly increased the levels of AMP and glycerol, whereas it significantly reduced the level of adenosine and its metabolites. However, the AMPCP-provoked increase in lipolysis observed in situ and in vitro was not temporally associated with a decrease in adenosine. These data suggest the existence of a cyclic AMP-adenosine pathway in adipocytes and adipose tissue. The role of this pathway in the regulation of lipolysis remains to be clarified.

  7. Tocotrienol Rich Palm Oil Extract Is More Effective Than Pure Tocotrienols at Improving Endothelium-Dependent Relaxation in the Presence of Oxidative Stress

    PubMed Central

    Ali, Saher F.; Woodman, Owen L.

    2015-01-01

    Oxidative endothelial dysfunction is a critical initiator of vascular disease. Vitamin E is an effective antioxidant but attempts to use it to treat vascular disorders have been disappointing. This study investigated whether tocotrienols, the less abundant components of vitamin E compared to tocopherols, might be more effective at preserving endothelial function. Superoxide generated by hypoxanthine/xanthine oxidase or rat aorta was measured using lucigenin-enhanced chemiluminescence. The effect of α-tocopherol, α-, δ-, and γ-tocotrienols and a tocotrienol rich palm oil extract (tocomin) on levels of superoxide was assessed. Endothelial function in rat aorta was assessed in the presence of the auto-oxidant pyrogallol. Whilst all of the compounds displayed antioxidant activity, the tocotrienols were more effective when superoxide was produced by hypoxanthine/xanthine oxidase whereas tocomin and α-tocopherol were more effective in the isolated aorta. Tocomin and α-tocopherol restored endothelial function in the presence of oxidant stress but α-, δ-, and γ-tocotrienols were ineffective. The protective effect of tocomin was replicated when the tocotrienols were present with, but not without, α-tocopherol. Tocotrienol rich tocomin is more effective than α-tocopherol at reducing oxidative stress and restoring endothelium-dependent relaxation in rat aortae and although α-, δ-, and γ-tocotrienols effectively scavenged superoxide, they did not improve endothelial function. PMID:26075031

  8. Functional expression and characterization of a purine nucleobase transporter gene from Leishmania major.

    PubMed

    Sanchez, Marco A; Tryon, Rob; Pierce, Steven; Vasudevan, Gayatri; Landfear, Scott M

    2004-01-01

    Leishmania major, like all the other kinetoplastid protozoa, are unable to synthesize purines and rely on purine nucleobase and nucleoside acquisition across the parasite plasma membrane by specific permeases. Although, several genes have been cloned that encode nucleoside transporters in Leishmania and Trypanosoma brucei, much less progress has been made on nucleobase transporters, especially at the molecular level. The studies reported here have cloned and expressed the first gene for a L. major nucleobase transporter, designated LmaNT3. The LmaNT3 permease shows 33% identity to L. donovani nucleoside transporter 1.1 (LdNT1.1) and is, thus, a member of the equilibrative nucleoside transporter (ENT) family. ENT family members identified to date are nucleoside transporters, some of which also transport one or several nucleobases. Functional expression studies in Xenopus laevis oocytes revealed that LmaNT3 mediates high levels of uptake of hypoxanthine, xanthine, adenine and guanine. Moreover, LmaNT3 is an high affinity transporter with K(m) values for hypoxanthine, xanthine, adenine and guanine of 16.5 +/- 1.5, 8.5 +/- 0.6, 8.5 +/- 1.1, and 8.8 +/- 4.0 microM, respectively. LmaNT3 is, thus, the first member of the ENT family identified in any organism that functions as a nucleobase rather than nucleoside or nucleoside/nucleobase transporter.

  9. Tocotrienol Rich Palm Oil Extract Is More Effective Than Pure Tocotrienols at Improving Endothelium-Dependent Relaxation in the Presence of Oxidative Stress.

    PubMed

    Ali, Saher F; Woodman, Owen L

    2015-01-01

    Oxidative endothelial dysfunction is a critical initiator of vascular disease. Vitamin E is an effective antioxidant but attempts to use it to treat vascular disorders have been disappointing. This study investigated whether tocotrienols, the less abundant components of vitamin E compared to tocopherols, might be more effective at preserving endothelial function. Superoxide generated by hypoxanthine/xanthine oxidase or rat aorta was measured using lucigenin-enhanced chemiluminescence. The effect of α-tocopherol, α-, δ-, and γ-tocotrienols and a tocotrienol rich palm oil extract (tocomin) on levels of superoxide was assessed. Endothelial function in rat aorta was assessed in the presence of the auto-oxidant pyrogallol. Whilst all of the compounds displayed antioxidant activity, the tocotrienols were more effective when superoxide was produced by hypoxanthine/xanthine oxidase whereas tocomin and α-tocopherol were more effective in the isolated aorta. Tocomin and α-tocopherol restored endothelial function in the presence of oxidant stress but α-, δ-, and γ-tocotrienols were ineffective. The protective effect of tocomin was replicated when the tocotrienols were present with, but not without, α-tocopherol. Tocotrienol rich tocomin is more effective than α-tocopherol at reducing oxidative stress and restoring endothelium-dependent relaxation in rat aortae and although α-, δ-, and γ-tocotrienols effectively scavenged superoxide, they did not improve endothelial function.

  10. Effects of chitosan oligosaccharides on microbiota composition of silver carp (Hypophthalmichthys molitrix) determined by culture-dependent and independent methods during chilled storage.

    PubMed

    Jia, Shiliang; Liu, Xiaochang; Huang, Zhan; Li, Yan; Zhang, Longteng; Luo, Yongkang

    2018-03-02

    This study evaluated the effects of chitosan oligosaccharides (COS) on the changes in quality and microbiota of silver carp fillets stored at 4 °C. During storage, 1% (w/v) COS treated samples maintained good quality, as evidenced by retarding sensory deterioration, inhibiting microbial growth, attenuating the production of total volatile basic nitrogen, putrescine, cadaverine and hypoxanthine, and delaying degradation of inosine monophosphate and hypoxanthine ribonucleotide. Meanwhile, variability in the predominant microbiota in different samples was investigated by culture-dependent and -independent methods. Based on sensory analysis, shelf-life of silver carp fillets was 4 days for the control and 6 days for COS treated samples. Meanwhile, Pseudomonas, followed by Aeromonas, Acinetobacter, and Shewanella were dominated in the control samples at day 4 and contributed to fish spoilage at day 6. However, COS inhibited the growth of Pseudomonas, Aeromonas, and Shewanella significantly. Consequently, Acinetobacter followed by Pseudomonas became the predominant microbiota in COS treated samples at day 6. With the growth of Pseudomonas, COS treated samples were spoiled at day 8. Therefore, COS improved the quality of fillets and prolonged the shelf life of silver carp fillets by 2 days during chilled storage, which was mainly due to their modulating effects on microbiota. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Mangifera indica L. extract (Vimang) inhibits 2-deoxyribose damage induced by Fe (III) plus ascorbate.

    PubMed

    Pardo-Andreu, Gilberto Lázaro; Delgado, René; Núñez-Sellés, Alberto J; Vercesi, Anibal E

    2006-02-01

    Vimang is an aqueous extract of selected species of Mangifera indica L, used in Cuba as a nutritional antioxidant supplement. Many in vitro and in vivo models of oxidative stress have been used to elucidate the antioxidant mechanisms of this extract. To further characterize the mechanism of Vimang action, its effect on the degradation of 2-deoxyribose induced by Fe (III)-EDTA plus ascorbate or plus hypoxanthine/xanthine oxidase was studied. Vimang was shown to be a potent inhibitor of 2-deoxyribose degradation mediated by Fe (III)-EDTA plus ascorbate or superoxide (O2-). The results revealed that Vimang, at concentrations higher than 50 microM mangiferin equivalent, was equally effective in preventing degradation of both 15 mM and 1.5 mM 2-deoxyribose. At a fixed Fe (III) concentration, increasing the concentration of ligands (either EDTA or citrate) caused a significant reduction in the protective effects of Vimang. When ascorbate was replaced by O2- (formed by hypoxanthine and xanthine oxidase) the protective efficiency of Vimang was also inversely related to EDTA concentration. The results strongly indicate that Vimang does not block 2-deoxyribose degradation by simply trapping *OH radicals. Rather, Vimang seems to act as an antioxidant by complexing iron ions, rendering them inactive or poorly active in the Fenton reaction. Copyright 2006 John Wiley & Sons, Ltd.

  12. Purine salvage in the apicomplexan Sarcocystis neurona, and generation of hypoxanthine-xanthine-guanine phosphoribosyltransferase-deficient clones for positive-negative selection of transgenic parasites.

    PubMed

    Dangoudoubiyam, Sriveny; Zhang, Zijing; Howe, Daniel K

    2014-09-01

    Sarcocystis neurona is an apicomplexan parasite that causes severe neurological disease in horses and marine mammals. The Apicomplexa are all obligate intracellular parasites that lack purine biosynthesis pathways and rely on the host cell for their purine requirements. Hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) and adenosine kinase (AK) are key enzymes that function in two complementary purine salvage pathways in apicomplexans. Bioinformatic searches of the S. neurona genome revealed genes encoding HXGPRT, AK and all of the major purine salvage enzymes except purine nucleoside phosphorylase. Wild-type S. neurona were able to grow in the presence of mycophenolic acid (MPA) but were inhibited by 6-thioxanthine (6-TX), suggesting that the pathways involving either HXGPRT or AK are functional in this parasite. Prior work with Toxoplasma gondii demonstrated the utility of HXGPRT as a positive-negative selection marker. To enable the use of HXGPRT in S. neurona, the SnHXGPRT gene sequence was determined and a gene-targeting plasmid was transfected into S. neurona. SnHXGPRT-deficient mutants were selected with 6-TX, and single-cell clones were obtained. These Sn∆HXG parasites were susceptible to MPA and could be complemented using the heterologous T. gondii HXGPRT gene. In summary, S. neurona possesses both purine salvage pathways described in apicomplexans, thus allowing the use of HXGPRT as a positive-negative drug selection marker in this parasite.

  13. Urinary and plasma purine derivatives in fed and fasted llamas (Lama glama and L. guanacoe).

    PubMed

    Bakker, M L; Chen, X B; Kyle, D J; Orskov, E R; Bourke, D A

    1996-02-01

    The changes in urinary and plasma purine derivatives in response to fasting and level of feeding in llamas were examines. In one experiment, four llamas were gradually deprived of feed within 3 days and then fasted for 6 days. Daily urinary excretion of purine derivatives decreased with feed intake and leveled on the last 3 days of fasting at 177 +/- 26 mumol/kg W0.75. Allantoin and uric acid comprised 71% and 15% of total purine derivatives, respectively, in both fed and fasted states, but hypoxanthine plus xanthine increased from 9% to 36%. Plasma concentration of allantoin declined with feed intake reduction, but those of uric acid (217 mumol/l) and hypoxanthine plus xanthine (27 mumol/l) remained relatively unchanged. Concentration of uric acid was higher than that of allantoin, probably due to a high reabsorption of uric acid in renal tubules, which was measured as over 90%. In a second experiment, the four llamas were fed at 860 and 1740 g dry matter/d in a crossover design. Urinary total purine derivatives excretion responded to feed intake (10.4 vs 14.4 mmol/d), although the observed differences did not reach significance. Compared with some ruminant species, it appears that the llama resembles sheep regarding the magnitude of urinary purine derivatives excretion but is unique in maintaining a high concentration of uric acid in plasma, which could be part of the llama's adaptation to their environment.

  14. Diaminopurine-Resistant Mutants of Cultured, Diploid Human Fibroblasts

    PubMed Central

    Rappaport, Harriet; DeMars, Robert

    1973-01-01

    Clones of cells resistant to 2,6-diaminopurine were detected in skin fibroblast cultures derived from 13 of 21 normal humans of both sexes from 17 unrelated families. Almost all of the cultures that yielded mutants were chosen for further study from among a total of 83 surveyed because they displayed a slight resistance to low concentrations of diaminopurine. The incidences of mutant colonies ranged between about 10-5 and 10-4 per cell surviving prior mutagenic treatment with MNNG. The incidences of spontaneous mutants were about 10-7 to 10-5 in three unrelated cultures. Most independent mutants had distinctly reduced activity of adenine phosphoribosyltransferase but some had apparently normal amounts of activity. Two mutants from unrelated boys had little or no detectable enzyme activity and were unable to effectively use exogenous adenine for growth when purine biosynthesis was blocked with azaserine. Most mutants could utilize exogenous adenine, just as most azaguanine-resistant fibroblast mutants can utilize exogenous hypoxanthine, even when their hypoxanthine-guanine phosphoribosyltransferase activity is reduced. Diverse genetic changes conferred diaminopurine resistance but their specific natures are still undefined. Gross numerical or structural chromosome abnormalities were not observed in the mutants examined so far. Since at least one gene responsible for adenine phosphoribosyltransferase activity is on autosome No. 16 our results suggest that at least some of the cultures yielding mutants were heterozygous and that alleles conferring diaminopurine resistance may be frequent enough to comprise a polymorphism. PMID:4358687

  15. Enhanced activity of the purine nucleotide cycle of the exercising muscle in patients with hyperthyroidism.

    PubMed

    Fukui, H; Taniguchi , S; Ueta, Y; Yoshida, A; Ohtahara, A; Hisatome, I; Shigemasa, C

    2001-05-01

    Myopathy frequently develops in patients with hyperthyroidism, but its precise mechanism is not clearly understood. In this study we focused on the purine nucleotide cycle, which contributes to ATP balance in skeletal muscles. To investigate purine metabolism in muscles, we measured metabolites related to the purine nucleotide cycle using the semiischemic forearm test. We examined the following four groups: patients with untreated thyrotoxic Graves' disease (untreated group), patients with Graves' disease treated with methimazole (treated group), patients in remission (remission group), and healthy volunteers (control group). To trace the glycolytic process, we measured glycolytic metabolites (lactate and pyruvate) as well as purine metabolites (ammonia and hypoxanthine). In the untreated group, the levels of lactate, pyruvate, and ammonia released were remarkably higher than those in the control group. Hypoxanthine release also increased in the untreated group, but the difference among the patient groups was not statistically significant. The accelerated purine catabolism did not improve after 3 months of treatment with methimazole, but it was completely normalized in the remission group. This indicated that long-term maintenance of thyroid function was necessary for purine catabolism to recover. We presume that an unbalanced ATP supply or conversion of muscle fiber type may account for the acceleration of the purine nucleotide cycle under thyrotoxicosis. Such acceleration of the purine nucleotide cycle is thought to be in part a protective mechanism against a rapid collapse of the ATP energy balance in exercising muscles of patients with hyperthyroidism.

  16. The solute specificity profiles of nucleobase cation symporter 1 (NCS1) from Zea mays and Setaria viridis illustrate functional flexibility.

    PubMed

    Rapp, Micah; Schein, Jessica; Hunt, Kevin A; Nalam, Vamsi; Mourad, George S; Schultes, Neil P

    2016-03-01

    The solute specificity profiles (transport and binding) for the nucleobase cation symporter 1 (NCS1) proteins, from the closely related C4 grasses Zea mays and Setaria viridis, differ from that of Arabidopsis thaliana and Chlamydomonas reinhardtii NCS1. Solute specificity profiles for NCS1 from Z. mays (ZmNCS1) and S. viridis (SvNCS1) were determined through heterologous complementation studies in NCS1-deficient Saccharomyces cerevisiae strains. The four Viridiplantae NCS1 proteins transport the purines adenine and guanine, but unlike the dicot and algal NCS1, grass NCS1 proteins fail to transport the pyrimidine uracil. Despite the high level of amino acid sequence similarity, ZmNCS1 and SvNCS1 display distinct solute transport and recognition profiles. SvNCS1 transports adenine, guanine, hypoxanthine, cytosine, and allantoin and competitively binds xanthine and uric acid. ZmNCS1 transports adenine, guanine, and cytosine and competitively binds, 5-fluorocytosine, hypoxanthine, xanthine, and uric acid. The differences in grass NCS1 profiles are due to a limited number of amino acid alterations. These amino acid residues do not correspond to amino acids essential for overall solute and cation binding or solute transport, as previously identified in bacterial and fungal NCS1, but rather may represent residues involved in subtle solute discrimination. The data presented here reveal that within Viridiplantae, NCS1 proteins transport a broad range of nucleobase compounds and that the solute specificity profile varies with species.

  17. Modulating effects of plasma containing anti-malarial antibodies on in vitro anti-malarial drug susceptibility in Plasmodium falciparum.

    PubMed

    Monatrakul, Preeyaporn; Mungthin, Mathirut; Dondorp, Arjen M; Krudsood, Srivicha; Udomsangpetch, Rachanee; Wilairatana, Polrat; White, Nicholas J; Chotivanich, Kesinee

    2010-11-16

    The efficacy of anti-malarial drugs is determined by the level of parasite susceptibility, anti-malarial drug bioavailability and pharmacokinetics, and host factors including immunity. Host immunity improves the in vivo therapeutic efficacy of anti-malarial drugs, but the mechanism and magnitude of this effect has not been characterized. This study characterized the effects of 'immune' plasma to Plasmodium falciparumon the in vitro susceptibility of P. falciparum to anti-malarial drugs. Titres of antibodies against blood stage antigens (mainly the ring-infected erythrocyte surface antigen [RESA]) were measured in plasma samples obtained from Thai patients with acute falciparum malaria. 'Immune' plasma was selected and its effects on in vitro parasite growth and multiplication of the Thai P. falciparum laboratory strain TM267 were assessed by light microscopy. The in vitro susceptibility to quinine and artesunate was then determined in the presence and absence of 'immune' plasma using the 3H-hypoxanthine uptake inhibition method. Drug susceptibility was expressed as the concentrations causing 50% and 90% inhibition (IC50 and IC90), of 3H-hypoxanthine uptake. Incubation with 'immune' plasma reduced parasite maturation and decreased parasite multiplication in a dose dependent manner. 3H-hypoxanthine incorporation after incubation with 'immune' plasma was decreased significantly compared to controls (median [range]; 181.5 [0 to 3,269] cpm versus 1,222.5 [388 to 5,932] cpm) (p= 0.001). As a result 'immune' plasma reduced apparent susceptibility to quinine substantially; median (range) IC50 6.4 (0.5 to 23.8) ng/ml versus 221.5 (174.4 to 250.4) ng/ml (p = 0.02), and also had a borderline effect on artesunate susceptibility; IC50 0.2 (0.02 to 0.3) ng/ml versus 0.8 (0.2 to 2.3) ng/ml (p = 0.08). Effects were greatest at low concentrations, changing the shape of the concentration-effect relationship. IC90 values were not significantly affected; median (range) IC90 448.0 (65 to > 500) ng/ml versus 368.8 (261 to 501) ng/ml for quinine (p > 0.05) and 17.0 (0.1 to 29.5) ng/ml versus 7.6 (2.3 to 19.5) ng/ml for artesunate (p = 0.4). 'Immune' plasma containing anti-malarial antibodies inhibits parasite development and multiplication and increases apparent in vitro anti-malarial drug susceptibility of P. falciparum. The IC90 was much less affected than the IC50 measurement.

  18. Cultivation of Plasmodium falciparum parasites in a serum-free medium.

    PubMed

    Ofulla, A V; Okoye, V C; Khan, B; Githure, J I; Roberts, C R; Johnson, A J; Martin, S K

    1993-09-01

    The elimination of serum from Plasmodium falciparum culture media could decrease costs, enhance procurement, and improve the feasibility of large-scale production of parasite material. We provide a semi-defined, serum-free formulation, of commercially available constituents that supports P. falciparum parasite growth at rates comparable with those obtained with serum-supplemented media. The medium is composed of RPMI 1640 to which HEPES, extra glucose, bicarbonate, and hypoxanthine have been added. Bovine albumin and serum-derived, lipids-cholesterol-rich mixture are then used in place of serum.

  19. Lesch Nyhan syndrome: a novel complex mutation in a Tunisian child.

    PubMed

    Rebai, Ibtihel; Kraoua, Ichraf; Benrhouma, Hanene; Rouissi, Aida; Turki, Ilhem; Ceballos-Picot, Irène; Gouider-Khouja, Neziha

    2014-11-01

    Lesch Nyhan syndrome (LNS) is an X-linked recessive disorder due to complete deficiency of the hypoxanthine-guanine phosphoribosyltransferase (HPRT) enzyme. Defect of the enzymatic activity is related to mutations of the HPRT1 gene. The disorder severity is due to neurological features and renal complications. Up to now, more than 300 mutations have been reported. We report on a Tunisian child with a severe phenotype due to a novel identified complex mutation. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  20. Contribution of creatine to protein homeostasis in athletes after endurance and sprint running.

    PubMed

    Tang, Fu-Chun; Chan, Chun-Chen; Kuo, Po-Ling

    2014-02-01

    Few studies have focused on the metabolic changes induced by creatine supplementation. This study investigated the effects of creatine supplementation on plasma and urinary metabolite changes of athletes after endurance and sprint running. Twelve male athletes (20.3 ± 1.4 y) performed two identical (65-70 % maximum heart rate reserved) 60 min running exercises (endurance trial) before and after creatine supplementation (12 g creatine monohydrate/day for 15 days), followed by a 5-day washout period. Subsequently, they performed two identical 100 m sprint running exercises (power trial) before and after 15 days of creatine supplementation in accordance with the supplementary protocol of the endurance trial. Body composition measurements were performed during the entire study. Plasma samples were examined for the concentrations of glucose, lactate, branched-chain amino acids (BCAAs), free-tryptophan (f-TRP), glutamine, alanine, hypoxanthine, and uric acid. Urinary samples were examined for the concentrations of hydroxyproline, 3-methylhistidine, urea nitrogen, and creatinine. Creatine supplementation significantly increased body weights of the athletes of endurance trial. Plasma lactate concentration and ratio of f-TRP/BCAAs after recovery from endurance running were significantly decreased with creatine supplementation. Plasma purine metabolites (the sum of hypoxanthine and uric acid), glutamine, urinary 3-methylhistidine, and urea nitrogen concentrations tended to decrease before running in trials with creatine supplements. After running, urinary hydroxyproline concentration significantly increased in the power trial with creatine supplements. The findings suggest that creatine supplementation tended to decrease muscle glycogen and protein degradation, especially after endurance exercise. However, creatine supplementation might induce collagen proteolysis in athletes after sprint running.

  1. Urinary excretion of purine derivatives as an index of microbial protein synthesis in the camel (Camelus dromedarius).

    PubMed

    Guerouali, Abdelhai; El Gass, Youssef; Balcells, Joaquim; Belenguer, Alvaro; Nolan, John

    2004-08-01

    Five experiments were carried out to extend knowledge of purine metabolism in the camel (Camelus dromedarius) and to establish a model to enable microbial protein outflow from the forestomachs to be estimated from the urinary excretion of purine derivatives (PD; i.e. xanthine, hypoxanthine, uric acid, allantoin). In experiment 1, four camels were fasted for five consecutive days to enable endogenous PD excretion in urine to be determined. Total PD excretion decreased during the fasting period to 267 (SE 41.5) micromol/kg body weight (W)0.75 per d. Allantoin and xanthine + hypoxanthine were consistently 86 and 6.1 % of total urinary PD during this period but uric acid increased from 3.6 % to 7.4 %. Xanthine oxidase activity in tissues (experiment 2) was (micromol/min per g fresh tissue) 0.038 in liver and 0.005 in gut mucosa but was not detected in plasma. In experiment 3, the duodenal supply of yeast containing exogenous purines produced a linear increase in urinary PD excretion rate with the slope indicating that 0.63 was excreted in urine. After taking account of endogenous PD excretion, the relationship can be used to predict purine outflow from the rumen. From the latter prediction, and also the purine:protein ratio in bacteria determined in experiment 5, we predicted the net microbial outflow from the rumen. In experiment 4, with increasing food intake, the rate of PD excretion in the urine increased linearly by about 11.1 mmol PD/kg digestible organic matter intake (DOMI), equivalent to 95 g microbial protein/kg DOMI.

  2. Metabolic effect of alkaline additives and guanosine/gluconate in storage solutions for red blood cells.

    PubMed

    D'Alessandro, Angelo; Reisz, Julie A; Culp-Hill, Rachel; Korsten, Herbert; van Bruggen, Robin; de Korte, Dirk

    2018-04-06

    Over a century of advancements in the field of additive solutions for red blood cell (RBC) storage has made transfusion therapy a safe and effective practice for millions of recipients worldwide. Still, storage in the blood bank results in the progressive accumulation of metabolic alterations, a phenomenon that is mitigated by storage in novel storage additives, such as alkaline additive solutions. While novel alkaline additive formulations have been proposed, no metabolomics characterization has been performed to date. We performed UHPLC-MS metabolomics analyses of red blood cells stored in SAGM (standard additive in Europe), (PAGGSM), or alkaline additives SOLX, E-SOL 5 and PAG3M for either 1, 21, 35 (end of shelf-life in the Netherlands), or 56 days. Alkaline additives (especially PAG3M) better preserved 2,3-diphosphoglycerate and adenosine triphosphate (ATP). Deaminated purines such as hypoxanthine were predictive of hemolysis and morphological alterations. Guanosine supplementation in PAGGSM and PAG3M fueled ATP generation by feeding into the nonoxidative pentose phosphate pathway via phosphoribolysis. Decreased urate to hypoxanthine ratios were observed in alkaline additives, suggestive of decreased generation of urate and hydrogen peroxide. Despite the many benefits observed in purine and redox metabolism, alkaline additives did not prevent accumulation of free fatty acids and oxidized byproducts, opening a window for future alkaline formulations including (lipophilic) antioxidants. Alkalinization via different strategies (replacement of chloride anions with either high bicarbonate, high citrate/phosphate, or membrane impermeant gluconate) results in different metabolic outcomes, which are superior to current canonical additives in all cases. © 2018 AABB.

  3. Muscle adenine nucleotide degradation during submaximal treadmill exercise to fatigue.

    PubMed

    Essén-Gustavsson, B; Gottlieb-Vedi, M; Lindholm, A

    1999-07-01

    The aim was to investigate metabolic response in muscle during submaximal treadmill exercise to fatigue, with a special emphasis on adenine nucleotide degradation products such as inosine monophosphate (IMP) in muscle and hypoxanthine, xanthine and uric acid in plasma. Five Standardbred trotters performed treadmill exercise on 2 occasions, once at 7 m/s and once at 10 m/s. Venous blood samples were taken at rest, during exercise and at the end of exercise. Muscle biopsies were taken before and after exercise and muscle temperature was measured before and after exercise. Running time differed among horses and was 48-58 min at 7 m/s and 10-15.5 min at 10 m/s. Both lactate and uric acid concentrations in plasma showed a gradual increase during exercise at both 7 and 10 m/s. At the end of exercise, values for uric acid were higher and values for lactate lower at 7 m/s compared with at 10 m/s. No marked changes were seen in plasma concentrations of hypoxanthine or xanthine with exercise. Muscle glycogen decreased after exercise at both 7 and 10 m/s with a marked depletion seen in some fibres. Muscle lactate concentrations increased after exercise at both 7 m/s and at 10 m/s. No significant changes were seen in adenosine triphosphate (ATP), ADP and AMP concentrations, whereas IMP concentrations increased after exercise at both 7 m/s and at 10 m/s. The results of this study indicate that AMP deamination occurs with submaximal exercise and that development of fatigue may be related to adenine nucleotide degradation in muscle.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, P.; Siegel, L.; Pinto, J.

    This laboratory has previously demonstrated that imipramine (IM) and amitriptyline (AM), inhibit the conversion of riboflavin to its coenzymic derivatives. Several other laboratories have shown that dietary riboflavin deficiency is protective against malarial infection. In the present investigation, the authors determined whether IM and AM exert antimalarial effects similar to that of riboflavin deficiency, as they have hypothesized. In addition, they evaluated whether these drugs, like other antimalarial agents, increase the hemolytic response to ferriprotoporphyrin IX (FP). The growth of P. falciparum (FCR3) in the absence or presence of these drugs (80 ..mu..M) was measured by incubating parasitized erythrocytes formore » 48 h in RPMI 1640 medium. Parasitemia was determined by counting erythrocyte smears and monitoring (/sup 3/H)hypoxanthine uptake. With no drug, parasitemia was 20.3 +/- 5.3%, whereas in the presence of IM and AM, parasitemia was reduced to 7.3 +/- 0.8% and 13.6 +/- 2.8%, respectively. The uptake of (/sup 3/H)hypoxanthine was reduced to 47 +/- 3.6% and 54 +/- 2.9% of control by IM and AM, respectively. Assays of hemolysis were conducted by incubating 0.5% RBC suspension in NaCl-Tris buffer for 3 h at 37/sup 0/C with variable concentrations of drugs and/or FP (1-7 ..mu..M). Both drugs at 10 to 100 ..mu..M significantly enhanced hemolysis induced by FP. No hemolysis by these drugs was detected in the absence of FP. It is concluded that the tricyclic antidepressants, IM and AM, possess substantial antimalarial properties, thereby supporting the hypothesis that drugs which interfere with riboflavin metabolism should also provide protection against malaria.« less

  5. The Use of Perinatal 6-Hydroxydopamine to Produce a Rodent Model of Lesch-Nyhan Disease.

    PubMed

    Knapp, Darin J; Breese, George R

    Lesch-Nyhan disease is a neurologically, metabolically, and behaviorally devastating condition that has eluded complete characterization and adequate treatment. While it is known that the disease is intimately associated with dysfunction of the hypoxanthine phosphoribosyltransferase 1 (HPRT1) gene that codes for an enzyme of purine metabolism (hypoxanthine-guanine phosphoribosyltransferase) and is associated with neurological, behavioral, as well as metabolic dysfunction, the mechanisms of the neurobehavioral manifestations are as yet unclear. However, discoveries over the past few decades not only have created useful novel animal models (e.g., the HPRT-deficient mouse and the serendipitously discovered perinatal 6-hydroxydopamine (6-OHDA lesion model), but also have expanded into epigenetic, genomic, and proteomic approaches to better understand the mechanisms underlying this disease. The perinatal 6-OHDA model, in addition to modeling self-injury and dopamine depletion in the clinical condition, also underscores the profound importance of development in the differential course of maladaptive progression in the face of a common/single neurotoxic insult at different ages. Recent developments from clinical and basic science efforts attest to the fact that while the disease would seem to have a simple single gene defect at its core, the manifestations of this defect are profound and unexpectedly diverse. Future efforts employing the 6-OHDA model and others in the context of the novel technologies of genome editing, chemo- and opto-genetics, epigenetics, and further studies on the mechanisms of stress-induced maladaptations in brain all hold promise in taking our understanding of this disease to the next level.

  6. Indole Alkaloids from the Sea Anemone Heteractis aurora and Homarine from Octopus cyanea.

    PubMed

    Shaker, Kamel H; Göhl, Matthias; Müller, Tobias; Seifert, Karlheinz

    2015-11-01

    The two new indole alkaloids 2-amino-1,5-dihydro-5-(1H-indol-3-ylmethyl)-4H-imidazol-4-one (1), 2-amino-5-[(6-bromo-1H-indol-3-yl)methyl]-3,5-dihydro-3-methyl-4H-imidazol-4-one (2), and auramine (3) have been isolated from the sea anemone Heteractis aurora. Both indole alkaloids were synthesized for the confirmation of the structures. Homarine (4), along with uracil (5), hypoxanthine (6), and inosine (7) have been obtained from Octopus cyanea. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  7. Purine Nucleotide Metabolism of Germinating Soybean Embryonic Axes

    PubMed Central

    Anderson, James D.

    1979-01-01

    Isolated soybean (Glycine max L. cv. Kent) embyronic axes metabolized [14C]glycine to ATP within the 1 hour of imbibition. Radioactivity was not detected in GTP until the 3rd hour. Throughout most of the first 24 hours of germination about 10 to 26 times as much label from [14C]glycine appears in ATP as GTP. About five times as much [14C]hypoxanthine and [14C]inosine was converted into GTP as into ATP in embryonic axes. Two independent pools of IMP appear to be used in purine nucleotide synthesis of soybean axes. PMID:16660656

  8. Increased PRPP synthetase activity in cultured rat hepatoma cells containing mutations in the hypoxanthine-guanine phosphoribosyltransferase gene.

    PubMed

    Graf, L H; McRoberts, J A; Harrison, T M; Martin, D W

    1976-07-01

    Nine independently derived clones of mutagenized rat hepatoma cells selected for resistance to 6-mercaptopurine (6-MP) or 6-thioguanine (6-ThioG) have been isolated. Each has severely reduced catalytic activity of hypoxanthine-guanine phosphoribosyltransferase (HPRT) and seven of them possess significantly increased activities of phosphoribosylpyrophosphate (PRPP) synthetase. The degrees of elevations of PRPP synthetase activities do not correlate with the degrees of deficiencies of HPRT activities. The cells from one of these clones, 1020/12, posses 40% of the normal HPRT catalytic activity and overproduce purines. We have extensively examined the cells from this clone. Immunotration studies of 1020/12 cells indicate that there is a mutation in the structural gene for HPRT. Although they possess increased specific catalytic activities of the enzyme. PRPP synthetase, the catalytic parameters, heat stability, and isoelectric pH of PRPP synthetase from 1020/12 cells are indistinguishable from those of the enzyme from wild-type cells. The cause of purine overproduction by 1020/12 cells appears to be the elevated PRPP synthetase activity, rather than a PRPP "sparing" effect stemming from reduced HPRT activity. Support for this idea is provided by the observation that the complete loss of HPRT activity in a clone derived from 1020/12 cells does not further enhance the levels of PRPP synthetase or purine overproduction. We propose that the elevated levels of PRPP synthetase activity in these HPRT deficient cells result from a mutational event in the structural gene for HPRT, and that this causes the disruption of a previously undescribed regulatory function of this gene on the expression of the PRPP synthetase gene.

  9. Antiplasmodial activity of extracts of Tridax procumbens and Phyllanthus amarus in in vitro Plasmodium falciparum culture systems.

    PubMed

    Appiah-Opong, R; Nyarko, A K; Dodoo, D; Gyang, F N; Koram, K A; Ayisi, N K

    2011-12-01

    Aqueous extracts of Tridax procumbens (TP) (Compositae) and Phyllanthus amarus (PA) (Euphorbiaceae) are used in traditional medicine in Ghana to treat malaria. Previous studies have demonstrated the anti-trypanosoma, anti-bacterial and anti-HIV effects of TP and PA. To assess the antiplasmodial activity of extracts of TP and PA. Aqueous extracts of TP and PA were prepared. A portion of each was freeze-dried and the remaining extracted sequentially with ethyl acetate and chloroform. Ethanolic extracts were also prepared. The antiplasmodial activity of the extracts was assessed with the 3H-hypoxanthine assay using chloroquine-resistant (Dd2) Plasmodium falciparum parasites. Chloroquine was used as the reference drug. The modified tetrazolium-based colorimetric assay was also used to evaluate the red blood cell (RBC)-protective/antiplasmodial activities and cytotoxicities of the extracts. Results showed that TP and PA have antiplasmodial activities. The aqueous and ethanolic extracts of PA were the most active, yielding EC50 values of 34.9 µg/ml and 31.2 µg/ml, respectively in the tetrazolium-based assay. The TP and PA produced and IC50 values of 24.8 µg/ml and 11.7 µg/ml, respectively in the hypoxanthine assay. Protection of human RBCs against P. falciparum damage by the extracts highly correlated with their antiplasmodial activities. None of the extracts, within the concentration range (1.9-500 µg/ml) studied produced any overt toxicity to human RBCs. The results indicate that both PA and TP have activities against chloroquine-resistant P. falciparum (Dd2) parasites. The antiplasmodial principles extracted into water and ethanol but not chloroform or ethyl acetate.

  10. Purine metabolism in response to hypoxic conditions associated with breath-hold diving and exercise in erythrocytes and plasma from bottlenose dolphins (Tursiops truncatus).

    PubMed

    Del Castillo Velasco-Martínez, Iris; Hernández-Camacho, Claudia J; Méndez-Rodríguez, Lía C; Zenteno-Savín, Tania

    2016-01-01

    In mammalian tissues under hypoxic conditions, ATP degradation results in accumulation of purine metabolites. During exercise, muscle energetic demand increases and oxygen consumption can exceed its supply. During breath-hold diving, oxygen supply is reduced and, although oxygen utilization is regulated by bradycardia (low heart rate) and peripheral vasoconstriction, tissues with low blood flow (ischemia) may become hypoxic. The goal of this study was to evaluate potential differences in the circulating levels of purine metabolism components between diving and exercise in bottlenose dolphins (Tursiops truncatus). Blood samples were taken from captive dolphins following a swimming routine (n=8) and after a 2min dive (n=8). Activity of enzymes involved in purine metabolism (hypoxanthine guanine phosphoribosyl transferase (HGPRT), inosine monophosphate deshydrogenase (IMPDH), xanthine oxidase (XO), purine nucleoside phosphorylase (PNP)), and purine metabolite (hypoxanthine (HX), xanthine (X), uric acid (UA), inosine monophosphate (IMP), inosine, nicotinamide adenine dinucleotide (NAD(+)), adenosine, adenosine monophosphate (AMP), adenosine diphosphate (ADP), ATP, guanosine diphosphate (GDP), guanosine triphosphate (GTP)) concentrations were quantified in erythrocyte and plasma samples. Enzymatic activity and purine metabolite concentrations involved in purine synthesis and degradation, were not significantly different between diving and exercise. Plasma adenosine concentration was higher after diving than exercise (p=0.03); this may be related to dive-induced ischemia. In erythrocytes, HGPRT activity was higher after diving than exercise (p=0.007), suggesting an increased capacity for purine recycling and ATP synthesis from IMP in ischemic tissues of bottlenose dolphins during diving. Purine recycling and physiological adaptations may maintain the ATP concentrations in bottlenose dolphins after diving and exercise. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Dissociative electron attachment to the gas-phase nucleobase hypoxanthine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawley, M. Michele; Tanzer, Katrin; Denifl, Stephan, E-mail: Stephan.Denifl@uibk.ac.at, E-mail: Sylwia.Ptasinska.1@nd.edu

    We present high-resolution measurements of the dissociative electron attachment (DEA) to isolated gas-phase hypoxanthine (C{sub 5}H{sub 4}N{sub 4}O, Hyp), a tRNA purine base. The anion mass spectra and individual ion efficiency curves from Hyp were measured as a function of electron energy below 9 eV. The mass spectra at 1 and 6 eV exhibit the highest anion yields, indicating possible common precursor ions that decay into the detectable anionic fragments. The (Hyp − H) anion (C{sub 5}H{sub 3}N{sub 4}O{sup −}) exhibits a sharp resonant peak at 1 eV, which we tentatively assign to a dipole-bound state of the keto-N1H,N9H tautomermore » in which dehydrogenation occurs at either the N1 or N9 position based upon our quantum chemical computations (B3LYP/6-311+G(d,p) and U(MP2-aug-cc-pVDZ+)) and prior studies with adenine. This closed-shell dehydrogenated anion is the dominant fragment formed upon electron attachment, as with other nucleobases. Seven other anions were also observed including (Hyp − NH){sup −}, C{sub 4}H{sub 3}N{sub 4}{sup −}/C{sub 4}HN{sub 3}O{sup −}, C{sub 4}H{sub 2}N{sub 3}{sup −}, C{sub 3}NO{sup −}/HC(HCN)CN{sup −}, OCN{sup −}, CN{sup −}, and O{sup −}. Most of these anions exhibit broad but weak resonances between 4 and 8 eV similar to many analogous anions from adenine. The DEA to Hyp involves significant fragmentation, which is relevant to understanding radiation damage of biomolecules.« less

  12. Allopurinol-mediated lignocellulose-derived microbial inhibitor tolerance by Clostridium beijerinckii during acetone-butanol-ethanol (ABE) fermentation.

    PubMed

    Ujor, Victor; Agu, Chidozie Victor; Gopalan, Venkat; Ezeji, Thaddeus Chukwuemeka

    2015-04-01

    In addition to glucans, xylans, and arabinans, lignocellulosic biomass hydrolysates contain significant levels of nonsugar components that are toxic to the microbes that are typically used to convert biomass to biofuels and chemicals. To enhance the tolerance of acetone-butanol-ethanol (ABE)-generating Clostridium beijerinckii NCIMB 8052 to these lignocellulose-derived microbial inhibitory compounds (LDMICs; e.g., furfural), we have been examining different metabolic perturbation strategies to increase the cellular reductant pools and thereby facilitate detoxification of LDMICs. As part of these efforts, we evaluated the effect of allopurinol, an inhibitor of NAD(P)H-generating xanthine dehydrogenase (XDH), on C. beijerinckii grown in furfural-supplemented medium and found that it unexpectedly increased the rate of detoxification of furfural by 1.4-fold and promoted growth, butanol, and ABE production by 1.2-, 2.5-, and 2-fold, respectively. Since NAD(P)H/NAD(P)(+) levels in C. beijerinckii were largely unchanged upon allopurinol treatment, we postulated and validated a possible basis in DNA repair to account for the solventogenic gains with allopurinol. Following the observation that supplementation of allopurinol in the C. beijerinckii growth media mitigates the toxic effects of nalidixic acid, a DNA-damaging antibiotic, we found that allopurinol elicited 2.4- and 6.7-fold increase in the messenger RNA (mRNA) levels of xanthine and hypoxanthine phosphoribosyltransferases, key purine-salvage enzymes. Consistent with this finding, addition of inosine (a precursor of hypoxanthine) and xanthine led to 1.4- and 1.7-fold increase in butanol production in furfural-challenged cultures of C. beijerinckii. Taken together, our results provide a purine salvage-based rationale for the unanticipated effect of allopurinol in improving furfural tolerance of the ABE-fermenting C. beijerinckii.

  13. Design and synthesis of novel adenine fluorescence probe based on Eu(III) complexes with dtpa-bis(guanine) ligand

    NASA Astrophysics Data System (ADS)

    Tian, Fengyun; Jiang, Xiaoqing; Dou, Xuekai; Wu, Qiong; Wang, Jun; Song, Youtao

    2017-05-01

    A novel adenine (Ad) fluorescence probe (EuIII-dtpa-bis(guanine)) was designed and synthesized by improving experimental method based on the Eu(III) complex and dtpa-bis(guanine) ligand. The dtpa-bis(guanine) ligand was first synthesized by the acylation action between dtpaa and guanine (Gu), and the corresponding Eu(III) complex was successfully prepared through heat-refluxing method with dtpa-bis(guanine) ligand. As a novel fluorescence probe, the EuIII-dtpa-bis(guanine) complex can detect adenine (Ad) with characteristics of strong targeting, high specificity and high recognition ability. The detection mechanism of the adenine (Ad) using this probe in buffer solution was studied by ultraviolet-visible (UV-vis) and fluorescence spectroscopy. When the EuIII-dtpa-bis(guanine) was introduced to the adenine (Ad) solution, the fluorescence emission intensity was significantly enhanced. However, adding other bases such as guanine (Gu), xanthine (Xa), hypoxanthine (Hy) and uric acid (Ur) with similar composition and structure to that of adenine (Ad) to the EuIII-dtpa-bis(guanine) solution, the fluorescence emission intensities are nearly invariable. Meanwhile, the interference of guanine (Gu), xanthine (Xa), hypoxanthine (Hy) and uric acid (Ur) on the detection of the adenine using EuIII-dtpa-bis(guanine) probe was also studied. It was found that presence of these bases does not affect the detection of adenine (Ad). A linear response of fluorescence emission intensities of EuIII-dtpa-bis(guanine) at 570 nm as a function of adenine (Ad) concentration in the range of 0.00-5.00 × 10- 5 mol L- 1 was observed. The detection limit is about 4.70 × 10- 7 mol L- 1.

  14. Gold(I)-Triphenylphosphine Complexes with Hypoxanthine-Derived Ligands: In Vitro Evaluations of Anticancer and Anti-Inflammatory Activities

    PubMed Central

    Křikavová, Radka; Hošek, Jan; Vančo, Ján; Hutyra, Jakub; Dvořák, Zdeněk; Trávníček, Zdeněk

    2014-01-01

    A series of gold(I) complexes involving triphenylphosphine (PPh3) and one N-donor ligand derived from deprotonated mono- or disubstituted hypoxanthine (HLn) of the general composition [Au(Ln)(PPh3)] (1–9) is reported. The complexes were thoroughly characterized, including multinuclear high resolution NMR spectroscopy as well as single crystal X-ray analysis (for complexes 1 and 3). The complexes were screened for their in vitro cytotoxicity against human cancer cell lines MCF7 (breast carcinoma), HOS (osteosarcoma) and THP-1 (monocytic leukaemia), which identified the complexes 4–6 as the most promising representatives, who antiproliferative activity was further tested against A549 (lung adenocarcinoma), G-361 (melanoma), HeLa (cervical cancer), A2780 (ovarian carcinoma), A2780R (ovarian carcinoma resistant to cisplatin), 22Rv1 (prostate cancer) cell lines. Complexes 4–6 showed a significantly higher in vitro anticancer effect against the employed cancer cells, except for G-361, as compared with the commercially used anticancer drug cisplatin, with IC50 ≈ 1–30 µM. Anti-inflammatory activity was evaluated in vitro by the assessment of the ability of the complexes to modulate secretion of the pro-inflammatory cytokines, i.e. tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), in the lipopolysaccharide-activated macrophage-like THP-1 cell model. The results of this study identified the complexes as auspicious anti-inflammatory agents with similar or better activity as compared with the clinically applied gold-based antiarthritic drug Auranofin. In an effort to explore the possible mechanisms responsible for the biological effect, the products of interactions of selected complexes with sulfur-containing biomolecules (L-cysteine and reduced glutathione) were studied by means of the mass-spectrometry study. PMID:25226034

  15. Theoretical and experimental studies on the corrosion inhibition potentials of some purines for aluminum in 0.1 M HCl

    PubMed Central

    Eddy, Nnabuk O.; Momoh-Yahaya, H.; Oguzie, Emeka E.

    2014-01-01

    Experimental aspect of the corrosion inhibition potential of adenine (AD), guanine (GU) and, hypoxanthine (HYP) was carried out using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods while the theoretical aspect of the work was carried out by calculations of semi-empirical parameters (for AM1, MNDO, CNDO, PM3 and RM1 Hamiltonians), Fukui functions and inhibitor–metal interaction energies. Results obtained from the experimental studies were in good agreement and indicated that adenine (AD), guanine (GU) and hypoxanthine (HYP) are good adsorption inhibitors for the corrosion of aluminum in solutions of HCl. Data obtained from electrochemical experiment revealed that the studied purines functioned by adsorption on the aluminum/HCl interface and inhibited the cathodic half reaction to a greater extent and anodic half reaction to a lesser extent. The adsorption of the purines on the metal surface was found to be exothermic and spontaneous. Deviation of the adsorption characteristics of the studied purines from the Langmuir adsorption model was compensated by the fitness of Flory Huggins and El Awardy et al. adsorption models. Quantum chemical studies revealed that the experimental inhibition efficiencies of the studied purines are functions of some quantum chemical parameters including total energy of the molecules (TE), energy gap (EL–H), electronic energy of the molecule (EE), dipole moment and core–core repulsion energy (CCR). Fukui functions analysis through DFT and MP2 theories indicated slight complications and unphysical results. However, results obtained from calculated Huckel charges, molecular orbital and interaction energies, the adsorption of the inhibitors proceeded through the imine nitrogen (N5) in GU, emanine nitrogen (N7) in AD and the pyridine nitrogen (N5) in HPY. PMID:25750754

  16. Theoretical and experimental studies on the corrosion inhibition potentials of some purines for aluminum in 0.1 M HCl.

    PubMed

    Eddy, Nnabuk O; Momoh-Yahaya, H; Oguzie, Emeka E

    2015-03-01

    Experimental aspect of the corrosion inhibition potential of adenine (AD), guanine (GU) and, hypoxanthine (HYP) was carried out using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods while the theoretical aspect of the work was carried out by calculations of semi-empirical parameters (for AM1, MNDO, CNDO, PM3 and RM1 Hamiltonians), Fukui functions and inhibitor-metal interaction energies. Results obtained from the experimental studies were in good agreement and indicated that adenine (AD), guanine (GU) and hypoxanthine (HYP) are good adsorption inhibitors for the corrosion of aluminum in solutions of HCl. Data obtained from electrochemical experiment revealed that the studied purines functioned by adsorption on the aluminum/HCl interface and inhibited the cathodic half reaction to a greater extent and anodic half reaction to a lesser extent. The adsorption of the purines on the metal surface was found to be exothermic and spontaneous. Deviation of the adsorption characteristics of the studied purines from the Langmuir adsorption model was compensated by the fitness of Flory Huggins and El Awardy et al. adsorption models. Quantum chemical studies revealed that the experimental inhibition efficiencies of the studied purines are functions of some quantum chemical parameters including total energy of the molecules (TE), energy gap (E L-H), electronic energy of the molecule (EE), dipole moment and core-core repulsion energy (CCR). Fukui functions analysis through DFT and MP2 theories indicated slight complications and unphysical results. However, results obtained from calculated Huckel charges, molecular orbital and interaction energies, the adsorption of the inhibitors proceeded through the imine nitrogen (N5) in GU, emanine nitrogen (N7) in AD and the pyridine nitrogen (N5) in HPY.

  17. The effect of xanthine oxidase and hypoxanthine on the permeability of red cells from patients with sickle cell anemia.

    PubMed

    Al Balushi, Halima W M; Rees, David C; Brewin, John N; Hannemann, Anke; Gibson, John S

    2018-03-01

    Red cells from patients with sickle cell anemia (SCA) are under greater oxidative challenge than those from normal individuals. We postulated that oxidants generated by xanthine oxidase (XO) and hypoxanthine (HO) contribute to the pathogenesis of SCA through altering solute permeability. Sickling, activities of the main red cell dehydration pathways (P sickle , Gardos channel, and KCl cotransporter [KCC]), and cell volume were measured at 100, 30, and 0 mmHg O 2 , together with deoxygenation-induced nonelectrolyte hemolysis. Unexpectedly, XO/HO mixtures had mainly inhibitory effects on sickling, P sickle , and Gardos channel activities, while KCC activity and nonelectrolyte hemolysis were increased. Gardos channel activity was significantly elevated in red cells pharmacologically loaded with Ca 2+ using the ionophore A23187, consistent with an effect on the transport system per se as well as via Ca 2+ entry likely via the P sickle pathway. KCC activity is controlled by several pairs of conjugate protein kinases and phosphatases. Its activity, however, was also stimulated by XO/HO mixtures in red cells pretreated with N-ethylmaleimide (NEM), which is thought to prevent regulation via changes in protein phosphorylation, suggesting that the oxidants formed could also have direct effects on this transporter. In the presence of XO/HO, red cell volume was better maintained in deoxygenated red cells. Overall, the most notable effect of XO/HO mixtures was an increase in red cell fragility. These findings increase our understanding of the effects of oxidative challenge in SCA patients and are relevant to the behavior of red cells in vivo. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  18. Genetic and molecular characterization of a gene encoding a wide specificity purine permease of Aspergillus nidulans reveals a novel family of transporters conserved in prokaryotes and eukaryotes.

    PubMed

    Diallinas, G; Gorfinkiel, L; Arst, H N; Cecchetto, G; Scazzocchio, C

    1995-04-14

    In Aspergillus nidulans, loss-of-function mutations in the uapA and azgA genes, encoding the major uric acid-xanthine and hypoxanthine-adenine-guanine permeases, respectively, result in impaired utilization of these purines as sole nitrogen sources. The residual growth of the mutant strains is due to the activity of a broad specificity purine permease. We have identified uapC, the gene coding for this third permease through the isolation of both gain-of-function and loss-of-function mutations. Uptake studies with wild-type and mutant strains confirmed the genetic analysis and showed that the UapC protein contributes 30% and 8-10% to uric acid and hypoxanthine transport rates, respectively. The uapC gene was cloned, its expression studied, its sequence and transcript map established, and the sequence of its putative product analyzed. uapC message accumulation is: (i) weakly induced by 2-thiouric acid; (ii) repressed by ammonium; (iii) dependent on functional uaY and areA regulatory gene products (mediating uric acid induction and nitrogen metabolite repression, respectively); (iv) increased by uapC gain-of-function mutations which specifically, but partially, suppress a leucine to valine mutation in the zinc finger of the protein coded by the areA gene. The putative uapC gene product is a highly hydrophobic protein of 580 amino acids (M(r) = 61,251) including 12-14 putative transmembrane segments. The UapC protein is highly similar (58% identity) to the UapA permease and significantly similar (23-34% identity) to a number of bacterial transporters. Comparisons of the sequences and hydropathy profiles of members of this novel family of transporters yield insights into their structure, functionally important residues, and possible evolutionary relationships.

  19. Energy status of pig donor organs after ischemia is independent of donor type.

    PubMed

    Stadlbauer, Vanessa; Stiegler, Philipp; Taeubl, Philipp; Sereinigg, Michael; Puntschart, Andreas; Bradatsch, Andrea; Curcic, Pero; Seifert-Held, Thomas; Zmugg, Gerda; Stojakovic, Tatjana; Leopold, Barbara; Blattl, Daniela; Horki, Vera; Mayrhauser, Ursula; Wiederstein-Grasser, Iris; Leber, Bettina; Jürgens, Günther; Tscheliessnigg, Karlheinz; Hallström, Seth

    2013-04-01

    Literature is controversial whether organs from living donors have a better graft function than brain dead (BD) and non-heart-beating donor organs. Success of transplantation has been correlated with high-energy phosphate (HEP) contents of the graft. HEP contents in heart, liver, kidney, and pancreas from living, BD, and donation after cardiac death in a pig model (n=6 per donor type) were evaluated systematically. BD was induced under general anesthesia by inflating a balloon in the epidural space. Ten hours after confirmation, organs were retrieved. Cardiac arrest was induced by 9V direct current. After 10min of ventricular fibrillation without cardiac output, mechanical and medical reanimation was performed for 30min before organ retrieval. In living donors, organs were explanted immediately. Freeze-clamped biopsies were taken before perfusion with Celsior solution (heart) or University of Wisconsin solution (abdominal organs) in BD and living donors or with Histidine-Tryptophan-Ketoglutaric solution (all organs) in non-heart-beating donors, after perfusion, and after cold ischemia (4h for heart, 6h for liver and pancreas, and 12h for kidney). HEPs (adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, and phosphocreatine), xanthine, and hypoxanthine were measured by high-performance liquid chromatography. Energy charge and adenosine triphosphate-to-adenosine diphosphate ratio were calculated. After ischemia, organs from different donor types showed no difference in energy status. In all organs, a decrease of HEP and an increase in hypoxanthine contents were observed during perfusion and ischemia, irrespective of the donor type. Organs from BD or non-heart-beating donors do not differ from living donor organs in their energy status after average tolerable ischemia. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Antioxidant and neurosedative properties of polyphenols and iridoids from Lippia alba.

    PubMed

    Hennebelle, Thierry; Sahpaz, Sevser; Gressier, Bernard; Joseph, Henry; Bailleul, François

    2008-02-01

    The neurosedative and antioxidative properties of some major compounds isolated from a citral chemotype of Lippia alba were investigated. Binding assays were performed on two CNS inhibitory targets: benzodiazepine and GABA(A) receptors. The most active compound was luteolin-7-diglucuronide, with half maximal inhibitory concentrations (IC(50)) of 101 and 40 microm, respectively. Fifteen compounds isolated from Lippia alba were tested for their radical scavenging capacities against DPPH. Four of the major compounds (verbascoside, calceolarioside E, luteolin-7-diglucuronide and theveside) were also tested for their antioxidant activity against superoxide radical-anion in cell-free (hypoxanthine-xanthine oxidase) and cellular (PMA-stimulated neutrophil granulocytes) systems.

  1. Effects of AIT-082, a purine derivative, on tremor induced by arecoline or oxotremorine in mice.

    PubMed

    Nannan, Gao; Runmei, Yang; Fusheng, Lin; Shoulan, Zhang; Guangqing, Lei

    2007-01-01

    The effects of AIT-082, a hypoxanthine derivative, on tremor in mice were investigated. The mice received intragastric administration of AIT-082 for consecutive 60 days at doses of 150, 300 and 600 mg.kg(-1). The results showed that AIT-082 not only effectively inhibited the tremor induced by arecoline or oxotremorine, but also alleviated the tremor intensity and significantly shortened the tremor durations. The inhibition of tremor was perhaps associated with the central cholinergic nerve depressant effects as well as the stimulation of proliferation and differentiation of nerve cells. Copyright (c) 2007 S. Karger AG, Basel.

  2. The first report of disseminated Nocardia concava infection, in an immunocompromised patient, in South Korea.

    PubMed

    Lee, Seung-Hoon; Sung, Heungseop; Lee, Sang-Oh; Choi, Sang-Ho; Kim, Yang-Soo; Woo, Jun-Hee; Kim, Sung-Han

    2012-10-01

    A new Nocardia species, N. concava, was first reported in Japan in 2005. To date, there have been only 3 case reports of N. concava infection worldwide (2 in Japan and 1 in China), and only 1 of these reports has detailed the clinical characteristics of N. concava, in China. Here we report the first case of disseminated infection caused by N. concava- in a patient with a history of glucocorticoid use-in South Korea. Species identification of N. concava was done with 16S rRNA sequencing and was confirmed by biochemical tests using urea, xanthine, tyrosine, and hypoxanthine decomposition. The patient was successfully treated with trimethoprim-sulfamethoxazole.

  3. Evaluation of Chloropentafluorobenzene in a Battery of in vitro Short Term Assays

    DTIC Science & Technology

    1986-01-01

    metabolic activation. The CHO/HGPRT assay measures the ability of a test agent to induce forward mutations at the enzyme hypoxanthine-guanine...phosphoribosyl transferase (HGPRT) locus of Chinese hamster ovary cells on the basis- that presumptive mutants defective in the enzyme HGPRT are unable to...10 0 4.) $4 coc H4 0 o uE p- ’-’ coQ i u ,q10 t GD 4- r ) c41 uH 0 0 41GD c t Ia) U, 40 r. 4 coV P-1- 41 E-4 0 .Z ~-H 1 0) N Cu I0 m : L0 0 z4v- +10

  4. Maternal blood total oxypurines and erythrocyte 2,3-diphosphoglycerate levels during normal pregnancy.

    PubMed

    Mizutani, S; Akiyama, H; Kurauchi, O; Taira, H; Yamada, R; Narita, O; Tomoda, Y

    1985-01-01

    The effects of pregnancy on the levels of maternal plasma total oxypurines (hypoxanthine, xanthine and uric acid) and erythrocyte 2,3-diphosphoglycerate (2,3-DPG) was investigated. With advancing gestation there was a slight increasing tendency in plasma total oxypurines as well as erythrocyte 2,3-DPG in pregnant women. When the ratio of 2,3-DPG to total oxypurines was calculated, the ratio was almost unchanged until week 34. After week 35, the ratio decreased to week 37; the ratios between week 37 and 40 had similar values to cord blood. The above data suggest that the changes of these metabolites in maternal peripheral blood may be indicative for hypoxia with fetoplacental tissue.

  5. Inhibitory effect of nicergoline on superoxide generation by activated rat microglias measured using a simple chemiluminescence method.

    PubMed

    Yoshida, T; Tanaka, M; Okamoto, K

    2001-01-05

    We evaluated the effect of nicergoline on superoxide production by rat microglias using a 2-methyl-6-(p-methoxyphenyl)-3, 7-dihydroimidazo[1,2-a]pyrazin-3-one-dependent chemiluminescence assay. Nicergoline dose-dependently inhibited superoxide production by microglias stimulated with phorbol myristate acetate or opsonized zymosan, while it had no effect on superoxide production by a hypoxanthine-xanthine oxidase system. These results indicate that nicergoline does not have a scavenging effect, but has an inhibitory effect on superoxide generation by microglias. Although this drug is commonly used for treating chronic cerebral infarction, it may also have a protective effect on progression of Parkinson's disease or Alzheimer's disease.

  6. A HILIC-UHPLC-MS/MS untargeted urinary metabonomics combined with quantitative analysis of five polar biomarkers on osteoporosis rats after oral administration of Gushudan.

    PubMed

    Wu, Xiao; Huang, Yue; Sun, Jinghan; Wen, Yongqing; Qin, Feng; Zhao, Longshan; Xiong, Zhili

    2018-01-01

    A HILIC-UHPLC-MS/MS untargeted urinary metabonomic method combined with quantitative analysis of five potential polar biomarkers in rat urine was developed and validated, to further understand the anti-osteoporosis effect of Gushudan(GSD) and its mechanism on prednisolone-induced osteoporosis(OP) rats in this study. The metabolites were separated and identified on Waters BEH HILIC (2.1mm×100mm, 1.7μm) column using the Waters ACQUITY™ ultra performance liquid chromatography system (Waters Corporation, Milford, USA) coupled with a Micromass Quattro Micro™ API mass spectrometer (Waters Corp, Milford, MA, USA). Principal component analysis (PCA) was used to identify potential biomarkers. Primary potential polar biomarkers including creatinine, taurine, betaine, hypoxanthine and cytosine, which were related to energy metabolism, lipid metabolism and amino acid metabolism, were found in the untargeted metabonomic research. Moreover, these targeted biomarkers were further separated and quantified in multiple-reaction monitoring (MRM) with positive ionization mode, using tinidazole as internal standard (I.S.). Good linearities (r>0.99) were obtained for all the analytes with the low limit of quantification from 1.00 to 12.8μg/mL. The relative standard deviation (RSD) of the intra-day and inter-day precisions were within 15.0% and the accuracy ranged from -14.3% to 13.5%. The recovery was more than 85.0%. And the validated method was successfully applied to investigate the urine samples of the control group, prednisolone-induced osteoporosis model group and Gushudan-treatment group in rats. Compared to the control group, the level of creatinine, taurine, betaine, hypoxanthine and cytosine in the model group revealed a significant decrease trend (p<0.05), while the Gushudan-treatment group showed no statistically differences by an independent sample t-test. This paper provided a better understanding of the therapeutic effect and mechanism of GSD on prednisolone-induced osteoporosis rats. Copyright © 2017. Published by Elsevier B.V.

  7. Breastmilk-Saliva Interactions Boost Innate Immunity by Regulating the Oral Microbiome in Early Infancy

    PubMed Central

    Al-Shehri, Saad S.; Knox, Christine L.; Liley, Helen G.; Cowley, David M.; Wright, John R.; Henman, Michael G.; Hewavitharana, Amitha K.; Charles, Bruce G.; Shaw, Paul N.; Sweeney, Emma L.; Duley, John A.

    2015-01-01

    Introduction Xanthine oxidase (XO) is distributed in mammals largely in the liver and small intestine, but also is highly active in milk where it generates hydrogen peroxide (H2O2). Adult human saliva is low in hypoxanthine and xanthine, the substrates of XO, and high in the lactoperoxidase substrate thiocyanate, but saliva of neonates has not been examined. Results Median concentrations of hypoxanthine and xanthine in neonatal saliva (27 and 19 μM respectively) were ten-fold higher than in adult saliva (2.1 and 1.7 μM). Fresh breastmilk contained 27.3±12.2 μM H2O2 but mixing baby saliva with breastmilk additionally generated >40 μM H2O2, sufficient to inhibit growth of the opportunistic pathogens Staphylococcus aureus and Salmonella spp. Oral peroxidase activity in neonatal saliva was variable but low (median 7 U/L, range 2–449) compared to adults (620 U/L, 48–1348), while peroxidase substrate thiocyanate in neonatal saliva was surprisingly high. Baby but not adult saliva also contained nucleosides and nucleobases that encouraged growth of the commensal bacteria Lactobacillus, but inhibited opportunistic pathogens; these nucleosides/bases may also promote growth of immature gut cells. Transition from neonatal to adult saliva pattern occurred during the weaning period. A survey of saliva from domesticated mammals revealed wide variation in nucleoside/base patterns. Discussion and Conclusion During breast-feeding, baby saliva reacts with breastmilk to produce reactive oxygen species, while simultaneously providing growth-promoting nucleotide precursors. Milk thus plays more than a simply nutritional role in mammals, interacting with infant saliva to produce a potent combination of stimulatory and inhibitory metabolites that regulate early oral–and hence gut–microbiota. Consequently, milk-saliva mixing appears to represent unique biochemical synergism which boosts early innate immunity. PMID:26325665

  8. Effects of cooking method and final core-temperature on cooking loss, lipid oxidation, nucleotide-related compounds and aroma volatiles of Hanwoo brisket

    PubMed Central

    2018-01-01

    Objective This study observed the effects of cooking method and final core temperature on cooking loss, lipid oxidation, aroma volatiles, nucleotide-related compounds and aroma volatiles of Hanwoo brisket (deep pectoralis). Methods Deep pectoralis muscles (8.65% of crude fat) were obtained from three Hanwoo steer carcasses with 1+ quality grade. Samples were either oven-roasted at 180°C (dry heat) or cooked in boiling water (moist heat) to final core temperature of 70°C (medium) or 77°C (well-done). Results Boiling method reduced more fat but retained more moisture than did the oven roasting method (p<0.001), thus no significant differences were found on cooking loss. However, samples lost more weight as final core temperature increased (p<0.01). Further, total saturated fatty acid increased (p = 0.02) while total monounsaturated fatty acid decreased (p = 0.03) as final core temperature increased. Regardless the method used for cooking, malondialdehyde (p<0.01) and free iron contents (p<0.001) were observed higher in samples cooked to 77°C. Oven roasting retained more inosinic acid, inosine and hypoxanthine in samples than did the boiling method (p<0.001), of which the concentration decreased as final core temperature increased except for hypoxanthine. Samples cooked to 77°C using oven roasting method released more intense aroma than did the others and the aroma pattern was discriminated based on the intensity. Most of aldehydes and pyrazines were more abundant in oven-roasted samples than in boiled samples. Among identified volatiles, hexanal had the highest area unit in both boiled and oven-roasted samples, of which the abundance increased as the final core temperature increased. Conclusion The boiling method extracted inosinic acid and rendered fat from beef brisket, whereas oven roasting intensified aroma derived from aldehydes and pyrazines and prevented the extreme loss of inosinic acid. PMID:28728407

  9. Superoxide anion radical-triggered Ca2+ release from cardiac sarcoplasmic reticulum through ryanodine receptor Ca2+ channel.

    PubMed

    Kawakami, M; Okabe, E

    1998-03-01

    The ryanodine receptor Ca2+ channel (RyRC) constitutes the Ca2+-release pathway in sarcoplasmic reticulum (SR) of cardiac muscle. A direct mechanical and a Ca2+-triggered mechanism (Ca2+-induced Ca2+ release) have been proposed to explain the in situ activation of Ca2+ release in cardiac muscle. A variety of chemical oxidants have been shown to activate RyRC; however, the role of modification induced by oxygen-derived free radicals in pathological states of the muscle remains to be elucidated. It has been hypothesized that oxygen-derived free radicals initiate Ca2+-mediated functional changes in or damage to cardiac muscle by acting on the SR and promoting an increase in Ca2+ release. We confirmed that superoxide anion radical (O2-) generated from hypoxanthine-xanthine oxidase reaction decreases calmodulin content and increases 45Ca2+ efflux from the heavy fraction of canine cardiac SR vesicles; hypoxanthine-xanthine oxidase also decreases Ca2+ free within the intravesicular space of the SR with no effect on Ca2+-ATPase activity. Current fluctuations through single Ca2+-release channels have been monitored after incorporation into planar phospholipid bilayers. We demonstrate that activation of the channel by O2- is dependent of the presence of calmodulin and identified calmodulin as a functional mediator of O2--triggered Ca2+ release through the RyRC. For the first time, we show that O2- stimulates Ca2+ release from heavy SR vesicles and suggest the importance of accessory proteins such as calmodulin in modulating the effect of O2-. The decreased calmodulin content induced by oxygen-derived free radicals, especially O2-, is a likely mechanism of accumulation of cytosolic Ca2+ (due to increased Ca2+ release from SR) after reperfusion of the ischemic heart.

  10. Effects of salicylic acid on post-ischaemic ventricular function and purine efflux in isolated mouse hearts.

    PubMed

    Farthing, Don; Gehr, Lynne; Karnes, H Thomas; Sica, Domenic; Gehr, Todd; Larus, Terri; Farthing, Christine; Xi, Lei

    2007-01-01

    Acetyl salicylic acid (aspirin) is one of the most widely used drugs in the world. Various plasma concentrations of aspirin and its predominant metabolite, salicylic acid, are required for its antiarthritic (1.5-2.5 mM), anti-inflammatory (0.5-5.0 mM) or antiplatelet (0.18-0.36 mM) actions. A recent study demonstrated the inhibitory effects of both aspirin and salicylic acid on oxidative phosphorylation and ATP synthesis in isolated rat cardiac mitochondria in a dose-dependent manner (0-10 mM concentration range). In this context, the present study was conducted to determine the effects of salicylic acid on inosine efflux (a potential biomarker of acute cardiac ischaemia) as well as cardiac contractile function in the isolated mouse heart following 20 min of zero-flow global ischaemia. Inosine efflux was found at significantly higher concentrations in ischaemic hearts perfused with Krebs buffer fortified with 1.0 mM salicylic acid compared with those without salicylic acid (12575+/-3319 vs. 1437+/-348 ng ml(-1) min(-1), mean+/-SEM, n=6 per group, p<0.01). These results indicate that 1.0 mM salicylic acid potentiates 8.8-fold ATP nucleotide purine catabolism into its metabolites (e.g. inosine, hypoxanthine). Salicylic acid (0.1 or 1.0 mM) did not appreciably inhibit purine nucleoside phosphorylase (the enzyme converts inosine to hypoxanthine) suggesting the augmented inosine efflux was due to the salicylic acid effect on upstream elements of cellular respiration. Whereas post-ischaemic cardiac function was further depressed by 1.0 mM salicylic acid, perfusion with 0.1 mM salicylic acid led to a remarkable functional improvement despite moderately increased inosine efflux (2.7-fold). We conclude that inosine is a sensitive biomarker for detecting cardiac ischaemia and salicylic acid-induced effects on cellular respiration. However, the inosine efflux level appears to be a poor predictor of the individual post-ischaemic cardiac functional recovery in this ex vivo model.

  11. Endogenous flow-induced superoxide stimulates Na/H exchange activity via PKC in thick ascending limbs

    PubMed Central

    Garvin, Jeffrey L.

    2014-01-01

    Luminal flow stimulates Na reabsorption along the nephron and activates protein kinase C (PKC) which enhances endogenous superoxide (O2−) production by thick ascending limbs (TALs). Exogenously-added O2− augments TAL Na reabsorption, a process also dependent on PKC. Luminal Na/H exchange (NHE) mediates NaHCO3 reabsorption. However, whether flow-stimulated, endogenously-produced O2− enhances luminal NHE activity and the signaling pathway involved are unclear. We hypothesized that flow-induced production of endogenous O2− stimulates luminal NHE activity via PKC in TALs. Intracellular pH recovery was measured as an indicator of NHE activity in isolated, perfused rat TALs. Increasing luminal flow from 5 to 20 nl/min enhanced total NHE activity from 0.104 ± 0.031 to 0.167 ± 0.036 pH U/min, 81%. The O2− scavenger tempol decreased total NHE activity by 0.066 ± 0.011 pH U/min at 20 nl/min but had no significant effect at 5 nl/min. With the NHE inhibitor EIPA in the bath to block basolateral NHE, tempol reduced flow-enhanced luminal NHE activity by 0.029 ± 0.010 pH U/min, 30%. When experiments were repeated with staurosporine, a nonselective PKC inhibitor, tempol had no effect. Because PKC could mediate both induction of O2− by flow and the effect of O2− on luminal NHE activity, we used hypoxanthine/xanthine oxidase to elevate O2−. Hypoxanthine/xanthine oxidase increased luminal NHE activity by 0.099 ± 0.020 pH U/min, 137%. Staurosporine and the PKCα/β1-specific inhibitor Gö6976 blunted this effect. We conclude that flow-induced O2− stimulates luminal NHE activity in TALs via PKCα/β1. This accounts for part of flow-stimulated bicarbonate reabsorption by TALs. PMID:25080525

  12. Structure of Cryptosporidium IMP dehydrogenase bound to an inhibitor with in vivo antiparasitic activity

    DOE PAGES

    Kim, Youngchang; Makowska-Grzyska, Magdalena; Gorla, Suresh Kumar; ...

    2015-04-21

    Inosine 5´-monophosphate dehydrogenase (IMPDH) is a promising target for the treatment of Cryptosporidium infections. Here, the structure of C. parvum IMPDH ( CpIMPDH) in complex with inosine 5´-monophosphate (IMP) and P131, an inhibitor with in vivo anticryptosporidial activity, is reported. P131 contains two aromatic groups, one of which interacts with the hypoxanthine ring of IMP, while the second interacts with the aromatic ring of a tyrosine in the adjacent subunit. In addition, the amine and NO 2 moieties bind in hydrated cavities, forming water-mediated hydrogen bonds to the protein. The design of compounds to replace these water molecules is amore » new strategy for the further optimization of C. parvum inhibitors for both antiparasitic and antibacterial applications.« less

  13. Antimalarial activity of 4-(5-trifluoromethyl-1H-pyrazol-1-yl)-chloroquine analogues.

    PubMed

    Cunico, Wilson; Cechinel, Cleber A; Bonacorso, Helio G; Martins, Marcos A P; Zanatta, Nilo; de Souza, Marcus V N; Freitas, Isabela O; Soares, Rodrigo P P; Krettli, Antoniana U

    2006-02-01

    The antimalarial activity of chloroquine-pyrazole analogues, synthesized from the reaction of 1,1,1-trifluoro-4-methoxy-3-alken-2-ones with 4-hydrazino-7-chloroquinoline, has been evaluated in vitro against a chloroquine resistant Plasmodium falciparum clone. Parasite growth in the presence of the test drugs was measured by incorporation of [(3)H]hypoxanthine in comparison to controls with no drugs. All but one of the eight (4,5-dihydropyrazol-1-yl) chloroquine 2 derivatives tested showed a significant activity in vitro, thus, are a promising new class of antimalarials. The three most active ones were also tested in vivo against Plasmodium berghei in mice. However, the (pyrazol-1-yl) chloroquine 3 derivatives were mostly inactive, suggesting that the aromatic functionality of the pyrazole ring was critical.

  14. Structure of Cryptosporidium IMP dehydrogenase bound to an inhibitor with in vivo antiparasitic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Youngchang; Makowska-Grzyska, Magdalena; Gorla, Suresh Kumar

    2015-04-21

    Inosine 5'-monophosphate dehydrogenase (IMPDH) is a promising target for the treatment ofCryptosporidiuminfections. Here, the structure ofC. parvumIMPDH (CpIMPDH) in complex with inosine 5'-monophosphate (IMP) and P131, an inhibitor within vivoanticryptosporidial activity, is reported. P131 contains two aromatic groups, one of which interacts with the hypoxanthine ring of IMP, while the second interacts with the aromatic ring of a tyrosine in the adjacent subunit. In addition, the amine and NO 2moieties bind in hydrated cavities, forming water-mediated hydrogen bonds to the protein. The design of compounds to replace these water molecules is a new strategy for the further optimization ofC. parvuminhibitorsmore » for both antiparasitic and antibacterial applications.« less

  15. 1-Methyl-beta-carboline (harmane), a potent endogenous inhibitor of benzodiazepine receptor binding.

    PubMed

    Rommelspacher, H; Nanz, C; Borbe, H O; Fehske, K J; Müller, W E; Wollert, U

    1980-10-01

    The interaction of several beta-carbolines with specific [3H]-flunitrazepam binding to benzodiazepine receptors in rat brain membranes was investigated. Out of the investigated compounds, harmane and norharmane were the most potent inhibitors of specific [3H]-flunitrazepam binding, with IC50-values in the micromolar range. All other derivatives, including harmine, harmaline, and several tetrahydroderivatives were at least ten times less potent. Harmane has been previously found in rat brain and human urine, so it is the most potent endogenous inhibitor of specific [3H]-flunitrazepam binding known so far, with a several fold higher affinity for the benzodiazepine receptor than inosine and hypoxanthine. Thus, we suggest that harmane or other related beta-carbolines could be potential candidates as endogenous ligands of the benzodiazepine receptor.

  16. Estimates of cellular mutagenesis from cosmic rays

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.

    1994-01-01

    A parametric track structure model is used to estimate the cross section as a function of particle velocity and charge for mutations at the hypoxanthine guanine phosphoribosyl transferase (HGPRT) locus in human fibroblast cell cultures. Experiments that report the fraction of mutations per surviving cell for human lung and skin fibroblast cells indicate small differences in the mutation cross section for these two cell lines when differences in inactivation rates between these cell lines are considered. Using models of cosmic ray transport, the mutation rate at the HGPRT locus is estimated for cell cultures in space flight and rates of about 2 to 10 x 10(exp -6) per year are found for typical spacecraft shielding. A discussion of how model assumptions may alter the predictions is also presented.

  17. Hypoxanthine-guanine phosophoribosyltransferase (HPRT) deficiency: Lesch-Nyhan syndrome

    PubMed Central

    Torres, Rosa J; Puig, Juan G

    2007-01-01

    Deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT) activity is an inborn error of purine metabolism associated with uric acid overproduction and a continuum spectrum of neurological manifestations depending on the degree of the enzymatic deficiency. The prevalence is estimated at 1/380,000 live births in Canada, and 1/235,000 live births in Spain. Uric acid overproduction is present inall HPRT-deficient patients and is associated with lithiasis and gout. Neurological manifestations include severe action dystonia, choreoathetosis, ballismus, cognitive and attention deficit, and self-injurious behaviour. The most severe forms are known as Lesch-Nyhan syndrome (patients are normal at birth and diagnosis can be accomplished when psychomotor delay becomes apparent). Partial HPRT-deficient patients present these symptoms with a different intensity, and in the least severe forms symptoms may be unapparent. Megaloblastic anaemia is also associated with the disease. Inheritance of HPRT deficiency is X-linked recessive, thus males are generally affected and heterozygous female are carriers (usually asymptomatic). Human HPRT is encoded by a single structural gene on the long arm of the X chromosome at Xq26. To date, more than 300 disease-associated mutations in the HPRT1 gene have been identified. The diagnosis is based on clinical and biochemical findings (hyperuricemia and hyperuricosuria associated with psychomotor delay), and enzymatic (HPRT activity determination in haemolysate, intact erythrocytes or fibroblasts) and molecular tests. Molecular diagnosis allows faster and more accurate carrier and prenatal diagnosis. Prenatal diagnosis can be performed with amniotic cells obtained by amniocentesis at about 15–18 weeks' gestation, or chorionic villus cells obtained at about 10–12 weeks' gestation. Uric acid overproduction can be managed by allopurinol treatment. Doses must be carefully adjusted to avoid xanthine lithiasis. The lack of precise understanding of the neurological dysfunction has precluded development of useful therapies. Spasticity, when present, and dystonia can be managed with benzodiazepines and gamma-aminobutyric acid inhibitors such as baclofen. Physical rehabilitation, including management of dysarthria and dysphagia, special devices to enable hand control, appropriate walking aids, and a programme of posture management to prevent deformities are recommended. Self-injurious behaviour must be managed by a combination of physical restraints, behavioural and pharmaceutical treatments. PMID:18067674

  18. Application of HPLC to study the kinetics of a branched bi-enzyme system consisting of hypoxanthine-guanine phosphoribosyltransferase and xanthine oxidase--an important biochemical system to evaluate the efficiency of the anticancer drug 6-mercaptopurine in ALL cell line.

    PubMed

    Kalra, Sukirti; Paul, Manash K; Balaram, Hemalatha; Mukhopadhyay, Anup Kumar

    2007-05-01

    The thiopurine antimetabolite 6-mercaptopurine (6MP) is an important chemotherapeutic drug in the conventional treatment of childhood acute lymphoblastic leukemia (ALL). 6MP is mainly catabolized by both hypoxanthine-guanine phosphoribosyltransferase (HGPRT) and xanthine oxidase (XOD) to form thioinosinic monophosphate (TIMP) (therapeutically active metabolite) and 6-thiouric acid (6TUA) (inactive metabolite), respectively. The activity of both the enzymes varies among ALL patients governing the active and the inactive metabolite profile within the immature lymphocytes. Therefore, an attempt was made to study the kinetic nature of the branched bi-enzyme system acting on 6MP and to quantitate TIMP and 6TUA formed when the two enzymes are present in equal and variable ratios. The quantification of the branched kinetics using spectrophotometric method presents problem due to the closely apposed lambda(max) of the substrates and products. Hence, employing an HPLC method, the quantification of the products was done with the progress of time. The limit of quantification (LOQ) of substrate was found to be 10nM and for products as 50 nM. The limit of detection (LOD) was found to be 1 nM for the substrate and the products. The method exhibited linearity in the range of 0.01-100 microM for 6MP and 0.05-100 microM for both 6TUA and TIMP. The amount of TIMP formed was higher than that of 6TUA in the bi-enzyme system when both the enzymes were present in equivalent enzymatic ratio. It was further found that enzymatic ratios play an important role in determining the amounts of TIMP and 6TUA. This method was further validated using actively growing T-ALL cell line (Jurkat) to study the branched kinetics, wherein it was observed that treatment of 50 microM 6MP led to the generation of 12 microM TIMP and 0.8 microM 6TUA in 6 h at 37 degrees C.

  19. High-performance liquid chromatography coupled with post-column dual-bioactivity assay for simultaneous screening of xanthine oxidase inhibitors and free radical scavengers from complex mixture.

    PubMed

    Li, D Q; Zhao, J; Li, S P

    2014-06-06

    Xanthine oxidase (XO) can catalyze hypoxanthine and xanthine to generate uric acid and reactive oxygen species (ROS), including superoxide anion radical (O₂(•-)) and hydrogen peroxide. XO inhibitors and free radical scavengers are beneficial to the treatment of gout and many related diseases. In the present study, an on-line high-performance liquid chromatography (HPLC) coupled with post-column dual-bioactivity assay was established and successfully applied to simultaneously screening of XO inhibitors and free radical scavengers from a complex mixture, Oroxylum indicum extract. The integrated system of HPLC separation, bioactivity screening and mass spectrometry identification was proved to be simple and effective for rapid and sensitive screening of individual bioactive compounds in complex mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Adenosine uptake by the isolated epithelium of guine pig jejunum.

    PubMed

    Kolassa, N; Stengg, R; Turnheim, K

    1977-10-01

    The uptake of [8-14C]adenosine by the isolated epithelium of guinea pig jejunum was faster than that of inosine, hypoxanthine, or adenine. The initial velocity of adenosine uptake from both the luminal and the antiluminal side of the epithelium exhibited saturation kinetics. The apparent Km, V, and passive permeability of luminal adenosine uptake were all lower than the corresponding values of antiluminal uptake. p-Nitrobenzyl-thioguanosine inhibited adenosine uptake from both the luminal and the antiluminal side, whilst hexobendine decreased the uptake only from the antiluminal side of the epithelium. The results suggest that adenosine enters the intestinal epithelium by a carrier-mediated process in addition to passive diffusion. The antiluminal transport system for adenosine seems similar to that of other tissues with respect to hexobendine inhibition; the luminal transport mechanism, however, exhibits different properties, being insensitive to hexobendine.

  1. Time dependent inhibition of xanthine oxidase in irradiated solutions of folic acid, aminopterin and methotrexate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, K.; Pilot, T.F.; Meany, J.E.

    1990-01-01

    The xanthine oxidase catalyzed oxidation of hypoxanthine was followed by monitoring the formation of uric acid at 290 nm. Inhibition of xanthine oxidase occurs in aqueous solutions of folic acid methotrexate and aminopterin. These compounds are known to dissociate upon exposure to ultraviolet light resulting in the formation of their respective 6-formylpteridine derivatives. The relative rates of dissociation were monitored spectrophotometrically by determining the absorbance of their 2,4-dinitrophenylhydrazine derivatives at 500 nm. When aqueous solutions of folic acid, aminopterin and methotrexate were exposed to uv light, a direct correlation was observed between the concentrations of the 6-formylpteridine derivatives existing inmore » solution and the ability of these solutions to inhibit xanthine oxidase. The relative potency of the respective photolysis products were estimated.« less

  2. Introduction of new genetic markers on human chromosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satoh, Hitoshi; Barrett, J.C.; Oshimura, Mitsuo

    1991-03-01

    The purpose of this study was to use DNA transfection and microcell chromosome transfer techniques to engineer a human chromosome containing multiple biochemical markers for which selectable growth conditions exist. The starting chromosome was a t(X;3)(3pter{yields}3p12::Xq26{yields}Xpter) chromosome from a reciprocal translocation in the normal human fibroblast cell line GM0439. This chromosome was transferred to a HPRT (hypoxanthine phosphoribosyltransferase)-deficient mouse A9 cell line by microcell fusion and selected under growth conditions for the HPRT gene on the human t(X;3) chromosome. A resultant HAT-resistant cell line (A9(GM0439)-1) contained a single human t(X;3) chromosome. These results demonstrate that microcell chromosome transfer can bemore » used to select chromosomes containing multiple markers.« less

  3. Ultra-thin layer chromatography with integrated silver colloid-based SERS detection.

    PubMed

    Wallace, Ryan A; Lavrik, Nickolay V; Sepaniak, Michael J

    2017-01-01

    Simplified lab-on-a-chip techniques are desirable for quick and efficient detection of analytes of interest in the field. The following work involves the use of deterministic pillar arrays on the micro-scale as a platform to separate compounds, and the use of Ag colloid within the arrays as a source of increased signal via surface enhanced Raman spectroscopy (SERS). One problem traditionally seen with SERS surfaces containing Ag colloid is oxidation; however, our platforms are superhydrophobic, reducing the amount of oxidation taking place on the surface of the Ag colloid. This work includes the successful separation and SERS detection of a fluorescent dye compounds (resorufin and sulforhodamine 640), fluorescent anti-tumor drugs (Adriamycin and Daunomycin), and purine and pyrimidine bases (adenine, cytosine, guanine, hypoxanthine, and thymine). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Mung bean nuclease: mode of action and specificity vs synthetic esters of 3′-nucleotides

    PubMed Central

    Kole, R.; Sierakowska, Halina; Szemplińska, Halina; Shugar, D.

    1974-01-01

    Mung bean nuclease hydrolyzes synthetic esters of 3′-nucleotides to nucleosides and phosphate esters; esters of 2′-nucleotides, and 2′→ 5′ internucleotide linkages, are resistant. Esters of ribonucleotides are cleaved at 100-fold the rate for deoxyribonucleotides, the increased rate being due to presence of the 2′-hydroxyl and not to differences in conformation. Introduction of a 5′-substituent leads to a 3-fold increase in rate. The rates of hydrolysis vary up to 10-fold with the nature of the base, in the order adenine > hypoxanthine > uracil; and up to 6-fold with the nature of the ester radical. This form of cleavage of esters of 3′-nucleotides is also characteristic for nuclease-3′-nucleotidase activities from potato tubers and wheat, suggesting that one type of enzyme is responsible for all these activities. PMID:10793750

  5. Next generation tools for high-throughput promoter and expression analysis employing single-copy knock-ins at the Hprt1 locus.

    PubMed

    Yang, G S; Banks, K G; Bonaguro, R J; Wilson, G; Dreolini, L; de Leeuw, C N; Liu, L; Swanson, D J; Goldowitz, D; Holt, R A; Simpson, E M

    2009-03-01

    We have engineered a set of useful tools that facilitate targeted single copy knock-in (KI) at the hypoxanthine guanine phosphoribosyl transferase 1 (Hprt1) locus. We employed fine scale mapping to delineate the precise breakpoint location at the Hprt1(b-m3) locus allowing allele specific PCR assays to be established. Our suite of tools contains four targeting expression vectors and a complementing series of embryonic stem cell lines. Two of these vectors encode enhanced green fluorescent protein (EGFP) driven by the human cytomegalovirus immediate-early enhancer/modified chicken beta-actin (CAG) promoter, whereas the other two permit flexible combinations of a chosen promoter combined with a reporter and/or gene of choice. We have validated our tools as part of the Pleiades Promoter Project (http://www.pleiades.org), with the generation of brain-specific EGFP positive germline mouse strains.

  6. PMICALC: an R code-based software for estimating post-mortem interval (PMI) compatible with Windows, Mac and Linux operating systems.

    PubMed

    Muñoz-Barús, José I; Rodríguez-Calvo, María Sol; Suárez-Peñaranda, José M; Vieira, Duarte N; Cadarso-Suárez, Carmen; Febrero-Bande, Manuel

    2010-01-30

    In legal medicine the correct determination of the time of death is of utmost importance. Recent advances in estimating post-mortem interval (PMI) have made use of vitreous humour chemistry in conjunction with Linear Regression, but the results are questionable. In this paper we present PMICALC, an R code-based freeware package which estimates PMI in cadavers of recent death by measuring the concentrations of potassium ([K+]), hypoxanthine ([Hx]) and urea ([U]) in the vitreous humor using two different regression models: Additive Models (AM) and Support Vector Machine (SVM), which offer more flexibility than the previously used Linear Regression. The results from both models are better than those published to date and can give numerical expression of PMI with confidence intervals and graphic support within 20 min. The program also takes into account the cause of death. 2009 Elsevier Ireland Ltd. All rights reserved.

  7. Somatic mutation detection in human biomonitoring.

    PubMed

    Olsen, L S; Nielsen, L R; Nexø, B A; Wassermann, K

    1996-06-01

    Somatic cell gene mutation arising in vivo may be considered to be a biomarker for genotoxicity. Assays detecting mutations of the haemoglobin and glycophorin A genes in red blood cells and of the hypoxanthine-guanine phosphoribosyltransferase and human leucocyte antigenes in T-lymphocytes are available in humans. This MiniReview describes these assays and their application to studies of individuals exposed to genotoxic agents. Moreover, with the implementation of techniques of molecular biology mutation spectra can now be defined in addition to the quantitation of in vivo mutant frequencies. We describe current screening methods for unknown mutations, including the denaturing gradient gel electrophoresis, single strand conformation polymorphism analysis, heteroduplex analysis, chemical modification techniques and enzymatic cleavage methods. The advantage of mutation detection as a biomarker is that it integrates exposure and sensitivity in one measurement. With the analysis of mutation spectra it may thus be possible to identify the causative genotoxic agent.

  8. Enzymatic Incorporation of Modified Purine Nucleotides in DNA.

    PubMed

    Abu El Asrar, Rania; Margamuljana, Lia; Abramov, Mikhail; Bande, Omprakash; Agnello, Stefano; Jang, Miyeon; Herdewijn, Piet

    2017-12-14

    A series of nucleotide analogues, with a hypoxanthine base moiety (8-aminohypoxanthine, 1-methyl-8-aminohypoxanthine, and 8-oxohypoxanthine), together with 5-methylisocytosine were tested as potential pairing partners of N 8 -glycosylated nucleotides with an 8-azaguanine or 8-aza-9-deazaguanine base moiety by using DNA polymerases (incorporation studies). The best results were obtained with the 5-methylisocytosine nucleotide followed by the 1-methyl-8-aminohypoxanthine nucleotide. The experiments demonstrated that small differences in the structure (8-azaguanine versus 8-aza-9-deazaguanine) might lead to significant differences in recognition efficiency and selectivity, base pairing by Hoogsteen recognition at the polymerase level is possible, 8-aza-9-deazaguanine represents a self-complementary base pair, and a correlation exists between in vitro incorporation studies and in vivo recognition by natural bases in Escherichia coli, but this recognition is not absolute (exceptions were observed). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Preventing hepatocyte oxidative stress cytotoxicity with Mangifera indica L. extract (Vimang).

    PubMed

    Remirez, Diadelis; Tafazoli, Shahrzad; Delgado, Rene; Harandi, Asghar A; O'Brien, Peter J

    2005-01-01

    Vimang is an aqueous extract of Mangifera indica used in Cuba to improve the quality of life in patients suffering from inflammatory diseases. In the present study we evaluated the effects of Vimang at preventing reactive oxygen species (ROS) formation and lipid peroxidation in intact isolated rat hepatocytes. Vimang at 20, 50 and 100 microg/ml inhibited hepatocyte ROS formation induced by glucose-glucose oxidase. Hepatocyte cytotoxicity and lipid peroxidation induced by cumene hydroperoxide was also inhibited by Vimang in a dose and time dependent manner at the same concentration. Vimang also inhibited superoxide radical formation by xanthine oxidase and hypoxanthine. The superoxide radical scavenging and antioxidant activity of the Vimang extract was likely related to its gallates, catechins and mangiferin content. To our knowledge, this is the first report of cytoprotective antioxidant effects of Vimang in cellular oxidative stress models.

  10. Methodology and application of flow cytometry for investigation of human malaria parasites.

    PubMed

    Grimberg, Brian T

    2011-03-31

    Historically, examinations of the inhibition of malaria parasite growth/invasion, whether using drugs or antibodies, have relied on the use of microscopy or radioactive hypoxanthine uptake. These are considered gold standards for measuring the effectiveness of antimalarial treatments, however, these methods have well known shortcomings. With the advent of flow cytometry coupled with the use of fluorescent DNA stains allowed for increased speed, reproducibility, and qualitative estimates of the effectiveness of antibodies and drugs to limit malaria parasite growth which addresses the challenges of traditional techniques. Because materials and machines available to research facilities are so varied, different methods have been developed to investigate malaria parasites by flow cytometry. This review is intended to serve as a reference guide for advanced users and importantly, as a primer for new users, to support expanded use and improvements to malaria flow cytometry, particularly in endemic countries. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Catabolism of exogenous deoxyinosine in cultured epithelial amniotic cells.

    PubMed

    Carta, M C; Mattana, A; Camici, M; Allegrini, S; Tozzi, M G; Sgarrella, F

    2001-10-03

    Uptake and catabolism of purine nucleosides have been commonly considered as means to salvage the purine ring for nucleic acid synthesis, usually neglecting the destiny of the pentose moiety. With the aim to ascertain if deoxyribose derived from exogenous DNA can be utilised as a carbon and energy source, we studied the catabolism of exogenous deoxyinosine in a cell line derived from human amnion epithelium (WISH). Intact WISH cells catabolise deoxyinosine by conversion into hypoxanthine. The nucleoside enters the cell through a nitrobenzylthioinosine-insensitive equilibrative transport. Deoxyinosine undergoes a phosphorolytic cleavage inside the cell. The purine base diffuses back to the external medium, while the phosphorylated pentose moiety can be further catabolised to glycolysis and citric acid cycle intermediates. Our results indicate that the catabolism of the deoxynucleoside can be considered mainly as a means to meet the carbon and energy requirements of growing cells.

  12. Red blood cell hypoxanthine phosphoribosyltransferase activity measured using 6-mercaptopurine as a substrate: a population study in children with acute lymphoblastic leukaemia.

    PubMed Central

    Lennard, L; Hale, J P; Lilleyman, J S

    1993-01-01

    1. 6-Mercaptopurine (6-MP) is used in the continuing chemotherapy of childhood acute lymphoblastic leukaemia. The formation of red blood cell (RBC) 6-thioguanine nucleotide (6-TGN) active metabolites, not the dose of 6-MP, is related to cytotoxicity and prognosis. But there is an apparent sex difference in 6-MP metabolism. Boys require more 6-MP than girls to produce the same range of 6-TGN concentrations. Given the same dose, they experience fewer dose reductions because of cytotoxicity, and have a higher relapse rate. 2. The enzyme hypoxanthine phosphoribosyltransferase (HPRT) catalyses the initial activation step in the metabolism of 6-MP to 6-TGNs, a step that requires endogenous phosphoribosyl pyrophosphate (PRPP) as a cosubstrate. Both HPRT and the enzyme responsible for the formation of PRPP are X-linked. 3. RBC HPRT activity was measured in two populations, 86 control children and 63 children with acute lymphoblastic leukaemia. 6-MP was used as the substrate and the formation of the nucleotide product, 6-thioinosinic acid (TIA) was measured. RBC 6-TGN concentrations were measured in the leukaemic children at a standard dose of 6-MP. 4. There was a 1.3 to 1.7 fold range in HPRT activity when measured under optimal conditions. The leukaemic children had significantly higher HPRT activities than the controls (median difference 4.2 micromol TIA ml(-1) RBCs h(-1), 95% C.I. 3.7 to 4.7, P < 0.0001). In the leukaemic children HPRT activity (range 20.4 to 26.6 micromol TIA ml(-1) RBCs h(-1), median 23.6) was not related to the production of 6-TGNs (range 60 to 1,024 pmol 8 x 10(-8) RBCs, median 323). RBC HPRT was present at a high activity even in those children with low 6-TGN concentrations. 5. When HPRT is measured under optimal conditions it does not appear to be the metabolic step responsible for the observed sex difference in 6-MP metabolism. This may be because RBC HPRT activity is not representative of other tissues but it could equally be because other sex-linked factors are influencing substrate availability. PMID:12959304

  13. Development of a bacterial screen for novel hypoxanthine-guanine phosphoribosyltransferase substrates.

    PubMed

    Shivashankar, K; Subbayya, I N; Balaram, H

    2001-10-01

    The lack of de novo purine biosynthesis in many parasitic protozoans makes the enzymes in the salvage of purines attractive chemotherapeutic targets. Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) is a key enzyme for purine salvage and bacterial complementation screens for HGPRT inhibitors are known. The low KMS for purine bases makes purine analogs unattractive as competitive inhibitors for this enzyme. Despite the availability of many crystal structures of HGPRTs, it is only recently that selective inhibitors of the enzyme have been developed. Therefore, novel purine analogs which act as substrates for the HGPRT reaction and thereby inhibit downstream enzymes or get incorporated into the nucleotide pool are an attractive altenative for drug design. We have used a combination of two E. coli strains Sphi606 (ara, deltapro-gpt-lac, thi, hpt) and Sphi609 (ara, deltapro-gpt-lac, thi, hpt, pup, purH,J, strA) to identify inhibitors and substrates of HGPRT. E. coli Sphi609 is deficient in both de novo synthesis as well as salvage enzymes of purine nucleotide synthesis, while E. coli Sphi606 is deficient in salvage enzymes only. Hence, expression of functional HGPRTs in E. coli Sphi606 grown in minimal medium makes it susceptible to HGPRT substrates, which inhibit downstream processes. Growth of E. coli Sphi609 in minimal medium can be made conditional for the expression of a functional HGPRT and this growth would be susceptible to both HGPRT substrate analogs and inhibitors. A substance that strictly acts as an inhibitor will affect growth of transformed E. coli Sphi609 only. For this purpose, we compared the human and P. falciparum enzymes with known HGPRT substrate analogs. Our data with 6-mercaptopurine, 6-thioguanine and allopurinol show that these compounds act by being substrates for HGPRT. Our results with allopurinol suggest that it is a better substrate for P. falciparum HGXPRT than the human enzyme. Therefore, species-specific substrates can be tested out successfully in E. coli Sphi606. The formation of products from substrates like allopurinol lacking a labile proton at N7 raises the possibility that the deprotonation of substrates might occur at N9 rather than at N7 or a purine anion might be the true substrate for the reaction.

  14. Evaluation of anticancer effects and enhanced doxorubicin cytotoxicity of xanthine derivatives using canine hemangiosarcoma cell lines.

    PubMed

    Motegi, Tomoki; Katayama, Masaaki; Uzuka, Yuji; Okamura, Yasuhiko

    2013-10-01

    Methylxanthine derivatives increase cAMP and are known to have diuretic, cardiac, and central nervous system stimulatory effects. Moreover, caffeine inhibits the development of tumors induced by various carcinogens. The aim of this work was to elucidate the anticancer effects on apoptosis of xanthine derivatives alone and with doxorubicin in canine hemangiosarcoma cells. Xanthine derivatives with or without doxorubicin were administered to cells, and the effects were investigated by measuring tumor cell proliferation, cell death (cytotoxicity) induction, and apoptosis by the expression of annexin V or caspase 3/7. Both caffeine and theophylline induced apoptosis, and the treated cells expressed annexin V and caspase 3/7. Both drugs enhanced doxorubicin-induced cytotoxicity; however, hypoxanthine showed no effect. These results indicate that theophylline is similar to caffeine; both drugs may enhance doxorubicin-induced cytotoxicity by inhibiting ATM/ATR kinases. Our data suggest that caffeine and theophylline have anticancer effects and can improve the treatment effect in canine hemangiosarcoma patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Lack of evidence for an association between the frequency of mutants or translocations in circulating lymphocytes and exposure to radon gas in the home.

    PubMed

    Cole, J; Green, M H; Bridges, B A; Waugh, A P; Beare, D M; Henshaw, D; Last, R; Liu, Y; Cortopassi, G

    1996-01-01

    Radon measurements in the living room and main bedroom of 41 houses in the town of Street, Somerset, England have been made. Exposure levels, weighted using the formula of the UK National Radiological Protection Board, of 19-484 Bq m-3 (about half > 100 Bq m-3) were found. Blood samples were obtained from a total of 66 occupants in these homes, and the frequency of genetic alterations in lymphocytes was estimated using two different end points. Gene mutations at the hypoxanthine guanine phosphoribosyl transferase locus were determined in T lymphocytes for 65 subjects using a clonal assay, and the frequency of the BCL-2 t(14;18) translocation, a chromosomal event associated with leukemia/lymphoma, was estimated in lymphocytes using a polymerase chain reaction-based technique for 64 subjects. In neither case was a significant correlation with radon levels in the home found, in contrast to our earlier observation with a smaller series.

  16. Xanthine oxidoreductase and its inhibitors: relevance for gout.

    PubMed

    Day, Richard O; Kamel, Bishoy; Kannangara, Diluk R W; Williams, Kenneth M; Graham, Garry G

    2016-12-01

    Xanthine oxidoreductase (XOR) is the rate-limiting enzyme in purine catabolism and converts hypoxanthine to xanthine, and xanthine into uric acid. When concentrations of uric acid exceed its biochemical saturation point, crystals of uric acid, in the form of monosodium urate, emerge and can predispose an individual to gout, the commonest form of inflammatory arthritis in men aged over 40 years. XOR inhibitors are primarily used in the treatment of gout, reducing the formation of uric acid and thereby, preventing the formation of monosodium urate crystals. Allopurinol is established as first-line therapy for gout; a newer alternative, febuxostat, is used in patients unable to tolerate allopurinol. This review provides an overview of gout, a detailed analysis of the structure and function of XOR, discussion on the pharmacokinetics and pharmacodynamics of XOR inhibitors-allopurinol and febuxostat, and the relevance of XOR in common comorbidities of gout. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  17. Xanthine urolithiasis causing bilateral ureteral obstruction in a 10-month-old cat.

    PubMed

    Mestrinho, Lisa A; Gonçalves, Tiago; Parreira, Pedro B; Niza, Maria M R E; Hamaide, Annick J

    2013-10-01

    Xanthine urolithiasis was diagnosed in a 10-month-old intact female domestic shorthair cat presented with acute renal failure due to bilateral ureteral obstruction. Ultrasonography revealed the presence of multiple uroliths in both kidneys and ureters that were not detectable on previous survey radiographs. Medical management failed and ureteral obstruction persisted with no evidence of stone migration into the bladder. Bilateral ureterotomy with urolith removal was performed in order to relieve the obstruction. The cat recovered from surgery, and blood urea nitrogen and creatinine values decreased within normal limits 6 days postoperatively. Urolith analysis by infrared spectrometry determined xanthine composition, and a higher blood and urine concentration of hypoxanthine and xanthine was also found. At 1-year follow-up, the cat was free of clinical signs. However, ultrasonography of the abdomen revealed small-size calculi in both kidneys, despite the low protein diet intake. The very young age of the animal suggests a possible congenital xanthinuria.

  18. Proton tunneling in the A∙T Watson-Crick DNA base pair: myth or reality?

    PubMed

    Brovarets', Ol'ha O; Hovorun, Dmytro M

    2015-01-01

    The results and conclusions reached by Godbeer et al. in their recent work, that proton tunneling in the A∙T(WC) Watson-Crick (WC) DNA base pair occurs according to the Löwdin's (L) model, but with a small (~10(-9)) probability were critically analyzed. Here, it was shown that this finding overestimates the possibility of the proton tunneling at the A∙T(WC)↔A*∙T*(L) tautomerization, because this process cannot be implemented as a chemical reaction. Furthermore, it was outlined those biologically important nucleobase mispairs (A∙A*↔A*∙A, G∙G*↔G*∙G, T∙T*↔T*∙T, C∙C*↔C*∙C, H∙H*↔H*∙H (H - hypoxanthine)) - the players in the field of the spontaneous point mutagenesis - where the tunneling of protons is expected and for which the application of the model proposed by Godbeer et al. can be productive.

  19. A review of HPRT and its emerging role in cancer.

    PubMed

    Townsend, Michelle H; Robison, Richard A; O'Neill, Kim L

    2018-05-05

    Hypoxanthine guanine phosphoribosyltransferase (HPRT) is a common salvage housekeeping gene with a historically important role in cancer as a mutational biomarker. As an established and well-known human reporter gene for the evaluation of mutational frequency corresponding to cancer development, HPRT is most commonly used to evaluate cancer risk within individuals and determine potential carcinogens. In addition to its use as a reporter gene, HPRT also has important functionality in the body in relation to purine regulation as demonstrated by Lesch-Nyhan patients whose lack of functional HPRT leads to significant purine overproduction and further neural complications. This regulatory role, in addition to an established connection between other salvage enzymes and cancer development, points to HPRT as an emerging influence in cancer. Recent work has shown that not only is the enzyme upregulated within malignant tumors, it also has significant surface localization within some cancer cells. With this is mind, HPRT has the potential to become a significant biomarker not only for the characterization of cancer, but also for its potential treatment.

  20. NMR-based metabolomics reveals the metabolite profiles of Vibrio parahaemolyticus under ferric iron stimulation.

    PubMed

    Zhou, Jun; Lu, Chenyang; Zhang, Dijun; Ma, Chennv; Su, Xiurong

    2017-08-01

    Vibrio parahaemolyticus is a halophilic bacterium endemic to coastal areas, and its pathogenicity has caused widespread seafood poisoning. In our previous research, the protein expression of V. parahaemolyticus in Fe 3+ medium was determined using isobaric tags for relative and absolute quantitation (iTRAQ). Here, nuclear magnetic resonance (NMR) was used to detect changes in the V. parahaemolyticus metabolome. NMR spectra were obtained using methanol-water extracts of intracellular metabolites from V. parahaemolyticus under various culture conditions, and 62 metabolites were identified, including serine, arginine, alanine, ornithine, tryptophan, glutamine, malate, NAD + , NADP + , oxypurinol, xanthosine, dCTP, uracil, thymine, hypoxanthine, and betaine. Among these, 21 metabolites were up-regulated after the stimulation of the cells by ferric iron, and 9 metabolites were down-regulated. These metabolites are involved in amino acid and protein synthesis, energy metabolism, DNA and RNA synthesis and osmolality. Based on these results, we conclude that Fe 3+ influences the metabolite profiles of V. parahaemolyticus.

  1. From genotype to phenotype; clinical variability in Lesch-Nyhan disease. The role of epigenetics.

    PubMed

    Trigueros Genao, M; Torres, R J

    2014-11-01

    Lesch-Nyhan disease is a rare genetic disease characterized by a deficiency in the function of the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT). Patients affected by this disease experience hyperuricemia, motor disorders, mental retardation and, in the most severe cases, self-mutilation. Its clinical manifestations depend on the enzymatic activity of HGPRT, which is classically linked to the type of alteration in the HGPRT gene. More than 400 mutations of this gene have been found. At present, one of the controversial aspects of the disease is the relationship between the genotype and phenotype; cases have been described lacking a mutation, such as the patient presented in this article, as well as families who despite sharing the same genetic defect show disorders with differing severity. Epigenetic processes, which modify the genetic expression without changing the sequence of the deoxyribonucleic acid (DNA), could explain the clinical variability observed in this disease. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  2. Development of Competence of Haemophilus influenzae

    PubMed Central

    Spencer, Hugh T.; Herriott, Roger M.

    1965-01-01

    Spencer, Hugh T. (The Johns Hopkins University School of Hygiene and Public Health, Baltimore, Md.), and Roger M. Herriott. Development of competence of Haemophilus influenzae. J. Bacteriol. 90:911–920. 1965.—A chemically defined nongrowth medium was developed for the induction of competence of Haemophilus influenzae by a stepdown procedure. Cells grown logarithmically in Heart Infusion Broth became competent after being transferred to a medium which consisted of amino acids, sodium fumarate, and inorganic salts. Chloramphenicol (2 μg/ml) or l-valine (1 μg/ml) in the nongrowth medium inhibited development of competence. The inhibitory action of l-valine was reversed by comparable concentrations of l-isoleucine. Kinetic studies of the development of competence showed a variable capacity of competent cells to take up deoxyribonucleic acid and reaffirmed earlier findings that competence was not transmissible in H. influenzae. Addition of nicotinamide adenine dinucleotide, thiamine, calcium pantothenate, uracil, and hypoxanthine to the medium for competence resulted in a minimal growth medium in which reduced levels of competence were developed. PMID:5294817

  3. A flow cytometric method for assessing viability of intraerythrocytic hemoparasites.

    PubMed

    Wyatt, C R; Goff, W; Davis, W C

    1991-06-24

    We have developed a rapid, reliable method of evaluating growth and viability of intraerythrocytic protozoan hemoparasites. The assay involves the selective uptake and metabolic conversion of hydroethidine to ethidium by live parasites present in intact erythrocytes. The red fluorescence imparted by ethidium intercalated into the DNA of the parasite permits the use of flow cytometry to distinguish infected erythrocytes with viable parasites from uninfected erythrocytes and erythrocytes containing dead parasites. Comparison of the fluorochromasia technique of enumerating the number and viability of hemoparasites in cultured erythrocytes with enumeration in Giemsa-stained films and uptake of [3H]hypoxanthine demonstrated the fluorochromasia technique yields comparable results. Studies with the hemoparasite, Babesia bovis, have shown the fluorochromasia technique can also be used to monitor the effect of parasiticidal drugs on parasites in vitro. The cumulative studies with the fluorochromasia assay suggest the assay will also prove useful in investigations focused on analysis of the immune response to hemoparasites and growth in vitro.

  4. Superoxide scavenging activity of pirfenidone-iron complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitani, Yoshihiro; Sato, Keizo; Muramoto, Yosuke

    Pirfenidone (PFD) is focused on a new anti-fibrotic drug, which can minimize lung fibrosis etc. We evaluated the superoxide (O{sub 2}{sup {center_dot}}{sup -}) scavenging activities of PFD and the PFD-iron complex by electron spin resonance (ESR) spectroscopy, luminol-dependent chemiluminescence assay, and cytochrome c reduction assay. Firstly, we confirmed that the PFD-iron complex was formed by mixing iron chloride with threefold molar PFD, and the complex was stable in distillated water and ethanol. Secondary, the PFD-iron complex reduced the amount of O{sub 2}{sup {center_dot}}{sup -} produced by xanthine oxidase/hypoxanthine without inhibiting the enzyme activity. Thirdly, it also reduced the amount ofmore » O{sub 2}{sup {center_dot}}{sup -} released from phorbor ester-stimulated human neutrophils. PFD alone showed few such effects. These results suggest the possibility that the O{sub 2}{sup {center_dot}}{sup -} scavenging effect of the PFD-iron complex contributes to the anti-fibrotic action of PFD used for treating idiopathic pulmonary fibrosis.« less

  5. Cordyceps collected from Bhutan, an appropriate alternative of Cordyceps sinensis

    PubMed Central

    Wu, Ding-Tao; Lv, Guang-Ping; Zheng, Jian; Li, Qian; Ma, Shuang-Cheng; Li, Shao-Ping; Zhao, Jing

    2016-01-01

    Natural Cordyceps collected in Bhutan has been widely used as natural Cordyceps sinensis, an official species of Cordyceps used as Chinese medicines, around the world in recent years. However, whether Cordyceps from Bhutan could be really used as natural C. sinensis remains unknown. Therefore, DNA sequence, bioactive components including nucleosides and polysaccharides in twelve batches of Cordyceps from Bhutan were firstly investigated, and compared with natural C. sinensis. Results showed that the fungus of Cordyceps from Bhutan was C. sinensis and the host insect belonged to Hepialidae sp. In addition, nucleosides and their bases such as guanine, guanosine, hypoxanthine, uridine, inosine, thymidine, adenine, and adenosine, as well as compositional monosaccharides, partial acid or enzymatic hydrolysates, molecular weights and contents of polysaccharides in Cordyceps from Bhutan were all similar to those of natural C. sinensis. All data suggest that Cordyceps from Bhutan is a rational alternative of natural C. sinensis, which is beneficial for the improvement of their performance in health and medicinal food areas. PMID:27874103

  6. Cordyceps collected from Bhutan, an appropriate alternative of Cordyceps sinensis.

    PubMed

    Wu, Ding-Tao; Lv, Guang-Ping; Zheng, Jian; Li, Qian; Ma, Shuang-Cheng; Li, Shao-Ping; Zhao, Jing

    2016-11-22

    Natural Cordyceps collected in Bhutan has been widely used as natural Cordyceps sinensis, an official species of Cordyceps used as Chinese medicines, around the world in recent years. However, whether Cordyceps from Bhutan could be really used as natural C. sinensis remains unknown. Therefore, DNA sequence, bioactive components including nucleosides and polysaccharides in twelve batches of Cordyceps from Bhutan were firstly investigated, and compared with natural C. sinensis. Results showed that the fungus of Cordyceps from Bhutan was C. sinensis and the host insect belonged to Hepialidae sp. In addition, nucleosides and their bases such as guanine, guanosine, hypoxanthine, uridine, inosine, thymidine, adenine, and adenosine, as well as compositional monosaccharides, partial acid or enzymatic hydrolysates, molecular weights and contents of polysaccharides in Cordyceps from Bhutan were all similar to those of natural C. sinensis. All data suggest that Cordyceps from Bhutan is a rational alternative of natural C. sinensis, which is beneficial for the improvement of their performance in health and medicinal food areas.

  7. Targeting a Novel Plasmodium falciparum Purine Recycling Pathway with Specific Immucillins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ting, L; Shi, W; Lewandowicz, A

    Plasmodium falciparum is unable to synthesize purine bases and relies upon purine salvage and purine recycling to meet its purine needs. We report that purines formed as products of the polyamine pathway are recycled in a novel pathway in which 5'-methylthioinosine is generated by adenosine deaminase. The action of P. falciparum purine nucleoside phosphorylase is a convergent step of purine salvage, converting both 5'-methylthioinosine and inosine to hypoxanthine. We used accelerator mass spectrometry to verify that 5'-methylthioinosine is an active nucleic acid precursor in P. falciparum. Prior studies have shown that inhibitors of purine salvage enzymes kill malaria, but potentmore » malaria-specific inhibitors of these enzymes have not previously been described. 5'-methylthio-Immucillin-H, a transition state analogue inhibitor that is selective for malarial over human purine nucleoside phosphorylase, kills P. falciparum in culture. Immucillins are currently in clinical trials for other indications and may have application as antimalarials.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, Jarrod B.; Ealick, Steven E.

    The stereospecific oxidative degradation of uric acid to (S)-allantoin was recently shown to proceed via three enzymatic steps. The final conversion is a decarboxylation of the unstable intermediate 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) and is catalyzed by OHCU decarboxylase. Here we present the structures of Klebsiella pneumoniae OHCU decarboxylase in unliganded form and with bound allantoin. These structures provide evidence that ligand binding organizes the active site residues for catalysis. Modeling of the substrate and intermediates provides additional support for this hypothesis. In addition we characterize the steady state kinetics of this enzyme and report the first OHCU decarboxylase inhibitor, allopurinol, a structuralmore » isomer of hypoxanthine. This molecule is a competitive inhibitor of K. pneumoniae OHCU decarboxylase with a K{sub i} of 30 {+-} 2 {micro}m. Circular dichroism measurements confirm structural observations that this inhibitor disrupts the necessary organization of the active site. Our structural and biochemical studies also provide further insights into the mechanism of catalysis of OHCU decarboxylation.« less

  9. Effect of two non-synonymous ecto-5'-nucleotidase variants on the genetic architecture of inosine 5'-monophosphate (IMP) and its degradation products in Japanese Black beef.

    PubMed

    Uemoto, Yoshinobu; Ohtake, Tsuyoshi; Sasago, Nanae; Takeda, Masayuki; Abe, Tsuyoshi; Sakuma, Hironori; Kojima, Takatoshi; Sasaki, Shinji

    2017-11-13

    Umami is a Japanese term for the fifth basic taste and is an important sensory property of beef palatability. Inosine 5'-monophosphate (IMP) contributes to umami taste in beef. Thus, the overall change in concentration of IMP and its degradation products can potentially affect the beef palatability. In this study, we investigated the genetic architecture of IMP and its degradation products in Japanese Black beef. First, we performed genome-wide association study (GWAS), candidate gene analysis, and functional analysis to detect the causal variants that affect IMP, inosine, and hypoxanthine. Second, we evaluated the allele frequencies in the different breeds, the contribution of genetic variance, and the effect on other economical traits using the detected variants. A total of 574 Japanese Black cattle were genotyped using the Illumina BovineSNP50 BeadChip and were then used for GWAS. The results of GWAS showed that the genome-wide significant single nucleotide polymorphisms (SNPs) on BTA9 were detected for IMP, inosine, and hypoxanthine. The ecto-5'-nucleotidase (NT5E) gene, which encodes the enzyme NT5E for the extracellular degradation of IMP to inosine, was located near the significant region on BTA9. The results of candidate gene analysis and functional analysis showed that two non-synonymous SNPs (c.1318C > T and c.1475 T > A) in NT5E affected the amount of IMP and its degradation products in beef by regulating the enzymatic activity of NT5E. The Q haplotype showed a positive effect on IMP and a negative effect on the enzymatic activity of NT5E in IMP degradation. The two SNPs were under perfect linkage disequilibrium in five different breeds, and different haplotype frequencies were seen among breeds. The two SNPs contribute to about half of the total genetic variance in IMP, and the results of genetic relationship between IMP and its degradation products showed that NT5E affected the overall concentration balance of IMP and its degradation products. In addition, the SNPs in NT5E did not have an unfavorable effect on the other economical traits. Based on all the above findings taken together, two non-synonymous SNPs in NT5E would be useful for improving IMP and its degradation products by marker-assisted selection in Japanese Black cattle.

  10. Semiquinone formation and DNA base damage by toxic quinones and inhibition by N-acetylcysteine (NAC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, D.C.; Shibamoto, T.

    1986-03-05

    Toxic, mutagenic, carcinogenic, and teratogenic effects have been reported for some quinones as well as compounds metabolized to quinones. Semiquinone radical formation, thymidine degradation, and protection by NAC were studied in a hypoxanthine/xanthine oxidase (HX/XO) system. Quinone, benzo(a)pyrene-3,6-quinone, danthron, doxorubicin, emodin, juglone, menadione, and moniliformin were tested. Diethylstilbestrolquinone, N-acetylquinoneimine, and benzoquinonediimine, hypothesized toxic metabolites of diethylstilbestrol, acetaminophen and p-phenylenediamine, respectively, were synthesized and studied. Semiquinone radical formation was assessed in a HX/XO system monitoring cytochrome C reduction. Large differences in rates of semiquinone radical formation were noted for different quinones, with V/Vo values ranging from 1.2 to 10.6. DNA basemore » degradation, thymine or thymidine glycol formation, and thiobarbituric acid reactive substance (TBARS) production were measured in a similar system containing thymine, thymidine, calf thymus DNA, or deoxyribose. TBARS formation was observed with deoxyribose, but thymidine degradation without TBARS formation was noted with thymidine. NAC (0.5 to 10 mM) caused dose-dependent inhibition of quinone-induced cytochrome C reduction.« less

  11. Isolation of Purines and Pyrimidines from the Murchison Meteorite Using Sublimation

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Bada, J. L.

    2004-01-01

    The origin of life on Earth, and possibly on other planets such as Mars, would have required the presence of liquid water and a continuous supply of prebiotic organic compounds. The exogenous delivery of organic matter by asteroids, comets, and carbonaceous meteorites could have contributed to the early Earth s prebiotic inventory by seeding the planet with biologically important organic compounds. A wide variety of prebiotic organic compounds have previously been detected in the Murchison CM type carbonaceous chondrite including amino acids, purines and pyrimidines. These compounds dominate terrestrial biochemistry and are integral components of proteins, DNA and RNA. Several purines including adenine, guanine, hypoxanthine, and xanthine, as well as the pyrimidine uracil, have previously been detected in water or formic acid extracts of Murchison using ion-exclusion chromatography and ultraviolet spectroscopy. However, even after purification of these extracts, the accurate identification and quantification of nucleobases is difficult due to interfering UV absorbing compounds. In order to reduce these effects, we have developed an extraction technique using sublimation to isolate purines and pyrimidines from other non-volatile organic compounds in Murchison acid extracts.

  12. Identification of sex-specific urinary biomarkers for major depressive disorder by combined application of NMR- and GC-MS-based metabonomics.

    PubMed

    Zheng, P; Chen, J-J; Zhou, C-J; Zeng, L; Li, K-W; Sun, L; Liu, M-L; Zhu, D; Liang, Z-H; Xie, P

    2016-11-15

    Women are more vulnerable to major depressive disorder (MDD) than men. However, molecular biomarkers of sex differences are limited. Here we combined gas chromatography-mass spectrometry (GC-MS)- and nuclear magnetic resonance (NMR)-based metabonomics to investigate sex differences of urinary metabolite markers in MDD, and further explore their potential of diagnosing MDD. Consequently, the metabolite signatures of women and men MDD subjects were significantly different from of that in their respective healthy controls (HCs). Twenty seven women and 36 men related differentially expressed metabolites were identified in MDD. Fourteen metabolites were changed in both women and men MDD subjects. Significantly, the women-specific (m-Hydroxyphenylacetate, malonate, glycolate, hypoxanthine, isobutyrate and azelaic acid) and men-specific (tyrosine, N-acetyl-d-glucosamine, N-methylnicotinamide, indoxyl sulfate, citrate and succinate) marker panels were further identified, which could differentiate men and women MDD patients from their respective HCs with higher accuracy than previously reported sex-nonspecific marker panels. Our findings demonstrate that men and women MDD patients have distinct metabonomic signatures and sex-specific biomarkers have promising values in diagnosing MDD.

  13. CE-TOF MS-based metabolomic profiling revealed characteristic metabolic pathways in postmortem porcine fast and slow type muscles.

    PubMed

    Muroya, Susumu; Oe, Mika; Nakajima, Ikuyo; Ojima, Koichi; Chikuni, Koichi

    2014-12-01

    To determine key compounds and metabolic pathways associated with meat quality, we profiled metabolites in postmortem porcine longissimus lumborum (LL) and vastus intermedius (VI) muscles with different aging times by global metabolomics using capillary electrophoresis-time of flight mass spectrometry. Loading analyses of the principal component analysis showed that hydrophilic amino acids and β-alanine-related compounds contributed to the muscle type positively and negatively, respectively, whereas glycolytic and ATP degradation products contributed to aging time. At 168h postmortem, LL samples were characterized by abundance of combinations of amino acids, dipeptides, and glycolytic products, whereas the VI samples were characterized by abundance of both sulfur-containing compounds and amino acids. The AMP and inosine contents in the VI were approx. 10 times higher than those in the LL at 4h postmortem, suggesting different rates of inosine 5'-monophosphate (IMP) accumulation by adenylate kinase 7 and 5'-nucleotidase, and subsequent different production levels of IMP and hypoxanthine between these two porcine muscles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Delineation of the motor disorder of Lesch–Nyhan disease

    PubMed Central

    Jinnah, H. A.; Visser, Jasper E.; Harris, James C.; Verdu, Alfonso; Larovere, Laura; Ceballos-Picot, Irene; Gonzalez-Alegre, Pedro; Neychev, Vladimir; Torres, Rosa J.; Dulac, Olivier; Desguerre, Isabelle; Schretlen, David J.; Robey, Kenneth L.; Barabas, Gabor; Bloem, Bastiaan R.; Nyhan, William; De Kremer, Raquel; Eddey, Gary E.; Puig, Juan G.; Reich, Stephen G.

    2012-01-01

    Lesch–Nyhan disease (LND) is caused by deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT). Affected individuals exhibit over-production of uric acid, along with a characteristic neurobehavioural syndrome that includes mental retardation, recurrent self-injurious behaviour and motor disability. Prior studies involving relatively small numbers of patients have provided different conclusions on the nature of the motor disorder. The current study includes the results of a multi-centre international prospective study of the motor disorder in the largest cohort of patients studied to date. A total of 44 patients ranging from 2 to 38 years presented a characteristic motor syndrome that involved severe action dystonia superimposed on baseline hypotonia. Although some patients also displayed other extrapyramidal or pyramidal signs, these were always less prominent than dystonia. These results are compared with a comprehensive review of 122 prior reports that included a total of 254 patients. Explanations for the differing observations available in the literature are provided, along with a summary of how the motor disorder of LND relates to current understanding of its pathophysiology involving the basal ganglia. PMID:16549399

  15. Psi- vectors: murine leukemia virus-based self-inactivating and self-activating retroviral vectors.

    PubMed Central

    Delviks, K A; Hu, W S; Pathak, V K

    1997-01-01

    We have developed murine leukemia virus (MLV)-based self-inactivating and self-activating vectors to show that the previously demonstrated high-frequency direct repeat deletions are not unique to spleen necrosis virus (SNV) or the neomycin drug resistance gene. Retroviral vectors pKD-HTTK and pKD-HTpTK containing direct repeats composed of segments of the herpes simplex virus type 1 thymidine kinase (HTK) gene were constructed; in pKD-HTpTK, the direct repeat flanked the MLV packaging signal. The generation of hypoxanthine-aminopterin-thymidine-resistant colonies after one cycle of retroviral replication demonstrated functional reconstitution of the HTK gene. Quantitative Southern analysis indicated that direct repeat deletions occurred in 57 and 91% of the KD-HTTK and KD-HTpTK proviruses, respectively. These results demonstrate that (i) deletion of direct repeats occurs at similar high frequencies in SNV and MLV vectors, (ii) MLV psi can be efficiently deleted by using direct repeats, (iii) suicide genes can be functionally reconstituted during reverse transcription, and (iv) the psi region may be a hot spot for reverse transcriptase template switching events. PMID:9223521

  16. Mouse mutants from chemically mutagenized embryonic stem cells

    PubMed Central

    Munroe, Robert J.; Bergstrom, Rebecca A.; Zheng, Qing Yin; Libby, Brian; Smith, Richard; John, Simon W.M.; Schimenti, Kerry J.; Browning, Victoria L.; Schimenti, John C.

    2010-01-01

    The drive to characterize functions of human genes on a global scale has stimulated interest in large-scale generation of mouse mutants. Conventional germ-cell mutagenesis with N-ethyl-N-nitrosourea (ENU) is compromised by an inability to monitor mutation efficiency, strain1 and interlocus2 variation in mutation induction, and extensive husbandry requirements. To overcome these obstacles and develop new methods for generating mouse mutants, we devised protocols to generate germline chi-maeric mice from embryonic stem (ES) cells heavily mutagenized with ethylmethanesulphonate (EMS). Germline chimaeras were derived from cultures that underwent a mutation rate of up to 1 in 1,200 at the Hprt locus (encoding hypoxanthine guanine phosphoribosyl transferase). The spectrum of mutations induced by EMS and the frameshift mutagen ICR191 was consistent with that observed in other mammalian cells. Chimaeras derived from ES cells treated with EMS transmitted mutations affecting several processes, including limb development, hair growth, hearing and gametogenesis. This technology affords several advantages over traditional mutagenesis, including the ability to conduct shortened breeding schemes and to screen for mutant phenotypes directly in ES cells or their differentiated derivatives. PMID:10700192

  17. Synthesis, antimalarial activity in vitro, and docking studies of novel neolignan derivatives.

    PubMed

    Pereira, Glaécia A N; Souza, Gisele C; Santos, Lourivaldo S; Barata, Lauro E S; Meneses, Carla C F; Krettli, Antoniana U; Daniel-Ribeiro, Cláudio Tadeu; Alves, Cláudio Nahum

    2017-09-01

    The absence of effective vaccines against malaria and the difficulties associated with controlling mosquito vectors have left chemotherapy as the primary control measure against malaria. However, the emergence and spread of parasite resistance to conventional antimalarial drugs result in a worrisome scenario making the search for new drugs a priority. In the present study, the activities of nine neolignan derivatives were evaluated as follows: (i) against blood forms of chloroquine-resistant Plasmodium falciparum (clone W2), using the tritiated hypoxanthine incorporation and anti-HRPII assays; (ii) for cytotoxic activity against cultured human hepatoma cells (HepG2); and (iii) for intermolecular interaction with the P. falciparum cysteine protease of falcipain-2 (F2) by molecular docking. The neolignan derivatives 9 and 10 showed activity against the blood form of the chloroquine-resistant P. falciparum clone W2 and were not cytotoxic against cultured human hepatoma cells. A molecular docking study of these two neolignans with FP2 revealed several intermolecular interactions that should guide the design of future analogs. © 2017 John Wiley & Sons A/S.

  18. The impact of stunning methods on stress conditions and quality of silver carp (Hypophthalmichthys molitrix) fillets stored at 4°C during 72h postmortem.

    PubMed

    Zhang, Longteng; Li, Qian; Lyu, Jian; Kong, Chunli; Song, Sijia; Luo, Yongkang

    2017-02-01

    This study aimed to evaluate different stunning methods [percussion (T1), immersion in ice/water slurry (T2), and gill cut (T3)] on quality and stress conditions of silver carp (Hypophthalmichthys molitrix) fillets stored at 4°C in 72h postmortem. Rigor index (RI%), behavioral analysis, levels of lactic acid and muscle glycogen were measured for stress level evaluation. Meanwhile, sensory assessment, texture properties, cooking loss, adenosine triphosphate (ATP) related compounds, adenosine monophosphate deaminase (ADA) activity, and acid phosphatase (ACP) activity were analyzed. The least stress condition, significantly (P<0.05) higher initial glycogen content was observed in T1. Ice/water stunning reduced the rate of ATP degradation, reflected in the lowest K value during 72h. Aversive behaviors, significantly (P<0.05) higher cooking loss, hypoxanthine riboside (HxR) content, and lower sensory score were observed in T3. The results indicated that gill cut in aquatic processing industry should be avoided for inferior quality and aversive reactions during stunning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Restoring Ureagenesis in Hepatocytes by CRISPR/Cas9-mediated Genomic Addition to Arginase-deficient Induced Pluripotent Stem Cells.

    PubMed

    Lee, Patrick C; Truong, Brian; Vega-Crespo, Agustin; Gilmore, W Blake; Hermann, Kip; Angarita, Stephanie Ak; Tang, Jonathan K; Chang, Katherine M; Wininger, Austin E; Lam, Alex K; Schoenberg, Benjamen E; Cederbaum, Stephen D; Pyle, April D; Byrne, James A; Lipshutz, Gerald S

    2016-11-29

    Urea cycle disorders are incurable enzymopathies that affect nitrogen metabolism and typically lead to hyperammonemia. Arginase deficiency results from a mutation in Arg1, the enzyme regulating the final step of ureagenesis and typically results in developmental disabilities, seizures, spastic diplegia, and sometimes death. Current medical treatments for urea cycle disorders are only marginally effective, and for proximal disorders, liver transplantation is effective but limited by graft availability. Advances in human induced pluripotent stem cell research has allowed for the genetic modification of stem cells for potential cellular replacement therapies. In this study, we demonstrate a universally-applicable CRISPR/Cas9-based strategy utilizing exon 1 of the hypoxanthine-guanine phosphoribosyltransferase locus to genetically modify and restore arginase activity, and thus ureagenesis, in genetically distinct patient-specific human induced pluripotent stem cells and hepatocyte-like derivatives. Successful strategies restoring gene function in patient-specific human induced pluripotent stem cells may advance applications of genetically modified cell therapy to treat urea cycle and other inborn errors of metabolism.

  20. Inhibition of Plasmodium falciparum proliferation in vitro by double-stranded RNA directed against malaria histone deacetylase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sriwilaijaroen, N.; Boonma, S.; Attasart, P.

    Acetylation and deacetylation of histones play important roles in transcription regulation, cell cycle progression and development events. The steady state status of histone acetylation is controlled by a dynamic equilibrium between competing histone acetylase and deacetylase (HDAC). We have used long PfHDAC-1 double-stranded (ds)RNA to interfere with its cognate mRNA expression and determined the effect on malaria parasite growth and development. Chloroquine- and pyrimethamine-resistant Plasmodium falciparum K1 strain was exposed to 1-25 {mu}g of dsRNA/ml of culture for 48 h and growth was determined by [{sup 3}H]-hypoxanthine incorporation and microscopic examination. Parasite culture treated with 10 {mu}g/ml pfHDAC-1 dsRNA exhibitedmore » 47% growth inhibition when compared with either untreated control or culture treated with an unrelated dsRNA. PfHDAC-1 dsRNA specifically blocked maturation of trophozoite to schizont stages and decreased PfHDAC-1 transcript 44% in treated trophozoites. These results indicate the potential of HDAC-1 as a target for development of novel antimalarials.« less

  1. Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Ranjita; Prabhu, Sandeep; Lynd, Lee R

    2014-01-01

    Large-scale production of lignocellulosic biofuel is a potential solution to sustainably meet global energy needs. One-step consolidated bioprocessing (CBP) is a potentially advantageous approach for the production of biofuels, but requires an organism capable of hydrolyzing biomass to sugars and fermenting the sugars to ethanol at commercially viable titers and yields. Clostridium thermocellum, a thermophilic anaerobe, can ferment cellulosic biomass to ethanol and organic acids, but low yield, low titer, and ethanol sensitivity remain barriers to industrial production. Here, we deleted the hypoxanthine phosphoribosyltransferase gene in ethanol tolerant strain of C. thermocellum adhE*(EA) in order to allow use of previouslymore » developed gene deletion tools, then deleted lactate dehydrogenase (ldh) to redirect carbon flux towards ethanol. Upon deletion of ldh, the adhE*(EA) ldh strain produced 30% more ethanol than wild type on minimal medium. The adhE*(EA) ldh strain retained tolerance to 5% v/v ethanol, resulting in an ethanol tolerant platform strain of C. thermocellum for future metabolic engineering efforts.« less

  2. Biochemical, sensory and microbiological attributes of bream (Megalobrama amblycephala) during partial freezing and chilled storage.

    PubMed

    Song, Yongling; Luo, Yongkang; You, Juan; Shen, Huixing; Hu, Sumei

    2012-01-15

    Bream is one of the main farmed freshwater fish species in China. This study aimed to examine the nucleotide degradation of bream during partial freezing and chilled storage and to assess the possible usefulness of nucleotide ratios (K, Ki, H, P, Fr and G values) as freshness indices in comparison with sensory assessment and total viable counts. Total viable counts were 5.74 and 4.66 log(colony-forming units g(-1)) on the day of sensory rejection under chilled storage and partial freezing storage respectively. The inosine 5-monophosphate decrease and inosine increase were faster in chilled storage than in partial freezing storage. Hypoxanthine levels increased continuously with time under both storage regimes. Among the nucleotide ratios, the K, Ki, P, G and Fr values were superior to the H value and provided useful freshness indicators for both storage conditions. Bream in chilled storage were sensorially acceptable only up to 10 days, compared with 33 days for bream in partial freezing storage. Partial freezing delayed the nucleotide degradation of bream. Copyright © 2011 Society of Chemical Industry.

  3. The biochemical origins of the surface-enhanced Raman spectra of bacteria: a metabolomics profiling by SERS.

    PubMed

    Premasiri, W Ranjith; Lee, Jean C; Sauer-Budge, Alexis; Théberge, Roger; Costello, Catherine E; Ziegler, Lawrence D

    2016-07-01

    The dominant molecular species contributing to the surface-enhanced Raman spectroscopy (SERS) spectra of bacteria excited at 785 nm are the metabolites of purine degradation: adenine, hypoxanthine, xanthine, guanine, uric acid, and adenosine monophosphate. These molecules result from the starvation response of the bacterial cells in pure water washes following enrichment from nutrient-rich environments. Vibrational shifts due to isotopic labeling, bacterial SERS spectral fitting, SERS and mass spectrometry analysis of bacterial supernatant, SERS spectra of defined bacterial mutants, and the enzymatic substrate dependence of SERS spectra are used to identify these molecular components. The absence or presence of different degradation/salvage enzymes in the known purine metabolism pathways of these organisms plays a central role in determining the bacterial specificity of these purine-base SERS signatures. These results provide the biochemical basis for the development of SERS as a rapid bacterial diagnostic and illustrate how SERS can be applied more generally for metabolic profiling as a probe of cellular activity. Graphical Abstract Bacterial typing by metabolites released under stress.

  4. Influence of DNA Repair on Nonlinear Dose-Responses for Mutation

    PubMed Central

    Johnson, George E.

    2013-01-01

    Recent evidence has challenged the default assumption that all DNA-reactive alkylating agents exhibit a linear dose-response. Emerging evidence suggests that the model alkylating agents methyl- and ethylmethanesulfonate and methylnitrosourea (MNU) and ethylnitrosourea observe a nonlinear dose-response with a no observed genotoxic effect level (NOGEL). Follow-up mechanistic studies are essential to understand the mechanism of cellular tolerance and biological relevance of such NOGELs. MNU is one of the most mutagenic simple alkylators. Therefore, understanding the mechanism of mutation induction, following low-dose MNU treatment, sets precedence for weaker mutagenic alkylating agents. Here, we tested MNU at 10-fold lower concentrations than a previous study and report a NOGEL of 0.0075 µg/ml (72.8nM) in human lymphoblastoid cells, quantified through the hypoxanthine (guanine) phosphoribosyltransferase assay (OECD 476). Mechanistic studies reveal that the NOGEL is dependent upon repair of O6-methylguanine (O6MeG) by the suicide enzyme O6MeG-DNA methyltransferase (MGMT). Inactivation of MGMT sensitizes cells to MNU-induced mutagenesis and shifts the NOGEL to the left on the dose axis. PMID:23288051

  5. Influence of DNA repair on nonlinear dose-responses for mutation.

    PubMed

    Thomas, Adam D; Jenkins, Gareth J S; Kaina, Bernd; Bodger, Owen G; Tomaszowski, Karl-Heinz; Lewis, Paul D; Doak, Shareen H; Johnson, George E

    2013-03-01

    Recent evidence has challenged the default assumption that all DNA-reactive alkylating agents exhibit a linear dose-response. Emerging evidence suggests that the model alkylating agents methyl- and ethylmethanesulfonate and methylnitrosourea (MNU) and ethylnitrosourea observe a nonlinear dose-response with a no observed genotoxic effect level (NOGEL). Follow-up mechanistic studies are essential to understand the mechanism of cellular tolerance and biological relevance of such NOGELs. MNU is one of the most mutagenic simple alkylators. Therefore, understanding the mechanism of mutation induction, following low-dose MNU treatment, sets precedence for weaker mutagenic alkylating agents. Here, we tested MNU at 10-fold lower concentrations than a previous study and report a NOGEL of 0.0075 µg/ml (72.8nM) in human lymphoblastoid cells, quantified through the hypoxanthine (guanine) phosphoribosyltransferase assay (OECD 476). Mechanistic studies reveal that the NOGEL is dependent upon repair of O(6)-methylguanine (O(6)MeG) by the suicide enzyme O(6)MeG-DNA methyltransferase (MGMT). Inactivation of MGMT sensitizes cells to MNU-induced mutagenesis and shifts the NOGEL to the left on the dose axis.

  6. Preparation and characterization of host-guest system between inosine and β-cyclodextrin through inclusion mode

    NASA Astrophysics Data System (ADS)

    Prabu, Samikannu; Sivakumar, Krishnamurty; Swaminathan, Meenakshisundaram; Rajamohan, Rajaram

    2015-08-01

    Inosine is a nucleoside that is formed when hypoxanthine is attached to a ribose ring (also known as a ribofuranose) via a β-N9-glycosidic bond. Inosine is commonly found in tRNAs. Inosine (INS) has been used widely as an antiviral drug. The inclusion complex of INS with β-CDx in solution phase is studied by ground and excited state with UV-visible and fluorescence spectroscopy, respectively. A binding constant and stoichiometric ratio between INS and β-CDx are calculated by BH equation. The lifetime and relative amplitude of INS is increases with increasing the concentrations of β-CDx, confirms the formation of inclusion complex in liquid state. The solid complexes are prepared by kneading method (KM) and co-precipitation method (CP). The solid complex is characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), powder X-ray diffraction (XRD) and differential scanning colorimetry (DSC). CP method gives the solid product with good yield than that of physical mixture and KM method. The structure of complex is proposed based on the study of Patch - Dock server.

  7. Wayanin and guaijaverin, two active metabolites found in a Psidium acutangulum Mart. ex DC (syn. P. persoonii McVaugh) (Myrtaceae) antimalarial decoction from the Wayana Amerindians.

    PubMed

    Houël, Emeline; Nardella, Flore; Jullian, Valérie; Valentin, Alexis; Vonthron-Sénécheau, Catherine; Villa, Pascal; Obrecht, Adeline; Kaiser, Marcel; Bourreau, Eliane; Odonne, Guillaume; Fleury, Marie; Bourdy, Geneviève; Eparvier, Véronique; Deharo, Eric; Stien, Didier

    2016-07-01

    Psidium acutangulum Mart. ex DC is a small tree used by the Wayana Amerindians from the Upper-Maroni in French Guiana for the treatment of malaria. In a previous study, we highlighted the in vitro antiplasmodial, antioxidant and anti-inflammatory potential of the traditional decoction of P. acutangulum aerial parts. Our goal was then to investigate on the origin of the biological activity of the traditional remedy, and eventually characterize active constituents. Liquid-liquid extractions were performed on the decoction, and the antiplasmodial activity evaluated against chloroquine-resistant FcB1 ([(3)H]-hypoxanthine bioassay) and 7G8 (pLDH bioassay) P. falciparum strains, and on a chloroquine sensitive NF54 ([(3)H]-hypoxanthine bioassay) P. falciparum strain. The ethyl acetate fraction (D) was active and underwent bioguided fractionation. All the isolated compounds were tested on P. falciparum FcB1 strain. In vitro anti-inflammatory activity (IL-1β, IL-6, IL-8, TNFα) of the ethyl acetate fraction and of an anti-Plasmodium active compound, was concurrently assessed on LPS-stimulated human PBMC and NO secretion inhibition was measured on LPS stimulated RAW murine macrophages. Cytotoxicity of the fractions and pure compounds was measured on VERO cells, L6 mammalian cells, PBMCs, and RAW cells. Fractionation of the ethyl acetate soluble fraction (IC50 ranging from 3.4 to <1µg/mL depending on the parasite strain) led to the isolation of six pure compounds: catechin and five glycosylated quercetin derivatives. These compounds have never been isolated from this plant species. Two of these compounds (wayanin and guaijaverin) were found to be moderately active against P. falciparum FcB1 in vitro (IC50 5.5 and 6.9µM respectively). We proposed the name wayanin during public meetings organized in June 2015 in the Upper-Maroni villages, in homage to the medicinal knowledge of the Wayana population. At 50µg/mL, the ethyl acetate fraction (D) significantly inhibited IL-1β secretion (-46%) and NO production (-21%), as previously observed for the decoction. The effects of D and guiajaverin (4) on the secretion of other cytokines or NO production were not significant. The confirmed antiplasmodial activity of the ethyl acetate soluble fraction of the decoction and of the isolated compounds support the previous results obtained on the P. acutangulum decoction. The antiplasmodial activity might be due to a mixture of moderately active non-toxic flavonoids. The anti-inflammatory activities were less marked for ethyl acetate fraction (D) than for the decoction. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. The Expanding Role of Oxygen Free Radicals in Clinical Medicine

    PubMed Central

    Katz, Murray A.

    1986-01-01

    In 1969 McCord and Fridovich discovered superoxide dismutase, which converts the oxygen free radical O2- to hydrogen peroxide H2O2. In the presence of excess O2-, H2O2 may then undergo further reduction to the highly toxic hydroxyl radical, OH•. Since the description of this enzymatic process, there has been explosive growth in related biochemical research, which has now percolated through to clinical investigation. The hypoxanthine-xanthine oxidase system originally used as a radical production model has a close counterpart in the ischemia-reperfusion phenomenon purported to cause diseases of heart, brain and gastrointestinal tract, and free radicals are now known to have a critical role in postphagocytic bacterial killing. Prototypic deficiency diseases such as chronic granulomatous disease are now recognized. Some evidence indicates that excess states such as perhaps Batten's disease also occur, and environmental influences such as selenium and vitamin E deficiency may augment free radical levels. Many disorders including microvasculopathies, noncardiogenic pulmonary edema, glomerulopathies and radiation damage may owe part of their proximate pathogenesis to free radicals. Control of tissue free radical levels is now pharmacologically feasible and perhaps justified for specific diseases. PMID:3521094

  9. Production of human monoclonal IgG antibodies against Rhesus (D) antigen.

    PubMed Central

    Bron, D; Feinberg, M B; Teng, N N; Kaplan, H S

    1984-01-01

    An Epstein-Barr virus (EBV)-transformed human B-cell line ( LB4r ) producing anti-Rhesus [Rho(D) antigen] antibody was fused with a non-immunoglobulin-producing mouse-human heteromyeloma ( SHM - D33 ) and selected in hypoxanthine/aminopterin/thymidine medium containing 0.5 microM ouabain. Surviving hybrids found to secrete specific anti-Rho(D) antibody were cloned by limiting dilution. Two clones (D4-B2 and E10-C1) producing high levels (12 and 20 micrograms/ml per 10(6) cells per 24 hr, respectively) of monospecific antibody (IgG3, lambda chain) were selected for expansion and further characterization. Compared to the parental cell line ( LB4r ), these hybridoma cell lines presented several advantages: antibody production was increased 10-fold, cloning efficiency was improved, and the EBV genome was not retained. Antibody production has been stable for greater than 8 months. These human monoclonal anti-Rho(D) antibodies have demonstrated utility in routine blood-group typing. They may also prove useful in the biochemical and genetic characterization of the Rh antigen system. Most important, they offer a source of Rh-immune globulin for the prevention of Rh immunization and alloimmune hemolytic disease of the newborn. Images PMID:6427767

  10. Nuclear magnetic resonance metabolomics of iron deficiency in soybean leaves.

    PubMed

    Lima, Marta R M; Diaz, Sílvia O; Lamego, Inês; Grusak, Michael A; Vasconcelos, Marta W; Gil, Ana M

    2014-06-06

    Iron (Fe) deficiency is an important agricultural concern that leads to lower yields and crop quality. A better understanding of the condition at the metabolome level could contribute to the design of strategies to ameliorate Fe-deficiency problems. Fe-sufficient and Fe-deficient soybean leaf extracts and whole leaves were analyzed by liquid (1)H nuclear magnetic resonance (NMR) and high-resolution magic-angle spinning NMR spectroscopy, respectively. Overall, 30 compounds were measurable and identifiable (comprising amino and organic acids, fatty acids, carbohydrates, alcohols, polyphenols, and others), along with 22 additional spin systems (still unassigned). Thus, metabolite differences between treatment conditions could be evaluated for different compound families simultaneously. Statistically relevant metabolite changes upon Fe deficiency included higher levels of alanine, asparagine/aspartate, threonine, valine, GABA, acetate, choline, ethanolamine, hypoxanthine, trigonelline, and polyphenols and lower levels of citrate, malate, ethanol, methanol, chlorogenate, and 3-methyl-2-oxovalerate. The data indicate that the main metabolic impacts of Fe deficiency in soybean include enhanced tricarboxylic acid cycle activity, enhanced activation of oxidative stress protection mechanisms and enhanced amino acid accumulation. Metabolites showing accumulation differences in Fe-starved but visually asymptomatic leaves could serve as biomarkers for early detection of Fe-deficiency stress.

  11. The microculture tetrazolium assay (MTA): another colorimetric method of testing Plasmodium falciparum chemosensitivity.

    PubMed

    Delhaes, L; Lazaro, J E; Gay, F; Thellier, M; Danis, M

    1999-01-01

    Malarial lactate dehydrogenase (LDH), which uses 3-acetyl pyridine adenine dinucleotide as coenzyme in a reaction leading to the formation of pyruvate from L-lactate, may be used to study the susceptibility of Plasmodium falciparum to a drug in vitro. Several methods to determine the activity of this enzyme are available. One, the colorimetric method of Makler and colleagues, was modified slightly, by using sodium-2,3-bis-[2-methoxy-4-nitro-5-sulphophenyl]-2H-tetrazolium-5 - carboxanilide (XTT) and following the reaction by measuring the optical density at 450 nm. Using two, culture-adapted strains of P. falciparum, this LDH assay was compared with the unmodified Makler's assay and with the isotopic microtest based on the incorporation of tritium-labelled hypoxanthine. Fresh, clinical P. falciparum isolates were also tested in the presence of several drugs, including chloroquine, mefloquine, quinine, halofantrine, atovaquone and qinghaosu derivatives. The results of the three assays were correlated for all the drugs tested except atovaquone. The two enzymatic assays are non-radioactive, rapid, reliable, inexpensive to perform and semi-automatic. However, they do require an initial parasitaemia of 2% with a haematocrit of 1.8%.

  12. Molecular Epidemiology of Malaria in Cameroon and Côte d'Ivoire. XXXI. Kelch 13 Propeller Sequences in Plasmodium falciparum Isolates before and after Implementation of Artemisinin-Based Combination Therapy.

    PubMed

    Djaman, Joseph Allico; Olefongo, Dagnogo; Ako, Aristide Berenger; Roman, Jocelyne; Ngane, Vincent Foumane; Basco, Leonardo K; Tahar, Rachida

    2017-07-01

    Artemisinin-resistant malaria has not been reported from Africa, but resistance can possibly spread from Asia or arise independently in Africa. The emergence of artemisinin resistance in Africa can be monitored by molecular assay of Kelch 13 (K13) propeller sequences. A total of 251 archived DNA samples of Plasmodium falciparum isolates collected in 2002, 2003, and 2006 in Yaounde, Cameroon, and 47 samples collected in 2006 and 2013 in Abidjan, Côte d'Ivoire, were analyzed for K13-propeller sequence polymorphism. Only one isolate carried a mutant K13-propeller allele (E602D). None of the isolates carried the key mutant alleles (Y493H, R539T, I543T, and C580Y) associated with artemisinin resistance in Cambodia. The presence of the mutant allele was not correlated with in vitro response to dihydroartemisinin determined by the classical hypoxanthine incorporation assay. There was no evidence of K13 mutations associated with artemisinin resistance before and soon after the introduction of artemisinin-based combination therapies in Cameroon and Côte d'Ivoire.

  13. Characterization of nucleobases and nucleosides in the fruit of Alpinia oxyphylla collected from different cultivation regions.

    PubMed

    Song, Wenjing; Li, Yonghui; Wang, Jianguo; Li, Zeyou; Zhang, Junqing

    2014-03-01

    The fruit of Alpinia oxyphylla, known as Yizhi, Yakuchi and Ikji in Chinese, Japanese, and Korean, respectively, has been utilized as an important drug for the treatment of diarrhea, dyspepsia, spermatorrhea, kidney asthenia and abdominal pain in East Asian traditional medicine for thousands of years. Since the therapeutic effects of A. oxyphylla are attributed to multiple components and nucleobases and nucleosides exhibit various bioactivities, it is necessary to explore the chemical characterization of nucleobases and nucleosides in this herb. Herein, 10 common nucleobases and nucleosides, including cytidine, adenosine, thymidine, inosine, guanosine, 2'-deoxyinosine, guanine, adenine, cytosine, and hypoxanthine, were quantified simultaneously in the fruit of A. oxyphylla collected from different geographical regions. Changes in their contents were discussed, and hierarchical cluster analysis (HCA) was performed to classify all samples on the basis of the contents of the investigated analytes. The results indicated that there was a large variation in the contents of nucleobases and nucleosides among the herbs from different regions, and the samples collected from the same cultivation region were mostly classified in one cluster. The method can be used for comprehensive quality evaluation of A. oxyphylla. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Radurization of commercial freshwater fish species

    NASA Astrophysics Data System (ADS)

    Chuaqui-Offermanns, N.; McDougall, T. E.; Sprung, W.; Sullivan, V.

    The effect of radurization on the shelf life of fresh Whitefish obtained through ordinary commercial channels has been determined. Whitefish fillets irradiated at 1.2 kGy and stored at 3°C have a shelf life three times longer than the unirradiated fish. When the fish was irradiated at 0.82 kGy a two fold shelf-life extension was obtained. The shelf life was estimated by sensory, chemical and microbiological evaluations. Sensory evaluation involved organoleptic assessment of raw and cooked samples. Since freshwater fish do not contain trimethylamine oxide (TMAO), alternate tests for freshness were required. It was found the determination of hypoxanthine and total volatile acid number (VAN) are excellent tests for freshness and quality of freshwater fish; thus, these analyses were adopted. The degree of radiation-induced lipid oxidation was measured by the thiobarbituric acid test (TBA). It was found at doses of 0.82 and 1.2 kGy the TBA number remained within acceptable limits in all samples. Microbiological analyses consisted of the total microbial load assessment in the sample, as well as Pseudomonas and total psychrotrophic counts. The estimated shelf lives as determined by the three separate evaluations were in very good agreement.

  15. In vitro evaluation of antioxidants of fruit extract of Momordica charantia L. on fibroblasts and keratinocytes.

    PubMed

    Kumar, Ramadhar; Balaji, S; Sripriya, R; Nithya, N; Uma, T S; Sehgal, P K

    2010-02-10

    The antioxidant activity of the total aqueous extract (TAE) and total phenolic extract (TPE) of Momordica charantia fruits was assayed by radical-scavenging methods and cytoprotective effects on hydrogen peroxide (H(2)O(2))- and hypoxanthin-xanthin oxidase (HX-XO)-induced damage to rat cardiac fibroblasts (RCFs), NIH 3T3, and keratinocyte (A431). Cell viability was monitored by a 3-[4,5-dimethyltriazol-2-yl]-2,5-diphenyltretrazolium (MTT) assay. For fibroblasts, TPE at 200 and 300 microg/mL showed maximum and consistent cytoprotection against oxidants. The extract at 50 microg/mL also had significant and slightly protective effects on fibroblasts against H(2)O(2)- and HX-XO-induced damage, respectively. RCF was more tolerant toward the damage. For keratinocytes, a dose-dependent relationship of oxidant toxicity was only seen with H(2)O(2) but the protective action of the extract correlated with oxidant dosage. At 200 and 300 microg/mL TPE, cytoprotection was dose-dependent against oxidants. Extracts had no effect on HX-XO toxicity at 50 microg/mL. Pretreatment with both the extracts did not show any cytoprotection.

  16. Determination of residual cell culture media components by MEKC.

    PubMed

    Zhang, Junge; Chakraborty, Utpal; Foley, Joe P

    2009-11-01

    Folic acid, hypoxanthine, mycophenolic acid, nicotinic acid, riboflavin, and xanthine are widely used as cell culture media components in monoclonal antibody manufacturing. These components are subsequently removed during the downstream purification processes. This article describes a single MEKC method that can simultaneously determine all the listed compounds with acceptable LOD and LOQ. All the analytes were successfully separated by MEKC using running buffer containing 40 mM SDS, 20 mM sodium phosphate, and 20 mM sodium borate at pH 9.0. The MEKC method was compared to the corresponding CZE method using the same running buffer containing no SDS. The effect of SDS concentration on separation, the pH of the running buffer, and the detection wavelength were studied and optimal MEKC conditions were established. Good linearity was obtained with correlation coefficients of more than 0.99 for all analytes. Specificity, accuracy, and precision were also evaluated. The recovery was in the range of 89-112%. The precision results were in the range of 1.7-4.8%. The experimentally determined data demonstrated that the MEKC method is applicable to the determination of the six analytes in in-process samples from monoclonal antibody manufacturing processes.

  17. Murine lymphoma L5178Y cells resistant to purine antagonists: differences in cross-resistance to thioguanine-platinum(II) and selenoguanine-platinum(II).

    PubMed

    Kanzawa, F; Maeda, M; Sasaki, T; Hoshi, A; Kuretani, K

    1982-02-01

    To determine whether the antitumor activities of thioguanine-platinum(II) [TG-Pt(II)] and selenoguanine-platinum(II) [SeG-Pt(II)] are due to direct actions of these compounds or to the actions of their hydrolysis products, studies were made on a purine antagonist-resistant, murine lymphoma L5178Y/MP subline that lacked the anabolic enzyme hypoxanthine-guanine phosphoribosyltransferase necessary for tumor inhibition. The L5178Y/MP subline proved to be highly resistant to both TG-Pt(II) and thioguanine; the resistance ratios to the two compounds were almost identical. The subline showed high resistance to selenoguanine, but the cross-resistance to SeG-Pt(II) was negligible. Whether the compounds exhibit the delayed cytotoxicity characteristic of purine antagonists was also investigated. Delayed cytotoxicity was demonstrated for TG-Pt(II) as well as for thioguanine and other purine antagonists but not for SeG-Pt(II) or cis-dichlorodiammineplatinum(II). Experiments on cross-resistance and delayed cytotoxicity showed differences in the cytotoxicities of TG-Pt(II) and SeG-Pt(II): TG-Pt(II) exerted its activity through its hydrolysis product thioguanine, whereas SeG-Pt(II) compound was cytotoxic itself.

  18. Effects of different concentrations of metal ions on degradation of adenosine triphosphate in common carp (Cyprinus carpio) fillets stored at 4°C: An in vivo study.

    PubMed

    Li, Dapeng; Qin, Na; Zhang, Longteng; Lv, Jian; Li, Qingzheng; Luo, Yongkang

    2016-11-15

    The impact of different concentrations of Na(+), K(+), Ca(2+), Mg(2+), Fe(2+), and Zn(2+) on the degradation of adenosine triphosphate (ATP) and the influence of these ions on the activity of adenosine monophosphate deaminase (AMP-deaminase) and acid phosphatase (ACP) in common carp fillets (in vivo) during 4°C storage was examined. The content of ATP, inosine monophosphate (IMP), and hypoxanthine (Hx), and the activity of AMP-deaminase and ACP were determined. Results indicated that the effects of different concentrations of six kinds of metal ions on AMP-deaminase and ACP were not the same. Na(+), K(+), Fe(2+), and Zn(2+) enhanced AMP-deaminase activity, which led to the rapid degradation of ATP and to the generation of a large quantity of IMP within a short time. Ca(2+) and Mg(2+) delayed the change in AMP-deaminase and ACP activity in carp and caused a further delay in the degradation of ATP. Fe(2+) and Zn(2+) inhibited ACP activity, which reduced the decomposition of IMP and the formation of Hx. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. In vitro evaluation of genotoxic effects under magnetic resonant coupling wireless power transfer.

    PubMed

    Mizuno, Kohei; Shinohara, Naoki; Miyakoshi, Junji

    2015-04-07

    Wireless power transfer (WPT) technology using the resonant coupling phenomenon has been widely studied, but there are very few studies concerning the possible relationship between WPT exposure and human health. In this study, we investigated whether exposure to magnetic resonant coupling WPT has genotoxic effects on WI38VA13 subcloned 2RA human fibroblast cells. WPT exposure was performed using a helical coil-based exposure system designed to transfer power with 85.4% efficiency at a 12.5-MHz resonant frequency. The magnetic field at the positions of the cell culture dishes is approximately twice the reference level for occupational exposure as stated in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. The specific absorption rate at the positions of the cell culture dishes matches the respective reference levels stated in the ICNIRP guidelines. For assessment of genotoxicity, we studied cell growth, cell cycle distribution, DNA strand breaks using the comet assay, micronucleus formation, and hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene mutation, and did not detect any significant effects between the WPT-exposed cells and control cells. Our results suggest that WPT exposure under the conditions of the ICNIRP guidelines does not cause detectable cellular genotoxicity.

  20. Background Nutrients Affect the Biotransformation of Tetracycline by Stenotrophomonas maltophilia as Revealed by Genomics and Proteomics.

    PubMed

    Leng, Yifei; Bao, Jianguo; Song, Dandan; Li, Jing; Ye, Mao; Li, Xu

    2017-09-19

    Certain bacteria are resistant to antibiotics and can even transform antibiotics in the environment. It is unclear how the molecular mechanisms underlying the resistance and biotransformation processes vary under different environmental conditions. The objective of this study is to investigate the molecular mechanisms of tetracycline resistance and biotransformation by Stenotrophomonas maltophilia strain DT1 under various background nutrient conditions. Strain DT1 was exposed to tetracycline for 7 days with four background nutrient conditions: no background (NB), peptone (P), peptone plus citrate (PC), and peptone plus glucose (PG). The biotransformation rate follows the order of PC > P > PG > NB ≈ 0. Genomic analysis showed that strain DT1 contained tet(X1), a gene encoding an FAD-binding monooxygenase, and eight peroxidase genes that could be relevant to tetracycline biotransformation. Quantitative proteomic analyses revealed that nodulation protein transported tetracycline outside of cells; hypoxanthine-guanine phosphoribosyltransferase facilitated the activation of the ribosomal protection proteins to prevent the binding of tetracycline to the ribosome and superoxide dismutase and peroxiredoxin-modified tetracycline molecules. Comparing different nutrient conditions showed that the biotransformation rates of tetracycline were positively correlated with the expression levels of superoxide dismutase.

  1. Cytotoxic activity of vitamins K1, K2 and K3 against human oral tumor cell lines.

    PubMed

    Okayasu, H; Ishihara, M; Satoh, K; Sakagami, H

    2001-01-01

    Vitamin K1, K2 and K3 were compared for their cytotoxic activity, radical generation and O2- scavenging activity. Among these compounds, vitamin K3 showed the highest cytotoxic activity against human oral tumor cell lines (HSC-2, HSG), human promyelocytic leukemic cell line (HL-60) and human gingival fibroblast (HGF). Vitamin K3 induced internucleosomal DNA fragmentation in HL-60 cells, but not in HSC-2 or HSG cells. The cytotoxic activity of vitamins K2 and K1 was one and two orders lower, respectively, than K3. Vitamin K2, but not vitamin K3, showed tumor-specific cytotoxic action. ESR spectroscopy showed that only vitamin K3 produced radical(s) under alkaline condition and most potently enhanced the radical intensity of sodium ascorbate and scavenged O2- (generated by hypoxanthine-xanthine oxidase reaction system); vitamin K2 was much less active whereas vitamin K1 was inactive. These data suggest that the cytotoxic activity of vitamin K3 is generated by radical-mediated oxidation mechanism and that this vitamin has two opposing actions (that is, antioxidant and prooxidant), depending on the experimental conditions.

  2. Metabolomics Analysis of Human Vitreous in Diabetic Retinopathy and Rhegmatogenous Retinal Detachment.

    PubMed

    Haines, Nathan R; Manoharan, Niranjan; Olson, Jeffrey L; D'Alessandro, Angelo; Reisz, Julie A

    2018-06-19

    The vitreous humor is a highly aqueous eye fluid interfacing with the retina and lens and providing shape. Its molecular composition provides a readout for the eye's physiological status. Changes in cellular metabolism underlie vitreoretinal pathologies, but despite routine surgical collection of vitreous, only limited reports of metabolism in the vitreous of human patients have been described. Vitreous samples from patients with rhegmatogenous retinal detachment ( n = 25) and proliferative diabetic retinopathy ( n = 9) were profiled along with control human vitreous samples ( n = 8) by untargeted mass-spectrometry-based metabolomics. Profound changes were observed in diabetic retinopathy vitreous, including altered glucose metabolism and activation of the pentose phosphate pathway, which provides reducing equivalents to counter oxidative stress. In addition, purine metabolism was altered in diabetic retinopathy, with decreased xanthine and elevated levels of related purines (inosine, hypoxanthine, urate, allantoate) generated in oxidant-producing reactions. In contrast, the vitreous metabolite profiles of retinal detachment patients were similar to controls. In total, our results suggest a rewiring of vitreous metabolism in diabetic retinopathy that underlies disease features such as oxidative stress and furthermore illustrates how the vitreous metabolic profile may be impacted by disease.

  3. Development of an enzyme-linked immunosorbent assay and immunoaffinity chromatography for glycyrrhizic acid using an anti-glycyrrhizic acid monoclonal antibody.

    PubMed

    Zhang, Yue; Qu, Huihua; Zeng, Wenhao; Zhao, Yan; Shan, Wenchao; Wang, Xueqian; Wang, Qingguo; Zhao, Yan

    2015-07-01

    In this work, a new monoclonal antibody specific for glycyrrhizic acid was prepared and characterized. A hybridoma secreting an anti-glycyrrhizic acid monoclonal antibody was produced by fusing splenocytes from a mouse immunized against a glycyrrhizic acid-bovine serum albumin conjugate with the hypoxanthine-aminopterin-thymidine-sensitive mouse myeloma cell line (Sp2/0-Ag14). Subsequently, an indirect, competitive enzyme-linked immunosorbent assay for glycyrrhizic acid was developed using the monoclonal antibody. In this assay, we detected an effective measuring range of 78.12-2500 ng/mL. Both intra-assay and inter-assay repeatability and precision were achieved, with relative standard deviations lower than 10%. In addition, glycyrrhizic acid levels in both formulated Chinese medicines and biological samples were determined with high sensitivity and efficiency. We then successfully developed a reliable immunoaffinity chromatography to separate glycyrrhizic acid completely from its parent medicine. These methods will contribute to further research investigations to better understand the interactions of glycyrrhizic acid with other drugs in the complex system of traditional Chinese medicine. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Isolation of Purines and Pyrimidines from the Murchison Meteorite

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Bada, J. K.

    2003-01-01

    The origin of life on Earth, and possibly on other planets such as Mars, would have required the presence of liquid water and a continuous supply of prebiotic organic compounds. The delivery of organic matter by asteroids, comets, and carbonaceous meteorites could have contributed to the early Earth's prebiotic inventory by seeding the planet with biologically important organic compounds. A wide variety of prebiotic organic compounds have previously been detected in the Murchison CM type carbonaceous chondrite including amino acids, purines and pyrimidines'. These compounds play a major role in terrestrial biochemistry and are integral components of proteins, DNA and RNA. In this study we developed a new extraction technique using sublimation in order to isolate purines and pyrimidines from Murchison2, which is cleaner and more time efficient that traditional methods3. Several purines including adenine, guanine, hypoxanthine and xanthine were positively identified by high performance liquid chromatography and ultraviolet absorption detection in our Murchison extracts. The purines detected in Murchison do not correlate with the distribution of nucleobases found in geological environments on Earth4. Moreover, the abundance of extraterrestrial amino acids and the low level of terrestrial amino acid contaminants found in Murchison', support the idea that the purines in t h s meteorite are extraterrestrial in origin.

  5. A novel amperometric enzyme inhibition biosensor based on xanthine oxidase immobilised onto glassy carbon electrodes for bisphenol A determination.

    PubMed

    Ben Messaoud, Najib; Ghica, Mariana Emilia; Dridi, Cherif; Ben Ali, Mounir; Brett, Christopher M A

    2018-07-01

    A novel and simple biosensor for the determination of bisphenol A (BPA) based on xanthine oxidase (XOD) enzymatic inhibition has been developed. The biosensor was prepared from xanthine oxidase immobilised by crosslinking with glutaraldehyde, with hypoxanthine as enzyme substrate, and was successfully applied to the determination of BPA using fixed potential amperometry. Biosensor performance was optimised with respect to the applied potential, influence of pH of the electrolyte solution, XOD loading and the substrate concentration. The enzyme inhibition mechanism was evaluated from Cornish-Bowden plus Dixon plots and was found to be reversible and competitive with an apparent inhibition constant of 8.15 nM. Under optimised conditions, the determination of BPA can be achieved in the linear range up to 41 nM with a detection limit of 1.0 nM, which is equal to the lowest reported in the literature, with very good repeatability and reproducibility. The selectivity of the biosensor was evaluated by performing an interference study and found to be excellent; and stability was investigated. It was successfully applied to the detection of BPA in mineral water and in river water. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Correction of mutant Fanconi anemia gene by homologous recombination in human hematopoietic cells using adeno-associated virus vector.

    PubMed

    Paiboonsukwong, Kittiphong; Ohbayashi, Fumi; Shiiba, Haruka; Aizawa, Emi; Yamashita, Takayuki; Mitani, Kohnosuke

    2009-11-01

    Adeno-associated virus (AAV) vectors have been shown to correct a variety of mutations in human cells by homologous recombination (HR) at high rates, which can overcome insertional mutagenesis and transgene silencing, two of the major hurdles in conventional gene addition therapy of inherited diseases. We examined an ability of AAV vectors to repair a mutation in human hematopoietic cells by HR. We infected a human B-lymphoblastoid cell line (BCL) derived from a normal subject with an AAV, which disrupts the hypoxanthine phosphoribosyl transferase1 (HPRT1) locus, to measure the frequency of AAV-mediated HR in BCL cells. We subsequently constructed an AAV vector encoding the normal sequences from the Fanconi anemia group A (FANCA) locus to correct a mutation in the gene in BCL derived from a FANCA patient. Under optimal conditions, approximately 50% of BCL cells were transduced with an AAV serotype 2 (AAV-2) vector. In FANCA BCL cells, up to 0.016% of infected cells were gene-corrected by HR. AAV-mediated restoration of normal genotypic and phenotypic characteristics in FANCA-mutant cells was confirmed at the DNA, protein and functional levels. The results obtained in the present study indicate that AAV vectors may be applicable for gene correction therapy of inherited hematopoietic disorders.

  7. Mutation rates at the glycophorin A and HPRT loci in uranium miners exposed to radon progeny.

    PubMed Central

    Shanahan, E M; Peterson, D; Roxby, D; Quintana, J; Morely, A A; Woodward, A

    1996-01-01

    OBJECTIVES--To find whether a relation exists between estimated levels of exposure to radon and its progeny and mutations in hypoxanthine phosphoribosyl transferase (HPRT) and glycophorin A in a cohort of former uranium miners. METHODS--A cohort study involving a sample of miners from the Radium Hill uranium mine in South Australia, which operated from 1952 to 1961. Radiation exposures underground at Radium Hill were estimated from historical radon gas measures with a job exposure matrix. Workers from the mine who worked exclusively above ground according to mine records were selected as controls. In 1991-2 miners were interviewed and blood taken for measurement of somatic mutations. Mutation rates for HPRT and glycophorin A were estimated with standard assay techniques. RESULTS--Homozygous mutations of glycophorin A were increased in underground miners (P = 0.0027) and the mutation rate tended to rise with increasing exposure with the exception of the highest exposure (> 10 working level months). However, there was no association between place of work and either the hemizygous mutations of glycophorin A or the HPRT mutation. CONCLUSIONS--There may be an association between glycophorin A mutations and previous occupational exposure to ionising radiation. However, not enough is known at present to use these assays as biomarkers for historical exposure in underground mining cohorts. PMID:8704866

  8. Possible association between mutant frequency in peripheral lymphocytes and domestic radon concentrations.

    PubMed

    Bridges, B A; Cole, J; Arlett, C F; Green, M H; Waugh, A P; Beare, D; Henshaw, D L; Last, R D

    1991-05-18

    To investigate whether previously found geographical correlations between leukaemia incidence and exposure to radon are reflected in a detectable mutagenic effect on individuals, the frequency of mutations in the hypoxanthine guanine phosphoribosyl transferase gene (hprt) in peripheral blood T lymphocytes was measured in subjects with known domestic radon concentrations. These concentrations were measured in December, 1989, in houses in Street, Somerset, UK, by passive alpha-track radon detectors. 20 non-smoking subjects aged 36-55 years were selected from the patient list at the local health centre on the basis of the radon concentrations in their homes--the range selected varied by a factor of ten. Blood samples for preparation of T lymphocytes were taken in July, 1990. There was a significant association between the log mutant frequency and radon concentration (t = 3.47, p less than 0.01). A second analysis of a further set of radon measurements (October, 1990, to January, 1991), in both living rooms and bedrooms, and repeated mutant frequency determinations also showed a significant relation, which remained significant even after exclusion of the highest frequency and adjustment for subject's age and cloning efficiency. These data must be regarded as preliminary and further more extensive studies should be done to determine whether the observed association is causal.

  9. Use of rapid-scan EPR to improve detection sensitivity for spin-trapped radicals.

    PubMed

    Mitchell, Deborah G; Rosen, Gerald M; Tseitlin, Mark; Symmes, Breanna; Eaton, Sandra S; Eaton, Gareth R

    2013-07-16

    The short lifetime of superoxide and the low rates of formation expected in vivo make detection by standard continuous wave (CW) electron paramagnetic resonance (EPR) challenging. The new rapid-scan EPR method offers improved sensitivity for these types of samples. In rapid-scan EPR, the magnetic field is scanned through resonance in a time that is short relative to electron spin relaxation times, and data are processed to obtain the absorption spectrum. To validate the application of rapid-scan EPR to spin trapping, superoxide was generated by the reaction of xanthine oxidase and hypoxanthine with rates of 0.1-6.0 μM/min and trapped with 5-tert-butoxycarbonyl-5-methyl-1-pyrroline-N-oxide (BMPO). Spin trapping with BMPO to form the BMPO-OOH adduct converts the very short-lived superoxide radical into a more stable spin adduct. There is good agreement between the hyperfine splitting parameters obtained for BMPO-OOH by CW and rapid-scan EPR. For the same signal acquisition time, the signal/noise ratio is >40 times higher for rapid-scan than for CW EPR. Rapid-scan EPR can detect superoxide produced by Enterococcus faecalis at rates that are too low for detection by CW EPR. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Antimalarial Activity and Mechanisms of Action of Two Novel 4-Aminoquinolines against Chloroquine-Resistant Parasites

    PubMed Central

    Aguiar, Anna Caroline Campos; Santos, Raquel de Meneses; Figueiredo, Flávio Júnior Barbosa; Cortopassi, Wilian Augusto; Pimentel, André Silva; França, Tanos Celmar Costa; Meneghetti, Mario Roberto; Krettli, Antoniana Ursine

    2012-01-01

    Chloroquine (CQ) is a cost effective antimalarial drug with a relatively good safety profile (or therapeutic index). However, CQ is no longer used alone to treat patients with Plasmodium falciparum due to the emergence and spread of CQ-resistant strains, also reported for P. vivax. Despite CQ resistance, novel drug candidates based on the structure of CQ continue to be considered, as in the present work. One CQ analog was synthesized as monoquinoline (MAQ) and compared with a previously synthesized bisquinoline (BAQ), both tested against P. falciparum in vitro and against P. berghei in mice, then evaluated in vitro for their cytotoxicity and ability to inhibit hemozoin formation. Their interactions with residues present in the NADH binding site of P falciparum lactate dehydrogenase were evaluated using docking analysis software. Both compounds were active in the nanomolar range evaluated through the HRPII and hypoxanthine tests. MAQ and BAQ derivatives were not toxic, and both compounds significantly inhibited hemozoin formation, in a dose-dependent manner. MAQ had a higher selectivity index than BAQ and both compounds were weak PfLDH inhibitors, a result previously reported also for CQ. Taken together, the two CQ analogues represent promising molecules which seem to act in a crucial point for the parasite, inhibiting hemozoin formation. PMID:22649514

  11. Antimalarial activity and mechanisms of action of two novel 4-aminoquinolines against chloroquine-resistant parasites.

    PubMed

    Aguiar, Anna Caroline Campos; Santos, Raquel de Meneses; Figueiredo, Flávio Júnior Barbosa; Cortopassi, Wilian Augusto; Pimentel, André Silva; França, Tanos Celmar Costa; Meneghetti, Mario Roberto; Krettli, Antoniana Ursine

    2012-01-01

    Chloroquine (CQ) is a cost effective antimalarial drug with a relatively good safety profile (or therapeutic index). However, CQ is no longer used alone to treat patients with Plasmodium falciparum due to the emergence and spread of CQ-resistant strains, also reported for P. vivax. Despite CQ resistance, novel drug candidates based on the structure of CQ continue to be considered, as in the present work. One CQ analog was synthesized as monoquinoline (MAQ) and compared with a previously synthesized bisquinoline (BAQ), both tested against P. falciparum in vitro and against P. berghei in mice, then evaluated in vitro for their cytotoxicity and ability to inhibit hemozoin formation. Their interactions with residues present in the NADH binding site of P falciparum lactate dehydrogenase were evaluated using docking analysis software. Both compounds were active in the nanomolar range evaluated through the HRPII and hypoxanthine tests. MAQ and BAQ derivatives were not toxic, and both compounds significantly inhibited hemozoin formation, in a dose-dependent manner. MAQ had a higher selectivity index than BAQ and both compounds were weak PfLDH inhibitors, a result previously reported also for CQ. Taken together, the two CQ analogues represent promising molecules which seem to act in a crucial point for the parasite, inhibiting hemozoin formation.

  12. Electrochemical estrogen screen method based on the electrochemical behavior of MCF-7 cells.

    PubMed

    Li, Jinlian; Song, Jia; Bi, Sheng; Zhou, Shi; Cui, Jiwen; Liu, Jiguang; Wu, Dongmei

    2016-08-05

    It was an urgent task to develop quick, cheap and accurate estrogen screen method for evaluating the estrogen effect of the booming chemicals. In this study, the voltammetric behavior between the estrogen-free and normal fragmented MCF-7 cell suspensions were compared, and the electrochemical signal (about 0.68V attributed by xanthine and guanine) of the estrogen-free fragmented MCF-7 cell suspension was obviously lower than that of the normal one. The electrochemistry detection of ex-secretion purines showed that the ability of ex-secretion purines of cells sharp decreased due to the removing of endogenous estrogen. The results indicated that the electrochemical signal of MCF-7 cells was related to the level of intracellular estrogen. When the level of intracellular estrogen was down-regulated, the concentrations of the xanthine and hypoxanthine decreased, which led to the electrochemical signal of MCF-7 cells fall. Based on the electrochemical signal, the electrochemical estrogen screen method was established. The estrogen effect of estradiol, nonylphenol and bisphenol A was evaluated with the electrochemical method, and the result was accordant with that of MTT assay. The electrochemical estrogen screen method was simple, quickly, cheap, objective, and it exploits a new way for the evaluation of estrogenic effects of chemicals. Copyright © 2016. Published by Elsevier B.V.

  13. ATPase inhibitor based luciferase assay for prolonged and enhanced ATP pool measurement as an efficient fish freshness indicator.

    PubMed

    Ranjan, Rajeev; Priyanka, B S; Thakur, M S

    2014-07-01

    The nucleotide degradation pathway in somatic cells leads to the accumulation of products such as hypoxanthine and inosine, which are commonly used as fish and meat freshness indicators. Assays based on these molecules cannot differentiate the postmortem time over a short period of time (5-10 h). Further, quantification of these degradation products is cumbersome, costly and time-consuming. For the proposed assay, optimal concentrations of 30 and 2 mM, respectively, for the ATPase inhibitors sodium orthovanadate and EDTA were found. Further, it was observed that a firefly luciferase based assay could enhance the sensitivity levels up to 165-fold at 30 °C. In addition, it was observed that the sensitivity for ATP assay was enhanced up to 60-fold even after 12 h. The limit of detection for the ATP assay was 1 pM, unlike other conventional methods, which are sensitive only up to micromolar levels. Moreover, as little as 0.044 g fish fillet was required for the assay, and no time-consuming sample preparation was necessary. Luminescence of prolonged duration was observed in harvested fish kept at -20 °C in comparison with fish kept at 4 and 30 °C, which reflects the shelf life of fish preserved at lower temperatures.

  14. Human X-Linked genes regionally mapped utilizing X-autosome translocations and somatic cell hybrids.

    PubMed Central

    Shows, T B; Brown, J A

    1975-01-01

    Human genes coding for hypoxanthine phosphoribosyltransferase (HPRT, EC 2.4.2.8; IMP:pyrophosphate phosphoribosyltransferase), glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49; D-glucose-6-phosphate:NADP+ 1-oxidoreductase), and phosphoglycerate kinase (PGK, EC 2.7.2.3; ATP:3-phospho-D-glycerate 1-phosphotransferase) have been assigned to specific regions on the long arm of the X chromosome by somatic cell gentic techniques. Gene assignment and linear order were determined by employing human somatic cells possessing an X/9 translocation or an X/22 translocation in man-mouse cell hybridization studies. The X/9 translocation involved the majority of the X long arm translocated to chromosome 9 and the X/22 translocation involved the distal half of the X long arm translocated to 22. In each case these rearrangements appeared to be reciprocal. Concordant segregation of X-linked enzymes and segments of the X chromosome generated by the translocations indicated assignment of the PGK gene to a proximal long arm region (q12-q22) and the HPRT and G6PD genes to the distal half (q22-qter) of the X long arm. Further evidence suggests a gene order on the X long arm of centromere-PGK-HPRT-G6PD. Images PMID:1056018

  15. Energy demands in competitive soccer.

    PubMed

    Bangsbo, J

    1994-01-01

    In elite outfield players, the average work rate during a soccer match, as estimated from variables such as heart rate, is approximately 70% of maximal oxygen uptake (VO2 max). This corresponds to an energy production of approximately 5700 kJ (1360 kcal) for a person weighing 75 kg with a VO2 max of 60 ml kg-1 min-1. Aerobic energy production appears to account for more than 90% of total energy consumption. Nevertheless, anaerobic energy production plays an essential role during soccer matches. During intensive exercise periods of a game, creatine phosphate, and to a lesser extent the stored adenosine triphosphate, are utilized. Both compounds are partly restored during a subsequent prolonged rest period. In blood samples taken after top-class soccer matches, the lactate concentration averages 3-9 mM, and individual values frequently exceed 10 mM during match-play. Furthermore, the adenosine diphosphate degradation products--ammonia/ammonium, hypoxanthine and uric acid--are elevated in the blood during soccer matches. Thus, the anaerobic energy systems are heavily taxes during periods of match-play. Glycogen in the working muscle seems to be the most important substrate for energy production during soccer matches. However, muscle triglycerides, blood free fatty acids and glucose are also used as substrates for oxidative metabolism in the muscles.

  16. Generation and Characterization of Anti-CD34 Monoclonal Antibodies that React with Hematopoietic Stem Cells

    PubMed Central

    Aghebati Maleki, Leili; Majidi, Jafar; Baradaran, Behzad; Movassaghpour, Aliakbar; Abdolalizadeh, Jalal

    2014-01-01

    CD34 is a type I membrane protein with a molecular mass of approximately 110 kDa. This antigen is associated with human hematopoietic progenitor cells and is a differentiation stage-specific leukocyte antigen. In this study we have generated and characterized monoclonal antibodies (mAbs) directed against a CD34 marker. Mice were immunized with two keyhole lympet hemocyanin (KLH)-conjugated CD34 peptides. Fused cells were grown in hypoxanthine, aminopterine and thymidine (HAT) selective medium and cloned by the limiting dilution (L.D) method. Several monoclones were isolated by three rounds of limited dilutions. From these, we chose stable clones that presented sustained antibody production for subsequent characterization. Antibodies were tested for their reactivity and specificity to recognize the CD34 peptides and further screened by enzyme-linked immunosorbent assay (ELISA) and Western blotting analyses. One of the mAbs (3D5) was strongly reactive against the CD34 peptide and with native CD34 from human umbilical cord blood cells (UCB) in ELISA and Western blotting analyses. The results have shown that this antibody is highly specific and functional in biomedical applications such as ELISA and Western blot assays. This monoclonal antibodies (mAb) can be a useful tool for isolation and purification of human hematopoietic stem cells (HSCs). PMID:24611141

  17. Content of polyphenolic compounds in the Nigerian stimulants Cola nitida ssp. alba, Cola nitida ssp. rubra A. Chev, and Cola acuminata Schott & Endl and their antioxidant capacity.

    PubMed

    Atawodi, Sunday Ene-Ojo; Pfundstein, Beate; Haubner, Roswitha; Spiegelhalder, Bertold; Bartsch, Helmut; Owen, Robert Wyn

    2007-11-28

    Varieties of kola nuts (Cola nitida alba, Cola nitida rubra A. Chev, and Cola acuminata Schott & Endl), a group of popular Nigerian and West African stimulants, were analyzed for their content of secondary plant metabolites. The three varieties of the kola nuts contained appreciable levels of (+)-catechin (27-37 g/kg), caffeine (18-24 g/kg), (-)-epicatechin (20-21 g/kg), procyanidin B 1 [epicatechin-(4beta-->8)-catechin] (15-19 g/kg), and procyanidin B2 [epicatechin-(4beta-->8)-epicatechin] (7-10 g/kg). Antioxidant capacity of the extracts and purified metabolites was assessed by two HPLC-based and two colorimetric in vitro assays. Extracts of all varieties exhibited antioxidant capacity with IC 50 values in the range 1.70-2.83 and 2.74-4.08 mg/mL in the hypoxanthine/xanthine oxidase and 2-deoxyguanosine HPLC-based assays, respectively. Utilization of HPLC-based assays designed to reflect in situ generation of free radicals (e.g., HO(*)), as opposed to general assays (DPPH, FRAP) in common use which do not, indicate that, of the major secondary plant metabolites present in kola nut extracts, caffeine is potentially the more effective cancer chemopreventive metabolite in terms of its antioxidant capacity.

  18. Medicinal plants from the Yanesha (Peru): evaluation of the leishmanicidal and antimalarial activity of selected extracts.

    PubMed

    Valadeau, Céline; Pabon, Adriana; Deharo, Eric; Albán-Castillo, Joaquina; Estevez, Yannick; Lores, Fransis Augusto; Rojas, Rosario; Gamboa, Dionicia; Sauvain, Michel; Castillo, Denis; Bourdy, Geneviève

    2009-06-25

    Ninety-four ethanolic extracts of plants used medicinally by the Yanesha, an Amazonian Peruvian ethnic group, for affections related to leishmaniasis and malaria were screened in vitro against Leishmania amazonensis amastigotes and against a Plasmodium falciparum chloroquine resistant strain. The viability of Leishmania amazonensis amastigote stages was assessed by the reduction of tetrazolium salt (MTT) while the impact on Plasmodium falciparum was determined by measuring the incorporation of radio-labelled hypoxanthine. Six plant species displayed good activity against Plasmodium falciparum chloroquine resistant strain (IC(50) < 10 microg/ml): a Monimiaceae, Siparuna aspera (Ruiz & Pavon), A. DC., two Zingiberaceae, Renealmia thyrsoidea (Ruiz & Pavon) Poepp. & Endl. and Renealmia alpinia (Rottb.), two Piperaceae (Piper aduncum L. and Piper sp.) and the leaves of Jacaranda copaia (Aubl.) D. Don (Bignoniaceae). Eight species displayed interesting leishmanicidal activities (IC50 < 10 microg/ml): Carica papaya L. (Caricaceae), Piper dennisii Trel (Piperaceae), Hedychium coronarium J. König (Zingiberaceae), Cestrum racemosum Ruiz & Pav. (Solanaceae), Renealmia alpinia (Rottb.) Zingiberaceae, Lantana sp. (Verbenaceae), Hyptis lacustris A. St.-Hil. ex Benth. (Lamiaceae) and Calea montana Klat. (Asteraceae). Most of them are used against skin affections by Yanesha people. Results are discussed herein, according to the traditional use of the plants and compared with data obtained from the literature.

  19. Adenine formation from adenosine by mycoplasmas: adenosine phosphorylase activity.

    PubMed Central

    Hatanaka, M; Del Giudice, R; Long, C

    1975-01-01

    Mammalian cells have enzymes to convert adenosine to inosine by deamination and inosine to hypoxanthine by phosphorolysis, but they do not possess the enzymes necessary to form the free base, adenine, from adenosine. Mycoplasmas grown in broth or in cell cultures can produce adenine from adenosine. This activity was detected in a variety of mycoplasmatales, and the enzyme was shown to be adenosine phosphorylase. Adenosine formation from adenine and ribose 1-phosphate, the reverse reaction of adenine formation from adenosine, was also observed with the mycoplasma enzyme. Adenosine phosphorylase is apparently common to the mycoplasmatales but it is not universal, and the organisms can be divided into three groups on the basis of their use of adenosine as substrate. Thirteen of 16 Mycoplasma, Acholeplasma, and Siroplasma species tested exhibit adenosine phosphorylase activity. M. lipophilium differed from the other mycoplasmas and shared with mammalian cells the ability to convert adenosine to inosine by deamination. M. pneumoniae and the unclassified M. sp. 70-159 showed no reaction with adenosine. Adenosine phosphorylase activity offers an additional method for the detection of mycoplasma contamination of cells. The patterns of nucleoside metabolism will provide additional characteristics for identification of mycoplasmas and also may provide new insight into the classification of mycoplasmas. PMID:236559

  20. NMR studies on Pt anti-cancer drug interactions with DNA and related compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reily, M.D.

    Three metastable species have been identified in the reaction between cisPt(Me/sub 2/SO)/sub 2/Cl/sub 2/ and 7-methyl inosine (7Melno), 7-9-dimethyl hypoxanthine, cytidine (Cyd), 5-methyl cytidine (5-MeCyd), and a series of 2- and 4-substituted pyridines (Xpy) in Me/sub 2/SO. These were cis (I) and trans(Pt(Me/sub 2/SO)(L)Cl/sub 2/) (II), and cis(Pt(Me/sub 2/SO)/sub 2/(L)Cl)Cl(III), where L = N3 or N1 bound C or l derivatives, respectively. cis(Pt(Me/sub 2/SO)(L)/sub 2/Cl)Cl(IV) and l are stable products when r < 0.5(PtL) or r > 0.5, respectively. The /sup 195/Pt NMR spectra of I-IV were recorded for 24 different Xpy. For each of four complexes the dependence ofmore » chemical shift on ligand pK/sub a/ was linear for 4Xpy. When 2X was -C = OR (R = H, Me phenyl) downfield shifts of ca. 100 ppm from the 4Xpy pK/sub a/ line were observed.Large upfield shifts were observed when 2X was -NR/sub 2/, R = H or alkyl« less

  1. Radical-scavenging activity, protective effect against lipid peroxidation and mineral contents of monofloral Cuban honeys.

    PubMed

    Alvarez-Suarez, José M; Giampieri, Francesca; Damiani, Elisabetta; Astolfi, Paola; Fattorini, Daniele; Regoli, Francesco; Quiles, José L; Battino, Maurizio

    2012-03-01

    Several monofloral Cuban honeys were analyzed to determine their free radical-scavenging activity and from this the total antioxidant content was estimated. The protective effect against lipid peroxidation in an in vitro model of rat liver homogenates was evaluated and, lastly, the mineral content of the honeys, which can be related to the maintenance of intracellular oxidative balance, was determined. The scavenging capacities against hydroxyl and superoxide radicals were determined using the spin-trapping technique and the hypoxanthine/xanthine oxidase assay, respectively. Lipid peroxidation was evaluated through the production of TBARS and hydroperoxides. All honeys tested showed potential antioxidant activity with Linen vine displaying the highest scavenging capacity towards the DPPH, hydroxyl and superoxide radicals, while the least efficient was Christmas vine honey. Honeys also inhibited, in a concentration-dependent mode, lipid peroxidation in rat liver homogenates, with Linen vine resulting the best while the least effective was Christmas vine honey. The ability to scavenge free radicals and protect against lipid peroxidation may contribute to the ability of certain Cuban honeys to help in preventing/reducing some inflammatory diseases in which oxidative stress is involved. A total of eight minerals were identified and quantified as follows: cadmium, chromium, copper, nickel, iron, manganese, lead, and zinc. Minerals found in higher concentrations were iron, zinc and manganese.

  2. TD-DFT investigation of the magnetic circular dichroism spectra of some purine and pyrimidine bases of nucleic acids.

    PubMed

    Fahleson, Tobias; Kauczor, Joanna; Norman, Patrick; Santoro, Fabrizio; Improta, Roberto; Coriani, Sonia

    2015-05-28

    We present a computational study of the magnetic circular dichroism (MCD) spectra in the 200-300 nm wavelength region of purine and its derivative hypoxanthine, as well as of the pyrimidine bases of nucleic acids uracil, thymine, and cytosine, using the B3LYP and CAM-B3LYP functionals. Solvent effects are investigated within the polarizable continuum model and by inclusion of explicit water molecules. In general, the computed spectra are found to be in good agreement with the experimental ones, apart from some overall blue shifts. Both the pseudo-A term shape of the MCD spectra of the purines and the B term shape of the spectra of pyrimidine bases are reproduced. Our calculations also correctly reproduce the reversed phase of the MCD bands in purine compared to that of its derivatives present in nucleic acids. Solvent effects are sizable and system specific, but they do not in general alter the qualitative shape of the spectra. The bands are dominated by the bright π → π* transitions, and our calculations in solution nicely reproduce their energy differences, improving the estimates obtained in the gas phase. Shoulders are predicted for purine and uracil due to n → π* excitations, but they are too weak to be observed in the experiment.

  3. Serial Metabolome Changes in a Prospective Cohort of Subjects with Influenza Viral Infection and Comparison with Dengue Fever.

    PubMed

    Cui, Liang; Fang, Jinling; Ooi, Eng Eong; Lee, Yie Hou

    2017-07-07

    Influenza virus infection (IVI) and dengue virus infection (DVI) are major public health threats. Between IVI and DVI, clinical symptoms can be overlapping yet infection-specific, but host metabolome changes are not well-described. Untargeted metabolomics and targeted oxylipinomic analyses were performed on sera serially collected at three phases of infection from a prospective cohort study of adult subjects with either H3N2 influenza infection or dengue fever. Untargeted metabolomics identified 26 differential metabolites, and major perturbed pathways included purine metabolism, fatty acid biosynthesis and β-oxidation, tryptophan metabolism, phospholipid catabolism, and steroid hormone pathway. Alterations in eight oxylipins were associated with the early symptomatic phase of H3N2 flu infection, were mostly arachidonic acid-derived, and were enriched in the lipoxygenase pathway. There was significant overlap in metabolome profiles in both infections. However, differences specific to IVI and DVI were observed. DVI specifically attenuated metabolites including serotonin, bile acids and biliverdin. Additionally, metabolome changes were more persistent in IVI in which metabolites such as hypoxanthine, inosine, and xanthine of the purine metabolism pathway remained significantly elevated at 21-27 days after fever onset. This study revealed the dynamic metabolome changes in IVI subjects and provided biochemical insights on host physiological similarities and differences between IVI and DVI.

  4. The effect of chilled conditioning at 4°C on selected water and lipid-soluble flavor precursors in Bison bison longissimus dorsi muscle and their impact on sensory characteristics.

    PubMed

    Williamson, Jennifer; Ryland, Donna; Suh, Miyoung; Aliani, Michel

    2014-01-01

    Water and lipid-soluble flavor precursors were monitored using chromatography methods in the longissimus dorsi (LD) muscle of six grain-fed Bison bison, stored at 4°C for 2, 4, 8, 15 and 21 days in order to investigate their potential impact on sensory attributes of cooked bison meat. While pH and lipid-soluble compounds remained mostly unchanged, several changes in water-soluble compounds were observed. The breakdown of inosine-5'-monophosphate (IMP) led to increases in inosine, hypoxanthine and ribose (7-fold). Non-polar amino acids including valine, leucine and phenylalanine showed the most significant increases over 21 days. Trained panelists (n=8) found a significant increase at day 15 in vinegary/sour aroma, tenderness and juiciness, while chewiness and connective tissue significantly decreased. Although, most flavor attributes were undetectable, partial least squares (PLS) analysis revealed most water-soluble precursors were positively correlated with extended conditioning as well as beef and oily/fatty flavors. Quantitative changes observed in flavor precursors may be responsible for some sensory attributes developed during the heating process. © 2013. Published by Elsevier Ltd on behalf of The American Meat Science Association. All rights reserved.

  5. Cloning, heterologous expression, and in situ characterization of the first high affinity nucleobase transporter from a protozoan.

    PubMed

    Burchmore, Richard J S; Wallace, Lynsey J M; Candlish, Denise; Al-Salabi, Mohammed I; Beal, Paul R; Barrett, Michael P; Baldwin, Stephen A; de Koning, Harry P

    2003-06-27

    While multiple nucleoside transporters, some of which can also transport nucleobases, have been cloned in recent years from many different organisms, no sequence information is available for the high affinity, nucleobase-selective transporters of metazoa, parazoa, or protozoa. We have identified a gene, TbNBT1, from Trypanosoma brucei brucei that encodes a 435-residue protein of the equilibrative nucleoside transporter superfamily. The gene was expressed in both the procyclic and bloodstream forms of the organism. Expression of TbNBT1 in a Saccharomyces cerevisiae strain lacking an endogenous purine transporter allowed growth on adenine as sole purine source and introduced a high affinity transport activity for adenine and hypoxanthine, with Km values of 2.1 +/- 0.6 and 0.66 +/- 0.22 microm, respectively, as well as high affinity for xanthine, guanine, guanosine, and allopurinol and moderate affinity for inosine. A transporter with an indistinguishable kinetic profile was identified in T. b. brucei procyclics and designated H4. RNA interference of TbNBT1 in procyclics reduced cognate mRNA levels by approximately 80% and H4 transport activity by approximately 90%. Expression of TbNBT1 in Xenopus oocytes further confirmed that this gene encodes the first high affinity nucleobase transporter from protozoa or animals to be identified at the molecular level.

  6. Stable expression of rat cytochrome P-450IIB1 cDNA in Chinese hamster cells (V79) and metabolic activation of aflatoxin B1.

    PubMed Central

    Doehmer, J; Dogra, S; Friedberg, T; Monier, S; Adesnik, M; Glatt, H; Oesch, F

    1988-01-01

    V79 Chinese hamster fibroblasts are widely used for mutagenicity testing but have the serious limitation that they do not express cytochromes P-450, which are needed for the activation of many promutagens to mutagenic metabolites. A full-length cDNA clone encoding the monooxygenase cytochrome P-450IIB1 under control of the simian virus 40 early promoter was constructed and cointroduced with the selection marker neomycin phosphotransferase (conferring resistance to G418) into V79 Chinese hamster cells. G418-resistant cells were selected, established as cell lines, and tested for cytochrome P-450IIB1 expression and enzymatic activity. Two cell lines (SD1 and SD3) were found that stably produce cytochrome P-450IIB1. Although purified cytochromes P-450 possess monooxygenase activity only after reconstitution with cytochrome P-450 reductase and phospholipid, the gene product of the construct exhibited this activity. This implies that the gene product is intracellularly localized in a way that allows access to the required components. If compared with V79 cells, the mutation rate for the hypoxanthine phosphoribosyltransferase (HPRT) locus in SD1 cells is markedly increased when exposed to aflatoxin B1, which is activated by this enzyme. Images PMID:3137560

  7. Development of a high-throughput screening system for identification of novel reagents regulating DNA damage in human dermal fibroblasts.

    PubMed

    Bae, Seunghee; An, In-Sook; An, Sungkwan

    2015-09-01

    Ultraviolet (UV) radiation is a major inducer of skin aging and accumulated exposure to UV radiation increases DNA damage in skin cells, including dermal fibroblasts. In the present study, we developed a novel DNA repair regulating material discovery (DREAM) system for the high-throughput screening and identification of putative materials regulating DNA repair in skin cells. First, we established a modified lentivirus expressing the luciferase and hypoxanthine phosphoribosyl transferase (HPRT) genes. Then, human dermal fibroblast WS-1 cells were infected with the modified lentivirus and selected with puromycin to establish cells that stably expressed luciferase and HPRT (DREAM-F cells). The first step in the DREAM protocol was a 96-well-based screening procedure, involving the analysis of cell viability and luciferase activity after pretreatment of DREAM-F cells with reagents of interest and post-treatment with UVB radiation, and vice versa. In the second step, we validated certain effective reagents identified in the first step by analyzing the cell cycle, evaluating cell death, and performing HPRT-DNA sequencing in DREAM-F cells treated with these reagents and UVB. This DREAM system is scalable and forms a time-saving high-throughput screening system for identifying novel anti-photoaging reagents regulating DNA damage in dermal fibroblasts.

  8. Production and characterization of murine monoclonal antibody against synthetic peptide of CD34.

    PubMed

    Maleki, Leili Aghebati; Majidi, Jafar; Baradaran, Behzad; Abdolalizadeh, Jalal; Akbari, Aliakbar Movassaghpour

    2013-01-01

    The treatment of hematologic malignancies and immunodeficiency diseases are offered by hematopoietic stem cells (HSCs) as a unique self-renewal and differentiation source which most commonly is selected by CD34 surface marker for HSC. The purpose of this study was to develop and characterize monoclonal antibody against CD34 antigen for detection of hematopoietic stem cells. Balb/c mice were immunized with two synthetic peptides of CD34 and Spleen cells were fused with SP2/0.Fused cells were grown in hypoxanthine, aminopterine and thymidine (HAT) selective medium and cloned by limiting dilution. Large scale of monoclonal antibodies was produced by mouse ascites production of mAb (in vivo) method. Monoclonal antibody was purified by chromatography. Then reactivity of these antibodies was evaluated in different immunological assays including ELISA, immunofluorescence (IF), western blot (WB) and flowcytometry. In this study, between five positive clone wells, two clones were chosen for limiting dilution. Limiting dilution product was one monoclone (3-D5 monoclone) with absorbance about 2. Isotype of this mAb was identified as IgG1 class with Kappa (κ) light chain. This antibody is highly specific and functional in biomedical applications such as ELISA, flowcytometry, immunofluorescence, and western blot assays.

  9. [Identification and quantitation of purine derivatives in urinary calculi as markers of abnormal purine metabolism by using high-performance liquid chromatography (HPLC)].

    PubMed

    Safranow, K

    2000-01-01

    The objective of this study was to develop a practical method for the analysis of purine derivatives in urinary calculi using high-performance liquid chromatography (HPLC). The method presented herein includes extraction of purine derivatives from urinary stones, followed by chromatography on a reversed-phase column with UV detection. A simpler isocratic method was applied to quantitate 6 purines known to be components of urinary stones, namely uric acid, xanthine, hypoxanthine, 2,8-dihydroxyadenine, oxypurinol and allopurinol. Gradient method separated 10 additional peaks representing methyl derivatives of uric acid or xanthine (1-, 3-, 7-, and 9-methyluric acid, 1,3-,1,7-, and 3,7-dimethyluric acid, and 1-, 3-, and 7-methylxanthine) (Fig. 1). Detection limits for individual compounds ranged from 25 to 140 micrograms purine per g stone weight and precision (RSD%) was 0.5-2.4%. Both methods were next used to analyze purine derivatives in urinary calculi from 48 residents of Western Pomerania. Uric acid was the main component of 9 stones. All of the uric acid stones showed admixtures of 9 other purine derivatives: natural metabolites (hypoxanthine, xanthine, 2,8-dihydroxyadenine) and methyl derivatives of uric acid (1-,3-, and 7-methyluric acid, 1,3-dimethyluric acid, 3-, and 7-methylxanthine) originating from the metabolism of exogenous methylxanthines (caffeine, theophylline and theobromine) (Tab. 1,2). Methyl derivatives of uric acid and xanthine, with a maximal content in stones of 1.7%, have hitherto not been considered constituents of urinary calculi. Statistical analysis of the results revealed strong positive correlations between the level of uric acid and of other purine derivatives in stones (Fig. 2). Correlations were also found between levels of some purines and inorganic compounds (Tab. 3). The sensitivity and specificity of HPLC with UV detection satisfy the requirements of a reference method for the analysis of purines in urinary stones. Isocratic separation is simpler in terms of technique and equipment, and therefore more suitable for hospital laboratories. Examination of purine derivatives in stones may be very helpful for the diagnosis of abnormal purine metabolism and urolithiasis, particularly in dihydroxyadeninuria, xanthinuria and during treatment with allopurinol. Gradient separation requiring more sophisticated instrument seems useful for research purposes when the content of methyl derivatives of purines must be known. The present results indicate that urinary purines at concentrations lower than saturation point may nevertheless coprecipitate with oversaturated uric acid and appear as admixtures in urinary stones. The content of a purine derivative in stone depends on its average urinary excretion in the general population, similarity to the chemical structure of uric acid, and content of the latter in stone. These findings suggest that purines in stones represent a solid solution with uric acid as solvent. It is also plausible that methylxanthines, ubiquitous components of the diet and drugs, are involved in the pathogenesis of urolithiasis. Interpretation of results and practical significance of the determination of purine derivatives in stones is discussed, and future studies to assess the clinical importance of endo- and exogenous purine derivatives in urinary calculi are suggested.

  10. Quantitative determination and toxicity evaluation of 2,4-dichlorophenol using poly(eosin Y)/hydroxylated multi-walled carbon nanotubes modified electrode

    PubMed Central

    Zhu, Xiaolin; Zhang, Kexin; Wang, Chengzhi; Guan, Jiunian; Yuan, Xing; Li, Baikun

    2016-01-01

    This study aimed at developing simple, sensitive and rapid electrochemical approach to quantitatively determine and assess the toxicity of 2,4-dichlorophenol (2,4-DCP), a priority pollutant and has potential risk to public health through a novel poly(eosin Y, EY)/hydroxylated multi-walled carbon nanotubes composite modified electrode (PEY/MWNTs-OH/GCE). The distinct feature of this easy-fabricated electrode was the synergistic coupling effect between EY and MWNTs-OH that enabled a high electrocatalytic activity to 2,4-DCP. Under optimum conditions, the oxidation peak current enhanced linearly with concentration increasing from 0.005 to 0.1 μM and 0.2 to 40.0 μM, and revealed the detection limit of 1.5 nM. Moreover, the PEY/MWNTs-OH/GCE exhibited excellent electrocatalytic activity toward intracellular electroactive species. Two sensitive electrochemical signals ascribed to guanine/xanthine and adenine/hypoxanthine in human hepatoma (HepG2) cells were detected simultaneously. The sensor was successfully applied to evaluate the toxicity of 2,4-DCP to HepG2 cells. The IC50 values based on the two electrochemical signals are 201.07 and 252.83 μM, respectively. This study established a sensitive platform for the comprehensive evaluation of 2,4-DCP and posed a great potential to simplify environmental toxicity monitoring. PMID:27941912

  11. Regulation of Purine Metabolism in Intact Leaves of Coffea arabica.

    PubMed

    Nazario, G. M.; Lovatt, C. J.

    1993-12-01

    The capacity of Coffea arabica leaves (5- x 5-mm pieces) to synthesize de novo and catabolize purine nucleotides to provide precursors for caffeine (1,3,7-trimethylxanthine) was investigated. Consistent with de novo synthesis, glycine, bicarbonate, and formate were incorporated into the purine ring of inosine 5[prime]-monophosphate (IMP) and adenine nucleotides ([sigma]Ade); azaserine, a known inhibitor of purine de novo synthesis, inhibited incorporation. Activity of the de novo pathway in C. arabica per g fresh weight of leaf tissue during a 3-h incubation period was 8 [plus or minus] 4 nmol of formate incorporated into IMP, 61 [plus or minus] 7 nmol into [sigma]Ade, and 150 nmol into caffeine (the latter during a 7-h incubation). Coffee leaves exhibited classical purine catabolism. Radiolabeled formate, inosine, adenosine, and adenine were incorporated into hypoxanthine and xanthine, which were catabolized to allantoin and urea. Urease activity was demonstrated. Per g fresh weight, coffee leaf squares incorporated 90 [plus or minus] 22 nmol of xanthine into caffeine in 7 h but degraded 102 [plus or minus] 1 nmol of xanthine to allantoin in 3 h. Feedback control of de novo purine biosynthesis was contrasted in C. arabica and Cucurbita pepo, a species that does not synthesize purine alkaloids. End-product inhibition was demonstrated to occur in both species but at different enzyme reactions.

  12. A DNAzyme requiring two different metal ions at two distinct sites

    PubMed Central

    Zhou, Wenhu; Zhang, Yupei; Huang, Po-Jung Jimmy; Ding, Jinsong; Liu, Juewen

    2016-01-01

    Most previously reported RNA-cleaving DNAzymes require only a single divalent metal ion for catalysis. We recently reported a general trivalent lanthanide-dependent DNAzyme named Ce13d. This work shows that Ce13d requires both Na+ and a trivalent lanthanide (e.g. Ce3+), simultaneously. This discovery is facilitated by the sequence similarity between Ce13d and a recently reported Na+-specific DNAzyme, NaA43. The Ce13d cleavage rate linearly depends on the concentration of both metal ions. Sensitized Tb3+ luminescence and DMS footprinting experiments indicate that the guanines in the enzyme loop are important for Na+-binding. The Na+ dissociation constants of Ce13d measured from the cleavage activity assay, Tb3+ luminescence and DMS footprinting are 24.6, 16.3 and 47 mM, respectively. Mutation studies indicate that the role of Ce3+ might be replaced by G23 in NaA43. Ce3+ functions by stabilizing the transition state phosphorane, thus promoting cleavage. G23 competes favorably with low concentration Ce3+ (below 1 μM). The G23-to-hypoxanthine mutation suggests the N1 position of the guanine as a hydrogen bond donor. Together, Ce13d has two distinct metal binding sites, each fulfilling a different role. DNAzymes can be quite sophisticated in utilizing metal ions for catalysis and molecular recognition, similar to protein metalloenzymes. PMID:26657636

  13. Iron Sequestration in Microbiota Biofilms As A Novel Strategy for Treating Inflammatory Bowel Disease.

    PubMed

    Motta, Jean-Paul; Allain, Thibault; Green-Harrison, Luke E; Groves, Ryan A; Feener, Troy; Ramay, Hena; Beck, Paul L; Lewis, Ian A; Wallace, John L; Buret, Andre G

    2018-06-08

    Significant alterations of intestinal microbiota and anemia are hallmarks of inflammatory bowel disease (IBD). It is widely accepted that iron is a key nutrient for pathogenic bacteria, but little is known about its impact on microbiota associated with IBD. We used a model device to grow human mucosa-associated microbiota in its physiological anaerobic biofilm phenotype. Compared to microbiota from healthy donors, microbiota from IBD patients generate biofilms ex vivo that were larger in size and cell numbers, contained higher intracellular iron concentrations, and exhibited heightened virulence in a model of human intestinal epithelia in vitro and in the nematode Caenorhabditis elegans. We also describe an unexpected iron-scavenging property for an experimental hydrogen sulfide-releasing derivative of mesalamine. The findings demonstrate that this new drug reduces the virulence of IBD microbiota biofilms through a direct reduction of microbial iron intake and without affecting bacteria survival or species composition within the microbiota. Metabolomic analyses indicate that this drug reduces the intake of purine nucleosides (guanosine), increases the secretion of metabolite markers of purine catabolism (urate and hypoxanthine), and reduces the secretion of uracil (a pyrimidine nucleobase) in complex multispecies human biofilms. These findings demonstrate a new pathogenic mechanism for dysbiotic microbiota in IBD and characterize a novel mode of action for a class of mesalamine derivatives. Together, these observations pave the way towards a new therapeutic strategy for treatment of patients with IBD.

  14. A miniaturized electrochemical toxicity biosensor based on graphene oxide quantum dots/carboxylated carbon nanotubes for assessment of priority pollutants.

    PubMed

    Zhu, Xiaolin; Wu, Guanlan; Lu, Nan; Yuan, Xing; Li, Baikun

    2017-02-15

    The study presented a sensitive and miniaturized cell-based electrochemical biosensor to assess the toxicity of priority pollutants in the aquatic environment. Human hepatoma (HepG2) cells were used as the biological recognition agent to measure the changes of electrochemical signals and reflect the cell viability. The graphene oxide quantum dots/carboxylated carbon nanotubes hybrid was developed in a facile and green way. Based on the hybrid composite modified pencil graphite electrode, the cell culture and detection vessel was miniaturized to a 96-well plate instead of the traditional culture dish. In addition, three sensitive electrochemical signals attributed to guanine/xanthine, adenine, and hypoxanthine were detected simultaneously. The biosensor was used to evaluate the toxicity of six priority pollutants, including Cd, Hg, Pb, 2,4-dinitrophenol, 2,4,6-trichlorophenol, and pentachlorophenol. The 24h IC 50 values obtained by the electrochemical biosensor were lower than those of conventional MTT assay, suggesting the enhanced sensitivity of the electrochemical assay towards heavy metals and phenols. This platform enables the label-free and sensitive detection of cell physiological status with multi-parameters and constitutes a promising approach for toxicity detection of pollutants. It makes possible for automatical and high-throughput analysis on nucleotide catabolism, which may be critical for life science and toxicology. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The effect of essential oils on microbial composition and quality of grass carp (Ctenopharyngodon idellus) fillets during chilled storage.

    PubMed

    Huang, Zhan; Liu, Xiaochang; Jia, Shiliang; Zhang, Longteng; Luo, Yongkang

    2018-02-02

    Antimicrobial and antioxidant effects of essential oils (oregano, thyme, and star anise) on microbial composition and quality of grass carp fillets were investigated. Essential oils treatment was found to be effective in inhibiting microbial growth, delaying lipid oxidation, and retarding the increase of TVB-N, putrescine, hypoxanthine, and K-value. Based on sensory analysis, shelf-life of grass carp fillets was 6days for control and 8days for treatment groups. Among the essential oils, oregano essential oil exhibited the highest antimicrobial and antioxidant activities. GC-MS analysis of essential oils components revealed that carvacrol (88.64%) was the major component of oregano essential oil. According to the results of high-throughput sequencing, Aeromonas, Glutamicibacter, and Aequorivita were the predominant microbiota in fresh control samples. However, oregano essential oil decreased the relative abundance of Aeromonas, while thyme and star anise essential oils decreased the relative abundance of Glutamicibacter and Aequorivita in fresh treated samples. The microbial composition of both control and treatment groups became less diverse as storage time increased. Aeromonas and Pseudomonas were dominant in spoiled samples and contributed to fish spoilage. Compared to the control, essential oils effectively inhibited the growth of Aeromonas and Shewanella in grass carp fillets during chilled storage. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Selection of suitable endogenous reference genes for qPCR in kidney and hypothalamus of rats under testosterone influence

    PubMed Central

    2017-01-01

    Real-time quantitative PCR (qPCR) is the most reliable and accurate technique for analyses of gene expression. Endogenous reference genes are being used to normalize qPCR data even though their expression may vary under different conditions and in different tissues. Nonetheless, verification of expression of reference genes in selected studied tissue is essential in order to accurately assess the level of expression of target genes of interest. Therefore, in this study, we attempted to examine six commonly used reference genes in order to identify the gene being expressed most constantly under the influence of testosterone in the kidneys and hypothalamus. The reference genes include glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin beta (ACTB), beta-2 microglobulin (B2m), hypoxanthine phosphoribosyltransferase 1 (HPRT), peptidylprolylisomerase A (Ppia) and hydroxymethylbilane synthase (Hmbs). The cycle threshold (Ct) value for each gene was determined and data obtained were analyzed using the software programs NormFinder, geNorm, BestKeeper, and rank aggregation. Results showed that Hmbs and Ppia genes were the most stably expressed in the hypothalamus. Meanwhile, in kidneys, Hmbs and GAPDH appeared to be the most constant genes. In conclusion, variations in expression levels of reference genes occur in kidneys and hypothalamus under similar conditions; thus, it is important to verify reference gene levels in these tissues prior to commencing any studies. PMID:28591185

  17. Lesch-Nyhan variant syndrome: variable presentation in 3 affected family members.

    PubMed

    Sarafoglou, Kyriakie; Grosse-Redlinger, Krista; Boys, Christopher J; Charnas, Laurence; Otten, Noelle; Broock, Robyn; Nyhan, William L

    2010-06-01

    Lesch-Nyhan disease is an inborn error of purine metabolism that results from deficiency of the activity of hypoxanthine phosphoribosyltransferase (HPRT). The heterogeneity of clinical phenotypes seen in HPRT deficiency corresponds to an inverse relationship between HPRT enzyme activity and clinical severity. With rare exception, each mutation produces a stereotypical pattern of clinical disease; onset of neurologic symptoms occurs during infancy and is thought to be nonprogressive. To document a family in which a single HPRT gene mutation has led to 3 different clinical and enzymatic phenotypes. Case report. Settings A university-based outpatient metabolic clinic and a biochemical genetics laboratory. Patients Three males (2 infants and their grandfather) from the same family with Lesch-Nyhan variant, including one of the oldest patients with Lesch-Nyhan variant at diagnosis (65 years). Clinical and biochemical observations. Sequencing of 5 family members revealed a novel mutation c.550G>T in exon 7 of the HPRT gene. The considerably variable clinical phenotype corresponded with the variable enzymatic activity in the 3 males, with the grandfather being the most severely affected. The different phenotypes encountered in the enzymatic analysis of cultured fibroblasts from a single mutation in the same family is unprecedented. The significant decrease in the grandfather's HPRT enzymatic activity compared with that of his grandchildren could be a function of the Hayflick Limit Theory of cell senescence.

  18. Silencing expression of the catalytic subunit of DNA-dependent protein kinase by small interfering RNA sensitizes human cells for radiation-induced chromosome damage, cell killing, and mutation

    NASA Technical Reports Server (NTRS)

    Peng, Yuanlin; Zhang, Qinming; Nagasawa, Hatsumi; Okayasu, Ryuichi; Liber, Howard L.; Bedford, Joel S.

    2002-01-01

    Targeted gene silencing in mammalian cells by RNA interference (RNAi) using small interfering RNAs (siRNAs) was recently described by Elbashir et al. (S. M. Elbashir et al., Nature (Lond.), 411: 494-498, 2001). We have used this methodology in several human cell strains to reduce expression of the Prkdc (DNA-PKcs) gene coding for the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) that is involved in the nonhomologous end joining of DNA double-strand breaks. We have also demonstrated a radiosensitization for several phenotypic endpoints of radiation damage. In low-passage normal human fibroblasts, siRNA knock-down of DNA-PKcs resulted in a reduced capacity for restitution of radiation-induced interphase chromosome breaks as measured by premature chromosome condensation, an increased yield of acentric chromosome fragments at the first postirradiation mitosis, and an increased radiosensitivity for cell killing. For three strains of related human lymphoblasts, DNA-PKcs-targeted siRNA transfection resulted in little or no increase in radiosensitivity with respect to cell killing, a 1.5-fold decrease in induced mutant yield in TK6- and p53-null NH32 cells, but about a 2-fold increase in induced mutant yield in p53-mutant WTK1 cells at both the hypoxanthine quanine phosphoribosyl transferase (hprt) and the thymidine kinase loci.

  19. Xanthine oxidase inhibitors beyond allopurinol and febuxostat; an overview and selection of potential leads based on in silico calculated physico-chemical properties, predicted pharmacokinetics and toxicity.

    PubMed

    Šmelcerović, Andrija; Tomović, Katarina; Šmelcerović, Žaklina; Petronijević, Živomir; Kocić, Gordana; Tomašič, Tihomir; Jakopin, Žiga; Anderluh, Marko

    2017-07-28

    Xanthine oxidase (XO), a versatile metalloflavoprotein enzyme, catalyzes the oxidative hydroxylation of hypoxanthine and xanthine to uric acid in purine catabolism while simultaneously producing reactive oxygen species. Both lead to the gout-causing hyperuricemia and oxidative damage of the tissues where overactivity of XO is present. Over the past years, significant progress and efforts towards the discovery and development of new XO inhibitors have been made and we believe that not only experts in the field, but also general readership would benefit from a review that addresses this topic. Accordingly, the aim of this article was to overview and select the most potent recently reported XO inhibitors and to compare their structures, mechanisms of action, potency and effectiveness of their inhibitory activity, in silico calculated physico-chemical properties as well as predicted pharmacokinetics and toxicity. Derivatives of imidazole, 1,3-thiazole and pyrimidine proved to be more potent than febuxostat while also displaying/possessing favorable predicted physico-chemical, pharmacokinetic and toxicological properties. Although being structurally similar to febuxostat, these optimized inhibitors bear some structural freshness and could be adopted as hits for hit-to-lead development and further evaluation by in vivo studies towards novel drug candidates, and represent valuable model structures for design of novel XO inhibitors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. The first 3':5'-cyclic nucleotide-amino acid complex: L-His-cIMP.

    PubMed

    Slepokura, Katarzyna

    2012-08-01

    In the crystal structure of the L-His-cIMP complex, i.e. L-histidinium inosine 3':5'-cyclic phosphate [systematic name: 5-(2-amino-2-carboxyethyl)-1H-imidazol-3-ium 7-hydroxy-2-oxo-6-(6-oxo-6,9-dihydro-1H-purin-9-yl)-4a,6,7,7a-tetrahydro-4H-1,3,5,2λ(5)-furo[3,2-d][1,3,2λ(5)]dioxaphosphinin-2-olate], C(6)H(10)N(3)O(2)(+)·C(10)H(10)N(4)O(7)P(-), the Hoogsteen edge of the hypoxanthine (Hyp) base of cIMP and the Hyp face are engaged in specific amino acid-nucleotide (His···cIMP) recognition, i.e. by abutting edge-to-edge and by π-π stacking, respectively. The Watson-Crick edge of Hyp and the cIMP phosphate group play a role in nonspecific His···cIMP contacts. The interactions between the cIMP anions (anti/C3'-endo/trans-gauche/chair conformers) are realized mainly between riboses and phosphate groups. The results for this L-His-cIMP complex, compared with those for the previously reported solvated L-His-IMP crystal structure, indicate a different nature of amino acid-nucleotide recognition and interactions upon the 3':5'-cyclization of the nucleotide phosphate group.

  1. The requirement for bivalent cations in formation of nicotinamide–adenine dinucleotide by nicotinamide mononucleotide adenylyltransferase of pig-liver nuclei

    PubMed Central

    Jackson, J. F.; Atkinson, M. R.

    1966-01-01

    1. The requirement for bivalent cations in catalysis of NAD formation from ATP and NMN in the presence of NMN adenylyltransferase of pig-liver nuclei was studied. Rates of NAD formation in the presence of the activating cations Cd2+, Mn2+, Mg2+, Zn2+, Co2+ and Ni2+ were approximately a linear function of heats of hydration of the corresponding ions. Ba2+, Sr2+, Ca2+, Cu2+ and Be2+ did not activate the enzyme; Be2+ inhibited the reaction in the presence of Mg2+ and, to a greater extent, in the presence of Ni2+. 2. Michaelis constants for NAD formation, measured in a coupled assay with NMN adenylyltransferase and alcohol dehydrogenase at pH8·0 and 25°, in the presence of 3mm concentrations of the unvaried reactants, were 88±7μm-ATP, 42±4μm-NMN and 85±4μm-Mg2+. The results at this pH and at pH7·5 were consistent with mechanisms in which Mg2+–ATP complex is a reactant and free ATP a competitive inhibitor. 3. Formation of nicotinamide–hypoxanthine dinucleotide from NMN and ITP in the presence of the transferase was also more rapid with Ni2+ and Co2+ than with Mg2+. PMID:4291356

  2. Prenatal growth restriction, retinal dystrophy, diabetes insipidus and white matter disease: expanding the spectrum of PRPS1-related disorders.

    PubMed

    Al-Maawali, Almundher; Dupuis, Lucie; Blaser, Susan; Heon, Elise; Tarnopolsky, Mark; Al-Murshedi, Fathiya; Marshall, Christian R; Paton, Tara; Scherer, Stephen W; Roelofsen, Jeroen; van Kuilenburg, André B P; Mendoza-Londono, Roberto

    2015-03-01

    PRPS1 codes for the enzyme phosphoribosyl pyrophosphate synthetase-1 (PRS-1). The spectrum of PRPS1-related disorders associated with reduced activity includes Arts syndrome, Charcot-Marie-Tooth disease-5 (CMTX5) and X-linked non-syndromic sensorineural deafness (DFN2). We describe a novel phenotype associated with decreased PRS-1 function in two affected male siblings. Using whole exome and Sanger sequencing techniques, we identified a novel missense mutation in PRPS1. The clinical phenotype in our patients is characterized by high prenatal maternal α-fetoprotein, intrauterine growth restriction, dysmorphic facial features, severe intellectual disability and spastic quadraparesis. Additional phenotypic features include macular coloboma-like lesions with retinal dystrophy, severe short stature and diabetes insipidus. Exome sequencing of the two affected male siblings identified a shared putative pathogenic mutation c.586C>T p.(Arg196Trp) in the PRPS1 gene that was maternally inherited. Follow-up testing showed normal levels of hypoxanthine in urine samples and uric acid levels in blood serum. The PRS activity was significantly reduced in erythrocytes of the two patients. Nucleotide analysis in erythrocytes revealed abnormally low guanosine triphosphate and guanosine diphosphate. This presentation is the most severe form of PRPS1-deficiency syndrome described to date and expands the spectrum of PRPS1-related disorders.

  3. Mutagenicity of silver nanoparticles in CHO cells dependent on particle surface functionalization and metabolic activation

    NASA Astrophysics Data System (ADS)

    Guigas, Claudia; Walz, Elke; Gräf, Volker; Heller, Knut J.; Greiner, Ralf

    2017-06-01

    The potential of engineered nanomaterials to induce genotoxic effects is an important aspect of hazard identification. In this study, cytotoxicity and mutagenicity as a function of metabolic activation of three silver nanoparticle (AgNP) preparations differing in surface coating were determined in Chinese hamster ovary (CHO) subclone K1 cells. Three silver nanoparticle preparations ( x 90,0 <30 nm) stabilized with polyoxyethylene glycerol trioleate and polyoxyethylene sorbitan monolaurate (AgPure™), citrate (Citrate-Ag), and polyvinylpyrrolidone (PVP-Ag) were used for the experiments. The cytotoxic effect of AgNPs was assessed with the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide) test using different concentrations of nanoparticles, while the mutagenicity was evaluated using the hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene mutation assay. The cytotoxicity of all three AgNPs was lower in a cell culture medium containing 10% fetal calf serum (FCS) than in medium without FCS. The HPRT test without metabolic activation system S9 revealed that compared to the other AgNP formulations, citrate-coated Ag showed a lower genotoxic effect. However, addition of S9 increased the mutation frequency of all AgNPs and especially influenced the genotoxicity of Citrate-Ag. The results showed that exogenous metabolic activation of nanosilver is crucial even if interactions of the metabolic activation system, nanosilver, and cells are not really understood up to now.

  4. THE CHEMISTRY OF THE LIVER IN ACUTE YELLOW ATROPHY

    PubMed Central

    Wells, H. Gideon

    1907-01-01

    From the liver of a young man who died of typical, " idiopathic" acute yellow atrophy of the liver, after an illness of six weeks, there were isolated and identified the following amino acids: Histidin, lysin, tyrosin, leucin, glycocoll, alanin, prolin, glutaminic acid, aspartic acid. These were found free in extracts of the liver, and presumably represent products of the autolysis of liver cells, although the amount of soluble non-protein nitrogen present in the extracts was so large as to suggest that there must be some other source for these substances. Small quantities of free proteoses and peptones, and of xanthin and hypoxanthin, were also found in the extracts. In the insoluble proteins of the liver the proportion of diamino acids was decreased slightly as compared with normal livers. The proportion of protein phosphorus was increased, probably because of active regenerative proliferation, while the sulphur was normal in amount. Iron was increased because of the large quantity of blood in the liver and the hematogenous pigmentation of the liver cells. Gelatigenous material was increased both absolutely and relatively, because of the loss of parenchyma and the proliferation of the stroma. The proportion of water to solids was much increased, there having been a loss of over two-thirds of the entire parenchymatous elements of the liver. The amount of fat, lecithin and cholesterin was not far from that normal for the liver. PMID:19867115

  5. Rapid diagnosis of sensitivity to ultraviolet light in fibroblasts from dermatologic disorders, with particular reference to xeroderma pigmentosum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleaver, J.E.; Thomas, G.H.

    1988-04-01

    A rapid and simple method for determining the sensitivity of human fibroblasts to ultraviolet light is described. As an alternative to the colony formation assay, this method can be used for the rapid diagnosis of ultraviolet light sensitivity in fibroblasts from photosensitive disorders. The method is based on growth of small numbers of cells in 1-cm wells of culture trays for 4 or more days after irradiation and determination of cell survival by the incorporation of (/sup 3/H)hypoxanthine. D37 values (the dose at which 37% of the control level of incorporation remains) obtained from this procedure showed the same relativemore » sensitivity of normal and xeroderma pigmentosum fibroblasts as was obtained by colony formation. Untransformed and SV40-transformed fibroblasts, which have different growth rates and different responses to high cell densities, gave different D37 values by this assay in culture trays as compared with colony formation. Comparison of relative sensitivities to irradiation should therefore be made only between cell types with similar growth characteristics. The similar sensitivity of normal and xeroderma pigmentosum cells to mitomycin C was also determined by this culture tray method. By increasing cell density at the beginning of the experiments, a greater capacity of group C compared with group D fibroblasts for recovery from potentially lethal damage was also detected.« less

  6. Fanconi Anemia complementation group C protein in metabolic disorders.

    PubMed

    Nepal, Manoj; Ma, Chi; Xie, Guoxiang; Jia, Wei; Fei, Peiwen

    2018-06-21

    Given importance of 22-Fanconi Anemia (FA) proteins together to act in a signaling pathway in preventing deleterious clinical symptoms, e.g. severe bone marrow failure, congenital defects, an early onset of aging and cancer, studies on each FA protein become increasingly attractive. However, an unbiased and systematic investigation of cellular effects resulting from each FA protein is missing. Here, we report roles of FA complementation C group protein (FANCC) in the protection from metabolic disorders. This study was prompted by the diabetes-prone feature displayed in FANCC knockout mice, which is not typically shown in patients with FA. We found that in cells expressing FANCC at different levels, there are representative alterations in metabolites associated with aging (glycine, citrulline, ornithine, L-asparagine, L-tyrosine, L-arginine, L-glutamine, L-leucine, L-isoleucine, L-valine, L-proline and L-alanine), Diabetes Mellitus (DM) (carbon monoxide, collagens, fatty acids, D-glucose, fumaric acid, 2-oxoglutaric acid, C3), inflammation (inosine, L-arginine, L-isoleucine, L-leucine, L-lysine, L-phenylalanine, hypoxanthine, L-methionine), and cancer ( L-methionine, sphingomyelin, acetyl-L-carnitine, L-aspartic acid, L-glutamic acid, niacinamide, phospho-rylethanolamine). We also found that FANCC can act in an FA-pathway-independent manner in tumor suppression. Collectively, featured-metabolic alterations are readouts of functional mechanisms underlying reduced tumorigenicity driven by FANCC, demonstrating close links among cancer, aging, inflammation and DM.

  7. Molecular and functional characterization of the first nucleobase transporter gene from African trypanosomes.

    PubMed

    Henriques, Cristina; Sanchez, Marco A; Tryon, Rob; Landfear, Scott M

    2003-08-31

    African trypanosomes are unable to synthesize purines and depend upon purine nucleoside and nucleobase transporters to salvage these compounds from their hosts. To understand the crucial role of purine salvage in the survival of these parasites, a central objective is to identify and characterize all of the purine permeases that mediate uptake of these essential nutrients. We have cloned and functionally expressed in a purine nucleobase transport deficient strain of Saccharomyces cerevisiae a novel nucleobase transporter gene, TbNT8.1, from Trypanosoma brucei. The permease encoded by this gene mediates the uptake of hypoxanthine, adenine, guanine, and xanthine with Kms in the low micromolar range. The TbNT8.1 protein is a member of the equilibrative nucleoside transporter (ENT) family of permeases that occur in organisms as diverse as protozoa and mammals. TbNT8.1 is distinct from other ENT permeases that have been identified in trypanosomes in utilizing multiple purine nucleobases, rather than purine nucleosides, as substrates and is hence the first bona fide nucleobase permease identified in these parasites. Furthermore, unlike the mRNAs for other purine transporters, TbNT8.1 mRNA is significantly more abundant in insect stage procyclic forms than in mammalian stage bloodstream forms, and the TbNT8.1 permease thus may represent a major route for purine nucleobase uptake in procyclic trypanosomes.

  8. Simultaneous determination of three purines in Alysicarpus vaginalis (L.) DC. by hollow fiber-based liquid-phase microextraction combined with high-performance liquid chromatography.

    PubMed

    Liu, Hongjiao; Lei, Ming; Liang, Xiao; Jiang, Zhen; Guo, Xingjie

    2014-02-01

    In this paper, a three-phase hollow fiber liquid-phase microextraction (HF-LPME) method combined with high-performance liquid chromatography (HPLC) was developed for the determination of hypoxanthine (HX), xanthine (Xan) and adenine (A) and then for the first time successfully applied to the analysis of HX, Xan and A in Alysicarpus vaginalis (L.) DC. medicinal materials. Different factors affecting the HF-LPME procedure were investigated and optimized. Under optimal extraction conditions (1-octanol as organic solvent, pH of the donor and acceptor phase 10.0 and 3.5, respectively, extraction time 40 min, stirring rate 800 rpm and salt addition 10%, w/v), HX, Xan and A could be determined within the test ranges with a good correlation coefficient (r(2) > 0.9992). The limit of detection for HX, Xan and A was 153, 173 and 97 ng/mL, respectively, and the intra- and inter-day relative standard deviations were no more than 9.8%. The content of HX, Xan and A in Alysicarpus vaginalis (L.) DC. medicinal materials was 120.40, 18.37 and 62.75 µg/g, respectively. This procedure afforded a convenient, sensitive, accurate and inexpensive method with a high extraction efficiency for determination of HX, Xan and A. Copyright © 2013 John Wiley & Sons, Ltd.

  9. (1)H-NMR analysis of the human urinary metabolome in response to an 18-month multi-component exercise program and calcium-vitamin-D3 supplementation in older men.

    PubMed

    Sheedy, John R; Gooley, Paul R; Nahid, Amsha; Tull, Dedreia L; McConville, Malcolm J; Kukuljan, Sonja; Nowson, Caryl A; Daly, Robin M; Ebeling, Peter R

    2014-11-01

    The musculoskeletal benefits of calcium and vitamin-D3 supplementation and exercise have been extensively studied, but the effect on metabolism remains contentious. Urine samples were analyzed by (1)H-NMR spectroscopy from participants recruited for an 18-month, randomized controlled trial of a multi-component exercise program and calcium and vitamin-D3 fortified milk consumption. It was shown previously that no increase in musculoskeletal composition was observed for participants assigned to the calcium and vitamin-D3 intervention, but exercise resulted in increased bone mineral density, total lean body mass, and muscle strength. Retrospective metabolomics analysis of urine samples from patients involved in this study revealed no distinct changes in the urinary metabolome in response to the calcium and vitamin-D3 intervention, but significant changes followed the exercise intervention, notably a reduction in creatinine and an increase in choline, guanidinoacetate, and hypoxanthine (p < 0.001, fold change > 1.5). These metabolites are intrinsically involved in anaerobic ATP synthesis, intracellular buffering, and methyl-balance regulation. The exercise intervention had a marked effect on the urine metabolome and markers of muscle turnover but none of these metabolites were obvious markers of bone turnover. Measurement of specific urinary exercise biomarkers may provide a basis for monitoring performance and metabolic response to exercise regimes.

  10. Treatment with Aqueous Extract from Croton cajucara Benth Reduces Hepatic Oxidative Stress in Streptozotocin-Diabetic Rats

    PubMed Central

    Rodrigues, Graziella Ramos; Di Naso, Fábio Cangeri; Porawski, Marilene; Marcolin, Éder; Kretzmann, Nélson Alexandre; Ferraz, Alexandre de Barros Falcão; Richter, Marc Francois; Marroni, Cláudio Augusto; Marroni, Norma Possa

    2012-01-01

    Croton cajucara Benth is a plant found in Amazonia, Brazil and the bark and leaf infusion of this plant have been popularly used to treat diabetes and hepatic disorders. The present study was designed to evaluate the oxidative stress as well as the therapeutic effect of Croton cajucara Benth (1.5 mL of the C. cajucara extract i.g.) in rats with streptozotocin-induced diabetes. Croton cajucara Benth was tested as an aqueous extract for its phytochemical composition, and its antioxidant activity in vitro was also evaluated. Lipid peroxidation and superoxide dismutase, catalase, and glutathione reductase activities were measured in the hepatic tissue, as well as the presence activation of p65 (NF-κB), through western blot. Phytochemical screening of Croton cajucara Benth detected the presence of flavonoids, coumarins and alkaloids. The extract exhibited a significant antioxidant activity in the DPPH-scavenging and the hypoxanthine/xanthine oxidase assays. Liver lipid peroxidation increased in diabetic animals followed by a reduction in the Croton-cajucara-Benth-treated group. There was activation of p65 nuclear expression in the diabetic animals, which was attenuated in the animals receiving the Croton cajucara Benth aqueous extract. The liver tissue in diabetic rats showed oxidative alterations related to the streptozotocin treatment. In conclusion the Croton cajucara Benth aqueus extract treatment effectively reduced the oxidative stress and contributed to tissue recovery. PMID:22811599

  11. Calculation of Heavy Ion Inactivation and Mutation Rates in Radial Dose Model of Track Structure

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Shavers, Mark R.; Katz, Robert

    1997-01-01

    In the track structure model, the inactivation cross section is found by summing an inactivation probability over all impact parameters from the ion to the sensitive sites within the cell nucleus. The inactivation probability is evaluated by using the dose response of the system to gamma rays and the radial dose of the ions and may be equal to unity at small impact parameters. We apply the track structure model to recent data with heavy ion beams irradiating biological samples of E. Coli, B. Subtilis spores, and Chinese hamster (V79) cells. Heavy ions have observed cross sections for inactivation that approach and sometimes exceed the geometric size of the cell nucleus. We show how the effects of inactivation may be taken into account in the evaluation of the mutation cross sections in the track structure model through correlation of sites for gene mutation and cell inactivation. The model is fit to available data for HPRT (hypoxanthine guanine phosphoribosyl transferase) mutations in V79 cells, and good agreement is found. Calculations show the high probability for mutation by relativistic ions due to the radial extension of ions track from delta rays. The effects of inactivation on mutation rates make it very unlikely that a single parameter such as LET (linear energy transfer) can be used to specify radiation quality for heavy ion bombardment.

  12. Interplay between adenylate metabolizing enzymes and amp-activated protein kinase.

    PubMed

    Camici, Marcella; Allegrini, Simone; Tozzi, Maria Grazia

    2018-05-18

    Purine nucleotides are involved in a variety of cellular functions, such as energy storage and transfer, and signalling, in addition to being the precursors of nucleic acids and cofactors of many biochemical reactions. They can be generated through two separate pathways, the de novo biosynthesis pathway and the salvage pathway. De novo purine biosynthesis leads to the formation of IMP, from which the adenylate and guanylate pools are generated by two additional steps. The salvage pathways utilize hypoxanthine, guanine and adenine to generate the corresponding mononucleotides. Despite several decades of research on the subject, new and surprising findings on purine metabolism are constantly being reported, and some aspects still need to be elucidated. Recently, purine biosynthesis has been linked to the metabolic pathways regulated by AMP-activated protein kinase (AMPK). AMPK is the master regulator of cellular energy homeostasis, and its activity depends on the AMP:ATP ratio. The cellular energy status and AMPK activation are connected by AMP, an allosteric activator of AMPK. Hence, an indirect strategy to affect AMPK activity would be to target the pathways that generate AMP in the cell. Herein, we report an up-to-date review of the interplay between AMPK and adenylate metabolizing enzymes. Some aspects of inborn errors of purine metabolism are also discussed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Impact of topical application of sulfur mustard on mice skin and distant organs DNA repair enzyme signature.

    PubMed

    Sauvaigo, Sylvie; Sarrazy, Fanny; Batal, Mohamed; Caillat, Sylvain; Pitiot, Benoit; Mouret, Stéphane; Cléry-Barraud, Cécile; Boudry, Isabelle; Douki, Thierry

    2016-01-22

    Sulfur mustard (SM) is a chemical warfare agent that, upon topical application, damages skin and reaches internal organs through diffusion in blood. Two major toxic consequences of SM exposure are inflammation, associated with oxidative stress, and the formation of alkylated DNA bases. In the present study, we investigated the impact of exposure to SM on DNA repair, using two different functional DNA repair assays which provide information on several Base Excision Repair (BER) and Excision/Synthesis Repair (ESR) activities. BER activities were reduced in all organs as early as 4h after exposure, with the exception of the defense systems against 8-oxo-guanine and hypoxanthine which were stimulated. Interestingly, the resulting BER intermediates could activate inflammation signals, aggravating the inflammation triggered by SM exposure and leading to increased oxidative stress. ESR activities were found to be mostly inhibited in skin, brain and kidneys. In contrast, in the lung there was a general increase in ESR activities. In summary, exposure to SM leads to a significant decrease in DNA repair in most organs, concomitant with the formation of DNA damage. These synergistic genotoxic effects are likely to participate in the high toxicity of this alkylating agent. Lungs, possibly better equipped with repair enzymes to handle exogenous exposure, are the exception. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Xanthine oxidase inhibitory activity of natural and hemisynthetic flavonoids from Gardenia oudiepe (Rubiaceae) in vitro and molecular docking studies.

    PubMed

    Santi, M D; Paulino Zunini, M; Vera, B; Bouzidi, C; Dumontet, V; Abin-Carriquiry, A; Grougnet, R; Ortega, M G

    2018-01-01

    Xanthine oxidase (XO), an enzyme widely distributed among mammalian tissues, is associated with the oxidation of xanthine and hypoxanthine to form uric acid. Reactive oxygen species are also released during this process, leading to oxidative damages and to the pathology called gout. Available treatments mainly based on allopurinol cause serious side effects. Natural products such as flavonoids may represent an alternative. Thus, a series of polymethoxyflavones isolated and hemisynthesized from the bud exudates of Gardenia oudiepe has been evaluated for in vitro XO inhibitory activity. Compounds 1, 2 and 3 were more active than the reference inhibitor, Allopurinol (IC 50  = 0.25 ± 0.004 μM) with IC 50 values of (0.004 ± 0.001) μM, (0.05 ± 0.01) μM and (0.09 ± 0.003) μM, respectively. Structure-activity relationships were established. Additionally, a molecular docking study using MOE™ tool was carried out to establish the binding mode of the most active flavones with the enzyme, showing important interactions with its catalytic residues. These promising results, suggest the use of these compounds as potential leads for the design and development of novel XO inhibitors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pellett, O.L.; Smith, M.L.; Greene, A.A.

    Cystinosis is an autosomal recessive disease in which three clinical forms are recognized: infantile nephropathic, with renal tubular damage by 1 year of age and progressive glomerular insufficiency; intermediate, with tubular and glomerular insufficiency beginning at a later age; benign, with no kidney damage. Skin fibroblasts cultured from patients with all types of cystinosis show increased intralysosomal free (nonprotein) cystine; however, fibroblasts from heterozygotes have normal free-cystine values. To determine whether genetic complementation occurs between the different forms, somatic cell hybrids were constructed between cells from a patient with infantile nephropathic cystinosis and cells from patients with other types ofmore » cystinosis. If complementation occurred, the hybrids would be expected to have normal cystine levels. To construct hybrid cells, a universal parent cell type (TG1-neo), which was hypoxanthine/aminopterin/thymidine (HAT) sensitive and G418 resistant was constructed from an infantile nephropathic cystinosis fibroblast strain. Polyethylene glycol fusion of TG1-neo with other cells that are not HAT sensitive or G418 resistant allowed for selection of hybrid cells in a medium containing HAT and the aminoglycoside G418. As indicated by elevated cystine levels, complementation did not occur between TG1-neo and two different benign cystinosis strains, an intermediate cystinosis strain, or another nephropathic cystinosis cell strain. When a normal fibroblast strain was fused with TG1-neo, all 15 hybrid clones studied contained normal amounts of intracellular free cystine.« less

  16. Antiplasmodial and anti-inflammatory effects of an antimalarial remedy from the Wayana Amerindians, French Guiana: takamalaimë (Psidium acutangulum Mart. ex DC., Myrtaceae).

    PubMed

    Houël, Emeline; Fleury, Marie; Odonne, Guillaume; Nardella, Flore; Bourdy, Geneviève; Vonthron-Sénécheau, Catherine; Villa, Pascal; Obrecht, Adeline; Eparvier, Véronique; Deharo, Eric; Stien, Didier

    2015-05-26

    Field investigations highlighted the use of Psidium acutangulum Mart. ex DC (syn. P. persoonii McVaugh), a small tree used by the Wayana Amerindians in Twenke-Taluhwen and Antecume-Pata, French Guiana, for the treatment of malaria, and administered either orally in the form of a decoction or applied externally over the whole body. This use appears limited to the Wayana cultural group in French Guiana and has never been reported anywhere else. Our goal was to evaluate the antimalarial and anti-inflammatory activities of a P. acutangulum decoction to explain the good reputation of this remedy. Interviews with the Wayana inhabitants of Twenke-Taluhwen and Antecume-Pata were conducted within the TRAMAZ project according to the TRAMIL methodology, which is based on a quantitative and qualitative analysis of medicinal plant uses. A decoction of dried aerial parts of P. acutangulum was prepared in consistency with the Wayana recipe. In vitro antiplasmodial assays were performed on chloroquine-resistant FcB1 ([(3)H]-hypoxanthine bioassay) and 7G8 (pLDH bioassay) P. falciparum strains and on chloroquine sensitive NF54 ([(3)H]-hypoxanthine bioassay) P. falciparum strain. In vitro anti-inflammatory activity (IL-1β, IL-6, IL-8, TNFα) was evaluated on LPS-stimulated human PBMC and NO secretion inhibition was measured on LPS stimulated RAW murine macrophages. Cytotoxicity of the decoction was measured on L6 mammalian cells, PBMCs, and RAW cells. A preliminary evaluation of the in vivo antimalarial activity of the decoction, administered orally twice daily, was assessed by the classical four-day suppressive test against P. berghei NK65 in mice. The decoction displayed a good antiplasmodial activity in vitro against the three tested strains, regardless to the bioassay used, with IC50 values of 3.3µg/mL and 10.3µg/mL against P. falciparum FcB1 and NF54, respectively and 19.0µg/mL against P. falciparum 7G8. It also exhibited significant anti-inflammatory activity in vitro in a dose dependent manner. At a concentration of 50µg/mL, the decoction inhibited the secretion of the following pro-inflammatory cytokines: TNFα (-18%), IL-1β (-58%), IL-6 (-32%), IL-8 (-21%). It also exhibited a mild NO secretion inhibition (-13%) at the same concentration. The decoction was non-cytotoxic against L6 cells (IC50>100µg/mL), RAW cells and PBMC. In vivo, 150µL of the decoction given orally twice a day (equivalent to 350mg/kg/day of dried extract) inhibited 39.7% average parasite growth, with more than 50% of inhibition in three mice over five. The absence of response for the two remaining mice, however, induced a strong standard deviation. This study highlighted the in vitro antiplasmodial activity of the decoction of P. acutangulum aerial parts, used by Wayana Amerindians from the Upper-Maroni in French Guiana in case of malaria. Its antioxidant and anti-inflammatory potential, which may help to explain its use against this disease, was demonstrated using models of artificially stimulated cells. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Ethnobotanical survey, chemical composition, and antioxidant capacity of methanolic extract of the root bark of Annona cuneata Oliv.

    PubMed

    Khallouki, Farid; Haubner, Roswitha; Ulrich, Cornelia M; Owen, Robert W

    2011-11-01

    The root bark of Annona cuneata Oliv. is traditionally used in the Democratic Republic of Congo to treat several debilitating conditions, such as hernia, female sterility, sexual asthenia, and parasitic infections. However, little is known about the composition of the secondary plant substances, which may contribute to these traditional medicinal effects. We conducted an ethnobotanical study and then evaluated the composition of the secondary plant substances in extracts of the root bark by using spectroscopic methods. After delipidation, the root bark was lixiviated in methanol, and components in the extract were studied by gas chromatography-mass spectometry, high-performance liquid chromatography (HPLC)-electrospray ionization-MS and nano-electrospray ionization-MS-MS. These methods identified 13 secondary plant substances (almost exclusively phenolic compounds): p-hydroxybenzaldehyde (I), vanillin (II), tyrosol (III), 3,4-dihydroxybenzaldehyde (IV), p-hydroxybenzoic acid (V), vanillyl alcohol (VI), syringaldehyde (VII), 4-hydroxy-3-methoxyphenylethanol (VIII), vanillic acid (IX), 3,4-dihydroxybenzoic acid (X), syringic acid (XI), and ferulic acid (XII), along with the phytosterol squalene (XIII). In the HPLC-based hypoxanthine/xanthine oxidase antioxidant assay system, the methanolic extract exhibited potent antioxidant capacity, with a 50% inhibitory concentration of 72 μL, equivalent to 1.38 mg/mL of raw extract. Thus, a methanol extract of A. cuneata Oliv. contained a range of polyphenolic compounds, which may be partly responsible for its known traditional medicinal effects. More detailed studies on the phytochemistry of this important plant species are therefore warranted.

  18. Biochemical characterization of an exonuclease from Arabidopsis thaliana reveals similarities to the DNA exonuclease of the human Werner syndrome protein.

    PubMed

    Plchova, Helena; Hartung, Frank; Puchta, Holger

    2003-11-07

    The human Werner syndrome protein (hWRN-p) possessing DNA helicase and exonuclease activities is essential for genome stability. Plants have no homologue of this bifunctional protein, but surprisingly the Arabidopsis genome contains a small open reading frame (ORF) (AtWRNexo) with homology to the exonuclease domain of hWRN-p. Expression of this ORF in Escherichia coli revealed an exonuclease activity for AtWRN-exo-p with similarities but also some significant differences to hWRN-p. The protein digests recessed strands of DNA duplexes in the 3' --> 5' direction but hardly single-stranded DNA or blunt-ended duplexes. In contrast to the Werner exonuclease, AtWRNexo-p is also able to digest 3'-protruding strands. DNA with recessed 3'-PO4 and 3'-OH termini is degraded to a similar extent. AtWRNexo-p hydrolyzes the 3'-recessed strand termini of duplexes containing mismatched bases. AtWRNexo-p needs the divalent cation Mg2+ for activity, which can be replaced by Mn2+. Apurinic sites, cholesterol adducts, and oxidative DNA damage (such as 8-oxoadenine and 8-oxoguanine) inhibit or block the enzyme. Other DNA modifications, including uracil, hypoxanthine and ethenoadenine, did not inhibit AtWRNexo-p. A mutation of a conserved residue within the exonuclease domain (E135A) completely abolished the exonucleolytic activity. Our results indicate that a type of WRN-like exonuclease activity seems to be a common feature of the DNA metabolism of animals and plants.

  19. Superoxide Anion Radical Scavenging Activities of Herbs and Pastures in Northern Japan Determined Using Electron Spin Resonance Spectrometry

    PubMed Central

    Al-Mamun, Mohammad; Yamaki, Koji; Masumizu, Toshiki; Nakai, Yumi; Saito, Katsumi; Sano, Hiroaki; Tamura, Yoshifumi

    2007-01-01

    Free radicals are not only destructive to the living cells but also reduce the quality of animal products through oxidation. As a result the superoxide anion radical (O2・-), one of the most destructive reactive oxygen species, is a matter of concern for the animal scientists as well as feed manufacturers to ensure the quality of product to reach consumers demand. The superoxide anion radical scavenging activities (SOSA) of water and MeOH extracts of 2 herbs and 9 pasture samples collected from lowland and highland swards were determined against a 5,5-dimethyl-1-pyroline-N-oxide-O2・-spin adduct based on a hypoxanthine-xanthine oxidase reaction using electron spin resonance spectrometry. Both the water and MeOH extracted SOSA differed among the herbs and pastures. Species and altitudinal variations were observed between extraction methods. The herbs were higher in both water and MeOH extracted SOSA than the pastures except for water extracts of one pasture, white clover (Trifolium repens L.). Among the pastures, quackgrass (Agrophyron repens L.) showed higher SOSA in both the MeOH and water extracts, and timothy (Phleum pretense L.) showed higher MeOH extracted SOSA. It is apparent that the kind and amount of antioxidants differ among herbs and pastures. Animal health and quality of animal products could be improved by adequate selection and combining of herbs and pastures having higher SOSA. PMID:17713599

  20. Metastatic Melanoma Induced Metabolic Changes in C57BL/6J Mouse Stomach Measured by 1H NMR Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, M; Wang, Xiliang

    Melanoma is a malignant tumor of melanocytes with high capability of invasion and rapid metastasis to other organs. Malignant melanoma is the most common metastatic malignancy found in gastrointestinal tract (GI). To the best of our knowledge, previous studies of melanoma in gastrointestinal tract are all clinical case reports. In this work, 1H NMR-based metabolomics approach is used to investigate the metabolite profiles differences of stomach tissue extracts of metastatic B16-F10 melanoma in C57BL/6J mouse and search for specific metabolite biomarker candidates. Principal Component Analysis (PCA), an unsupervised multivariate data analysis method, is used to detect possible outliers, while Orthogonalmore » Projection to Latent Structure (OPLS), a supervised multivariate data analysis method, is employed to evaluate important metabolites responsible for discriminating the control and the melanoma groups. Both PCA and OPLS results reveal that the melanoma group can be well separated from its control group. Among the 50 identified metabolites, it is found that the concentrations of 19 metabolites are statistically and significantly changed with the levels of O-phosphocholine and hypoxanthine down-regulated while the levels of isoleucine, leucine, valine, isobutyrate, threonine, cadaverine, alanine, glutamate, glutamine, methionine, citrate, asparagine, tryptophan, glycine, serine, uracil, and formate up-regulated in the melanoma group. These significantly changed metabolites are associated with multiple biological pathways and may be potential biomarkers for metastatic melanoma in stomach.« less

  1. Design, synthesis and biological evaluation of novel xanthine oxidase inhibitors bearing a 2-arylbenzo[b]furan scaffold.

    PubMed

    Tang, Hong-Jin; Li, Wei; Zhou, Mei; Peng, Li-Ying; Wang, Jin-Xin; Li, Jia-Huang; Chen, Jun

    2018-05-10

    Xanthine oxidase, which catalyzes the oxidative reaction of hypoxanthine and xanthine into uric acid, is a key enzyme to the pathogenesis of hyperuricemia and gout. In this study, for the purpose of discovering novel xanthine oxidase (XO) inhibitors, a series of 2-arylbenzo[b]furan derivatives (3a-3d, 4a-4o and 6a-6d) were designed and synthesized. All these compounds were evaluated their xanthine oxidase inhibitory and antioxidant activities by using in vitro enzymatic assay and cellular model. The results showed that a majority of the designed compounds exhibited potent xanthine oxidase inhibitory effects and antioxidant activities, and compound 4a emerged as the most potent xanthine oxidase inhibitor (IC 50  = 4.45 μM). Steady-state kinetic measurements of the inhibitor 4a with the bovine milk xanthine oxidase indicated a mixed type inhibition with 3.52 μM K i and 13.14 μM K is , respectively. The structure-activity relationship analyses have also been presented. Compound 4a exhibited the potent hypouricemic effect in the potassium oxonate-induced hyperuricemic mice model. A molecular docking study of compound 4a was performed to gain an insight into its binding mode with xanthine oxidase. These results highlight the identification of a new class of xanthine oxidase inhibitors that have potential to be more efficacious in treatment of gout. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Energy demands during a judo match and recovery.

    PubMed

    Degoutte, F; Jouanel, P; Filaire, E

    2003-06-01

    To assess energy demand during a judo match and the kinetics of recovery by measuring the metabolites of the oxypurine cascade, lipolytic activity, and glycolytic pathway. Venous blood samples were taken from 16 national judoists (mean (SEM) age 18.4 (1.6) years), before (T(1)) and three minutes (T(2)), one hour (T(3)), and 24 hours (T(4)) after a match. A seven day diet record was used to evaluate nutrient intake. Nutrient analysis indicated that these athletes followed a low carbohydrate diet. Plasma lactate concentration had increased to 12.3 (1.8) mmol/l at the end of the match. An increase in the levels of extracellular markers of muscle adenine nucleotide catabolism, urea, and creatinine was observed at T(2), while uric acid levels remained unchanged. High concentrations of urea persisted for 24 hours during the recovery period. Ammonia, hypoxanthine, xanthine, and creatinine returned to control levels within the 24 hour recovery period. Uric acid concentrations rose from T(3) and had not returned to baseline 24 hours after the match. The levels of triglycerides, glycerol, and free fatty acids had increased significantly (p<0.05) after the match (T(2)) but returned to baseline values within 24 hours. Concentrations of high density lipoprotein cholesterol and total cholesterol were significantly increased after the match. These results show that a judo match induces both protein and lipid metabolism. Carbohydrate availability, training adaptation, and metabolic stress may explain the requirement for these types of metabolism.

  3. Human DNA primase uses Watson-Crick hydrogen bonds to distinguish between correct and incorrect nucleoside triphosphates.

    PubMed

    Moore, Chad L; Zivkovic, Aleksandra; Engels, Joachim W; Kuchta, Robert D

    2004-09-28

    Human DNA primase synthesizes short RNA primers that DNA polymerase alpha further elongates. Primase readily misincorporates the natural NTPs and will generate a wide variety of mismatches. In contrast, primase exhibited a remarkable resistance to polymerizing NTPs containing unnatural bases. This included bases whose shape was almost identical to the natural bases (4-aminobenzimidazole and 4,6-difluorobenzimidazole), bases shaped very differently than a natural base [e.g., 5- and 6-(trifluoromethyl)benzimidazole], bases much more hydrophobic than a natural base [e.g., 4- and 7-(trifluoromethyl)benzimidazole], bases of similar hydrophobicity as a natural base but with the Watson-Crick hydrogen-bonding groups in unusual positions (7-beta-D-guanine), and bases capable of forming only one Watson-Crick hydrogen bond with the template base (purine and 4-aminobenzimidazole). Primase only polymerized NTP analogues containing bases capable of forming hydrogen bonds between the equivalent of both N-1 and the exocyclic group at C-6 of a purine NTP (2-fluoroadenine, 2-chloroadenine, 3-deazaadenine, and hypoxanthine) and N-3 and the exocyclic group at C-4 of a pyrimidine. These data indicate that human primase requires the formation of Watson-Crick hydrogen bonds in order to polymerize a NTP, a situation very different than what is observed with some DNA polymerases. The implications of these results with respect to current theories of how polymerases discriminate between right and wrong (d)NTPs are discussed.

  4. Urinary mRNA for the Diagnosis of Renal Allograft Rejection: The Issue of Normalization.

    PubMed

    Galichon, P; Amrouche, L; Hertig, A; Brocheriou, I; Rabant, M; Xu-Dubois, Y-C; Ouali, N; Dahan, K; Morin, L; Terzi, F; Rondeau, E; Anglicheau, D

    2016-10-01

    Urinary messenger RNA (mRNA) quantification is a promising method for noninvasive diagnosis of renal allograft rejection (AR), but the quantification of mRNAs in urine remains challenging due to degradation. RNA normalization may be warranted to overcome these issues, but the strategies of gene normalization have been poorly evaluated. Herein, we address this issue in a case-control study of 108 urine samples collected at time of allograft biopsy in kidney recipients with (n = 52) or without (n = 56) AR by comparing the diagnostic value of IP-10 and CD3ε mRNAs-two biomarkers of AR-after normalization by the total amount of RNA, normalization by one of the three widely used reference RNAs-18S, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Hypoxanthine-guanine phosphoribosyltransferase (HPRT)-or normalization using uroplakin 1A (UPK) mRNA as a possible urine-specific reference mRNA. Our results show that normalization based on the total quantity of RNA is not substantially improved by additional normalization and may even be worsened with some classical reference genes that are overexpressed during rejection. However, considering that normalization by a reference gene is necessary to ensure polymerase chain reaction (PCR) quality and reproducibility and to suppress the effect of RNA degradation, we suggest that GAPDH and UPK1A are preferable to 18S or HPRT RNA. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  5. Susceptibility of Trichophyton quinckeanum and Trichophyton rubrum to products of oxidative metabolism.

    PubMed

    Calderon, R A; Shennan, G I

    1987-07-01

    Two dermatophyte strains, Trichophyton quinckeanum and Trichophyton rubrum, were highly susceptible to in vitro killing by components of the H2O2-peroxidase-halide system. Both strains were, however, resistant to relatively high concentrations of reagent H2O2 or H2O2 enzymatically generated by glucose and glucose oxidase, KI, or lactoperoxidase (LPO) alone. Resistance to hydrogen peroxidase killing was found to be in part due to the presence of endogenous catalase in the fungi; susceptibility was increased by pretreatment of the fungi with a catalase inhibitor. Kinetic studies using small quantities of reagent or enzymatically generated H2O2 and LPO-KI showed that the system was lethal for both fungal strains within 1 min. Furthermore, using the glucose-glucose oxidase-LPO-KI system, it was shown that catalase, superoxide dismutase and histidine scavengers of H2O2, superoxide anion and singlet oxygen, respectively, prevented the killing of fungus, whereas scavengers of hydroxyl radicals such as benzoate and mannitol had no effect. T. quinckeanum was found to contain large quantities of superoxide anion, as judged by the nitroblue-tetrazolium test. Consequently, the xanthine (or hypoxanthine) and xanthine oxidase system in which the main product is superoxide anion had no toxic effect on the fungus. The high sensitivity of dermatophytes to killing by the H2O2-peroxidase-halide system active in polymorphonuclear neutrophils and macrophages may account in part for fungal toxicity in vivo.

  6. Alterations in metabolic pathways and networks in Alzheimer's disease

    PubMed Central

    Kaddurah-Daouk, R; Zhu, H; Sharma, S; Bogdanov, M; Rozen, S G; Matson, W; Oki, N O; Motsinger-Reif, A A; Churchill, E; Lei, Z; Appleby, D; Kling, M A; Trojanowski, J Q; Doraiswamy, P M; Arnold, S E

    2013-01-01

    The pathogenic mechanisms of Alzheimer's disease (AD) remain largely unknown and clinical trials have not demonstrated significant benefit. Biochemical characterization of AD and its prodromal phase may provide new diagnostic and therapeutic insights. We used targeted metabolomics platform to profile cerebrospinal fluid (CSF) from AD (n=40), mild cognitive impairment (MCI, n=36) and control (n=38) subjects; univariate and multivariate analyses to define between-group differences; and partial least square-discriminant analysis models to classify diagnostic groups using CSF metabolomic profiles. A partial correlation network was built to link metabolic markers, protein markers and disease severity. AD subjects had elevated methionine (MET), 5-hydroxyindoleacetic acid (5-HIAA), vanillylmandelic acid, xanthosine and glutathione versus controls. MCI subjects had elevated 5-HIAA, MET, hypoxanthine and other metabolites versus controls. Metabolite ratios revealed changes within tryptophan, MET and purine pathways. Initial pathway analyses identified steps in several pathways that appear altered in AD and MCI. A partial correlation network showed total tau most directly related to norepinephrine and purine pathways; amyloid-β (Ab42) was related directly to an unidentified metabolite and indirectly to 5-HIAA and MET. These findings indicate that MCI and AD are associated with an overlapping pattern of perturbations in tryptophan, tyrosine, MET and purine pathways, and suggest that profound biochemical alterations are linked to abnormal Ab42 and tau metabolism. Metabolomics provides powerful tools to map interlinked biochemical pathway perturbations and study AD as a disease of network failure. PMID:23571809

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winterbourn, C.C.; Sutton, H.C.

    O2- was produced by gamma irradiation of formate solutions, by the action of xanthine oxidase on hypoxanthine and O2, and by the action of ferredoxin reductase on NADPH and paraquat in the presence of O2. Its reaction with H2O2 and various iron chelates was studied. Oxidation of deoxyribose to thiobarbituric acid-reactive products that was appropriately inhibited by OH. scavengers, or formate oxidation to CO2, was used to detect OH(.). With each source of O2-, and by these criteria, Fe(EDTA) efficiently catalyzed this (Haber-Weiss) reaction, but little catalysis was detectable with iron bound to DTPA, citrate, ADP, ATP, or pyrophosphate, ormore » without chelator in phosphate buffer. O2- produced from xanthine oxidase, but not from the other sources, underwent another iron-dependent reaction with H2O2, to produce an oxidant that did not behave as free OH(.). It was formed in phosphate or bicarbonate buffer, and caused deoxyribose oxidation that was readily inhibited by mannitol or Tris, but not by benzoate, formate, or dimethyl sulfoxide. It did not oxidize formate to CO2. Addition of EDTA changed the pattern of inhibition to that expected for a reaction of OH(.). The other chelators all inhibited deoxyribose oxidation, provided their concentrations were high enough. The results are compatible with iron bound to xanthine oxidase catalyzing production of a strong oxidant (which is not free OH.) from H2O2 and O2- produced by the enzyme.« less

  8. Effects of calcium dobesilate on the synthesis of endothelium-dependent relaxing factors in rabbit isolated aorta

    PubMed Central

    Ruiz, E; Lorente, R; Tejerina, T

    1997-01-01

    Some cardiovascular disturbances which occur in diabetics are a consequence of alterations in vascular contractility as well as in endothelium-dependent relaxation. Calcium dobesilate (DOBE) is a drug used in diabetic retinopathy and its mechanism of action is not yet understood. The aim of this study was to investigate the effects of DOBE on synthesis and release of endothelium-dependent relaxing factor (EDRF) and endothelium-dependent hyperpolarizing factor (EDHF) in rabbit isolated aorta. Endothelium-dependent relaxation induced by acetylcholine (ACh) (10−8–10−5 M) increased in the presence of DOBE 10−5 M only when vascular endothelium was kept intact. NG-nitro-L-arginine methyl ester (L-NAME; 10−8–10−4 M progressively decreased the enhancing effect of DOBE on endothelium-dependent relaxation whereas it was progressively increased by L-Arg. DOBE 10−5 M increased in a non-significant manner endothelium-dependent relaxation induced by ACh when the arteries were incubated with both L-NAME 10−4 M and indomethacin 10−6 M. DOBE (10−6 M and 10−5 M) was able to scavenge superoxide anion radicals generated by the hypoxanthine/xanthine oxidase reaction. These results provide evidence that DOBE is able to affect the vascular disorders associated with diabetes mellitus since it enhances the synthesis of endothelium-dependent relaxing factors. PMID:9208138

  9. Investigation of toxicity and mutagenicity of cold atmospheric argon plasma.

    PubMed

    Maisch, T; Bosserhoff, A K; Unger, P; Heider, J; Shimizu, T; Zimmermann, J L; Morfill, G E; Landthaler, M; Karrer, S

    2017-04-01

    Cold atmospheric argon plasma is recognized as a new contact free approach for the decrease of bacterial load on chronic wounds in patients. So far very limited data are available on its toxicity and mutagenicity on eukaryotic cells. Thus, the toxic/mutagenic potential of cold atmospheric argon plasma using the MicroPlaSter β ® , which has been used efficiently in humans treating chronic and acute wounds, was investigated using the XTT assay in keratinocytes and fibroblasts and the HGPRT (hypoxanthine guanine phosphoribosyl transferase) assay with V79 Chinese hamster cells. The tested clinical parameter of a 2 min cold atmospheric argon plasma treatment revealed no relevant toxicity on keratinocytes (viability: 76% ± 0.17%) and on fibroblasts (viability: 81.8 ± 0.10) after 72 hr as compared to the untreated controls. No mutagenicity was detected in the HGPRT assay with V79 cells even after repetitive CAP treatments of 2-10 min every 24 hr for up to 5 days. In contrast, UV-C irradiation of V79 cells, used as a positive control in the HGPRT test, led to DNA damage and mutagenic effects. Our findings indicate that cold atmospheric plasma using the MicroPlaSter β ® shows negligible effects on keratinocytes and fibroblasts but no mutagenic potential in the HGPRT assay, indicating a new contact free safe technology. Environ. Mol. Mutagen. 58:172-177, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Establishment and characterization of mouse bone marrow-derived mast cell hybridomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawahara, Takeshi, E-mail: tkawafb@shinshu-u.ac.jp

    2012-11-01

    Interleukin (IL)-3-dependent mouse bone marrow-derived mast cells (BMMCs) are an important model for studying the function of mucosal-type mast cells. In the present study, BMMCs were successfully immortalized by cell fusion using a hypoxanthine-aminopterin-thymidine medium-sensitive variant of P815 mouse mastocytoma (P815-6TgR) as a partner cell line. The established mouse mast cell hybridomas (MMCHs) expressed {alpha}, {beta}, and {gamma} subunits of high-affinity immunoglobulin E (IgE) receptor (Fc{epsilon}RI) and possessed cytoplasmic granules devoid of or partially filled with electron-dense material. Four independent MMCH clones continuously proliferated without supplemental exogenous IL-3 and showed a degranulation response on stimulation with IgE+antigen. Furthermore, histamine synthesismore » and release by degranulation were confirmed in MMCH-D5, a MMCH clone that showed the strongest degranulation response. MMCH-D5 exhibited elevated levels of IL-3, IL-4, IL-13, granulocyte-macrophage colony-stimulating factor, tumor necrosis factor (TNF)-{alpha}, and cyclooxygenase 2, and production of prostaglandin D{sub 2} and leukotriene C{sub 4} in response to IgE-induced stimulation. MMCH clones also expressed Toll-like receptors (TLRs) 1, 2, 4, and 6 and showed elevated levels of TNF-{alpha} expression in response to stimulation with TLR2 and TLR4 ligands. The MMCHs established using this method should be suitable for studies on Fc{epsilon}RI- and TLR-mediated effector functions of mast cells.« less

  11. Characterization of solution-phase and gas-phase reactions in on-line electrochemistry-thermospray tandem mass spectrometry.

    PubMed

    Volk, K J; Yost, R A; Brajter-Toth, A

    1989-07-14

    Electrochemistry was used on-line with high-performance liquid chromatography-thermospray tandem mass spectrometry to provide insight into the solution-phase decomposition reactions of electrochemically generated oxidation products. Products formed during electrooxidation were monitored as the electrode potential was varied. The solution reactions which follow the initial electron transfer at the electrode are affected by the vaporizer tip temperature of the thermospray probe and the composition of the thermospray buffer. Either hydrolysis or ammonolysis reactions of the initial electrochemical oxidation products can occur with pH 7 ammonium acetate buffer. Both the electrochemically generated and the synthesized disulfide of 6-thiopurine decompose under thermospray conditions to produce 6-thiopurine and purine-6-sulfinate. Solution-phase studies indicate that nucleophilic and electrophilic substitution reactions with purine-6-sulfinate result in the formation of purine, adenine, and hypoxanthine. Products were identified and characterized by tandem mass spectrometry. This work shows the first example of high-performance liquid chromatography used on-line with electrochemistry to separate stable oxidation products prior to analysis by thermospray tandem mass spectrometry. In addition, solution-phase and gas-phase studies with methylamine show that the site of the nucleophilic and electrophilic reactions is probably inside the thermospray probe. Most importantly, these results also show that the on-line combination of electrochemistry with thermospray tandem mass spectrometry provides valuable information about redox and associated chemical reactions of biological molecules such as the structures of intermediates or products as well as providing insight into reaction pathways.

  12. 6-Mercaptopurine (6-MP) induces cell cycle arrest and apoptosis of neural progenitor cells in the developing fetal rat brain.

    PubMed

    Kanemitsu, H; Yamauchi, H; Komatsu, M; Yamamoto, S; Okazaki, S; Uchida, K; Nakayama, H

    2009-01-01

    6-Mercaptopurine (6-MP), an analogue of hypoxanthine, is used in the therapy of acute lymphoblastic leukemia and causes fetal neurotoxicity. To clarify the mechanisms of 6-MP-induced fetal neurotoxicity leading to the cell cycle arrest and apoptosis of neural progenitor cells, pregnant rats were treated with 50 mg/kg 6-MP on embryonic day (E) 13, and the fetal telencephalons were examined at 12 to 72 h (h) after treatment. Flow-cytometric analysis confirmed an accumulation of cells at G2/M, S, and sub-G1 (apoptotic cells) phases from 24 to 72 h. The number of phosphorylated histone H3-positive cells (mitotic cells) decreased from 36 to 72 h, and the phosphorylated (active) form of p53 protein, which is a mediator of apoptosis and cell cycle arrest, increased from 24 to 48 h. An executor of p53-mediated cell cycle arrest, p21, showed intense overexpression at both the mRNA and protein levels from 24 to 72 h. Cdc25A protein, which is needed for the progression of S phase, decreased at 36 and 48 h. In addition, phosphorylated cdc2 protein, which is an inactive form of cdc2 necessary for G2/M progression, increased from 24 to 48 h. These results suggest that 6-MP induced G2/M arrest, delayed S-phase progression, and finally induced apoptosis of neural progenitor cells mediated by p53 in the fetal rat telencephalon.

  13. Mutation induction by charged particles of defined linear energy transfer.

    PubMed

    Hei, T K; Chen, D J; Brenner, D J; Hall, E J

    1988-07-01

    The mutagenic potential of charged particles of defined linear energy transfer (LET) was assessed using the hypoxanthine-guanine phosphoribosyl transferase locus (HGPRT) in primary human fibroblasts. Exponentially growing cultures of early passaged fibroblasts were grown as monolayers on thin mylar sheets and were irradiated with accelerated protons, deuterons or helium-3 ions. The mutation rates were compared with those generated by 137Cs gamma-rays. LET values for charged particles accelerated at the Radiological Research Accelerator Facility, using the track segment mode, ranged from 10 to 150 keV/micron. After irradiation, cells were trypsinized, subcultured and assayed for both cytotoxicity and 6-thioguanine resistance. For gamma-rays, and for the charged particles of lower LET, the dose-response curves for cell survival were characterized by a marked initial shoulder, but approximated to an exponential function of dose for higher LETs. Mutation frequencies, likewise, showed a direct correlation to LET over the dose range examined. Relative biological effectiveness (RBE) for mutagenesis, based on the initial slopes of the dose-response curves, ranged from 1.30 for 10 keV/micron protons to 9.40 for 150 keV/micron helium-3 ions. Results of the present studies indicate that high-LET radiations, apart from being efficient inducers of cell lethality, are even more efficient in mutation induction as compared to low-LET ionizing radiation. These data are consistent with results previously obtained with both rodent and human fibroblast cell lines.

  14. Preparation and screening of an arrayed human genomic library generated with the P1 cloning system.

    PubMed Central

    Shepherd, N S; Pfrogner, B D; Coulby, J N; Ackerman, S L; Vaidyanathan, G; Sauer, R H; Balkenhol, T C; Sternberg, N

    1994-01-01

    We describe here the construction and initial characterization of a 3-fold coverage genomic library of the human haploid genome that was prepared using the bacteriophage P1 cloning system. The cloned DNA inserts were produced by size fractionation of a Sau3AI partial digest of high molecular weight genomic DNA isolated from primary cells of human foreskin fibroblasts. The inserts were cloned into the pAd10sacBII vector and packaged in vitro into P1 phage. These were used to generate recombinant bacterial clones, each of which was picked robotically from an agar plate into a well of a 96-well microtiter dish, grown overnight, and stored at -70 degrees C. The resulting library, designated DMPC-HFF#1 series A, consists of approximately 130,000-140,000 recombinant clones that were stored in 1500 microtiter dishes. To screen the library, clones were combined in a pooling strategy and specific loci were identified by PCR analysis. On average, the library contains two or three different clones for each locus screened. To date we have identified a total of 17 clones containing the hypoxanthine-guanine phosphoribosyltransferase, human serum albumin-human alpha-fetoprotein, p53, cyclooxygenase I, human apurinic endonuclease, beta-polymerase, and DNA ligase I genes. The cloned inserts average 80 kb in size and range from 70 to 95 kb, with one 49-kb insert and one 62-kb insert. Images PMID:8146166

  15. Three-dimensional structure and ligand interactions of the low molecular weight protein tyrosine phosphatase from Campylobacter jejuni.

    PubMed

    Tolkatchev, Dmitri; Shaykhutdinov, Rustem; Xu, Ping; Plamondon, Josée; Watson, David C; Young, N Martin; Ni, Feng

    2006-10-01

    A putative low molecular weight protein tyrosine phosphatase (LMW-PTP) was identified in the genome sequence of the bacterial pathogen, Campylobacter jejuni. This novel gene, cj1258, has sequence homology with a distinctive class of phosphatases widely distributed among prokaryotes and eukaryotes. We report here the solution structure of Cj1258 established by high-resolution NMR spectroscopy using NOE-derived distance restraints, hydrogen bond data, and torsion angle restraints. The three-dimensional structure consists of a central four-stranded parallel beta-sheet flanked by five alpha-helices, revealing an overall structural topology similar to those of the eukaryotic LMW-PTPs, such as human HCPTP-A, bovine BPTP, and Saccharomyces cerevisiae LTP1, and to those of the bacterial LMW-PTPs MPtpA from Mycobacterium tuberculosis and YwlE from Bacillus subtilis. The active site of the enzyme is flexible in solution and readily adapts to the binding of ligands, such as the phosphate ion. An NMR-based screen was carried out against a number of potential inhibitors and activators, including phosphonomethylphenylalanine, derivatives of the cinnamic acid, 2-hydroxy-5-nitrobenzaldehyde, cinnamaldehyde, adenine, and hypoxanthine. Despite its bacterial origin, both the three-dimensional structure and ligand-binding properties of Cj1258 suggest that this novel phosphatase may have functional roles close to those of eukaryotic and mammalian tyrosine phosphatases. The three-dimensional structure along with mapping of small-molecule binding will be discussed in the context of developing high-affinity inhibitors of this novel LMW-PTP.

  16. Oxidative Stress and Metabolic Perturbations in Wooden Breast Disorder in Chickens.

    PubMed

    Abasht, Behnam; Mutryn, Marie F; Michalek, Ryan D; Lee, William R

    2016-01-01

    This study was conducted to characterize metabolic features of the breast muscle (pectoralis major) in chickens affected with the Wooden Breast myopathy. Live birds from two purebred chicken lines and one crossbred commercial broiler population were clinically examined by manual palpation of the breast muscle (pectoralis major) at 47-48 days of age. Metabolite abundance was determined by gas chromatography/mass spectrometry (GC/MS) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) using breast muscle tissue samples from 16 affected and 16 unaffected chickens. Muscle glycogen content was also quantified in breast muscle tissue samples from affected and unaffected chickens. In total, levels of 140 biochemicals were significantly different (FDR<0.1 and fold-change A/U>1.3 or <0.77) between affected and unaffected chickens. Glycogen content measurements were considerably lower (1.7-fold) in samples taken from Wooden Breast affected birds when compared with samples from unaffected birds. Affected tissues exhibited biomarkers related to increased oxidative stress, elevated protein levels, muscle degradation, and altered glucose utilization. Affected muscle also showed elevated levels of hypoxanthine, xanthine, and urate molecules, the generation of which can contribute to altered redox homeostasis. In conclusion, our findings show that Wooden Breast affected tissues possess a unique metabolic signature. This unique profile may identify candidate biomarkers for diagnostic utilization and provide mechanistic insight into altered biochemical processes contributing to tissue hardening associated with the Wooden Breast myopathy in commercial chickens.

  17. Oxidative Stress and Metabolic Perturbations in Wooden Breast Disorder in Chickens

    PubMed Central

    Abasht, Behnam; Mutryn, Marie F.; Michalek, Ryan D.; Lee, William R.

    2016-01-01

    This study was conducted to characterize metabolic features of the breast muscle (pectoralis major) in chickens affected with the Wooden Breast myopathy. Live birds from two purebred chicken lines and one crossbred commercial broiler population were clinically examined by manual palpation of the breast muscle (pectoralis major) at 47–48 days of age. Metabolite abundance was determined by gas chromatography/mass spectrometry (GC/MS) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) using breast muscle tissue samples from 16 affected and 16 unaffected chickens. Muscle glycogen content was also quantified in breast muscle tissue samples from affected and unaffected chickens. In total, levels of 140 biochemicals were significantly different (FDR < 0.1 and fold-change A/U > 1.3 or < 0.77) between affected and unaffected chickens. Glycogen content measurements were considerably lower (1.7-fold) in samples taken from Wooden Breast affected birds when compared with samples from unaffected birds. Affected tissues exhibited biomarkers related to increased oxidative stress, elevated protein levels, muscle degradation, and altered glucose utilization. Affected muscle also showed elevated levels of hypoxanthine, xanthine, and urate molecules, the generation of which can contribute to altered redox homeostasis. In conclusion, our findings show that Wooden Breast affected tissues possess a unique metabolic signature. This unique profile may identify candidate biomarkers for diagnostic utilization and provide mechanistic insight into altered biochemical processes contributing to tissue hardening associated with the Wooden Breast myopathy in commercial chickens. PMID:27097013

  18. Metastatic Melanoma Induced Metabolic Changes in C57BL/6J Mouse Stomach Measured by 1H NMR Spectroscopy

    DOE PAGES

    Hu, M; Wang, Xiliang

    2014-12-05

    Melanoma is a malignant tumor of melanocytes with high capability of invasion and rapid metastasis to other organs. Malignant melanoma is the most common metastatic malignancy found in gastrointestinal tract (GI). To the best of our knowledge, previous studies of melanoma in gastrointestinal tract are all clinical case reports. In this work, 1H NMR-based metabolomics approach is used to investigate the metabolite profiles differences of stomach tissue extracts of metastatic B16-F10 melanoma in C57BL/6J mouse and search for specific metabolite biomarker candidates. Principal Component Analysis (PCA), an unsupervised multivariate data analysis method, is used to detect possible outliers, while Orthogonalmore » Projection to Latent Structure (OPLS), a supervised multivariate data analysis method, is employed to evaluate important metabolites responsible for discriminating the control and the melanoma groups. Both PCA and OPLS results reveal that the melanoma group can be well separated from its control group. Among the 50 identified metabolites, it is found that the concentrations of 19 metabolites are statistically and significantly changed with the levels of O-phosphocholine and hypoxanthine down-regulated while the levels of isoleucine, leucine, valine, isobutyrate, threonine, cadaverine, alanine, glutamate, glutamine, methionine, citrate, asparagine, tryptophan, glycine, serine, uracil, and formate up-regulated in the melanoma group. These significantly changed metabolites are associated with multiple biological pathways and may be potential biomarkers for metastatic melanoma in stomach.« less

  19. Uric acid in plants and microorganisms: Biological applications and genetics - A review.

    PubMed

    Hafez, Rehab M; Abdel-Rahman, Tahany M; Naguib, Rasha M

    2017-09-01

    Uric acid increased accumulation and/or reduced excretion in human bodies is closely related to pathogenesis of gout and hyperuricemia. It is highly affected by the high intake of food rich in purine. Uric acid is present in both higher plants and microorganisms with species dependent concentration. Urate-degrading enzymes are found both in plants and microorganisms but the mechanisms by which plant degrade uric acid was found to be different among them. Higher plants produce various metabolites which could inhibit xanthine oxidase and xanthine oxidoreductase, so prohibit the oxidation of hypoxanthine to xanthine then to uric acid in the purine metabolism. However, microorganisms produce group of degrading enzymes uricase, allantoinase, allantoicase and urease, which catalyze the degradation of uric acid to the ammonia. In humans, researchers found that several mutations caused a pseudogenization (silencing) of the uricase gene in ancestral apes which exist as an insoluble crystalloid in peroxisomes. This is in contrast to microorganisms in which uricases are soluble and exist either in cytoplasm or peroxisomes. Moreover, many recombinant uricases with higher activity than the wild type uricases could be induced successfully in many microorganisms. The present review deals with the occurrence of uric acid in plants and other organisms specially microorganisms in addition to the mechanisms by which plant extracts, metabolites and enzymes could reduce uric acid in blood. The genetic and genes encoding for uric acid in plants and microorganisms are also presented.

  20. Six related nucleoside/nucleobase transporters from Trypanosoma brucei exhibit distinct biochemical functions.

    PubMed

    Sanchez, Marco A; Tryon, Rob; Green, Joy; Boor, Ilja; Landfear, Scott M

    2002-06-14

    Purine nucleoside and nucleobase transporters are of fundamental importance for Trypanosoma brucei and related kinetoplastid parasites because these protozoa are not able to synthesize purines de novo and must salvage the compounds from their hosts. In the studies reported here, we have identified a family of six clustered genes in T. brucei that encode nucleoside/nucleobase transporters. These genes, TbNT2/927, TbNT3, TbNT4, TbNT5, TbNT6, and TbNT7, have predicted amino acid sequences that show high identity to each other and to TbNT2, a P1 type nucleoside transporter recently identified in our laboratory. Expression in Xenopus laevis oocytes revealed that TbNT2/927, TbNT5, TbNT6, and TbNT7 are high affinity adenosine/inosine transporters with K(m) values of <5 microm. In addition, TbNT5, and to a limited degree TbNT6 and TbNT7, also mediate the uptake of the nucleobase hypoxanthine. Ribonuclease protection assays showed that mRNA from all of the six members of this gene family are expressed in the bloodstream stage of the T. brucei life cycle but that TbNT2/927 and TbNT5 mRNAs are also expressed in the insect stage of the life cycle. These results demonstrate that T. brucei expresses multiple purine transporters with distinct substrate specificities and different patterns of expression during the parasite life cycle.

  1. Urinary Metabolomic Profiling to Identify Potential Biomarkers for the Diagnosis of Behcet's Disease by Gas Chromatography/Time-of-Flight-Mass Spectrometry.

    PubMed

    Ahn, Joong Kyong; Kim, Jungyeon; Hwang, Jiwon; Song, Juhwan; Kim, Kyoung Heon; Cha, Hoon-Suk

    2017-11-02

    Diagnosing Behcet's disease (BD) is challenging because of the lack of a diagnostic biomarker. The purposes of this study were to investigate distinctive metabolic changes in urine samples of BD patients and to identify urinary metabolic biomarkers for diagnosis of BD using gas chromatography/time-of-flight-mass spectrometry (GC/TOF-MS). Metabolomic profiling of urine samples from 44 BD patients and 41 healthy controls (HC) were assessed using GC/TOF-MS, in conjunction with multivariate statistical analysis. A total of 110 urinary metabolites were identified. The urine metabolite profiles obtained from GC/TOF-MS analysis could distinguish BD patients from the HC group in the discovery set. The parameter values of the orthogonal partial least squared-discrimination analysis (OPLS-DA) model were R ² X of 0.231, R ² Y of 0.804, and Q ² of 0.598. A biomarker panel composed of guanine, pyrrole-2-carboxylate, 3-hydroxypyridine, mannose, l-citrulline, galactonate, isothreonate, sedoheptuloses, hypoxanthine, and gluconic acid lactone were selected and adequately validated as putative biomarkers of BD (sensitivity 96.7%, specificity 93.3%, area under the curve 0.974). OPLS-DA showed clear discrimination of BD and HC groups by a biomarker panel of ten metabolites in the independent set (accuracy 88%). We demonstrated characteristic urinary metabolic profiles and potential urinary metabolite biomarkers that have clinical value in the diagnosis of BD using GC/TOF-MS.

  2. Comparative analysis of chimeric ZFP-, TALE- and Cas9-piggyBac transposases for integration into a single locus in human cells.

    PubMed

    Luo, Wentian; Galvan, Daniel L; Woodard, Lauren E; Dorset, Dan; Levy, Shawn; Wilson, Matthew H

    2017-08-21

    Integrating DNA delivery systems hold promise for many applications including treatment of diseases; however, targeted integration is needed for improved safety. The piggyBac (PB) transposon system is a highly active non-viral gene delivery system capable of integrating defined DNA segments into host chromosomes without requiring homologous recombination. We systematically compared four different engineered zinc finger proteins (ZFP), four transcription activator-like effector proteins (TALE), CRISPR associated protein 9 (SpCas9) and the catalytically inactive dSpCas9 protein fused to the amino-terminus of the transposase enzyme designed to target the hypoxanthine phosphoribosyltransferase (HPRT) gene located on human chromosome X. Chimeric transposases were evaluated for expression, transposition activity, chromatin immunoprecipitation at the target loci, and targeted knockout of the HPRT gene in human cells. One ZFP-PB and one TALE-PB chimera demonstrated notable HPRT gene targeting. In contrast, Cas9/dCas9-PB chimeras did not result in gene targeting. Instead, the HPRT locus appeared to be protected from transposon integration. Supplied separately, PB permitted highly efficient isolation of Cas9-mediated knockout of HPRT, with zero transposon integrations in HPRT by deep sequencing. In summary, these tools may allow isolation of 'targeted-only' cells, be utilized to protect a genomic locus from transposon integration, and enrich for Cas9-mutated cells. Published by Oxford University Press on behalf of Nucleic Acids Research 2017.

  3. Prebiotic stereoselective synthesis of purine and noncanonical pyrimidine nucleotide from nucleobases and phosphorylated carbohydrates.

    PubMed

    Kim, Hyo-Joong; Benner, Steven A

    2017-10-24

    According to a current "RNA first" model for the origin of life, RNA emerged in some form on early Earth to become the first biopolymer to support Darwinism here. Threose nucleic acid (TNA) and other polyelectrolytes are also considered as the possible first Darwinian biopolymer(s). This model is being developed by research pursuing a "Discontinuous Synthesis Model" (DSM) for the formation of RNA and/or TNA from precursor molecules that might have been available on early Earth from prebiotic reactions, with the goal of making the model less discontinuous. In general, this is done by examining the reactivity of isolated products from proposed steps that generate those products, with increasing complexity of the reaction mixtures in the proposed mineralogical environments. Here, we report that adenine, diaminopurine, and hypoxanthine nucleoside phosphates and a noncanonical pyrimidine nucleoside (zebularine) phosphate can be formed from the direct coupling reaction of cyclic carbohydrate phosphates with the free nucleobases. The reaction is stereoselective, giving only the β-anomer of the nucleotides within detectable limits. For purines, the coupling is also regioselective, giving the N -9 nucleotide for adenine as a major product. In the DSM, phosphorylated carbohydrates are presumed to have been available via reactions explored previously [Krishnamurthy R, Guntha S, Eschenmoser A (2000) Angew Chem Int Ed 39:2281-2285], while nucleobases are presumed to have been available from hydrogen cyanide and other nitrogenous species formed in Earth's primitive atmosphere. Published under the PNAS license.

  4. Metabolic profiles of exercise in patients with McArdle disease or mitochondrial myopathy

    PubMed Central

    Sharma, Rohit; Tadvalkar, Laura; Clish, Clary B.; Haller, Ronald G.; Mootha, Vamsi K.

    2017-01-01

    McArdle disease and mitochondrial myopathy impair muscle oxidative phosphorylation (OXPHOS) by distinct mechanisms: the former by restricting oxidative substrate availability caused by blocked glycogen breakdown, the latter because of intrinsic respiratory chain defects. We applied metabolic profiling to systematically interrogate these disorders at rest, when muscle symptoms are typically minimal, and with exercise, when symptoms of premature fatigue and potential muscle injury are unmasked. At rest, patients with mitochondrial disease exhibit elevated lactate and reduced uridine; in McArdle disease purine nucleotide metabolites, including xanthine, hypoxanthine, and inosine are elevated. During exercise, glycolytic intermediates, TCA cycle intermediates, and pantothenate expand dramatically in both mitochondrial disease and control subjects. In contrast, in McArdle disease, these metabolites remain unchanged from rest; but urea cycle intermediates are increased, likely attributable to increased ammonia production as a result of exaggerated purine degradation. Our results establish skeletal muscle glycogen as the source of TCA cycle expansion that normally accompanies exercise and imply that impaired TCA cycle flux is a central mechanism of restricted oxidative capacity in this disorder. Finally, we report that resting levels of long-chain triacylglycerols in mitochondrial myopathy correlate with the severity of OXPHOS dysfunction, as indicated by the level of impaired O2 extraction from arterial blood during peak exercise. Our integrated analysis of exercise and metabolism provides unique insights into the biochemical basis of these muscle oxidative defects, with potential implications for their clinical management. PMID:28716914

  5. Ultrafast excited-state deactivation of 9-methylhypoxanthine in aqueous solution: A QM/MM MD study.

    PubMed

    Guo, Xugeng; Yuan, Huijuan; An, Beibei; Zhu, Qiuling; Zhang, Jinglai

    2016-04-21

    Photoinduced ultrafast non-adiabatic decay of 9-methylhypoxanthine (9MHPX) in aqueous solution was investigated by ab initio surface-hopping dynamics calculations using a combined quantum mechanical/molecular mechanical approach. The absorption spectra of 9MHPX in aqueous solution were also explored by the hybrid cluster-continuum model at the level of time-dependent density functional theory along with the polarizable continuum model (PCM). The static electronic-structure calculations indicate that the absorption spectra of 9MHPX simulated by TD-B3LYP/PCM and TD-X3LYP/PCM can reproduce very well the experimental findings, with the accuracy of about 0.20 eV. According to dynamics simulations, irradiation of 9MHPX populates the bright excited singlet S1 state, which may undergo an ultrafast non-radiative deactivation to the S0 state. The lifetime of the S1 state of 9MHPX in aqueous solution is predicted to be 115.6 fs, slightly longer than that in the gas phase (88.8 fs), suggesting that the solventwater has no significant influence on the excited-state lifetime of 9MHPX. Such a behavior in 9MHPX is distinctly different from its parent hypoxanthine keto-N9H tautomer in which the excited-state lifetime of the latter in watersolution was remarkably enhanced as compared to the gas phase. The significant difference of the photodynamical behaviors between 9MHPX and keto-N9H can be ascribed to their different hydrogen bond environment in aqueous solution.

  6. The global nitrogen regulator, FNR1, regulates fungal nutrition-genes and fitness during Fusarium oxysporum pathogenesis.

    PubMed

    Divon, Hege Hvattum; Ziv, Carmit; Davydov, Olga; Yarden, Oded; Fluhr, Robert

    2006-11-01

    SUMMARY Fusarium oxysporum is a soil-borne pathogen that infects plants through the roots and uses the vascular system for host ingress. Specialized for this route of infection, F. oxysporum is able to adapt to the scarce nutrient environment in the xylem vessels. Here we report the cloning of the F. oxysporum global nitrogen regulator, Fnr1, and show that it is one of the determinants for fungal fitness during in planta growth. The Fnr1 gene has a single conserved GATA-type zinc finger domain and is 96% and 48% identical to AREA-GF from Gibberella fujikuroi, and NIT2 from Neurospora crassa, respectively. Fnr1 cDNA, expressed under a constitutive promoter, was able to complement functionally an N. crassa nit-2(RIP) mutant, restoring the ability of the mutant to utilize nitrate. Fnr1 disruption mutants showed high tolerance to chlorate and reduced ability to utilize several secondary nitrogen sources such as amino acids, hypoxanthine and uric acid, whereas growth on favourable nitrogen sources was not affected. Fnr1 disruption also abolished in vitro expression of nutrition genes, normally induced during the early phase of infection. In an infection assay on tomato seedlings, infection rate of disruption mutants was significantly delayed in comparison with the parental strain. Our results indicate that FNR1 mediates adaptation to nitrogen-poor conditions in planta through the regulation of secondary nitrogen acquisition, and as such acts as a determinant for fungal fitness during infection.

  7. Efficient delivery of RNA interference oligonucleotides to polarized airway epithelia in vitro

    PubMed Central

    Ramachandran, Shyam; Krishnamurthy, Sateesh; Jacobi, Ashley M.; Wohlford-Lenane, Christine; Behlke, Mark A.; Davidson, Beverly L.

    2013-01-01

    Polarized and pseudostratified primary airway epithelia present barriers that significantly reduce their transfection efficiency and the efficacy of RNA interference oligonucleotides. This creates an impediment in studies of the airway epithelium, diminishing the utility of loss-of-function as a research tool. Here we outline methods to introduce RNAi oligonucleotides into primary human and porcine airway epithelia grown at an air-liquid interface and difficult-to-transfect transformed epithelial cell lines grown on plastic. At the time of plating, we reverse transfect small-interfering RNA (siRNA), Dicer-substrate siRNA, or microRNA oligonucleotides into cells by use of lipid or peptide transfection reagents. Using this approach we achieve significant knockdown in vitro of hypoxanthine-guanine phosphoribosyltransferase, IL-8, and CFTR expression at the mRNA and protein levels in 1–3 days. We also attain significant reduction of secreted IL-8 in polarized primary pig airway epithelia 3 days posttransfection and inhibition of CFTR-mediated Cl− conductance in polarized air-liquid interface cultures of human airway epithelia 2 wk posttransfection. These results highlight an efficient means to deliver RNA interference reagents to airway epithelial cells and achieve significant knockdown of target gene expression and function. The ability to reliably conduct loss-of-function assays in polarized primary airway epithelia offers benefits to research in studies of epithelial cell homeostasis, candidate gene function, gene-based therapeutics, microRNA biology, and targeting the replication of respiratory viruses. PMID:23624792

  8. Alterations in metabolic pathways and networks in Alzheimer's disease.

    PubMed

    Kaddurah-Daouk, R; Zhu, H; Sharma, S; Bogdanov, M; Rozen, S G; Matson, W; Oki, N O; Motsinger-Reif, A A; Churchill, E; Lei, Z; Appleby, D; Kling, M A; Trojanowski, J Q; Doraiswamy, P M; Arnold, S E

    2013-04-09

    The pathogenic mechanisms of Alzheimer's disease (AD) remain largely unknown and clinical trials have not demonstrated significant benefit. Biochemical characterization of AD and its prodromal phase may provide new diagnostic and therapeutic insights. We used targeted metabolomics platform to profile cerebrospinal fluid (CSF) from AD (n=40), mild cognitive impairment (MCI, n=36) and control (n=38) subjects; univariate and multivariate analyses to define between-group differences; and partial least square-discriminant analysis models to classify diagnostic groups using CSF metabolomic profiles. A partial correlation network was built to link metabolic markers, protein markers and disease severity. AD subjects had elevated methionine (MET), 5-hydroxyindoleacetic acid (5-HIAA), vanillylmandelic acid, xanthosine and glutathione versus controls. MCI subjects had elevated 5-HIAA, MET, hypoxanthine and other metabolites versus controls. Metabolite ratios revealed changes within tryptophan, MET and purine pathways. Initial pathway analyses identified steps in several pathways that appear altered in AD and MCI. A partial correlation network showed total tau most directly related to norepinephrine and purine pathways; amyloid-β (Ab42) was related directly to an unidentified metabolite and indirectly to 5-HIAA and MET. These findings indicate that MCI and AD are associated with an overlapping pattern of perturbations in tryptophan, tyrosine, MET and purine pathways, and suggest that profound biochemical alterations are linked to abnormal Ab42 and tau metabolism. Metabolomics provides powerful tools to map interlinked biochemical pathway perturbations and study AD as a disease of network failure.

  9. Reduced ex vivo susceptibility of Plasmodium falciparum after oral artemether-lumefantrine treatment in Mali.

    PubMed

    Dama, Souleymane; Niangaly, Hamidou; Ouattara, Amed; Sagara, Issaka; Sissoko, Sekou; Traore, Oumar Bila; Bamadio, Amadou; Dara, Niawanlou; Djimde, Moussa; Alhousseini, Mohamed Lamine; Goita, Siaka; Maiga, Hamma; Dara, Antoine; Doumbo, Ogobara K; Djimde, Abdoulaye A

    2017-02-02

    Artemisinin-based combination therapy is the recommended first-line treatment for uncomplicated falciparum malaria worldwide. However, recent studies conducted in Mali showed an increased frequency of recurrent parasitaemia following artemether-lumefantrine (AL) treatment. Study samples were collected during a large WANECAM study. Ex-vivo Plasmodium falciparum sensitivity to artemether and lumefantrine was assessed using the tritiated hypoxanthine-based assay. The prevalence of molecular markers of anti-malarial drug resistance (pfcrt K76T, pfmdr1 N86Y and K13-propeller) were measured by PCR and/or sequencing. Overall 61 samples were successfully analysed in ex vivo studies. Mean IC 50 s increased significantly between baseline and recurrent parasites for both artemether (1.6 nM vs 3.2 nM, p < 0.001) and lumefantrine (1.4 nM vs 3.4 nM, p = 0.004). Wild type Pfmdr1 N86 allele was selected after treatment (71 vs 91%, 112 of 158 vs 95 of 105, p < 0.001) but not the wild type pfcrt K76 variant (23.5 vs 24.8%, 40 of 170 vs 26 of 105, p = 0.9). Three non-synonymous K13-propeller SNPs (A522C, A578S, and G638R) were found with allele frequencies <2%. Malian post-AL P. falciparum isolates were less susceptible to artemether and lumefantrine than baseline isolates.

  10. The Fanconi anemia pathway limits the severity of mutagenesis.

    PubMed

    Hinz, John M; Nham, Peter B; Salazar, Edmund P; Thompson, Larry H

    2006-08-13

    Fanconi anemia (FA) is a developmental and cancer predisposition disorder in which key, yet unknown, physiological events promoting chromosome stability are compromised. FA cells exhibit excess metaphase chromatid breaks and are universally hypersensitive to DNA interstrand crosslinking agents. Published mutagenesis data from single-gene mutation assays show both increased and decreased mutation frequencies in FA cells. In this review we discuss the data from the literature and from our isogenic fancg knockout hamster CHO cells, and interpret these data within the framework of a molecular model that accommodates these seemingly divergent observations. In FA cells, reduced rates of recovery of viable X-linked hypoxanthine phosphoribosyltransferase (hprt) mutants are characteristically observed for diverse mutagenic agents, but also in untreated cultures, indicating the relevance of the FA pathway for processing assorted DNA lesions. We ascribe these reductions to: (1) impaired mutagenic translesion synthesis within hprt during DNA replication and (2) lethality of mutant cells following replication fork breakage on the X chromosome, caused by unrepaired double-strand breaks or large deletions/translocations encompassing essential genes flanking hprt. These findings, along with studies showing increased spontaneous mutability of FA cells at two autosomal loci, support a model in which FA proteins promote both translesion synthesis at replication-blocking lesions and repair of broken replication forks by homologous recombination and DNA end joining. The essence of this model is that the FANC protein pathway serves to restrict the severity of mutational outcome by favoring base substitutions and small deletions over larger deletions and chromosomal rearrangements.

  11. Nontargeted LC-MS Metabolomics Approach for Metabolic Profiling of Plasma and Urine from Pigs Fed Branched Chain Amino Acids for Maximum Growth Performance.

    PubMed

    Soumeh, Elham A; Hedemann, Mette S; Poulsen, Hanne D; Corrent, Etienne; van Milgen, Jacob; Nørgaard, Jan V

    2016-12-02

    The metabolic response in plasma and urine of pigs when feeding an optimum level of branched chain amino acids (BCAAs) for best growth performance is unknown. The objective of the current study was to identify the metabolic phenotype associated with the BCAAs intake level that could be linked to the animal growth performance. Three dose-response studies were carried out to collect blood and urine samples from pigs fed increasing levels of Ile, Val, or Leu followed by a nontargeted LC-MS approach to characterize the metabolic profile of biofluids when dietary BCAAs are optimum for animal growth. Results showed that concentrations of plasma hypoxanthine and tyrosine (Tyr) were higher while concentrations of glycocholic acid, tauroursodeoxycholic acid, and taurocholic acid were lower when the dietary Ile was optimum. Plasma 3-methyl-2-oxovaleric acid and creatine were lower when dietary Leu was optimum. The optimum dietary Leu resulted in increased urinary excretion of ascorbic acid and choline and relatively decreased excretion of 2-aminoadipic acid, acetyl-dl-valine, Ile, 2-methylbutyrylglycine, and Tyr. In conclusion, plasma glycocholic acid and taurocholic acid were discriminating metabolites to the optimum dietary Ile. The optimum dietary Leu was associated with reduced plasma creatine and urinary 2-aminoadipic acid and elevated urinary excretion of ascorbic acid and choline. The optimum dietary Val had a less pronounced metabolic response reflected in plasma or urine than other BCAA.

  12. Sandwich enzyme-linked immunosorbent assay for naringin.

    PubMed

    Qu, Huihua; Wang, Xueqian; Qu, Baoping; Kong, Hui; Zhang, Yue; Shan, Wenchao; Cheng, Jinjun; Wang, Qingguo; Zhao, Yan

    2016-01-15

    Among the currently used immunoassay techniques, sandwich ELISA exhibits higher specificity, lower cross-reactivity, and a wider working range compared to the corresponding competitive assays. However, it is difficult to obtain a pair of antibodies that can simultaneously bind to two epitopes of a molecule with a molecular weight of less than 1000 Da. Naringin (Nar) is a flavonoid with a molecular mass of 580 Da. The main aim of this study was to develop a sandwich ELISA for detecting Nar. Two hybridomas secreting anti-Nar monoclonal antibodies (mAbs) were produced by fusing splenocytes from a mouse immunised against Nar-bovine serum albumin (BSA) conjugated with a hypoxanthine-aminopterin-thymidine (HAT)-sensitive mouse myeloma cell line; a sandwich ELISA for detecting Nar was developed using these two well-characterised anti-Nar mAbs. The performance of the sandwich assay was further evaluated by limit of detection (LOD), limit of quantification (LOQ), recovery, and interference analyses. A dose-response curve to Nar was obtained with an LOD of 6.78 ng mL(-1) and an LOQ of 13.47 ng mL(-1). The inter-assay and intra-assay coefficients of variation were 4.32% and 7.48%, respectively. The recovery rate of Nar from concentrated Fructus aurantii granules was 83.63%. A high correlation was obtained between HPLC and sandwich ELISA. These results demonstrate that the sandwich ELISA method has higher specificity for Nar than indirect competitive ELISA. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. N-n-butyl Haloperidol Iodide Protects against Hypoxia/Reoxygenation Injury in Cardiac Microvascular Endothelial Cells by Regulating the ROS/MAPK/Egr-1 Pathway

    PubMed Central

    Lu, Shishi; Zhang, Yanmei; Zhong, Shuping; Gao, Fenfei; Chen, Yicun; Li, Weiqiu; Zheng, Fuchun; Shi, Ganggang

    2017-01-01

    Endothelium dysfunction induced by reactive oxygen species (ROS) is an important initial event at the onset of myocardial ischemia/reperfusion in which the Egr-1 transcription factor often serves as a master switch for various damage pathways following reperfusion injury. We hypothesized that an intracellular ROS/MAPK/Egr-1 signaling pathway is activated in cardiac microvascular endothelial cells (CMECs) following hypoxia/reoxygenation (H/R). ROS generation, by either H/R or the ROS donor xanthine oxidase-hypoxanthine (XO/HX) activated all three MAPKs (ERK1/2, JNK, p38), and induced Egr-1 expression and Egr-1 DNA-binding activity in CMECs, whereas ROS scavengers (EDA and NAC) had the opposite effect following H/R. Inhibitors of all three MAPKs individually inhibited induction of Egr-1 expression by H/R in CMECs. Moreover, N-n-butyl haloperidol (F2), previously shown to protect cardiomyocytes subjected to I/R, dose-dependently downregulated H/R-induced ROS generation, MAPK activation, and Egr-1 expression and activity in CMECs, whereas XO/HX and MAPK activators (EGF, anisomycin) antagonized the effects of F2. Inhibition of the ROS/MAPK/Egr-1 signaling pathway, by either F2, NAC, or inhibition of MAPK, increased CMEC viability and the GSH/GSSG ratio, and decreased Egr-1 nuclear translocation. These results show that the ROS/MAPK/Egr-1 signaling pathway mediates H/R injury in CMECs, and F2 blocks this pathway to protect against H/R injury and further alleviate myocardial I/R injury. PMID:28111550

  14. An impaired metabolism of nucleotides underpins a novel mechanism of cardiac remodeling leading to Huntington's disease related cardiomyopathy.

    PubMed

    Toczek, Marta; Zielonka, Daniel; Zukowska, Paulina; Marcinkowski, Jerzy T; Slominska, Ewa; Isalan, Mark; Smolenski, Ryszard T; Mielcarek, Michal

    2016-11-01

    Huntington's disease (HD) is mainly thought of as a neurological disease, but multiple epidemiological studies have demonstrated a number of cardiovascular events leading to heart failure in HD patients. Our recent studies showed an increased risk of heart contractile dysfunction and dilated cardiomyopathy in HD pre-clinical models. This could potentially involve metabolic remodeling, that is a typical feature of the failing heart, with reduced activities of high energy phosphate generating pathways. In this study, we sought to identify metabolic abnormalities leading to HD-related cardiomyopathy in pre-clinical and clinical settings. We found that HD mouse models developed a profound deterioration in cardiac energy equilibrium, despite AMP-activated protein kinase hyperphosphorylation. This was accompanied by a reduced glucose usage and a significant deregulation of genes involved in de novo purine biosynthesis, in conversion of adenine nucleotides, and in adenosine metabolism. Consequently, we observed increased levels of nucleotide catabolites such as inosine, hypoxanthine, xanthine and uric acid, in murine and human HD serum. These effects may be caused locally by mutant HTT, via gain or loss of function effects, or distally by a lack of trophic signals from central nerve stimulation. Either may lead to energy equilibrium imbalances in cardiac cells, with activation of nucleotide catabolism plus an inhibition of re-synthesis. Our study suggests that future therapies should target cardiac mitochondrial dysfunction to ameliorate energetic dysfunction. Importantly, we describe the first set of biomarkers related to heart and skeletal muscle dysfunction in both pre-clinical and clinical HD settings. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. hprt mutant frequencies, nonpulmonary malignancies, and domestic radon exposure: "postmortem" analysis of an interesting hypothesis.

    PubMed

    Ruttenber, A J; Harrison, L T; Baron, A; McClure, D; Glanz, J; Quillin, R; O'Neill, J P; Sullivan, L; Campbell, J; Nicklas, J A

    2001-01-01

    The hypothesis that exposure to domestic radon raises the risk for leukemia and other nonpulmonary cancers has been proposed and tested in a number of epidemiologic studies over the past decade. During this period, interest in this hypothesis was heightened by evidence of increased frequencies of mutations at the hypoxanthine guanine phosphoribosyl transferase (hprt) gene in persons exposed to domestic radon (Bridges BA et al. [1991]: Lancet 337:1187-1189). An extension of this study (Cole J et al. [lsqb[1996]: Radiat Res 145:61-69) and two independent studies (Albering HJ et al. [1992[: Lancet 340:739; Albering HJ et al. [1994[: Lancet 344:750-751) found that hprt mutant frequency was not correlated with domestic radon exposure, and two well-designed epidemiologic studies showed no evidence of a relation between radon exposure and leukemia in children or adults. In this report, we present additional data from a study of Colorado high school students showing no correlation between domestic radon exposure and hprt mutant frequency. We use reanalyses of previous studies of radon and hprt mutant frequency to identify problems with this assay as a biomarker for domestic radon exposure and to illustrate difficulties in interpreting the statistical data. We also show with analyses of combined data sets that there is no support for the hypothesis that domestic radon exposure elevates hprt mutant frequency. Taken together, the scientific evidence provides a useful example of the problems associated with analyzing and interpreting data that link environmental exposures, biomarkers, and diseases in epidemiologic studies. Copyright 2001 Wiley-Liss, Inc.

  16. Ultrafast excited-state deactivation of 9-methylhypoxanthine in aqueous solution: A QM/MM MD study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xugeng, E-mail: xgguo@henu.edu.cn, E-mail: zhangjinglai@henu.edu.cn; Yuan, Huijuan; An, Beibei

    Photoinduced ultrafast non-adiabatic decay of 9-methylhypoxanthine (9MHPX) in aqueous solution was investigated by ab initio surface-hopping dynamics calculations using a combined quantum mechanical/molecular mechanical approach. The absorption spectra of 9MHPX in aqueous solution were also explored by the hybrid cluster-continuum model at the level of time-dependent density functional theory along with the polarizable continuum model (PCM). The static electronic-structure calculations indicate that the absorption spectra of 9MHPX simulated by TD-B3LYP/PCM and TD-X3LYP/PCM can reproduce very well the experimental findings, with the accuracy of about 0.20 eV. According to dynamics simulations, irradiation of 9MHPX populates the bright excited singlet S{sub 1}more » state, which may undergo an ultrafast non-radiative deactivation to the S{sub 0} state. The lifetime of the S{sub 1} state of 9MHPX in aqueous solution is predicted to be 115.6 fs, slightly longer than that in the gas phase (88.8 fs), suggesting that the solvent water has no significant influence on the excited-state lifetime of 9MHPX. Such a behavior in 9MHPX is distinctly different from its parent hypoxanthine keto-N9H tautomer in which the excited-state lifetime of the latter in water solution was remarkably enhanced as compared to the gas phase. The significant difference of the photodynamical behaviors between 9MHPX and keto-N9H can be ascribed to their different hydrogen bond environment in aqueous solution.« less

  17. Metabolites Associated With Malnutrition in the Intensive Care Unit Are Also Associated With 28-Day Mortality.

    PubMed

    Mogensen, Kris M; Lasky-Su, Jessica; Rogers, Angela J; Baron, Rebecca M; Fredenburgh, Laura E; Rawn, James; Robinson, Malcolm K; Massarro, Anthony; Choi, Augustine M K; Christopher, Kenneth B

    2017-02-01

    We hypothesized that metabolic profiles would differ in critically ill patients with malnutrition relative to those without. We performed a prospective cohort study on 85 adult patients with systemic inflammatory response syndrome or sepsis admitted to a 20-bed medical intensive care unit (ICU) in Boston. We generated metabolomic profiles using gas and liquid chromatography and mass spectroscopy. We followed this by logistic regression and partial least squares discriminant analysis to identify individual metabolites that were significant. We then interrogated the entire metabolomics profile using metabolite set enrichment analysis and network model construction of chemical-protein target interactions to identify groups of metabolites and pathways that were differentiates in patients with and without malnutrition. Of the cohort, 38% were malnourished at admission to the ICU. Metabolomic profiles differed in critically ill patients with malnutrition relative to those without. Ten metabolites were significantly associated with malnutrition ( P < .05). A parsimonious model of 5 metabolites effectively differentiated patients with malnutrition (AUC = 0.76), including pyroglutamine and hypoxanthine. Using pathway enrichment analysis, we identified a critical role of glutathione and purine metabolism in predicting nutrition. Nutrition status was associated with 28-day mortality, even after adjustment for known phenotypic variables associated with ICU mortality. Importantly, 7 metabolites associated with nutrition status were also associated with 28-day mortality. Malnutrition is associated with differential metabolic profiles early in critical illness. Common to all of our metabolome analyses, glutathione and purine metabolism, which play principal roles in cellular redox regulation and accelerated tissue adenosine triphosphate degradation, respectively, were significantly altered with malnutrition.

  18. Mechanisms of the Formation of Adenine, Guanine, and Their Analogues in UV-Irradiated Mixed NH3:H2O Molecular Ices Containing Purine

    NASA Astrophysics Data System (ADS)

    Bera, Partha P.; Stein, Tamar; Head-Gordon, Martin; Lee, Timothy J.

    2017-08-01

    We investigated the formation mechanisms of the nucleobases adenine and guanine and the nucleobase analogues hypoxanthine, xanthine, isoguanine, and 2,6-diaminopurine in a UV-irradiated mixed 10:1 H2O:NH3 ice seeded with precursor purine by using ab initio and density functional theory computations. Our quantum chemical investigations suggest that a multistep reaction mechanism involving purine cation, hydroxyl and amino radicals, together with water and ammonia, explains the experimentally obtained products in an independent study. The relative abundances of these products appear to largely follow from relative thermodynamic stabilities. The key role of the purine cation is likely to be the reason why purine is not functionalized in pure ammonia ice, where cations are promptly neutralized by free electrons from NH3 ionization. Amine group addition to purine is slightly favored over hydroxyl group attachment based on energetics, but hydroxyl is much more abundant due to higher abundance of H2O. The amino group is preferentially attached to the 6 position, giving 6-aminopurine, that is, adenine, while the hydroxyl group is preferentially attached to the 2 position, leading to 2-hydroxypurine. A second substitution by hydroxyl or amino group occurs at either the 6 or the 2 position depending on the first substitution. Given that H2O is far more abundant than NH3 in the experimentally studied ices (as well as based on interstellar abundances), xanthine and isoguanine are expected to be the most abundant bi-substituted photoproducts.

  19. Pharmacophore modeling, molecular docking and molecular dynamics studies on natural products database to discover novel skeleton as non-purine xanthine oxidase inhibitors.

    PubMed

    Peng, Jiale; Li, Yaping; Zhou, Yeheng; Zhang, Li; Liu, Xingyong; Zuo, Zhili

    2018-05-29

    Gout is a common inflammatory arthritis caused by the deposition of urate crystals within joints. It is increasingly in prevalence during the past few decades as shown by the epidemiological survey results. Xanthine oxidase (XO) is a key enzyme to transfer hypoxanthine and xanthine to uric acid, whose overproduction leads to gout. Therefore, inhibiting the activity of xanthine oxidase is an important way to reduce the production of urate. In the study, in order to identify the potential natural products targeting XO, pharmacophore modeling was employed to filter databases. Here, two methods, pharmacophore based on ligand and pharmacophore based on receptor-ligand, were constructed by Discovery Studio. Then GOLD was used to refine the potential compounds with higher fitness scores. Finally, molecular docking and dynamics simulations were employed to analyze the interactions between compounds and protein. The best hypothesis was set as a 3D query to screen database, returning 785 and 297 compounds respectively. A merged set of the above 1082 molecules was subjected to molecular docking, which returned 144 hits with high-fitness scores. These molecules were clustered in four main kinds depending on different backbones. What is more, molecular docking showed that the representative compounds established key interactions with the amino acid residues in the protein, and the RMSD and RMSF of molecular dynamics results showed that these compounds can stabilize the protein. The information represented in the study confirmed previous reports. And it may assist to discover and design new backbones as potential XO inhibitors based on natural products.

  20. Effects of allopurinol on exercise-induced muscle damage: new therapeutic approaches?

    PubMed

    Sanchis-Gomar, F; Pareja-Galeano, H; Perez-Quilis, C; Santos-Lozano, A; Fiuza-Luces, C; Garatachea, N; Lippi, G; Lucia, A

    2015-01-01

    Intensive muscular activity can trigger oxidative stress, and free radicals may hence be generated by working skeletal muscle. The role of the enzyme xanthine oxidase as a generating source of free radicals is well documented and therefore is involved in the skeletal muscle damage as well as in the potential transient cardiovascular damage induced by high-intensity physical exercise. Allopurinol is a purine hypoxanthine-based structural analog and a well-known inhibitor of xanthine oxidase. The administration of the xanthine oxidase inhibitor allopurinol may hence be regarded as promising, safe, and an economic strategy to decrease transient skeletal muscle damage (as well as heart damage, when occurring) in top-level athletes when administered before a competition or a particularly high-intensity training session. Although continuous administration of allopurinol in high-level athletes is not recommended due to its possible role in hampering training-induced adaptations, the drug might be useful in non-athletes. Exertional rhabdomyolysis is the most common form of rhabdomyolysis and affects individuals participating in a type of intense exercise to which they are not accustomed. This condition can cause exercise-related myoglobinuria, thus increasing the risk of acute renal failure and is also associated with sickle cell trait. In this manuscript, we have reviewed the recent evidence about the effects of allopurinol on exercise-induced muscle damage. More research is needed to determine whether allopurinol may be useful for preventing not only exertional rhabdomyolysis and acute renal damage but also skeletal muscle wasting in critical illness as well as in immobilized, bedridden, sarcopenic or cachectic patients.

  1. Incorporation of Exogenous Purines and Pyrimidines by Methanococcus voltae and Isolation of Analog-Resistant Mutants

    PubMed Central

    Bowen, Timothy L.; Whitman, William B.

    1987-01-01

    Methanococcus voltae incorporated exogenous adenine, guanine, hypoxanthine, and uracil, but not thymine. Growth of M. voltae was also sensitive to purine and pyrimidine analogs. Of the 20 analogs tested, 12 were inhibitory at 1 mg/ml. The most effective inhibitors were purine analogs with endocyclic substitutions. Nucleoside analogs and analogs with exocyclic substitutions or additions were less effective. Four purine analogs, 8-aza-2,6-diaminopurine, 8-azaguanine, 8-azahypoxanthine, and 6-mercaptopurine and one pyrimidine analog, 6-azauracil, were especially toxic. The MICs were 20, 0.5, 2.0, 80, and 10 μg/ml, respectively. Spontaneous resistance mutants were isolated for these five analogs. The MICs for these mutants were 20.5, 8.2, >65, >41, and 20.5 mg/ml, respectively. These concentrations far exceeded the solubilities of the analogs and represented an increase in resistance of at least three orders of magnitude. In addition to demonstrating cross resistance to several of the analogs, four of these mutants lost the ability to incorporate exogenous bases. These appeared to be mutations in the salvage pathways for purines and pyrimidines. In contrast, the mutant resistant to 6-mercaptopurine was not defective in purine uptake. Instead, it degraded 6-mercaptopurine. In the presence or absence of high concentrations of the analogs, the growth rates of the resistant mutants were no less than one-half of the growth rate of the wild type in the absence of the analog. The high level of resistance and rapid growth are very desirable properties for the application of the mutants in genetic experiments. PMID:16347408

  2. Increased sensitivity to thiopurines in methylthioadenosine phosphorylase-deleted cancers

    PubMed Central

    Coulthard, Sally A.; Redfern, Christopher P.F.; Vikingsson, Svante; Appell, Malin Lindqvist; Skoglund, Karin; Falk, Ingrid Jakobsen; Hall, Andrew G.; Taylor, Gordon A.; Hogarth, Linda A.

    2011-01-01

    The thiopurines, 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG) are used in the treatment of leukaemia. Incorporation of deoxythioguanosine nucleotides (dGs) into the DNA of thiopurine-treated cells causes cell death but there is also evidence that thiopurine metabolites, particularly the 6-MP metabolite methylthioinosine monophosphate (MeTIMP), inhibit de novo purine synthesis (DNPS). The toxicity of DNPS inhibitors is influenced by methylthioadenosine phosphorylase (MTAP), a gene frequently deleted in cancers. Since the growth of MTAP-deleted tumour cells is dependent on DNPS or hypoxanthine salvage, we would predict such cells to show differential sensitivity to 6-MP and 6-TG. To test this hypothesis, sensitivity to 6-MP and 6-TG was compared in relation to MTAP status using cytotoxicity assays in two MTAP-deficient cell lines transfected to express MTAP: the T-cell acute lymphoblastic leukaemic cell line, Jurkat, transfected with MTAP cDNA under the control of a tetracycline-inducible promoter, and a lung cancer cell line (A549-MTAP−ve) transfected to express MTAP constitutively (A549-MTAP+ve). Sensitivity to 6-MP or methyl mercaptopurine riboside, which is converted intra-cellularly to MeTIMP, was markedly higher in both cell lines under MTAP−ve conditions. Measurement of thiopurine metabolites support the hypothesis that DNPS inhibition is a major cause of cell death with 6-MP, whereas dGs incorporation is the main cause of cytotoxicity with 6-TG. These data suggest that thiopurines, particularly 6-MP, may be more effective in patients with deleted MTAP. PMID:21282358

  3. Influence of Probiotics-Friendly Pig Production on Meat Quality and Physicochemical Characteristics.

    PubMed

    Chang, Sung Yong; Belal, Shah Ahmed; Kang, Da Rae; Il Choi, Yang; Kim, Young Hoon; Choe, Ho Sung; Heo, Jae Young; Shim, Kawn Seob

    2018-04-01

    In this study, the dietary effects of probiotics with a liquid application system on meat quality and physicochemical characteristics of pigs were evaluated. A total of 80 Landrace×Yorkshire×Duroc (LYD) 3-way crossbred pigs (average age 175±5 d) were assigned to a conventional farm and a probiotics farm equipped with a liquid probiotics application system (40 pigs in each farm). The two treatments were: CON (diet without probiotics) and PRO (diet with probiotics). Dietary probiotics decreased shear force in the longissimus muscle compared to the control group ( p< 0.05). The treatment diet did not affect backfat thickness, carcass weight, meat color, cooking loss, water holding capacity (WHC), and drip loss. Dietary probiotics significantly reduced ash, salinity, and pH (at 5 and 15 d) ( p< 0.05). There was no significant effect on thiobarbituric acid reactive substance (TBARS) values. Polyunsaturated fatty acid (PUFA) and omega fatty acids (ω3 and ω6) were significantly ( p< 0.05) higher in the PRO group, whereas monounsaturated fatty acid (MUFA) was decreased. The free amino acid composition, serine, lysine, histidine, and arginine levels were significantly lower in the PRO than in the control group. The treatment group exhibited higher nucleotide compounds (hypoxanthine, inosine, GMP, IMP) than the controls. Also, levels of ascorbic acid and thiamin were significantly different ( p< 0.05), while minerals were not significantly different between the groups. In conclusion, feeding of probiotics had effects on shear force, ash, salinity, pH, PUFA, and some amino acids which related to taste and flavor without any negative effects on the pigs' carcass traits.

  4. Therapeutic efficacy of atypical antipsychotic drugs by targeting multiple stress-related metabolic pathways

    PubMed Central

    Cai, H L; Jiang, P; Tan, Q Y; Dang, R L; Tang, M M; Xue, Y; Deng, Y; Zhang, B K; Fang, P F; Xu, P; Xiang, D X; Li, H D; Yao, J K

    2017-01-01

    Schizophrenia (SZ) is considered to be a multifactorial brain disorder with defects involving many biochemical pathways. Patients with SZ show variable responses to current pharmacological treatments of SZ because of the heterogeneity of this disorder. Stress has a significant role in the pathophysiological pathways and therapeutic responses of SZ. Atypical antipsychotic drugs (AAPDs) can modulate the stress response of the hypothalamic–pituitary–adrenal (HPA) axis and exert therapeutic effects on stress by targeting the prefrontal cortex (PFC) and hippocampus. To evaluate the effects of AAPDs (such as clozapine, risperidone and aripiprazole) on stress, we compared neurochemical profile variations in the PFC and hippocampus between rat models of chronic unpredictable mild stress (CUMS) for HPA axis activation and of long-term dexamethasone exposure (LTDE) for HPA axis inhibition, using an ultraperformance liquid chromatography–mass spectrometry (UPLC–MS/MS)-based metabolomic approach and a multicriteria assessment. We identified a number of stress-induced biomarkers comprising creatine, choline, inosine, hypoxanthine, uric acid, allantoic acid, lysophosphatidylcholines (LysoPCs), phosphatidylethanolamines (PEs), corticosterone and progesterone. Specifically, pathway enrichment and correlation analyses suggested that stress induces oxidative damage by disturbing the creatine–phosphocreatine circuit and purine pathway, leading to excessive membrane breakdown. Moreover, our data suggested that the AAPDs tested partially restore stress-induced deficits by increasing the levels of creatine, progesterone and PEs. Thus, the present findings provide a theoretical basis for the hypothesis that a combined therapy using adenosine triphosphate fuel, antioxidants and omega-3 fatty acids as supplements may have synergistic effects on the therapeutic outcome following AAPD treatment. PMID:28509906

  5. The Role of Plasma and Urine Metabolomics in Identifying New Biomarkers in Severe Newborn Asphyxia: A Study of Asphyxiated Newborn Pigs following Cardiopulmonary Resuscitation.

    PubMed

    Sachse, Daniel; Solevåg, Anne Lee; Berg, Jens Petter; Nakstad, Britt

    2016-01-01

    Optimizing resuscitation is important to prevent morbidity and mortality from perinatal asphyxia. The metabolism of cells and tissues is severely disturbed during asphyxia and resuscitation, and metabolomic analyses provide a snapshot of many small molecular weight metabolites in body fluids or tissues. In this study metabolomics profiles were studied in newborn pigs that were asphyxiated and resuscitated using different protocols to identify biomarkers for subject characterization, intervention effects and possibly prognosis. A total of 125 newborn Noroc pigs were anesthetized, mechanically ventilated and inflicted progressive asphyxia until asystole. Pigs were randomized to resuscitation with a FiO2 0.21 or 1.0, different duration of ventilation before initiation of chest compressions (CC), and different CC to ventilation ratios. Plasma and urine samples were obtained at baseline, and 2 h and 4 h after return of spontaneous circulation (ROSC, heart rate > = 100 bpm). Metabolomics profiles of the samples were analyzed by nuclear magnetic resonance spectroscopy. Plasma and urine showed severe metabolic alterations consistent with hypoxia and acidosis 2 h and 4 h after ROSC. Baseline plasma hypoxanthine and lipoprotein concentrations were inversely correlated to the duration of hypoxia sustained before asystole occurred, but there was no evidence for a differential metabolic response to the different resuscitation protocols or in terms of survival. Metabolic profiles of asphyxiated newborn pigs showed severe metabolic alterations. Consistent with previously published reports, we found no evidence of differences between established and alternative resuscitation protocols. Lactate and pyruvate may have a prognostic value, but have to be independently confirmed.

  6. Mutagenesis in human cells with accelerated H and Fe ions

    NASA Technical Reports Server (NTRS)

    Kronenberg, Amy

    1994-01-01

    The overall goals of this research were to determine the risks of mutation induction and the spectra of mutations induced by energetic protons and iron ions at two loci in human lymphoid cells. During the three year grant period the research has focused in three major areas: (1) the acquisition of sufficient statistics for human TK6 cell mutation experiments using Fe ions (400 MeV/amu), Fe ions (600 MeV/amu) and protons (250 MeV/amu); (2) collection of thymidine kinase- deficient (tk) mutants or hypoxanthine phosphoribosyltransferase deficient (hprt) mutants induced by either Fe 400 MeV/amu, Fe 600 MeV/amu, or H 250 MeV/amu for subsequent molecular analysis; and (3) molecular characterization of mutants isolated after exposure to Fe ions (600 MeV/amu). As a result of the shutdown of the BEVALAC heavy ion accelerator in December 1992, efforts were rearranged somewhat in time to complete our dose-response studies and to complete mutant collections in particular for the Fe ion beams prior to the shutdown. These goals have been achieved. A major effort was placed on collection, re-screening, and archiving of 3 different series of mutants for the various particle beam exposures: tk-ng mutants, tk-sg mutants, and hprt-deficient mutants. Where possible, groups of mutants were isolated for several particle fluences. Comparative analysis of mutation spectra has occured with characterization of the mutation spectrum for hprt-deficient mutants obtained after exposure of TK6 cells to Fe ions (600 MeV/amu) and a series of spontaneous mutants.

  7. Influence of infection by Toxoplasma gondii on purine levels and E-ADA activity in the brain of mice experimentally infected mice.

    PubMed

    Tonin, Alexandre A; Da Silva, Aleksandro S; Casali, Emerson A; Silveira, Stephanie S; Moritz, Cesar E J; Camillo, Giovana; Flores, Mariana M; Fighera, Rafael; Thomé, Gustavo R; Morsch, Vera M; Schetinger, Maria Rosa C; Rue, Mario De La; Vogel, Fernanda S F; Lopes, Sonia T A

    2014-07-01

    The aim of this study was to assess the purine levels and E-ADA activity in the brain of mice (BALB/c) experimentally infected with Toxoplasma gondii. In experiment I (n=24) the mice were infected with RH strain of T. gondii, while in experiment II (n=36) they were infected with strain ME-49 of T. gondii. Our results showed that, for RH strain (acute phase), an increase in both periods in the levels of ATP, ADP, AMP, adenosine, hypoxanthine, xanthine (only on day 6 PI) and uric acid (only on day 6 PI). By the other hand, the RH strain led, on days 4 and 6 PI, to a reduction in the concentration of inosine. ME-49, a cystogenic strain, showed some differences in acute and chronic phase, since on day 6 PI the levels of ATP and ADP were increased, while on day 30 these same nucleotides were reduced. On day 60 PI, ME-49 induced a reduction in the levels of ATP, ADP, AMP, adenosine, inosine and xanthine, while uric acid was increased. A decrease of E-ADA activity was observed in brain on days 4 and 6 PI (RH), and 30 PI (ME-49); however on day 60 PI E-ADA activity was increased for infection by ME-49 strain. Therefore, it was possible to conclude that infection with T. gondii changes the purine levels and the activity of E-ADA in brain, which may be associated with neurological signs commonly observed in this disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Simultaneous quantification and splenocyte-proliferating activities of nucleosides and bases in Cervi cornu Pantotrichum

    PubMed Central

    Zong, Ying; Wang, Yu; Li, Hang; Li, Na; Zhang, Hui; Sun, Jiaming; Niu, Xiaohui; Gao, Xiaochen

    2014-01-01

    Background: Cervi Cornu Pantotrichum has been a well known traditional Chinese medicine, which is young horn of Cervus Nippon Temminck (Hualurong: HLR). At present, the methods used for the quality control of Cervi Cornu Pantotrichum show low specificity. Objective: To describe a holistic method based on chemical characteristics and splenocyte-proliferating activities to evaluate the quality of HLR. Materials and Methods: The nucleosides and bases from HLR were identified by high performance liquid chromatography electrospray ionization mass spectrometry (HPLC-ESI-MS), and six of them were chosen to be used for simultaneous HPLC quantification according to the results of proliferation of mouse splenocytes in vitro. Results: In this study, eight nucleosides and bases have been identified. In addition, uracil, hypoxanthine, uridine, inosine, guanosine, and adenosine were chosen to be used for simultaneous HPLC quantification. Simultaneous quantification of these six substances was performed on ten groups of HLR under the condition of a TIANHE Kromasil C18 column (5 μm, 4.6 mm × 250 mm i.d.) and a gradient elution of water and acetonitrile. Of the ten groups, HLR displayed the highest total nucleoside contents (TNC, sum of adenosine and uracil, 0.412 mg/g) with the strongest splenocyte-proliferating activities. Conclusion: These results suggest that TNC (such as particularly highly contained adenosine and uracil) in HLR has a certain correlation with the activity of splenocyte-proliferating, and it may be used as a quality control for HLR. This comprehensive method could be applied to other traditional Chinese medicines to ameliorate their quality control. PMID:25422536

  9. Methylated purines in urinary stones.

    PubMed

    Safranow, Krzysztof; Machoy, Zygmunt

    2005-08-01

    The aim of the study was to measure the content of methylated purines that appear as admixtures in uric acid stones. We analyzed urinary calculi from 48 residents of Western Pomerania who underwent surgery at the urology ward in Szczecin. Stone samples were dissolved in 0.1 mol/L NaOH. Extracts were diluted in 50 mmol/L KH(2)PO(4) and analyzed by reversed-phase HPLC with ultraviolet detection and use of a gradient of methanol concentration and pH. Uric acid was the main component of 9 stones. All 9 showed admixtures of 9 other purine derivatives: endogenous purine breakdown products (xanthine, hypoxanthine, and 2,8-dihydroxyadenine) and exogenous methyl derivatives of uric acid and xanthine (1-, 3-, and 7-methyluric acid; 1,3-dimethyluric acid; and 3- and 7-methylxanthine). Amounts of these purine derivatives ranged from the limit of detection to 12 mg/g of stone weight and showed a strong positive correlation (Spearman rank correlation coefficients, 0.63-0.94) with the uric acid content of the samples. The main methylated purine in the stones was 1-methyluric acid. Urinary purines at concentrations below their saturation limits may coprecipitate in samples supersaturated with uric acid and appear as admixtures in urinary stones. The amount of each purine depends on its average urinary excretion, similarity to the chemical structure of uric acid, and concentration of the latter in the stone. These findings suggest that purines in stones represent a substitutional solid solution with uric acid as solvent. Methylxanthines, which are ubiquitous components of the diet, drugs, and uric acid calculi, may be involved in the pathogenesis of urolithiasis.

  10. Phosphorylation of 3-deazaguanosine by nicotinamide riboside kinase in Chinese hamster ovary cells.

    PubMed

    Saunders, P P; Tan, M T; Spindler, C D; Robins, R K

    1989-12-01

    The growth inhibitory activity of 3-deazaguanosine toward a mutant line (TGR-3) of Chinese hamster ovary cells deficient in hypoxanthine-guanine phosphoribosyltransferase (EC 2.4.2.8) was substantially reversed by the simultaneous addition of nicotinamide riboside. The activities of most other ribonucleoside analogues tested were unaffected. The formation of cellular 3-deazaGMP and 3-deazaGTP from the ribonucleoside analogue, as measured by high-pressure liquid chromatography, was inhibited by the presence of nicotinamide riboside. The inhibition was dependent on concentration of 3-deazaguanosine and could also be demonstrated by following the metabolism of 3-deazaguanosine, labeled with 14C in the ribose moiety, to [14C]3-deazaGTP. In the presence of 100 microM nicotinamide riboside formation of the labeled triphosphate derivative of 3-deazaguanosine was undetectable. A 3-deazaguanosine phosphorylating activity was separated from other cellular kinases by DEAE-cellulose chromatography. Contaminating purine nucleoside phosphorylase (EC 2.4.2.1) was subsequently removed by sucrose density gradient centrifugation. The resulting enzyme preparation demonstrated the greatest activities with nicotinamide riboside and 3-deazaguanosine and, in addition, could also phosphorylate tiazofurin and guanosine to lesser, but significant, degrees. These and other observations suggest that 3-deazaguanosine, and perhaps other agents such as tiazofurin, may, at least in part, be phosphorylated by a nicotinamide ribonucleoside kinase in these cells. If so, it is possible that the activity of this agent in other types of cells in vivo could be dependent upon the presence of this enzyme and that it could be influenced by cellular concentrations of the natural pyridine nucleoside.

  11. Amperometric biosensor based on prussian blue and nafion modified screen-printed electrode for screening of potential xanthine oxidase inhibitors from medicinal plants.

    PubMed

    El Harrad, Loubna; Amine, Aziz

    2016-04-01

    A simple and sensitive amperometric biosensor was developed for the screening of potential xanthine oxidase inhibitors from medicinal plants. This biosensor was prepared by immobilization of xanthine oxidase on the surface of prussian blue modified screen-printed electrodes using nafion and glutaraldehyde. The developed biosensor showed a linear amperometric response at an applied potential of +0.05 V toward the detection of hypoxanthine from 5 μM to 45 μM with a detection limit of 0.4 μM (S/N=3) and its sensitivity was found to be 600 mA M(-1) cm(-2). In addition, the biosensor exhibited a good storage stability. The inhibition of xanthine oxidase by allopurinol was studied under the optimized conditions. The linear range of allopurinol concentration is obtained up to 2.5 μM with an estimated 50% of inhibitionI50=1.8 μM. The developed biosensor was successfully applied to the screening of xanthine oxidase inhibitors from 13 medicinal plants belonging to different families. Indeed, Moroccan people traditionally use these plants as infusion for the treatment of gout and its related symptoms. For this purpose, water extracts obtained from the infusion of these plants were used for the experiments. In this work, 13 extracts were assayed and several of them demonstrated xanthine oxidase inhibitory effect, with an inhibition greater than 50% compared to spectrophotometry measurements that only few extracts showed an inhibition greater than 50%. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Antimalarial Activity of Small-Molecule Benzothiazole Hydrazones

    PubMed Central

    Sarkar, Souvik; Siddiqui, Asim A.; Saha, Shubhra J.; De, Rudranil; Mazumder, Somnath; Banerjee, Chinmoy; Iqbal, Mohd S.; Nag, Shiladitya; Adhikari, Susanta

    2016-01-01

    We synthesized a new series of conjugated hydrazones that were found to be active against malaria parasite in vitro, as well as in vivo in a murine model. These hydrazones concentration-dependently chelated free iron and offered antimalarial activity. Upon screening of the synthesized hydrazones, compound 5f was found to be the most active iron chelator, as well as antiplasmodial. Compound 5f also interacted with free heme (KD [equilibrium dissociation constant] = 1.17 ± 0.8 μM), an iron-containing tetrapyrrole released after hemoglobin digestion by the parasite, and inhibited heme polymerization by parasite lysate. Structure-activity relationship studies indicated that a nitrogen- and sulfur-substituted five-membered aromatic ring present within the benzothiazole hydrazones might be responsible for their antimalarial activity. The dose-dependent antimalarial and heme polymerization inhibitory activities of the lead compound 5f were further validated by following [3H]hypoxanthine incorporation and hemozoin formation in parasite, respectively. It is worth mentioning that compound 5f exhibited antiplasmodial activity in vitro against a chloroquine/pyrimethamine-resistant strain of Plasmodium falciparum (K1). We also evaluated in vivo antimalarial activity of compound 5f in a murine model where a lethal multiple-drug-resistant strain of Plasmodium yoelii was used to infect Swiss albino mice. Compound 5f significantly suppressed the growth of parasite, and the infected mice experienced longer life spans upon treatment with this compound. During in vitro and in vivo toxicity assays, compound 5f showed minimal alteration in biochemical and hematological parameters compared to control. In conclusion, we identified a new class of hydrazone with therapeutic potential against malaria. PMID:27139466

  13. Role of host xanthine oxidase in infection due to enteropathogenic and Shiga-toxigenic Escherichia coli.

    PubMed

    Crane, John K; Naeher, Tonniele M; Broome, Jacqueline E; Boedeker, Edgar C

    2013-04-01

    Xanthine oxidase (XO), also known as xanthine oxidoreductase, has long been considered an important host defense molecule in the intestine and in breastfed infants. Here, we present evidence that XO is released from and active in intestinal tissues and fluids in response to infection with enteropathogenic Escherichia coli (EPEC) and Shiga-toxigenic E. coli (STEC), also known as enterohemorrhagic E. coli (EHEC). XO is released into intestinal fluids in EPEC and STEC infection in a rabbit animal model. XO activity results in the generation of surprisingly high concentrations of uric acid in both cultured cell and animal models of infection. Hydrogen peroxide (H(2)O(2)) generated by XO activity triggered a chloride secretory response in intestinal cell monolayers within minutes but decreased transepithelial electrical resistance at 6 to 22 h. H(2)O(2) generated by XO activity was effective at killing laboratory strains of E. coli, commensal microbiotas, and anaerobes, but wild-type EPEC and STEC strains were 100 to 1,000 times more resistant to killing or growth inhibition by this pathway. Instead of killing pathogenic bacteria, physiologic concentrations of XO increased virulence by inducing the production of Shiga toxins from STEC strains. In vivo, exogenous XO plus the substrate hypoxanthine did not protect and instead worsened the outcome of STEC infection in the rabbit ligated intestinal loop model of infection. XO released during EPEC and STEC infection may serve as a virulence-inducing signal to the pathogen and not solely as a protective host defense.

  14. Dynamic architecture of the purinosome involved in human de novo purine biosynthesis.

    PubMed

    Kyoung, Minjoung; Russell, Sarah J; Kohnhorst, Casey L; Esemoto, Nopondo N; An, Songon

    2015-01-27

    Enzymes in human de novo purine biosynthesis have been demonstrated to form a reversible, transient multienzyme complex, the purinosome, upon purine starvation. However, characterization of purinosomes has been limited to HeLa cells and has heavily relied on qualitative examination of their subcellular localization and reversibility under wide-field fluorescence microscopy. Quantitative approaches, which are particularly compatible with human disease-relevant cell lines, are necessary to explicitly understand the purinosome in live cells. In this work, human breast carcinoma Hs578T cells have been utilized to demonstrate the preferential utilization of the purinosome under purine-depleted conditions. In addition, we have employed a confocal microscopy-based biophysical technique, fluorescence recovery after photobleaching, to characterize kinetic properties of the purinosome in live Hs578T cells. Quantitative characterization of the diffusion coefficients of all de novo purine biosynthetic enzymes reveals the significant reduction of their mobile kinetics upon purinosome formation, the dynamic partitioning of each enzyme into the purinosome, and the existence of three intermediate species in purinosome assembly under purine starvation. We also demonstrate that the diffusion coefficient of the purine salvage enzyme, hypoxanthine phosphoribosyltransferase 1, is not sensitive to purine starvation, indicating exclusion of the salvage pathway from the purinosome. Furthermore, our biophysical characterization of nonmetabolic enzymes clarifies that purinosomes are spatiotemporally different cellular bodies from stress granules and cytoplasmic protein aggregates in both Hs578T and HeLa cells. Collectively, quantitative analyses of the purinosome in Hs578T cells led us to provide novel insights for the dynamic architecture of the purinosome assembly.

  15. Genetics of the connective tissue proteins: Assignment of the gene for human type I procollagen to chromosome 17 by analysis of cell hybrids and microcell hybrids*

    PubMed Central

    Raj, Cholappadi V. Sundar; Church, Robert L.; Klobutcher, Lawrence A.; Ruddle, Frank H.

    1977-01-01

    Somatic cell hybrids between mouse and human cell lines have been used to identify the specific chromosome that governs the synthesis of type I procollagen. Fourteen hybrid clones and subclones were derived independently from crosses between mouse parents [LM (thymidine kinase-negative) or A9 (hypoxanthine phosphoribosyltransferase-negative)] and human cells (human diploid lung fibroblasts WI-38 or diploid skin fibroblasts GM5, GM17, and GM9). The cultures were labeled with [3H]proline in modified Eagle's medium without serum. Radioactive procollagens were purified from the medium by the method of Church et al. [(1974) J. Mol. Biol. 86, 785-799]. DEAE-cellulose chromatography was used to separate collagen and type I and type III procollagen. Human type I procollagen was assayed by double immunodiffusion analysis with type I procollagen antibodies prepared by immunizing rabbits with purified human type I procollagen. These analyses combined with karyology and isozyme analyses of each hybrid line have produced evidence for the assignment of the gene for human type I procollagen to chromosome 17. A human microcell-mouse hybrid cell line containing only human chromosome 17 was positive for human type I procollagen, lending further support to the assignment of the human type I procollagen gene to chromosome 17. Finally, by using a hybrid line containing only the long arm of human chromosome 17 translocated onto a mouse chromosome, the type I procollagen gene can be assigned more specifically to the long arm of chromosome 17. Images PMID:412188

  16. Potent antimalarial activity of clotrimazole in in vitro cultures of Plasmodium falciparum

    PubMed Central

    Tiffert, Teresa; Ginsburg, Hagai; Krugliak, Miriam; Elford, Barry C.; Lew, Virgilio L.

    2000-01-01

    The increasing resistance of the malaria parasite Plasmodium falciparum to currently available drugs demands a continuous effort to develop new antimalarial agents. In this quest, the identification of antimalarial effects of drugs already in use for other therapies represents an attractive approach with potentially rapid clinical application. We have found that the extensively used antimycotic drug clotrimazole (CLT) effectively and rapidly inhibited parasite growth in five different strains of P. falciparum, in vitro, irrespective of their chloroquine sensitivity. The concentrations for 50% inhibition (IC50), assessed by parasite incorporation of [3H]hypoxanthine, were between 0.2 and 1.1 μM. CLT concentrations of 2 μM and above caused a sharp decline in parasitemia, complete inhibition of parasite replication, and destruction of parasites and host cells within a single intraerythrocytic asexual cycle (≈48 hr). These concentrations are within the plasma levels known to be attained in humans after oral administration of the drug. The effects were associated with distinct morphological changes. Transient exposure of ring-stage parasites to 2.5 μM CLT for a period of 12 hr caused a delay in development in a fraction of parasites that reverted to normal after drug removal; 24-hr exposure to the same concentration caused total destruction of parasites and parasitized cells. Chloroquine antagonized the effects of CLT whereas mefloquine was synergistic. The present study suggests that CLT holds much promise as an antimalarial agent and that it is suitable for a clinical study in P. falciparum malaria. PMID:10618418

  17. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 micrometer2 and 0.09 to 5.56 x 10(-3) micrometer2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(-5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  18. Effect of sauna bathing and beer ingestion on plasma concentrations of purine bases.

    PubMed

    Yamamoto, Tetsuya; Moriwaki, Yuji; Ka, Tuneyoshi; Takahashi, Sumio; Tsutsumi, Zenta; Cheng, Jidong; Inokuchi, Taku; Yamamoto, Asako; Hada, Toshikazu

    2004-06-01

    To determine whether sauna bathing alone or in combination with beer ingestion increases the plasma concentration of uric acid, 5 healthy subjects were tested. Urine and plasma measurements were performed before and after each took a sauna bath, ingested beer, and ingested beer just after taking a sauna bath, with a 2-week interval between each activity. Sauna bathing alone increased the plasma concentrations of uric acid and oxypurines (hypoxanthine and xanthine), and decreased the urinary and fractional excretion of uric acid, while beer ingestion alone increased the plasma concentrations and urinary excretion of uric acid and oxypurines. A combination of both increased the plasma concentration of uric acid and oxypurines, and decreased the urinary and fractional excretion of uric acid, with an increase in the urinary excretion of oxypurines. The increase in plasma concentration of uric acid with the combination protocol was not synergistic as compared to the sum of the increases by each alone. Body weight, urine volume, and the urinary excretion of sodium and chloride via dehydration were decreased following sauna bathing alone. These results suggest that sauna bathing had a relationship with enhanced purine degradation and a decrease in the urinary excretion of uric acid, leading to an increase in the plasma concentration of uric acid. Further, we concluded that extracellular volume loss may affect the common renal transport pathway of uric acid and xanthine. Therefore, it is recommended that patients with gout refrain from drinking alcoholic beverages, including beer, after taking a sauna bath, since the increase in plasma concentration of uric acid following the combination of sauna bathing and beer ingestion was additive.

  19. Metabolic regulation as a consequence of anaerobic 5-methylthioadenosine recycling in Rhodospirillum rubrum

    DOE PAGES

    North, Justin A.; Sriram, Jaya; Chourey, Karuna; ...

    2016-07-12

    Rhodospirillum rubrum possesses a novel oxygen-independent, aerobic methionine salvage pathway (MSP) for recycling methionine from 5-methylthioadenosine (MTA), the MTA-isoprenoid shunt. This organism can also metabolize MTA as a sulfur source under anaerobic conditions, suggesting that the MTA-isoprenoid shunt may also function anaerobically as well. In this study, deep proteomics profiling, directed metabolite analysis, and reverse transcriptase quantitative PCR (RT-qPCR) revealed metabolic changes in response to anaerobic growth on MTA versus sulfate as sole sulfur source. The abundance of protein levels associated with methionine transport, cell motility, and chemotaxis increased in the presence of MTA over that in the presence ofmore » sulfate. Purine salvage from MTA resulted primarily in hypoxanthine accumulation and a decrease in protein levels involved in GMP-to-AMP conversion to balance purine pools. Acyl coenzyme A (acyl-CoA) metabolic protein levels for lipid metabolism were lower in abundance, whereas poly-β-hydroxybutyrate synthesis and storage were increased nearly 10-fold. The known R. rubrum aerobic MSP was also shown to be upregulated, to function anaerobically, and to recycle MTA. This suggested that other organisms with gene homologues for the MTA-isoprenoid shunt may also possess a functioning anaerobic MSP. In support of our previous findings that ribulose-1,5-carboxylase/oxygenase (RubisCO) is required for an apparently purely anaerobic MSP, RubisCO transcript and protein levels both increased in abundance by over 10-fold in cells grown anaerobically on MTA over those in cells grown on sulfate, resulting in increased intracellular RubisCO activity. Lastly, these results reveal for the first time global metabolic responses as a consequence of anaerobic MTA metabolism compared to using sulfate as the sulfur source.« less

  20. Characterization of a human antigen specific helper factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, B.

    1986-03-01

    While antigen (Ag) specific helper factors have been characterized in mice, similar molecules have not been identified in humans. To characterize human antigen specific helper molecules, an IL-2 dependent tetanus toxoid (T.T.) reactive T cell line was fused with a 6-thioguanine resistant CEM line, and hybrids selected in medium containing hypoxanthine and azaserine. Hybrids were screened by culturing the cells with /sup 35/S-Met then reacting the supernatants with T.T. or hepatitis vaccine immobilized on nitrocellulose. One hybrid, TT6BA-O, was identified which secreted a Met-containing molecule which bound T.T. but not hepatitis vaccine. Supernatants from TT6BA-O, but not the parent CEMmore » line, when added to autologous peripheral blood mononuclear cells (PBMC's) stimulated secretion of T.T. specific antibodies (Abs). Specificity controls demonstrated that TT6BA-O supernatant did not induce antibodies to diphtheria toxoid, hepatitis vaccine or pneumococcal polysaccharide, and total immunoglobulin (lg) synthesis was minimally increased. In contrast, pokeweed mitogen stimulated significant lg synthesis as well as Ab's to pneumococcal polysaccharide and T.T. TT6BA-O supernatant induced anti-T.T.Ab's in autologous PBMC's but not PBMC's from 3 unrelated donors, suggesting that the activity of the helper factor is restricted, possibly by the MHC. The molecular weight of the helper factor was estimated at 100,000-150,000 by Sephacryl S-300 chromatography. Finally, the helper factor could be demonstrated to bind and elute from sephorose-immobilized T.T. and anti-DR antisera, but not anti-lg antisera or the T40/25 monoclonal antibody, which binds a nonpolymorphic determinant on the human T cell receptor. These results demonstrate that human Ag specific helper factors exist, bind antigen and bear class II MHC determinants.« less

  1. NATb/NAT1*4 promotes greater arylamine N-acetyltransferase 1 mediated DNA adducts and mutations than NATa/NAT1*4 following exposure to 4-aminobiphenyl

    PubMed Central

    Millner, Lori M.; Doll, Mark A.; Cai, Jian; States, J. Christopher; Hein, David W.

    2011-01-01

    N -acetyltransferase 1 (NAT1) is a phase II metabolic enzyme responsible for the biotransformation of aromatic and heterocyclic amine carcinogens such as 4-aminobiphenyl (ABP). NAT1 catalyzes N-acetylation of arylamines as well as the O-acetylation of N-hydroxylated arylamines. O-acetylation leads to the formation of electrophilic intermediates that result in DNA adducts and mutations. NAT1 is transcribed from a major promoter, NATb, and an alternative promoter, NATa, resulting in mRNAs with distinct 5′-untranslated regions (UTR). NATa mRNA is expressed primarily in the kidney, liver, trachea and lung while NATb mRNA has been detected in all tissues studied. To determine if differences in 5′-UTR have functional effect upon NAT1 activity and DNA adducts or mutations following exposure to ABP, pcDNA5/FRT plasmid constructs were prepared for transfection of full length human mRNAs including the 5′-UTR derived from NATa or NATb, the open reading frame, and 888 nucleotides of the 3′-UTR. Following stable transfection of NATb/NAT1*4 or NATa/NAT1*4 into nucleotide excision repair (NER) deficient Chinese hamster ovary cells, N-acetyltransferase activity (in vitro and in situ), mRNA, and protein expression were higher in NATb/NAT1*4 than NATa/NAT1*4 transfected cells (p<0.05). Consistent with NAT1 expression and activity, ABP-induced DNA adducts and hypoxanthine phosphoribosyl transferase mutants were significantly higher (p<0.05) in NATb/NAT1*4 than in NATa/NAT1*4 transfected cells following exposure to ABP. These differences observed between NATa and NATb suggest that the 5′-UTRs are differentially regulated. PMID:21837760

  2. Hydrogen sulfide protects endothelial nitric oxide function under conditions of acute oxidative stress in vitro.

    PubMed

    Al-Magableh, Mohammad R; Kemp-Harper, Barbara K; Ng, Hooi H; Miller, Alyson A; Hart, Joanne L

    2014-01-01

    The aim of this study was to examine the ability of H2S, released from NaHS to protect vascular endothelial function under conditions of acute oxidative stress by scavenging superoxide anions (O2(-)) and suppressing vascular superoxide anion production. O2(-) was generated in Krebs' solution by reacting hypoxanthine with xanthine oxidase (Hx-XO) or with the O2(-) generator pyrogallol to model acute oxidative stress in vitro. O2(-) generation was measured by lucigenin-enhanced chemiluminescence. Functional responses in mouse aortic rings were assessed using a small vessel myograph. NaHS scavenged O2(-) in a concentration-dependent manner. Isolated aortic rings exposed to either Hx-XO or pyrogallol displayed significantly attenuated maximum vasorelaxation responses to the endothelium-dependent vasodilator acetylcholine, and significantly reduced NO bioavailability, which was completely reversed if vessels were pre-incubated with NaHS (100 μM). NADPH-stimulated aortic O2(-) production was significantly attenuated by the NADPH oxidase inhibitor diphenyl iodonium. Prior treatment of vessels with NaHS (100 nM-100 μM; 30 min) inhibited NADPH-stimulated aortic O2(-) production in a concentration-dependent manner. This effect persisted when NaHS was washed out prior to measuring NADPH-stimulated O2(-) production. These data show for the first time that NaHS directly scavenges O2(-) and suppresses vascular NADPH oxidase-derived O2(-) production in vitro. Furthermore, these properties protect endothelial function and NO bioavailability in an in vitro model of acute oxidative stress. These results suggest that H2S can elicit vasoprotection by both scavenging O2(-) and by reducing vascular NADPH oxidase-derived O2(-) production.

  3. Expression pattern of X-linked genes in sex chromosome aneuploid bovine cells.

    PubMed

    Basrur, Parvathi K; Farazmand, Ali; Stranzinger, Gerald; Graphodatskaya, Daria; Reyes, Ed R; King, W Allan

    2004-01-01

    Expression of the X-inactive specific transcript (XIST) gene is a prerequisite step for dosage compensation in mammals, accomplished by silencing one of the two X chromosomes in normal female diploid cells or all X chromosomes in excess of one in sex chromosome aneuploids. Our previous studies showing that XIST expression does not eventuate the inactivation of X-linked genes in fetal bovine testis had suggested that XIST expression may not be an indicator of X inactivation in this species. In this study, we used a semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) approach on cultures of bovine cells with varying sex chromosome constitution (XY, XX, XXY and XXX) to test whether the levels of XIST expressed conform to the number of late replicating (inactive) X chromosomes displayed by proliferating cells in these cultures. Expression patterns of four X-linked genes, including hypoxanthine phosphorybosyl transferase (HPRT), glucose-6-phosphate dehydrogenase (G6PD), zinc finger protein locus on the X (ZFX). and 'selected mouse cDNA on the X' (SMCX), in all these cells were also tested. Results showed that XIST expression was significantly higher (p < 0.05) in XXX cells compared to XX and XXY cells and that G6PD. HPRT, and SMCX loci are subject to X inactivation. The significantly higher levels of ZFX expressed in XXX cells compared to XX and XXY cells (p < 0.05) confirmed that this bovine locus, as human ZFX, escapes X inactivation. However, the levels of XIST and ZFX expressed were not proportional to the X chromosome load in these cells suggesting that X-linked loci escaping inactivation may be regulated at transcription (or post-transcription) level by mechanisms that prevent gene-specific product accumulation beyond certain levels in sex chromosome aneuploids.

  4. Gene expression levels of elastin and fibulin-5 according to differences between carotid plaque regions.

    PubMed

    Sivrikoz, Emre; Timirci-Kahraman, Özlem; Ergen, Arzu; Zeybek, Ümit; Aksoy, Murat; Yanar, Fatih; İsbir, Turgay; Kurtoğlu, Mehmet

    2015-01-01

    The purpose of this study was to investigate the gene expression levels of elastin and fibulin-5 according to differences between carotid plaque regions and to correlate it with clinical features of plaque destabilization. The study included 44 endarterectomy specimens available from operated symptomatic carotid artery stenoses. The specimens were separated according to anatomic location: internal carotid artery (ICA), external carotid artery (ECA) and common carotid artery (CCA), and then stored in liquid nitrogen. The amounts of cDNA for elastin and fibulin-5 were determined by Quantitative real-time PCR (Q-RT-PCR). Target gene copy numbers were normalized using hypoxanthine-guanine phosphoribosyltransferase (HPRT1) gene. The delta-delta CT method was applied for relative quantification. Q-RT-PCR data showed that relative fibulin-5 gene expression was increased in ICA plaque regions when compared to CCA regions but not reaching significance (p=0.061). At the same time, no differences were observed in elastin mRNA level between different anatomic plaque regions (p>0.05). Moreover, elastin and fibulin-5 mRNA expression and clinical parameters were compared in ICA plaques versus CCA and ECA regions, respectively. Up-regulation of elastin and fibulin-5 mRNA levels in ICA were strongly correlated with family history of cardiovascular disease when compared to CCA (p<0.05). Up-regulation of fibulin-5 in ICA was significantly associated with diabetes, and elevated triglycerides and very low density lipoprotein (VLDL) when compared to ECA (p<0.05). The clinical significance is the differences between the proximal and distal regions of the lesion, associated with the ICA, CCA and ECA respectively, with increased fibulin-5 in the ICA region. Copyright © 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  5. In situ study of the antibacterial activity and mechanism of action of silver nanoparticles by surface-enhanced Raman spectroscopy.

    PubMed

    Cui, Li; Chen, Pengyu; Chen, Shaode; Yuan, Zhihua; Yu, Changping; Ren, Bin; Zhang, Kaisong

    2013-06-04

    Silver nanoparticles (Ag NPs) are extensively used as an antibacterial additive in commercial products and their release has caused environmental risk. However, conventional methods for the toxicity detection of Ag NPs are very time consuming and the mechanisms of action are not clear. We developed a new, in situ, rapid, and sensitive fingerprinting approach, using surface-enhanced Raman spectroscopy (SERS), to study the antibacterial activity and mechanism of Ag NPs of 80 and 18 nm (Ag80 and Ag18, respectively), by using the strong electromagnetic enhancement generated by Ag NPs. Sensitive spectra changes representing various biomolecules in bacteria were observed with increasing concentrations of Ag NPs. They not only allowed SERS to monitor the antibacterial activity of Ag NPs of different sizes in different water media but also to study the antibacterial mechanism at the molecular level. Ag18 were found to be more toxic than Ag80 in water, but their toxicity declined to a similar level in the PBS medium. The antibacterial mechanism was proposed on the basis of a careful identification of the chemical origins by comparing the SERS spectra with model compounds. The dramatic change in protein, hypoxanthine, adenosine, and guanosine bands suggested that Ag NPs have a significant impact on the protein and metabolic processes of purine. Finally, by adding nontoxic and SERS active Au NPs, SERS was successfully utilized to study the action mode of the NPs unable to produce an observable SERS signal. This work opens a window for the future extensive SERS studies of the antibacterial mechanism of a great variety of non-SERS-active NPs.

  6. Butyrate influences intracellular levels of adenine and adenine derivatives in the fungus Penicillium restrictum.

    PubMed

    Zutz, Christoph; Chiang, Yi Ming; Faehnrich, Bettina; Bacher, Markus; Hellinger, Roland; Kluger, Bernhard; Wagner, Martin; Strauss, Joseph; Rychli, Kathrin

    2017-04-01

    Butyrate, a small fatty acid, has an important role in the colon of ruminants and mammalians including the inhibition of inflammation and the regulation of cell proliferation. There is also growing evidence that butyrate is influencing the histone structure in mammalian cells by inhibition of histone deacetylation. Butyrate shows furthermore an antimicrobial activity against fungi, yeast and bacteria, which is linked to its toxicity at a high concentration. In fungi there are indications that butyrate induces the production of secondary metabolites potentially via inhibition of histone deacetylases. However, information about the influence of butyrate on growth, primary metabolite production and metabolism, besides lipid catabolism, in fungi is scarce. We have identified the filamentous fungus Penicillium (P.) restrictum as a susceptible target for butyrate treatment in an antimicrobial activity screen. The antimicrobial activity was detected only in the mycelium of the butyrate treated culture. We investigated the effect of butyrate ranging from low (0.001mM) to high (30mM), potentially toxic, concentrations on biomass and antimicrobial activity. Butyrate at high concentrations (3 and 30mM) significantly reduced the fungal biomass. In contrast P. restrictum treated with 0.03mM of butyrate showed the highest antimicrobial activity. We isolated three antimicrobial active compounds, active against Staphylococcus aureus, from P. restrictum cellular extracts treated with butyrate: adenine, its derivate hypoxanthine and the nucleoside derivate adenosine. Production of all three compounds was increased at low butyrate concentrations. Furthermore we found that butyrate influences the intracellular level of the adenine nucleoside derivate cAMP, an important signalling molecule in fungi and various organisms. In conclusion butyrate treatment increases the intracellular levels of adenine and its respective derivatives. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Oxidation and detoxification of trivalent arsenic species.

    PubMed

    Aposhian, H Vasken; Zakharyan, Robert A; Avram, Mihaela D; Kopplin, Michael J; Wollenberg, Michael L

    2003-11-15

    Arsenic compounds with a +3 oxidation state are more toxic than analogous compounds with a +5 oxidation state, for example, arsenite versus arsenate, monomethylarsonous acid (MMA(III)) versus monomethylarsonic acid (MMA(V)), and dimethylarsinous acid (DMA(III)) versus dimethylarsinic acid (DMA(V)). It is no longer believed that the methylation of arsenite is the beginning of a methylation-mediated detoxication pathway. The oxidation of these +3 compounds to their less toxic +5 analogs by hydrogen peroxide needs investigation and consideration as a potential mechanism for detoxification. Xanthine oxidase uses oxygen to oxidize hypoxanthine to xanthine to uric acid. Hydrogen peroxide and reactive oxygen are also products. The oxidation of +3 arsenicals by the hydrogen peroxide produced in the xanthine oxidase reaction was blocked by catalase or allopurinol but not by scavengers of the hydroxy radical, e.g., mannitol or potassium iodide. Melatonin, the singlet oxygen radical scavenger, did not inhibit the oxidation. The production of H2O2 by xanthine oxidase may be an important route for decreasing the toxicity of trivalent arsenic species by oxidizing them to their less toxic pentavalent analogs. In addition, there are many other reactions that produce hydrogen peroxide in the cell. Although chemists have used hydrogen peroxide for the oxidation of arsenite to arsenate to purify water, we are not aware of any published account of its potential importance in the detoxification of trivalent arsenicals in biological systems. At present, this oxidation of the +3 oxidation state arsenicals is based on evidence from in vitro experiments. In vivo experiments are needed to substantiate the role and importance of H2O2 in arsenic detoxication in mammals.

  8. Phenotypic and Genotypic Analysis of In Vitro-Selected Artemisinin-Resistant Progeny of Plasmodium falciparum

    PubMed Central

    Tucker, Matthew S.; Mutka, Tina; Sparks, Kansas; Patel, Janus

    2012-01-01

    Emergence of artemisinin resistance in Cambodia highlights the importance of characterizing resistance to this class of drugs. Previously, intermediate levels of resistance in Plasmodium falciparum were generated in vitro for artelinic acid (AL) and artemisinin (QHS). Here we expanded on earlier selection efforts to produce levels of clinically relevant concentrations, and the resulting lines were characterized genotypically and phenotypically. Recrudescence assays determined the ability of resistant and parent lines to recover following exposure to clinically relevant levels of drugs. Interestingly, the parent clone (D6) tolerated up to 1,500 ng/ml QHS, but the resistant parasite, D6.QHS340×3, recovered following exposure to 2,400 ng/ml QHS. Resistant D6, W2, and TM91c235 parasites all exhibited elevated 50% inhibitory concentrations (IC50s) to multiple artemisinin drugs, with >3-fold resistance to QHS and AL; however, the degree of resistance obtained with standard methods was remarkably less than expected for parasite lines that recovered from 2,400-ng/ml drug pressure. A novel assay format with radiolabeled hypoxanthine demonstrated a greater degree of resistance in vitro than the standard SYBR green method. Analysis of merozoite number in resistant parasites found D6 and TM91c235 resistant progeny had significantly fewer merozoites than parent strains, whereas W2 resistant progeny had significantly more. Amplification of pfmdr1 increased proportionately to the increased drug levels tolerated by W2 and TM91c235, but not in resistant D6. In summary, we define the artemisinin resistance phenotype as a decrease in susceptibility to artemisinins along with the ability to recover from drug-induced dormancy following supraclinical concentrations of the drug. PMID:22083467

  9. The impact of ambient air pollution on the human blood metabolome.

    PubMed

    Vlaanderen, J J; Janssen, N A; Hoek, G; Keski-Rahkonen, P; Barupal, D K; Cassee, F R; Gosens, I; Strak, M; Steenhof, M; Lan, Q; Brunekreef, B; Scalbert, A; Vermeulen, R C H

    2017-07-01

    Biological perturbations caused by air pollution might be reflected in the compounds present in blood originating from air pollutants and endogenous metabolites influenced by air pollution (defined here as part of the blood metabolome). We aimed to assess the perturbation of the blood metabolome in response to short term exposure to air pollution. We exposed 31 healthy volunteers to ambient air pollution for 5h. We measured exposure to particulate matter, particle number concentrations, absorbance, elemental/organic carbon, trace metals, secondary inorganic components, endotoxin content, gaseous pollutants, and particulate matter oxidative potential. We collected blood from the participants 2h before and 2 and 18h after exposure. We employed untargeted metabolite profiling to monitor 3873 metabolic features in 493 blood samples from these volunteers. We assessed lung function using spirometry and six acute phase proteins in peripheral blood. We assessed the association of the metabolic features with the measured air pollutants and with health markers that we previously observed to be associated with air pollution in this study. We observed 89 robust associations between air pollutants and metabolic features two hours after exposure and 118 robust associations 18h after exposure. Some of the metabolic features that were associated with air pollutants were also associated with acute health effects, especially changes in forced expiratory volume in 1s. We successfully identified tyrosine, guanosine, and hypoxanthine among the associated features. Bioinformatics approach Mummichog predicted enriched pathway activity in eight pathways, among which tyrosine metabolism. This study demonstrates for the first time the application of untargeted metabolite profiling to assess the impact of air pollution on the blood metabolome. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Influence of Probiotics-Friendly Pig Production on Meat Quality and Physicochemical Characteristics

    PubMed Central

    Chang, Sung Yong; Belal, Shah Ahmed; Kang, Da Rae; Il Choi, Yang; Kim, Young Hoon; Choe, Ho Sung; Heo, Jae Young; Shim, Kawn Seob

    2018-01-01

    Abstract In this study, the dietary effects of probiotics with a liquid application system on meat quality and physicochemical characteristics of pigs were evaluated. A total of 80 Landrace×Yorkshire×Duroc (LYD) 3-way crossbred pigs (average age 175±5 d) were assigned to a conventional farm and a probiotics farm equipped with a liquid probiotics application system (40 pigs in each farm). The two treatments were: CON (diet without probiotics) and PRO (diet with probiotics). Dietary probiotics decreased shear force in the longissimus muscle compared to the control group (p<0.05). The treatment diet did not affect backfat thickness, carcass weight, meat color, cooking loss, water holding capacity (WHC), and drip loss. Dietary probiotics significantly reduced ash, salinity, and pH (at 5 and 15 d) (p<0.05). There was no significant effect on thiobarbituric acid reactive substance (TBARS) values. Polyunsaturated fatty acid (PUFA) and omega fatty acids (ω3 and ω6) were significantly (p<0.05) higher in the PRO group, whereas monounsaturated fatty acid (MUFA) was decreased. The free amino acid composition, serine, lysine, histidine, and arginine levels were significantly lower in the PRO than in the control group. The treatment group exhibited higher nucleotide compounds (hypoxanthine, inosine, GMP, IMP) than the controls. Also, levels of ascorbic acid and thiamin were significantly different (p<0.05), while minerals were not significantly different between the groups. In conclusion, feeding of probiotics had effects on shear force, ash, salinity, pH, PUFA, and some amino acids which related to taste and flavor without any negative effects on the pigs’ carcass traits. PMID:29805288

  11. Development of an HPLC method for determination of metabolic compounds in myocardial tissue.

    PubMed

    Volonté, M G; Yuln, G; Quiroga, P; Consolini, A E

    2004-05-28

    The determination of adenine nucleotides and creatine compounds has great importance in the characterization of ischemic myocardial injury and post-ischemic recovery. It was developed by an HPLC method for the quantification of creatine (Cr), creatine phosphate (CrP), hypoxanthine (HX), AMP, adenosine (Ad), ADP and ATP in isolated perfused rat hearts. The chromatographic conditions were: RP 18 column; mobile phase composed by KH(2)PO(4) (215 mM), tetrabutylammonium hydrogen sulfate (2.3mM), acetonitrile (4%) and KOH (1M 0.4%); flow rate 1 ml min(-1); temperature 25 degrees C; injection volume 20 microl; detection at 220 nm and height peak (HP) as the integration parameter. The method was validated by means of linearity and sensitivity evaluations, using calibration curves done with five concentration levels of each compound. The limits of quantification (LOQ) were also determined. The system precision was calculated as the coefficient of variation for five injections for each compound tested. The purity of the peaks was established using enzymatic peak shift analysis with hexokinase and creatine kinase and also comparing HP at various wavelengths. Frozen hearts were homogenized with a mechanical homogenizer for 3 min at 0 degrees C added with 5 ml of 0.4N HCLO(4). After precipitation with 0.8 ml of 2M KOH the extract was shaked for 2 min and later centrifuged at 0 degrees C for 10 min. The supernatant was kept on ice, filtrated and injected into the HPLC system. The results show that the method for the determination of Cr, CrP, HX, AMP, Ad, ADP and ATP by HPLC here described has good linearity, LOQ, precision, specificity and is simple and rapid to perform.

  12. Pediatric neurological syndromes and inborn errors of purine metabolism.

    PubMed

    Camici, Marcella; Micheli, Vanna; Ipata, Piero Luigi; Tozzi, Maria Grazia

    2010-02-01

    This review is devised to gather the presently known inborn errors of purine metabolism that manifest neurological pediatric syndromes. The aim is to draw a comprehensive picture of these rare diseases, characterized by unexpected and often devastating neurological symptoms. Although investigated for many years, most purine metabolism disorders associated to psychomotor dysfunctions still hide the molecular link between the metabolic derangement and the neurological manifestations. This basically indicates that many of the actual functions of nucleosides and nucleotides in the development and function of several organs, in particular central nervous system, are still unknown. Both superactivity and deficiency of phosphoribosylpyrophosphate synthetase cause hereditary disorders characterized, in most cases, by neurological impairments. The deficiency of adenylosuccinate lyase and 5-amino-4-imidazolecarboxamide ribotide transformylase/IMP cyclohydrolase, both belonging to the de novo purine synthesis pathway, is also associated to severe neurological manifestations. Among catabolic enzymes, hyperactivity of ectosolic 5'-nucleotidase, as well as deficiency of purine nucleoside phosphorylase and adenosine deaminase also lead to syndromes affecting the central nervous system. The most severe pathologies are associated to the deficiency of the salvage pathway enzymes hypoxanthine-guanine phosphoribosyltransferase and deoxyguanosine kinase: the former due to an unexplained adverse effect exerted on the development and/or differentiation of dopaminergic neurons, the latter due to a clear impairment of mitochondrial functions. The assessment of hypo- or hyperuricemic conditions is suggestive of purine enzyme dysfunctions, but most disorders of purine metabolism may escape the clinical investigation because they are not associated to these metabolic derangements. This review may represent a starting point stimulating both scientists and physicians involved in the study of neurological dysfunctions caused by inborn errors of purine metabolism with the aim to find novel therapeutical approaches. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  13. Inhibition of DNA synthesis by chemical carcinogens in cultures of initiated and normal proliferating rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novicki, D.L.; Rosenberg, M.R.; Michalopoulos, G.

    1985-01-01

    Rat hepatocytes in primary culture can be stimulated to replicate under the influence of rat serum and sparse plating conditions. Higher replication rates are induced by serum from two-thirds partially hepatectomized rats. The effects of carcinogens and noncarcinogens on the ability of hepatocytes to synthesize DNA were examined by measuring the incorporation of (3H)thymidine by liquid scintillation counting and autoradiography. Hepatocyte DNA synthesis was not decreased by ethanol or dimethyl sulfoxide at concentrations less than 0.5%. No effect was observed when 0.1 mM ketamine, Nembutal, hypoxanthine, sucrose, ascorbic acid, or benzo(e)pyrene was added to cultures of replicating hepatocytes. Estrogen, testosterone,more » tryptophan, and vitamin E inhibited DNA synthesis by approximately 50% at 0.1 mM, a concentration at which toxicity was noticeable. Several carcinogens requiring metabolic activation as well as the direct-acting carcinogen N-methyl-N'-nitro-N-nitrosoguanidine interfered with DNA synthesis. Aflatoxin B1 inhibited DNA synthesis by 50% (ID50) at concentrations between 1 X 10(-8) and 1 X 10(-7) M. The ID50 for 2-acetylaminofluorene was between 1 X 10(-7) and 1 X 10(-6) M. Benzo(a)pyrene and 3'-methyl-4-dimethylaminoazobenzene inhibited DNA synthesis 50% between 1 X 10(-5) and 1 X 10(-4) M. Diethylnitrosamine and dimethylnitrosamine (ID50 between 1 X 10(-4) and 5 X 10(-4) M) and 1- and 2-naphthylamine (ID50 between 1 X 10(-5) and 5 X 10(-4) M) caused inhibition of DNA synthesis at concentrations which overlapped with concentrations that caused measurable toxicity.« less

  14. NMR spectroscopy of filtered serum of prostate cancer: A new frontier in metabolomics.

    PubMed

    Kumar, Deepak; Gupta, Ashish; Mandhani, Anil; Sankhwar, Satya Narain

    2016-09-01

    To address the shortcomings of digital rectal examinations (DRE), serum prostate-specific antigen (PSA), and trans-rectal ultrasound (TRUS) for precise determination of prostate cancer (PC) and differentiation from benign prostatic hyperplasia (BPH), we applied (1) H-nuclear magnetic resonance (NMR) spectroscopy as a surrogate tactic for probing and prediction of PC and BPH. The study comprises 210 filtered sera from suspected PC, BPH, and a healthy subjects' cohort (HC). The filtered serum approach delineates to identify and quantify 52 metabolites using (1) H NMR spectroscopy. All subjects had undergone clinical evaluations (DRE, PSA, and TRUS) followed by biopsy for Gleason score, if needed. NMR-measured metabolites and clinical evaluation data were examined separately using linear multivariate discriminant function analysis (DFA) to probe the signature descriptors for each cohort. DFA indicated that glycine, sarcosine, alanine, creatine, xanthine, and hypoxanthine were able to determine abnormal prostate (BPH + PC). DFA-based classification presented high precision (86.2% by NMR and 68.1% by clinical laboratory method) in discriminating HC from BPH + PC. DFA reveals that alanine, sarcosine, creatinine, glycine, and citrate were able to discriminate PC from BPH. DFA-based categorization exhibited high accuracy (88.3% by NMR and 75.2% by clinical laboratory method) to differentiate PC from BPH. (1) H NMR-based metabolic profiling of filtered-serum sample appears to be assuring, swift, and least-invasive for probing and prediction of PC and BPH with its signature metabolic profile. This novel technique is not only on a par with histopathological evaluation of PC determination but is also comparable to liquid chromatography-based mass spectrometry to identify the metabolites. Prostate 76:1106-1119, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Sitagliptin attenuates sympathetic innervation via modulating reactive oxygen species and interstitial adenosine in infarcted rat hearts.

    PubMed

    Lee, Tsung-Ming; Chen, Wei-Ting; Yang, Chen-Chia; Lin, Shinn-Zong; Chang, Nen-Chung

    2015-02-01

    We investigated whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, attenuates arrhythmias through inhibiting nerve growth factor (NGF) expression in post-infarcted normoglycemic rats, focusing on adenosine and reactive oxygen species production. DPP-4 bound adenosine deaminase has been shown to catalyse extracellular adenosine to inosine. DPP-4 inhibitors increased adenosine levels by inhibiting the complex formation. Normoglycemic male Wistar rats were subjected to coronary ligation and then randomized to either saline or sitagliptin in in vivo and ex vivo studies. Post-infarction was associated with increased oxidative stress, as measured by myocardial superoxide, nitrotyrosine and dihydroethidium fluorescent staining. Measurement of myocardial norepinephrine levels revealed a significant elevation in vehicle-treated infarcted rats compared with sham. Compared with vehicle, infarcted rats treated with sitagliptin significantly increased interstitial adenosine levels and attenuated oxidative stress. Sympathetic hyperinnervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Ex vivo studies showed a similar effect of erythro-9-(2-hydroxy-3-nonyl) adenine (an adenosine deaminase inhibitor) to sitagliptin on attenuated levels of superoxide and NGF. Furthermore, the beneficial effects of sitagliptin on superoxide anion production and NGF levels can be reversed by 8-cyclopentyl-1,3-dipropulxanthine (adenosine A1 receptor antagonist) and exogenous hypoxanthine. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation via adenosine A1 receptor and xanthine oxidase-dependent pathways, which converge through the attenuated formation of superoxide in the non-diabetic infarcted rats. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  16. MiR-132 regulated olfactory bulb proteins linked to olfactory learning in greater short-nosed fruit bat Cynopterus sphinx.

    PubMed

    Mukilan, Murugan; Rajathei, David Mary; Jeyaraj, Edwin; Kayalvizhi, Nagarajan; Rajan, Koilmani Emmanuvel

    2018-05-30

    Earlier, we showed that micro RNA-132 (miR-132) regulate the immediate early genes (IEGs) in the olfactory bulb (OB) of fruit bat Cynopterus sphinx during olfactory learning. This study was designed to examine whether the miR-132 regulate other proteins in OB during olfactory learning. To test this, miR-132 anti-sense oligodeoxynucleotide (AS-ODN) was delivered to the OB and then trained to novel odor. The 2-dimensional gel electrophoresis analysis showed that inhibition of miR-132 altered olfactory training induced expression of 321 proteins. Further, liquid chromatography-mass spectrometry (LC-MS/MS) analysis reveals the identity of differently expressed proteins such as phosphoribosyl transferase domain containing protein (PRTFDC 1), Sorting nexin-8 (SNX8), Creatine kinase B-type (CKB) and Annexin A11 (ANX A11). Among them PRTFDC 1 showing 189 matching peptides with highest sequence coverage (67.0%) and protein-protein interaction analysis showed that PRTFDC 1 is a homolog of hypoxanthine phosphoribosyltransferase-1 (HPRT-1). Subsequent immunohistochemical analysis (IHC) showed that inhibition of miR-132 down-regulated HPRT expression in OB of C. sphinx. In addition, western blot analysis depicts that HPRT, serotonin transporter (SERT), N-methyl-d-asparate (NMDA) receptors (2A,B) were down-regulated, but not altered in OB of non-sense oligodeoxynucleotide (NS-ODN) infused groups. These analyses suggest that miR-132 regulates the process of olfactory learning and memory formation through SERT and NMDA receptors signalling, which is possibly associated with the PRTFDC1-HPRT interaction. Copyright © 2017. Published by Elsevier B.V.

  17. Carbon Monoxide Oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum

    PubMed Central

    Diekert, Gabriele B.; Thauer, Rudolf K.

    1978-01-01

    Cultures of Clostridium formicoaceticum and C. thermoaceticum growing on fructose and glucose, respectively, were shown to rapidly oxidize CO to CO2. Rates up to 0.4 μmol min−1 mg of wet cells−1 were observed. Carbon monoxide oxidation by cell suspensions was found (i) to be dependent on pyruvate, (ii) to be inhibited by alkyl halides and arsenate, and (iii) to stimulate CO2 reduction to acetate. Cell extracts catalyzed the oxidation of carbon monoxide with methyl viologen at specific rates up to 10 μmol min−1 mg of protein−1 (35°C, pH 7.2). Nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide phosphate and ferredoxin from C. pasteurianum were ineffective as electron acceptors. The catalytic mechanism of carbon monoxide oxidation was “ping-pong,” indicating that the enzyme catalyzing carbon monoxide oxidation can be present in an oxidized and a reduced form. The oxidized form was shown to react reversibly with cyanide, and the reduced form was shown to react reversibly with alkyl halides: cyanide inactivated the enzyme only in the absence of carbon monoxide, and alkyl halides inactivated it only in the presence of carbon monoxide. Extracts inactivated by alkyl halides were reactivated by photolysis. The findings are interpreted to indicate that carbon monoxide oxidation in the two bacteria is catalyzed by a corrinoid enzyme and that in vivo the reaction is coupled with the reduction of CO2 to acetate. Cultures of C. acidi-urici and C. cylindrosporum growing on hypoxanthine were found not to oxidize CO, indicating that clostridia mediating a corrinoid-independent total synthesis of acetate from CO2 do not possess a CO-oxidizing system. PMID:711675

  18. Differences in HPRT mutant frequency among middle-aged Flemish women in association with area of residence and blood lead levels.

    PubMed

    Van Larebeke, Nicolas; Koppen, Gudrun; Nelen, Vera; Schoeters, Greet; Van Loon, Herman; Albering, Harma; Riga, Louk; Vlietinck, Robert; Kleinjans, Jos

    2004-01-01

    Biomarkers were measured in residents of Wilrijk and Hoboken, industrial suburbs of the city of Antwerp, and of Peer, a rural municipality in Flanders, Belgium. Persons with known occupational exposures to toxic compounds or commuting over long distances were excluded. Here, we report the hypoxanthine phosphoribosyltransferase gene (HPRT) variant frequencies for 99 non-smoking women aged 50-65 years. HPRT values above the detection limit (V(fpos) values) were observed for 43 subjects (21 from Peer, 22 from Antwerp). The median (10th to 90th percentiles) HPRT variant frequency (V(fpos)) in peripheral lymphocytes was 9.59 (3.44-56.99) for Peer and 3.57 (1.57-13.96) for Antwerp. The V(fpos) value was significantly higher in Peer than in Antwerp, both in terms of crude data (p=0.011) and after correction for age, level of education, smoking status, serum level of selenium and body mass index through analysis of covariance (p=0.011). For the total study population, serum lead concentration showed a non-significant positive correlation with lnV(fpos). In addition, subjects with a blood lead concentration above the median tended to have higher V(fpos) values (9.45x10(-6) for 'high' group versus 5.21x10(-6) for 'low' group; p=0.077 after correction for confounding). Subjects with a serum selenium level above the median tended to have lower V(fpos) values (4.99x10(-6) for 'high' group versus 9.83x10(-6) for 'low' group; p=0.051 after correction for confounding). These data are consistent with an indirect genotoxic effect of lead and with an antimutagenic effect of selenium.

  19. Physicochemical characteristics of structurally determined metabolite-protein and drug-protein binding events with respect to binding specificity.

    PubMed

    Korkuć, Paula; Walther, Dirk

    2015-01-01

    To better understand and ultimately predict both the metabolic activities as well as the signaling functions of metabolites, a detailed understanding of the physical interactions of metabolites with proteins is highly desirable. Focusing in particular on protein binding specificity vs. promiscuity, we performed a comprehensive analysis of the physicochemical properties of compound-protein binding events as reported in the Protein Data Bank (PDB). We compared the molecular and structural characteristics obtained for metabolites to those of the well-studied interactions of drug compounds with proteins. Promiscuously binding metabolites and drugs are characterized by low molecular weight and high structural flexibility. Unlike reported for drug compounds, low rather than high hydrophobicity appears associated, albeit weakly, with promiscuous binding for the metabolite set investigated in this study. Across several physicochemical properties, drug compounds exhibit characteristic binding propensities that are distinguishable from those associated with metabolites. Prediction of target diversity and compound promiscuity using physicochemical properties was possible at modest accuracy levels only, but was consistently better for drugs than for metabolites. Compound properties capturing structural flexibility and hydrogen-bond formation descriptors proved most informative in PLS-based prediction models. With regard to diversity of enzymatic activities of the respective metabolite target enzymes, the metabolites benzylsuccinate, hypoxanthine, trimethylamine N-oxide, oleoylglycerol, and resorcinol showed very narrow process involvement, while glycine, imidazole, tryptophan, succinate, and glutathione were identified to possess broad enzymatic reaction scopes. Promiscuous metabolites were found to mainly serve as general energy currency compounds, but were identified to also be involved in signaling processes and to appear in diverse organismal systems (digestive and nervous system) suggesting specific molecular and physiological roles of promiscuous metabolites.

  20. Assessment of mercaptopurine (6MP) metabolites and 6MP metabolic key-enzymes in childhood acute lymphoblastic leukemia.

    PubMed

    Wojtuszkiewicz, Anna; Barcelos, Ana; Dubbelman, Boas; De Abreu, Ronney; Brouwer, Connie; Bökkerink, Jos P; de Haas, Valerie; de Groot-Kruseman, Hester; Jansen, Gerrit; Kaspers, Gertjan L; Cloos, Jacqueline; Peters, G J

    2014-01-01

    Pediatric acute lymphoblastic leukemia (ALL) is treated with combination chemotherapy including mercaptopurine (6MP) as an important component. Upon its uptake, 6MP undergoes a complex metabolism involving many enzymes and active products. The prognostic value of all the factors engaged in this pathway still remains unclear. This study attempted to determine which components of 6MP metabolism in leukemic blasts and red blood cells are important for 6MP's sensitivity and toxicity. In addition, changes in the enzymatic activities and metabolite levels during the treatment were analyzed. In a cohort (N=236) of pediatric ALL patients enrolled in the Dutch ALL-9 protocol, we studied the enzymes inosine-5'-monophosphate dehydrogenase (IMPDH), thiopurine S-methyltransferase (TPMT), hypoxanthine guanine phosphoribosyl transferase (HGPRT), and purine nucleoside phosphorylase (PNP) as well as thioguanine nucleotides (TGN) and methylthioinosine nucleotides (meTINs). Activities of selected enzymes and levels of 6MP derivatives were measured at various time points during the course of therapy. The data obtained and the toxicity related parameters available for these patients were correlated with each other. We found several interesting relations, including high concentrations of two active forms of 6MP--TGN and meTIN--showing a trend toward association with better in vitro antileukemic effect of 6MP. High concentrations of TGN and elevated activity of HGPRT were found to be significantly associated with grade III/IV leucopenia. However, a lot of data of enzymatic activities and metabolite concentrations as well as clinical toxicity were missing, thereby limiting the number of assessed relations. Therefore, although a complex study of 6MP metabolism in ALL patients is feasible, it warrants more robust and strict data collection in order to be able to draw more reliable conclusions.

  1. Colonic microbiota can promote rapid local improvement of murine colitis by thioguanine independently of T lymphocytes and host metabolism

    PubMed Central

    Oancea, I; Movva, R; Das, I; Aguirre de Cárcer, D; Schreiber, V; Yang, Y; Purdon, A; Harrington, B; Proctor, M; Wang, R; Sheng, Y; Lobb, M; Lourie, R; Ó Cuív, P; Duley, J A; Begun, J; Florin, T H J

    2017-01-01

    Objective Mercaptopurine (MP) and pro-drug azathioprine are ‘first-line’ oral therapies for maintaining remission in IBD. It is believed that their pharmacodynamic action is due to a slow cumulative decrease in activated lymphocytes homing to inflamed gut. We examined the role of host metabolism, lymphocytes and microbiome for the amelioration of colitis by the related thioguanine (TG). Design C57Bl/6 mice with or without specific genes altered to elucidate mechanisms responsible for TG's actions were treated daily with oral or intrarectal TG, MP or water. Disease activity was scored daily. At sacrifice, colonic histology, cytokine message, caecal luminal and mucosal microbiomes were analysed. Results Oral and intrarectal TG but not MP rapidly ameliorated spontaneous chronic colitis in Winnie mice (point mutation in Muc2 secretory mucin). TG ameliorated dextran sodium sulfate-induced chronic colitis in wild-type (WT) mice and in mice lacking T and B lymphocytes. Remarkably, colitis improved without immunosuppressive effects in the absence of host hypoxanthine (guanine) phosphoribosyltransferase (Hprt)-mediated conversion of TG to active drug, the thioguanine nucleotides (TGN). Colonic bacteria converted TG and less so MP to TGN, consistent with intestinal bacterial conversion of TG to so reduce inflammation in the mice lacking host Hprt. TG rapidly induced autophagic flux in epithelial, macrophage and WT but not Hprt−/− fibroblast cell lines and augmented epithelial intracellular bacterial killing. Conclusions Treatment by TG is not necessarily dependent on the adaptive immune system. TG is a more efficacious treatment than MP in Winnie spontaneous colitis. Rapid local bacterial conversion of TG correlated with decreased intestinal inflammation and immune activation. PMID:27411368

  2. Interactions at the Dimer Interface Influence the Relative Efficiencies for Purine Nucleotide Synthesis and Pyrophosphorolysis in a Phosphoribosyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canyuk, Bhutorn; Medrano, Francisco J.; Wenck, MaryAnne

    2010-03-05

    Enzymes that salvage 6-oxopurines, including hypoxanthine phosphoribosyltransferases (HPRTs), are potential targets for drugs in the treatment of diseases caused by protozoan parasites. For this reason, a number of high-resolution X-ray crystal structures of the HPRTs from protozoa have been reported. Although these structures did not reveal why HPRTs need to form dimers for catalysis, they revealed the existence of potentially relevant interactions involving residues in a loop of amino acid residues adjacent to the dimer interface, but the contributions of these interactions to catalysis remained poorly understood. The loop, referred to as active-site loop I, contains an unusual non-proline cis-peptidemore » and is composed of residues that are structurally analogous with Leu67, Lys68, and Gly69 in the human HPRT. Functional analyses of site-directed mutations (K68D, K68E, K68N, K68P, and K68R) in the HPRT from Trypanosoma cruzi, etiologic agent of Chagas disease, show that the side-chain at position 68 can differentially influence the K{sub m} values for all four substrates as well as the k{sub cat} values for both IMP formation and pyrophosphorolysis. Also, the results for the K68P mutant are inconsistent with a cis-trans peptide isomerization-assisted catalytic mechanism. These data, together with the results of structural studies of the K68R mutant, reveal that the side-chain of residue 68 does not participate directly in reaction chemistry, but it strongly influences the relative efficiencies for IMP formation and pyrophosphorolysis, and the prevalence of lysine at position 68 in the HPRT of the majority of eukaryotes is consistent with there being a biological role for nucleotide pyrophosphorolysis.« less

  3. Isolation and characterization of ellagitannins as the major polyphenolic components of Longan (Dimocarpus longan Lour) seeds.

    PubMed

    Sudjaroen, Yuttana; Hull, William E; Erben, Gerhard; Würtele, Gerd; Changbumrung, Supranee; Ulrich, Cornelia M; Owen, Robert W

    2012-05-01

    Longan (Dimocarpus longan Lour, syn. Euphoria longan Lam.) represents an important fruit in Northern Thailand and has significant economic impact. The fruit is either consumed fresh or as commercially prepared dried and canned products. The canning industry in Thailand produces considerable quantities of waste products, in particular Longan seeds. Because these seeds may be an exploitable source of natural phenolic antioxidants, it was of interest to identify, purify and quantitate the major potential antioxidant phenolics contained therein. The polyphenolic fraction from ground Longan seeds was obtained by extraction with methanol after delipidation with hexane. The hexane extract contained predominantly long-chain fatty acids with major contributions from palmitic (35%) and oleic (28%) acids. The polyphenolic fraction (80.90 g/kg dry weight) was dominated by ellagic acid (25.84 g/kg) and the known ellagitannins corilagin (13.31 g/kg), chebulagic acid (13.06 g/kg), ellagic acid 4-O-α-l-arabinofuranoside (9.93 g/kg), isomallotinic acid (8.56 g/kg) and geraniin (5.79 g/kg). Structure elucidation was performed with mass spectrometry and complete assignment of (1)H and (13)C NMR signals. The methanol extracts exhibited strong antioxidant capacities with an IC(50) of 154 μg/ml for reactive oxygen species attack on salicylic acid and 78 μg/ml for inhibition of xanthine oxidase in the hypoxanthine/xanthine oxidase assay. The extracts were less effective in the 2-deoxyguanosine assay (IC(50)=2.46 mg/ml), indicating that gallates along with ellagic acid and its congeners exert their potential antioxidant effects predominantly by precipitation of proteins such as xanthine oxidase. This was confirmed for the pure compounds gallic acid, methyl gallate, ellagic acid and corilagin. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Long-Term Inhibition of Xanthine Oxidase by Febuxostat Does Not Decrease Blood Pressure in Deoxycorticosterone Acetate (DOCA)-Salt Hypertensive Rats

    PubMed Central

    Szasz, Theodora; Davis, Robert Patrick; Garver, Hannah S.; Burnett, Robert J.; Fink, Gregory D.; Watts, Stephanie W.

    2013-01-01

    Xanthine oxidase and its products, uric acid and ROS, have been implicated in the pathogenesis of cardiovascular disease, such as hypertension. We have previously reported that allopurinol inhibition of XO does not alter the progression of deoxycorticosterone acetate (DOCA)-salt hypertension in rats. However other researchers have observed a reduction in blood pressure after allopurinol treatment in the same model. To resolve this controversy, in this study we used the newer and more effective XO inhibitor febuxostat, and hypothesized that a more complete XO blockade might impair hypertension development and its end-organ consequences. We used DOCA-salt hypertensive rats and administered vehicle (salt water) or febuxostat (orally, 5 mg/kg/day in salt water) in a short-term “reversal” experiment (2 weeks of treatment 3 weeks after DOCA-salt beginning) and a long-term “prevention” experiment (treatment throughout 4 weeks of DOCA-salt). We confirmed XO inhibition by febuxostat by measuring circulating and tissue levels of XO metabolites. We found an overall increase in hypoxanthine (XO substrate) and decrease in uric acid (XO product) levels following febuxostat treatment. However, despite a trend for reduced blood pressure in the last week of long-term febuxostat treatment, no statistically significant difference in hemodynamic parameters was observed in either study. Additionally, no change was observed in relative heart and kidney weight. Aortic media/lumen ratio was minimally improved by long-term febuxostat treatment. Additionally, febuxostat incubation in vitro did not modify contraction of aorta or vena cava to norepinephrine, angiotensin II or endothelin-1. We conclude that XO inhibition is insufficient to attenuate hypertension in the rat DOCA-salt model, although beneficial vascular effects are possible. PMID:23393607

  5. The formation of catalytically competent enzyme-substrate complex is not a bottleneck in lesion excision by human alkyladenine DNA glycosylase.

    PubMed

    Kuznetsov, N A; Kiryutin, A S; Kuznetsova, A A; Panov, M S; Barsukova, M O; Yurkovskaya, A V; Fedorova, O S

    2017-04-01

    Human alkyladenine DNA glycosylase (AAG) protects DNA from alkylated and deaminated purine lesions. AAG flips out the damaged nucleotide from the double helix of DNA and catalyzes the hydrolysis of the N-glycosidic bond to release the damaged base. To understand better, how the step of nucleotide eversion influences the overall catalytic process, we performed a pre-steady-state kinetic analysis of AAG interaction with specific DNA-substrates, 13-base pair duplexes containing in the 7th position 1-N6-ethenoadenine (εA), hypoxanthine (Hx), and the stable product analogue tetrahydrofuran (F). The combination of the fluorescence of tryptophan, 2-aminopurine, and 1-N6-ethenoadenine was used to record conformational changes of the enzyme and DNA during the processes of DNA lesion recognition, damaged base eversion, excision of the N-glycosidic bond, and product release. The thermal stability of the duplexes characterized by the temperature of melting, T m , and the rates of spontaneous opening of individual nucleotide base pairs were determined by NMR spectroscopy. The data show that the relative thermal stability of duplexes containing a particular base pair in position 7, (T m (F/T) < T m (εA/T) < T m (Hx/T) < T m (A/T)) correlates with the rate of reversible spontaneous opening of the base pair. However, in contrast to that, the catalytic lesion excision rate is two orders of magnitude higher for Hx-containing substrates than for substrates containing εA, proving that catalytic activity is not correlated with the stability of the damaged base pair. Our study reveals that the formation of the catalytically competent enzyme-substrate complex is not the bottleneck controlling the catalytic activity of AAG.

  6. Metabolic regulation as a consequence of anaerobic 5-methylthioadenosine recycling in Rhodospirillum rubrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    North, Justin A.; Sriram, Jaya; Chourey, Karuna

    Rhodospirillum rubrum possesses a novel oxygen-independent, aerobic methionine salvage pathway (MSP) for recycling methionine from 5-methylthioadenosine (MTA), the MTA-isoprenoid shunt. This organism can also metabolize MTA as a sulfur source under anaerobic conditions, suggesting that the MTA-isoprenoid shunt may also function anaerobically as well. In this study, deep proteomics profiling, directed metabolite analysis, and reverse transcriptase quantitative PCR (RT-qPCR) revealed metabolic changes in response to anaerobic growth on MTA versus sulfate as sole sulfur source. The abundance of protein levels associated with methionine transport, cell motility, and chemotaxis increased in the presence of MTA over that in the presence ofmore » sulfate. Purine salvage from MTA resulted primarily in hypoxanthine accumulation and a decrease in protein levels involved in GMP-to-AMP conversion to balance purine pools. Acyl coenzyme A (acyl-CoA) metabolic protein levels for lipid metabolism were lower in abundance, whereas poly-β-hydroxybutyrate synthesis and storage were increased nearly 10-fold. The known R. rubrum aerobic MSP was also shown to be upregulated, to function anaerobically, and to recycle MTA. This suggested that other organisms with gene homologues for the MTA-isoprenoid shunt may also possess a functioning anaerobic MSP. In support of our previous findings that ribulose-1,5-carboxylase/oxygenase (RubisCO) is required for an apparently purely anaerobic MSP, RubisCO transcript and protein levels both increased in abundance by over 10-fold in cells grown anaerobically on MTA over those in cells grown on sulfate, resulting in increased intracellular RubisCO activity. Lastly, these results reveal for the first time global metabolic responses as a consequence of anaerobic MTA metabolism compared to using sulfate as the sulfur source.« less

  7. The Role of Plasma and Urine Metabolomics in Identifying New Biomarkers in Severe Newborn Asphyxia: A Study of Asphyxiated Newborn Pigs following Cardiopulmonary Resuscitation

    PubMed Central

    Sachse, Daniel; Solevåg, Anne Lee; Berg, Jens Petter; Nakstad, Britt

    2016-01-01

    Background Optimizing resuscitation is important to prevent morbidity and mortality from perinatal asphyxia. The metabolism of cells and tissues is severely disturbed during asphyxia and resuscitation, and metabolomic analyses provide a snapshot of many small molecular weight metabolites in body fluids or tissues. In this study metabolomics profiles were studied in newborn pigs that were asphyxiated and resuscitated using different protocols to identify biomarkers for subject characterization, intervention effects and possibly prognosis. Methods A total of 125 newborn Noroc pigs were anesthetized, mechanically ventilated and inflicted progressive asphyxia until asystole. Pigs were randomized to resuscitation with a FiO2 0.21 or 1.0, different duration of ventilation before initiation of chest compressions (CC), and different CC to ventilation ratios. Plasma and urine samples were obtained at baseline, and 2 h and 4 h after return of spontaneous circulation (ROSC, heart rate > = 100 bpm). Metabolomics profiles of the samples were analyzed by nuclear magnetic resonance spectroscopy. Results Plasma and urine showed severe metabolic alterations consistent with hypoxia and acidosis 2 h and 4 h after ROSC. Baseline plasma hypoxanthine and lipoprotein concentrations were inversely correlated to the duration of hypoxia sustained before asystole occurred, but there was no evidence for a differential metabolic response to the different resuscitation protocols or in terms of survival. Conclusions Metabolic profiles of asphyxiated newborn pigs showed severe metabolic alterations. Consistent with previously published reports, we found no evidence of differences between established and alternative resuscitation protocols. Lactate and pyruvate may have a prognostic value, but have to be independently confirmed. PMID:27529347

  8. X-ray-induced bystander responses reduce spontaneous mutations in V79 cells

    PubMed Central

    Maeda, Munetoshi; Kobayashi, Katsumi; Matsumoto, Hideki; Usami, Noriko; Tomita, Masanori

    2013-01-01

    The potential for carcinogenic risks is increased by radiation-induced bystander responses; these responses are the biological effects in unirradiated cells that receive signals from the neighboring irradiated cells. Bystander responses have attracted attention in modern radiobiology because they are characterized by non-linear responses to low-dose radiation. We used a synchrotron X-ray microbeam irradiation system developed at the Photon Factory, High Energy Accelerator Research Organization, KEK, and showed that nitric oxide (NO)-mediated bystander cell death increased biphasically in a dose-dependent manner. Here, we irradiated five cell nuclei using 10 × 10 µm2 5.35 keV X-ray beams and then measured the mutation frequency at the hypoxanthine-guanosine phosphoribosyl transferase (HPRT) locus in bystander cells. The mutation frequency with the null radiation dose was 2.6 × 10–5 (background level), and the frequency decreased to 5.3 × 10–6 with a dose of approximately 1 Gy (absorbed dose in the nucleus of irradiated cells). At high doses, the mutation frequency returned to the background level. A similar biphasic dose-response effect was observed for bystander cell death. Furthermore, we found that incubation with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO), a specific scavenger of NO, suppressed not only the biphasic increase in bystander cell death but also the biphasic reduction in mutation frequency of bystander cells. These results indicate that the increase in bystander cell death involves mechanisms that suppress mutagenesis. This study has thus shown that radiation-induced bystander responses could affect processes that protect the cell against naturally occurring alterations such as mutations. PMID:23660275

  9. Radiation-quality dependent cellular response in mutation induction in normal human cells.

    PubMed

    Suzuki, Masao; Tsuruoka, Chizuru; Uchihori, Yukio; Kitamura, Hisashi; Liu, Cui Hua

    2009-09-01

    We studied cellular responses in normal human fibroblasts induced with low-dose (rate) or low-fluence irradiations of different radiation types, such as gamma rays, neutrons and high linear energy transfer (LET) heavy ions. The cells were pretreated with low-dose (rate) or low-fluence irradiations (approximately 1 mGy/7-8 h) of 137Cs gamma rays, 241Am-Be neutrons, helium, carbon and iron ions before irradiations with an X-ray challenging dose (1.5 Gy). Helium (LET = 2.3 keV/microm), carbon (LET = 13.3 keV/microm) and iron (LET = 200 keV/microm) ions were produced by the Heavy Ion Medical Accelerator in Chiba (HIMAC), Japan. No difference in cell-killing effect, measured by a colony forming assay, was observed among the pretreatment with different radiation types. In mutation induction, which was detected in the hypoxanthine-guanine phosphoribosyltransferase (hprt) locus to measure 6-thioguanine resistant clones, there was no difference in mutation frequency induced by the X-ray challenging dose between unpretreated and gamma-ray pretreated cells. In the case of the pretreatment of heavy ions, X-ray-induced mutation was around 1.8 times higher in helium-ion pretreated and 4.0 times higher in carbon-ion pretreated cells than in unpretreated cells (X-ray challenging dose alone). However, the mutation frequency in cells pretreated with iron ions was the same level as either unpretreated or gamma-ray pretreated cells. In contrast, it was reduced at 0.15 times in cells pretreated with neutrons when compared to unpretreated cells. The results show that cellular responses caused by the influence of hprt mutation induced in cells pretreated with low-dose-rate or low-fluence irradiations of different radiation types were radiation-quality dependent manner.

  10. Isolation of the human chromosomal band Xq28 within somatic cell hybrids by fragile X site breakage.

    PubMed Central

    Warren, S T; Knight, S J; Peters, J F; Stayton, C L; Consalez, G G; Zhang, F P

    1990-01-01

    The chromosomal fragile-site mapping to Xq27.3 is associated with a frequent form of mental retardation and is prone to breakage after induced deoxyribonucleotide pool perturbation. The human hypoxanthine phosphoribosyltransferase (HPRT) and glucose-6-phosphate dehydrogenase (G6PD) genes flank the fragile X chromosome site and can be used to monitor integrity of the site in human-hamster somatic cell hybrids deficient in the rodent forms of these activities. After induction of the fragile X site, negative selection for HPRT and positive enrichment for G6PD resulted in 31 independent colonies of HPRT-,G6PD+ phenotype. Southern blot analysis demonstrated the loss of all tested markers proximal to the fragile X site with retention of all tested human Xq28 loci in a majority of the hybrids. In situ hybridization with a human-specific probe demonstrated the translocation of a small amount of human DNA to rodent chromosomes in these hybrids, suggesting chromosome breakage at the fragile X site and the subsequent translocation of Xq28. Southern blot hybridization of hybrid-cell DNA, resolved by pulsed-field gel electrophoresis, for human-specific repetitive sequences revealed abundant CpG-islands within Xq28, consistent with its known gene density. The electrophoretic banding patterns of human DNA among the hybrids were remarkably consistent, suggesting that fragile X site breakage is limited to a relatively small region in Xq27-28. These somatic cell hybrids, containing Xq27.3-qter as the sole human DNA, will aid the search for DNA associated with the fragile X site and will augment the high resolution genomic analysis of Xq28, including the identification of candidate genes for genetic-disease loci mapping to this region. Images PMID:2339126

  11. Oxidation kinetics of guanine in DNA molecules adsorbed onto indium tin oxide electrodes.

    PubMed

    Armistead, P M; Thorp, H H

    2001-02-01

    Oligonucleotides containing the guanine nucleobase were adsorbed onto ITO electrodes from mixtures of DMF and acetate buffer. Chronocoulometry and chronoamperometry were performed on the modified electrodes in both phosphate buffer and buffer containing low concentrations of the inorganic complex Ru(bpy)3(2+) (bpy = 2,2' bipyridine), which catalyzes guanine oxidation. The charge and current evolution with and without the catalyst were compared to the charge and current evolution for electrodes that were treated with identical oligonucleotides that were substituted at every guanine with the electrochemically inert nucleobase hypoxanthine. Chronocoulometry over 2.5 s shows that roughly 2 electrons per guanine were transferred to the electrode in both the presence and absence of Ru(bpy)3(2+), although at a slower rate for the uncatalyzed process. Chronoamperograms measured over 250 ms can be fit to a double exponential decay, with the intensity of the fast component roughly 6-20 times greater than that of the slow component. First- and second-order rate constants for catalytic and direct guanine oxidation were determined from the fast component. The maximum catalytic enhancement for immobilized guanine was found to be i(cat)/i(d) = 4 at 25 microM Ru(bpy)3(2+). The second-order rate constant for the catalyzed reaction was 1.3 x 10(7) M(-1) s(-1), with an apparent dissociation constant of 8.8 microM. When compared to parallel studies in solution, a smaller value of the dissociation constant and a larger value of the second-order rate constant are observed, probably due to distortion of the immobilized DNA, an increase in the local negative charge due to the oxygen sites on the ITO surface, and redox cycling of the catalyst, which maintains the surface concentration of the active form.

  12. Glucose ameliorates the metabolic profile and mitochondrial function of platelet concentrates during storage in autologous plasma

    PubMed Central

    Amorini, Angela M.; Tuttobene, Michele; Tomasello, Flora M.; Biazzo, Filomena; Gullotta, Stefano; De Pinto, Vito; Lazzarino, Giuseppe; Tavazzi, Barbara

    2013-01-01

    Background It is essential that the quality of platelet metabolism and function remains high during storage in order to ensure the clinical effectiveness of a platelet transfusion. New storage conditions and additives are constantly evaluated in order to achieve this. Using glucose as a substrate is controversial because of its potential connection with increased lactate production and decreased pH, both parameters triggering the platelet lesion during storage. Materials and methods In this study, we analysed the morphological status and metabolic profile of platelets stored for various periods in autologous plasma enriched with increasing glucose concentrations (13.75, 27.5 and 55 mM). After 0, 2, 4, 6 and 8 days, high energy phosphates (ATP, GTP, ADP, AMP), oxypurines (hypoxanthine, xanthine, uric acid), lactate, pH, mitochondrial function, cell lysis and morphology, were evaluated. Results The data showed a significant dose-dependent improvement of the different parameters in platelets stored with increasing glucose, compared to what detected in controls. Interestingly, this phenomenon was more marked at the highest level of glucose tested and in the period of time generally used for platelet transfusion (0–6 days). Conclusion These results indicate that the addition of glucose during platelet storage ameliorates, in a dose-dependent manner, the biochemical parameters related to energy metabolism and mitochondrial function. Since there was no correspondence between glucose addition, lactate increase and pH decrease in our experiments, it is conceivable that platelet derangement during storage is not directly caused by glucose through an increase of anaerobic glycolysis, but rather to a loss of mitochondrial functions caused by reduced substrate availability. PMID:22682337

  13. Variations in gut microbiota and fecal metabolic phenotype associated with depression by 16S rRNA gene sequencing and LC/MS-based metabolomics.

    PubMed

    Yu, Meng; Jia, Hongmei; Zhou, Chao; Yang, Yong; Zhao, Yang; Yang, Maohua; Zou, Zhongmei

    2017-05-10

    As a prevalent, life-threatening and highly recurrent psychiatric illness, depression is characterized by a wide range of pathological changes; however, its etiology remains incompletely understood. Accumulating evidence supports that gut microbiota affects not only gastrointestinal physiology but also central nervous system (CNS) function and behavior through the microbiota-gut-brain axis. To assess the impact of gut microbiota on fecal metabolic phenotype in depressive conditions, an integrated approach of 16S rRNA gene sequencing combined with ultra high-performance liquid chromatography-mass spectrometry (UHPLC-MS) based metabolomics was performed in chronic variable stress (CVS)-induced depression rat model. Interestingly, depression led to significant gut microbiota changes, at the phylum and genus levels in rats treated with CVS compared to controls. The relative abundances of the bacterial genera Marvinbryantia, Corynebacterium, Psychrobacter, Christensenella, Lactobacillus, Peptostreptococcaceae incertae sedis, Anaerovorax, Clostridiales incertae sedis and Coprococcus were significantly decreased, whereas Candidatus Arthromitus and Oscillibacter were markedly increased in model rats compared with normal controls. Meanwhile, distinct changes in fecal metabolic phenotype of depressive rats were also found, including lower levels of amino acids, and fatty acids, and higher amounts of bile acids, hypoxanthine and stercobilins. Moreover, there were substantial associations of perturbed gut microbiota genera with the altered fecal metabolites, especially compounds involved in the metabolism of tryptophan and bile acids. These results showed that the gut microbiota was altered in association with fecal metabolism in depressive conditions. These findings suggest that the 16S rRNA gene sequencing and LC-MS based metabolomics approach can be further applied to assess pathogenesis of depression. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Quantitative mammalian cell genetic toxicology: study of the cytotoxicity and mutagenicity of 70 individual environmental agents related to energy technologies and 3 subfractions of a crude synthetic oil in the CHO/HGPRT system. [Hamsters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsie, A W; ,; Neill, J P

    1978-01-01

    Conditions necessary for quantifying mutation-induction to 6-thioguanine resistance, which selects for >98% mutants deficient in the activity of hypoxanthine-guanine phosphoribosyl transferase (HGPRT) in a near-diploid Chinese hamster ovary (CHO) cell line, referred to as CHO/HGPRT system, have been defined. Employing this mutation assay, we have determined the mutagenicity of diversified agents including 11 direct-acting alkylating agents, 16 nitrosamines, 10 heterocyclic nitrogen mustards, 15 metallic compounds, 5 quinolines, 5 aromatic amines, 27 polycyclic hydrocarbons, 13 miscellaneous chemicals, 7 ionizing and non-ionizing physical agents. The direct-acting carcinogen N-methyl-N'-nitro-N-nitrosoguanidine is mutagenic while its noncarcinogenic analogue N-methyl-N'-nitro-N-nitroguanidine is not. Coupled with the rat livermore » S/sub 9/-activation system, procarcinogens such as nitrosopyrrolidine, benzo(a)pyrene, and 2-acetylaminofluorene are mutagenic while their analogues 2,5-dimethylnitrosopyrrolidine, pyrene and fluorene are not. The assay appears to be applicable for monitoring the genetic toxicity of crude organic mixtures in addition to diverse individual chemical and physical agents. The quantitative nature of the assay enables a study of EMS exposure dose: the mutagenic potential of EMS can be described as 310 x 10/sup -6/ mutants (cell mg ml/sup -1/ h)./sup -1/ It is also feasible to expand the CHO/HGPRT system for quantifying cytotoxicity and mutagenicity to determination of chromosomal aberrations and sister chromatid exchanges in cells treated under identical conditions which allows a simultaneous study of these four distinctive biological effects.« less

  15. Antimalarial Activity of Small-Molecule Benzothiazole Hydrazones.

    PubMed

    Sarkar, Souvik; Siddiqui, Asim A; Saha, Shubhra J; De, Rudranil; Mazumder, Somnath; Banerjee, Chinmoy; Iqbal, Mohd S; Nag, Shiladitya; Adhikari, Susanta; Bandyopadhyay, Uday

    2016-07-01

    We synthesized a new series of conjugated hydrazones that were found to be active against malaria parasite in vitro, as well as in vivo in a murine model. These hydrazones concentration-dependently chelated free iron and offered antimalarial activity. Upon screening of the synthesized hydrazones, compound 5f was found to be the most active iron chelator, as well as antiplasmodial. Compound 5f also interacted with free heme (KD [equilibrium dissociation constant] = 1.17 ± 0.8 μM), an iron-containing tetrapyrrole released after hemoglobin digestion by the parasite, and inhibited heme polymerization by parasite lysate. Structure-activity relationship studies indicated that a nitrogen- and sulfur-substituted five-membered aromatic ring present within the benzothiazole hydrazones might be responsible for their antimalarial activity. The dose-dependent antimalarial and heme polymerization inhibitory activities of the lead compound 5f were further validated by following [(3)H]hypoxanthine incorporation and hemozoin formation in parasite, respectively. It is worth mentioning that compound 5f exhibited antiplasmodial activity in vitro against a chloroquine/pyrimethamine-resistant strain of Plasmodium falciparum (K1). We also evaluated in vivo antimalarial activity of compound 5f in a murine model where a lethal multiple-drug-resistant strain of Plasmodium yoelii was used to infect Swiss albino mice. Compound 5f significantly suppressed the growth of parasite, and the infected mice experienced longer life spans upon treatment with this compound. During in vitro and in vivo toxicity assays, compound 5f showed minimal alteration in biochemical and hematological parameters compared to control. In conclusion, we identified a new class of hydrazone with therapeutic potential against malaria. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Genetic analysis of mouse embryonic stem cells bearing Msh3 and Msh2 single and compound mutations.

    PubMed

    Abuin, A; Zhang, H; Bradley, A

    2000-01-01

    We have previously described the use of homologous recombination and CRE-loxP-mediated marker recycling to generate mouse embryonic stem (ES) cell lines homozygous for mutations at the Msh3, Msh2, and both Msh3 and Msh2 loci (2). In this study, we describe the analysis of these ES cells with respect to processes known to be affected by DNA mismatch repair. ES cells homozygous for the Msh2 mutation displayed increased resistance to killing by the cytotoxic drug 6-thioguanine (6TG), indicating that the 6TG cytotoxic mechanism is mediated by Msh2. The mutation rate of the herpes simplex virus thymidine kinase 1 (HSV-tk1) gene was unchanged in Msh3-deficient ES cell lines but markedly elevated in Msh2-deficient and Msh3 Msh2 double-mutant cells. Notably, the HSV-tk1 mutation rate was 11-fold higher, on average, than that of the hypoxanthine-guanine phosphoribosyl transferase (Hprt) locus in Msh2-deficient cells. Sequence analysis of HSV-tk1 mutants from these cells indicated the presence of a frameshift hotspot within the HSV-tk1 coding region. Msh3-deficient cells displayed a modest (16-fold) elevation in the instability of a dinucleotide repeat, whereas Msh2-deficient and Msh2 Msh3 double-mutant cells displayed markedly increased levels of repeat instability. Targeting frequencies of nonisogenic vectors were elevated in Msh2-deficient ES cell lines, confirming the role of Msh2 in blocking recombination between diverged sequences (homeologous recombination) in mammalian cells. These results are consistent with accumulating data from other laboratories and support the current model of DNA mismatch repair in mammalian cells.

  17. Genetic Analysis of Mouse Embryonic Stem Cells Bearing Msh3 and Msh2 Single and Compound Mutations

    PubMed Central

    Abuin, Alejandro; Zhang, HeJu; Bradley, Allan

    2000-01-01

    We have previously described the use of homologous recombination and CRE-loxP-mediated marker recycling to generate mouse embryonic stem (ES) cell lines homozygous for mutations at the Msh3, Msh2, and both Msh3 and Msh2 loci (2). In this study, we describe the analysis of these ES cells with respect to processes known to be affected by DNA mismatch repair. ES cells homozygous for the Msh2 mutation displayed increased resistance to killing by the cytotoxic drug 6-thioguanine (6TG), indicating that the 6TG cytotoxic mechanism is mediated by Msh2. The mutation rate of the herpes simplex virus thymidine kinase 1 (HSV-tk1) gene was unchanged in Msh3-deficient ES cell lines but markedly elevated in Msh2-deficient and Msh3 Msh2 double-mutant cells. Notably, the HSV-tk1 mutation rate was 11-fold higher, on average, than that of the hypoxanthine-guanine phosphoribosyl transferase (Hprt) locus in Msh2-deficient cells. Sequence analysis of HSV-tk1 mutants from these cells indicated the presence of a frameshift hotspot within the HSV-tk1 coding region. Msh3-deficient cells displayed a modest (16-fold) elevation in the instability of a dinucleotide repeat, whereas Msh2-deficient and Msh2 Msh3 double-mutant cells displayed markedly increased levels of repeat instability. Targeting frequencies of nonisogenic vectors were elevated in Msh2-deficient ES cell lines, confirming the role of Msh2 in blocking recombination between diverged sequences (homeologous recombination) in mammalian cells. These results are consistent with accumulating data from other laboratories and support the current model of DNA mismatch repair in mammalian cells. PMID:10594017

  18. Mutation spectrum of MSH3-deficient HHUA/chr.2 cells reflects in vivo activity of the MSH3 gene product in mismatch repair.

    PubMed

    Tauchi, H; Komatsu, K; Ishizaki, K; Yatagai, F; Kato, T

    2000-02-14

    The endometrial tumor cell line HHUA carries mutations in two mismatch repair (MMR) genes MSH3 and MSH6. We have established an MSH3-deficient HHUA/chr.2 cell line by introducing human chromosome 2, which carries wild-type MSH6 and MSH2 genes, to HHUA cells. Introduction of chromosome 2 to HHUA cells partially restored G:G MMR activity to the cell extract and reduced the frequency of mutation at the hypoxanthine-guanine phosphoribosyltransferase (hprt*) locus to about 3% that of the parental HHUA cells, which is five-fold the frequency in MMR-proficient cells, indicating that the residual mutator activity in HHUA/chr.2 is due to an MSH3-deficiency in these cells. The spectrum of mutations occurring at the HPRT locus of HHUA/chr.2 was determined with 71 spontaneous 6TG(r) clones. Base substitutions and +/-1 bp frameshifts were the major mutational events constituting, respectively, 54% and 42% of the total mutations, and more than 70% of them occurred at A:T sites. A possible explanation for the apparent bias of mutations to A:T sites in HHUA/chr.2 is haploinsufficiency of the MSH6 gene on the transferred chromosome 2. Comparison of the mutation spectra of HHUA/chr.2 with that of the MSH6-deficient HCT-15 cell line [S. Ohzeki, A. Tachibana, K. Tatsumi, T. Kato, Carcinogenesis 18 (1997) 1127-1133.] suggests that in vivo the MutSalpha (MSH2:MSH6) efficiently repairs both mismatch and unpaired extrahelical bases, whereas MutSbeta (MSH2:MSH3) efficiently repairs extrahelical bases and repairs mismatch bases to a limited extent.

  19. Integrated molecular analysis indicates undetectable change in DNA damage in mice after continuous irradiation at ~ 400-fold natural background radiation.

    PubMed

    Olipitz, Werner; Wiktor-Brown, Dominika; Shuga, Joe; Pang, Bo; McFaline, Jose; Lonkar, Pallavi; Thomas, Aline; Mutamba, James T; Greenberger, Joel S; Samson, Leona D; Dedon, Peter C; Yanch, Jacquelyn C; Engelward, Bevin P

    2012-08-01

    In the event of a nuclear accident, people are exposed to elevated levels of continuous low dose-rate radiation. Nevertheless, most of the literature describes the biological effects of acute radiation. DNA damage and mutations are well established for their carcinogenic effects. We assessed several key markers of DNA damage and DNA damage responses in mice exposed to low dose-rate radiation to reveal potential genotoxic effects associated with low dose-rate radiation. We studied low dose-rate radiation using a variable low dose-rate irradiator consisting of flood phantoms filled with 125Iodine-containing buffer. Mice were exposed to 0.0002 cGy/min (~ 400-fold background radiation) continuously over 5 weeks. We assessed base lesions, micronuclei, homologous recombination (HR; using fluorescent yellow direct repeat mice), and transcript levels for several radiation-sensitive genes. We did not observe any changes in the levels of the DNA nucleobase damage products hypoxanthine, 8-oxo-7,8-dihydroguanine, 1,N6-ethenoadenine, or 3,N4-ethenocytosine above background levels under low dose-rate conditions. The micronucleus assay revealed no evidence that low dose-rate radiation induced DNA fragmentation, and there was no evidence of double strand break-induced HR. Furthermore, low dose-rate radiation did not induce Cdkn1a, Gadd45a, Mdm2, Atm, or Dbd2. Importantly, the same total dose, when delivered acutely, induced micronuclei and transcriptional responses. These results demonstrate in an in vivo animal model that lowering the dose-rate suppresses the potentially deleterious impact of radiation and calls attention to the need for a deeper understanding of the biological impact of low dose-rate radiation.

  20. Physicochemical characteristics of structurally determined metabolite-protein and drug-protein binding events with respect to binding specificity

    PubMed Central

    Korkuć, Paula; Walther, Dirk

    2015-01-01

    To better understand and ultimately predict both the metabolic activities as well as the signaling functions of metabolites, a detailed understanding of the physical interactions of metabolites with proteins is highly desirable. Focusing in particular on protein binding specificity vs. promiscuity, we performed a comprehensive analysis of the physicochemical properties of compound-protein binding events as reported in the Protein Data Bank (PDB). We compared the molecular and structural characteristics obtained for metabolites to those of the well-studied interactions of drug compounds with proteins. Promiscuously binding metabolites and drugs are characterized by low molecular weight and high structural flexibility. Unlike reported for drug compounds, low rather than high hydrophobicity appears associated, albeit weakly, with promiscuous binding for the metabolite set investigated in this study. Across several physicochemical properties, drug compounds exhibit characteristic binding propensities that are distinguishable from those associated with metabolites. Prediction of target diversity and compound promiscuity using physicochemical properties was possible at modest accuracy levels only, but was consistently better for drugs than for metabolites. Compound properties capturing structural flexibility and hydrogen-bond formation descriptors proved most informative in PLS-based prediction models. With regard to diversity of enzymatic activities of the respective metabolite target enzymes, the metabolites benzylsuccinate, hypoxanthine, trimethylamine N-oxide, oleoylglycerol, and resorcinol showed very narrow process involvement, while glycine, imidazole, tryptophan, succinate, and glutathione were identified to possess broad enzymatic reaction scopes. Promiscuous metabolites were found to mainly serve as general energy currency compounds, but were identified to also be involved in signaling processes and to appear in diverse organismal systems (digestive and nervous system) suggesting specific molecular and physiological roles of promiscuous metabolites. PMID:26442281

  1. Reversal of cycloheximide-induced memory disruption by AIT-082 (Neotrofin) is modulated by, but not dependent on, adrenal hormones.

    PubMed

    Yan, Rongzi; Nguyen, Quang; Gonzaga, James; Johnson, Mai; Ritzmann, Ronald F; Taylor, Eve M

    2003-04-01

    AIT-082 (Neotrofin), a hypoxanthine derivative, has been shown to improve memory in both animals and humans. In animals, adrenal hormones modulate the efficacy of many memory-enhancing compounds, including piracetam and tacrine (Cognex). To investigate the role of adrenal hormones in the memory-enhancing action of AIT-082. Plasma levels of adrenal hormones (corticosterone and aldosterone) in mice were significantly reduced by surgical or chemical (aminoglutethimide) adrenalectomy or significantly elevated by oral administration of corticosterone. The effects of these hormone level manipulations on the memory-enhancing activity of AIT-082 and piracetam were evaluated using a cycloheximide-induced amnesia/passive avoidance model. As previously reported by others, the memory enhancing action of piracetam was abolished by adrenalectomy. In contrast, the memory enhancement by 60 mg/kg AIT-082 (IP) was unaffected. However, a sub-threshold dose of AIT-082 (0.1 mg/kg, IP) that did not improve memory in control animals did improve memory in adrenalectomized animals. These data suggested that, similar to piracetam and tacrine, the memory enhancing action of AIT-082 might be inhibited by high levels of adrenal hormones. As expected, corticosterone (30 and 100 mg/kg) inhibited the action of piracetam, however no dose up to 100 mg/kg corticosterone inhibited the activity of AIT-082. These data suggest that while AIT-082 function is not dependent on adrenal hormones, it is modulated by them. That memory enhancement by AIT-082 was not inhibited by high plasma corticosterone levels may have positive implications for its clinical utility, given that many Alzheimer's disease patients have elevated plasma cortisol levels.

  2. 2'-Deoxyribosyltransferase from Leishmania mexicana, an efficient biocatalyst for one-pot, one-step synthesis of nucleosides from poorly soluble purine bases.

    PubMed

    Crespo, N; Sánchez-Murcia, P A; Gago, F; Cejudo-Sanches, J; Galmes, M A; Fernández-Lucas, Jesús; Mancheño, José Miguel

    2017-10-01

    Processes catalyzed by enzymes offer numerous advantages over chemical methods although in many occasions the stability of the biocatalysts becomes a serious concern. Traditionally, synthesis of nucleosides using poorly water-soluble purine bases, such as guanine, xanthine, or hypoxanthine, requires alkaline pH and/or high temperatures in order to solubilize the substrate. In this work, we demonstrate that the 2'-deoxyribosyltransferase from Leishmania mexicana (LmPDT) exhibits an unusually high activity and stability under alkaline conditions (pH 8-10) across a broad range of temperatures (30-70 °C) and ionic strengths (0-500 mM NaCl). Conversely, analysis of the crystal structure of LmPDT together with comparisons with hexameric, bacterial homologues revealed the importance of the relationships between the oligomeric state and the active site architecture within this family of enzymes. Moreover, molecular dynamics and docking approaches provided structural insights into the substrate-binding mode. Biochemical characterization of LmPDT identifies the enzyme as a type I NDT (PDT), exhibiting excellent activity, with specific activity values 100- and 4000-fold higher than the ones reported for other PDTs. Interestingly, LmPDT remained stable during 36 h at different pH values at 40 °C. In order to explore the potential of LmPDT as an industrial biocatalyst, enzymatic production of several natural and non-natural therapeutic nucleosides, such as vidarabine (ara A), didanosine (ddI), ddG, or 2'-fluoro-2'-deoxyguanosine, was carried out using poorly water-soluble purines. Noteworthy, this is the first time that the enzymatic synthesis of 2'-fluoro-2'-deoxyguanosine, ara G, and ara H by a 2'-deoxyribosyltransferase is reported.

  3. Altered erythrocyte nucleotide patterns are characteristic of inherited disorders of purine or pyrimidine metabolism.

    PubMed

    Simmonds, H A; Fairbanks, L D; Morris, G S; Webster, D R; Harley, E H

    1988-02-15

    This paper compares erythrocyte nucleotide levels in patients with eight different inherited purine or pyrimidine enzyme defects identified amongst a variety of patients referred predominantly for investigation of severe neurological abnormalities, or immunodeficiency syndromes. Characteristic nucleotide patterns were identified only in the six disorders (four involving purine and two pyrimidine metabolism) where there was clinical evidence of cellular toxicity. They were frequently related to the accumulation of abnormal metabolites in body fluids. These erythrocyte studies have demonstrated the following. 1. ATP depletion is not an invariable feature of adenosine deaminase (ADA) deficiency, but the accumulation of the deoxyribonucleotides dATP, or dGTP, is diagnostic of ADA, or purine nucleoside phosphorylase (PNP) deficiency, respectively. The early accumulation of dATP in foetal blood is a valuable aid to prenatal diagnosis of ADA deficiency. 2. GTP depletion appears to reflect the degree of CNS involvement in hypoxanthine-guanine phosphoribosyltransferase and PNP deficiency, as well as PP-ribose-P synthetase superactivity. Other diagnostic changes involving increased pyrimidine sugars and increased or decreased NAD levels, or ZTP in Lesch Nyhan erythrocytes, show no consistent correlation with the clinical manifestations. 3. These altered nucleotide levels afford a novel means for carrier detection of the X-linked defect associated with aberrant PP-ribose-P synthetase activity, where no other test is yet available. Measurement of erythrocyte nucleotide levels thus provides a simple and rapid aid to diagnosis and may sometimes be essential for determining prognosis, carrier detection, or monitoring therapy. These characteristic 'fingerprints' may give some insight into the mechanism by which the abnormal gene product produces disease. Such grossly altered nucleotide levels could also result in loss of erythrocyte flexibility, increased destruction and hence the anaemia, or other clinical manifestations, observed in some disorders.

  4. Molecular genetic medicine. Vol. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedmann, T.

    Theodore Friedmann has put together an interesting spectrum of articles for volume 2 of Molecular Genetic Medicine. Perhaps related to his own interest in the X chromosome, three articles deal with X-chromosomal topics, while two deal with autosomal disorders and two treat viral disorders. The fragile-X syndrome is thoroughly covered by Brown and Jenkins with an article that is heavily weighted to clinical aspects and now out-of-date RFLP approaches. The timeliness of the volume is insured by the coverage (albeit brief) that they give to the cloning of FMR-1. Gartler et al. present a balanced review of X inactivation -more » the oft-surveyed subject was comprehensively covered in a manner that provided new perspectives. Lambert et al. provide an exhaustive review of natural and induced mutation of hypoxanthine phosphoribosyltransferase. For autosomal disorders, an excellent review of the molecular genetics of hemoglobin syntheses and their alterations in disease is provided by Berg and Schecter. The level of detail presented seemed just right to this reviewer. A concise review of recent advances in the study of Down syndrome and its animal model, trisomy 16 mice, is provided by Holtzman and Epstein. With regard to viral topics, Chisari thoughtfully reviews hepatitis B virus structure and function and the possible pathogenic mechanisms involved in its induction of hepatocellular carcinoma. Wong-Staal and Haseltine's up-to-date review of the increasingly complex regulatory genes of HIV is marred by a mix-up in figure legends - an exception to an otherwise well-proofread book. In summary, this is a good volume of its type and is recommended for those who might benefit from reading such review articles.« less

  5. An Ultra-Sensitive Monoclonal Antibody-Based Competitive Enzyme Immunoassay for Sterigmatocystin in Cereal and Oil Products

    PubMed Central

    Li, Min; Li, Peiwu; Wu, Hui; Zhang, Qi; Ma, Fei; Zhang, Zhaowei; Ding, Xiaoxia; Wang, Hengling

    2014-01-01

    Sterigmatocystin (STG), a biosynthesis precursor of aflatoxin B1, is well known for its toxic and carcinogenic effects in humans and animals. STG derivatives and protein conjugates are needed for generation of monoclonal antibodies (mAbs). This work describes a reliable and fast synthesis of novel STG derivatives, based on which novel STG bovine serum albumin conjugates were prepared. With the novel STG bovine serum albumin conjugates, three sensitive and specific mAbs against STG, named VerA 3, VerA 4, and VerA 6, were prepared by semi-solid hypoxanthine/aminopterin/thymidine (HAT) medium using a modified two-step screening procedure. They exhibited high affinity for STG and no cross-reactivity (CR) with aflatoxins B1, B2, G1, G2, and M1. Based on the most sensitive antibody VerA 3, an ultra-sensitive competitive enzyme-linked immunosorbent assay (ELISA) was developed for STG in wheat, maize, and peanuts. Assays were performed in the STG-GA-BSA-coated (0.5 µg·mL−1) ELISA format, in which the antibody was diluted to 1∶80,000. Several physicochemical factors influencing assay performance, such as pH, ionic strength, blocking solution, and diluting solution, were optimized. The final results showed that the assays had the detection limits of 0.08 ng·g−1 for wheat, 0.06 ng·g−1 for maize, and 0.1 ng·g−1 for peanuts, inter-assay and intra-assay variations of less than 10%, and recoveries ranging from 83% to 110%. These recoveries were in good agreement with those obtained by using HPLC-MS/MS method (90–104%), indicating the importance of the mAb VerA 3 in the study of STG in crude agricultural products. PMID:25184275

  6. Metabolic Regulation as a Consequence of Anaerobic 5-Methylthioadenosine Recycling in Rhodospirillum rubrum

    PubMed Central

    North, Justin A.; Sriram, Jaya; Chourey, Karuna; Ecker, Christopher D.; Sharma, Ritin; Wildenthal, John A.; Hettich, Robert L.

    2016-01-01

    ABSTRACT Rhodospirillum rubrum possesses a novel oxygen-independent, aerobic methionine salvage pathway (MSP) for recycling methionine from 5-methylthioadenosine (MTA), the MTA-isoprenoid shunt. This organism can also metabolize MTA as a sulfur source under anaerobic conditions, suggesting that the MTA-isoprenoid shunt may also function anaerobically as well. In this study, deep proteomics profiling, directed metabolite analysis, and reverse transcriptase quantitative PCR (RT-qPCR) revealed metabolic changes in response to anaerobic growth on MTA versus sulfate as sole sulfur source. The abundance of protein levels associated with methionine transport, cell motility, and chemotaxis increased in the presence of MTA over that in the presence of sulfate. Purine salvage from MTA resulted primarily in hypoxanthine accumulation and a decrease in protein levels involved in GMP-to-AMP conversion to balance purine pools. Acyl coenzyme A (acyl-CoA) metabolic protein levels for lipid metabolism were lower in abundance, whereas poly-β-hydroxybutyrate synthesis and storage were increased nearly 10-fold. The known R. rubrum aerobic MSP was also shown to be upregulated, to function anaerobically, and to recycle MTA. This suggested that other organisms with gene homologues for the MTA-isoprenoid shunt may also possess a functioning anaerobic MSP. In support of our previous findings that ribulose-1,5-carboxylase/oxygenase (RubisCO) is required for an apparently purely anaerobic MSP, RubisCO transcript and protein levels both increased in abundance by over 10-fold in cells grown anaerobically on MTA over those in cells grown on sulfate, resulting in increased intracellular RubisCO activity. These results reveal for the first time global metabolic responses as a consequence of anaerobic MTA metabolism compared to using sulfate as the sulfur source. PMID:27406564

  7. Genetic changes in progeny of bystander human fibroblasts after microbeam irradiation with X-rays, protons or carbon ions: the relevance to cancer risk.

    PubMed

    Autsavapromporn, Narongchai; Plante, Ianik; Liu, Cuihua; Konishi, Teruaki; Usami, Noriko; Funayama, Tomoo; Azzam, Edouard I; Murakami, Takeshi; Suzuki, Masao

    2015-01-01

    Radiation-induced bystander effects have important implications in radiotherapy. Their persistence in normal cells may contribute to risk of health hazards, including cancer. This study investigates the role of radiation quality and gap junction intercellular communication (GJIC) in the propagation of harmful effects in progeny of bystander cells. Confluent human skin fibroblasts were exposed to microbeam radiations with different linear energy transfer (LET) at mean absorbed doses of 0.4 Gy by which 0.036-0.4% of the cells were directly targeted by radiation. Following 20 population doublings, the cells were harvested and assayed for micronucleus formation, gene mutation and protein oxidation. Our results showed that expression of stressful effects in the progeny of bystander cells is dependent on LET. The progeny of bystander cells exposed to X-rays (LET ∼6 keV/μm) or protons (LET ∼11 keV/μm) showed persistent oxidative stress, which correlated with increased micronucleus formation and mutation at the hypoxanthine-guanine phosphoribosyl-transferase (HPRT) locus. Such effects were not observed after irradiation by carbon ions (LET ∼103 keV/μm). Interestingly, progeny of bystander cells from cultures exposed to protons or carbon ions under conditions where GJIC was inhibited harbored reduced oxidative and genetic damage. This mitigating effect was not detected when the cultures were exposed to X-rays. These findings suggest that cellular exposure to proton and heavy charged particle with LET properties similar to those used here can reduce the risk of lesions associated with cancer. The ability of cells to communicate via gap junctions at the time of irradiation appears to impact residual damage in progeny of bystander cells.

  8. GLUT9 influences uric acid concentration in patients with Lesch-Nyhan disease.

    PubMed

    Torres, Rosa J; Puig, Juan G

    2018-06-01

    Patients with deficient hypoxanthine-guanine phosphoribosyltransferase (HPRT) activity present hyperuricemia and/or hyperuricosuria, with a variable degree of neurological manifestations. Hyperuricemia in HPRT deficiency is due to uric acid overproduction and is frequently treated with allopurinol. Renal uric acid excretion is sharply increased in these patients. In recent years, several renal tubular urate transporter single nucleotide polymorphisms (SNPs), including those of the GLUT9, ABCG2 and URAT1 genes, have been described that influence the renal handling of uric acid and modulate serum urate levels. In the present study, we analyzed whether GLUT9, ABCG2 and URAT1 gene SNPs are able to influence uric acid levels and allopurinol response in patients with HPRT deficiency. Three SNPs, URAT1 rs11231825, GLUT9 rs16890979 and ABCG2 rs2231142, previously associated in our population with hyperuricemia and gout, were analyzed in 27 patients with HPRT deficiency treated with allopurinol for at least 5 years. Patients with HPRT deficiency having allele A of rs16890979 in the GLUT9 gene present with a lower serum urate concentration at diagnosis, before allopurinol treatment is instituted, and need lower allopurinol doses to maintain serum urate levels between 268 and 446 μmol/L (4.5 and 7.5 mg/dL). No relationship between rs2231142 in the ABCG2 gene or rs11231825 in the URAT1 gene and serum urate levels or allopurinol response was found in our patients with HPRT deficiency. GLUT9 SNPs influence the renal handling of uric acid and modulate serum urate levels and the response to treatment in patients with uric acid overproduction due to HPRT deficiency. © 2018 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  9. Uric acid and allopurinol aggravate absence epileptic activity in Wistar Albino Glaxo Rijswijk rats.

    PubMed

    Lakatos, Renáta Krisztina; Dobolyi, Árpád; Kovács, Zsolt

    2018-05-01

    Uric acid has a role in several physiological and pathophysiological processes. For example, uric acid may facilitate seizure generalization while reducing uric acid level may evoke anticonvulsant/antiepileptic effects. Allopurinol blocks the activity of xanthine oxidase, by which allopurinol inhibits catabolism of hypoxanthine to xanthine and uric acid and, as a consequence, decreases the level of uric acid. Although the modulation of serum uric acid level is a widely used strategy in the treatment of certain diseases, our knowledge regarding the effects of uric acid on epileptic activity is far from complete. Thus, the main aim of this study was the investigation of the effect of uric acid on absence epileptic seizures (spike-wave discharges: SWDs) in a model of human absence epilepsy, the Wistar Albino Glaxo/Rijswijk (WAG/Rij) rat. We investigated the influence of intraperitoneally (i.p.) injected uric acid (100 mg/kg and 200 mg/kg), allopurinol (50 mg/kg and 100 mg/kg), a cyclooxygenase 1 and 2 (COX-1 and COX-2) inhibitor indomethacin (10 mg/kg) and inosine (500 mg/kg) alone and the combined application of allopurinol (50 mg/kg) with uric acid (100 mg/kg) or inosine (500 mg/kg) as well as indomethacin (10 mg/kg) with uric acid (100 mg/kg) and inosine (500 mg/kg) with uric acid (100 mg/kg) on absence epileptic activity. We demonstrated that both uric acid and allopurinol alone significantly increased the number of SWDs whereas indomethacin abolished the uric acid-evoked increase in SWD number. Our results suggest that uric acid and allopurinol have proepileptic effects in WAG/Rij rats. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Charged-particle mutagenesis 2. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high Linear Energy Transfer (LET) charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 sq micrometer and 0.09 to 5.56 x 10(exp -3) sq micrometer respectively. The maximum values were obtained by Fe-56 with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(exp -5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  11. Development of an Enzyme-Linked Immunosorbent Assay and Immunoaffinity Column Chromatography for Saikosaponin d Using an Anti-Saikosaponin d Monoclonal Antibody.

    PubMed

    Sai, Jiayang; Zhao, Yan; Shan, Wenchao; Qu, Baoping; Zhang, Yue; Cheng, Jinjun; Qu, Huihua; Wang, Qingguo

    2016-03-01

    This work developed a novel immunochemical approach for the quality control of saikosaponin d using an enzyme-linked immunosorbent assay. Splenocytes from mice immunized with the saikosaponin d-bovine serum albumin conjugate were fused with the hypoxanthine-aminopterin-thymidine-sensitive mouse myeloma SP2/0 cell line, and a hybridoma secreting monoclonal antibody against saikosaponin d was successfully obtained. The prepared anti-saikosaponin d monoclonal antibody 1E7F3 has a novel characteristic, showing weak reactivity with compounds that are structurally related to saikosaponin d. Using monoclonal antibody 1E7F3, a specific and reliable enzyme-linked immunosorbent assay was developed to detect saikosaponin d. The system shows a full measurement range from 156.25 to 5000.00 ng × mL(-1). Both intra-assay and inter-assay repeatability and precision were achieved, with relative standard deviations lower than 10.00%. The recovery rates ranged from 92.36% to 101.00%, meeting the requirements for biological samples. There was a good correlation between the enzyme-linked immunosorbent assay and high-performance liquid chromatography analyses of saikosaponin d, and the saikosaponin d levels in formulated Chinese medicines were successfully determined. Furthermore, immunoaffinity column chromatography was established using this anti-saikosaponin d monoclonal antibody, and the elution profile of saikosaponin d was detected by a Bio-Rad QuadTec UV/Vis detector at 203 nm. The results demonstrate that we generated a reliable and more efficient assay system for measuring saikosaponin d and provide a potential approach for purifying and separating saikosaponin d. Georg Thieme Verlag KG Stuttgart · New York.

  12. ALDH16A1 is a novel non-catalytic enzyme that may be involved in the etiology of gout via protein-protein interactions with HPRT1.

    PubMed

    Vasiliou, Vasilis; Sandoval, Monica; Backos, Donald S; Jackson, Brian C; Chen, Ying; Reigan, Philip; Lanaspa, Miguel A; Johnson, Richard J; Koppaka, Vindhya; Thompson, David C

    2013-02-25

    Gout, a common form of inflammatory arthritis, is strongly associated with elevated uric acid concentrations in the blood (hyperuricemia). A recent study in Icelanders identified a rare missense single nucleotide polymorphism (SNP) in the ALDH16A1 gene, ALDH16A1*2, to be associated with gout and serum uric acid levels. ALDH16A1 is a novel and rather unique member of the ALDH superfamily in relation to its gene and protein structures. ALDH16 genes are present in fish, amphibians, protista, bacteria but absent from archaea, fungi and plants. In most mammalian species, two ALDH16A1 spliced variants (ALDH16A1, long form and ALDH16A1_v2, short form) have been identified and both are expressed in HepG-2, HK-2 and HK-293 human cell lines. The ALDH16 proteins contain two ALDH domains (as opposed to one in the other members of the superfamily), four transmembrane and one coiled-coil domains. The active site of ALDH16 proteins from bacterial, frog and lower animals contain the catalytically important cysteine residue (Cys-302); this residue is absent from the mammalian and fish orthologs. Molecular modeling predicts that both the short and long forms of human ALDH16A1 protein would lack catalytic activity but may interact with the hypoxanthine-guanine phosphoribosyltransferase (HPRT1) protein, a key enzyme involved in uric acid metabolism and gout. Interestingly, such protein-protein interactions with HPRT1 are predicted to be impaired for the long or short forms of ALDH16A1*2. These results lead to the intriguing possibility that association between ALDH16A1 and HPRT1 may be required for optimal HPRT activity with disruption of this interaction possibly contributing to the hyperuricemia seen in ALDH16A1*2 carriers. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Role of 2',3'-cyclic nucleotide 3'-phosphodiesterase in the renal 2',3'-cAMP-adenosine pathway.

    PubMed

    Jackson, Edwin K; Gillespie, Delbert G; Mi, Zaichuan; Cheng, Dongmei; Bansal, Rashmi; Janesko-Feldman, Keri; Kochanek, Patrick M

    2014-07-01

    Energy depletion increases the renal production of 2',3'-cAMP (a positional isomer of 3',5'-cAMP that opens mitochondrial permeability transition pores) and 2',3'-cAMP is converted to 2'-AMP and 3'-AMP, which in turn are metabolized to adenosine. Because the enzymes involved in this "2',3'-cAMP-adenosine pathway" are unknown, we examined whether 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) participates in the renal metabolism of 2',3'-cAMP. Western blotting and real-time PCR demonstrated expression of CNPase in rat glomerular mesangial, preglomerular vascular smooth muscle and endothelial, proximal tubular, thick ascending limb and collecting duct cells. Real-time PCR established the expression of CNPase in human glomerular mesangial, proximal tubular and vascular smooth muscle cells; and the level of expression of CNPase was greater than that for phosphodiesterase 4 (major enzyme for the metabolism of 3',5'-cAMP). Overexpression of CNPase in rat preglomerular vascular smooth muscle cells increased the metabolism of exogenous 2',3'-cAMP to 2'-AMP. Infusions of 2',3'-cAMP into isolated CNPase wild-type (+/+) kidneys increased renal venous 2'-AMP, and this response was diminished by 63% in CNPase knockout (-/-) kidneys, whereas the conversion of 3',5'-cAMP to 5'-AMP was similar in CNPase +/+ vs. -/- kidneys. In CNPase +/+ kidneys, energy depletion (metabolic poisons) increased kidney tissue levels of adenosine and its metabolites (inosine, hypoxanthine, xanthine, and uric acid) without accumulation of 2',3'-cAMP. In contrast, in CNPase -/- kidneys, energy depletion increased kidney tissue levels of 2',3'-cAMP and abolished the increase in adenosine and its metabolites. In conclusion, kidneys express CNPase, and renal CNPase mediates in part the renal 2',3'-cAMP-adenosine pathway. Copyright © 2014 the American Physiological Society.

  14. Proteomic profiling reveals that resveratrol inhibits HSP27 expression and sensitizes breast cancer cells to doxorubicin therapy.

    PubMed

    Díaz-Chávez, José; Fonseca-Sánchez, Miguel A; Arechaga-Ocampo, Elena; Flores-Pérez, Ali; Palacios-Rodríguez, Yadira; Domínguez-Gómez, Guadalupe; Marchat, Laurence A; Fuentes-Mera, Lizeth; Mendoza-Hernández, Guillermo; Gariglio, Patricio; López-Camarillo, César

    2013-01-01

    The use of chemopreventive natural compounds represents a promising strategy in the search for novel therapeutic agents in cancer. Resveratrol (3,4',5-trans-trihydroxystilbilene) is a dietary polyphenol found in fruits, vegetables and medicinal plants that exhibits chemopreventive and antitumor effects. In this study, we searched for modulated proteins with preventive or therapeutic potential in MCF-7 breast cancer cells exposed to resveratrol. Using two-dimensional electrophoresis we found significant changes (FC >2.0; p≤0.05) in the expression of 16 proteins in resveratrol-treated MCF-7 cells. Six down-regulated proteins were identified by tandem mass spectrometry (ESI-MS/MS) as heat shock protein 27 (HSP27), translationally-controlled tumor protein, peroxiredoxin-6, stress-induced-phosphoprotein-1, pyridoxine-5'-phosphate oxidase-1 and hypoxanthine-guanine phosphoribosyl transferase; whereas one up-regulated protein was identified as triosephosphate isomerase. Particularly, HSP27 overexpression has been associated to apoptosis inhibition and resistance of human cancer cells to therapy. Consistently, we demonstrated that resveratrol induces apoptosis in MCF-7 cells. Apoptosis was associated with a significant increase in mitochondrial permeability transition, cytochrome c release in cytoplasm, and caspases -3 and -9 independent cell death. Then, we evaluated the chemosensitization effect of increasing concentrations of resveratrol in combination with doxorubicin anti-neoplastic agent in vitro. We found that resveratrol effectively sensitize MCF-7 cells to cytotoxic therapy. Next, we evaluated the relevance of HSP27 targeted inhibition in therapy effectiveness. Results evidenced that HSP27 inhibition using RNA interference enhances the cytotoxicity of doxorubicin. In conclusion, our data indicate that resveratrol may improve the therapeutic effects of doxorubicin in part by cell death induction. We propose that potential modulation of HSP27 levels using natural alternative agents, as resveratrol, may be an effective adjuvant in breast cancer therapy.

  15. Characterizing mutagenesis in the hprt gene of rat alveolar epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Driscoll, K.E.; Deyo, L.C.; Howard, B.W.

    1995-12-31

    A clonal selection assay was developed for mutation in the hypoxanthine-guanine phosphoribosyl transferase (hprt) gene of rat alveolar epithelial cells. Studies were conducted to establish methods for isolation and long-term culture of rat alveolar epithelial cells. When isolated by pronase digestion purified on a Nycodenz gradient and cultured in media containing 7.5% fetal bovine serum (FBS), pituitary extract, EGF, insulin, and IGF-1, rat alveolar epithelial cells could be maintained in culture for several weeks with cell doubling times of 2-4 days. The rat alveolar epithelial cell cultures were exposed in vitro to the mutagens ethylnitrosourea (ENU) and H{sub 2}O{sub 2},more » and mutation in the hprt gene was selected for by culture in the presence of the toxic purine analog, 6-thioguanine (6TG). In vitro exposure to ENU or H{sub 2}O produced a dose-dependent increase in hprt mutation frequency in the alveolar epithelial cells. To determine if the assay system could be used to evaluate mutagenesis in alveolar type II cells after in vivo mutagen or carcinogen exposure, cells were isolated from rats treated previously with ENU or {alpha}-quartz. A significant increase in hprt mutation frequency was detected in alveolar epithelial cells obtained from rats exposed to ENU or {alpha}-quartz; the latter observation is the first demonstration that crystalline silica exposure is mutagenic in vivo. In summary, these studies show that rat alveolar epithelial cells isolated by pronase digestion and Nycodenz separation techniques and cultured in a defined media can be used in a clonal selection assay for mutation in the hprt gene. This assay demonstrates that ENU and H{sub 2}O{sub 2} in vitro and ENU and {alpha}-quartz in vivo are mutagenic for rat alveolar epithelial cells. This model should be useful for investigating the genotoxic effects of chemical and physical agents on an important lung cell target for neoplastic transformation. 41 refs., 4 figs., 3 tabs.« less

  16. A comparison of somatic mutational spectra in healthy study populations from Russia, Sweden and USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noori, P; Hou, S; Jones, I M

    Comparison of mutation spectra at the hypoxanthine-phosphoribosyl transferase (HPRT) gene of peripheral blood T lymphocytes may provide insight into the aetiology of somatic mutation contributing to carcinogenesis and other diseases. To increase knowledge of mutation spectra in healthy people, we have analyzed HPRT mutant T-cells of 50 healthy Russians originally recruited as controls for a study of Chernobyl clean-up workers (Jones et al. Radiation Res. 158, 2002, 424). Reverse transcriptase polymerase chain reactions and DNA sequencing identified 161 independent mutations among 176 thioguanine resistant mutants. Forty (40) mutations affected splicing mechanisms and 27 deletions or insertions of 1 to 60more » nucleotides were identified. Ninety four (94) single base substitutions were identified, including 62 different mutations at 55 different nucleotide positions, of which 19 had not previously been reported in human T-cells. Comparison of this base substitution spectrum with mutation spectra in a USA (Burkhart-Schultz et al. Carcinogenesis 17, 1996, 1871) and two Swedish populations (Podlutsky et al, Carcinogenesis 19, 1998, 557, Podlutsky et al. Mutation Res. 431, 1999, 325) revealed similarity in the type, frequency and distribution of mutations in the four spectra, consistent with aetiologies inherent in human metabolism. There were 15-19 identical mutations in the three pair-wise comparisons of Russian with USA and Swedish spectra. Intriguingly, there were 21 mutations unique to the Russian spectrum, and comparison by the Monte Carlo method of Adams and Skopek (J. Mol. Biol. 194, 1987, 391) indicated that the Russian spectrum was different from both Swedish spectra (P=0.007, 0.002) but not different from the USA spectrum (P=0.07), when Bonferroni correction for multiple comparisons was made (p < 0.008 required for significance). Age and smoking did not account for these differences. Other factors causing mutational differences need to be explored.« less

  17. Above detection limits - Prebiotic organics in comets and carbonaceous meteorites

    NASA Astrophysics Data System (ADS)

    Stern, J. C.; Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Martin, M. G.; Dworkin, J. P.

    2009-12-01

    The delivery of organic compounds such as amino acids and nucleobases by comets, asteroids, and their fragments may have contributed feedstock for prebiotic chemistry leading to the first self-replicating systems of the early Earth. In order to determine the isotopic composition, distribution, and abundance of prebiotic organic compounds in extraterrestrial samples we have recently optimized a highly sensitive liquid chromatography tandem quadupole mass spectrometer (LC-QqQ-MS) and a gas chromatography mass spectrometer coupled with an isotope ratio mass spectrometer (GC-MS/IRMS). This suite of instruments not only allows us to identify and quantify extremely trace amounts of organics of astrobiological interest, but also to confirm their extraterrestrial origins by stable isotopic measurements. The amino acid glycine was detected upon preliminary examinations of foils from NASA’s Stardust mission, which returned cometary material from comet 81P/Wild 2. To rule out the possibility of terrestrial contamination as the source of the glycine, the carbon isotopic ratio was measured. The δ13C value for glycine was determined to be +29 ± 6‰, well outside the terrestrial range for organic carbon of +6 ‰ to -40 ‰. The Stardust glycine δ13C value falls in the range previously reported for glycine (+22‰ to +41‰) in the carbonaceous meteorites Murchison and Orgueil. This represents the first detection of glycine or any other amino acid in a comet. Recent investigations of carbonaceous meteorite organic matter have revealed the presence of several nucleobases in the Murchison meteorite and several Antarctic CR meteorites never before analyzed for nucleobases using LC-QqQ-MS. This analytical tool is a sensitive and highly selective method for measuring the trace amounts of these organics in meteorites. In particular, the unusual Antarctic C2 meteorite, LON 94102, shows high abundances of guanine, hypoxanthine, and xanthine with concentrations ranging from 70 to 200 ppb. Nitrogen isotopic measurements will be made to determine the origin (extraterrestrial or terrestrial) of these compounds.

  18. Thermal Degradation of Small Molecules: A Global Metabolomic Investigation.

    PubMed

    Fang, Mingliang; Ivanisevic, Julijana; Benton, H Paul; Johnson, Caroline H; Patti, Gary J; Hoang, Linh T; Uritboonthai, Winnie; Kurczy, Michael E; Siuzdak, Gary

    2015-11-03

    Thermal processes are widely used in small molecule chemical analysis and metabolomics for derivatization, vaporization, chromatography, and ionization, especially in gas chromatography mass spectrometry (GC/MS). In this study the effect of heating was examined on a set of 64 small molecule standards and, separately, on human plasma metabolite extracts. The samples, either derivatized or underivatized, were heated at three different temperatures (60, 100, and 250 °C) at different exposure times (30 s, 60 s, and 300 s). All the samples were analyzed by liquid chromatography coupled to electrospray ionization mass spectrometry (LC/MS) and the data processed by XCMS Online ( xcmsonline.scripps.edu ). The results showed that heating at an elevated temperature of 100 °C had an appreciable effect on both the underivatized and derivatized molecules, and heating at 250 °C created substantial changes in the profile. For example, over 40% of the molecular peaks were altered in the plasma metabolite analysis after heating (250 °C, 300s) with a significant formation of degradation and transformation products. The analysis of 64 small molecule standards validated the temperature-induced changes observed on the plasma metabolites, where most of the small molecules degraded at elevated temperatures even after minimal exposure times (30 s). For example, tri- and diorganophosphates (e.g., adenosine triphosphate and adenosine diphosphate) were readily degraded into a mono-organophosphate (e.g., adenosine monophosphate) during heating. Nucleosides and nucleotides (e.g., inosine and inosine monophosphate) were also found to be transformed into purine derivatives (e.g., hypoxanthine). A newly formed transformation product, oleoyl ethyl amide, was identified in both the underivatized and derivatized forms of the plasma extracts and small molecule standard mixture, and was likely generated from oleic acid. Overall these analyses show that small molecules and metabolites undergo significant time-sensitive alterations when exposed to elevated temperatures, especially those conditions that mimic sample preparation and analysis in GC/MS experiments.

  19. Performance comparison between multienzymes loaded single and dual electrodes for the simultaneous electrochemical detection of adenosine and metabolites in cancerous cells.

    PubMed

    Hussain, Khalil K; Akhtar, Mahmood H; Kim, Moo-Hyun; Jung, Dong-Keun; Shim, Yoon-Bo

    2018-06-30

    The analytical performance of the multi enzymes loaded single electrode sensor (SES) and dual electrode sensor (DES) was compared for the detection of adenosine and metabolites. The SES was fabricated by covalent binding of tri-enzymes, adenosine deaminase (ADA), purine nucleoside phosphorylase (PNP), and xanthine oxidase (XO) along with hydrazine (Hyd) onto a functionalized conducting polymer [2,2:5,2-terthiophene-3-(p-benzoic acid)] (pTTBA). The enzyme reaction electrode in DES was fabricated by covalent binding of ADA and PNP onto pTTBA coated on Au nanoparticles. The detection electrode in DES was constructed by covalent binding of XO and Hyd onto pTTBA coated on porous Au. Due to the higher amount (3.5 folds) of the immobilized enzymes and Hyd onto the DES than SES, and the lower Michaelis constant (Km) value for DES (28.7 µM) compared to SES (36.1 µM), the sensitivity was significantly enhanced for the DES (8.2 folds). The dynamic range obtained using DES was from 0.5 nM to 120.0 µM with a detection limit of 1.43 nM ± 0.02, 0.76 nM ± 0.02, and 0.48 nM ± 0.01, for adenosine (AD), inosine (IN), and hypoxanthine (Hypo) respectively. Further, the DES was coupled with an electrochemical potential modulated microchannel for the separation and simultaneous detection of AD, IN, and Hypo in an extracellular matrix of cancerous (A549) and non-cancerous (Vero) cells. The sensor probe confirms a higher basal level of extracellular AD and its metabolites in cancer cells compared to normal cells. In addition, the effect of dipyridamole on released adenosine in A549 cells was investigated. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Low dopamine activity in Lesch Nyhan Disease. An 18-fluorodopa PET study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernst, M.; Zametkin, A.; Matochik, J.

    1996-05-01

    Lesch-Nyhan Disease (LND) is a rare devastating X-linked recessive disorder characterized by the virtual absence of hypoxanthine guanine phosphoribosyl transferase (HPRT), a major enzyme of the salvage pathway of purine metabolism. The clinical presentation includes hyperuricemia choreoathetosis, dystonia, aggression and self-injurious behavior. The genetic and biochemical abnormalities are fully identified. However, the neuropathophysiological process by which the lack of HPRT produces the neuropsychiatric syndrome of LND in unclear. Presynaptic uptake of 18-Fluorodopa (FD) in basal ganglia, substantia nigra, and frontal and occipital cortices was measured by PET in 12 patients with LND, 10 to 20 years old, and 15 healthmore » controls, 12 to 23 years old. Radioactive counts (mCi/cc), recorded between 90 and 130 minutes after tracer injection, were measured in regions of interest by a rater blind to subjects` identities. Results were expressed as ratios of FD uptake in specific to non-specific (occipital cortex) brain areas. Presynaptic dopamine activity was significantly lower by 69% in putamen (p<0.0001), 61% in caudate (p<0.0001), 56% in frontal cortex (p=0.003) and 43% in substantiat nigra (p<0.016) in LND patients than in control subjects. Absolute FD measures in occipital regions did not differ between the two groups. Activity of FD in the basal ganglia was stable over time in the LND group and tended to increase in the control group (r=0.50, n=15, p=0.060). In the LND group, aggressive behavior was worse as FD activity was higher (r=0.60, n=12, p=0.40). LND is associated with a striking reduction of presynaptic dopamine activity that is not region-specific. The temporal stability of FD measures and of the severity of LND symptomatology is consistent with a developmental rather than degenerative process.« less

  1. The Plasmodium falciparum chloroquine resistance transporter is associated with the ex vivo P. falciparum African parasite response to pyronaridine.

    PubMed

    Madamet, Marylin; Briolant, Sébastien; Amalvict, Rémy; Benoit, Nicolas; Bouchiba, Housem; Cren, Julien; Pradines, Bruno

    2016-02-09

    The pyronaridine-artesunate combination is one of the most recent oral artemisinin-based therapeutic combinations (ACTs) recommended for the treatment of uncomplicated P. falciparum malaria. The emergence of P. falciparum resistance to artemisinin has recently developed in Southeast Asia. Little data are available on the association between pyronaridine susceptibility and polymorphisms in genes involved in antimalarial drug resistance. The objective of the present study was to investigate the association between ex vivo responses to pyronaridine and the K76T mutation in the pfcrt gene in P. falciparum isolates. The assessment of ex vivo susceptibility to pyronaridine was performed on 296 P. falciparum isolates using a standard 42-h 3H-hypoxanthine uptake inhibition method. The K76T mutation was also investigated. The pyronaridine IC50 (inhibitory concentration 50 %) ranged from 0.55 to 80.0 nM. Ex vivo responses to pyronaridine were significantly associated with the K76T mutation (p-value = 0.020). The reduced susceptibility to pyronaridine, defined as IC50 > 60 nM, was significantly associated with the K76T mutation (p-value = 0.004). Using a Bayesian mixture modelling approach, the pyronaridine IC50 were classified into three components: component A (IC50 median 15.9 nM), component B (IC50 median 34.2 nM) and component C (IC50 median 63.3 nM). The K76T mutation was represented in 46.3% of the isolates in component A, 47.2% of the isolates in component B and 73.3% of the isolates in component C (p-value = 0.021). These results showed the ex vivo reduced susceptibility to pyronaridine, i.e., IC50 > 60 nM, associated with the K76T mutation.

  2. Stochastic properties of radiation-induced DSB: DSB distributions in large scale chromatin loops, the HPRT gene and within the visible volumes of DNA repair foci.

    PubMed

    Ponomarev, Artem L; Costes, Sylvain V; Cucinotta, Francis A

    2008-11-01

    We computed probabilities to have multiple double-strand breaks (DSB), which are produced in DNA on a regional scale, and not in close vicinity, in volumes matching the size of DNA damage foci, of a large chromatin loop, and in the physical volume of DNA containing the HPRT (human hypoxanthine phosphoribosyltransferase) locus. The model is based on a Monte Carlo description of DSB formation by heavy ions in the spatial context of the entire human genome contained within the cell nucleus, as well as at the gene sequence level. We showed that a finite physical volume corresponding to a visible DNA repair focus, believed to be associated with one DSB, can contain multiple DSB due to heavy ion track structure and the DNA supercoiled topography. A corrective distribution was introduced, which was a conditional probability to have excess DSB in a focus volume, given that there was already one present. The corrective distribution was calculated for 19.5 MeV/amu N ions, 3.77 MeV/amu alpha-particles, 1000 MeV/amu Fe ions, and X-rays. The corrected initial DSB yield from the experimental data on DNA repair foci was calculated. The DSB yield based on the corrective function converts the focus yield into the DSB yield, which is comparable with the DSB yield based on the earlier PFGE experiments. The distribution of DSB within the physical limits of the HPRT gene was analyzed by a similar method as well. This corrective procedure shows the applicability of the model and empowers the researcher with a tool to better analyze focus statistics. The model enables researchers to analyze the DSB yield based on focus statistics in real experimental situations that lack one-to-one focus-to-DSB correspondance.

  3. Methylene blue induced morphological deformations in Plasmodium falciparum gametocytes: implications for transmission-blocking.

    PubMed

    Wadi, Ishan; Pillai, C Radhakrishna; Anvikar, Anupkumar R; Sinha, Abhinav; Nath, Mahendra; Valecha, Neena

    2018-01-08

    Malaria remains a global health problem despite availability of effective tools. For malaria elimination, drugs targeting sexual stages of Plasmodium falciparum need to be incorporated in treatment regimen along with schizonticidal drugs to interrupt transmission. Primaquine is recommended as a transmission blocking drug for its effect on mature gametocytes but is not extensively utilized because of associated safety concerns among glucose-6-phosphate dehydrogenase (G6PD) deficient patients. In present work, methylene blue, which is proposed as an alternative to primaquine is investigated for its gametocytocidal activity amongst Indian field isolates. An effort has been made to establish Indian field isolates of P. falciparum as in vitro model for gametocytocidal drugs screening. Plasmodium falciparum isolates were adapted to in vitro culture and induced to gametocyte production by hypoxanthine and culture was enriched for gametocyte stages using N-acetyl-glucosamine. Gametocytes were incubated with methylene blue for 48 h and stage specific gametocytocidal activity was evaluated by microscopic examination. Plasmodium falciparum field isolates RKL-9 and JDP-8 were able to reproducibly produce gametocytes in high yield and were used to screen gametocytocidal drugs. Methylene blue was found to target gametocytes in a concentration dependent manner by either completely eliminating gametocytes or rendering them morphologically deformed with mean IC 50 (early stages) as 424.1 nM and mean IC 50 (late stages) as 106.4 nM. These morphologically altered gametocytes appeared highly degenerated having shrinkage, distortions and membrane deformations. Field isolates that produce gametocytes in high yield in vitro can be identified and used to screen gametocytocidal drugs. These isolates should be used for validation of gametocytocidal hits obtained previously by using lab adapted reference strains. Methylene blue was found to target gametocytes produced from Indian field isolates and is proposed to be used as a gametocytocidal adjunct with artemisinin-based combination therapy. Further exploration of methylene blue in clinical studies amongst Indian population, including G6PD deficient patients, is recommended.

  4. REACTIVE OXYGEN SPECIES AND OOCYTE AGING: ROLE OF SUPEROXIDE, HYDROGEN PEROXIDE AND HYPOCHLOROUS ACID

    PubMed Central

    GOUD, ANURADHA P.; GOUD, PRAVIN T.; DIAMOND, MICHAEL P.; GONIK, BERNARD; ABU-SOUD, HUSAM M.

    2009-01-01

    Aging of the unfertilized oocyte inevitably occurs following ovulation, limiting its fertilizable life-span. However, the mechanisms that regulate oocyte aging are still unclear. We hypothesize that reactive oxygen species such as superoxide (O2•−), hydrogen peroxide (H2O2), and hypochlorous acid (HOCl) are likely candidates that may initiate these changes in the oocyte. In order to test this hypothesis, we investigated direct effects of O2•− [hypoxanthine/xanthine oxidase system generating 0.12 (n=42) and 0.25 μM O2•−/min (n=45)], H2O2 (20 or 100 μM, n=60) and HOCl, (1, 10 and 100 μM, n=50) on freshly ovulated or relatively old mouse oocytes, while their sibling oocytes were fixed immediately or cultured under physiological conditions (n=96). The aging process was assessed by the zona pellucida dissolution time (ZPDT), ooplasm microtubule dynamics (OMD), and cortical granule (CG) status. The ZPDT increased 2-fold in relatively old, compared to young, untreated oocytes (P<0.0001). Exposure to O2•− increased it even further (P<0.0001). Similarly, more O2•− exposed oocytes exhibited increased OMD and major CG loss, with fewer having normal OMD and intact CG compared to untreated controls. Interestingly, young oocytes resisted “aging”, when exposed to 20 μM H2O2, while the same enhanced the aging phenomena in relatively old oocytes (P<0.05). Exposure to even very low levels of HOCl induced aging phenomena in young and relatively old oocytes, and higher concentrations of HOCl compromised oocyte viability. Overall, O2•−, H2O2 and HOCl each augment oocyte “aging”, more so in relatively old oocytes, suggesting compromised antioxidant capacity in aging oocytes. PMID:18177745

  5. M-DNA is stabilised in G•C tracts or by incorporation of 5-fluorouracil

    PubMed Central

    Wood, David O.; Dinsmore, Michael J.; Bare, Grant A.; Lee, Jeremy S.

    2002-01-01

    M-DNA is a complex between the divalent metal ions Zn2+, Ni2+ and Co2+ and duplex DNA which forms at a pH of ∼8.5. The stability and formation of M-DNA was monitored with an ethidium fluorescence assay in order to assess the relationship between pH, metal ion concentration, DNA concentration and the base composition. The dismutation of calf thymus DNA exhibits hysteresis with the formation of M-DNA occurring at a higher pH than the reconversion of M-DNA back to B-DNA. Hysteresis is most prominent with the Ni form of M-DNA where complete reconversion to B-DNA takes several hours even in the presence of EDTA. Increasing the DNA concentration leads to an increase in the metal ion concentration required for M-DNA formation. Both poly(dG)•poly(dC) and poly(dA)•poly(dT) formed M-DNA more readily than the corresponding mixed sequence DNAs. For poly(dG)•(poly(dC) M-DNA formation was observed at pH 7.4 with 0.5 mM ZnCl2. Modified bases were incorporated into a 500 bp fragment of phage λ DNA by polymerase chain reaction. DNAs in which guanine was replaced with hypoxanthine or thymine with 5-fluorouracil formed M-DNA at pHs below 8 whereas substitutions such as 2-aminoadenine and 5-methylcytosine had little effect. Poly[d(A5FU)] also formed a very stable M-DNA duplex as judged from Tm measurements. It is evident that the lower the pKa of the imino proton of the base, the lower the pH at which M-DNA will form; a finding that is consistent with the replacement of the imino proton with the metal ion. PMID:12000844

  6. Genetic Regulation of Charged Particle Mutagenesis in Human Cells

    NASA Technical Reports Server (NTRS)

    Kronenberg, Amy; Gauny, S.; Cherbonnel-Lasserre, C.; Liu, W.; Wiese, C.

    1999-01-01

    Our studies use a series of syngeneic, and where possible, isogenic human B-lymphoblastoid cell lines to assess the genetic factors that modulate susceptibility apoptosis and their impact on the mutagenic risks of low fluence exposures to 1 GeV Fe ions and 55 MeV protons. These ions are representative of the types of charged particle radiation that are of particular significance for human health in the space radiation environment. The model system employs cell lines derived from the male donor WIL-2. These cells have a single X chromosome and they are hemizygous for one mutation marker, hypoxanthine phosphoribosyltransferase (HPRT). TK6 and WTK1 cells were each derived from descendants of WIL-2 and were each selected as heterozygotes for a second mutation marker, the thymidine kinase (TK) gene located on chromosome 17q. The HPRT and TK loci can detect many different types of mutations, from single basepair substitutions up to large scale loss of heterozygosity (LOH). The single expressing copy of TK in the TK6 and WTKI cell lines is found on the same copy of chromosome 17, and this allele can be identified by a restriction fragment length polymorphism (RFLP) identified when high molecular weight DNA is digested by the SacI restriction endonuclease and hybridized against the cDNA probe for TK. A large series of polymorphic linked markers has been identified that span more than 60 cM of DNA (approx. 60 megabasepairs) and distinguish the copy of chromosome 17 bearing the initially active TK allele from the copy of chromosome 17 bearing the silent TK allele in both TK6 and WTKI cells. TK6 cells express normal p53 protein while WTKI cells express homozygous mutant p53. Expression of mutant p53 can increase susceptibility to x-ray-induced mutations. It's been suggested that the increased mutagenesis in p53 mutant cells might be due to reduced apoptosis.

  7. Hot shot induction and reperfusion with a specific blocker of the es-ENT1 nucleoside transporter before and after hypothermic cardioplegia abolishes myocardial stunning in acutely ischemic hearts despite metabolic derangement: Hot shot drug delivery before hypothermic cardioplegia

    PubMed Central

    Abd-Elfattah, Anwar Saad; Tuchy, Gert E.; Jessen, Michael E.; Salter, David R.; Goldstein, Jacques P.; Brunsting, Louis A.; Wechsler, Andrew S.

    2013-01-01

    Objective Simultaneous inhibition of the cardiac equilibrative-p-nitrobenzylthioinosine (NBMPR)–sensitive (es) type of the equilibrative nucleoside transport 1 (ENT1) nucleoside transporter, with NBMPR, and adenosine deaminase, with erythro-9-[2-hydroxy-3-nonyl]adenine (EHNA), prevents release of myocardial purines and attenuates myocardial stunning and fibrillation in canine models of warm ischemia and reperfusion. It is not known whether prolonged administration of hypothermic cardioplegia influences purine release and EHNA/NBMPR-mediated cardioprotection in acutely ischemic hearts. Methods Anesthetized dogs (n = 46), which underwent normothermic aortic crossclamping for 20 minutes on-pump, were divided to determine (1) purine release with induction of intermittent antegrade or continuous retrograde hypothermic cardioplegia and reperfusion, (2) the effects of postischemic treatment with 100 µM EHNA and 25 µM NBMPR on purine release and global functional recovery, and (3) whether a hot shot and reperfusion with EHNA/NBMPR inhibits purine release and attenuates ventricular dysfunction of ischemic hearts. Myocardial biopsies and coronary sinus effluents were obtained and analyzed using high-performance liquid chromatography. Results Warm ischemia depleted myocardial adenosine triphosphate and elevated purines (ie, inosine > adenosine) as markers of ischemia. Induction of intermittent antegrade or continuous retrograde hypothermic (4°C) cardioplegia releases purines until the heart becomes cold (<20°C). During reperfusion, the levels of hypoxanthine and xanthine (free radical substrates) were >90% of purines in coronary sinus effluent. Reperfusion with EHNA/NBMPR abolished ventricular dysfunction in acutely ischemic hearts with and without a hot shot and hypothermic cardioplegic arrest. Conclusions Induction of hypothermic cardioplegia releases purines from ischemic hearts until they become cold, whereas reperfusion induces massive purine release and myocardial stunning. Inhibition of cardiac es-ENT1 nucleoside transporter abolishes postischemic reperfusion injury in warm and cold cardiac surgery. PMID:23422047

  8. Different mechanisms of radiation-induced loss of heterozygosity in two human lymphoid cell lines from a single donor

    NASA Technical Reports Server (NTRS)

    Wiese, C.; Gauny, S. S.; Liu, W. C.; Cherbonnel-Lasserre, C. L.; Kronenberg, A.

    2001-01-01

    Allelic loss is an important mutational mechanism in human carcinogenesis. Loss of heterozygosity (LOH) at an autosomal locus is one outcome of the repair of DNA double-strand breaks (DSBs) and can occur by deletion or by mitotic recombination. We report that mitotic recombination between homologous chromosomes occurred in human lymphoid cells exposed to densely ionizing radiation. We used cells derived from the same donor that express either normal TP53 (TK6 cells) or homozygous mutant TP53 (WTK1 cells) to assess the influence of TP53 on radiation-induced mutagenesis. Expression of mutant TP53 (Met 237 Ile) was associated with a small increase in mutation frequencies at the hemizygous HPRT (hypoxanthine phosphoribosyl transferase) locus, but the mutation spectra were unaffected at this locus. In contrast, WTK1 cells (mutant TP53) were 30-fold more susceptible than TK6 cells (wild-type TP53) to radiation-induced mutagenesis at the TK1 (thymidine kinase) locus. Gene dosage analysis combined with microsatellite marker analysis showed that the increase in TK1 mutagenesis in WTK1 cells could be attributed, in part, to mitotic recombination. The microsatellite marker analysis over a 64-cM region on chromosome 17q indicated that the recombinational events could initiate at different positions between the TK1 locus and the centromere. Virtually all of the recombinational LOH events extended beyond the TK1 locus to the most telomeric marker. In general, longer LOH tracts were observed in mutants from WTK1 cells than in mutants from TK6 cells. Taken together, the results demonstrate that the incidence of radi-ation-induced mutations is dependent on the genetic background of the cell at risk, on the locus examined, and on the mechanisms for mutation available at the locus of interest.

  9. Phytochemical investigation of some traditional chinese medicines and endophyte cultures.

    PubMed

    Tan, R X; Meng, J C; Hostettmann, K

    2000-01-01

    For many social and environmental reasons, over the last few decades, there has been an increase in chronic and life-threatening diseases including mycoses, hyperuricemia-related disorders and some mental illnesses such as depression, anxiety and Parkinson's disease. In order to fight these diseases, compounds acting on various biological targets, including enzymes such as xanthine oxidase or monoamine oxidase, have to be screened. The enzyme xanthine oxidase catalyses the oxidation of hypoxanthine to xanthine and then to uric acid, which plays a crucial role in hyperuricemiarelated disorders such as gout and renal stones. One of the therapeutic approaches to treat these diseases is the use of xanthine oxidase inhibitors that block the production of uric acid. Monoamine oxidases (E.C.1.4.3.4) A and B catalyse the oxidative deamination of monoamines in the central nervous system and peripheral tissues. Inhibitors of MAO A are clinically useful to treat anxiety and depression since they are expected to increase both noradrenalin and serotonin levels in the brain. On the other hand, inhibition of MAO B appears to be an effective approach for the prevention and adjunct treatment of Parkinson's disease. In traditional Chinese medical practice, many medicinal herbs have been used to treat chronic diseases such as fungal infections, hyperuricemia-based disorders and mental illnesses. This usage is indicative for the presumable presence of antifungal phytochemicals and inhibitors of xanthine and monoamine oxidases. Plants do not represent the only source for interesting natural products; some endophytes ('special' microorganisms living inside the healthy host plant) are also known to produce secondary metabolites of promising pharmaceutical and/or agricultural potential. The above observations prompted us to search for natural antifungal compounds and inhibitors of xanthine and monoamine oxidases in different Chinese plants and endophyte cultures. The active constituents isolated were mainly mono-, sesqui-, di-, and triterpenes, sterols, coumarins, flavonoids, phenylethanoids, stilbenoids, alkaloids and alcohols.

  10. Effects of culture media and energy sources on the inhibition of nuclear maturation in bovine oocytes.

    PubMed

    Bilodeau-Goeseels, Sylvie

    2006-07-15

    The influence of the culture medium and energy sources on spontaneous nuclear maturation and inhibition of maturation in bovine cumulus-enclosed oocytes (CEO) was examined. CEO were cultured in Medium 199, minimum essential medium, M16, or synthetic oviduct fluid (SOF), all containing 3 mg/mL bovine serum albumin (BSA), and SOF without BSA, alone or supplemented with hypoxanthine (HYPO, 4 mM) or forskolin (FSK, 100 microM) for 21 h. More CEO remained at the GV stage in M16 compared to other media (P < 0.05). Supplementation with HYPO increased and FSK reduced the percentage of CEO remaining at the GV stage (P < 0.05) only in M16. The effects of energy sources, in the absence or presence of HYPO or FSK, were examined in CEO cultured in M16 salts+PVA. Glucose (0.5 and 5.5 mM), pyruvate (0.32 and 3.2 mM), lactate (3.3 mM) and glutamine (1.3 mM) significantly reduced the percentage of CEO remaining at the GV stage compared to M16 salts alone; only glutamine significantly increased the percentage of CEO at the MII stage compared to M16 salts. In M16 salts+HYPO, glucose (0.5 mM), pyruvate (0.32 mM), lactate (3.3 mM) and glutamine (1.3 mM) significantly reduced the percentage of GV and degenerate oocytes and increased the percentage of CEO at the MI stage. In M16 salts+FSK, the energy sources significantly decreased the percentage of oocytes with condensed chromosomes and increased the percentage of CEO reaching metaphase I. In conclusion, meiotic inhibitors had different effects in different culture media and glucose, pyruvate, lactate and glutamine were stimulatory to nuclear maturation. It was noteworthy that some of the results obtained were contrary to previous findings in mouse oocytes.

  11. Intake of Erythrocytes Required for Reproductive Development of Female Schistosoma japonicum.

    PubMed

    Wang, Jipeng; Wang, Shuqi; Liu, Xiufeng; Xu, Bin; Chai, Riyi; Zhou, Pan; Ju, Chuan; Sun, Jun; Brindley, Paul J; Hu, Wei

    2015-01-01

    The reproductive development and maturation of female schistosomes are crucial since their released eggs are responsible for the host immunopathology and transmission of schistosomiasis. However, little is known about the nutrients required by female Schistosoma japonicum during its sexual maturation. We evaluated the promoting effect of several nutrients (calf serum, red blood cells (RBCs), ATP and hypoxanthine) on the reproductive development of pre-adult females at 18 days post infection (dpi) from mixed infections and at 50 dpi from unisexual infections of laboratory mice in basic medium RPMI-1640. We found RBCs, rather than other nutrients, promoted the female sexual maturation and egg production with significant morphological changes. In 27% of females (18 dpi) from mixed infections that paired with males in vitro on day 14, vitelline glands could be positively stained by Fast Blue B; and in 35% of females (50 dpi) from unisexual infections on day 21, mature vitelline cells were observed. Infertile eggs were detected among both groups. To analyze which component of mouse RBCs possesses the stimulating effect, RBCs were fractionated and included in media. However, the RBC fractions failed to stimulate development of the female reproductive organs. In addition, bovine hemoglobin hydrolysate, digested by neutral protease, was found to exhibit the promoting activity instead of untreated bovine hemoglobin. The other protein hydrolysate, lactalbumin hydrolysate, exhibited a similar effect with bovine hemoglobin hydrolysate. Using quantitative RT-PCR, we found the expression levels of four reproduction-related genes were significantly stimulated by RBCs. These data indicate that RBCs provide essential nutrients for the sexual maturation of female S. japonicum and that the protein component of RBCs appeared to constitute the key nutrient. These findings would improve laboratory culture of pre-adult schistosomes to adult worms in medium with well-defined components, which is important to investigate the function of genes related to female sexual maturation.

  12. Intake of Erythrocytes Required for Reproductive Development of Female Schistosoma japonicum

    PubMed Central

    Wang, Jipeng; Wang, Shuqi; Liu, Xiufeng; Xu, Bin; Chai, Riyi; Zhou, Pan; Ju, Chuan; Sun, Jun; Brindley, Paul J.; Hu, Wei

    2015-01-01

    The reproductive development and maturation of female schistosomes are crucial since their released eggs are responsible for the host immunopathology and transmission of schistosomiasis. However, little is known about the nutrients required by female Schistosoma japonicum during its sexual maturation. We evaluated the promoting effect of several nutrients (calf serum, red blood cells (RBCs), ATP and hypoxanthine) on the reproductive development of pre-adult females at 18 days post infection (dpi) from mixed infections and at 50 dpi from unisexual infections of laboratory mice in basic medium RPMI-1640. We found RBCs, rather than other nutrients, promoted the female sexual maturation and egg production with significant morphological changes. In 27% of females (18 dpi) from mixed infections that paired with males in vitro on day 14, vitelline glands could be positively stained by Fast Blue B; and in 35% of females (50 dpi) from unisexual infections on day 21, mature vitelline cells were observed. Infertile eggs were detected among both groups. To analyze which component of mouse RBCs possesses the stimulating effect, RBCs were fractionated and included in media. However, the RBC fractions failed to stimulate development of the female reproductive organs. In addition, bovine hemoglobin hydrolysate, digested by neutral protease, was found to exhibit the promoting activity instead of untreated bovine hemoglobin. The other protein hydrolysate, lactalbumin hydrolysate, exhibited a similar effect with bovine hemoglobin hydrolysate. Using quantitative RT-PCR, we found the expression levels of four reproduction-related genes were significantly stimulated by RBCs. These data indicate that RBCs provide essential nutrients for the sexual maturation of female S. japonicum and that the protein component of RBCs appeared to constitute the key nutrient. These findings would improve laboratory culture of pre-adult schistosomes to adult worms in medium with well-defined components, which is important to investigate the function of genes related to female sexual maturation. PMID:25978643

  13. The catalase activity of diiron adenine deaminase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamat S. S.; Swaminathan S.; Holmes-Hampton, G. P.

    2011-12-01

    Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn{sup 2+} before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO{sub 4}. Inductively coupled plasma mass spectrometrymore » and Moessbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe{sup II}/Fe{sup II}]-ADE catalyzed the conversion of H{sub 2}O{sub 2} to O{sub 2} and H{sub 2}O. The values of k{sub cat} and k{sub cat}/K{sub m} for the catalase activity are 200 s{sup -1} and 2.4 x 10{sup 4} M{sup -1} s{sup -1}, respectively. [Fe{sup II}/Fe{sup II}]-ADE underwent more than 100 turnovers with H{sub 2}O{sub 2} before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g{sub ave} = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H{sub 2}O{sub 2} by [Fe{sup II}/Fe{sup II}]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS.« less

  14. Mutation of Chinese Hamster V79 cells and transformation and mutation of mouse fibroblast C3H/10T1/2 clone 8 cells by aflatoxin B1 and four other furocoumarins isolated from two Nigerian medicinal plants.

    PubMed

    Uwaifo, A O; Billings, P C; Heidelberger, C

    1983-03-01

    Mutation by aflatoxin B1 (AFB1), imperatorin, marmesin, chalepin, and 8-methoxypsoralen (MOP), with and without black light (BL; long-wavelength ultraviolet light) activation, was determined at the hypoxanthine-guanine phosphoribosyltransferase locus (8-azaguanine resistance) in Chinese hamster V79 cells and at the ouabain locus in mouse C3H/1OT1/2 cells. Transformation by these furocoumarins under the same activation conditions was also investigated in C3H/1OT1/2 cells. In V79 cells, AFB1 induced a 4-fold maximum mutation frequency over controls under BL activation at a concentration of 5 micrograms/ml; marmesin induced a 2-fold increased mutation frequency at 1.5 micrograms/ml; MOP induced a 19-fold increase at 10 micrograms/ml; chalepin induced a 3-fold increase at 5 micrograms/ml; and imperatorin induced a 20-fold increase at 10 micrograms/ml. Essentially no mutation was observed at the ouabain-resistant (Ouar) locus in C3H/1OT1/2 cells with any of these compounds. In the transformation assays, type II and type III foci were observed at a 1-microgram/ml addition of AFB1 with or without BL activation; while with MOP and imperatorin, these types of foci were observed only with BL activation. Marmesin, although relatively more cytotoxic than the other furocoumarins studied, with a 50% lethal dose of less than 0.5 micrograms/ml, was not as mutagenic or potentially carcinogenic as were AFB1, imperatorin, or MOP with BL activation. These furocoumarins are considered to be involved in the etiology of the high incidence of skin cancer in Nigeria. Our experiments reinforce that concept and suggest that exposure to these furocoumarins may constitute a real carcinogenic hazard.

  15. Clay catalysis of oligonucleotide formation: kinetics of the reaction of the 5'-phosphorimidazolides of nucleotides with the non-basic heterocycles uracil and hypoxanthine

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Ferris, J. P.

    1999-01-01

    The montmorillonite clay catalyzed condensation of activated monocleotides to oligomers of RNA is a possible first step in the formation of the proposed RNA world. The rate constants for the condensation of the phosphorimidazolide of adenosine were measured previously and these studies have been extended to the phosphorimidazolides of inosine and uridine in the present work to determine of substitution of neutral heterocycles for the basic adenine ring changes the reaction rate or regioselectivity. The oligomerization reactions of the 5'-phosphoromidazolides of uridine (ImpU) and inosine (ImpI) on montmorillonite yield oligo(U)s and oligo(I)s as long as heptamers. The rate constants for oligonucleotide formation were determined by measuring the rates of formation of the oligomers by HPLC. Both the apparent rate constants in the reaction mixture and the rate constants on the clay surface were calculated using the partition coefficients of the oligomers between the aqueous and clay phases. The rate constants for trimer formation are much greater than those dimer synthesis but there was little difference in the rate constants for the formation of trimers and higher oligomers. The overall rates of oligomerization of the phosphorimidazolides of purine and pyrimidine nucleosides in the presence of montmorillonite clay are the same suggesting that RNA formed on the primitive Earth could have contained a variety of heterocyclic bases. The rate constants for oligomerization of pyrimidine nucleotides on the clay surface are significantly higher than those of purine nucleotides since the pyrimidine nucleotides bind less strongly to the clay than do the purine nucleotides. The differences in the binding is probably due to Van der Waals interactions between the purine bases and the clay surface. Differences in the basicity of the heterocyclic ring in the nucleotide have little effect on the oligomerization process.

  16. ALDH16A1 is a novel non-catalytic enzyme that may be involved in the etiology of gout via protein–protein interactions with HPRT1

    PubMed Central

    Vasiliou, Vasilis; Sandoval, Monica; Backos, Donald S.; Jackson, Brian C.; Chen, Ying; Reigan, Philip; Lanaspa, Miguel A.; Johnson, Richard J.; Koppaka, Vindhya; Thompson, David C.

    2013-01-01

    Gout, a common form of inflammatory arthritis, is strongly associated with elevated uric acid concentrations in the blood (hyperuricemia). A recent study in Icelanders identified a rare missense single nucleotide polymorphism (SNP) in the ALDH16A1 gene, ALDH16A1*2, to be associated with gout and serum uric acid levels. ALDH16A1 is a novel and rather unique member of the ALDH superfamily in relation to its gene and protein structures. ALDH16 genes are present in fish, amphibians, protista, bacteria but absent from archaea, fungi and plants. In most mammalian species, two ALDH16A1 spliced variants (ALDH16A1, long form and ALDH16A1_v2, short form) have been identified and both are expressed in HepG-2, HK-2 and HK-293 human cell lines. The ALDH16 proteins contain two ALDH domains (as opposed to one in the other members of the superfamily), four transmembrane and one coiled-coil domains. The active site of ALDH16 proteins from bacterial, frog and lower animals contain the catalytically important cysteine residue (Cys-302); this residue is absent from the mammalian and fish orthologs. Molecular modeling predicts that both the short and long forms of human ALDH16A1 protein would lack catalytic activity but may interact with the hypoxanthine-guanine phosphoribosyltransferase (HPRT1) protein, a key enzyme involved in uric acid metabolism and gout. Interestingly, such protein-protein interactions with HPRT1 are predicted to be impaired for the long or short forms of ALDH16A1*2. These results lead to the intriguing possibility that association between ALDH16A1 and HPRT1 may be required for optimal HPRT activity with disruption of this interaction possibly contributing to the hyperuricemia seen in ALDH16A1*2 carriers. PMID:23348497

  17. CYTOLOGICAL STUDIES ON THE ANTIMETABOLITE ACTION OF 2,6-DIAMINOPURINE IN VICIA FABA ROOTS

    PubMed Central

    Setterfield, George; Duncan, Robert E.

    1955-01-01

    At a concentration of 9.6 x 10–5 M, 2,6-diaminopurine (DAP) completely inhibited cell enlargement, cell division, and DNA synthesis (determined by microphotometric measurement of Feulgen dye) in Vicia faba roots. Inhibition of cell enlargement was partially reversed by adenine, guanine, xanthine, adenosine, and desoxyadenosine. Guanine and the nucleosides gave the greatest reversal, suggesting that one point of DAP action upon cell enlargement is a disruption of nucleoside or nucleotide metabolism, possibly during pentosenucleic acid synthesis. DAP inhibited cell division by preventing onset of prophase. At the concentrations used it had no significant effect on the rate or appearance of mitoses in progress. Inhibition of entrance into prophase was not directly due to inhibition of DNA synthesis since approximately half of the inhibited nuclei had the doubled (4C) amount of DNA. Adenine competitively reversed DAP inhibition of cell division, giving an inhibition index of about 0.5. Guanine gave a slight reversal while xanthine, hypoxanthine, adenosine, and desoxyadenosine were inactive. A basic need for free adenine for the onset of mitosis was suggested by this reversal pattern. Meristems treated with DAP contained almost no nuclei with intermediate amounts of DNA, indicating that DAP prevented the onset of DNA synthesis while allowing that underway to reach completion. The inhibition of DNA synthesis was reversed by adenine, adenosine, and desoxyadenosine although synthesis appeared to proceed at a slower rate in reversals than in controls. Inhibition of DNA synthesis by DAP is probably through nucleoside or nucleotide metabolism. A small general depression of DNA content of nuclei in the reversal treatments was observed. This deviation from DNA "constancy" cannot be adequately explained at present although it may be a result of direct incorporation of DAP into DNA. The possible purine precursor, 4-amino-5-imidazolecarboxamide gave no reversal of DAP inhibition of cell elongation and cell division and only a slight possible reversal of inhibition of DNA synthesis. PMID:13263329

  18. Modelling cortical cataractogenesis 22: is in vitro reduction of damage in model diabetic rat cataract by taurine due to its antioxidant activity?

    PubMed

    Kilic, F; Bhardwaj, R; Caulfeild, J; Trevithick, J R

    1999-09-01

    The protective effect of taurine in model in vitro diabetic cataract and the mechanism of this effect were investigated in isolated rat lenses. Isolated rat lenses were incubated in medium 199 in elevated glucose (55.6 m m) with taurine (5 m m). Taurine concentrations in the lenses were determined by amino acid analysis. Accumulative leakage of the intracellular enzyme lactate dehydrogenase (LDH) was used to estimate damage to the lens, as previously reported. In the clear lenses, prior to vacuole formation, after 1 or 2 days of incubation, the taurine and amino acids in lenses decreased progressively in concentration. In lenses incubated with 5 m m taurine, the level of taurine was increased towards that of control lenses. In taurine-treated lenses LDH leakage was significantly decreased, and lens clarity was maintained, similarly to that found previously for vitamin C and lipoic acid. To test whether taurine has similar antioxidant activity, we tested its ability to decrease luminol luminescence generated by (1) superoxide from hypoxanthine/xanthine oxidase and (2) peroxide from diluted glucose/glucose oxidase. For either superoxide or peroxide, the luminescence was decreased to zero, as a function of increasing taurine concentration, at 30 m m, approximately the physiological concentration of taurine in the lens. Spin trapping confirmed that taurine scavenged superoxide. This is consistent with a role for taurine as an important antioxidant protecting the lens against oxidative insults. Amino acids also had antioxidant activity in this assay, and as a group, when all activities were summed, their loss also contributed significantly to the antioxidant loss. Taken in conjunction with Wolff and Crabbe's observation of increased free radical generation by glucose auto-oxidation in diabetes, this suggests a push-pull mechanism for increased oxidative stress in diabetic cataract, involving both increased free radicals and decreased radical scavenging antioxidants. Copyright 1999 Academic Press.

  19. Distinct Purine Distribution in Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Callahan, Michael P.; Smith, Karen E.; Cleaves, Henderson J.; Ruzicka, Josef; Stern, Jennifer C.; Glavin, Daniel P.; House, Christopher H.; Dworkin, Jason P.

    2011-01-01

    Carbonaceous chondrite meteorites are known to contain a diverse suite of organic compounds, many of which are essential components of biochemistry. Amino acids, which are the monomers of proteins, have been extensively studied in such meteorites (e.g. Botta and Bada 2002; Pizzarello et aI., 2006). The origin of amino acids in meteorites has been firmly established as extraterrestrial based on their detection typically as racemic mixtures of amino acids, the presence of many non-protein amino acids, and non-terrestrial values for compound-specific deuterium, carbon, and nitrogen isotopic measurements. In contrast to amino acids, nucleobases in meteorites have been far less studied. Nucleobases are substituted one-ring (pyrimidine) or two-ring (purine) nitrogen heterocyclic compounds and serve as the information carriers of nucleic acids and in numerous coenzymes. All of the purines (adenine, guanine, hypoxanthine, and xanthine) and pyrimidines (uracil) previously reported in meteorites are biologically common and could be interpreted as the result of terrestrial contamination (e.g. van del' Velden and Schwartz, 1974.) Unlike other meteoritic organics, there have been no observations of stochastic molecular diversity of purines and pyrimidines in meteorites, which has been a criterion for establishing extraterrestrial origin. Maltins et al. (2008) performed compound-specific stable carbon isotope measurements for uracil and xanthine in the Murchison meteorite. They assigned a non-terrestrial origin for these nucleobases; however, the possibility that interfering indigenous molecules (e.g. carboxylic acids) contributed to the 13C-enriched isotope values for these nucleobases cannot be completely ruled out. Thus, the origin of these meteoritic nucleobases has never been established unequivocally. Here we report on our investigation of extracts of II different carbonaceous chondrites covering various petrographic types (Cl, CM, and CR) and degrees of aqueous alteration (l, 2, and 3) and one ureilite. Analysis via liquid chromatography coupled with electrospray triple-stage mass spectrometry or orbitrap mass spectrometry employed a targeted approach for analysis focused on the five canonical RNA/DNA nucleobases as well as 14 non-canonical pyrimidines and purines, which have bcen observed under plausible prebiotic reactions.

  20. Evaluation of 7-arylaminopyrazolo[1,5-a]pyrimidines as anti-Plasmodium falciparum, antimalarial, and Pf-dihydroorotate dehydrogenase inhibitors.

    PubMed

    Azeredo, Luís Felipe S P; Coutinho, Julia P; Jabor, Valquiria A P; Feliciano, Patricia R; Nonato, Maria Cristina; Kaiser, Carlos R; Menezes, Carla Maria S; Hammes, Amanda S O; Caffarena, Ernesto Raul; Hoelz, Lucas V B; de Souza, Nicolli B; Pereira, Glaécia A N; Cerávolo, Isabela P; Krettli, Antoniana U; Boechat, Nubia

    2017-01-27

    Malaria remains one of the most serious global infectious diseases. An important target for antimalarial chemotherapy is the enzyme dihydroorotate dehydrogenase from Plasmodium falciparum (PfDHODH), which is responsible for the conversion of dihydroorotate to orotate in the de novo pyrimidine biosynthetic pathway. In this study, we have designed and synthesized fifteen 7-arylpyrazolo[1,5-a]pyrimidine derivatives using ring bioisosteric replacement and molecular hybridization of functional groups based on the highly active 5-methyl-N-(naphthalen-2-yl)-2-(trifluoromethyl)- [1,2,4]triazolo[1,5-a]pyrimidin-7-amine. The compounds were tested against Plasmodium falciparum, as antimalarials in mice with P. berghei, and as inhibitors of PfDHODH. Thirteen compounds were found to be active against P. falciparum, with IC 50 values ranging from 1.2 ± 0.3 to 92 ± 26 μM in the anti-HRP2 and hypoxanthine assays. Four compounds showed the highest selective index (SI), which is a ratio between cytotoxicity and activity in vitro. The inhibition of PfDHODH showed that compound 30 (R 2  = CH 3 ; R 5  = CF 3 ; Ar = 7-β-naphthyl) displayed higher and selective inhibitory activity, with IC 50  = 0.16 ± 0.01 μM, followed by 25 (R 2  = CH 3 ; R 5  = CH 3 ; Ar = 7-β-Naphthyl) and 19 (R 2  = CF 3 ; R 5  = CF 3 ; Ar = 7-β-naphthyl), with IC 50  = 4 ± 1 μM and 6 ± 1 μM, respectively. The trifluoromethyl group at the 2- or 5-positions of the pyrazolo[1,5-a]pyrimidine ring led to increased drug activity. The docking results agreed with the values obtained from enzymatic assays. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Role of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in the renal 2′,3′-cAMP-adenosine pathway

    PubMed Central

    Gillespie, Delbert G.; Mi, Zaichuan; Cheng, Dongmei; Bansal, Rashmi; Janesko-Feldman, Keri; Kochanek, Patrick M.

    2014-01-01

    Energy depletion increases the renal production of 2′,3′-cAMP (a positional isomer of 3′,5′-cAMP that opens mitochondrial permeability transition pores) and 2′,3′-cAMP is converted to 2′-AMP and 3′-AMP, which in turn are metabolized to adenosine. Because the enzymes involved in this “2′,3′-cAMP-adenosine pathway” are unknown, we examined whether 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) participates in the renal metabolism of 2′,3′-cAMP. Western blotting and real-time PCR demonstrated expression of CNPase in rat glomerular mesangial, preglomerular vascular smooth muscle and endothelial, proximal tubular, thick ascending limb and collecting duct cells. Real-time PCR established the expression of CNPase in human glomerular mesangial, proximal tubular and vascular smooth muscle cells; and the level of expression of CNPase was greater than that for phosphodiesterase 4 (major enzyme for the metabolism of 3′,5′-cAMP). Overexpression of CNPase in rat preglomerular vascular smooth muscle cells increased the metabolism of exogenous 2′,3′-cAMP to 2′-AMP. Infusions of 2′,3′-cAMP into isolated CNPase wild-type (+/+) kidneys increased renal venous 2′-AMP, and this response was diminished by 63% in CNPase knockout (−/−) kidneys, whereas the conversion of 3′,5′-cAMP to 5′-AMP was similar in CNPase +/+ vs. −/− kidneys. In CNPase +/+ kidneys, energy depletion (metabolic poisons) increased kidney tissue levels of adenosine and its metabolites (inosine, hypoxanthine, xanthine, and uric acid) without accumulation of 2′,3′-cAMP. In contrast, in CNPase −/− kidneys, energy depletion increased kidney tissue levels of 2′,3′-cAMP and abolished the increase in adenosine and its metabolites. In conclusion, kidneys express CNPase, and renal CNPase mediates in part the renal 2′,3′-cAMP-adenosine pathway. PMID:24808540

  2. Effect of training load structure on purine metabolism in middle-distance runners.

    PubMed

    Zieliński, Jacek; Kusy, Krzysztof; Rychlewski, Tadeusz

    2011-09-01

    There are no studies analyzing the effect of training loads on purine metabolism during long training periods. The study's purpose was to evaluate the effect of training load changes and subsequent detraining on purine metabolism in middle-distance runners during a 1-yr cycle. In four characteristic points of the training cycle, loads assigned to five intensity zones, pre- and postexercise plasma hypoxanthine (Hx) and uric acid, and erythrocyte Hx-guanine phosphoribosyltransferase (HGPRT) activity were determined in 11 male middle-distance runners at the national level, practicing competitive sport for 8.1 ± 0.3 yr and with a mean age of 22.3 ± 0.7 yr, body mass of 73.0 ± 3.4 kg, and body height of 180 ± 2.2 cm. In the competition phase (CP), training loads in aerobic compensation and threshold zones decreased by 65.4% and by 20.5%, respectively. At the same time, anaerobic training loads increased by 132.5% in the VO(2max) zone and by 74.6% in the lactic acid tolerance zone. Postexercise Hx decreased significantly in CP by 6.2 μmol·L(-1). and increased in the transition phase (TP) by 17.4 μmol·L(-1). Both pre- and postexercise HGPRT activity increased significantly in CP by 9.3 nmol·mg(-1)·h(-1). and by 4.9 nmol·mg(-1)·h(-1). , respectively, and decreased significantly in TP by 10.6 nmol·mg(-1)·h(-1). and by 12.0 nmol·mg(-1)·h(-1). , respectively. A significant uric acid increase of 54 μmol·L(-1). was revealed merely in TP. The effect of anaerobic training on purine metabolism is significant despite of a very short total duration of anaerobic loads. Elevated preexercise HGPRT activity in CP suggests adaptation changes consisting in a "permanent readiness" for purine salvage. The detraining in TP leads to reverse adaptation changes. Probably, plasma Hx concentration and erythrocyte HGPRT activity may be considered as a useful measure of training status.

  3. Effect of carbon monoxide on gene expression in cerebrocortical astrocytes: Validation of reference genes for quantitative real-time PCR.

    PubMed

    Oliveira, Sara R; Vieira, Helena L A; Duarte, Carlos B

    2015-09-15

    Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) is a widely used technique to characterize changes in gene expression in complex cellular and tissue processes, such as cytoprotection or inflammation. The accurate assessment of changes in gene expression depends on the selection of adequate internal reference gene(s). Carbon monoxide (CO) affects several metabolic pathways and de novo protein synthesis is crucial in the cellular responses to this gasotransmitter. Herein a selection of commonly used reference genes was analyzed to identify the most suitable internal control genes to evaluate the effect of CO on gene expression in cultured cerebrocortical astrocytes. The cells were exposed to CO by treatment with CORM-A1 (CO releasing molecule A1) and four different algorithms (geNorm, NormFinder, Delta Ct and BestKeeper) were applied to evaluate the stability of eight putative reference genes. Our results indicate that Gapdh (glyceraldehyde-3-phosphate dehydrogenase) together with Ppia (peptidylpropyl isomerase A) is the most suitable gene pair for normalization of qRT-PCR results under the experimental conditions used. Pgk1 (phosphoglycerate kinase 1), Hprt1 (hypoxanthine guanine phosphoribosyl transferase I), Sdha (Succinate Dehydrogenase Complex, Subunit A), Tbp (TATA box binding protein), Actg1 (actin gamma 1) and Rn18s (18S rRNA) genes presented less stable expression profiles in cultured cortical astrocytes exposed to CORM-A1 for up to 60 min. For validation, we analyzed the effect of CO on the expression of Bdnf and bcl-2. Different results were obtained, depending on the reference genes used. A significant increase in the expression of both genes was found when the results were normalized with Gapdh and Ppia, in contrast with the results obtained when the other genes were used as reference. These findings highlight the need for a proper and accurate selection of the reference genes used in the quantification of qRT-PCR results in studies on the effect of CO in gene expression. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Appropriate 'housekeeping' genes for use in expression profiling the effects of environmental estrogens in fish

    PubMed Central

    Filby, Amy L; Tyler, Charles R

    2007-01-01

    Background Attempts to develop a mechanistic understanding of the effects of environmental estrogens on fish are increasingly conducted at the level of gene expression. Appropriate application of real-time PCR in such studies requires the use of a stably expressed 'housekeeping' gene as an internal control to normalize for differences in the amount of starting template between samples. Results We sought to identify appropriate genes for use as internal controls in experimental treatments with estrogen by analyzing the expression of eight functionally distinct 'housekeeping' genes (18S ribosomal RNA [18S rRNA], ribosomal protein l8 [rpl8], elongation factor 1 alpha [ef1a], glucose-6-phosphate dehydrogenase [g6pd], beta actin [bactin], glyceraldehyde-3-phosphate dehydrogenase [gapdh], hypoxanthine phosphoribosyltransferase 1 [hprt1], and tata box binding protein [tbp]) following exposure to the environmental estrogen, 17α-ethinylestradiol (EE2), in the fathead minnow (Pimephales promelas). Exposure to 10 ng/L EE2 for 21 days down-regulated the expression of ef1a, g6pd, bactin and gapdh in the liver, and bactin and gapdh in the gonad. Some of these effects were gender-specific, with bactin in the liver and gapdh in the gonad down-regulated by EE2 in males only. Furthermore, when ef1a, g6pd, bactin or gapdh were used for normalization, the hepatic expression of two genes of interest, vitellogenin (vtg) and cytochrome P450 1A (cyp1a) following exposure to EE2 was overestimated. Conclusion Based on the data presented, we recommend 18S rRNA, rpl8, hprt1 and/or tbp, but not ef1a, g6pd, bactin and/or gapdh, as likely appropriate internal controls in real-time PCR studies of estrogens effects in fish. Our studies show that pre-validation of control genes considering the scope and nature of the experiments to be performed, including both gender and tissue type, is critical for accurate assessments of the effects of environmental estrogens on gene expression in fish. PMID:17288598

  5. Ethnomedicinal survey and in vitro anti-plasmodial activity of the palm Borassus aethiopum Mart.

    PubMed

    Gruca, Marta; Yu, Wanwan; Amoateng, Patrick; Nielsen, Morten Agertoug; Poulsen, Thomas B; Balslev, Henrik

    2015-12-04

    Malaria remains a major global health threat, with the heaviest burden of disease in sub-Saharan Africa. Effective treatment is not available in many affected areas, and the Plasmodium falciparum parasite is becoming resistant to existing drugs. Alternative therapies are necessary to overcome these challenges. Borassus aethiopum is the third most used palm species in traditional medicines in Africa. Yet, there is only limited information substantiating medicinal properties of the palm. The objective of this study was to document medicinal uses of B. aethiopum and investigate anti-plasmodial activity of the palm extracts used in traditional medicine to treat malaria. The fieldwork and collection of samples was done in Ghana in the Greater Accra, Brong Ahafo, and Volta regions. Our ethnomedicinal survey did not specifically focus on medicinal uses against malaria; any medicinal application of B. aethiopum was of interest. Data collection employed a structured questionnaire, open-ended questions, and group discussion. The experimental extraction of samples was carried out using three common solvents: distilled water, absolute ethanol, and dichloromethane (CH2Cl2). Anti-plasmodial activity of compounds was determined against erythrocytic stages of the FCR3 strain of P. falciparum by a [3H]-hypoxanthine incorporation assay. A total of 37 use records were documented regarding the medicinal uses of B. aethiopum for the management of 24 different disorders. The highest medicinal use value was recorded for the use of B. aethiopum against malaria, and a subsequent laboratory investigation focused on evaluating anti-plasmodial activity of the palm. Several root and leaf extracts displayed anti-plasmodial activity, with the highest (78% at 50 μg/mL) elicited by one of the dichloromethane root extracts. Our results demonstrate the value of integrating ethnobotanical and pharmacological research in the study of beneficial effects of palm products on human health. While the high inhibitory activity found in dichloromethane extracts cannot validate the ethnomedicinal use, the anti-plasmodial effect observed cannot be nullified. We brought preliminary evidence that this palm is a promising source of alternative medicines that could contribute to improving health conditions in malaria endemic areas of sub-Saharan Africa. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. The physico-chemical "anatomy" of the tautomerization through the DPT of the biologically important pairs of hypoxanthine with DNA bases: QM and QTAIM perspectives.

    PubMed

    Brovarets', Ol'ha O; Zhurakivsky, Roman O; Hovorun, Dmytro M

    2013-10-01

    The biologically important tautomerization of the Hyp·Cyt, Hyp·Thy and Hyp·Hyp base pairs to the Hyp·Cyt, Hyp·Thy and Hyp·Hyp base pairs, respectively, by the double proton transfer (DPT) was comprehensively studied in vacuo and in the continuum with a low dielectric constant (ε = 4) corresponding to hydrophobic interfaces of protein-nucleic acid interactions by combining theoretical investigations at the B3LYP/6-311++G(d,p) level of QM theory with QTAIM topological analysis. Based on the sweeps of the energetic, electron-topological, geometric and polar parameters, which describe the course of the tautomerization along the intrinsic reaction coordinate (IRC), it was proved that the tautomerization through the DPT is concerted and asynchronous process for the Hyp·Cyt and Hyp·Thy base pairs, while concerted and synchronous for the Hyp·Hyp homodimer. The continuum with ε = 4 does not affect qualitatively the course of the tautomerization reaction for all studied complexes. The nine key points along the IRC of the Hyp·Cyt↔Hyp·Cyt and Hyp·Thy↔Hyp·Thy tautomerizations and the six key points of the Hyp·Hyp↔Hyp·Hyp tautomerization have been identified and fully characterized. These key points could be considered as electron-topological "fingerprints" of concerted asynchronous (for Hyp·Cyt and Hyp·Thy) or synchronous (for Hyp·Hyp) tautomerization process via the DPT. It was found, that in the Hyp·Cyt, Hyp·Thy, Hyp·Hyp and Hyp·Hyp base pairs all H-bonds are significantly cooperative and mutually reinforce each other, while the C2H…O2 H-bond in the Hyp·Cyt base pair and the O6H…O4 H-bond in the Hyp·Thy base pair behave anti-cooperatively, i.e., they become weakened, while two others become strengthened.

  7. Quantification of nitrogenous bases, DNA and Collagen type I for the estimation of the postmortem interval in bone remains.

    PubMed

    Pérez-Martínez, Cristina; Pérez-Cárceles, María D; Legaz, Isabel; Prieto-Bonete, Gemma; Luna, Aurelio

    2017-12-01

    Estimating the postmortem interval (PMI) is an important goal in forensic medicine and continues to be one of the most difficult tasks of the forensic investigator. Few accurate methods exist to determine the time since death of skeletonized human remains due to the great number of intrinsic and external factors that may alter the normal course of postmortem change. The purpose of this research was to assess the usefulness of various biochemical parameters, such as nitrogenous bases (adenine, guanine, purines, cytosine, thymine, pyrimidines, hypoxanthine and xanthine), DNA and Collagen Type I peptides to estimate PMI. These parameters were analysed in cortical bone for the establishment of data in a total of 80 long bones of 80 corpses (50 males, 30 females) with a mean age of 68.31 years (S.D.=18.021, range=20-97). The bones were removed from the cement niches of a cemetery in Murcia (south-eastern Spain), where they had lain for between 5 and 47 years (mean time 23.83 years, S.D.=10.85). Our results show a significant decrease in adenine (p=0.0004), guanine (p=0.0001), purines (p=0.0001), cytosine (p=0.0001), thymine (p=0.0226), pyrimidines (p=0.0002) and the number of peptides of Collagen type I (p=0.0053) in those with a PMI≥20 years. In a curvilinear regression analysis the results show that 30.6% of the variable PMI could be explained by guanine concentration, in bones with a PMI<20 years, while in cases of a PMI≥20 years, the variable that best explained membership of this group was adenine (38.0%). In the discriminant analysis applied to the all the variables as a function of PMI when two groups were established, 86.7% of the cases were correctly classified. These results show that the quantification of Collagen type I proteins and nitrogenous bases could be used as a complementary tool, together with other analyses, in the estimation of PMI. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Rhaponticum acaule (L) DC essential oil: chemical composition, in vitro antioxidant and enzyme inhibition properties.

    PubMed

    Mosbah, Habib; Chahdoura, Hassiba; Kammoun, Jannet; Hlila, Malek Besbes; Louati, Hanen; Hammami, Saoussen; Flamini, Guido; Achour, Lotfi; Selmi, Boulbaba

    2018-03-05

    α-glucosidase is a therapeutic target for diabetes mellitus (DM) and α-glucosidase inhibitors play a vital role in the treatments for the disease. Furthermore, xanthine oxidase (XO) is a key enzyme that catalyzes hypoxanthine and xanthine to uric acid which at high levels can lead to hyperuricemia which is an important cause of gout. Pancreatic lipase (PL) secreted into the duodenum plays a key role in the digestion and absorption of fats. For its importance in lipid digestion, PL represents an attractive target for obesity prevention. The flowers essential oil of Rhaponticum acaule (L) DC (R. acaule) was characterized using gas chromatography-mass spectrometry (GC-MS). The antioxidant activities of R. acaule essential oil (RaEO) were also determined using 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), reducing power, phosphomolybdenum, and DNA nicking assays. The inhibitory power of RaEO against α-glucosidase, xanthine oxidase and pancreatic lipase was evaluated. Enzyme kinetic studies using Michaelis-Menten and the derived Lineweaver-Burk (LB) plots were performed to understand the possible mechanism of inhibition exercised by the components of this essential oil. The result revealed the presence of 26 compounds (97.4%). The main constituents include germacrene D (49.2%), methyl eugenol (8.3%), (E)-β-ionone (6.2%), β-caryophyllene (5.7%), (E,E)-α-farnesene (4.2%), bicyclogermacrene (4.1%) and (Z)-α-bisabolene (3.7%). The kinetic inhibition study showed that the essential oil demonstrated a strong α-glucosidase inhibiton and it was a mixed inhibitor. On the other hand, our results evidenced that this oil exhibited important xanthine oxidase inhibitory effect, behaving as a non-competitive inhibitor. The essential oil inhibited the turkey pancreatic lipase, with maximum inhibition of 80% achieved at 2 mg/mL. Furthermore, the inhibition of turkey pancreatic lipase by RaEO was an irreversible one. The results revealed that the RaEO is a new promising potential source of antioxidant compounds, endowed with good practical applications for human health.

  9. Supplemented base medium containing Amburana cearensis associated with FSH improves in vitro development of isolated goat preantral follicles.

    PubMed

    Gouveia, B B; Macedo, T J S; Santos, J M S; Barberino, R S; Menezes, V G; Müller, M C; Almeida, J R G S; Figueiredo, J R; Matos, M H T

    2016-09-15

    The effects of Amburana cearensis ethanolic extract, with or without addition of a mix of supplements associated or not with FSH, on in vitro morphology and development of caprine secondary follicles were evaluated. In experiment 1, isolated follicles (250 μm in diameter) were cultured for 12 days in alpha-modified minimal essential medium (α-MEM) alone (control) or in medium composed of different concentrations of A. cearensis extract (Amb 0.1; 0.2, or 0.4 mg/mL). In experiment 2, culture media were α-MEM or Amb 0.2 mg/mL (both without supplements), or these same media supplemented with BSA, insulin, transferrin, selenium, glutamine, hypoxanthine, and ascorbic acid (referred as α-MEM(+) and Amb 0.2(+), respectively), or these last groups also supplemented with sequential FSH (100 ng/mL from Day 0 to Day 6; 500 ng/mL from Day 6 to Day 12), constituting groups α-MEM(+) + FSH and Amb 0.2(+) + FSH. At the end of culture in experiment 1, control medium (α-MEM) and Amb 0.2 mg/mL had higher percentages (P < 0.05) of morphologically normal follicles and percentage of fully grown oocytes, i.e., oocyte greater than 110 μm, compared to the other A. cearensis extract concentrations. In experiment 2, all supplemented media had higher percentages (P < 0.05) of normal follicles and antrum formation than nonsupplemented media. In addition, follicles cultured in Amb 0.2(+) + FSH showed an average increase in diameter higher (P < 0.05) than the other treatments. Oocytes cultured in both treatments supplemented with FSH showed greater glutathione and active mitochondria levels than nonsupplemented media but similar to the other treatments. In conclusion, A. cearensis extract (0.2 mg/mL) added by supplements and FSH improves follicular growth. Therefore, it can be an alternative culture medium for goat preantral follicle development. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Functional and Structural Characterization of Purine Nucleoside Phosphorylase from Kluyveromyces lactis and Its Potential Applications in Reducing Purine Content in Food

    PubMed Central

    Mahor, Durga; Priyanka, Anu; Prasad, Gandham S; Thakur, Krishan Gopal

    2016-01-01

    Consumption of foods and beverages with high purine content increases the risk of hyperuricemia, which causes gout and can lead to cardiovascular, renal, and other metabolic disorders. As patients often find dietary restrictions challenging, enzymatically lowering purine content in popular foods and beverages offers a safe and attractive strategy to control hyperuricemia. Here, we report structurally and functionally characterized purine nucleoside phosphorylase (PNP) from Kluyveromyces lactis (KlacPNP), a key enzyme involved in the purine degradation pathway. We report a 1.97 Å resolution crystal structure of homotrimeric KlacPNP with an intrinsically bound hypoxanthine in the active site. KlacPNP belongs to the nucleoside phosphorylase-I (NP-I) family, and it specifically utilizes 6-oxopurine substrates in the following order: inosine > guanosine > xanthosine, but is inactive towards adenosine. To engineer enzymes with broad substrate specificity, we created two point variants, KlacPNPN256D and KlacPNPN256E, by replacing the catalytically active Asn256 with Asp and Glu, respectively, based on structural and comparative sequence analysis. KlacPNPN256D not only displayed broad substrate specificity by utilizing both 6-oxopurines and 6-aminopurines in the order adenosine > inosine > xanthosine > guanosine, but also displayed reversal of substrate specificity. In contrast, KlacPNPN256E was highly specific to inosine and could not utilize other tested substrates. Beer consumption is associated with increased risk of developing gout, owing to its high purine content. Here, we demonstrate that KlacPNP and KlacPNPN256D could be used to catalyze a key reaction involved in lowering beer purine content. Biochemical properties of these enzymes such as activity across a wide pH range, optimum activity at about 25°C, and stability for months at about 8°C, make them suitable candidates for food and beverage industries. Since KlacPNPN256D has broad substrate specificity, a combination of engineered KlacPNP and other enzymes involved in purine degradation could effectively lower the purine content in foods and beverages. PMID:27768715

  11. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamat, S.S.; Swaminathan, S.; Bagaria, A.

    2011-03-22

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with kcat and kcat/Km values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. Themore » apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction mechanism and the identity of the rate-limiting steps.« less

  12. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Kamat; A Bagaria; D Kumaran

    2011-12-31

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with k{sub cat} and k{sub cat}/K{sub m} values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{supmore » -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction mechanism and the identity of the rate-limiting steps.« less

  13. Differential expression of hsp70 stress proteins in human endothelial cells exposed to heat shock and hydrogen peroxide.

    PubMed

    Jornot, L; Mirault, M E; Junod, A F

    1991-09-01

    The potential role of oxidative stress conditions in the induction of heat shock proteins was studied in human umbilical vein endothelial cells. We compared the effects of temperature (43 to 45 degrees C), exposure to hydrogen peroxide (H2O2) and oxygen metabolites generated by the enzyme system hypoxanthine-xanthine oxidase (O2- plus H2O2), as well as exposure to 95% O2, on the expression of the major 70-kD heat shock proteins (hsp70). Northern blot analysis indicated that: (1) heat shock induced a rapid and marked increase in hsp70 mRNA levels that reached a maximum during recovery from a 30-min exposure to 45 degrees C; (2) treatment with a 5-mM H2O2 bolus or 50 mU/ml xanthine oxidase also increased hsp70 mRNA levels but to a lesser extent than heat shock (about 10 and 25 times less, respectively); (3) no change was detected after a 5-day exposure to 95% O2. Nuclear run on transcription data and kinetics of mRNA decay in the presence of actinomycin D indicated that the observed increase in hsp70 mRNA levels in both heat-shocked and H2O2-treated cells was mainly due to a transcriptional induction. The kinetics of hsp70 synthesis correlated with the accumulation of hsp70 mRNA. Two-dimensional gel electrophoresis and immunologic analysis of these heat shock proteins revealed a series of at least five distinct hsp70 isoforms induced in heat-shocked cells, whereas only a specific subset of these proteins, mainly one acidic isoform, was induced in very low amounts in response to H2O2 treatment. These results clearly indicate that the endothelial cell responses to oxidative stress and heat shock differ in both qualitative and quantitative terms in respect to hsp70 induction. They also suggest that the intensity of this response to oxidative stress conditions may vary depending on the nature of the oxidative challenge.

  14. Genotoxicity of 2,6- and 3,5-Dimethylaniline in Cultured Mammalian Cells: The Role of Reactive Oxygen Species

    PubMed Central

    Chao, Ming-Wei; Kim, Min Young; Wogan, Gerald N.

    2012-01-01

    Several alkylanilines with structures more complex than toluidines have been associated epidemiologically with human cancer. Their mechanism of action remains largely undetermined, and there is no reported evidence that it replicates that of multicyclic aromatic amines even though the principal metabolic pathways of P450-mediated hydroxylation and phase II conjugation are very similar. As a means to elucidate their mechanisms of action, lethality and mutagenicity in the adenine phosphoribosyltransferase (aprt +/−) gene induced in several Chinese hamster ovary cell types by 2,6- and 3,5-dimethylaniline (2,6-DMA, 3,5-DMA) and their N- and ring-hydroxyl derivatives (N-OH-2,6-DMA, N-OH-3,5-DMA, 2,6-DMAP, 3,5-DMAP) were assessed. Dose-response relationships were determined in the parental AA8 cell line, its repair-deficient UV5 subclone and other repair-deficient 5P3NAT2 or -proficient 5P3NAT2R9 subclones engineered to express mouse cytochrome P4501A2 (CYP1A2) and human N-acetyltransferase (NAT2), and also in AS52 cells harboring the bacterial guanine-hypoxanthine phosphoribosyltransferase (gpt) gene. Mutations in the gpt gene of AS52 cells were characterized and found to be dominated by G:C to A:T and A:T to G:C transitions. Separately, treatment of AS52 cells with N-OH-2,6-DMA, N-OH-3,5-DMA, 2,6-DMAP, 3,5-DMAP, and 3,5-DMAP led to intracellular production of reactive oxygen species (ROS) for at least 24h after removal of the mutagens in every case. Using the comet assay, DNA strand breaks were observed in a dose-dependent manner in AS52 cells when treated with each of the four N-OH-2,6-DMA, N-OH-3,5-DMA, 2,6-DMAP, and 3,5-DMAP derivatives. Comparative evaluation of the results indicates that the principal mechanism of mutagenic action is likely to be through redox cycling of intracellularly bound aminophenol/quinone imine structures to generate ROS rather than through formation of covalent DNA adducts. PMID:22831970

  15. Bilirubin UDP-Glucuronosyltransferase 1A1 (UGT1A1) Gene Promoter Polymorphisms and HPRT, Glycophorin A, and Micronuclei Mutant Frequencies in Human Blood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, D; Hall, I J; Eastmond, D

    2004-10-06

    A dinucleotide repeat polymorphism (5-, 6-, 7-, or 8-TA units) has been identified within the promoter region of UDP-glucuronosyltransferase 1A1 gene (UGT1A1). The 7-TA repeat allele has been associated with elevated serum bilirubin levels that cause a mild hyperbilirubinemia (Gilbert's syndrome). Studies suggest that promoter transcriptional activity of UGT1A1 is inversely related to the number of TA repeats and that unconjugated bilirubin concentration increases directly with the number of TA repeat elements. Because bilirubin is a known antioxidant, we hypothesized that UGT1A1 repeats associated with higher bilirubin may be protective against oxidative damage. We examined the effect of UGT1A1 genotypemore » on somatic mutant frequency in the hypoxanthine-guanine phosphoribosyl-transferase (HPRT) gene in human lymphocytes and the glycophorin A (GPA) gene of red blood cells (both N0, NN mutants), and the frequency of lymphocyte micronuclei (both kinetochore (K) positive or micronuclei K negative) in 101 healthy smoking and nonsmoking individuals. As hypothesized, genotypes containing 7-TA and 8-TA displayed marginally lower GPA{_}NN mutant frequency relative to 5/5, 5/6, 6/6 genotypes (p<0.05). In contrast, our analysis showed that lower expressing UGT1A1 alleles (7-TA and 8-TA) were associated with modestly increased HPRT mutation frequency (p<0.05) while the same low expression genotypes were not significantly associated with micronuclei frequencies (K-positive or K-negative) when compared to high expression genotypes (5-TA and 6-TA). We found weak evidence that UGT1A1 genotypes containing 7-TA and 8-TA were associated with increased GPA{_}N0 mutant frequency relative to 5/5, 5/6, 6/6 genotypes (p<0.05). These data suggest that UGT1A1 genotype may modulate somatic mutation of some types, in some cell lineages, by a mechanism not involving bilirubin antioxidant activity. More detailed studies examining UGT1A1 promoter variation, oxidant/antioxidant balance and genetic damage will be needed.« less

  16. Mutagenicity of food-derived carcinogens and the effect of antioxidant vitamins.

    PubMed

    Montgomery, Beverly A; Murphy, Jessica; Chen, James J; Desai, Varsha G; McGarrity, Lynda; Morris, Suzanne M; Casciano, Daniel A; Aidoo, Anane

    2002-01-01

    The food-derived heterocyclic amines (HCAs) 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) are mutagenic in the Ames test and produce tumors in laboratory animals, including monkeys. These HCAs have also been shown to induce gene mutations in vivo. To assess the antimutagenic effects of dietary antioxidant vitamins, beta-carotene, ascorbic acid (vitamin C), and alpha-tocopherol (vitamin E), on food-borne mutagenes/carcinogens, we evaluated the mutagenic activity of the compounds alone or combined with antioxidant vitamins. We utilized the rat lymphocyte mutation assay at the hypoxanthine guanine phosphoribosyl transferase (Hprt) locus. Female Fischer 344 rats treated with different doses (0, 2.5, 5.0, 25.0, and 50.0 mg/kg) of the carcinogens were sacrificed 5 wk after mutagen treatment. Although IQ and MeIQ slightly increased mutation frequency (MF) at some doses, a significant (P < 0.0009) increase in MF was found in animals exposed to MeIQx at 25 mg/kg. PhIP was the most mutagenic of the HCAs, with increases (P < 0.0001) in MF detected at all dose levels compared with controls. Because PhIP was the most mutagenic, it was selected for studies using the dietary antioxidant vitamins. Addition of antioxidant vitamins, singly or in a mixture, caused a significant (P < 0.0001) decrease in PhIP-induced Hprt MF. Vitamin E was the most effective at decreasing Hprt MF. In addition, we determined whether carcinogen metabolism would be affected by ingestion of vitamins. The activities of endogenous detoxification enzymes, glutathione S-transferase and glutathione peroxidase (GPx), were thus examined. Intake of beta-carotene and vitamin C without the carcinogen resulted in an increase (P < 0.05) in GPx activity. Also a modest increase in GPx activity was seen in animals that received the antioxidant mixture alone. Although the mechanisms of action of the antioxidants remain to be determined, the results indicate that dietary-derived HCA treatment induced MF in rat lymphocytes and suggest that antioxidants in food or taken as supplements could, in part, counteract such mutagenic activities.

  17. Targets and Patented Drugs for Chemotherapy of Chagas Disease in the Last 15 Years-Period.

    PubMed

    Duschak, Vilma G

    2016-01-01

    The American trypanosomiasis, Chagas disease, is a parasitic infection typically spread by triatomine vectors affecting millions of people all over Latin America. Existing chemotherapy is centered on the nitroaromatic compounds benznidazole and nifurtimox that provide unsatisfactory results and substantial side effects. So, the finding and exploration of novel ways to challenge this neglected disease is a main priority. The biologic and biochemical progress in the scientific knowledge of Trypanosoma cruzi in the period comprising last 15-years has increased the identification of multiple targets for Chagas´ disease chemotherapy. In the middle of the best encouraging targets for trypanocidal drugs, ergosterol biosynthesis pathway and cruzipain, a key cysteine protease (CP) of T. cruzi, have been pointed out. Unfortunately, recent clinical trials investigating the administration of pozoconazole and ravuconazole to chronic indeterminate Chagas disease patients revealed their inferiority compared to the standard drug Benznidazole. In view of the information gained in the preceding years, a reasonable approach for the fast development of novel anti-T. cruzi chemotherapy would be focused on K777, the cysteine proteinase inhibitor (CPI) near to enter to clinical trials, and founded on the clinical evaluation of combination of known drugs with existing trypanocidal agents to obtain more efficiency and less secondary effects. Top series of xanthine have been recently identified as clinical candidate for Chagas disease. In addition, trypanothione biosynthesis, thiol-dependant redox and polyamine metabolism, the glycolytic, glyconeogenic, pentose phosphate, lipidic and polyisoprenoid biosynthetic pathways, and the enzymes from biosynthetic glycoconjugates pathways have been studied. Several specific enzymes from these particular biosynthetic pathways such as hypoxanthine-guaninephosphoribosyl- transferase and farnesyl-pyrophosphate synthase, among others, have also been broadly studied in T. cruzi. Novel synthesized anti-T. cruzi compounds with or without specific single or multi-target assigned are also described in detail. In summary, loans on anti-Chagas disease agents focused to specific parasite targets as their metabolic pathways or specific enzymes will be summarized. Targets will also be specifically discussed. Patent literature collected and published from 2000 to 2015, alleging inhibitors for specific T. cruzi targets or trypanocidal activity was achieved over the search database from Delphion Research intellectual property network including international patents and the European patent office, Espacenet. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Biological effectiveness of nuclear fragments produced by high-energy protons interacting in tissues near the bone- soft tissue interface

    NASA Astrophysics Data System (ADS)

    Shavers, Mark Randall

    1999-12-01

    High-energy protons in the galactic cosmic rays (GCR)-or generated by nuclear interactions of GCR heavy-ions with material-are capable of penetrating great thicknesses of shielding to irradiate humans in spacecraft or in lunar or Martian habitats. As protons interact with the nuclei of the elemental constituents of soft tissue and bone, low energy nuclei-target fragments-are emitted into the cells responsible for bone development and maintenance and for hematopoiesis. Leukemogenesis is the principal endpoint of concern because it is the most likely deleterious effect, and it has a short latency period and comparatively low survival rate, although other myelo- proliferative disorders and osteosarcoma also may be induced. A one-dimensional proton-target fragment transport model was used to calculate the energy spectra of fragments produced in bone and soft tissue, and present in marrow cavities at distances from a bone interface. In terms of dose equivalent, the target fragments are as significant as the incident protons. An average radiation quality factor was found to be between 1.8 and 2.6. Biological response to the highly non- uniform energy deposition of the target fragments is such that an alternative approach to conventional predictive risk assessment is needed. Alternative procedures are presented. In vitro cell response and relative biological effectiveness were calculated from the radial dose distribution of each fragment produced by 1-GeV protons using parameters of a modified Ion-Gamma- Kill (IGK) model of radiation action. The modelled endpoints were survival of C3H10t 1/2 and V79 cells, neoplastic transformation of C3H10t1/2 cells, and mutation of the X-linked hypoxanthine phosphoribosyltransferase (HPRT) locus in V79 cells. The dose equivalent and cell responses increased by 10% or less near the interface. Since RBE increases with decreasing dose in the IGK model, comparisons with quality factors were made at dose levels 0.01 <= D [Gy] <= 2. Applying average quality factors derived herein to GCR exposures results in a <= 5% increase of in average quality. Calculated RBEs indicate that accepted quality factors for high-energy protons may be too low due to the relatively high effectiveness of the low-charged target fragments. Derived RBEs for target fragments increase the calculated biological effectiveness of GCR by 20% to 180%.

  19. Suppressors of dGTP Starvation in Escherichia coli

    PubMed Central

    Itsko, Mark

    2017-01-01

    ABSTRACT dGTP starvation, a newly discovered phenomenon in which Escherichia coli cells are starved specifically for the DNA precursor dGTP, leads to impaired growth and, ultimately, cell death. Phenomenologically, it represents an example of nutritionally induced unbalanced growth: cell mass amplifies normally as dictated by the nutritional status of the medium, but DNA content growth is specifically impaired. The other known example of such a condition, thymineless death (TLD), involves starvation for the DNA precursor dTTP, which has been found to have important chemotherapeutic applications. Experimentally, dGTP starvation is induced by depriving an E. coli gpt optA1 strain of its required purine source, hypoxanthine. In our studies of this phenomenon, we noted the emergence of a relatively high frequency of suppressor mutants that proved resistant to the treatment. To study such suppressors, we used next-generation sequencing on a collection of independently obtained mutants. A significant fraction was found to carry a defect in the PurR transcriptional repressor, controlling de novo purine biosynthesis, or in its downstream purEK operon. Thus, upregulation of de novo purine biosynthesis appears to be a major mode of overcoming the lethal effects of dGTP starvation. In addition, another large fraction of the suppressors contained a large tandem duplication of a 250- to 300-kb genomic region that included the purEK operon as well as the acrAB-encoded multidrug efflux system. Thus, the suppressive effects of the duplications could potentially involve beneficial effects of a number of genes/operons within the amplified regions. IMPORTANCE Concentrations of the four precursors for DNA synthesis (2′-deoxynucleoside-5′-triphosphates [dNTPs]) are critical for both the speed of DNA replication and its accuracy. Previously, we investigated consequences of dGTP starvation, where the DNA precursor dGTP was specifically reduced to a low level. Under this condition, E. coli cells continued cell growth but eventually developed a DNA replication defect, leading to cell death due to formation of unresolvable DNA structures. Nevertheless, dGTP-starved cultures eventually resumed growth due to the appearance of resistant mutants. Here, we used whole-genome DNA sequencing to identify the responsible suppressor mutations. We show that the majority of suppressors can circumvent death by upregulating purine de novo biosynthesis, leading to restoration of dGTP to acceptable levels. PMID:28373271

  20. Effects of Zanthoxylum piperitum ethanol extract on osteoarthritis inflammation and pain.

    PubMed

    Hwang, Kyung-A; Kwon, Jeong Eun; Noh, YooHun; Park, BongKyun; Jeong, Yong Joon; Lee, Sun-Mee; Kim, Se-Young; Kim, InHye; Kang, Se Chan

    2018-06-05

    Degenerative arthritis, also known as osteoarthritis (OA), is the most common type of arthritis, which is caused by degenerative damage of the cartilage, which primarily protects the joints, leading to inflammation and pain. The objective of this study was to investigate the in vivo and in vitro effects of treatment with ZPE-LR (90% EtOH extract of Zanthoxylum piperitum) on pain severity and inflammation. When using an in vivo OA model MIA (monosodiumidoacetate-induced arthritis) rats, ZPE-LR (100 mg/kg) oral-administratio significantly inhibited MIA-induced change in loaded weight ratio on the left foot, and articular cartilage thickness. To confirm the positive effects on pain relief, acetic acid, heat and formalin-induced pain were remarkably decreased by 50 and 100 mg/kg ZPE-LR oral-administration. Pain related KCNJ6 mRNA expression as well as K + current was increased after ZPE-LR treatment in BV-2 cells. To confirm the positive effects on inflammation, TPA (12-O-tetradecanoylphorbol-13-acetate) induced inflammation measured by mouse ear thickness and biopsy punch weight and TPA-induced iNOS, COX-2 mRNA and protein expression were remarkably suppressed by 50 and 100 mg/kg ZPE-LR oral-administration. In addition, TPA-induced iNOS, COX-2 mRNA level and protein expression were reduced. Acetic acid, heat and formalin-induced pain were remarkably decreased by 50 and 100 mg/kg ZPE-LR oral-administration. We examined in vitro ZPE-LR effects in LPS-induced RAW 264.7 cells. LPS-induced p65 translocation to the nucleus was prohibited by ZPE-LR 100 μg/ml oral administration. Moreover, ROS generation by LPS was significantly inhibited by ZPE-LR 50 and 100 μg/ml treatment. To investigate new ZPE-LR activating mechanisms, the gene fishing method (not a typical term, should probably use PCR based genetic screening) was used. LPS-induced HPRT1 (hypoxanthine phosphoribosyltransferase 1) was decreased by ZPE-LR. However, RPL8 (Ribosomal protein L8) which showed no change in mRNA expression due to LPS, did show increased mRNA levels after ZPE-LR treatment. Our data elucidate mechanisms underlying ZPE-LR and suggest ZPE-LR may be a potential therapeutic agent to modulate osteoarthritis inflammation and pain. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. In vitro piperaquine susceptibility is not associated with the Plasmodium falciparum chloroquine resistance transporter gene

    PubMed Central

    2013-01-01

    Background Dihydroartemisinin-piperaquine is a new ACT that is administered as single daily dose for three days and has been demonstrated to be tolerated and highly effective for the treatment of uncomplicated Plasmodium falciparum malaria. Piperaquine was used alone to replace chloroquine as the first-line treatment for uncomplicated malaria in China in response to increasing chloroquine resistance in the 1970s. However, the rapid emergence of piperaquine-resistant strains that resulted in the cessation of its use in China in the 1980s, suggests that there is cross-resistance between piperaquine and chloroquine. Very few data are available on cross-resistance between piperaquine and chloroquine, and the data that do exist are often contradictory. Methods In total, 280 P. falciparum isolates, collected between April 2008 and June 2012 from patients hospitalized in France with imported malaria from a malaria-endemic country, were assessed ex vivo for piperaquine and chloroquine susceptibilities by using the standard 42-hour 3H-hypoxanthine uptake inhibition method. The chloroquine resistance-associated mutation K76T in pfcrt was also investigated for the 280 isolates. Results The IC50 for piperaquine ranged from 9.8 nM to 217.3 nM (mean = 81.3 nM. The IC50 for chloroquine ranged from 5.0 nM to 1,918 nM (mean = 83.6 nM. A significant but low correlation was observed between the Log IC50 values for piperaquine and chloroquine (r = 0.145, p < 0.001). However, the coefficient of determination of 0.021 indicates that only 2.1% of the variation in the response to piperaquine is explained by the variation in the response to chloroquine. The mean value for piperaquine was 74.0 nM in the Pfcrt K76 wild-type group (no = 125) and 87.7 nM in the 76 T mutant group (no = 155). This difference was not significant (p = 0.875, Mann Whitney U test). Conclusions The present work demonstrates that there was no cross-resistance between piperaquine and chloroquine among 280 P. falciparum isolates and that piperaquine susceptibility is not associated with pfcrt, the gene involved in chloroquine resistance. These results confirm the efficacy of piperaquine in association with dihydroartemisinin and support its use in areas in which parasites are resistant to chloroquine. PMID:24274185

  2. Identification of stable reference genes for gene expression analysis of three-dimensional cultivated human bone marrow-derived mesenchymal stromal cells for bone tissue engineering.

    PubMed

    Rauh, Juliane; Jacobi, Angela; Stiehler, Maik

    2015-02-01

    The principles of tissue engineering (TE) are widely used for bone regeneration concepts. Three-dimensional (3D) cultivation of autologous human mesenchymal stromal cells (MSCs) on porous scaffolds is the basic prerequisite to generate newly formed bone tissue. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is a specific and sensitive analytical tool for the measurement of mRNA-levels in cells or tissues. For an accurate quantification of gene expression levels, stably expressed reference genes (RGs) are essential to obtain reliable results. Since the 3D environment can affect a cell's morphology, proliferation, and gene expression profile compared with two-dimensional (2D) cultivation, there is a need to identify robust RGs for the quantification of gene expression. So far, this issue has not been adequately investigated. The aim of this study was to identify the most stably expressed RGs for gene expression analysis of 3D-cultivated human bone marrow-derived MSCs (BM-MSCs). For this, we analyzed the gene expression levels of n=31 RGs in 3D-cultivated human BM-MSCs from six different donors compared with conventional 2D cultivation using qRT-PCR. MSCs isolated from bone marrow aspirates were cultivated on human cancellous bone cube scaffolds for 14 days. Osteogenic differentiation was assessed by cell-specific alkaline phosphatase (ALP) activity and expression of osteogenic marker genes. Expression levels of potential reference and target genes were quantified using commercially available TaqMan(®) assays. mRNA expression stability of RGs was determined by calculating the coefficient of variation (CV) and using the algorithms of geNorm and NormFinder. Using both algorithms, we identified TATA box binding protein (TBP), transferrin receptor (p90, CD71) (TFRC), and hypoxanthine phosphoribosyltransferase 1 (HPRT1) as the most stably expressed RGs in 3D-cultivated BM-MSCs. Notably, genes that are routinely used as RGs, for example, beta actin (ACTB) and ribosomal protein L37a (RPL37A), were among the least stable genes. We recommend the combined use of TBP, TFRC, and HPRT1 for the accurate and robust normalization of qRT-PCR data of 3D-cultivated human BM-MSCs.

  3. Selection of housekeeping genes for use in quantitative reverse transcription PCR assays on the murine cornea.

    PubMed

    Ren, Shengwei; Zhang, Feng; Li, Changyou; Jia, Changkai; Li, Siyuan; Xi, Haijie; Zhang, Hongbo; Yang, Lingling; Wang, Yiqiang

    2010-06-11

    To evaluate the suitability of common housekeeping genes (HKGs) for use in quantitative reverse transcription PCR (qRT-PCR) assays of the cornea in various murine disease models. CORNEAL DISEASE MODELS STUDIED WERE: 1) corneal neovascularization (CorNV) induced by suture or chemical burn, 2) corneal infection with Candida albicans or Aspergillus fumigatus by intrastromal injection of live spores, and 3) perforating corneal injury (PCI) in Balb/c mice or C57BL/6 mice. Expression of 8 HKGs (glyceraldehyde-3-phosphate dehydrogenase [GAPDH], beta-actin [ACTB], lactate dehydrogenase A [LDHA], ribosomal protein L5 [RPL5], ubiquitin C [UBC], peptidylprolyl isomerase A [PPIA], TATA-box binding protein [TBP1], and hypoxanthine guanine phosphoribosyl transferase [HPRT1]) in the cornea were measured at various time points by microarray hybridization or qRT-PCR and the data analyzed using geNorm and NormFinder. Microarray results showed that under the CorNV condition the expression stability of the 8 HKGs decreased in order of PPIA>RPL5>HPRT1>ACTB>UBC>TBP1>GAPDH>LDHA. qRT-PCR analyses demonstrated that expression of none of the 8 HKGs remained stable under all conditions, while GAPDH and ACTB were among the least stably expressed markers under most conditions. Both geNorm and NormFinder analyses proposed best HKGs or HKG combinations that differ between the various models. NormFinder proposed PPIA as best HKG for three CorNV models and PCI model, as well as UBC for two fungal keratitis models. geNorm analysis demonstrated that a similar model in different mice strains or caused by different stimuli may require different HKGs or HKG pairs for the best normalization. Namely, geNorm proposed PPIA and HRPT1 and PPIA and RPL5 pairs for chemical burn-induced CorNV in Balb/c and C57BL/6 mice, respectively, while UBC and HPRT1 and UBC and LDHA were best for Candida and Aspergillus induced keratitis in Balb/c mice, respectively. When qRT-PCR is designed for studies of gene expression in murine cornea, preselection of situation-specific reference genes is recommended. In the absence of knowledge about situation-specific HKGs, PPIA and UBC, either alone or in combination with HPRT1 or RPL5, can be employed.

  4. Identification of Stable Reference Genes for Gene Expression Analysis of Three-Dimensional Cultivated Human Bone Marrow-Derived Mesenchymal Stromal Cells for Bone Tissue Engineering

    PubMed Central

    Rauh, Juliane; Jacobi, Angela

    2015-01-01

    The principles of tissue engineering (TE) are widely used for bone regeneration concepts. Three-dimensional (3D) cultivation of autologous human mesenchymal stromal cells (MSCs) on porous scaffolds is the basic prerequisite to generate newly formed bone tissue. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is a specific and sensitive analytical tool for the measurement of mRNA-levels in cells or tissues. For an accurate quantification of gene expression levels, stably expressed reference genes (RGs) are essential to obtain reliable results. Since the 3D environment can affect a cell's morphology, proliferation, and gene expression profile compared with two-dimensional (2D) cultivation, there is a need to identify robust RGs for the quantification of gene expression. So far, this issue has not been adequately investigated. The aim of this study was to identify the most stably expressed RGs for gene expression analysis of 3D-cultivated human bone marrow-derived MSCs (BM-MSCs). For this, we analyzed the gene expression levels of n=31 RGs in 3D-cultivated human BM-MSCs from six different donors compared with conventional 2D cultivation using qRT-PCR. MSCs isolated from bone marrow aspirates were cultivated on human cancellous bone cube scaffolds for 14 days. Osteogenic differentiation was assessed by cell-specific alkaline phosphatase (ALP) activity and expression of osteogenic marker genes. Expression levels of potential reference and target genes were quantified using commercially available TaqMan® assays. mRNA expression stability of RGs was determined by calculating the coefficient of variation (CV) and using the algorithms of geNorm and NormFinder. Using both algorithms, we identified TATA box binding protein (TBP), transferrin receptor (p90, CD71) (TFRC), and hypoxanthine phosphoribosyltransferase 1 (HPRT1) as the most stably expressed RGs in 3D-cultivated BM-MSCs. Notably, genes that are routinely used as RGs, for example, beta actin (ACTB) and ribosomal protein L37a (RPL37A), were among the least stable genes. We recommend the combined use of TBP, TFRC, and HPRT1 for the accurate and robust normalization of qRT-PCR data of 3D-cultivated human BM-MSCs. PMID:25000821

  5. Metabolomic Analysis in Severe Childhood Pneumonia in The Gambia, West Africa: Findings from a Pilot Study

    PubMed Central

    Laiakis, Evagelia C.; Morris, Gerard A. J.; Fornace, Albert J.; Howie, Stephen R. C.

    2010-01-01

    Background Pneumonia remains the leading cause of death in young children globally and improved diagnostics are needed to better identify cases and reduce case fatality. Metabolomics, a rapidly evolving field aimed at characterizing metabolites in biofluids, has the potential to improve diagnostics in a range of diseases. The objective of this pilot study is to apply metabolomic analysis to childhood pneumonia to explore its potential to improve pneumonia diagnosis in a high-burden setting. Methodology/Principal Findings Eleven children with World Health Organization (WHO)-defined severe pneumonia of non-homogeneous aetiology were selected in The Gambia, West Africa, along with community controls. Metabolomic analysis of matched plasma and urine samples was undertaken using Ultra Performance Liquid Chromatography (UPLC) coupled to Time-of-Flight Mass Spectrometry (TOFMS). Biomarker extraction was done using SIMCA-P+ and Random Forests (RF). ‘Unsupervised’ (blinded) data were analyzed by Principal Component Analysis (PCA), while ‘supervised’ (unblinded) analysis was by Partial Least Squares-Discriminant Analysis (PLS-DA) and Orthogonal Projection to Latent Structures (OPLS). Potential markers were extracted from S-plots constructed following analysis with OPLS, and markers were chosen based on their contribution to the variation and correlation within the data set. The dataset was additionally analyzed with the machine-learning algorithm RF in order to address issues of model overfitting and markers were selected based on their variable importance ranking. Unsupervised PCA analysis revealed good separation of pneumonia and control groups, with even clearer separation of the groups with PLS-DA and OPLS analysis. Statistically significant differences (p<0.05) between groups were seen with the following metabolites: uric acid, hypoxanthine and glutamic acid were higher in plasma from cases, while L-tryptophan and adenosine-5′-diphosphate (ADP) were lower; uric acid and L-histidine were lower in urine from cases. The key limitation of this study is its small size. Conclusions/Significance Metabolomic analysis clearly distinguished severe pneumonia patients from community controls. The metabolites identified are important for the host response to infection through antioxidant, inflammatory and antimicrobial pathways, and energy metabolism. Larger studies are needed to determine whether these findings are pneumonia-specific and to distinguish organism-specific responses. Metabolomics has considerable potential to improve diagnostics for childhood pneumonia. PMID:20844590

  6. Plasma uric acid levels correlate with inflammation and disease severity in Malian children with Plasmodium falciparum malaria.

    PubMed

    Lopera-Mesa, Tatiana M; Mita-Mendoza, Neida K; van de Hoef, Diana L; Doumbia, Saibou; Konaté, Drissa; Doumbouya, Mory; Gu, Wenjuan; Traoré, Karim; Diakité, Seidina A S; Remaley, Alan T; Anderson, Jennifer M; Rodriguez, Ana; Fay, Michael P; Long, Carole A; Diakité, Mahamadou; Fairhurst, Rick M

    2012-01-01

    Plasmodium falciparum elicits host inflammatory responses that cause the symptoms and severe manifestations of malaria. One proposed mechanism involves formation of immunostimulatory uric acid (UA) precipitates, which are released from sequestered schizonts into microvessels. Another involves hypoxanthine and xanthine, which accumulate in parasitized red blood cells (RBCs) and may be converted by plasma xanthine oxidase to UA at schizont rupture. These two forms of 'parasite-derived' UA stimulate immune cells to produce inflammatory cytokines in vitro. We measured plasma levels of soluble UA and inflammatory cytokines and chemokines (IL-6, IL-10, sTNFRII, MCP-1, IL-8, TNFα, IP-10, IFNγ, GM-CSF, IL-1β) in 470 Malian children presenting with uncomplicated malaria (UM), non-cerebral severe malaria (NCSM) or cerebral malaria (CM). UA levels were elevated in children with NCSM (median 5.74 mg/dl, 1.21-fold increase, 95% CI 1.09-1.35, n = 23, p = 0.0007) and CM (median 5.69 mg/dl, 1.19-fold increase, 95% CI 0.97-1.41, n = 9, p = 0.0890) compared to those with UM (median 4.60 mg/dl, n = 438). In children with UM, parasite density and plasma creatinine levels correlated with UA levels. These UA levels correlated with the levels of seven cytokines [IL-6 (r = 0.259, p<0.00001), IL-10 (r = 0.242, p<0.00001), sTNFRII (r = 0.221, p<0.00001), MCP-1 (r = 0.220, p<0.00001), IL-8 (r = 0.147, p = 0.002), TNFα (r = 0.132, p = 0.006) and IP-10 (r = 0.120, p = 0.012)]. In 39 children, UA levels were 1.49-fold (95% CI 1.34-1.65; p<0.0001) higher during their malaria episode [geometric mean titer (GMT) 4.67 mg/dl] than when they were previously healthy and aparasitemic (GMT 3.14 mg/dl). Elevated UA levels may contribute to the pathogenesis of P. falciparum malaria by activating immune cells to produce inflammatory cytokines. While this study cannot identify the cause of elevated UA levels, their association with parasite density and creatinine levels suggest that parasite-derived UA and renal function may be involved. Defining pathogenic roles for parasite-derived UA precipitates, which we have not directly studied here, requires further investigation. ClinicalTrials.gov NCT00669084.

  7. Metabolomic analysis in severe childhood pneumonia in the Gambia, West Africa: findings from a pilot study.

    PubMed

    Laiakis, Evagelia C; Morris, Gerard A J; Fornace, Albert J; Howie, Stephen R C

    2010-09-09

    Pneumonia remains the leading cause of death in young children globally and improved diagnostics are needed to better identify cases and reduce case fatality. Metabolomics, a rapidly evolving field aimed at characterizing metabolites in biofluids, has the potential to improve diagnostics in a range of diseases. The objective of this pilot study is to apply metabolomic analysis to childhood pneumonia to explore its potential to improve pneumonia diagnosis in a high-burden setting. Eleven children with World Health Organization (WHO)-defined severe pneumonia of non-homogeneous aetiology were selected in The Gambia, West Africa, along with community controls. Metabolomic analysis of matched plasma and urine samples was undertaken using Ultra Performance Liquid Chromatography (UPLC) coupled to Time-of-Flight Mass Spectrometry (TOFMS). Biomarker extraction was done using SIMCA-P+ and Random Forests (RF). 'Unsupervised' (blinded) data were analyzed by Principal Component Analysis (PCA), while 'supervised' (unblinded) analysis was by Partial Least Squares-Discriminant Analysis (PLS-DA) and Orthogonal Projection to Latent Structures (OPLS). Potential markers were extracted from S-plots constructed following analysis with OPLS, and markers were chosen based on their contribution to the variation and correlation within the data set. The dataset was additionally analyzed with the machine-learning algorithm RF in order to address issues of model overfitting and markers were selected based on their variable importance ranking. Unsupervised PCA analysis revealed good separation of pneumonia and control groups, with even clearer separation of the groups with PLS-DA and OPLS analysis. Statistically significant differences (p<0.05) between groups were seen with the following metabolites: uric acid, hypoxanthine and glutamic acid were higher in plasma from cases, while L-tryptophan and adenosine-5'-diphosphate (ADP) were lower; uric acid and L-histidine were lower in urine from cases. The key limitation of this study is its small size. Metabolomic analysis clearly distinguished severe pneumonia patients from community controls. The metabolites identified are important for the host response to infection through antioxidant, inflammatory and antimicrobial pathways, and energy metabolism. Larger studies are needed to determine whether these findings are pneumonia-specific and to distinguish organism-specific responses. Metabolomics has considerable potential to improve diagnostics for childhood pneumonia.

  8. Antiplasmodial potential of traditional phytotherapy of some remedies used in treatment of malaria in Meru-Tharaka Nithi County of Kenya.

    PubMed

    Muthaura, C N; Keriko, J M; Mutai, C; Yenesew, Abiy; Gathirwa, J W; Irungu, B N; Nyangacha, R; Mungai, G M; Derese, Solomon

    2015-12-04

    Medicinal plants play a major role in many communities across the world, in the treatment and prevention of disease and the promotion of general health. The aim of the study was to escalate documentation from an earlier study of medicinal plants, traditionally used to combat malaria by the Ameru community of Imenti Forest area and Gatunga in Eastern Region of Kenya, and validate their ethnopharmacological claims by evaluating their antiplasmodial efficacies. The study was carried out in Meru County at Imenti Forest Game Reserve and in Tharaka Nithi County at Gatunga. Traditional health practitioners (THP) were interviewed with a standard questionnaire to obtain information on medicinal plants traditionally used for management of malaria. Group interviews were also held among THPs and members of the community. The antiplasmodial activities of the crude extracts against chloroquine sensitive (D6) and resistant (W2) Plasmodium falciparum were determined using the semi-automated micro-dilution technique that measures the ability of the extracts to inhibit the incorporation of (G-3H) hypoxanthine into the malaria parasite. Ninety nine (99) species in eighty one (81) genera and forty five (45) families were documented and evaluated for in vitro antiplasmodial activity. Compositae, Fabaceae, Meliceae, Rubiaceae, Rutaceae and Verbenaceae had the highest number of species mentioned in treatment of malaria in Meru/Tharaka Nithi study area. Twenty four (24.2%) species showed antiplasmodial efficacy of IC50 ≤ 5 µg/ml and were considered to have potential for isolation of antimalarial compounds. Eight plant (8) species with moderate antiplasmodial activity namely; Cordia africana, Commiphora africana, Elaeodendron buchananii, Gomphocarpus semilunatus, Tarena graveolens, Plectranthus igniarius, Acacia senegal and Ziziphus abyssinica were documented from this region for the first time for the treatment of malaria. The antiplasmodial activity of MeOH root bark extract of Maytenus obtusifolia was very promising (IC50 < 1.9 µg/ml) and this is the first report on traditional use of M. obtusifolia for treatment of malaria and antimalarial activity. The results seem to indicate that ethnopharmacological inquiry used in search for new herbal remedies as predictive and could be used as the basis for search of new active principles. Eight plant (8) species are documented from this region for the first time for the treatment of malaria. This is the first report on traditional use of M. obtusifolia for treatment of malaria and evaluation of its antiplasmodial activity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Reverse transcription quantitative real-time polymerase chain reaction reference genes in the spared nerve injury model of neuropathic pain: validation and literature search.

    PubMed

    Piller, Nicolas; Decosterd, Isabelle; Suter, Marc R

    2013-07-10

    The reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a widely used, highly sensitive laboratory technique to rapidly and easily detect, identify and quantify gene expression. Reliable RT-qPCR data necessitates accurate normalization with validated control genes (reference genes) whose expression is constant in all studied conditions. This stability has to be demonstrated.We performed a literature search for studies using quantitative or semi-quantitative PCR in the rat spared nerve injury (SNI) model of neuropathic pain to verify whether any reference genes had previously been validated. We then analyzed the stability over time of 7 commonly used reference genes in the nervous system - specifically in the spinal cord dorsal horn and the dorsal root ganglion (DRG). These were: Actin beta (Actb), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal proteins 18S (18S), L13a (RPL13a) and L29 (RPL29), hypoxanthine phosphoribosyltransferase 1 (HPRT1) and hydroxymethylbilane synthase (HMBS). We compared the candidate genes and established a stability ranking using the geNorm algorithm. Finally, we assessed the number of reference genes necessary for accurate normalization in this neuropathic pain model. We found GAPDH, HMBS, Actb, HPRT1 and 18S cited as reference genes in literature on studies using the SNI model. Only HPRT1 and 18S had been once previously demonstrated as stable in RT-qPCR arrays. All the genes tested in this study, using the geNorm algorithm, presented gene stability values (M-value) acceptable enough for them to qualify as potential reference genes in both DRG and spinal cord. Using the coefficient of variation, 18S failed the 50% cut-off with a value of 61% in the DRG. The two most stable genes in the dorsal horn were RPL29 and RPL13a; in the DRG they were HPRT1 and Actb. Using a 0.15 cut-off for pairwise variations we found that any pair of stable reference gene was sufficient for the normalization process. In the rat SNI model, we validated and ranked Actb, RPL29, RPL13a, HMBS, GAPDH, HPRT1 and 18S as good reference genes in the spinal cord. In the DRG, 18S did not fulfill stability criteria. The combination of any two stable reference genes was sufficient to provide an accurate normalization.

  10. Damage to Aspergillus fumigatus and Rhizopus oryzae Hyphae by Oxidative and Nonoxidative Microbicidal Products of Human Neutrophils In Vitro

    PubMed Central

    Diamond, Richard D.; Clark, Robert A.

    1982-01-01

    Our previous studies established that human neutrophils could damage and probably kill hyphae of Aspergillus fumigatus and Rhizopus oryzae in vitro, primarily by oxygen-dependent mechanisms active at the cell surface. These studies were extended, again quantitating hyphal damage by reduction in uptake of 14C-labeled uracil or glutamine. Neither A. fumigatus nor R. oryzae hyphae were damaged by neutrophils from patients with chronic granulomatous disease, confirming the importance of oxidative mechanisms in damage to hyphae. In contrast, neutrophils from one patient with hereditary myeloperoxidase deficiency damaged R. oryzae but not A. fumigatus hyphae. Cell-free, in vitro systems were then used to help determine the relative importance of several potentially fungicidal products of neutrophils. Both A. fumigatus and R. oryzae hyphae were damaged by the myeloperoxidase-hydrogen peroxide-halide system either with reagent hydrogen peroxide or enzymatic systems for generating hydrogen peroxide (glucose oxidase with glucose, or xanthine oxidase with either hypoxanthine or acetaldehyde). Iodide with or without chloride supported the reaction, but damage was less with chloride alone as the halide cofactor. Hydrogen peroxide alone damaged hyphae only in concentrations ≥1 mM, but 0.01 mM hypochlorous acid, a potential product of the myeloperoxidase system, significantly damaged R. oryzae hyphae (a 1 mM concentration was required for significant damage to A. fumigatus hyphae). Damage to hyphae by the myeloperoxidase system was inhibited by azide, cyanide, catalase, histidine, and tryptophan, but not by superoxide dismutase, dimethyl sulfoxide, or mannitol. Photoactivation of the dye rose bengal resulted in hyphal damage which was inhibited by histidine, tryptophan, and 1,4-diazobicyclo(2,2,2)octane. Lysates of neutrophils or separated neutrophil granules did not affect A. fumigatus hyphae, but did damage R. oryzae hyphae. Similarly, three preparations of cationic proteins purified from human neutrophil granules were more active in damaging R. oryzae than A. fumigatus hyphae. This damage, as with the separated granules and whole cell lysates, was inhibited by the polyanion heparin. Damage to R. oryzae hyphae by neutrophil cationic proteins was enhanced by activity of the complete myeloperoxidase system or by hydrogen peroxide alone in subinhibitory concentrations. These data support the importance of oxidative products in general and the myeloperoxidase system in particular in damage to hyphae by neutrophils. Cationic proteins may also contribute significantly to neutrophil-mediated damage to R. oryzae hyphae. PMID:6292103

  11. Damage to Candida albicans Hyphae and Pseudohyphae by the Myeloperoxidase System and Oxidative Products of Neutrophil Metabolism In Vitro

    PubMed Central

    Diamond, Richard D.; Clark, Robert A.; Haudenschild, Christian C.

    1980-01-01

    In previous studies, we noted that Candida hyphae and pseudohyphae could be damaged and probably killed by neutrophils, primarily by oxygen-dependent nonphagocytic mechanisms. In extending these studies, amount of damage to hyphae again was measured by inhibition of [14C]cytosine uptake. Neutrophils from only one of four patients with chronic granulomatous disease damaged hyphae at all, and neutrophils from this single patient damaged hyphae far less efficiently than simultaneously tested neutrophils from normal control subjects. Neutrophils from neither of two subjects with hereditary myeloperoxidase deficiency damaged the hyphae. This confirmed the importance of oxidative mechanisms in general and myeloperoxidase-mediated systems in particular in damaging Candida hyphae. Several potentially fungicidal oxidative intermediates are produced by metabolic pathways of normal neutrophils, but their relative toxicity for Candida hyphae was previously unknown. To help determine this, cell-free in vitro systems were used to generate these potentially microbicidal products. Myeloperoxidase with hydrogen peroxide, iodide, and chloride resulted in 91.2% damage to hyphal inocula in 11 experiments. There was less damage when either chloride or iodide was omitted, and no damage when myeloperoxidase was omitted or inactivated by heating. Azide, cyanide, and catalase (but not heated catalase) inhibited the damage. Systems for generation of hydrogen peroxide could replace reagent hydrogen peroxide in the myeloperoxidase system. These included glucose oxidase, in the presence of glucose, and xanthine oxidase, in the presence of either hypoxanthine or acetaldehyde. In the presence of myeloperoxidase and a halide, the toxicity of the xanthine oxidase system was not inhibited by superoxide dismutase and, under some conditions, was marginally increased by this enzyme. This suggested that superoxide radical did not damage hyphae directly but served primarily as an intermediate in the production of hydrogen peroxide. The possible damage to hyphae by singlet oxygen was examined using photoactivation of rose bengal. This dye damaged hyphae in the presence of light and oxygen. The effect was almost completely inhibited by putative quenchers of singlet oxygen: histidine, tryptophan, and 1,4-diazobicyclo[2.2.2]octane. These agents also inhibited damage to hyphae by myeloperoxidase, halide, and either hydrogen peroxide or a peroxide source (xanthine oxidase plus acetaldehyde). Myeloperoxidase-mediated damage to hyphae was also inhibited by dimethyl sulfoxide, an antioxidant and scavenger of the hydroxyl radical. These data support the involvement of oxidative mechanisms and the myeloperoxidase-H2O2-halide system, in particular in damaging hyphae in vitro and perhaps in vivo as well. Images PMID:6253527

  12. Free radicals and lipid peroxidation mediated injury in burn trauma: the role of antioxidant therapy.

    PubMed

    Horton, Jureta W

    2003-07-15

    Burn trauma produces significant fluid shifts that, in turn, reduce cardiac output and tissue perfusion. Treatment approaches to major burn injury include administration of crystalloid solutions to correct hypovolemia and to restore peripheral perfusion. While this aggressive postburn volume replacement increases oxygen delivery to previously ischemic tissue, this restoration of oxygen delivery is thought to initiate a series of deleterious events that exacerbate ischemia-related tissue injury. While persistent hypoperfusion after burn trauma would produce cell death, volume resuscitation may exacerbate the tissue injury that occurred during low flow state. It is clear that after burn trauma, tissue adenosine triphosphate (ATP) levels gradually fall, and increased adenosine monophosphate (AMP) is converted to hypoxanthine, providing substrate for xanthine oxidase. These complicated reactions produce hydrogen peroxide and superoxide, clearly recognized deleterious free radicals. In addition to xanthine oxidase related free radical generation in burn trauma, adherent-activated neutrophils produce additional free radicals. Enhanced free radical production is paralleled by impaired antioxidant mechanisms; as indicated by burn-related decreases in superoxide dismutase, catalase, glutathione, alpha tocopherol, and ascorbic acid levels. Burn related upregulation of inducible nitric oxide synthase (iNOS) may produce peripheral vasodilatation, upregulate the transcription factor nuclear factor kappa B (NF-kappaB), and promote transcription and translation of numerous inflammatory cytokines. NO may also interact with the superoxide radical to yield peroxynitrite, a highly reactive mediator of tissue injury. Free radical mediated cell injury has been supported by postburn increases in systemic and tissue levels of lipid peroxidation products such as conjugated dienes, thiobarbituric acid reaction products, or malondialdehyde (MDA) levels. Antioxidant therapy in burn therapy (ascorbic acid, glutathione, N-acetyl-L-cysteine, or vitamins A, E, and C alone or in combination) have been shown to reduce burn and burn/sepsis mediated mortality, to attenuate changes in cellular energetics, to protect microvascular circulation, reduce tissue lipid peroxidation, improve cardiac output, and to reduce the volume of required fluid resuscitation. Antioxidant vitamin therapy with fluid resuscitation has also been shown to prevent burn related cardiac NF-kappaB nuclear migration, to inhibit cardiomyocyte secretion of TNF-alpha, IL-1beta, and IL-6, and to improve cardiac contractile function. These data collectively support the hypothesis that cellular oxidative stress is a critical step in burn-mediated injury, and suggest that antioxidant strategies designed to either inhibit free radical formation or to scavage free radicals may provide organ protection in patients with burn injury.

  13. Preferential inhibition of xanthine oxidase by 2-amino-6-hydroxy-8-mercaptopurine and 2-amino-6-purine thiol.

    PubMed

    Kalra, Sukirti; Jena, Gopabandhu; Tikoo, Kulbhushan; Mukhopadhyay, Anup Kumar

    2007-05-18

    The anticancer drug, 6-mercaptopurine (6MP) is subjected to metabolic clearance through xanthine oxidase (XOD) mediated hydroxylation, producing 6-thiouric acid (6TUA), which is excreted in urine. This reduces the effective amount of drug available for therapeutic efficacy. Co-administration of allopurinol, a suicide inhibitor of XOD, which blocks the hydroxylation of 6MP inadvertently enhances the 6MP blood level, counters this reduction. However, allopurinol also blocks the hydroxylation of hypoxanthine, xanthine (released from dead cancer cells) leading to their accumulation in the body causing biochemical complications such as xanthine nephropathy. This necessitates the use of a preferential XOD inhibitor that selectively inhibits 6MP transformation, but leaves xanthine metabolism unaffected. Here, we have characterized two such unique inhibitors namely, 2-amino-6-hydroxy-8-mercaptopurine (AHMP) and 2-amino-6-purinethiol (APT) on the basis of IC50 values, residual activity in bi-substrate simulative reaction and the kinetic parameters like Km, Ki, kcat. The IC50 values of AHMP for xanthine and 6MP as substrate are 17.71 +/- 0.29 microM and 0.54 +/- 0.01 microM, respectively and the IC50 values of APT for xanthine and 6MP as substrates are 16.38 +/- 0.21 microM and 2.57 +/- 0.08 microM, respectively. The Ki values of XOD using AHMP as inhibitor with xanthine and 6MP as substrate are 5.78 +/- 0.48 microM and 0.96 +/- 0.01 microM, respectively. The Ki values of XOD using APT as inhibitor with xanthine and 6MP as substrate are 6.61 +/- 0.28 microM and 1.30 +/- 0.09 microM. The corresponding Km values of XOD using xanthine and 6MP as substrate are 2.65 +/- 0.02 microM and 6.01 +/- 0.03 microM, respectively. The results suggest that the efficiency of substrate binding to XOD and its subsequent catalytic hydroxylation is much superior for xanthine in comparison to 6MP. In addition, the efficiency of the inhibitor binding to XOD is much more superior when 6MP is the substrate instead of xanthine. We further undertook the toxicological evaluation of these inhibitors in a single dose acute toxicity study in mice and our preliminary experimental results suggested that the inhibitors were equally non-toxic in the tested doses. We conclude that administration of either APT or AHMP along with the major anti-leukemic drug 6MP might serve as a good combination cancer chemotherapy regimen.

  14. Expression stability and selection of optimal reference genes for gene expression normalization in early life stage rainbow trout exposed to cadmium and copper.

    PubMed

    Shekh, Kamran; Tang, Song; Niyogi, Som; Hecker, Markus

    2017-09-01

    Gene expression analysis represents a powerful approach to characterize the specific mechanisms by which contaminants interact with organisms. One of the key considerations when conducting gene expression analyses using quantitative real-time reverse transcription-polymerase chain reaction (qPCR) is the selection of appropriate reference genes, which is often overlooked. Specifically, to reach meaningful conclusions when using relative quantification approaches, expression levels of reference genes must be highly stable and cannot vary as a function of experimental conditions. However, to date, information on the stability of commonly used reference genes across developmental stages, tissues and after exposure to contaminants such as metals is lacking for many vertebrate species including teleost fish. Therefore, in this study, we assessed the stability of expression of 8 reference gene candidates in the gills and skin of three different early life-stages of rainbow trout after acute exposure (24h) to two metals, cadmium (Cd) and copper (Cu) using qPCR. Candidate housekeeping genes were: beta actin (b-actin), DNA directed RNA polymerase II subunit I (DRP2), elongation factor-1 alpha (EF1a), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), glucose-6-phosphate dehydrogenase (G6PD), hypoxanthine phosphoribosyltransferase (HPRT), ribosomal protein L8 (RPL8), and 18S ribosomal RNA (18S). Four algorithms, geNorm, NormFinder, BestKeeper, and the comparative ΔCt method were employed to systematically evaluate the expression stability of these candidate genes under control and exposed conditions as well as across three different life-stages. Finally, stability of genes was ranked by taking geometric means of the ranks established by the different methods. Stability of reference genes was ranked in the following order (from lower to higher stability): HPRT

  15. The role of human cytochrome P4503A4 in biotransformation of tissue-specific derivatives of 7H-dibenzo[c,g]carbazole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mesarosova, Monika; Valovicova, Zuzana; Srancikova, Annamaria

    2011-09-15

    The environmental pollutant 7H-dibenzo[c,g]carbazole (DBC) and its derivative, 5,9-dimethylDBC (DiMeDBC), produced significant and dose-dependent levels of micronuclei followed by a substantial increase in the frequency of apoptotic cells in the V79MZh3A4 cell line stably expressing the human cytochrome P450 (hCYP) 3A4. In contrast, neither micronuclei nor apoptosis were found in cells exposed to the sarcomagenic carcinogen, N-methylDBC (N-MeDBC). A slight but significant level of gene mutations and DNA adducts detected in V79MZh3A4 cells treated with N-MeDBC, only at the highest concentration (30 {mu}M), revealed that this sarcomagenic carcinogen was also metabolized by hCYP3A4. Surprisingly, DBC increased the frequency of 6-thioguaninemore » resistant (6-TG{sup r}) mutations only at the highest concentration (30 {mu}M), while DiMeDBC failed to increase the frequency of these mutations. The resistance to 6-thioguanine is caused by the mutations in the hypoxanthine-guanine phosphoribosyltransferase (Hprt) gene. The molecular analysis of the coding region of Hprt gene showed a deletion of the entire exon 8 in DiMeDBC-induced 6-TG{sup r} mutants, while no changes in the nucleotide sequences were identified in 6-TG{sup r} mutants produced by DBC and N-MeDBC. Based on our results, we suggest that hCYP3A4 is involved in the metabolism of DBC and its tissue-specific derivatives. While hCYP3A4 probably plays an important role in biotransformation of the liver carcinogens, DBC and DiMeDBC, it might only have a marginal function in N-MeDBC metabolism. - Highlights: > DBC activation via CYP3A4 resulted in micronuclei, DNA adduct formation and mutations in V79MZh3A4 cells. > The CYP3A4-mediated DiMeDBC activation caused micronuclei followed by apoptosis in V79MZh3A4 cells. > The genotoxic effects produced by N-MeDBC in V79MZh3A4 cells were negligible. > The hCYP3A4 may play an important role in DBC and DiMeDBC metabolism. > The CYP3A4 might only have a marginal function in N-MeDBC metabolism.« less

  16. The relationship of muscle perfusion and metabolism with cardiovascular variables before and after detomidine injection during propofol-ketamine anaesthesia in horses.

    PubMed

    Edner, Anna; Nyman, Görel; Essén-Gustavsson, Birgitta

    2002-10-01

    To study in horses (1) the relationship between cardiovascular variables and muscle perfusion during propofol-ketamine anaesthesia, (2) the physiological effects of a single intravenous (IV) detomidine injection, (3) the metabolic response of muscle to anaesthesia, and (4) the effects of propofol-ketamine infusion on respiratory function. Prospective experimental study. Seven standardbred trotters, 5-12 years old, 416-581 kg. Anaesthesia was induced with intravenous (IV) guaifenesin and propofol (2 mg kg -1 ) and maintained with a continuous IV infusion of propofol (0.15 mg kg -1 minute -1 ) and ketamine (0.05 mg kg -1 minute -1 ) with horses positioned in left lateral recumbency. After 1 hour, detomidine (0.01 mg kg -1 ) was administered IV and 40-50 minutes later anaesthesia was discontinued. Cardiovascular and respiratory variables (heart rate, cardiac output, systemic and pulmonary artery blood pressures, respiratory rate, tidal volume, and inspiratory and expiratory O 2 and CO 2 ) and muscle temperature were measured at pre-determined times. Peripheral perfusion was measured continuously in the gluteal muscles and skin using laser Doppler flowmetry (LDF). Muscle biopsy samples from the left and right gluteal muscles were analysed for glycogen, creatine phosphate, creatine, adenine nucleotides, inosine monophosphate and lactate. Arterial blood was analysed for PO 2 , PCO 2 , pH, oxygen saturation and HCO 3 . Mixed venous blood was analysed for PO 2 , PCO 2 , pH, oxygen saturation, HCO 3 , cortisol, lactate, uric acid, hypoxanthine, xanthine, creatine kinase, creatinine, aspartate aminotransferase, electrolytes, total protein, haemoglobin, haematocrit and white blood cell count. Circulatory function was preserved during propofol-ketamine anaesthesia. Detomidine caused profound hypertension and bradycardia and decreased cardiac output and muscle perfusion. Ten minutes after detomidine injection muscle perfusion had recovered to pre-injection levels, although heart rate and cardiac output had not. No difference in indices of muscle metabolism was found between dependent and independent muscles. Anaerobic muscle metabolism, indicated by decreased muscle and creatine phosphate levels was evident after anaesthesia. Muscle perfusion was closely related to cardiac output but not arterial blood pressure. Total intravenous anaesthesia with propofol-ketamine deserves further study despite its respiratory depression effects, as the combination preserves cardiovascular function. Decreases in high-energy phosphate stores during recovery show that muscle is vulnerable after anaesthesia. Continued research is required to clarify the course of muscle metabolic events during recovery. Copyright © 2002 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd. All rights reserved.

  17. Antioxidative effects of a processed grain food.

    PubMed

    Minamiyama, Y; Yoshikawa, T; Tanigawa, T; Takahashi, S; Naito, Y; Ichikawa, H; Kondo, M

    1994-10-01

    Antioxidant biofactor: AOB is a unique processed grain food. It is a yellow-green powder. It contains the following extracts: germ extracts, soybean, rice bran, tear grass, sesame, wheat, citron, green tea, green leaf extract, and malted rice. These materials were slowly roasted under a powdered oure at less than 60 degrees C and fermented with Aspergillus oryzae over 3 days to transform each ingredient into low molecular weight substances. These conditions were different by each material, environmental humidity and temperature. It probably contains a variety of substances having antioxidant activity including flavonoids, alpha-tocopherol, vitamin C, and tannins. We investigated its antioxidative properties using electron spin resonance (ESR) and autoxidation of rat brain homogenates. The superoxide, hydroxyl radical, and the stable free radical, diphenyl-p-picrylhydrazyl (DPPH) radical scavenging activity of AOB was investigated using ESR spectrometry. In an in vitro study, a suspension of AOB was added directly to a superoxide generating system (hypoxanthine-xanthine oxidase; HX/XO) and investigated using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trapping agent. At final concentrations of 0.01, 0.05, and 0.1 mg/ml, AOB dose-dependent scavenging activity was observed as 0.103, 0.619, and 1.369 U/ml, respectively. A concentration of 1.0 mg/ml completely scavenged DMPO-OOH signals; 1.0 mg/ml of AOB inhibited the DMPO-OH signal generated by Fenton's reaction, but its inhibitory effect was not competitive, and was inhibition of the Fenton's reaction. 1.0, 3.0, and 5.0 mg/ml of AOB were significantly inhibited the DPPH radical. In an in vivo study, rats were fed AOB orally at doses of 1 or 5 g/day for 24 h or for 3 days and the superoxide scavenging activity was measured in plasma. With the administration of 1 g/day for 3 days, the superoxide scavenging activity was about 1.8 times that of the control group fed a basal diet; 1.5 times the control with 5 g/day for 1 day, and 2.6 times the control with 5 g/day for 3 days, all of which represented significant increases in superoxide scavenging activity. AOB strongly inhibited the autoxidation of rat brain homogenates in vitro in a dose-dependent manner. However, each ingredient before roast and fermentation little inhibited lipid peroxidation. Roasting and fermentation with A. oryzae way be important to transform each ingredient into low molecular weight substances. Therefore, it was suggested that AOB possesses strong antioxidant and free radical scavenging activities.

  18. Plasma Uric Acid Levels Correlate with Inflammation and Disease Severity in Malian Children with Plasmodium falciparum Malaria

    PubMed Central

    Lopera-Mesa, Tatiana M.; Mita-Mendoza, Neida K.; van de Hoef, Diana L.; Doumbia, Saibou; Konaté, Drissa; Doumbouya, Mory; Gu, Wenjuan; Traoré, Karim; Diakité, Seidina A. S.; Remaley, Alan T.; Anderson, Jennifer M.; Rodriguez, Ana; Fay, Michael P.; Long, Carole A.; Diakité, Mahamadou; Fairhurst, Rick M.

    2012-01-01

    Background Plasmodium falciparum elicits host inflammatory responses that cause the symptoms and severe manifestations of malaria. One proposed mechanism involves formation of immunostimulatory uric acid (UA) precipitates, which are released from sequestered schizonts into microvessels. Another involves hypoxanthine and xanthine, which accumulate in parasitized red blood cells (RBCs) and may be converted by plasma xanthine oxidase to UA at schizont rupture. These two forms of ‘parasite-derived’ UA stimulate immune cells to produce inflammatory cytokines in vitro. Methods and Findings We measured plasma levels of soluble UA and inflammatory cytokines and chemokines (IL-6, IL-10, sTNFRII, MCP-1, IL-8, TNFα, IP-10, IFNγ, GM-CSF, IL-1β) in 470 Malian children presenting with uncomplicated malaria (UM), non-cerebral severe malaria (NCSM) or cerebral malaria (CM). UA levels were elevated in children with NCSM (median 5.74 mg/dl, 1.21-fold increase, 95% CI 1.09–1.35, n = 23, p = 0.0007) and CM (median 5.69 mg/dl, 1.19-fold increase, 95% CI 0.97–1.41, n = 9, p = 0.0890) compared to those with UM (median 4.60 mg/dl, n = 438). In children with UM, parasite density and plasma creatinine levels correlated with UA levels. These UA levels correlated with the levels of seven cytokines [IL-6 (r = 0.259, p<0.00001), IL-10 (r = 0.242, p<0.00001), sTNFRII (r = 0.221, p<0.00001), MCP-1 (r = 0.220, p<0.00001), IL-8 (r = 0.147, p = 0.002), TNFα (r = 0.132, p = 0.006) and IP-10 (r = 0.120, p = 0.012)]. In 39 children, UA levels were 1.49-fold (95% CI 1.34–1.65; p<0.0001) higher during their malaria episode [geometric mean titer (GMT) 4.67 mg/dl] than when they were previously healthy and aparasitemic (GMT 3.14 mg/dl). Conclusions Elevated UA levels may contribute to the pathogenesis of P. falciparum malaria by activating immune cells to produce inflammatory cytokines. While this study cannot identify the cause of elevated UA levels, their association with parasite density and creatinine levels suggest that parasite-derived UA and renal function may be involved. Defining pathogenic roles for parasite-derived UA precipitates, which we have not directly studied here, requires further investigation. Trial Registration ClinicalTrials.gov NCT00669084 PMID:23071567

  19. Construction and application of a bovine immune-endocrine cDNA microarray.

    PubMed

    Tao, Wenjing; Mallard, Bonnie; Karrow, Niel; Bridle, Byram

    2004-09-01

    A variety of commercial DNA arrays specific for humans and rodents are widely available; however, microarrays containing well-characterized genes to study pathway-specific gene expression are not as accessible for domestic animals, such as cattle, sheep and pigs. Therefore, a small-scale application-targeted bovine immune-endocrine cDNA array was developed to evaluate genetic pathways involved in the immune-endocrine axis of cattle during periods of altered homeostasis provoked by physiological or environmental stressors, such as infection, vaccination or disease. For this purpose, 167 cDNA sequences corresponding to immune, endocrine and inflammatory response genes were collected and categorized. Positive controls included 5 housekeeping genes (glyceraldehydes-3-phosphate dehydrogenase, hypoxanthine phosphoribosyltransferase, ribosomal protein L19, beta-actin, beta2-microglobulin) and bovine genomic DNA. Negative controls were a bacterial gene (Rhodococcus equi 17-kDa virulence-associated protein) and a partial sequence of the plasmid pACYC177. In addition, RNA extracted from un-stimulated, as well as superantigen (Staphylococcus aureus enterotoxin-A, S. aureus Cowan Pansorbin Cells) and mitogen-stimulated (LPS, ConA) bovine blood leukocytes was mixed, reverse transcribed and PCR amplified using gene-specific primers. The endocrine-associated genes were amplified from cDNA derived from un-stimulated bovine hypothalamus, pituitary, adrenal and thyroid gland tissues. The array was constructed in 4 repeating grids of 180 duplicated spots by coupling the PCR amplified 213-630 bp gene fragments onto poly-l-lysine coated glass slides. The bovine immune-endocrine arrays were standardized and preliminary gene expression profiles generated using Cy3 and Cy5 labelled cDNA from un-stimulated and ConA (5 microg/ml) stimulated PBMC of 4 healthy Holstein cows (2-4 replicate arrays/cow) in a time course study. Mononuclear cell-derived cytokine and chemokine (IL-2, IL-1alpha, TNFalpha, IFN-gamma, TGFbeta-1, MCP-1, MCP-2 and MIP-3alpha) mRNA exhibited a repeatable and consistently low expression in un-stimulated cells and at least a two-fold increased expression following 6 and 24 h ConA stimulation as compared to 0 h un-stimulated controls. In contrast, expression of antigen presenting molecules, MHC-DR, MHC-DQ and MHC-DY, were consistently at least two-fold lower following 6 and 24 h ConA stimulation. The only endocrine gene with differential expression following ConA stimulation was prolactin. Additionally, due to the high level of genetic homology between ovine, swine and bovine genes, RNA similarly acquired from sheep and pigs was evaluated and similar gene expression patterns were noted. These data demonstrate that this application-targeted array containing a set of well characterized genes can be used to determine the relative gene expression corresponding to immune-endocrine responses of cattle and related species, sheep and pigs.

  20. The effects of 6-mercaptopurine nucleotide derivatives on the growth and survival of 6-mercaptopurine-sensitive and -resistant cell culture lines.

    PubMed

    Johnston, H P; Hawley, P; White, S E; Gibson, I; Tidd, D M

    1985-04-01

    6-Mercaptopurine (MP)-sensitive and -resistant cell culture lines were used to further characterize the apparent ability of MP nucleotide derivatives to overcome resistance to the parent drug. 6-Mercaptopurine-9-beta-D-ribofuranoside 5'-monophosphate [MPRP], bis(6-mercaptopurine-9-beta-D-ribofuranoside)-5', 5"'-monophosphate [bis(MPR)P], bis(O2',O3'-dibutyryl-6-mercaptopurine-9-beta-D-ribofuranoside)-5', 5"'-monophosphate [bis(dibut.MPR)P], and O2',O3'-dibutyryl-6-mercaptopurine-9-beta-D-ribofuranoside 5'-monophosphate [dibut.MPRP] were tested for cytotoxic and/or growth inhibitory effects against MP-resistant sublines of V79 Chinese hamster lung fibroblasts (CH/TG) and L1210 mouse leukaemia cells (L1210/MPR) in which deficiencies of hypoxanthine-guanine phosphoribosyltransferase, and hence drug nucleotide forming capacity were the basis of resistance. L1210/MPR cells were totally resistant to 1 mM 6-mercaptopurine-9-beta-D-ribofuranoside [MPR] and 2 mM MPRP, but were inhibited by high concentrations (greater than 0.25 mM) of bis(MPR)P. These results suggested that bis(MPR)P was taken up by cells as the intact molecule since MPR and MPRP were its extracellular breakdown products. L1210/MPR cells were much more sensitive to the lipophilic bis(dibut.MPR)P derivative which had a predominantly cytotoxic action as judged by trypan blue staining and the ability of treated cells to produce macroscopic colonies in soft agar medium. However, cells killed by bis(dibut.MPR)P did not disintegrate appreciably over periods of up to 10 days. The effects of bis(dibut.MPR)P were probably the result of cellular uptake of the intact molecule. Dibut.MPRP showed minimal ability to inhibit L1210/MPR cells although this compound was a possible breakdown product of bis(dibut.MPR)P and a source of the same extracellular degradation products. The median cell size decreased in L1210/MPR cultures during exposure to both bis(MPR)P and bis(dibut.MPR)P. This effect was elicited more rapidly and at lower concentration by bis(dibut.MPR)P than by bis(MPR)P. In contrast, sodium butyrate, a breakdown product of bis(dibut.MPR)P induced increases in cell size at high concentration. Bis (dibut.MPR)P was also cytotoxic to MP-resistant CH/TG cells and was approximately 300 times more effective than bis(MRP)P and MPR which exhibited similar activity against this cell line. Bis(dibut.MPR)P and dibut.MPRP were equivalent and less active than MPR in their effects on MP-sensitive L1210/0 cells where their predominant mechanism of action was via degradation to release MPR.(ABSTRACT TRUNCATED AT 400 WORDS)

  1. The effects of 6-mercaptopurine nucleotide derivatives on the growth and survival of 6-mercaptopurine-sensitive and -resistant cell culture lines.

    PubMed Central

    Johnston, H. P.; Hawley, P.; White, S. E.; Gibson, I.; Tidd, D. M.

    1985-01-01

    6-Mercaptopurine (MP)-sensitive and -resistant cell culture lines were used to further characterize the apparent ability of MP nucleotide derivatives to overcome resistance to the parent drug. 6-Mercaptopurine-9-beta-D-ribofuranoside 5'-monophosphate [MPRP], bis(6-mercaptopurine-9-beta-D-ribofuranoside)-5', 5"'-monophosphate [bis(MPR)P], bis(O2',O3'-dibutyryl-6-mercaptopurine-9-beta-D-ribofuranoside)-5', 5"'-monophosphate [bis(dibut.MPR)P], and O2',O3'-dibutyryl-6-mercaptopurine-9-beta-D-ribofuranoside 5'-monophosphate [dibut.MPRP] were tested for cytotoxic and/or growth inhibitory effects against MP-resistant sublines of V79 Chinese hamster lung fibroblasts (CH/TG) and L1210 mouse leukaemia cells (L1210/MPR) in which deficiencies of hypoxanthine-guanine phosphoribosyltransferase, and hence drug nucleotide forming capacity were the basis of resistance. L1210/MPR cells were totally resistant to 1 mM 6-mercaptopurine-9-beta-D-ribofuranoside [MPR] and 2 mM MPRP, but were inhibited by high concentrations (greater than 0.25 mM) of bis(MPR)P. These results suggested that bis(MPR)P was taken up by cells as the intact molecule since MPR and MPRP were its extracellular breakdown products. L1210/MPR cells were much more sensitive to the lipophilic bis(dibut.MPR)P derivative which had a predominantly cytotoxic action as judged by trypan blue staining and the ability of treated cells to produce macroscopic colonies in soft agar medium. However, cells killed by bis(dibut.MPR)P did not disintegrate appreciably over periods of up to 10 days. The effects of bis(dibut.MPR)P were probably the result of cellular uptake of the intact molecule. Dibut.MPRP showed minimal ability to inhibit L1210/MPR cells although this compound was a possible breakdown product of bis(dibut.MPR)P and a source of the same extracellular degradation products. The median cell size decreased in L1210/MPR cultures during exposure to both bis(MPR)P and bis(dibut.MPR)P. This effect was elicited more rapidly and at lower concentration by bis(dibut.MPR)P than by bis(MPR)P. In contrast, sodium butyrate, a breakdown product of bis(dibut.MPR)P induced increases in cell size at high concentration. Bis (dibut.MPR)P was also cytotoxic to MP-resistant CH/TG cells and was approximately 300 times more effective than bis(MRP)P and MPR which exhibited similar activity against this cell line. Bis(dibut.MPR)P and dibut.MPRP were equivalent and less active than MPR in their effects on MP-sensitive L1210/0 cells where their predominant mechanism of action was via degradation to release MPR.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:3838480

  2. Preferential inhibition of xanthine oxidase by 2-amino-6-hydroxy-8-mercaptopurine and 2-amino-6-purine thiol

    PubMed Central

    Kalra, Sukirti; Jena, Gopabandhu; Tikoo, Kulbhushan; Mukhopadhyay, Anup Kumar

    2007-01-01

    Background The anticancer drug, 6-mercaptopurine (6MP) is subjected to metabolic clearance through xanthine oxidase (XOD) mediated hydroxylation, producing 6-thiouric acid (6TUA), which is excreted in urine. This reduces the effective amount of drug available for therapeutic efficacy. Co-administration of allopurinol, a suicide inhibitor of XOD, which blocks the hydroxylation of 6MP inadvertently enhances the 6MP blood level, counters this reduction. However, allopurinol also blocks the hydroxylation of hypoxanthine, xanthine (released from dead cancer cells) leading to their accumulation in the body causing biochemical complications such as xanthine nephropathy. This necessitates the use of a preferential XOD inhibitor that selectively inhibits 6MP transformation, but leaves xanthine metabolism unaffected. Results Here, we have characterized two such unique inhibitors namely, 2-amino-6-hydroxy-8-mercaptopurine (AHMP) and 2-amino-6-purinethiol (APT) on the basis of IC50 values, residual activity in bi-substrate simulative reaction and the kinetic parameters like Km, Ki, kcat. The IC50 values of AHMP for xanthine and 6MP as substrate are 17.71 ± 0.29 μM and 0.54 ± 0.01 μM, respectively and the IC50 values of APT for xanthine and 6MP as substrates are 16.38 ± 0.21 μM and 2.57 ± 0.08 μM, respectively. The Ki values of XOD using AHMP as inhibitor with xanthine and 6MP as substrate are 5.78 ± 0.48 μM and 0.96 ± 0.01 μM, respectively. The Ki values of XOD using APT as inhibitor with xanthine and 6MP as substrate are 6.61 ± 0.28 μM and 1.30 ± 0.09 μM. The corresponding Km values of XOD using xanthine and 6MP as substrate are 2.65 ± 0.02 μM and 6.01 ± 0.03 μM, respectively. The results suggest that the efficiency of substrate binding to XOD and its subsequent catalytic hydroxylation is much superior for xanthine in comparison to 6MP. In addition, the efficiency of the inhibitor binding to XOD is much more superior when 6MP is the substrate instead of xanthine. We further undertook the toxicological evaluation of these inhibitors in a single dose acute toxicity study in mice and our preliminary experimental results suggested that the inhibitors were equally non-toxic in the tested doses. Conclusion We conclude that administration of either APT or AHMP along with the major anti-leukemic drug 6MP might serve as a good combination cancer chemotherapy regimen. PMID:17511860

  3. Synthesis of novel (2R,4R)- and (2S,4S)-iso dideoxynucleosides with exocyclic methylene as potential antiviral agents.

    PubMed

    Yoo, Su Jeong; Kim, Hea Ok; Lim, Yoongho; Kim, Jeongmin; Jeong, Lak Shin

    2002-01-01

    Novel (2R,4R)- and (2S,4S)-iso dideoxynucleosides with exocyclic methylene have been designed and synthesized, based on the lead BMS-200475 (3) which exhibited potent anti-HBV activity. For the synthesis of D types of (2R,4R)-nucleosides, L-xylose was converted to the key intermediate 14. The intermediate 14 was converted to the uracil derivative 4a and the cytosine derivative 4b. Compound 14 was also converted to the purine derivatives such as adenine derivative 4c, hypoxanthine derivative 4d, and guanine derivative 4e. The corresponding L types of (2S,4S)-enantiomers were more efficiently synthesized from the commercially available 1,2-isopropylidene-D-xylose (20) than the synthetic method used in the synthesis of (2R,4R)-nucleosides. The key intermediate 25 was converted to the pyrimidine analogues 5a and 5b and the purine derivatives 5c, 5d, and 5e using the similar method used in the preparation of 4c, 4d, and 4e. The synthesized final (2R,4R)- and (2S,4S)-nucleosides were tested against several viruses such as HIV-1, HSV-1, HSV-2, HCMV and HBV. (2R,4R)-Adenine analogue 4c exhibited potent anti-HBV activity (EC(50)=1.5 microM in 2.2.15 cells) among compounds tested, while (2R,4R)-uracil derivative 4a was the most active against HCMV among compounds tested and (2R,4R)-adenine derivative 4c was found to be moderately active against the same virus. However, the corresponding (2S,4S)-isomers were found to be totally inactive against all tested viruses. Both (2R,4R)-adenine derivative 4c and (2S,4S)-adenine analogue 5c were totally resistant to the adenosine deaminase like iso-ddA (1). From the molecular modeling study the hydroxymethyl side chains of BMS-200475 (3) and 4c were almost overlapped, indicating that 4c may be suitable for phosphorylation by cellular kinases like the lead 3, but some discrepancy between two bases was observed, indicating why 4c is less potent against HBV than 3. It is concluded that discovery of (2R,4R)-adenine analogue 4c as potent anti-HBV agent suggested that the sugar moiety of this series can be regarded as a novel template for the development of new anti-HBV agent and oxygen atom can be acted as a bioisostere of C-OH.

  4. NqrM (DUF539) Protein Is Required for Maturation of Bacterial Na+-Translocating NADH:Quinone Oxidoreductase

    PubMed Central

    Kostyrko, Vitaly A.; Bertsova, Yulia V.; Serebryakova, Marina V.; Baykov, Alexander A.

    2015-01-01

    ABSTRACT Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) catalyzes electron transfer from NADH to ubiquinone in the bacterial respiratory chain, coupled with Na+ translocation across the membrane. Na+-NQR maturation involves covalent attachment of flavin mononucleotide (FMN) residues, catalyzed by flavin transferase encoded by the nqr-associated apbE gene. Analysis of complete bacterial genomes has revealed another putative gene (duf539, here renamed nqrM) that usually follows the apbE gene and is present only in Na+-NQR-containing bacteria. Expression of the Vibrio harveyi nqr operon alone or with the associated apbE gene in Escherichia coli, which lacks its own Na+-NQR, resulted in an enzyme incapable of Na+-dependent NADH or reduced nicotinamide hypoxanthine dinucleotide (dNADH) oxidation. However, fully functional Na+-NQR was restored when these genes were coexpressed with the V. harveyi nqrM gene. Furthermore, nqrM lesions in Klebsiella pneumoniae and V. harveyi prevented production of functional Na+-NQR, which could be recovered by an nqrM-containing plasmid. The Na+-NQR complex isolated from the nqrM-deficient strain of V. harveyi lacks several subunits, indicating that nqrM is necessary for Na+-NQR assembly. The protein product of the nqrM gene, NqrM, contains a single putative transmembrane α-helix and four conserved Cys residues. Mutating one of these residues (Cys33 in V. harveyi NqrM) to Ser completely prevented Na+-NQR maturation, whereas mutating any other Cys residue only decreased the yield of the mature protein. These findings identify NqrM as the second specific maturation factor of Na+-NQR in proteobacteria, which is presumably involved in the delivery of Fe to form the (Cys)4[Fe] center between subunits NqrD and NqrE. IMPORTANCE Na+-translocating NADH:quinone oxidoreductase complex (Na+-NQR) is a unique primary Na+ pump believed to enhance the vitality of many bacteria, including important pathogens such as Vibrio cholerae, Vibrio parahaemolyticus, Haemophilus influenzae, Neisseria gonorrhoeae, Pasteurella multocida, Porphyromonas gingivalis, Enterobacter aerogenes, and Yersinia pestis. Production of Na+-NQR in bacteria requires Na+-NQR-specific maturation factors. We earlier identified one such factor (ApbE) that covalently attaches flavin residues to Na+-NQR. Here we identify the other protein factor, designated NqrM, and show that NqrM and ApbE suffice to produce functional Na+-NQR from the Vibrio harveyi nqr operon. NqrM may be involved in Fe delivery to a unique Cys4[Fe] center during Na+-NQR assembly. Besides highlighting Na+-NQR biogenesis, these findings suggest a novel drug target to combat Na+-NQR-containing bacteria. PMID:26644436

  5. Final report on the safety assessment of octoxynol-1, octoxynol-3, octoxynol-5, octoxynol-6, octoxynol-7, octoxynol-8, octoxynol-9, octoxynol-10, octoxynol-11, octoxynol-12, octoxynol-13, octoxynol-16, octoxynol-20, octoxynol-25, octoxynol-30, octoxynol-33, octoxynol-40, octoxynol-70, octoxynol-9 carboxylic acid, octoxynol-20 carboxylic acid, potassium octoxynol-12 phosphate, sodium octoxynol-2 ethane sulfonate, sodium octoxynol-2 sulfate, sodium octoxynol-6 sulfate, and sodium octoxynol-9 sulfate.

    PubMed

    Johnson, Wilbur

    2004-01-01

    Octoxynols are ethoxylated alkylphenols in which the size of the molecule is related to the number of moles of ethylene oxide used in synthesis. Reactions are performed at elevated temperature, under pressure, and in the presence of NaOH. It is possible that the synthesis may leave trace amounts of ethylene oxide, 1,4-dioxane, and unreacted C9 phenols. Octoxynols of various chain lengths as well as octoxynol salts and organic acids function in cosmetics either as surfactants--emulsifying agents, surfactants--cleansing agents, surfactant--solubilizing agents, or surfactants--hydrotropes in a wide variety of cosmetic products at concentrations ranging from 0.0008% to 25%, with most less than 5.0%. The octoxynols are chemically similar to nonoxynols, the safety of which were previously considered. Long-chain nonoxynols (9 and above) were considered safe as used, whereas short-chain nonoxynols (8 and below) were considered safe as used in rinse-off products and safe at concentrations less than 5% in leave-on formulations. Acute exposure of hamsters to Octoxynol-9 by bronchopulmonary lavage produced pneumonia, pulmonary edema, and intra-alveolar hemorrhage. Octoxynol-9 at doses over 1 g/kg was toxic in rats and in mice in acute oral toxicity studies. No significant effects were noted in short-term oral studies of Octoxynol-9 in rats, in subchronic oral studies of Octoxynol-40 in rats and dogs, or in chronic oral studies of Octoxynol-40 in rats. The intraperitoneal LD50 of Octoxynol-9 in rats and mice was around 100 mg/kg. In skin irritation studies, octoxynols ranged from nonirritating to moderately irritating. Octoxynols were not ocular irritants in one rabbit study, but in others there was ocular irritation. No immune system toxicity in CF-1 female mice was noted following the intraperitoneal injection of Octoxynol-9 followed by subcutaneous immunization with sheep red blood cells (SRBCs). Octoxynol-9 produced no humoral and cell-mediated immune responses, or autoimmune response in mice. In the Ames test, Octoxynol-1 was not mutagenic with and without metabolic activation nor was Octoxynol-9 clastogenic. Results for Octoxynol-9 were negative in the following assays: unscheduled DNA synthesis, hypoxanthine guanine phosphoribosyl transferase mutation assay, malignant transformation assay, DNA alkaline unwinding test, and mouse lymphoma thymidine kinase locus forward mutation assay. Ethoxylated alkylphenols are generally considered to be estrogenic in that they mimic the effects of estradiol. Dermal exposure at three dose levels of rats to Octoxynol-9 failed to induce any malformations by category (external, visceral, or skeletal) or by individual anatomical location that were different from controls at statistically significant level. An increased incidence of a vestigial thoracic rib was observed in all dose groups. Octoxynol-9 also did not induce developmental toxicity (number of viable litters, liveborn per litter, percentage survival, birth weight per pup, and weight gain per pup) in female specific pathogen-free CD-1 mice dosed daily by gavage on gestation days 6 through 13. No reproductive toxicity was seen in male albino rats which received 5% Octoxynol-40 in the diet daily for 3 months; however, in an in vitro test, Octoxynol-9 (0.24 mg/ml) totally immobilized all human spermatozoa within 20 s. Women who used Nonoxynol-9 or Octoxynol-9 as spermicides, but who did become pregnant, did not have an increase in the overall risk of fetal malformations. In a human skin irritation study, formulations containing 2.0% Octoxynol-9 were classified as moderately irritating and minimally irritating, respectively, in a 24-h single-insult, occlusive patch test. Octoxynol-9 (1.0%) was classified as a nonirritant in a clinical study of nine subjects patch tested for 4 consecutive days. The skin sensitization potential of Octoxynols-1, -3, -5, -9, and -13 was evaluated using 50 subjects. Octoxynol-1 induced sensitization in two subjects; all other results were negative. No sensitization was observed in the following studies: 8.0% Octoxynol-9 in 103 subjects, 0.5% Octoxynol-9 in 102 subjects, and 0.1% Octoxynol-9 in 206 subjects. Concerns about even trace levels of 1,4-dioxane, ethylene oxide, or unreacted C9 led to the recommendation that levels be limited. Concerns about the ocular irritancy of short-chain octoxynols led to a recommendation that they should not be used in products that will be used in the area surrounding the eyes. A limitation on the use concentration for short-chain octoxynols (8 and below) arose from consideration of the skin sensitization potential of octoxynols and the recognition that the short-chain octoxynols could be absorbed into the skin more than the long-chain octoxynols. Overall, based on the available data, it was concluded that long-chain octoxynols (9 and above) are safe as used, whereas short-chain octoxynols (8 and below) are safe as used in rinse-off products and safe at concentrations less than 5% in leave-on formulations.

Top