Science.gov

Sample records for hypoxia responsive elements

  1. Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) contains hypoxia response elements: relevance to lytic induction by hypoxia.

    PubMed

    Haque, Muzammel; Davis, David A; Wang, Victoria; Widmer, Isabelle; Yarchoan, Robert

    2003-06-01

    Kaposi's sarcoma (KS)-associated herpesvirus (KSHV), also known as human herpesvirus 8, is an etiologic agent of KS, primary effusion lymphoma (PEL), and multicentric Castleman's disease. We recently demonstrated that hypoxia can induce lytic replication of KSHV in PEL cell lines. Hypoxia induces the accumulation of hypoxia-inducible factors (HIF), and we hypothesized that the KSHV genome may respond to hypoxia through functional hypoxia response elements (HREs). Here, we demonstrate the presence of at least two promoters within the KSHV genome that are activated by hypoxia or hypoxia mimics. One is in the promoter region of the gene for Rta, the main lytic switch gene, and the other is within the promoter region of ORF34, a lytic gene of unknown function. The ORF34 promoter contains three putative consensus HREs oriented in the direction of the gene. Dissection and site-directed mutagenesis studies confirmed that one of the HREs of the ORF34 promoter is functional. Under conditions of hypoxia, the ORF34 promoter was strongly upregulated by HIF-1 alpha and HIF-2 alpha. By contrast, the promoter of the gene for Rta appeared to be preferentially upregulated by HIF-2 alpha. Reverse transcription-PCR analysis revealed that specific messages for ORF34 and ORF50 are upregulated in BCBL-1 cells exposed to hypoxia. An HIF-1 binding and competition assay demonstrated that the HRE sequence from the ORF34 promoter can compete for HIF-1 alpha binding to an erythropoietin HRE oligonucleotide while a mutant sequence cannot. Thus, we demonstrated that a viral gene can be activated by hypoxia through activation of a functional viral HRE. To our knowledge, this is the first example of a functional HRE in a viral promoter. PMID:12767996

  2. Phosphorylation-dependent targeting of cAMP response element binding protein to the ubiquitin/proteasome pathway in hypoxia

    PubMed Central

    Taylor, Cormac T.; Furuta, Glenn T.; Synnestvedt, Kristin; Colgan, Sean P.

    2000-01-01

    Hypoxia activates a number of gene products through degradation of the transcriptional coactivator cAMP response element binding protein (CREB). Other transcriptional regulators (e.g., β-catenin and NF-κB) are controlled through phosphorylation-targeted proteasomal degradation, and thus, we hypothesized a similar degradative pathway for CREB. Differential display analysis of mRNA derived from hypoxic epithelia revealed a specific and time-dependent repression of protein phosphatase 1 (PP1), a serine phosphatase important in CREB dephosphorylation. Subsequent studies identified a previously unappreciated proteasomal-targeting motif within the primary structure of CREB (DSVTDS), which functions as a substrate for PP1. Ambient hypoxia resulted in temporally sequential CREB serine phosphorylation, ubiquitination, and degradation (in vitro and in vivo). HIV-tat peptide-facilitated loading of intact epithelia with phosphopeptides corresponding to this proteasome targeting motif resulted in inhibition of CREB ubiquitination. Further studies revealed that PP1 inhibitors mimicked hypoxia-induced gene expression, whereas proteasome inhibitors reversed the hypoxic phenotype. Thus, hypoxia establishes conditions that target CREB to proteasomal degradation. These studies may provide unique insight into a general mechanism of transcriptional regulation by hypoxia. PMID:11035795

  3. Hypoxia induces phosphorylation of the cyclic AMP response element-binding protein by a novel signaling mechanism.

    PubMed

    Beitner-Johnson, D; Millhorn, D E

    1998-07-31

    To investigate signaling mechanisms by which hypoxia regulates gene expression, we examined the effect of hypoxia on the cyclic AMP response element-binding protein (CREB) in PC12 cells. Exposure to physiological levels of hypoxia (5% O2, approximately 50 mm Hg) rapidly induced a persistent phosphorylation of CREB on Ser133, an event that is required for CREB-mediated transcriptional activation. Hypoxia-induced phosphorylation of CREB was more robust than that induced by any other stimulus tested, including forskolin, depolarization, and osmotic stress. Furthermore, this effect was not mediated by any of the previously known signaling pathways that lead to phosphorylation of CREB, including protein kinase A, calcium/calmodulin-dependent protein kinase, protein kinase C, ribosomal S6 kinase-2, and mitogen-activated protein kinase-activated protein kinase-2. Hypoxic activation of a CRE-containing reporter (derived from the 5'-flanking region of the tyrosine hydroxylase gene) was attenuated markedly by mutation of the CRE. Thus, a physiological reduction in O2 levels induces a functional phosphorylation of CREB at Ser133 via a novel signaling pathway. PMID:9677418

  4. Hypoxia-Response Element (HRE)–Directed Transcriptional Regulation of the Rat Lysyl Oxidase Gene in Response to Cobalt and Cadmium

    PubMed Central

    Li, Wande

    2013-01-01

    Lysyl oxidase (LO) catalyzes crosslink of collagen, elastin, and histone H1, stabilizing the extracellular matrix and cell nucleus. This enzyme displays dual functions for tumorigenesis, i.e., as a tumor suppressor inactivating the ras oncogene and as a tumor promoter enhancing malignant cell metastasis. To elucidate LO transcriptional regulation, we have cloned the 804 base pair region upstream of the translation start site (ATG) of the rat LO gene with the maximal promoter activity. Computer analysis indicated that at least four hypoxia-response element (HRE) consensuses (5′-ACGTG-3′) exist in the cloned LO promoter. Treatment of rat lung fibroblasts (RFL6) with CoCl2 (Co, 10–100 μM), a chemical hypoxia reagent, enhanced LO mRNA expression and promoter activities. Overexpression of LO was associated with upregulation of hypoxia-inducible factor (HIF)-1α at mRNA levels in cobalt (Co)–treated cells. Thus, LO is a hypoxia-responsive gene. Dominant negative-HIF-1α inhibited LO promoter activities stimulated by Co. Electrophoretic mobility shift, oligonucleotide competition, and in vitro translated HIF-1α binding assays indicated that only one HRE mapped at −387/−383 relative to ATG was functionally active among four consensuses. Site-directed mutation of this HRE significantly diminished the Co-induced and LO promoter-directed expression of the reporter gene. Cadmium (Cd), an inducer of reactive oxygen species, inhibited HIF-1α mRNA expression and HIF-1α binding to the LO gene in Co-treated cells as revealed by RT-PCR and ChIP assays, respectively. Thus, modulation of the HRE activity by Co and Cd plays a critical role in LO gene transactivation. PMID:23161664

  5. REST is a hypoxia-responsive transcriptional repressor.

    PubMed

    Cavadas, Miguel A S; Mesnieres, Marion; Crifo, Bianca; Manresa, Mario C; Selfridge, Andrew C; Keogh, Ciara E; Fabian, Zsolt; Scholz, Carsten C; Nolan, Karen A; Rocha, Liliane M A; Tambuwala, Murtaza M; Brown, Stuart; Wdowicz, Anita; Corbett, Danielle; Murphy, Keith J; Godson, Catherine; Cummins, Eoin P; Taylor, Cormac T; Cheong, Alex

    2016-08-17

    Cellular exposure to hypoxia results in altered gene expression in a range of physiologic and pathophysiologic states. Discrete cohorts of genes can be either up- or down-regulated in response to hypoxia. While the Hypoxia-Inducible Factor (HIF) is the primary driver of hypoxia-induced adaptive gene expression, less is known about the signalling mechanisms regulating hypoxia-dependent gene repression. Using RNA-seq, we demonstrate that equivalent numbers of genes are induced and repressed in human embryonic kidney (HEK293) cells. We demonstrate that nuclear localization of the Repressor Element 1-Silencing Transcription factor (REST) is induced in hypoxia and that REST is responsible for regulating approximately 20% of the hypoxia-repressed genes. Using chromatin immunoprecipitation assays we demonstrate that REST-dependent gene repression is at least in part mediated by direct binding to the promoters of target genes. Based on these data, we propose that REST is a key mediator of gene repression in hypoxia.

  6. Hypoxia: from molecular responses to ecosystem responses.

    PubMed

    Wu, Rudolf S S

    2002-01-01

    Hypoxia affects thousands of km2 of marine waters all over the world, and has caused mass mortality of marine animals, benthic defaunation and decline in fisheries production in many places. The severity, frequency occurrence and spatial scale of hypoxia have increased in the last few decades. Due to rapid human population growth and global warming, the problem of hypoxia is likely to become worse in the coming years. Molecular responses of marine animals to hypoxia are poorly known. In many animals, a haem protein probably serves as the cellular sensor for oxygen, and reactive oxygen species are generated as signaling molecules. In mammal and fish, a heterodimeric transcription factor, hypoxia-inducible factor 1 (HIF-1) has been identified. HIF-1 receives signals from the molecular oxygen senor through redox reactions and/or phosphorylation, and in turn, regulates the transcription of a number of hypoxia-inducible genes, including genes involved in erythropoiesis, angiogenesis and glycolysis. These molecular responses then cascade into a series of biochemical and physiological adjustments, enabling the animal to survive better under hypoxic conditions. Marine animals respond to hypoxia by first attempting to maintain oxygen delivery (e.g. increases in respiration rate, number of red blood cells, or oxygen binding capacity of hemoglobin), then by conserving energy (e.g. metabolic depression, down regulation of protein synthesis and down regulation/modification of certain regulatory enzymes). Upon exposure to prolonged hypoxia, animals must eventually resort to anaerobic respiration. Hypoxia reduces growth and feeding, which may eventually affect individual fitness. Effects of hypoxia on reproduction and development of marine animals, albeit important in affecting species survival, remain almost unknown. Many fish and marine organisms can detect, and actively avoid hypoxia. Some benthos may leave their burrows and move to sediment surface during hypoxia. These

  7. REST is a hypoxia-responsive transcriptional repressor.

    PubMed

    Cavadas, Miguel A S; Mesnieres, Marion; Crifo, Bianca; Manresa, Mario C; Selfridge, Andrew C; Keogh, Ciara E; Fabian, Zsolt; Scholz, Carsten C; Nolan, Karen A; Rocha, Liliane M A; Tambuwala, Murtaza M; Brown, Stuart; Wdowicz, Anita; Corbett, Danielle; Murphy, Keith J; Godson, Catherine; Cummins, Eoin P; Taylor, Cormac T; Cheong, Alex

    2016-01-01

    Cellular exposure to hypoxia results in altered gene expression in a range of physiologic and pathophysiologic states. Discrete cohorts of genes can be either up- or down-regulated in response to hypoxia. While the Hypoxia-Inducible Factor (HIF) is the primary driver of hypoxia-induced adaptive gene expression, less is known about the signalling mechanisms regulating hypoxia-dependent gene repression. Using RNA-seq, we demonstrate that equivalent numbers of genes are induced and repressed in human embryonic kidney (HEK293) cells. We demonstrate that nuclear localization of the Repressor Element 1-Silencing Transcription factor (REST) is induced in hypoxia and that REST is responsible for regulating approximately 20% of the hypoxia-repressed genes. Using chromatin immunoprecipitation assays we demonstrate that REST-dependent gene repression is at least in part mediated by direct binding to the promoters of target genes. Based on these data, we propose that REST is a key mediator of gene repression in hypoxia. PMID:27531581

  8. REST is a hypoxia-responsive transcriptional repressor

    PubMed Central

    Cavadas, Miguel A. S.; Mesnieres, Marion; Crifo, Bianca; Manresa, Mario C.; Selfridge, Andrew C.; Keogh, Ciara E.; Fabian, Zsolt; Scholz, Carsten C.; Nolan, Karen A.; Rocha, Liliane M. A.; Tambuwala, Murtaza M.; Brown, Stuart; Wdowicz, Anita; Corbett, Danielle; Murphy, Keith J.; Godson, Catherine; Cummins, Eoin P.; Taylor, Cormac T.; Cheong, Alex

    2016-01-01

    Cellular exposure to hypoxia results in altered gene expression in a range of physiologic and pathophysiologic states. Discrete cohorts of genes can be either up- or down-regulated in response to hypoxia. While the Hypoxia-Inducible Factor (HIF) is the primary driver of hypoxia-induced adaptive gene expression, less is known about the signalling mechanisms regulating hypoxia-dependent gene repression. Using RNA-seq, we demonstrate that equivalent numbers of genes are induced and repressed in human embryonic kidney (HEK293) cells. We demonstrate that nuclear localization of the Repressor Element 1-Silencing Transcription factor (REST) is induced in hypoxia and that REST is responsible for regulating approximately 20% of the hypoxia-repressed genes. Using chromatin immunoprecipitation assays we demonstrate that REST-dependent gene repression is at least in part mediated by direct binding to the promoters of target genes. Based on these data, we propose that REST is a key mediator of gene repression in hypoxia. PMID:27531581

  9. Cognitive responses to hypobaric hypoxia: implications for aviation training

    PubMed Central

    Neuhaus, Christopher; Hinkelbein, Jochen

    2014-01-01

    The aim of this narrative review is to provide an overview on cognitive responses to hypobaric hypoxia and to show relevant implications for aviation training. A principal element of hypoxia-awareness training is the intentional evocation of hypoxia symptoms during specific training sessions within a safe and controlled environment. Repetitive training should enable pilots to learn and recognize their personal hypoxia symptoms. A time span of 3–6 years is generally considered suitable to refresh knowledge of the more subtle and early symptoms especially. Currently, there are two different technical approaches available to induce hypoxia during training: hypobaric chamber training and reduced-oxygen breathing devices. Hypoxia training for aircrew is extremely important and effective, and the hypoxia symptoms should be emphasized clearly to aircrews. The use of tight-fitting masks, leak checks, and equipment checks should be taught to all aircrew and reinforced regularly. It is noteworthy that there are major differences in the required quality and quantity of hypoxia training for both military and civilian pilots. PMID:25419162

  10. SWI/SNF regulates the cellular response to hypoxia.

    PubMed

    Kenneth, Niall S; Mudie, Sharon; van Uden, Patrick; Rocha, Sonia

    2009-02-13

    Hypoxia induces a variety of cellular responses such as cell cycle arrest, apoptosis, and autophagy. Most of these responses are mediated by the hypoxia-inducible factor-1alpha. To induce target genes, hypoxia-inducible factor-1alpha requires a chromatin environment conducive to allow binding to specific sequences. Here, we have studied the role of the chromatin-remodeling complex SWI/SNF in the cellular response to hypoxia. We find that SWI/SNF is required for several of the cellular responses induced by hypoxia. Surprisingly, hypoxia-inducible factor-1alpha is a direct target of the SWI/SNF chromatin-remodeling complex. SWI/SNF components are found associated with the hypoxia-inducible factor-1alpha promoter and modulation of SWI/SNF levels results in pronounced changes in hypoxia-inducible factor-1alpha expression and its ability to transactivate target genes. Furthermore, impairment of SWI/SNF function renders cells resistant to hypoxia-induced cell cycle arrest. These results reveal a previously uncharacterized dependence of hypoxia signaling on the SWI/SNF complex and demonstrate a new level of control over the hypoxia-inducible factor-1alpha system.

  11. Properties of switch-like bioregulatory networks studied by simulation of the hypoxia response control system.

    PubMed

    Kohn, Kurt W; Riss, Joseph; Aprelikova, Olga; Weinstein, John N; Pommier, Yves; Barrett, J Carl

    2004-07-01

    A complex bioregulatory network could be more easily comprehended if its essential function could be described by a small "core" subsystem, and if its response characteristics were switch-like. We tested this proposition by simulation studies of the hypoxia response control network. We hypothesized that a small subsystem governs the basics of the cellular response to hypoxia and that this response has a sharp oxygen-dependent transition. A molecular interaction map of the network was prepared, and an evolutionarily conserved core subsystem was extracted that could control the activity of hypoxia response promoter elements on the basis of oxygen concentration. The core subsystem included the hypoxia-inducible transcription factor (HIFalpha:ARNT heterodimer), proline hydroxylase, and the von Hippel-Lindau protein. Simulation studies showed that the same core subsystem can exhibit switch-like responses both to oxygen level and to HIFalpha synthesis rate, thus suggesting a mechanism for hypoxia response promoter element-dependent responses common to both hypoxia and growth factor signaling. The studies disclosed the mechanism responsible for the sharp transitions. We show how parameter sets giving switch-like behavior can be found and how this type of behavior provides a foundation for quantitative studies in cells. PMID:15107465

  12. Hypoxia Responsive Drug Delivery Systems in Tumor Therapy.

    PubMed

    Alimoradi, Houman; Matikonda, Siddharth S; Gamble, Allan B; Giles, Gregory I; Greish, Khaled

    2016-01-01

    Hypoxia is a common characteristic of solid tumors. It is mainly determined by low levels of oxygen resulting from imperfect vascular networks supplying most tumors. In an attempt to improve the present chemotherapeutic treatment and reduce associated side effects, several prodrug strategies have been introduced to achieve hypoxia-specific delivery of cytotoxic anticancer agents. With the advances in nanotechnology, novel delivery systems activated by the consequent outcomes of hypoxia have been developed. However, developing hypoxia responsive drug delivery systems (which only depend on low oxygen levels) is currently naïve. This review discusses four main hypoxia responsive delivery systems: polymeric based drug delivery systems, oxygen delivery systems combined with radiotherapy and chemotherapy, anaerobic bacteria which are used for delivery of genes to express anticancer proteins such as tumor necrosis alpha (TNF-α) and hypoxia-inducible transcription factors 1 alpha (HIF1α) responsive gene delivery systems.

  13. Thermoregulatory and metabolic responses of Japanese quail to hypoxia

    PubMed Central

    Atchley, Dylan S.; Foster, Jennifer A.; Bavis, Ryan W.

    2008-01-01

    Common responses to hypoxia include decreased body temperature (Tb) and decreased energy metabolism. In this study, the effects of hypoxia and hypercapnia on Tb and metabolic oxygen consumption (V̇o2) were investigated in Japanese quail (Coturnix japonica). When exposed to hypoxia (15, 13, 11 and 9% O2), Tb decreased only at 11% and 9% O2 compared to normoxia; quail were better able to maintain Tb during acute hypoxia after a one-week acclimation to 10% O2. V̇o2 also decreased during hypoxia, but at 9% O2 this was partially offset by increased anaerobic metabolism. Tb and V̇o2 responses to 9% O2 were exaggerated at lower ambient temperature (Ta), reflecting a decreased lower critical temperature during hypoxia. Conversely, hypoxia had little effect on Tb or V̇o2 at higher Ta (36°C). We conclude that Japanese quail respond to hypoxia in much the same way as mammals, by reducing both Tb and V̇o2. No relationship was found between the magnitudes of decreases in Tb and V̇o2 during 9% O2, however. Since metabolism is the source of heat generation, this suggests that Japanese quail increase thermolysis to reduce Tb. During hypercapnia (3, 6 and 9% CO2), Tb was reduced only at 9% CO2 while V̇o2 was unchanged. PMID:18727957

  14. Melatonin modulates the fetal cardiovascular defense response to acute hypoxia.

    PubMed

    Thakor, Avnesh S; Allison, Beth J; Niu, Youguo; Botting, Kimberley J; Serón-Ferré, Maria; Herrera, Emilio A; Giussani, Dino A

    2015-08-01

    Experimental studies in animal models supporting protective effects on the fetus of melatonin in adverse pregnancy have prompted clinical trials in human pregnancy complicated by fetal growth restriction. However, the effects of melatonin on the fetal defense to acute hypoxia, such as that which may occur during labor, remain unknown. This translational study tested the hypothesis, in vivo, that melatonin modulates the fetal cardiometabolic defense responses to acute hypoxia in chronically instrumented late gestation fetal sheep via alterations in fetal nitric oxide (NO) bioavailability. Under anesthesia, 6 fetal sheep at 0.85 gestation were instrumented with vascular catheters and a Transonic flow probe around a femoral artery. Five days later, fetuses were exposed to acute hypoxia with or without melatonin treatment. Fetal blood was taken to determine blood gas and metabolic status and plasma catecholamine concentrations. Hypoxia during melatonin treatment was repeated during in vivo NO blockade with the NO clamp. This technique permits blockade of de novo synthesis of NO while compensating for the tonic production of the gas, thereby maintaining basal cardiovascular function. Melatonin suppressed the redistribution of blood flow away from peripheral circulations and the glycemic and plasma catecholamine responses to acute hypoxia. These are important components of the fetal brain sparing response to acute hypoxia. The effects of melatonin involved NO-dependent mechanisms as the responses were reverted by fetal treatment with the NO clamp. Melatonin modulates the in vivo fetal cardiometabolic responses to acute hypoxia by increasing NO bioavailability.

  15. c-MYC inhibition impairs hypoxia response in glioblastoma multiforme.

    PubMed

    Mongiardi, Maria Patrizia; Savino, Mauro; Falchetti, Maria Laura; Illi, Barbara; Bozzo, Francesca; Valle, Cristiana; Helmer-Citterich, Manuela; Ferrè, Fabrizio; Nasi, Sergio; Levi, Andrea

    2016-05-31

    The c-MYC oncoprotein is a DNA binding transcription factor that enhances the expression of many active genes. c-MYC transcriptional signatures vary according to the transcriptional program defined in each cell type during differentiation. Little is known on the involvement of c-MYC in regulation of gene expression programs that are induced by extracellular cues such as a changing microenvironment. Here we demonstrate that inhibition of c-MYC in glioblastoma multiforme cells blunts hypoxia-dependent glycolytic reprogramming and mitochondria fragmentation in hypoxia. This happens because c-MYC inhibition alters the cell transcriptional response to hypoxia and finely tunes the expression of a subset of Hypoxia Inducible Factor 1-regulated genes. We also show that genes whose expression in hypoxia is affected by c-MYC inhibition are able to distinguish the Proneural subtype of glioblastoma multiforme, thus potentially providing a molecular signature for this class of tumors that are the least tractable among glioblastomas. PMID:27119353

  16. Pre- and Perinatal Ischemia-Hypoxia, the Ischemia-Hypoxia Response Pathway, and ADHD Risk.

    PubMed

    Smith, Taylor F; Schmidt-Kastner, Rainald; McGeary, John E; Kaczorowski, Jessica A; Knopik, Valerie S

    2016-05-01

    This review focuses on how measured pre- and perinatal environmental and (epi)genetic risk factors are interrelated and potentially influence one, of many, common developmental pathway towards ADHD. Consistent with the Developmental Origins of Health and Disease hypothesis, lower birth weight is associated with increased ADHD risk. Prenatal ischemia-hypoxia (insufficient blood and oxygen supply in utero) is a primary pathway to lower birth weight and produces neurodevelopmental risk for ADHD. To promote tissue survival in the context of ischemia-hypoxia, ischemia-hypoxia response (IHR) pathway gene expression is altered in the developing brain and peripheral tissues. Although altered IHR gene expression is adaptive in the context of ischemia-hypoxia, lasting IHR epigenetic modifications may lead to increased ADHD risk. Taken together, IHR genetic vulnerability to ischemia-hypoxia and IHR epigenetic alterations following prenatal ischemia-hypoxia may result in neurodevelopmental vulnerability for ADHD. Limitations of the extant literature and future directions for genetically-informed research are discussed. PMID:26920003

  17. Circulatory responses to hypoxia in experimental myocardial infarction.

    NASA Technical Reports Server (NTRS)

    Schroll, M.; Robison, S. C.; Harrison, D. C.

    1971-01-01

    Three levels of decreased arterial oxygen saturation elicited a graded circulatory response in dogs, manifested by stepwise increases in cardiac output, left ventricular dp/dt, and stroke volume, and decreases in systemic vascular resistance. Responses to similar hypoxia challenges after experimental myocardial infarction were qualitatively similar but quantitatively less. Although the circulatory compensation for hypoxia was less effective after myocardial infarction, no further deterioration of the haemodynamics was noted.

  18. Prolonged lobar hypoxia in vivo enhances the responsivity of isolated pulmonary veins to hypoxia

    NASA Technical Reports Server (NTRS)

    Sheehan, D. W.; Farhi, L. E.; Russell, J. A.

    1992-01-01

    The hypoxic response of pulmonary vessels isolated from eight sheep whose right apical lobes (RAL) had inspired 100% N2 for 20 h was studied. The RAL of these conscious sheep inspired hypoxic gas and the remainder of the lung inspired air. During hypoxia, RAL perfusion was 33 +/- 3% of its air value, carotid arterial PO2 averaged 86 +/- 3 mm Hg and pulmonary perfusion pressure was not significantly different from the initial control period when the RAL inspired air. At the end of the hypoxic exposure, the sheep were killed, and pulmonary artery and vein rings (0.5 to 2 mm inner diameter) were isolated from both the RAL and the right cardiac lobe, which served as the control lobe (CL). Arteries from the RAL and CL did not contract in response to 6% O2/6% CO2/88% N2 (hypoxia). In contrast, RAL veins did contract vigorously in response to hypoxia, whereas CL veins did not contract or contracted only minimally. Rubbing of the endothelium or prior incubation of RAL veins with catalase (1,200 units/ml), indomethacin (10(-5) M), or the thromboxane A2/prostaglandin H2 (TxA2/PGH2) receptor antagonist, SQ 29,548 (3 X 10(-6) M) each significantly reduced the response to hypoxia. RAL veins were also found to be more reactive than CL veins to the prostaglandin endoperoxide analogue U46619. We conclude that prolonged lobar hypoxia in vivo increases the responsivity of isolated pulmonary veins to hypoxia. These contractions may result from an increase in reactive O2 species, which in turn modify production of, metabolism of, and/or tissue responsivity to TxA2/PGH2.

  19. The Hypoxia-Inducible Factor 1/NOR-1 Axis Regulates the Survival Response of Endothelial Cells to Hypoxia▿

    PubMed Central

    Martorell, Lluis; Gentile, Maurizio; Rius, Jordi; Rodríguez, Cristina; Crespo, Javier; Badimon, Lina; Martínez-González, José

    2009-01-01

    Hypoxia induces apoptosis but also triggers adaptive mechanisms to ensure cell survival. Here we show that the prosurvival effects of hypoxia-inducible factor 1 (HIF-1) in endothelial cells are mediated by neuron-derived orphan receptor 1 (NOR-1). The overexpression of NOR-1 decreased the rate of endothelial cells undergoing apoptosis in cultures exposed to hypoxia, while the inhibition of NOR-1 increased cell apoptosis. Hypoxia upregulated NOR-1 mRNA levels in a time- and dose-dependent manner. Blocking antibodies against VEGF or SU5614 (a VEGF receptor 2 inhibitor) did not prevent hypoxia-induced NOR-1 expression, suggesting that NOR-1 is not induced by the autocrine secretion of VEGF in response to hypoxia. The reduction of HIF-1α protein levels by small interfering RNAs, or by inhibitors of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway or mTOR, significantly counteracted hypoxia-induced NOR-1 upregulation. Intracellular Ca2+ was involved in hypoxia-induced PI3K/Akt activation and in the downstream NOR-1 upregulation. A hypoxia response element mediated the transcriptional activation of NOR-1 induced by hypoxia as we show by transient transfection and chromatin immunoprecipitation assays. Finally, the attenuation of NOR-1 expression reduced both basal and hypoxia-induced cIAP2 (cellular inhibitor of apoptosis protein 2) mRNA levels, while NOR-1 overexpression upregulated cIAP2. Therefore, NOR-1 is a downstream effector of HIF-1 signaling involved in the survival response of endothelial cells to hypoxia. PMID:19720740

  20. Repeated acute hypoxia temporarily attenuates the ventilatory respiratory response to hypoxia in conscious newborn rats.

    PubMed

    Matsuoka, T; Yoda, T; Ushikubo, S; Matsuzawa, S; Sasano, T; Komiyama, A

    1999-07-01

    We asked whether repeated hypoxic exposures during the early neonatal periods could affect the ventilatory control, such as the lung volume-dependent ventilatory inhibition (HBR), pulmonary ventilation (VE), and CO2 production (VCO2). Within each litter of rats, one group of pups (experimental group H) was exposed to 6% O2 (30-min duration twice a day from postnatal d 1 to 4). The other group (control group C) was exposed to air. At 5 d after birth, the HBR was triggered by lung inflation via negative body surface pressure (10 cm H2O). Measurements of VE and VCO2 were done by plethysmography and the inflow-outflow CO2 difference, respectively. At 2 wk of age, VE and VCO2 measurements were repeated by the barometric technique and the inflow-outflow CO2 difference, respectively. Each conscious pup was breathing normoxia (21% O2) and then hypoxia (10% O2). Results were as follows: 1) during normoxia, HBR was stronger and both VE and VCO2 were higher in H pups than in C pups; 2) during hypoxia, the HBR of C was as in normoxia, whereas that of H was increased above the normoxic value; 3) during hypoxia, C maintained VE, whereas H decreased it; 4) in hypoxia, VCO2 was reduced significantly in both groups; 5) at 2 wk of age, VE and VCO2 did not differ between H and C during normoxia or in response to 10% hypoxia. We conclude that in rat pups, repeated hypoxic episodes can modify the HBR and, at least temporarily, reduce the VE response to hypoxia with a decrease in VCO2. The findings are in agreement with the view that repeated hypoxic exposures in the neonatal period could interfere with the development of respiratory control and could possibly be involved in the mechanisms of neonatal apnea or sudden infant death syndrome. PMID:10400145

  1. Hypoxia-Responsive Copolymer for siRNA Delivery.

    PubMed

    Perche, Federico; Biswas, Swati; Patel, Niravkumar R; Torchilin, Vladimir P

    2016-01-01

    A wide variety of nanomedicine has been designed for cancer therapy. Herein, we describe the synthesis and evaluation of a hypoxia-responsive copolymer for siRNA delivery (Perche et al., Angew Chem Int Ed Engl 53:3362-3366, 2014). The synthesis is achieved using established coupling chemistry and accessible purification procedures. A polyelectrolyte-lipid conjugate (polyethyleneimine 1.8 kDa-dioleyl-phosphatidylinositol, PEI-PE) and polyethylene glycol 2000 (PEG) were assembled via the hypoxia-sensitive azobenzene (Azo) unit to obtain the PEG-Azo-PEI-DOPE copolymer. This copolymer can condense siRNA and shows hypoxia-induced cellular internalization and reporter gene downregulation in vitro and tumor accumulation in vivo after parenteral administration (Perche et al., Angew Chem Int Ed Engl 53:3362-3366, 2014). We also detail procedures to evaluate hypoxia-targeted polymers both in monolayer cultures, cancer cell spheroids and in tumor xenografts murine models. PMID:26530922

  2. Aging, Tolerance to High Altitude, and Cardiorespiratory Response to Hypoxia.

    PubMed

    Richalet, Jean-Paul; Lhuissier, François J

    2015-06-01

    Richalet, Jean-Paul, and François J. Lhuissier. Aging, tolerance to high altitude, and cardiorespiratory response to hypoxia. High Alt Med Biol. 16:117-124, 2015.--It is generally accepted that aging is rather protective, at least at moderate altitude. Some anecdotal reports even mention successful ascent of peaks over 8000 m and even Everest by elderly people. However, very few studies have explored the influence of aging on tolerance to high altitude and prevalence of acute high altitude related diseases, taking into account all confounding factors such as speed of ascent, altitude reached, sex, training status, and chemo-responsiveness. Changes in physiological responses to hypoxia with aging were assessed through a cross-sectional 20-year study including 4675 subjects (2789 men, 1886 women; 14-85 yrs old) and a longitudinal study including 30 subjects explored at a mean 10.4-year interval. In men, ventilatory response to hypoxia increased, while desaturation was less pronounced with aging. Cardiac response to hypoxia was blunted with aging in both genders. Similar results were found in the longitudinal study, with a decrease in cardiac and an increase in ventilatory response to hypoxia with aging. These adaptive responses were less pronounced or absent in post-menopausal untrained women. In conclusion, in normal healthy and active subjects, aging has no deleterious effect on cardiac and ventilatory responses to hypoxia, at least up to the eighth decade. Aging is not a contraindication for high altitude, as far as no pathological condition interferes and physical fitness is compatible with the intensity of the expected physical demand of one's individual. Physiological evaluation through hypoxic exercise testing before going to high altitude is helpful to detect risk factors of severe high altitude-related diseases.

  3. Serotoninergic modulation of cortical and respiratory responses to episodic hypoxia

    PubMed Central

    2009-01-01

    Biphasic respiratory response to hypoxia in anesthetized animals is accompanied by changes in the EEG mostly in the low EEG frequency bands. Serotonin is a potent modulator of cortical and respiratory activity through 5-HT2 receptors. Present study investigated whether 5-HT2 receptors might be involved in the EEG and respiratory relationship during normoxic and hypoxic respiration assessed from integrated phrenic (Phr) and hypoglossal (HG) nerve activities. EEG signal recorded from the frontal cortex was subjected to power spectral analysis in delta, theta, alpha, and beta frequency bands. Systemic administration of 5-HT2 agonist DOI (1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane) enhanced tonic and lowered peak phasic respiratory activity, and increased frequency of bursts of Phr and HG activity. At the same time, EEG activity became desynchronized and arterial blood pressure (ABP) increased. Following DOI pretreatment, 11% hypoxia induced an augmented respiratory response in comparison with the response in the baseline condition. ABP fell less then in the control hypoxia. EEG pattern changed less than in the baseline state. Subsequent administration of ketanserin, a 5-HT2 antagonist increased respiratory activity, elicited a synchronization of EEG activity and hypotension. The respiratory response to hypoxia was attenuated and cortical response was more potent in comparison with that after DOI injection. Arterial blood pressure decreased more then during baseline hypoxic response. The results suggest that modulation of cortical synchronization and desynchronization through 5-HT2 receptor active agents may impact to hypoxic respiratory response. PMID:20156721

  4. The metallothionein gene from the white shrimp Litopenaeus vannamei: characterization and expression in response to hypoxia.

    PubMed

    Felix-Portillo, Monserrath; Martinez-Quintana, José A; Peregrino-Uriarte, Alma B; Yepiz-Plascencia, Gloria

    2014-10-01

    Aquatic animals encounter variation in oxygen tension that leads to the accumulation of reactive oxygen species (ROS) that can harm the organisms. Under these circumstances some organisms have evolved to tolerate hypoxia. In mammals, metallothioneins (MTs) protect against hypoxia-generated ROS. Here we report the MT gene from the shrimp Litopenaeus vannamei (LvMT). LvMT is differentially expressed in hemocytes, intestine, gills, pleopods, heart, hepatopancreas and muscle, with the highest levels in hepatopancreas and heart. LvMT mRNA increases during hypoxia in hepatopancreas and gills after 3 h at 1.5 mg L(-1) dissolved oxygen (DO). This gene structure resembles the homologs from invertebrates and vertebrates possessing three exons, two introns and response elements for metal response transcription factor 1 (MTF-1), hypoxia-inducible factor 1 (HIF-1) and p53 in the promoter region. During hypoxia, HIF-1/MTF-1 might participate inducing MT to contribute towards the tolerance to ROS toxicity. MT importance in aquatic organisms may include also ROS-detoxifying processes.

  5. Hypoxia-induced protein binding to O2-responsive sequences on the tyrosine hydroxylase gene.

    PubMed

    Norris, M L; Millhorn, D E

    1995-10-01

    We reported recently that the gene that encodes tyrosine hydroxylase (TH), the rate-limiting enzyme in the biosynthesis of catecholamines, is regulated by hypoxia in the dopaminergic cells of the mammalian carotid body (Czyzyk-Krzeska, M. F., Bayliss, D. A., Lawson, E. E. & Millhorn, D. E. (1992) J. Neurochem. 58, 1538-1546) and in pheochromocytoma (PC12) cells (Czyzyk-Krzeska, M. F., Furnari, B. A., Lawson, E. E. & Millhorn, D. E. (1994) J. Biol. Chem. 269, 760-764). Regulation of this gene during low O2 conditions occurs at both the level of transcription and RNA stability. Increased transcription during hypoxia is regulated by a region of the proximal promoter that extends from -284 to + 27 bases, relative to transcription start site. The present study was undertaken to further characterize the sequences that confer O2 responsiveness of the TH gene and to identify hypoxia-induced protein interactions with these sequences. Results from chloramphenicol acetyltransferase assays identified a region between bases -284 and -150 that contains the essential sequences for O2 regulation. This region contains a number of regulatory elements including AP1, AP2, and HIF-1. Gel shift assays revealed enhanced protein interactions at the AP1 and HIF-1 elements of the native gene. Further investigations using supershift and shift-Western analysis showed that c-Fos and JunB bind to the AP1 element during hypoxia and that these protein levels are stimulated by hypoxia. Mutation of the AP1 sequence prevented stimulation of transcription of the TH-chloramphenicol acetyltransferase reporter gene by hypoxia. PMID:7559551

  6. Chronic intermittent hypoxia alters ventilatory and metabolic responses to acute hypoxia in rats.

    PubMed

    Morgan, Barbara J; Adrian, Russell; Wang, Zun-Yi; Bates, Melissa L; Dopp, John M

    2016-05-15

    We determined the effects of chronic exposure to intermittent hypoxia (CIH) on chemoreflex control of ventilation in conscious animals. Adult male Sprague-Dawley rats were exposed to CIH [nadir oxygen saturation (SpO2), 75%; 15 events/h; 10 h/day] or normoxia (NORM) for 21 days. We assessed the following responses to acute, graded hypoxia before and after exposures: ventilation (V̇e, via barometric plethysmography), V̇o2 and V̇co2 (analysis of expired air), heart rate (HR), and SpO2 (pulse oximetry via neck collar). We quantified hypoxia-induced chemoreceptor sensitivity by calculating the stimulus-response relationship between SpO2 and the ventilatory equivalent for V̇co2 (linear regression). An additional aim was to determine whether CIH causes proliferation of carotid body glomus cells (using bromodeoxyuridine). CIH exposure increased the slope of the V̇e/V̇co2/SpO2 relationship and caused hyperventilation in normoxia. Bromodeoxyuridine staining was comparable in CIH and NORM. Thus our CIH paradigm augmented hypoxic chemosensitivity without causing glomus cell proliferation. PMID:26917692

  7. Impaired response of mature adipocytes of diabetic mice to hypoxia

    SciTech Connect

    Hong, Seok Jong Jin, Da P.; Buck, Donald W.; Galiano, Robert D.; Mustoe, Thomas A.

    2011-10-01

    Adipose tissue contains various cells such as infiltrated monocytes/macrophages, endothelial cells, preadipocytes, and adipocytes. Adipocytes have an endocrine function by secreting adipokines such as interleukin (IL)-6, tumor necrosis factor (TNF)-{alpha}, leptin, and adiponectin. Dysregulation of adipokines in adipose tissues leads to a chronic low-grade inflammation which could result in atherosclerosis, hypertension, and type 2 diabetes. A sustained inflammatory state, which is characterized by prolonged persistence of macrophages and neutrophils, is found in diabetic wounds. In addition, subcutaneous adipocytes are enormously increased in amount clinically in type 2 diabetes. However, the function of subcutaneous adipocytes, which play an important role in injured tissue subjected to hypoxia, has not been well characterized in vitro due to the difficulty of maintaining mature adipocytes in culture using conventional methods because of their buoyancy. In this study, we established a novel in vitro culture method of mature adipocytes by enclosing them in a hyaluronan (HA) based hydrogel to study their role in response to stress such as hypoxia. BrdU labeling and Ki67 immunostaining experiments showed that hydrogel enclosed mature adipocytes proliferate in vitro. Both mRNA and protein expression analyses for hypoxia regulated genes, such as vascular endothelial growth factor (VEGF) and heme oxygenase 1 (HO1), showed that mature adipocytes of wild type mice respond to hypoxia. In contrast, mature adipocytes of diabetic db/db and TallyHo mice did not efficiently respond to hypoxia. Our studies suggest that mature adipocytes are functionally active cells, and their abnormal function to hypoxia can be one of underlining mechanisms in type 2 diabetes.

  8. Transcriptomic responses of marine medaka's ovary to hypoxia.

    PubMed

    Lai, Keng Po; Li, Jing Woei; Tse, Anna Chung Kwan; Cheung, Angela; Wang, Simon; Chan, Ting Fung; Kong, Richard Yuen Chong; Wu, Rudolf Shiu Sun

    2016-08-01

    Hypoxia, an endocrine disruptor, is pressing global problem affecting marine organisms in over 400 "Dead Zones" worldwide. There is growing evident demonstrated the disruptive effect of hypoxia on reproductive systems of marine fish through the impairments of steroidogenic gene expression, leading to the alteration of sex hormone production in gonads. But the detailed molecular mechanism underlying the responses of female reproductive systems to hypoxic stress remains largely unknown. In the present report, we used marine medaka Oryzias melastigma as a model, together with high-throughput transcriptome sequencing and bioinformatics analysis, aiming to determine the changes in transcriptional signature in the ovary of marine fish under hypoxic stress. Our result discovered over two hundred differential expressed genes in ovary in response to hypoxia. The bioinformatics analysis together with quantitative RT-PCR validation on the deregulated genes highlighted the dysregulations of a number of female reproductive functions including interruptions of ovarian follicle development, gonad development and steroid metabolic process. Additionally, we revealed that these deregulations are through the modulation of leukemia inhibitory factor (LIF), insulin-like growth factor 1 receptor (IGF1R) and follicle stimulating hormone (FSH). The result of this work complements previous studies and provides additional insights into the underlying molecular mechanism of hypoxia-induced impairment of female reproductive system. PMID:27423118

  9. Sympathoadrenal responses to acute and chronic hypoxia in the rat.

    PubMed Central

    Johnson, T S; Young, J B; Landsberg, L

    1983-01-01

    The sympathoadrenal responses to acute and chronic hypoxic exposure at 10.5 and 7.5% oxygen were determined in the rat. Cardiac norepinephrine (NE) turnover was used to assess sympathetic nervous system (SNS) activity, and urinary excretion of epinephrine (E) was measured as an index of adrenal medullary activity. The responses of the adrenal medulla and SNS were distinct and dependent upon the degree and duration of hypoxic exposure. Chronic hypoxia at 10.5% oxygen increased cardiac NE turnover by 130% after 3, 7, and 14 d of hypoxic exposure. Urinary excretion of NE was similarly increased over this time interval, while urinary E excretion was marginally elevated. In contrast, acute exposure to moderate hypoxia at 10.5% oxygen was not associated with an increase in SNS activity; in fact, decreased SNS activity was suggested by diminished cardiac NE turnover and urinary NE excretion over the first 12 h of hypoxic exposure, and by a rebound increase in NE turnover after reexposure to normal oxygen tension. Adrenal medullary activity, on the other hand, increased substantially during acute exposure to moderate hypoxia (2-fold increase in urinary E excretion) and severe hypoxia (greater than 10-fold). In distinction to the lack of effect of acute hypoxic exposure (10.5% oxygen), the SNS was markedly stimulated during the first day of hypoxia exposure at 7.5% oxygen, an increase that was sustained throughout at least 7 d at 7.5% oxygen. These results demonstrate that chronic exposure to moderate and severe hypoxia increases the activity of the SNS and adrenal medulla, the effect being greater in severe hypoxic exposure. The response to acute hypoxic exposure is more complicated; during the first 12 h of exposure at 10.5% oxygen, the SNS is not stimulated and appears to be restrained, while adrenal medullary activity is enhanced. Acute exposure to a more severe degree of hypoxia (7.5% oxygen), however, is associated with stimulation of both the SNS and adrenal medulla

  10. Clinical iron deficiency disturbs normal human responses to hypoxia

    PubMed Central

    Frise, Matthew C.; Cheng, Hung-Yuan; Nickol, Annabel H.; Curtis, M. Kate; Pollard, Karen A.; Roberts, David J.; Ratcliffe, Peter J.; Dorrington, Keith L.; Robbins, Peter A.

    2016-01-01

    BACKGROUND. Iron bioavailability has been identified as a factor that influences cellular hypoxia sensing, putatively via an action on the hypoxia-inducible factor (HIF) pathway. We therefore hypothesized that clinical iron deficiency would disturb integrated human responses to hypoxia. METHODS. We performed a prospective, controlled, observational study of the effects of iron status on hypoxic pulmonary hypertension. Individuals with absolute iron deficiency (ID) and an iron-replete (IR) control group were exposed to two 6-hour periods of isocapnic hypoxia. The second hypoxic exposure was preceded by i.v. infusion of iron. Pulmonary artery systolic pressure (PASP) was serially assessed with Doppler echocardiography. RESULTS. Thirteen ID individuals completed the study and were age- and sex-matched with controls. PASP did not differ by group or study day before each hypoxic exposure. During the first 6-hour hypoxic exposure, the rise in PASP was 6.2 mmHg greater in the ID group (absolute rises 16.1 and 10.7 mmHg, respectively; 95% CI for difference, 2.7–9.7 mmHg, P = 0.001). Intravenous iron attenuated the PASP rise in both groups; however, the effect was greater in ID participants than in controls (absolute reductions 11.1 and 6.8 mmHg, respectively; 95% CI for difference in change, –8.3 to –0.3 mmHg, P = 0.035). Serum erythropoietin responses to hypoxia also differed between groups. CONCLUSION. Clinical iron deficiency disturbs normal responses to hypoxia, as evidenced by exaggerated hypoxic pulmonary hypertension that is reversed by subsequent iron administration. Disturbed hypoxia sensing and signaling provides a mechanism through which iron deficiency may be detrimental to human health. TRIAL REGISTRATION. ClinicalTrials.gov (NCT01847352). FUNDING. M.C. Frise is the recipient of a British Heart Foundation Clinical Research Training Fellowship (FS/14/48/30828). K.L. Dorrington is supported by the Dunhill Medical Trust (R178/1110). D.J. Roberts was

  11. Hypoxia inducible factors and the response to hypoxic stress

    PubMed Central

    Majmundar, Amar J.; Wong, Waihay J.; Simon, M. Celeste

    2011-01-01

    Oxygen (O2) is an essential nutrient that serves as a key substrate in cellular metabolism and bioenergetics. In a variety of physiological and pathological states, organisms encounter insufficient O2 availability, or hypoxia. In order to cope with this stress, evolutionarily conserved responses are engaged. In mammals, the primary transcriptional response to hypoxic stress is mediated by the Hypoxia-inducible factors (HIFs). While canonically regulated by prolyl hydroxylase domain-containing enzymes (PHDs), the HIFα subunits are intricately responsive to numerous other factors including Factor Inhibiting HIF-1α (FIH1), sirtuins, and metabolites. These transcription factors function in normal tissue homeostasis and impinge on critical aspects of disease progression and recovery. Insights from basic HIF biology are being translated into pharmaceuticals targeting the HIF pathway. PMID:20965423

  12. A hypoxia complement differentiates the muscle response to endurance exercise.

    PubMed

    Schmutz, Silvia; Däpp, Christoph; Wittwer, Matthias; Durieux, Anne-Cécile; Mueller, Matthias; Weinstein, Felix; Vogt, Michael; Hoppeler, Hans; Flück, Martin

    2010-06-01

    Metabolic stress is believed to constitute an important signal for training-induced adjustments of gene expression and oxidative capacity in skeletal muscle. We hypothesized that the effects of endurance training on expression of muscle-relevant transcripts and ultrastructure would be specifically modified by a hypoxia complement during exercise due to enhanced glycolytic strain. Endurance training of untrained male subjects in conditions of hypoxia increased subsarcolemmal mitochondrial density in the recruited vastus lateralis muscle and power output in hypoxia more than training in normoxia, i.e. 169 versus 91% and 10 versus 6%, respectively, and tended to differentially elevate sarcoplasmic volume density (42 versus 20%, P = 0.07). The hypoxia-specific ultrastructural adjustments with training corresponded to differential regulation of the muscle transcriptome by single and repeated exercise between both oxygenation conditions. Fine-tuning by exercise in hypoxia comprised gene ontologies connected to energy provision by glycolysis and fat metabolism in mitochondria, remodelling of capillaries and the extracellular matrix, and cell cycle regulation, but not fibre structure. In the untrained state, the transcriptome response during the first 24 h of recovery from a single exercise bout correlated positively with changes in arterial oxygen saturation during exercise and negatively with blood lactate. This correspondence was inverted in the trained state. The observations highlight that the expression response of myocellular energy pathways to endurance work is graded with regard to metabolic stress and the training state. The exposed mechanistic relationship implies that the altitude specificity of improvements in aerobic performance with a 'living low-training high' regime has a myocellular basis. PMID:20176680

  13. Senescence responsive transcriptional element

    DOEpatents

    Campisi, Judith; Testori, Alessandro

    1999-01-01

    Recombinant polynucleotides have expression control sequences that have a senescence responsive element and a minimal promoter, and which are operatively linked to a heterologous nucleotide sequence. The molecules are useful for achieving high levels of expression of genes in senescent cells. Methods of inhibiting expression of genes in senescent cells also are provided.

  14. Senescence responsive transcriptional element

    SciTech Connect

    Campisi, J.; Testori, A.

    1999-10-12

    Recombinant polynucleotides have expression control sequences that have a senescence responsive element and a minimal promoter, and which are operatively linked to a heterologous nucleotide sequence. The molecules are useful for achieving high levels of expression of genes in senescent cells. Methods of inhibiting expression of genes in senescent cells also are provided.

  15. Aberrant methylation and associated transcriptional mobilization of Alu elements contributes to genomic instability in hypoxia.

    PubMed

    Pal, Arnab; Srivastava, Tapasya; Sharma, Manish K; Mehndiratta, Mohit; Das, Prerna; Sinha, Subrata; Chattopadhyay, Parthaprasad

    2010-11-01

    Hypoxia is an integral part of tumorigenesis and contributes extensively to the neoplastic phenotype including drug resistance and genomic instability. It has also been reported that hypoxia results in global demethylation. Because a majority of the cytosine-phosphate-guanine (CpG) islands are found within the repeat elements of DNA, and are usually methylated under normoxic conditions, we suggested that retrotransposable Alu or short interspersed nuclear elements (SINEs) which show altered methylation and associated changes of gene expression during hypoxia, could be associated with genomic instability. U87MG glioblastoma cells were cultured in 0.1% O₂ for 6 weeks and compared with cells cultured in 21% O₂ for the same duration. Real-time PCR analysis showed a significant increase in SINE and reverse transcriptase coding long interspersed nuclear element (LINE) transcripts during hypoxia. Sequencing of bisulphite treated DNA as well as the Combined Bisulfite Restriction Analysis (COBRA) assay showed that the SINE loci studied underwent significant hypomethylation though there was patchy hypermethylation at a few sites. The inter-alu PCR profile of DNA from cells cultured under 6-week hypoxia, its 4-week revert back to normoxia and 6-week normoxia showed several changes in the band pattern indicating increased alu mediated genomic alteration. Our results show that aberrant methylation leading to increased transcription of SINE and reverse transcriptase associated LINE elements could lead to increased genomic instability in hypoxia. This might be a cause of genetic heterogeneity in tumours especially in variegated hypoxic environment and lead to a development of foci of more aggressive tumour cells.

  16. Redundant ERF-VII Transcription Factors Bind to an Evolutionarily Conserved cis-Motif to Regulate Hypoxia-Responsive Gene Expression in Arabidopsis.

    PubMed

    Gasch, Philipp; Fundinger, Moritz; Müller, Jana T; Lee, Travis; Bailey-Serres, Julia; Mustroph, Angelika

    2016-01-01

    The response of Arabidopsis thaliana to low-oxygen stress (hypoxia), such as during shoot submergence or root waterlogging, includes increasing the levels of ∼50 hypoxia-responsive gene transcripts, many of which encode enzymes associated with anaerobic metabolism. Upregulation of over half of these mRNAs involves stabilization of five group VII ethylene response factor (ERF-VII) transcription factors, which are routinely degraded via the N-end rule pathway of proteolysis in an oxygen- and nitric oxide-dependent manner. Despite their importance, neither the quantitative contribution of individual ERF-VIIs nor the cis-regulatory elements they govern are well understood. Here, using single- and double-null mutants, the constitutively synthesized ERF-VIIs RELATED TO APETALA2.2 (RAP2.2) and RAP2.12 are shown to act redundantly as principle activators of hypoxia-responsive genes; constitutively expressed RAP2.3 contributes to this redundancy, whereas the hypoxia-induced HYPOXIA RESPONSIVE ERF1 (HRE1) and HRE2 play minor roles. An evolutionarily conserved 12-bp cis-regulatory motif that binds to and is sufficient for activation by RAP2.2 and RAP2.12 is identified through a comparative phylogenetic motif search, promoter dissection, yeast one-hybrid assays, and chromatin immunopurification. This motif, designated the hypoxia-responsive promoter element, is enriched in promoters of hypoxia-responsive genes in multiple species. PMID:26668304

  17. Redox- and hypoxia-responsive MRI contrast agents.

    PubMed

    Do, Quyen N; Ratnakar, James S; Kovács, Zoltán; Sherry, A Dean

    2014-06-01

    The development of responsive or "smart" magnetic resonance imaging (MRI) contrast agents that can report specific biomarker or biological events has been the focus of MRI contrast agent research over the past 20 years. Among various biological hallmarks of interest, tissue redox and hypoxia are particularly important owing to their roles in disease states and metabolic consequences. Herein we review the development of redox-/hypoxia-sensitive T1 shortening and paramagnetic chemical exchange saturation transfer (PARACEST) MRI contrast agents. Traditionally, the relaxivity of redox-sensitive Gd(3+) -based complexes is modulated through changes in the ligand structure or molecular rotation, while PARACEST sensors exploit the sensitivity of the metal-bound water exchange rate to electronic effects of the ligand-pendant arms and alterations in the coordination geometry. Newer designs involve complexes of redox-active metal ions in which the oxidation states have different magnetic properties. The challenges of translating redox- and hypoxia-sensitive agents in vivo are also addressed. PMID:24825674

  18. Redox- and hypoxia-responsive MRI contrast agents.

    PubMed

    Do, Quyen N; Ratnakar, James S; Kovács, Zoltán; Sherry, A Dean

    2014-06-01

    The development of responsive or "smart" magnetic resonance imaging (MRI) contrast agents that can report specific biomarker or biological events has been the focus of MRI contrast agent research over the past 20 years. Among various biological hallmarks of interest, tissue redox and hypoxia are particularly important owing to their roles in disease states and metabolic consequences. Herein we review the development of redox-/hypoxia-sensitive T1 shortening and paramagnetic chemical exchange saturation transfer (PARACEST) MRI contrast agents. Traditionally, the relaxivity of redox-sensitive Gd(3+) -based complexes is modulated through changes in the ligand structure or molecular rotation, while PARACEST sensors exploit the sensitivity of the metal-bound water exchange rate to electronic effects of the ligand-pendant arms and alterations in the coordination geometry. Newer designs involve complexes of redox-active metal ions in which the oxidation states have different magnetic properties. The challenges of translating redox- and hypoxia-sensitive agents in vivo are also addressed.

  19. Redox- and Hypoxia-Responsive MRI Contrast Agents

    PubMed Central

    Do, Quyen N.; Ratnakar, James S.; Kovács, Zoltán

    2014-01-01

    The development of responsive or “smart” magnetic resonance imaging (MRI) contrast agents that can report specific biomarker or biological events has been the focus of MRI contrast agent research over the past 20 years. Among various biological hallmarks of interest, tissue redox and hypoxia are particularly important owing to their roles in disease states and metabolic consequences. Herein we review the development of redox-/hypoxia-sensitive T1 shortening and paramagnetic chemical exchange saturation transfer (PARACEST) MRI contrast agents. Traditionally, the relaxivity of redox-sensitive Gd3+-based complexes is modulated through changes in the ligand structure or molecular rotation, while PARACEST sensors exploit the sensitivity of the metal-bound water exchange rate to electronic effects of the ligand-pendant arms and alterations in the coordination geometry. Newer designs involve complexes of redox-active metal ions in which the oxidation states have different magnetic properties. The challenges of translating redox- and hypoxia-sensitive agents in vivo are also addressed. PMID:24825674

  20. Ventilatory response to acute hypoxia in transgenic mice over-expressing erythropoietin: effect of acclimation to 3-week hypobaric hypoxia.

    PubMed

    Villafuerte, Francisco C; Cárdenas-Alayza, Rosa; Macarlupú, José Luis; Monge-C, Carlos; León-Velarde, Fabiola

    2007-09-30

    We used transgenic mice constitutively over-expressing erythropoietin ("tg6" mice) and wild-type (wt) mice to investigate whether the high hematocrit (hct), consequence of Epo over-expression affected: (1) the normoxic ventilation (V (E)) and the acute hypoxic ventilatory response (HVR) and decline (HVD), (2) the increase in ventilation observed after chronic exposure to hypobaric hypoxia (430mmHg for 21 days), (3) the respiratory "blunting", and (4) the erythrocythemic response induced by chronic hypoxia exposure. V (E) was found to be similar in tg6 and wt mice in normoxia (FIO2=0.21). Post-acclimation V (E) was significantly elevated in every time point in wt mice at FIO2=0.10 when compared to pre-acclimation values. In contrast, tg6 mice exhibited a non-significant increase in V (E) throughout acute hypoxia exposure. Changes in V (E) are associated with adjustments in tidal volume (V(T)). HVR and HVD were independent of EE in tg6 and wt mice before chornic hypoxia exposure. HVR was significantly greater in wt than in tg6 mice after chronic hypoxia. After acclimation, HVD decreased in tg6 mice. Chronic hypoxia exposure caused hct to increase significantly in wt mice, while only a marginal increase occurred in the tg6 group. Although pre-existent EE does not appear to have an effect on HVR, the observation of alterations on V(T) suggests that it may contribute to time-dependent changes in ventilation and in the acute HVR during exposure to chronic hypoxia. In addition, our results suggest that EE may lead to an early "blunting" of the ventilatory response.

  1. Development and pathological changes of neurovascular unit regulated by hypoxia response in the retina.

    PubMed

    Kurihara, T

    2016-01-01

    Retina is a highly vascularized tissue with a high oxygen and metabolic demand receiving light located in the back of the eye. The development and the maintenance of the retinal vasculature are important to regulate the homeostasis in the tissue. α Subunits of hypoxia-inducible factor (HIF) are key molecules in hypoxia response inducing genes required for cell survival such as vascular endothelial growth factor under hypoxia. Neurons, glia, and vascular endothelium cells interdependently form neurovascular unit in the retina tightly regulated by hypoxia response via HIF expression. A corruption of the precise hypoxia response in the developmental or matured retinal tissue may lead congenital vascular anomalies or adult neovascular ocular diseases. To regulate hypoxia response through HIF activity would be an ideal therapeutic target for these vision-threatening eye diseases. PMID:27130417

  2. Development and pathological changes of neurovascular unit regulated by hypoxia response in the retina.

    PubMed

    Kurihara, T

    2016-01-01

    Retina is a highly vascularized tissue with a high oxygen and metabolic demand receiving light located in the back of the eye. The development and the maintenance of the retinal vasculature are important to regulate the homeostasis in the tissue. α Subunits of hypoxia-inducible factor (HIF) are key molecules in hypoxia response inducing genes required for cell survival such as vascular endothelial growth factor under hypoxia. Neurons, glia, and vascular endothelium cells interdependently form neurovascular unit in the retina tightly regulated by hypoxia response via HIF expression. A corruption of the precise hypoxia response in the developmental or matured retinal tissue may lead congenital vascular anomalies or adult neovascular ocular diseases. To regulate hypoxia response through HIF activity would be an ideal therapeutic target for these vision-threatening eye diseases.

  3. Gene promoter of apoptosis inhibitory protein IAP2: identification of enhancer elements and activation by severe hypoxia.

    PubMed Central

    Dong, Zheng; Nishiyama, Junichiro; Yi, Xiaolan; Venkatachalam, Manjeri A; Denton, Michael; Gu, Sumin; Li, Senlin; Qiang, Mei

    2002-01-01

    Inhibitors of apoptosis (IAPs) antagonize cell death and regulate the cell cycle. One mechanism controlling IAP expression is translation initiation through the internal ribosome entry sites. Alternatively, IAP expression can be regulated at the transcription level. We showed recently the activation of IAP2 transcription by severe hypoxia. To pursue this regulation, we have cloned the full-length cDNA of rat IAP2, and have isolated and analysed the promoter regions of this gene. The cDNA encodes a protein of 589 amino acids, exhibiting structural features of IAP. In rat tissues, a major IAP2 transcript of approximately 3.5 kb was detected. We subsequently isolated 3.3 kb of the proximal 5'-flanking regions of this gene, which showed significant promoter activity. Of interest, 5' sequential deletion of the promoter sequence identified an enhancer of approximately 200 bp. Deletion of cAMP-response-element-binding protein (CREB) sites in the enhancer sequence diminished its activity. Finally, the IAP2 gene promoter was activated significantly by severe hypoxia and not by CoCl(2) or desferrioxamine, pharmacological inducers of hypoxia-inducible factor-1. In conclusion, in this study we have cloned the full-length cDNA of rat IAP2, and for the first time we have isolated and analysed promoter sequences of this gene, leading to the identification of enhancer elements. Moreover, we have demonstrated activation of the gene promoter by severe hypoxia, a condition shown to induce IAP2. These findings provide a basis for further investigation of gene regulation of IAP2, a protein with multiple functions. PMID:12023884

  4. Ventilatory response to transient hypoxia in O2 divers.

    PubMed

    Melamed, Y; Kerem, D

    1988-05-01

    This study addresses the question of whether repeated acute exposure to hyperbaric oxygen, such as encountered in O2 diving, affects the peripheral oxygen chemosensors. Groups of nondivers, active O2 divers, and ex-O2 divers, as well as active air scuba divers, were given 1 or both of 2 tests that measure the ventilatory response to transient hypoxia. Results showed that all groups of divers have a mean response similar to or higher than that of nondivers as well as that of normal subjects, as reported in the literature. A repeat test on 10 diving candidates before and after 200 h of accrued O2 diving also did not show an impairment in the hypoxic ventilatory response. Oxygen diving within the established depth and time limits does not seem to cause cumulative damage to the peripheral O2 chemosensors.

  5. Anaemia in kidney disease: harnessing hypoxia responses for therapy

    PubMed Central

    Koury, Mark J.; Haase, Volker H.

    2015-01-01

    Improved understanding of the oxygen-dependent regulation of erythropoiesis has provided new insights into the pathogenesis of anaemia associated with renal failure and has led to the development of novel therapeutic agents for its treatment. Hypoxia-inducible factor (HIF)-2 is a key regulator of erythropoiesis and iron metabolism. HIF-2 is activated by hypoxic conditions and controls the production of erythropoietin by renal peritubular interstitial fibroblast-like cells and hepatocytes. In anaemia associated with renal disease, erythropoiesis is suppressed due to inadequate erythropoietin production in the kidney, inflammation and iron deficiency; however, pharmacologic agents that activate the HIF axis could provide a physiologic approach to the treatment of renal anaemia by mimicking hypoxia responses that coordinate erythropoiesis with iron metabolism. This Review discusses the functional inter-relationships between erythropoietin, iron and inflammatory mediators under physiologic conditions and in relation to the pathogenesis of renal anaemia, as well as recent insights into the molecular and cellular basis of erythropoietin production in the kidney. It furthermore provides a detailed overview of current clinical experience with pharmacologic activators of HIF signalling as a novel comprehensive and physiologic approach to the treatment of anaemia. PMID:26055355

  6. Anaemia in kidney disease: harnessing hypoxia responses for therapy.

    PubMed

    Koury, Mark J; Haase, Volker H

    2015-07-01

    Improved understanding of the oxygen-dependent regulation of erythropoiesis has provided new insights into the pathogenesis of anaemia associated with renal failure and has led to the development of novel therapeutic agents for its treatment. Hypoxia-inducible factor (HIF)-2 is a key regulator of erythropoiesis and iron metabolism. HIF-2 is activated by hypoxic conditions and controls the production of erythropoietin by renal peritubular interstitial fibroblast-like cells and hepatocytes. In anaemia associated with renal disease, erythropoiesis is suppressed due to inadequate erythropoietin production in the kidney, inflammation and iron deficiency; however, pharmacologic agents that activate the HIF axis could provide a physiologic approach to the treatment of renal anaemia by mimicking hypoxia responses that coordinate erythropoiesis with iron metabolism. This Review discusses the functional inter-relationships between erythropoietin, iron and inflammatory mediators under physiologic conditions and in relation to the pathogenesis of renal anaemia, as well as recent insights into the molecular and cellular basis of erythropoietin production in the kidney. It furthermore provides a detailed overview of current clinical experience with pharmacologic activators of HIF signalling as a novel comprehensive and physiologic approach to the treatment of anaemia.

  7. Anaemia in kidney disease: harnessing hypoxia responses for therapy.

    PubMed

    Koury, Mark J; Haase, Volker H

    2015-07-01

    Improved understanding of the oxygen-dependent regulation of erythropoiesis has provided new insights into the pathogenesis of anaemia associated with renal failure and has led to the development of novel therapeutic agents for its treatment. Hypoxia-inducible factor (HIF)-2 is a key regulator of erythropoiesis and iron metabolism. HIF-2 is activated by hypoxic conditions and controls the production of erythropoietin by renal peritubular interstitial fibroblast-like cells and hepatocytes. In anaemia associated with renal disease, erythropoiesis is suppressed due to inadequate erythropoietin production in the kidney, inflammation and iron deficiency; however, pharmacologic agents that activate the HIF axis could provide a physiologic approach to the treatment of renal anaemia by mimicking hypoxia responses that coordinate erythropoiesis with iron metabolism. This Review discusses the functional inter-relationships between erythropoietin, iron and inflammatory mediators under physiologic conditions and in relation to the pathogenesis of renal anaemia, as well as recent insights into the molecular and cellular basis of erythropoietin production in the kidney. It furthermore provides a detailed overview of current clinical experience with pharmacologic activators of HIF signalling as a novel comprehensive and physiologic approach to the treatment of anaemia. PMID:26055355

  8. Treatment with the selective serotonin reuptake inhibitor, fluoxetine, attenuates the fish hypoxia response

    PubMed Central

    Panlilio, Jennifer M.; Marin, Sara; Lobl, Marissa B.; McDonald, M. Danielle

    2016-01-01

    The selective serotonin reuptake inhibitor (SSRI) fluoxetine (FLX), the active ingredient of the antidepressant drug Prozac, inhibits reuptake of the neurotransmitter, serotonin (5-HT; 5-hydroxytryptamine), into cells by the 5-HT transporter (SERT). Given the role of 5-HT in oxygen detection and the cardiovascular and ventilatory responses of fish to hypoxia, we hypothesized that treatment of the Gulf toadfish, Opsanus beta, with FLX would interfere with their response to hypoxia. Toadfish treated intra-arterially with 3.4 μg.g−1 FLX under normoxic conditions displayed a transient tachycardia and a biphasic caudal arterial blood pressure (PCA) response that are in direct conflict with the typical hypoxia response. Fish injected intraperitoneally with FLX under normoxia had resting cardiovascular and ventilatory parameters similar to controls. Upon exposure to hypoxia, control toadfish exhibit a significant bradycardia, reduction in PCA and an increase in ventilatory amplitude (VAMP) without any changes in ventilatory frequency (fV). Fish treated IP with 10 μg.g−1 FLX showed an interference in the cardiovascular and ventilatory response to hypoxia. Interestingly, when treated with 25 μg.g−1 FLX, the bradycardia and VAMP response to hypoxia were similar to control fish while the PCA response to hypoxia was further inhibited. These results suggest that SERT inhibition by FLX may hinder survival in hypoxia. PMID:27499056

  9. Treatment with the selective serotonin reuptake inhibitor, fluoxetine, attenuates the fish hypoxia response.

    PubMed

    Panlilio, Jennifer M; Marin, Sara; Lobl, Marissa B; McDonald, M Danielle

    2016-01-01

    The selective serotonin reuptake inhibitor (SSRI) fluoxetine (FLX), the active ingredient of the antidepressant drug Prozac, inhibits reuptake of the neurotransmitter, serotonin (5-HT; 5-hydroxytryptamine), into cells by the 5-HT transporter (SERT). Given the role of 5-HT in oxygen detection and the cardiovascular and ventilatory responses of fish to hypoxia, we hypothesized that treatment of the Gulf toadfish, Opsanus beta, with FLX would interfere with their response to hypoxia. Toadfish treated intra-arterially with 3.4 μg.g(-1) FLX under normoxic conditions displayed a transient tachycardia and a biphasic caudal arterial blood pressure (PCA) response that are in direct conflict with the typical hypoxia response. Fish injected intraperitoneally with FLX under normoxia had resting cardiovascular and ventilatory parameters similar to controls. Upon exposure to hypoxia, control toadfish exhibit a significant bradycardia, reduction in PCA and an increase in ventilatory amplitude (VAMP) without any changes in ventilatory frequency (fV). Fish treated IP with 10 μg.g(-1) FLX showed an interference in the cardiovascular and ventilatory response to hypoxia. Interestingly, when treated with 25 μg.g(-1) FLX, the bradycardia and VAMP response to hypoxia were similar to control fish while the PCA response to hypoxia was further inhibited. These results suggest that SERT inhibition by FLX may hinder survival in hypoxia. PMID:27499056

  10. [REACTION OF STRUCTURAL ELEMENTS OF HEMATOENCEPHALIC BARRIER IN NEWBORN RATS TO NORMOBARIC HYPOXIA].

    PubMed

    Otellin, V A; Khozhai, L I; Shishko, T T

    2015-01-01

    For the last time a particular interest of investigators has been attracted to the period of early newborn state when active process of adaptation of the organism to new life conditions occur defining its increased sensitivity to the effect of unfavorable environmental factors. An important place among these processes belongs to formation of homeostasis mechanisms and, primarily, the barrier mechanisms. The purpose of the present study was to investigate reactions of the hematoencephalic barrier (HEB) to action of perinatal normobaric hypoxia (a model of incomplete human pregnancy). Using light and electron microscopy, our investigation showed that after action of hypoxia all wall elements of neocortex capillaries revealed structural alterations which may cause impairment of microcirculation and increased permeability of HEB. It is established that differentiation of the basal membrane of a capillary wall takes place during the early perinatal period and the indicator of its differentiation is the formation of its plates - laminae rara et densa. After action of hypoxia, besides a delay of formation of the basal membrane, a vesicular type of its degeneration occurs. Key words: perinatal hypoxia, hematoencephalic barrier, capillary, endothelial cells, basal membrane. PMID:26856078

  11. Tuning the Transcriptional Response to Hypoxia by Inhibiting Hypoxia-inducible Factor (HIF) Prolyl and Asparaginyl Hydroxylases*

    PubMed Central

    Chan, Mun Chiang; Ilott, Nicholas E.; Schödel, Johannes; Sims, David; Tumber, Anthony; Lippl, Kerstin; Mole, David R.; Pugh, Christopher W.; Ratcliffe, Peter J.; Ponting, Chris P.; Schofield, Christopher J.

    2016-01-01

    The hypoxia-inducible factor (HIF) system orchestrates cellular responses to hypoxia in animals. HIF is an α/β-heterodimeric transcription factor that regulates the expression of hundreds of genes in a tissue context-dependent manner. The major hypoxia-sensing component of the HIF system involves oxygen-dependent catalysis by the HIF hydroxylases; in humans there are three HIF prolyl hydroxylases (PHD1–3) and an asparaginyl hydroxylase (factor-inhibiting HIF (FIH)). PHD catalysis regulates HIFα levels, and FIH catalysis regulates HIF activity. How differences in HIFα hydroxylation status relate to variations in the induction of specific HIF target gene transcription is unknown. We report studies using small molecule HIF hydroxylase inhibitors that investigate the extent to which HIF target gene expression is induced by PHD or FIH inhibition. The results reveal substantial differences in the role of prolyl and asparaginyl hydroxylation in regulating hypoxia-responsive genes in cells. PHD inhibitors with different structural scaffolds behave similarly. Under the tested conditions, a broad-spectrum 2-oxoglutarate dioxygenase inhibitor is a better mimic of the overall transcriptional response to hypoxia than the selective PHD inhibitors, consistent with an important role for FIH in the hypoxic transcriptional response. Indeed, combined application of selective PHD and FIH inhibitors resulted in the transcriptional induction of a subset of genes not fully responsive to PHD inhibition alone. Thus, for the therapeutic regulation of HIF target genes, it is important to consider both PHD and FIH activity, and in the case of some sets of target genes, simultaneous inhibition of the PHDs and FIH catalysis may be preferable. PMID:27502280

  12. Lactase gene transcription is activated in response to hypoxia in intestinal epithelial cells.

    PubMed

    Lee, So Young; Madan, Ashima; Furuta, Glenn T; Colgan, Sean P; Sibley, Eric

    2002-01-01

    Lactase-phlorizin hydrolase, a brush-border membrane disaccharidase, is a marker of intestinal epithelial cell differentiation and digestive function. The intestine is susceptible to conditions of hypoxia resulting from vascular perfusion deficits. We hypothesized that lactase gene induction may provide a mechanism to efficiently increase nutrient energy substrates during gut hypoxia. These studies sought to characterize expression of the lactase gene in response to hypoxia and to characterize a role for hypoxia-inducible factor (HIF-1) in mediating the hypoxic response. Microarray analysis and confirmatory RT-PCR identified a 4-fold induction of lactase mRNA abundance in intestinal epithelial Caco-2 cells exposed to hypoxia. Lactase promoter activity was similarly induced by hypoxia in cells stably transfected with a 2.0-kb 5' flanking region of the rat lactase gene linked to a reporter gene. Transient cotransfection with HIF-1alpha and beta stimulated lactase promoter activity 2.4- and 3.5-fold under conditions of normoxia and hypoxia, respectively. We conclude that HIF-1 can activate the lactase promoter in intestinal epithelial cells exposed to hypoxia. Induction of lactase transcription may represent an adaptive response to gut hypoxia.

  13. Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1α

    PubMed Central

    Yu, Aimee Y.; Shimoda, Larissa A.; Iyer, Narayan V.; Huso, David L.; Sun, Xing; McWilliams, Rita; Beaty, Terri; Sham, James S.K.; Wiener, Charles M.; Sylvester, J.T.; Semenza, Gregg L.

    1999-01-01

    Chronic hypoxia induces polycythemia, pulmonary hypertension, right ventricular hypertrophy, and weight loss. Hypoxia-inducible factor 1 (HIF-1) activates transcription of genes encoding proteins that mediate adaptive responses to hypoxia, including erythropoietin, vascular endothelial growth factor, and glycolytic enzymes. Expression of the HIF-1α subunit increases exponentially as O2 concentration is decreased. Hif1a–/– mouse embryos with complete deficiency of HIF-1α due to homozygosity for a null allele at the Hif1a locus die at midgestation, with multiple cardiovascular malformations and mesenchymal cell death. Hif1a+/– heterozygotes develop normally and are indistinguishable from Hif1a+/+ wild-type littermates when maintained under normoxic conditions. In this study, the physiological responses of Hif1a+/– and Hif1a+/+ mice exposed to 10% O2 for one to six weeks were analyzed. Hif1a+/– mice demonstrated significantly delayed development of polycythemia, right ventricular hypertrophy, pulmonary hypertension, and pulmonary vascular remodeling and significantly greater weight loss compared with wild-type littermates. These results indicate that partial HIF-1α deficiency has significant effects on multiple systemic responses to chronic hypoxia. J. Clin. Invest. 103:691–696 (1999) PMID:10074486

  14. Effects of hypoxia on catecholamine and cardiorespiratory responses in exercising dogs.

    PubMed

    Favier, R J; Desplanches, D; Pequignot, J M; Peyrin, L; Flandrois, R

    1985-08-01

    The sympathoadrenal contribution to cardiorespiratory response elicited by hypoxia and/or exercise was assessed in the dog. The increased plasma norepinephrine (NE) and dopamine (DA) levels which follow hypoxia (fraction of inspired O2 equals 0.12) while epinephrine (E) remained unchanged ruled out the possibility of a primacy of the adrenal medulla in the response to hypoxia. In contrast to the lack of effect of hypoxic exposure, the adrenal medulla was substantially stimulated during exercise. The exercise-induced sympathoadrenal response remained unchanged during hypoxia as compared to normoxia when expressed as function of relative work intensity. Nevertheless at a given oxygen uptake, all plasma catecholamines were increased by hypoxia. These modifications in hormonal milieu failed, however, to alter the cardiac responses to exercise but were associated with a change in breathing pattern.

  15. Metabolic Response of River Birch and European Birch and European Birch Roots to Hypoxia 1

    PubMed Central

    Tripepi, Robert R.; Mitchell, Cary A.

    1984-01-01

    Flood tolerance of woody plants has been attributed to internal oxygen diffusion from shoot to root, metabolic adaptation within the root, or both. The purpose of this study was to compare several biochemical and physiological responses of birch roots to hypoxia in order to determine the nature of root metabolic adaptation to low oxygen tension. One-year-old seedlings of flood-tolerant river birch (Betula nigra L.) and flood-intolerant European birch (Betula pendula Roth) were transferred to solution culture, and the solutions were bubbled with air or nitrogen. After 18 days of hypoxia, total adenosine phosphate and ATP contents of river birch roots were 35% and 23% of controls, respectively, whereas those of European birch roots were 13% and 8%. Adenylate energy charge of river birch roots decreased between 6 and 12 days of hypoxia. In contrast, energy charge of European birch roots decreased after only 1 day of hypoxia. In vitro activity of cytochrome c oxidase and oxygen consumption capacity of excised roots from both birch species decreased under hypoxia. In vitro activity of alcohol dehydrogenase from roots of both species increased after 1 day of hypoxia. However, alcohol dehydrogenase activity from river birch roots increased 25-fold after 6 days of hypoxia, whereas that from European birch decreased back to control levels. Hypoxia decreased malate content of roots from both species. Metabolic adaptation within the root, rather than internal oxygen diffusion, appears to be responsible for the relative tolerance of river birch to hypoxia. PMID:16663817

  16. Hypoxia and the hypoxic response pathway protect against pore-forming toxins in C. elegans.

    PubMed

    Bellier, Audrey; Chen, Chang-Shi; Kao, Cheng-Yuan; Cinar, Hediye N; Aroian, Raffi V

    2009-12-01

    Pore-forming toxins (PFTs) are by far the most abundant bacterial protein toxins and are important for the virulence of many important pathogens. As such, cellular responses to PFTs critically modulate host-pathogen interactions. Although many cellular responses to PFTs have been recorded, little is understood about their relevance to pathological or defensive outcomes. To shed light on this important question, we have turned to the only genetic system for studying PFT-host interactions-Caenorhabditis elegans intoxication by Crystal (Cry) protein PFTs. We mutagenized and screened for C. elegans mutants resistant to a Cry PFT and recovered one mutant. Complementation, sequencing, transgenic rescue, and RNA interference data demonstrate that this mutant eliminates a gene normally involved in repression of the hypoxia (low oxygen response) pathway. We find that up-regulation of the C. elegans hypoxia pathway via the inactivation of three different genes that normally repress the pathway results in animals resistant to Cry PFTs. Conversely, mutation in the central activator of the hypoxia response, HIF-1, suppresses this resistance and can result in animals defective in PFT defenses. These results extend to a PFT that attacks mammals since up-regulation of the hypoxia pathway confers resistance to Vibrio cholerae cytolysin (VCC), whereas down-regulation confers hypersusceptibility. The hypoxia PFT defense pathway acts cell autonomously to protect the cells directly under attack and is different from other hypoxia pathway stress responses. Two of the downstream effectors of this pathway include the nuclear receptor nhr-57 and the unfolded protein response. In addition, the hypoxia pathway itself is induced by PFT, and low oxygen is protective against PFT intoxication. These results demonstrate that hypoxia and induction of the hypoxia response protect cells against PFTs, and that the cellular environment can be modulated via the hypoxia pathway to protect against the

  17. INTERACTIONS BETWEEN CALCIUM AND REACTIVE OXYGEN SPECIES IN PULMONARY ARTERIAL SMOOTH MUSCLE RESPONSES TO HYPOXIA

    PubMed Central

    Shimoda, Larissa A.; Undem, Clark

    2010-01-01

    In contrast to the systemic vasculature, where hypoxia causes vasodilation, pulmonary arteries constrict in response to hypoxia. The mechanisms underlying this unique response have been the subject of investigation for over 50 years, and still remain a topic of great debate. Over the last 20 years, there has emerged a general consensus that both increases in intracellular calcium concentration and changes in reactive oxygen species (ROS) generation play key roles in the pulmonary vascular response to hypoxia. Controversy exists, however, regarding whether ROS increase or decrease during hypoxia, the source of ROS, and the mechanisms by which changes in ROS might impact intracellular calcium, and vice versa. This review will discuss the mechanisms regulating [Ca2+]i and ROS in PASMCs, and the interaction between ROS and Ca2+ signaling during exposure to acute hypoxia. PMID:20801238

  18. Hormonal response to exercise in humans: influence of hypoxia and physical training.

    PubMed

    Kjaer, M; Bangsbo, J; Lortie, G; Galbo, H

    1988-02-01

    Hypoxia and physical training alter the responses of glucoregulatory hormones to absolute work loads in opposite directions. These effects have tentatively been ascribed to changes in maximal O2 consumption (VO2 max) and ensuing changes in relative work loads. However, hypoxia as well as training may more specifically influence the hormonal response. We therefore differentiated the influence of hypoxia, training, and VO2 max, respectively, on the hormonal response to bicycle exercise. Responses to hypoxia in a low-pressure chamber (PB = 465 vs. 730 Torr) were studied at given absolute and relative (85% VO2 max) work loads in seven endurance-trained athletes (T) and 7 age and weight-matched sedentary subjects (C). Concentrations in plasma of norepinephrine, growth hormone, adrenocorticotropic hormone, and cortisol were always closely related to the relative work load. However, the epinephrine response in T, but not in C, was at the same relative work load higher during hypoxia (5.84 +/- 0.83 nmol/l) than during normoxia (4.26 +/- 0.44, P less than 0.05). These results indicate that the hormonal response is influenced by hypoxia and physical training, mainly via changes in the relative work load. However, in trained subjects both at rest and during exercise, an enhancing effect of hypoxia per se on the epinephrine response is seen, probably due to an increased adrenal medullary secretory responsiveness in long-term endurance-trained subjects.

  19. Hypoxia response in asthma: differential modulation on inflammation and epithelial injury.

    PubMed

    Ahmad, Tanveer; Kumar, Manish; Mabalirajan, Ulaganathan; Pattnaik, Bijay; Aggarwal, Shilpi; Singh, Ranjana; Singh, Suchita; Mukerji, Mitali; Ghosh, Balaram; Agrawal, Anurag

    2012-07-01

    Oxygen-sensing prolyl-hydroxylase (PHD)-2 negatively regulates hypoxia-inducible factor (HIF)1-α and suppresses the hypoxic response. Hypoxia signaling is thought to be proinflammatory but also attenuates cellular injury and apoptosis. Although increased hypoxic response has been noted in asthma, its functional relevance is unknown. The objectives of this study were to dissect the mechanisms and role of the hypoxic response in asthma pathophysiology. Experimental studies were conducted in mice using acute and chronic allergic models of asthma. The hypoxic response in allergically inflamed lungs was modulated by using pharmacologic PHD inhibitors (ethyl-3-4-dihydroxybenzoic acid [DHB], 1-10 mg/kg) or siRNA-mediated genetic knockdowns. Increased hypoxia response led to exacerbation of the asthma phenotype, with HIF-1α knockdown being beneficial. Chronically inflamed lungs from mice treated with 10 mg/kg DHB showed diffuse up-regulation of the hypoxia response, severe airway remodeling, and inflammation. Fatal asphyxiation during methacholine challenge was noted. However, bronchial epithelium restricted up-regulation of the hypoxia response seen with low-dose DHB (1 mg/kg) reduced epithelial injury and attenuated the asthmatic phenotype. Up-regulation of the hypoxia response was associated with increased expression of CX3CR1, a lymphocyte survival factor, and increased inflammatory cell infiltrate. This study shows that an exaggerated hypoxia response may contribute to airway inflammation, remodeling, and the development of asthma. However, the hypoxia response may also be protective of epithelial apoptosis at lower levels, and the net effects of modulating the hypoxia response may vary based on the context.

  20. Effects of brief hypoxia and hyperoxia on tissue element levels in the development chick embryo

    SciTech Connect

    Richards, M.P.; Stock, M.K.; Metcalfe, J. Oregon Health Sciences Univ., Portland )

    1991-03-15

    Brief hypoxia or hyperoxia has been shown to affect growth and metabolism of chick embryos during the later stages of development. The objective of this experiment was to alter the availability of oxygen to chick embryos developing in ovo and to determine the effects on tissue levels of Zn, Cu, Fe and Mn. Hypoxia reduced embryo, heart, brain and liver wts (wet wt), whereas, hyperoxia increased embryo, heart, lung and liver wts compared to normoxic controls. Chorioallantoic membrane (CAM) wt was increased by hypoxia and reduced by hyperoxia. Livers from hyperoxic embryos contained more Zn, Fe and Mn and less Cu than livers from hypoxic or normoxic embryos. Tissue levels of Zn, Cu, Fe and Mn were reduced in brains from hypoxic compared to hyperoxic or normoxic embryos. Hyperoxia increased the concentrations of Zn and Cu in CAM; whereas, hypoxia reduced the levels of Zn and Fe. The amounts of Zn and Cu were increased in hyperoxic compared to normoxic lungs. Hearts from hyperoxic embryos had more Zn, Cu and Mn than hypoxic or normoxic hearts. Hypoxic yolk sac contained more Zn, Cu and Mn than hyperoxic or normoxic yolk sac. Except for yolk sac, the amounts of Zn, Cu, Fe and Mn in tissues from normoxic embryos increased from day 15 to day 18 of incubation in concert with tissue growth. The authors conclude that the availability of O{sub 2} to the developing chick embryo affects tissue trace element levels either through its effects on tissue growth or via effects on the regulation of trace element uptake and assimilation by the tissues.

  1. Network-based association of hypoxia-responsive genes with cardiovascular diseases

    NASA Astrophysics Data System (ADS)

    Wang, Rui-Sheng; Oldham, William M.; Loscalzo, Joseph

    2014-10-01

    Molecular oxygen is indispensable for cellular viability and function. Hypoxia is a stress condition in which oxygen demand exceeds supply. Low cellular oxygen content induces a number of molecular changes to activate regulatory pathways responsible for increasing the oxygen supply and optimizing cellular metabolism under limited oxygen conditions. Hypoxia plays critical roles in the pathobiology of many diseases, such as cancer, heart failure, myocardial ischemia, stroke, and chronic lung diseases. Although the complicated associations between hypoxia and cardiovascular (and cerebrovascular) diseases (CVD) have been recognized for some time, there are few studies that investigate their biological link from a systems biology perspective. In this study, we integrate hypoxia genes, CVD genes, and the human protein interactome in order to explore the relationship between hypoxia and cardiovascular diseases at a systems level. We show that hypoxia genes are much closer to CVD genes in the human protein interactome than that expected by chance. We also find that hypoxia genes play significant bridging roles in connecting different cardiovascular diseases. We construct a hypoxia-CVD bipartite network and find several interesting hypoxia-CVD modules with significant gene ontology similarity. Finally, we show that hypoxia genes tend to have more CVD interactors in the human interactome than in random networks of matching topology. Based on these observations, we can predict novel genes that may be associated with CVD. This network-based association study gives us a broad view of the relationships between hypoxia and cardiovascular diseases and provides new insights into the role of hypoxia in cardiovascular biology.

  2. Network-based association of hypoxia-responsive genes with cardiovascular diseases

    PubMed Central

    Wang, Rui-Sheng; Oldham, William M.; Loscalzo, Joseph

    2014-01-01

    Molecular oxygen is indispensable for cellular viability and function. Hypoxia is a stress condition in which oxygen demand exceeds supply. Low cellular oxygen content induces a number of molecular changes to activate regulatory pathways responsible for increasing the oxygen supply and optimizing cellular metabolism under limited oxygen conditions. Hypoxia plays critical roles in the pathobiology of many diseases, such as cancer, heart failure, myocardial ischemia, stroke, and chronic lung diseases. Although the complicated associations between hypoxia and cardiovascular (and cerebrovascular) diseases (CVD) have been recognized for some time, there are few studies that investigate their biological link from a systems biology perspective. In this study, we integrate hypoxia genes, CVD genes, and the human protein interactome in order to explore the relationship between hypoxia and cardiovascular diseases at a systems level. We show that hypoxia genes are much closer to CVD genes in the human protein interactome than that expected by chance. We also find that hypoxia genes play significant bridging roles in connecting different cardiovascular diseases. We construct an hypoxia-CVD bipartite network and find several interesting hypoxia-CVD modules with significant Gene Ontology (GO) similarity. Finally, we show that hypoxia genes tend to have more CVD interactors in the human interactome than in random networks of matching topology. Based on these observations, we can predict novel genes that may be associated with CVD. This network-based association study gives us a broad view of the relationships between hypoxia and cardiovascular diseases and provides new insights into the role of hypoxia in cardiovascular biology. PMID:25530704

  3. Characterization of the Paracoccidioides Hypoxia Response Reveals New Insights into Pathogenesis Mechanisms of This Important Human Pathogenic Fungus

    PubMed Central

    Lima, Patrícia de Sousa; Chung, Dawoon; Bailão, Alexandre Melo; Cramer, Robert A.; Soares, Célia Maria de Almeida

    2015-01-01

    Background Hypoxic microenvironments are generated during fungal infection. It has been described that to survive in the human host, fungi must also tolerate and overcome in vivo microenvironmental stress conditions including low oxygen tension; however nothing is known how Paracoccidioides species respond to hypoxia. The genus Paracoccidioides comprises human thermal dimorphic fungi and are causative agents of paracoccidioidomycosis (PCM), an important mycosis in Latin America. Methodology/Principal Findings In this work, a detailed hypoxia characterization was performed in Paracoccidioides. Using NanoUPLC-MSE proteomic approach, we obtained a total of 288 proteins differentially regulated in 12 and 24 h of hypoxia, providing a global view of metabolic changes during this stress. In addition, a functional characterization of the homologue to the most important molecule involved in hypoxia responses in other fungi, the SREBP (sterol regulatory element binding protein) was performed. We observed that Paracoccidioides species have a functional homologue of SREBP, named here as SrbA, detected by using a heterologous genetic approach in the srbA null mutant in Aspergillus fumigatus. Paracoccidioides srbA (PbsrbA), in addition to involvement in hypoxia, is probable involved in iron adaptation and azole drug resistance responses. Conclusions/Significance In this study, the hypoxia was characterized in Paracoccidioides. The first results can be important for a better understanding of the fungal adaptation to the host and improve the arsenal of molecules for the development of alternative treatment options in future, since molecules related to fungal adaptation to low oxygen levels are important to virulence and pathogenesis in human pathogenic fungi. PMID:26659387

  4. Seasonal changes in thermoregulatory responses to hypoxia in the Eastern chipmunk (Tamias striatus).

    PubMed

    Levesque, Danielle L; Tattersall, Glenn J

    2009-06-01

    Mammalian heterotherms are known to be more tolerant of low oxygen levels than homeotherms. However, heterotherms demonstrate extreme seasonality in daily heterothermy and torpor expression. Because hypoxia depresses body temperature (T(b)) and metabolism in mammals, it was of interest to see if seasonal comparisons of normothermic animals of a species capable of hibernation produce changes in their responses to hypoxia that would reflect a seasonal change in hypoxia tolerance. The species studied, the Eastern chipmunk (Tamias striatus, Linnaeus 1758), is known to enter into torpor exclusively in the winter. To test for seasonal differences in the metabolic and thermoregulatory responses to hypoxia (9.9 kPa), flow-through respirometry was used to compare oxygen consumption, minimum thermal conductance and T(b) under fixed ambient temperature (T(a)) conditions whereas a thermal gradient was used to assess selected T(a) and T(b) in response to hypoxia, in both summer- and winter-acclimated animals. No differences were observed between seasons in resting metabolism or thermal conductance in normoxic, normothermic animals. Providing the animals with a choice of T(a) in hypoxia attenuated the hypoxic drop in T(b) in both seasons, suggesting that the reported fall in T(b) in hypoxia is not fully manifested in the behavioural pathways responsible for thermoregulation in chipmunks. Instead, T(b) in hypoxia tends to be more variable and dependent on both T(a) and season. Although T(b) dropped in hypoxia in both seasons, the decrease was less in the winter with no corresponding decrease in metabolism, indicating that winter chipmunks are more tolerant to hypoxia than summer animals. PMID:19482997

  5. Brainstem amino acid neurotransmitters and ventilatory response to hypoxia in piglets.

    PubMed

    Hehre, Dorothy A; Devia, Carlos J; Bancalari, Eduardo; Suguihara, Cleide

    2008-01-01

    The ventilatory response to hypoxia is influenced by the balance between inhibitory (GABA, glycine, and taurine) and excitatory (glutamate and aspartate) brainstem amino acid (AA) neurotransmitters. To assess the effects of AA in the nucleus tractus solitarius (NTS) on the ventilatory response to hypoxia at 1 and 2 wk of age, inhibitory and excitatory AA were sampled by microdialysis in unanesthetized and chronically instrumented piglets. Microdialysis samples from the NTS area were collected at 5-min intervals and minute ventilation (VE), arterial blood pressure (ABP), and arterial blood gases (ABG) were measured while the animals were in quiet sleep. A biphasic ventilatory response to hypoxia was observed in wk 1 and 2, but the decrease in VE at 10 and 15 min was more marked in wk 1. This was associated with an increase in inhibitory AA during hypoxia in wk 1. Excitatory AA levels were elevated during hypoxia in wk 1 and 2. Changes in ABP, pH, and ABG during hypoxia were not different between weeks. These data suggest that the larger depression in the ventilatory response to hypoxia observed in younger piglets is mediated by predominance of the inhibitory AA neurotransmitters, GABA, glycine, and taurine, in the NTS. PMID:18043517

  6. What can an ecophysiological approach tell us about the physiological responses of marine invertebrates to hypoxia?

    PubMed

    Spicer, John I

    2014-01-01

    Hypoxia (low O2) is a common and natural feature of many marine environments. However, human-induced hypoxia has been on the rise over the past half century and is now recognised as a major problem in the world's seas and oceans. Whilst we have information on how marine invertebrates respond physiologically to hypoxia in the laboratory, we still lack understanding of how they respond to such stress in the wild (now and in the future). Consequently, here the question 'what can an ecophysiological approach tell us about physiological responses of marine invertebrates to hypoxia' is addressed. How marine invertebrates work in the wild when challenged with hypoxia is explored using four case studies centred on different hypoxic environments. The recent integration of the various -omics into ecophysiology is discussed, and a number of advantages of, and challenges to, successful integration are suggested. The case studies and -omic/physiology integration data are used to inform the concluding part of the review, where it is suggested that physiological responses to hypoxia in the wild are not always the same as those predicted from laboratory experiments. This is due to behaviour in the wild modifying responses, and therefore more than one type of 'experimental' approach is essential to reliably determine the actual response. It is also suggested that assuming it is known what a measured response is 'for' can be misleading and that taking parodies of ecophysiology seriously may impede research progress. This review finishes with the suggestion that an -omics approach is, and is becoming, a powerful method of understanding the response of marine invertebrates to environmental hypoxia and may be an ideal way of studying hypoxic responses in the wild. Despite centring on physiological responses to hypoxia, the review hopefully serves as a contribution to the discussion of what (animal) ecophysiology looks like (or should look like) in the 21st century.

  7. Relationship between mitochondrial haplogroup and physiological responses to hypobaric hypoxia.

    PubMed

    Motoi, Midori; Nishimura, Takayuki; Egashira, Yuka; Kishida, Fumi; Watanuki, Shigeki

    2016-01-01

    We aimed to investigate the relationship between mtDNA polymorphism and physiological responses to hypobaric hypoxia. The study included 28 healthy male students, consisting of 18 students in haplogroup D and 10 in haplogroup M7+G. Measurement sensors were attached to the participants for approximately 30 min in an environment with a temperature of 28 °C. After resting for 15 min, the programmed operation of the hypobaric chamber decreased the atmospheric pressure by 11.9 Torr every minute to simulate an increase in altitude of 150 m until 9.7 Torr (equivalent to 2500 m) and then decreased 9.7 Torr every minute until 465 Torr (equivalent to 4000 m). At each altitude, the pressure was maintained for 15 min and various measurements were taken. Haplogroup D showed higher SpO2 (p < 0.05) and significantly higher SpO2 during the pressure recovery period when compared with haplogroup M7+G. The distal skin temperature was higher in haplogroup D when compared with M7+G. These results suggested that haplogroup D maintained SpO2 at a higher level with higher peripheral blood flow during acute hypobaric exposure. PMID:27130215

  8. Electrical signaling, stomatal conductance, ABA and Ethylene content in avocado trees in response to root hypoxia

    PubMed Central

    Gurovich, Luis; Schaffer, Bruce; García, Nicolás; Iturriaga, Rodrigo

    2009-01-01

    Avocado (Persea americana Mill.) trees are among the most sensitive of fruit tree species to root hypoxia as a result of flooded or poorly drained soil. Similar to drought stress, an early physiological response to root hypoxia in avocado is a reduction of stomatal conductance. It has been previously determined in avocado trees that an extracellular electrical signal between the base of stem and leaves is produced and related to reductions in stomatal conductance in response to drought stress. The current study was designed to determine if changes in the extracellular electrical potential between the base of the stem and leaves in avocado trees could also be detected in response to short-term (min) or long-term (days) root hypoxia, and if these signals could be related to stomatal conductance (gs), root and leaf ABA and ACC concentrations, ethylene emission from leaves and leaf abscission. In contrast to previous observations for drought-stressed trees, short-term or long-term root hypoxia did not stimulate an electrical potential difference between the base of the stem and leaves. Short-term hypoxia did not result in a significant decrease in gs compared with plants in the control treatment, and no differences in ABA concentration were found between plants subjected to hypoxia and control plants. Long-term hypoxia in the root zone resulted in a significant decrease in gs, increased leaf ethylene and increased leaf abscission. The results indicate that for avocado trees exposed to root hypoxia, electrical signals do not appear to be the primary root-to-shoot communication mechanism involved in signaling for stomatal closure as a result of hypoxia in the root zone. PMID:19649181

  9. Electrical signaling, stomatal conductance, ABA and ethylene content in avocado trees in response to root hypoxia.

    PubMed

    Gil, Pilar M; Gurovich, Luis; Schaffer, Bruce; García, Nicolás; Iturriaga, Rodrigo

    2009-02-01

    Avocado (Persea americana Mill.) trees are among the most sensitive of fruit tree species to root hypoxia as a result of flooded or poorly drained soil. Similar to drought stress, an early physiological response to root hypoxia in avocado is a reduction of stomatal conductance. It has been previously determined in avocado trees that an extracellular electrical signal between the base of stem and leaves is produced and related to reductions in stomatal conductance in response to drought stress. The current study was designed to determine if changes in the extracellular electrical potential between the base of the stem and leaves in avocado trees could also be detected in response to short-term (min) or long-term (days) root hypoxia, and if these signals could be related to stomatal conductance (gs), root and leaf ABA and ACC concentrations, ethylene emission from leaves and leaf abscission. In contrast to previous observations for drought-stressed trees, short-term or long-term root hypoxia did not stimulate an electrical potential difference between the base of the stem and leaves. Short-term hypoxia did not result in a significant decrease in gs compared with plants in the control treatment, and no differences in ABA concentration were found between plants subjected to hypoxia and control plants. Long-term hypoxia in the root zone resulted in a significant decrease in gs, increased leaf ethylene and increased leaf abscission. The results indicate that for avocado trees exposed to root hypoxia, electrical signals do not appear to be the primary root-to-shoot communication mechanism involved in signaling for stomatal closure as a result of hypoxia in the root zone.

  10. Treatment of Mouse Limb Ischemia with an Integrative Hypoxia-Responsive Vector Expressing the Vascular Endothelial Growth Factor Gene

    PubMed Central

    Yasumura, Eduardo Gallatti; Stilhano, Roberta Sessa; Samoto, Vívian Yochiko; Matsumoto, Priscila Keiko; de Carvalho, Leonardo Pinto; Valero Lapchik, Valderez Bastos; Han, Sang Won

    2012-01-01

    Constitutive vascular endothelial growth factor (VEGF) gene expression systems have been extensively used to treat peripheral arterial diseases, but most of the results have not been satisfactory. In this study, we designed a plasmid vector with a hypoxia-responsive element sequence incorporated into it with the phiC31 integrative system (pVHAVI) to allow long-term VEGF gene expression and to be activated under hypoxia. Repeated activations of VEGF gene expression under hypoxia were confirmed in HEK293 and C2C12 cells transfected with pVHAVI. In limb ischemic mice, the local administration of pVHAVI promoted gastrocnemius mass and force recovery and ameliorated limb necrosis much better than the group treated with hypoxia-insensitive vector, even this last group had produced more VEGF in muscle. Histological analyses carried out after four weeks of gene therapy showed increased capillary density and matured vessels, and reduced number of necrotic cells and fibrosis in pVHAVI treated group. By our study, we demonstrate that the presence of high concentration of VEGF in ischemic tissue is not beneficial or is less beneficial than maintaining a lower but sufficient and long-term concentration of VEGF locally. PMID:22470498

  11. Cobaltous chloride and hypoxia inhibit aryl hydrocarbon receptor-mediated responses in breast cancer cells

    SciTech Connect

    Khan, Shaheen; Liu Shengxi; Stoner, Matthew; Safe, Stephen

    2007-08-15

    The aryl hydrocarbon receptor (AhR) is expressed in estrogen receptor (ER)-positive ZR-75 breast cancer cells. Treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces CYP1A1 protein and mRNA levels and also activates inhibitory AhR-ER{alpha} crosstalk associated with hormone-induced reporter gene expression. In ZR-75 cells grown under hypoxia, induction of these AhR-mediated responses by TCDD was significantly inhibited. This was not accompanied by decreased nuclear AhR levels or decreased interaction of the AhR complex with the CYP1A1 gene promoter as determined in a chromatin immunoprecipitation assay. Hypoxia-induced loss of Ah-responsiveness was not associated with induction of hypoxia-inducible factor-1{alpha} or other factors that sequester the AhR nuclear translocation (Arnt) protein, and overexpression of Arnt under hypoxia did not restore Ah-responsiveness. The p65 subunit of NF{kappa}B which inhibits AhR-mediated transactivation was not induced by hypoxia and was primarily cytosolic in ZR-75 cells grown under hypoxic and normoxic conditions. In ZR-75 cells maintained under hypoxic conditions for 24 h, BRCA1 (an enhancer of AhR-mediated transactivation in breast cancer cells) was significantly decreased and this contributed to loss of Ah-responsiveness. In cells grown under hypoxia for 6 h, BRCA1 was not decreased, but induction of CYP1A1 by TCDD was significantly decreased. Cotreatment of ZR-75 cells with TCDD plus the protein synthesis inhibitor cycloheximide for 6 h enhanced CYP1A1 expression in cells grown under hypoxia and normoxia. These results suggest that hypoxia rapidly induces protein(s) that inhibit Ah-responsiveness and these may be similar to constitutively expressed inhibitors of Ah-responsiveness (under normoxia) that are also inhibited by cycloheximide.

  12. Dynamics of Tumor Hypoxia in Response to Patupilone and Ionizing Radiation

    PubMed Central

    Orlowski, Katrin; Rohrer Bley, Carla; Zimmermann, Martina; Vuong, Van; Hug, Daniel; Soltermann, Alex; Broggini-Tenzer, Angela; Pruschy, Martin

    2012-01-01

    Tumor hypoxia is one of the most important parameters that determines treatment sensitivity and is mainly due to insufficient tumor angiogenesis. However, the local oxygen concentration in a tumor can also be shifted in response to different treatment modalities such as cytotoxic agents or ionizing radiation. Thus, combined treatment modalities including microtubule stabilizing agents could create an additional challenge for an effective treatment response due to treatment-induced shifts in tumor oxygenation. Tumor hypoxia was probed over a prolonged observation period in response to treatment with different cytotoxic agents, using a non-invasive bioluminescent ODD-Luc reporter system, in which part of the oxygen-dependent degradation (ODD) domain of HIF-1α is fused to luciferase. As demonstrated in vitro, this system not only detects hypoxia at an ambient oxygen concentration of 1% O2, but also discriminates low oxygen concentrations in the range from 0.2 to 1% O2. Treatment of A549 lung adenocarcinoma-derived tumor xenografts with the microtubule stabilizing agent patupilone resulted in a prolonged increase in tumor hypoxia, which could be used as marker for its antitumoral treatment response, while irradiation did not induce detectable changes in tumor hypoxia. Furthermore, despite patupilone-induced hypoxia, the potency of ionizing radiation (IR) was not reduced as part of a concomitant or adjuvant combined treatment modality. PMID:23251549

  13. Differences in in vitro cerebellar neuronal responses to hypoxia in eider ducks, chicken and rats.

    PubMed

    Ludvigsen, Stian; Folkow, Lars P

    2009-11-01

    Ducks are well-known to be more tolerant to asphyxia than non-diving birds, but it is not known if their defences include enhanced neuronal hypoxia tolerance. To test this, we compared extracellular recordings of spontaneous activity in the Purkinje cell layer of 400 mum thick isolated cerebellar slices from eider ducks, chickens and rats, before, during and after 60 min hypoxia (95%N(2)-5%CO(2)) or chemical anoxia (hypoxia + 2 mM NaCN). Most slices rapidly lost activity in hypoxia, with or without recovery after rinse and return to normoxia (95%O(2)-5%CO(2)), but some maintained spontaneous activity throughout the insult. Proportions of 'surviving' (i.e. recovering or active) duck slices were significantly higher than for chickens in anoxia, and relative activity levels were higher for ducks than for chickens during hypoxia, anoxia and recovery. Survival of rat slices was significantly poorer than for birds under all conditions. Results suggest that (1) duck cerebellar neurons are intrinsically more hypoxia-tolerant than chicken neurons; (2) avian neurons are more hypoxia-tolerant than rat neurons, and (3) the enhanced hypoxic tolerance of duck neurons largely depended on efficient anaerobiosis since it mainly manifested itself in chemical anoxia. Mechanisms underlying the observed differences in neuronal hypoxic responses remain to be elucidated. PMID:19779726

  14. Transcriptomic and proteomic analyses of the Aspergillus fumigatus hypoxia response using an oxygen-controlled fermenter

    PubMed Central

    2012-01-01

    Background Aspergillus fumigatus is a mold responsible for the majority of cases of aspergillosis in humans. To survive in the human body, A. fumigatus must adapt to microenvironments that are often characterized by low nutrient and oxygen availability. Recent research suggests that the ability of A. fumigatus and other pathogenic fungi to adapt to hypoxia contributes to their virulence. However, molecular mechanisms of A. fumigatus hypoxia adaptation are poorly understood. Thus, to better understand how A. fumigatus adapts to hypoxic microenvironments found in vivo during human fungal pathogenesis, the dynamic changes of the fungal transcriptome and proteome in hypoxia were investigated over a period of 24 hours utilizing an oxygen-controlled fermenter system. Results Significant increases in transcripts associated with iron and sterol metabolism, the cell wall, the GABA shunt, and transcriptional regulators were observed in response to hypoxia. A concomitant reduction in transcripts was observed with ribosome and terpenoid backbone biosynthesis, TCA cycle, amino acid metabolism and RNA degradation. Analysis of changes in transcription factor mRNA abundance shows that hypoxia induces significant positive and negative changes that may be important for regulating the hypoxia response in this pathogenic mold. Growth in hypoxia resulted in changes in the protein levels of several glycolytic enzymes, but these changes were not always reflected by the corresponding transcriptional profiling data. However, a good correlation overall (R2 = 0.2, p < 0.05) existed between the transcriptomic and proteomics datasets for all time points. The lack of correlation between some transcript levels and their subsequent protein levels suggests another regulatory layer of the hypoxia response in A. fumigatus. Conclusions Taken together, our data suggest a robust cellular response that is likely regulated both at the transcriptional and post-transcriptional level in response to hypoxia

  15. Lung cell hypoxia: role of mitochondrial reactive oxygen species signaling in triggering responses.

    PubMed

    Schumacker, Paul T

    2011-11-01

    Lung cells experience hypoxia during development, during travel to high altitude, and in acute and chronic lung diseases. The functional responses evoked by hypoxia are diverse and generally act to protect the cells from hypoxic injury, although some lung cell responses are counterproductive because they degrade normal function of the organ. The cellular O(2) sensor responsible for many of these responses involves the mitochondrial electron transport chain. Under hypoxic conditions, increased release of reactive oxygen species from the inner mitochondrial membrane to the intermembrane space leads to the activation of transcription factors, including hypoxia-inducible factor, activation of hypoxic pulmonary vasoconstriction, activation of AMP-dependent protein kinase, and internalization of the membrane Na,K-ATPase from the basolateral membrane of alveolar epithelial cells. Although the specific targets of reactive oxygen species signals are not fully understood, this signaling pathway is critical for development and for normal lung responses in the newborn and the mature lung.

  16. A trihelix DNA binding protein counterbalances hypoxia-responsive transcriptional activation in Arabidopsis.

    PubMed

    Giuntoli, Beatrice; Lee, Seung Cho; Licausi, Francesco; Kosmacz, Monika; Oosumi, Teruko; van Dongen, Joost T; Bailey-Serres, Julia; Perata, Pierdomenico

    2014-09-01

    Transcriptional activation in response to hypoxia in plants is orchestrated by ethylene-responsive factor group VII (ERF-VII) transcription factors, which are stable during hypoxia but destabilized during normoxia through their targeting to the N-end rule pathway of selective proteolysis. Whereas the conditionally expressed ERF-VII genes enable effective flooding survival strategies in rice, the constitutive accumulation of N-end-rule-insensitive versions of the Arabidopsis thaliana ERF-VII factor RAP2.12 is maladaptive. This suggests that transcriptional activation under hypoxia that leads to anaerobic metabolism may need to be fine-tuned. However, it is presently unknown whether a counterbalance of RAP2.12 exists. Genome-wide transcriptome analyses identified an uncharacterized trihelix transcription factor gene, which we named HYPOXIA RESPONSE ATTENUATOR1 (HRA1), as highly up-regulated by hypoxia. HRA1 counteracts the induction of core low oxygen-responsive genes and transcriptional activation of hypoxia-responsive promoters by RAP2.12. By yeast-two-hybrid assays and chromatin immunoprecipitation we demonstrated that HRA1 interacts with the RAP2.12 protein but with only a few genomic DNA regions from hypoxia-regulated genes, indicating that HRA1 modulates RAP2.12 through protein-protein interaction. Comparison of the low oxygen response of tissues characterized by different levels of metabolic hypoxia (i.e., the shoot apical zone versus mature rosette leaves) revealed that the antagonistic interplay between RAP2.12 and HRA1 enables a flexible response to fluctuating hypoxia and is of importance to stress survival. In Arabidopsis, an effective low oxygen-sensing response requires RAP2.12 stabilization followed by HRA1 induction to modulate the extent of the anaerobic response by negative feedback regulation of RAP2.12. This mechanism is crucial for plant survival under suboptimal oxygenation conditions. The discovery of the feedback loop regulating the oxygen

  17. Cardiovascular responses to hypoxia and anaemia in the toad Bufo marinus.

    PubMed

    Andersen, Johnnie B; Hedrick, Michael S; Wang, Tobias

    2003-03-01

    Amphibians exhibit cardiorespiratory responses to hypoxia and, although several oxygen-sensitive chemoreceptor sites have been identified, the specific oxygen stimulus that triggers these responses remains controversial. This study investigates whether the cardiovascular response to oxygen shortage correlates with decreased oxygen partial pressure of arterial blood (Pa(O(2))) or reduced oxygen concentration ([O(2)]) in toads. Toads, equipped with blood flow probes and an arterial catheter, were exposed to graded hypoxia [fraction of oxygen in the inspired air (FI(O(2)))=0.21, 0.15, 0.10, 0.07 and 0.05] before and after reductions in arterial [O(2)] by isovolemic anaemia that reduced haematocrit by approximately 50%. Toads responded to hypoxia by increasing heart rate (fH) and pulmocutaneous blood flow (Q(pc)) and reducing the net cardiac right-to-left-shunt. When arterial [O(2)] was reduced by anaemia, the toads exhibited a similar cardiovascular response to that observed in hypoxia. While arterial CO(2) partial pressure (Pa(CO(2))) decreased significantly during hypoxia, indicative of increased alveolar ventilation, anaemia did not alter Pa(CO(2))). This suggests that reductions in [O(2)] mediate cardiovascular adjustments, while ventilatory responses are caused by reduced Pa(O(2)).

  18. Two long-lasting central respiratory responses following acute hypoxia in glomectomized cats.

    PubMed

    Gallman, E A; Millhorn, D E

    1988-01-01

    1. Central respiratory response to acute (10 min) hypoxia, as measured by phrenic nerve activity, was determined in peripheral chemo-denervated cats. 2. Hypoxia was induced by ventilating cats for 10 min at reduced inspired oxygen levels (inspired O2 fraction, FI,O2 = 0.06-0.15). The degree of hypoxaemia was determined from an arterial blood sample and ranged from 'severe' (arterial O2 pressure, Pa,O2 less than 26 Torr) to 'mild' (Pa,O2 greater than 35 Torr). The respiratory response was monitored for 1 h following return to ventilation with 100% oxygen. 3. The results confirmed the finding of prolonged (greater than 60 min) inhibition of respiration upon return to hyperoxic conditions following severe hypoxia, as reported previously (Millhorn, Eldridge, Kiley & Waldrop, 1984). A new finding was a long-lasting (greater than 60 min) facilitation of respiration following exposure to less severe (Pa,O2 greater than 35 Torr) hypoxia. 4. Medullary extracellular fluid pH was measured in six cats. Changes in pH could not explain either the prolonged inhibition following severe hypoxia or the long-lasting facilitation observed following mild hypoxia. 5. Ablation studies were performed in order to determine the locations of the neuronal substrates for the inhibitory and facilitatory mechanisms. The results of this series of experiments indicate that the mesencephalon is necessary for activation of the inhibitory mechanism, while the facilitatory mechanism requires the presence of higher brain structures, notably the diencephalon. 6. Following removal of the diencephalon, the inhibitory response was seen following even mild hypoxic insults, i.e. those shown to produce facilitation in animals with intact brains. In the absence of the mesencephalon, neither prolonged inhibition nor prolonged facilitation could be produced following hypoxia. 7. It is proposed that there are two centrally mediated long-lasting responses to acute hypoxia. Facilitation is seen following mild

  19. Ghrelin, GLP-1, and leptin responses during exposure to moderate hypoxia.

    PubMed

    Morishima, Takuma; Goto, Kazushige

    2016-04-01

    Severe hypoxia has been indicated to cause acute changes in appetite-related hormones, which attenuate perceived appetite. However, the effects of moderate hypoxia on appetite-related hormonal regulation and perceived appetite have not been elucidated. Therefore, we examined the effects of moderate hypoxia on appetite-related hormonal regulation and perceived appetite. Eight healthy males (21.0 ± 0.6 years; 173 ± 2.3 cm; 70.6 ± 5.0 kg; 23.4 ± 1.1 kg/m(2)) completed two experimental trials on separate days: a rest trial in normoxia (FiO2 = 20.9%) and a rest trial in hypoxia (FiO2 = 15.0%). The experimental trials were performed over 7 h in an environmental chamber. Blood samples and scores of subjective appetite were collected over 7 h. Standard meals were provided 1 h (745 kcal) and 4 h (731 kcal) after initiating exposure to hypoxia or normoxia within the chamber. Although each meal significantly reduced plasma active ghrelin concentrations (P < 0.05), the response did not differ significantly between the trials over 7 h. No significant differences in the area under the curves for plasma active ghrelin concentrations over 7 h were observed between the two trials. No significant differences were observed in glucagon-like peptide 1 or leptin concentrations over 7 h between the trials. The subjective feeling of hunger and fullness acutely changed in response to meal ingestions. However, these responses were not affected by exposure to moderate hypoxia. In conclusion, 7 h of exposure to moderate hypoxia did not change appetite-related hormonal responses or perceived appetite in healthy males.

  20. Vaccinia-Related Kinase 2 Modulates the Stress Response to Hypoxia Mediated by TAK1▿

    PubMed Central

    Blanco, Sandra; Santos, Claudio; Lazo, Pedro A.

    2007-01-01

    Hypoxia represents a major stress that requires an immediate cellular response in which different signaling pathways participate. Hypoxia induces an increase in the activity of TAK1, an atypical mitogen-activated protein kinase kinase kinase (MAPKKK), which responds to oxidative stress by triggering cascades leading to the activation of c-Jun N-terminal kinase (JNK). JNK activation by hypoxia requires assembly with the JIP1 scaffold protein, which might also interact with other intracellular proteins that are less well known but that might modulate MAPK signaling. We report that TAK1 is able to form a stable complex with JIP1 and thus regulate the activation of JNK, which in turn determines the cellular stress response to hypoxia. This activation of TAK1-JIP1-JNK is suppressed by vaccinia-related kinase 2 (VRK2). VRK2A is able to interact with TAK1 by its C-terminal region, forming stable complexes. The kinase activity of VRK2 is not necessary for this interaction or the downregulation of AP1-dependent transcription. Furthermore, reduction of the endogenous VRK2 level with short hairpin RNA can increase the response induced by hypoxia, suggesting that the intracellular levels of VRK2 can determine the magnitude of this stress response. PMID:17709393

  1. Proteomic responses to hypoxia at different temperatures in the great scallop (Pecten maximus)

    PubMed Central

    Lacroix, Camille; Richard, Joëlle; Flye-Sainte-Marie, Jonathan; Bargelloni, Luca; Pichereau, Vianney

    2015-01-01

    Hypoxia and hyperthermia are two connected consequences of the ongoing global change and constitute major threats for coastal marine organisms. In the present study, we used a proteomic approach to characterize the changes induced by hypoxia in the great scallop, Pecten maximus, subjected to three different temperatures (10 °C, 18 °C and 25 °C). We did not observe any significant change induced by hypoxia in animals acclimated at 10 °C. At 18 °C and 25 °C, 16 and 11 protein spots were differentially accumulated between normoxia and hypoxia, respectively. Moreover, biochemical data (octopine dehydrogenase activity and arginine assays) suggest that animals grown at 25 °C switched their metabolism towards anaerobic metabolism when exposed to both normoxia and hypoxia, suggesting that this temperature is out of the scallops’ optimal thermal window. The 11 proteins identified with high confidence by mass spectrometry are involved in protein modifications and signaling (e.g., CK2, TBK1), energy metabolism (e.g., ENO3) or cytoskeleton (GSN), giving insights into the thermal-dependent response of scallops to hypoxia. PMID:25861557

  2. Tf-PEG-PLL-PLGA nanoparticles enhanced chemosensitivity for hypoxia-responsive tumor cells.

    PubMed

    Liu, Ping; Zhang, Haijun; Wu, Xue; Guo, Liting; Wang, Fei; Xia, Guohua; Chen, Baoan; Yin, HaiXiang; Wang, Yonglu; Li, Xueming

    2016-01-01

    Hypoxia is an inseparable component of the solid tumor as well as the bone marrow microenvironment. In this study, we investigated the effect of the novel polyethylene glycol (PEG)-poly L-lysine (PLL)-poly lactic-co-glycolic acid (PLGA) based nanoparticles (NPs) modified by transferrin (Tf) loaded with daunorubicin (DNR) (DNR-Tf-PEG-PLL-PLGA-NPs, abbreviated as DNR-Tf-NPs) on leukemia cells (K562) under hypoxia. In vitro and in vivo tests to determine the effect of the enhanced chemosensitivity were evaluated using the immunofluorescence, flow cytometry, 3,-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-tetrazoliumbromide assay, Western blot analysis, histopathological examination, and immunohistochemistry analysis. Under hypoxia, K562 cells were hypoxia-responsive with the inhibitory concentration 50% (IC50) of DNR increased, resulting in chemotherapy insensitivity. By targeting the transferrin receptor (TfR) on the surface of K562 cells, DNR-Tf-NPs led to an increased intracellular DNR level, enhancing drug sensitivity of K562 cells to DNR with a decreased IC50, even under hypoxia. We further detected the protein levels of hypoxia-inducible factor-1α (HIF-1α), Bcl-2, Bax, and caspase-3 in K562 cells. The results indicated that DNR-Tf-NPs downregulated HIF-1α and induced apoptosis to overcome hypoxia. In the xenograft model, injection of DNR-Tf-NPs significantly suppressed tumor growth, and the immunosignals of Ki67 in DNR-Tf-NPs group was significantly lower than the other groups. It was therefore concluded that DNR-Tf-NPs could be a promising candidate for enhancing drug sensitivity under hypoxia in tumor treatment.

  3. Tf-PEG-PLL-PLGA nanoparticles enhanced chemosensitivity for hypoxia-responsive tumor cells.

    PubMed

    Liu, Ping; Zhang, Haijun; Wu, Xue; Guo, Liting; Wang, Fei; Xia, Guohua; Chen, Baoan; Yin, HaiXiang; Wang, Yonglu; Li, Xueming

    2016-01-01

    Hypoxia is an inseparable component of the solid tumor as well as the bone marrow microenvironment. In this study, we investigated the effect of the novel polyethylene glycol (PEG)-poly L-lysine (PLL)-poly lactic-co-glycolic acid (PLGA) based nanoparticles (NPs) modified by transferrin (Tf) loaded with daunorubicin (DNR) (DNR-Tf-PEG-PLL-PLGA-NPs, abbreviated as DNR-Tf-NPs) on leukemia cells (K562) under hypoxia. In vitro and in vivo tests to determine the effect of the enhanced chemosensitivity were evaluated using the immunofluorescence, flow cytometry, 3,-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-tetrazoliumbromide assay, Western blot analysis, histopathological examination, and immunohistochemistry analysis. Under hypoxia, K562 cells were hypoxia-responsive with the inhibitory concentration 50% (IC50) of DNR increased, resulting in chemotherapy insensitivity. By targeting the transferrin receptor (TfR) on the surface of K562 cells, DNR-Tf-NPs led to an increased intracellular DNR level, enhancing drug sensitivity of K562 cells to DNR with a decreased IC50, even under hypoxia. We further detected the protein levels of hypoxia-inducible factor-1α (HIF-1α), Bcl-2, Bax, and caspase-3 in K562 cells. The results indicated that DNR-Tf-NPs downregulated HIF-1α and induced apoptosis to overcome hypoxia. In the xenograft model, injection of DNR-Tf-NPs significantly suppressed tumor growth, and the immunosignals of Ki67 in DNR-Tf-NPs group was significantly lower than the other groups. It was therefore concluded that DNR-Tf-NPs could be a promising candidate for enhancing drug sensitivity under hypoxia in tumor treatment. PMID:27574446

  4. Tf-PEG-PLL-PLGA nanoparticles enhanced chemosensitivity for hypoxia-responsive tumor cells

    PubMed Central

    Liu, Ping; Zhang, Haijun; Wu, Xue; Guo, Liting; Wang, Fei; Xia, Guohua; Chen, Baoan; Yin, HaiXiang; Wang, Yonglu; Li, Xueming

    2016-01-01

    Hypoxia is an inseparable component of the solid tumor as well as the bone marrow microenvironment. In this study, we investigated the effect of the novel polyethylene glycol (PEG)-poly L-lysine (PLL)-poly lactic-co-glycolic acid (PLGA) based nanoparticles (NPs) modified by transferrin (Tf) loaded with daunorubicin (DNR) (DNR-Tf-PEG-PLL-PLGA-NPs, abbreviated as DNR-Tf-NPs) on leukemia cells (K562) under hypoxia. In vitro and in vivo tests to determine the effect of the enhanced chemosensitivity were evaluated using the immunofluorescence, flow cytometry, 3,-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-tetrazoliumbromide assay, Western blot analysis, histopathological examination, and immunohistochemistry analysis. Under hypoxia, K562 cells were hypoxia-responsive with the inhibitory concentration 50% (IC50) of DNR increased, resulting in chemotherapy insensitivity. By targeting the transferrin receptor (TfR) on the surface of K562 cells, DNR-Tf-NPs led to an increased intracellular DNR level, enhancing drug sensitivity of K562 cells to DNR with a decreased IC50, even under hypoxia. We further detected the protein levels of hypoxia-inducible factor-1α (HIF-1α), Bcl-2, Bax, and caspase-3 in K562 cells. The results indicated that DNR-Tf-NPs downregulated HIF-1α and induced apoptosis to overcome hypoxia. In the xenograft model, injection of DNR-Tf-NPs significantly suppressed tumor growth, and the immunosignals of Ki67 in DNR-Tf-NPs group was significantly lower than the other groups. It was therefore concluded that DNR-Tf-NPs could be a promising candidate for enhancing drug sensitivity under hypoxia in tumor treatment. PMID:27574446

  5. Evidence nitric oxide mediates the vasodepressor response to hypoxia in sino-denervated rats

    SciTech Connect

    Sun, Miaokun; Reis, D.J. )

    1992-01-01

    Systemic hypoxia, produced in deeply anesthetized, paralyzed rats in which arterial chemoreceptors were denervated, elicited a decrease in arterial pressure (AP) averaging {minus}47 mmHg. Systemic administration of N{sup G}-nitro-L-arginine (L-NO{sub 2}Arg), inhibitor of nitric oxide (NO) synthase, attenuated the hypoxic depressor response by 79% and elevated AP by 21 mmHg. The effects of L-NO{sub 2}Arg on the hypoxic depressor response and arterial pressure were reversed by systemic administration of L- but not D-arginine. Elevation of AP with arginine-vasopressin or reduction of AP with nitroprusside to the pre-L-NO{sub 2}Arg levels did not modify the fall of AP to hypoxia. Endogenous NO synthesized in vivo from L-arginine, mediates most of the hypoxia depressor response.

  6. Interleukin-10 Promotes Pathological Angiogenesis by Regulating Macrophage Response to Hypoxia during Development

    PubMed Central

    Dace, Dru S.; Khan, Aslam A.; Kelly, Jennifer; Apte, Rajendra S.

    2008-01-01

    Aberrant angiogenesis in the eye is the most common cause of blindness. The current study examined the role of interleukin-10 (IL-10) in ischemia-induced pathological angiogenesis called neovascularization during postnatal development. IL-10 deficiency resulted in significantly reduced pathological retinal angiogenesis. In contrast to the choroicapillaris where IL-10 interferes with macrophage influx, IL-10 did not prevent anti-angiogenic macrophages from migrating to the retina in response to hypoxia. Instead, IL-10 promoted retinal angiogenesis by altering macrophage angiogenic function, as macrophages from wild-type mice demonstrated increased vascular endothelial growth factor (VEGF) and nitric oxide (NO) compared to IL-10 deficient macrophages. IL-10 appears to directly affect macrophage responsiveness to hypoxia, as macrophages responded to hypoxia with increased levels of IL-10 and STAT3 phosphorylation as opposed to IL-10 deficient macrophages. Also, IL-10 deficient macrophages inhibited the proliferation of vascular endothelial cells in response to hypoxia while wild-type macrophages failed to do so. These findings suggest that hypoxia guides macrophage behavior to a pro-angiogenic phenotype via IL-10 activated pathways. PMID:18852882

  7. Transcriptomics Modeling of the Late-Gestation Fetal Pituitary Response to Transient Hypoxia

    PubMed Central

    Wood, Charles E.; Chang, Eileen I.; Richards, Elaine M.; Rabaglino, Maria Belen; Keller-Wood, Maureen

    2016-01-01

    Background The late-gestation fetal sheep responds to hypoxia with physiological, neuroendocrine, and cellular responses that aid in fetal survival. The response of the fetus to hypoxia represents a coordinated effort to maximize oxygen transfer from the mother and minimize wasteful oxygen consumption by the fetus. While there have been many studies aimed at investigating the coordinated physiological and endocrine responses to hypoxia, and while immunohistochemical or in situ hybridization studies have revealed pathways supporting the endocrine function of the pituitary, there is little known about the coordinated cellular response of the pituitary to the hypoxia. Results Thirty min hypoxia (from 17.0±1.7 to 8.0±0.8 mm Hg, followed by 30 min normoxia) upregulated 595 and downregulated 790 genes in fetal pituitary (123–132 days’ gestation; term = 147 days). Network inference of up- and down- regulated genes revealed a high degree of functional relatedness amongst the gene sets. Gene ontology analysis revealed upregulation of cellular metabolic processes (e.g., RNA synthesis, response to estrogens) and downregulation of protein phosphorylation, protein metabolism, and mitosis. Genes found to be at the center of the network of upregulated genes included genes important for purine binding and signaling. At the center of the downregulated network were genes involved in mRNA processing, DNA repair, sumoylation, and vesicular trafficking. Transcription factor analysis revealed that both up- and down-regulated gene sets are enriched for control by several transcription factors (e.g., SP1, MAZ, LEF1, NRF1, ELK1, NFAT, E12, PAX4) but not for HIF-1, which is known to be an important controller of genomic responses to hypoxia. Conclusions The multiple analytical approaches used in this study suggests that the acute response to 30 min of transient hypoxia in the late-gestation fetus results in reduced cellular metabolism and a pattern of gene expression that is

  8. Elevation of iron storage in humans attenuates the pulmonary vascular response to hypoxia.

    PubMed

    Bart, Nicole K; Curtis, M Kate; Cheng, Hung-Yuan; Hungerford, Sara L; McLaren, Ross; Petousi, Nayia; Dorrington, Keith L; Robbins, Peter A

    2016-08-01

    Sustained hypoxia over several hours induces a progressive rise in pulmonary artery systolic pressure (PASP). Administration of intravenous iron immediately prior to the hypoxia exposure abrogates this effect, suggesting that manipulation of iron stores may modify hypoxia-induced pulmonary hypertension. Iron (ferric carboxymaltose) administered intravenously has a plasma half-life of 7-12 h. Thus any therapeutic use of intravenous iron would require its effect on PASP to persist long after the iron-sugar complex has been cleared from the blood. To examine this, we studied PASP during sustained (6 h) hypoxia on 4 separate days (days 0, 1, 8, and 43) in 22 participants. On day 0, the rise in PASP with hypoxia was well matched between the iron and saline groups. On day 1, each participant received either 1 g of ferric carboxymaltose or saline in a double-blind manner. After administration of intravenous iron, the rise in PASP with hypoxia was attenuated by ∼50%, and this response remained suppressed on both days 8 and 43 (P < 0.001). Following administration of intravenous iron, values for ferritin concentration, transferrin saturation, and hepcidin concentration rose significantly (P < 0.001, P < 0.005, and P < 0.001, respectively), and values for transferrin concentration fell significantly (P < 0.001). These changes remained significant at day 43 We conclude that the attenuation of the pulmonary vascular response to hypoxia by elevation of iron stores persists long after the artificial iron-sugar complex has been eliminated from the blood. The persistence of this effect suggests that intravenous iron may be of benefit in some forms of pulmonary hypertension.

  9. Elevation of iron storage in humans attenuates the pulmonary vascular response to hypoxia.

    PubMed

    Bart, Nicole K; Curtis, M Kate; Cheng, Hung-Yuan; Hungerford, Sara L; McLaren, Ross; Petousi, Nayia; Dorrington, Keith L; Robbins, Peter A

    2016-08-01

    Sustained hypoxia over several hours induces a progressive rise in pulmonary artery systolic pressure (PASP). Administration of intravenous iron immediately prior to the hypoxia exposure abrogates this effect, suggesting that manipulation of iron stores may modify hypoxia-induced pulmonary hypertension. Iron (ferric carboxymaltose) administered intravenously has a plasma half-life of 7-12 h. Thus any therapeutic use of intravenous iron would require its effect on PASP to persist long after the iron-sugar complex has been cleared from the blood. To examine this, we studied PASP during sustained (6 h) hypoxia on 4 separate days (days 0, 1, 8, and 43) in 22 participants. On day 0, the rise in PASP with hypoxia was well matched between the iron and saline groups. On day 1, each participant received either 1 g of ferric carboxymaltose or saline in a double-blind manner. After administration of intravenous iron, the rise in PASP with hypoxia was attenuated by ∼50%, and this response remained suppressed on both days 8 and 43 (P < 0.001). Following administration of intravenous iron, values for ferritin concentration, transferrin saturation, and hepcidin concentration rose significantly (P < 0.001, P < 0.005, and P < 0.001, respectively), and values for transferrin concentration fell significantly (P < 0.001). These changes remained significant at day 43 We conclude that the attenuation of the pulmonary vascular response to hypoxia by elevation of iron stores persists long after the artificial iron-sugar complex has been eliminated from the blood. The persistence of this effect suggests that intravenous iron may be of benefit in some forms of pulmonary hypertension. PMID:27418684

  10. The earliest neuronal responses to hypoxia in the neocortical circuit are glutamate-dependent.

    PubMed

    Revah, Omer; Lasser-Katz, Efrat; Fleidervish, Ilya A; Gutnick, Michael J

    2016-11-01

    Soon after exposure to hypoxia or ischemia, neurons in cortical tissues undergo massive anoxic depolarization (AD). This precipitous event is preceded by more subtle neuronal changes, including enhanced excitatory and inhibitory synaptic transmitter release. Here, we have used patch-in-slice techniques to identify the earliest effects of acute hypoxia on the synaptic and intrinsic properties of Layer 5 neurons, to determine their time course and to evaluate the role of glutamate receptors in their generation. Coronal slices of mouse somatosensory cortex were maintained at 36°C in an interface chamber and challenged with episodes of hypoxia. In recordings with cell-attached electrodes, the open probability of Ca(2+)-dependent BK channels began to increase within seconds of hypoxia onset, indicating a sharp rise in [Ca(2+)]i just beneath the membrane. By using a high concentration of K(+) in the pipette, we simultaneously monitored the membrane potential and showed that the [Ca(2+)]i rise was not associated with membrane depolarization. The earliest hypoxia-induced synaptic disturbance was a marked increase in the frequency of sPSCs, which also began soon after the removal of oxygen and long before AD. This synaptic effect was accompanied by depletion of the readily releasable transmitter pools, as demonstrated by a decreased response to hyperosmotic solutions. The early [Ca(2+)]i rise, the early increase in transmitter release and the subsequent AD itself were all prevented by bathing in a cocktail containing blockers of ionotropic glutamate receptors. We found no evidence for involvement of pannexin hemichannels or TRPM7 channels in the early responses to hypoxia in this experimental preparation. Our data indicate that the earliest cellular consequences of cortical hypoxia are triggered by activation of glutamate-gated channels. PMID:27443966

  11. Translation of the human erythropoietin transcript is regulated by an upstream open reading frame in response to hypoxia.

    PubMed

    Barbosa, Cristina; Romão, Luísa

    2014-05-01

    Erythropoietin (EPO) is a key mediator hormone for hypoxic induction of erythropoiesis that also plays important nonhematopoietic functions. It has been shown that EPO gene expression regulation occurs at different levels, including transcription and mRNA stabilization. In this report, we show that expression of EPO is also regulated at the translational level by an upstream open reading frame (uORF) of 14 codons. As judged by comparisons of protein and mRNA levels, the uORF acts as a cis-acting element that represses translation of the main EPO ORF in unstressed HEK293, HepG2, and HeLa cells. However, in response to hypoxia, this repression is significantly released, specifically in HeLa cells, through a mechanism that involves processive scanning of ribosomes from the 5' end of the EPO transcript and enhanced ribosome bypass of the uORF. In addition, we demonstrate that in HeLa cells, hypoxia induces the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) concomitantly with a significant increase of EPO protein synthesis. These findings provide a framework for understanding that production of high levels of EPO induced by hypoxia also involves regulation at the translational level. PMID:24647661

  12. Artemin is hypoxia responsive and promotes oncogenicity and increased tumor initiating capacity in hepatocellular carcinoma

    PubMed Central

    Wu, Zhengsheng; Liu, Shumin; Sun, Linchong; Zhong, Yanghao; Zhang, Xiao; Kong, Xiangjun; Qian, Pengxu; Zhang, Huafeng; Lobie, Peter E.; Zhu, Tao

    2016-01-01

    Hypoxia has been reported to regulate the cancer stem cell (CSC) population yet the underlying mechanism is poorly characterized. Herein, we show that Artemin (ARTN), a member of the glial cell derived neurotrophic factor family of ligands, is a hypoxia-responsive factor and is essential for hypoxia-induced CSC expansion in hepatocellular carcinoma (HCC). Clinically, elevated expression of ARTN in HCC was associated with larger tumor size, faster relapse and shorter survival. In vitro, HCC cells with forced expression of ARTN exhibited reduced apoptosis, increased proliferation, epithelial-mesenchymal transition (EMT) and enhanced motility. Additionally, ARTN dramatically increased xenograft tumor size and metastasis in vivo. Moreover, ARTN also enhanced tumorsphere formation and the tumor initiating capacity of HCC cells, consequent to expansion of the CD133+ CSC population. ARTN transcription was directly activated by hypoxia-induced factor-1α (HIF-1α) and hypoxia induced ARTN promoted EMT and increased the CSC population via AKT signaling. We herein identify a novel HIF-1α/ARTN axis promoting CSC-like behavior in hypoxic environments which implicates ARTN as a valuable therapeutic target for HCC. PMID:26675549

  13. Superoxide radical production in response to environmental hypoxia in cultured shrimp.

    PubMed

    Zenteno-Savín, Tania; Saldierna, Ricardo; Ahuejote-Sandoval, Mauricio

    2006-01-01

    Markers of oxidative stress in response to hypoxia and reoxygenation were assessed in Pacific white shrimp (Litopenaeus vannamei). Adult shrimp were either exposed to hypoxia (1 mg O(2)/L) for 6, 12, or 24 h followed by 1-h reoxygenation, or exposed to hypoxia for 24 h followed by 1- to 6-h reoxygenation. In all cases, shrimp maintained at constant normoxia were used as controls. Spectrophotometric techniques were applied to analyze lactate concentration, superoxide radical (O(2)(*-)) production, lipid peroxidation (TBARS), and antioxidant capacity status in muscle, hepatopancreas, and gill samples. Results indicate differences among tissues, even under control conditions. O(2)(*-) production and TBARS levels were higher in hepatopancreas than in gill or muscle. No effect of exposure to hypoxia was found. However, reoxygenation following exposure to hypoxia was found to affect the oxidative metabolism of muscle and hepatopancreas from cultured shrimp. Lactate concentration and O(2)(*-) production increased while antioxidant capacity decreased in hepatopancreas and muscle in the first hours of reoxygenation. This could translate into tissue damage, which may significantly jeopardize the commercial aquaculture product.

  14. Autophagy contributes to regulation of the hypoxia response during submergence in Arabidopsis thaliana.

    PubMed

    Chen, Liang; Liao, Bin; Qi, Hua; Xie, Li-Juan; Huang, Li; Tan, Wei-Juan; Zhai, Ning; Yuan, Li-Bing; Zhou, Ying; Yu, Lu-Jun; Chen, Qin-Fang; Shu, Wensheng; Xiao, Shi

    2015-01-01

    Autophagy involves massive degradation of intracellular components and functions as a conserved system that helps cells to adapt to adverse conditions. In mammals, hypoxia rapidly stimulates autophagy as a cell survival response. Here, we examine the function of autophagy in the regulation of the plant response to submergence, an abiotic stress that leads to hypoxia and anaerobic respiration in plant cells. In Arabidopsis thaliana, submergence induces the transcription of autophagy-related (ATG) genes and the formation of autophagosomes. Consistent with this, the autophagy-defective (atg) mutants are hypersensitive to submergence stress and treatment with ethanol, the end product of anaerobic respiration. Upon submergence, the atg mutants have increased levels of transcripts of anaerobic respiration genes (alcohol dehydrogenase 1, ADH1 and pyruvate decarboxylase 1, PDC1), but reduced levels of transcripts of other hypoxia- and ethylene-responsive genes. Both submergence and ethanol treatments induce the accumulation of reactive oxygen species (ROS) in the rosettes of atg mutants more than in the wild type. Moreover, the production of ROS by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidases is necessary for plant tolerance to submergence and ethanol, submergence-induced expression of ADH1 and PDC1, and activation of autophagy. The submergence- and ethanol-sensitive phenotypes in the atg mutants depend on a complete salicylic acid (SA) signaling pathway. Together, our findings demonstrate that submergence-induced autophagy functions in the hypoxia response in Arabidopsis by modulating SA-mediated cellular homeostasis.

  15. Autophagy contributes to regulation of the hypoxia response during submergence in Arabidopsis thaliana

    PubMed Central

    Chen, Liang; Liao, Bin; Qi, Hua; Xie, Li-Juan; Huang, Li; Tan, Wei-Juan; Zhai, Ning; Yuan, Li-Bing; Zhou, Ying; Yu, Lu-Jun; Chen, Qin-Fang; Shu, Wensheng; Xiao, Shi

    2015-01-01

    Autophagy involves massive degradation of intracellular components and functions as a conserved system that helps cells to adapt to adverse conditions. In mammals, hypoxia rapidly stimulates autophagy as a cell survival response. Here, we examine the function of autophagy in the regulation of the plant response to submergence, an abiotic stress that leads to hypoxia and anaerobic respiration in plant cells. In Arabidopsis thaliana, submergence induces the transcription of autophagy-related (ATG) genes and the formation of autophagosomes. Consistent with this, the autophagy-defective (atg) mutants are hypersensitive to submergence stress and treatment with ethanol, the end product of anaerobic respiration. Upon submergence, the atg mutants have increased levels of transcripts of anaerobic respiration genes (alcohol dehydrogenase 1, ADH1 and pyruvate decarboxylase 1, PDC1), but reduced levels of transcripts of other hypoxia- and ethylene-responsive genes. Both submergence and ethanol treatments induce the accumulation of reactive oxygen species (ROS) in the rosettes of atg mutants more than in the wild type. Moreover, the production of ROS by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidases is necessary for plant tolerance to submergence and ethanol, submergence-induced expression of ADH1 and PDC1, and activation of autophagy. The submergence- and ethanol-sensitive phenotypes in the atg mutants depend on a complete salicylic acid (SA) signaling pathway. Together, our findings demonstrate that submergence-induced autophagy functions in the hypoxia response in Arabidopsis by modulating SA-mediated cellular homeostasis. PMID:26566261

  16. Peripheral chemoreception and arterial pressure responses to intermittent hypoxia.

    PubMed

    Prabhakar, Nanduri R; Peng, Ying-Jie; Kumar, Ganesh K; Nanduri, Jayasri

    2015-04-01

    Carotid bodies are the principal peripheral chemoreceptors for detecting changes in arterial blood oxygen levels, and the resulting chemoreflex is a potent regulator of blood pressure. Recurrent apnea with intermittent hypoxia (IH) is a major clinical problem in adult humans and infants born preterm. Adult patients with recurrent apnea exhibit heightened sympathetic nerve activity and hypertension. Adults born preterm are predisposed to early onset of hypertension. Available evidence suggests that carotid body chemoreflex contributes to hypertension caused by IH in both adults and neonates. Experimental models of IH provided important insights into cellular and molecular mechanisms underlying carotid body chemoreflex-mediated hypertension. This article provides a comprehensive appraisal of how IH affects carotid body function, underlying cellular, molecular, and epigenetic mechanisms, and the contribution of chemoreflex to the hypertension.

  17. Peripheral Chemoreception and Arterial Pressure Responses to Intermittent Hypoxia

    PubMed Central

    Prabhakar, Nanduri R.; Peng, Ying-Jie; Kumar, Ganesh K.; Nanduri, Jayasri

    2015-01-01

    Carotid bodies are the principal peripheral chemoreceptors for detecting changes in arterial blood oxygen levels, and the resulting chemoreflex is a potent regulator of blood pressure. Recurrent apnea with intermittent hypoxia (IH) is a major clinical problem in adult humans and infants born preterm. Adult patients with recurrent apnea exhibit heightened sympathetic nerve activity and hypertension. Adults born preterm are predisposed to early onset of hypertension. Available evidence suggests that carotid body chemoreflex contributes to hypertension caused by IH in both adults and neonates. Experimental models of IH provided important insights into cellular and molecular mechanisms underlying carotid body chemoreflex-mediated hypertension. This article provides a comprehensive appraisal of how IH affects carotid body function, underlying cellular, molecular, and epigenetic mechanisms, and the contribution of chemoreflex to the hypertension. PMID:25880505

  18. 3D culture broadly regulates tumor cell hypoxia response and angiogenesis via pro-inflammatory pathways

    PubMed Central

    DelNero, Peter; Lane, Maureen; Verbridge, Scott S.; Kwee, Brian; Kermani, Pouneh; Hempstead, Barbara; Stroock, Abraham; Fischbach, Claudia

    2015-01-01

    Oxygen status and tissue dimensionality are critical determinants of tumor angiogenesis, a hallmark of cancer and an enduring target for therapeutic intervention. However, it is unclear how these microenvironmental conditions interact to promote neovascularization, due in part to a lack of comprehensive, unbiased data sets describing tumor cell gene expression as a function of oxygen levels within three-dimensional (3D) culture. Here, we utilized alginate-based, oxygen-controlled 3D tumor models to study the interdependence of culture context and the hypoxia response. Microarray gene expression analysis of tumor cells cultured in 2D versus 3D under ambient or hypoxic conditions revealed striking interdependence between culture dimensionality and hypoxia response, which was mediated in part by pro-inflammatory signaling pathways. In particular, interleukin-8 (IL-8) emerged as a major player in the microenvironmental regulation of the hypoxia program. Notably, this interaction between dimensionality and oxygen status via IL-8 increased angiogenic sprouting in a 3D endothelial invasion assay. Taken together, our data suggest that pro-inflammatory pathways are critical regulators of tumor hypoxia response within 3D environments that ultimately impact tumor angiogenesis, potentially providing important therapeutic targets. Furthermore, these results highlight the importance of pathologically relevant tissue culture models to study the complex physical and chemical processes by which the cancer microenvironment mediates new vessel formation. PMID:25934456

  19. 3D culture broadly regulates tumor cell hypoxia response and angiogenesis via pro-inflammatory pathways.

    PubMed

    DelNero, Peter; Lane, Maureen; Verbridge, Scott S; Kwee, Brian; Kermani, Pouneh; Hempstead, Barbara; Stroock, Abraham; Fischbach, Claudia

    2015-07-01

    Oxygen status and tissue dimensionality are critical determinants of tumor angiogenesis, a hallmark of cancer and an enduring target for therapeutic intervention. However, it is unclear how these microenvironmental conditions interact to promote neovascularization, due in part to a lack of comprehensive, unbiased data sets describing tumor cell gene expression as a function of oxygen levels within three-dimensional (3D) culture. Here, we utilized alginate-based, oxygen-controlled 3D tumor models to study the interdependence of culture context and the hypoxia response. Microarray gene expression analysis of tumor cells cultured in 2D versus 3D under ambient or hypoxic conditions revealed striking interdependence between culture dimensionality and hypoxia response, which was mediated in part by pro-inflammatory signaling pathways. In particular, interleukin-8 (IL-8) emerged as a major player in the microenvironmental regulation of the hypoxia program. Notably, this interaction between dimensionality and oxygen status via IL-8 increased angiogenic sprouting in a 3D endothelial invasion assay. Taken together, our data suggest that pro-inflammatory pathways are critical regulators of tumor hypoxia response within 3D environments that ultimately impact tumor angiogenesis, potentially providing important therapeutic targets. Furthermore, these results highlight the importance of pathologically relevant tissue culture models to study the complex physical and chemical processes by which the cancer microenvironment mediates new vessel formation.

  20. Molecular Response of Estuarine Fish to Hypoxia: A Comparative Study with Ruffe and Flounder from Field and Laboratory

    PubMed Central

    Tiedke, Jessica; Thiel, Ralf; Burmester, Thorsten

    2014-01-01

    On a global scale, the frequencies and magnitudes of hypoxic events in coastal and estuarine waters have increased dramatically over the past 20 years. Fish populations are suitable indicators for the assessment of the quality of aquatic ecosystems, as they are omnipresent and often comprise a variety of different lifestyles and adaption strategies. We have investigated on the molecular level the impact of hypoxia on two fish species typical of European estuaries. We monitored the expression of eleven putatively hypoxia-responsive genes by means of quantitative real-time RT-PCR in brains, gills and hearts of the ruffe (Gymnocephalus cernua) and the flounder (Platichthys flesus). We first investigated the effect of naturally occurring hypoxia in the Elbe estuary. In a second approach, expression changes in the response to hypoxia were monitored under controlled laboratory conditions. The genes that showed the strongest effect were two respiratory proteins, myoglobin and neuroglobin, as well as the apoptosis enzyme caspase 3. As previously observed in other fish, myoglobin, which was considered to be muscle-specific, was found in brain and gills as well. Comparison of field and laboratory studies showed that – with the exception of the heart of flounder – that mRNA levels of the selected genes were about the same, suggesting that laboratory conditions reflect natural conditions. Likewise, trends of gene expression changes under hypoxia were the same, although hypoxia response was more pronounced in the Elbe estuary. In general, the flounder displayed a stronger response to hypoxia than the ruffe, suggesting that the flounder is more susceptible to hypoxia. The most pronounced differences were found among tissues within a species, demonstrating that hypoxia response is largely tissue-specific. In summary, our data suggest that laboratory experiments essentially mimic field data, but additional environmental factors enhance hypoxia response in nature. PMID:24595439

  1. Neonatal Maternal Separation Augments Carotid Body Response to Hypoxia in Adult Males but Not Female Rats

    PubMed Central

    Soliz, Jorge; Tam, Rose; Kinkead, Richard

    2016-01-01

    Perinatal exposure to adverse experiences disrupts brain development, including the brainstem network that regulates breathing. At adulthood, rats previously subjected to stress (in the form of neonatal maternal separation; NMS) display features reported in patients suffering from sleep disordered breathing, including an increased hypoxic ventilatory response and hypertension. This effect is also sex-specific (males only). Based on these observations, we hypothesized that NMS augments the carotid body's O2-chemosensitivity. Using an isolated and perfused ex vivo carotid body preparation from adult rats we compared carotid sinus nerve (CSN) responses to hypoxia and hypercapnia in carotid bodies harvested from adult rats that either experienced control conditions (no experimental manipulation) or were subjected to NMS (3 h/day from postnatal days 3 to 12). In males, the CSN response to hypoxia measured in preparations from NMS males was 1.5 fold higher than controls. In control rats, the female's response was similar to that of males; however, the increase in CSN activity measured in NMS females was 3.0 times lower than controls. The CSN response to hypercapnia was not influenced by stress or sex. We conclude that NMS is sufficient to have persistent and sex-specific effects on the carotid body's response to hypoxia. Because NMS also has sex-specific effects on the neuroendocrine response to stress, we propose that carotid body function is influenced by stress hormones. This, in turn, leads to a predisposition toward cardio-respiratory disorders. PMID:27729873

  2. Respiratory response to combined heat and hypoxia in the marine bivalves Pecten maximus and Mytilus spp.

    PubMed

    Artigaud, Sébastien; Lacroix, Camille; Pichereau, Vianney; Flye-Sainte-Marie, Jonathan

    2014-09-01

    Coastal ecosystems are increasingly disturbed by the increase of mean sea surface temperature and expansion of hypoxic areas. The objectives of the present work were to describe and compare the respiratory responses to combined heat and hypoxia in two bivalve species (Pecten maximus and Mytilus spp.) living in two contrasted coastal habitats (subtidal and intertidal, respectively). Results were consistent with the vertical zonation of both species. Mytilus spp. seemed to cope better with a temperature increase than P. maximus, which was found to be outside of its optimal thermal window at 25°C. Concerning respiratory responses to hypoxia at a given temperature, P. maximus displayed greater oxyregulation capacity that was maintained over a larger range of O2 levels, as compared to Mytilus spp. When acclimation temperatures increased, both species showed a decrease in their oxyregulation capacities alongside a reduction in aerobic performance, especially in P. maximus. The comparison between species suggests that subtidal species, such as P. maximus, might be more vulnerable to a combination of heat and hypoxia than intertidal species, such as Mytilus spp. Lastly, this study highlighted the utility of segmented linear models to estimate PcO2 and regulation percentages in marine organisms exposed to hypoxia.

  3. Emerging roles of microRNAs in the molecular responses to hypoxia.

    PubMed

    Crosby, Meredith E; Devlin, Cecilia M; Glazer, Peter M; Calin, George A; Ivan, Mircea

    2009-01-01

    Recent studies have established that the regulation of microRNAs (miRs) is a feature of the hypoxic response. In this review, we discuss the role of hypoxia-regulated miRs, with an emphasis on miR-210 and miR-373, and anticipate directions for clinical applications. The induction of miR-210 and miR-373 is dependent upon hypoxia inducible factor (HIF), and their up-regulation has been detected in a variety of solid tumors. Both miRs have been associated with adverse prognosis and metastatic potential. The increased expression of miR-210 is linked to an in vivo hypoxic signature. MiR-210 also participates in endothelial and neuronal cells' response to oxygen deprivation and may possess a role in the regulation of angiogenesis. A variety of miR-210 and miR-373 targets that may be relevant to hypoxia have been validated or proposed. Very recently, targets of these miRs that are implicated in DNA repair have been identified, thus establishing an additional link between the hypoxic tumor microenvironment and DNA damage. Extending beyond cancer biology, some of miR-210 targets are likely involved in the regulation of angiogenesis, and neuronal cell survival. Inactivation of miRs affected by hypoxia presents a promising therapeutic strategy in the case of difficult-to-treat cancers, as well as in other non-cancer-related diseases.

  4. Responses to temperature and hypoxia as interacting stressors in fish: implications for adaptation to environmental change.

    PubMed

    McBryan, T L; Anttila, K; Healy, T M; Schulte, P M

    2013-10-01

    Anthropogenic environmental change is exposing animals to changes in a complex array of interacting stressors and is already having important effects on the distribution and abundance of species. However, despite extensive examination of the effects of stressors in isolation, knowledge of the effects of stressors in combination is limited. This lack of information makes predicting the responses of organisms to anthropogenic environmental change challenging. Here, we focus on the effects of temperature and hypoxia as interacting stressors in fishes. A review of the available evidence suggests that temperature and hypoxia act synergistically such that small shifts in one stressor could result in large effects on organismal performance when a fish is exposed to the 2 stressors in combination. Although these stressors pose substantial challenges for fish, there also is substantial intraspecific variation in tolerance to these stressors that could act as the raw material for the evolution of improved tolerance. However, the potential for adaptive change is, in part, dependent on the nature of the correlations among traits associated with tolerance. For example, negative genetic correlations (or trade-offs) between tolerances to temperature and hypoxia could limit the potential for adaptation to the combined stressors, while positive genetic correlations might be of benefit. The limited data currently available suggest that tolerances to hypoxia and to high-temperature may be positively correlated in some species of fish, suggesting the possibility for adaptive evolution in these traits in response to anthropogenic environmental change.

  5. Distinct regulatory mechanisms of the human ferritin gene by hypoxia and hypoxia mimetic cobalt chloride at the transcriptional and post-transcriptional levels.

    PubMed

    Huang, Bo-Wen; Miyazawa, Masaki; Tsuji, Yoshiaki

    2014-12-01

    Cobalt chloride has been used as a hypoxia mimetic because it stabilizes hypoxia inducible factor-1α (HIF1-α) and activates gene transcription through a hypoxia responsive element (HRE). However, differences between hypoxia and hypoxia mimetic cobalt chloride in gene regulation remain elusive. Expression of ferritin, the major iron storage protein, is regulated at the transcriptional and posttranscriptional levels through DNA and RNA regulatory elements. Here we demonstrate that hypoxia and cobalt chloride regulate ferritin heavy chain (ferritin H) expression by two distinct mechanisms. Both hypoxia and cobalt chloride increased HIF1-α but a putative HRE in the human ferritin H gene was not activated. Instead, cobalt chloride but not hypoxia activated ferritin H transcription through an antioxidant responsive element (ARE), to which Nrf2 was recruited. Intriguingly, cobalt chloride downregulated ferritin H protein expression while it upregulated other ARE-regulated antioxidant genes in K562 cells. Further characterization demonstrated that cobalt chloride increased interaction between iron regulatory proteins (IRP1 and IRP2) and iron responsive element (IRE) in the 5'UTR of ferritin H mRNA, resulting in translational block of the accumulated ferritin H mRNA. In contrast, hypoxia had marginal effect on ferritin H transcription but increased its translation through decreased IRP1-IRE interaction. These results suggest that hypoxia and hypoxia mimetic cobalt chloride employ distinct regulatory mechanisms through the interplay between DNA and mRNA elements at the transcriptional and post-transcriptional levels.

  6. Real-time photoacoustic imaging of rat deep brain: hemodynamic responses to hypoxia

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Iwazaki, Hideaki; Ida, Taiichiro; Hosaka, Tomoya; Kawaguchi, Yasushi; Nawashiro, Hiroshi; Sato, Shunichi

    2013-03-01

    Hemodynamic responses of the brain to hypoxia or ischemia are one of the major interests in neurosurgery and neuroscience. In this study, we performed real-time transcutaneous PA imaging of the rat brain that was exposed to a hypoxic stress and investigated depth-resolved responses of the brain, including the hippocampus. A linear-array 8ch 10-MHz ultrasonic sensor (measurement length, 10 mm) was placed on the shaved scalp. Nanosecond, 570-nm and 595- nm light pulses were used to excite PA signals indicating cerebral blood volume (CBV) and blood deoxygenation, respectively. Under spontaneous respiration, inhalation gas was switched from air to nitrogen, and then reswitched to oxygen, during which real-time PA imaging was performed continuously. High-contrast PA signals were observed from the depth regions corresponding to the scalp, skull, cortex and hippocampus. After starting hypoxia, PA signals at 595 nm increased immediately in both the cortex and hippocampus for about 1.5 min, showing hemoglobin deoxygenation. On the other hand, PA signals at 570 nm coming from these regions did not increase in the early phase but started to increase at about 1.5 min after starting hypoxia, indicating reactive hyperemia to hypoxia. During hypoxia, PA signals coming from the scalp decreased transiently, which is presumably due to compensatory response in the peripheral tissue to preserve blood perfusion in the brain. The reoxygenation caused a gradual recovery of these PA signals. These findings demonstrate the usefulness of PA imaging for real-time, depth-resolved observation of cerebral hemodynamics.

  7. Hypoxia and the pharmaceutical diclofenac influence the circadian responses of three-spined stickleback.

    PubMed

    Prokkola, Jenni M; Nikinmaa, Mikko; Lubiana, Pedro; Kanerva, Mirella; McCairns, R J Scott; Götting, Miriam

    2015-01-01

    Pollution with low concentrations of pharmaceuticals, especially when combined with low-oxygen conditions (hypoxia), is a threat to aquatic ecosystems worldwide. The non-steroidal anti-inflammatory drug diclofenac is commonly detected in wastewater effluents, and has potential to accumulate in the bile of fish. Diclofenac has been shown to activate aryl hydrocarbon receptor (AHR), which induces transcription in the metabolic enzyme cytochrome P450 1a (cyp1a). Previously, crosstalk has been shown to occur between AHR and hypoxia inducible factor 1 (HIF-1). In addition, both of these transcription factors interact with the proteins regulating circadian (24-h) rhythms in vertebrates. Yet little is known about the significance of these interactions during simultaneous exposure to chemicals and hypoxia in fish in vivo. We exposed wild-caught three-spined sticklebacks (Gasterosteus aculeatus) to diclofenac (1 μg/L, 14 days), hypoxia (2.0 mg/L, up to 24h) and the combination of both. We then analyzed markers of chemical biotransformation (EROD activity, cyp1a and ahr mRNA levels), glycolysis (lactate dehydrogenase (LDH) enzyme activity, ldh and enolase 1a mRNA levels), and the transcription of core circadian clock genes clock and period 1 in liver tissue. Samples were taken at three time points during the light period in order to address disturbances in the circadian variation of metabolic processes. The results show that mRNA levels and LDH activity tended to be lowest before the dark period, but this pattern was disturbed by hypoxia and diclofenac. Diclofenac and hypoxia co-exposure induced EROD activity more strongly than diclofenac exposure alone, while cyp1a mRNA level was increased also by hypoxia and diclofenac alone. LDH activity and mRNA expression showed a clear time-dependent response during hypoxia, which is consistent with the previously suggested decreased accumulation of HIF-1 during the dark period. Furthermore, LDH activity and transcription was

  8. Cerebrovascular responses to hypoxia and hypocapnia in high-altitude dwellers

    PubMed Central

    Norcliffe, LJ; Rivera-Ch, M; Claydon, VE; Moore, JP; Leon-Velarde, F; Appenzeller, O; Hainsworth, R

    2005-01-01

    CerebRal blood flow is known to increase in response to hypoxia and to decrease with hypocapnia. It is not known, however, whether these responses are altered in high-altitude dwellers who are not only chronically hypoxic and hypocapnic, but also polycythaemic. Here we examined cerebral blood flow responses to hypoxia and hypocapnia, separately and together, in Andean high-altitude dwellers, including some with chronic mountain sickness (CMS), which is characterized by excessive polycythaemia. Studies were carried out at high altitude (Cerro de Pasco (CP), Peru; barometric pressure (PB) 450 mmHg) and repeated, following relief of the hypoxia, on the day following arrival at sea level (Lima, Peru; PB 755 mmHg). We compared these results with those from eight sea-level residents studied at sea level. In nine high-altitude normal subjects (HA) and nine CMS patients, we recorded middle cerebral artery mean blood flow velocity (MCAVm) using transcranial Doppler ultrasonography, and expressed responses as changes from baseline. MCAVm responses to hypoxia were determined by changing end-tidal partial pressure of oxygen (PET,O2) from 100 to 50 mmHg, with end-tidal partial pressure of carbon dioxide clamped. MCAVm responses to hypocapnia were studied by voluntary hyperventilation with (PET,O2) clamped at 100 and 50 mmHg. There were no significant differences between the cerebrovascular responses of the two groups to any of the interventions at either location. In both groups, the MCAVm responses to hypoxia were significantly greater at Lima than at CP (HA, 12.1 ± 1.3 and 6.1 ± 1.0%; CMS, 12.5 ± 0.8 and 5.6 ± 1.2%; P < 0.01 both groups). The responses at Lima were similar to those in the sea-level subjects (13.6 ± 2.3%). The responses to normoxic hypocapnia in the altitude subjects were also similar at both locations and greater than those in sea-level residents. During hypoxia, both high-altitude groups showed responses to hypocapnia that were significantly smaller at

  9. Cerebrovascular responses to hypoxia and hypocapnia in high-altitude dwellers.

    PubMed

    Norcliffe, L J; Rivera-Ch, M; Claydon, V E; Moore, J P; Leon-Velarde, F; Appenzeller, O; Hainsworth, R

    2005-07-01

    Cerebral blood flow is known to increase in response to hypoxia and to decrease with hypocapnia. It is not known, however, whether these responses are altered in high-altitude dwellers who are not only chronically hypoxic and hypocapnic, but also polycythaemic. Here we examined cerebral blood flow responses to hypoxia and hypocapnia, separately and together, in Andean high-altitude dwellers, including some with chronic mountain sickness (CMS), which is characterized by excessive polycythaemia. Studies were carried out at high altitude (Cerro de Pasco (CP), Peru; barometric pressure (P(B)) 450 mmHg) and repeated, following relief of the hypoxia, on the day following arrival at sea level (Lima, Peru; P(B) 755 mmHg). We compared these results with those from eight sea-level residents studied at sea level. In nine high-altitude normal subjects (HA) and nine CMS patients, we recorded middle cerebral artery mean blood flow velocity (MCAVm) using transcranial Doppler ultrasonography, and expressed responses as changes from baseline. MCAVm responses to hypoxia were determined by changing end-tidal partial pressure of oxygen (P(ET,O2)) from 100 to 50 mmHg, with end-tidal partial pressure of carbon dioxide clamped. MCAVm responses to hypocapnia were studied by voluntary hyperventilation with (P(ET,O2)) clamped at 100 and 50 mmHg. There were no significant differences between the cerebrovascular responses of the two groups to any of the interventions at either location. In both groups, the MCAVm responses to hypoxia were significantly greater at Lima than at CP (HA, 12.1 +/- 1.3 and 6.1 +/- 1.0%; CMS, 12.5 +/- 0.8 and 5.6 +/- 1.2%; P < 0.01 both groups). The responses at Lima were similar to those in the sea-level subjects (13.6 +/- 2.3%). The responses to normoxic hypocapnia in the altitude subjects were also similar at both locations and greater than those in sea-level residents. During hypoxia, both high-altitude groups showed responses to hypocapnia that were

  10. Rapid and dynamic alterations of gene expression profiles of adult porcine bone marrow derived stem cell in response to hypoxia

    PubMed Central

    Wang, Suna; Zhou, Yifu; Seavey, Caleb N.; Singh, Avneesh K.; Xu, Xiuli; Hunt, Timothy; Hoyt, Robert F.; Horvath, Keith A.

    2013-01-01

    This study sought to identify the gene expression patterns of porcine bone marrow-derived MSC in response to hypoxia and investigate novel specific hypoxic targets that may have a role in determining MSC proliferation/survival and differentiation. MSC from fifteen animals were incubated in 1% oxygen and 8% carbon dioxide for 6, 12 and 24 hours. RNA samples were isolated and assayed with Affymetrix porcine arrays and quantitative reverse transcription PCR. Significant gene expression levels among the four groups of normoxia, 6-, 12- and 24-hours hypoxia were identified. The pattern in the 12-hours hypoxia group was similar to that of 24-hours. Of 23,924 probes, 377 and 210 genes were regulated in the 6- and 24-hours hypoxia groups, respectively. Functional classification of the hypoxic regulated genes was mainly clustered in cell proliferation and response to stress. However, the major upregulated genes in the 6-hours group were activated in cell cycle phases; the genes in the 24-hours hypoxia were evenly separated into cell differentiation, apoptosis and cellular metabolic processes. Twenty-eight genes were upregulated in all hypoxia groups; these genes are considered as hypoxic targets. Our results identified a genome-wide hypoxia induced gene expression pattern in porcine MSC. This study provides a global view of molecular events in the cells during exposure to hypoxia and revealed a set of novel candidate hypoxic targets. PMID:20172499

  11. Stress response of lead-exposed rainbow trout (Oncorhynchus mykiss) during swimming performance and hypoxia challenges

    SciTech Connect

    Phillips, K.A. |; Caldwell, C.A.; Sandheinrich, M.B.

    1995-12-31

    Contaminants often invoke a stress response in aquatic organisms, and may compromise their capacity to respond to secondary stressors. This may reduce growth, reproduction and survival. The authors objectives were to assess the effects of lead and secondary stressors on hematology and blood chemistry of rainbow trout. After a 7 to 8-week aqueous exposure to Pb(100{micro}g/L), rainbow trout were challenged with forced swimming or hypoxia. Lead significantly reduced concentrations of 5-aminolevulinic acid dehydratase (ALAD), but not other constituents in the blood. Lead did not affect the swimming endurance of the fish. Hematocrit, mean cell hemoglobin content, and mean cell volume were significantly lower in Pb-exposed trout following the swimming challenge. Although hypoxia resulted in increased hematocrit and plasma glucose concentrations, there were no significant differences between the Pb and control groups. Hypoxia did not affect plasma chloride concentrations, although concentrations increased in Pb-exposed trout. There was no difference in lactic acid concentrations between Pb-exposed and control fish after forced swimming or hypoxia.

  12. MIBG scintigraphic assessment of cardiac adrenergic activity in response to altitude hypoxia

    SciTech Connect

    Richalet, J.P.; Merlet, P.; Bourguignon, M.; Le-Trong, J.L.; Keromes, A.; Rathat, C.; Jouve, B.; Hot, M.A.; Castaigne, A.; Syrota, A. )

    1990-01-01

    High altitude hypoxia induces a decrease in the cardiac chronotropic function at maximal exercise or in response to isoproterenol infusion, suggesting an alteration in the cardiac sympathetic activation. Iodine-123 metaiodobenzylguanidine (({sup 123}I)MIBG) was used to map scintigraphically the cardiac sympathetic neuronal function in six male subjects (aged 32 {plus minus} 7 yr) after an exposure to high altitude that created hypoxic conditions. Results obtained just after return to sea level (RSL) were compared with the normal values obtained after 2 or 3 mo of normoxia (N). A static image was created as the sum of the 16-EKG gated images recorded for 10 min in the anterior view of the chest at 20, 60, 120, and 240 min after injection. Regions of interest were located over the heart (H), lungs (L), and mediastinum (M) regions. There was a significant decrease in the H/M and the L/M ratios in RSL compared to N condition. Plasma norepinephrine concentration was elevated during the stay at altitude but not significantly different in RSL compared to N. In conclusion, cardiac ({sup 123}I)MIBG uptake is reduced after an exposure to altitude hypoxia, supporting the hypothesis of an hypoxia-induced reduction of adrenergic neurotransmitter reserve in the myocardium. Furthermore, the observed significant decrease in pulmonary MIBG uptake suggests an alteration of endothelial cell function after exposure to chronic hypoxia.

  13. Hypoxia-Responsive Polymersomes for Drug Delivery to Hypoxic Pancreatic Cancer Cells.

    PubMed

    Kulkarni, Prajakta; Haldar, Manas K; You, Seungyong; Choi, Yongki; Mallik, Sanku

    2016-08-01

    Hypoxia in tumors contributes to overall tumor progression by assisting in epithelial-to-mesenchymal transition, angiogenesis, and metastasis of cancer. In this study, we have synthesized a hypoxia-responsive, diblock copolymer poly(lactic acid)-azobenzene-poly(ethylene glycol), which self-assembles to form polymersomes in an aqueous medium. The polymersomes did not release any encapsulated contents for 50 min under normoxic conditions. However, under hypoxia, 90% of the encapsulated dye was released in 50 min. The polymersomes encapsulated the combination of anticancer drugs gemcitabine and erlotinib with entrapment efficiency of 40% and 28%, respectively. We used three-dimensional spheroid cultures of pancreatic cancer cells BxPC-3 to demonstrate hypoxia-mediated release of the drugs from the polymersomes. The vesicles were nontoxic. However, a significant decrease in cell viability was observed in hypoxic spheroidal cultures of BxPC-3 cells in the presence of drug encapsulated polymersomes. These polymersomes have potential for future applications in imaging and treatment of hypoxic tumors.

  14. The p38 MAP kinase pathway modulates the hypoxia response and glutamate receptor trafficking in aging neurons.

    PubMed

    Park, Eun Chan; Rongo, Christopher

    2016-01-01

    Neurons are sensitive to low oxygen (hypoxia) and employ a conserved pathway to combat its effects. Here, we show that p38 MAP Kinase (MAPK) modulates this hypoxia response pathway in C. elegans. Mutants lacking p38 MAPK components pmk-1 or sek-1 resemble mutants lacking the hypoxia response component and prolyl hydroxylase egl-9, with impaired subcellular localization of Mint orthologue LIN-10, internalization of glutamate receptor GLR-1, and depression of GLR-1-mediated behaviors. Loss of p38 MAPK impairs EGL-9 protein localization in neurons and activates the hypoxia-inducible transcription factor HIF-1, suggesting that p38 MAPK inhibits the hypoxia response pathway through EGL-9. As animals age, p38 MAPK levels decrease, resulting in GLR-1 internalization; this age-dependent downregulation can be prevented through either p38 MAPK overexpression or removal of CDK-5, an antagonizing kinase. Our findings demonstrate that p38 MAPK inhibits the hypoxia response pathway and determines how aging neurons respond to hypoxia through a novel mechanism. PMID:26731517

  15. An environmental analysis of genes associated with schizophrenia: hypoxia and vascular factors as interacting elements in the neurodevelopmental model.

    PubMed

    Schmidt-Kastner, R; van Os, J; Esquivel, G; Steinbusch, H W M; Rutten, B P F

    2012-12-01

    Investigating and understanding gene-environment interaction (G × E) in a neurodevelopmentally and biologically plausible manner is a major challenge for schizophrenia research. Hypoxia during neurodevelopment is one of several environmental factors related to the risk of schizophrenia, and links between schizophrenia candidate genes and hypoxia regulation or vascular expression have been proposed. Given the availability of a wealth of complex genetic information on schizophrenia in the literature without knowledge on the connections to environmental factors, we now systematically collected genes from candidate studies (using SzGene), genome-wide association studies (GWAS) and copy number variation (CNV) analyses, and then applied four criteria to test for a (theoretical) link to ischemia-hypoxia and/or vascular factors. In all, 55% of the schizophrenia candidate genes (n=42 genes) met the criteria for a link to ischemia-hypoxia and/or vascular factors. Genes associated with schizophrenia showed a significant, threefold enrichment among genes that were derived from microarray studies of the ischemia-hypoxia response (IHR) in the brain. Thus, the finding of a considerable match between genes associated with the risk of schizophrenia and IHR and/or vascular factors is reproducible. An additional survey of genes identified by GWAS and CNV analyses suggested novel genes that match the criteria. Findings for interactions between specific variants of genes proposed to be IHR and/or vascular factors with obstetric complications in patients with schizophrenia have been reported in the literature. Therefore, the extended gene set defined here may form a reasonable and evidence-based starting point for hypothesis-based testing of G × E interactions in clinical genetic and translational neuroscience studies.

  16. Response of nasal airway resistance to hypercapnia and hypoxia in man.

    PubMed

    McCaffrey, T V; Kern, E B

    1979-01-01

    The response of nasal airway resistance (Rn) to various degrees of hypoxia and hypercapnia was measured in six subjects using active posterior mask rhinomanometry. All resistances were computed during expiration at the flow rate of 0.5 liter/sec. Hypercapnia, induced by breathing gas mixtures of various contents of carbon dioxide, significantly decreased Rn (P less than 0.05, Wilcoxon signed rank test). The reduction in Rn was proportional to the inspired partial pressure of carbon dioxide over a range of 0 to 50 torr. Breathing gas mixtures of high and low contents of oxygen produced no significant change in Rn (P less than 0.05, Wilcoxon signed rank test). These results indicate that the nasal airway is actively involved in the respiratory response to hypercapnia but not to moderate hypoxia.

  17. Acute Effects of Normobaric Hypoxia on Hand-Temperature Responses During and After Local Cold Stress

    PubMed Central

    Kölegård, Roger; Mekjavic, Igor B.; Eiken, Ola

    2014-01-01

    Abstract Keramidas, Michail E, Roger Kölegård, Igor B. Mekjavic, and Ola Eiken. Acute effects of normobaric hypoxia on hand-temperature responses during and after local cold stress. High Alt Med Biol. 15:183–191, 2014.—The purpose was to investigate acute effects of normobaric hypoxia on hand-temperature responses during and after a cold-water hand immersion test. Fifteen males performed two right-hand immersion tests in 8°C water, during which they were inspiring either room air (Fio2: 0.21; AIR), or a hypoxic gas mixture (Fio2: 0.14; HYPO). The tests were conducted in a counterbalanced order and separated by a 1-hour interval. Throughout the 30-min cold-water immersion (CWI) and the 15-min spontaneous rewarming (RW) phases, finger-skin temperatures were measured continuously with thermocouple probes; infrared thermography was also employed during the RW phase to map all segments of the hand. During the CWI phase, the average skin temperature (Tavg) of the fingers did not differ between the conditions (AIR: 10.2±0.5°C, HYPO: 10.0±0.5°C; p=0.67). However, Tavg was lower in the HYPO than the AIR RW phase (AIR: 24.5±3.4°C; HYPO: 22.0±3.8°C; p=0.002); a response that was alike in all regions of the immersed hand. Accordingly, present findings suggest that acute exposure to normobaric hypoxia does not aggravate the cold-induced drop in hand temperature of normothermic males. Still, hypoxia markedly impairs the rewarming responses of the hand. PMID:24666109

  18. [INFLUENCE OF THE NORMOBARIC HYPOXIA ON VISUAL-MOTOR CHILDREN'S RESPONSE LIVED IN RADIOACTIVELY CONTAMINATED TERRITORIES].

    PubMed

    Lisukha, L M; Berezovskiy, V A

    2015-01-01

    We investigated the influence of intermittent normobaric hypoxia of sanogenic varying levels on the latent period of a complex visual-motor reaction in terms of choice in children - residents of radioactive contaminated territories. Indicators of anxiety were assessed with Spielberg - Hanin test. The study involved 48 children aged 6 to 17 years. The children were divided into two groups: the first one included the group from 6 to 11 years, and the second group from 12 to 17 years. It is shown that the intermittent normobaric hypoxia course sessions (12% O2 in nitrogen) reduced the latent period of complex visual-motor response of one of three colors (RC(1-3)) choice--23 % and complex visual-motor response of two of the three colors (RC(2-3)) choice--27%. It was revealed that the latent period RC(1-3) lasts longer than the latent period RC(2-3). The boys in both cases tend to have more rapid response than girl. It was found that after the sessions of varying normobaric hypoxia personal anxiety in both groups of children decreased by 20 and 23% respectively. PMID:26387159

  19. Selective upregulation of interleukin-8 by human rhabdomyosarcomas in response to hypoxia: therapeutic implications.

    PubMed

    Wysoczynski, Marcin; Shin, Dong-Myung; Kucia, Magda; Ratajczak, Mariusz Z

    2010-01-15

    Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma of adolescence and childhood. Because RMS tumors are highly vascularized, we sought to determine which factors secreted by RMS cells are crucial in stimulating angiogenesis in response to hypoxia. To address this issue, we evaluated expression of several proangiogenic factors [interleukin (IL)-8, vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF)-2, stromal-derived factor (SDF)-1, hepatocyte growth factor (HGF) and leukemia inhibitory factor (LIF)] in 8 human RMS cell lines in both normal steady-state and hypoxic conditions. We found by real-time quantitative polymerase chain reaction (RQ-PCR) and confirmed by enzyme-linked immunosorbent assay (ELISA) that from all the factors evaluated, IL-8, whose expression is very low in normoxia, had been very highly expressed and secreted by RMS cells lines during hypoxic conditions ( approximately 40-170 times). Interestingly, this upregulation was not affected by knocking down hypoxia-inducible factor (HIF)-1alpha, but was inhibited by mitogen-activated protein kinase (MAPK)p42/44 and phosphatidylinositaol 3-kinase (PI3K)/AKT pathway inhibitors. This suggests that IL-8 expression is regulated in an activating protein (AP)-1- and nuclear factor (NF)-kappaB-dependent manner. Furthermore, we found that conditioned media (CM) harvested from RMS cells exposed to hypoxia activated and stimulated chemotactic responses in human umbilical vein endothelial cells (HUVECs) and that IL-8 was responsible for hypoxia-related effects. Finally, by employing shRNA, the expression of IL-8 in human RH-30 cells was downregulated. We noticed that such RMS cells, if injected into skeletal muscles of immunodeficient mice, have a reduced ability for tumor formation. We conclude that IL-8 is a pivotal proangiogenic factor released by human RMS cells in hypoxic conditions and that the targeting of IL-8 may prove to be a novel and efficient strategy for inhibiting RMS

  20. Role of. alpha. sub 2 -adrenergic receptors in the carotid body response to hypoxia

    SciTech Connect

    Kou, Y.R.; Ernsberger, P.; Cherniack, N.S.; Prabhakar, N.R. )

    1990-02-26

    Clonidine, which acts in part as an {alpha}{sub 2}-adrenergic receptor agonist, depresses ventilation. The authors examined the role of {alpha}{sub 2}-receptors in carotid chemoreceptor activity. The density of {alpha}{sub 2}-receptors was determined in membrane fractions of 18 cat carotid bodies using {sup 125}I-iodoclonidine with 0.1 mM epinephrine or 10 {mu}M SKF-86466 defining nonspecific binding. {alpha}{sub 2}-Adrenergic receptor density averaged 0.6{plus minus}0.1 fmol/carotid body (mean {plus minus} SEM) and was comparable to other sympathetic target tissues. The authors then studied the effects of an agonist (guanabenz) and an antagonist (SKF-86466; 6-Cl-N-methyl-2,3,4,5-tetrahydro-1-H3-benzazepine) specific for {alpha}{sub 2}-receptors on baseline and hypoxia-stimulated carotid body discharge, in 10 anesthetized, paralyzed and artificially ventilated cats. Intracarotid infusion of guanabenz for 5 minutes caused a dose-dependent depression of the baseline activity and reduced the chemoreceptor response to hypoxia by 88.0{plus minus}5.8% of the vehicle-injected controls. Intravenous administration of SKF-86466 reversed the effects of guanabenz on the carotid body activity. in contrast, chemoreceptor depression caused by dopamine was unaffected by SKF-86466. SKF-86466 alone increased baseline discharge and potentiated the chemoreceptor response to hypoxia by 34.0 {plus minus} 9.6% of the controls. These results demonstrate that {alpha}{sub 2}-adrenergic receptors are present in the cat carotid body and they exert an inhibitory influence on the chemoreceptor response to hypoxia.

  1. Hypoxia-Induced miR-210 Modulates Tissue Response to Acute Peripheral Ischemia

    PubMed Central

    Zaccagnini, Germana; Maimone, Biagina; Di Stefano, Valeria; Fasanaro, Pasquale; Greco, Simona; Perfetti, Alessandra; Capogrossi, Maurizio C.; Gaetano, Carlo

    2014-01-01

    Abstract Aims: Peripheral artery disease is caused by the restriction or occlusion of arteries supplying the leg. Better understanding of the molecular mechanisms underpinning tissue response to ischemia is urgently needed to improve therapeutic options. The aim of this study is to investigate hypoxia-induced miR-210 regulation and its role in a mouse model of hindlimb ischemia. Results: miR-210 expression was induced by femoral artery dissection. To study the role of miR-210, its function was inhibited by the systemic administration of a miR-210 complementary locked nucleic acid (LNA)-oligonucleotide (anti-miR-210). In the ischemic skeletal muscle, anti-miR-210 caused a marked decrease of miR-210 compared with LNA-scramble control, while miR-210 target expression increased accordingly. Histological evaluation of acute tissue damage showed that miR-210 inhibition increased both apoptosis at 1 day and necrosis at 3 days. Capillary density decrease caused by ischemia was significantly more pronounced in anti-miR-210-treated mice; residual limb perfusion decreased accordingly. To investigate the molecular mechanisms underpinning the increased damage triggered by miR-210 blockade, we tested the impact of anti-miR-210 treatment on the transcriptome. Gene expression analysis highlighted the deregulation of mitochondrial function and redox balance. Accordingly, oxidative damage was more severe in the ischemic limb of anti-miR-210-treated mice and miR-210 inhibition increased oxidative metabolism. Further, oxidative-stress resistant p66Shc-null mice displayed decreased tissue damage following ischemia. Innovation: This study identifies miR-210 as a crucial element in the adaptive mechanisms to acute peripheral ischemia. Conclusions: The physiopathological significance of miR-210 is context dependent. In the ischemic skeletal muscle it seems to be cytoprotective, regulating oxidative metabolism and oxidative stress. Antioxid. Redox Signal. 21, 1177–1188. PMID:23931770

  2. Differential Responses of Hippocampal Neurons and Astrocytes to Nicotine and Hypoxia in the Fetal Guinea Pig

    PubMed Central

    Blutstein, Tamara; Castello, Michael A.; Viechweg, Shaun S.; Hadjimarkou, Maria M.; McQuail, Joseph A.; Holder, Mary; Thompson, Loren P.; Mong, Jessica A.

    2012-01-01

    In utero exposure to cigarette smoke has severe consequences for the developing fetus, including increased risk of birth complications and behavioral and learning disabilities later in life. Evidence from animal models suggests that the cognitive deficits may be a consequence of in utero nicotine exposure in the brain during critical developmental periods. However, maternal smoking exposes the fetus to not only nicotine but also a hypoxic intrauterine environment. Thus, both nicotine and hypoxia are capable of initiating cellular cascades, leading to long-term changes in synaptic patterning that have the potential to affect cognitive functions. The present study investigates the combined effect of in utero exposure to nicotine and hypoxia on neuronal and glial elements in the hippocampal CA1 field. Fetal guinea pigs were exposed in utero to normoxic or hypoxic conditions in the presence or absence of nicotine. Hypoxia increased the protein levels of matrix metalloproteinase-9 (MMP-9) and synaptophysin and decreased the neural density as measured by NeuN immunoreactivity (ir). Nicotine exposure had no effect on these neuronal parameters but dramatically increased the density of astrocytes immunopositive for glial fibrillary acidic protein (GFAP). Further investigation into the effects of in utero nicotine exposure revealed that both GFAP-ir and NeuN-ir in the CA1 field were significantly reduced in adulthood. Taken together, our data suggest that prenatal exposure to nicotine and hypoxia not only alters synaptic patterning acutely during fetal development, but that nicotine also has long-term consequences that are observed well into adulthood. Moreover, these effects most likely take place through distinct mechanisms. PMID:23192463

  3. Hypoxia Responsive, Tumor Penetrating Lipid Nanoparticles for Delivery of Chemotherapeutics to Pancreatic Cancer Cell Spheroids.

    PubMed

    Kulkarni, Prajakta; Haldar, Manas K; Katti, Preeya; Dawes, Courtney; You, Seungyong; Choi, Yongki; Mallik, Sanku

    2016-08-17

    Solid tumors are often poorly irrigated due to structurally compromised microcirculation. Uncontrolled multiplication of cancer cells, insufficient blood flow, and the lack of enough oxygen and nutrients lead to the development of hypoxic regions in the tumor tissues. As the partial pressure of oxygen drops below the necessary level (10 psi), the cancer cells modulate their genetic makeup to survive. Hypoxia triggers tumor progression by enhancing angiogenesis, cancer stem cell production, remodeling of the extracellular matrix, and epigenetic changes in the cancer cells. However, the hypoxic regions are usually located deep in the tumors and are usually inaccessible to the intravenously injected drug carrier or the drug. Considering the designs of the reported nanoparticles, it is likely that the drug is delivered to the peripheral tumor tissues, close to the blood vessels. In this study, we prepared lipid nanoparticles (LNs) comprising the synthesized hypoxia-responsive lipid and a peptide-lipid conjugate. We observed that the resultant LNs penetrated to the hypoxic regions of the tumors. Under low oxygen partial pressure, the hypoxia-responsive lipid undergoes reduction, destabilizing the lipid membrane, and releasing encapsulated drugs from the nanoparticles. We demonstrated the results employing spheroidal cultures of the pancreatic cancer cells BxPC-3. We observed that the peptide-decorated, drug encapsulated LNs reduced the viability of pancreatic cancer cells of the spheroids to 35% under hypoxic conditions. PMID:27391789

  4. Effects of prolonged head-down bed rest on physiological responses to moderate hypoxia

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Roach, R. C.; Selland, M. A.; Scotto, P.; Greene, E. R.; Luft, U. C.

    1993-01-01

    To determine the effects of hypoxia on physiological responses to simulated zero-gravity cardiopulmonary and fluid balance measurements were made in 6 subjects before and during 5-degree head-down bed rest (HDBR) over 8 d at 10,678 ft and a second time at this altitude as controls (CON). The V-dot(O2)(max) increased by 9 percent after CON, but fell 3 percent after HDBR. This reduction in work capacity during HDBR could be accounted for by inactivity. The heart rate response to a head-up tilt was greatly enhanced following HDBR, while mean blood pressure was lower. No significant negative impact of HDBR was noted on the ability to acclimatize to hypoxia in terms of pulmonary mechanics, gas exchange, circulatory or mental function measurements. No evidence of pulmonary interstitial edema or congestion was noted during HDBR at the lower PIO2 and blood rheology properties were not negatively altered. Symptoms of altitude illness were more prevalent, but not marked, during HDBR and arterial blood gases and oxygenation were not seriously effected by simulated microgravity. Declines in base excess with altitude were similar in both conditions. The study demonstrated a minimal effect of HDBR on the ability to adjust to this level of hypoxia.

  5. Arousal and ventilatory responses to mild hypoxia in sleeping preterm infants.

    PubMed

    Verbeek, Marjan M A; Richardson, Heidi L; Parslow, Peter M; Walker, Adrian M; Harding, Richard; Horne, Rosemary S C

    2008-09-01

    A failure to adequately respond to hypoxia has been implicated in the Sudden Infant Death Syndrome (SIDS). Preterm infants are at increased risk for SIDS, thus we compared ventilatory and arousal responses to mild hypoxia [15% oxygen (O2)] in preterm and term infants. Eight preterm and 15 term infants were serially studied with daytime polysomnography during which nasal airflow was monitored by pneumotachograph at 2-5 weeks, 2-3 and 5-6 months. At each age, in both groups, hypoxia induced a significant decrease in oxygen saturation (SpO2) during both active sleep (AS) and quiet sleep (QS). Infants invariably aroused in AS; and in QS either aroused or failed to arouse. In preterm infants arousal latency in AS was longer than in term infants (P < 0.05) at 2-5 weeks. Compared with term infants, preterm infants reached significantly lower SpO2 levels at 2-5 weeks in both AS and QS non-arousing tests and at 2-3 months in QS. A biphasic hypoxic ventilatory response was observed in QS non-arousing tests in both groups of infants at all three ages. We conclude that the greater desaturation during a hypoxic challenge combined with the longer arousal latency in preterm infants could contribute to greater risk for SIDS. PMID:18503514

  6. Epigenetic Programming of Hypoxic-Ischemic Encephalopathy in Response to Fetal Hypoxia

    PubMed Central

    Ma, Qingyi; Zhang, Lubo

    2014-01-01

    Hypoxia is a major stress to the fetal development and may result in irreversible injury in the developing brain, increased risk of central nervous system (CNS) malformations in the neonatal brain and long-term neurological complications in offspring. Current evidence indicates that epigenetic mechanisms may contribute to the development of hypoxic/ischemic-sensitive phenotype in the developing brain in response to fetal stress. However, the causative cellular and molecular mechanisms remain elusive. In the present review, we summarize the recent findings of epigenetic mechanisms in the development of the brain and their roles in fetal hypoxia-induced brain developmental malformations. Specifically, we focus on DNA methylation and active demethylation, histone modifications and microRNAs in the regulation of neuronal and vascular developmental plasticity, which may play a role in fetal stress-induced epigenetic programming of hypoxic/ischemic-sensitive phenotype in the developing brain. PMID:25450949

  7. The Circulatory and Metabolic Responses to Hypoxia in Humans – With Special Reference to Adipose Tissue Physiology and Obesity

    PubMed Central

    Heinonen, Ilkka H. A.; Boushel, Robert; Kalliokoski, Kari K.

    2016-01-01

    Adipose tissue metabolism and circulation play an important role in human health. It is well-known that adipose tissue mass is increased in response to excess caloric intake leading to obesity and further to local hypoxia and inflammatory signaling. Acute exercise increases blood supply to adipose tissue and mobilization of fat stores for energy. However, acute exercise during systemic hypoxia reduces subcutaneous blood flow in healthy young subjects, but the response in overweight or obese subjects remains to be investigated. Emerging evidence also indicates that exercise training during hypoxic exposure may provide additive benefits with respect to many traditional cardiovascular risk factors as compared to exercise performed in normoxia, but unfavorable effects of hypoxia have also been documented. These topics will be covered in this brief review dealing with hypoxia and adipose tissue physiology.

  8. The Circulatory and Metabolic Responses to Hypoxia in Humans - With Special Reference to Adipose Tissue Physiology and Obesity.

    PubMed

    Heinonen, Ilkka H A; Boushel, Robert; Kalliokoski, Kari K

    2016-01-01

    Adipose tissue metabolism and circulation play an important role in human health. It is well-known that adipose tissue mass is increased in response to excess caloric intake leading to obesity and further to local hypoxia and inflammatory signaling. Acute exercise increases blood supply to adipose tissue and mobilization of fat stores for energy. However, acute exercise during systemic hypoxia reduces subcutaneous blood flow in healthy young subjects, but the response in overweight or obese subjects remains to be investigated. Emerging evidence also indicates that exercise training during hypoxic exposure may provide additive benefits with respect to many traditional cardiovascular risk factors as compared to exercise performed in normoxia, but unfavorable effects of hypoxia have also been documented. These topics will be covered in this brief review dealing with hypoxia and adipose tissue physiology. PMID:27621722

  9. The Circulatory and Metabolic Responses to Hypoxia in Humans – With Special Reference to Adipose Tissue Physiology and Obesity

    PubMed Central

    Heinonen, Ilkka H. A.; Boushel, Robert; Kalliokoski, Kari K.

    2016-01-01

    Adipose tissue metabolism and circulation play an important role in human health. It is well-known that adipose tissue mass is increased in response to excess caloric intake leading to obesity and further to local hypoxia and inflammatory signaling. Acute exercise increases blood supply to adipose tissue and mobilization of fat stores for energy. However, acute exercise during systemic hypoxia reduces subcutaneous blood flow in healthy young subjects, but the response in overweight or obese subjects remains to be investigated. Emerging evidence also indicates that exercise training during hypoxic exposure may provide additive benefits with respect to many traditional cardiovascular risk factors as compared to exercise performed in normoxia, but unfavorable effects of hypoxia have also been documented. These topics will be covered in this brief review dealing with hypoxia and adipose tissue physiology. PMID:27621722

  10. Ets-1 as an early response gene against hypoxia-induced apoptosis in pancreatic β-cells.

    PubMed

    Qiao, N; Xu, C; Zhu, Y-X; Cao, Y; Liu, D-C; Han, X

    2015-02-19

    Hypoxia complicates islet isolation for transplantation and may contribute to pancreatic β-cell failure in type 2 diabetes. Pancreatic β-cells are susceptible to hypoxia-induced apoptosis. Severe hypoxic conditions during the immediate post-transplantation period are a main non-immune factor leading to β-cell death and islet graft failure. In this study, we identified the transcription factor Ets-1 (v-ets erythroblastosis virus E26 oncogene homolog 1) as an early response gene against hypoxia-induced apoptosis in pancreatic β-cells. Hypoxia regulates Ets-1 at multiple levels according to the degree of β-cell oxygen deprivation. Moderate hypoxia promotes Ets-1 gene transcription, whereas severe hypoxia promotes its transactivation activity, as well as its ubiquitin-proteasome mediated degradation. This degradation causes a relative insufficiency of Ets-1 activity, and limits the transactivation effect of Ets-1 on downstream hypoxic-inducible genes and its anti-apoptotic function. Overexpression of ectopic Ets-1 in MIN6 and INS-1 cells protects them from severe hypoxia-induced apoptosis in a mitochondria-dependent manner, confirming that a sufficient amount of Ets-1 activity is critical for protection of pancreatic β-cells against hypoxic injury. Targeting Ets-1 expression may be a useful strategy for islet graft protection during the immediate post-transplantation period.

  11. Pulmonary artery smooth muscle cell endothelin-1 expression modulates the pulmonary vascular response to chronic hypoxia

    PubMed Central

    Kim, Francis Y.; Barnes, Elizabeth A.; Ying, Lihua; Chen, Chihhsin; Lee, Lori; Alvira, Cristina M.

    2014-01-01

    Endothelin-1 (ET-1) increases pulmonary vascular tone through direct effects on pulmonary artery smooth muscle cells (PASMC) via membrane-bound ET-1 receptors. Circulating ET-1 contributes to vascular remodeling by promoting SMC proliferation and migration and inhibiting SMC apoptosis. Although endothelial cells (EC) are the primary source of ET-1, whether ET-1 produced by SMC modulates pulmonary vascular tone is unknown. Using transgenic mice created by crossbreeding SM22α-Cre mice with ET-1 flox/flox mice to selectively delete ET-1 in SMC, we tested the hypothesis that PASMC ET-1 gene expression modulates the pulmonary vascular response to hypoxia. ET-1 gene deletion and selective activity of SM22α promoter-driven Cre recombinase were confirmed. Functional assays were performed under normoxic (21% O2) or hypoxic (5% O2) conditions using murine PASMC obtained from ET-1+/+ and ET-1−/− mic and in human PASMC (hPASMC) after silencing of ET-1 using siRNA. Under baseline conditions, there was no difference in right ventricular systolic pressure (RVSP) between SM22α-ET-1−/− and SM22α-ET-1+/+ (control) littermates. After exposure to hypoxia (10% O2, 21–24 days), RVSP was and vascular remodeling were less in SM22α-ET-1−/− mice compared with control littermates (P < 0.01). Loss of ET-1 decreased PASMC proliferation and migration and increased apoptosis under normoxic and hypoxic conditions. Exposure to selective ET-1 receptor antagonists had no effect on either the hypoxia-induced hPASMC proliferative or migratory response. SMC-specific ET-1 deletion attenuates hypoxia-induced increases in pulmonary vascular tone and structural remodeling. The observation that loss of ET-1 inhibited SMC proliferation, survival, and migration represents evidence that ET-1 derived from SMC plays a previously undescribed role in modulating the response of the pulmonary circulation to hypoxia. Thus PASMC ET-1 may modulate vascular tone independently of ET-1 produced by EC

  12. Carotid body hyperplasia and enhanced ventilatory responses to hypoxia in mice with heterozygous deficiency of PHD2

    PubMed Central

    Bishop, Tammie; Talbot, Nick P; Turner, Philip J; Nicholls, Lynn G; Pascual, Alberto; Hodson, Emma J; Douglas, Gillian; Fielding, James W; Smith, Thomas G; Demetriades, Marina; Schofield, Christopher J; Robbins, Peter A; Pugh, Christopher W; Buckler, Keith J; Ratcliffe, Peter J

    2013-01-01

    Oxygen-dependent prolyl hydroxylation of hypoxia-inducible factor (HIF) by a set of closely related prolyl hydroxylase domain enzymes (PHD1, 2 and 3) regulates a range of transcriptional responses to hypoxia. This raises important questions about the role of these oxygen-sensing enzymes in integrative physiology. We investigated the effect of both genetic deficiency and pharmacological inhibition on the change in ventilation in response to acute hypoxic stimulation in mice. Mice exposed to chronic hypoxia for 7 days manifest an exaggerated hypoxic ventilatory response (HVR) (10.8 ± 0.3 versus 4.1 ± 0.7 ml min−1 g−1 in controls; P < 0.01). HVR was similarly exaggerated in PHD2+/− animals compared to littermate controls (8.4 ± 0.7 versus 5.0 ± 0.8 ml min−1 g−1; P < 0.01). Carotid body volume increased (0.0025 ± 0.00017 in PHD2+/− animals versus 0.0015 ± 0.00019 mm3 in controls; P < 0.01). In contrast, HVR in PHD1−/− and PHD3−/− mice was similar to littermate controls. Acute exposure to a small molecule PHD inhibitor (PHI) (2-(1-chloro-4-hydroxyisoquinoline-3-carboxamido) acetic acid) did not mimic the ventilatory response to hypoxia. Further, 7 day administration of the PHI induced only modest increases in HVR and carotid body cell proliferation, despite marked stimulation of erythropoiesis. This was in contrast with chronic hypoxia, which elicited both exaggerated HVR and cellular proliferation. The findings demonstrate that PHD enzymes modulate ventilatory sensitivity to hypoxia and identify PHD2 as the most important enzyme in this response. They also reveal differences between genetic inactivation of PHDs, responses to hypoxia and responses to a pharmacological inhibitor, demonstrating the need for caution in predicting the effects of therapeutic modulation of the HIF hydroxylase system on different physiological responses. PMID:23690557

  13. Physiological responses to supercooling and hypoxia in the hatchling painted turtle, Chrysemys picta.

    PubMed

    Costanzo, J P; Jones, E E; Lee, R E

    2001-05-01

    We investigated physiological responses to supercooling in hatchling painted turtles (Chrysemys picta) which remain in their natal nests over winter and therefore may become exposed to subzero temperatures. These turtles are freeze tolerant but also must rely on supercooling to survive exposure to the lower temperatures occurring in nests during winter. We compared whole-body concentrations of lactate, glucose, glycerol, and ATP in turtles chilled at 0 degrees C, -4 degrees C, or -6 degrees C for 5 days, or at 6 degrees C for 19 days. In a companion experiment, we measured metabolite concentrations in turtles exposed to a hypoxic environment for 1 day, 4 days, or 8 days. Supercooling and hypoxia exposure were both associated with an increase in concentrations of lactate and glucose and a decrease in glycerol concentrations (albeit no change in the ATP pool), suggesting that supercooling induces functional hypoxia. We conclude that hypoxia tolerance may be an important pre-adaptation for surviving exposure to subzero temperatures in hatchling C. picta.

  14. Mechanisms of maladaptive responses of peripheral chemoreceptors to intermittent hypoxia in sleep-disordered breathing.

    PubMed

    Fung, Man Lung; Tipoe, George Lim; Leung, Po Sing

    2014-02-25

    Peripheral chemoreceptors in the carotid body play important roles in the transduction of chemical stimuli in the arterial blood to the central for eliciting the chemoreflex, which mediates the ventilatory and circulatory responses to hypoxia. The activity of carotid chemoreceptor is modulated and significantly contributes to the ventilatory acclimatization at high altitude. In addition, the carotid chemoreceptor activity is augmented in patients with sleep-disordered breathing, notably in central or obstructive sleep apnea, and also in experimental animals. Thus, the carotid body functions to maintain the oxygen homeostasis, whereas anomalous carotid chemoreceptor activities could be both adaptive and pathogenic in sleep apnea. This review aims to summarize the cellular and molecular mechanisms that could mediate the augmented chemoreceptor activity induced by intermittent hypoxia. Our recent findings suggest a pathogenic role of inflammation mediated by an upregulation of renin-angiotensin system in the carotid body in the over-activity of the chemoreflex. These locally regulated mechanisms are proposed to be a significant part of the hypoxia-mediated maladaptive changes of the carotid body function, which could play a role in the pathophysiology of sleep apnea.

  15. Response of the ascorbate-glutathione cycle to re-aeration following hypoxia in lupine roots.

    PubMed

    Garnczarska, Małgorzata

    2005-06-01

    The response of the enzymes and metabolites of the ascorbate-glutathione pathway to oxidative stress caused by re-aeration following hypoxia was studied in roots of hydroponically grown lupine (Lupinus luteus L. cv. Juno) seedlings. Lupine roots were deprived of oxygen by subjecting them to hypoxia for 48 and 72 h and then re-aerated for up to 4 h. An increased content of total ascorbate was observed in lupine roots immediately after hypoxia, whereas total glutathione level decreased. However, a significant increase in the reduced forms of both metabolites was found directly after hypoxia. Re-admission of oxygen caused the decrease of the ratios of reduced to oxidized forms of ascorbate and glutathione, indicating oxidative stress. While monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) activity remained unaltered during re-aeration the increase in activities of ascorbate peroxidase (APX, EC 1.11.1.11) and glutathione reductase (GR, EC 1.6.4.2) was observed 30 min after transfer from hypoxic condition. Dehydroascorbate reductase (DHAR, EC 1.8.5.1) activity approached the control level during a whole re-aeration period. Native gel electrophoresis combined with specific activity staining revealed seven isoforms of APX, five isoforms of GR and three different proteins with DHA reductase activity in roots extracts. However, immediately after hypoxic treatment APX-5 isoform and GR-1 isoform were not observed in roots. This experimental system was also used to investigate superoxide anion level in roots utilizing the superoxide anion-specific indicator dihydroethidium (DHE). Intense DHE-derived fluorescence was found in re-aerated root tips as compared to control roots, indicating that re-aeration induced superoxide anion production in hypoxically pretreated roots.

  16. An intact canonical NF-κB pathway is required for inflammatory gene expression in response to hypoxia.

    PubMed

    Fitzpatrick, Susan F; Tambuwala, Murtaza M; Bruning, Ulrike; Schaible, Bettina; Scholz, Carsten C; Byrne, Annette; O'Connor, Aisling; Gallagher, William M; Lenihan, Colin R; Garvey, John F; Howell, Katherine; Fallon, Padraic G; Cummins, Eoin P; Taylor, Cormac T

    2011-01-15

    Hypoxia is a feature of the microenvironment in a number of chronic inflammatory conditions due to increased metabolic activity and disrupted perfusion at the inflamed site. Hypoxia contributes to inflammation through the regulation of gene expression via key oxygen-sensitive transcriptional regulators including the hypoxia-inducible factor (HIF) and NF-κB. Recent studies have revealed a high degree of interdependence between HIF and NF-κB signaling; however, the relative contribution of each to hypoxia-induced inflammatory gene expression remains unclear. In this study, we use transgenic mice expressing luciferase under the control of NF-κB to demonstrate that hypoxia activates NF-κB in the heart and lungs of mice in vivo. Using small interfering RNA targeted to the p65 subunit of NF-κB, we confirm a unidirectional dependence of hypoxic HIF-1α accumulation upon an intact canonical NF-κB pathway in cultured cells. Cyclooxygenase-2 and other key proinflammatory genes are transcriptionally induced by hypoxia in a manner that is both HIF-1 and NF-κB dependent, and in mouse embryonic fibroblasts lacking an intact canonical NF-κB pathway, there is a loss of hypoxia-induced inflammatory gene expression. Finally, under conditions of hypoxia, HIF-1α and the p65 subunit of NF-κB directly bind to the cyclooxygenase-2 promoter. These results implicate an essential role for NF-κB signaling in inflammatory gene expression in response to hypoxia both through the regulation of HIF-1 and through direct effects upon target gene expression.

  17. Experimental effects of chloral hydrate in ventilatory response to hypoxia and hypercarbia.

    PubMed

    Hunt, C E; Hazinski, T A; Gora, P

    1982-01-01

    The effect of chloral hydrate (CH)-induced sleep on inspiratory drive has not been systematically assessed. To determine the effects of CH on the ventilatory responses to hypercarbia and to hypoxia, nine unanesthetized adult rabbit with chronic tracheostomy were studied. We compared awake ventilatory measurements before CH to non-REM sleep assessments at 30, 60, 90, and 120 min after administration of 250 mg/kg of CH. There were no significant differences between any of these assessment intervals for respiratory rate, PACO2, PAO2, tidal volume (VT), minute volume, Ti/Ttot, or VT/Ti. Hypercarbic ventilatory response to slopes were not diminished at any of the CH-sleep intervals compared to the awake mean slope. In addition, the ventilatory response to hypoxia at PAO2=70 mm Hg (V70) and the hypoxic response slope demonstrated no significant decrease at any of the CH-sleep intervals. In summary, absence of any significant decrease in either hypercarbic or hypoxic ventilatory response after CH administration indicates absence of any CH effect on chemical inspiratory drive. PMID:6803222

  18. Hypoxia Promotes the Inflammatory Response and Stemness Features in Visceral Fat Stem Cells From Obese Subjects.

    PubMed

    Petrangeli, Elisa; Coroniti, Giuseppe; Brini, Anna T; de Girolamo, Laura; Stanco, Deborah; Niada, Stefania; Silecchia, Gianfranco; Morgante, Emanuela; Lubrano, Carla; Russo, Matteo A; Salvatori, Luisa

    2016-03-01

    Low-grade chronic inflammation is a salient feature of obesity and many associated disorders. This condition frequently occurs in central obesity and is connected to alterations of the visceral adipose tissue (AT) microenvironment. Understanding how obesity is related to inflammation may allow the development of therapeutics aimed at improving metabolic parameters in obese patients. To achieve this aim, we compared the features of two subpopulations of adipose-derived stem cells (ASC) isolated from both subcutaneous and visceral AT of obese patients with the features of two subpopulations of ASC from the same isolation sites of non-obese individuals. In particular, the behavior of ASC of obese versus non-obese subjects during hypoxia, which occurs in obese AT and is an inducer of the inflammatory response, was evaluated. Obesity deeply influenced ASC from visceral AT (obV-ASC); these cells appeared to exhibit clearly distinguishable morphology and ultrastructure as well as reduced proliferation, clonogenicity and expression of stemness, differentiation and inflammation-related genes. These cells also exhibited a deregulated response to hypoxia, which induced strong tissue-specific NF-kB activation and an NF-kB-mediated increase in inflammatory and fibrogenic responses. Moreover, obV-ASC, which showed a less stem-like phenotype, recovered stemness features after hypoxia. Our findings demonstrated the peculiar behavior of obV-ASC, their influence on the obese visceral AT microenvironment and the therapeutic potential of NF-kB inhibitors. These novel findings suggest that the deregulated hyper-responsiveness to hypoxic stimulus of ASC from visceral AT of obese subjects may contribute via paracrine mechanisms to low-grade chronic inflammation, which has been implicated in obesity-related morbidity.

  19. Adenosine receptors mediate the hypoxic ventilatory response but not the hypoxic metabolic response in the naked mole rat during acute hypoxia.

    PubMed

    Pamenter, Matthew E; Dzal, Yvonne A; Milsom, William K

    2015-02-01

    Naked mole rats are the most hypoxia-tolerant mammals identified; however, the mechanisms underlying this tolerance are poorly understood. Using whole-animal plethysmography and open-flow respirometry, we examined the hypoxic metabolic response (HMR), hypoxic ventilatory response (HVR) and hypoxic thermal response in awake, freely behaving naked mole rats exposed to 7% O₂ for 1 h. Metabolic rate and ventilation each reversibly decreased 70% in hypoxia (from 39.6 ± 2.9 to 12.1 ± 0.3 ml O₂ min(-1) kg(-1), and 1412 ± 244 to 417 ± 62 ml min(-1) kg(-1), respectively; p < 0.05), whereas body temperature was unchanged and animals remained awake and active. Subcutaneous injection of the general adenosine receptor antagonist aminophylline (AMP; 100 mg kg(-1), in saline), but not control saline injections, prevented the HVR but had no effect on the HMR. As a result, AMP-treated naked mole rats exhibited extreme hyperventilation in hypoxia. These animals were also less tolerant to hypoxia, and in some cases hypoxia was lethal following AMP injection. We conclude that in naked mole rats (i) hypoxia tolerance is partially dependent on profound hypoxic metabolic and ventilatory responses, which are equal in magnitude but occur independently of thermal changes in hypoxia, and (ii) adenosine receptors mediate the HVR but not the HMR.

  20. Adenosine receptors mediate the hypoxic ventilatory response but not the hypoxic metabolic response in the naked mole rat during acute hypoxia

    PubMed Central

    Pamenter, Matthew E.; Dzal, Yvonne A.; Milsom, William K.

    2015-01-01

    Naked mole rats are the most hypoxia-tolerant mammals identified; however, the mechanisms underlying this tolerance are poorly understood. Using whole-animal plethysmography and open-flow respirometry, we examined the hypoxic metabolic response (HMR), hypoxic ventilatory response (HVR) and hypoxic thermal response in awake, freely behaving naked mole rats exposed to 7% O2 for 1 h. Metabolic rate and ventilation each reversibly decreased 70% in hypoxia (from 39.6 ± 2.9 to 12.1 ± 0.3 ml O2 min−1 kg−1, and 1412 ± 244 to 417 ± 62 ml min−1 kg−1, respectively; p < 0.05), whereas body temperature was unchanged and animals remained awake and active. Subcutaneous injection of the general adenosine receptor antagonist aminophylline (AMP; 100 mg kg−1, in saline), but not control saline injections, prevented the HVR but had no effect on the HMR. As a result, AMP-treated naked mole rats exhibited extreme hyperventilation in hypoxia. These animals were also less tolerant to hypoxia, and in some cases hypoxia was lethal following AMP injection. We conclude that in naked mole rats (i) hypoxia tolerance is partially dependent on profound hypoxic metabolic and ventilatory responses, which are equal in magnitude but occur independently of thermal changes in hypoxia, and (ii) adenosine receptors mediate the HVR but not the HMR. PMID:25520355

  1. Effect of inspiratory muscle unloading on arousal responses to CO2 and hypoxia in sleeping dogs.

    PubMed

    Kimoff, R J; Kozar, L F; Yasuma, F; Bradley, T D; Phillipson, E A

    1993-03-01

    Chemical respiratory stimuli can induce arousal from sleep, but the specific mechanisms involved have not been established. Therefore, we tested the hypothesis that mechanoreceptor stimuli arising in the ventilatory apparatus have a role in the arousal responses to progressive hypercapnia and hypoxia by comparing arousal responses during spontaneous ventilation with those obtained when the inspiratory muscles were unloaded by mechanical ventilatory assistance. Studies were performed in three trained dogs in which the adequacy of inspiratory muscle unloading was verified by diaphragmatic electromyographic (EMG) recordings. In rapid-eye-movement (REM) sleep the arousal threshold during progressive hypercapnia increased from 68.4 +/- 0.5 (SE) mmHg during spontaneous runs to 72.3 +/- 0.8 mmHg during mechanically assisted runs (P < 0.01). In contrast there were no changes in arousal responses to hypercapnia during non-REM (NREM) sleep or to hypoxia in either NREM or REM sleep. However, during the assisted hypoxic runs, EMG activity of the transversus abdominis muscle was increased compared with the unassisted runs; therefore, the effects on arousal threshold of unloading the inspiratory muscles may have been offset by increased loading of the expiratory muscles. The findings indicate that even in the absence of added mechanical loads, mechanoreceptor stimuli probably arising in the respiratory muscles contribute to the arousal response to hypercapnia during REM sleep.

  2. Cerebral Hypoxia

    MedlinePlus

    ... Enhancing Diversity Find People About NINDS NINDS Cerebral Hypoxia Information Page Synonym(s): Hypoxia, Anoxia Table of Contents ( ... Trials Organizations Publicaciones en Español What is Cerebral Hypoxia? Cerebral hypoxia refers to a condition in which ...

  3. The physiological performance and immune responses of juvenile Amur sturgeon (Acipenser schrenckii) to stocking density and hypoxia stress.

    PubMed

    Ni, Meng; Wen, Haishen; Li, Jifang; Chi, Meili; Bu, Yan; Ren, Yuanyuan; Zhang, Mo; Song, Zhifei; Ding, Houmeng

    2014-02-01

    Stocking density and hypoxia are considered priority issues in aquaculture research. In this study, two experiments were carried out in order to investigate the effects of chronic stress (stocking density) and acute stress (hypoxia) on the immune physiology responses (hematology, serum cortisol, glucose, total protein and the mRNA expression of CYP 1A) of juvenile Amur sturgeon (Acipenser schrenckii). In the chronic stress study, three triplicate groups of Amur sturgeon (42.0 ± 2.3 g) were reared in nine square concrete ponds (4.4 × 4.4 × 0.45 m³) at three stocking densities (3.7, 6.9 and 9.0 kg/m³) for 50 days. In the acute stress study, three triplicate groups: normal group (7 mg/l), hypoxia group 1 (5 mg/l) and hypoxia group 2 (3 mg/l) were used in nine 100 L indoor tanks. Sampling was performed at the end of the stocking density experiment (50 days) and at 0, 0.5, 1.5, 3 and 6 h after hypoxia stress. The results showed that increased stocking density reduced the morphological indexes (hepatosomatic index, spleen-somatic index and kidney-somatic index), while total protein and hemoglobin increased significantly in the stressed group. In response to hypoxia, the levels of cortisol, glucose and hematological parameters elevated significantly after this stress. As for spleen-somatic index, there was a decline after hypoxia though H1 group returned to the normal level at 3 h and 6 h after hypoxia stress. Additionally, In order to better understand the immune response of Amur sturgeon to chronic and acute stressors, we cloned the complete coding sequence of Amur sturgeon CYP 1A for the first time and investigated its tissue-specific expression and stress-induced expression. CYP 1A mRNA in liver showed over expressions both in crowding condition and in hypoxia stress. The same trend was also found in spleen and kidney which may provide evidence that CYP 1A could serve as a good indicator of immune response in Amur sturgeon. In addition, the result suggested a

  4. Dsc orthologs are required for hypoxia adaptation, triazole drug responses, and fungal virulence in Aspergillus fumigatus.

    PubMed

    Willger, Sven D; Cornish, E Jean; Chung, Dawoon; Fleming, Brittany A; Lehmann, Margaret M; Puttikamonkul, Srisombat; Cramer, Robert A

    2012-12-01

    Hypoxia is an environmental stress encountered by Aspergillus fumigatus during invasive pulmonary aspergillosis (IPA). The ability of this mold to adapt to hypoxia is important for fungal virulence and genetically regulated in part by the sterol regulatory element binding protein (SREBP) SrbA. SrbA is required for fungal growth in the murine lung and to ultimately cause lethal disease in murine models of IPA. Here we identified and partially characterized four genes (dscA, dscB, dscC, and dscD, here referred to as dscA-D) with previously unknown functions in A. fumigatus that are orthologs of the Schizosaccharomyces pombe genes dsc1, dsc2, dsc3, and dsc4 (dsc1-4), which encode a Golgi E3 ligase complex critical for SREBP activation by proteolytic cleavage. A. fumigatus null dscA-D mutants displayed remarkable defects in hypoxic growth and increased susceptibility to triazole antifungal drugs. Consistent with the confirmed role of these genes in S. pombe, both ΔdscA and ΔdscC resulted in reduced cleavage of the SrbA precursor protein in A. fumigatus. Inoculation of corticosteroid immunosuppressed mice with ΔdscA and ΔdscC strains revealed that these genes are critical for A. fumigatus virulence. Reintroduction of SrbA amino acids 1 to 425, encompassing the N terminus DNA binding domain, into the ΔdscA strain was able to partially restore virulence, further supporting a mechanistic link between DscA and SrbA function. Thus, we have shown for the first time the importance of a previously uncharacterized group of genes in A. fumigatus that mediate hypoxia adaptation, fungal virulence, and triazole drug susceptibility and that are likely linked to regulation of SrbA function. PMID:23104569

  5. Maturation of the initial ventilatory response to hypoxia in sleeping infants.

    PubMed

    Richardson, Heidi L; Parslow, Peter M; Walker, Adrian M; Harding, Richard; Horne, Rosemary S C

    2007-03-01

    In infants most previous studies of the hypoxic ventilatory response (HVR) have been conducted only during quiet sleep (QS) and arousal responses have not been considered. Our aim was to quantify the maturation of the HVR in term infants during both active sleep (AS) and QS over the first 6 months of life. Daytime polysomnography was performed on 15 healthy term infants at 2-5 weeks, 2-3 and 5-6 months after birth and infants were challenged with hypoxia (15% O2, balance N2). Tests in AS always resulted in arousal; in QS tests infants either aroused or did not arouse. A biphasic HVR was observed in non arousing tests at all three ages studied. The fall in SpO2 was more rapid in arousal tests at all three ages. At 2-5 weeks, in non-arousing QS tests, there was a greater fall in respiratory frequency (f) despite a smaller fall in SpO2 compared with 2-3 and 5-6 months. When infants aroused there was no difference in the HVR between sleep states or with postnatal age. However, when infants failed to arouse from QS, arterial desaturation was less in the younger infants despite a poorer HVR. We suggest that arousal in response to hypoxia, particularly in AS, is a vital survival mechanism throughout the first 6 months of life. PMID:17309771

  6. Abnormal autonomic cardiac response to transient hypoxia in sickle cell anemia

    PubMed Central

    Sangkatumvong, S; Coates, T D; Khoo, M C K

    2010-01-01

    The objective of this study was to non-invasively assess cardiac autonomic control in subjects with sickle cell anemia (SCA) by tracking the changes in heart rate variability (HRV) that occur following brief exposure to a hypoxic stimulus. Five African–American SCA patients and seven healthy control subjects were recruited to participate in this study. Each subject was exposed to a controlled hypoxic stimulus consisting of five breaths of nitrogen. Time-varying spectral analysis of HRV was applied to estimate the cardiac autonomic response to the transient episode of hypoxia. The confounding effects of changes in respiration on the HRV spectral indices were reduced by using a computational model. A significant decrease in the parameters related to parasympathetic control was detected in the post-hypoxic responses of the SCA subjects relative to normal controls. The spectral index related to sympathetic activity, on the other hand, showed a tendency to increase the following hypoxic stimulation, but the change was not significant. This study suggests that there is some degree of cardiovascular autonomic dysfunction in SCA that is revealed by the response to transient hypoxia. PMID:18460753

  7. The combined effect of hypoxia and nutritional status on metabolic and ionoregulatory responses of common carp (Cyprinus carpio).

    PubMed

    Moyson, Sofie; Liew, Hon Jung; Diricx, Marjan; Sinha, Amit Kumar; Blust, Ronny; De Boeck, Gudrun

    2015-01-01

    In the present study, the combined effects of hypoxia and nutritional status were examined in common carp (Cyprinus carpio), a relatively hypoxia tolerant cyprinid. Fish were either fed or fasted and were exposed to hypoxia (1.5-1.8mg O2L(-1)) at or slightly above their critical oxygen concentration during 1, 3 or 7days followed by a 7day recovery period. Ventilation initially increased during hypoxia, but fasted fish had lower ventilation frequencies than fed fish. In fed fish, ventilation returned to control levels during hypoxia, while in fasted fish recovery only occurred after reoxygenation. Due to this, C. carpio managed, at least in part, to maintain aerobic metabolism during hypoxia: muscle and plasma lactate levels remained relatively stable although they tended to be higher in fed fish (despite higher ventilation rates). However, during recovery, compensatory responses differed greatly between both feeding regimes: plasma lactate in fed fish increased with a simultaneous breakdown of liver glycogen indicating increased energy use, while fasted fish seemed to economize energy and recycle decreasing plasma lactate levels into increasing liver glycogen levels. Protein was used under both feeding regimes during hypoxia and subsequent recovery: protein levels reduced mainly in liver for fed fish and in muscle for fasted fish. Overall, nutritional status had a greater impact on energy reserves than the lack of oxygen with a lower hepatosomatic index and lower glycogen stores in fasted fish. Fasted fish transiently increased Na(+)/K(+)-ATPase activity under hypoxia, but in general ionoregulatory balance proved to be only slightly disturbed, showing that sufficient energy was left for ion regulation.

  8. Neonatal epithelial hypoxia inducible factor-1α expression regulates the response of the lung to experimental asthma.

    PubMed

    Greenwood, Krista K; Proper, Steven P; Saini, Yogesh; Bramble, Lori A; Jackson-Humbles, Daven N; Wagner, James G; Harkema, Jack R; LaPres, John J

    2012-03-01

    Allergic airway disease is characterized by a T helper type 2 cell-mediated airway inflammation and airway hyperresponsiveness. Little is known about the role of hypoxia-mediated signaling in the progression of the disease. To address this knowledge gap, a mouse model was created in which doxycycline exposure induces the functional deletion of hypoxia inducible factor-1α from alveolar type II and Clara cells of the lung. When hypoxia inducible factor-1α deletion was induced during the early postnatal development period of the lung, the mice displayed an enhanced response to the ovalbumin model of allergic airway disease. These hypoxia inducible factor-1α-deficient mice exhibit increased cellular infiltrates, eosinophilia in the lavage fluid and parenchyma, and T helper type 2 cytokines, as compared with ovalbumin-treated control mice. Moreover, these hypoxia inducible factor-1α-deficient mice display increased airway resistance when compared with their control counterparts. Interestingly, if the loss of hypoxia inducible factor-1α was induced in early adulthood, the exacerbated phenotype was not observed. Taken together, these results suggest that epithelial hypoxia inducible factor-1α plays an important role in establishing the innate immunity of the lung and epithelial-specific deficiency in the transcription factor, during early postnatal development, increases the severity of inflammation and functional airway resistance, following ovalbumin challenge. Finally, these results might explain some of the chronic respiratory pathology observed in premature infants, especially those that receive supplemental oxygen. This early hyperoxic exposure, from normal ambient and supplemental oxygen, would presumably inhibit normal hypoxia inducible factor-1α signaling, mimicking the functional deletion described.

  9. The oxidative stress response in freshwater-acclimated killifish (Fundulus heteroclitus) to acute copper and hypoxia exposure.

    PubMed

    Ransberry, Victoria E; Blewett, Tamzin A; McClelland, Grant B

    2016-01-01

    Aquatic organisms face multiple stressors in natural ecosystems. Here we examine the effects of moderate hypoxia and low-level copper (Cu) on freshwater (FW)-acclimated killifish. Both Cu and hypoxia can affect oxidative stress in fish, but it is unclear if in combination these two stressors would act synergistically. We exposed killifish for 96h to Cu in normoxia (total 23.4±0.9μg CuL(-1)), or either no Cu (2.33±0.01mg O2 L(-1)) or with Cu in hypoxia (23.6±0.8μg Cu L(-1); 2.51±0.04mg O2 L(-1)), and compared them to normoxic controls with no added Cu (0.7±0.1μg Cu L(-1); 9.10±0.00mg O2 L(-1)) at a hardness of 140mgL(-1) as CaCO3 equivalents. Gills showed significant Cu accumulation with both excess waterborne Cu in normoxia and in hypoxia. This was accompanied by increases in gill catalase (CAT) activity but with no significant changes in either protein carbonyls or lipid peroxidation (TBARS). Hypoxia alone decreased gill protein carbonyls. Liver showed no change in Cu load, but a significant decline in CAT activity occurred with Cu in normoxia. Liver showed an increase in TBARS with Cu in normoxia. Cu when combined with hypoxia caused a significant decline in cytochrome c oxidase (COX) and citrate synthase (CS) activity in gill and liver. Thus, low waterborne levels of Cu and moderate hypoxia both affected gill and liver phenotypes. However, killifish are tolerant of Cu and hypoxia, and there was no evidence of a synergistic response to exposure to the two stressors combined compared to each stressor alone. PMID:26297808

  10. Neonatal epithelial hypoxia inducible factor-1α expression regulates the response of the lung to experimental asthma.

    PubMed

    Greenwood, Krista K; Proper, Steven P; Saini, Yogesh; Bramble, Lori A; Jackson-Humbles, Daven N; Wagner, James G; Harkema, Jack R; LaPres, John J

    2012-03-01

    Allergic airway disease is characterized by a T helper type 2 cell-mediated airway inflammation and airway hyperresponsiveness. Little is known about the role of hypoxia-mediated signaling in the progression of the disease. To address this knowledge gap, a mouse model was created in which doxycycline exposure induces the functional deletion of hypoxia inducible factor-1α from alveolar type II and Clara cells of the lung. When hypoxia inducible factor-1α deletion was induced during the early postnatal development period of the lung, the mice displayed an enhanced response to the ovalbumin model of allergic airway disease. These hypoxia inducible factor-1α-deficient mice exhibit increased cellular infiltrates, eosinophilia in the lavage fluid and parenchyma, and T helper type 2 cytokines, as compared with ovalbumin-treated control mice. Moreover, these hypoxia inducible factor-1α-deficient mice display increased airway resistance when compared with their control counterparts. Interestingly, if the loss of hypoxia inducible factor-1α was induced in early adulthood, the exacerbated phenotype was not observed. Taken together, these results suggest that epithelial hypoxia inducible factor-1α plays an important role in establishing the innate immunity of the lung and epithelial-specific deficiency in the transcription factor, during early postnatal development, increases the severity of inflammation and functional airway resistance, following ovalbumin challenge. Finally, these results might explain some of the chronic respiratory pathology observed in premature infants, especially those that receive supplemental oxygen. This early hyperoxic exposure, from normal ambient and supplemental oxygen, would presumably inhibit normal hypoxia inducible factor-1α signaling, mimicking the functional deletion described. PMID:22180657

  11. Brazilian Green Propolis Suppresses the Hypoxia-Induced Neuroinflammatory Responses by Inhibiting NF-κB Activation in Microglia

    PubMed Central

    Zhu, Aiqin; Takayama, Fumiko; Liu, Yicong; Harada, Yuka; Wu, Shizheng; Nakanishi, Hiroshi

    2013-01-01

    Hypoxia has been recently proposed as a neuroinflammatogen, which drives microglia to produce proinflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and IL-6. Considering the fact that propolis has hepatoprotective, antitumor, antioxidative, and anti-inflammatory effects, propolis may have protective effects against the hypoxia-induced neuroinflammatory responses. In this study, propolis (50 μg/mL) was found to significantly inhibit the hypoxia-induced cytotoxicity and the release of proinflammatory cytokines, including IL-1β, TNF-α, and IL-6, by MG6 microglia following hypoxic exposure (1% O2, 24 h). Furthermore, propolis significantly inhibited the hypoxia-induced generation of reactive oxygen species (ROS) from mitochondria and the activation of nuclear factor-κB (NF-κB) in microglia. Moreover, systemic treatment with propolis (8.33 mg/kg, 2 times/day, i.p.) for 7 days significantly suppressed the microglial expression of IL-1β, TNF-α, IL-6, and 8-oxo-deoxyguanosine, a biomarker for oxidative damaged DNA, in the somatosensory cortex of mice subjected to hypoxia exposure (10% O2, 4 h). These observations indicate that propolis suppresses the hypoxia-induced neuroinflammatory responses through inhibition of the NF-κB activation in microglia. Furthermore, increased generation of ROS from the mitochondria is responsible for the NF-κB activation. Therefore, propolis may be beneficial in preventing hypoxia-induced neuroinflammation. PMID:23983903

  12. Metabolic and locomotor responses of juvenile paddlefish Polyodon spathula to hypoxia and temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hypoxia is an increasing problem in the natural habitats that the paddlefish (Polyodon spathula) has historically inhabited, and a potential problem in managed culture conditions. However, the effects of hypoxia on paddlefish are not well understood. In order to understand the effects of hypoxia on ...

  13. Adrenocortical responses to ACTH in neonatal rats: effect of hypoxia from birth on corticosterone, StAR, and PBR.

    PubMed

    Raff, Hershel; Hong, Julie J; Oaks, Martin K; Widmaier, Eric P

    2003-01-01

    The adrenocortical response to hypoxia may be a critical component of the adaptation to this common neonatal stress. Little is known about adrenal function in vivo in hypoxic neonates. The purpose of this study was to evaluate adrenocortical responses to ACTH in suckling rat pups exposed to hypoxia from birth to 5-7 days of age compared with normoxic controls. We also evaluated potential cellular controllers of steroidogenic function in situ. In 7-day-old pups at 0800, hypoxia from birth resulted in increased basal (12.2 +/- 1.4 ng/ml; n = 12) and ACTH-stimulated (94.0 +/- 9.4 ng/ml; n = 14) corticosterone levels compared with normoxic controls (basal = 8.3 +/- 0.5 ng/ml; n = 11; stimulated = 51.3 +/- 3.8 ng/ml; n = 8). This augmentation occurred despite no significant difference in plasma ACTH levels in normoxic vs. hypoxic pups before (85 +/- 4 vs. 78 +/- 8 pg/ml) or after (481 +/- 73 vs. 498 +/- 52 pg/ml) porcine ACTH injection (20 microg/kg). This effect was similar in the afternoon at 6 days of age and even greater at 5 days of age at 0800. The aldosterone response to ACTH was not augmented by exposure to hypoxia from birth. Adrenocortical hypoxia-inducible factor (HIF)-1alpha mRNA was undetectable by RT-PCR. Steroidogenic acute regulatory (StAR) protein in adrenal subcapsules (zona fasciculata/reticularis) was augmented by exposure to hypoxia; this effect was greatest at 5 days of age. Peripheral-type benzodiazepine receptor (PBR) protein was also increased at 6 and 7 days of age in pups exposed to hypoxia from birth. We conclude that hypoxia from birth results in an augmentation of the corticosterone but not aldosterone response to ACTH. This effect appears to be mediated at least in part by an increase in controllers of mitochondrial cholesterol transport (StAR and PBR) and to occur independently of measurable changes in endogenous plasma ACTH. The augmentation of the corticosterone response to acute increases in ACTH in hypoxic pups is likely to be an

  14. Analysis of the early adaptive response of endothelial cells to hypoxia via a long serial analysis of gene expression

    SciTech Connect

    Liang, Guang-Ping; Su, Yong-Yue; Chen, Jian; Yang, Zong-Cheng; Liu, You-Sheng; Luo, Xiang-Dong

    2009-07-10

    Activation of endothelial cells in humans is an early event in the response to hypoxia that may contribute to the endothelium's endogenous capacity to reduce tissue injury. To better understand the mechanism underlying this process, we utilized Long Serial Analysis of Gene Expression to study the transcriptome of human vein umbilical endothelial cells (EA.hy926) shortly after the induction of hypoxia. Of over 13,000 genes detected in each pool, 112 showed obvious differences in expression. Metabolic processes such as protein biosynthesis and proteolysis, aminoglycan metabolism, ribonucleotide biosynthesis, adenosine salvage, and lipid metabolism were reinforced. Pro-proliferation and pro-apoptotic states suggest the co-existence of pro- and anti-injury forces in endothelium shortly after the induction of hypoxia. Other adaptive responses include reinforced angiogenesis and vasodilation. Additionally, gene transcription in the endothelium shortly after the induction of hypoxia was regulated independently of HIF-1{alpha}. Our efforts to elucidate the adaptive response at an early post-hypoxia stage should contribute to further investigation of the protective processes that occur in the endothelium and has potential clinical implications.

  15. Evaluating the Hypoxia Response of Ruffe and Flounder Gills by a Combined Proteome and Transcriptome Approach

    PubMed Central

    Tiedke, Jessica; Borner, Janus; Beeck, Hendrik; Kwiatkowski, Marcel; Schmidt, Hanno; Thiel, Ralf; Fabrizius, Andrej; Burmester, Thorsten

    2015-01-01

    Hypoxia has gained ecological importance during the last decades, and it is the most dramatically increasing environmental factor in coastal areas and estuaries. The gills of fish are the prime target of hypoxia and other stresses. Here we have studied the impact of the exposure to hypoxia (1.5 mg O2/l for 48 h) on the protein expression of the gills of two estuarine fish species, the ruffe (Gymnocephalus cernua) and the European flounder (Platichthys flesus). First, we obtained the transcriptomes of mixed tissues (gills, heart and brain) from both species by Illumina next-generation sequencing. Then, the gill proteomes were investigated using two-dimensional gel electrophoresis and mass spectrometry. Quantification of the normalized proteome maps resulted in a total of 148 spots in the ruffe, of which 28 (18.8%) were significantly regulated (> 1.5-fold). In the flounder, 121 spots were found, of which 27 (22.3%) proteins were significantly regulated. The transcriptomes were used for the identification of these proteins, which was successful for 15 proteins of the ruffe and 14 of the flounder. The ruffe transcriptome dataset comprised 87,169,850 reads, resulting in an assembly of 72,108 contigs (N50 = 1,828 bp). 20,860 contigs (26.93%) had blastx hits with E < 1e-5 in the human sequences in the RefSeq database, representing 14,771 unique accession numbers. The flounder transcriptome with 78,943,030 reads assembled into 49,241 contigs (N50 = 2,106 bp). 20,127 contigs (40.87%) had a hit with human proteins, corresponding to 14,455 unique accession numbers. The regulation of selected genes was confirmed by quantitative real-time RT-PCR. Most of the regulated proteins that were identified by this approach function in the energy metabolism, while others are involved in the immune response, cell signalling and the cytoskeleton. PMID:26273839

  16. Cyclin-Dependent Kinase Five Mediates Activation of Lung Xanthine Oxidoreductase in Response to Hypoxia

    PubMed Central

    Kim, Bo S.; Serebreni, Leonid; Fallica, Jonathan; Hamdan, Omar; Wang, Lan; Johnston, Laura; Kolb, Todd; Damarla, Mahendra; Damico, Rachel; Hassoun, Paul M.

    2015-01-01

    Background Xanthine oxidoreductase (XOR) is involved in oxidative metabolism of purines and is a source of reactive oxygen species (ROS). As such, XOR has been implicated in oxidant-mediated injury in multiple cardiopulmonary diseases. XOR enzyme activity is regulated, in part, via a phosphorylation-dependent, post-translational mechanism, although the kinase(s) responsible for such hyperactivation are unknown. Methods and Results Using an in silico approach, we identified a cyclin-dependent kinase 5 (CDK5) consensus motif adjacent to the XOR flavin adenine dinucleotide (FAD) binding domain. CDK5 is a proline-directed serine/threonine kinase historically linked to neural development and injury. We tested the hypothesis that CDK5 and its activators are mediators of hypoxia-induced hyperactivation of XOR in pulmonary microvascular endothelial cells (EC) and the intact murine lung. Using complementary molecular and pharmacologic approaches, we demonstrated that hypoxia significantly increased CDK5 activity in EC. This was coincident with increased expression of the CDK5 activators, cyclin-dependent kinase 5 activator 1 (CDK5r1 or p35/p25), and decreased expression of the CDK5 inhibitory peptide, p10. Expression of p35/p25 was necessary for XOR hyperactivation. Further, CDK5 physically associated with XOR and was necessary and sufficient for XOR phosphorylation and hyperactivation both in vitro and in vivo. XOR hyperactivation required the target threonine (T222) within the CDK5-consensus motif. Conclusions and Significance These results indicate that p35/CDK5-mediated phosphorylation of T222 is required for hypoxia-induced XOR hyperactivation in the lung. Recognizing the contribution of XOR to oxidative injury in cardiopulmonary disease, these observations identify p35/CDK5 as novel regulators of XOR and potential modifiers of ROS-mediated injury. PMID:25831123

  17. Evaluating the Hypoxia Response of Ruffe and Flounder Gills by a Combined Proteome and Transcriptome Approach.

    PubMed

    Tiedke, Jessica; Borner, Janus; Beeck, Hendrik; Kwiatkowski, Marcel; Schmidt, Hanno; Thiel, Ralf; Fabrizius, Andrej; Burmester, Thorsten

    2015-01-01

    Hypoxia has gained ecological importance during the last decades, and it is the most dramatically increasing environmental factor in coastal areas and estuaries. The gills of fish are the prime target of hypoxia and other stresses. Here we have studied the impact of the exposure to hypoxia (1.5 mg O2/l for 48 h) on the protein expression of the gills of two estuarine fish species, the ruffe (Gymnocephalus cernua) and the European flounder (Platichthys flesus). First, we obtained the transcriptomes of mixed tissues (gills, heart and brain) from both species by Illumina next-generation sequencing. Then, the gill proteomes were investigated using two-dimensional gel electrophoresis and mass spectrometry. Quantification of the normalized proteome maps resulted in a total of 148 spots in the ruffe, of which 28 (18.8%) were significantly regulated (> 1.5-fold). In the flounder, 121 spots were found, of which 27 (22.3%) proteins were significantly regulated. The transcriptomes were used for the identification of these proteins, which was successful for 15 proteins of the ruffe and 14 of the flounder. The ruffe transcriptome dataset comprised 87,169,850 reads, resulting in an assembly of 72,108 contigs (N50 = 1,828 bp). 20,860 contigs (26.93%) had blastx hits with E < 1e-5 in the human sequences in the RefSeq database, representing 14,771 unique accession numbers. The flounder transcriptome with 78,943,030 reads assembled into 49,241 contigs (N50 = 2,106 bp). 20,127 contigs (40.87%) had a hit with human proteins, corresponding to 14,455 unique accession numbers. The regulation of selected genes was confirmed by quantitative real-time RT-PCR. Most of the regulated proteins that were identified by this approach function in the energy metabolism, while others are involved in the immune response, cell signalling and the cytoskeleton. PMID:26273839

  18. Uncovering drug-responsive regulatory elements

    PubMed Central

    Luizon, Marcelo R; Ahituv, Nadav

    2016-01-01

    Nucleotide changes in gene regulatory elements can have a major effect on interindividual differences in drug response. For example, by reviewing all published pharmacogenomic genome-wide association studies, we show here that 96.4% of the associated single nucleotide polymorphisms reside in noncoding regions. We discuss how sequencing technologies are improving our ability to identify drug response-associated regulatory elements genome-wide and to annotate nucleotide variants within them. We highlight specific examples of how nucleotide changes in these elements can affect drug response and illustrate the techniques used to find them and functionally characterize them. Finally, we also discuss challenges in the field of drug-responsive regulatory elements that need to be considered in order to translate these findings into the clinic. PMID:26555224

  19. The Response of Macrophages and Neutrophils to Hypoxia in the Context of Cancer and Other Inflammatory Diseases

    PubMed Central

    Egners, Antje; Erdem, Merve; Cramer, Thorsten

    2016-01-01

    Lack of oxygen (hypoxia) is a hallmark of a multitude of acute and chronic diseases and can be either beneficial or detrimental for organ restitution and recovery. In the context of inflammation, hypoxia is particularly important and can significantly influence the course of inflammatory diseases. Macrophages and neutrophils, the chief cellular components of innate immunity, display distinct properties when exposed to hypoxic conditions. Virtually every aspect of macrophage and neutrophil function is affected by hypoxia, amongst others, morphology, migration, chemotaxis, adherence to endothelial cells, bacterial killing, differentiation/polarization, and protumorigenic activity. Prominent arenas of macrophage and neutrophil function, for example, acute/chronic inflammation and the microenvironment of solid tumors, are characterized by low oxygen levels, demonstrating the paramount importance of the hypoxic response for proper function of these cells. Members of the hypoxia-inducible transcription factor (HIF) family emerged as pivotal molecular regulators of macrophages and neutrophils. In this review, we will summarize the molecular responses of macrophages and neutrophils to hypoxia in the context of cancer and other chronic inflammatory diseases and discuss the potential avenues for therapeutic intervention that arise from this knowledge. PMID:27034586

  20. Gene transcripts encoding hypoxia-inducible factor (HIF) exhibit tissue- and muscle fiber type-dependent responses to hypoxia and hypercapnic hypoxia in the Atlantic blue crab, Callinectes sapidus.

    PubMed

    Hardy, Kristin M; Follett, Chandler R; Burnett, Louis E; Lema, Sean C

    2012-09-01

    Hypoxia inducible factor (HIF) is a transcription factor that under low environmental oxygen regulates the expression of suites of genes involved in metabolism, angiogenesis, erythropoiesis, immune function, and growth. Here, we isolated and sequenced partial cDNAs encoding hif-α and arnt/hif-β from the Atlantic blue crab, Callinectes sapidus, an estuarine species that frequently encounters concurrent hypoxia (low O(2)) and hypercapnia (elevated CO(2)). We then examined the effects of acute exposure (1h) to hypoxia (H) and hypercapnic hypoxia (HH) on relative transcript abundance for hif-α and arnt/hif-β in different tissues (glycolytic muscle, oxidative muscle, hepatopancreas, gill, and gonads) using quantitative real-time RT-PCR. Our results indicate that hif-α and arnt/hif-β mRNAs were constitutively present under well-aerated normoxia (N) conditions in all tissues examined. Further, H and HH exposure resulted in both tissue-specific and muscle fiber type-specific effects on relative hif-α transcript abundance. In the gill and glycolytic muscle, relative hif-α mRNA levels were significantly lower under H and HH, compared to N, while no change (or a slight increase) was detected in oxidative muscle, hepatopancreas and gonadal tissues. H and HH did not affect relative transcript abundance for arnt/hif-β in any tissue or muscle fiber type. Thus, in crustaceans the HIF response to H and HH appears to involve changes in hif transcript abundance, with variation in hif-α and arnt/hif-β transcriptional dynamics occurring in both a tissue- and muscle fiber type-dependent manner.

  1. Effect of carbon monoxide breathing on hypoxia and radiation response in the SCCVII tumor in vivo

    SciTech Connect

    Grau, C.; Marianne, M.D.; Nordsmark, M.; Khalil, A.A.; Horsman, M.R.; Overgaard, J. )

    1994-06-15

    The purpose of this study was the influence of a clinically relevant concentration of carbon monoxide (CO) on tumor oxygenation and responses to irradiation. The murine tumor model was the SCCVII squamous cell carcinoma transplanted to the feet of C3H/Km mice. Sixty minutes of breathing CO at 200 ppm resulted in a carboxyhemoglobin level of 15%. This resulted in a reduction in p50 (the oxygen partial pressure at which hemoglobin is 50% saturated) to 78% of the control value, and a decrease in tumor blood perfusion to 73% of the control value. The combined effect of a decrease in effective hemoglobin and blood perfusion resulted in a reduction in tumor oxygen supply to 62% of the control value. In agreement with this, intratumoral pO[sub 2] measurements showed a significant increase in tumor hypoxia, such that the percentage of measurements with low pO[sub 2] ([le] 5 mmHg) increased from 33% to 62%. The fraction of clonogenic hypoxic cells, measured radiobiologically by paired cell survival curves, similarly increased from 0.2% to 3.8%. Radiation sensitivity, evaluated from in vivo-in vitro excision assay, was significantly decreased by CO in 1, 4, 8, and 12 fractions were 0.71, 0.77, 0.83, and 0.71, respectively. The present SCCVII tumor data confirm the general experimental observation that CO breathing significantly increases tumor hypoxia and reduces the effectiveness of ionizing irradiation. 22 refs., 3 figs., 2 tabs.

  2. Modeling the Neurovascular Niche: Murine Strain Differences Mimic the Range of Responses to Chronic Hypoxia in the Premature Newborn

    PubMed Central

    Li, Qi; Michaud, Michael; Stewart, William; Schwartz, Michael; Madri, Joseph A.

    2008-01-01

    Preterm birth results in significant cognitive and motor disabilities, but recent evidence suggests that there is variable recovery over time. One possibility that may explain this variable recovery entails variable neurogenic responses in the subventricular zone (SVZ) following the period of chronic hypoxia experienced by these neonates. In this report, we have characterized the responses to chronic hypoxia of two mouse strains that represent a wide range of susceptibility to chronic hypoxia. We determined that C57BL/6 pups and neural progenitor cells (NPCs) derived from them exhibit a blunted response to hypoxic insult compared with CD-1 pups and NPCs. Specifically, C57BL/6 pups and NPCs exhibited blunted in vivo and in vitro proliferative and increased apoptotic responses to hypoxic insult. Additionally, C57BL/6 NPCs exhibited lower baseline levels and hypoxia-induced levels of selected transcription factors, growth factors, and receptors (including HIF-1α, PHD2, BDNF, VEGF, SDF-1, TrkB, Nrp-1, CXCR4, and NO) that determine, in part, the responsiveness to chronic hypoxic insult compared with CD-1 pups and NPCs, providing insight into this important and timely problem in perinatology. PMID:18092360

  3. Effects of short-term hypoxia and seawater acidification on hemocyte responses of the mussel Mytilus coruscus.

    PubMed

    Sui, Yanming; Kong, Hui; Shang, Yueyong; Huang, Xizhi; Wu, FangLi; Hu, Menghong; Lin, Daohui; Lu, Weiqun; Wang, Youji

    2016-07-15

    Hypoxia often intensifies with rising dissolved CO2, but the concurrent effects of hypoxia and acidification on bivalves are largely unknown. In this study, immune responses of hemocytes in the mussel Mytilus coruscus were examined under six combinations of pH (7.3, 7.7 and 8.1) and dissolved oxygen (DO) concentrations (2mgL(-1), 6mgL(-1)) for 72h. Generally, total hemocyte account, phagocytosis, esterase and lysosomal content were reduced under low DO and pH conditions, whereas hemocyte mortality and reactive oxygen species production increased under low DO and pH. Both hypoxia and low pH have negative effects on mussels, but the effects of pH are not as strong as DO. Moreover, significant interactions between DO and pH occurred. However, acidification generally doesn't aggravate the effects induced by hypoxia. Acidification and hypoxia may increase disease risk and impact the aquaculture of this species. PMID:27207025

  4. Expression of EGFR Under Tumor Hypoxia: Identification of a Subpopulation of Tumor Cells Responsible for Aggressiveness and Treatment Resistance

    SciTech Connect

    Hoogsteen, Ilse J.; Marres, Henri A.M.; Hoogen, Franciscus J.A. van den

    2012-11-01

    Purpose: Overexpression of epidermal growth factor receptor (EGFR) and tumor hypoxia have been shown to correlate with worse outcome in several types of cancer including head-and-neck squamous cell carcinoma. Little is known about the combination and possible interactions between the two phenomena. Methods and Materials: In this study, 45 cases of histologically confirmed squamous cell carcinomas of the head and neck were analyzed. All patients received intravenous infusions of the exogenous hypoxia marker pimonidazole prior to biopsy. Presence of EGFR, pimonidazole binding, and colocalization between EGFR and tumor hypoxia were examined using immunohistochemistry. Results: Of all biopsies examined, respectively, 91% and 60% demonstrated EGFR- and pimonidazole-positive areas. A weak but significant association was found between the hypoxic fractions of pimonidazole (HFpimo) and EGFR fractions (F-EGFR) and between F-EGFR and relative vascular area. Various degrees of colocalization between hypoxia and EGFR were found, increasing with distance from the vasculature. A high fraction of EGFR was correlated with better disease-free and metastasis-free survival, whereas a high degree of colocalization correlated with poor outcome. Conclusions: Colocalization of hypoxia and EGFR was demonstrated in head-and-neck squamous cell carcinomas, predominantly at longer distances from vessels. A large amount of colocalization was associated with poor outcome, which points to a survival advantage of hypoxic cells that are also able to express EGFR. This subpopulation of tumor cells might be indicative of tumor aggressiveness and be partly responsible for treatment resistance.

  5. SIMULATED RESPONSES OF THE GULF OF MEXICO HYPOXIA TO VARIATIONS IN CLIMATE AND ANTHROPOGENIC NUTRIENT LOADING. (R827785E02)

    EPA Science Inventory

    A mathematical model was used to simulate monthly responses of the Gulf of Mexico hypoxia to variations in climate and anthropogenic nutrient loading over a 45-year period. We examined six hypothetical future scenarios that are based on observed and projected changes in the Mi...

  6. Cardiopulmonary responses to acute hypoxia, head-down tilt and fluid loading in anesthetized dogs

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Scotto, P.; Riedel, C.; Avasthi, P.; Koshukosky, V.; Chick, T. W.

    1991-01-01

    Cardiopulmonary responses to acute hypoxia (HY), fluid loading by saline infusion (FL), and head-down tilt (HD) of mechanically ventilated anesthetized dogs were investigated by measuring thermodynamics and pulmonary gas exchange. It was found that HD decreased the total respiratory compliance both during HY and normoxia (NO) and that the reduction in compliance by FL was twice as large as by HD. Superimposing HD on HY doubled the increase in vascular resistance due to HY alone. In the systemic circulation, HD lowered the resistance to below NO levels. There was a significant positive correlation between the changes in blood volume and in pulmonary artery pressure for experimental transitions, suggesting that a shift in blood volume from systemic to pulmonary circulations and changes in the total blood volume may contribute substantially to these apparent changes in resistance.

  7. Hypoxia-Responsive Mir-301a and Mir-301b Promote Radioresistance of Prostate Cancer Cells via Downregulating NDRG2

    PubMed Central

    Wang, Wei; Liu, Mingbo; Guan, Yawei; Wu, Qingwu

    2016-01-01

    Background MiR-301a and miR-301b are 2 oncomiRs involved in multiple types of cancer. In this study, we explored the expression change of miR-301a and miR-301b in prostate cancer cells in hypoxia and studied their regulation of autophagy and radiosensitivity of prostate cancer cells. Material/Methods QRT-PCR was performed to quantify the expression change of miR-301a and miR-301b in hypoxia. Their effects on autophagy were measured by Western blot analysis, and their effects on radiosensitivity were measured by clonogenic assay and flow cytometry. In addition, the regulation of miR-301a and miR-301b on NDRG2, a tumor-suppressor gene in prostate cancer, was also studied. The effect of miR-301a/b-NDRG2 axis on autophagy and radiosensitivity of prostate cancer cells was further investigated. Results MiR-301a and miR-301b are 2 hypoxia responsive miRNAs that are significantly upregulated in hypoxia in prostate cancer cells. Higher level of miR-301a and miR-301b expression results in elevated autophagy and increased radioresistance in LNCaP cells. MiR-301a and miR-301b simultaneously target NDRG2 and decrease its expression. Knockdown of NDRG2 leads to increased autophagy and radioresistance. Conclusions MiR-301a and miR-301b are 2 hypoxia-responsive miRNAs that decrease autophagy of prostate cancer cells in hypoxia by targeting NDRG2. Through downregulating NDRG2, miR-301a and miR-301b can promote radioresistance of prostate cancer cells. PMID:27327120

  8. Hormonal and electrolyte responses of conscious sheep to 96 h of hypoxia.

    PubMed

    Curran-Everett, D C; Claybaugh, J R; Miki, K; Hong, S K; Krasney, J A

    1988-08-01

    Hypoxia alters the relationship of aldosterone secretion to plasma renin activity. The potential role plasma electrolytes play in this modification is not clear. This study analyzed the interrelationships among renin, aldosterone, vasopressin (ADH), and plasma electrolytes during 96 h of normobaric hypoxia. Eight ewes were exposed, in discrete experiments, to hypocapnic hypoxia [arterial O2 tension (PaO2) 37-42 mmHg, arterial CO2 tension (PaCO2) 26-28 mmHg] and eucapnic hypoxia (PaO2 40-43 mmHg, PaCO2 28-31 mmHg) by N2 dilution in an environmental chamber. Urine output (24 h) was measured, and arterial plasma samples were collected during the normoxic control period and at 24-h intervals of hypoxia. Plasma Na+, K+, renin, and ADH levels did not change from the normoxic values during either hypocapnic or eucapnic hypoxia. However, urinary aldosterone excretion [critical significance (alpha) less than 0.046] and K+ excretion (alpha less than 0.046) decreased markedly during each type of hypoxia. All sheep developed a pronounced negative K+ balance by 96 h of hypoxia. These data suggest that plasma K+ concentration is preserved by movement of K+ out of the intracellular compartment; this change in K+ distribution may inhibit aldosterone secretion during hypoxia.

  9. Adenosine A2A-receptor blockade abolishes the roll-off respiratory response to hypoxia in awake lambs.

    PubMed

    Koos, Brian J; Kawasaki, Yoshikazu; Kim, Young-Han; Bohorquez, Fanor

    2005-05-01

    Adenosine (ADO) receptor antagonists (aminophylline, caffeine) blunt the respiratory roll-off response to hypoxia in the newborn. This study was designed to determine the ADO receptor subtype involved in the respiratory depression. Chronically catheterized lambs of 7-16 days of age breathed via face mask a gas mixture with a fraction of inspired O2 of 0.21 (normoxia) or 0.07 (hypoxia), while being infused intravascularly with 9-cyclopentyl-1,3-dipropylxanthine (DPCPX; ADO A1-receptor antagonist, n=8), ZM-241385 (ADO A2A-receptor antagonist, n=7), or vehicle. Ventilation was measured at 20 degrees C by a turbine transducer flowmeter. In normoxia [arterial Po2 (PaO2) of approximately 83 Torr], infusion of vehicle did not alter cardiorespiratory measurements, whereas hypoxia (PaO2 of approximately 31 Torr, 15 min) elicited biphasic effects on mean arterial pressure (transient increase), heart rate (HR; diminishing tachycardia), and minute ventilation. In the latter, hypoxia increased ventilation to a peak value of approximately 2.5 times control within the first 3 min, which was followed by a significant (P<0.05) decline to approximately 50% of the maximum increment over the subsequent 7 min. ZM-241385 abolished the hypoxic ventilatory roll-off and blunted the rate of rise in HR without affecting mean arterial pressure or rectal temperature responses. In normoxia, DPCPX increased ventilation and mean arterial pressure but did not change HR. Compared with vehicle, DPCPX did not significantly affect cardiorespiratory responses to hypoxemia (PaO2 of approximately 31 Torr, 10 min). It is concluded that 1) ADO A2A receptors are critically involved in the ventilatory roll-off and HR responses to hypoxia, and 2) ADO A1 receptors, which are tonically active in cardiorespiratory control in normoxia, appear to have little impact on hypoxic ventilatory depression.

  10. Behavioral, Ventilatory and Thermoregulatory Responses to Hypercapnia and Hypoxia in the Wistar Audiogenic Rat (WAR) Strain

    PubMed Central

    Giusti, Humberto; Oliveira, José Antonio; Glass, Mogens Lesner; Garcia-Cairasco, Norberto

    2016-01-01

    Introduction We investigated the behavioral, respiratory, and thermoregulatory responses elicited by acute exposure to both hypercapnic and hypoxic environments in Wistar audiogenic rats (WARs). The WAR strain represents a genetic animal model of epilepsy. Methods Behavioral analyses were performed using neuroethological methods, and flowcharts were constructed to illustrate behavioral findings. The body plethysmography method was used to obtain pulmonary ventilation (VE) measurements, and body temperature (Tb) measurements were taken via temperature sensors implanted in the abdominal cavities of the animals. Results No significant difference was observed between the WAR and Wistar control group with respect to the thermoregulatory response elicited by exposure to both acute hypercapnia and acute hypoxia (p>0.05). However, we found that the VE of WARs was attenuated relative to that of Wistar control animals during exposure to both hypercapnic (WAR: 133 ± 11% vs. Wistar: 243 ± 23%, p<0.01) and hypoxic conditions (WAR: 138 ± 8% vs. Wistar: 177 ± 8%; p<0.01). In addition, we noted that this ventilatory attenuation was followed by alterations in the behavioral responses of these animals. Conclusions Our results indicate that WARs, a genetic model of epilepsy, have important alterations in their ability to compensate for changes in levels of various arterial blood gasses. WARs present an attenuated ventilatory response to an increased PaCO2 or decreased PaO2, coupled to behavioral changes, which make them a suitable model to further study respiratory risks associated to epilepsy. PMID:27149672

  11. Proteomic response of marine invertebrate larvae to ocean acidification and hypoxia during metamorphosis and calcification.

    PubMed

    Mukherjee, Joy; Wong, Kelvin K W; Chandramouli, Kondethimmanahalli H; Qian, Pei-Yuan; Leung, Priscilla T Y; Wu, Rudolf S S; Thiyagarajan, Vengatesen

    2013-12-15

    Calcifying marine invertebrates with complex life cycles are particularly at risk to climate changes as they undergo an abrupt ontogenetic shift during larval metamorphosis. Although our understanding of the larval response to climate changes is rapidly advancing, the proteome plasticity involved in a compensatory response to climate change is still unknown. In this study, we investigated the proteomic response of metamorphosing larvae of the tubeworm Hydroides elegans, challenged with two climate change stressors, ocean acidification (OA; pH 7.6) and hypoxia (HYP; 2.8 mg O2 l(-1)), and with both combined. Using a two-dimensional gel electrophoresis (2-DE)-based approach coupled with mass spectrometry, we found that climate change stressors did not affect metamorphosis except under OA, but altered the larval proteome and phosphorylation status. Metabolism and various stress and calcification-related proteins were downregulated in response to OA. In OA and HYP combined, HYP restored the expression of the calcification-related proteins to the control levels. We speculate that mild HYP stress could compensate for the negative effects of OA. This study also discusses the potential functions of selected proteins that might play important roles in larval acclimation and adaption to climate change.

  12. Heterogeneous Role of the Glutathione Antioxidant System in Modulating the Response of ESFT to Fenretinide in Normoxia and Hypoxia

    PubMed Central

    Magwere, Tapiwanashe; Burchill, Susan A.

    2011-01-01

    Glutathione (GSH) is implicated in drug resistance mechanisms of several cancers and is a key regulator of cell death pathways within cells. We studied Ewing's sarcoma family of tumours (ESFT) cell lines and three mechanistically distinct anticancer agents (fenretinide, doxorubicin, and vincristine) to investigate whether the GSH antioxidant system is involved in the reduced sensitivity to these chemotherapeutic agents in hypoxia. Cell viability and death were assessed by the trypan blue exclusion assay and annexin V-PI staining, respectively. Hypoxia significantly decreased the sensitivity of all ESFT cell lines to fenretinide-induced death, whereas the effect of doxorubicin or vincristine was marginal and cell-line-specific. The response of the GSH antioxidant system in ESFT cell lines to hypoxia was variable and also cell-line-specific, although the level of GSH appeared to be most dependent on de novo biosynthesis rather than recycling. RNAi-mediated knockdown of key GSH regulatory enzymes γ-glutamylcysteine synthetase or glutathione disulfide reductase partially reversed the hypoxia-induced resistance to fenretinide, and increasing GSH levels using N-acetylcysteine augmented the hypoxia-induced resistance in a cell line-specific manner. These observations are consistent with the conclusion that the role of the GSH antioxidant system in modulating the sensitivity of ESFT cells to fenretinide is heterogeneous depending on environment and cell type. This is likely to limit the value of targeting GSH as a therapeutic strategy to overcome hypoxia-induced drug resistance in ESFT. Whether targeting the GSH antioxidant system in conjunction with other therapeutics may benefit some patients with ESFT remains to be seen. PMID:22174837

  13. Postnatal development of the pattern of respiratory and cardiovascular response to systemic hypoxia in the piglet: the roles of adenosine.

    PubMed Central

    Elnazir, B; Marshall, J M; Kumar, P

    1996-01-01

    1. In 3-day-old and 3-week-old spontaneously breathing piglets anaesthetized with Saffan, we have studied ventilatory and cardiovascular responses evoked by 5 min periods of hypoxia (breathing 10 and 6% O2). 2. In 3-day-old piglets both 10 and 6% O2 evoked an increase followed by a secondary fall in ventilation, a gradual tachycardia and a renal vasoconstriction, with an increase in femoral blood flow that was attributable to femoral vasodilatation. Arterial blood pressure rose initially but fell towards control values by the 5th minute of hypoxia. 3. The stable adenosine analogue 2-chloroadenosine (2-CA; 30 mg kg(-1) i.v.) evoked bradycardia and renal vasoconstriction, but had no effect on femoral vasculature. These responses were blocked by the adenosine receptor antagonist 8-phenyltheophylline (8-PT; 8 mg kg(-1) i.v.). 8-PT also abolished the secondary fall in ventilation evoked by 10 and 6% O2 and the renal vasoconstriction evoked by 10% O2, but had no effect on the tachycardia, or on the femoral vascular response. 4. By contrast, in 3-week-old piglets both 10 and 6% O2 evoked a sustained increase in ventilation, tachycardia and a rise in arterial pressure with renal vasoconstriction, but no change in renal blood flow and substantial femoral vasodilatation with an increase in femoral blood flow. 2-CA evoked bradycardia and renal vasoconstriction, as in 3-day-old piglets, but also evoked pronounced femoral vasodilatation. 8-PT blocked these responses and the hypoxia-induced femoral vasodilatation, but had no significant effect on other components of the hypoxia-induced response. 5. We propose that there is postnatal development of the ventilatory and cardiovascular responses evoked by systemic hypoxia and of the role of locally released adenosine in these responses: at 3 days, adenosine released within the central nervous system and within the kidney is a major contributor to the secondary fall in ventilation and renal vasoconstriction respectively, whereas at 3

  14. Acute ventilatory responses to hypoxia during voluntary and electrically induced leg exercise in man.

    PubMed Central

    Pandit, J J; Robbins, P A

    1994-01-01

    1. The acute ventilatory response to a brief period of hypoxia (AHVR) was measured in six subjects (a) at rest, (b) during electrically induced leg exercise (EEL), (c) during voluntary leg exercise at an external work rate matched to electrical exercise (EV1) and (d) during voluntary leg exercise at an internal work rate (i.e. metabolic rate) matched to electrical exercise (EV2). The end-tidal PO2 during hypoxia was 50 mmHg and the end-tidal PCO2 was held constant at 1-2 mmHg above resting values throughout each of these four protocols. 2. EEL was produced by surface electrode stimulation of the quadriceps muscles so as to cause the legs to extend at the knee and lift a set of weights via a pulley system. During EV1, each subject lifted the same weight through the same height and at the same frequency as during his EEL protocol. During EV2, the weight, the height through which it was lifted and the frequency of voluntary contractions were altered to produce a similar O2 consumption and CO2 production as during EEL. 3. In each subject, end-tidal PCO2 values showed no change between the four protocols, and in three subjects in whom they were measured, arterial PCO2 values were also similar between the protocols. Venous lactate levels did not increase after EEL or EV2. 4. The AHVR during EEL (14.1 +/- 1.42 l min-1; mean +/- S.E.M) was significantly increased (Student's paired t test) compared with rest (7.55 +/- 1.10 l min-1; P < 0.003).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8071883

  15. Chronic intermittent hypoxia-hypercapnia blunts heart rate responses and alters neurotransmission to cardiac vagal neurons.

    PubMed

    Dyavanapalli, Jhansi; Jameson, Heather; Dergacheva, Olga; Jain, Vivek; Alhusayyen, Mona; Mendelowitz, David

    2014-07-01

    Patients with obstructive sleep apnoea experience chronic intermittent hypoxia-hypercapnia (CIHH) during sleep that elicit sympathetic overactivity and diminished parasympathetic activity to the heart, leading to hypertension and depressed baroreflex sensitivity. The parasympathetic control of heart rate arises from pre-motor cardiac vagal neurons (CVNs) located in nucleus ambiguus (NA) and dorsal motor nucleus of the vagus (DMNX). The mechanisms underlying diminished vagal control of heart rate were investigated by studying the changes in blood pressure, heart rate, and neurotransmission to CVNs evoked by acute hypoxia-hypercapnia (H-H) and CIHH. In vivo telemetry recordings of blood pressure and heart rate were obtained in adult rats during 4 weeks of CIHH exposure. Retrogradely labelled CVNs were identified in an in vitro brainstem slice preparation obtained from adult rats exposed either to air or CIHH for 4 weeks. Postsynaptic inhibitory or excitatory currents were recorded using whole cell voltage clamp techniques. Rats exposed to CIHH had increases in blood pressure, leading to hypertension, and blunted heart rate responses to acute H-H. CIHH induced an increase in GABAergic and glycinergic neurotransmission to CVNs in NA and DMNX, respectively; and a reduction in glutamatergic neurotransmission to CVNs in both nuclei. CIHH blunted the bradycardia evoked by acute H-H and abolished the acute H-H evoked inhibition of GABAergic transmission while enhancing glycinergic neurotransmission to CVNs in NA. These changes with CIHH inhibit CVNs and vagal outflow to the heart, both in acute and chronic exposures to H-H, resulting in diminished levels of cardioprotective parasympathetic activity to the heart as seen in OSA patients.

  16. Comparison of life history and genetic properties of cowpea bruchid strains and their response to hypoxia.

    PubMed

    Cheng, Weining; Lei, Jiaxin; Fox, Charles W; Johnston, J Spencer; Zhu-Salzman, Keyan

    2015-04-01

    The cowpea bruchid (Callosobruchus maculatus) is the most important storage pest of grain legumes and comprises geographically distinct strains. Storage under a modified atmosphere with decreased O2 content represents an alternative to chemical fumigants for pest control of stored grains. In this study, we compared reproduction, development and survival, as well as genome size of bruchid strains from South India (SI), Burkina Faso (BF), Niger (CmNnC) and the United States (OH), reared on mung bean (Vigna radiata). Fecundity and egg-to-adult duration varied significantly among these strains. Notably, strain BF had the highest fecundity, and strain SI displayed the fastest development whereas strain OH was the slowest. Differences in adult lifespan among strains were only detected in unmated but not in the mated group. Genome size of SI females was significantly larger than that of OH females, and for all four strains, the female genomes were larger than those of their corresponding males. Furthermore, we studied effects of exposure to 1% O2+99% N2 on strains SI and BF. Mortality caused by hypoxia was influenced by not only developmental stage but also by insect strain. Eggs were most sensitive, particularly at the early stage, whereas the 3rd and 4th instar larvae were most tolerant and could survive up to 15 days of low O2. Strain SI was slightly more resistant than BF in egg and larval stages. Proteolytic activity prior to, during and after hypoxia treatment revealed remarkable metabolic plasticity of cowpea bruchids in response to modified atmosphere.

  17. Metabolic Response of Dungeness Crab Larvae Exposed to Elevated CO2 and Hypoxia

    NASA Astrophysics Data System (ADS)

    Nichols, Z.; Busch, S.; McElhany, P.

    2015-12-01

    Ocean acidification (OA) and deoxygenation, both resulting from rising atmospheric CO2 levels, are lowering the pH and oxygen levels of global oceans. Assessing the impacts of OA and deoxygenation on harvested species is crucial for guiding resource management with the aim of maintaining healthy and sustainable populations. The Dungeness crab, Cancer magister, is an important species ecologically and economically for the US West Coast. Crabs transition through four main stages: zoea, megalopa, juvenile, and adult. Each stage results in a different morphology and behavior, and as a result, is exposed to various environmental parameters, such as pH and dissolved oxygen (DO). The first two stages exhibit diel vertical migration while the final stages are benthic. Our study focused on the megalopae stage and their metabolic response to OA and hypoxia. We exposed wild-caught megalopae to a pH x DO cross, producing treatment waters with combinations of low or high pH and O2, all maintained at 12˚C. Closed-chamber respirometry was used to compare standard metabolic rates in a common garden setting with high pH/high DO conditions. We predict that the megalopae exposed to the low pH/high DO treatment will have a higher metabolic rate than those exposed to the high pH/high DO treatment. This may be a result of homeostatic processes increasing to return the megalopae's internal pH back to equilibrium. We predict that the high pH/low DO treatment will cause a decrease in metabolism when compared to the high pH/high DO treatment due to the megalopae conserving oxygen in a limiting environment. If results support our hypothesis, they would suggest that OA and hypoxia affects Dungeness crabs in sublethal ways.

  18. Activation of Hypoxia Response in Endothelial Cells Contributes to Ischemic Cardioprotection

    PubMed Central

    Kerkelä, Risto; Karsikas, Sara; Szabo, Zoltan; Serpi, Raisa; Magga, Johanna; Gao, Erhe; Alitalo, Kari; Anisimov, Andrey; Sormunen, Raija; Pietilä, Ilkka; Vainio, Laura; Koch, Walter J.; Kivirikko, Kari I.; Myllyharju, Johanna

    2013-01-01

    Small-molecule inhibition of hypoxia-inducible factor prolyl 4-hydroxylases (HIF-P4Hs) is being explored for the treatment of anemia. Previous studies have suggested that HIF-P4H-2 inhibition may also protect the heart from an ischemic insult. Hif-p4h-2gt/gt mice, which have 76 to 93% knockdown of Hif-p4h-2 mRNA in endothelial cells, fibroblasts, and cardiomyocytes and normoxic stabilization of Hif-α, were subjected to ligation of the left anterior descending coronary artery (LAD). Hif-p4h-2 deficiency resulted in increased survival, better-preserved left ventricle (LV) systolic function, and a smaller infarct size. Surprisingly, a significantly larger area of the LV remained perfused during LAD ligation in Hif-p4h-2gt/gt hearts than in wild-type hearts. However, no difference was observed in collateral vessels, while the size of capillaries, but not their number, was significantly greater in Hif-p4h-2gt/gt hearts than in wild-type hearts. Hif-p4h-2gt/gt mice showed increased cardiac expression of endothelial Hif target genes for Tie-2, apelin, APJ, and endothelial nitric oxide (NO) synthase (eNOS) and increased serum NO concentrations. Remarkably, blockage of Tie-2 signaling was sufficient to normalize cardiac apelin and APJ expression and resulted in reversal of the enlarged-capillary phenotype and ischemic cardioprotection in Hif-p4h-2gt/gt hearts. Activation of the hypoxia response by HIF-P4H-2 inhibition in endothelial cells appears to be a major determinant of ischemic cardioprotection and justifies the exploration of systemic small-molecule HIF-P4H-2 inhibitors for ischemic heart disease. PMID:23775121

  19. Cerebral pressure-flow and metabolic responses to sustained hypoxia: effect of CO2.

    PubMed

    Yang, S P; Bergö, G W; Krasney, E; Krasney, J A

    1994-01-01

    This study was designed to determine the role of CO2 in the cerebral hemodynamic, metabolic, and fluid shift responses in a conscious sheep model of acute mountain sickness (AMS). Ewes were instrumented chronically with left ventricular, aortic, inferior vena cava, sagittal sinus, and epidural catheters and exposed to 96 h of hypoxia in an environmental chamber in two groups: 1) hypocapnic [HH; n = 12; arterial PO2 (PaO2) = 40 Torr, arterial PCO2 (PaCO2) = 27 Torr] and 2) eucapnic (EH; n = 9; PaCO2 = 40 Torr, PaCO2 = 37 Torr). AMS, estimated from food and water intakes and behavior, occurred in 9 of 12 HH and 9 of 9 EH sheep. Intracranial pressure (Picp) and the pressure gradient between Picp and sagittal sinus (Psag) increased in AMS sheep only. Total and regional cerebral blood flows, except in the choroid plexus (Qcp), were elevated significantly (P < 0.05) throughout hypoxia in all sheep; cerebral blood flow was greater in EH sheep (P < 0.05). Qcp decreased in HH (P < 0.05) but remained unchanged in EH sheep. Cerebral O2 and glucose uptakes were not altered in either group. Brain edema, reflected by elevated wet-to-dry tissue weight ratios (P < 0.0001), occurred only in AMS sheep. We conclude 1) AMS is associated with cerebral edema and normal brain aerobic metabolism, 2) decreased Qcp and increased Picp-Psag gradients during HH likely compensate the increased intracranial volume in AMS, and 3) CO2 supplementation at constant PaO2 did not reduce AMS, Picp, or brain tissue edema.

  20. Modification by Beta-Adrenergic Blockade of the Circulatory Responses to Acute Hypoxia in Man*

    PubMed Central

    Richardson, David W.; Kontos, Hermes A.; Raper, A. Jarrell; Patterson, John L.

    1967-01-01

    In 17 healthy men, beta-adrenergic blockade reduced significantly the tachycardia and the elevation of cardiac output associated with inhalation of 7.5% oxygen for 7 to 10 minutes. Hypoxia did not increase plasma concentrations of epinephrine or norepinephrine in six subjects. Furthermore, blockade of alpha and beta receptors in the forearm did not modify the vasodilation in the forearm induced by hypoxia, providing pharmacologic evidence that hypoxia of the degree and duration used was not associated with an increase in the concentrations of circulating catecholamines in man. Part of the increase in cardiac output and heart rate during acute hypoxia in man is produced by stimulation of beta-adrenergic receptors, probably by cardiac sympathetic nerves. The mechanism of the vasodilation in the forearm during hypoxia remains uncertain. PMID:4381183

  1. Rapid mitochondrial adjustments in response to short-term hypoxia and re-oxygenation in the Pacific oyster, Crassostrea gigas.

    PubMed

    Sussarellu, Rossana; Dudognon, Tony; Fabioux, Caroline; Soudant, Philippe; Moraga, Dario; Kraffe, Edouard

    2013-05-01

    As oxygen concentrations in marine coastal habitats can fluctuate rapidly and drastically, sessile marine organisms such as the oyster Crassostrea gigas can experience marked and rapid oxygen variations. In this study, we investigated the responses of oyster gill mitochondria to short-term hypoxia (3 and 12 h, at 1.7 mg O2 l(-1)) and subsequent re-oxygenation. Mitochondrial respiratory rates (states 3 and 4 stimulated by glutamate) and phosphorylation efficiency [respiratory control ratio (RCR) and the relationship between ADP and oxygen consumption (ADP/O)] were measured. Cytochrome c oxidase (CCO) activity and cytochrome concentrations (a, b, c1 and c) were measured to investigate the rearrangements of respiratory chain subunits. The potential implication of an alternative oxidase (AOX) was investigated using an inhibitor of the respiratory chain (antimycin A) and through gene expression analysis in gills and digestive gland. Results indicate a downregulation of mitochondrial capacity, with 60% inhibition of respiratory rates after 12 h of hypoxia. RCR remained stable, while ADP/O increased after 12 h of hypoxia and 1 h of re-oxygenation, suggesting increased phosphorylation efficiency. CCO showed a fast and remarkable increase of its catalytic activity only after 3 h of hypoxia. AOX mRNA levels showed similar patterns in gills and digestive gland, and were upregulated after 12 and 24 h of hypoxia and during re-oxygenation. Results suggest a set of controls regulating mitochondrial functions in response to oxygen fluctuations, and demonstrate the fast and extreme plasticity of oyster mitochondria in response to oxygen variations. PMID:23307802

  2. Attenuated ventilatory responses to hypercapnia and hypoxia in assisted breath-hold drivers (Funado).

    PubMed

    Masuda, Y; Yoshida, A; Hayashi, F; Sasaki, K; Honda, Y

    1982-01-01

    The steady-state ventilatory responses to hypercapnia and hypoxia in 7 assisted breath-hold divers (Funado) were compared with those in 7 normal sedentary controls. Ventilatory response to hypercapnia was measured from the slope of the hyperoxic VN-PETCO2 line, where VN was normalized minute ventilation using the allometric coefficient and PETCO2 end-Tidal PCO2. The slope of this line in the Funado (1.48 +/- 0.54 liters . min-1 . Torr-1) was significantly less than in the control (2.70 +/- 1.08 liters . min-1 . Torr-1) (p less than 0.025). On the other hand, hypoxic sensitivity estimated by hyperbolic and exponential mathematical equations was not found to be significantly different between the two groups, although estimated increments in ventilation using the hyperbolic equation exhibited significantly lower response in the Funado than in the control only when PETO2 decreased lower than 50 Torr (p less than 0.05). These findings in the Funado were different from our previous observations obtained in unassisted breath-hold divers (Kachido), in whom no obvious attenuations in CO2 sensitivity were seen. This difference was assumed to be derived from more hypercapnic and hypoxic conditions produced in the Funado than in the Kachido during diving activities.

  3. Branchial O(2) chemoreceptors in Nile tilapia Oreochromis niloticus: Control of cardiorespiratory function in response to hypoxia.

    PubMed

    Zeraik, Vivian M; Belão, Thiago C; Florindo, Luiz Henrique; Kalinin, Ana L; Rantin, F Tadeu

    2013-09-01

    This study examined the distribution and orientation of gill O(2) chemoreceptors in Oreochromis niloticus and their role in cardiorespiratory responses to graded hypoxia. Intact fish, and a group with the first gill arch excised (operated), were submitted to graded hypoxia and their cardiorespiratory responses (oxygen uptake - V˙O(2) , breathing frequency - fR, ventilatory stroke volume - VT, gill ventilation - V˙G, O(2) extraction from the ventilatory current - EO(2) , and heart rate - fH) were compared. Their responses to bolus injections of NaCN into the bloodstream (internal) or ventilatory water stream (external) were also determined. The V˙O(2) of operated fish was significantly lower at the deepest levels of hypoxia. Neither reflex bradycardia nor ventilatory responses were completely abolished by bilateral excision of the first gill arch. EO(2) of the operated group was consistently lower than the intact group. The responses to internal and external NaCN included transient decreases in fH and increases in fR and Vamp (ventilation amplitude). These cardiorespiratory responses were attenuated but not abolished in the operated group, indicating that chemoreceptors are not restricted to the first gill arch, and are sensitive to oxygen levels in both blood and water.

  4. HIF-1alpha response to hypoxia is functionally separated from the glucocorticoid stress response in the in vitro regenerating human skeletal muscle.

    PubMed

    Pirkmajer, Sergej; Filipovic, Dragana; Mars, Tomaz; Mis, Katarina; Grubic, Zoran

    2010-12-01

    Injury of skeletal muscle is followed by muscle regeneration in which new muscle tissue is formed from the proliferating mononuclear myoblasts, and by systemic response to stress that exposes proliferating myoblasts to increased glucocorticoid (GC) concentration. Because of its various causes, hypoxia is a frequent condition affecting skeletal muscle, and therefore both processes, which importantly determine the outcome of the injury, often proceed under hypoxic conditions. It is therefore important to identify and characterize in proliferating human myoblasts: 1) response to hypoxia which is generally organized by hypoxia-inducible factor-1α (HIF-1α); 2) response to GCs which is mediated through the isoforms of glucocorticoid receptors (GRs) and 11β-hydroxysteroid dehydrogenases (11β-HSDs), and 3) the response to GCs under the hypoxic conditions and the influence of this combination on the factors controlling myoblast proliferation. Using real-time PCR, Western blotting, and HIF-1α small-interfering RNA silencing, we demonstrated that cultured human myoblasts possess both, the HIF-1α-based response to hypoxia, and the GC response system composed of GRα and types 1 and 2 11β-HSDs. However, using combined dexamethasone and hypoxia treatments, we demonstrated that these two systems operate practically without mutual interactions. A seemingly surprising separation of the two systems that both organize response to hypoxic stress can be explained on the evolutionary basis: the phylogenetically older HIF-1α response is a protection at the cellular level, whereas the GC stress response protects the organism as a whole. This necessitates actions, like downregulation of IL-6 secretion and vascular endothelial growth factor, that might not be of direct benefit for the affected myoblasts.

  5. Sex and vasodilator responses to hypoxia at rest and during exercise.

    PubMed

    Casey, Darren P; Shepherd, John R A; Joyner, Michael J

    2014-04-01

    In humans, β-adrenergic receptor activation causes a substantial portion of hypoxic vasodilation in skeletal muscle at rest and during forearm exercise. Recent evidence suggests that β-adrenergic receptors are either more sensitive or upregulated in young women vs. men. Therefore, we examined whether sex influences hypoxic vasodilation in 31 young subjects (15 women/16 men; 26 ± 1 yr). We also examined whether potential sex-related differences existed in a group of older adults (6 women/5 men; 61 ± 2 yr). All subjects performed forearm exercise at 10 and 20% of maximum under normoxic and hypoxic [80% arterial O2 saturation (So2)] conditions. Forearm vascular conductance (FVC; ml · min(-1) · 100 mmHg(-1)) was calculated from blood flow (ml/min) and blood pressure (mmHg). At rest, young women demonstrated a greater vasodilator response to hypoxia compared with men (39 ± 12 vs. 13 ± 6%, P < 0.05). The absolute compensatory vasodilator response (hypoxic FVC-normoxic FVC) during exercise was similar between sexes, but the relative change was greater in young women at 10% (28 ± 5 vs. 17 ± 3%, P < 0.05) and 20% exercise (29 ± 4% vs. 15 ± 3%, P < 0.01). Additionally, the absolute changes in vasodilation after normalizing the response to forearm volume or workload were greater in young women during exercise (P < 0.05). Interestingly, the compensatory vasodilator responses between older women and men were similar at 10 and 20% exercise, regardless of whether the response is expressed as absolute, relative, or absolute change normalized for forearm volume or workload (P = 0.054-0.97). Our data suggest that the compensatory vasodilator response to hypoxic exercise is greater in young women compared with men. However, sex-specific differences appear to be lost with aging.

  6. Integrated analysis of mRNA-seq and miRNA-seq in the liver of Pelteobagrus vachelli in response to hypoxia.

    PubMed

    Zhang, Guosong; Yin, Shaowu; Mao, Jianqiang; Liang, Fenfei; Zhao, Cheng; Li, Peng; Zhou, Guoqin; Chen, Shuqiao; Tang, Zhonglin

    2016-01-01

    Pelteobagrus vachelli is a well-known commercial species in Asia. However, a sudden lack of oxygen will result in mortality and eventually to pond turnover. Studying the molecular mechanisms of hypoxia adaptation in fishes will not only help us to understand fish speciation and the evolution of the hypoxia-signaling pathway, but will also guide us in the breeding of hypoxia-tolerant fish strains. Despite this, the genetic regulatory network for miRNA-mRNA and the signaling pathways involved in hypoxia responses in fish have remained unexamined. In the present study, we used next-generation sequencing technology to characterise mRNA-seq and miRNA-seq of control- and hypoxia-treated P. vachelli livers to elucidate the molecular mechanisms of hypoxia adaptation. We were able to find miRNA-mRNA pairs using bioinformatics analysis and miRNA prediction algorithms. Furthermore, we compared several key pathways which were identified as involved in the hypoxia response of P. vachelli. Our study is the first report on integrated analysis of mRNA-seq and miRNA-seq in fishes and offers a deeper insight into the molecular mechanisms of hypoxia adaptation. qRT-PCR analysis further confirmed the results of mRNA-Seq and miRNA-Seq analysis. We provide a good case study for analyzing mRNA/miRNA expression and profiling a non-model fish species using next-generation sequencing technology. PMID:26961594

  7. Integrated analysis of mRNA-seq and miRNA-seq in the liver of Pelteobagrus vachelli in response to hypoxia

    PubMed Central

    Zhang, Guosong; Yin, Shaowu; Mao, Jianqiang; Liang, Fenfei; Zhao, Cheng; Li, Peng; Zhou, Guoqin; Chen, Shuqiao; Tang, Zhonglin

    2016-01-01

    Pelteobagrus vachelli is a well-known commercial species in Asia. However, a sudden lack of oxygen will result in mortality and eventually to pond turnover. Studying the molecular mechanisms of hypoxia adaptation in fishes will not only help us to understand fish speciation and the evolution of the hypoxia-signaling pathway, but will also guide us in the breeding of hypoxia-tolerant fish strains. Despite this, the genetic regulatory network for miRNA-mRNA and the signaling pathways involved in hypoxia responses in fish have remained unexamined. In the present study, we used next-generation sequencing technology to characterise mRNA-seq and miRNA-seq of control- and hypoxia-treated P. vachelli livers to elucidate the molecular mechanisms of hypoxia adaptation. We were able to find miRNA-mRNA pairs using bioinformatics analysis and miRNA prediction algorithms. Furthermore, we compared several key pathways which were identified as involved in the hypoxia response of P. vachelli. Our study is the first report on integrated analysis of mRNA-seq and miRNA-seq in fishes and offers a deeper insight into the molecular mechanisms of hypoxia adaptation. qRT-PCR analysis further confirmed the results of mRNA-Seq and miRNA-Seq analysis. We provide a good case study for analyzing mRNA/miRNA expression and profiling a non-model fish species using next-generation sequencing technology. PMID:26961594

  8. Hypoxia-responsive miR-124 and miR-144 reduce hypoxia-induced autophagy and enhance radiosensitivity of prostate cancer cells via suppressing PIM1.

    PubMed

    Gu, Hao; Liu, Mingzhu; Ding, Changmao; Wang, Xin; Wang, Rui; Wu, Xinyu; Fan, Ruitai

    2016-06-01

    Cancer cells in hypoxia usually make adaptive changes in cellular metabolism, such as altered autophagy. This might be a cause of enhanced radioresistance in some types of cancer. In this study, we investigated hypoxia-responsive miRNAs in two prostate cancer cell lines (DU145 and PC3). This study firstly reported that hypoxia induces further downregulation of miR-124 and miR-144, which might be a result of impaired dicer expression. These two miRNAs can simultaneously target 3'UTR of PIM1. Functional study showed that miR-124 or miR-144 overexpression can inhibit hypoxia-induced autophagy and enhance radiosensitivity at least via downregulating PIM1. Therefore, hypoxia induced miR-124 and miR-144 downregulation may contribute to a prosurvival mechanism of prostate cancer cells to hypoxia and irradiation at least through attenuated suppressing of PIM1. This finding presents a potential therapeutic target for prostate cancer. PMID:26990493

  9. miR-190 Enhances HIF-Dependent Responses to Hypoxia in Drosophila by Inhibiting the Prolyl-4-hydroxylase Fatiga

    PubMed Central

    De Lella Ezcurra, Ana Laura; Bertolin, Agustina Paola; Kim, Kevin; Gándara, Lautaro; Luschnig, Stefan; Perrimon, Norbert; Melani, Mariana; Wappner, Pablo

    2016-01-01

    Cellular and systemic responses to low oxygen levels are principally mediated by Hypoxia Inducible Factors (HIFs), a family of evolutionary conserved heterodimeric transcription factors, whose alpha- and beta-subunits belong to the bHLH-PAS family. In normoxia, HIFα is hydroxylated by specific prolyl-4-hydroxylases, targeting it for proteasomal degradation, while in hypoxia the activity of these hydroxylases decreases due to low oxygen availability, leading to HIFα accumulation and expression of HIF target genes. To identify microRNAs required for maximal HIF activity, we conducted an overexpression screen in Drosophila melanogaster, evaluating the induction of a HIF transcriptional reporter. miR-190 overexpression enhanced HIF-dependent biological responses, including terminal sprouting of the tracheal system, while in miR-190 loss of function embryos the hypoxic response was impaired. In hypoxic conditions, miR-190 expression was upregulated and required for induction of HIF target genes by directly inhibiting the HIF prolyl-4-hydroxylase Fatiga. Thus, miR-190 is a novel regulator of the hypoxia response that represses the oxygen sensor Fatiga, leading to HIFα stabilization and enhancement of hypoxic responses. PMID:27223464

  10. Phrenic and sympathetic nerve responses to glutamergic blockade during normoxia and hypoxia.

    PubMed

    Chae, L O; Melton, J E; Neubauer, J A; Edelman, N H

    1993-04-01

    Because hypoxia increases brain extracellular glutamate levels, we hypothesized that gasping and increased sympathetic activity during severe hypoxia result from glutamergic excitation. To test this hypothesis, we exposed anesthetized paralyzed vagotomized glomectomized cats to hypoxia before and after N-methyl-D-aspartate (NMDA) glutamergic blockade (MK-801, 1 mg/kg iv) or non-NMDA blockade (NBQX, 3 mg/kg iv) while monitoring phrenic neurogram (PN) and inspiratory-synchronous (ISSN) and tonic (TSN) activity in cervical sympathetic neurogram (SN). Before hypoxia, MK-801 caused apneusis and reduced PN and ISSN amplitude by 38 and 84%, respectively, but TSN activity was unaffected. During hypoxia, MK-801 had no effect on PN gasping or TSN activity but reduced ISSN amplitude during gasping. Before hypoxia, NBQX reduced PN and ISSN amplitude by 54 and 60%, respectively but did not affect inspiratory timing or TSN activity. Gasping activity in PN and ISSN and TSN activity during hypoxia were unaffected by NBQX. We conclude that 1) ionotropic glutamergic receptor activation is important for eupneic phrenic patterning but is not involved in genesis of gasping, 2) NMDA receptor activation is involved in integration of respiratory and sympathetic activity, and 3) changes in TSN activity are independent of ionotropic glutamergic receptor activation. PMID:8514717

  11. Increased oxidative stress and anaerobic energy release, but blunted Thr172-AMPKα phosphorylation, in response to sprint exercise in severe acute hypoxia in humans.

    PubMed

    Morales-Alamo, David; Ponce-González, Jesús Gustavo; Guadalupe-Grau, Amelia; Rodríguez-García, Lorena; Santana, Alfredo; Cusso, Maria Roser; Guerrero, Mario; Guerra, Borja; Dorado, Cecilia; Calbet, José A L

    2012-09-01

    AMP-activated protein kinase (AMPK) is a major mediator of the exercise response and a molecular target to improve insulin sensitivity. To determine if the anaerobic component of the exercise response, which is exaggerated when sprint is performed in severe acute hypoxia, influences sprint exercise-elicited Thr(172)-AMPKα phosphorylation, 10 volunteers performed a single 30-s sprint (Wingate test) in normoxia and in severe acute hypoxia (inspired Po(2): 75 mmHg). Vastus lateralis muscle biopsies were obtained before and immediately after 30 and 120 min postsprint. Mean power output and O(2) consumption were 6% and 37%, respectively, lower in hypoxia than in normoxia. O(2) deficit and muscle lactate accumulation were greater in hypoxia than in normoxia. Carbonylated skeletal muscle and plasma proteins were increased after the sprint in hypoxia. Thr(172)-AMPKα phosphorylation was increased by 3.1-fold 30 min after the sprint in normoxia. This effect was prevented by hypoxia. The NAD(+)-to-NADH.H(+) ratio was reduced (by 24-fold) after the sprints, with a greater reduction in hypoxia than in normoxia (P < 0.05), concomitant with 53% lower sirtuin 1 (SIRT1) protein levels after the sprint in hypoxia (P < 0.05). This could have led to lower liver kinase B1 (LKB1) activation by SIRT1 and, hence, blunted Thr(172)-AMPKα phosphorylation. Ser(485)-AMPKα(1)/Ser(491)-AMPKα(2) phosphorylation, a known negative regulating mechanism of Thr(172)-AMPKα phosphorylation, was increased by 60% immediately after the sprint in hypoxia, coincident with increased Thr(308)-Akt phosphorylation. Collectively, our results indicate that the signaling response to sprint exercise in human skeletal muscle is altered in severe acute hypoxia, which abrogated Thr(172)-AMPKα phosphorylation, likely due to lower LKB1 activation by SIRT1.

  12. Finite element simulation of pipe dynamic response

    SciTech Connect

    Slagis, G.C.; Litton, R.W.

    1996-12-01

    Nonlinear finite element dynamic analyses of the response of a pipe span to controlled-displacement, sinusoidal vibration have been performed. The objective of this preliminary study is to compare strain and acceleration response data to those generated by Beaney in the Berkeley Nuclear Laboratories experiments. Results for an unpressurized, 5 Hz, carbon steel pipe are in good agreement with the experiments. Hence, it appears that analytical simulation will be useful to assess seismic margins. Recommendations for additional studies are provided. The analyses confirm the test results--dynamic response is greatly attenuated by material plasticity. Analytical strains and accelerations are about 30% higher than test data. There are several possible explanations for the differences. To assess the effect of frequency on response, the length of the pipe span was increased. Analysis of the longer, 2 Hz, pipe span shows significantly greater cyclic strains than the 5 Hz span at the same input excitation levels.

  13. Interventricular heterogeneity in rat heart responses to hypoxia: the tuning of glucose metabolism, ion gradients, and function.

    PubMed

    Komniski, Milena Segato; Yakushev, Sergej; Bogdanov, Nikolai; Gassmann, Max; Bogdanova, Anna

    2011-05-01

    The matching of energy supply and demand under hypoxic conditions is critical for sustaining myocardial function. Numerous reports indicate that basal energy requirements and ion handling may differ between the ventricles. We hypothesized that ventricular response to hypoxia shows interventricular differences caused by the heterogeneity in glucose metabolism and expression and activity of ion transporters. Thus we assessed glucose utilization rate, ATP, sodium and potassium concentrations, Na, K-ATPase activity, and tissue reduced:oxidized glutathione (GSH/GSSG) content in the right and left ventricles before and after the exposure of either the whole animals or isolated blood-perfused hearts to hypoxia. The hypoxia-induced boost in glucose utilization was more pronounced in the left ventricle compared with the right one. ATP levels in the right ventricle of hypoxic heart were lower than those in the left ventricle. Left ventricular sodium content was higher, and hydrolytic Na, K-ATPase activity was reduced compared with the right ventricle. Administration of the Na, K-ATPase blocker ouabain caused rapid increase in the right ventricular Na(+) and elimination of the interventricular Na(+) gradients. Exposure of the hearts to hypoxia made the interventricular heterogeneity in the Na(+) distribution even more pronounced. Furthermore, systemic hypoxia caused oxidative stress that was more pronounced in the right ventricle as revealed by GSH/GSSG ratios. On the basis of these findings, we suggest that the right ventricle is more prone to hypoxic damage, as it is less efficient in recruiting glucose as an alternative fuel and is particularly dependent on the efficient Na, K-ATPase function. PMID:21398597

  14. Copper and hypoxia modulate transcriptional and mitochondrial functional-biochemical responses in warm acclimated rainbow trout (Oncorhynchus mykiss).

    PubMed

    Sappal, Ravinder; Fast, Mark; Purcell, Sara; MacDonald, Nicole; Stevens, Don; Kibenge, Fred; Siah, Ahmed; Kamunde, Collins

    2016-04-01

    To survive in changing environments fish utilize a wide range of biological responses that require energy. We examined the effect of warm acclimation on the electron transport system (ETS) enzymes and transcriptional responses to hypoxia and copper (Cu) exposure in fish. Rainbow trout (Oncorhynchus mykiss) were acclimated to cold (11 °C; control) and warm (20 °C) temperatures for 3 weeks followed by exposure to Cu, hypoxia or both for 24 h. Activities of ETS enzyme complexes I-IV (CI-CIV) were measured in liver and gill mitochondria. Analyses of transcripts encoding for proteins involved in mitochondrial respiration (cytochrome c oxidase subunits 4-1 and 2: COX4-1 and COX4-2), metal detoxification/stress response (metallothioneins A and B: MT-A and MT-B) and energy sensing (AMP-activated protein kinase α1: AMPKα1) were done in liver mitochondria, and in whole liver and gill tissues by RT-qPCR. Warm acclimation inhibited activities of ETS enzymes while effects of Cu and hypoxia depended on the enzyme and thermal acclimation status. The genes encoding for COX4-1, COX4-2, MT-A, MT-B and AMPKα1 were strongly and tissue-dependently altered by warm acclimation. While Cu and hypoxia clearly increased MT-A and MT-B transcript levels in all tissues, their effects on COX4-1, COX4-2 and AMPKα1 mRNA levels were less pronounced. Importantly, warm acclimation differentially altered COX4-2/COX4-1 ratio in liver mitochondria and gill tissue. The three stressors showed both independent and joint actions on activities of ETS enzymes and transcription of genes involved in energy metabolism, stress response and metals homeostasis. Overall, we unveiled novel interactive effects that should not be overlooked in real world situations wherein fish normally encounter multiple stress factors.

  15. Design and conduct of Xtreme Everest 2: An observational cohort study of Sherpa and lowlander responses to graduated hypobaric hypoxia

    PubMed Central

    Gilbert-Kawai, Edward; Sheperdigian, Adam; Adams, Thomas; Mitchell, Kay; Feelisch, Martin; Murray, Andrew; Peters, Mark; Gilbert-Kawai, Grace; Montgomery, Hugh; Levett, Denny; Kumar, Rajendra; Mythen, Michael; Grocott, Michael; Martin, Daniel

    2015-01-01

    Objective: Oxygen availability falls with ascent to altitude and also as a consequence of critical illness. Because cellular sequelae and adaptive processes may be shared in both circumstances, high altitude exposure (‘physiological hypoxia’) assists in the exploration of the response to pathological hypoxia. We therefore studied the response of healthy participants to progressive hypobaric hypoxia at altitude. The primary objective of the study was to identify differences between high altitude inhabitants (Sherpas) and lowland comparators. Methods: We performed an observational cohort study of human responses to progressive hypobaric hypoxia (during ascent) and subsequent normoxia (following descent) comparing Sherpas with lowlanders. Studies were conducted in London (35m), Kathmandu (1300m), Namche Bazaar (3500m) and Everest Base Camp (5300m). Of 180 healthy volunteers departing from Kathmandu, 64 were Sherpas and 116 were lowlanders. Physiological, biochemical, genetic and epigenetic data were collected. Core studies focused on nitric oxide metabolism, microcirculatory blood flow and exercise performance. Additional studies performed in nested subgroups examined mitochondrial and metabolic function, and ventilatory and cardiac variables. Of the 180 healthy participants who left Kathmandu, 178 (99%) completed the planned trek. Overall, more than 90% of planned testing was completed. Forty-four study protocols were successfully completed at altitudes up to and including 5300m. A subgroup of identical twins (all lowlanders) was also studied in detail. Conclusion: This programme of study (Xtreme Everest 2) will provide a rich dataset relating to human adaptation to hypoxia, and the responses seen on re-exposure to normoxia. It is the largest comprehensive high altitude study of Sherpas yet performed. Translational data generated from this study will be of relevance to diseases in which oxygenation is a major factor. PMID:26064476

  16. Modelling the interplay between hypoxia and proliferation in radiotherapy tumour response

    NASA Astrophysics Data System (ADS)

    Jeong, J.; Shoghi, K. I.; Deasy, J. O.

    2013-07-01

    A tumour control probability computational model for fractionated radiotherapy was developed, with the goal of incorporating the fundamental interplay between hypoxia and proliferation, including reoxygenation over a course of radiotherapy. The fundamental idea is that the local delivery of oxygen and glucose limits the amount of proliferation and metabolically-supported cell survival a tumour sub-volume can support. The model has three compartments: a proliferating compartment of cells receiving oxygen and glucose; an intermediate, metabolically-active compartment receiving glucose; and a highly hypoxic compartment of starving cells. Following the post-mitotic cell death of proliferating cells, intermediate cells move into the proliferative compartment and hypoxic cells move into the intermediate compartment. A key advantage of the proposed model is that the initial compartmental cell distribution is uniquely determined from the assumed local growth fraction (GF) and volume doubling time (TD) values. Varying initial cell state distributions, based on the local (voxel) GF and TD, were simulated. Tumour response was simulated for head and neck squamous cell carcinoma using relevant parameter values based on published sources. The tumour dose required to achieve a 50% local control rate (TCD50) was found for various GFs and TD’s, and the effect of fraction size on TCD50 was also evaluated. Due to the advantage of reoxygenation over a course of radiotherapy, conventional fraction sizes (2-2.4 Gy fx-1) were predicted to result in smaller TCD50's than larger fraction sizes (4-5 Gy fx-1) for a 10 cc tumour with GFs of around 0.15. The time to eliminate hypoxic cells (the reoxygenation time) was estimated for a given GF and decreased as GF increased. The extra dose required to overcome accelerated stem cell accumulation in longer treatment schedules was estimated to be 0.68 Gy/day (in EQD26.6), similar to published values derived from clinical data. The model predicts

  17. Neonatal hyperoxic lung injury favorably alters adult right ventricular remodeling response to chronic hypoxia exposure

    PubMed Central

    Goss, Kara N.; Cucci, Anthony R.; Fisher, Amanda J.; Albrecht, Marjorie; Frump, Andrea; Tursunova, Roziya; Gao, Yong; Brown, Mary Beth; Petrache, Irina; Tepper, Robert S.; Ahlfeld, Shawn K.

    2015-01-01

    The development of pulmonary hypertension (PH) requires multiple pulmonary vascular insults, yet the role of early oxygen therapy as an initial pulmonary vascular insult remains poorly defined. Here, we employ a two-hit model of PH, utilizing postnatal hyperoxia followed by adult hypoxia exposure, to evaluate the role of early hyperoxic lung injury in the development of later PH. Sprague-Dawley pups were exposed to 90% oxygen during postnatal days 0–4 or 0–10 or to room air. All pups were then allowed to mature in room air. At 10 wk of age, a subset of rats from each group was exposed to 2 wk of hypoxia (Patm = 362 mmHg). Physiological, structural, and biochemical endpoints were assessed at 12 wk. Prolonged (10 days) postnatal hyperoxia was independently associated with elevated right ventricular (RV) systolic pressure, which worsened after hypoxia exposure later in life. These findings were only partially explained by decreases in lung microvascular density. Surprisingly, postnatal hyperoxia resulted in robust RV hypertrophy and more preserved RV function and exercise capacity following adult hypoxia compared with nonhyperoxic rats. Biochemically, RVs from animals exposed to postnatal hyperoxia and adult hypoxia demonstrated increased capillarization and a switch to a fetal gene pattern, suggesting an RV more adept to handle adult hypoxia following postnatal hyperoxia exposure. We concluded that, despite negative impacts on pulmonary artery pressures, postnatal hyperoxia exposure may render a more adaptive RV phenotype to tolerate late pulmonary vascular insults. PMID:25659904

  18. Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia

    NASA Astrophysics Data System (ADS)

    Minamino, Tohru; Christou, Helen; Hsieh, Chung-Ming; Liu, Yuxiang; Dhawan, Vijender; Abraham, Nader G.; Perrella, Mark A.; Mitsialis, S. Alex; Kourembanas, Stella

    2001-07-01

    Chronic hypoxia causes pulmonary hypertension with smooth muscle cell proliferation and matrix deposition in the wall of the pulmonary arterioles. We demonstrate here that hypoxia also induces a pronounced inflammation in the lung before the structural changes of the vessel wall. The proinflammatory action of hypoxia is mediated by the induction of distinct cytokines and chemokines and is independent of tumor necrosis factor- signaling. We have previously proposed a crucial role for heme oxygenase-1 (HO-1) in protecting cardiomyocytes from hypoxic stress, and potent anti-inflammatory properties of HO-1 have been reported in models of tissue injury. We thus established transgenic mice that constitutively express HO-1 in the lung and exposed them to chronic hypoxia. HO-1 transgenic mice were protected from the development of both pulmonary inflammation as well as hypertension and vessel wall hypertrophy induced by hypoxia. Significantly, the hypoxic induction of proinflammatory cytokines and chemokines was suppressed in HO-1 transgenic mice. Our findings suggest an important protective function of enzymatic products of HO-1 activity as inhibitors of hypoxia-induced vasoconstrictive and proinflammatory pathways.

  19. The effect of adrenal medullectomy on metabolic responses to chronic intermittent hypoxia.

    PubMed

    Shin, Mi-Kyung; Han, Woobum; Bevans-Fonti, Shannon; Jun, Jonathan C; Punjabi, Naresh M; Polotsky, Vsevolod Y

    2014-11-01

    Obstructive sleep apnea causes intermittent hypoxia (IH) and is associated with insulin resistance and type 2 diabetes. IH increases plasma catecholamine levels, which may increase insulin resistance and suppress insulin secretion. The objective of this study was to determine if adrenal medullectomy (MED) prevents metabolic dysfunction in IH. MED or sham surgery was performed in 60 male C57BL/6J mice, which were then exposed to IH or control conditions (intermittent air) for 6 weeks. IH increased plasma epinephrine and norepinephrine levels, increased fasting blood glucose and lowered basal and glucose-stimulated insulin secretion. MED decreased baseline epinephrine and prevented the IH induced increase in epinephrine, whereas the norepinephrine response remained intact. MED improved glucose tolerance in mice exposed to IH, attenuated the impairment in basal and glucose-stimulated insulin secretion, but did not prevent IH-induced fasting hyperglycemia or insulin resistance. We conclude that the epinephrine release from the adrenal medulla during IH suppresses insulin secretion causing hyperglycemia. PMID:25179887

  20. Growth and physiological responses of neotropical mangrove seedlings to root zone hypoxia.

    PubMed

    McKee, Karen L.

    1996-01-01

    Seedlings of Rhizophora mangle L., Avicennia germinans (L.) Stearn., and Laguncularia racemosa (L.) Gaertn. f. were cultured in aerated or N(2)-purged solution for 12 weeks to assess their relative responses to low oxygen tensions. All three species responded to low oxygen treatment by modifying physiological and morphological patterns to decrease carbon loss by root respiration. However, the extent to which seedling physiology and morphology were altered by low oxygen treatment differed among species. Maintenance of root oxygen concentrations, root respiration rates and root extension rates by R. mangle demonstrated an ability to avoid low oxygen stress with minimal changes in root morphology and physiology. In contrast, oxygen concentrations in A. germinans and L. racemosa roots declined from 16 to 5% or lower within 6 h of treatment. Root hypoxia led to significant decreases in respiration rates of intact root systems (31 and 53% below controls) and root extension rates (38 and 76% below controls) by A. germinans and L. racemosa, respectively, indicating a greater vulnerability of these species to low oxygen tensions in the root zone compared with R. mangle. I conclude that the relative performance of mangrove seedlings growing in anaerobic soils is influenced by interspecific differences in root aeration and concomitant effects on root morphology and physiology. PMID:14871780

  1. Control of cardiorespiratory function in response to hypoxia in an air-breathing fish, the African sharptooth catfish, Clarias gariepinus.

    PubMed

    Belão, T C; Zeraik, V M; Florindo, L H; Kalinin, A L; Leite, C A C; Rantin, F T

    2015-09-01

    We evaluated the role of the first pair of gill arches in the control of cardiorespiratory responses to normoxia and hypoxia in the air-breathing catfish, Clarias gariepinus. An intact group (IG) and an experimental group (EG, bilateral excision of first gill arch) were submitted to graded hypoxia, with and without access to air. The first pair of gill arches ablations reduced respiratory surface area and removed innervation by cranial nerve IX. In graded hypoxia without access to air, both groups displayed bradycardia and increased ventilatory stroke volume (VT), and the IG showed a significant increase in breathing frequency (fR). The EG exhibited very high fR in normoxia that did not increase further in hypoxia, this was linked to reduced O2 extraction from the ventilatory current (EO2) and a significantly higher critical O2 tension (PcO2) than the IG. In hypoxia with access to air, only the IG showed increased air-breathing, indicating that the first pair of gill arches excision severely attenuated air-breathing responses. Both groups exhibited bradycardia before and tachycardia after air-breaths. The fH and gill ventilation amplitude (VAMP) in the EG were overall higher than the IG. External and internal NaCN injections revealed that O2 chemoreceptors mediating ventilatory hypoxic responses (fR and VT) are internally oriented. The NaCN injections indicated that fR responses were mediated by receptors predominantly in the first pair of gill arches but VT responses by receptors on all gill arches. Receptors eliciting cardiac responses were both internally and externally oriented and distributed on all gill arches or extra-branchially. Air-breathing responses were predominantly mediated by receptors in the first pair of gill arches. In conclusion, the role of the first pair of gill arches is related to: (a) an elevated EO2 providing an adequate O2 uptake to maintain the aerobic metabolism during normoxia; (b) a significant bradycardia and increased fAB elicited

  2. Brainstem PCO2 modulates phrenic responses to specific carotid body hypoxia in an in situ dual perfused rat preparation

    PubMed Central

    Day, Trevor A; Wilson, Richard J A

    2007-01-01

    Inputs from central (brainstem) and peripheral (carotid body) respiratory chemoreceptors are coordinated to protect blood gases against potentially deleterious fluctuations. However, the mathematics of the steady-state interaction between chemoreceptors has been difficult to ascertain. Further, how this interaction affects time-dependent phenomena (in which chemoresponses depend upon previous experience) is largely unknown. To determine how central PCO2 modulates the response to peripheral chemostimulation in the rat, we utilized an in situ arterially perfused, vagotomized, decerebrate preparation, in which central and peripheral chemoreceptors were perfused separately (i.e. dual perfused preparation (DPP)). We carried out two sets of experiments: in Experiment 1, we alternated steady-state brainstem PCO2 between 25 and 50 Torr in each preparation, and applied specific carotid body hypoxia (60 Torr PO2 and 40 Torr PCO2) under both conditions; in Experiment 2, we applied four 5 min bouts (separated by 5 min) of specific carotid body hypoxia (60 Torr PO2 and 40 Torr PCO2) while holding the brainstem at either 30 Torr or 50 Torr PCO2. We demonstrate that the level of brainstem PCO2 modulates (a) the magnitude of the phrenic responses to a single step of specific carotid body hypoxia and (b) the magnitude of time-dependent phenomena. We report that the interaction between chemoreceptors is negative (i.e. hypo-additive), whereby a lower brainstem PCO2 augments phrenic responses resulting from specific carotid body hypoxia. A negative interaction may underlie the pathophysiology of central sleep apnoea in populations that are chronically hypocapnic. PMID:17082232

  3. Hypoxia depresses CYP1A induction and enhances DNA damage, but has minimal effects on antioxidant responses in sheepshead minnow (Cyprinodon variegatus) larvae exposed to dispersed crude oil.

    PubMed

    Dasgupta, Subham; DiGiulio, Richard T; Drollette, Brian D; L Plata, Desire; Brownawell, Bruce J; McElroy, Anne E

    2016-08-01

    The growing incidence of hypoxic regions in coastal areas receiving high volumes of anthropogenic discharges requires more focused risk assessment of multiple stressors. One area needing further study is the combined effect of hypoxia and oil exposure. This study examined the short-term sublethal effects of co-exposure to hypoxia and water accommodated fractions (WAF) and chemically enhanced WAFs (CEWAFs) of Southern Louisiana Crude oil on detoxification, antioxidant defenses and genotoxicity in early life stage sheepshead minnow (Cyprinodon variegatus). CYP1A induction (evaluated by measuring EROD activity), activity of a number of key antioxidant enzymes (GST, GR, GPx, SOD, CAT, and GCL), levels of antioxidants (tGSH, GSH, and GSSG), evidence of lipid peroxidation (evaluated using the TBARS assay), and DNA damage (evaluated using the comet assay) provided a broad assessment of responses. Contaminant detoxification pathways induced by oil exposure were inhibited by co-exposure to hypoxia, indicating a maladaptive response. The interactive effects of oil and hypoxia on antioxidant defenses were mixed, but generally indicated less pronounced alterations, with significant increases in lipid peroxidation not observed. Hypoxia significantly enhanced DNA damage induced by oil exposure indicating the potential for significant deleterious effects post exposure. This study demonstrates the importance of considering hypoxia as an enhanced risk factor in assessing the effects of contaminants in areas where seasonal hypoxia may be prevalent. PMID:27315012

  4. Effects of prenatal cocaine on the ventilatory response to hypoxia in newborn rabbits.

    PubMed

    Weese-Mayer, D E; Klemka-Walden, L M; Barkov, G A; Gingras, J L

    1992-01-01

    Recently, investigators have reported an alteration of postnatal respiratory pattern, deficient hypoxic arousal from sleep, and an increased incidence of sudden infant death syndrome (SIDS) among human infants exposed to cocaine prenatally, thus suggesting that prenatal cocaine exposure may perturb the maturation of respiratory control thereby increasing the risk for SIDS. To investigate the effects of prenatal cocaine on postnatal respiration, we evaluated the ventilatory response to 0.21 FIO2 (baseline) and at 0.15, 0.10, and 0.08 FIO2 by the barometric method on days 4-5 of life in 23 New Zealand White rabbit pups born to cocaine-exposed (30 mg/kg/day of cocaine HCl by continuous subcutaneous infusion), pair-fed and free-fed does. The chamber pressure deflection (proportional to VT after appropriate calculation) was computer-sampled at 200 Hz when the unanesthetized pups were resting quietly with no gross body movements. Recording was made after 10 min acclimatization to a specific FIO2. We found that baseline ventilation did not differ significantly among study groups. However, minute ventilation (VI), inspiratory flow (VT/TI), tidal volume (VT), increased significantly with hypoxia to peak values at 0.08 FIO2 in pair-fed and free-fed pups but these measurements did not increase significantly in cocaine-exposed pups. Our finding of a deficient second phase of the hypoxic ventilatory response among cocaine-exposed pups supports the hypothesis that prenatal cocaine perturbs the maturation of respiratory control.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1483357

  5. Dim light at night interacts with intermittent hypoxia to alter cognitive and affective responses

    PubMed Central

    Weil, Zachary M.; Magalang, Ulysses J.; Nelson, Randy J.

    2013-01-01

    Obstructive sleep apnea (OSA) and dim light at night (dLAN) have both been independently associated with alterations in mood and cognition. We aimed to determine whether dLAN would interact with intermittent hypoxia (IH), a condition characteristic of OSA, to alter the behavioral, cognitive, and affective responses. Adult male mice were housed in either standard lighting conditions (14:10-h light-dark cycle; 150 lux:0 lux) or dLAN (150 lux:5 lux). Mice were then exposed to IH (15 cycles/h, 8 h/day, FiO2 nadir of 5%) for 3 wk, then tested in assays of affective and cognitive responses; brains were collected for dendritic morphology and PCR analysis. Exposure to dLAN and IH increased anxiety-like behaviors, as assessed in the open field, elevated plus maze, and the light/dark box. dLAN and IH increased depressive-like behaviors in the forced swim test. IH impaired learning and memory performance in the passive avoidance task; however, no differences were observed in spatial working memory, as assessed by y-maze or object recognition. IH combined with dLAN decreased cell body area in the CA1 and CA3 regions of the hippocampus. Overall, IH decreased apical spine density in the CA3, whereas dLAN decreased spine density in the CA1 of the hippocampus. TNF-α gene expression was not altered by IH or lighting condition, whereas VEGF expression was increased by dLAN. The combination of IH and dLAN provokes negative effects on hippocampal dendritic morphology, affect, and cognition, suggesting that limiting nighttime exposure to light in combination with other established treatments may be of benefit to patients with OSA. PMID:23657638

  6. Behavioural, brain and cardiac responses to hypobaric hypoxia in broiler chickens.

    PubMed

    Martin, Jessica E; Christensen, Karen; Vizzier-Thaxton, Yvonne; Mitchell, Malcolm A; McKeegan, Dorothy E F

    2016-09-01

    A novel approach to pre-slaughter stunning of chickens has been developed in which birds are rendered unconscious by progressive hypobaric hypoxia. Termed Low Atmospheric Pressure Stunning (LAPS), this approach involves application of gradual decompression lasting 280s according to a prescribed curve. We examined responses to LAPS by recording behaviour, electroencephalogram (EEG) and electrocardiogram (ECG) in individual male chickens, and interpreted these with regard to the welfare impact of the process. We also examined the effect of two temperature adjusted pressure curves on these responses. Broiler chickens were exposed to LAPS in 30 triplets (16 and 14 triplets assigned to each pressure curve). In each triplet, one bird was instrumented for recording of EEG and ECG while the behaviour of all three birds was observed. Birds showed a consistent sequence of behaviours during LAPS (ataxia, loss of posture, clonic convulsions and motionless) which were observed in all birds. Leg paddling, tonic convulsions, slow wing flapping, mandibulation, head shaking, open bill breathing, deep inhalation, jumping and vocalisation were observed in a proportion of birds. Spectral analysis of EEG responses at 2s intervals throughout LAPS revealed progressive decreases in median frequency at the same time as corresponding progressive increases in total power, followed later by decreases in total power as all birds exhibited isoelectric EEG and died. There was a very pronounced increase in total power at 50-60s into the LAPS cycle, which corresponded to dominance of the signal by high amplitude slow waves, indicating loss of consciousness. Slow wave EEG was seen early in the LAPS process, before behavioural evidence of loss of consciousness such as ataxia and loss of posture, almost certainly due to the fact that it was completely dark in the LAPS chamber. ECG recordings showed a pronounced bradycardia (starting on average 49.6s into LAPS), often associated with arrhythmia, until

  7. Behavioural, brain and cardiac responses to hypobaric hypoxia in broiler chickens.

    PubMed

    Martin, Jessica E; Christensen, Karen; Vizzier-Thaxton, Yvonne; Mitchell, Malcolm A; McKeegan, Dorothy E F

    2016-09-01

    A novel approach to pre-slaughter stunning of chickens has been developed in which birds are rendered unconscious by progressive hypobaric hypoxia. Termed Low Atmospheric Pressure Stunning (LAPS), this approach involves application of gradual decompression lasting 280s according to a prescribed curve. We examined responses to LAPS by recording behaviour, electroencephalogram (EEG) and electrocardiogram (ECG) in individual male chickens, and interpreted these with regard to the welfare impact of the process. We also examined the effect of two temperature adjusted pressure curves on these responses. Broiler chickens were exposed to LAPS in 30 triplets (16 and 14 triplets assigned to each pressure curve). In each triplet, one bird was instrumented for recording of EEG and ECG while the behaviour of all three birds was observed. Birds showed a consistent sequence of behaviours during LAPS (ataxia, loss of posture, clonic convulsions and motionless) which were observed in all birds. Leg paddling, tonic convulsions, slow wing flapping, mandibulation, head shaking, open bill breathing, deep inhalation, jumping and vocalisation were observed in a proportion of birds. Spectral analysis of EEG responses at 2s intervals throughout LAPS revealed progressive decreases in median frequency at the same time as corresponding progressive increases in total power, followed later by decreases in total power as all birds exhibited isoelectric EEG and died. There was a very pronounced increase in total power at 50-60s into the LAPS cycle, which corresponded to dominance of the signal by high amplitude slow waves, indicating loss of consciousness. Slow wave EEG was seen early in the LAPS process, before behavioural evidence of loss of consciousness such as ataxia and loss of posture, almost certainly due to the fact that it was completely dark in the LAPS chamber. ECG recordings showed a pronounced bradycardia (starting on average 49.6s into LAPS), often associated with arrhythmia, until

  8. Effect of hypoxia on lung gene expression and proteomic profile: insights into the pulmonary surfactant response

    PubMed Central

    Olmeda, Bárbara; Umstead, Todd M.; Silveyra, Patricia; Pascual, Alberto; López-Barneo, José; Phelps, David S.; Floros, Joanna; Pérez-Gil, Jesús

    2014-01-01

    Exposure of lung to hypoxia has been previously reported to be associated with significant alterations in the protein content of bronchoalveolar lavage (BAL) and lung tissue. In the present work we have used a proteomic approach to describe the changes in protein complement induced by moderate long-term hypoxia (rats exposed to 10% O2 for 72 hours) in BAL and lung tissue, with a special focus on the proteins associated with pulmonary surfactant, which could indicate adaptation of this system to limited oxygen availability. The analysis of the general proteomic profile indicates a hypoxia-induced increase in proteins associated with inflammation both in lavage and lung tissue. Analysis at mRNA and protein levels revealed no significant changes induced by hypoxia on the content in surfactant proteins or their apparent oligomeric state. In contrast, we detected a hypoxia-induced significant increase in the expression and accumulation of hemoglobin in lung tissue, at both mRNA and protein levels, as well as an accumulation of hemoglobin both in BAL and associated with surface-active membranes of the pulmonary surfactant complex. Evaluation of pulmonary surfactant surface activity from hypoxic rats showed no alterations in its spreading ability, ruling out inhibition by increased levels of serum or inflammatory proteins. PMID:24576641

  9. Regulation of CREB by moderate hypoxia in PC12 cells.

    PubMed

    Beitner-Johnson, D; Rust, R T; Hsieh, T; Millhorn, D E

    2000-01-01

    The mechanisms by which excitable cells adapt and respond to changes in O2 levels remain largely unknown. We have investigated the effect of hypoxia on the cyclic AMP response element binding protein (CREB) transcription factor. PC12 cells were exposed to moderate levels of hypoxia (5% O2) for various times between 20 min and 6 hr. We found that hypoxia rapidly and persistently induced ser133 phosphorylation of CREB. This effect was more robust than that produced by exposing PC12 cells to either forskolin, KCl, or NGF. This effect was not due to activation of any of the previously known CREB kinases, including PKA, CaMK, PKC, p70s6k, or MAPKAP kinase-2. Thus, hypoxia may induce activation of a novel CREB kinase. To test whether phosphorylation of CREB was associated with an activation of CRE-dependent gene expression, cells were transfected with wild type and mutated regions of the 5'-flanking region of the tyrosine hydroxylase (TH) gene fused to a CAT reporter gene. Mutation of the CRE element in a TH reporter gene reduced, but did not abolish, the effects of hypoxia on TH gene expression. However, hypoxia did not induce transactivation of a GAL4-luciferase reporter by a GAL4-CREB fusion protein. Thus, the mechanism by which hypoxia regulates CREB is distinct, and more complex, than that induced by forskolin, depolarization, or nerve growth factor. PMID:10849656

  10. Cerebral hypoxia

    MedlinePlus

    ... death. Treatment depends on the cause of the hypoxia. Basic life support is most important. Treatment involves: Breathing ... Complications of cerebral hypoxia include a prolonged vegetative ... sleep-wake cycle, and eye opening, but the person is not alert ...

  11. Neuronal pentraxin 1 expression is regulated by hypoxia inducible factor-1α.

    PubMed

    Botlagunta, Mahendran

    2015-01-01

    Neuronal pentraxins (NPs) are belong to sub family of long pentraxin proteins consist of neuronal pentraxin 1 (NP1), neuronal pentraxin 2 (NP2), and neuronal pentraxin receptor (NPR). Enhanced expression of NP1 in hypoxic conditions has shown to induce cell death in neuronal cells, however, the underlying mechanism of NP1 regulation by hypoxia remains elusive. To demonstrate that, we have cloned human NP1 gene promoter upstream of the luciferase gene and the activity of NP1 promoter was studied using HEK cell lines. Within the promoter region of the human NP1 gene, we identified six putative hypoxia inducible factor (HIF) responsive elements. By luciferase reporter assays we determined that the hypoxia inducible factor responsive element is located between -332 to -215 positions relative to the translation start site are essential for transcriptional activation of NP1 under hypoxic conditions. To further confirm the activity is solely due to hypoxia, we transiently transfected green fluorescent protein (EGFP) under transcriptional control of five copies of a hypoxia response element (HRE). The intensity of GFP was recorded at normal and hypoxic conditions. Taken together, our results demonstrate that NP1 gene is a target of as a hypoxia-inducible factor and it regulate NP1 expression by binding to hypoxia responsive elements (HREs) in its promoter region.

  12. Cardiorespiratory control and cytokine profile in response to heat stress, hypoxia, and lipopolysaccharide (LPS) exposure during early neonatal period.

    PubMed

    McDonald, Fiona B; Chandrasekharan, Kumaran; Wilson, Richard J A; Hasan, Shabih U

    2016-02-01

    Sudden infant death syndrome (SIDS) is one of the most common causes of postneonatal infant mortality in the developed world. An insufficient cardiorespiratory response to multiple environmental stressors (such as prone sleeping positioning, overwrapping, and infection), during a critical period of development in a vulnerable infant, may result in SIDS. However, the effect of multiple risk factors on cardiorespiratory responses has rarely been tested experimentally. Therefore, this study aimed to quantify the independent and possible interactive effects of infection, hyperthermia, and hypoxia on cardiorespiratory control in rats during the neonatal period. We hypothesized that lipopolysaccharide (LPS) administration will negatively impact cardiorespiratory responses to increased ambient temperature and hypoxia in neonatal rats. Sprague-Dawley neonatal rat pups were studied at postnatal day 6-8. Rats were examined at an ambient temperature of 33°C or 38°C. Within each group, rats were allocated to control, saline, or LPS (200 μg/kg) treatments. Cardiorespiratory and thermal responses were recorded and analyzed before, during, and after a hypoxic exposure (10% O2). Serum samples were taken at the end of each experiment to measure cytokine concentrations. LPS significantly increased cytokine concentrations (such as TNFα, IL-1β, MCP-1, and IL-10) compared to control. Our results do not support a three-way interaction between experimental factors on cardiorespiratory control. However, independently, heat stress decreased minute ventilation during normoxia and increased the hypoxic ventilatory response. Furthermore, LPS decreased hypoxia-induced tachycardia. Herein, we provide an extensive serum cytokine profile under various experimental conditions and new evidence that neonatal cardiorespiratory responses are adversely affected by dual interactions of environmental stress factors. PMID:26811056

  13. Cutaneous vascular and core temperature responses to sustained cold exposure in hypoxia.

    PubMed

    Simmons, Grant H; Barrett-O'Keefe, Zachary; Minson, Christopher T; Halliwill, John R

    2011-10-01

    We tested the effect of hypoxia on cutaneous vascular regulation and defense of core temperature during cold exposure. Twelve subjects had two microdialysis fibres placed in the ventral forearm and were immersed to the sternum in a bathtub on parallel study days (normoxia and poikilocapnic hypoxia with an arterial O(2) saturation of 80%). One fibre served as the control (1 mM propranolol) and the other received 5 mM yohimbine (plus 1 mM propranolol) to block adrenergic receptors. Skin blood flow was assessed at each site (laser Doppler flowmetry), divided by mean arterial pressure to calculate cutaneous vascular conductance (CVC), and scaled to baseline. Cold exposure was first induced by a progressive reduction in water temperature from 36 to 23°C over 30 min to assess cutaneous vascular regulation, then by clamping the water temperature at 10°C for 45 min to test defense of core temperature. During normoxia, cold stress reduced CVC in control (-44 ± 4%) and yohimbine sites (-13 ± 7%; both P < 0.05 versus precooling). Hypoxia caused vasodilatation prior to cooling but resulted in greater reductions in CVC in control (-67 ± 7%) and yohimbine sites (-35 ± 11%) during cooling (both P < 0.05 versus precooling; both P < 0.05 versus normoxia). Core cooling rate during the second phase of cold exposure was unaffected by hypoxia (-1.81 ± 0.23°C h(-1) in normoxia versus -1.97 ± 0.33°C h(-1) in hypoxia; P > 0.05). We conclude that hypoxia increases cutaneous (non-noradrenergic) vasoconstriction during prolonged cold exposure, while core cooling rate is not consistently affected. PMID:21705404

  14. In utero cannabinoid exposure alters breathing and the response to hypoxia in newborn mice.

    PubMed

    Tree, Keda C; Scotto di Perretolo, Maud; Peyronnet, Julie; Cayetanot, Florence

    2014-07-01

    Cannabis is one of the most commonly used recreational drugs at ages highly correlated with potential pregnancy. Endocannabinoid signalling regulates important stages of neuronal development. When cannabinoid receptors, which are widely distributed through the nervous system, are activated by exogenous cannabinoids, breathing in adult rats is depressed. Here, we show that, in newborn mice, endocannabinoids, through the activation of cannabinoid receptor type 1 (CB1 R), participate in the modulation of respiration and its control. Blocking CB1 Rs at birth suppressed the brake exerted by endocannabinoids on ventilation in basal and in hypoxic conditions. The number of apnoeas and their duration were also minimized by activation of CB1 Rs in normoxic and in hypoxic conditions. However, prenatal cannabis intoxication, caused by a daily injection of WIN55,212-2, in pregnant mice durably modified respiration of the offspring, as shown by hyperventilation in basal conditions, an altered chemoreflex in response to hypoxia, and longer apnoeas. When CB1 Rs were blocked in WIN55,212-2 treated newborns, persistent hyperventilation was still observed, which could partly be explained by a perturbation of the central respiratory network. In fact, in vitro medullary preparations from WIN55,212-2 treated pups, free of peripheral or of supramedullary structures, showed an altered fictive breathing frequency. In conclusion, the endocannabinoid pathway at birth seems to modulate breathing and protect the newborn against apnoeas. However, when exposed prenatally to an excess of cannabinoid, the breathing neuronal network in development seems to be modified, probably rendering the newborn more vulnerable in the face of an unstable environment. PMID:24717006

  15. Hypoxia-Inducible Angiopoietin-2 Expression Is Mimicked by Iodonium Compounds and Occurs in the Rat Brain and Skin in Response to Systemic Hypoxia and Tissue Ischemia

    PubMed Central

    Mandriota, Stefano J.; Pyke, Charles; Di Sanza, Corinne; Quinodoz, Pierre; Pittet, Brigitte; Pepper, Michael S.

    2000-01-01

    Angiopoietins are ligands for the endothelial cell tyrosine kinase receptor Tie-2. Ang-1, the major physiological activator of Tie-2, promotes blood vessel maturation and stability. Ang-2 counteracts this effect by competitively inhibiting the binding of Ang-1 to Tie-2. Using a combined RNase protection/semiquantitative reverse transcriptase-polymerase chain reaction approach, we demonstrate that hypoxia up-regulates Ang-2 mRNA levels by up to 3.3-fold in two human endothelial cell lines. In bovine microvascular endothelial (BME) cells, the flavoprotein oxidoreductase inhibitor diphenylene iodonium (DPI) and the related compound iodonium diphenyl mimic induction of Ang-2 but not vascular endothelial growth factor (VEGF) by hypoxia; in combination with hypoxia, DPI further increases Ang-2 expression but has no effect on the induction of VEGF by hypoxia. Neither Ang-2 or VEGF was increased by cyanide or rotenone, suggesting that failure in mitochondrial electron transport is not involved in the oxygen-sensing system that controls their expression. In ischemic rat dorsal skin flaps or in the brain of rats maintained for 12 hours under conditions of hypoxia, Ang-2 mRNA was up-regulated 7.5- or 17.6- fold, respectively. VEGF was concomitantly increased, whereas expression of Ang-1, Tie-2, and the related receptor Tie-1 was unaltered. In situ hybridization localized Ang-2 mRNA to endothelial cells in hypoxic skin. These findings 1) show that up-regulation of Ang-2 by hypoxia occurs widely in endothelial cells in vitro and in vivo; 2) suggest that induction of Ang-2, but not VEGF, by hypoxia in BME cells is controlled by a flavoprotein oxidoreductase that is sensitive to iodonium compounds; and 3) point to Ang-2 and VEGF as independently regulated and selective effectors of hypoxia-induced vascular sprouting. PMID:10854229

  16. Oxidative stress response to acute hypobaric hypoxia and its association with indirect measurement of increased intracranial pressure: a field study

    PubMed Central

    Strapazzon, Giacomo; Malacrida, Sandro; Vezzoli, Alessandra; Dal Cappello, Tomas; Falla, Marika; Lochner, Piergiorgio; Moretti, Sarah; Procter, Emily; Brugger, Hermann; Mrakic-Sposta, Simona

    2016-01-01

    High altitude is the most intriguing natural laboratory to study human physiological response to hypoxic conditions. In this study, we investigated changes in reactive oxygen species (ROS) and oxidative stress biomarkers during exposure to hypobaric hypoxia in 16 lowlanders. Moreover, we looked at the potential relationship between ROS related cellular damage and optic nerve sheath diameter (ONSD) as an indirect measurement of intracranial pressure. Baseline measurement of clinical signs and symptoms, biological samples and ultrasonography were assessed at 262 m and after passive ascent to 3830 m (9, 24 and 72 h). After 24 h the imbalance between ROS production (+141%) and scavenging (−41%) reflected an increase in oxidative stress related damage of 50–85%. ONSD concurrently increased, but regression analysis did not infer a causal relationship between oxidative stress biomarkers and changes in ONSD. These results provide new insight regarding ROS homeostasis and potential pathophysiological mechanisms of acute exposure to hypobaric hypoxia, plus other disease states associated with oxidative-stress damage as a result of tissue hypoxia. PMID:27579527

  17. Combined effects of toxic cyanobacteria Microcystis aeruginosa and hypoxia on the physiological responses of triangle sail mussel Hyriopsis cumingii.

    PubMed

    Hu, Menghong; Wu, Fangli; Yuan, Mingzhe; Liu, Qigen; Wang, Youji

    2016-04-01

    The single and combined effects of toxic cyanobacteria Microcystis aeruginosa and hypoxia on the energy budget of triangle sail mussel Hyriopsis cumingii were determined in terms of scope for growth (SfG). Mussels were exposed to different combinations of toxic M. aeruginosa (0%, 50%, and 100% of total dietary dry weight) and dissolved oxygen concentrations (1, 3, and 6.0mg O2l(-1)) with a 3×3 factorial design for 14 days, followed by a recovery period with normal conditions for 7 days. Microcystin contents in mussel tissues increased with the increase in the exposed M. aeruginosa concentration at each sampling time. Adverse physiological responses of H. cumingii under toxic M. aeruginosa and hypoxic exposure were found in terms of clearance rate, absorption efficiency, respiration rate, excretion rate, and SfG. Results emphasized the importance of combined effects of hypoxia and toxic cyanobacteria on H. cumingii bioenergetic parameters, highlighted the interactive effects of toxic algae and hypoxia, and implied that the two stressors affected H. cumingii during the exposure period and showed carryover effects later. Thus, if H. cumingii is used as a bioremediation tool to eliminate M. aeruginosa, the waters should be oxygenated.

  18. Oxidative stress response to acute hypobaric hypoxia and its association with indirect measurement of increased intracranial pressure: a field study.

    PubMed

    Strapazzon, Giacomo; Malacrida, Sandro; Vezzoli, Alessandra; Dal Cappello, Tomas; Falla, Marika; Lochner, Piergiorgio; Moretti, Sarah; Procter, Emily; Brugger, Hermann; Mrakic-Sposta, Simona

    2016-01-01

    High altitude is the most intriguing natural laboratory to study human physiological response to hypoxic conditions. In this study, we investigated changes in reactive oxygen species (ROS) and oxidative stress biomarkers during exposure to hypobaric hypoxia in 16 lowlanders. Moreover, we looked at the potential relationship between ROS related cellular damage and optic nerve sheath diameter (ONSD) as an indirect measurement of intracranial pressure. Baseline measurement of clinical signs and symptoms, biological samples and ultrasonography were assessed at 262 m and after passive ascent to 3830 m (9, 24 and 72 h). After 24 h the imbalance between ROS production (+141%) and scavenging (-41%) reflected an increase in oxidative stress related damage of 50-85%. ONSD concurrently increased, but regression analysis did not infer a causal relationship between oxidative stress biomarkers and changes in ONSD. These results provide new insight regarding ROS homeostasis and potential pathophysiological mechanisms of acute exposure to hypobaric hypoxia, plus other disease states associated with oxidative-stress damage as a result of tissue hypoxia. PMID:27579527

  19. Combined effects of toxic cyanobacteria Microcystis aeruginosa and hypoxia on the physiological responses of triangle sail mussel Hyriopsis cumingii.

    PubMed

    Hu, Menghong; Wu, Fangli; Yuan, Mingzhe; Liu, Qigen; Wang, Youji

    2016-04-01

    The single and combined effects of toxic cyanobacteria Microcystis aeruginosa and hypoxia on the energy budget of triangle sail mussel Hyriopsis cumingii were determined in terms of scope for growth (SfG). Mussels were exposed to different combinations of toxic M. aeruginosa (0%, 50%, and 100% of total dietary dry weight) and dissolved oxygen concentrations (1, 3, and 6.0mg O2l(-1)) with a 3×3 factorial design for 14 days, followed by a recovery period with normal conditions for 7 days. Microcystin contents in mussel tissues increased with the increase in the exposed M. aeruginosa concentration at each sampling time. Adverse physiological responses of H. cumingii under toxic M. aeruginosa and hypoxic exposure were found in terms of clearance rate, absorption efficiency, respiration rate, excretion rate, and SfG. Results emphasized the importance of combined effects of hypoxia and toxic cyanobacteria on H. cumingii bioenergetic parameters, highlighted the interactive effects of toxic algae and hypoxia, and implied that the two stressors affected H. cumingii during the exposure period and showed carryover effects later. Thus, if H. cumingii is used as a bioremediation tool to eliminate M. aeruginosa, the waters should be oxygenated. PMID:26686521

  20. Glycolysis determines dichotomous regulation of T cell subsets in hypoxia

    PubMed Central

    Xu, Yang; Zhang, Ming; Savoldo, Barbara; Metelitsa, Leonid S.; Rodgers, John; Yustein, Jason T.; Neilson, Joel R.

    2016-01-01

    Hypoxia occurs in many pathological conditions, including chronic inflammation and tumors, and is considered to be an inhibitor of T cell function. However, robust T cell responses occur at many hypoxic inflammatory sites, suggesting that functions of some subsets are stimulated under low oxygen conditions. Here, we investigated how hypoxic conditions influence human T cell functions and found that, in contrast to naive and central memory T cells (TN and TCM), hypoxia enhances the proliferation, viability, and cytotoxic action of effector memory T cells (TEM). Enhanced TEM expansion in hypoxia corresponded to high hypoxia-inducible factor 1α (HIF1α) expression and glycolytic activity compared with that observed in TN and TCM. We determined that the glycolytic enzyme GAPDH negatively regulates HIF1A expression by binding to adenylate-uridylate–rich elements in the 3′-UTR region of HIF1A mRNA in glycolytically inactive TN and TCM. Conversely, active glycolysis with decreased GAPDH availability in TEM resulted in elevated HIF1α expression. Furthermore, GAPDH overexpression reduced HIF1α expression and impaired proliferation and survival of T cells in hypoxia, indicating that high glycolytic metabolism drives increases in HIF1α to enhance TEM function during hypoxia. This work demonstrates that glycolytic metabolism regulates the translation of HIF1A to determine T cell responses to hypoxia and implicates GAPDH as a potential mechanism for controlling T cell function in peripheral tissue. PMID:27294526

  1. Mutation in mitochondrial complex I ND6 subunit is associated with defective response to hypoxia in human glioma cells

    PubMed Central

    DeHaan, Carrie; Habibi-Nazhad, Bahram; Yan, Elizabeth; Salloum, Nicole; Parliament, Matthew; Allalunis-Turner, Joan

    2004-01-01

    Background Hypoxia-tolerant human glioma cells reduce oxygen consumption rate in response to oxygen deficit, a defense mechanism that contributes to survival under moderately hypoxic conditions. In contrast, hypoxia-sensitive cells lack this ability. As it has been previously shown that hypoxia-tolerant (M006x, M006xLo, M059K) and -sensitive (M010b) glioma cells express differences in mitochondrial function, we investigated whether mitochondrial DNA-encoded mutations are associated with differences in the initial response to oxygen deficit. Results The mitochondrial genome was sequenced and 23 mtDNA alterations were identified, one of which was an unreported mutation (T-C transition in base pair 14634) in the hypoxia-sensitive cell line, M010b, that resulted in a single amino acid change in the gene encoding the ND6 subunit of NADH:ubiquinone oxidoreductase (Complex I). The T14634C mutation did not abrogate ND6 protein expression, however, M010b cells were more resistant to rotenone, an agent used to screen for Complex I mutations, and adriamycin, an agent activated by redox cycling. The specific function of mtDNA-encoded, membrane-embedded Complex I ND subunits is not known at present. Current models suggest that the transmembrane arm of Complex I may serve as a conformationally driven proton channel. As cellular respiration is regulated, in part, by proton flux, we used homology-based modeling and computational molecular biology to predict the 3D structure of the wild type and mutated ND6 proteins. These models predict that the T14634C mutation alters the structure and orientation of the trans-membrane helices of the ND6 protein. Conclusion Complex I ND subunits are mutational hot spots in tumor mtDNA. Genetic changes that alter Complex I structure and function may alter a cell's ability to respond to oxygen deficit and consolidate hypoxia rescue mechanisms, and may contribute to resistance to chemotherapeutic agents that require redox cycling for activation

  2. Adenosine modulates hypoxia-induced responses in rat PC12 cells via the A2A receptor.

    PubMed

    Kobayashi, S; Conforti, L; Pun, R Y; Millhorn, D E

    1998-04-01

    1. The present study was undertaken to determine the role of adenosine in mediating the cellular responses to hypoxia in rat phaeochromocytoma (PC12) cells, an oxygen-sensitive clonal cell line. 2. Reverse transcriptase polymerase chain reaction studies revealed that PC12 cells express adenosine deaminase (the first catalysing enzyme of adenosine degradation) and the A2A and A2B adenosine receptors, but not the A1 or A3 adenosine receptors. 3. Whole-cell current- and voltage-clamp experiments showed that adenosine attenuated the hypoxia-induced membrane depolarization. The hypoxia-induced suppression of the voltage-sensitive potassium current (IK(V)) was markedly reduced by adenosine. Furthermore, extracellularly applied adenosine increased the peak amplitudes of IK(V) in a concentration-dependent manner. This increase was blocked by pretreatment not only with a non-specific adenosine receptor antagonist, 8-phenyltheophylline (8-PT), but also with a selective A2A receptor antagonist, ZM241385. 4. Ca2+ imaging studies using fura-2 acetoxymethyl ester (fura-2 AM) revealed that the increase in intracellular free Ca2+ during hypoxic exposure was attenuated significantly by adenosine. Voltage-clamp studies showed that adenosine inhibited the voltage-dependent Ca2+ currents (ICa) in a concentration-dependent fashion. This inhibition was also abolished by both 8-PT and ZM241385. 5. The modulation of both IK(V) and ICa by adenosine was prevented by intracellular application of an inhibitor of protein kinase A (PKA), PKA inhibitor fragment (6-22) amide. In addition, the effect of adenosine on either IK(V) or ICa was absent in PKA-deficient PC12 cells. 6. These results indicate that the modulatory effects of adenosine on the hypoxia-induced membrane responses of PC12 cells are likely to be mediated via activation of the A2A receptor, and that the PKA pathway is required for these modulatory actions. We propose that this modulation serves to regulate membrane excitability in

  3. Adenosine modulates hypoxia-induced responses in rat PC12 cells via the A2A receptor

    PubMed Central

    Kobayashi, Shuichi; Conforti, Laura; Pun, Raymund Y K; Millhorn, David E

    1998-01-01

    The present study was undertaken to determine the role of adenosine in mediating the cellular responses to hypoxia in rat phaeochromocytoma (PC12) cells, an oxygen-sensitive clonal cell line. Reverse transcriptase polymerase chain reaction studies revealed that PC12 cells express adenosine deaminase (the first catalysing enzyme of adenosine degradation) and the A2A and A2B adenosine receptors, but not the A1 or A3 adenosine receptors. Whole-cell current- and voltage-clamp experiments showed that adenosine attenuated the hypoxia-induced membrane depolarization. The hypoxia-induced suppression of the voltage-sensitive potassium current (IK(V)) was markedly reduced by adenosine. Furthermore, extracellularly applied adenosine increased the peak amplitudes of IK(V) in a concentration-dependent manner. This increase was blocked by pretreatment not only with a non-specific adenosine receptor antagonist, 8-phenyltheophylline (8-PT), but also with a selective A2A receptor antagonist, ZM241385. Ca2+ imaging studies using fura-2 acetoxymethyl ester (fura-2 AM) revealed that the increase in intracellular free Ca2+ during hypoxic exposure was attenuated significantly by adenosine. Voltage-clamp studies showed that adenosine inhibited the voltage-dependent Ca2+ currents (ICa) in a concentration-dependent fashion. This inhibition was also abolished by both 8-PT and ZM241385. The modulation of both IK(V) and ICa by adenosine was prevented by intracellular application of an inhibitor of protein kinase A (PKA), PKA inhibitor fragment (6–22) amide. In addition, the effect of adenosine on either IK(V) or ICa was absent in PKA-deficient PC12 cells. These results indicate that the modulatory effects of adenosine on the hypoxia-induced membrane responses of PC12 cells are likely to be mediated via activation of the A2A receptor, and that the PKA pathway is required for these modulatory actions. We propose that this modulation serves to regulate membrane excitability in PC12 cells and

  4. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery.

    PubMed

    Yu, Jicheng; Zhang, Yuqi; Ye, Yanqi; DiSanto, Rocco; Sun, Wujin; Ranson, Davis; Ligler, Frances S; Buse, John B; Gu, Zhen

    2015-07-01

    A glucose-responsive "closed-loop" insulin delivery system mimicking the function of pancreatic cells has tremendous potential to improve quality of life and health in diabetics. Here, we report a novel glucose-responsive insulin delivery device using a painless microneedle-array patch ("smart insulin patch") containing glucose-responsive vesicles (GRVs; with an average diameter of 118 nm), which are loaded with insulin and glucose oxidase (GOx) enzyme. The GRVs are self-assembled from hypoxia-sensitive hyaluronic acid (HS-HA) conjugated with 2-nitroimidazole (NI), a hydrophobic component that can be converted to hydrophilic 2-aminoimidazoles through bioreduction under hypoxic conditions. The local hypoxic microenvironment caused by the enzymatic oxidation of glucose in the hyperglycemic state promotes the reduction of HS-HA, which rapidly triggers the dissociation of vesicles and subsequent release of insulin. The smart insulin patch effectively regulated the blood glucose in a mouse model of chemically induced type 1 diabetes. The described work is the first demonstration, to our knowledge, of a synthetic glucose-responsive device using a hypoxia trigger for regulation of insulin release. The faster responsiveness of this approach holds promise in avoiding hyperglycemia and hypoglycemia if translated for human therapy. PMID:26100900

  5. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery

    PubMed Central

    Yu, Jicheng; Zhang, Yuqi; Ye, Yanqi; DiSanto, Rocco; Sun, Wujin; Ranson, Davis; Ligler, Frances S.; Buse, John B.; Gu, Zhen

    2015-01-01

    A glucose-responsive “closed-loop” insulin delivery system mimicking the function of pancreatic cells has tremendous potential to improve quality of life and health in diabetics. Here, we report a novel glucose-responsive insulin delivery device using a painless microneedle-array patch (“smart insulin patch”) containing glucose-responsive vesicles (GRVs; with an average diameter of 118 nm), which are loaded with insulin and glucose oxidase (GOx) enzyme. The GRVs are self-assembled from hypoxia-sensitive hyaluronic acid (HS-HA) conjugated with 2-nitroimidazole (NI), a hydrophobic component that can be converted to hydrophilic 2-aminoimidazoles through bioreduction under hypoxic conditions. The local hypoxic microenvironment caused by the enzymatic oxidation of glucose in the hyperglycemic state promotes the reduction of HS-HA, which rapidly triggers the dissociation of vesicles and subsequent release of insulin. The smart insulin patch effectively regulated the blood glucose in a mouse model of chemically induced type 1 diabetes. The described work is the first demonstration, to our knowledge, of a synthetic glucose-responsive device using a hypoxia trigger for regulation of insulin release. The faster responsiveness of this approach holds promise in avoiding hyperglycemia and hypoglycemia if translated for human therapy. PMID:26100900

  6. Temporal Responses of Coastal Hypoxia to Nutrient Loading and Physical Controls.

    EPA Science Inventory

    The incidence and intensity of hypoxic waters in coastal aquatic ecosystems has been expanding in recent decades coincident with eutrophication of the coastal zone. Because of the negative effects hypoxia has on many organisms, extensive efforts have been made to reduce the size ...

  7. Aerobic fitness influences the response of maximal oxygen uptake and lactate threshold in acute hypobaric hypoxia.

    PubMed

    Koistinen, P; Takala, T; Martikkala, V; Leppäluoto, J

    1995-02-01

    We studied 12 highly trained athletes, 6 male ice-hockey players and 6 cross-country skiers (2 females, 4 males). All of them participated in a maximal electrically braked bicycle ergometer test in a hypobaric chamber at the simulated altitude of 3000m (520 mmHg) and in normobaric conditions two days apart in random order. The maximal oxygen uptake was 57.4 +/- 7.1 (SD) ml/kg/min in normobaria (VO2maxnorm) and 46.6 +/- 4.9 (SD) ml/kg/min in hypobaric hypoxia (VO2maxhyp). The decrease in maximal oxygen uptake (delta VO2max) at the simulated altitude of 3000m correlated significantly (p < 0.05, r = 0.61) to the maximal oxygen uptake in normobaric conditions (VO2maxnorm). The lactate threshold was 43.5 +/- 6.4 (SD) ml/kg/min in normobaria (VO2LTnorm) and 36.5 +/- 4.2 (SD) ml/kg/min in hypobaric hypoxia (VO2LThyp). The decrement (delta VO2LT) of lactate threshold in hypoxia correlated significantly (p < 0.01, r = 0.68) with the lactate threshold in normobaric conditions (VOLTnorm). Thus we observed the largest reduction of both maximal oxygen uptake and lactate threshold during exercise at hypobaric hypoxia in the most fit athletes. PMID:7751080

  8. Similar Inflammatory Responses following Sprint Interval Training Performed in Hypoxia and Normoxia

    PubMed Central

    Richardson, Alan J.; Relf, Rebecca L.; Saunders, Arron; Gibson, Oliver R.

    2016-01-01

    Sprint interval training (SIT) is an efficient intervention capable of improving aerobic capacity and exercise performance. This experiment aimed to determine differences in training adaptations and the inflammatory responses following 2 weeks of SIT (30 s maximal work, 4 min recovery; 4–7 repetitions) performed in normoxia or hypoxia. Forty-two untrained participants [(mean ± SD), age 21 ±1 years, body mass 72.1 ±11.4 kg, and height 173 ±10 cm] were equally and randomly assigned to one of three groups; control (CONT; no training, n = 14), normoxic (NORM; SIT in FiO2: 0.21, n = 14), and normobaric hypoxic (HYP; SIT in FiO2: 0.15, n = 14). Participants completed a V˙O2peak test, a time to exhaustion (TTE) trial (power = 80% V˙O2peak) and had hematological [hemoglobin (Hb), haematocrit (Hct)] and inflammatory markers [interleukin-6 (IL-6), tumor necrosis factor-α (TNFα)] measured in a resting state, pre and post SIT. V˙O2peak (mL.kg−1.min−1) improved in HYP (+11.9%) and NORM (+9.8%), but not CON (+0.9%). Similarly TTE improved in HYP (+32.2%) and NORM (+33.0%), but not CON (+3.4%) whilst the power at the anaerobic threshold (AT; W.kg−1) also improved in HYP (+13.3%) and NORM (+8.0%), but not CON (–0.3%). AT (mL.kg−1.min−1) improved in HYP (+9.5%), but not NORM (+5%) or CON (–0.3%). No between group change occurred in 30 s sprint performance or Hb and Hct. IL-6 increased in HYP (+17.4%) and NORM (+20.1%), but not CON (+1.2%), respectively. TNF-α increased in HYP (+10.8%) NORM (+12.9%) and CON (+3.4%). SIT in HYP and NORM increased V˙O2peak, power at AT and TTE performance in untrained individuals, improvements in AT occurred only when SIT was performed in HYP. Increases in IL-6 and TNFα reflect a training induced inflammatory response to SIT; hypoxic conditions do not exacerbate this. PMID:27536249

  9. Similar Inflammatory Responses following Sprint Interval Training Performed in Hypoxia and Normoxia.

    PubMed

    Richardson, Alan J; Relf, Rebecca L; Saunders, Arron; Gibson, Oliver R

    2016-01-01

    Sprint interval training (SIT) is an efficient intervention capable of improving aerobic capacity and exercise performance. This experiment aimed to determine differences in training adaptations and the inflammatory responses following 2 weeks of SIT (30 s maximal work, 4 min recovery; 4-7 repetitions) performed in normoxia or hypoxia. Forty-two untrained participants [(mean ± SD), age 21 ±1 years, body mass 72.1 ±11.4 kg, and height 173 ±10 cm] were equally and randomly assigned to one of three groups; control (CONT; no training, n = 14), normoxic (NORM; SIT in FiO2: 0.21, n = 14), and normobaric hypoxic (HYP; SIT in FiO2: 0.15, n = 14). Participants completed a [Formula: see text] test, a time to exhaustion (TTE) trial (power = 80% [Formula: see text]) and had hematological [hemoglobin (Hb), haematocrit (Hct)] and inflammatory markers [interleukin-6 (IL-6), tumor necrosis factor-α (TNFα)] measured in a resting state, pre and post SIT. [Formula: see text] (mL.kg(-1).min(-1)) improved in HYP (+11.9%) and NORM (+9.8%), but not CON (+0.9%). Similarly TTE improved in HYP (+32.2%) and NORM (+33.0%), but not CON (+3.4%) whilst the power at the anaerobic threshold (AT; W.kg(-1)) also improved in HYP (+13.3%) and NORM (+8.0%), but not CON (-0.3%). AT (mL.kg(-1).min(-1)) improved in HYP (+9.5%), but not NORM (+5%) or CON (-0.3%). No between group change occurred in 30 s sprint performance or Hb and Hct. IL-6 increased in HYP (+17.4%) and NORM (+20.1%), but not CON (+1.2%), respectively. TNF-α increased in HYP (+10.8%) NORM (+12.9%) and CON (+3.4%). SIT in HYP and NORM increased [Formula: see text], power at AT and TTE performance in untrained individuals, improvements in AT occurred only when SIT was performed in HYP. Increases in IL-6 and TNFα reflect a training induced inflammatory response to SIT; hypoxic conditions do not exacerbate this.

  10. Similar Inflammatory Responses following Sprint Interval Training Performed in Hypoxia and Normoxia.

    PubMed

    Richardson, Alan J; Relf, Rebecca L; Saunders, Arron; Gibson, Oliver R

    2016-01-01

    Sprint interval training (SIT) is an efficient intervention capable of improving aerobic capacity and exercise performance. This experiment aimed to determine differences in training adaptations and the inflammatory responses following 2 weeks of SIT (30 s maximal work, 4 min recovery; 4-7 repetitions) performed in normoxia or hypoxia. Forty-two untrained participants [(mean ± SD), age 21 ±1 years, body mass 72.1 ±11.4 kg, and height 173 ±10 cm] were equally and randomly assigned to one of three groups; control (CONT; no training, n = 14), normoxic (NORM; SIT in FiO2: 0.21, n = 14), and normobaric hypoxic (HYP; SIT in FiO2: 0.15, n = 14). Participants completed a [Formula: see text] test, a time to exhaustion (TTE) trial (power = 80% [Formula: see text]) and had hematological [hemoglobin (Hb), haematocrit (Hct)] and inflammatory markers [interleukin-6 (IL-6), tumor necrosis factor-α (TNFα)] measured in a resting state, pre and post SIT. [Formula: see text] (mL.kg(-1).min(-1)) improved in HYP (+11.9%) and NORM (+9.8%), but not CON (+0.9%). Similarly TTE improved in HYP (+32.2%) and NORM (+33.0%), but not CON (+3.4%) whilst the power at the anaerobic threshold (AT; W.kg(-1)) also improved in HYP (+13.3%) and NORM (+8.0%), but not CON (-0.3%). AT (mL.kg(-1).min(-1)) improved in HYP (+9.5%), but not NORM (+5%) or CON (-0.3%). No between group change occurred in 30 s sprint performance or Hb and Hct. IL-6 increased in HYP (+17.4%) and NORM (+20.1%), but not CON (+1.2%), respectively. TNF-α increased in HYP (+10.8%) NORM (+12.9%) and CON (+3.4%). SIT in HYP and NORM increased [Formula: see text], power at AT and TTE performance in untrained individuals, improvements in AT occurred only when SIT was performed in HYP. Increases in IL-6 and TNFα reflect a training induced inflammatory response to SIT; hypoxic conditions do not exacerbate this. PMID:27536249

  11. Clinical Biomarkers for Hypoxia Targeting

    PubMed Central

    Le, Quynh-Thu; Courter, Don

    2010-01-01

    Tumor hypoxia or a reduction of the tissue oxygen tension is a key microenvironmental factor for tumor progression and treatment resistance in solid tumors. Because hypoxic tumor cells have been demonstrated to be more resistant to ionizing radiation, hypoxia has been a focus of laboratory and clinical research in radiation therapy for many decades. It is believed that proper detection of hypoxic regions would guide treatment options and ultimately improve tumor response. To date, most clinical efforts in targeting tumor hypoxia have yielded equivocal results due to the lack of appropriate patient selection. However, with improved understanding of the molecular pathways regulated by hypoxia and the discovery of novel hypoxia markers, the prospect of targeting hypoxia has become more tangible. This chapter will focus on the development of clinical biomarkers for hypoxia targeting. PMID:18483785

  12. Eliminating medullary 5-HT neurons delays arousal and decreases the respiratory response to repeated episodes of hypoxia in neonatal rat pups.

    PubMed

    Darnall, Robert A; Schneider, Robert W; Tobia, Christine M; Commons, Kathryn G

    2016-03-01

    Arousal from sleep is a critical defense mechanism when infants are exposed to hypoxia, and an arousal deficit has been postulated as contributing to the etiology of the sudden infant death syndrome (SIDS). The brainstems of SIDS infants are deficient in serotonin (5-HT) and tryptophan hydroxylase (TPH) and have decreased binding to 5-HT receptors. This study explores a possible connection between medullary 5-HT neuronal activity and arousal from sleep in response to hypoxia. Medullary raphe 5-HT neurons were eliminated from neonatal rat pups with intracisterna magna (CM) injections of 5,7-dihydroxytryptamine (DHT) at P2-P3. Each pup was then exposed to four episodes of hypoxia during sleep at three developmental ages (P5, P15, and P25) to produce an arousal response. Arousal, heart rate, and respiratory rate responses of DHT-injected pups were compared with pups that received CM artificial cerebrospinal fluid (aCSF) and those that received DHT but did not have a significant reduction in medullary 5-HT neurons. During each hypoxia exposure, the time to arousal from the onset of hypoxia (latency) was measured together with continuous measurements of heart and respiratory rates, oxyhemoglobin saturation, and chamber oxygen concentration. DHT-injected pups with significant losses of medullary 5-HT neurons exhibited significantly longer arousal latencies and decreased respiratory rate responses to hypoxia compared with controls. These results support the hypothesis that in newborn and young rat pups, 5-HT neurons located in the medullary raphe contribute to the arousal response to hypoxia. Thus alterations medullary 5-HT mechanisms might contribute to an arousal deficit and contribute to death in SIDS infants. PMID:26702023

  13. Hypoxia in Diabetic Kidneys

    PubMed Central

    Takiyama, Yumi; Haneda, Masakazu

    2014-01-01

    Diabetic nephropathy (DN) is now a leading cause of end-stage renal disease. In addition, DN accounts for the increased mortality in type 1 and type 2 diabetes, and then patients without DN achieve long-term survival compatible with general population. Hypoxia represents an early event in the development and progression of DN, and hypoxia-inducible factor- (HIF-) 1 mediates the metabolic responses to renal hypoxia. Diabetes induces the “fraternal twins” of hypoxia, that is, pseudohypoxia and hypoxia. The kidneys are susceptible to hyperoxia because they accept 20% of the cardiac output. Therefore, the kidneys have specific vasculature to avoid hyperoxia, that is, AV oxygen shunting. The NAD-dependent histone deacetylases (HDACs) sirtuins are seven mammalian proteins, SIRTs 1–7, which are known to modulate longevity and metabolism. Recent studies demonstrated that some isoforms of sirtuins inhibit the activation of HIF by deacetylation or noncatalyzing effects. The kidneys, which have a vascular system that protects them against hyperoxia, unfortunately experience extraordinary hypernutrition today. Then, an unexpected overload of glucose augments the oxygen consumption, which ironically results in hypoxia. This review highlights the primary role of HIF in diabetic kidneys for the metabolic adaptation to diabetes-induced hypoxia. PMID:25054148

  14. Mitochondria of cold hardy insects: responses to cold and hypoxia assessed at enzymatic, mRNA and DNA levels.

    PubMed

    McMullen, David C; Storey, Kenneth B

    2008-03-01

    Winter survival for larvae of goldenrod gall insects, the freeze-avoiding Epiblema scudderiana, and the freeze tolerant, Eurosta solidaginis, includes entry into diapause (a torpid state of arrested development) and expression of a variety of cryoprotective adaptations. Diapause and cold winter temperatures, as well as freezing in E. solidaginis, all strongly reduce the need for mitochondrial activity. To evaluate the responses of mitochondria to these conditions, we assessed the maximal activity of cytochrome c oxidase (COX), transcript levels of COX subunit 1 (encoded on the mitochondrial genome), mitochondrial 12S rRNA levels and mitochondrial DNA content. COX activity decreased over the winter months in both species to levels that were about one-third of September values. COX activity also dropped significantly in E. scudderiana in response to cold acclimation (4,-4,-20 degrees C) or hypoxia exposure. COX activity was less sensitive to these stresses in E. solidaginis but rose by approximately 50% when larvae were thawed after freezing. COX 1 mRNA transcripts and 12S rRNA levels were unchanged over the winter months in E. scudderiana, as was COX 1 DNA content; this indicates that changes in COX enzymatic activity are likely mediated mainly by post-translational modification. However, both COX transcript and 12S rRNA levels decreased in response to hypoxia exposure in both species, whereas COX DNA did not, which indicates that transcription of the mitochondrial genome is sensitive to oxygen levels.

  15. Pulmonary arterial responses to reactive oxygen species are altered in newborn piglets with chronic hypoxia-induced pulmonary hypertension

    PubMed Central

    Fike, Candice D.; Aschner, Judy L.; Slaughter, James C.; Kaplowitz, Mark R.; Zhang, Yongmei; Pfister, Sandra L.

    2011-01-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of pulmonary hypertension. ROS might mediate vascular responses, at least in part, by stimulating prostanoid production. Our goals were to determine if the effect of ROS on vascular tone is altered in resistance pulmonary arteries (PRA) of newborn piglets with chronic hypoxia-induced pulmonary hypertension and the role, if any, of prostanoids in ROS-mediated responses. In cannulated, pressurized PRA, ROS generated by xanthine (X) plus xanthine oxidase (XO) had minimal effect on vascular tone in control piglets but caused significant vasoconstriction in hypoxic piglets. Both cyclooxygenase inhibition with indomethacin and thromboxane synthase inhibition with dazoxiben significantly blunted constriction to X+XO in hypoxic PRA. X+XO increased prostacyclin production (70±8%) by a greater degree than thromboxane production (50±6%) in control PRA; this was not the case in hypoxic PRA where the increases in prostacyclin and thromboxane production were not statistically different (78±13% versus 216±93%, respectively). Thromboxane synthase expression was increased in PRA from hypoxic piglets while prostacyclin synthase expression was similar in PRA from hypoxic and control piglets. Under conditions of chronic hypoxia, altered vascular responses to ROS may contribute to pulmonary hypertension by a mechanism that involves the prostanoid vasoconstrictor, thromboxane. PMID:21516056

  16. Pharmacological stimulation of Hypoxia Inducible Factor-1α facilitates the corticosterone response to a mild acute stressor

    PubMed Central

    Harrell, Constance S.; Rowson, Sydney A.; Neigh, Gretchen N.

    2015-01-01

    While both glucocorticoids (the principal output of the hypothalamic-pituitary-adrenal axis) and oxidative stress have been implicated in outcomes due to an excessive or prolonged stress response, the precise mechanisms linking these two systems remain poorly elucidated. One potential mediator between the hypothalamic-pituitary-adrenal axis and oxidative stress is the Hypoxia Inducible Factor-1 (HIF-1) pathway. HIF-1 is an oxygen-responsive transcription factor with diverse effects including changes in cellular metabolism. The experiments in this manuscript sought to determine if pharmacological stimulation of HIF-1α via administration of dimethyloxalylglycine (DMOG) would facilitate the corticosterone response to a mild acute stressor. DMOG administration significantly increased plasma corticosterone five minutes after an acute airpuff without changing baseline plasma corticosterone or plasma corticosterone level two hours post-startle. DMOG administration also reduced hippocampal gene expression of the pro-translocation co-chaperone for the glucocorticoid receptor, FKBP4, two hours after airpuff startle. At this same two-hour time point, hippocampal expression of FKBP5, an anti-translocation co-chaperone of glucocorticoid receptor, in the DMOG-treated group was also positively correlated with plasma corticosterone levels. These data indicate that there is significant crosstalk between the hypothalamic-pituitary-axis and the HIF-1 pathway and extend the current knowledge of glucocorticoid and hypoxia interactions in an ethologically relevant stress model. PMID:26037418

  17. Effects of cyclic intermittent hypoxia on ET-1 responsiveness and endothelial dysfunction of pulmonary arteries in rats.

    PubMed

    Wang, Zhuo; Li, Ai-Ying; Guo, Qiu-Hong; Zhang, Jian-Ping; An, Qi; Guo, Ya-jing; Chu, Li; Weiss, J Woodrow; Ji, En-Sheng

    2013-01-01

    Obstructive sleep apnoea (OSA) is a risk factor for cardiovascular disorders and in some cases is complication of pulmonary hypertension. We simulated OSA by exposing rats to cyclic intermittent hypoxia (CIH) to investigate its effect on pulmonary vascular endothelial dysfunction. Sprague-Dawley Rats were exposed to CIH (FiO2 9% for 1 min, repeated every 2 min for 8 h/day, 7 days/wk for 3 wk), and the pulmonary arteries of normoxia and CIH treated rats were analyzed for expression of endothelin-1 (ET-1) and ET receptors by histological, immunohistochemical, RT-PCR and Western Blot analyses, as well as for contractility in response to ET-1. In the pulmonary arteries, ET-1 expression was increased, and ET-1 more potently elicited constriction of the pulmonary artery in CIH rats than in normoxic rats. Exposure to CIH induced marked endothelial cell damage associated with a functional decrease of endothelium-dependent vasodilatation in the pulmonary artery. Compared with normoxic rats, ETA receptor expression was increased in smooth muscle cells of the CIH rats, while the expression of ETB receptors was decreased in endothelial cells. These results demonstrated endothelium-dependent vasodilation was impaired and the vasoconstrictor responsiveness increased by CIH. The increased responsiveness to ET-1 induced by intermittent hypoxia in pulmonary arteries of rats was due to increased expression of ETA receptors predominantly, meanwhile, decreased expression of ETB receptors in the endothelium may also participate in it.

  18. Hand temperature responses to local cooling after a 10-day confinement to normobaric hypoxia with and without exercise.

    PubMed

    Keramidas, M E; Kölegård, R; Mekjavic, I B; Eiken, O

    2015-10-01

    The study examined the effects of a 10-day normobaric hypoxic confinement (FiO2: 0.14), with [hypoxic exercise training (HT); n = 8)] or without [hypoxic ambulatory (HA; n = 6)] exercise, on the hand temperature responses during and after local cold stress. Before and after the confinement, subjects immersed their right hand for 30 min in 8 °C water [cold water immersion (CWI)], followed by a 15-min spontaneous rewarming (RW), while breathing either room air (AIR), or a hypoxic gas mixture (HYPO). The hand temperature responses were monitored with thermocouples and infrared thermography. The confinement did not influence the hand temperature responses of the HA group during the AIR and HYPO CWI and the HYPO RW phases; but it impaired the AIR RW response (-1.3 °C; P = 0.05). After the confinement, the hand temperature responses were unaltered in the HT group throughout the AIR trial. However, the average hand temperature was increased during the HYPO CWI (+0.5 °C; P ≤ 0.05) and RW (+2.4 °C; P ≤ 0.001) phases. Accordingly, present findings suggest that prolonged exposure to normobaric hypoxia per se does not alter the hand temperature responses to local cooling; yet, it impairs the normoxic RW response. Conversely, the combined stimuli of continuous hypoxia and exercise enhance the finger cold-induced vasodilatation and hand RW responses, specifically, under hypoxic conditions.

  19. Hypoxia-induced autophagic response is associated with aggressive phenotype and elevated incidence of metastasis in orthotopic immunocompetent murine models of head and neck squamous cell carcinomas (HNSCC)

    PubMed Central

    Vigneswaran, Nadarajah; Wu, Jean; Song, Anren; Annapragada, Ananth; Zacharias, Wolfgang

    2011-01-01

    Hypoxia confers resistance to chemoradiation therapy and promotes metastasis in head and neck squamous cell carcinomas (HNSCC). We investigated the effects of hypoxia in tumor phenotype using immunocompetent murine HNSCC models. Balb/c mice were injected intraorally with murine squamous cell carcinoma cells LY-2 and B4B8. Intratumoral hypoxia fraction was evaluated by the immunohistochemical detection of hypoxic probe pimonidazole and carbonic anhydrase IX (CAIX). Tumor cell apoptosis and autophagy in hypoxic areas of these tumors were examined immunohistochemially. Hypoxia-induced apoptotic and autophagic responses in vitro were examined by treating LY2 cells with CoCl2. B4B8 tumors exhibited a non-aggressive phenotype characterized by its slow growth rate and the lack of metastatic spread. LY2 tumors demonstrated an aggressive phenotype characterized by rapid growth rate with regional and distant metastasis. Intratumoral hypoxia fraction in B4B8 tumors was significantly lower than LY2 tumors. Hypoxic areas in B4B8 tumors exhibited increased apoptosis rate than LY2 tumors. In contrast, hypoxic areas in LY2 tumors revealed autophagy. Induction of hypoxia in vitro elicited autophagy and not apoptosis in LY2 cells. Induction of autophagy coupled with blockage of apoptosis in hypoxic areas promotes tumor cells survival and confers aggressive phenotype in immunocompetent murine HNSCC models. PMID:21236253

  20. Thermoregulatory and metabolic responses to hypoxia in the oviparous lizard, Phrynocephalus przewalskii.

    PubMed

    He, Jianzheng; Xiu, Minghui; Tang, Xiaolong; Wang, Ningbo; Xin, Ying; Li, Weixin; Chen, Qiang

    2013-06-01

    The effects of hypoxia on behavioral thermoregulation, rate of heating and cooling, hysteresis of heart rate, and standard metabolic rate (SMR) were investigated in Phrynocephalus przewalskii, a small size toad headed lizard. Preferred temperature (T(b)) descended when lizards were exposed to severe hypoxia (8% O(2) and 6% O(2)) for 22 h, and lizards were able to maintain preferred T(b) after one week at 12% and 8% O(2) respectively. The period of heating increased after being treated with hypoxia (12% and 8% O(2)) for one week. Hysteresis of heart rate appeared at any given body temperature and oxygen level except at 39 °C and 40 °C at 8% O(2). SMR significantly increased after one-week acclimatization to 12% and 8% O(2) when ambient temperature (T(a)) was 25 °C, however, it did not change at 35 °C. Thus, we suggest that P. przewalskii has special thermoregulatory and metabolic mechanisms to acclimatize to the hypoxic environment.

  1. Right ventricular angiogenesis is an early adaptive response to chronic hypoxia-induced pulmonary hypertension

    PubMed Central

    Kolb, Todd M.; Peabody, Jacelyn; Baddoura, Philip; Fallica, Jon; Mock, Jason R.; Singer, Benjamin D.; D’Alessio, Franco R.; Damarla, Mahendra; Damico, Rachel L.; Hassoun, Paul M.

    2015-01-01

    Objective Myocardial angiogenesis is presumed to play a role in right ventricular (RV) adaptation to pulmonary hypertension (PH), though definitive evidence and functional correlations are lacking. We aimed to use definitive methods to correlate RV angiogenesis, hypertrophy, and function in a murine PH model. Methods Mice were exposed to chronic hypoxia for 21 days to induce PH (CH-PH) and RV remodeling. We used unbiased stereology and flow cytometry to quantify angiogenesis and myocyte hypertrophy, and pressure-volume loops to measure RV function. Results Within 7 days, RV-specific increases in total capillary length (10576±2574 cm vs. 6822±1379 cm; P = 0.02), surface area (10±3.3 cm2 vs. 4.9±1.5 cm2; P = 0.01), and volume (0.0013±0.0005 cm3 vs. 0.0006±0.0001 cm3; P = 0.02) were observed, and RV endothelial cell proliferation increased nearly 10-fold. Continued exposure led to progressive RV hypertrophy without additional angiogenesis. RV function was preserved, but activation of hypoxia-dependent gene expression was observed in both ventricles after 21 days. Conclusions Early RV remodeling in CH-PH is associated with RV angiogenesis and preserved RV function. Continued CH-PH is associated with RV hypertrophy but not angiogenesis, leading to biventricular activation of hypoxia-dependent gene expression. PMID:26352923

  2. Cardiorespiratory ontogeny and response to environmental hypoxia of larval spiny lobster, Sagmariasus verreauxi.

    PubMed

    Fitzgibbon, Quinn P; Ruff, Nicole; Battaglene, Stephen C

    2015-06-01

    Cardiorespiratory function is vital to an organism's ability to respond to environmental stress and analysis of cardiorespiratory capacity of species or life stages can elucidate vulnerability to climate change. Spiny lobsters have one of the most complex pelagic larval life cycles of any invertebrate and recently there has been an unexplained decline in post-larval recruitment for a number of species. We conducted the first analysis of the larval ontogeny of oxygen consumption, heart rate, maxilla 2 ventilation rate and oxyregulatory capacity of the spiny lobster, Sagmariasus verreauxi, to gain insight into their vulnerability to ocean change and to investigate life stage specific sensitivity to temperature-dependent oxygen limitation. In normoxia, heart and maxilla 2 ventilation rates increased in early larval development before declining, which we hypothesise is related to the transition from myogenic to neurogenic cardiac control. Maxilla 2 ventilation rate was sensitive to hypoxia at all larval stages, while heart rate was only sensitive to hypoxia in the late phyllosoma stages. Oxygen consumption conformed to environmental hypoxia at all larval stages. Spiny lobster larvae have limited respiratory control due to immature gas exchange physiology, compounded by their exceptionally large size. The lack of oxyregulatory ability suggests that all development stages are vulnerable to changes in sea temperature and oxygen availability. The synergetic stressors of increased temperature and reduced dissolved oxygen in the marine environment will diminish spiny lobster larval performance, increasing the challenge to achieve their extended larval life cycle, which may contribute to declines in post-larval recruitment.

  3. Hemoglobin βCys93 is essential for cardiovascular function and integrated response to hypoxia.

    PubMed

    Zhang, Rongli; Hess, Douglas T; Qian, Zhaoxia; Hausladen, Alfred; Fonseca, Fabio; Chaube, Ruchi; Reynolds, James D; Stamler, Jonathan S

    2015-05-19

    Oxygen delivery by Hb is essential for vertebrate life. Three amino acids in Hb are strictly conserved in all mammals and birds, but only two of those, a His and a Phe that stabilize the heme moiety, are needed to carry O2. The third conserved residue is a Cys within the β-chain (βCys93) that has been assigned a role in S-nitrosothiol (SNO)-based hypoxic vasodilation by RBCs. Under this model, the delivery of SNO-based NO bioactivity by Hb redefines the respiratory cycle as a triune system (NO/O2/CO2). However, the physiological ramifications of RBC-mediated vasodilation are unknown, and the apparently essential nature of βCys93 remains unclear. Here we report that mice with a βCys93Ala mutation are deficient in hypoxic vasodilation that governs blood flow autoregulation, the classic physiological mechanism that controls tissue oxygenation but whose molecular basis has been a longstanding mystery. Peripheral blood flow and tissue oxygenation are decreased at baseline in mutant animals and decline excessively during hypoxia. In addition, βCys93Ala mutation results in myocardial ischemia under basal normoxic conditions and in acute cardiac decompensation and enhanced mortality during transient hypoxia. Fetal viability is diminished also. Thus, βCys93-derived SNO bioactivity is essential for tissue oxygenation by RBCs within the respiratory cycle that is required for both normal cardiovascular function and circulatory adaptation to hypoxia.

  4. Cardiorespiratory ontogeny and response to environmental hypoxia of larval spiny lobster, Sagmariasus verreauxi.

    PubMed

    Fitzgibbon, Quinn P; Ruff, Nicole; Battaglene, Stephen C

    2015-06-01

    Cardiorespiratory function is vital to an organism's ability to respond to environmental stress and analysis of cardiorespiratory capacity of species or life stages can elucidate vulnerability to climate change. Spiny lobsters have one of the most complex pelagic larval life cycles of any invertebrate and recently there has been an unexplained decline in post-larval recruitment for a number of species. We conducted the first analysis of the larval ontogeny of oxygen consumption, heart rate, maxilla 2 ventilation rate and oxyregulatory capacity of the spiny lobster, Sagmariasus verreauxi, to gain insight into their vulnerability to ocean change and to investigate life stage specific sensitivity to temperature-dependent oxygen limitation. In normoxia, heart and maxilla 2 ventilation rates increased in early larval development before declining, which we hypothesise is related to the transition from myogenic to neurogenic cardiac control. Maxilla 2 ventilation rate was sensitive to hypoxia at all larval stages, while heart rate was only sensitive to hypoxia in the late phyllosoma stages. Oxygen consumption conformed to environmental hypoxia at all larval stages. Spiny lobster larvae have limited respiratory control due to immature gas exchange physiology, compounded by their exceptionally large size. The lack of oxyregulatory ability suggests that all development stages are vulnerable to changes in sea temperature and oxygen availability. The synergetic stressors of increased temperature and reduced dissolved oxygen in the marine environment will diminish spiny lobster larval performance, increasing the challenge to achieve their extended larval life cycle, which may contribute to declines in post-larval recruitment. PMID:25683612

  5. The NADPH Oxidase Subunit NOX4 Is a New Target Gene of the Hypoxia-inducible Factor-1

    PubMed Central

    Diebold, Isabel; Petry, Andreas; Hess, John

    2010-01-01

    NADPH oxidases are important sources of reactive oxygen species (ROS), possibly contributing to various disorders associated with enhanced proliferation. NOX4 appears to be involved in vascular signaling and may contribute to the response to hypoxia. However, the exact mechanisms controlling NOX4 levels under hypoxia are not resolved. We found that hypoxia rapidly enhanced NOX4 mRNA and protein levels in pulmonary artery smooth-muscle cells (PASMCs) as well as in pulmonary vessels from mice exposed to hypoxia. This response was dependent on the hypoxia-inducible transcription factor HIF-1α because overexpression of HIF-1α increased NOX4 expression, whereas HIF-1α depletion prevented this response. Mutation of a putative hypoxia-responsive element in the NOX4 promoter abolished hypoxic and HIF-1α–induced activation of the NOX4 promoter. Chromatin immunoprecipitation confirmed HIF-1α binding to the NOX4 gene. Induction of NOX4 by HIF-1α contributed to maintain ROS levels after hypoxia and hypoxia-induced proliferation of PASMCs. These findings show that NOX4 is a new target gene of HIF-1α involved in the response to hypoxia. Together with our previous findings that NOX4 mediates HIF-1α induction under normoxia, these data suggest an important role of the signaling axis between NOX4 and HIF-1α in various cardiovascular disorders under hypoxic and also nonhypoxic conditions. PMID:20427574

  6. The expanding universe of hypoxia.

    PubMed

    Zhang, Huafeng; Semenza, Gregg L

    2008-07-01

    Reduced oxygen availability (hypoxia) is sensed and transduced into changes in the activity or expression of cellular macromolecules. These responses impact on virtually all areas of biology and medicine. In this meeting report, we summarize major developments in the field that were presented at the 2008 Keystone Symposium on Cellular, Physiological, and Pathogenic Responses to Hypoxia.

  7. IFN-{gamma}+ CD8+ T Lymphocytes: Possible Link Between Immune and Radiation Responses in Tumor-Relevant Hypoxia

    SciTech Connect

    De Ridder, Mark Jiang Heng; Esch, Gretel van; Law, Kalun; Monsaert, Christinne; Berge, Dirk L. van den; Verellen, Dirk; Verovski, Valeri N.; Storme, Guy A.

    2008-07-01

    Activated T lymphocytes are known to kill tumor cells by triggering cytolytic mechanisms; however, their ability to enhance radiation responses remains unclear. This study examined the radiosensitizing potential of mouse CD8+ T cells, obtained by T-cell-tailored expansion and immunomagnetic purification. Activated CD8+ T cells displayed an interferon (IFN)-{gamma}+ phenotype and enhanced by 1.8-fold the radiosensitivity of EMT-6 tumor cells in 1% oxygen, which modeled tumor-relevant hypoxia. Radiosensitization was counteracted by neutralizing IFN-{gamma} or by blocking the inducible isoform of nitric oxide synthase, thus delineating the immune-tumor cell interaction through the IFN-{gamma} secretion pathway. Reverse transcriptase-polymerase chain reaction, enzyme-linked immunosorbent assay, and fluorescence-activated cell sorter data in agreement detected downregulation of the IFN-{gamma} gene by hypoxia, which caused IFN-{gamma} deficiency next to radioresistance. Therefore, immune and radiation responses are likely to be allied in the hypoxic tumor microenvironment, and CD8+ T cells may bridge immunostimulatory and radiosensitizing strategies.

  8. Claudin multigene family in channel catfish and their expression profiles in response to bacterial infection and hypoxia as revealed by meta-analysis of RNA-Seq datasets.

    PubMed

    Sun, Luyang; Liu, Shikai; Bao, Lisui; Li, Yun; Feng, Jianbin; Liu, Zhanjiang

    2015-03-01

    Claudins are one of the major groups of transmembrane proteins that play crucial roles in tight junctions. In addition to their function in the regulation of paracellular permeability, claudins are also involved in a number of biological processes related to pathogen infection, embryonic development, organ development and hypoxia response. Despite its importance, analyses of claudin genes in channel catfish have not been systematically performed. In this study, a total of 52 claudin genes were identified and characterized in channel catfish. Phylogenetic analyses were conducted to determine their identities and identify a number of lineage-specific claudin gene duplications in channel catfish. Expression profiles of catfish claudin genes in response to enteric septicemia of catfish (ESC) disease and hypoxia stress were determined by analyzing existing RNA-Seq datasets. Claudin genes were significantly down-regulated in the intestine at 3h post-infection, indicating that pathogens may disrupt the mucosal barrier by suppressing the expression of claudin genes. A total of six claudin genes were significantly regulated in the gill after hypoxia stress. Among them, the expressions of cldn-11b and cldn-10d were dramatically altered when comparing hypoxia tolerant fish with intolerant fish, though their specific roles involved in response to hypoxia stress remained unknown.

  9. Changes in muscle sympathetic nerve activity and vascular responses evoked in the spinotrapezius muscle of the rat by systemic hypoxia

    PubMed Central

    Hudson, Steven; Johnson, Christopher D; Marshall, Janice M

    2011-01-01

    Abstract Responses evoked in muscle sympathetic nerve activity (MSNA) by systemic hypoxia have received relatively little attention. Moreover, MSNA is generally identified from firing characteristics in fibres supplying whole limbs: their actual destination is not determined. We aimed to address these limitations by using a novel preparation of spinotrapezius muscle in anaesthetised rats. By using focal recording electrodes, multi-unit and discriminated single unit activity were recorded from the surface of arterial vessels. This had cardiac- and respiratory-related activities expected of MSNA, and was increased by baroreceptor unloading, decreased by baroreceptor stimulation and abolished by autonomic ganglion blockade. Progressive, graded hypoxia (breathing sequentially 12, 10, 8% O2 for 2 min each) evoked graded increases in MSNA. In single units, mean firing frequency increased from 0.2 ± 0.04 in 21% O2 to 0.62 ± 0.14 Hz in 8% O2, while instantaneous frequencies ranged from 0.04–6 Hz in 21% O2 to 0.09–20 Hz in 8% O2. Concomitantly, arterial pressure (ABP), fell and heart rate (HR) and respiratory frequency (RF) increased progressively, while spinotrapezius vascular resistance (SVR) decreased (Spinotrapezius blood flow/ABP), indicating muscle vasodilatation. During 8% O2 for 10 min, the falls in ABP and SVR were maintained, but RF, HR and MSNA waned towards baselines from the second to the tenth minute. Thus, we directly show that MSNA increases during systemic hypoxia to an extent that is mainly determined by the increases in peripheral chemoreceptor stimulation and respiratory drive, but its vasoconstrictor effects on muscle vasculature are largely blunted by local dilator influences, despite high instantaneous frequencies in single fibres. PMID:21486771

  10. Renal Overexpression of Atrial Natriuretic Peptide and Hypoxia Inducible Factor-1α as Adaptive Response to a High Salt Diet

    PubMed Central

    Della Penna, Silvana Lorena; Cao, Gabriel; Carranza, Andrea; Zotta, Elsa; Gorzalczany, Susana; Cerrudo, Carolina Susana; Rukavina Mikusic, Natalia Lucía; Correa, Alicia; Trida, Verónica; Toblli, Jorge Eduardo; Fernández, Belisario Enrique

    2014-01-01

    In the kidney, a high salt intake favors oxidative stress and hypoxia and causes the development of fibrosis. Both atrial natriuretic peptide (ANP) and hypoxia inducible factor (HIF-1α) exert cytoprotective effects. We tested the hypothesis that renal expression of ANP and HIF-1α is involved in a mechanism responding to the oxidative stress produced in the kidneys of rats chronically fed a high sodium diet. Sprague-Dawley rats were fed with a normal salt (0.4% NaCl) (NS) or a high salt (8% NaCl) (HS) diet for 3 weeks, with or without the administration of tempol (T), an inhibitor of oxidative stress, in the drinking water. We measured the mean arterial pressure (MAP), glomerular filtration rate (GFR), and urinary sodium excretion (UVNa). We evaluated the expression of ANP, HIF-1α, and transforming growth factor (TGF-β1) in renal tissues by western blot and immunohistochemistry. The animals fed a high salt diet showed increased MAP and UVNa levels and enhanced renal immunostaining of ANP, HIF-1α, and TGF-β1. The administration of tempol together with the sodium overload increased the natriuresis further and prevented the elevation of blood pressure and the increased expression of ANP, TGF-β1, and HIF-1α compared to their control. These findings suggest that HIF-1α and ANP, synthesized by the kidney, are involved in an adaptive mechanism in response to a sodium overload to prevent or attenuate the deleterious effects of the oxidative stress and the hypoxia on the development of fibrosis. PMID:24689065

  11. Measurement of the acute metabolic response to hypoxia in rat tumours in vivo using magnetic resonance spectroscopy and hyperpolarised pyruvate

    PubMed Central

    Bluff, Joanne E.; Reynolds, Steven; Metcalf, Stephen; Alizadeh, Tooba; Kazan, Samira M.; Bucur, Adriana; Wholey, Emily G.; Bibby, Becky A.S.; Williams, Leigh; Paley, Martyn N.; Tozer, Gillian M.

    2015-01-01

    Purpose To estimate the rate constant for pyruvate to lactate conversion in tumours in response to a hypoxic challenge, using hyperpolarised 13C1-pyruvate and magnetic resonance spectroscopy. Methods and materials Hypoxic inspired gas was used to manipulate rat P22 fibrosarcoma oxygen tension (pO2), confirmed by luminescence decay of oxygen-sensitive probes. Hyperpolarised 13C1-pyruvate was injected into the femoral vein of anaesthetised rats and slice-localised 13C magnetic resonance (MR) spectra acquired. Spectral integral versus time curves for pyruvate and lactate were fitted to a precursor-product model to estimate the rate constant for tumour conversion of pyruvate to lactate (kpl). Mean arterial blood pressure (MABP) and oxygen tension (ArtpO2) were monitored. Pyruvate and lactate concentrations were measured in freeze-clamped tumours. Results MABP, ArtpO2 and tumour pO2 decreased significantly during hypoxia. kpl increased significantly (p < 0.01) from 0.029 ± 0.002 s−1 to 0.049 ± 0.006 s−1 (mean ± SEM) when animals breathing air were switched to hypoxic conditions, whereas pyruvate and lactate concentrations were minimally affected by hypoxia. Both ArtpO2 and MABP influenced the estimate of kpl, with a strong negative correlation between kpl and the product of ArtpO2 and MABP under hypoxia. Conclusion The rate constant for pyruvate to lactate conversion, kpl, responds significantly to a rapid reduction in tumour oxygenation. PMID:25824978

  12. Ancestry explains the blunted ventilatory response to sustained hypoxia and lower exercise ventilation of Quechua altitude natives.

    PubMed

    Brutsaert, Tom D; Parra, Esteban J; Shriver, Mark D; Gamboa, Alfredo; Rivera-Ch, Maria; León-Velarde, Fabiola

    2005-07-01

    Andean high-altitude (HA) natives have a low (blunted) hypoxic ventilatory response (HVR), lower effective alveolar ventilation, and lower ventilation (VE) at rest and during exercise compared with acclimatized newcomers to HA. Despite blunted chemosensitivity and hypoventilation, Andeans maintain comparable arterial O(2) saturation (Sa(O(2))). This study was designed to evaluate the influence of ancestry on these trait differences. At sea level, we measured the HVR in both acute (HVR-A) and sustained (HVR-S) hypoxia in a sample of 32 male Peruvians of mainly Quechua and Spanish origins who were born and raised at sea level. We also measured resting and exercise VE after 10-12 h of exposure to altitude at 4,338 m. Native American ancestry proportion (NAAP) was assessed for each individual using a panel of 80 ancestry-informative molecular markers (AIMs). NAAP was inversely related to HVR-S after 10 min of isocapnic hypoxia (r = -0.36, P = 0.04) but was not associated with HVR-A. In addition, NAAP was inversely related to exercise VE (r = -0.50, P = 0.005) and ventilatory equivalent (VE/Vo(2), r = -0.51, P = 0.004) measured at 4,338 m. Thus Quechua ancestry may partly explain the well-known blunted HVR (10, 35, 36, 57, 62) at least to sustained hypoxia, and the relative exercise hypoventilation at altitude of Andeans compared with European controls. Lower HVR-S and exercise VE could reflect improved gas exchange and/or attenuated chemoreflex sensitivity with increasing NAAP. On the basis of these ancestry associations and on the fact that developmental effects were completely controlled by study design, we suggest both a genetic basis and an evolutionary origin for these traits in Quechua.

  13. HypoxiaDB: a database of hypoxia-regulated proteins.

    PubMed

    Khurana, Pankaj; Sugadev, Ragumani; Jain, Jaspreet; Singh, Shashi Bala

    2013-01-01

    There has been intense interest in the cellular response to hypoxia, and a large number of differentially expressed proteins have been identified through various high-throughput experiments. These valuable data are scattered, and there have been no systematic attempts to document the various proteins regulated by hypoxia. Compilation, curation and annotation of these data are important in deciphering their role in hypoxia and hypoxia-related disorders. Therefore, we have compiled HypoxiaDB, a database of hypoxia-regulated proteins. It is a comprehensive, manually-curated, non-redundant catalog of proteins whose expressions are shown experimentally to be altered at different levels and durations of hypoxia. The database currently contains 72 000 manually curated entries taken on 3500 proteins extracted from 73 peer-reviewed publications selected from PubMed. HypoxiaDB is distinctive from other generalized databases: (i) it compiles tissue-specific protein expression changes under different levels and duration of hypoxia. Also, it provides manually curated literature references to support the inclusion of the protein in the database and establish its association with hypoxia. (ii) For each protein, HypoxiaDB integrates data on gene ontology, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway, protein-protein interactions, protein family (Pfam), OMIM (Online Mendelian Inheritance in Man), PDB (Protein Data Bank) structures and homology to other sequenced genomes. (iii) It also provides pre-compiled information on hypoxia-proteins, which otherwise requires tedious computational analysis. This includes information like chromosomal location, identifiers like Entrez, HGNC, Unigene, Uniprot, Ensembl, Vega, GI numbers and Genbank accession numbers associated with the protein. These are further cross-linked to respective public databases augmenting HypoxiaDB to the external repositories. (iv) In addition, HypoxiaDB provides an online sequence-similarity search tool for

  14. Effect of moderate hypoxia at three acclimation temperatures on stress responses in Atlantic cod with different haemoglobin types.

    PubMed

    Methling, Caroline; Aluru, Neelakanteswar; Vijayan, Mathilakath M; Steffensen, John F

    2010-08-01

    This study examines stress responses in Atlantic cod (Gadus morhua) when exposed to a moderate and transient reduction (35% O(2) sat.) in dissolved oxygen at a range of temperatures (5 degrees C, 10 degrees C and 15 degrees C), conditions occurring in some areas they inhabit. Given their geographical distribution pattern, and differences in preferred temperature of cod with different haemoglobin types, the study was extended to include haemoglobin polymorphism. We hypothesised that the differences in temperature preference between HbI-1 and HbI-2 type cod might also be reflected in a difference in stress response to hypoxia exposure. Two hsp70-isoforms (labelled a and b) were detected and they differed in expression in the gills but not in the liver of Atlantic cod. Acclimation temperature significantly affected the expression of hsp70 in the liver, and in an isoform-specific manner in the gills. Hypoxia exposure increased the expression of hsp70 in the liver, but not the gills, of cod and this response was not influenced by the acclimation temperature. The expression of hsp70 in both tissues did not differ between fish with different haemoglobin types. Acclimation temperature significantly impacted plasma cortisol but not lactate levels. Also, acute oxygen limitation or HbI-type significantly elevated plasma cortisol and lactate levels but these responses were not modulated by acclimation temperature. Taken together, our results suggest that both temperature acclimation and acute hypoxic exposure influence the organismal and cellular stress responses in Atlantic cod. We hypothesise that HbI-2 fish are more tolerant to short-term hypoxic episodes than HbI-1 fish, and this adaptation may be independent of tissue hsp70 expression.

  15. REST mediates resolution of HIF-dependent gene expression in prolonged hypoxia

    PubMed Central

    Cavadas, Miguel A. S.; Mesnieres, Marion; Crifo, Bianca; Manresa, Mario C.; Selfridge, Andrew C.; Scholz, Carsten C.; Cummins, Eoin P.; Cheong, Alex; Taylor, Cormac T.

    2015-01-01

    The hypoxia-inducible factor (HIF) is a key regulator of the cellular response to hypoxia which promotes oxygen delivery and metabolic adaptation to oxygen deprivation. However, the degree and duration of HIF-1α expression in hypoxia must be carefully balanced within cells in order to avoid unwanted side effects associated with excessive activity. The expression of HIF-1α mRNA is suppressed in prolonged hypoxia, suggesting that the control of HIF1A gene transcription is tightly regulated by negative feedback mechanisms. Little is known about the resolution of the HIF-1α protein response and the suppression of HIF-1α mRNA in prolonged hypoxia. Here, we demonstrate that the Repressor Element 1-Silencing Transcription factor (REST) binds to the HIF-1α promoter in a hypoxia-dependent manner. Knockdown of REST using RNAi increases the expression of HIF-1α mRNA, protein and transcriptional activity. Furthermore REST knockdown increases glucose consumption and lactate production in a HIF-1α- (but not HIF-2α-) dependent manner. Finally, REST promotes the resolution of HIF-1α protein expression in prolonged hypoxia. In conclusion, we hypothesize that REST represses transcription of HIF-1α in prolonged hypoxia, thus contributing to the resolution of the HIF-1α response. PMID:26647819

  16. Pollution-induced metabolic responses in hypoxia-tolerant freshwater turtles.

    PubMed

    Venancio, Larissa Paola Rodrigues; Silva, Maria Isabel Afonso; da Silva, Tiago Lucena; Moschetta, Vinicius Augusto Gobbe; de Campos Zuccari, Débora Aparecida Pires; Almeida, Eduardo Alves; Bonini-Domingos, Claudia Regina

    2013-11-01

    The physiological control to support the absence of O2 for long periods of diving, and oxidative damage impact caused by the whole process of hypoxia/reperfusion in freshwater turtles is well known. However, effects of contaminants may act as co-varying stressors and cause biological damage, disrupting the hypoxia/reperfusion oxidative damage control. In order to investigate the action of environmental stressors present in domestic or industrial wastewater effluent, we performed a biochemical analysis of biotransformation enzymes, oxidative stress, as well as neuromuscular, physiological and morphological parameters in Phrynops geoffroanus, an hypoxic-tolerant freshwater turtle endemic of South America, using animals sampled in urban area, contaminated by sewage and industrial effluents and animals sampled in control area. Here we demonstrate the physiological and biochemical impact caused by pollution, and the effect that these changes cause in antioxidant activity. Animals from the urban area exhibited higher EROD (ethoxyresorufin-O-deethylase, CYP1A1), GST (glutathione S-transferase), G6PDH (glucose-6-phosphate deshydrogenase), AChE (acetilcholinesterase) activities and also TEAC (trolox-equivalent antioxidant capacity) and TBARS (thiobarbituric acid reactive substances) values. We examined whether two morphometric indices (K - condition factor and HIS - hepatosomatic index) which help in assessing the general condition and possible liver disease, respectively, were modified. The K of the urban animals was significantly decreased compared to the control animals, but the HIS value was increased in animals from the urban area, supporting the idea of an impact in physiology and life quality in the urban freshwater turtles. We propose that this freshwater turtle specie have the ability to enhance its antioxidants defenses in order to protect from tissue damage caused by hypoxia and reperfusion, but also that caused by environmental contamination and that the

  17. Leap of faith: voluntary emersion behaviour and physiological adaptations to aerial exposure in a non-aestivating freshwater fish in response to aquatic hypoxia.

    PubMed

    Urbina, Mauricio A; Forster, Malcolm E; Glover, Chris N

    2011-05-01

    Lowland stream fauna in areas of intensive agriculture are increasingly under threat from anthropogenic activities leading to eutrophication and subsequent hypoxia. Survival of hypoxic episodes depends upon a combination of behavioural and physiological adaptations. Responses of inanga (Galaxias maculatus: Galaxiidae) to aquatic hypoxia were investigated in the laboratory. Contrary to expectation inanga did not display behaviour that might reduce energy expenditure during oxygen limitation, with swimming activity slightly, but significantly elevated relative to normoxia. Instead, as dissolved oxygen concentrations decreased, the fish moved higher in the water column, increased their swimming speed and exhibited aquatic surface respiration. Physiological changes such as enhanced opercular frequency were also noted. As hypoxia deepened inanga started to leap out of the water, emersing themselves on a floating platform. Once emersed, fish exhibited an enhanced oxygen consumption rate compared to hypoxic fish. Thus inanga appear better adapted to escape hypoxia (a behavioural adaptation) rather than tolerate it (physiological adaptation). The emersion strategy used for inanga in response to severe hypoxia is in agreement with their ability to take up more oxygen from the air than from hypoxic water and therefore may justify the potentially increased risks of desiccation and predation associated with leaving the water. PMID:21316378

  18. The mouse spleen white pulp response to continuous hypoxia. A digital image processing analysis.

    PubMed

    Nessi de Aviñón, A C; Bengtsson, M C

    1990-01-01

    Ninety days old male mice of the CFW strain, placed under standard conditions for studies of periodicity, showed a 24 hours variation pattern in the spleen white pulp surface, in cross sections. This pattern was modified by hypoxia during the first 18 hours of continuous treatment. Since this time onwards a new steady state was reached, although the spleen of hypoxic animals was always smaller than in the controls. As the modifications were measured in pixel counts -a magnitude which can be easily transformed into square micrometers- they can be attributed to a real size variation and not to an apparent growth and decay due to environmental vasoactive phenomena.

  19. Effects of Dimethylarginine Dimethylaminohydrolase–1 Overexpression on the Response of the Pulmonary Vasculature to Hypoxia

    PubMed Central

    Bakr, Adel; Pak, Oleg; Taye, Ashraf; Hamada, Farid; Hemeida, Ramadan; Janssen, Wiebke; Gierhardt, Mareike; Ghofrani, Hossein A.; Seeger, Werner; Grimminger, Friedrich; Schermuly, Ralph T.; Witzenrath, Martin; Brandes, Ralf P.; Huang, Ngan; Cooke, John P.; Sommer, Natascha

    2013-01-01

    Acute and sustained hypoxic pulmonary vasoconstriction (HPV), as well as chronic pulmonary hypertension (PH), is modulated by nitric oxide (NO). NO synthesis can be decreased by asymmetric dimethylarginine (ADMA), which is degraded by dimethylarginine dimethylaminohydrolase–1 (DDAH1). We investigated the effects of DDAH1 overexpression (DDAH1tg) on HPV and chronic hypoxia–induced PH. HPV was measured during acute (10 min) and sustained (3 h) hypoxia in isolated mouse lungs. Chronic PH was induced by the exposure of mice to 4 weeks of hypoxia. ADMA and cyclic 3′,5′-guanosine monophosphate (cGMP) were determined by ELISA, and NO generation was determined by chemiluminescence. DDAH1 overexpression exerted no effects on acute HPV. However, DDAH1tg mice showed decreased sustained HPV compared with wild-type (WT) mice. Concomitantly, ADMA was decreased, and concentrations of NO and cGMP were significantly increased in DDAH1tg. The administration of either Nω-nitro-l-arginine or 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one potentiated sustained HPV and partly abolished the differences in sustained HPV between WT and DDAH1tg mice. The overexpression of DDAH1 exerted no effect on the development of chronic hypoxia–induced PH. DDAH1 overexpression selectively decreased the sustained phase of HPV, partly via activation of the NO–cGMP pathway. Thus, increased ADMA concentrations modulate sustained HPV, but not acute HPV or chronic hypoxia–induced PH. PMID:23642043

  20. Role of brain glycogen in the response to hypoxia and in susceptibility to epilepsy

    PubMed Central

    López-Ramos, Juan C.; Duran, Jordi; Gruart, Agnès; Guinovart, Joan J.; Delgado-García, José M.

    2015-01-01

    Although glycogen is the only carbohydrate reserve of the brain, its overall contribution to brain functions remains unclear. It has been proposed that glycogen participates in the preservation of such functions during hypoxia. Several reports also describe a relationship between brain glycogen and susceptibility to epilepsy. To address these issues, we used our brain-specific Glycogen Synthase knockout (GYS1Nestin-KO) mouse to study the functional consequences of glycogen depletion in the brain under hypoxic conditions and susceptibility to epilepsy. GYS1Nestin-KO mice presented significantly different power spectra of hippocampal local field potentials (LFPs) than controls under hypoxic conditions. In addition, they showed greater excitability than controls for paired-pulse facilitation evoked at the hippocampal CA3–CA1 synapse during experimentally induced hypoxia, thereby suggesting a compensatory switch to presynaptic mechanisms. Furthermore, GYS1Nestin-KO mice showed greater susceptibility to hippocampal seizures and myoclonus following the administration of kainate and/or a brief train stimulation of Schaffer collaterals. We conclude that brain glycogen could play a protective role both in hypoxic situations and in the prevention of brain seizures. PMID:26578889

  1. Dose response of dexmedetomidine‑induced resistance to hypoxia in mice.

    PubMed

    Pan, Wanying; Hua, Xiaoxiao; Wang, Yueting; Guo, Ruixian; Chen, Jingfu; Mo, Liqiu

    2016-10-01

    Tolerance to hypoxia can be induced by reducing oxygen consumption. Dexmedetomidine (DEX) decreases locomotor activity and induces bradycardia and hypothermia in mice. The present study examined the hypothesis that DEX improves hypoxia tolerance in mice. Adult mice received an intraperitoneal injection of 1, 5, 10, 20, 40, 80, 160 or 320 µg/kg DEX, 20 mg/kg propranolol or saline. Acute hypoxic conditions were induced by placing the mice in a limited enclosed container with soda lime. Core body temperature (CBT) and heart rate (HR) were measured prior to and 30 min after drug administration. Survival time was monitored in the sealed container. Survival times (mean ± standard deviation) of mice in the saline, 1, 5, 10, 20, 40, 80, 160 and 320 µg/kg DEX, and the 20 mg/kg propranolol groups were 22.4±1.1, 23.4±1.1, 26.0±0.9, 36.9±5.2, 42.4±2.9, 43.2±2.3, 58.2±4.2, 80.5±4.0, 79.2±6.0, and 38.2±2.8 min, respectively. Pretreatment with propranolol and 10, 20, 40, 80, 160 or 320 µg/kg DEX, but not 1 or 5 µg/kg, significantly prolonged survival time compared with saline‑injected mice (P<0.05 or P<0.01). CBT and HR decreased in a similar manner. The correlation coefficients between survival time and CBT, and survival time and HR were ‑0.802 and ‑0.726, respectively. Thus, DEX dose‑dependently enhances hypoxia tolerance in mice. In conclusion, it is suggested that DEX may be used in clinical practice as a novel protective agent for organs and tissues during hypoxic injury. PMID:27498747

  2. EPAS1 trans-activation during hypoxia requires p42/p44 MAPK.

    PubMed

    Conrad, P W; Freeman, T L; Beitner-Johnson, D; Millhorn, D E

    1999-11-19

    Hypoxia is a common environmental stress that regulates gene expression and cell function. A number of hypoxia-regulated transcription factors have been identified and have been shown to play critical roles in mediating cellular responses to hypoxia. One of these is the endothelial PAS-domain protein 1 (EPAS1/HIF2-alpha/HLF/HRF). This protein is 48% homologous to hypoxia-inducible factor 1-alpha (HIF1-alpha). To date, virtually nothing is known about the signaling pathways that lead to either EPAS1 or HIF1-alpha activation. Here we show that EPAS1 is phosphorylated when PC12 cells are exposed to hypoxia and that p42/p44 MAPK is a critical mediator of EPAS1 activation. Pretreatment of PC12 cells with the MEK inhibitor, PD98059, completely blocked hypoxia-induced trans-activation of a hypoxia response element (HRE) reporter gene by transfected EPAS1. Likewise, expression of a constitutively active MEK1 mimicked the effects of hypoxia on HRE reporter gene expression. However, pretreatment with PD98059 had no effect on EPAS1 phosphorylation during hypoxia, suggesting that MAPK targets other proteins that are critical for the trans-activation of EPAS1. We further show that hypoxia-induced trans-activation of EPAS1 is independent of Ras. Finally, pretreatment with calmodulin antagonists nearly completely blocked both the hypoxia-induced phosphorylation of MAPK and the EPAS1 trans-activation of HRE-Luc. These results demonstrate that the MAPK pathway is a critical mediator of EPAS1 activation and that activation of MAPK and EPAS1 occurs through a calmodulin-sensitive pathway and not through the GTPase, Ras. These results are the first to identify a specific signaling pathway involved in EPAS1 activation. PMID:10559262

  3. Ablative Thermal Response Analysis Using the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Dec John A.; Braun, Robert D.

    2009-01-01

    A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.

  4. Cold shock protein YB-1 is involved in hypoxia-dependent gene transcription.

    PubMed

    Rauen, Thomas; Frye, Bjoern C; Wang, Jialin; Raffetseder, Ute; Alidousty, Christina; En-Nia, Abdelaziz; Floege, Jürgen; Mertens, Peter R

    2016-09-16

    Hypoxia-dependent gene regulation is largely orchestrated by hypoxia-inducible factors (HIFs), which associate with defined nucleotide sequences of hypoxia-responsive elements (HREs). Comparison of the regulatory HRE within the 3' enhancer of the human erythropoietin (EPO) gene with known binding motifs for cold shock protein Y-box (YB) protein-1 yielded strong similarities within the Y-box element and 3' adjacent sequences. DNA binding assays confirmed YB-1 binding to both, single- and double-stranded HRE templates. Under hypoxia, we observed nuclear shuttling of YB-1 and co-immunoprecipitation assays demonstrated that YB-1 and HIF-1α physically interact with each other. Cellular YB-1 depletion using siRNA significantly induced hypoxia-dependent EPO production at both, promoter and mRNA level. Vice versa, overexpressed YB-1 significantly reduced EPO-HRE-dependent gene transcription, whereas this effect was minor under normoxia. HIF-1α overexpression induced hypoxia-dependent gene transcription through the same element and accordingly, co-expression with YB-1 reduced HIF-1α-mediated EPO induction under hypoxic conditions. Taken together, we identified YB-1 as a novel binding factor for HREs that participates in fine-tuning of the hypoxia transcriptome. PMID:27524241

  5. Role of nitric oxide in the maintenance of pluripotency and regulation of the hypoxia response in stem cells

    PubMed Central

    Beltran-Povea, Amparo; Caballano-Infantes, Estefania; Salguero-Aranda, Carmen; Martín, Franz; Soria, Bernat; Bedoya, Francisco J; Tejedo, Juan R; Cahuana, Gladys M

    2015-01-01

    Stem cell pluripotency and differentiation are global processes regulated by several pathways that have been studied intensively over recent years. Nitric oxide (NO) is an important molecule that affects gene expression at the level of transcription and translation and regulates cell survival and proliferation in diverse cell types. In embryonic stem cells NO has a dual role, controlling differentiation and survival, but the molecular mechanisms by which it modulates these functions are not completely defined. NO is a physiological regulator of cell respiration through the inhibition of cytochrome c oxidase. Many researchers have been examining the role that NO plays in other aspects of metabolism such as the cellular bioenergetics state, the hypoxia response and the relationship of these areas to stem cell stemness. PMID:25914767

  6. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations

    PubMed Central

    Semenza, Gregg L.

    2013-01-01

    Hypoxia occurs frequently in human cancers and induces adaptive changes in cell metabolism that include a switch from oxidative phosphorylation to glycolysis, increased glycogen synthesis, and a switch from glucose to glutamine as the major substrate for fatty acid synthesis. This broad metabolic reprogramming is coordinated at the transcriptional level by HIF-1, which functions as a master regulator to balance oxygen supply and demand. HIF-1 is also activated in cancer cells by tumor suppressor (e.g., VHL) loss of function and oncogene gain of function (leading to PI3K/AKT/mTOR activity) and mediates metabolic alterations that drive cancer progression and resistance to therapy. Inhibitors of HIF-1 or metabolic enzymes may impair the metabolic flexibility of cancer cells and make them more sensitive to anticancer drugs. PMID:23999440

  7. Carotid body oxygen sensing and adaptation to hypoxia.

    PubMed

    López-Barneo, José; Macías, David; Platero-Luengo, Aida; Ortega-Sáenz, Patricia; Pardal, Ricardo

    2016-01-01

    The carotid body (CB) is the principal arterial chemoreceptor that mediates the hyperventilatory response to hypoxia. Our understanding of CB function and its role in disease mechanisms has progressed considerably in the last decades, particularly in recent years. The sensory elements of the CB are the neuron-like glomus cells, which contain numerous transmitters and form synapses with afferent sensory fibers. The activation of glomus cells under hypoxia mainly depends on the modulation of O2-sensitive K(+) channels which leads to cell depolarization and the opening of Ca(2+) channels. This model of sensory transduction operates in all mammalian species studied thus far, including man. However, the molecular mechanisms underlying the modulation of ion channel function by changes in the O2 level are as yet unknown. The CB plays a fundamental role in acclimatization to sustained hypoxia. Mice with CB atrophy or patients who have undergone CB resection due to surgical treatments show a marked intolerance to even mild hypoxia. CB growth under hypoxia is supported by the existence of a resident population of neural crest-derived stem cells of glia-like phenotype. These stem cells are not highly affected by exposure to low O2 tension; however, there are abundant synapse-like contacts between the glomus cells and stem cells (chemoproliferative synapses), which may be needed to trigger progenitor cell proliferation and differentiation under hypoxia. CB hypo- or hyper-activation may also contribute to the pathogenesis of several prevalent human diseases.

  8. Endocrine, biotransformation, and oxidative stress responses in salmon hepatocytes exposed to chemically induced hypoxia and perfluorooctane sulfonamide (PFOSA), given singly or in combination.

    PubMed

    Olufsen, Marianne; Arukwe, Augustine

    2015-11-01

    The effects of hypoxia and perfluorooctane sulfonamide (PFOSA), given singly and also in combination on endocrine, biotransformation, and oxidative stress responses were investigated in primary culture of salmon hepatocytes. Hypoxia was induced chemically using cobalt chloride (CoCl2) or deferroxamine (DFO). Primary culture of salmon hepatocytes were exposed to either CoCl2 (150 μM) or DFO (100 μM), in the presence or absence of PFOSA at 0, 25, and 50 μM for 24 and 48 h. Changes in transcript levels were analyzed by quantitative (real-time) PCR using gene-specific primers. CYP, catalase, GST, and SOD activities were analyzed spectrophotometrically. The hif-1α mRNA was used to validate cellular hypoxic condition, showing significantly induced transcription after 48-h exposure to DFO and CoCl2. Our data show that transcript levels for endocrine (ERα, Vtg, and Zrp), biotransformation (cyp1a, cyp3a, gst, and udpgt), and oxidative stress responses (catalase (cat), glutathione peroxidase (gpx), and glutathione reductase (gr)) were differentially modulated by PFOSA and hypoxia alone, and these effects were dependent on the response parameters and time of exposure. In combined exposure scenarios, the observed effects were apparently hypoxia-dependent. However, the observed effects at transcript levels were not concomitant with those at functional protein levels, further emphasizing the potential differences that may exist between these biological levels. Biplot of principal component analysis (PCA) showed grouping of response variables after 48 h of exposure. The distribution of observations and variables indicate that PFOSA had little effect on most response variables, while clustering show a unique association between a given hypoxia condition (i.e., CoCl2 or DFO) in combination with PFOSA and transcripts, proteins, or enzyme activities.

  9. Thresholds in shock response across the elements

    NASA Astrophysics Data System (ADS)

    Bourne, F. L.; Bourne, N. K.; CMEC Team

    2015-06-01

    Compendia of shock data have been assembled across national laboratories across the world. Previous work has shown a threshold in behaviour for materials; the weak shock limit. This corresponds the stress state at which the shock is overdriven in a single front. The shock velocity-particle velocity data for elements and compounds has been systematically analysed to note discontinuities in the data. A range of materials show these features and the form of the discontinuity in each case is analysed. Some correspond to martensitic phase transformations as expected whilst others are more difficult to track down. Particular groups within the elements show characteristic forms according to groupings in the periodic table. The datasets are presented and trends are noted.

  10. ‘Cross-adaptation’: habituation to short repeated cold-water immersions affects the response to acute hypoxia in humans

    PubMed Central

    Lunt, Heather C; Barwood, Martin J; Corbett, Jo; Tipton, Michael J

    2010-01-01

    Adaptation to an environmental stressor is usually studied in isolation, yet these stressors are often encountered in combination in the field, an example being cold and hypoxia at altitude. There has been a paucity of research in this area, although work with rodents indicates that habituation to repeated short cold exposures has a cross-adaptive effect during hypoxia. The present study tested the hypothesis that cross-adaptation is also possible with humans. Thirty-two male volunteers were exposed to 10 min bouts of normoxic and hypoxic ( 0.12) rest and exercise (100 W on a recumbent cycle ergometer). These were repeated after a 96 h interval, during which participants completed six, 5 min immersions in either cold (12°C, CW) or thermoneutral water (35°C, TW). Venous blood samples were taken immediately after each bout, for determination of catecholamine concentrations. A three-lead ECG was recorded throughout and the final 5 min of each bout was analysed for heart rate variability using fast fourier transformations (and displayed as log transformed data (ln)). In comparison with the first hypoxic exercise exposure, the second exposure of the CW group resulted in an increased ln high frequency (ln HF) power (P < 0.001) and reduced adrenaline (P < 0.001) and noradrenaline concentrations (P < 0.001). Adrenaline and noradrenaline concentrations were lower in the CW group during the second hypoxic exercise compared to the TW group (P = 0.042 and P = 0.003), but ln HF was not. When separated into hypoxic sensitive and hypoxic insensitive subgroups, ln HF was higher in the hypoxic sensitive CW group during the second hypoxic exercise than in any of the other subgroups. Cold habituation reduced the sympathetic response (indicated by the reduced catecholamine concentrations) and elevated the parasympathetic activity (increased ln HF power) to hypoxic exercise. These data suggest a generic autonomic cross-adaptive effect between cold habituation and exposure to acute

  11. Hypoxia-induced cell death and changes in hypoxia-inducible factor-1 activity in PC12 cells upon exposure to nerve growth factor.

    PubMed

    Charlier, Nico; Leclere, Norbert; Felderhoff, Ursula; Heldt, Julia; Kietzmann, Thomas; Obladen, Michael; Gross, Johann

    2002-07-15

    The transcription factor hypoxia-inducible factor-1 (HIF-1) strongly contributes to the expression of adaptive genes under hypoxic conditions. In addition, HIF-1 has been implicated in the regulation of delayed neuronal cell death. Suspension-grown and adherent PC12 cells treated with NGF were used as an experimental model for studying the relationship between hypoxia-induced cell death and activation of HIF-1. Cell damage was assessed by flow cytometry of double-stained (Annexin V and propidiumiodide) cells, and by analysis of the overall death parameters LDH and mitochondrial dehydrogenase. In parallel, cells were transfected with a control and a three-hypoxia-responsive-elements (HRE)-containing vector and HIF-1-driven luciferase activity was determined. Exposure of NGF-treated PC12 cells to hypoxia resulted in a higher cell death rate when compared to untreated controls. PC12 cells exposed for 2 days to NGF exhibited a decrease of HIF-1 activity up to a factor of ten. This decrease may contribute to the enhanced hypoxia-induced cell death via reduced expression of HIF-1alpha-regulated genes responsible for adaptation to hypoxia, like those for glucose transport proteins and enzymes of the glycolytic chain. The decrease in HIF-1 activity and the increase in hypoxia sensitivity may suggest that NGF act as an hierarchically organized signaling molecule.

  12. Structural integration in hypoxia-inducible factors

    SciTech Connect

    Wu, Dalei; Potluri, Nalini; Lu, Jingping; Kim, Youngchang; Rastinejad, Fraydoon

    2015-08-20

    The hypoxia-inducible factors (HIFs) coordinate cellular adaptations to low oxygen stress by regulating transcriptional programs in erythropoiesis, angiogenesis and metabolism. These programs promote the growth and progression of many tumours, making HIFs attractive anticancer targets. Transcriptionally active HIFs consist of HIF-alpha and ARNT (also called HIF-1 beta) subunits. Here we describe crystal structures for each of mouse HIF-2 alpha-ARNT and HIF-1 alpha-ARNT heterodimers in states that include bound small molecules and their hypoxia response element. A highly integrated quaternary architecture is shared by HIF-2 alpha-ARNT and HIF-1 alpha-ARNT, wherein ARNT spirals around the outside of each HIF-alpha subunit. Five distinct pockets are observed that permit small-molecule binding, including PAS domain encapsulated sites and an interfacial cavity formed through subunit heterodimerization. The DNA-reading head rotates, extends and cooperates with a distal PAS domain to bind hypoxia response elements. HIF-alpha mutations linked to human cancers map to sensitive sites that establish DNA binding and the stability of PAS domains and pockets.

  13. Comparative proteomic analysis of gamma-aminobutyric acid responses in hypoxia-treated and untreated melon roots.

    PubMed

    Fan, Longquan; Wu, Xiaolei; Tian, Zhen; Jia, Kaizhi; Pan, Yinghong; Li, Jingrui; Gao, Hongbo

    2015-08-01

    Hypoxia is one of the main environmental stresses that accounts for decreasing crop yield. To further investigate the mechanisms whereby exogenous GABA alleviates hypoxia injury to melon seedlings, a comparative proteomic analysis was performed using roots subjected to normal aeration and hypoxia conditions with or without GABA (5mM). The results indicated that protein spots on gels after hypoxia and hypoxia+GABA treatment were significantly changed. Three "matched sets" were analyzed from four treatments, and 13 protein spots with large significant differences in expression were identified by MALDI-TOF/TOF mass spectrometry. Exogenous GABA treatment enhanced the expression of protein in cytosolic phosphoglycerate kinase 1, exaA2 gene product, dnaJ and myb-like DNA-binding domain-containing proteins, as well as elongation factor-1 alpha and hypothetical proteins in hypoxia-induced roots. However, the hypoxia+GABA treated roots had a significantly lower expression of proteins including malate dehydrogenase, nucleoside diphosphate kinase, disease resistance-like protein, disulfide isomerase, actin, ferrodoxin NADP oxidoreductase, glutathione transferase, netting associated peroxidase. This paper describes the effect of GABA on melon plants under hypoxia-induced stress using proteomics, and supports the alleviating function of GABA in melon plants grown under hypoxic conditions.

  14. Acetylcholine Esterase Activity and Behavioral Response in Hypoxia Induced Neonatal Rats: Effect of Glucose, Oxygen and Epinephrine Supplementation

    ERIC Educational Resources Information Center

    Chathu, Finla; Krishnakumar, Amee; Paulose, Cheramadathikudyil S.

    2008-01-01

    Brain damage due to an episode of hypoxia remains a major problem in infants causing deficit in motor and sensory function. Hypoxia leads to neuronal functional failure, cerebral palsy and neuro-developmental delay with characteristic biochemical and molecular alterations resulting in permanent or transitory neurological sequelae or even death.…

  15. Regional differences in the cerebral blood flow velocity response to hypobaric hypoxia at high altitudes.

    PubMed

    Feddersen, Berend; Neupane, Pritam; Thanbichler, Florian; Hadolt, Irmgard; Sattelmeyer, Vera; Pfefferkorn, Thomas; Waanders, Robb; Noachtar, Soheyl; Ausserer, Harald

    2015-11-01

    Symptoms of acute mountain sickness (AMS) may appear above 2,500 m altitude, if the time allowed for acclimatization is insufficient. As the mechanisms underlying brain adaptation to the hypobaric hypoxic environment are not fully understood, a prospective study was performed investigating neurophysiological changes by means of near infrared spectroscopy, electroencephalograpy (EEG), and transcranial doppler sonography at 100, 3,440 and 5,050 m above sea level in the Khumbu Himal, Nepal. Fourteen of the 26 mountaineers reaching 5,050 m altitude developed symptoms of AMS between 3,440 and 5,050 m altitude (Lake-Louise Score ⩾3). Their EEG frontal beta activity and occipital alpha activity increased between 100 and 3,440 m altitude, i.e., before symptoms appeared. Cerebral blood flow velocity (CBFV) in the anterior and middle cerebral arteries (MCAs) increased in all mountaineers between 100 and 3,440 m altitude. During further ascent to 5,050 altitude, mountaineers with AMS developed a further increase in CBFV in the MCA, whereas in all mountaineers CBFV decreased continuously with increasing altitude in the posterior cerebral arteries. These results indicate that hypobaric hypoxia causes different regional changes in CBFV despite similar electrophysiological changes.

  16. Regional differences in the cerebral blood flow velocity response to hypobaric hypoxia at high altitudes

    PubMed Central

    Feddersen, Berend; Neupane, Pritam; Thanbichler, Florian; Hadolt, Irmgard; Sattelmeyer, Vera; Pfefferkorn, Thomas; Waanders, Robb; Noachtar, Soheyl; Ausserer, Harald

    2015-01-01

    Symptoms of acute mountain sickness (AMS) may appear above 2,500 m altitude, if the time allowed for acclimatization is insufficient. As the mechanisms underlying brain adaptation to the hypobaric hypoxic environment are not fully understood, a prospective study was performed investigating neurophysiological changes by means of near infrared spectroscopy, electroencephalograpy (EEG), and transcranial doppler sonography at 100, 3,440 and 5,050 m above sea level in the Khumbu Himal, Nepal. Fourteen of the 26 mountaineers reaching 5,050 m altitude developed symptoms of AMS between 3,440 and 5,050 m altitude (Lake-Louise Score ⩾3). Their EEG frontal beta activity and occipital alpha activity increased between 100 and 3,440 m altitude, i.e., before symptoms appeared. Cerebral blood flow velocity (CBFV) in the anterior and middle cerebral arteries (MCAs) increased in all mountaineers between 100 and 3,440 m altitude. During further ascent to 5,050 m altitude, mountaineers with AMS developed a further increase in CBFV in the MCA, whereas in all mountaineers CBFV decreased continuously with increasing altitude in the posterior cerebral arteries. These results indicate that hypobaric hypoxia causes different regional changes in CBFV despite similar electrophysiological changes. PMID:26082017

  17. Mathematical Model of an Innate Immune Response to Cutaneous Wound in the Presence of Local Hypoxia.

    PubMed

    Saiko, Guennadi; Cross, Karen; Douplik, Alexandre

    2016-01-01

    We developed a 2D multi-agent stochastic model of interaction between cellular debris, bacteria and neutrophils in the surface cutaneous wound with local hypoxia. Bacteria, which grow logistically with a maximum carrying capacity, and debris are phagocytosed by neutrophils with probability determined by the partial pressure of oxygen in the tissue, pO 2  = 4-400 mmHg, according to the Michaelis-Menten equation with K m  = 40 mmHg. The influx of new neutrophils depends linearly (k = 0.05-0.2) on the amount of (a) platelets and (b) neutrophils, which are in contact with bacteria or debris. Each activated neutrophil can accomplish a certain amount of phagocytosis, n max  = 5-20, during its lifespan, T = 1-5 days. The universe of outcomes consists of (a) bacteria clearance (high k and n max ), (b) infection is not cleared by neutrophils (low k and nmax), and (c) intermittent (quasiperiodic) bursts of inflammation. In the absence of infection, phagocytosis stops within 48 h. We found that pO 2 alone did not change the type of outcome, but affects the number of recruited neutrophils and inflammation duration (in the absence of infection by up to 10 and 5 %, respectively). PMID:27526173

  18. Effects of acute hypoxia on cardiopulmonary responses to head-down tilt

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Luft, U. C.; Scotto, P.; Chick, T. W.

    1990-01-01

    Six male subjects were exposed on two separate occasions to simulated microgravity with 28 deg head-down tilt (HD) for 1 h with baseline followed by recovery at + 17 deg head-up. Pulmonary ventilation, gas exchange, spirometry, and central and cerebral blood flow characteristics were compared while breathing ambient air and reduced F(I)O2 equivalent to 14,828 ft. With hypoxia (HY), the increased tidal volume served to attenuate the drop in arterial saturation by reducing deadspace ventilation. Arterial and mixed venous PO2, values, estimated from peripheral venous samples and cardiac output (CO), were both maintained during HD in HY. Mixed venous PO2 was elevated by an increase in CO associated with a reduction in systemic resistance. Changes in spirometric indices during HD were not accentuated by HY, making the presence of interstitial edema unlikely. Cerebral flow and resistance showed minor reductions with HD. Tissue oxygenation and cardiopulmonary function were not notably effected by HD during HY, but a combination of these two stressors may predispose subjects to subsequent orthostatic intolerance during initial recovery.

  19. The impact of submaximal exercise during heat and/or hypoxia on the cardiovascular and monocyte HSP72 responses to subsequent (post 24 h) exercise in hypoxia

    PubMed Central

    2014-01-01

    Background The aims of this study were to describe the cellular stress response to prolonged endurance exercise in acute heat, hypoxia and the combination of heat and hypoxia and to determine whether prior acute exposure to these stressors improved cellular tolerance to a subsequent exercise bout in hypoxia 24 h later. Methods Twelve males (age 22 ± 4 years, height 1.77 ± 0.05 m, mass 79 ± 12.9 kg, VO2 max 3.57 ± 0.7 L · min-1) completed four trials (30-min rest, 90-min cycling at 50% normoxic VO2 max) in normothermic normoxia (NORM; 18°C, FIO2 = 0.21), heat (HEAT; 40°C, 20% RH), hypoxia (HYP; FIO2 = 0.14) or a combination of heat and hypoxia (COM; 40°C, 20% RH, FIO2 = 0.14) separated by at least 7 days. Twenty-four hours after each trial, participants completed a hypoxic stress test (HST; 15-min rest, 60-min cycling at 50% normoxic VO2 max, FIO2 = 0.14). Monocyte heat shock protein 72 (mHSP72) was assessed immediately before and after each exercise bout. Results mHSP72 increased post exercise in NORM (107% ± 5.5%, p > 0.05), HYP (126% ± 16%, p < 0.01), HEAT (153% ± 14%, p < 0.01) and COM (161% ± 32%, p < 0.01). mHSP72 had returned to near-resting values 24 h after NORM (97% ± 8.6%) but was elevated after HEAT (130% ± 19%), HYP (118% ± 17%) and COM (131% ± 19%) (p < 0.05). mHSP72 increased from baseline after HSTNORM (118% ± 12%, p < 0.05), but did not increase further in HSTHEAT, HSTHYP and HSTCOM. Conclusions The prior induction of mHSP72 as a result of COM, HEAT and HYP attenuated further mHSP72 induction after HST and was indicative of conferred cellular tolerance. PMID:25343025

  20. Intelligent Albumin-MnO2 Nanoparticles as pH-/H2 O2 -Responsive Dissociable Nanocarriers to Modulate Tumor Hypoxia for Effective Combination Therapy.

    PubMed

    Chen, Qian; Feng, Liangzhu; Liu, Jingjing; Zhu, Wenwen; Dong, Ziliang; Wu, Yifan; Liu, Zhuang

    2016-09-01

    A unique type of pH/H2 O2 dual-responsive intelligent nanoscale delivery system based on albumin-coated MnO2 is presented, which is capable of modulating the tumor microenvironment (TME) by relieving hypoxia. Additionally, TME-responsive size changes enable effective intratumor diffusion. A highly effective combined photodynamic and chemotherapy is realized with these nanoparticles in a mouse tumor model. PMID:27283434

  1. Ni induces the CRR1-dependent regulon revealing overlap and distinction between hypoxia and Cu deficiency responses in Chlamydomonas reinhardtii.

    PubMed

    Blaby-Haas, Crysten E; Castruita, Madeli; Fitz-Gibbon, Sorel T; Kropat, Janette; Merchant, Sabeeha S

    2016-07-13

    The selectivity of metal sensors for a single metal ion is critical for cellular metal homeostasis. A suite of metal-responsive regulators is required to maintain a prescribed balance of metal ions ensuring that each apo-protein binds the correct metal. However, there are cases when non-essential metals ions disrupt proper metal sensing. An analysis of the Ni-responsive transcriptome of the green alga Chlamydomonas reinhardtii reveals that Ni artificially turns on the CRR1-dependent Cu-response regulon. Since this regulon also responds to hypoxia, a combinatorial transcriptome analysis was leveraged to gain insight into the mechanisms by which Ni interferes with the homeostatic regulation of Cu and oxygen status. Based on parallels with the effect of Ni on the hypoxic response in animals, we propose that a possible link between Cu, oxygen and Ni sensing is an as yet uncharacterized prolyl hydroxylase that regulates a co-activator of CRR1. This analysis also identified transcriptional responses to the pharmacological activation of the Cu-deficiency regulon. Although the Ni-responsive CRR1 regulon is composed of 56 genes (defined as the primary response), 259 transcripts responded to Ni treatment only when a copy of the wild-type CRR1 gene was present. The genome-wide impact of CRR1 target genes on the transcriptome was also evident from the 210 transcripts that were at least 2-fold higher in the crr1 strain, where the abundance of many CRR1 targets was suppressed. Additionally, we identified 120 transcripts that responded to Ni independent of CRR1 function. The putative functions of the proteins encoded by these transcripts suggest that high Ni results in protein damage. PMID:27172123

  2. Prediction of nuclear hormone receptor response elements.

    PubMed

    Sandelin, Albin; Wasserman, Wyeth W

    2005-03-01

    The nuclear receptor (NR) class of transcription factors controls critical regulatory events in key developmental processes, homeostasis maintenance, and medically important diseases and conditions. Identification of the members of a regulon controlled by a NR could provide an accelerated understanding of development and disease. New bioinformatics methods for the analysis of regulatory sequences are required to address the complex properties associated with known regulatory elements targeted by the receptors because the standard methods for binding site prediction fail to reflect the diverse target site configurations. We have constructed a flexible Hidden Markov Model framework capable of predicting NHR binding sites. The model allows for variable spacing and orientation of half-sites. In a genome-scale analysis enabled by the model, we show that NRs in Fugu rubripes have a significant cross-regulatory potential. The model is implemented in a web interface, freely available for academic researchers, available at http://mordor.cgb.ki.se/NHR-scan.

  3. Finite Element Modeling of the Buckling Response of Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Rose, Cheryl A.; Moore, David F.; Knight, Norman F., Jr.; Rankin, Charles C.

    2002-01-01

    A comparative study of different modeling approaches for predicting sandwich panel buckling response is described. The study considers sandwich panels with anisotropic face sheets and a very thick core. Results from conventional analytical solutions for sandwich panel overall buckling and face-sheet-wrinkling type modes are compared with solutions obtained using different finite element modeling approaches. Finite element solutions are obtained using layered shell element models, with and without transverse shear flexibility, layered shell/solid element models, with shell elements for the face sheets and solid elements for the core, and sandwich models using a recently developed specialty sandwich element. Convergence characteristics of the shell/solid and sandwich element modeling approaches with respect to in-plane and through-the-thickness discretization, are demonstrated. Results of the study indicate that the specialty sandwich element provides an accurate and effective modeling approach for predicting both overall and localized sandwich panel buckling response. Furthermore, results indicate that anisotropy of the face sheets, along with the ratio of principle elastic moduli, affect the buckling response and these effects may not be represented accurately by analytical solutions. Modeling recommendations are also provided.

  4. Regulation of N-methyl-D-aspartate receptor expression and N-methyl-D-aspartate-induced cellular response during chronic hypoxia in differentiated rat PC12 cells.

    PubMed

    Kobayashi, S; Millhorn, D E

    2000-01-01

    The purpose of the present study was to examine the effect of chronic hypoxia on N-methyl-D-aspartate-mediated cellular responses in differentiated PC12 cells. PC12 cells were differentiated by treatment with nerve growth factor. Patch-clamp analysis in differentiated PC12 cells showed that extracellularly applied N-methyl-D-aspartate induced an inward current that was abolished by the presence of the N-methyl-D-aspartate receptor antagonist MK-801. Results from Ca(2+) imaging experiments showed that N-methyl-D-aspartate induced an elevation in intracellular free Ca(2+) which was also abolished by MK-801. We also examined the effect of hypoxia on the N-methyl-D-aspartate-induced current in nerve growth factor-treated cells. We found that the N-methyl-D-aspartate-induced inward current and the N-methyl-D-aspartate-induced elevation in intracellular free Ca(2+) were markedly attenuated by chronic hypoxia. We next examined the possibility that the reduced N-methyl-D-aspartate responsiveness was due to down-regulation of N-methyl-D-aspartate receptor levels. Northern blot and immunoblot analyses showed that both messenger RNA and protein levels for N-methyl-D-aspartate receptor subunit 1 were markedly decreased during hypoxia. However, the messenger RNA for N-methyl-D-aspartate receptor subunit 2C was increased, whereas the protein level for subunit 2C did not change. Our results indicate that differentiated PC12 cells express functional N-methyl-D-aspartate receptors and that chronic exposure to hypoxia attenuates the N-methyl-D-aspartate-induced Ca(2+) accumulation in these cells via down-regulation of N-methyl-D-aspartate receptor subunit 1. This mechanism may play an important role in protecting PC12 cells against hypoxic stress. PMID:11113364

  5. Opposing regulation of the late phase TNF response by mTORC1-IL-10 signaling and hypoxia in human macrophages

    PubMed Central

    Huynh, Linda; Kusnadi, Anthony; Park, Sung Ho; Murata, Koichi; Park-Min, Kyung-Hyun; Ivashkiv, Lionel B.

    2016-01-01

    Tumor necrosis factor (TNF) is best known for inducing a rapid but transient NF-κB-mediated inflammatory response. We investigated later phases of TNF signaling, after the initial transient induction of inflammatory genes has subsided, in primary human macrophages. TNF signaling induced expression of late response genes, including inhibitors of NF-κB and TLR signaling, with delayed and sustained kinetics 6–24 hr after TNF stimulation. A subset of late phase genes was expressed in rheumatoid arthritis synovial macrophages, confirming their expression under chronic inflammatory conditions in vivo. Expression of a subset of late phase genes was mediated by autocrine IL-10, which activated STAT3 with delayed kinetics. Hypoxia, which occurs at sites of infection or inflammation where TNF is expressed, suppressed this IL-10-STAT3 autocrine loop and expression of late phase genes. TNF-induced expression of IL-10 and downstream genes was also dependent on signaling by mTORC1, which senses the metabolic state of cells and is modulated by hypoxia. These results reveal an mTORC1-dependent IL-10-mediated late phase response to TNF by primary human macrophages, and identify suppression of IL-10 responses as a new mechanism by which hypoxia can promote inflammation. Thus, hypoxic and metabolic pathways may modulate TNF responses during chronic inflammation. PMID:27558590

  6. Small Molecule Inhibition of miR-544 Biogenesis Disrupts Adaptive Responses to Hypoxia by Modulating ATM-mTOR Signaling.

    PubMed

    Haga, Christopher L; Velagapudi, Sai Pradeep; Strivelli, Jacqueline R; Yang, Wang-Yong; Disney, Matthew D; Phinney, Donald G

    2015-10-16

    Hypoxia induces a complex circuit of gene expression that drives tumor progression and increases drug resistance. Defining these changes allows for an understanding of how hypoxia alters tumor biology and informs design of lead therapeutics. We probed the role of microRNA-544 (miR-544), which silences mammalian target of rapamycin (mTOR), in a hypoxic breast cancer model by using a small molecule (1) that selectively impedes the microRNA's biogenesis. Application of 1 to hypoxic tumor cells selectively inhibited production of the mature microRNA, sensitized cells to 5-fluorouracil, and derepressed mRNAs affected by miR-544 in cellulo and in vivo, including boosting mTOR expression. Thus, small molecule inhibition of miR-544 reverses a tumor cell's physiological response to hypoxia. Importantly, 1 sensitized tumor cells to hypoxia-associated apoptosis at a 25-fold lower concentration than a 2'-O-methyl RNA antagomir and was as selective. Further, the apoptotic effect of 1 was suppressed by treatment of cell with rapamycin, a well-known inhibitor of the mTOR signaling pathway, illustrating the selectivity of the compound. Thus, RNA-directed chemical probes, which could also serve as lead therapeutics, enable interrogation of complex cellular networks in cells and animals.

  7. Transposable elements in response to environmental stressors&

    PubMed Central

    Miousse, Isabelle R.; Chalbot, Marie-Cecile G.; Lumen, Annie; Ferguson, Alesia; Kavouras, Ilias G.; Koturbash, Igor

    2015-01-01

    Transposable elements (TEs) comprise a group of repetitive sequences that bring positive, negative, as well as neutral effects to the host organism. Earlier considered as “junk DNA,” TEs are now well-accepted driving forces of evolution and critical regulators the of expression of genetic information. Their activity is regulated by epigenetic mechanisms, including methylation of DNA and histone modifications. The loss of epigenetic control over TEs, exhibited as loss of DNA methylation and decondensation of the chromatin structure, may result in TEs reactivation, initiation of their insertional mutagenesis (retrotransposition) and has been reported in numerous human diseases, including cancer. Accumulating evidence suggests that these alterations are not the simple consequences of the disease, but often may drive the pathogenesis, as they can be detected early during disease development. Knowledge derived from the in vitro, in vivo, and epidemiological studies, clearly demonstrates that exposure to ubiquitous environmental stressors, many of which are carcinogens or suspected carcinogens, are capable of causing alterations in methylation and expression of TEs and initiate retrotransposition events. Evidence summarized in this review suggests that TEs are the sensitive endpoints for detection of effects caused by such environmental stressors, as ionizing radiation (terrestrial, space, and UV-radiation), air pollution (including particulate matter [PM]-derived and gaseous), persistent organic pollutants, and metals. Furthermore, the significance of these effects is characterized by their early appearance, persistence and presence in both, target organs and peripheral blood. Altogether, these findings suggest that TEs may potentially be introduced into safety and risk assessment and serve as biomarkers of exposure to environmental stressors. Furthermore, TEs also show significant potential to become invaluable surrogate biomarkers in clinic and possible targets

  8. Response of transposable elements to environmental stressors.

    PubMed

    Miousse, Isabelle R; Chalbot, Marie-Cecile G; Lumen, Annie; Ferguson, Alesia; Kavouras, Ilias G; Koturbash, Igor

    2015-01-01

    Transposable elements (TEs) comprise a group of repetitive sequences that bring positive, negative, as well as neutral effects to the host organism. Earlier considered as "junk DNA," TEs are now well-accepted driving forces of evolution and critical regulators of the expression of genetic information. Their activity is regulated by epigenetic mechanisms, including methylation of DNA and histone modifications. The loss of epigenetic control over TEs, exhibited as loss of DNA methylation and decondensation of the chromatin structure, may result in TEs reactivation, initiation of their insertional mutagenesis (retrotransposition) and has been reported in numerous human diseases, including cancer. Accumulating evidence suggests that these alterations are not the simple consequences of the disease, but often may drive the pathogenesis, as they can be detected early during disease development. Knowledge derived from the in vitro, in vivo, and epidemiological studies, clearly demonstrates that exposure to ubiquitous environmental stressors, many of which are carcinogens or suspected carcinogens, are capable of causing alterations in methylation and expression of TEs and initiate retrotransposition events. Evidence summarized in this review suggests that TEs are the sensitive endpoints for detection of effects caused by such environmental stressors, as ionizing radiation (terrestrial, space, and UV-radiation), air pollution (including particulate matter [PM]-derived and gaseous), persistent organic pollutants, and metals. Furthermore, the significance of these effects is characterized by their early appearance, persistence and presence in both, target organs and peripheral blood. Altogether, these findings suggest that TEs may potentially be introduced into safety and risk assessment and serve as biomarkers of exposure to environmental stressors. Furthermore, TEs also show significant potential to become invaluable surrogate biomarkers in clinic and possible targets for

  9. Hypoxia and the Lung: Beyond Hypoxic Vasoconstriction

    PubMed Central

    Nicolls, Mark R.; Voelkel, Norbert F.

    2011-01-01

    This article extends the influence and effects of hypoxia on the lung beyond vasoconstriction and regional blood flow control. Clearly, hypoxia, via the transcription factor hypoxia-inducible factor (HIF)-1α, induces a large number of genes encoding proteins, which control cellular metabolism and growth and also participate in inflammation. Hypoxia, likely via vascular endothelial growth factor (VEGF), recruits bone marrow precursor cells to the lung and affects the behavior of immune cells. How hypoxia shapes immune responses through VEGF and its receptors on mast cells, eosinophils, and dendritic cells and through lung endothelial cell/lymphocyte interactions will be a productive area for future research. PMID:17511589

  10. Identification of hypoxia-responsive genes in a dopaminergic cell line by subtractive cDNA libraries and microarray analysis.

    PubMed

    Beitner-Johnson, D; Seta, K; Yuan, Y; Kim, H -W.; Rust, R T.; Conrad, P W.; Kobayashi, S; Millhorn, D E.

    2001-07-01

    Transplantation of dopamine-secreting cells harvested from fetal mesencephalon directly into the striatum has had limited success as a therapy for Parkinson's disease. A major problem is that the majority of the cells die during the first 3 weeks following transplantation. Hypoxia in the tissue surrounding the graft is a potential cause of the cell death. We have used subtractive cDNA libraries and microarray analysis to identify the gene expression profile that regulates tolerance to hypoxia. An improved understanding of the molecular basis of hypoxia-tolerance may allow investigators to engineer cells that can survive in the hypoxic environment of the brain parenchyma following transplantation. PMID:11331199

  11. Hypoxia-mediated regulation of gene expression in mammalian cells

    PubMed Central

    Shih, Shu-Ching; Claffey, Kevin P.

    1998-01-01

    The molecular mechanism underlying oxygen sensing in mammalian cells has been extensively investigated in the areas of glucose transport, glycolysis, erythropoiesis, angiogenesis and catecholamine metabolism. Expression of functionally operative representative proteins in these specific areas, such as the glucose transporter 1, glycolytic enzymes, erythropoietin, vascular endothelial growth factor and tyrosine hydroxylase are all induced by hypoxia. Recent studies demonstrated that both transcriptional activation and post-transcriptional mechanisms are important to the hypoxia-mediated regulation of gene expression. In this article, the cis-acting elements and trans-acting factors involved in the transcriptional activation of gene expression will be reviewed. In addition, the mechanisms of post-transcriptional mRNA stabilization will also be addressed. We will discuss whether these two processes of regulation of hypoxia-responsive genes are mechanistically linked and co-operative in nature. PMID:10319016

  12. Differential interactions of promoter elements in stress responses of the Arabidopsis Adh gene.

    PubMed Central

    Dolferus, R; Jacobs, M; Peacock, W J; Dennis, E S

    1994-01-01

    The Adh (alcohol dehydrogenase, EC 1.1.1.1.) gene from Arabidopsis thaliana (L.) Heynh. can be induced by dehydration and cold, as well as by hypoxia. A 1-kb promoter fragment (CADH: -964 to +53) is sufficient to confer the stress induction and tissue-specific developmental expression characteristics of the Adh gene to a beta-glucuronidase reporter gene. Deletion mapping of the 5' end and site-specific mutagenesis identified four regions of the promoter essential for expression under the three stress conditions. Some sequence elements are important for response to all three stress treatments, whereas others are stress specific. The most critical region essential for expression of the Arabidopsis Adh promoter under all three environmental stresses (region IV: -172 to -141) contains sequences homologous to the GT motif (-160 to -152) and the GC motif (-147 to -144) of the maize Adh1 anaerobic responsive element. Region III (-235 to -172) contains two regions shown by R.J. Ferl and B.H. Laughner ([1989] Plant Mol Biol 12: 357-366) to bind regulatory proteins; mutation of the G-box-1 region (5'-CCACGTGG-3', -216 to -209) does not affect expression under uninduced or hypoxic conditions, but significantly reduces induction by cold stress and, to a lesser extent, by dehydration stress. Mutation of the other G-box-like sequence (G-box-2: 5'-CCAAGTGG-3', -193 to -182) does not change hypoxic response and affects cold and dehydration stress only slightly. G-box-2 mutations also promote high levels of expression under uninduced conditions. Deletion of region I (-964 to -510) results in increased expression under uninduced and all stress conditions, suggesting that this region contains a repressor binding site. Region II (-510 to -384) contains a positive regulatory element and is necessary for high expression levels under all treatments. PMID:7972489

  13. Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen induction by hypoxia and hypoxia-inducible factors.

    PubMed

    Veeranna, Ravindra P; Haque, Muzammel; Davis, David A; Yang, Min; Yarchoan, Robert

    2012-01-01

    Hypoxia and hypoxia-inducible factors (HIFs) play an important role in the Kaposi's sarcoma-associated herpesvirus (KSHV) life cycle. In particular, hypoxia can activate lytic replication of KSHV and specific lytic genes, including the replication and transcription activator (RTA), while KSHV infection in turn can increase the levels and activity of HIFs. In the present study, we show that hypoxia increases the levels of mRNAs encoding KSHV latency-associated nuclear antigen (LANA) in primary effusion lymphoma (PEL) cell lines and also increases the levels of LANA protein. Luciferase reporter assays in Hep3B cells revealed a moderate activation of the LANA promoter region by hypoxia as well as by cotransfection with degradation-resistant HIF-1α or HIF-2α expression plasmids. Computer analysis of a 1.2-kb sequence upstream of the LANA translational start site identified six potential hypoxia-responsive elements (HRE). Sequential deletion studies revealed that much of this activity was mediated by one of these HREs (HRE 4R) oriented in the 3' to 5' direction and located between the constitutive (LTc) and RTA-inducible (LTi) mRNA start sites. Site-directed mutation of this HRE substantially reduced the response to both HIF-1α and HIF-2α in a luciferase reporter assay. Electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP) assays demonstrated binding of both HIF-1α and HIF-2α to this region. Also, HIF-1α was found to associate with RTA, and HIFs enhanced the activation of LTi by RTA. These results provide evidence that hypoxia and HIFs upregulate both latent and lytic KSHV replication and play a central role in the life cycle of this virus. PMID:22090111

  14. Strain Differences in Behavioral and Cellular Responses to Perinatal Hypoxia and Relationships to Neural Stem Cell Survival and Self-Renewal

    PubMed Central

    Li, Qi; Liu, Jaimei; Michaud, Michael; Schwartz, Michael L.; Madri, Joseph A.

    2009-01-01

    Premature infants have chronic hypoxia, resulting in cognitive and motor neurodevelopmental handicaps caused by suboptimal neural stem cell (NSC) repair/recovery in neurogenic zones (including the subventricular and the subgranular zones). Understanding the variable central nervous system repair response is crucial to identifying “at risk” infants and to increasing survival and clinical improvement of affected infants. Using mouse strains found to span the range of responsiveness to chronic hypoxia, we correlated differential NSC survival and self-renewal with differences in behavior. We found that C57BL/6 (C57) pups displayed increased hyperactivity after hypoxic insult; CD-1 NSCs exhibited increased hypoxia-induced factor 1α (HIF-1α) mRNA and protein, increased HIF-1α, and decreased prolyl hydroxylase domain 2 in nuclear fractions, which denotes increased transcription/translation and decreased degradation of HIF-1α. C57 NSCs exhibited blunted stromal-derived factor 1-induced migratory responsiveness, decreased matrix metalloproteinase-9 activity, and increased neuronal differentiation. Adult C57 mice exposed to hypoxia from P3 to P11 exhibited learning impairment and increased anxiety. These findings support the concept that behavioral differences between C57 and CD-1 mice are a consequence of differential responsiveness to hypoxic insult, leading to differences in HIF-1α signaling and resulting in lower NSC proliferative/migratory and higher apoptosis rates in C57 mice. Information gained from these studies will aid in design and effective use of preventive therapies in the very low birth weight infant population. PMID:19815710

  15. Imaging hypoxia in tumors.

    PubMed

    Ballinger, J R

    2001-10-01

    For many years, it has been known that hypoxia affects the response to radiotherapy in human cancers. Hypoxic regions can develop as a tumor grows beyond the ability of its blood supply to deliver oxygen to the full extent of the tumor, exacerbated by vascular spasm or compression caused by increased interstitial fluid pressure. However, hypoxia is heterogeneous, and tumors that appear identical by clinical and radiographic criteria can vary greatly in their extent of hypoxia. Several invasive procedures to measure hypoxia in tumors have been developed and are predictive of response to therapy, but none of these is in routine clinical use because of technical complexity, inconvenience, and inability to obtain repeated measures. Noninvasive imaging with a hypoxia-directed radiopharmaceutical could be of great clinical utility. Most such radiopharmaceuticals under development use 2-nitroimidazole as the targeting moiety. 2-Nitroimidazole, which is selectively reduced and bound in hypoxic tissues, has been labeled with F-18, Cu-64/67, I-123, and Tc-99m. Of these, F-18-fluoromisonidazole and I-123-iodoazomycin arabinoside (IAZA) have been most widely studied clinically. Non-nitro-containing bioreductive complexes, such as the Cu-60/62/64 thiosemicarbazone ATSM and Tc-99m butylene amineoxime (BnAO or HL91), have also been evaluated. In particular, 1-123-IAZA and Cu-60-ATSM have shown correlation with response to radiotherapy in preliminary clinical studies. However, more preclinical studies comparing imaging with validated invasive methods and clinical studies with outcome measures are required. Nuclear medicine is poised to play an important role in optimizing the therapy of patients with hypoxic tumors.

  16. F18 Fluoromisonidazole for Imaging Tumor Hypoxia: Imaging the Microenvironment for Personalized Cancer Therapy

    PubMed Central

    Rajendran, JG; Krohn, KA

    2014-01-01

    Hypoxia in solid tumors is one of the seminal mechanisms for developing aggressive trait and treatment resistsance in solid tumors. This evolutionarily conserved biological mechanism along with de-repression of cellular functions in cancer, although resulting in many challenges, provide us with opportunities to use these adversities to our advantage. Our ability to use molecular imaging to characterize therapeutic targets such as hypoxia and apply this information for therapeutic interventions is growing rapidly. Evaluation of hypoxia and its biological ramifications to effectively plan appropriate therapy that can overcome the cure-limiting effects of hypoxia provides an objective means for treatment selection and planning. FMISO PET imaging of tumor hypoxia continues to be the lead radiopharmaceutical for the evaluation, prognostication and quantification of hypoxia, one of the key elements of the tumor microenvironment. FMISO is less confounded by blood flow and, although the images have less contrast than FDG PET, its uptake after 2 hours is an accurate reflection of inadequate regional Po2 at the time of radiopharmaceutical administration. By virtue of extensive clinical utilization, FMISO remains the lead candidate for imaging and quantifying hypoxia. The past decade has seen significant technological advances in investigating hypoxia imaging in radiation treatment planning and in providing us with the ability to individualize radiation delivery and target volume coverage. The presence of widespread hypoxia in the tumor can be effectively targeted with a systemic hypoxic cell cytotoxin or other agents that are more effective with diminished PO2, either alone or in combination. Molecular imaging in general and hypoxia imaging in particular will likely become an important in vivo imaging biomarker of the future, complementing the traditional direct tissue sampling methods by providing a snap shot of a primary tumor and metastatic disease and in following

  17. MR Imaging Biomarkers to Monitor Early Response to Hypoxia-Activated Prodrug TH-302 in Pancreatic Cancer Xenografts.

    PubMed

    Zhang, Xiaomeng; Wojtkowiak, Jonathan W; Martinez, Gary V; Cornnell, Heather H; Hart, Charles P; Baker, Amanda F; Gillies, Robert

    2016-01-01

    TH-302 is a hypoxia-activated prodrug known to activate selectively under the hypoxic conditions commonly found in solid tumors. It is currently being evaluated in clinical trials, including two trials in Pancreatic Ductal Adenocarcinomas (PDAC). The current study was undertaken to evaluate imaging biomarkers for prediction and response monitoring of TH-302 efficacy in xenograft models of PDAC. Dynamic contrast-enhanced (DCE) and diffusion weighted (DW) magnetic resonance imaging (MRI) were used to monitor acute effects on tumor vasculature and cellularity, respectively. Three human PDAC xenografts with known differential responses to TH-302 were imaged prior to, and at 24 h and 48 hours following a single dose of TH-302 or vehicle to determine if imaging changes presaged changes in tumor volumes. DW-MRI was performed at five b-values to generate apparent diffusion coefficient of water (ADC) maps. For DCE-MRI, a standard clinically available contrast reagent, Gd-DTPA, was used to determine blood flow into the tumor region of interest. TH-302 induced a dramatic decrease in the DCE transfer constant (Ktrans) within 48 hours after treatment in the sensitive tumors, Hs766t and Mia PaCa-2, whereas TH-302 had no effect on the perfusion behavior of resistant SU.86.86 tumors. Tumor cellularity, estimated from ADC, was significantly increased 24 and 48 hours after treatment in Hs766t, but was not observed in the Mia PaCa-2 and SU.86.86 groups. Notably, growth inhibition of Hs766t was observed immediately (day 3) following initiation of treatment, but was not observed in MiaPaCa-2 tumors until 8 days after initiation of treatment. Based on these preclinical findings, DCE-MRI measures of vascular perfusion dynamics and ADC measures of cell density are suggested as potential TH-302 response biomarkers in clinical trials. PMID:27227903

  18. Regulation of gene expression by hypoxia.

    PubMed

    Kenneth, Niall Steven; Rocha, Sonia

    2008-08-15

    Hypoxia induces profound changes in the cellular gene expression profile. The discovery of a major transcription factor family activated by hypoxia, HIF (hypoxia-inducible factor), and the factors that contribute to HIF regulation have greatly enhanced our knowledge of the molecular aspects of the hypoxic response. However, in addition to HIF, other transcription factors and cellular pathways are activated by exposure to reduced oxygen. In the present review, we summarize the current knowledge of how additional hypoxia-responsive transcription factors integrate with HIF and how other cellular pathways such as chromatin remodelling, translation regulation and microRNA induction, contribute to the co-ordinated cellular response observed following hypoxic stress.

  19. Enhanced phosphorylation of cyclic AMP response element binding protein in Brain of mice following repetitive hypoxic exposure

    SciTech Connect

    Gao Yanan; Gao Ge; Long Caixia; Han Song; Zu Pengyu; Fang Li . E-mail: lfang@utmb.edu; Li Junfa . E-mail: junfali@cpums.edu.cn

    2006-02-10

    Cerebral ischemic/hypoxic preconditioning (I/HPC) is a phenomenon of endogenous protection that renders Brain tolerant to sustained ischemia/hypoxia. This profound protection induced by I/HPC makes it an attractive target for developing potential clinical therapeutic approaches. However, the molecular mechanism of I/HPC is unclear. Cyclic AMP (cAMP) response element binding protein (CREB), a selective nuclear transcriptional factor, plays a key role in the neuronal functions. Phosphorylation of CREB on Ser-133 may facilitate its transcriptional activity in response to various stresses. In the current study, we observed the changes in CREB phosphorylation (Ser-133) and protein expression in Brain of auto-hypoxia-induced HPC mice by using Western blot analysis. We found that the levels of phosphorylated CREB (Ser-133), but not protein expression of CREB, increased significantly (p < 0.05) in the hippocampus and the frontal cortex of mice after repetitive hypoxic exposure (H2-H4, n = 6 for each group), when compared to that of the normoxic (H0, n = 6) or hypoxic exposure once group (H1, n = 6). In addition, a significant enhancement (p < 0.05) of CREB phosphorylation (Ser-133) could also be found in the nuclear extracts from the whole hippocampus of hypoxic preconditioned mice (H2-H4, n = 6 for each group). These results suggest that the phosphorylation of CREB might be involved in the development of cerebral hypoxic preconditioning.

  20. Diffractive micro-optical element with nonpoint response

    NASA Astrophysics Data System (ADS)

    Soifer, Victor A.; Golub, Michael A.

    1993-01-01

    Common-use diffractive lenses have microrelief zones in the form of simple rings that provide only an optical power but do not contain any image information. They have a point-image response under point-source illumination. We must use a more complicated non-point response to focus a light beam into different light marks, letter-type images as well as for optical pattern recognition. The current presentation describes computer generation of diffractive micro- optical elements with complicated curvilinear zones of a regular piecewise-smooth structure and grey-level or staircase phase microrelief. The manufacture of non-point response elements uses the steps of phase-transfer calculation and orthogonal-scan masks generation or lithographic glass etching. Ray-tracing method is shown to be applicable in this task. Several working samples of focusing optical elements generated by computer and photolithography are presented. Using the experimental results we discuss here such applications as laser branding.

  1. Intracrine prostaglandin E(2) signalling regulates hypoxia-inducible factor-1α expression through retinoic acid receptor-β.

    PubMed

    Fernández-Martínez, Ana B; Jiménez, María I Arenas; Manzano, Victoria Moreno; Lucio-Cazaña, Francisco J

    2012-12-01

    We have previously found in human renal proximal tubular HK-2 cells that hypoxia- and all-trans retinoic acid-induced hypoxia-inducible factor-1α up-regulation is accompanied by retinoic acid receptor-β up-regulation. Here we first investigated whether hypoxia-inducible factor-1α expression is dependent on retinoic acid receptor-β and our results confirmed it since (i) hypoxia-inducible factor-1α-inducing agents hypoxia, hypoxia-mimetic agent desferrioxamine, all-trans retinoic acid and interleukin-1β increased retinoic acid receptor-β expression, (ii) hypoxia-inducible factor-1α up-regulation was prevented by retinoic acid receptor-β antagonist LE-135 or siRNA retinoic acid receptor-β and (iii) there was direct binding of retinoic acid receptor-β to the retinoic acid response element in hypoxia-inducible factor-1α promoter upon treatment with all-trans retinoic acid and 16,16-dimethyl-prostaglandin E(2). Since intracellular prostaglandin E(2) mediates hypoxia-inducible factor-1α up-regulation in normoxia in HK-2 cells, we next investigated and confirmed, its role in the up-regulation of retinoic acid receptor-β in normoxia by hypoxia-inducible factor-1α-inducing agents all-trans retinoic acid, interleukin-1β and 16,16-dimethyl-prostaglandin E(2) by inhibiting cyclooxygenases, prostaglandin influx transporter or EP receptors. Interestingly, the hypoxia-induced increase in retinoic acid receptor-β expression and accumulation of hypoxia-inducible factor-1α was also blocked by the inhibitors tested. This is the first time, to our knowledge, that retinoic acid receptor-β signalling is involved in the control of the expression of transcription factor hypoxia-inducible factor-1α in both normoxia and hypoxia and that retinoic acid receptor-β expression is found to be strictly regulated by intracellular prostaglandin E(2). Given the relevance of hypoxia-inducible factor-1α in the kidney in terms of tumorigenesis, progressive renal failure, production

  2. FDG uptake, a surrogate of tumour hypoxia?

    PubMed Central

    Van de Wiele, Christophe

    2008-01-01

    Introduction Tumour hyperglycolysis is driven by activation of hypoxia-inducible factor-1 (HIF-1) through tumour hypoxia. Accordingly, the degree of 2-fluro-2-deoxy-d-glucose (FDG) uptake by tumours might indirectly reflect the level of hypoxia, obviating the need for more specific radiopharmaceuticals for hypoxia imaging. Discussion In this paper, available data on the relationship between hypoxia and FDG uptake by tumour tissue in vitro and in vivo are reviewed. In pre-clinical in vitro studies, acute hypoxia was consistently shown to increase FDG uptake by normal and tumour cells within a couple of hours after onset with mobilisation or modification of glucose transporters optimising glucose uptake, followed by a delayed response with increased rates of transcription of GLUT mRNA. In pre-clinical imaging studies on chronic hypoxia that compared FDG uptake by tumours grown in rat or mice to uptake by FMISO, the pattern of normoxic and hypoxic regions within the human tumour xenografts, as imaged by FMISO, largely correlated with glucose metabolism although minor locoregional differences could not be excluded. In the clinical setting, data are limited and discordant. Conclusion Further evaluation of FDG uptake by various tumour types in relation to intrinsic and bioreductive markers of hypoxia and response to radiotherapy or hypoxia-dependent drugs is needed to fully assess its application as a marker of hypoxia in the clinical setting. PMID:18509637

  3. Hypoxia and the antipredator behaviours of fishes.

    PubMed

    Domenici, P; Lefrançois, C; Shingles, A

    2007-11-29

    Hypoxia is a phenomenon occurring in marine coastal areas with increasing frequency. While hypoxia has been documented to affect fish activity and metabolism, recent evidence shows that hypoxia can also have a detrimental effect on various antipredator behaviours. Here, we review such evidence with a focus on the effect of hypoxia on fish escape responses, its modulation by aquatic surface respiration (ASR) and schooling behaviour. The main effect of hypoxia on escape behaviour was found in responsiveness and directionality. Locomotor performance in escapes was expected to be relatively independent of hypoxia, since escape responses are fuelled anaerobically. However, hypoxia decreased locomotor performance in some species (Mugilidae) although only in the absence of ASR in severe hypoxia. ASR allows fish to show higher escape performance than fish staying in the water column where hypoxia occurs. This situation provides a trade-off whereby fish may perform ASR in order to avoid the detrimental effects of hypoxia, although they would be subjected to higher exposure to aerial predation. As a result of this trade-off, fishes appear to minimize surfacing behaviour in the presence of aerial predators and to surface near shelters, where possible. For many fish species, schooling can be an effective antipredator behaviour. Severe hypoxia may lead to the disruption of the school unit. At moderate levels, hypoxia can increase school volume and can change the shuffling behaviour of individuals. By altering school structure and dynamics, hypoxia may affect the well functioning of schooling in terms of synchronization and execution of antipredator manoeuvres. School structure and volume appear to be the results of numerous trade-offs, where school shape may be dictated by the presence of predators, the need for energy saving via hydrodynamic advantages and oxygen level. The effects of hypoxia on aquatic organisms can be taxon specific. While hypoxia may not necessarily

  4. Sphingosine kinase-1 is a hypoxia-regulated gene that stimulates migration of human endothelial cells

    SciTech Connect

    Schwalm, Stephanie; Doell, Frauke; Roemer, Isolde; Bubnova, Svetlana

    2008-04-18

    Sphingosine kinases (SK) catalyze the production of sphingosine-1-phosphate which in turn regulates cell responses such as proliferation and migration. Here, we show that exposure of the human endothelial cell line EA.hy 926 to hypoxia stimulates a increased SK-1, but not SK-2, mRNA, protein expression, and activity. This effect was due to stimulated SK-1 promoter activity which contains two putative hypoxia-inducible factor-responsive-elements (HRE). By deletion of one of the two HREs, hypoxia-induced promoter activation was abrogated. Furthermore, hypoxia upregulated the expression of HIF-1{alpha} and HIF-2{alpha}, and both contributed to SK-1 gene transcription as shown by selective depletion of HIF-1{alpha} or HIF-2{alpha} by siRNA. The hypoxia-stimulated SK-1 upregulation was functionally coupled to increased migration since the selective depletion of SK-1, but not of SK-2, by siRNAs abolished the migratory response. In summary, these data show that hypoxia upregulates SK-1 activity and results in an accelerated migratory capacity of endothelial cells. SK-1 may thus serve as an attractive therapeutic target to treat diseases associated with increased endothelial migration and angiogenesis such as cancer growth and progression.

  5. INNER EAR INSULT ABLATES THE AROUSAL RESPONSE TO HYPOXIA AND HYPERCARBIA

    PubMed Central

    ALLEN, T.; GARCIA, A. J.; TANG, J.; RAMIREZ, J. M.; RUBENS, D. D.

    2014-01-01

    Introduction Sudden Infant Death Syndrome (SIDS) remains the leading cause of infant mortality in Western societies. A prior study identified an association between hearing suppression on the newborn hearing test and subsequent death from SIDS. This is the first finding of an abnormality in SIDS cases prior to death. A following study identified that inner ear dysfunction precipitates a marked suppression of the hypercapnic ventilatory response (HCVR). Failure of arousal has been proposed to be a key component in SIDS. The objective of the present study was to assess whether inner ear dysfunction not only weakens the hypercapnic response, but also plays a role in suppressing the arousal response to suffocating gas mixtures. Methods Wild-type mice (n = 28) received intra-tympanic gentamicin (IT-Gent) injections bilaterally or unilaterally to precipitate inner ear hair cell dysfunction. Three control groups (n = 22) received intra-tympanic saline (IT-Saline) bilaterally or unilaterally (right or left), or intra-peritoneal gentamicin (IP-Gent). The body movement arousal responses to severe hypoxia–hypercarbia combined (5% CO2 in nitrogen) were tested under light anesthesia 8 days following the administration of gentamicin or saline. Results After injections, the bilateral and unilateral IT-Gent-treated animals behaved similarly to controls, however the HCVR as well as the arousal movements in response to severe hypoxia–hypercarbia were suppressed in IT-Gent-treated animals compared to control animals (P < 0.05). Thus the HCVR was significantly decreased in the bilateral (n = 9) and unilateral IT-Gent-treated mice (n = 19) compared to bilateral (n = 7) and unilateral IT-Saline (n = 9) control groups (p < 0.05). Arousal movements were suppressed in the bilateral IT-Gent group (n = 9) compared to bilateral IT-Saline controls (n = 7, P < 0.0001) and in the unilateral IT-Gent group (n = 19) compared to unilateral IT-Saline controls (n = 10, P < 0.0001). Discussion The

  6. Salinity effects on behavioural response to hypoxia in the non-native Mayan cichlid Cichlasoma urophthalmus from Florida Everglades wetlands

    USGS Publications Warehouse

    Schofield, P.J.; Loftus, W.F.; Fontaine, J.A.

    2009-01-01

    This study quantified the hypoxia tolerance of the Mayan cichlid Cichlasoma urophthalmus over a range of salinities. The species was very tolerant of hypoxia, using aquatic surface respiration (ASR) and buccal bubble holding when oxygen tensions dropped to <20 mmHg (c. 1??0 mg l-1) and 6 mmHg, respectively. Salinity had little effect on the hypoxia tolerance of C. urophthalmus, except that bubble holding was more frequent at the higher salinities tested. Levels of aggression were greatest at the highest salinity. The ASR thresholds of C. urophthalmus were similar to native centrarchid sunfishes from the Everglades, however, aggression levels for C. uropthalmus were markedly higher. ?? 2009 The Fisheries Society of the British Isles.

  7. Hypoxia in the changing marine environment

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Cowie, G.; Naqvi, S. W. A.

    2013-03-01

    The predicted future of the global marine environment, as a combined result of forcing due to climate change (e.g. warming and acidification) and other anthropogenic perturbation (e.g. eutrophication), presents a challenge to the sustainability of ecosystems from tropics to high latitudes. Among the various associated phenomena of ecosystem deterioration, hypoxia can cause serious problems in coastal areas as well as oxygen minimum zones in the open ocean (Diaz and Rosenberg 2008 Science 321 926-9, Stramma et al 2008 Science 320 655-8). The negative impacts of hypoxia include changes in populations of marine organisms, such as large-scale mortality and behavioral responses, as well as variations of species distributions, biodiversity, physiological stress, and other sub-lethal effects (e.g. growth and reproduction). Social and economic activities that are related to services provided by the marine ecosystems, such as tourism and fisheries, can be negatively affected by the aesthetic outcomes as well as perceived or real impacts on seafood quality (STAP 2011 (Washington, DC: Global Environment Facility) p 88). Moreover, low oxygen concentration in marine waters can have considerable feedbacks to other compartments of the Earth system, like the emission of greenhouse gases to the atmosphere, and can affect the global biogeochemical cycles of nutrients and trace elements. It is of critical importance to prediction and adaptation strategies that the key processes of hypoxia in marine environments be precisely determined and understood (cf Zhang et al 2010 Biogeosciences 7 1-24).

  8. Arousal from sleep in response to intermittent hypoxia in rat pups is modulated by medullary raphe GABAergic mechanisms.

    PubMed

    Darnall, Robert A; Schneider, Robert W; Tobia, Christine M; Zemel, Benjamin M

    2012-03-01

    Arousal is an important defense against hypoxia during sleep. Rat pups exhibit progressive arousal impairment (habituation) with multiple hypoxia exposures. The mechanisms are unknown. The medullary raphe (MR) is involved in autonomic functions, including sleep, and receives abundant GABAergic inputs. We hypothesized that inhibiting MR neurons with muscimol, a GABA(A) receptor agonist, or preventing GABA reuptake with nipecotic acid, would impair arousal and enhance arousal habituation and that blocking GABA(A) receptors with bicuculline would enhance arousal and attenuate habituation. Postnatal day 15 (P15) to P25 rat pups were briefly anesthetized, and microinjections with aCSF, muscimol, bicuculline, or nipecotic acid were made into the MR. After a ∼30-min recovery, pups were exposed to four 3-min episodes of hypoxia separated by 6 min of normoxia. The time to arousal from the onset of hypoxia (latency) was determined for each trial. Latency progressively increased across trials (habituation) in all groups. The overall latency was greater after muscimol and nipecotic acid compared with aCSF, bicuculline, or noninjected controls. Arousal habituation was reduced after bicuculline compared with aCSF, muscimol, nipecotic acid, or noninjected pups. Increases in latency were mirrored by decreases in chamber [O2] and oxyhemoglobin saturation. Heart rate increased during hypoxia and was greatest in muscimol-injected pups. Our results indicate that the MR plays an important, not previously described, role in arousal and arousal habituation during hypoxia and that these phenomena are modulated by GABAergic mechanisms. Arousal habituation may contribute to sudden infant death syndrome, which is associated with MR serotonergic and GABAergic receptor dysfunction. PMID:22160541

  9. Elements of a national emergency response system for nuclear accidents

    SciTech Connect

    Dickerson, M.H.

    1987-02-10

    The purpose of this paper is to suggest elements for a general emergency response system, employed at a national level, to detect, evaluate and assess the consequences of a radiological atmospheric release occurring within or outside of national boundaries. These elements are focused on the total aspect of emergency response ranging from providing an initial alarm to a total assessment of the environmental and health effects. Elements of the emergency response system are described in such a way that existing resources can be directly applied if appropriate; if not, newly developed or an expansion of existing resources can be employed. The major thrust of this paper is toward a philosophical discussion and general description of resources that would be required to implementation. If the major features of this proposal system are judged desirable for implementation, then the next level of detail can be added. The philosophy underlying this paper is preparedness - preparedness through planning, awareness and the application of technology. More specifically, it is establishment of reasonable guidelines including the definition of reference and protective action levels for public exposure to accidents involving nuclear material; education of the public, government officials and the news media; and the application of models and measurements coupled to computer systems to address a series of questions related to emergency planning, response and assessment. It is the role of a proven national emergency response system to provide reliable, quality-controlled information to decision makers for the management of environmental crises.

  10. Upregulation of NAD(P)H oxidase 1 in hypoxia activates hypoxia-inducible factor 1 via increase in reactive oxygen species.

    PubMed

    Goyal, Parag; Weissmann, Norbert; Grimminger, Friedrich; Hegel, Cornelia; Bader, Lucius; Rose, Frank; Fink, Ludger; Ghofrani, Hossein A; Schermuly, Ralph T; Schmidt, Harald H H W; Seeger, Werner; Hänze, Jörg

    2004-05-15

    Hypoxia sensing and related signaling events, including activation of hypoxia-inducible factor 1 (HIF-1), represent key features in cell physiology and lung function. Using cultured A549 cells, we investigated the role of NAD(P)H oxidase 1 (Nox1), suggested to be a subunit of a low-output NAD(P)H oxidase complex, in hypoxia signaling. Nox1 expression was detected on both the mRNA and protein levels. Upregulation of Nox1 mRNA and protein occurred during hypoxia, accompanied by enhanced reactive oxygen species (ROS) generation. A549 cells, which were transfected with a Nox1 expression vector, revealed an increase in ROS generation accompanied by activation of HIF-1-dependent target gene expression (heme oxygenase 1 mRNA, hypoxia-responsive-element reporter gene activity). In A549 cells stably overexpressing Nox1, accumulation of HIF-1alpha in normoxia and an additional increase in hypoxia were noted. Interference with ROS metabolism by the flavoprotein inhibitor diphenylene iodonium (DPI) and catalase inhibited HIF-1 induction. This suggests that H2O2 links Nox1 and HIF-1 activation. We conclude that hypoxic upregulation of Nox1 and subsequently augmented ROS generation may activate HIF-1-dependent pathways.

  11. Taxol-induced unfolded protein response activation in breast cancer cells exposed to hypoxia: ATF4 activation regulates autophagy and inhibits apoptosis.

    PubMed

    Notte, Annick; Rebucci, Magali; Fransolet, Maude; Roegiers, Edith; Genin, Marie; Tellier, Celine; Watillon, Kassandra; Fattaccioli, Antoine; Arnould, Thierry; Michiels, Carine

    2015-05-01

    Understanding the mechanisms responsible for the resistance against chemotherapy-induced cell death is still of great interest since the number of patients with cancer increases and relapse is commonly observed. Indeed, the development of hypoxic regions as well as UPR (unfolded protein response) activation is known to promote cancer cell adaptive responses to the stressful tumor microenvironment and resistance against anticancer therapies. Therefore, the impact of UPR combined to hypoxia on autophagy and apoptosis activation during taxol exposure was investigated in MDA-MB-231 and T47D breast cancer cells. The results showed that taxol rapidly induced UPR activation and that hypoxia modulated taxol-induced UPR activation differently according to the different UPR pathways (PERK, ATF6, and IRE1α). The putative involvement of these signaling pathways in autophagy or in apoptosis regulation in response to taxol exposure was investigated. However, while no link between the activation of these three ER stress sensors and autophagy or apoptosis regulation could be evidenced, results showed that ATF4 activation, which occurs independently of UPR activation, was involved in taxol-induced autophagy completion. In addition, an ATF4-dependent mechanism leading to cancer cell adaptation and resistance against taxol-induced cell death was evidenced. Finally, our results demonstrate that expression of ATF4, in association with hypoxia-induced genes, can be used as a biomarker of a poor prognosis for human breast cancer patients supporting the conclusion that ATF4 might play an important role in adaptation and resistance of breast cancer cells to chemotherapy in hypoxic tumors.

  12. Pulmonary capillary recruitment in response to hypoxia in healthy humans: a possible role for hypoxic pulmonary venoconstriction?

    PubMed Central

    Taylor, Bryan J.; Kjaergaard, Jesper; Snyder, Eric M.; Olson, Thomas P.; Johnson, Bruce D.

    2011-01-01

    We examined mechanisms by which hypoxia may elicit pulmonary capillary recruitment in humans. On separate occasions, twenty-five healthy adults underwent exposure to intravenous saline infusion (30 ml/kg ~15min) or 17-h normobaric hypoxia (FiO2=12.5%). Cardiac output (Q̇) and pulmonary capillary blood volume (Vc) were measured before and after saline infusion and hypoxic-exposure by a rebreathing method. Pulmonary artery systolic pressure (sPpa) and left ventricular (LV) diastolic function were assessed before and after hypoxic-exposure via echocardiography. Saline infusion increased Q̇ and Vc (P<0.05) with no change in Vc/Q̇ (P=0.97). Hypoxic-exposure increased Vc (P<0.01) despite no change in Q̇ (P=0.25), increased sPpa (P<0.01), and impaired LV relaxation. Multiple regression suggested that ~37% of the hypoxia-mediated increase in Vc was attributable to alterations in Q̇, sPpa and LV diastolic function. In conclusion, hypoxia-induced pulmonary capillary recruitment in humans is only partly accounted for by changes in Q̇, sPpa and LV diastolic function. We speculate that hypoxic pulmonary venoconstriction may play a role in such recruitment. PMID:21513822

  13. Oxygen deprivation and the cellular response to hypoxia in adipocytes - perspectives on white and brown adipose tissues in obesity.

    PubMed

    Trayhurn, Paul; Alomar, Suliman Yousef

    2015-01-01

    Relative hypoxia has been shown to develop in white adipose tissue depots of different types of obese mouse (genetic, dietary), and this leads to substantial changes in white adipocyte function. These changes include increased production of inflammation-related adipokines (such as IL-6, leptin, Angptl4, and VEGF), an increase in glucose utilization and lactate production, and the induction of fibrosis and insulin resistance. Whether hypoxia also occurs in brown adipose tissue depots in obesity has been little considered. However, a recent study has reported low pO2 in brown fat of obese mice, this involving mitochondrial loss and dysfunction. We suggest that obesity-linked hypoxia may lead to similar alterations in brown adipocytes as in white fat cells - particularly changes in adipokine production, increased glucose uptake and lactate release, and insulin resistance. This would be expected to compromise thermogenic activity and the role of brown fat in glucose homeostasis and triglyceride clearance, underpinning the development of the metabolic syndrome. Hypoxia-induced augmentation of lactate production may also stimulate the "browning" of white fat depots through recruitment of UCP1 and the development of brite adipocytes.

  14. Electrical aspects of the osmorespiratory compromise: TEP responses to hypoxia in the euryhaline killifish (Fundulus heteroclitus) in freshwater and seawater.

    PubMed

    Wood, Chris M; Grosell, Martin

    2015-07-01

    The osmorespiratory compromise, the trade-off between the requirements for respiratory and ionoregulatory homeostasis at the gills, becomes more intense during environmental hypoxia. One aspect that has been previously overlooked is possible change in transepithelial potential (TEP) caused by hypoxia, which will influence branchial ionic fluxes. Using the euryhaline killifish, we show that acute hypoxia reduces the TEP across the gills by approximately 10 mV in animals acclimated to both freshwater (FW) and seawater (SW), with a higher PO2  threshold in the former. TEP becomes negative in FW, and less positive in SW. The effects are immediate, stable for at least 3 h, and reverse immediately upon return to normoxia. Hypoxia also blocks the normal increase in TEP that occurs upon transfer from FW to SW, but does not reduce the fall in TEP that occurs with transfer in the opposite direction. These effects may be beneficial in FW but not in SW. PMID:26026034

  15. Oxygen Deprivation and the Cellular Response to Hypoxia in Adipocytes – Perspectives on White and Brown Adipose Tissues in Obesity

    PubMed Central

    Trayhurn, Paul; Alomar, Suliman Yousef

    2015-01-01

    Relative hypoxia has been shown to develop in white adipose tissue depots of different types of obese mouse (genetic, dietary), and this leads to substantial changes in white adipocyte function. These changes include increased production of inflammation-related adipokines (such as IL-6, leptin, Angptl4, and VEGF), an increase in glucose utilization and lactate production, and the induction of fibrosis and insulin resistance. Whether hypoxia also occurs in brown adipose tissue depots in obesity has been little considered. However, a recent study has reported low pO2 in brown fat of obese mice, this involving mitochondrial loss and dysfunction. We suggest that obesity-linked hypoxia may lead to similar alterations in brown adipocytes as in white fat cells – particularly changes in adipokine production, increased glucose uptake and lactate release, and insulin resistance. This would be expected to compromise thermogenic activity and the role of brown fat in glucose homeostasis and triglyceride clearance, underpinning the development of the metabolic syndrome. Hypoxia-induced augmentation of lactate production may also stimulate the “browning” of white fat depots through recruitment of UCP1 and the development of brite adipocytes. PMID:25745415

  16. Stratified control of IGF-I expression by hypoxia and stress hormones in osteoblasts.

    PubMed

    McCarthy, Thomas L; Yun, Zhong; Madri, Joseph A; Centrella, Michael

    2014-04-10

    Bone cells respond to the integrated effects of local and systemic regulation. Here we show that hypoxia and the stress hormones PGE2 and glucocorticoid interact in complex ways in osteoblasts, converging on insulin like growth factor I (IGF-I) expression. Whereas hypoxia alone rapidly increased transcription factor HIF activity, it suppressed DNA synthesis, had no significant effects on protein synthesis or alkaline phosphatase activity, and drove discrete changes in a panel of osteoblast mRNAs. Notably, hypoxia increased expression of the acute phase response transcription factor C/EBPδ which can induce IGF-I in response to PGE2, but conversely prevented the stimulatory effect of PGE2 on IGF-I mRNA. However, unlike its effect on C/EBPδ, hypoxia suppressed expression of the obligate osteoblast transcription factor Runx2, which can activate an upstream response element in the IGF-I gene promoter. Hypoxic inhibition of IGF-I and Runx2 were enforced by glucocorticoid, and continued with prolonged exposure. Our studies thus reveal that IGF-I expression is stratified by two critical transcriptional elements in osteoblasts, which are resolved by the individual and combined effects of hypoxic stress and stress hormones. In so doing, hypoxia suppresses Runx2, limits the enhancing influence of PGE2, and interacts with glucocorticoid to reduce IGF-I expression by osteoblasts.

  17. Determinants of erythropoietin release in response to short-term hypobaric hypoxia

    NASA Technical Reports Server (NTRS)

    Ge, Ri-Li; Witkowski, S.; Zhang, Y.; Alfrey, C.; Sivieri, M.; Karlsen, T.; Resaland, G. K.; Harber, M.; Stray-Gundersen, J.; Levine, B. D.

    2002-01-01

    We measured blood erythropoietin (EPO) concentration, arterial O(2) saturation (Sa(O(2))), and urine PO(2) in 48 subjects (32 men and 16 women) at sea level and after 6 and 24 h at simulated altitudes of 1,780, 2,085, 2,454, and 2,800 m. Renal blood flow (Doppler) and Hb were determined at sea level and after 6 h at each altitude (n = 24) to calculate renal O(2) delivery. EPO increased significantly after 6 h at all altitudes and continued to increase after 24 h at 2,454 and 2,800 m, although not at 1,780 or 2,085 m. The increase in EPO varied markedly among individuals, ranging from -41 to 400% after 24 h at 2,800 m. Similar to EPO, urine PO(2) decreased after 6 h at all altitudes and returned to baseline by 24 h at the two lowest altitudes but remained decreased at the two highest altitudes. Urine PO(2) was closely related to EPO via a curvilinear relationship (r(2) = 0.99), although also with prominent individual variability. Renal blood flow remained unchanged at all altitudes. Sa(O(2)) decreased slightly after 6 h at the lowest altitudes but decreased more prominently at the highest altitudes. There were only modest, albeit statistically significant, relationships between EPO and Sa(O(2)) (r = 0.41, P < 0.05) and no significant relationship with renal O(2) delivery. These data suggest that 1) the altitude-induced increase in EPO is "dose" dependent: altitudes > or =2,100-2,500 m appear to be a threshold for stimulating sustained EPO release in most subjects; 2) short-term acclimatization may restore renal tissue oxygenation and restrain the rise in EPO at the lowest altitudes; and 3) there is marked individual variability in the erythropoietic response to altitude that is only partially explained by "upstream" physiological factors such as those reflecting O(2) delivery to EPO-producing tissues.

  18. Barley responses to combined waterlogging and salinity stress: separating effects of oxygen deprivation and elemental toxicity

    PubMed Central

    Zeng, Fanrong; Shabala, Lana; Zhou, Meixue; Zhang, Guoping; Shabala, Sergey

    2013-01-01

    Salinity and waterlogging are two major factors affecting crop production around the world and often occur together (e.g., salt brought to the surface by rising water tables). While the physiological and molecular mechanisms of plant responses to each of these environmental constraints are studied in detail, the mechanisms underlying plant tolerance to their combined stress are much less understood. In this study, whole-plant physiological responses to individual/combined salinity and waterlogging stresses were studied using two barley varieties grown in either vermiculite (semi-hydroponics) or sandy loam. Two weeks of combined salinity and waterlogging treatment significantly decreased plant biomass, chlorophyll content, maximal quantum efficiency of PSII and water content (WC) in both varieties, while the percentage of chlorotic and necrotic leaves and leaf sap osmolality increased. The adverse effects of the combined stresses were much stronger in the waterlogging-sensitive variety Naso Nijo. Compared with salinity stress alone, the combined stress resulted in a 2-fold increase in leaf Na+, but a 40% decrease in leaf K+ content. Importantly, the effects of the combined stress were more pronounced in sandy loam compared with vermiculite and correlated with changes in the soil redox potential and accumulation of Mn and Fe in the waterlogged soils. It is concluded that hypoxia alone is not a major factor determining differential plant growth under adverse stress conditions, and that elemental toxicities resulting from changes in soil redox potential have a major impact on genotypic differences in plant physiological and agronomical responses. These results are further discussed in the context of plant breeding for waterlogging stress tolerance. PMID:23967003

  19. Barley responses to combined waterlogging and salinity stress: separating effects of oxygen deprivation and elemental toxicity.

    PubMed

    Zeng, Fanrong; Shabala, Lana; Zhou, Meixue; Zhang, Guoping; Shabala, Sergey

    2013-01-01

    Salinity and waterlogging are two major factors affecting crop production around the world and often occur together (e.g., salt brought to the surface by rising water tables). While the physiological and molecular mechanisms of plant responses to each of these environmental constraints are studied in detail, the mechanisms underlying plant tolerance to their combined stress are much less understood. In this study, whole-plant physiological responses to individual/combined salinity and waterlogging stresses were studied using two barley varieties grown in either vermiculite (semi-hydroponics) or sandy loam. Two weeks of combined salinity and waterlogging treatment significantly decreased plant biomass, chlorophyll content, maximal quantum efficiency of PSII and water content (WC) in both varieties, while the percentage of chlorotic and necrotic leaves and leaf sap osmolality increased. The adverse effects of the combined stresses were much stronger in the waterlogging-sensitive variety Naso Nijo. Compared with salinity stress alone, the combined stress resulted in a 2-fold increase in leaf Na(+), but a 40% decrease in leaf K(+) content. Importantly, the effects of the combined stress were more pronounced in sandy loam compared with vermiculite and correlated with changes in the soil redox potential and accumulation of Mn and Fe in the waterlogged soils. It is concluded that hypoxia alone is not a major factor determining differential plant growth under adverse stress conditions, and that elemental toxicities resulting from changes in soil redox potential have a major impact on genotypic differences in plant physiological and agronomical responses. These results are further discussed in the context of plant breeding for waterlogging stress tolerance.

  20. Transcriptional control of the tumor- and hypoxia-marker carbonic anhydrase 9: a one transcription factor (HIF-1) show?

    PubMed Central

    Kaluz, Stefan; Kaluzová, Milota; Liao, Shu-Yuan; Lerman, Michael; Stanbridge, Eric J

    2009-01-01

    SUMMARY Transcriptional activation by hypoxia is mediated by the hypoxia-inducible factor (HIF) via binding to the hypoxia-responsive element (HRE). Hypoxia in solid tumors associates with poorer outcome of the disease and reliable cellular markers of tumor hypoxia would represent a valuable diagnostic marker and a potential therapeutic target. In this category, carbonic anhydrase IX (CAIX) is one of the most promising candidates. Here, we summarize the knowledge about transcriptional regulation of CA9. The HRE is the central regulatory element in the CA9 promoter, whereas other elements are limited to lesser roles of amplification of signals received at the HRE. The analysis of known mechanisms of activation of CA9 reveals the prominent role of the HIF-1 pathway. Experimental paradigms with uncoupled HIF-1α stability and transcriptional activity (pericellular hypoxia, proteasomal inhibitor) provide evidence that CA9 expression monitors transcriptional activity of HIF-1, rather than the abundance of HIF-1α. Furthermore, these paradigms could provide a corollary to some of the apparently discordant cases (CAIX+, HIF-1α−) or (CAIX−, HIF-1α+) observed in vivo. In conclusion, the existing data support the notion that CA9, due to the unique structure of its promoter, is one of the most sensitive endogenous sensors of HIF-1 activity. PMID:19344680

  1. An Overview on the Respiratory Stimulant Effects of Caffeine and Progesterone on Response to Hypoxia and Apnea Frequency in Developing Rats.

    PubMed

    Bairam, Aida; Uppari, NaggaPraveena; Mubayed, Sébastien; Joseph, Vincent

    2015-01-01

    The respiratory stimulant caffeine is the most frequently used xanthine (theophylline or aminophylline) for the treatment of apnea in premature infants. It decreases but does not eliminate apnea. In most cases such decreases is insufficient to prevent the use of artificial ventilation. Progesterone is a respiratory stimulant in adult mammals including human, and it decreases sleep apnea in menopausal women. Whether progesterone as an adjunct to caffeine therapy could be effective in further reducing the frequency of apnea in premature infants is not known because its respiratory effect in newborns has not been well studied. Using rat pups at different postnatal ages, we first determined whether the respiratory stimulant effects of acute caffeine (10 mg/kg, i.p.) or progesterone (4 mg/kg i.p.) are age dependent. These studies showed that caffeine enhances the ventilatory response to hypoxia in 1 and 4 days-old rats while it decreases apnea frequency in 12-days-old. In contrast, progesterone enhances the ventilatory response to hypoxia in less than 7-days-old but decreases apnea in 1-day-old rats. Preliminary experiments show that administration of progesterone (4 mg/kg i.p.) to newborn rats that are chronically treated with caffeine (mimicking its clinical uses - 7.5 mg/kg once/day by gavage) enhances the respiratory stimulant effects of caffeine. Surprisingly, acute injection of progesterone enhances apnea frequency and reduces hypoxic ventilatory response in 12-day-old rats.

  2. An Overview on the Respiratory Stimulant Effects of Caffeine and Progesterone on Response to Hypoxia and Apnea Frequency in Developing Rats.

    PubMed

    Bairam, Aida; Uppari, NaggaPraveena; Mubayed, Sébastien; Joseph, Vincent

    2015-01-01

    The respiratory stimulant caffeine is the most frequently used xanthine (theophylline or aminophylline) for the treatment of apnea in premature infants. It decreases but does not eliminate apnea. In most cases such decreases is insufficient to prevent the use of artificial ventilation. Progesterone is a respiratory stimulant in adult mammals including human, and it decreases sleep apnea in menopausal women. Whether progesterone as an adjunct to caffeine therapy could be effective in further reducing the frequency of apnea in premature infants is not known because its respiratory effect in newborns has not been well studied. Using rat pups at different postnatal ages, we first determined whether the respiratory stimulant effects of acute caffeine (10 mg/kg, i.p.) or progesterone (4 mg/kg i.p.) are age dependent. These studies showed that caffeine enhances the ventilatory response to hypoxia in 1 and 4 days-old rats while it decreases apnea frequency in 12-days-old. In contrast, progesterone enhances the ventilatory response to hypoxia in less than 7-days-old but decreases apnea in 1-day-old rats. Preliminary experiments show that administration of progesterone (4 mg/kg i.p.) to newborn rats that are chronically treated with caffeine (mimicking its clinical uses - 7.5 mg/kg once/day by gavage) enhances the respiratory stimulant effects of caffeine. Surprisingly, acute injection of progesterone enhances apnea frequency and reduces hypoxic ventilatory response in 12-day-old rats. PMID:26303483

  3. Yak response to high-altitude hypoxic stress by altering mRNA expression and DNA methylation of hypoxia-inducible factors.

    PubMed

    Xiong, Xianrong; Fu, Mei; Lan, Daoliang; Li, Jian; Zi, Xiangdong; Zhong, Jincheng

    2015-01-01

    Hypoxia-inducible factors (HIFs) are oxygen-dependent transcriptional activators, which play crucial roles in tumor angiogenesis and mammalian development, and regulate the transcription of genes involved in oxygen homeostasis in response to hypoxia. However, information on HIF-1α and HIF-2α in yak (Bos grunniens) is scarce. The complete coding region of yak HIF-2α was cloned, its mRNA expression in several tissues were determined, and the expression levels were compared with those of closely related low-altitude cattle (Bos taurus), and the methylation status of promoter regions were analyzed to better understand the roles of HIF-1α and HIF-2α in domesticated yak. The yak HIF-2α cDNA was cloned and sequenced in the present work reveals the evolutionary conservation through multiple sequence alignment, although 15 bases changed, resulting in 8 amino acid substitutions in the translated proteins in cattle. The tissue-specific expression results showed that HIF-1α is ubiquitously expressed, whereas HIF-2α expression is limited to endothelial tissues (kidney, heart, lung, spleen, and liver) and blood in yak. Both HIF-1α and HIF-2α expressions were higher in yak tissues than in cattle. The HIF-1α expression level is much higher in yak than cattle in these organs, except for the lung (P < 0.05), but the HIF-2α gene is significantly different in the heart, spleen, and kidney (P < 0.05). Furthermore, the methylation levels in the 5' flanking regulatory regions of HIF-1α and HIF-2α in yak kidney were significantly decreased than cattle counterparts (P < 0.05). Identifying these genes and the comparison of different expressions facilitates the understanding of the biological high-altitude hypoxic stress response mechanism and may assist current medical research to understand hypoxia-related diseases. PMID:25927169

  4. Hypoxia and fatty liver.

    PubMed

    Suzuki, Tomohiro; Shinjo, Satoko; Arai, Takatomo; Kanai, Mai; Goda, Nobuhito

    2014-11-01

    The liver is a central organ that metabolizes excessive nutrients for storage in the form of glycogen and lipids and supplies energy-producing substrates to the peripheral tissues to maintain their function, even under starved conditions. These processes require a considerable amount of oxygen, which causes a steep oxygen gradient throughout the hepatic lobules. Alcohol consumption and/or excessive food intake can alter the hepatic metabolic balance drastically, which can precipitate fatty liver disease, a major cause of chronic liver diseases worldwide, ranging from simple steatosis, through steatohepatitis and hepatic fibrosis, to liver cirrhosis. Altered hepatic metabolism and tissue remodeling in fatty liver disease further disrupt hepatic oxygen homeostasis, resulting in severe liver hypoxia. As master regulators of adaptive responses to hypoxic stress, hypoxia-inducible factors (HIFs) modulate various cellular and organ functions, including erythropoiesis, angiogenesis, metabolic demand, and cell survival, by activating their target genes during fetal development and also in many disease conditions such as cancer, heart failure, and diabetes. In the past decade, it has become clear that HIFs serve as key factors in the regulation of lipid metabolism and fatty liver formation. This review discusses the molecular mechanisms by which hypoxia and HIFs regulate lipid metabolism in the development and progression of fatty liver disease. PMID:25386057

  5. Impaired acclimatization to chronic hypoxia in adult male and female rats following neonatal hypoxia.

    PubMed

    Lumbroso, Delphine; Joseph, Vincent

    2009-08-01

    We tested the hypothesis that neonatal exposure to hypoxia alters acclimatization to chronic hypoxia later in life. Rat pups were exposed to normobaric hypoxia (12% O(2); nHx group) in a sealed chamber, or to normoxia (21% O(2); nNx group) from the day before birth to postnatal day 10. The animals were then raised in normal conditions until reaching 12 wk of age. At this age, we assessed ventilatory and hematological acclimatization to chronic hypoxia by exposing male and female nHx and nNx rats for 2 wk to 10% O(2). Minute ventilation, metabolic rate, hypoxic ventilatory response, hematocrit, and hemoglobin levels were measured both before and after acclimatization. We also quantified right ventricular hypertrophy as an index of pulmonary hypertension both before and after acclimatization. There was a significant effect of neonatal hypoxia that decreases ventilatory response (relative to metabolic rate, VE/VCO(2)) to acute hypoxia before acclimatization in males but not in females. nHx rats had an impaired acclimatization to chronic hypoxia characterized by altered respiratory pattern and elevated hematocrit and hemoglobin levels after acclimatization, in both males and females. Right ventricular hypertrophy was present before and after acclimatization in nHx rats, indicating that neonatal hypoxia results in pulmonary hypertension in adults. We conclude that neonatal hypoxia impairs acclimatization to chronic hypoxia in adults and may be a factor contributing to the establishment of chronic mountain sickness in humans living at high altitude.

  6. The role of collagen in extralobar pulmonary artery stiffening in response to hypoxia-induced pulmonary hypertension.

    PubMed

    Ooi, Chen Yen; Wang, Zhijie; Tabima, Diana M; Eickhoff, Jens C; Chesler, Naomi C

    2010-12-01

    Hypoxic pulmonary hypertension (HPH) causes extralobar pulmonary artery (PA) stiffening, which potentially impairs right ventricular systolic function. Changes in the extracellular matrix proteins collagen and elastin have been suggested to contribute to this arterial stiffening. We hypothesized that vascular collagen accumulation is a major cause of extralobar PA stiffening in HPH and tested our hypothesis with transgenic mice that synthesize collagen type I resistant to collagenase degradation (Col1a1(R/R)). These mice and littermate controls that have normal collagen degradation (Col1a1(+/+)) were exposed to hypoxia for 10 days; some were allowed to recover for 32 days. In vivo PA pressure and isolated PA mechanical properties and collagen and elastin content were measured for all groups. Vasoactive studies were also performed with U-46619, Y-27632, or calcium- and magnesium-free medium. Pulmonary hypertension occurred in both mouse strains due to chronic hypoxia and resolved with recovery. HPH caused significant PA mechanical changes in both mouse strains: circumferential stretch decreased, and mid-to-high-strain circumferential elastic modulus increased (P < 0.05 for both). Impaired collagen type I degradation prevented a return to baseline mechanical properties with recovery and, in fact, led to an increase in the low and mid-to-high-strain moduli compared with hypoxia (P < 0.05 for both). Significant changes in collagen content were found, which tended to follow changes in mid-to-high-strain elastic modulus. No significant changes in elastin content or vasoactivity were observed. Our results demonstrate that collagen content is important to extralobar PA stiffening caused by chronic hypoxia. PMID:20852040

  7. The role of collagen in extralobar pulmonary artery stiffening in response to hypoxia-induced pulmonary hypertension

    PubMed Central

    Ooi, Chen Yen; Wang, Zhijie; Tabima, Diana M.; Eickhoff, Jens C.

    2010-01-01

    Hypoxic pulmonary hypertension (HPH) causes extralobar pulmonary artery (PA) stiffening, which potentially impairs right ventricular systolic function. Changes in the extracellular matrix proteins collagen and elastin have been suggested to contribute to this arterial stiffening. We hypothesized that vascular collagen accumulation is a major cause of extralobar PA stiffening in HPH and tested our hypothesis with transgenic mice that synthesize collagen type I resistant to collagenase degradation (Col1a1R/R). These mice and littermate controls that have normal collagen degradation (Col1a1+/+) were exposed to hypoxia for 10 days; some were allowed to recover for 32 days. In vivo PA pressure and isolated PA mechanical properties and collagen and elastin content were measured for all groups. Vasoactive studies were also performed with U-46619, Y-27632, or calcium- and magnesium-free medium. Pulmonary hypertension occurred in both mouse strains due to chronic hypoxia and resolved with recovery. HPH caused significant PA mechanical changes in both mouse strains: circumferential stretch decreased, and mid-to-high-strain circumferential elastic modulus increased (P < 0.05 for both). Impaired collagen type I degradation prevented a return to baseline mechanical properties with recovery and, in fact, led to an increase in the low and mid-to-high-strain moduli compared with hypoxia (P < 0.05 for both). Significant changes in collagen content were found, which tended to follow changes in mid-to-high-strain elastic modulus. No significant changes in elastin content or vasoactivity were observed. Our results demonstrate that collagen content is important to extralobar PA stiffening caused by chronic hypoxia. PMID:20852040

  8. The Clinical Importance of Assessing Tumor Hypoxia: Relationship of Tumor Hypoxia to Prognosis and Therapeutic Opportunities

    PubMed Central

    Walsh, Joseph C.; Lebedev, Artem; Aten, Edward; Madsen, Kathleen; Marciano, Liane

    2014-01-01

    I. Introduction II. The Clinical Importance of Tumor Hypoxia A. Pathophysiology of hypoxia B. Hypoxia's negative impact on the effectiveness of curative treatment 1. Hypoxic tumors accumulate and propagate cancer stem cells 2. Hypoxia reduces the effectiveness of radiotherapy 3. Hypoxia increases metastasis risk and reduces the effectiveness of surgery 4. Hypoxic tumors are resistant to the effects of chemotherapy and chemoradiation C. Hypoxia is prognostic for poor patient outcomes III. Diagnosis of Tumor Hypoxia A. Direct methods 1. Oxygen electrode—direct pO2 measurement most used in cancer research 2. Phosphorescence quenching—alternative direct pO2 measurement 3. Electron paramagnetic resonance 4. 19F-magnetic resonance spectroscopy 5. Overhauser-enhanced MRI B. Endogenous markers of hypoxia 1. Hypoxia-inducible factor-1α 2. Carbonic anhydrase IX 3. Glucose transporter 1 4. Osteopontin 5. A combined IHC panel of protein markers for hypoxia 6. Comet assay C. Physiologic methods 1. Near-infrared spectroscopy/tomography—widely used for pulse oximetry 2. Photoacoustic tomography 3. Contrast-enhanced color duplex sonography 4. MRI-based measurements 5. Blood oxygen level-dependent MRI 6. Pimonidazole 7. EF5 (pentafluorinated etanidazole) 8. Hypoxia PET imaging—physiologic hypoxia measurement providing tomographic information a. 18F-fluoromisonidazole b. 18F-fluoroazomycinarabinofuranoside c. 18F-EF5 (pentafluorinated etanidazole) d. 18F-flortanidazole e. Copper (II) (diacetyl-bis (N4-methylthiosemicarbazone)) f. 18F-FDG imaging of hypoxia IV. Modifying Hypoxia to Improve Therapeutic Outcomes A. Use of hypoxia information in radiation therapy planning B. Use of hypoxia assessment for selection of patients responsive to nimorazole C. Use of hypoxia assessment for selection of patients responsive to tirapazamine D. Use of hypoxia assessment for selection of patients

  9. p53 directly suppresses BNIP3 expression to protect against hypoxia-induced cell death

    PubMed Central

    Feng, Xi; Liu, Xing; Zhang, Wei; Xiao, Wuhan

    2011-01-01

    Hypoxia stabilizes the tumour suppressor p53, allowing it to function primarily as a transrepressor; however, the function of p53 during hypoxia remains unclear. In this study, we showed that p53 suppressed BNIP3 expression by directly binding to the p53-response element motif and recruiting corepressor mSin3a to the BNIP3 promoter. The DNA-binding site of p53 must remain intact for the protein to suppress the BNIP3 promoter. In addition, taking advantage of zebrafish as an in vivo model, we confirmed that zebrafish nip3a, a homologous gene of mammalian BNIP3, was indeed induced by hypoxia and p53 mutation/knockdown enhanced nip3a expression under hypoxia resulted in cell death enhancement in p53 mutant embryos. Furthermore, p53 protected against hypoxia-induced cell death mediated by p53 suppression of BNIP3 as illustrated by p53 knockdown/loss assays in both human cell lines and zebrafish model, which is in contrast to the traditional pro-apoptotic role of p53. Our results suggest a novel function of p53 in hypoxia-induced cell death, leading to the development of new treatments for ischaemic heart disease and cerebral stoke. PMID:21792176

  10. Spectral response of multi-element silicon detectors

    SciTech Connect

    Ludewigt, B.A.; Rossington, C.S.; Chapman, K.

    1997-04-01

    Multi-element silicon strip detectors, in conjunction with integrated circuit pulse-processing electronics, offer an attractive alternative to conventional lithium-drifted silicon Si(Li) and high purity germanium detectors (HPGe) for high count rate, low noise synchrotron x-ray fluorescence applications. One of the major differences between the segmented Si detectors and the commercially available single-element Si(Li) or HPGe detectors is that hundreds of elements can be fabricated on a single Si substrate using standard silicon processing technologies. The segmentation of the detector substrate into many small elements results in very low noise performance at or near, room temperature, and the count rate of the detector is increased many-fold due to the multiplication in the total number of detectors. Traditionally, a single channel of detector with electronics can handle {approximately}100 kHz count rates while maintaining good energy resolution; the segmented detectors can operate at greater than MHz count rates merely due to the multiplication in the number of channels. One of the most critical aspects in the development of the segmented detectors is characterizing the charge sharing and charge loss that occur between the individual detector strips, and determining how these affect the spectral response of the detectors.

  11. Effects of the nitric oxide synthase inhibitor L-NMMA on cerebrovascular and cardiovascular responses to hypoxia and hypercapnia in humans

    PubMed Central

    Ide, Kojiro; Worthley, Matthew; Anderson, Todd; Poulin, Marc J

    2007-01-01

    Cerebral blood flow is highly sensitive to alterations in the partial pressures of O2 and CO2 (PO2 and PCO2, respectively) in the arterial blood. In humans, the extent to which nitric oxide (NO) is involved in this regulation is unclear. We hypothesized that the NO synthase (NOS) inhibitor NG-monomethyl-l-arginine (l-NMMA), attenuates the sensitivity of middle cerebral artery blood velocity () to isocapnic hypoxia (end-tidal PO2 = 50 Torr) and euoxic hypercapnia (end-tidal PCO2 =+9 Torr above resting values) in 10 volunteers (age, 28.7 ± 1.3 years; height, 179.2 ± 2.4 cm; weight, 78.0 ± 3.7 kg; mean ±s.e.m.). The techniques of transcranial Doppler ultrasound and dynamic end-tidal forcing were used to measure , and control end-tidal PO2 and end-tidal PCO2, respectively. At baseline (isocapnic euoxia), following intravenous administration of l-NMMA, mean arterial blood pressure (MAP) increased (76.3 ± 7.3 to 86.2 ± 9.4 mmHg) and heart rate (HR) decreased (59.5 ± 9.0 to 55.2 ± 9.5 beats min−1) but was unchanged. Hypoxia-induced increases in MAP, HR and were similar with and without l-NMMA (5.0 ± 0.7 versus 7.1 ± 1.0 mmHg, 11.5 ± 1.4 versus 12.4 ± 1.5 beats min−1, 6.5 ± 0.8 versus 6.6 ± 0.8 cm s−1 for ΔMAP, ΔHR and Δ, respectively). Hypercapnia-induced increases in MAP, HR and were similar with and without l-NMMA (7.4 ± 3.1 versus 8.1 ± 2.2 mmHg, 10.4 ± 4.6 versus 10.0 ± 4.2 beats min−1, 16.5 ± 1.5 versus 17.6 ± 1.5 cm s−1 for ΔMAP, ΔHR and Δ, respectively) but the sensitivity of the response at the removal of hypercapnia was attenuated with l-NMMA. In young healthy humans, pharmacological blockade of nitric oxide synthesis does not affect the increases in cerebral blood flow with hypoxia and hypercapnia, suggesting that nitric oxide is not required for the cerbrovascular responses to hypoxia and hypercapnia. PMID:17673507

  12. Reactive Oxygen Species and Respiratory Plasticity Following Intermittent Hypoxia

    PubMed Central

    MacFarlane, P.M.; Wilkerson, J.E.R.; Lovett-Barr, M.R.; Mitchell, G.S.

    2008-01-01

    The neural network controlling breathing exhibits plasticity in response to environmental or physiological challenges. For example, while hypoxia initiates rapid and robust increases in respiratory motor output to defend against hypoxemia, it also triggers persistent changes, or plasticity, in chemosensory neurons and integrative pathways that transmit brainstem respiratory activity to respiratory motor neurons. Frequently studied models of hypoxia-induced respiratory plasticity include: 1) carotid chemosensory plasticity and metaplasticity induced by chronic intermittent hypoxia (CIH), and 2) acute intermittent hypoxia (AIH) induced phrenic long-term facilitation (pLTF) in naïve and CIH preconditioned rats. These forms of plasticity share some mechanistic elements, although they differ in anatomical location and the requirement for CIH preconditioning. Both forms of plasticity require serotonin receptor activation and formation of reactive oxygen species (ROS). While the cellular sources and targets of ROS are not well known, recent evidence suggests that ROS modify the balance of protein phosphatase and kinase activities, shifting the balance towards net phosphorylation and favoring cellular reactions that induce and/or maintain plasticity. Here, we review possible sources of ROS, and the impact of ROS on phosphorylation events relevant to respiratory plasticity. PMID:18692605

  13. Ventilatory and metabolic responses of burrowing owls, Athene cunicularia, to moderate and extreme hypoxia: analysis of the hypoxic ventilatory threshold vs. hemoglobin oxygen affinity relationship in birds.

    PubMed

    Kilgore, Delbert L; Boggs, Dona F; Kilgore, Trevor J; Colby, Conrad; Williams, Burl R; Bavis, Ryan W

    2008-06-01

    We measured ventilation, oxygen consumption and blood gases in burrowing owls (Athene cunicularia) breathing moderate and extreme hypoxic gas mixtures to determine their hypoxic ventilatory threshold (HVT) and to assess if they, like other birds and mammals, exhibit a relationship between HVT and hemoglobin O2 affinity (P(50)) of their blood. An earlier report of an attenuated ventilatory responsiveness of this species to hypoxia was enigmatic given the low O2 affinity (high P(50)) of burrowing owl hemoglobin. In the current study, burrowing owls breathing 11% and 9% O2 showed a significantly elevated total ventilation. The arterial partial pressure of oxygen (PaO2) at which ventilation is elevated above normoxic values in burrowing owls was 58 mm Hg. This threshold value conforms well to expectations based on the high P(50) of their hemoglobin and the HVT vs. P(50) relationship for birds developed in this study. Correcting for phylogenetic relatedness in the multi-species analysis had no effect on the HVT vs. P(50) relationship. Also, because burrowing owls in this study did not show a hypometabolic response at any level of hypoxia (even at 9% O2); HVT described in terms of percent change in oxygen convection requirement is identical to that based on ventilation alone. PMID:17561426

  14. Ventilatory and metabolic responses of burrowing owls, Athene cunicularia, to moderate and extreme hypoxia: analysis of the hypoxic ventilatory threshold vs. hemoglobin oxygen affinity relationship in birds.

    PubMed

    Kilgore, Delbert L; Boggs, Dona F; Kilgore, Trevor J; Colby, Conrad; Williams, Burl R; Bavis, Ryan W

    2008-06-01

    We measured ventilation, oxygen consumption and blood gases in burrowing owls (Athene cunicularia) breathing moderate and extreme hypoxic gas mixtures to determine their hypoxic ventilatory threshold (HVT) and to assess if they, like other birds and mammals, exhibit a relationship between HVT and hemoglobin O2 affinity (P(50)) of their blood. An earlier report of an attenuated ventilatory responsiveness of this species to hypoxia was enigmatic given the low O2 affinity (high P(50)) of burrowing owl hemoglobin. In the current study, burrowing owls breathing 11% and 9% O2 showed a significantly elevated total ventilation. The arterial partial pressure of oxygen (PaO2) at which ventilation is elevated above normoxic values in burrowing owls was 58 mm Hg. This threshold value conforms well to expectations based on the high P(50) of their hemoglobin and the HVT vs. P(50) relationship for birds developed in this study. Correcting for phylogenetic relatedness in the multi-species analysis had no effect on the HVT vs. P(50) relationship. Also, because burrowing owls in this study did not show a hypometabolic response at any level of hypoxia (even at 9% O2); HVT described in terms of percent change in oxygen convection requirement is identical to that based on ventilation alone.

  15. CD133 Modulate HIF-1α Expression under Hypoxia in EMT Phenotype Pancreatic Cancer Stem-Like Cells

    PubMed Central

    Maeda, Koki; Ding, Qiang; Yoshimitsu, Makoto; Kuwahata, Taisaku; Miyazaki, Yumi; Tsukasa, Koichirou; Hayashi, Tomomi; Shinchi, Hiroyuki; Natsugoe, Shoji; Takao, Sonshin

    2016-01-01

    Although CD133 is a known representative cancer stem cell marker, its function in tumor aggressiveness under hypoxia is not fully known. The aim of this study is to demonstrate that CD133 regulates hypoxia inducible factor (HIF)-1α expression with tumor migration. The CD133+ pancreatic cancer cell line, Capan1M9, was compared with the CD133− cell line, shCD133M9, under hypoxia. HIF-1α expression levels were compared by Western blot, HIF-1α nucleus translocation assay and real-time (RT)-PCR. The hypoxia responsive element (HRE) was observed by luciferase assay. The migration ability was analyzed by migration and wound healing assays. Epithelial mesenchymal transition (EMT) related genes were analyzed by real-time RT-PCR. HIF-1α was highly expressed in Capan1M9 compared to shCD133M9 under hypoxia because of the high activation of HRE. Furthermore, the migration ability of Capan1M9 was higher than that of shCD133M9 under hypoxia, suggesting higher expression of EMT related genes in Capan1M9 compared to shCD133M9. Conclusion: HIF-1α expression under hypoxia in CD133+ pancreatic cancer cells correlated with tumor cell migration through EMT gene expression. Understanding the function of CD133 in cancer aggressiveness provides a novel therapeutic approach to eradicate pancreatic cancer stem cells. PMID:27367674

  16. Epigenetic control of hypoxia inducible factor-1α-dependent expression of placental growth factor in hypoxic conditions

    PubMed Central

    Tudisco, Laura; Della Ragione, Floriana; Tarallo, Valeria; Apicella, Ivana; D'Esposito, Maurizio; Matarazzo, Maria Rosaria; De Falco, Sandro

    2014-01-01

    Hypoxia plays a crucial role in the angiogenic switch, modulating a large set of genes mainly through the activation of hypoxia-inducible factor (HIF) transcriptional complex. Endothelial cells play a central role in new vessels formation and express placental growth factor (PlGF), a member of vascular endothelial growth factor (VEGF) family, mainly involved in pathological angiogenesis. Despite several observations suggest a hypoxia-mediated positive modulation of PlGF, the molecular mechanism governing this regulation has not been fully elucidated. We decided to investigate if epigenetic modifications are involved in hypoxia-induced PlGF expression. We report that PlGF expression was induced in cultured human and mouse endothelial cells exposed to hypoxia (1% O2), although DNA methylation at the Plgf CpG-island remains unchanged. Remarkably, robust hyperacetylation of histones H3 and H4 was observed in the second intron of Plgf, where hypoxia responsive elements (HREs), never described before, are located. HIF-1α, but not HIF-2α, binds to identified HREs. Noteworthy, only HIF-1α silencing fully inhibited PlGF upregulation. These results formally demonstrate a direct involvement of HIF-1α in the upregulation of PlGF expression in hypoxia through chromatin remodeling of HREs sites. Therefore, PlGF may be considered one of the putative targets of anti-HIF therapeutic applications. PMID:24504136

  17. Influences of the endothelium and hypoxia on alpha 1- and alpha 2-adrenoceptor-mediated responses in the rabbit isolated pulmonary artery.

    PubMed Central

    MacLean, M. R.; McCulloch, K. M.; McGrath, J. C.

    1993-01-01

    1. The effects of the inhibitor of nitric oxide synthase, N omega-nitro-L-arginine methylester (L-NAME, 10(-4) M), mechanical disruption of the endothelium and hypoxia on contraction to noradrenaline (alpha 1- and alpha 2-adrenoceptor agonist), phenylephrine (alpha 1-adrenoceptor agonist) and UK 14304 (alpha 2-adrenoceptor agonist) were compared in the rabbit isolated pulmonary artery. The effects of the selective antagonists rauwolscine (10(-6) M, alpha 2-adrenoceptors) and prazosin (10(-7) M, alpha 1-adrenoceptors) on the contractions to noradrenaline before and after exposure to L-NAME were also assessed. 2. Noradrenaline, phenylephrine and UK 14304 all produced concentration-dependent increases in vascular tone. The responses to noradrenaline were sensitive to both rauwolscine and prazosin (effect of prazosin >> rauwolscine). L-NAME increased the potency of both noradrenaline and UK 14304, and also the maximum tension achieved. It had no effect on the responses to phenylephrine. After L-NAME, contractions to noradrenaline, although still sensitive to both rauwolscine and prazosin, were now more sensitive to inhibition by rauwolscine. 3. Endothelium removal augmented the potency and maximum contractions to noradrenaline, phenylephrine and UK 14304. 4. Hypoxia decreased both the potency of phenylephrine and its maximum contractile response, but increased the maximum response to noradrenaline without effecting responses to UK 14304. 5. In conclusion, in the rabbit pulmonary artery, augmentation of contractile responses to noradrenaline by L-NAME involves a potentiation of alpha 2-adrenoceptor-mediated contraction probably through an effect on the synthesis of endothelium-derived nitric oxide.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8094023

  18. Hypoxia- and radiation-inducible, breast cell-specific targeting of retroviral vectors

    SciTech Connect

    Lipnik, Karoline; Greco, Olga; Scott, Simon; Knapp, Elzbieta; Mayrhofer, Elisabeth; Rosenfellner, Doris; Guenzburg, Walter H.; Salmons, Brian; Hohenadl, Christine . E-mail: christine.hohenadl@vu-wien.ac.at

    2006-05-25

    To facilitate a more efficient radiation and chemotherapy of mammary tumours, synthetic enhancer elements responsive to hypoxia and ionizing radiation were coupled to the mammary-specific minimal promoter of the murine whey acidic protein (WAP) encoding gene. The modified WAP promoter was introduced into a retroviral promoter conversion (ProCon) vector. Expression of a transduced reporter gene in response to hypoxia and radiation was analysed in stably infected mammary cancer cell lines and an up to 9-fold increase in gene expression demonstrated in comparison to the respective basic vector. Expression analyses in vitro, moreover, demonstrated a widely preserved mammary cell-specific promoter activity. For in vivo analyses, xenograft tumours consisting of infected human mammary adenocarcinoma cells were established in SCID/beige mice. Immunohistochemical analyses demonstrated a hypoxia-specific, markedly increased WAP promoter-driven expression in these tumours. Thus, this retroviral vector will facilitate a targeted gene therapeutic approach exploiting the unique environmental condition in solid tumours.

  19. Up-regulation of stomatin expression by hypoxia and glucocorticoid stabilizes membrane-associated actin in alveolar epithelial cells

    PubMed Central

    Chen, Ji-Cheng; Cai, Hao-Yu; Wang, Yan; Ma, Yuan-Yuan; Song, Liang-Nian; Yin, Li-Juan; Cao, Dong-Mei; Diao, Fei; Li, Yi-Dong; Lu, Jian

    2013-01-01

    Stomatin is an important lipid raft-associated protein which interacts with membrane proteins and plays a role in the membrane organization. However, it is unknown whether it is involved in the response to hypoxia and glucocorticoid (GC) in alveolar epithelial cells (AEC). In this study we found that hypoxia and dexamethasone (dex), a synthetic GC not only up-regulated the expression of stomatin alone, but also imposed additive effect on the expression of stomatin in A549 cells, primary AEC and lung of rats. Then we investigated whether hypoxia and dex transcriptionally up-regulated the expression of stomatin by reporter gene assay, and found that dex, but not hypoxia could increase the activity of a stomatin promoter-driven reporter gene. Further deletion and mutational studies demonstrated that a GC response element (GRE) within the promoter region mainly contributed to the induction of stomatin by dex. Moreover, we found that hypoxia exposure did not affect membrane-associated actin, but decreased actin in cytoplasm in A549 cells. Inhibiting stomatin expression by stomatin siRNA significantly decreased dense of peripheral actin ring in hypoxia or dex treated A549 cells. Taken all together, these data indicated that dex and/or hypoxia significantly up-regulated the expression of stomatin in vivo and in vitro, which could stabilize membrane-associated actin in AEC. We suppose that the up-regulation of stomatin by hypoxia and dex may enhance the barrier function of alveolar epithelia and mediate the adaptive role of GC to hypoxia. PMID:23672602

  20. Exploring the HIFs, buts and maybes of hypoxia signalling in disease: lessons from zebrafish models

    PubMed Central

    Elks, Philip M.; Renshaw, Stephen A.; Meijer, Annemarie H.; Walmsley, Sarah R.; van Eeden, Fredericus J.

    2015-01-01

    ABSTRACT A low level of tissue oxygen (hypoxia) is a physiological feature of a wide range of diseases, from cancer to infection. Cellular hypoxia is sensed by oxygen-sensitive hydroxylase enzymes, which regulate the protein stability of hypoxia-inducible factor α (HIF-α) transcription factors. When stabilised, HIF-α binds with its cofactors to HIF-responsive elements (HREs) in the promoters of target genes to coordinate a wide-ranging transcriptional programme in response to the hypoxic environment. This year marks the 20th anniversary of the discovery of the HIF-1α transcription factor, and in recent years the HIF-mediated hypoxia response is being increasingly recognised as an important process in determining the outcome of diseases such as cancer, inflammatory disease and bacterial infections. Animal models have shed light on the roles of HIF in disease and have uncovered intricate control mechanisms that involve multiple cell types, observations that might have been missed in simpler in vitro systems. These findings highlight the need for new whole-organism models of disease to elucidate these complex regulatory mechanisms. In this Review, we discuss recent advances in our understanding of hypoxia and HIFs in disease that have emerged from studies of zebrafish disease models. Findings from such models identify HIF as an integral player in the disease processes. They also highlight HIF pathway components and their targets as potential therapeutic targets against conditions that range from cancers to infectious disease. PMID:26512123

  1. Hypoxia and Hypoxia Inducible Factors: Diverse Roles in Liver Diseases

    PubMed Central

    Nath, Bharath; Szabo, Gyongyi

    2011-01-01

    Hypoxia has been shown to have a role in the pathogenesis of several forms of liver disease. The Hypoxia Inducible Factors (HIFs) are a family of evolutionarily conserved transcriptional regulators that affect a homeostatic response to low oxygen tension and have been identified as key mediators of angiogenesis, inflammation, and metabolism. In this review, we summarize the evidence for a role of HIFs across a range of hepatic pathophysiology. We describe regulation of the hypoxia inducible factors and review investigations that demonstrate a role for HIFs in the development of liver fibrosis, activation of innate immune pathways, hepatocellular carcinoma, as well as other liver diseases in both human disease as well as murine models. PMID:22120903

  2. AMP‐activated protein kinase inhibits Kv1.5 channel currents of pulmonary arterial myocytes in response to hypoxia and inhibition of mitochondrial oxidative phosphorylation

    PubMed Central

    Moral‐Sanz, Javier; Mahmoud, Amira D.; Ross, Fiona A.; Eldstrom, Jodene; Fedida, David; Hardie, D. Grahame

    2016-01-01

    Key points Progression of hypoxic pulmonary hypertension is thought to be due, in part, to suppression of voltage‐gated potassium channels (Kv) in pulmonary arterial smooth muscle by hypoxia, although the precise molecular mechanisms have been unclear.AMP‐activated protein kinase (AMPK) has been proposed to couple inhibition of mitochondrial metabolism by hypoxia to acute hypoxic pulmonary vasoconstriction and progression of pulmonary hypertension.Inhibition of complex I of the mitochondrial electron transport chain activated AMPK and inhibited Kv1.5 channels in pulmonary arterial myocytes.AMPK activation by 5‐aminoimidazole‐4‐carboxamide riboside, A769662 or C13 attenuated Kv1.5 currents in pulmonary arterial myocytes, and this effect was non‐additive with respect to Kv1.5 inhibition by hypoxia and mitochondrial poisons.Recombinant AMPK phosphorylated recombinant human Kv1.5 channels in cell‐free assays, and inhibited K+ currents when introduced into HEK 293 cells stably expressing Kv1.5.These results suggest that AMPK is the primary mediator of reductions in Kv1.5 channels following inhibition of mitochondrial oxidative phosphorylation during hypoxia and by mitochondrial poisons. Abstract Progression of hypoxic pulmonary hypertension is thought to be due, in part, to suppression of voltage‐gated potassium channels (Kv) in pulmonary arterial smooth muscle cells that is mediated by the inhibition of mitochondrial oxidative phosphorylation. We sought to determine the role in this process of the AMP‐activated protein kinase (AMPK), which is intimately coupled to mitochondrial function due to its activation by LKB1‐dependent phosphorylation in response to increases in the cellular AMP:ATP and/or ADP:ATP ratios. Inhibition of complex I of the mitochondrial electron transport chain using phenformin activated AMPK and inhibited Kv currents in pulmonary arterial myocytes, consistent with previously reported effects of mitochondrial inhibitors. Myocyte

  3. Reactive Oxygen Species-Reducing Strategies Improve Pulmonary Arterial Responses to Nitric Oxide in Piglets with Chronic Hypoxia-Induced Pulmonary Hypertension

    PubMed Central

    Dikalova, Anna; Slaughter, James C.; Kaplowitz, M.R.; Zhang, Y.; Aschner, Judy L.

    2013-01-01

    Abstract Aims: There are no effective treatments for chronic pulmonary hypertension in infants with cardiopulmonary disorders associated with hypoxia, such as those with chronic lung disease. These patients often have poor or inconsistent pulmonary dilator responses to inhaled nitric oxide (iNO) therapy for unknown reasons. One possible explanation for poor responsiveness to iNO is reduced NO bioavailability caused by interactions between reactive oxygen species (ROS) and NO. Our major aim was to determine if strategies to reduce ROS improve dilator responses to the NO donor, S-nitroso-N-acetyl-penicillamine (SNAP), in resistance pulmonary arteries (PRAs) from a newborn piglet model of chronic pulmonary hypertension. Results: The dilation to SNAP was significantly impaired in PRAs from piglets with chronic hypoxia-induced pulmonary hypertension. ROS scavengers, including cell-permeable and impermeable agents to degrade hydrogen peroxide (H2O2), improved dilation to SNAP in PRAs from chronically hypoxic piglets. Treatment with agents to inhibit nitric oxide synthase and NADPH oxidase, potential enzymatic sources of ROS, also improved dilation to SNAP in PRAs from hypoxic piglets. Innovation: Our studies are the first to utilize a newborn model of chronic pulmonary hypertension to evaluate the impact of a number of potential therapeutic strategies for ROS removal on responses to exogenous NO in the vessels most relevant to the regulation of pulmonary vascular resistance (PRA). Conclusions: Strategies aimed at reducing ROS merit further evaluation and consideration as therapeutic approaches to improve responses to iNO in infants with chronic pulmonary hypertension. Antioxid. Redox Signal. 18, 1727–1738. PMID:23244497

  4. Tumor Necrosis Factor-Alpha and the ERK Pathway Drive Chemerin Expression in Response to Hypoxia in Cultured Human Coronary Artery Endothelial Cells

    PubMed Central

    Chua, Su-Kiat; Shyu, Kou-Gi; Lin, Yuh-Feng; Lo, Huey-Ming; Wang, Bao-Wei

    2016-01-01

    Background Chemerin, a novel adipokine, plays a role in the inflammation status of vascular endothelial cells. Hypoxia causes endothelial-cell proliferation, migration, and angiogenesis. This study was aimed at evaluating the protein and mRNA expression of chemerin after exposure of human coronary artery endothelial cells (HCAECs) to hypoxia. Methods and Results Cultured HCAECs underwent hypoxia for different time points. Chemerin protein levels increased after 4 h of hypoxia at 2.5% O2, with a peak of expression of tumor necrosis factor-alpha (TNF-alpha) at 1 h. Both hypoxia and exogenously added TNF-alpha during normoxia stimulated chemerin expression, whereas an ERK inhibitor (PD98059), ERK small interfering RNA (siRNA), or an anti-TNF-alpha antibody attenuated the chemerin upregulation induced by hypoxia. A gel shift assay indicated that hypoxia induced an increase in DNA-protein binding between the chemerin promoter and transcription factor SP1. A luciferase assay confirmed an increase in transcriptional activity of SP1 on the chemerin promoter during hypoxia. Hypoxia significantly increased the tube formation and migration of HCAECs, whereas PD98059, the anti-TNF-alpha antibody, and chemerin siRNA each attenuated these effects. Conclusion Hypoxia activates chemerin expression in cultured HCAECs. Hypoxia-induced chemerin expression is mediated by TNF-alpha and at least in part by the ERK pathway. Chemerin increases early processes of angiogenesis by HCAECs after hypoxic treatment. PMID:27792771

  5. Atypical hematological response to combined calorie restriction and chronic hypoxia in Biosphere 2 crew: a possible link to latent features of hibernation capacity.

    PubMed

    Paglia, Donald E; Walford, Roy L

    2005-01-01

    Eight humans were isolated for 2 years in Biosphere 2, a sealed airtight habitat with recycled air, food, water, and wastes. A combination of conditions led to selective decline of oxygen (O2) in the internal atmosphere from 21% to 14%, inducing symptoms of high-altitude sickness but with little or no compensatory increase in red cell production. All crew members exhibited significant decreases in both erythrocyte 2,3-bisphosphoglycerate (2,3-BPG) concentrations and P50 [partial pressure of O2 for 50% hemoglobin (Hb) saturation] values, changes opposite those expected in adaptation to high-altitude hypoxia. Lower P50 with increased Hb-O2 affinity induced by low 2,3-BPG is a characteristic of hibernating species and could be advantageous in O2-impoverished environments. The mechanisms underlying these changes in the Biosphere 2 crew remain obscure but could be related to low-calorie diet (1750-2100 kcal/day). Because the combination of hypoxia and limited caloric intake is also characteristic of hibernation, this unusual response may represent a cross-adaptation phenomenon in which certain features of hibernation capability are expressed in humans.

  6. PLAGL2 translocation and SP-C promoter activity-A cellular response of lung cells to hypoxia

    SciTech Connect

    Guo, Yuhong; Yang, Meng-Chun; Weissler, Jonathan C.; Yang, Yih-Sheng . E-mail: Yih-Sheng.Yang@UTSouthwestern.edu

    2007-08-31

    Cobalt is a transition metal which can substitute for iron in the oxygen-sensitive protein and mimic hypoxia. Cobalt was known to be associated with the development of lung disease. In this study, when lung cells were exposed to hypoxia-induced by CoCl{sub 2} at a sub-lethal concentration (100 {mu}M), their thyroid transcription factor-1 (TTF-1) expression was greatly reduced. Under this condition, SP-B promoter activity was down-regulated, but SP-C promoter remained active. Therefore, we hypothesized that other factor(s) besides TTF-1 might contribute to the modulation of SP-C promoter in hypoxic lung cells. Pleomorphic adenoma gene like-2 (PLAGL2), a previously identified TTF-1-independent activator of the SP-C promoter, was not down-regulated, nor increased, within those cells. Its cellular location was redistributed from the cytoplasm to the nucleus. Chromatin immunoprecipitation (ChIP) and quantitative RT-PCR analyses demonstrated that nuclear PLAGL2 occupied and transactivated the endogenous SP-C promoter in lung cells. Thereby, through relocating and accumulating of PLAGL2 inside the nucleus, PLAGL2 interacted with its target genes for various cellular functions. These results further suggest that PLAGL2 is an oxidative stress responding regulator in lung cells.

  7. Implication of Long noncoding RNAs in the endothelial cell response to hypoxia revealed by RNA-sequencing

    PubMed Central

    Voellenkle, C.; Garcia-Manteiga, J. M.; Pedrotti, S.; Perfetti, A.; De Toma, I.; Da Silva, D.; Maimone, B.; Greco, S.; Fasanaro, P.; Creo, P.; Zaccagnini, G.; Gaetano, C.; Martelli, F.

    2016-01-01

    Long noncoding RNAs (lncRNAs) are non-protein coding RNAs regulating gene expression. Although for some lncRNAs a relevant role in hypoxic endothelium has been shown, the regulation and function of lncRNAs is still largely unknown in the vascular physio-pathology. Taking advantage of next-generation sequencing techniques, transcriptomic changes induced by endothelial cell exposure to hypoxia were investigated. Paired-end sequencing of polyadenylated RNA derived from human umbilical vein endothelial cells (HUVECs) exposed to 1% O2 or normoxia was performed. Bioinformatics analysis identified ≈2000 differentially expressed genes, including 122 lncRNAs. Extensive validation was performed by both microarray and qPCR. Among the validated lncRNAs, H19, MIR210HG, MEG9, MALAT1 and MIR22HG were also induced in a mouse model of hindlimb ischemia. To test the functional relevance of lncRNAs in endothelial cells, knockdown of H19 expression was performed. H19 inhibition decreased HUVEC growth, inducing their accumulation in G1 phase of the cell cycle; accordingly, p21 (CDKN1A) expression was increased. Additionally, H19 knockdown also diminished HUVEC ability to form capillary like structures when plated on matrigel. In conclusion, a high-confidence signature of lncRNAs modulated by hypoxia in HUVEC was identified and a significant impact of H19 lncRNA was shown. PMID:27063004

  8. Role of Estrogen Response Element in the Human Prolactin Gene: Transcriptional Response and Timing

    PubMed Central

    McNamara, Anne V.; Adamson, Antony D.; Dunham, Lee S. S.; Semprini, Sabrina; Spiller, David G.; McNeilly, Alan S.; Mullins, John J.

    2016-01-01

    The use of bacterial artificial chromosome (BAC) reporter constructs in molecular physiology enables the inclusion of large sections of flanking DNA, likely to contain regulatory elements and enhancers regions that contribute to the transcriptional output of a gene. Using BAC recombineering, we have manipulated a 160-kb human prolactin luciferase (hPRL-Luc) BAC construct and mutated the previously defined proximal estrogen response element (ERE) located −1189 bp relative to the transcription start site, to assess its involvement in the estrogen responsiveness of the entire hPRL locus. We found that GH3 cell lines stably expressing Luc under control of the ERE-mutated hPRL promoter (ERE-Mut) displayed a dramatically reduced transcriptional response to 17β-estradiol (E2) treatment compared with cells expressing Luc from the wild-type (WT) ERE hPRL-Luc promoter (ERE-WT). The −1189 ERE controls not only the response to E2 treatment but also the acute transcriptional response to TNFα, which was abolished in ERE-Mut cells. ERE-WT cells displayed a biphasic transcriptional response after TNFα treatment, the acute phase of which was blocked after treatment with the estrogen receptor antagonist 4-hydroxy-tamoxifen. Unexpectedly, we show the oscillatory characteristics of hPRL promoter activity in individual living cells were unaffected by disruption of this crucial response element, real-time bioluminescence imaging showed that transcription cycles were maintained, with similar cycle lengths, in ERE-WT and ERE-Mut cells. These data suggest the −1189 ERE is the dominant response element involved in the hPRL transcriptional response to both E2 and TNFα and, crucially, that cycles of hPRL promoter activity are independent of estrogen receptor binding. PMID:26691151

  9. Effects of hypoxia on sympathetic neural control in humans

    NASA Technical Reports Server (NTRS)

    Smith, M. L.; Muenter, N. K.

    2000-01-01

    This special issue is principally focused on the time domain of the adaptive mechanisms of ventilatory responses to short-term, long-term and intermittent hypoxia. The purpose of this review is to summarize the limited literature on the sympathetic neural responses to sustained or intermittent hypoxia in humans and attempt to discern the time domain of these responses and potential adaptive processes that are evoked during short and long-term exposures to hypoxia.

  10. Effect of hypobaric hypoxia on immune function in albino rats

    NASA Astrophysics Data System (ADS)

    SaiRam, M.; Sharma, S. K.; Dipti, P.; Pauline, T.; Kain, A. K.; Mongia, S. S.; Bansal, Anju; Patra, B. D.; Ilavazhagan, G.; Devendra, K.; Selvamurthy, W.

    The effect of exposure to hypoxia on macrophage activity, lymphocyte function and oxidative stress was investigated. Hypoxia enhanced peritoneal macrophage activity as revealed by enhanced phagocytosis and free radical production. There was no significant change in antibody titres to sheep red blood cells in either serum or spleen during hypoxia. However, there was a considerable reduction in the delayed-type hypersensitivity response to sheep red blood cells, indicating the impairment of T-cell activity. Hypoxia decreased the blood glutathione (reduced) level and increased plasma malondialdehyde by a factor of about 2. It is therefore speculated that hypoxia imposes an oxidative stress leading to decreased T-cell acivity.

  11. Hypoxia and metabolic adaptation of cancer cells

    PubMed Central

    Eales, K L; Hollinshead, K E R; Tennant, D A

    2016-01-01

    Low oxygen tension (hypoxia) is a pervasive physiological and pathophysiological stimulus that metazoan organisms have contended with since they evolved from their single-celled ancestors. The effect of hypoxia on a tissue can be either positive or negative, depending on the severity, duration and context. Over the long-term, hypoxia is not usually consistent with normal function and so multicellular organisms have had to evolve both systemic and cellular responses to hypoxia. Our reliance on oxygen for efficient adenosine triphosphate (ATP) generation has meant that the cellular metabolic network is particularly sensitive to alterations in oxygen tension. Metabolic changes in response to hypoxia are elicited through both direct mechanisms, such as the reduction in ATP generation by oxidative phosphorylation or inhibition of fatty-acid desaturation, and indirect mechanisms including changes in isozyme expression through hypoxia-responsive transcription factor activity. Significant regions of cancers often grow in hypoxic conditions owing to the lack of a functional vasculature. As hypoxic tumour areas contain some of the most malignant cells, it is important that we understand the role metabolism has in keeping these cells alive. This review will outline our current understanding of many of the hypoxia-induced changes in cancer cell metabolism, how they are affected by other genetic defects often present in cancers, and how these metabolic alterations support the malignant hypoxic phenotype. PMID:26807645

  12. Thioureas as reporting elements for metal-responsive fluorescent chemosensors.

    PubMed

    Vonlanthen, Mireille; Finney, Nathaniel S

    2013-04-19

    Proof that sulfur is a viable reporting element for the development of fluorescent chemosensors for metal ions is presented. To date, the majority of metal-responsive fluorescent chemosensors have relied on metal-nitrogen coordination to provide a fluorescence response, most commonly by suppressing photoinduced electron transfer (PET) quenching. While chemosensors with direct application to biology, medicine, and analytical chemistry have been so developed, reliance on the coordination chemistry of nitrogen remains a practical and conceptual limitation. Building on the fact that thioureas can quench fluorescence emission by PET, it is shown that the quenched emission of thiourea-appended naphthalimides can be restored by metal binding and that metal affinity and selectivity can be controlled through structural modification of the thiourea substituents. Further, such chemosensors can function in aqueous media and, unlike nitrogen-based chemosensors, are unresponsive to increases in [H(+)]. Given that the coordination properties of sulfur are distinct from those of nitrogen, this work lays the foundation for the development of a new class of interesting and useful metal-responsive fluorescent probes. PMID:23470031

  13. Endogenous hypothermic response to hypoxia reduces brain injury: Implications for modeling hypoxic-ischemic encephalopathy and therapeutic hypothermia in neonatal mice.

    PubMed

    Reinboth, Barbara S; Köster, Christian; Abberger, Hanna; Prager, Sebastian; Bendix, Ivo; Felderhoff-Müser, Ursula; Herz, Josephine

    2016-09-01

    Hypothermia treatment (HT) is the only formally endorsed treatment recommended for hypoxic-ischemic encephalopathy (HIE). However, its success in protecting against brain injury is limited with a number to treat of 7-8. The identification of the target mechanisms of HIE in combination with HT will help to explain ineffective therapy outcomes but also requires stable experimental models in order to establish further neuroprotective therapies. Despite clinical and experimental indications for an endogenous thermoregulatory response to HIE, the potential effects on HIE-induced brain injury have largely been neglected in pre-clinical studies. In the present study we analyzed gray and white matter injury and neurobehavioral outcome in neonatal mice considering the endogenous thermoregulatory response during HIE combined with HT. HIE was induced in postnatal day (PND) 9 C57BL/6 mice through occlusion of the right common carotid artery followed by one hour of hypoxia. Hypoxia was performed at 8% or 10% oxygen (O2) at two different temperatures based on the nesting body core temperature. Using the model which mimics the clinical situation most closely, i.e. through maintenance of the nesting temperature during hypoxia we compared two mild HT protocols (rectal temperature difference 3°C for 4h), initiated either immediately after HIE or with delay of 2h. Injury was determined by histology, immunohistochemistry and western blot analyses at PND 16 and PND 51. Functional outcome was evaluated by Rota Rod, Elevated Plus Maze, Open Field and Novel Object Recognition testing at PND 30-PND 36 and PND 44-PND 50. We show that HIE modeling in neonatal mice is associated with a significant endogenous drop in body core temperature by 2°C resulting in profound neuroprotection, expressed by reduced neuropathological injury scores, reduced loss of neurons, axonal structures, myelin and decreased astrogliosis. Immediately applied post-hypoxic HT revealed slight advantages over a delayed

  14. Endogenous hypothermic response to hypoxia reduces brain injury: Implications for modeling hypoxic-ischemic encephalopathy and therapeutic hypothermia in neonatal mice.

    PubMed

    Reinboth, Barbara S; Köster, Christian; Abberger, Hanna; Prager, Sebastian; Bendix, Ivo; Felderhoff-Müser, Ursula; Herz, Josephine

    2016-09-01

    Hypothermia treatment (HT) is the only formally endorsed treatment recommended for hypoxic-ischemic encephalopathy (HIE). However, its success in protecting against brain injury is limited with a number to treat of 7-8. The identification of the target mechanisms of HIE in combination with HT will help to explain ineffective therapy outcomes but also requires stable experimental models in order to establish further neuroprotective therapies. Despite clinical and experimental indications for an endogenous thermoregulatory response to HIE, the potential effects on HIE-induced brain injury have largely been neglected in pre-clinical studies. In the present study we analyzed gray and white matter injury and neurobehavioral outcome in neonatal mice considering the endogenous thermoregulatory response during HIE combined with HT. HIE was induced in postnatal day (PND) 9 C57BL/6 mice through occlusion of the right common carotid artery followed by one hour of hypoxia. Hypoxia was performed at 8% or 10% oxygen (O2) at two different temperatures based on the nesting body core temperature. Using the model which mimics the clinical situation most closely, i.e. through maintenance of the nesting temperature during hypoxia we compared two mild HT protocols (rectal temperature difference 3°C for 4h), initiated either immediately after HIE or with delay of 2h. Injury was determined by histology, immunohistochemistry and western blot analyses at PND 16 and PND 51. Functional outcome was evaluated by Rota Rod, Elevated Plus Maze, Open Field and Novel Object Recognition testing at PND 30-PND 36 and PND 44-PND 50. We show that HIE modeling in neonatal mice is associated with a significant endogenous drop in body core temperature by 2°C resulting in profound neuroprotection, expressed by reduced neuropathological injury scores, reduced loss of neurons, axonal structures, myelin and decreased astrogliosis. Immediately applied post-hypoxic HT revealed slight advantages over a delayed

  15. Altitude matters: differences in cardiovascular and respiratory responses to hypoxia in bar-headed geese reared at high and low altitudes.

    PubMed

    Lague, Sabine L; Chua, Beverly; Farrell, Anthony P; Wang, Yuxiang; Milsom, William K

    2016-07-01

    Bar-headed geese (Anser indicus) fly at high altitudes during their migration across the Himalayas and Tibetan plateau. However, we know relatively little about whether rearing at high altitude (i.e. phenotypic plasticity) facilitates this impressive feat because most of what is known about their physiology comes from studies performed at sea level. To provide this information, a comprehensive analysis of metabolic, cardiovascular and ventilatory responses to progressive decreases in the equivalent fractional composition of inspired oxygen (FiO2 : 0.21, 0.12, 0.09, 0.07 and 0.05) was made on bar-headed geese reared at either high altitude (3200 m) or low altitude (0 m) and on barnacle geese (Branta leucopsis), a low-altitude migrating species, reared at low altitude (0 m). Bar-headed geese reared at high altitude exhibited lower metabolic rates and a modestly increased hypoxic ventilatory response compared with low-altitude-reared bar-headed geese. Although the in vivo oxygen equilibrium curves and blood-oxygen carrying capacity did not differ between the two bar-headed goose study groups, the blood-oxygen carrying capacity was higher than that of barnacle geese. Resting cardiac output also did not differ between groups and increased at least twofold during progressive hypoxia, initially as a result of increases in stroke volume. However, cardiac output increased at a higher FiO2  threshold in bar-headed geese raised at high altitude. Thus, bar-headed geese reared at high altitude exhibited a reduced oxygen demand at rest and a modest but significant increase in oxygen uptake and delivery during progressive hypoxia compared with bar-headed geese reared at low altitude. PMID:27385754

  16. High CO2 alters the hypoxia response of the Pacific whiteleg shrimp (Litopenaeus vannamei) transcriptome including known and novel hemocyanin isoforms.

    PubMed

    Johnson, Jillian G; Paul, Matthew R; Kniffin, Casey D; Anderson, Paul E; Burnett, Louis E; Burnett, Karen G

    2015-11-01

    Acclimation to low O2 in many organisms involves changes at the level of the transcriptome. Here we used high-throughput RNA sequencing (RNA-Seq) to explore the global transcriptomic response and specific involvement of a suite of hemocyanin (Hc) subunits to low O2 alone and in combination with high CO2, which naturally co-occurs with low O2. Hepatopancreas mRNA of juvenile L. vannamei exposed to air-saturated water, low O2, or low O2/high CO2 for 4 or 24 h was pooled, sequenced (HiSeq 2500) and assembled (Trinity: 52,190 contigs) to create a deep strand-specific reference transcriptome. Annotation of the assembly revealed sequences encoding the previously described small Hc subunit (HcS), and three full-length isoforms of the large subunit (HcL1-3). In addition to this, a previously unidentified full-length Hc subunit was discovered. Phylogenetic analysis demonstrated the subunit to be a β-type Hc subunit (denoted HcB), making this the first report of a β-type hemocyanin subunit in the Penaeoidea. RNAs of individual shrimp were sequenced; regulated genes identified from pairwise comparisons demonstrated a distinct pattern of regulation between prolonged low O2 and low O2/high CO2 treatments by GO term enrichment analysis (Roff-Bentzen, P < 0.0001), showcasing the stabilization of energetically costly translational machinery, mobilization of energy stores, and downregulation of the ubiquitin/proteasomal degradation machinery. Exposure to hypoxia for 24 h resulted in an increase in all of the full-length hemocyanin subunits (HcS, HcL1, HcL2, HcL3, and HcB). The addition of CO2 to hypoxia muted the transcriptomic response of all the Hc subunits to low O2, except for the β-type subunit.

  17. The hypoxia-inducible factor-responsive proteins semaphorin 4D and vascular endothelial growth factor promote tumor growth and angiogenesis in oral squamous cell carcinoma

    SciTech Connect

    Zhou, Hua; Yang, Ying-Hua; Binmadi, Nada O.; Proia, Patrizia; Basile, John R.

    2012-08-15

    Growth and metastasis of solid tumors requires induction of angiogenesis to ensure the delivery of oxygen, nutrients and growth factors to rapidly dividing transformed cells. Through either mutations, hypoxia generated by cytoreductive therapies, or when a malignancy outgrows its blood supply, tumor cells undergo a change from an avascular to a neovascular phenotype, a transition mediated by the hypoxia-inducible factor (HIF) family of transcriptional regulators. Vascular endothelial growth factor (VEGF) is one example of a gene whose transcription is stimulated by HIF. VEGF plays a crucial role in promoting tumor growth and survival by stimulating new blood vessel growth in response to such stresses as chemotherapy or radiotherapy-induced hypoxia, and it therefore has become a tempting target for neutralizing antibodies in the treatment of advanced neoplasms. Emerging evidence has shown that the semaphorins, proteins originally associated with control of axonal growth and immunity, are regulated by changes in oxygen tension as well and may play a role in tumor-induced angiogenesis. Through the use of RNA interference, in vitro and in vivo angiogenesis assays and tumor xenograft experiments, we demonstrate that expression of semaphorin 4D (SEMA4D), which is under the control of the HIF-family of transcription factors, cooperates with VEGF to promote tumor growth and vascularity in oral squamous cell carcinoma (OSCC). We use blocking antibodies to show that targeting SEMA4D function along with VEGF could represent a novel anti-angiogenic therapeutic strategy for the treatment of OSCC and other solid tumors. -- Highlights: Black-Right-Pointing-Pointer Similar to VEGF, SEMA4D promotes angiogenesis in vitro and in vivo. Black-Right-Pointing-Pointer Both VEGF and SEMA4D are produced by OSCC cells in a HIF-dependent manner. Black-Right-Pointing-Pointer These factors combine to elicit a robust pro-angiogenic phenotype in OSCC. Black-Right-Pointing-Pointer Anti-SEMA4D

  18. Reduction of hypoxia-induced transcription through the repression of hypoxia-inducible factor-1alpha/aryl hydrocarbon receptor nuclear translocator DNA binding by the 90-kDa heat-shock protein inhibitor radicicol.

    PubMed

    Hur, Eunseon; Kim, Hong-Hee; Choi, Su Mi; Kim, Jin Hee; Yim, Sujin; Kwon, Ho Jeong; Choi, Youngyeon; Kim, Dae Kyong; Lee, Mi-Ock; Park, Hyunsung

    2002-11-01

    Under low oxygen tension, cells increase the transcription of specific genes involved in angiogenesis, erythropoiesis, and glycolysis. Hypoxia-induced gene expression depends primarily on stabilization of the alpha subunit of hypoxia-inducible factor-1 (HIF-1alpha), which acts as a heterodimeric trans-activator with the nuclear protein known as the aryl hydrocarbon receptor nuclear translocator (Arnt). The resulting heterodimer (HIF-1alpha/Arnt) interacts specifically with the hypoxia-responsive element (HRE), thereby increasing transcription of the genes under HRE control. Our results indicate that the 90-kDa heat-shock protein (Hsp90) inhibitor radicicol reduces the hypoxia-induced expression of both endogenous vascular endothelial growth factor (VEGF) and HRE-driven reporter plasmids. Radicicol treatment (0.5 microg/ml) does not significantly change the stability of the HIF-1alpha protein and does not inhibit the nuclear localization of HIF-1alpha. However, this dose of radicicol significantly reduces HRE binding by the HIF-1alpha/Arnt heterodimer. Our results, the first to show that radicicol specifically inhibits the interaction between the HIF-1alpha/Arnt heterodimer and HRE, suggest that Hsp90 modulates the conformation of the HIF-1alpha/Arnt heterodimer, making it suitable for interaction with HRE. Furthermore, we demonstrate that radicicol reduces hypoxia-induced VEGF expression to decrease hypoxia-induced angiogenesis.

  19. A genomic screen for activators of the antioxidant response element

    PubMed Central

    Liu, Yanxia; Kern, Jonathan T.; Walker, John R.; Johnson, Jeffrey A.; Schultz, Peter G.; Luesch, Hendrik

    2007-01-01

    The antioxidant response element (ARE) is a cis-acting regulatory enhancer element found in the 5′ flanking region of many phase II detoxification enzymes. Up-regulation of ARE-dependent target genes is known to have neuroprotective effects; yet, the mechanism of activation is largely unknown. By screening an arrayed collection of ≈15,000 full-length expression cDNAs in the human neuroblastoma cell line IMR-32 with an ARE-luciferase reporter, we have identified several cDNAs not previously associated with ARE activation. A subset of cDNAs, encoding sequestosome 1 (SQSTM1) and dipeptidylpeptidase 3 (DPP3), activated the ARE in primary mouse-derived cortical neurons. Overexpression of SQSTM1 and DPP3 in IMR-32 cells stimulated NF-E2-related factor 2 (NRF2) nuclear translocation and led to increased levels of NAD(P)H:quinone oxidoreductase 1, a protein which is transcriptionally regulated by the ARE. When transfected into IMR-32 neuroblastoma cells that were depleted of transcription factor NRF2 by RNA interference, SQSTM1 and DPP3 were unable to activate the ARE or induce NAD(P)H:quinone oxidoreductase 1 expression, indicating that the ARE activation upon ectopic expression of these cDNAs is mediated by NRF2. Studies with pharmacological inhibitors indicated that 1-phosphatidylinositol 3-kinase and protein kinase C signaling are essential for activity. Overexpression of these cDNAs conferred partial resistance to hydrogen peroxide or rotenone-induced toxicity, consistent with the induction of antioxidant and phase II detoxification enzymes, which can protect from oxidative stress. This work and other such studies may provide mechanisms for activating the ARE in the absence of general oxidative stress and a yet-unexploited therapeutic approach to degenerative diseases and aging. PMID:17360324

  20. Thymidine phosphorylase and hypoxia-inducible factor 1-α expression in clinical stage II/III rectal cancer: association with response to neoadjuvant chemoradiation therapy and prognosis.

    PubMed

    Lin, Shuhan; Lai, Hao; Qin, Yuzhou; Chen, Jiansi; Lin, Yuan

    2015-01-01

    The aim of this study was to determine whether pretreatment status of thymidine phosphorylase (TP), and hypoxia-inducible factor alpha (HIF-1α) could predict pathologic response to neoadjuvant chemoradiation therapy with oxaliplatin and capecitabine (XELOXART) and outcomes for clinical stage II/III rectal cancer patients. A total of 180 patients diagnosed with clinical stage II/III rectal cancer received XELOXART. The status of TP, and HIF-1α were determined in pretreatment biopsies by immunohistochemistry (IHC). Tumor response was assessed in resected regimens using the tumor regression grade system and TNM staging system. 5-year disease free survival (DFS) and 5-year overall survival (OS) were evaluated with the Kaplan-Meier method and were compared by the log-rank test. Over expression of TP and low expression of HIF-1α were associated with pathologic response to XELOXART and better outcomes (DFS and OS) in clinical stage II/III rectal cancer patients (P < 0.05). Our result suggested that pretreatment status of TP and HIF-1α were found to predict pathologic response and outcomes in clinical stage II/III rectal cancer received XELOXART. Additional well-designed, large sample, multicenter, prospective studies are needed to confirm the result of this study.

  1. Tissue-specific root ion profiling reveals essential roles of the CAX and ACA calcium transport systems in response to hypoxia in Arabidopsis

    PubMed Central

    Wang, Feifei; Chen, Zhong-Hua; Liu, Xiaohui; Colmer, Timothy David; Zhou, Meixue; Shabala, Sergey

    2016-01-01

    Waterlogging is a major abiotic stress that limits the growth of plants. The crucial role of Ca2+ as a second messenger in response to abiotic and biotic stimuli has been widely recognized in plants. However, the physiological and molecular mechanisms of Ca2+ distribution within specific cell types in different root zones under hypoxia is poorly understood. In this work, whole-plant physiological and tissue-specific Ca2+ changes were studied using several ACA (Ca2+-ATPase) and CAX (Ca2+/proton exchanger) knock-out Arabidopsis mutants subjected to waterlogging treatment. In the wild-type (WT) plants, several days of hypoxia decreased the expression of ACA8, CAX4, and CAX11 by 33% and 50% compared with the control. The hypoxic treatment also resulted in an up to 11-fold tissue-dependent increase in Ca2+ accumulation in root tissues as revealed by confocal microscopy. The increase was much higher in stelar cells in the mature zone of Arabidopsis mutants with loss of function for ACA8, ACA11, CAX4, and CAX11. In addition, a significantly increased Ca2+ concentration was found in the cytosol of stelar cells in the mature zone after hypoxic treatment. Three weeks of waterlogging resulted in dramatic loss of shoot biomass in cax11 plants (67% loss in shoot dry weight), while in the WT and other transport mutants this decline was only 14–22%. These results were also consistent with a decline in leaf chlorophyll fluorescence (F v/F m). It is suggested that CAX11 plays a key role in maintaining cytosolic Ca2+ homeostasis and/or signalling in root cells under hypoxic conditions. PMID:26889007

  2. Oxygen sensing by the carotid body: mechanisms and role in adaptation to hypoxia.

    PubMed

    López-Barneo, José; González-Rodríguez, Patricia; Gao, Lin; Fernández-Agüera, M Carmen; Pardal, Ricardo; Ortega-Sáenz, Patricia

    2016-04-15

    Oxygen (O2) is fundamental for cell and whole-body homeostasis. Our understanding of the adaptive processes that take place in response to a lack of O2(hypoxia) has progressed significantly in recent years. The carotid body (CB) is the main arterial chemoreceptor that mediates the acute cardiorespiratory reflexes (hyperventilation and sympathetic activation) triggered by hypoxia. The CB is composed of clusters of cells (glomeruli) in close contact with blood vessels and nerve fibers. Glomus cells, the O2-sensitive elements in the CB, are neuron-like cells that contain O2-sensitive K(+)channels, which are inhibited by hypoxia. This leads to cell depolarization, Ca(2+)entry, and the release of transmitters to activate sensory fibers terminating at the respiratory center. The mechanism whereby O2modulates K(+)channels has remained elusive, although several appealing hypotheses have been postulated. Recent data suggest that mitochondria complex I signaling to membrane K(+)channels plays a fundamental role in acute O2sensing. CB activation during exposure to low Po2is also necessary for acclimatization to chronic hypoxia. CB growth during sustained hypoxia depends on the activation of a resident population of stem cells, which are also activated by transmitters released from the O2-sensitive glomus cells. These advances should foster further studies on the role of CB dysfunction in the pathogenesis of highly prevalent human diseases.

  3. Curcumin inhibits hypoxia-induced migration in K1 papillary thyroid cancer cells

    PubMed Central

    Tan, Cheng; Zhang, Li; Cheng, Xian; Lin, Xiu-Feng; Lu, Rong-Rong; Bao, Jian-Dong

    2014-01-01

    Curcumin, traditionally used as food and medicinal purposes, has recently been reported to have protective efficacy against hypoxia. Hypoxia is one of the important reactive factors in tumor metastasis, which is a key problem in clinical thyroid cancer therapy. In present study, we investigate the anti-metastatic effect of curcumin on the K1 papillary thyroid cancer cells as well as its potential mechanisms. The results show that curcumin effectively inhibits hypoxia-induced reactive oxygen species (ROS) upregulation and significantly decreases the mRNA and protein expression levels of hypoxia-inducible factor-1α (HIF-1α) in K1 cells. Curcumin also decreases the DNA binding ability of HIF-1α to hypoxia response element (HRE). Furthermore, curcumin enhances E-cadherin expression, inhibits metalloproteinase-9 (MMP-9) enzyme activity, and weakens K1 cells migration under hypoxic conditions. In summary, these results indicate that curcumin possesses a potent anti-metastatic effect and might be an effective tumoristatic agent for the treatment of aggressive papillary thyroid cancers. PMID:25349216

  4. Hypoxia-targeted siRNA delivery.

    PubMed

    Perche, F; Biswas, S; Wang, T; Zhu, L; Torchilin, V P

    2014-03-24

    Altered vasculature and the resultant chaotic tumor blood flow lead to the appearance in fast-growing tumors of regions with gradients of oxygen tension and acute hypoxia (less than 1.4% oxygen). Due to its roles in tumorigenesis and resistance to therapy, hypoxia represents a problem in cancer therapy. Insufficient delivery of therapeutic agents to the hypoxic regions in solid tumors is recognized as one of the causes of resistance to therapy. This led to the development of hypoxia imaging agents, and the use of hypoxia-activated anticancer prodrugs. Here we show the first example of the hypoxia-induced siRNA uptake and silencing using a nanocarrier consisting of polyethyleneglycol 2000, azobenzene, polyethyleneimine (PEI)(1.8 kDa), and 1,2-dioleyl-sn-glycero-3-phosphoethanolamine (DOPE) units (the nanocarrier is referred to as PAPD), where azobenzene imparts hypoxia sensitivity and specificity. We report hypoxia-activated green fluorescent protein (GFP) silencing in vitro and its downregulation in GFP-expressing tumors after intravenous administration. The proposed nanoformulation represents a novel tumor-environment-responsive modality for cancer targeting and siRNA delivery. PMID:24554550

  5. Transcriptional up-regulation of inhibitory PAS domain protein gene expression by hypoxia-inducible factor 1 (HIF-1): a negative feedback regulatory circuit in HIF-1-mediated signaling in hypoxic cells.

    PubMed

    Makino, Yuichi; Uenishi, Rie; Okamoto, Kensaku; Isoe, Tsubasa; Hosono, Osamu; Tanaka, Hirotoshi; Kanopka, Arvydas; Poellinger, Lorenz; Haneda, Masakazu; Morimoto, Chikao

    2007-05-11

    The inhibitory PAS (Per/Arnt/Sim) domain protein (IPAS), a dominant negative regulator of hypoxia-inducible transcription factors (HIFs), is potentially implicated in negative regulation of angiogenesis in such tissues as the avascular cornea of the eye. We have previously shown IPAS mRNA expression is up-regulated in hypoxic tissues, which at least in part involves hypoxia-dependent alternative splicing of the transcripts from the IPAS/HIF-3alpha locus. In the present study, we demonstrate that a hypoxia-driven transcriptional mechanism also plays a role in augmentation of IPAS gene expression. Isolation and analyses of the promoter region flanking to the first exon of IPAS gene revealed a functional hypoxia response element at position -834 to -799, whereas the sequence upstream of the HIF-3alpha first exon scarcely responded to hypoxic stimuli. A transient transfection experiment demonstrated that HIF-1alpha mediates IPAS promoter activation via the functional hypoxia response element under hypoxic conditions and that a constitutively active form of HIF-1alpha is sufficient for induction of the promoter in normoxic cells. Moreover, chromatin immunoprecipitation and electrophoretic mobility shift assays showed binding of the HIF-1 complex to the element in a hypoxia-dependent manner. Taken together, HIF-1 directly up-regulates IPAS gene expression through a mechanism distinct from RNA splicing, providing a further level of negative feedback gene regulation in adaptive responses to hypoxic/ischemic conditions. PMID:17355974

  6. Vibration Response of Multi Storey Building Using Finite Element Modelling

    NASA Astrophysics Data System (ADS)

    Chik, T. N. T.; Zakaria, M. F.; Remali, M. A.; Yusoff, N. A.

    2016-07-01

    Interaction between building, type of foundation and the geotechnical parameter of ground may trigger a significant effect on the building. In general, stiffer foundations resulted in higher natural frequencies of the building-soil system and higher input frequencies are often associated with other ground. Usually, vibrations transmitted to the buildings by ground borne are often noticeable and can be felt. It might affect the building and become worse if the vibration level is not controlled. UTHM building is prone to the ground borne vibration due to closed distance from the main road, and the construction activities adjacent to the buildings. This paper investigates the natural frequency and vibration mode of multi storey office building with the presence of foundation system and comparison between both systems. Finite element modelling (FEM) package software of LUSAS is used to perform the vibration analysis of the building. The building is modelled based on the original plan with the foundation system on the structure model. The FEM results indicated that the structure which modelled with rigid base have high natural frequency compare to the structure with foundation system. These maybe due to soil structure interaction and also the damping of the system which related to the amount of energy dissipated through the foundation soil. Thus, this paper suggested that modelling with soil is necessary to demonstrate the soil influence towards vibration response to the structure.

  7. Mapping polycomb response elements at the Drosophilla melanogaster giant locus.

    PubMed

    Abed, Jumana AlHaj; Cheng, Connie L; Crowell, Chase R; Madigan, Laura L; Onwuegbuchu, Erica; Desai, Siddhi; Benes, Judith; Jones, Richard S

    2013-12-01

    Polycomb-group (PcG) proteins are highly conserved epigenetic transcriptional regulators. They are capable of either maintaining the transcriptional silence of target genes through many cell cycles or enabling a dynamic regulation of gene expression in stem cells. In Drosophila melanogaster, recruitment of PcG proteins to targets requires the presence of at least one polycomb response element (PRE). Although the sequence requirements for PREs are not well-defined, the presence of Pho, a PRE-binding PcG protein, is a very good PRE indicator. In this study, we identify two PRE-containing regions at the PcG target gene, giant, one at the promoter, and another approximately 6 kb upstream. PRE-containing fragments, which coincide with localized presence of Pho in chromatin immunoprecipitations, were shown to maintain restricted expression of a lacZ reporter gene in embryos and to cause pairing-sensitive silencing of the mini-white gene in eyes. Our results also reinforce previous observations that although PRE maintenance and pairing-sensitive silencing activities are closely linked, the sequence requirements for these functions are not identical. PMID:24170735

  8. Mitochondrial respiratory function induces endogenous hypoxia.

    PubMed

    Prior, Sara; Kim, Ara; Yoshihara, Toshitada; Tobita, Seiji; Takeuchi, Toshiyuki; Higuchi, Masahiro

    2014-01-01

    Hypoxia influences many key biological functions. In cancer, it is generally believed that hypoxic condition is generated deep inside the tumor because of the lack of oxygen supply. However, consumption of oxygen by cancer should be one of the key means of regulating oxygen concentration to induce hypoxia but has not been well studied. Here, we provide direct evidence of the mitochondrial role in the induction of intracellular hypoxia. We used Acetylacetonatobis [2-(2'-benzothienyl) pyridinato-kN, kC3'] iridium (III) (BTP), a novel oxygen sensor, to detect intracellular hypoxia in living cells via microscopy. The well-differentiated cancer cell lines, LNCaP and MCF-7, showed intracellular hypoxia without exogenous hypoxia in an open environment. This may be caused by high oxygen consumption, low oxygen diffusion in water, and low oxygen incorporation to the cells. In contrast, the poorly-differentiated cancer cell lines: PC-3 and MDAMB231 exhibited intracellular normoxia by low oxygen consumption. The specific complex I inhibitor, rotenone, and the reduction of mitochondrial DNA (mtDNA) content reduced intracellular hypoxia, indicating that intracellular oxygen concentration is regulated by the consumption of oxygen by mitochondria. HIF-1α was activated in endogenously hypoxic LNCaP and the activation was dependent on mitochondrial respiratory function. Intracellular hypoxic status is regulated by glucose by parabolic dose response. The low concentration of glucose (0.045 mg/ml) induced strongest intracellular hypoxia possibly because of the Crabtree effect. Addition of FCS to the media induced intracellular hypoxia in LNCaP, and this effect was partially mimicked by an androgen analog, R1881, and inhibited by the anti-androgen, flutamide. These results indicate that mitochondrial respiratory function determines intracellular hypoxic status and may regulate oxygen-dependent biological functions. PMID:24586439

  9. Musashi mediates translational repression of the Drosophila hypoxia inducible factor.

    PubMed

    Bertolin, Agustina P; Katz, Maximiliano J; Yano, Masato; Pozzi, Berta; Acevedo, Julieta M; Blanco-Obregón, Dalmiro; Gándara, Lautaro; Sorianello, Eleonora; Kanda, Hiroshi; Okano, Hideyuki; Srebrow, Anabella; Wappner, Pablo

    2016-09-19

    Adaptation to hypoxia depends on a conserved α/β heterodimeric transcription factor called Hypoxia Inducible Factor (HIF), whose α-subunit is regulated by oxygen through different concurrent mechanisms. In this study, we have identified the RNA binding protein dMusashi, as a negative regulator of the fly HIF homologue Sima. Genetic interaction assays suggested that dMusashi participates of the HIF pathway, and molecular studies carried out in Drosophila cell cultures showed that dMusashi recognizes a Musashi Binding Element in the 3' UTR of the HIFα transcript, thereby mediating its translational repression in normoxia. In hypoxic conditions dMusashi is downregulated, lifting HIFα repression and contributing to trigger HIF-dependent gene expression. Analysis performed in mouse brains revealed that murine Msi1 protein physically interacts with HIF-1α transcript, suggesting that the regulation of HIF by Msi might be conserved in mammalian systems. Thus, Musashi is a novel regulator of HIF that inhibits responses to hypoxia specifically when oxygen is available.

  10. OASIS modulates hypoxia pathway activity to regulate bone angiogenesis.

    PubMed

    Cui, Min; Kanemoto, Soshi; Cui, Xiang; Kaneko, Masayuki; Asada, Rie; Matsuhisa, Koji; Tanimoto, Keiji; Yoshimoto, Yuki; Shukunami, Chisa; Imaizumi, Kazunori

    2015-11-12

    OASIS/CREB3L1, an endoplasmic reticulum (ER)-resident transcription factor, plays important roles in osteoblast differentiation. In this study, we identified new crosstalk between OASIS and the hypoxia signaling pathway, which regulates vascularization during bone development. RT-PCR and real-time PCR analyses revealed significant decreases in the expression levels of hypoxia-inducible factor-1α (HIF-1α) target genes such as vascular endothelial growth factor A (VEGFA) in OASIS-deficient (Oasis(-/-)) mouse embryonic fibroblasts. In coimmunoprecipitation experiments, the N-terminal fragment of OASIS (OASIS-N; activated form of OASIS) bound to HIF-1α through the bZIP domain. Luciferase assays showed that OASIS-N promoted the transcription activities of a reporter gene via a hypoxia-response element (HRE). Furthermore, the expression levels of an angiogenic factor Vegfa was decreased in Oasis(-/-) osteoblasts. Immunostaining and metatarsal angiogenesis assay showed retarded vascularization in bone tissue of Oasis(-/-) mice. These results suggest that OASIS affects the expression of HIF-1α target genes through the protein interaction with HIF-1α, and that OASIS-HIF-1α complexes may play essential roles in angiogenesis during bone development.

  11. OASIS modulates hypoxia pathway activity to regulate bone angiogenesis

    PubMed Central

    Cui, Min; Kanemoto, Soshi; Cui, Xiang; Kaneko, Masayuki; Asada, Rie; Matsuhisa, Koji; Tanimoto, Keiji; Yoshimoto, Yuki; Shukunami, Chisa; Imaizumi, Kazunori

    2015-01-01

    OASIS/CREB3L1, an endoplasmic reticulum (ER)-resident transcription factor, plays important roles in osteoblast differentiation. In this study, we identified new crosstalk between OASIS and the hypoxia signaling pathway, which regulates vascularization during bone development. RT-PCR and real-time PCR analyses revealed significant decreases in the expression levels of hypoxia-inducible factor-1α (HIF-1α) target genes such as vascular endothelial growth factor A (VEGFA) in OASIS-deficient (Oasis−/−) mouse embryonic fibroblasts. In coimmunoprecipitation experiments, the N-terminal fragment of OASIS (OASIS-N; activated form of OASIS) bound to HIF-1α through the bZIP domain. Luciferase assays showed that OASIS-N promoted the transcription activities of a reporter gene via a hypoxia-response element (HRE). Furthermore, the expression levels of an angiogenic factor Vegfa was decreased in Oasis−/− osteoblasts. Immunostaining and metatarsal angiogenesis assay showed retarded vascularization in bone tissue of Oasis−/− mice. These results suggest that OASIS affects the expression of HIF-1α target genes through the protein interaction with HIF-1α, and that OASIS-HIF-1α complexes may play essential roles in angiogenesis during bone development. PMID:26558437

  12. Musashi mediates translational repression of the Drosophila hypoxia inducible factor

    PubMed Central

    Bertolin, Agustina P.; Katz, Maximiliano J.; Yano, Masato; Pozzi, Berta; Acevedo, Julieta M.; Blanco-Obregón, Dalmiro; Gándara, Lautaro; Sorianello, Eleonora; Kanda, Hiroshi; Okano, Hideyuki; Srebrow, Anabella; Wappner, Pablo

    2016-01-01

    Adaptation to hypoxia depends on a conserved α/β heterodimeric transcription factor called Hypoxia Inducible Factor (HIF), whose α-subunit is regulated by oxygen through different concurrent mechanisms. In this study, we have identified the RNA binding protein dMusashi, as a negative regulator of the fly HIF homologue Sima. Genetic interaction assays suggested that dMusashi participates of the HIF pathway, and molecular studies carried out in Drosophila cell cultures showed that dMusashi recognizes a Musashi Binding Element in the 3′ UTR of the HIFα transcript, thereby mediating its translational repression in normoxia. In hypoxic conditions dMusashi is downregulated, lifting HIFα repression and contributing to trigger HIF-dependent gene expression. Analysis performed in mouse brains revealed that murine Msi1 protein physically interacts with HIF-1α transcript, suggesting that the regulation of HIF by Msi might be conserved in mammalian systems. Thus, Musashi is a novel regulator of HIF that inhibits responses to hypoxia specifically when oxygen is available. PMID:27141964

  13. IGFBP-3, hypoxia and TNF-{alpha} inhibit adiponectin transcription

    SciTech Connect

    Zappala, Giovanna; Rechler, Matthew M.

    2009-05-15

    The thiazolidinedione rosiglitazone, an agonist ligand for the nuclear receptor PPAR-{gamma}, improves insulin sensitivity in part by stimulating transcription of the insulin-sensitizing adipokine adiponectin. It activates PPAR-{gamma}-RXR-{alpha} heterodimers bound to PPAR-{gamma} response elements in the adiponectin promoter. Rosiglitazone-stimulated adiponectin protein synthesis in 3T3-L1 mouse adipocytes has been shown to be inhibited by IGFBP-3, which can be induced by hypoxia and the proinflammatory cytokine, TNF-{alpha}, two inhibitors of adiponectin transcription. The present study demonstrates that IGFBP-3, the hypoxia-mimetic agent cobalt chloride, and TNF-{alpha} inhibit rosiglitazone-induced adiponectin transcription in mouse embryo fibroblasts that stably express PPAR-{gamma}2. Native IGFBP-3 can bind RXR-{alpha} and inhibited rosiglitazone stimulated promoter activity, whereas an IGFBP-3 mutant that does not bind RXR-{alpha} did not. These results suggest that IGFBP-3 may mediate the inhibition of adiponectin transcription by hypoxia and TNF-{alpha}, and that IGFBP-3 binding to RXR-{alpha} may be required for the observed inhibition.

  14. Hypoxia-inducible factor 1α modulates metabolic activity and cytokine release in anti-Aspergillus fumigatus immune responses initiated by human dendritic cells.

    PubMed

    Fliesser, Mirjam; Morton, Charles Oliver; Bonin, Michael; Ebel, Frank; Hünniger, Kerstin; Kurzai, Oliver; Einsele, Hermann; Löffler, Jürgen

    2015-12-01

    The mold Aspergillus fumigatus causes life-threatening infections in immunocompromised patients. Over the past decade, new findings in research have improved our understanding of A. fumigatus-host interactions, including the recent identification of myeloid-expressed hypoxia-inducible factor 1α (HIF-1α) as a relevant immune-modulating transcription factor and potential therapeutic target in anti-fungal defense. However, the function of HIF-1α signaling for human anti-A. fumigatus immunity is still poorly understood, including its role in dendritic cells (DCs), which are important regulators of anti-fungal immunity. This study investigated the functional relevance of HIF-1α in the anti-A. fumigatus immune response initiated by human DCs. Hypoxic cell culture conditions were included because hypoxic microenvironments occur during A. fumigatus infections and may influence the host immune response. HIF-1α was stabilized in DCs following stimulation with A. fumigatus under normoxic and hypoxic conditions. This stabilization was partially dependent on dectin-1, the major receptor for A. fumigatus on human DCs. Using siRNA-based HIF-1α silencing combined with genome-wide transcriptional analysis, a modulatory effect of HIF-1α on the anti-fungal immune response of human DCs was identified. Specifically, the difference in the transcriptomes of HIF-1α silenced and non-silenced DCs indicated that HIF-1α contributes to DC metabolism and cytokine release in response to A. fumigatus under normoxic as well as hypoxic conditions. This was confirmed by further down-stream analyses that included metabolite analysis and cytokine profiling of a time-course infection experiment. Thereby, this study revealed a so far undescribed functional relevance of HIF-1α in human DC responses against A. fumigatus.

  15. Evaluation of Hypoxia with Cu-ATSM

    PubMed Central

    Lapi, Suzanne E.; Lewis, Jason S.; Dehdashti, Farrokh

    2015-01-01

    Imaging of hypoxia is important in many diseases states in oncology, cardiology and neurology. The radiopharmaceutical, copper labelled diacetyl-bis(N-methylthiosemicarbazone) (Cu-ATSM), has been used to assess hypoxia in many studies. In particular, Cu-ATSM has been used in oncologic settings to investigate tumor hypoxia and the role of this parameter in response to therapy and outcome. Other groups have conducted imaging studies assessing the role of hypoxia in cardiovascular disease and neurological disorders. Additionally, several groups have made significant progress into understanding the mechanism by which this compound accumulates in cells. Multiple preclinical and clinical studies have been conducted, shedding light on the important of careful image analysis when using this tracer. This review article focusses on the recent preclinical and clinical studies with this tracer. PMID:25704389

  16. Heat acclimation attenuates physiological strain and the HSP72, but not HSP90α, mRNA response to acute normobaric hypoxia.

    PubMed

    Gibson, Oliver R; Turner, Gareth; Tuttle, James A; Taylor, Lee; Watt, Peter W; Maxwell, Neil S

    2015-10-15

    Heat acclimation (HA) attenuates physiological strain in hot conditions via phenotypic and cellular adaptation. The aim of this study was to determine whether HA reduced physiological strain, and heat shock protein (HSP) 72 and HSP90α mRNA responses in acute normobaric hypoxia. Sixteen male participants completed ten 90-min sessions of isothermic HA (40°C/40% relative humidity) or exercise training [control (CON); 20°C/40% relative humidity]. HA or CON were preceded (HYP1) and proceeded (HYP2) by a 30-min normobaric hypoxic exposure [inspired O2 fraction = 0.12; 10-min rest, 10-min cycling at 40% peak O2 uptake (V̇O2 peak), 10-min cycling at 65% V̇O2 peak]. HA induced greater rectal temperatures, sweat rate, and heart rates (HR) than CON during the training sessions. HA, but not CON, reduced resting rectal temperatures and resting HR and increased sweat rate and plasma volume. Hemoglobin mass did not change following HA nor CON. HSP72 and HSP90α mRNA increased in response to each HA session, but did not change with CON. HR during HYP2 was lower and O2 saturation higher at 65% V̇O2 peak following HA, but not CON. O2 uptake/HR was greater at rest and 65% V̇O2 peak in HYP2 following HA, but was unchanged after CON. At rest, the respiratory exchange ratio was reduced during HYP2 following HA, but not CON. The increase in HSP72 mRNA during HYP1 did not occur in HYP2 following HA. In CON, HSP72 mRNA expression was unchanged during HYP1 and HYP2. In HA and CON, increases in HSP90α mRNA during HYP1 were maintained in HYP2. HA reduces physiological strain, and the transcription of HSP72, but not HSP90α mRNA in acute normobaric hypoxia.

  17. Heat acclimation attenuates physiological strain and the HSP72, but not HSP90α, mRNA response to acute normobaric hypoxia.

    PubMed

    Gibson, Oliver R; Turner, Gareth; Tuttle, James A; Taylor, Lee; Watt, Peter W; Maxwell, Neil S

    2015-10-15

    Heat acclimation (HA) attenuates physiological strain in hot conditions via phenotypic and cellular adaptation. The aim of this study was to determine whether HA reduced physiological strain, and heat shock protein (HSP) 72 and HSP90α mRNA responses in acute normobaric hypoxia. Sixteen male participants completed ten 90-min sessions of isothermic HA (40°C/40% relative humidity) or exercise training [control (CON); 20°C/40% relative humidity]. HA or CON were preceded (HYP1) and proceeded (HYP2) by a 30-min normobaric hypoxic exposure [inspired O2 fraction = 0.12; 10-min rest, 10-min cycling at 40% peak O2 uptake (V̇O2 peak), 10-min cycling at 65% V̇O2 peak]. HA induced greater rectal temperatures, sweat rate, and heart rates (HR) than CON during the training sessions. HA, but not CON, reduced resting rectal temperatures and resting HR and increased sweat rate and plasma volume. Hemoglobin mass did not change following HA nor CON. HSP72 and HSP90α mRNA increased in response to each HA session, but did not change with CON. HR during HYP2 was lower and O2 saturation higher at 65% V̇O2 peak following HA, but not CON. O2 uptake/HR was greater at rest and 65% V̇O2 peak in HYP2 following HA, but was unchanged after CON. At rest, the respiratory exchange ratio was reduced during HYP2 following HA, but not CON. The increase in HSP72 mRNA during HYP1 did not occur in HYP2 following HA. In CON, HSP72 mRNA expression was unchanged during HYP1 and HYP2. In HA and CON, increases in HSP90α mRNA during HYP1 were maintained in HYP2. HA reduces physiological strain, and the transcription of HSP72, but not HSP90α mRNA in acute normobaric hypoxia. PMID:26205540

  18. Effects of hypoxia on vertebrate blood vessels.

    PubMed

    Russell, Michael J; Dombkowski, Ryan A; Olson, Kenneth R

    2008-03-01

    Hypoxia contracts mammalian respiratory vessels and increases vascular resistance in respiratory tissues of many vertebrates. In systemic vessels these responses vary, hypoxia relaxes mammalian vessels and contracts systemic arteries from cyclostomes. It has been proposed that hypoxic vasoconstriction in cyclostome systemic arteries is the antecedent to mammalian hypoxic pulmonary vasoconstriction, however, phylogenetic characterization of hypoxic responses is lacking. In this study, we characterized the hypoxic response of isolated systemic and respiratory vessels from a variety of vertebrates using standard myography. Pre-gill/respiratory (ventral aorta, afferent branchial artery, pulmonary artery) and post-gill/systemic (dorsal and thoracic aortas, efferent branchial artery) from lamprey (Petromyzon marinus), sandbar shark (Carcharhinus plumbeus), yellowfin tuna (Thunnus albacares), American bullfrog (Rana catesbeiana), American alligator (Alligator mississippiensis), Pekin duck (Anas platyrhynchos domesticus), chicken (Gallus domesticus) and rat (Rattus norvegicus) were exposed to hypoxia at rest or during pre-stimulation (elevated extracellular potassium, epinephrine or norepinephrine). Hypoxia produced a relaxation or transient contraction followed by relaxation in all pre-gill vessels, except for contraction in lamprey, and vasoconstriction or tri-phasic constriction-dilation-constriction in all pulmonary vessels. Hypoxia contracted systemic vessels from all animals except shark and rat and in pre-contracted rat aortas it produced a transient contraction followed by relaxation. These results show that while the classic "systemic hypoxic vasodilation and pulmonary hypoxic vasoconstriction" may occur in the microcirculation, the hypoxic response of the vertebrate macrocirculation is quite variable. These findings also suggest that hypoxic vasoconstriction is a phylogenetically ancient response. PMID:18214862

  19. Hypoxia-activated metabolic pathway stimulates phosphorylation of p300 and CBP in oxygen-sensitive cells

    PubMed Central

    Zakrzewska, Adriana; Schnell, Phillip O.; Striet, Justin B.; Hui, Anna; Robbins, Jennifer R.; Petrovic, Milan; Conforti, Laura; Gozal, David; Wathelet, Marc G.; Czyzyk-Krzeska, Maria F.

    2006-01-01

    Transcription co-activators and histone acetyltransferases, p300 and cyclic AMP responsive element-binding protein-binding protein (CBP), participate in hypoxic activation of hypoxia-inducible genes. Here, we show that exposure of PC12 and cells to 1–10% oxygen results in hyperphosphorylation of p300/CBP. This response is fast, long lasting and specific for hypoxia, but not for hypoxia-mimicking agents such as desferioxamine or Co2+ ions. It is also cell-type specific and occurs in pheochromocytoma PC12 cells and the carotid body of rats but not in hepatoblastoma cells. The p300 hyperphosphorylation specifically depends on the release of intracellular calcium from inositol 1,4,5-triphosphate (IP3)-sensitive stores. However, it is not inhibited by pharmacological inhibitors of any of the kinases traditionally known to be directly or indirectly calcium regulated. On the other hand, p300 hyperphosphorylation is inhibited by several different inhibitors of the glucose metabolic pathway from generation of NADH by glyceraldehyde 3-phosphate dehydrogenase, through the transfer of NADH through the glycerol phosphate shuttle to ubiquinone and complex III of the mitochondrial respiratory chain. Inhibition of IP3-sensitive calcium stores decreases generation of ATP, and this inhibition is significantly stronger in hypoxia than in normoxia. We propose that the NADH glycerol phosphate shuttle participates in generating a pool of ATP that serves either as a co-factor or a modulator of the kinases involved in the phosphorylation of p300/CBP during hypoxia. PMID:16000154

  20. Cobalt inhibits the interaction between hypoxia-inducible factor-alpha and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-alpha.

    PubMed

    Yuan, Yong; Hilliard, George; Ferguson, Tsuneo; Millhorn, David E

    2003-05-01

    The hypoxia-inducible factor (HIF) activates the expression of genes that contain a hypoxia response element. The alpha-subunits of the HIF transcription factors are degraded by proteasomal pathways during normoxia but are stabilized under hypoxic conditions. The von Hippel-Lindau protein (pVHL) mediates the ubiquitination and rapid degradation of HIF-alpha (including HIF-1alpha and HIF-2alpha). Post-translational hydroxylation of a proline residue in the oxygen-dependent degradation (ODD) domain of HIF-alpha is required for the interaction between HIF and VHL. It has previously been established that cobalt mimics hypoxia and causes accumulation of HIF-1alpha and HIF-2alpha. However, little is known about the mechanism by which this occurs. In an earlier study, we demonstrated that cobalt binds directly to the ODD domain of HIF-2alpha. Here we provide the first evidence that cobalt inhibits pVHL binding to HIF-alpha even when HIF-alpha is hydroxylated. Deletion of 17 amino acids within the ODD domain of HIF-2alpha that are required for pVHL binding prevented the binding of cobalt and stabilized HIF-2alpha during normoxia. These findings show that cobalt mimics hypoxia, at least in part, by occupying the VHL-binding domain of HIF-alpha and thereby preventing the degradation of HIF-alpha. PMID:12606543

  1. Caenorhabditis elegans par2.1/mtssb-1 is essential for mitochondrial DNA replication and its defect causes comprehensive transcriptional alterations including a hypoxia response

    SciTech Connect

    Sugimoto, Tomoko; Mori, Chihiro; Takanami, Takako; Sasagawa, Yohei; Saito, Rumiko; Ichiishi, Eiichiro; Higashitani, Atsushi

    2008-01-01

    DNA polymerase {gamma} and mtSSB are key components of the mtDNA replication machinery. To study the biological influences of defects in mtDNA replication, we used RNAi to deplete the gene for a putative mtSSB, par2.1, in Caenorhabditis elegans. In previous systematic RNAi screens, downregulation of this gene has not caused any clearly defective phenotypes. Here, we continuously fed a dsRNA targeting par2.1 to C. elegans over generations. Seventy-nine percent of F1 progeny produced 60-72 h after feeding grew to adulthood but were completely sterile, with an arrest of germline cell proliferation. Analyses of mtDNA copy number and cell cytology indicated that the sterile hermaphrodites had fewer mitochondria. These results indicated that par2.1 essentially functions for germline cell proliferation through mtDNA replication; we therefore termed it mtssb-1. Comprehensive transcriptional alterations including hypoxia response induction dependent on and independent of hif-1 function, occurred by RNAi depletion of mtssb-1. Treatment with ethidium bromide, which impairs mtDNA replication and transcription, caused similar transcriptional alterations. In addition, the frequency of apoptosis in the germline cells was reduced in fertile progeny with a partial RNAi effect. These suggest that RNAi depletion of C. elegans mtssb-1 is useful as a model system of mitochondrial dysfunction.

  2. Tumor hypoxia as a driving force in genetic instability

    PubMed Central

    2013-01-01

    Sub-regions of hypoxia exist within all tumors and the presence of intratumoral hypoxia has an adverse impact on patient prognosis. Tumor hypoxia can increase metastatic capacity and lead to resistance to chemotherapy and radiotherapy. Hypoxia also leads to altered transcription and translation of a number of DNA damage response and repair genes. This can lead to inhibition of recombination-mediated repair of DNA double-strand breaks. Hypoxia can also increase the rate of mutation. Therefore, tumor cell adaptation to the hypoxic microenvironment can drive genetic instability and malignant progression. In this review, we focus on hypoxia-mediated genetic instability in the context of aberrant DNA damage signaling and DNA repair. Additionally, we discuss potential therapeutic approaches to specifically target repair-deficient hypoxic tumor cells. PMID:24152759

  3. Frequency Modulated Translocational Oscillations of Nrf2 Mediate the Antioxidant Response Element Cytoprotective Transcriptional Response

    PubMed Central

    Xue, Mingzhan; Momiji, Hiroshi; Rabbani, Naila; Barker, Guy; Bretschneider, Till; Shmygol, Anatoly; Rand, David A.

    2015-01-01

    Abstract Aims: Stress responsive signaling coordinated by nuclear factor erythroid 2-related factor 2 (Nrf2) provides an adaptive response for protection of cells against toxic insults, oxidative stress and metabolic dysfunction. Nrf2 regulates a battery of protective genes by binding to regulatory antioxidant response elements (AREs). The aim of this study was to examine how Nrf2 signals cell stress status and regulates transcription to maintain homeostasis. Results: In live cell microscopy we observed that Nrf2 undergoes autonomous translocational frequency-modulated oscillations between cytoplasm and nucleus. Oscillations occurred in quiescence and when cells were stimulated at physiological levels of activators, they decrease in period and amplitude and then evoke a cytoprotective transcriptional response. We propose a mechanism whereby oscillations are produced by negative feedback involving successive de-phosphorylation and phosphorylation steps. Nrf2 was inactivated in the nucleus and reactivated on return to the cytoplasm. Increased frequency of Nrf2 on return to the cytoplasm with increased reactivation or refresh-rate under stress conditions activated the transcriptional response mediating cytoprotective effects. The serine/threonine-protein phosphatase PGAM5, member of the Nrf2 interactome, was a key regulatory component. Innovation: We found that Nrf2 is activated in cells without change in total cellular Nrf2 protein concentration. Regulation of ARE-linked protective gene transcription occurs rather through translocational oscillations of Nrf2. We discovered cytoplasmic refresh rate of Nrf2 is important in maintaining and regulating the transcriptional response and links stress challenge to increased cytoplasmic surveillance. We found silencing and inhibition of PGAM5 provides potent activation of Nrf2. Conclusion: Frequency modulated translocational oscillations of Nrf2 mediate the ARE-linked cytoprotective transcriptional response. Antioxid. Redox

  4. Cancer cell-associated cytoplasmic B7–H4 is induced by hypoxia through hypoxia-inducible factor-1α and promotes cancer cell proliferation

    SciTech Connect

    Jeon, You-Kyoung; Park, Sae-Gwang; Choi, Il-Whan; Lee, Soo-Woong; Lee, Sang Min

    2015-04-03

    Aberrant B7–H4 expression in cancer tissues serves as a novel prognostic biomarker for poor survival in patients with cancer. However, the factor(s) that induce cancer cell-associated B7–H4 remain to be fully elucidated. We herein demonstrate that hypoxia upregulates B7–H4 transcription in primary CD138{sup +} multiple myeloma cells and cancer cell lines. In support of this finding, analysis of the Multiple Myeloma Genomics Portal (MMGP) data set revealed a positive correlation between the mRNA expression levels of B7–H4 and the endogenous hypoxia marker carbonic anhydrogenase 9. Hypoxia-induced B7–H4 expression was detected in the cytoplasm, but not in cancer cell membranes. Chromatin immunoprecipitation analysis demonstrated binding of hypoxia-inducible factor-1α (HIF-1α) to proximal hypoxia-response element (HRE) sites within the B7–H4 promoter. Knockdown of HIF-1α and pharmacological inhibition of HIF-1α diminished B7–H4 expression. Furthermore, knockdown of cytoplasmic B7–H4 in MCF-7 decreased the S-phase cell population under hypoxia. Finally, MMGP analysis revealed a positive correlation between the transcript levels of B7–H4 and proliferation-related genes including MKI67, CCNA1, and Myc in several patients with multiple myeloma. Our results provide insight into the mechanisms underlying B7–H4 upregulation and its role in cancer cell proliferation in a hypoxic tumor microenvironment. - Highlights: • Hypoxia upregulates B7–H4 transcription and protein expression. • Hypoxia-induced B7–H4 is detected in the cytoplasm, but not on membrane. • ChIP assay reveals a binding of HIF-1α to B7–H4 promoter at HRE site. • Knockdown and pharmacological inhibition of HIF-1α reduce B7–H4 expression. • B7–H4 knockdown decrease the number of cells in S-phase of cell cycle.

  5. Sensing and surviving hypoxia in vertebrates.

    PubMed

    Jonz, Michael G; Buck, Leslie T; Perry, Steve F; Schwerte, Thorsten; Zaccone, Giacomo

    2016-02-01

    Surviving hypoxia is one of the most critical challenges faced by vertebrates. Most species have adapted to changing levels of oxygen in their environment with specialized organs that sense hypoxia, while only few have been uniquely adapted to survive prolonged periods of anoxia. The goal of this review is to present the most recent research on oxygen sensing, adaptation to hypoxia, and mechanisms of anoxia tolerance in nonmammalian vertebrates. We discuss the respiratory structures in fish, including the skin, gills, and air-breathing organs, and recent evidence for chemosensory neuroepithelial cells (NECs) in these tissues that initiate reflex responses to hypoxia. The use of the zebrafish as a genetic and developmental model has allowed observation of the ontogenesis of respiratory and chemosensory systems, demonstration of a putative intracellular O2 sensor in chemoreceptors that may initiate transduction of the hypoxia signal, and investigation into the effects of extreme hypoxia on cardiorespiratory development. Other organisms, such as goldfish and freshwater turtles, display a high degree of anoxia tolerance, and these models are revealing important adaptations at the cellular level, such as the regulation of glutamatergic and GABAergic neurotransmission in defense of homeostasis in central neurons.

  6. Oroxylin A regulates glucose metabolism in response to hypoxic stress with the involvement of Hypoxia-inducible factor-1 in human hepatoma HepG2 cells.

    PubMed

    Dai, Qinsheng; Yin, Qian; Wei, Libin; Zhou, Yuxin; Qiao, Chen; Guo, Yongjian; Wang, Xiaotang; Ma, Shiping; Lu, Na

    2016-08-01

    Metabolic alteration in cancer cells is one of the most conspicuous characteristics that distinguish cancer cells from normal cells. In this study, we investigated the influence and signaling ways of oroxylin A affecting cancer cell energy metabolism under hypoxia. The data showed that oroxylin A remarkably reduced the generation of lactate and glucose uptake under hypoxia in HepG2 cells. Moreover, oroxylin A inhibited HIF-1α expression and its stability. The downstream targets (PDK1, LDHA, and HK II), as well as their mRNA levels were also suppressed by oroxylin A under hypoxia. The silencing or the overexpression of HIF-1α assays suggested that HIF-1α is required for metabolic effect of oroxylin A in HepG2 cells during hypoxia. Furthermore, oroxylin A could reduce the expression of complex III in mitochondrial respiratory chain, and then decrease the accumulation of ROS at moderate concentrations (0-50 µM) under hypoxia, which was benefit for its inhibition on glycolytic activity by decreasing ROS-mediated HIF-1 expression. Besides, oroxylin A didn't cause the loss of MMP under hypoxia and had no obvious effects on the expression of OXPHOS complexes, suggesting that oroxylin A did not affect mitochondrial mass at the moderate stress of oroxylin A. The suppressive effect of oroxylin A on glycolysis led to a significantly repress of ATP generation, for ATP generation mostly depends on glycolysis in HepG2 cells. This study revealed a new aspect of glucose metabolism regulation of oroxylin A under hypoxia, which may contribute to its new anticancer mechanism. © 2015 Wiley Periodicals, Inc. PMID:26259145

  7. Glucose starvation and hypoxia, but not the saturated fatty acid palmitic acid or cholesterol, activate the unfolded protein response in 3T3-F442A and 3T3-L1 adipocytes

    PubMed Central

    Mihai, Adina D; Schröder, Martin

    2015-01-01

    Obesity is associated with endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) in adipose tissue. In this study we identify physiological triggers of ER stress and of the UPR in adipocytes in vitro. We show that two markers of adipose tissue remodelling in obesity, glucose starvation and hypoxia, cause ER stress in 3T3-F442A and 3T3-L1 adipocytes. Both conditions induced molecular markers of the IRE1α and PERK branches of the UPR, such as splicing of XBP1 mRNA and CHOP, as well as transcription of the ER stress responsive gene BiP. Hypoxia also induced an increase in phosphorylation of the PERK substrate eIF2α. By contrast, physiological triggers of ER stress in many other cell types, such as the saturated fatty acid palmitic acid, cholesterol, or several inflammatory cytokines including TNF-α, IL-1β, and IL-6, do not cause ER stress in 3T3-F442A and 3T3-L1 adipocytes. Our data suggest that physiological changes associated with remodelling of adipose tissue in obesity, such as hypoxia and glucose starvation, are more likely physiological ER stressors of adipocytes than the lipid overload or hyperinsulinemia associated with obesity. PMID:26257992

  8. The blood-brain barrier in hypoxia.

    PubMed

    Lataste, X

    1992-10-01

    The concept of blood-brain barrier has moved over the past years from a passive and relatively immutable structure to a more dynamic interface between blood and brain tissue. The transport mechanisms regulating this adaptative interface might be considered as the most sensitive elements to change such as hypoxia. Among various carrier mediated transports existing at the blood-brain barrier, glucose transport seems to play a predominant role. In severe hypoxia, progressive changes in glucose transport are occurring. These modifications associated with hypoxia can lead to deleterious events when reaching critical threshold. In addition the appearance of vasogenic edema due to changes in cerebral-blood flow, can possibly be prevented by some pharmacological interaction such as the use of selective brain calcium channel blockers.

  9. Finite-element impact response of debonded composite turbine blades

    NASA Astrophysics Data System (ADS)

    Dey, Sudip; Karmakar, Amit

    2014-02-01

    This paper investigates on the transient behavior of debonded composite pretwisted rotating shallow conical shells which could be idealized as turbine blades subjected to low velocity normal impact using finite-element method. Lagrange's equation of motion is used to derive the dynamic equilibrium equation and the moderate rotational speeds are considered neglecting the Coriolis effect. An eight-noded isoparametric plate bending element is employed in the finite element formulation incorporating rotary inertia and effects of transverse shear deformation based on Mindlin's theory. The modified Hertzian contact law which accounts for permanent indentation is utilized to compute the impact parameters. The time-dependent equations are solved by using Newmark's time integration scheme. Parametric studies are performed to investigate the effects of triggering parameters like angle of twist, rotational speed, laminate configuration and location of debonding considering low velocity normal impact at the center of eight-layered graphite-epoxy composite cantilevered conical shells with bending stiff ([0o2/{±} 30o]s), torsion stiff ([45°/-45°/-45°/45°]s) and cross-ply ([0°/90°/0°/90°]s) laminate configurations.

  10. Population responses to contour integration: early encoding of discrete elements and late perceptual grouping.

    PubMed

    Gilad, Ariel; Meirovithz, Elhanan; Slovin, Hamutal

    2013-04-24

    The neuronal mechanisms underlying perceptual grouping of discrete, similarly oriented elements are not well understood. To investigate this, we measured neural population responses using voltage-sensitive dye imaging in V1 of monkeys trained on a contour-detection task. By mapping the contour and background elements onto V1, we could study their neural processing. Population response early in time showed activation patches corresponding to the contour/background individual elements. However, late increased activity in the contour elements, along with suppressed activity in the background elements, enabled us to visualize in single trials a salient continuous contour "popping out" from a suppressed background. This modulated activity in the contour and in background extended beyond the cortical representation of individual contour or background elements. Finally, the late modulation was correlated with behavioral performance of contour saliency and the monkeys' perceptual report. Thus, opposing responses in the contour and background may underlie perceptual grouping in V1.

  11. Thiopental sodium preserves the responsiveness to glutamate but not acetylcholine in rat primary cultured neurons exposed to hypoxia.

    PubMed

    Morita, Tomotaka; Shibuta, Satoshi; Kosaka, Jun; Fujino, Yuji

    2016-06-15

    Although many in vitro studies demonstrated that thiopental sodium (TPS) is a promising neuroprotective agent, clinical attempts to use TPS showed mainly unsatisfactory results. We investigated the neuroprotective effects of TPS against hypoxic insults (HI), and the responses of the neurons to l-glutamate and acetylcholine application. Neurons prepared from E17 Wistar rats were used after 2weeks in culture. The neurons were exposed to 12-h HI with or without TPS. HI-induced neurotoxicity was evaluated morphologically. Moreover, we investigated the dynamics of the free intracellular calcium ([Ca(2+)]i) in the surviving neurons after HI with or without TPS pretreatment following the application of neurotransmitters. TPS was neuroprotective against HI according to the morphological examinations (0.73±0.06 vs. 0.52±0.07, P=0.04). While the response to l-glutamate was maintained (0.89±0.08 vs. 1.02±0.09, P=0.60), the [Ca(2+)]i response to acetylcholine was notably impaired (0.59±0.02 vs. 0.94±0.04, P<0.01). Though TPS to cortical cultures was neuroprotective against HI morphologically, the [Ca(2+)]i response not to l-glutamate but to acetylcholine was impaired. This may partially explain the inconsistent results regarding the neuroprotective effects of TPS between experimental studies and clinical settings. PMID:27206889

  12. Analysis of the Aspergillus fumigatus Proteome Reveals Metabolic Changes and the Activation of the Pseurotin A Biosynthesis Gene Cluster in Response to Hypoxia

    PubMed Central

    2011-01-01

    The mold Aspergillus fumigatus is the most important airborne fungal pathogen. Adaptation to hypoxia represents an important virulence attribute for A. fumigatus. Therefore, we aimed at obtaining a comprehensive overview about this process on the proteome level. To ensure highly reproducible growth conditions, an oxygen-controlled, glucose-limited chemostat cultivation was established. Two-dimensional gel electrophoresis analysis of mycelial and mitochondrial proteins as well as two-dimensional Blue Native/SDS-gel separation of mitochondrial membrane proteins led to the identification of 117 proteins with an altered abundance under hypoxic in comparison to normoxic conditions. Hypoxia induced an increased activity of glycolysis, the TCA-cycle, respiration, and amino acid metabolism. Consistently, the cellular contents in heme, iron, copper, and zinc increased. Furthermore, hypoxia induced biosynthesis of the secondary metabolite pseurotin A as demonstrated at proteomic, transcriptional, and metabolite levels. The observed and so far not reported stimulation of the biosynthesis of a secondary metabolite by oxygen depletion may also affect the survival of A. fumigatus in hypoxic niches of the human host. Among the proteins so far not implicated in hypoxia adaptation, an NO-detoxifying flavohemoprotein was one of the most highly up-regulated proteins which indicates a link between hypoxia and the generation of nitrosative stress in A. fumigatus. PMID:21388144

  13. Cerium oxide nanoparticles promote neurogenesis and abrogate hypoxia-induced memory impairment through AMPK–PKC–CBP signaling cascade

    PubMed Central

    Arya, Aditya; Gangwar, Anamika; Singh, Sushil Kumar; Roy, Manas; Das, Mainak; Sethy, Niroj Kumar; Bhargava, Kalpana

    2016-01-01

    Structural and functional integrity of the brain is adversely affected by reduced oxygen saturation, especially during chronic hypoxia exposure and often encountered by altitude travelers or dwellers. Hypoxia-induced generation of reactive nitrogen and oxygen species reportedly affects the cortex and hippocampus regions of the brain, promoting memory impairment and cognitive dysfunction. Cerium oxide nanoparticles (CNPs), also known as nanoceria, switch between +3 and +4 oxidation states and reportedly scavenge superoxide anions, hydrogen peroxide, and peroxynitrite in vivo. In the present study, we evaluated the neuroprotective as well as the cognition-enhancing activities of nanoceria during hypobaric hypoxia. Using polyethylene glycol-coated 3 nm nanoceria (PEG-CNPs), we have demonstrated efficient localization of PEG-CNPs in rodent brain. This resulted in significant reduction of oxidative stress and associated damage during hypoxia exposure. Morris water maze-based memory function tests revealed that PEG-CNPs ameliorated hypoxia-induced memory impairment. Using microscopic, flow cytometric, and histological studies, we also provide evidences that PEG-CNPs augmented hippocampus neuronal survival and promoted neurogenesis. Molecular studies revealed that PEG-CNPs promoted neurogenesis through the 5′-adenine monophosphate-activated protein kinase–protein kinase C–cyclic adenosine monophosphate response element-binding protein binding (AMPK-PKC-CBP) protein pathway. Our present study results suggest that nanoceria can be translated as promising therapeutic molecules for neurodegenerative diseases. PMID:27069362

  14. Efficient utilization of aerobic metabolism helps Tibetan locusts conquer hypoxia

    PubMed Central

    2013-01-01

    Background Responses to hypoxia have been investigated in many species; however, comparative studies between conspecific geographical populations at different altitudes are rare, especially for invertebrates. The migratory locust, Locusta migratoria, is widely distributed around the world, including on the high-altitude Tibetan Plateau (TP) and the low-altitude North China Plain (NP). TP locusts have inhabited Tibetan Plateau for over 34,000 years and thus probably have evolved superior capacity to cope with hypoxia. Results Here we compared the hypoxic responses of TP and NP locusts from morphological, behavioral, and physiological perspectives. We found that TP locusts were more tolerant of extreme hypoxia than NP locusts. To evaluate why TP locusts respond to extreme hypoxia differently from NP locusts, we subjected them to extreme hypoxia and compared their transcriptional responses. We found that the aerobic metabolism was less affected in TP locusts than in NP locusts. RNAi disruption of PDHE1β, an entry gene from glycolysis to TCA cycle, increased the ratio of stupor in TP locusts and decreased the ATP content of TP locusts in hypoxia, confirming that aerobic metabolism is critical for TP locusts to maintain activity in hypoxia. Conclusions Our results indicate that TP and NP locusts have undergone divergence in hypoxia tolerance. These findings also indicate that insects can adapt to hypoxic pressure by modulating basic metabolic processes. PMID:24047108

  15. Mitochondrial Reactive Oxygen Species Trigger Hypoxia-Induced Transcription

    NASA Astrophysics Data System (ADS)

    Chandel, N. S.; Maltepe, E.; Goldwasser, E.; Mathieu, C. E.; Simon, M. C.; Schumacker, P. T.

    1998-09-01

    Transcriptional activation of erythropoietin, glycolytic enzymes, and vascular endothelial growth factor occurs during hypoxia or in response to cobalt chloride (CoCl2) in Hep3B cells. However, neither the mechanism of cellular O2 sensing nor that of cobalt is fully understood. We tested whether mitochondria act as O2 sensors during hypoxia and whether hypoxia and cobalt activate transcription by increasing generation of reactive oxygen species (ROS). Results show (i) wild-type Hep3B cells increase ROS generation during hypoxia (1.5% O2) or CoCl2 incubation, (ii) Hep3B cells depleted of mitochondrial DNA (ρ 0 cells) fail to respire, fail to activate mRNA for erythropoietin, glycolytic enzymes, or vascular endothelial growth factor during hypoxia, and fail to increase ROS generation during hypoxia; (iii) ρ 0 cells increase ROS generation in response to CoCl2 and retain the ability to induce expression of these genes; and (iv) the antioxidants pyrrolidine dithiocarbamate and ebselen abolish transcriptional activation of these genes during hypoxia or CoCl2 in wild-type cells, and abolish the response to CoCl2 in ρ 0 cells. Thus, hypoxia activates transcription via a mitochondria-dependent signaling process involving increased ROS, whereas CoCl2 activates transcription by stimulating ROS generation via a mitochondria-independent mechanism.

  16. Hypoxia: a window into Mycobacterium tuberculosis latency.

    PubMed

    Rustad, Tige R; Sherrid, Ashley M; Minch, Kyle J; Sherman, David R

    2009-08-01

    Tuberculosis is a massive public health problem on a global scale and the success of Mycobacterium tuberculosis is linked to its ability to persist within humans for long periods without causing any overt disease symptoms. Hypoxia is predicted to be a key host-induced stress limiting growth of the pathogen in vivo. However, multiple studies in vitro and in vivo indicate that M. tuberculosis adapts to oxygen limitation by entering into a metabolically altered state, while awaiting the opportunity to reactivate. Molecular signatures of bacteria adapted to hypoxia in vitro are accumulating, although correlations to human disease are only now being established. Similarly, defining the mechanisms that control this adaptation is an active area of research. In this review we discuss the historical precedents linking hypoxia and latency, and the gathering knowledge of M. tuberculosis hypoxic responses. We also examine the role of these responses in tuberculosis latency, and identify promising avenues for future studies.

  17. Hypoxia as a therapy for mitochondrial disease.

    PubMed

    Jain, Isha H; Zazzeron, Luca; Goli, Rahul; Alexa, Kristen; Schatzman-Bone, Stephanie; Dhillon, Harveen; Goldberger, Olga; Peng, Jun; Shalem, Ophir; Sanjana, Neville E; Zhang, Feng; Goessling, Wolfram; Zapol, Warren M; Mootha, Vamsi K

    2016-04-01

    Defects in the mitochondrial respiratory chain (RC) underlie a spectrum of human conditions, ranging from devastating inborn errors of metabolism to aging. We performed a genome-wide Cas9-mediated screen to identify factors that are protective during RC inhibition. Our results highlight the hypoxia response, an endogenous program evolved to adapt to limited oxygen availability. Genetic or small-molecule activation of the hypoxia response is protective against mitochondrial toxicity in cultured cells and zebrafish models. Chronic hypoxia leads to a marked improvement in survival, body weight, body temperature, behavior, neuropathology, and disease biomarkers in a genetic mouse model of Leigh syndrome, the most common pediatric manifestation of mitochondrial disease. Further preclinical studies are required to assess whether hypoxic exposure can be developed into a safe and effective treatment for human diseases associated with mitochondrial dysfunction.

  18. Hypoxia as a Therapy for Mitochondrial Disease

    PubMed Central

    Jain, Isha H.; Zazzeron, Luca; Goli, Rahul; Alexa, Kristen; Schatzman-Bone, Stephanie; Dhillon, Harveen; Goldberger, Olga; Peng, Jun; Shalem, Ophir; Sanjana, Neville E.; Zhang, Feng; Goessling, Wolfram; Zapol, Warren M.; Mootha, Vamsi K.

    2016-01-01

    Defects in the mitochondrial respiratory chain (RC) underlie a spectrum of human conditions, ranging from devastating inborn errors of metabolism to aging. We performed a genome-wide, Cas9-mediated screen to identify factors that are protective during RC inhibition. Our results highlight the hypoxia response, an endogenous program evolved to adapt to limiting oxygen availability. Genetic or small molecule activation of the hypoxia response is protective against mitochondrial toxicity in cultured cells and zebrafish models. Chronic hypoxia leads to a marked improvement in survival, body weight, body temperature, behavior, neuropathology and disease biomarkers in a genetic mouse model of Leigh syndrome, the most common pediatric manifestation of mitochondrial disease. Further preclinical studies are required to assess whether hypoxic exposure can be developed into a safe and effective treatment for human diseases associated with mitochondrial dysfunction. PMID:26917594

  19. Hypoxia-Inducible Factor in Thyroid Carcinoma

    PubMed Central

    Burrows, Natalie; Babur, Muhammad; Resch, Julia; Williams, Kaye J.; Brabant, Georg

    2011-01-01

    Intratumoural hypoxia (low oxygen tension) is associated with aggressive disease and poor prognosis. Hypoxia-inducible factor-1 is a transcription factor activated by hypoxia that regulates the expression of genes that promote tumour cell survival, progression, metastasis, and resistance to chemo/radiotherapy. In addition to hypoxia, HIF-1 can be activated by growth factor-signalling pathways such as the mitogen-activated protein kinases- (MAPK-) and phosphatidylinositol-3-OH kinases- (PI3K-) signalling cascades. Mutations in these pathways are common in thyroid carcinoma and lead to enhanced HIF-1 expression and activity. Here, we summarise current data that highlights the potential role of both hypoxia and MAPK/PI3K-induced HIF-1 signalling in thyroid carcinoma progression, metastatic characteristics, and the potential role of HIF-1 in thyroid carcinoma response to radiotherapy. Direct or indirect targeting of HIF-1 using an MAPK or PI3K inhibitor in combination with radiotherapy may be a new potential therapeutic target to improve the therapeutic response of thyroid carcinoma to radiotherapy and reduce metastatic burden. PMID:21765994

  20. Moderate Hypoxia Influences Potassium Outward Currents in Adipose-Derived Stem Cells

    PubMed Central

    Prasad, Mayuri; Zachar, Vladimir; Fink, Trine; Pennisi, Cristian Pablo

    2014-01-01

    Moderate hypoxic preconditioning of adipose-derived stem cells (ASCs) enhances properties such as proliferation and secretion of growth factors, representing a valuable strategy to increase the efficiency of cell-based therapies. In a wide variety of cells potassium (K+) channels are key elements involved in the cellular responses to hypoxia, suggesting that ASCs cultured under low oxygen conditions may display altered electrophysiological properties. Here, the effects of moderate hypoxic culture on proliferation, whole-cell currents, and ion channel expression were investigated using human ASCs cultured at 5% and 20% oxygen. Although cell proliferation was greatly enhanced, the dose-dependent growth inhibition by the K+ channel blocker tetraethylammonium (TEA) was not significantly affected by hypoxia. Under both normoxic and hypoxic conditions, ASCs displayed outward K+ currents composed by Ca2+-activated, delayed rectifier, and transient components. Hypoxic culture reduced the slope of the current-voltage curves and caused a negative shift in the voltage activation threshold of the whole-cell currents. However, the TEA-mediated shift of voltage activation threshold was not affected by hypoxia. Semiquantitative real-time RT-PCR revealed that expression of genes encoding for various ion channels subunits related to oxygen sensing and proliferation remained unchanged after hypoxic culture. In conclusion, outward currents are influenced by moderate hypoxia in ASCs through a mechanism that is not likely the result of modulation of TEA-sensitive K+ channels. PMID:25115627

  1. Hypoxia-inducible factor 2alpha binds to cobalt in vitro.

    PubMed

    Yuan, Y; Beitner-Johnson, D; Millhorn, D E

    2001-11-01

    The hypoxia-inducible factor (HIF) activates the expression of genes that contain a hypoxia response element (HRE). The alpha subunit of the HIF transcription factors is degraded by proteasome pathways during normoxia, but stabilized under hypoxic conditions. It has previously been established that cobalt causes accumulation of HIF-2alpha and HIF-1alpha. However, little is known about the mechanism by which cobalt mimics hypoxia and stabilizes these transcription factors. We show here that cobalt binds directly to HIF-2alpha in vitro with a high affinity and in an oxygen-dependent manner. We found that HIF-2alpha, which had been stabilized with a proteasome inhibitor, could bind to cobalt, whereas hypoxia-stabilized HIF-2alpha could not. Mutations within the oxygen-dependent degradation domain of HIF-2alpha prevented cobalt binding and led to accumulation of HIF-2alpha during normoxia. This suggests that transition metal such as iron may play a role in regulation of HIF-2alpha in vivo. PMID:11688986

  2. Heterogeneity in Pseudomonas aeruginosa Biofilms Includes Expression of Ribosome Hibernation Factors in the Antibiotic-Tolerant Subpopulation and Hypoxia-Induced Stress Response in the Metabolically Active Population

    PubMed Central

    Williamson, Kerry S.; Richards, Lee A.; Perez-Osorio, Ailyn C.; Pitts, Betsey; McInnerney, Kathleen; Stewart, Philip S.

    2012-01-01

    Bacteria growing in biofilms are physiologically heterogeneous, due in part to their adaptation to local environmental conditions. Here, we characterized the local transcriptome responses of Pseudomonas aeruginosa growing in biofilms by using a microarray analysis of isolated biofilm subpopulations. The results demonstrated that cells at the top of the biofilms had high mRNA abundances for genes involved in general metabolic functions, while mRNA levels for these housekeeping genes were low in cells at the bottom of the biofilms. Selective green fluorescent protein (GFP) labeling showed that cells at the top of the biofilm were actively dividing. However, the dividing cells had high mRNA levels for genes regulated by the hypoxia-induced regulator Anr. Slow-growing cells deep in the biofilms had little expression of Anr-regulated genes and may have experienced long-term anoxia. Transcripts for ribosomal proteins were associated primarily with the metabolically active cell fraction, while ribosomal RNAs were abundant throughout the biofilms, indicating that ribosomes are stably maintained even in slowly growing cells. Consistent with these results was the identification of mRNAs for ribosome hibernation factors (the rmf and PA4463 genes) at the bottom of the biofilms. The dormant biofilm cells of a P. aeruginosa Δrmf strain had decreased membrane integrity, as shown by propidium iodide staining. Using selective GFP labeling and cell sorting, we show that the dividing cells are more susceptible to killing by tobramycin and ciprofloxacin. The results demonstrate that in thick P. aeruginosa biofilms, cells are physiologically distinct spatially, with cells deep in the biofilm in a viable but antibiotic-tolerant slow-growth state. PMID:22343293

  3. Hypoxia in the Northern Gulf of Mexico

    SciTech Connect

    Dale, Virginia H

    2010-01-01

    Since 1985, scientists have been documenting a hypoxic zone in the Gulf of Mexico each year. The hypoxic zone, an area of low dissolved oxygen that cannot support marine life, generally manifests itself in the spring. Since marine species either die or flee the hypoxic zone, the spread of hypoxia reduces the available habitat for marine species, which are important for the ecosystem as well as commercial and recreational fishing in the Gulf. Since 2001, the hypoxic zone has averaged 16,500 km{sup 2} during its peak summer months, an area slightly larger than the state of Connecticut, and ranged from a low of 8,500 km{sup 2} to a high of 22,000 km{sup 2}. To address the hypoxia problem, the Mississippi River/Gulf of Mexico Watershed Nutrient Task Force (or Task Force) was formed to bring together representatives from federal agencies, states, and tribes to consider options for responding to hypoxia. The Task Force asked the White House Office of Science and Technology Policy to conduct a scientific assessment of the causes and consequences of Gulf hypoxia through its Committee on Environment and Natural Resources (CENR). In 2000 the CENR completed An Integrated Assessment: Hypoxia in the Northern Gulf of Mexico (or Integrated Assessment), which formed the scientific basis for the Task Force's Action Plan for Reducing, Mitigating, and Controlling Hypoxia in the Northern Gulf of Mexico (Action Plan, 2001). In its Action Plan, the Task Force pledged to implement ten management actions and to assess progress every 5 years. This reassessment would address the nutrient load reductions achieved, the responses of the hypoxic zone and associated water quality and habitat conditions, and economic and social effects. The Task Force began its reassessment in 2005. In 2006 as part of the reassessment, USEPA's Office of Water, on behalf of the Task Force, requested that the U.S. Environmental Protection Agency (USEPA) Science Advisory Board (SAB) convene an independent panel to

  4. Hypoxia: developments in basic science, physiology and clinical studies.

    PubMed

    Ward, D S; Karan, S B; Pandit, J J

    2011-12-01

    Airway management is primarily designed to avoid hypoxia, yet hypoxia remains the main ultimate cause of anaesthetic-related death and morbidity. Understanding some of the physiology of hypoxia is therefore essential as part of a 'holistic' approach to airway management. Furthermore, it is strategically important that national specialist societies dedicated to airway management do not only focus upon the technical aspects of airway management, but also embrace some of the relevant scientific questions. There has been a great deal of research into causation of hypoxia and the body's natural protective mechanisms and responses to it. This enables us to think of ways in which we might manipulate the cellular and molecular responses to confer greater protection against hypoxia-induced tissue injury. This article reviews some of those aspects. PMID:22074075

  5. Moral Responsibility: The Missing Element in Educational Leadership

    ERIC Educational Resources Information Center

    Vasillopulos, Christopher; Denney, Morgan

    2013-01-01

    We intend to deepen the understanding of leadership in general and educational leadership in particular by an analysis of Chester Barnard's (1938) concept of executive responsibility. By so doing we believe that we will reveal how an educational leader can foster the environment in which competent teachers can optimize their students' learning…

  6. Functional genomics approach to hypoxia signaling.

    PubMed

    Seta, Karen A; Millhorn, David E

    2004-02-01

    Mammalian cells require a constant supply of oxygen to maintain energy balance, and sustained hypoxia can result in cell death. It is therefore not surprising that sophisticated adaptive mechanisms have evolved that enhance cell survival during hypoxia. During the past few years, there have been a growing number of reports on hypoxia-induced transcription of specific genes. In this review, we describe a unique experimental approach that utilizes focused cDNA libraries coupled to microarray analyses to identify hypoxia-responsive signal transduction pathways and genes that confer the hypoxia-tolerant phenotype. We have used the subtractive suppression hybridization (SSH) method to create a cDNA library enriched in hypoxia-regulated genes in oxygen-sensing pheochromocytoma cells and have used this library to create microarrays that allow us to examine hundreds of genes at a time. This library contains over 300 genes and expressed sequence tags upregulated by hypoxia, including tyrosine hydroxylase, vascular endothelial growth factor, and junB. Hypoxic regulation of these and other genes in the library has been confirmed by microarray, Northern blot, and real-time PCR analyses. Coupling focused SSH libraries with microarray analyses allows one to specifically study genes relevant to a phenotype of interest while reducing much of the biological noise associated with these types of studies. When used in conjunction with high-throughput, dye-based assays for cell survival and apoptosis, this approach offers a rapid method for discovering validated therapeutic targets for the treatment of cardiovascular disease, stroke, and tumors. PMID:14715686

  7. Hypoxia. 4. Hypoxia and ion channel function

    PubMed Central

    Polak, Jan

    2011-01-01

    The ability to sense and respond to oxygen deprivation is required for survival; thus, understanding the mechanisms by which changes in oxygen are linked to cell viability and function is of great importance. Ion channels play a critical role in regulating cell function in a wide variety of biological processes, including neuronal transmission, control of ventilation, cardiac contractility, and control of vasomotor tone. Since the 1988 discovery of oxygen-sensitive potassium channels in chemoreceptors, the effect of hypoxia on an assortment of ion channels has been studied in an array of cell types. In this review, we describe the effects of both acute and sustained hypoxia (continuous and intermittent) on mammalian ion channels in several tissues, the mode of action, and their contribution to diverse cellular processes. PMID:21178108

  8. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation.

    PubMed

    Noman, Muhammad Zaeem; Desantis, Giacomo; Janji, Bassam; Hasmim, Meriem; Karray, Saoussen; Dessen, Philippe; Bronte, Vincenzo; Chouaib, Salem

    2014-05-01

    Tumor-infiltrating myeloid cells such as myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) form an important component of the hypoxic tumor microenvironment. Here, we investigated the influence of hypoxia on immune checkpoint receptors (programmed death [PD]-1 and CTLA-4) and their respective ligands (PD-1 ligand 1 [PD-L1], PD-L2, CD80, and CD86) on MDSCs. We demonstrate that MDSCs at the tumor site show a differential expression of PD-L1 as compared with MDSCs from peripheral lymphoid organ (spleen). Hypoxia caused a rapid, dramatic, and selective up-regulation of PD-L1 on splenic MDSCs in tumor-bearing mice. This was not limited to MDSCs, as hypoxia also significantly increased the expression of PD-L1 on macrophages, dendritic cells, and tumor cells. Furthermore, PD-L1 up-regulation under hypoxia was dependent on hypoxia-inducible factor-1α (HIF-1α) but not HIF-2α. Chromatin immunoprecipitation and luciferase reporter assay revealed direct binding of HIF-1α to a transcriptionally active hypoxia-response element (HRE) in the PD-L1 proximal promoter. Blockade of PD-L1 under hypoxia enhanced MDSC-mediated T cell activation and was accompanied by the down-regulation of MDSCs IL-6 and IL-10. Finally, neutralizing antibodies against IL-10 under hypoxia significantly abrogated the suppressive activity of MDSCs. Simultaneous blockade of PD-L1 along with inhibition of HIF-1α may thus represent a novel approach for cancer immunotherapy.

  9. 33 CFR Appendix D to Part 154 - Training Elements for Oil Spill Response Plans

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Training Elements for Oil Spill... Appendix D to Part 154—Training Elements for Oil Spill Response Plans 1. General 1.1The portion of the plan... contracted oil spill removal organizations and the procedures to notify the activate such organizations....

  10. 33 CFR Appendix D to Part 154 - Training Elements for Oil Spill Response Plans

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Training Elements for Oil Spill... Appendix D to Part 154—Training Elements for Oil Spill Response Plans 1. General 1.1The portion of the plan... contracted oil spill removal organizations and the procedures to notify the activate such organizations....

  11. 33 CFR Appendix D to Part 154 - Training Elements for Oil Spill Response Plans

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Training Elements for Oil Spill... Appendix D to Part 154—Training Elements for Oil Spill Response Plans 1. General 1.1The portion of the plan... contracted oil spill removal organizations and the procedures to notify the activate such organizations....

  12. 33 CFR Appendix D to Part 154 - Training Elements for Oil Spill Response Plans

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....14Occupational Safety and Health Administration requirements for worker health and safety (29 CFR 1910.120). 3... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Training Elements for Oil Spill... Appendix D to Part 154—Training Elements for Oil Spill Response Plans 1. General 1.1The portion of the...

  13. 33 CFR Appendix C to Part 155 - Training Elements for Oil Spill Response Plans

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... worker health and safety (29 CFR 1910.120). 3. Further Considerations In drafting the training section of... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Training Elements for Oil Spill.... 155, App. C Appendix C to Part 155—Training Elements for Oil Spill Response Plans 1. General...

  14. 33 CFR Appendix D to Part 154 - Training Elements for Oil Spill Response Plans

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....14Occupational Safety and Health Administration requirements for worker health and safety (29 CFR 1910.120). 3... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Training Elements for Oil Spill... Appendix D to Part 154—Training Elements for Oil Spill Response Plans 1. General 1.1The portion of the...

  15. Carbonic anhydrase IX induction defines a heterogeneous cancer cell response to hypoxia and mediates stem cell-like properties and sensitivity to HDAC inhibition

    PubMed Central

    Wigfield, Simon; Buffa, Francesca; McGowan, Simon; Baban, Dilair; Li, Ji-liang; Harris, Adrian L.

    2015-01-01

    Carbonic anhydrase IX (CAIX) is strongly induced by hypoxia and its overexpression is associated with poor therapeutic outcome in cancer. Here, we report that hypoxia promotes tumour heterogeneity through the epigenetic regulation of CAIX. Based on hypoxic CAIX expression we identify and characterize two distinct populations of tumour cells, one that has inducible expression of CAIX and one that does not. The CAIX+ve population is enriched with cells expressing cancer stem cell markers and which have high self-renewal capacity. We show that differential CAIX expression is due to differences in chromatin structure. To further investigate the relationship between chromatin organization and hypoxic induction of CAIX expression we investigated the effect of JQ1 an inhibitor of BET bromodomain proteins and A366 a selective inhibitor of the H3K9 methyltransferase G9a/GLP. We identified that these drugs were able to modulate hypoxic CAIX expression induction. This further highlights the role of epigenetic modification in adaption to hypoxia and also in regulation of heterogeneity of cells within tumours. Interestingly, we identified that the two subpopulations show a differential sensitivity to HDAC inhibitors, NaBu or SAHA, with the CAIX positive showing greater sensitivity to treatment. We propose that drugs modulating chromatin regulation of expression may be used to reduce heterogeneity induced by hypoxia and could in combination have significant clinical consequences. PMID:26305601

  16. Alterations in mitochondrial electron transport system activity in response to warm acclimation, hypoxia-reoxygenation and copper in rainbow trout, Oncorhynchus mykiss.

    PubMed

    Sappal, Ravinder; MacDougald, Michelle; Fast, Mark; Stevens, Don; Kibenge, Fred; Siah, Ahmed; Kamunde, Collins

    2015-08-01

    Fish expend significant amounts of energy to handle the numerous potentially stressful biotic and abiotic factors that they commonly encounter in aquatic environments. This universal requirement for energy singularizes mitochondria, the primary cellular energy transformers, as fundamental drivers of responses to environmental change. Our study probed the interacting effects of thermal stress, hypoxia-reoxygenation (HRO) and copper (Cu) exposure in rainbow trout to test the prediction that they act jointly to impair mitochondrial function. Rainbow trout were acclimated to 11 (controls) or 20°C for 2 months. Liver mitochondria were then isolated and their responses in vitro to Cu (0-20μM) without and with HRO were assessed. Sequential inhibition and activation of mitochondrial electron transport system (ETS) enzyme complexes permitted the measurement of respiratory activities supported by complex I-IV (CI-IV) in one run. The results showed that warm acclimation reduced fish and liver weights but increased mitochondrial protein indicating impairment of energy metabolism, increased synthesis of defense proteins and/or reduced liver water content. Whereas acute rise (11→20°C) in temperature increased mitochondrial oxidation rates supported by CI-IV, warm acclimation reduced the maximal (state 3) and increased the basal (state 4) respiration leading to global uncoupling of oxidative phosphorylation (OXPHOS). HRO profoundly inhibited both maximal and basal respiration rates supported by CI-IV, reduced RCR for all except CII and lowered CI:CII respiration ratio, an indication of decreased OXPHOS efficiency. The effects of Cu were less pronounced but more variable and included inhibition of CII-IV maximal respiration rates and stimulation of both CI and CIII basal respiration rates. Surprisingly, only CII and CIII indices exhibited significant 3-way interactions whereas 2-way interactions of acclimation either with Cu or HRO were portrayed mostly by CIV, and those of

  17. Melatonin as a Signaling Molecule for Metabolism Regulation in Response to Hypoxia in the Crab Neohelice granulata

    PubMed Central

    Maciel, Fábio Everton; Geihs, Márcio Alberto; Cruz, Bruno Pinto; Vargas, Marcelo Alves; Allodi, Silvana; Marins, Luis Fernando; Nery, Luiz Eduardo Maia

    2014-01-01

    Melatonin has been identified in a variety of crustacean species, but its function is not as well understood as in vertebrates. The present study investigates whether melatonin has an effect on crustacean hyperglycemic hormone (CHH) gene expression, oxygen consumption (VO2) and circulating glucose and lactate levels, in response to different dissolved-oxygen concentrations, in the crab Neohelice granulata, as well as whether these possible effects are eyestalk- or receptor-dependent. Melatonin decreased CHH expression in crabs exposed for 45 min to 6 (2, 200 or 20,000 pmol·crab−1) or 2 mgO2·L−1 (200 pmol·crab−1). Since luzindole (200 nmol·crab−1) did not significantly (p > 0.05) alter the melatonin effect, its action does not seem to be mediated by vertebrate-typical MT1 and MT2 receptors. Melatonin (200 pmol·crab−1) increased the levels of glucose and lactate in crabs exposed to 6 mgO2·L−1, and luzindole (200 nmol·crab−1) decreased this effect, indicating that melatonin receptors are involved in hyperglycemia and lactemia. Melatonin showed no effect on VO2. Interestingly, in vitro incubation of eyestalk ganglia for 45 min at 0.7 mgO2·L−1 significantly (p < 0.05) increased melatonin production in this organ. In addition, injections of melatonin significantly increased the levels of circulating melatonin in crabs exposed for 45 min to 6 (200 or 20,000 pmol·crab−1), 2 (200 and 20,000 pmol·crab−1) and 0.7 (200 or 20,000 pmol·crab−1) mgO2·L−1. Therefore, melatonin seems to have an effect on the metabolism of N. granulata. This molecule inhibited the gene expression of CHH and caused an eyestalk- and receptor-dependent hyperglycemia, which suggests that melatonin may have a signaling role in metabolic regulation in this crab. PMID:25486055

  18. Melatonin as a signaling molecule for metabolism regulation in response to hypoxia in the crab Neohelice granulata.

    PubMed

    Maciel, Fábio Everton; Geihs, Márcio Alberto; Cruz, Bruno Pinto; Vargas, Marcelo Alves; Allodi, Silvana; Marins, Luis Fernando; Nery, Luiz Eduardo Maia

    2014-12-04

    Melatonin has been identified in a variety of crustacean species, but its function is not as well understood as in vertebrates. The present study investigates whether melatonin has an effect on crustacean hyperglycemic hormone (CHH) gene expression, oxygen consumption (VO2) and circulating glucose and lactate levels, in response to different dissolved-oxygen concentrations, in the crab Neohelice granulata, as well as whether these possible effects are eyestalk- or receptor-dependent. Melatonin decreased CHH expression in crabs exposed for 45 min to 6 (2, 200 or 20,000 pmol·crab-1) or 2 mgO2·L-1 (200 pmol·crab-1). Since luzindole (200 nmol·crab-1) did not significantly (p > 0.05) alter the melatonin effect, its action does not seem to be mediated by vertebrate-typical MT1 and MT2 receptors. Melatonin (200 pmol·crab-1) increased the levels of glucose and lactate in crabs exposed to 6 mgO2·L-1, and luzindole (200 nmol·crab-1) decreased this effect, indicating that melatonin receptors are involved in hyperglycemia and lactemia. Melatonin showed no effect on VO2. Interestingly, in vitro incubation of eyestalk ganglia for 45 min at 0.7 mgO2·L-1 significantly (p < 0.05) increased melatonin production in this organ. In addition, injections of melatonin significantly increased the levels of circulating melatonin in crabs exposed for 45 min to 6 (200 or 20,000 pmol·crab-1), 2 (200 and 20,000 pmol·crab-1) and 0.7 (200 or 20,000 pmol·crab-1) mgO2·L-1. Therefore, melatonin seems to have an effect on the metabolism of N. granulata. This molecule inhibited the gene expression of CHH and caused an eyestalk- and receptor-dependent hyperglycemia, which suggests that melatonin may have a signaling role in metabolic regulation in this crab.

  19. Surface Phosphatidylserine Is Responsible for the Internalization on Microvesicles Derived from Hypoxia-Induced Human Bone Marrow Mesenchymal Stem Cells into Human Endothelial Cells

    PubMed Central

    Liu, Chaozhong; Wang, Lisheng; Xiao, Fengjun; Zhang, Hongchao

    2016-01-01

    Background Previous data have proven that microvesicles derived from hypoxia-induced mesenchymal stem cells (MSC-MVs) can be internalized into endothelial cells, enhancing their proliferation and vessel structure formation and promoting in vivo angiogenesis. However, there is a paucity of information about how the MSC-MVs are up-taken by endothelial cells. Methods MVs were prepared from the supernatants of human bone marrow MSCs that had been exposed to a hypoxic and/or serum-deprivation condition. The incorporation of hypoxia-induced MSC-MVs into human umbilical cord endothelial cells (HUVECs) was observed by flow cytometry and confocal microscopy in the presence or absence of recombinant human Annexin-V (Anx-V) and antibodies against human CD29 and CD44. Further, small interfering RNA (siRNA) targeted at Anx-V and PSR was delivered into HUVECs, or HUVECs were treated with a monoclonal antibody against phosphatidylserine receptor (PSR) and the cellular internalization of MVs was re-assessed. Results The addition of exogenous Anx-V could inhibit the uptake of MVs isolated from hypoxia-induced stem cells by HUVECs in a dose- and time-dependent manner, while the anti-CD29 and CD44 antibodies had no effect on the internalization process. The suppression was neither observed in Anx-V siRNA-transfected HUVECs, however, addition of anti-PSR antibody and PSR siRNA-transfected HUVECs greatly blocked the incorporation of MVs isolated from hypoxia-induced stem cells into HUVECs. Conclusion PS on the MVs isolated from hypoxia-induced stem cells is the critical molecule in the uptake by HUVECs. PMID:26808539

  20. Temperature regulation in lizards: effects of hypoxia.

    PubMed

    Hicks, J W; Wood, S C

    1985-05-01

    Temperature regulation during external (lowered lung PO2) and internal hypoxia (anemia) was examined in four species of lizards. Exposure to a hypoxic gas mixture in a thermogradient resulted in the animals lowering their selected (preferred) body temperature. A 50% reduction in the O2 carrying capacity of the blood also reduced the selected body temperature. Lizards "shuttle" when forced to select a temperature either above or below their normal selected temperature. Exposure to hypoxia decreases the upper and lower exit temperatures during shuttling. Furthermore, a decrease in the inspired O2 causes the rate of heating to no longer exceed the rate of cooling as is normal. The behavioral reduction of body temperature and the altered neural and physiological aspects of temperature regulation appear to be generalized responses to impaired O2 transport and not PO2 per se. The reduced body temperature, by lowering metabolic demand, provides an effective, even life-saving, adaptation to hypoxia.

  1. Medullary respiratory neural activity during hypoxia in NREM and REM sleep in the cat.

    PubMed

    Lovering, Andrew T; Fraigne, Jimmy J; Dunin-Barkowski, Witali L; Vidruk, Edward H; Orem, John M

    2006-02-01

    Intact unanesthetized cats hyperventilate in response to hypocapnic hypoxia in both wakefulness and sleep. This hyperventilation is caused by increases in diaphragmatic activity during inspiration and expiration. In this study, we recorded 120 medullary respiratory neurons during sleep in hypoxia. Our goal was to understand how these neurons change their activity to increase breathing efforts and frequency in response to hypoxia. We found that the response of medullary respiratory neurons to hypoxia was variable. While the activity of a small majority of inspiratory (58%) and expiratory (56%) neurons was increased in response to hypoxia, the activity of a small majority of preinspiratory (57%) neurons was decreased. Cells that were more active in hypoxia had discharge rates that averaged 183% (inspiratory decrementing), 154% (inspiratory augmenting), 155% (inspiratory), 230% (expiratory decrementing), 191% (expiratory augmenting), and 136% (expiratory) of the rates in normoxia. The response to hypoxia was similar in non-rapid-eye-movement (NREM) and REM sleep. Additionally, changes in the profile of activity were observed in all cell types examined. These changes included advanced, prolonged, and abbreviated patterns of activity in response to hypoxia; for example, some inspiratory neurons prolonged their discharge into expiration during the postinspiratory period in hypoxia but not in normoxia. Although changes in activity of the inspiratory neurons could account for the increased breathing efforts and activity of the diaphragm observed during hypoxia, the mechanisms responsible for the change in respiratory rate were not revealed by our data.

  2. Acute hypoxia produces a superoxide burst in cells.

    PubMed

    Hernansanz-Agustín, Pablo; Izquierdo-Álvarez, Alicia; Sánchez-Gómez, Francisco J; Ramos, Elena; Villa-Piña, Tamara; Lamas, Santiago; Bogdanova, Anna; Martínez-Ruiz, Antonio

    2014-06-01

    Oxygen is a key molecule for cell metabolism. Eukaryotic cells sense the reduction in oxygen availability (hypoxia) and trigger a series of cellular and systemic responses to adapt to hypoxia, including the optimization of oxygen consumption. Many of these responses are mediated by a genetic program induced by the hypoxia-inducible transcription factors (HIFs), regulated by a family of prolyl hydroxylases (PHD or EGLN) that use oxygen as a substrate producing HIF hydroxylation. In parallel to these oxygen sensors modulating gene expression within hours, acute modulation of protein function in response to hypoxia is known to occur within minutes. Free radicals acting as second messengers, and oxidative posttranslational modifications, have been implied in both groups of responses. Localization and speciation of the paradoxical increase in reactive oxygen species production in hypoxia remain debatable. We have observed that several cell types respond to acute hypoxia with a transient increase in superoxide production for about 10 min, probably originating in the mitochondria. This may explain in part the apparently divergent results found by various groups that have not taken into account the time frame of hypoxic ROS production. We propose that this acute and transient hypoxia-induced superoxide burst may be translated into oxidative signals contributing to hypoxic adaptation and preconditioning.

  3. Imaging hypoxia in gliomas

    PubMed Central

    Mendichovszky, I; Jackson, A

    2011-01-01

    Hypoxia plays a central role in tumour development, angiogenesis, growth and resistance to treatment. Owing to constant developments in medical imaging technology, significant advances have been made towards in vitro and in vivo imaging of hypoxia in a variety of tumours, including gliomas of the central nervous system. The aim of this article is to review the literature on imaging approaches currently available for measuring hypoxia in human gliomas and provide an insight into recent advances and future directions in this field. After a brief overview of hypoxia and its importance in gliomas, several methods of measuring hypoxia will be presented. These range from invasive monitoring by Eppendorf polarographic O2 microelectrodes, positron electron tomography (PET) tracers based on 2-nitroimidazole compounds [18F-labelled fluoro-misonidazole (18F-MISO) or 1-(2-[(18)F]fluoro-1-[hydroxymethyl]ethoxy)methyl-2-nitroimidazole (FRP-170)], 64Cu-ATSM Cu-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) or 99mTc- and 68Ga-labelled metronidazole (MN) agents to advanced MRI methods, such as blood oxygenation level dependent (BOLD) MRI, oxygen-enhanced MRI, diffusion-weighted MRI (DWI-MRI), dynamic contrast-enhanced MRI (DCE-MRI) and 1H-magnetic resonance spectroscopy. PMID:22433825

  4. Hormone response element binding proteins: novel regulators of vitamin D and estrogen signaling

    PubMed Central

    Lisse, Thomas S.; Hewison, Martin; Adams, John S.

    2011-01-01

    Insights from vitamin D-resistant New World primates and their human homologues as models of natural and pathological insensitivity to sterol/steroid action have uncovered a family of novel intracellular vitamin D and estrogen regulatory proteins involved in hormone action. The proteins, known as “vitamin D or estrogen response element-binding proteins”, behave as potent cis-acting, transdominant regulators to inhibit steroid receptor binding to DNA response elements and is responsible for vitamin D and estrogen resistances. This set of interactors belongs to the heterogeneous nuclear ribonucleoprotein (hnRNP) family of previously known pre-mRNA-interacting proteins. This review provides new insights into the mechanism by which these novel regulators of signaling and metabolism can act to regulate responses to vitamin D and estrogen. In addition the review also describes other molecules that are known to influence nuclear receptor signaling through interaction with hormone response elements. PMID:21236284

  5. TRAIL restores DCA/metformin-mediated cell death in hypoxia.

    PubMed

    Hong, Sung-Eun; Kim, Chang Soon; An, Sungkwan; Kim, Hyun-Ah; Hwang, Sang-Gu; Song, Jie-Young; Lee, Jin Kyung; Hong, Jungil; Kim, Jong-Il; Noh, Woo Chul; Jin, Hyeon-Ok; Park, In-Chul

    2016-09-23

    Previous studies have shown that hypoxia can reverse DCA/metformin-induced cell death in breast cancer cells. Therefore, targeting hypoxia is necessary for therapies targeting cancer metabolism. In the present study, we found that TRAIL can overcome the effect of hypoxia on the cell death induced by treatment of DCA and metformin in breast cancer cells. Unexpectedly, DR5 is upregulated in the cells treated with DCA/metformin, and sustained under hypoxia. Blocking DR5 by siRNA inhibited DCA/metformin/TRAIL-induced cell death, indicating that DR5 upregulation plays an important role in sensitizing cancer cells to TRAIL-induced cell death. Furthermore, we found that activation of JNK and c-Jun is responsible for upregulation of DR5 induced by DCA/metformin. These findings support the potential application of combining TRAIL and metabolism-targeting drugs in the treatment of cancers under hypoxia. PMID:27569287

  6. Regulation of Proliferation-Survival Decisions during Tumor Cell Hypoxia

    PubMed Central

    Schmaltz, Cornelius; Hardenbergh, Patricia Harrigan; Wells, Audrey; Fisher, David E.

    1998-01-01

    Hypoxia may influence tumor biology in paradoxically opposing ways: it is lethal as a direct stress trigger, yet hypoxic zones in solid tumors harbor viable cells which are particularly resistant to treatment and contribute importantly to disease relapse. To examine mechanisms underlying growth-survival decisions during hypoxia, we have compared genetically related transformed and untransformed fibroblast cells in vitro for proliferation, survival, clonogenicity, cell cycle, and p53 expression. Hypoxia induces G0/G1 arrest in primary fibroblasts but triggers apoptosis in oncogene-transformed derivatives. Unexpectedly, the mechanism of apoptosis is seen to require accumulated acidosis and is rescued by enhanced buffering. The direct effect of hypoxia under nonacidotic conditions is unique to transformed cells in that they override the hypoxic G0/G1 arrest of primary cells. Moreover, when uncoupled from acidosis, hypoxia enhances tumor cell viability and clonogenicity relative to normoxia. p53 is correspondingly upregulated in response to hypoxia-induced acidosis but downregulated during hypoxia without acidosis. Hypoxia may thus produce both treatment resistance and a growth advantage. Given strong evidence that hypoxic regions in solid tumors are often nonacidotic (G. Helmlinger, F. Yuan, M. Dellian, and R. K. Jain, Nat. Med. 3:177–182, 1997), this behavior may influence relapse and implicates such cells as potentially important therapeutic targets. PMID:9566903

  7. Blockade of processing/activation of caspase-3 by hypoxia

    SciTech Connect

    Han, Sang Hee; Kim, Moonil; Park, Kyoungsook; Kim, Tae-Hyoung; Seol, Dai-Wu

    2008-10-31

    Tumor hypoxia, which is caused by the rapid proliferation of tumor cells and aberrant vasculature in tumors, results in inadequate supplies of oxygen and nutrients to tumor cells. Paradoxically, these unfavorable growth conditions benefit tumor cell survival, although the mechanism is poorly understood. We have demonstrated for the first time that hypoxia inhibits TRAIL-induced apoptosis by blocking translocation of Bax from cytosol to the mitochondria in tumor cells. However, it is largely unknown how hypoxia-inhibited Bax translocation attenuates TRAIL-induced apoptosis. Here, we demonstrate that despite its inhibitory activity in TRAIL-induced apoptosis, hypoxia does not affect TRAIL-triggered proximal apoptotic signaling events, including caspase-8 activation and Bid cleavage. Instead, hypoxia inhibited processing of caspase-3, leading to incomplete activation of the caspase. Importantly, hypoxia-blocked translocation of Bax to the mitochondria significantly inhibited releasing the mitochondrial factors, such as cytochrome c and Smac/DIABLO, to the cytosol in response to TRAIL. It is well-known that complete processing/activation of caspase-3 requires Smac/DIABLO released from mitochondria. Therefore, our data indicate that an engagement of the apoptotic mitochondrial events leading to caspase-3 activation is blocked by hypoxia. Our data shed new light on understanding of the apoptotic signal transduction and targets regulated by tumor hypoxia.

  8. Progress toward overcoming hypoxia-induced resistance to solid tumor therapy

    PubMed Central

    Karakashev, Sergey V; Reginato, Mauricio J

    2015-01-01

    Hypoxic tumors are associated with poor clinical outcome for multiple types of human cancer. This may be due, in part, to hypoxic cancer cells being resistant to anticancer therapy, including radiation therapy, chemotherapy, and targeted therapy. Hypoxia inducible factor 1, a major regulator of cellular response to hypoxia, regulates the expression of genes that are involved in multiple aspects of cancer biology, including cell survival, proliferation, metabolism, invasion, and angiogenesis. Here, we review multiple pathways regulated by hypoxia/hypoxia inducible factor 1 in cancer cells and discuss the latest advancements in overcoming hypoxia-mediated tumor resistance. PMID:26316817

  9. 33 CFR Appendix C to Part 155 - Training Elements for Oil Spill Response Plans

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... worker health and safety (29 CFR 1910.120). 3. Further Considerations In drafting the training section of... Response Plans C Appendix C to Part 155 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND.... 155, App. C Appendix C to Part 155—Training Elements for Oil Spill Response Plans 1. General...

  10. International hypoxia symposium XVIII: 26 February–02 March 2013

    PubMed Central

    2013-01-01

    The 18th International Hypoxia Symposia, Lake Louise, Alberta, Canada, February 26–March 02, 2013, covered molecular basis of hypoxic responses (e.g., hypoxia inducible factor, nitrite, nitrate, and hemoglobin) and integrative physiology (e.g., exercise physiology, cerebral blood flow responses, live-high train-low, and population genetics). Free communications and poster sessions covered scientific areas from controlled lab settings to field settings of high altitudes (Andes to Himalayas). PMID:24229461

  11. The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development

    PubMed Central

    Tian, Hui; Hammer, Robert E.; Matsumoto, Alvin M.; Russell, David W.; McKnight, Steven L.

    1998-01-01

    Mice lacking the hypoxia-inducible transcription factor EPAS1 die at mid-gestation. Despite normal morphological development of the circulatory system, EPAS1-deficient mice display pronounced bradycardia. In addition to the vascular endothelium, EPAS1 is expressed intensively in the organ of Zuckerkandl (OZ), the principle source of catecholamine production in mammalian embryos. EPAS1-deficient embryos contained substantially reduced catecholamine levels. Mid-gestational lethality was rescued by administration of the catecholamine precursor DOPS to pregnant females. We hypothesize that EPAS1 expressed in the OZ senses hypoxia during mid-gestational development and translates this signal into an altered pattern of gene expression, leading to increases in circulating catecholamine levels and proper cardiac function. PMID:9808618

  12. Hypoxia in paradise: widespread hypoxia tolerance in coral reef fishes.

    PubMed Central

    Nilsson, Göran E; Ostlund-Nilsson, Sara

    2004-01-01

    Using respirometry, we examined the hypoxia tolerance of 31 teleost fish species (seven families) inhabiting coral reefs at a 2-5 m depth in the lagoon at Lizard Island (Great Barrier Reef, Australia). All fishes studied maintained their rate of oxygen consumption down to relatively severe hypoxia (20-30% air saturation). Indeed, most fishes appeared unaffected by hypoxia until the oxygen level fell below 10% of air saturation. This, hitherto unrecognized, hypoxia tolerance among coral reef fishes could reflect adaptations to nocturnal hypoxia in tide pools. It may also be needed to enable fishes to reside deep within branching coral at night to avoid predation. Widespread hypoxia tolerance in a habitat with such an extreme biodiversity as coral reefs indicate that there is a wealth of hypoxia related adaptations to be discovered in reef fishes. PMID:15101411

  13. Vibration response mechanism of faulty outer race rolling element bearings for quantitative analysis

    NASA Astrophysics Data System (ADS)

    Cui, Lingli; Zhang, Yu; Zhang, Feibin; Zhang, Jianyu; Lee, Seungchul

    2016-03-01

    For the quantitative fault diagnosis of rolling element bearings, a nonlinear vibration model for fault severity assessment of rolling element bearings is established in this study. The outer race defect size parameter is introduced into the dynamic model, and vibration response signals of rolling element bearings under different fault sizes are simulated. The signals are analyzed quantitatively to observe the relationship between vibration responses and fault sizes. The impact points when the ball rolls onto and away from the defect are identified from the vibration response signals. Next, the impact characteristic that reflects the fault severity in rolling element bearings is obtained from the time interval between two impact points. When the width of the bearing fault is small, the signals are presented as clear single impact. The signals gradually become double impacts with increasing size of defects. The vibration signals of a rolling element bearings test rig are measured for different outer race fault sizes. The experimental results agree well with the results from simulations. These results are useful for understanding the vibration response mechanism of rolling element bearings under various degrees of fault severity.

  14. Hypothyroidism Stimulates D2 Receptor-mediated Breathing in Response to Acute Hypoxia and alters D2 Receptors Levels in Carotid Bodies & Brain

    PubMed Central

    Schlenker, Evelyn H.; Schultz, Harold D.

    2011-01-01

    Hypothyroidism can depress breathing and alter dopamine D2 receptor expression and function. We hypothesized that relative to euthyroid hamsters (EH), hypothyroid hamsters (HH) contain increased D2 receptors in brain regions associated with breathing and carotid bodies (CB), and that stimulation of D2 receptors would decease ventilation more in the HH compared to the EH. Hamsters were treated with vehicle, carmoxirile (peripherally acting D2 receptor agonist), or bromocriptine (central and peripherally acting D2 receptor agonist) and breathing was evaluated during exposure to air, hypoxia, and then air. HH exhibited increased D2 receptor protein levels in the striatum and CB’s, but decreased levels in the paraventricular hypothalamic nucleus. Relative to vehicle, carmoxirole and bromocriptine stimulated ventilation in the HH during and following exposure to hypoxia. Only bromocriptine depressed ventilation in the EH during and after exposure to hypoxia. Thus,, hypothyroidism impacts the expression of D2 receptors in the carotid body, PVN and striatum, and D2 stimulation affects ventilation remarkably differently than in EH. PMID:22051191

  15. Structural basis of VDR–DNA interactions on direct repeat response elements

    PubMed Central

    Shaffer, Paul L.; Gewirth, Daniel T.

    2002-01-01

    The vitamin D receptor (VDR) forms homo- or heterodimers on response elements composed of two hexameric half-sites separated by 3 bp of spacer DNA. We describe here the crystal structures at 2.7–2.8 Å resolution of the VDR DNA-binding region (DBD) in complex with response elements from three different promoters: osteopontin (SPP), canonical DR3 and osteocalcin (OC). These structures reveal the chemical basis for the increased affinity of VDR for the SPP response element, and for the poor stability of the VDR–OC complex, relative to the canonical DR3 response element. The homodimeric protein–protein interface is stabilized by van der Waals interactions and is predominantly non-polar. An extensive α-helix at the C-terminal end of the VDR DBD resembles that found in the thyroid hormone receptor (TR), and suggests a mechanism by which VDR and TR discriminate among response elements. Selective structure-based mutations in the asymmetric homodimeric interface result in a VDR DBD protein that is defective in homodimerization but now forms heterodimers with the 9-cis retinoic acid receptor (RXR) DBD. PMID:11980721

  16. Conserved enhancer and silencer elements responsible for differential Adh transcription in Drosophila cell lines.

    PubMed Central

    Ayer, S; Benyajati, C

    1990-01-01

    The distal promoter of Adh is differentially expressed in Drosophila tissue culture cell lines. After transfection with an exogenous Adh gene, there was a specific increase in distal alcohol dehydrogenase (ADH) transcripts in ADH-expressing (ADH+) cells above the levels observed in transfected ADH-nonexpressing (ADH-) cells. We used deletion mutations and a comparative transient-expression assay to identify the cis-acting elements responsible for enhanced Adh distal transcription in ADH+ cells. DNA sequences controlling high levels of distal transcription were localized to a 15-base-pair (bp) region nearly 500 bp upstream of the distal RNA start site. In addition, a 61-bp negative cis-acting element was found upstream from and adjacent to the enhancer. When this silencer element was deleted, distal transcription increased only in the ADH+ cell line. These distant upstream elements must interact with the promoter elements, the Adf-1-binding site and the TATA box, as they only influenced transcription when at least one of these two positive distal promoter elements was present. Internal deletions targeted to the Adf-1-binding site or the TATA box reduced transcription in both cell types but did not affect the transcription initiation site. Distal transcription in transfected ADH- cells appears to be controlled primarily through these promoter elements and does not involve the upstream regulatory elements. Evolutionary conservation in distantly related Drosophila species suggests the importance of these upstream elements in correct developmental and tissue-specific expression of ADH. Images PMID:1694013

  17. Multimodality imaging of hypoxia in preclinical settings

    PubMed Central

    Mason, Ralph P.; Zhao, Dawen; Pacheco-Torres, Jesús; Cui, Weina; Kodibagkar, Vikram D.; Gulaka, Praveen K.; Hao, Guiyang; Thorpe, Philip; Hahn, Eric W.; Peschke, Peter

    2011-01-01

    Hypoxia has long been recognized to influence solid tumor response to therapy. Increasingly, hypoxia has also been implicated in tumor aggressiveness, including growth, development and metastatic potential. Thus, there is a fundamental, as well as a clinical interest, in assessing in situ tumor hypoxia. This review will examine diverse approaches focusing on the pre-clinical setting, particularly, in rodents. The strategies are inevitably a compromise in terms of sensitivity, precision, temporal and spatial resolution, as well as cost, feasibility, ease and robustness of implementation. We will review capabilities of multiple modalities and examine what makes them particularly suitable for investigating specific aspects of tumor pathophysiology. Current approaches range from nuclear imaging to magnetic resonance and optical, with varying degrees of invasiveness and ability to examine spatial heterogeneity, as well as dynamic response to interventions. Ideally, measurements would be non-invasive, exploiting endogenous reporters to reveal quantitatively local oxygen tension dynamics. A primary focus of this review is magnetic resonance imaging (MRI) based techniques, such as 19F MRI oximetry, which reveals not only hypoxia in vivo, but more significantly, spatial distribution of pO2 quantitatively, with a precision relevant to radiobiology. It should be noted that pre-clinical methods may have very different criteria for acceptance, as compared with potential investigations for prognostic radiology or predictive biomarkers suitable for use in patients. PMID:20639813

  18. Implementation of structural response sensitivity calculations in a large-scale finite-element analysis system

    NASA Technical Reports Server (NTRS)

    Giles, G. L.; Rogers, J. L., Jr.

    1982-01-01

    The implementation includes a generalized method for specifying element cross-sectional dimensions as design variables that can be used in analytically calculating derivatives of output quantities from static stress, vibration, and buckling analyses for both membrane and bending elements. Limited sample results for static displacements and stresses are presented to indicate the advantages of analytically calclating response derivatives compared to finite difference methods. Continuing developments to implement these procedures into an enhanced version of the system are also discussed.

  19. Regulatory elements responsible for inducible expression of the granulocyte colony-stimulating factor gene in macrophages.

    PubMed Central

    Nishizawa, M; Nagata, S

    1990-01-01

    Granulocyte colony-stimulating factor (G-CSF) plays an essential role in granulopoiesis during bacterial infection. Macrophages produce G-CSF in response to bacterial endotoxins such as lipopolysaccharide (LPS). To elucidate the mechanism of the induction of G-CSF gene in macrophages or macrophage-monocytes, we have examined regulatory cis elements in the promoter of mouse G-CSF gene. Analyses of linker-scanning and internal deletion mutants of the G-CSF promoter by the chloramphenicol acetyltransferase assay have indicated that at least three regulatory elements are indispensable for the LPS-induced expression of the G-CSF gene in macrophages. When one of the three elements was reiterated and placed upstream of the TATA box of the G-CSF promoter, it mediated inducibility as a tissue-specific and orientation-independent enhancer. Although this element contains a conserved NF-kappa B-like binding site, the gel retardation assay and DNA footprint analysis with nuclear extracts from macrophage cell lines demonstrated that nuclear proteins bind to the DNA sequence downstream of the NF-kappa B-like element, but not to the conserved element itself. The DNA sequence of the binding site was found to have some similarities to the LPS-responsive element which was recently identified in the promoter of the mouse class II major histocompatibility gene. Images PMID:1691438

  20. Implementation of an ANCF beam finite element for dynamic response optimization of elastic manipulators

    NASA Astrophysics Data System (ADS)

    Vohar, B.; Kegl, M.; Ren, Z.

    2008-12-01

    Theoretical and practical aspects of an absolute nodal coordinate formulation (ANCF) beam finite element implementation are considered in the context of dynamic transient response optimization of elastic manipulators. The proposed implementation is based on the introduction of new nodal degrees of freedom, which is achieved by an adequate nonlinear mapping between the original and new degrees of freedom. This approach preserves the mechanical properties of the ANCF beam, but converts it into a conventional finite element so that its nodal degrees of freedom are initially always equal to zero and never depend explicitly on the design variables. Consequently, the sensitivity analysis formulas can be derived in the usual manner, except that the introduced nonlinear mapping has to be taken into account. Moreover, the adjusted element can also be incorporated into general finite element analysis and optimization software in the conventional way. The introduced design variables are related to the cross-section of the beam, to the shape of the (possibly) skeletal structure of the manipulator and to the drive functions. The layered cross-section approach and the design element technique are utilized to parameterize the shape of individual elements and the whole structure. A family of implicit time integration methods is adopted for the response and sensitivity analysis. Based on this assumption, the corresponding sensitivity formulas are derived. Two numerical examples illustrate the performance of the proposed element implementation.

  1. Response of removable epoxy foam exposed to fire using an element death model.

    SciTech Connect

    Hobbs, Michael L.

    2004-09-01

    Response of removable epoxy foam (REF) to high heat fluxes is described using a decomposition chemistry model [1] in conjunction with a finite element heat conduction code [2] that supports chemical kinetics and dynamic radiation enclosures. The chemistry model [1] describes the temporal transformation of virgin foam into carbonaceous residue by considering breakdown of the foam polymer structure, desorption of gases not associated with the foam polymer, mass transport of decomposition products from the reaction site to the bulk gas, and phase equilibrium. The finite element foam response model considers the spatial behavior of the foam by using measured and predicted thermophysical properties in combination with the decomposition chemistry model. Foam elements are removed from the computational domain when the condensed mass fractions of the foam elements are close to zero. Element removal, referred to as element death, creates a space within the metal confinement causing radiation to be the dominant mode of heat transfer between the surface of the remaining foam elements and the interior walls of the confining metal skin. Predictions were compared to front locations extrapolated from radiographs of foam cylinders enclosed in metal containers that were heated with quartz lamps [3,4]. The effects of the maximum temperature of the metal container, density of the foam, the foam orientation, venting of the decomposition products, pressurization of the metal container, and the presence or absence of embedded components are discussed.

  2. Investigation of the combined effects of bedrest and mild hypoxia

    NASA Technical Reports Server (NTRS)

    Waligora, J. M.; Horrigan, D. J., Jr.; Bungo, M. W.; Conkin, J.

    1982-01-01

    Subjects were exposed to an 8-h mild hypoxia exposure (8000 ft. equivalent, 2438 m) with and without a 28-h period of 6 deg headdown bedrest. Anticipated responses to the bedrest and the hypoxia were observed. There was no indication that bedrest affected the arterial oxygenation or the oxygen gradient across the lungs of the subjects undergoing mild hypoxia. It is concluded that there is no evidence that would preclude an alveolar O2 pressure as low as 69 torr during contingency spacecraft operation.

  3. Modulation of human sinus node function by systemic hypoxia

    NASA Technical Reports Server (NTRS)

    Eckberg, D. L.; Bastow, H., III; Scruby, A. E.

    1982-01-01

    The present study was conducted to determine whether bradycardia develops during systemic hypoxia in supine conscious human volunteers when respiratory frequency and tidal volume are maintained at constant levels. The obtained results suggest that mild hypoxia provokes cardioacceleration in humans, independent of changes of ventilation or baroreflex responsiveness. The earliest cardioacceleration is more prominent in the inspiratory than in the expiratory phase of respiration, and occurs with very small reductions of arterial oxygen saturation. Moderate systemic hypoxia dampens fluctuations of heart rate during the respiratory cycle.

  4. Establishing a statistic model for recognition of steroid hormone response elements.

    PubMed

    Stepanova, Maria; Lin, Feng; Lin, Valerie C-L

    2006-10-01

    Identification of hormone response elements (HREs) is essential for understanding the mechanism of hormone-regulated gene expression. To date, there has been a lack of effective bioinformatics tools for recognition of specific HRE such as Progesterone Response Elements (PRE). In this paper, a comprehensive survey and comparison of in silico methods is conducted for establishing a more accurate statistic model. Homogeneity of steroid HRE is analyzed and a reliable training dataset is constructed through extensive searching for experimentally validated response elements from more than 150 literature sources. Based on the observation that the verified HREs carry di-nucleotide preservation in comparison with uniform nucleotide distributions, both mono and di-nucleotide Position Weight Matrices are computed to extract the statistic pattern of the positions. It is followed by the sequence transition pattern recognition using a specifically designed profile Hidden Markov Model. Reciprocal combination of the statistic and transition patterns significantly improves the performance of the model in terms of higher sensitivity and specificity. Upon acquisition of the putative response elements in the promoter areas of vertebrate genes, a qualitative scheme is applied to assess the probability for each gene to be a hormone primary target. Using >650 records of experimentally validated steroid hormone response elements, a high sensitivity level of 73% and high specificity level of one prediction per 8.24 kb is reached,