Science.gov

Sample records for hz steady-state response

  1. Effects of Contralateral Noise on the 20-Hz Auditory Steady State Response - Magnetoencephalography Study

    PubMed Central

    Usubuchi, Hajime; Kawase, Tetsuaki; Kanno, Akitake; Yahata, Izumi; Miyazaki, Hiromitsu; Nakasato, Nobukazu; Kawashima, Ryuta; Katori, Yukio

    2014-01-01

    The auditory steady state response (ASSR) is an oscillatory brain response, which is phase locked to the rhythm of an auditory stimulus. ASSRs have been recorded in response to a wide frequency range of modulation and/or repetition, but the physiological features of the ASSRs are somewhat different depending on the modulation frequency. Recently, the 20-Hz ASSR has been emphasized in clinical examinations, especially in the area of psychiatry. However, little is known about the physiological properties of the 20-Hz ASSR, compared to those of the 40-Hz and 80-Hz ASSRs. The effects of contralateral noise on the ASSR are known to depend on the modulation frequency to evoke ASSR. However, the effects of contralateral noise on the 20-Hz ASSR are not known. Here we assessed the effects of contralateral white noise at a level of 70 dB SPL on the 20-Hz and 40-Hz ASSRs using a helmet-shaped magnetoencephalography system in 9 healthy volunteers (8 males and 1 female, mean age 31.2 years). The ASSRs were elicited by monaural 1000-Hz 5-s tone bursts amplitude-modulated at 20 and 39 Hz and presented at 80 dB SPL. Contralateral noise caused significant suppression of both the 20-Hz and 40-Hz ASSRs, although suppression was significantly smaller for the 20-Hz ASSRs than the 40-Hz ASSRs. Moreover, the greatest suppression of both 20-Hz and 40-Hz ASSRs occurred in the right hemisphere when stimuli were presented to the right ear with contralateral noise. The present study newly showed that 20-Hz ASSRs are suppressed by contralateral noise, which may be important both for characterization of the 20-Hz ASSR and for interpretation in clinical situations. Physicians must be aware that the 20-Hz ASSR is significantly suppressed by sound (e.g. masking noise or binaural stimulation) applied to the contralateral ear. PMID:24915061

  2. Effects of contralateral noise on the 20-Hz auditory steady state response--magnetoencephalography study.

    PubMed

    Usubuchi, Hajime; Kawase, Tetsuaki; Kanno, Akitake; Yahata, Izumi; Miyazaki, Hiromitsu; Nakasato, Nobukazu; Kawashima, Ryuta; Katori, Yukio

    2014-01-01

    The auditory steady state response (ASSR) is an oscillatory brain response, which is phase locked to the rhythm of an auditory stimulus. ASSRs have been recorded in response to a wide frequency range of modulation and/or repetition, but the physiological features of the ASSRs are somewhat different depending on the modulation frequency. Recently, the 20-Hz ASSR has been emphasized in clinical examinations, especially in the area of psychiatry. However, little is known about the physiological properties of the 20-Hz ASSR, compared to those of the 40-Hz and 80-Hz ASSRs. The effects of contralateral noise on the ASSR are known to depend on the modulation frequency to evoke ASSR. However, the effects of contralateral noise on the 20-Hz ASSR are not known. Here we assessed the effects of contralateral white noise at a level of 70 dB SPL on the 20-Hz and 40-Hz ASSRs using a helmet-shaped magnetoencephalography system in 9 healthy volunteers (8 males and 1 female, mean age 31.2 years). The ASSRs were elicited by monaural 1000-Hz 5-s tone bursts amplitude-modulated at 20 and 39 Hz and presented at 80 dB SPL. Contralateral noise caused significant suppression of both the 20-Hz and 40-Hz ASSRs, although suppression was significantly smaller for the 20-Hz ASSRs than the 40-Hz ASSRs. Moreover, the greatest suppression of both 20-Hz and 40-Hz ASSRs occurred in the right hemisphere when stimuli were presented to the right ear with contralateral noise. The present study newly showed that 20-Hz ASSRs are suppressed by contralateral noise, which may be important both for characterization of the 20-Hz ASSR and for interpretation in clinical situations. Physicians must be aware that the 20-Hz ASSR is significantly suppressed by sound (e.g. masking noise or binaural stimulation) applied to the contralateral ear.

  3. 40 Hz auditory steady state response to linguistic features of stimuli during auditory hallucinations.

    PubMed

    Ying, Jun; Yan, Zheng; Gao, Xiao-rong

    2013-10-01

    The auditory steady state response (ASSR) may reflect activity from different regions of the brain, depending on the modulation frequency used. In general, responses induced by low rates (≤40 Hz) emanate mostly from central structures of the brain, and responses from high rates (≥80 Hz) emanate mostly from the peripheral auditory nerve or brainstem structures. Besides, it was reported that the gamma band ASSR (30-90 Hz) played an important role in working memory, speech understanding and recognition. This paper investigated the 40 Hz ASSR evoked by modulated speech and reversed speech. The speech was Chinese phrase voice, and the noise-like reversed speech was obtained by temporally reversing the speech. Both auditory stimuli were modulated with a frequency of 40 Hz. Ten healthy subjects and 5 patients with hallucination symptom participated in the experiment. Results showed reduction in left auditory cortex response when healthy subjects listened to the reversed speech compared with the speech. In contrast, when the patients who experienced auditory hallucinations listened to the reversed speech, the auditory cortex of left hemispheric responded more actively. The ASSR results were consistent with the behavior results of patients. Therefore, the gamma band ASSR is expected to be helpful for rapid and objective diagnosis of hallucination in clinic.

  4. MEG and EEG demonstrate similar test-retest reliability of the 40Hz auditory steady-state response.

    PubMed

    Legget, Kristina T; Hild, Allison K; Steinmetz, Sarah E; Simon, Steven T; Rojas, Donald C

    2017-04-01

    The auditory steady-state response (ASSR) is increasingly being used as a biomarker in neuropsychiatric disorders, but research investigating the test-retest reliability of this measure is needed. We previously reported ASSR reliability, measured by electroencephalography (EEG), to 40Hz amplitude-modulated white noise and click train stimuli. The purpose of the current study was to (a) assess the reliability of the MEG-measured ASSR to 40Hz amplitude-modulated white noise and click train stimuli, and (b) compare test-retest reliability between MEG and EEG measures of ASSR, which has not previously been investigated. Additionally, impact of stimulus parameter choice on reliability was assessed, by comparing responses to white noise and click train stimuli. Test-retest reliability, across sessions approximately one week apart, was assessed in 17 healthy adults. On each study day, participants completed two passive listening tasks (white noise and click train stimuli) during separate MEG and EEG recordings. Between-session correlations for evoked power and inter-trial phase coherence (ITPC) were assessed following source-space projection. Overall, the MEG-measured ASSR was significantly correlated between sessions (p<0.05, FDR corrected), suggesting acceptable test-retest reliability. Results suggest greater response reproducibility for ITPC compared to evoked responses and for click train compared to white noise stimuli, although further study is warranted. No significant differences in reliability were observed between MEG and EEG measures, suggesting they are similarly reliable. This work supports use of the ASSR as a biomarker in clinical interventions with repeated measures.

  5. Assessment of low-frequency hearing with narrow-band chirp-evoked 40-Hz sinusoidal auditory steady-state response.

    PubMed

    Wilson, Uzma S; Kaf, Wafaa A; Danesh, Ali A; Lichtenhan, Jeffery T

    2016-01-01

    Objective To determine the clinical utility of narrow-band chirp-evoked 40-Hz sinusoidal auditory steady state responses (s-ASSR) in the assessment of low-frequency hearing in noisy participants. Design Tone bursts and narrow-band chirps were used to respectively evoke auditory brainstem responses (tb-ABR) and 40-Hz s-ASSR thresholds with the Kalman-weighted filtering technique and were compared to behavioral thresholds at 500, 2000, and 4000 Hz. A repeated measure ANOVA and post-hoc t-tests, and simple regression analyses were performed for each of the three stimulus frequencies. Study sample Thirty young adults aged 18-25 with normal hearing participated in this study. Results When 4000 equivalent response averages were used, the range of mean s-ASSR thresholds from 500, 2000, and 4000 Hz were 17-22 dB lower (better) than when 2000 averages were used. The range of mean tb-ABR thresholds were lower by 11-15 dB for 2000 and 4000 Hz when twice as many equivalent response averages were used, while mean tb-ABR thresholds for 500 Hz were indistinguishable regardless of additional response averaging. Conclusion Narrow-band chirp-evoked 40-Hz s-ASSR requires a ∼15 dB smaller correction factor than tb-ABR for estimating low-frequency auditory threshold in noisy participants when adequate response averaging is used.

  6. Translating adult electrophysiology findings to younger patient populations: difficulty measuring 40 Hz auditory steady-state responses in typically developing children and children with autism spectrum disorder

    PubMed Central

    Edgar, J. Christopher; Fisk, Charles L.; Liu, Song; Pandey, Juhi; Herrington, John D.; Schultz, Robert T.; Roberts, Timothy P.L.

    2015-01-01

    Background Gamma (~30 to 80 Hz) brain rhythms are thought to be abnormal in neurodevelopmental disorders such as schizophrenia (SZ) and autism spectrum disorder (ASD). In adult populations, auditory 40 Hz click trains or 40 Hz amplitude-modulated tones are used to assess the integrity of superior temporal gyrus (STG) 40 Hz gamma-band circuits. As STG 40 Hz auditory steady-state responses (ASSRs) are not fully developed in children, tasks using these stimuli may not be optimal in younger patient populations. The present study examined this issue in typically developing (TD) children as well as in children with ASD, using source localization to directly assess activity in the principal generators of the 40 Hz ASSR - left and right primary/secondary auditory cortex. Methods 40 Hz amplitude-modulated tones of 1sec duration were binaurally presented while magnetoencephalography (MEG) data were obtained from forty-eight TD children (45 males; 7- to 14-years-old) and forty-two children with ASD (38 males; 8- to 14-years-old). T1-weighted structural MRI was obtained. Using single dipoles anatomically constrained to each participant's left and right Heschl's Gyrus, left and right 40 Hz ASSR total power (TP) and inter-trial coherence (ITC) measures were obtained. Associations between 40 Hz ASSR TP, ITC and age as well as superior temporal gyrus (STG) gray matter cortical thickness were measured. Group STG function and structure differences were also examined. Results TD and ASD groups did not differ on 40 Hz ASSR TP or ITC. In TD and ASD, age was associated with left and right 40 Hz ASSR ITC (p < 0.01). The interaction term was not significant, indicating in both groups a ~0.01/year increase in ITC. 40 Hz ASSR TP and ITC were greater in the right than left STG. Groups did not differ in STG cortical thickness, and no associations were observed between 40 Hz ASSR activity and STG cortical thickness. Finally, right STG transient gamma (50 to 100 ms and 30 to 50 Hz) was greater

  7. Phase-locking index and power of 40-Hz auditory steady-state response are not related to major personality trait dimensions.

    PubMed

    Korostenskaja, Milena; Ruksenas, Osvaldas; Pipinis, Evaldas; Griskova-Bulanova, Inga

    2016-03-01

    Although a number of studies have demonstrated state-related dependence of auditory steady-state responses (ASSRs), the investigations assessing trait-related ASSR changes are limited. Five consistently identified major trait dimensions, also referred to as "big five" (Neuroticism, Extraversion, Openness, Agreeableness and Conscientiousness), are considered to account for virtually all personality variances in both healthy people and those with psychiatric disorders. The purpose of the present study was, for the first time, to establish the link between 40-Hz ASSR and "big five" major personality trait dimensions in young healthy adults. Ninety-four young healthy volunteers participated (38 males and 56 females; mean age ± SD 22.180 ± 2.75). The 40-Hz click trains were presented for each subject 30 times with an inter-train interval of 1-1.5 s. The EEG responses were recorded from F3, Fz, F4, C3, Cz, C4, P3, Pz and P4 locations according to 10/20 electrode placement system. Phase-locking index (PLI) and event-related power perturbation (ERSP) were calculated, each providing the following characteristics: peak time, entrainment frequency, peak value and mean value. For assessing "big five" personality traits, NEO Personality Inventory Revised (NEO-PI-R) was used. No significant correlation between 40-Hz ASSR PLI or ERSP and "big five" personality traits was observed. Our results indicate that there is no dependence between 40-Hz ASSR entrainment and personality traits, demonstrating low individual 40-Hz variability in this domain. Our results support further development of 40-Hz ASSR as a neurophysiological marker allowing distinguishing between healthy population and patients with psychiatric disorders.

  8. Steady state response of unsymmetrically laminated plates

    SciTech Connect

    Hosokawa, Kenji; Kawashima, Katsuya; Sakata, Toshiyuki

    1995-11-01

    A numerical approach for analyzing the forced vibration problem of a symmetrically laminated FRP (fiber reinforced plastic) composite plate was proposed by the authors. In the present paper, this approach is modified for application to an unsymmetrically laminated FRP composite plate. Numerical calculations are carried out for the clamped antisymmetrically laminated rectangular and elliptical plates which are a kind of unsymmetrically laminated plate. Then,, the effects of the lamina material and the fiber orientation angle on the steady state response are discussed. Furthermore, it is investigated that what structural damping factor is most influenced on the steady state response of an antisymmetrically laminated plate.

  9. Attentional Modulation of Auditory Steady-State Responses

    PubMed Central

    Mahajan, Yatin; Davis, Chris; Kim, Jeesun

    2014-01-01

    Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR). The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence). The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex. PMID:25334021

  10. Phencyclidine Disrupts the Auditory Steady State Response in Rats

    PubMed Central

    Leishman, Emma; O’Donnell, Brian F.; Millward, James B.; Vohs, Jenifer L.; Rass, Olga; Krishnan, Giri P.; Bolbecker, Amanda R.; Morzorati, Sandra L.

    2015-01-01

    The Auditory Steady-State Response (ASSR) in the electroencephalogram (EEG) is usually reduced in schizophrenia (SZ), particularly to 40 Hz stimulation. The gamma frequency ASSR deficit has been attributed to N-methyl-D-aspartate receptor (NMDAR) hypofunction. We tested whether the NMDAR antagonist, phencyclidine (PCP), produced similar ASSR deficits in rats. EEG was recorded from awake rats via intracranial electrodes overlaying the auditory cortex and at the vertex of the skull. ASSRs to click trains were recorded at 10, 20, 30, 40, 50, and 55 Hz and measured by ASSR Mean Power (MP) and Phase Locking Factor (PLF). In Experiment 1, the effect of different subcutaneous doses of PCP (1.0, 2.5 and 4.0 mg/kg) on the ASSR in 12 rats was assessed. In Experiment 2, ASSRs were compared in PCP treated rats and control rats at baseline, after acute injection (5 mg/kg), following two weeks of subchronic, continuous administration (5 mg/kg/day), and one week after drug cessation. Acute administration of PCP increased PLF and MP at frequencies of stimulation below 50 Hz, and decreased responses at higher frequencies at the auditory cortex site. Acute administration had a less pronounced effect at the vertex site, with a reduction of either PLF or MP observed at frequencies above 20 Hz. Acute effects increased in magnitude with higher doses of PCP. Consistent effects were not observed after subchronic PCP administration. These data indicate that acute administration of PCP, a NMDAR antagonist, produces an increase in ASSR synchrony and power at low frequencies of stimulation and a reduction of high frequency (> 40 Hz) ASSR activity in rats. Subchronic, continuous administration of PCP, on the other hand, has little impact on ASSRs. Thus, while ASSRs are highly sensitive to NMDAR antagonists, their translational utility as a cross-species biomarker for NMDAR hypofunction in SZ and other disorders may be dependent on dose and schedule. PMID:26258486

  11. Descriptive Linear modeling of steady-state visual evoked response

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Junker, A. M.; Kenner, K.

    1986-01-01

    A study is being conducted to explore use of the steady state visual-evoke electrocortical response as an indicator of cognitive task loading. Application of linear descriptive modeling to steady state Visual Evoked Response (VER) data is summarized. Two aspects of linear modeling are reviewed: (1) unwrapping the phase-shift portion of the frequency response, and (2) parsimonious characterization of task-loading effects in terms of changes in model parameters. Model-based phase unwrapping appears to be most reliable in applications, such as manual control, where theoretical models are available. Linear descriptive modeling of the VER has not yet been shown to provide consistent and readily interpretable results.

  12. Contralateral white noise attenuates 40-Hz auditory steady-state fields but not N100m in auditory evoked fields.

    PubMed

    Kawase, Tetsuaki; Maki, Atsuko; Kanno, Akitake; Nakasato, Nobukazu; Sato, Mika; Kobayashi, Toshimitsu

    2012-01-16

    The different response characteristics of the different auditory cortical responses under conventional central masking conditions were examined by comparing the effects of contralateral white noise on the cortical component of 40-Hz auditory steady state fields (ASSFs) and the N100 m component in auditory evoked fields (AEFs) for tone bursts using a helmet-shaped magnetoencephalography system in 8 healthy volunteers (7 males, mean age 32.6 years). The ASSFs were elicited by monaural 1000 Hz amplitude modulation tones at 80 dB SPL, with the amplitude modulated at 39 Hz. The AEFs were elicited by monaural 1000 Hz tone bursts of 60 ms duration (rise and fall times of 10 ms, plateau time of 40 ms) at 80 dB SPL. The results indicated that continuous white noise at 70 dB SPL presented to the contralateral ear did not suppress the N100 m response in either hemisphere, but significantly reduced the amplitude of the 40-Hz ASSF in both hemispheres with asymmetry in that suppression of the 40-Hz ASSF was greater in the right hemisphere. Different effects of contralateral white noise on these two responses may reflect different functional auditory processes in the cortices.

  13. Thermodynamic formalism and linear response theory for nonequilibrium steady states.

    PubMed

    Speck, Thomas

    2016-08-01

    We study the linear response in systems driven away from thermal equilibrium into a nonequilibrium steady state with nonvanishing entropy production rate. A simple derivation of a general response formula is presented under the condition that the generating function describes a transformation that (to lowest order) preserves normalization and thus describes a physical stochastic process. For Markov processes we explicitly construct the conjugate quantities and discuss their relation with known response formulas. Emphasis is put on the formal analogy with thermodynamic potentials and some consequences are discussed.

  14. Auditory steady state response in the schizophrenia, first-degree relatives, and schizotypal personality disorder.

    PubMed

    Rass, Olga; Forsyth, Jennifer K; Krishnan, Giri P; Hetrick, William P; Klaunig, Mallory J; Breier, Alan; O'Donnell, Brian F; Brenner, Colleen A

    2012-04-01

    The power and phase synchronization of the auditory steady state response (ASSR) at 40 Hz stimulation is usually reduced in schizophrenia (SZ). The sensitivity of the 40 Hz ASSR to schizophrenia spectrum phenotypes, such as schizotypal personality disorder (SPD), or to familial risk has been less well characterized. We compared the ASSR of patients with SZ, persons with schizotypal personality disorder, first degree relatives of patients with SZ, and healthy control participants. ASSRs were obtained to 20, 30, 40 and 50 Hz click trains, and assessed using measures of power (mean trial power or MTP) and phase consistency (phase locking factor or PLF). The MTP to 40 Hz stimulation was reduced in relatives, and there was a trend for MTP reduction in SZ. The 40 Hz ASSR was not reduced in SPD participants. PLF did not differ among groups. These data suggest the 40 Hz ASSR is sensitive to familial risk factors associated with schizophrenia.

  15. Auditory Steady State Response in the Schizophrenia, First-Degree Relatives, and Schizotypal Personality Disorder

    PubMed Central

    Rass, Olga; Forsyth, Jennifer; Krishnan, Giri; Hetrick, William P.; Klaunig, Mallory; Breier, Alan; O’Donnell, Brian F.; Brenner, Colleen A.

    2012-01-01

    The power and phase synchronization of the auditory steady state response (ASSR) at 40 Hz stimulation are usually reduced in schizophrenia (SZ). The sensitivity of the 40 Hz ASSR to schizophrenia spectrum phenotypes, such as schizotypal personality disorder (SPD), or to familial risk has been less well characterized. We compared the ASSR of patients with SZ, persons with schizotypal personality disorder, first degree relatives of patients with SZ, and healthy control participants. ASSRs were obtained to 20, 30, 40 and 50 Hz click trains, and assessed using measures of power (mean trial power or MTP) and phase consistency (phase locking factor or PLF). The MTP to 40 Hz stimulation was reduced in relatives, and there was a trend for MTP reduction in SZ. The 40 Hz ASSR was not reduced in SPD participants. PLF did not differ among groups. These data suggest the 40 Hz ASSR is sensitive to familial risk factors associated with schizophrenia. PMID:22285558

  16. [Auditory steady-state responses--the state of art].

    PubMed

    Szymańska, Anna; Gryczyński, Maciej; Pajor, Anna

    2010-01-01

    The auditory steady-state responses (ASSR) is quite a new method of electrophysiological threshold estimation with no clinical standards. It was the aim of this study to review practical and theoretical thesis of ASSR and mention recent recommendations and achievements of this technique. The most common application of ASSR is diagnosis of hearing loss in children together with ABR test. In this paper we mentioned information about influence of physiological factors (age, sex, state of arousal, handedness) and type of recording technique (electrodes placement, air and bone stimulation, occlusion effect, amplitude and frequency stimulation, multiple or single frequency stimulation, dichotic and monotic recording technique and type of hearing loss) on ASSR. We conclude that putting ASSR in clinical use as an standardized method it is necessary to do research with numerous groups of patients using the same equipment and parameters of tests.

  17. Chirp and Click Evoked Auditory Steady State Responses

    DTIC Science & Technology

    2007-11-02

    state evoked potentials: A new tool for the accurate assessment of hearing in cochlear implant candidates. Advances in Otorhinolaryngology, 1993. 48...State Responses (ASSR) to 100 µsec clicks and 4 msec cochlear chirps are recorded in adult subjects at repetition rates of 20 to 100 Hz in 10 Hz...differences in the cochlea according to the DeBoer’s cochlear model [14] in order to determine if it will generate better ASSR. We also attempted to

  18. Dynamic causal models of steady-state responses

    PubMed Central

    Moran, R.J.; Stephan, K.E.; Seidenbecher, T.; Pape, H.-C.; Dolan, R.J.; Friston, K.J.

    2009-01-01

    In this paper, we describe a dynamic causal model (DCM) of steady-state responses in electrophysiological data that are summarised in terms of their cross-spectral density. These spectral data-features are generated by a biologically plausible, neural-mass model of coupled electromagnetic sources; where each source comprises three sub-populations. Under linearity and stationarity assumptions, the model's biophysical parameters (e.g., post-synaptic receptor density and time constants) prescribe the cross-spectral density of responses measured directly (e.g., local field potentials) or indirectly through some lead-field (e.g., electroencephalographic and magnetoencephalographic data). Inversion of the ensuing DCM provides conditional probabilities on the synaptic parameters of intrinsic and extrinsic connections in the underlying neuronal network. This means we can make inferences about synaptic physiology, as well as changes induced by pharmacological or behavioural manipulations, using the cross-spectral density of invasive or non-invasive electrophysiological recordings. In this paper, we focus on the form of the model, its inversion and validation using synthetic and real data. We conclude with an illustrative application to multi-channel local field potential data acquired during a learning experiment in mice. PMID:19000769

  19. Steady-state and dynamic characteristics of a 20-kHz spacecraft power system - Control of harmonic resonance

    NASA Technical Reports Server (NTRS)

    Wasynczuk, O.; Krause, P. C.; Biess, J. J.; Kapustka, R.

    1990-01-01

    A detailed computer simulation was used to illustrate the steady-state and dynamic operating characteristics of a 20-kHz resonant spacecraft power system. The simulated system consists of a parallel-connected set of DC-inductor resonant inverters (drivers), a 440-V cable, a node transformer, a 220-V cable, and a transformer-rectifier-filter (TRF) AC-to-DC receiver load. Also included in the system are a 1-kW 0.8-pf RL load and a double-LC filter connected at the receiving end of the 20-kHz AC system. The detailed computer simulation was used to illustrate the normal steady-state operating characteristics and the dynamic system performance following, for example, TRF startup. It is shown that without any filtering the given system exhibits harmonic resonances due to an interaction between the switching of the source and/or load converters and the AC system. However, the double-LC filter at the receiving-end of the AC system and harmonic traps connected in series with each of the drivers significantly reduce the harmonic distortion of the 20-kHz bus voltage. Significant additional improvement in the waveform quality can be achieved by including a double-LC filter with each driver.

  20. Effects of spatial selective attention on the steady-state visual evoked potential in the 20-28 Hz range.

    PubMed

    Müller, M M; Picton, T W; Valdes-Sosa, P; Riera, J; Teder-Sälejärvi, W A; Hillyard, S A

    1998-04-01

    Steady-state visual evoked potentials (SSVEPs) were recorded from the scalp of subjects who attended to a flickering LED display in one visual field while ignoring a similar display (flickering at a different frequency) in the opposite visual field. The flicker frequencies were 20.8 Hz in the left-field display and 27.8 Hz in the right-field display. The SSVEP to the flicker in either field was enhanced in amplitude when attention was directed to its location. The scalp distribution of this SSVEP enhancement was narrowly focused over the posterior scalp contralateral to the visual field of stimulation. A source analysis using Variable Resolution Electromagnetic Tomography (VARETA) indicated that the source current densities for the SSVEP attention effect had a focal origin in the contralateral parieto-occipital cortex.

  1. Steady-State and Frequency Response of a Thin-Film Heat Flux Gauge

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Bhatt, Hemanshu D.; Cho, Chistopher S.

    1997-01-01

    A new and simpler design of thin-film heat flux gauge has been developed for use In high-heat-flux environments. Heat flux gauges of the same design were fabricated on three different substrates and tested. The heat flux gauge comprises a thermopile and a thermocouple junction, which measures the surface temperature. The thermopile has 40 pairs of S-type thermocouples and is covered by two thermal resistance layers. Calibration and testing of these gauges were first carried out in an arc-lamp calibration facility. Sensitivity of the gauge was discussed in terms of the relative conductivity and surface temperature. The heat flux calculated from the gauge output was In good agreement with the precalibrated standard sensor. The steady-state and the transient response characteristics of the heat flux gauge were also investigated using a carbon dioxide pulse laser as a heat source. The dynamic frequency response was evaluated in terms of the nondimensional amplitude ratio with respect to the frequency spectrum of a chopped laser bcam. The frequency response of the gauge was determined to be about 3 kHz. The temperature profiles in the thin-film heat flux gauge were obtained numerically in steady-state conditions using FLUENT and compared with the experimental results.

  2. Source analysis of auditory steady-state responses in acoustic and electric hearing.

    PubMed

    Luke, Robert; De Vos, Astrid; Wouters, Jan

    2017-02-15

    Speech is a complex signal containing a broad variety of acoustic information. For accurate speech reception, the listener must perceive modulations over a range of envelope frequencies. Perception of these modulations is particularly important for cochlear implant (CI) users, as all commercial devices use envelope coding strategies. Prolonged deafness affects the auditory pathway. However, little is known of how cochlear implantation affects the neural processing of modulated stimuli. This study investigates and contrasts the neural processing of envelope rate modulated signals in acoustic and CI listeners. Auditory steady-state responses (ASSRs) are used to study the neural processing of amplitude modulated (AM) signals. A beamforming technique is applied to determine the increase in neural activity relative to a control condition, with particular attention paid to defining the accuracy and precision of this technique relative to other tomographies. In a cohort of 44 acoustic listeners, the location, activity and hemispheric lateralisation of ASSRs is characterised while systematically varying the modulation rate (4, 10, 20, 40 and 80Hz) and stimulation ear (right, left and bilateral). We demonstrate a complex pattern of laterality depending on both modulation rate and stimulation ear that is consistent with, and extends, existing literature. We present a novel extension to the beamforming method which facilitates source analysis of electrically evoked auditory steady-state responses (EASSRs). In a cohort of 5 right implanted unilateral CI users, the neural activity is determined for the 40Hz rate and compared to the acoustic cohort. Results indicate that CI users activate typical thalamic locations for 40Hz stimuli. However, complementary to studies of transient stimuli, the CI population has atypical hemispheric laterality, preferentially activating the contralateral hemisphere.

  3. Auditory steady state response in hearing assessment in infants with cytomegalovirus

    PubMed Central

    Silva, Daniela Polo C.; Lopez, Priscila Suman; Montovani, Jair Cortez

    2013-01-01

    OBJECTIVE: To report an infant with congenital cytomegalovirus and progressive sensorineural hearing loss, who was assessed by three methods of hearing evaluation. CASE DESCRIPTION: In the first audiometry, at four months of age, the infant showed abnormal response in Otoacoustic Emissions and normal Auditory Brainstem Response (ABR), with electrophysiological threshold in 30dBnHL, in both ears. With six months of age, he showed bilateral absence of the ABR at 100dBnHL. The behavioral observational audiometry was impaired due to the delay in neuropsychomotor development. At eight months of age, he was submitted to Auditory Steady State Response (ASSR) and the thresholds were 50, 70, absent in 110 and in 100dB, respectively for 500, 1,000, 2,000 and 4,000Hz in the right ear, and 70, 90, 90 and absent in 100dB, respectively for 500, 1,000, 2,000 and 4,000Hz in the left ear. COMMENTS: In the first evaluation, the infant had abnormal Otoacoustic Emission and normal ABR, which became altered at six months of age. The hearing loss severity could be identified only by the ASSR, which allowed the best procedure for hearing aids adaptation. The case description highlights the importance of the hearing status follow-up for children with congenital cytomegalovirus. PMID:24473963

  4. Habituation of Auditory Steady State Responses Evoked by Amplitude-Modulated Acoustic Signals in Rats

    PubMed Central

    Prado-Gutierrez, Pavel; Castro-Fariñas, Anisleidy; Morgado-Rodriguez, Lisbet; Velarde-Reyes, Ernesto; Martínez, Agustín D.; Martínez-Montes, Eduardo

    2015-01-01

    Generation of the auditory steady state responses (ASSR) is commonly explained by the linear combination of random background noise activity and the stationary response. Based on this model, the decrease of amplitude that occurs over the sequential averaging of epochs of the raw data has been exclusively linked to the cancelation of noise. Nevertheless, this behavior might also reflect the non-stationary response of the ASSR generators. We tested this hypothesis by characterizing the ASSR time course in rats with different auditory maturational stages. ASSR were evoked by 8-kHz tones of different supra-threshold intensities, modulated in amplitude at 115 Hz. Results show that the ASSR amplitude habituated to the sustained stimulation and that dishabituation occurred when deviant stimuli were presented. ASSR habituation increased as animals became adults, suggesting that the ability to filter acoustic stimuli with no-relevant temporal information increased with age. Results are discussed in terms of the current model of the ASSR generation and analysis procedures. They might have implications for audiometric tests designed to assess hearing in subjects who cannot provide reliable results in the psychophysical trials. PMID:26557360

  5. Human Neuromagnetic Steady-State Responses to Amplitude-Modulated Tones, Speech, and Music

    PubMed Central

    Parkkonen, Lauri; Hari, Riitta

    2014-01-01

    Objectives: Auditory steady-state responses that can be elicited by various periodic sounds inform about subcortical and early cortical auditory processing. Steady-state responses to amplitude-modulated pure tones have been used to scrutinize binaural interaction by frequency-tagging the two ears’ inputs at different frequencies. Unlike pure tones, speech and music are physically very complex, as they include many frequency components, pauses, and large temporal variations. To examine the utility of magnetoencephalographic (MEG) steady-state fields (SSFs) in the study of early cortical processing of complex natural sounds, the authors tested the extent to which amplitude-modulated speech and music can elicit reliable SSFs. Design: MEG responses were recorded to 90-s-long binaural tones, speech, and music, amplitude-modulated at 41.1 Hz at four different depths (25, 50, 75, and 100%). The subjects were 11 healthy, normal-hearing adults. MEG signals were averaged in phase with the modulation frequency, and the sources of the resulting SSFs were modeled by current dipoles. After the MEG recording, intelligibility of the speech, musical quality of the music stimuli, naturalness of music and speech stimuli, and the perceived deterioration caused by the modulation were evaluated on visual analog scales. Results: The perceived quality of the stimuli decreased as a function of increasing modulation depth, more strongly for music than speech; yet, all subjects considered the speech intelligible even at the 100% modulation. SSFs were the strongest to tones and the weakest to speech stimuli; the amplitudes increased with increasing modulation depth for all stimuli. SSFs to tones were reliably detectable at all modulation depths (in all subjects in the right hemisphere, in 9 subjects in the left hemisphere) and to music stimuli at 50 to 100% depths, whereas speech usually elicited clear SSFs only at 100% depth. The hemispheric balance of SSFs was toward the right hemisphere

  6. Auditory steady-state responses reveal amplitude modulation gap detection thresholds

    NASA Astrophysics Data System (ADS)

    Ross, Bernhard; Pantev, Christo

    2004-05-01

    Auditory evoked magnetic fields were recorded from the left hemisphere of healthy subjects using a 37-channel magnetometer while stimulating the right ear with 40-Hz amplitude modulated (AM) tone-bursts with 500-Hz carrier frequency in order to study the time-courses of amplitude and phase of auditory steady-state responses (ASSRs). The stimulus duration of 300 ms and the duration of the silent periods (3-300 ms) between succeeding stimuli were chosen to address the question whether the time-course of the ASSR can reflect both temporal integration and temporal resolution in the central auditory processing. Long lasting perturbations of the ASSR were found after gaps in the AM sound, even for gaps of short duration. These were interpreted as evidences for an auditory reset mechanism. Concomitant psycho-acoustical tests corroborated that gap durations perturbing the ASSR were in the same range as the threshold for AM gap detection. Magnetic source localizations estimated the ASSR sources in the primary auditory cortex, suggesting that the processing of temporal structures in the sound is performed at or below the cortical level.

  7. The modulatory influence of a predictive cue on the auditory steady-state response.

    PubMed

    Weisz, Nathan; Lecaignard, Françoise; Müller, Nadia; Bertrand, Olivier

    2012-06-01

    Whether attention exerts its impact already on primary sensory levels is still a matter of debate. Particularly in the auditory domain the amount of empirical evidence is scarce. Recently noninvasive and invasive studies have shown attentional modulations of the auditory Steady-State Response (aSSR). This evoked oscillatory brain response is of importance to the issue, because the main generators have been shown to be located in primary auditory cortex. So far, the issue whether the aSSR is sensitive to the predictive value of a cue preceding a target has not been investigated. Participants in the present study had to indicate on which ear the faster amplitude modulated (AM) sound of a compound sound (42 and 19 Hz AM frequencies) was presented. A preceding auditory cue was either informative (75%) or uninformative (50%) with regards to the location of the target. Behaviorally we could confirm that typical attentional modulations of performance were present in case of a preceding informative cue. With regards to the aSSR we found differences between the informative and uninformative condition only when the cue/target combination was presented to the right ear. Source analysis indicated this difference to be generated by a reduced 42 Hz aSSR in right primary auditory cortex. Our and previous data by others show a default tendency of "40 Hz" AM sounds to be processed by the right auditory cortex. We interpret our results as active suppression of this automatic response pattern, when attention needs to be allocated to right ear input.

  8. Children and Adolescents with Autism Exhibit Reduced MEG Steady-State Gamma Responses

    PubMed Central

    Wilson, Tony W.; Rojas, Donald C.; Reite, Martin L.; Teale, Peter D.; Rogers, Sally J.

    2009-01-01

    Background Recent neuroimaging studies of autism have indicated reduced functional connectivity during both cognitive tasks and rest. These data suggest long-range connectivity may be compromised in this disorder, and current neurological theories of autism contend disrupted inter-regional interactions may be an underlying mechanism explaining behavioral symptomatology. However, it is unclear whether deficient neuronal communication is attributable to fewer long-range tracts or more of a local deficit in neural circuitry. This study examines the integrity of local circuitry by focusing on gamma band activity in auditory cortices of children and adolescents with autism. Methods Ten children and adolescents with autism and 10 matched controls participated. Both groups listened to 500 ms duration monaural click trains with a 25 ms inter-click interval, as magnetoencephalography was acquired from the contralateral hemisphere. To estimate 40 Hz spectral power density, we performed time-frequency decomposition of the single-trial magnetic steady-state response data using complex demodulation. Results Children and adolescents with autism exhibited significantly reduced left hemispheric 40 Hz power from 200–500 ms post-stimulus onset. In contrast, no significant between group differences were observed for right hemispheric cortices. Conclusions The production and/or maintenance of left hemispheric gamma oscillations appeared abnormal in participants with autism. We interpret these data as indicating that in autism, particular brain regions may be unable to generate the high-frequency activity likely necessary for binding and other forms of inter-regional interactions. These findings augment connectivity theories of autism with novel evidence that aberrations in local circuitry could underlie putative deficiencies in long-range neural communication. PMID:16950225

  9. Proteome analysis of the Escherichia coli heat shock response under steady-state conditions

    PubMed Central

    Lüders, Svenja; Fallet, Claas; Franco-Lara, Ezequiel

    2009-01-01

    In this study a proteomic approach was used to investigate the steady-state response of Escherichia coli to temperature up-shifts in a cascade of two continuously operated bioreactors. The first reactor served as cell source with optimal settings for microbial growth, while in the second chemostat the cells were exposed to elevated temperatures. By using this reactor configuration, which has not been reported to be used for the study of bacterial stress responses so far, it is possible to study temperature stress under well-defined, steady-state conditions. Specifically the effect on the cellular adaption to temperature stress using two-dimensional gel electrophoresis was examined and compared at the cultivation temperatures of 37°C and 47.5°C. As expected, the steady-state study with the double bioreactor configuration delivered a different protein spectrum compared to that obtained with standard batch experiments in shaking flasks and bioreactors. Setting a high cut-out spot-to-spot size ratio of 5, proteins involved in defence against oxygen stress, functional cell envelope proteins, chaperones and proteins involved in protein biosynthesis, the energy metabolism and the amino acid biosynthesis were found to be differently expressed at high cultivation temperatures. The results demonstrate the complexity of the stress response in a steady-state culture not reported elsewhere to date. PMID:19772559

  10. The influence of visual perspective on the somatosensory steady-state response during pain observation

    PubMed Central

    Canizales, Dora L.; Voisin, Julien I. A.; Michon, Pierre-Emmanuel; Roy, Marc-André; Jackson, Philip L.

    2013-01-01

    The observation and evaluation of other’s pain activate part of the neuronal network involved in the actual experience of pain, including those regions subserving the sensori-discriminative dimension of pain. This was largely interpreted as evidence showing that part of the painful experience can be shared vicariously. Here, we investigated the effect of the visual perspective from which other people’s pain is seen on the cortical response to continuous 25 Hz non-painful somatosensory stimulation (somatosensory steady-state response: SSSR). Based on the shared representation framework, we expected first-person visual perspective (1PP) to yield more changes in cortical activity than third-person visual perspective (3PP) during pain observation. Twenty healthy adults were instructed to rate a series of pseudo-dynamic pictures depicting hands in either painful or non-painful scenarios, presented either in 1PP (0–45° angle) or 3PP (180° angle), while changes in brain activity was measured with a 128-electode EEG system. The ratings demonstrated that the same scenarios were rated on average as more painful when observed from the 1PP than from the 3PP. As expected from previous works, the SSSR response was decreased after stimulus onset over the left caudal part of the parieto-central cortex, contralateral to the stimulation side. Moreover, the difference between the SSSR was of greater amplitude when the painful situations were presented from the 1PP compared to the 3PP. Together, these results suggest that a visuospatial congruence between the viewer and the observed scenarios is associated with both a higher subjective evaluation of pain and an increased modulation in the somatosensory representation of observed pain. These findings are discussed with regards to the potential role of visual perspective in pain communication and empathy. PMID:24367323

  11. Frequency analysis of the visual steady-state response measured with the fast optical signal in younger and older adults

    PubMed Central

    Tse, Chun-Yu; Gordon, Brian A.; Fabiani, Monica; Gratton, Gabriele

    2010-01-01

    Relatively high frequency activity (>4 Hz) carries important information about the state of the brain or its response to high frequency events. The electroencephalogram (EEG) is commonly used to study these changes because it possesses high temporal resolution and a good signal-to-noise ratio. However, it provides limited spatial information. Non-invasive fast optical signals (FOS) have been proposed as a neuroimaging tool combining spatial and temporal resolution. Yet, this technique has not been applied to study high frequency brain oscillations because of its relatively low signal-to-noise ratio. Here we investigate the sensitivity of FOS to relatively high-frequency brain oscillations. We measured the steady-state optical response elicited in medial and lateral occipital cortex by checkerboard reversals occurring at 4, 6, and 8 Hz in younger and older adults. Stimulus-dependent oscillations were observed at the predicted stimulation frequency. In addition, in the younger adults the FOS steady-state response was smaller in lateral than medial areas, whereas in the older adults it was reversed in these two cortical regions. This may reflect diminished top-down inhibitory control in the older adults. The results indicate that FOS can be used to study the modulation of relatively high-frequency brain oscillations in adjacent cortical regions. PMID:20566389

  12. Spatiotemporal reconstruction of auditory steady-state responses to acoustic amplitude modulations: Potential sources beyond the auditory pathway.

    PubMed

    Farahani, Ehsan Darestani; Goossens, Tine; Wouters, Jan; van Wieringen, Astrid

    2017-03-01

    Investigating the neural generators of auditory steady-state responses (ASSRs), i.e., auditory evoked brain responses, with a wide range of screening and diagnostic applications, has been the focus of various studies for many years. Most of these studies employed a priori assumptions regarding the number and location of neural generators. The aim of this study is to reconstruct ASSR sources with minimal assumptions in order to gain in-depth insight into the number and location of brain regions that are activated in response to low- as well as high-frequency acoustically amplitude modulated signals. In order to reconstruct ASSR sources, we applied independent component analysis with subsequent equivalent dipole modeling to single-subject EEG data (young adults, 20-30 years of age). These data were based on white noise stimuli, amplitude modulated at 4, 20, 40, or 80Hz. The independent components that exhibited a significant ASSR were clustered among all participants by means of a probabilistic clustering method based on a Gaussian mixture model. Results suggest that a widely distributed network of sources, located in cortical as well as subcortical regions, is active in response to 4, 20, 40, and 80Hz amplitude modulated noises. Some of these sources are located beyond the central auditory pathway. Comparison of brain sources in response to different modulation frequencies suggested that the identified brain sources in the brainstem, the left and the right auditory cortex show a higher responsiveness to 40Hz than to the other modulation frequencies.

  13. The VERRUN and VERNAL software systems for steady-state visual evoked response experimentation

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Zacharias, G. L.

    1984-01-01

    Two digital computer programs were developed for use in experiments involving steady-state visual evoked response (VER): VERRUN, whose primary functions are to generate a sum-of-sines (SOS) stimulus and to digitize and store electro-cortical response; and VERNAL, which provides both time- and frequency-domain metrics of the evoked response. These programs were coded in FORTRAN for operation on the PDP-11/34, using the RSX-11 Operating System, and the PDP-11/23, using the RT-11 Operating System. Users' and programmers' guides to these programs are provided, and guidelines for model analysis of VER data are suggested.

  14. Steady-state responses of a belt-drive dynamical system under dual excitations

    NASA Astrophysics Data System (ADS)

    Ding, Hu

    2016-02-01

    The stable steady-state periodic responses of a belt-drive system with a one-way clutch are studied. For the first time, the dynamical system is investigated under dual excitations. The system is simultaneously excited by the firing pulsations of the engine and the harmonic motion of the foundation. Nonlinear discrete-continuous equations are derived for coupling the transverse vibration of the belt spans and the rotations of the driving and driven pulleys and the accessory pulley. The nonlinear dynamics is studied under equal and multiple relations between the frequency of the firing pulsations and the frequency of the foundation motion. Furthermore, translating belt spans are modeled as axially moving strings. A set of nonlinear piecewise ordinary differential equations is achieved by using the Galerkin truncation. Under various relations between the excitation frequencies, the time histories of the dynamical system are numerically simulated based on the time discretization method. Furthermore, the stable steady-state periodic response curves are calculated based on the frequency sweep. Moreover, the convergence of the Galerkin truncation is examined. Numerical results demonstrate that the one-way clutch reduces the resonance amplitude of the rotations of the driven pulley and the accessory pulley. On the other hand, numerical examples prove that the resonance areas of the belt spans are decreased by eliminating the torque-transmitting in the opposite direction. With the increasing amplitude of the foundation excitation, the damping effect of the one-way clutch will be reduced. Furthermore, as the amplitude of the firing pulsations of the engine increases, the jumping phenomena in steady-state response curves of the belt-drive system with or without a one-way clutch both occur.

  15. Habituation of steady-state visual evoked potentials in response to high-frequency polychromatic foveal visual stimulation.

    PubMed

    Kuo, Heng-Yuan; Chiu, George C; Zao, John K; Lai, Kuan-Lin; Gruber, Allen; Chien, Yu-Yi; Chou, Ching-Chi; Lu, Chih-Kai; Liu, Wen-Hao; Huang, Yu-Shan; Yang, Albert C; Wang, Yijun; Lin, Fang-Cheng; Huang, Yi-Pai; Wang, Shuu-Jiun; Jung, Tzyy-Ping

    2013-01-01

    In an attempt to develop safe and robust methods for monitoring migraineurs' brain states, we explores the feasibility of using white, red, green and blue LED lights flickering around their critical flicker fusion (CFF) frequencies as foveal visual stimuli for inducing steady-state visual evoked potentials (SSVEP) and causing discernible habituation trends. After comparing the habituation indices, the multi-scale entropies and the time dependent intrinsic correlations of their SSVEP signals, we reached a tentative conclusion that sharp red and white light pulses flickering barely above their CFF frequencies can replace commonly used 13Hz stimuli to effectively cause SSVEP habituation among normal subjects. Empirical results showed that consecutive short bursts of light can produce more consistent responses than a single prolonged stimulation. Since these high frequency stimuli do not run the risk of triggering migraine or seizure attacks, further tests of these stimuli on migraine patients are warranted in order to verify their effectiveness.

  16. Are Auditory Steady-State Responses Useful to Evaluate Severe-to-Profound Hearing Loss in Children?

    PubMed Central

    Grasel, Signe Schuster; de Almeida, Edigar Rezende; Beck, Roberto Miquelino de Oliveira; Goffi-Gomez, Maria Valéria Schmidt; Ramos, Henrique Faria; Rossi, Amanda Costa; Koji Tsuji, Robinson; Bento, Ricardo Ferreira; de Brito, Rubens

    2015-01-01

    Objective. To evaluate Auditory Steady-State Responses (ASSR) at high intensities in pediatric cochlear implant candidates and to compare the results to behavioral tests responses. Methods. This prospective study evaluated 42 children with suspected severe-to-profound hearing loss, aged from 3 to 72 months. All had absent ABR and OAE responses. ASSR were evoked using binaural single frequency stimuli at 110 dB HL with a 10 dB down-seeking procedure. ASSR and behavioral test results were compared. Results. Forty-two subjects completed both ASSR and behavioral evaluation. Eleven children (26.2%) had bilateral responses. Four (9.5%) showed unilateral responses in at least two frequencies, all confirmed by behavioral results. Overall 61 ASSR responses were obtained, most (37.7%) in 500 Hz. Mean thresholds were between 101.3 and 104.2 dB HL. Among 27 subjects with absent ASSR, fifteen had no behavioral responses. Seven subjects showed behavioral responses with absent ASSR responses. No spurious ASSR responses were observed at 100 or 110 dB HL. Conclusion. ASSR is a valuable tool to detect residual hearing. No false-positive ASSR results were observed among 42 children, but in seven cases with absent ASSR, the test underestimated residual hearing as compared to the behavioral responses. PMID:26557677

  17. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses

    NASA Astrophysics Data System (ADS)

    Baek, Hyun Jae; Kim, Hyun Seok; Heo, Jeong; Lim, Yong Gyu; Park, Kwang Suk

    2013-04-01

    Objective. Brain-computer interface (BCI) technologies have been intensely studied to provide alternative communication tools entirely independent of neuromuscular activities. Current BCI technologies use electroencephalogram (EEG) acquisition methods that require unpleasant gel injections, impractical preparations and clean-up procedures. The next generation of BCI technologies requires practical, user-friendly, nonintrusive EEG platforms in order to facilitate the application of laboratory work in real-world settings. Approach. A capacitive electrode that does not require an electrolytic gel or direct electrode-scalp contact is a potential alternative to the conventional wet electrode in future BCI systems. We have proposed a new capacitive EEG electrode that contains a conductive polymer-sensing surface, which enhances electrode performance. This paper presents results from five subjects who exhibited visual or auditory steady-state responses according to BCI using these new capacitive electrodes. The steady-state visual evoked potential (SSVEP) spelling system and the auditory steady-state response (ASSR) binary decision system were employed. Main results. Offline tests demonstrated BCI performance high enough to be used in a BCI system (accuracy: 95.2%, ITR: 19.91 bpm for SSVEP BCI (6 s), accuracy: 82.6%, ITR: 1.48 bpm for ASSR BCI (14 s)) with the analysis time being slightly longer than that when wet electrodes were employed with the same BCI system (accuracy: 91.2%, ITR: 25.79 bpm for SSVEP BCI (4 s), accuracy: 81.3%, ITR: 1.57 bpm for ASSR BCI (12 s)). Subjects performed online BCI under the SSVEP paradigm in copy spelling mode and under the ASSR paradigm in selective attention mode with a mean information transfer rate (ITR) of 17.78 ± 2.08 and 0.7 ± 0.24 bpm, respectively. Significance. The results of these experiments demonstrate the feasibility of using our capacitive EEG electrode in BCI systems. This capacitive electrode may become a flexible and

  18. Dynamic crossmodal links revealed by steady-state responses in auditory-visual divided attention.

    PubMed

    de Jong, Ritske; Toffanin, Paolo; Harbers, Marten

    2010-01-01

    Frequency tagging has been often used to study intramodal attention but not intermodal attention. We used EEG and simultaneous frequency tagging of auditory and visual sources to study intermodal focused and divided attention in detection and discrimination performance. Divided-attention costs were smaller, but still significant, in detection than in discrimination. The auditory steady-state response (SSR) showed no effects of attention at frontocentral locations, but did so at occipital locations where it was evident only when attention was divided between audition and vision. Similarly, the visual SSR at occipital locations was substantially enhanced when attention was divided across modalities. Both effects were equally present in detection and discrimination. We suggest that both effects reflect a common cause: An attention-dependent influence of auditory information processing on early cortical stages of visual information processing, mediated by enhanced effective connectivity between the two modalities under conditions of divided attention.

  19. Neuromagnetic auditory steady state response to chords: effect of frequency ratio.

    PubMed

    Otsuka, Asuka; Yumoto, Masato; Kuriki, Shinya; Nakagawa, Seiji

    2013-01-01

    Perceptual degree of consonance or dissonance of a chord is known to be varied as a function of frequency ratio between tones composing the chord. It has been indicated that generation of a sense of dissonance is associated with the auditory steady-state response (ASSR) phase-locked to difference frequencies which are salient in the chords with complex frequency ratios. This study further investigated how the neuromagnetic ASSR would be modulated as a function of the frequency ratio when the acoustic properties of the difference frequency, to which the ASSR was synchronized, was identical in terms of its number, energy and frequency. Neuronal frequency characteristics intrinsic to the ASSR were compensated by utilizing responses to a SAM (Sinusoidally Amplitude Modulated) chirp tone sweeping through the corresponding frequency range. The results showed that ASSR was significantly smaller for the chords with simple frequency ratios than for those with complex frequency ratios. It indicates that the basic neuronal correlates underlying the sensation of consonance/dissonance might be associated with the attenuation rate applied to encode the input information through the afferent auditory pathway. Attentional gating of the thalamo-cortical function might also be one of the factors.

  20. The effect of ocular aberrations on steady-state errors of accommodative response.

    PubMed

    Plainis, Sotiris; Ginis, Harilaos S; Pallikaris, Aristophanis

    2005-05-23

    It is well accepted that the accommodation system is characterized by steady-state errors in focus. The purpose of this study was to correlate these errors with changes in ocular wavefront aberration and corresponding image quality when accommodating. A wavefront analyzing system, the Complete Ophthalmic Analysis System (COAS), was used in conjunction with a Badal optometer to allow continuous recording of the aberration structure of the eye for a range of accommodative demands (up to 8 D). Fifty consecutive recordings from seven subjects were taken. Monocular accommodative response was calculated as (i) the equivalent refraction minimizing wavefront error and (ii) the defocus needed to optimize the modulation transfer function at high spatial frequencies. Previously reported changes in ocular aberrations with accommodation (e.g., the shift of spherical aberration to negative values) were confirmed. Increased accommodation errors for near targets (lags) were evident for all subjects, although their magnitude showed a significant intersubject variability. It is concluded that the one-to-one stimulus/response slope in accommodation function should not always be considered as ideal, because higher order aberrations, especially changes of spherical aberration, may influence the actual accommodative demand. Fluctuations may serve to preserve image quality when errors of accommodation are moderate, by temporarily searching for the best focus.

  1. Steady-State Contrast Response Functions Provide a Sensitive and Objective Index of Amblyopic Deficits

    PubMed Central

    Baker, Daniel H.; Simard, Mathieu; Saint-Amour, Dave; Hess, Robert F.

    2015-01-01

    Purpose. Visual deficits in amblyopia are neural in origin, yet are difficult to characterize with functional magnetic resonance imagery (fMRI). Our aim was to develop an objective electroencephalography (EEG) paradigm that can be used to provide a clinically useful index of amblyopic deficits. Methods. We used steady-state visual evoked potentials (SSVEPs) to measure full contrast response functions in both amblyopic (n = 10, strabismic or mixed amblyopia, mean age: 44 years) and control (n = 5, mean age: 31 years) observers, both with and without a dichoptic mask. Results. At the highest target contrast, the ratio of amplitudes across the weaker and stronger eyes was highly correlated (r = 0.76) with the acuity ratio between the eyes. We also found that the contrast response function in the amblyopic eye had both a greatly reduced amplitude and a shallower slope, but that surprisingly dichoptic masking was weaker than in controls. The results were compared with the predictions of a computational model of amblyopia and suggest a modification to the model whereby excitatory (but not suppressive) signals are attenuated in the amblyopic eye. Conclusions. We suggest that SSVEPs offer a sensitive and objective measure of the ocular imbalance in amblyopia and could be used to assess the efficacy of amblyopia therapies currently under development. PMID:25634977

  2. A multi-signature brain-computer interface: use of transient and steady-state responses

    NASA Astrophysics Data System (ADS)

    Severens, Marianne; Farquhar, Jason; Duysens, Jacques; Desain, Peter

    2013-04-01

    Objective. The aim of this paper was to increase the information transfer in brain-computer interfaces (BCI). Therefore, a multi-signature BCI was developed and investigated. Stimuli were designed to simultaneously evoke transient somatosensory event-related potentials (ERPs) and steady-state somatosensory potentials (SSSEPs) and the ERPs and SSSEPs in isolation. Approach. Twelve subjects participated in two sessions. In the first session, the single and combined stimulation conditions were compared on these somatosensory responses and on the classification performance. In the second session the on-line performance with the combined stimulation was evaluated while subjects received feedback. Furthermore, in both sessions, the performance based on ERP and SSSEP features was compared. Main results. No difference was found in the ERPs and SSSEPs between stimulation conditions. The combination of ERP and SSSEP features did not perform better than with ERP features only. In both sessions, the classification performances based on ERP and combined features were higher than the classification based on SSSEP features. Significance. Although the multi-signature BCI did not increase performance, it also did not negatively impact it. Therefore, such stimuli could be used and the best performing feature set could then be chosen individually.

  3. An objective method for measuring face detection thresholds using the sweep steady-state visual evoked response

    PubMed Central

    Ales, Justin M.; Farzin, Faraz; Rossion, Bruno; Norcia, Anthony M.

    2012-01-01

    We introduce a sensitive method for measuring face detection thresholds rapidly, objectively, and independently of low-level visual cues. The method is based on the swept parameter steady-state visual evoked potential (ssVEP), in which a stimulus is presented at a specific temporal frequency while parametrically varying (“sweeping”) the detectability of the stimulus. Here, the visibility of a face image was increased by progressive derandomization of the phase spectra of the image in a series of equally spaced steps. Alternations between face and fully randomized images at a constant rate (3/s) elicit a robust first harmonic response at 3 Hz specific to the structure of the face. High-density EEG was recorded from 10 human adult participants, who were asked to respond with a button-press as soon as they detected a face. The majority of participants produced an evoked response at the first harmonic (3 Hz) that emerged abruptly between 30% and 35% phase-coherence of the face, which was most prominent on right occipito-temporal sites. Thresholds for face detection were estimated reliably in single participants from 15 trials, or on each of the 15 individual face trials. The ssVEP-derived thresholds correlated with the concurrently measured perceptual face detection thresholds. This first application of the sweep VEP approach to high-level vision provides a sensitive and objective method that could be used to measure and compare visual perception thresholds for various object shapes and levels of categorization in different human populations, including infants and individuals with developmental delay. PMID:23024355

  4. Low frequency steady-state brain responses modulate large scale functional networks in a frequency-specific means.

    PubMed

    Wang, Yi-Feng; Long, Zhiliang; Cui, Qian; Liu, Feng; Jing, Xiu-Juan; Chen, Heng; Guo, Xiao-Nan; Yan, Jin H; Chen, Hua-Fu

    2016-01-01

    Neural oscillations are essential for brain functions. Research has suggested that the frequency of neural oscillations is lower for more integrative and remote communications. In this vein, some resting-state studies have suggested that large scale networks function in the very low frequency range (<1 Hz). However, it is difficult to determine the frequency characteristics of brain networks because both resting-state studies and conventional frequency tagging approaches cannot simultaneously capture multiple large scale networks in controllable cognitive activities. In this preliminary study, we aimed to examine whether large scale networks can be modulated by task-induced low frequency steady-state brain responses (lfSSBRs) in a frequency-specific pattern. In a revised attention network test, the lfSSBRs were evoked in the triple network system and sensory-motor system, indicating that large scale networks can be modulated in a frequency tagging way. Furthermore, the inter- and intranetwork synchronizations as well as coherence were increased at the fundamental frequency and the first harmonic rather than at other frequency bands, indicating a frequency-specific modulation of information communication. However, there was no difference among attention conditions, indicating that lfSSBRs modulate the general attention state much stronger than distinguishing attention conditions. This study provides insights into the advantage and mechanism of lfSSBRs. More importantly, it paves a new way to investigate frequency-specific large scale brain activities.

  5. Is the effect of tinnitus on auditory steady-state response amplitude mediated by attention?

    PubMed Central

    Diesch, Eugen; Andermann, Martin; Rupp, Andre

    2012-01-01

    Objectives: Auditory steady-state response (ASSR) amplitude enhancement effects have been reported in tinnitus patients. As ASSR amplitude is also enhanced by attention, the effect of tinnitus on ASSR amplitude could be interpreted as an effect of attention mediated by tinnitus. As N1 attention effects are significantly larger than those on the ASSR, if the effect of tinnitus on ASSR amplitude were due to attention, there should be similar amplitude enhancement effects in tinnitus for the N1 component of the auditory-evoked response. Methods: MEG recordings which were previously examined for the ASSR (Diesch et al., 2010a) were analyzed with respect to the N1m component. Like the ASSR previously, the N1m was analyzed in the source domain (source space projection). Stimuli were amplitude-modulated (AM) tones with one of three carrier frequencies matching the tinnitus frequency or a surrogate frequency 1½ octave above the audiometric edge frequency in controls, the audiometric edge frequency, and a frequency below the audiometric edge. Single AM-tones were presented in a single condition and superpositions of three AM-tones differing in carrier and modulation frequency in a composite condition. Results: In the earlier ASSR study (Diesch et al., 2010a), the ASSR amplitude in tinnitus patients, but not in controls, was significantly larger in the (surrogate) tinnitus condition than in the edge condition. Patients showed less evidence than controls of reciprocal inhibition of component ASSR responses in the composite condition. In the present study, N1m amplitudes elicited by stimuli located at the audiometric edge and at the (surrogate) tinnitus frequency were smaller than N1m amplitudes elicited by sub-edge tones both in patients and controls. The relationship of the N1m response in the composite condition to the N1m response in the single condition indicated that reciprocal inhibition among component N1m responses was reduced in patients compared against controls

  6. Music and natural sounds in an auditory steady-state response based brain-computer interface to increase user acceptance.

    PubMed

    Heo, Jeong; Baek, Hyun Jae; Hong, Seunghyeok; Chang, Min Hye; Lee, Jeong Su; Park, Kwang Suk

    2017-03-18

    Patients with total locked-in syndrome are conscious; however, they cannot express themselves because most of their voluntary muscles are paralyzed, and many of these patients have lost their eyesight. To improve the quality of life of these patients, there is an increasing need for communication-supporting technologies that leverage the remaining senses of the patient along with physiological signals. The auditory steady-state response (ASSR) is an electro-physiologic response to auditory stimulation that is amplitude-modulated by a specific frequency. By leveraging the phenomenon whereby ASSR is modulated by mind concentration, a brain-computer interface paradigm was proposed to classify the selective attention of the patient. In this paper, we propose an auditory stimulation method to minimize auditory stress by replacing the monotone carrier with familiar music and natural sounds for an ergonomic system. Piano and violin instrumentals were employed in the music sessions; the sounds of water streaming and cicadas singing were used in the natural sound sessions. Six healthy subjects participated in the experiment. Electroencephalograms were recorded using four electrodes (Cz, Oz, T7 and T8). Seven sessions were performed using different stimuli. The spectral power at 38 and 42Hz and their ratio for each electrode were extracted as features. Linear discriminant analysis was utilized to classify the selections for each subject. In offline analysis, the average classification accuracies with a modulation index of 1.0 were 89.67% and 87.67% using music and natural sounds, respectively. In online experiments, the average classification accuracies were 88.3% and 80.0% using music and natural sounds, respectively. Using the proposed method, we obtained significantly higher user-acceptance scores, while maintaining a high average classification accuracy.

  7. Hearing threshold estimation by auditory steady-state responses with narrow-band chirps and adaptive stimulus patterns: implementation in clinical routine.

    PubMed

    Seidel, David Ulrich; Flemming, Tobias Angelo; Park, Jonas Jae-Hyun; Remmert, Stephan

    2015-01-01

    Objective hearing threshold estimation by auditory steady-state responses (ASSR) can be accelerated by the use of narrow-band chirps and adaptive stimulus patterns. This modification has been examined in only a few clinical studies. In this study, clinical data is validated and extended, and the applicability of the method in audiological diagnostics routine is examined. In 60 patients (normal hearing and hearing impaired), ASSR and pure tone audiometry (PTA) thresholds were compared. ASSR were evoked by binaural multi-frequent narrow-band chirps with adaptive stimulus patterns. The precision and required testing time for hearing threshold estimation were determined. The average differences between ASSR and PTA thresholds were 18, 12, 17 and 19 dB for normal hearing (PTA ≤ 20 dB) and 5, 9, 9 and 11 dB for hearing impaired (PTA > 20 dB) at the frequencies of 500, 1,000, 2,000 and 4,000 Hz, respectively, and the differences were significant in all frequencies with the exception of 1 kHz. Correlation coefficients between ASSR and PTA thresholds were 0.36, 0.47, 0.54 and 0.51 for normal hearing and 0.73, 0.74, 0.72 and 0.71 for hearing impaired at 500, 1,000, 2,000 and 4,000 Hz, respectively. Mean ASSR testing time was 33 ± 8 min. In conclusion, auditory steady-state responses with narrow-band-chirps and adaptive stimulus patterns is an efficient method for objective frequency-specific hearing threshold estimation. Precision of threshold estimation is most limited for slighter hearing loss at 500 Hz. The required testing time is acceptable for the application in everyday clinical routine.

  8. Steady-state response of a charcoal bed to radon in flowing air with water vapor

    SciTech Connect

    Blue, T.E.; Jarzemba, M.S.; Fentiman, A.W.

    1995-06-01

    Previously we have developed a mathematical model of radon adsorption in active air with water vapor on small U.S. Environmental Protection Agency charcoal canisters that are used for environmental measurements of radon. The purpose of this paper is to extend this mathematical model to describe the adsorption of radon by large charcoal beds with radon-laden air flowing through them. The resulting model equations are solved analytically to predict the steady-state adsorption of radon by such beds. 14 refs., 3 figs.

  9. Transient and steady state creep response of ice I and magnesium sulfate hydrate eutectic aggregates

    USGS Publications Warehouse

    McCarthy, C.; Cooper, R.F.; Goldsby, D.L.; Durham, W.B.; Kirby, S.H.

    2011-01-01

    Using uniaxial compression creep experiments, we characterized the transient and steady state deformation behaviors of eutectic aggregates of system ice I and MgSO4 11H2O (MS11; meridianiite), which has significance because of its likely presence on moons of the outer solar system. Synthetic samples of eutectic liquid bulk composition, which produce eutectic colonies containing 0.35-0.50 volume fraction MS11, were tested as functions of colony size and lamellar spacing, temperature (230-250 K), and confining pressure (0.1 and 50 MPa) to strains ???0.2. Up to a differential stress of 6 MPa, the ice I-MS11 aggregates display an order of magnitude higher effective viscosity and higher stress sensitivity than do aggregates of pure polycrystalline ice at the same conditions. The creep data and associated microstructural observations demonstrate, however, that the aggregates are additionally more brittle than pure ice, approaching rate-independent plasticity that includes rupture of the hydrate phase at 6-8 MPa, depending on the scale of the microstructure. Microstructures of deformed samples reveal forms of semibrittle flow in which the hydrate phase fractures while the ice phase deforms plastically. Semibrittle flow in the icy shell of a planetary body would truncate the lithospheric strength envelope and thereby decrease the depth to the brittle-ductile transition by 55% and reduce the failure limit for compressional surface features from 10 to ???6 MPa. A constitutive equation that includes eutectic colony boundary sliding and intracolony flow is used to describe the steady state rheology of the eutectic aggregates. Copyright ?? 2011 by the American Geophysical Union.

  10. Transient and steady state creep response of ice I and magnesium sulfate hydrate eutectic aggregates

    NASA Astrophysics Data System (ADS)

    McCarthy, Christine; Cooper, Reid F.; Goldsby, David L.; Durham, William B.; Kirby, Stephen H.

    2011-04-01

    Using uniaxial compression creep experiments, we characterized the transient and steady state deformation behaviors of eutectic aggregates of system ice I and MgSO4 • 11H2O (MS11; meridianiite), which has significance because of its likely presence on moons of the outer solar system. Synthetic samples of eutectic liquid bulk composition, which produce eutectic colonies containing 0.35-0.50 volume fraction MS11, were tested as functions of colony size and lamellar spacing, temperature (230-250 K), and confining pressure (0.1 and 50 MPa) to strains ≤ 0.2. Up to a differential stress of 6 MPa, the ice I-MS11 aggregates display an order of magnitude higher effective viscosity and higher stress sensitivity than do aggregates of pure polycrystalline ice at the same conditions. The creep data and associated microstructural observations demonstrate, however, that the aggregates are additionally more brittle than pure ice, approaching rate-independent plasticity that includes rupture of the hydrate phase at 6-8 MPa, depending on the scale of the microstructure. Microstructures of deformed samples reveal forms of semibrittle flow in which the hydrate phase fractures while the ice phase deforms plastically. Semibrittle flow in the icy shell of a planetary body would truncate the lithospheric strength envelope and thereby decrease the depth to the brittle-ductile transition by 55% and reduce the failure limit for compressional surface features from 10 to ˜6 MPa. A constitutive equation that includes eutectic colony boundary sliding and intracolony flow is used to describe the steady state rheology of the eutectic aggregates.

  11. Determination of maximal lactate steady state response in selected sports events.

    PubMed

    Beneke, R; von Duvillard, S P

    1996-02-01

    Maximal lactate steady state (MLSS) refers to the upper limit of blood lactate concentration indicating an equilibrium between lactate production and lactate elimination during constant workload. The aim of the present study was to investigate whether different levels of MLSS may explain different blood lactate concentration (BLC) levels at submaximal workload in the sports events of rowing, cycling, and speed skating. Eleven rowers (mean +/- SD, age 20.1 +/- 1.5 yr, height 188.7 +/- 6.2 cm, weight 82.7 +/- 8.0 kg), 16 cyclists and triathletes (age 23.6 +/- 3.0 yr, height 181.4 +/- 5.6 cm, weight 72.5 +/- 6.2 kg), and 6 speed skaters (age 23.3 +/- 6.6 yr, height 179.5 +/- 7.5 cm, weight 73.2 +/- 5.6 kg) performed an incremental load test to determine maximal workload and several submaximal 30-min constant workloads for MLSS measurement on a rowing ergometer, a cycle ergometer, and on a speed-skating track. Maximal workload was higher (P < or = 0.05) in rowing (416.8 +/- 46.2 W) than in cling (358.6 +/- 34.4 W) and speed skating (383.5 +/- 40.9 W). The level of MLSS differed (P < or = 0.001) in rowing (3.1 +/- 0.5 mmol.l-1), cycling (5.4 +/- 1.0 mmol.l-1), and in speed skating (6.6 +/- 0.9 mmol.l-1). MLSS workload was higher (P < or = 0.05) in rowing (316.2 +/- 29.9 W) and speed skating (300.5 +/- 43.8 W) than in cycling (257.8 +/- 34.6 W). No differences (P > 0.05) in MLSS workload were found between speed skating and rowing. MLSS workload intensity as related to maximal workload was independent (P > 0.05) of the sports event: 76.2% +/- 5.7% in rowing, 71.8% +/- 4.1% in cycling, and 78.1% +/- 4.4% in speed skating. Changes in MLSS do not respond with MLSS workload, the MLSS workload intensity, or with the metabolic profile of the sports event. The observed differences in MLSS and MLSS workload may correspond to the sport-specific mass of working muscle.

  12. Independent control of natural killer cell responsiveness and homeostasis at steady-state by CD11c+ dendritic cells

    PubMed Central

    Luu, Thuy Thanh; Ganesan, Sridharan; Wagner, Arnika Kathleen; Sarhan, Dhifaf; Meinke, Stephan; Garbi, Natalio; Hämmerling, Günter; Alici, Evren; Kärre, Klas; Chambers, Benedict J.; Höglund, Petter; Kadri, Nadir

    2016-01-01

    During infection and inflammation, dendritic cells (DC) provide priming signals for natural killer (NK) cells via mechanisms distinct from their antigen processing and presentation functions. The influence of DC on resting NK cells, i.e. at steady-state, is less well studied. We here demonstrate that as early as 1 day after DC depletion, NK cells in naïve mice downregulated the NKG2D receptor and showed decreased constitutive phosphorylation of AKT and mTOR. Subsequently, apoptotic NK cells appeared in the spleen concomitant with reduced NK cell numbers. At 4 days after the onset of DC depletion, increased NK cell proliferation was seen in the spleen resulting in an accumulation of Ly49 receptor-negative NK cells. In parallel, NK cell responsiveness to ITAM-mediated triggering and cytokine stimulation dropped across maturation stages, suggestive of a functional deficiency independent from the homeostatic effect. A role for IL-15 in maintaining NK cell function was supported by a gene signature analysis of NK cell from DC-depleted mice as well as by in vivo DC transfer experiments. We propose that DC, by means of IL-15 transpresentation, are required to maintain not only homeostasis, but also function, at steady-state. These processes appear to be regulated independently from each other. PMID:27905484

  13. Auditory steady state responses and cochlear implants: Modeling the artifact-response mixture in the perspective of denoising

    PubMed Central

    Mina, Faten; Attina, Virginie; Duroc, Yvan; Veuillet, Evelyne; Truy, Eric; Thai-Van, Hung

    2017-01-01

    Auditory steady state responses (ASSRs) in cochlear implant (CI) patients are contaminated by the spread of a continuous CI electrical stimulation artifact. The aim of this work was to model the electrophysiological mixture of the CI artifact and the corresponding evoked potentials on scalp electrodes in order to evaluate the performance of denoising algorithms in eliminating the CI artifact in a controlled environment. The basis of the proposed computational framework is a neural mass model representing the nodes of the auditory pathways. Six main contributors to auditory evoked potentials from the cochlear level and up to the auditory cortex were taken into consideration. The simulated dynamics were then projected into a 3-layer realistic head model. 32-channel scalp recordings of the CI artifact-response were then generated by solving the electromagnetic forward problem. As an application, the framework’s simulated 32-channel datasets were used to compare the performance of 4 commonly used Independent Component Analysis (ICA) algorithms: infomax, extended infomax, jade and fastICA in eliminating the CI artifact. As expected, two major components were detectable in the simulated datasets, a low frequency component at the modulation frequency and a pulsatile high frequency component related to the stimulation frequency. The first can be attributed to the phase-locked ASSR and the second to the stimulation artifact. Among the ICA algorithms tested, simulations showed that infomax was the most efficient and reliable in denoising the CI artifact-response mixture. Denoising algorithms can induce undesirable deformation of the signal of interest in real CI patient recordings. The proposed framework is a valuable tool for evaluating these algorithms in a controllable environment ahead of experimental or clinical applications. PMID:28350887

  14. Steady-state unbalance response of a three-disk flexible rotor on flexible, damped supports

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E.

    1977-01-01

    Experimental data are presented for the unbalance response of a flexible, ball bearing supported rotor to speeds above the third lateral bending critical. Values of squeeze film damping coefficients obtained from measured data are compared to theoretical values obtained from short bearing approximation over a frequency range from 5000 to 31 000 cycles/min. Experimental response for an undamped rotor is compared to that of one having oil squeeze film dampers at the bearings. Unbalance applied varied from 0.62 to 15.1 gm-cm.

  15. Steady State Ocean Response to Wind Forcing in Extratropical Frontal Regions

    PubMed Central

    Cronin, Meghan F.; Tozuka, Tomoki

    2016-01-01

    In regions of strong sea surface temperature (SST) gradients, the surface “geostrophic” currents have a vertical shear aligned with the surface density front defined by the temperature. This surface geostrophic (“thermal wind”) shear can balance a portion of the surface wind stress, altering the classic Ekman response to wind forcing. Here we show that these frontal effects cannot be ignored in the Tropics or in strong frontal regions in the extratropics, such as found in coastal regions and in western boundary currents of all basins. Frontal effects also dominate the classic Ekman response in the regions of both hemispheres where Trade winds change to westerlies. Implications for vertical motion and global heat transport are discussed. PMID:27354231

  16. Steady State Ocean Response to Wind Forcing in Extratropical Frontal Regions.

    PubMed

    Cronin, Meghan F; Tozuka, Tomoki

    2016-06-29

    In regions of strong sea surface temperature (SST) gradients, the surface "geostrophic" currents have a vertical shear aligned with the surface density front defined by the temperature. This surface geostrophic ("thermal wind") shear can balance a portion of the surface wind stress, altering the classic Ekman response to wind forcing. Here we show that these frontal effects cannot be ignored in the Tropics or in strong frontal regions in the extratropics, such as found in coastal regions and in western boundary currents of all basins. Frontal effects also dominate the classic Ekman response in the regions of both hemispheres where Trade winds change to westerlies. Implications for vertical motion and global heat transport are discussed.

  17. Steady-state response of a geared rotor system with slant cracked shaft and time-varying mesh stiffness

    NASA Astrophysics Data System (ADS)

    Han, Qinkai; Zhao, Jingshan; Lu, Wenxiu; Peng, Zhike; Chu, Fulei

    2014-04-01

    The dynamic behavior of geared rotor system with defects is helpful for the failure diagnosis and state detecting of the system. Extensive efforts have been devoted to study the dynamic behaviors of geared systems with tooth root cracks. When surface cracks (especially for slant cracks) appear on the transmission shaft, the dynamic characteristics of the system have not gained sufficient attentions. Due to the parametric excitations induced by slant crack breathing and time-varying mesh stiffness, the steady-state response of the cracked geared rotor system differs distinctly from that of the uncracked system. Thus, utilizing the direct spectral method (DSM), the forced response spectra of a geared rotor system with slant cracked shaft and time-varying mesh stiffness under transmission error, unbalance force and torsional excitations are, respectively, obtained and discussed in detail. The effects of crack types (straight or slant crack) and crack depth on the forced response spectra of the system without and with torsional excitation are considered in the analysis. In addition, how the frequency response characteristics change after considering the crack is also investigated. It is shown that the torsional excitations have significant influence on the forced response spectra of slant cracked system. Sub-critical resonances are also found in the frequency response curves. The results could be used for shaft crack detection in geared rotor system.

  18. Material Response of One-Dimensional, Steady-State Transpiration Cooling in Radiative and Convective Environments

    NASA Technical Reports Server (NTRS)

    Kubota, Hirotoshi

    1975-01-01

    A simplified analytical solution for thermal response of a transpiration-cooled porous heat-shield material in an intense radiative-convective heating environment is presented. Essential features of this approach are "two-flux method" for radiative transfer process and "two-temperature" assumption for solid and gas temperatures. Incident radiative-convective heatings are specified as boundary conditions. Sample results are shown using porous silica with CO2 transpiration and some parameters quantitatively show the effect on this transpiration cooling system. Summarized maps for mass injection rate, porosity and blowing correction factor for radiation are obtained in order to realize such a cooling system.

  19. Dissociation of psychophysical and EEG steady-state response measures of cross-modal temporal correspondence for amplitude modulated acoustic and vibrotactile stimulation.

    PubMed

    Timora, Justin R; Budd, Timothy W

    2013-09-01

    Research examining multisensory integration suggests that the correspondence of stimulus characteristics across modalities (cross-modal correspondence) can have a dramatic influence on both neurophysiological and perceptual responses to multimodal stimulation. The current study extends prior research by examining the cross-modal correspondence of amplitude modulation rate for simultaneous acoustic and vibrotactile stimulation using EEG and perceptual measures of sensitivity to amplitude modulation. To achieve this, psychophysical thresholds and steady-state responses (SSRs) were measured for acoustic and vibrotactile amplitude modulated (AM) stimulation for 21 and 40 Hz AM rates as a function of the cross-modal correspondence. The study design included three primary conditions to determine whether the changes in the SSR and psychophysical thresholds were due to the cross-modal temporal correspondence of amplitude modulated stimuli: NONE (AM in one modality only), SAME (the same AM rate for each modality) and DIFF (different AM rates for each modality). The results of the psychophysical analysis showed that AM detection thresholds for the simultaneous AM conditions (i.e., SAME and DIFF) were significantly higher (i.e., lower sensitivity) than AM detection thresholds for the stimulation of a single modality (i.e., NONE). SSR results showed significant effects of SAME and DIFF conditions on SSR activity. The different pattern of results for perceptual and SSR measures of cross-modal correspondence of AM rate indicates a dissociation between entrained cortical activity (i.e., SSR) and perception.

  20. Steady-state bedrock river response to tectonic and lithologic variations across active folds at the northwest Himalayan front

    NASA Astrophysics Data System (ADS)

    Allen, G. H.; Barnes, J. B.; Kirby, E.; Pavelsky, T. M.

    2011-12-01

    This study examines the response of bedrock channel gradient and width to differences in substrate erodibility and uplift rate along the flanks of active folds in the northwestern Himalaya foreland. Bedrock rivers are a principle driver of topographic evolution in tectonically active landscapes. Several stream power models have been proposed which equate bedrock river incision (E) to a product of channel gradient (S) and upstream drainage area (A) such that, E=KSmAn, where K, m, and n are constants which depend on dominant erosional processes. These models account for changes in channel width (W, a key influence on river incision) by assuming width scales predictably with upstream drainage area such that, W=kwAb, where kw and b are empirical constants. This relationship is often not valid in areas with varying lithology because channel morphology depends in part on the underlying rock strength. Furthermore, the degree to which steady-state channels respond to changes in substrate erodibility has yet to be well tested. In this study, we explicitly account for channel width variations using new quantitative methods to more accurately constrain river incision potential and its relationship to changes in bedrock erodibility and uplift rate in an active steady-state landscape. We focus on the Chandigarh and Mohand anticlines, two active fault-bend folds in the Siwalik Hills in northwestern India. We use digital topography and high resolution (5 m) satellite images to measure channel widths and gradients over ~100 channels draining both flanks resulting in >100,000 width measurements. We then normalize channel widths and slopes to upstream drainage area yielding two sensitive channel morphometrics: normalized width index (kwn) and normalized steepness index (ksn). Our observations show that both kwn and ksn vary systematically with changes in uplift rate and lithology. For example, at locations where channels cross into an erosionally resistant bedrock lithology, mean

  1. Coupled bending-torsion steady-state response of pretwisted, nonuniform rotating beams using a transfer-matrix method

    NASA Technical Reports Server (NTRS)

    Gray, Carl E., Jr.

    1988-01-01

    Using the Newtonian method, the equations of motion are developed for the coupled bending-torsion steady-state response of beams rotating at constant angular velocity in a fixed plane. The resulting equations are valid to first order strain-displacement relationships for a long beam with all other nonlinear terms retained. In addition, the equations are valid for beams with the mass centroidal axis offset (eccentric) from the elastic axis, nonuniform mass and section properties, and variable twist. The solution of these coupled, nonlinear, nonhomogeneous, differential equations is obtained by modifying a Hunter linear second-order transfer-matrix solution procedure to solve the nonlinear differential equations and programming the solution for a desk-top personal computer. The modified transfer-matrix method was verified by comparing the solution for a rotating beam with a geometric, nonlinear, finite-element computer code solution; and for a simple rotating beam problem, the modified method demonstrated a significant advantage over the finite-element solution in accuracy, ease of solution, and actual computer processing time required to effect a solution.

  2. Simulation of steady state and transient cardiac muscle response experiments with a Huxley-based contraction model.

    PubMed

    Negroni, Jorge A; Lascano, Elena C

    2008-08-01

    A cardiac muscle model is presented with the purpose of representing a wide range of mechanical experiments at constant and transient Ca(2+) concentration. Modifications of a previous model were: weak and power attached crossbridge states, a troponin system involving three consecutive regulatory troponin-tropomyosin units acting together in Ca(2+) kinetics and detachment constants depending on crossbridge length. This model improved cooperativity (Hill coefficient close to 4) and the force-velocity relationship, and incorporated the representation of the four phases of muscle response to length and force steps, isotonic shortening and isosarcometric contractions, preserving previous satisfactory results. Moreover, experimentally reported effects, such as length dependence on Ca(2+) affinity, the decreased cooperativity at higher Ca(2+) concentrations, temperature effects on the stiffness-frequency relationship and the isometric internal shortening due to series elasticity, were obtained. In conclusion, the model is more comprehensive than a previous version because it is able to represent a wider variety of steady state experiments, the mechanical variables in twitches can be adequately related to intracellular Ca(2+), and all the simulations were performed with the same set of parameters.

  3. Resistive wall mode feedback control in EXTRAP T2R with improved steady-state error and transient response

    NASA Astrophysics Data System (ADS)

    Brunsell, P. R.; Olofsson, K. E. J.; Frassinetti, L.; Drake, J. R.

    2007-10-01

    Experiments in the EXTRAP T2R reversed field pinch [P. R. Brunsell, H. Bergsåker, M. Cecconello et al., Plasma Phys. Control. Fusion 43, 1457 (2001)] on feedback control of m =1 resistive wall modes (RWMs) are compared with simulations using the cylindrical linear magnetohydrodynamic model, including the dynamics of the active coils and power amplifiers. Stabilization of the main RWMs (n=-11,-10,-9,-8,+5,+6) is shown using modest loop gains of the order G ˜1. However, other marginally unstable RWMs (n=-2,-1,+1,+2) driven by external field errors are only partially canceled at these gains. The experimental system stability limit is confirmed by simulations showing that the latency of the digital controller ˜50μs is degrading the system gain margin. The transient response is improved with a proportional-plus-derivative controller, and steady-state error is improved with a proportional-plus-integral controller. Suppression of all modes is obtained at high gain G ˜10 using a proportional-plus-integral-plus-derivative controller.

  4. Network Analysis of Functional Brain Connectivity Driven by Gamma-Band Auditory Steady-State Response in Auditory Hallucinations.

    PubMed

    Ying, Jun; Zhou, Dan; Lin, Ke; Gao, Xiaorong

    The auditory steady-state response (ASSR) may reflect activity from different regions of the brain. Particularly, it was reported that the gamma-band ASSR plays an important role in working memory, speech understanding, and recognition. Traditionally, the ASSR has been determined by power spectral density analysis, which cannot detect the exact overall distributed properties of the ASSR. Functional network analysis has recently been applied in electroencephalography studies. Previous studies on resting or working state found a small-world organization of the brain network. Some researchers have studied dysfunctional networks caused by diseases. The present study investigates the brain connection networks of schizophrenia patients with auditory hallucinations during an ASSR task. A directed transfer function is utilized to estimate the brain connectivity patterns. Moreover, the structures of brain networks are analyzed by converting the connectivity matrices into graphs. It is found that for normal subjects, network connections are mainly distributed at the central and frontal-temporal regions. This indicates that the central regions act as transmission hubs of information under ASSR stimulation. For patients, network connections seem unordered. The finding that the path length was larger in patients compared to that in normal subjects under most thresholds provides insight into the structures of connectivity patterns. The results suggest that there are more synchronous oscillations that cover a long distance on the cortex but a less efficient network for patients with auditory hallucinations.

  5. Tracking of proton flow during transition from anaerobiosis to steady state. 1. Response of matrix pH indicators.

    PubMed

    Luvisetto, S; Schmehl, I; Cola, C; Azzone, G F

    1991-11-15

    1. The kinetics of acidification and realkalinization of the matrix after addition of nigericin to respiring and non-respiring mitochondria, recorded by intramitochondrial pH indicators such as neutral red and 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF), is complementary to that recorded by extramitochondrial pH indicators. The extent of acidification decreases with the logarithm of the KCl concentration and is inhibited by Pi and ammonium ions. 2. Proton translocation during respiration has been compared with proton extraction from matrix bulk water. During oxygen pulses to EGTA-untreated mitochondria, BCECF records an extraction of protons from matrix bulk water of about 2-3 nmol H+/mg, reduced to 1-2 nmol H+/mg in EGTA-treated mitochondria. Since the amount of proton translocation required to achieve steady state is of the order of 6-7 nmol H+/mg, it appears that 75-90% of the protons are not extracted from matrix bulk water. Only a slight response is recorded by neutral red. 3. The effect of permeant cations and of uncouplers on the distribution of proton extraction between membrane and matrix bulk water has been studied in presteady state. During Sr2+ uptake, proton extrusion into cytosolic bulk water, as well as proton extraction from matrix bulk water, corresponds almost to 100% of the protons translocated by the redox proton pumps. In the absence of Sr2+, parallel to the disappearance of the proton extrusion in cytosolic bulk water, the proton extraction from matrix bulk water diminishes to about 20% of the proton translocation. 4. The mechanism by which divalent cation uptake and protonophoric uncouplers affect the distribution of proton extraction between matrix bulk water and membrane domains and the nature of the membrane domains are discussed.

  6. Steady-state and dynamic gene expression programs in Saccharomyces cerevisiae in response to variation in environmental nitrogen.

    PubMed

    Airoldi, Edoardo M; Miller, Darach; Athanasiadou, Rodoniki; Brandt, Nathan; Abdul-Rahman, Farah; Neymotin, Benjamin; Hashimoto, Tatsu; Bahmani, Tayebeh; Gresham, David

    2016-04-15

    Cell growth rate is regulated in response to the abundance and molecular form of essential nutrients. InSaccharomyces cerevisiae(budding yeast), the molecular form of environmental nitrogen is a major determinant of cell growth rate, supporting growth rates that vary at least threefold. Transcriptional control of nitrogen use is mediated in large part by nitrogen catabolite repression (NCR), which results in the repression of specific transcripts in the presence of a preferred nitrogen source that supports a fast growth rate, such as glutamine, that are otherwise expressed in the presence of a nonpreferred nitrogen source, such as proline, which supports a slower growth rate. Differential expression of the NCR regulon and additional nitrogen-responsive genes results in >500 transcripts that are differentially expressed in cells growing in the presence of different nitrogen sources in batch cultures. Here we find that in growth rate-controlled cultures using nitrogen-limited chemostats, gene expression programs are strikingly similar regardless of nitrogen source. NCR expression is derepressed in all nitrogen-limiting chemostat conditions regardless of nitrogen source, and in these conditions, only 34 transcripts exhibit nitrogen source-specific differential gene expression. Addition of either the preferred nitrogen source, glutamine, or the nonpreferred nitrogen source, proline, to cells growing in nitrogen-limited chemostats results in rapid, dose-dependent repression of the NCR regulon. Using a novel means of computational normalization to compare global gene expression programs in steady-state and dynamic conditions, we find evidence that the addition of nitrogen to nitrogen-limited cells results in the transient overproduction of transcripts required for protein translation. Simultaneously, we find that that accelerated mRNA degradation underlies the rapid clearing of a subset of transcripts, which is most pronounced for the highly expressed NCR

  7. Steady-state and dynamic gene expression programs in Saccharomyces cerevisiae in response to variation in environmental nitrogen

    PubMed Central

    Airoldi, Edoardo M.; Miller, Darach; Athanasiadou, Rodoniki; Brandt, Nathan; Abdul-Rahman, Farah; Neymotin, Benjamin; Hashimoto, Tatsu; Bahmani, Tayebeh; Gresham, David

    2016-01-01

    Cell growth rate is regulated in response to the abundance and molecular form of essential nutrients. In Saccharomyces cerevisiae (budding yeast), the molecular form of environmental nitrogen is a major determinant of cell growth rate, supporting growth rates that vary at least threefold. Transcriptional control of nitrogen use is mediated in large part by nitrogen catabolite repression (NCR), which results in the repression of specific transcripts in the presence of a preferred nitrogen source that supports a fast growth rate, such as glutamine, that are otherwise expressed in the presence of a nonpreferred nitrogen source, such as proline, which supports a slower growth rate. Differential expression of the NCR regulon and additional nitrogen-responsive genes results in >500 transcripts that are differentially expressed in cells growing in the presence of different nitrogen sources in batch cultures. Here we find that in growth rate–controlled cultures using nitrogen-limited chemostats, gene expression programs are strikingly similar regardless of nitrogen source. NCR expression is derepressed in all nitrogen-limiting chemostat conditions regardless of nitrogen source, and in these conditions, only 34 transcripts exhibit nitrogen source–specific differential gene expression. Addition of either the preferred nitrogen source, glutamine, or the nonpreferred nitrogen source, proline, to cells growing in nitrogen-limited chemostats results in rapid, dose-dependent repression of the NCR regulon. Using a novel means of computational normalization to compare global gene expression programs in steady-state and dynamic conditions, we find evidence that the addition of nitrogen to nitrogen-limited cells results in the transient overproduction of transcripts required for protein translation. Simultaneously, we find that that accelerated mRNA degradation underlies the rapid clearing of a subset of transcripts, which is most pronounced for the highly expressed NCR

  8. Steady state thermal radiometers

    NASA Technical Reports Server (NTRS)

    Loose, J. D. (Inventor)

    1974-01-01

    A radiometer is described operating in a vacuum under steady state conditions. The front element is an aluminum sheet painted on the outer side with black or other absorptive material of selected characteristics. A thermocouple is bonded to the inner side of the aluminum sheet. That is backed by highly insulative layers of glass fiber and crinkled, aluminized Mylar polyester. Those layers are backed with a sturdy, polyester sheet, and the entire lamination is laced together by nylon cords. The device is highly reliable in that it does not drift out of calibration, and is significantly inexpensive.

  9. Extrasolar Giant Magnetospheric Response to Steady-state Stellar Wind Pressure at 10, 5, 1, and 0.2 au

    NASA Astrophysics Data System (ADS)

    Tilley, Matt A.; Harnett, Erika M.; Winglee, Robert M.

    2016-08-01

    A three-dimensional, multifluid simulation of a giant planet’s magnetospheric interaction with steady-state stellar wind from a Sun-like star was performed for four different orbital semimajor axes—10, 5, 1, and 0.2 au. We simulate the effect of the increasing, steady-state stellar wind pressure related to the planetary orbital semimajor axis on the global magnetospheric dynamics for a Saturn-like planet, including an Enceladus-like plasma torus. Mass-loss processes are shown to vary with orbital distance, with the centrifugal interchange instability displayed only in the 10 and 5 au cases, which reach a state of mass-loss equilibrium more slowly than the 1 or 0.2 au cases. The compression of the magnetosphere in the 1 and 0.2 au cases contributes to the quenching of the interchange process by increasing the ratio of total plasma thermal energy to corotational energy. The strength of field-aligned currents, associated with auroral radio emissions, is shown to increase in magnitude and latitudinal coverage with a corresponding shift equatorward from increased dynamic ram pressure experienced in the hotter orbits. Similar to observed hot Jovian planets, the warm exo-Saturn simulated in the current work shows enhanced ion density in the magnetosheath and magnetopause regions, as well as the plasma torus, which could contribute to altered transit signals, suggesting that for planets in warmer (>0.1 au) orbits, planetary magnetic field strengths and possibly exomoons—via the plasma torus—could be observable with future missions.

  10. Extrasolar giant magnetospheric response to steady-state stellar wind pressure at 10, 5, 1, and 0.2 AU

    NASA Astrophysics Data System (ADS)

    Tilley, Matt; Harnett, Erika; Winglee, Robert

    2016-10-01

    A three-dimensional, multifluid simulation of a giant planet's magnetospheric interaction with steady-state stellar wind from a Sun-like star was performed for four different orbital semi-major axes - 10, 5, 1 and 0.2 AU. We simulate the effect of the increasing, steady-state stellar wind pressure related to the planetary orbital semi-major axis on the global magnetospheric dynamics for a Saturn-like planet, including an Enceladus-like plasma torus. Mass loss processes are shown to vary with orbital distance, with the centrifugal interchange instability displayed only in the 10 AU and 5 AU cases which reach a state of mass loss equilibrium more slowly than the 1 AU or 0.2 AU cases. The compression of the magnetosphere in the 1 AU and 0.2 AU cases contributes to the quenching of the interchange process by increasing the ratio of total plasma thermal energy to corotational energy. The strength of field-aligned currents (FAC), associated with auroral radio emissions, are shown to increase in magnitude and latitudinal coverage with a corresponding shift equatorward from increased dynamic ram pressure experienced in the hotter orbits. Similar to observed hot Jovian planets, the warm exo-Saturn simulated in the current work shows enhanced ion density in the magnetosheath and magnetopause regions, as well as the plasma torus which could contribute to altered transit signals, suggesting that for planets in warmer (> 0.1 AU) orbits, planetary magnetic field strengths and possibly exomoons - via the plasma torus - could be observable with future missions.

  11. The influence of visuospatial attention on unattended auditory 40 Hz responses.

    PubMed

    Roth, Cullen; Gupta, Cota Navin; Plis, Sergey M; Damaraju, Eswar; Khullar, Siddharth; Calhoun, Vince D; Bridwell, David A

    2013-01-01

    Information must integrate from multiple brain areas in healthy cognition and perception. The present study examined the extent to which cortical responses within one sensory modality are modulated by a complex task conducted within another sensory modality. Electroencephalographic (EEG) responses were measured to a 40 Hz auditory stimulus while individuals attended to modulations in the amplitude of the 40 Hz stimulus, and as a function of the difficulty of the popular computer game Tetris. The steady-state response to the 40 Hz stimulus was isolated by Fourier analysis of the EEG. The response at the stimulus frequency was normalized by the response within the surrounding frequencies, generating the signal-to-noise ratio (SNR). Seven out of eight individuals demonstrate a monotonic increase in the log SNR of the 40 Hz responses going from the difficult visuospatial task to the easy visuospatial task to attending to the auditory stimuli. This pattern is represented statistically by a One-Way ANOVA, indicating significant differences in log SNR across the three tasks. The sensitivity of 40 Hz auditory responses to the visuospatial load was further demonstrated by a significant correlation between log SNR and the difficulty (i.e., speed) of the Tetris task. Thus, the results demonstrate that 40 Hz auditory cortical responses are influenced by an individual's goal-directed attention to the stimulus, and by the degree of difficulty of a complex visuospatial task.

  12. Compensatory mechanisms in below-knee amputee gait in response to increasing steady-state walking speeds.

    PubMed

    Silverman, Anne K; Fey, Nicholas P; Portillo, Albert; Walden, Judith G; Bosker, Gordon; Neptune, Richard R

    2008-11-01

    Compensatory mechanisms in below-knee amputee gait are necessary due to the functional loss of the ankle muscles, especially at higher walking speeds when the mechanical energetic demands of walking are greater. The objective of this study was to examine amputee anterior/posterior (A/P) ground reaction force (GRF) impulses and joint kinetics across a wide range of steady-state walking speeds to further understand the compensatory mechanisms used by below-knee amputees. We hypothesized that amputees would rely more on their intact leg to generate greater propulsion relative to the residual leg, which would result in greater GRF asymmetry between legs as walking speed increased. Amputee and control subject kinematic and kinetic data were collected during overground walking at four different speeds. Group (n=14) average amputee data showed no significant differences in braking or propulsive GRF impulse ratios, except the propulsive ratio at 0.9 m/s, indicating that the subjects maintained their initial levels of GRF asymmetry when walking faster. Therefore, our hypothesis was not supported (i.e., walking faster does not increase GRF loading asymmetry). The primary compensatory mechanism was greater positive residual leg hip joint power and work in early stance, which led to increased propulsion from the residual leg as walking speed increased. In addition, amputees had reduced residual leg positive knee work in early stance, suggesting increased output from the biarticular hamstrings. Thus, increasing residual leg hip extensor strength and output may be a useful mechanism to reduce GRF loading asymmetry between the intact and residual legs.

  13. Steady-state characteristics and transient response of MgZnO-based metal-semiconductor-metal solar-blind ultraviolet photodetector with three types of electrode structures.

    PubMed

    Wang, Ping; Zhen, Qinghong; Tang, Qing; Yang, Yintang; Guo, Lixin; Ding, Kai; Huang, Feng

    2013-07-29

    Detailed studies of MgZnO-based metal-semiconductor-metal (MSM) solar-blind ultraviolet photodetector with different electrode structures are performed. A two-dimensional physical model is established based on the Poisson's equation and time-dependent continuity equations, which is verified by our experimental data of conventional electrode MSM detector. The steady-state characteristics and transient response of semicircular and triangular electrode MSM detectors are also investigated by this model. Compared with the conventional electrode, semicircular and triangular electrode devices exhibit a substantial improvement on the photocurrent. At a bias of 10 V, the steady-state saturated photocurrents for semicircular and triangular electrode devices are 14.69 nA and 24.37 nA respectively, corresponding to a 20.5% and 100% increase over the conventional electrode detector. Meanwhile, the transient peak photocurrents reach 31.38 nA and 52.09 nA respectively, both of which are notably larger than that of conventional device.

  14. The effects of boundary conditions on the steady-state response of three hypothetical ground-water systems; results and implications of numerical experiments

    USGS Publications Warehouse

    Franke, O. Lehn; Reilly, Thomas E.

    1987-01-01

    The most critical and difficult aspect of defining a groundwater system or problem for conceptual analysis or numerical simulation is the selection of boundary conditions . This report demonstrates the effects of different boundary conditions on the steady-state response of otherwise similar ground-water systems to a pumping stress. Three series of numerical experiments illustrate the behavior of three hypothetical groundwater systems that are rectangular sand prisms with the same dimensions but with different combinations of constant-head, specified-head, no-flow, and constant-flux boundary conditions. In the first series of numerical experiments, the heads and flows in all three systems are identical, as are the hydraulic conductivity and system geometry . However, when the systems are subjected to an equal stress by a pumping well in the third series, each differs significantly in its response . The highest heads (smallest drawdowns) and flows occur in the systems most constrained by constant- or specified-head boundaries. These and other observations described herein are important in steady-state calibration, which is an integral part of simulating many ground-water systems. Because the effects of boundary conditions on model response often become evident only when the system is stressed, a close match between the potential distribution in the model and that in the unstressed natural system does not guarantee that the model boundary conditions correctly represent those in the natural system . In conclusion, the boundary conditions that are selected for simulation of a ground-water system are fundamentally important to groundwater systems analysis and warrant continual reevaluation and modification as investigation proceeds and new information and understanding are acquired.

  15. Einstein's steady-state cosmology

    NASA Astrophysics Data System (ADS)

    O'Raifeartaigh, Cormac

    2014-09-01

    Last year, a team of Irish scientists discovered an unpublished manuscript by Einstein in which he attempted to construct a "steady-state" model of the universe. Cormac O'Raifeartaigh describes the excitement of finding this previously unknown work.

  16. Influence of oil-squeeze-film damping on steady-state response of flexible rotor operating to supercritical speeds

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E.

    1977-01-01

    Experimental data were obtained for the unbalance response of a flexible rotor to speeds above the third lateral bending critical. Squeeze-film damping coefficients calculated from measured data showed good agreement with short-journal-bearing approximations over a frequency range from 5000 to 31,000 cmp. Response of a rotor to varying amounts of unbalance was investigated. A very lightly damped rotor was compared with one where oil-squeeze dampers were applied.

  17. VIBRA--An Interactive Computer Program for Steady-State Vibration Response Analysis of Linear Damped Structures.

    DTIC Science & Technology

    1984-07-01

    LOCATION. RESPONSE NODE 10 i DIRECTION 0.7S R / A LERA A 0 C 92 C L E RI A T -4.5S ... 10 a10 2O 230 240 FREQUENCY, HER TZ Figure 8.- Expanded plot of...APPENDIX C - COMPUTER REQUIREMENTS ........................................ 30 Memory Allocation and Auxiliary Storage Files...APPENDIX C - TABLES.................................................................. 34 REFE ENC S

  18. Human Sensitivity to High Frequency Sine Wave and Pulsed Light Stimulation as Measured by the Steady State Cortical Evoked Response

    DTIC Science & Technology

    1981-02-01

    depth ( Tweel and Lunel, 1965; Spekreijse, 1966) and color (Regan, 1970 and Regan, 1973). It has been suggested (O’Donnell, 1979) that the demonstrated...Publishers, 1966. Van der Tweel , L.H., and Verduyn Lunel, H.F.E. Human visual responses to sinusoidally modulated light. Electroencephalography and Clinical

  19. The steady-state response of the cerebral cortex to the beat of music reflects both the comprehension of music and attention

    PubMed Central

    Meltzer, Benjamin; Reichenbach, Chagit S.; Braiman, Chananel; Schiff, Nicholas D.; Hudspeth, A. J.; Reichenbach, Tobias

    2015-01-01

    The brain’s analyses of speech and music share a range of neural resources and mechanisms. Music displays a temporal structure of complexity similar to that of speech, unfolds over comparable timescales, and elicits cognitive demands in tasks involving comprehension and attention. During speech processing, synchronized neural activity of the cerebral cortex in the delta and theta frequency bands tracks the envelope of a speech signal, and this neural activity is modulated by high-level cortical functions such as speech comprehension and attention. It remains unclear, however, whether the cortex also responds to the natural rhythmic structure of music and how the response, if present, is influenced by higher cognitive processes. Here we employ electroencephalography to show that the cortex responds to the beat of music and that this steady-state response reflects musical comprehension and attention. We show that the cortical response to the beat is weaker when subjects listen to a familiar tune than when they listen to an unfamiliar, non-sensical musical piece. Furthermore, we show that in a task of intermodal attention there is a larger neural response at the beat frequency when subjects attend to a musical stimulus than when they ignore the auditory signal and instead focus on a visual one. Our findings may be applied in clinical assessments of auditory processing and music cognition as well as in the construction of auditory brain-machine interfaces. PMID:26300760

  20. The steady-state response of the cerebral cortex to the beat of music reflects both the comprehension of music and attention.

    PubMed

    Meltzer, Benjamin; Reichenbach, Chagit S; Braiman, Chananel; Schiff, Nicholas D; Hudspeth, A J; Reichenbach, Tobias

    2015-01-01

    The brain's analyses of speech and music share a range of neural resources and mechanisms. Music displays a temporal structure of complexity similar to that of speech, unfolds over comparable timescales, and elicits cognitive demands in tasks involving comprehension and attention. During speech processing, synchronized neural activity of the cerebral cortex in the delta and theta frequency bands tracks the envelope of a speech signal, and this neural activity is modulated by high-level cortical functions such as speech comprehension and attention. It remains unclear, however, whether the cortex also responds to the natural rhythmic structure of music and how the response, if present, is influenced by higher cognitive processes. Here we employ electroencephalography to show that the cortex responds to the beat of music and that this steady-state response reflects musical comprehension and attention. We show that the cortical response to the beat is weaker when subjects listen to a familiar tune than when they listen to an unfamiliar, non-sensical musical piece. Furthermore, we show that in a task of intermodal attention there is a larger neural response at the beat frequency when subjects attend to a musical stimulus than when they ignore the auditory signal and instead focus on a visual one. Our findings may be applied in clinical assessments of auditory processing and music cognition as well as in the construction of auditory brain-machine interfaces.

  1. Identification of large variation in the photosynthetic induction response among 37 soybean [Glycine max (L.) Merr.] genotypes that is not correlated with steady-state photosynthetic capacity.

    PubMed

    Soleh, M A; Tanaka, Y; Kim, S Y; Huber, S C; Sakoda, K; Shiraiwa, T

    2017-03-01

    Irradiance continuously fluctuates during the day in the field. The speed of the induction response of photosynthesis in high light affects the cumulative carbon gain of the plant and could impact growth and yield. The photosynthetic induction response and its relationship with the photosynthetic capacity under steady-state conditions (P max) were evaluated in 37 diverse soybean [Glycine max (L.) Merr.] genotypes. The induction response of leaf photosynthesis showed large variation among the soybean genotypes. After 5 min illumination with strong light, genotype NAM23 had the highest leaf photosynthetic rate of 33.8 µmol CO2 m(-2) s(-1), while genotype NAM12 showed the lowest rate at 4.7 µmol CO2 m(-2) s(-1). Cumulative CO2 fixation (CCF) during the first 5 min of high light exposure ranged from 5.5 mmol CO2 m(-2) for NAM23 to 0.81 mmol CO2 m(-2) for NAM12. The difference in the induction response among genotypes was consistent throughout the growth season. However, there was no significant correlation between CCF and P max among genotypes suggesting that different mechanisms regulate P max and the induction response. The observed variation in the induction response was mainly attributed to ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activation, but soybean lines differing in the induction response did not differ in the leaf content of Rubisco activase α- and β-proteins. Future studies will be focused on identifying molecular determinants of the photosynthetic induction response and determining whether this trait could be an important breeding target to achieve improved growth of soybeans in the field.

  2. Aerial audiograms of several California sea lions (Zalophus californianus) and Steller sea lions (Eumetopias jubatus) measured using single and multiple simultaneous auditory steady-state response methods.

    PubMed

    Mulsow, Jason; Reichmuth, Colleen; Gulland, Frances; Rosen, David A S; Finneran, James J

    2011-04-01

    Measurements of the electrophysiological auditory steady-state response (ASSR) have proven to be efficient for evaluating hearing sensitivity in odontocete cetaceans. In an effort to expand these methods to pinnipeds, ASSRs elicited by single and multiple simultaneous tones were used to measure aerial hearing thresholds in several California sea lions (Zalophus californianus) and Steller sea lions (Eumetopias jubatus). There were no significant differences between thresholds measured using the single and multiple ASSR methods, despite the more rapid nature of data collection using the multiple ASSR method. There was a high degree of variability in ASSR thresholds among subjects; thresholds covered a range of ∼40 dB at each tested frequency. As expected, ASSR thresholds were elevated relative to previously reported psychophysical thresholds for California and Steller sea lions. The features of high-frequency hearing limit and relative sensitivity of most ASSR audiograms were, however, similar to those of psychophysical audiograms, suggesting that ASSR methods can be used to improve understanding of hearing demographics in sea lions, especially with respect to high-frequency hearing. Thresholds for one Steller sea lion were substantially elevated relative to all other subjects, demonstrating that ASSR methods can be used to detect hearing loss in sea lions.

  3. Study on steady-state response of a vertical axis automatic washing machine with a hydraulic balancer using a new approach and a method for getting a smaller deflection angle

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Wei; Zhang, Qiu-Ju; Fan, Sheng-Yao

    2011-04-01

    A new approach is used in this paper to analyze steady-state response of a vertical axis automatic washing machine with a hydraulic balancer and a method for getting a smaller deflection angle of the washing/drying assembly is presented. First, a mathematical model of the vertical axis washing machine and a numerical description of the hydraulic balancer are described and a vibration model for the vertical axis washing machine with a hydraulic balancer is built. Second, the vibration model is transformed into an autonomous form whose equilibrium point can be used to analyze dynamics of the washing machine at the steady state. Because the autonomous form can be solved by the Newton-Raphson method which requires only a few iterations, it provides a much faster approach for analyzing steady-state response of the spin drying process than traditional numerical integration methods. Five parameters influencing the spin drying process are considered, and the balancer's importance in reducing vibrations at the steady state is illustrated. Third, the equilibrium conditions of the centrifugal forces acting on the clothes, the washing/drying assembly and the balancer are considered, and a governing equation for getting a smaller deflection angle of the washing/drying assembly is derived. At last, parameters in the governing equation, especially those related to the hydraulic balancer, are discussed.

  4. On Typicality in Nonequilibrium Steady States

    NASA Astrophysics Data System (ADS)

    Evans, Denis J.; Williams, Stephen R.; Searles, Debra J.; Rondoni, Lamberto

    2016-08-01

    From the statistical mechanical viewpoint, relaxation of macroscopic systems and response theory rest on a notion of typicality, according to which the behavior of single macroscopic objects is given by appropriate ensembles: ensemble averages of observable quantities represent the measurements performed on single objects, because " almost all" objects share the same fate. In the case of non-dissipative dynamics and relaxation toward equilibrium states, " almost all" is referred to invariant probability distributions that are absolutely continuous with respect to the Lebesgue measure. In other words, the collection of initial micro-states (single systems) that do not follow the ensemble is supposed to constitute a set of vanishing, phase space volume. This approach is problematic in the case of dissipative dynamics and relaxation to nonequilibrium steady states, because the relevant invariant distributions attribute probability 1 to sets of zero volume, while evolution commonly begins in equilibrium states, i.e., in sets of full phase space volume. We consider the relaxation of classical, thermostatted particle systems to nonequilibrium steady states. We show that the dynamical condition known as Ω T-mixing is necessary and sufficient for relaxation of ensemble averages to steady state values. Moreover, we find that the condition known as weak T-mixing applied to smooth observables is sufficient for ensemble relaxation to be independent of the initial ensemble. Lastly, we show that weak T-mixing provides a notion of typicality for dissipative dynamics that is based on the (non-invariant) Lebesgue measure, and that we call physical ergodicity.

  5. Inconsistencies in steady state thermodynamics

    NASA Astrophysics Data System (ADS)

    Dickman, Ronald; Motai, Ricardo

    2014-03-01

    We address the issue of extending thermodynamics to nonequilibrium steady states. Using driven stochastic lattice gases, we ask whether consistent definitions of an effective chemical potential μ, and an effective temperature Te, are possible. These quantities are determined via zero-flux conditions of particles and energy between the driven system and a reservoir. For the models considered here, the fluxes are given in terms of certain stationary average densities, eliminating the need to perturb the system by actually exchanging particles; μ and Te are thereby obtained via open-circuit measurements, using a virtual reservoir. In the lattice gas with nearest-neighbor exclusion, temperature is not relevant, and we find that the effective chemical potential, a function of density and drive strength, satisfies the zeroth law, and correctly predicts the densities of coexisting systems. In the Katz-Lebowitz-Spohn driven lattice gas, both μ and Te need to be defined. We show analytically that the zeroth law is violated, and determine the size of the violations numerically. Our results highlight a fundamental inconsistency in the extension of thermodynamics to nonequilibrium steady states. Research supported by CNPq, Brazil.

  6. Multimode optical fibers: steady state mode exciter.

    PubMed

    Ikeda, M; Sugimura, A; Ikegami, T

    1976-09-01

    The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.

  7. Irreversible processes at nonequilibrium steady states

    PubMed Central

    Fox, Ronald Forrest

    1979-01-01

    It is shown that a Liapunov criterion exists for the stability of nonequilibrium steady states. This criterion is based upon the fluctuation-dissipation relation, as was first pointed out by Keizer. At steady states, the Liapunov function is constructed from the covariance matrix for the thermodynamic variables. Unlike the situation around equilibrium, at steady states the covariance matrix and the “excess entropy” matrix are not equivalent. The excess entropy, which serves as the Liapunov function around equilibrium, does not work in this capacity at steady states. Keizer's Liapunov function must be viewed as the first correct candidate for a proper Liapunov function for steady states. PMID:16592649

  8. Stereoselective metabolism of donepezil and steady-state plasma concentrations of S-donepezil based on CYP2D6 polymorphisms in the therapeutic responses of Han Chinese patients with Alzheimer's disease.

    PubMed

    Lu, Jin; Wan, Lili; Zhong, Yuan; Yu, Qi; Han, Yonglong; Chen, Pengguo; Wang, Beiyun; Li, Wei; Miao, Ya; Guo, Cheng

    2015-11-01

    The therapeutic response rates of patients to donepezil vary from 20% to 60%, one of the reasons is their genetic differences in donepezil-metabolizing enzymes, which directly influence liver metabolism. However, the mechanism of donepezil metabolism and that of its enantiomers is unknown. This study evaluated CYP2D6 polymorphisms to elucidate the stereoselective metabolism of donepezil and to confirm the association between the steady-state plasma concentrations of the pharmaco-effective S-donepezil and the therapeutic responses of Han Chinese patients with Alzheimer's disease. The in vitro study of the stereoselective metabolism demonstrated that CYP2D6 is the predominant P450 enzyme that metabolizes donepezil and that different CYP2D6 alleles differentially affect donepezil enantiomers metabolism. A total of 77 Han Chinese patients with Alzheimer's disease were recruited to confirm these results, by measuring their steady-state plasma concentrations of S-donepezil. The related CYP2D6 genes were genotyped. Plasma concentrations of S-donepezil (based on CYP2D6 polymorphisms) were significantly associated with therapeutic responses. This finding suggests that plasma concentrations of S-donepezil influence therapeutic outcomes following treatment with donepezil in Han Chinese patients with Alzheimer's disease. Therefore, determining a patient's steady-state plasma concentration of S-donepezil in combination with their CYP2D6 genotype might be useful for clinically monitoring the therapeutic efficacy of donepezil.

  9. Visual steady state in relation to age and cognitive function.

    PubMed

    Horwitz, Anna; Dyhr Thomsen, Mia; Wiegand, Iris; Horwitz, Henrik; Klemp, Marc; Nikolic, Miki; Rask, Lene; Lauritzen, Martin; Benedek, Krisztina

    2017-01-01

    Neocortical gamma activity is crucial for sensory perception and cognition. This study examines the value of using non-task stimulation-induced EEG oscillations to predict cognitive status in a birth cohort of healthy Danish males (Metropolit) with varying cognitive ability. In particular, we examine the steady-state VEP power response (SSVEP-PR) in the alpha (8Hz) and gamma (36Hz) bands in 54 males (avg. age: 62.0 years) and compare these with 10 young healthy participants (avg. age 27.6 years). Furthermore, we correlate the individual alpha-to-gamma difference in relative visual-area power (ΔRV) with cognitive scores for the older adults. We find that ΔRV decrease with age by just over one standard deviation when comparing young with old participants (p<0.01). Furthermore, intelligence is significantly negatively correlated with ΔRV in the older adult cohort, even when processing speed, global cognition, executive function, memory, and education (p<0.05). In our preferred specification, an increase in ΔRV of one standard deviation is associated with a reduction in intelligence of 48% of a standard deviation (p<0.01). Finally, we conclude that the difference in cerebral rhythmic activity between the alpha and gamma bands is associated with age and cognitive status, and that ΔRV therefore provide a non-subjective clinical tool with which to examine cognitive status in old age.

  10. Visual steady state in relation to age and cognitive function

    PubMed Central

    Dyhr Thomsen, Mia; Wiegand, Iris; Horwitz, Henrik; Klemp, Marc; Nikolic, Miki; Rask, Lene; Lauritzen, Martin; Benedek, Krisztina

    2017-01-01

    Neocortical gamma activity is crucial for sensory perception and cognition. This study examines the value of using non-task stimulation-induced EEG oscillations to predict cognitive status in a birth cohort of healthy Danish males (Metropolit) with varying cognitive ability. In particular, we examine the steady-state VEP power response (SSVEP-PR) in the alpha (8Hz) and gamma (36Hz) bands in 54 males (avg. age: 62.0 years) and compare these with 10 young healthy participants (avg. age 27.6 years). Furthermore, we correlate the individual alpha-to-gamma difference in relative visual-area power (ΔRV) with cognitive scores for the older adults. We find that ΔRV decrease with age by just over one standard deviation when comparing young with old participants (p<0.01). Furthermore, intelligence is significantly negatively correlated with ΔRV in the older adult cohort, even when processing speed, global cognition, executive function, memory, and education (p<0.05). In our preferred specification, an increase in ΔRV of one standard deviation is associated with a reduction in intelligence of 48% of a standard deviation (p<0.01). Finally, we conclude that the difference in cerebral rhythmic activity between the alpha and gamma bands is associated with age and cognitive status, and that ΔRV therefore provide a non-subjective clinical tool with which to examine cognitive status in old age. PMID:28245274

  11. On the time to steady state: insights from numerical modeling

    NASA Astrophysics Data System (ADS)

    Goren, L.; Willett, S.; McCoy, S. W.; Perron, J.

    2013-12-01

    How fast do fluvial landscapes approach steady state after an application of tectonic or climatic perturbation? While theory and some numerical models predict that the celerity of the advective wave (knickpoint) controls the response time for perturbations, experiments and other landscape evolution models demonstrate that the time to steady state is much longer than the theoretically predicted response time. We posit that the longevity of transient features and the time to steady state are controlled by the stability of the topology and geometry of channel networks. Evolution of a channel network occurs by a combination of discrete capture events and continuous migration of water divides, processes, which are difficult to represent accurately in landscape evolution models. We therefore address the question of the time to steady state using the DAC landscape evolution model that solves accurately for the location of water divides, using a combination of analytical solution for hillslopes and low-order channels together with a numerical solution for higher order channels. DAC also includes an explicit capture criterion. We have tested fundamental predictions from DAC and show that modeled networks reproduce natural network characteristics such as the Hack's exponent and coefficient and the fractal dimension. We define two steady-state criteria: a topographic steady state, defined by global, pointwise steady elevation, and a topological steady state defined as the state in which no further reorganization of the drainage network takes place. Analyzing block uplift simulations, we find that the time to achieve either topographic or topological steady state exceeds by an order of magnitude the theoretical response time of the fluvial network. The longevity of the transient state is the result of the area feedback, by which, migration of a divide changes the local contributing area. This change propagates downstream as a slope adjustment, forcing further divide migrations

  12. Repression of formate dehydrogenase in Solanum tuberosum increases steady-state levels of formate and accelerates the accumulation of proline in response to osmotic stress.

    PubMed

    Ambard-Bretteville, Françoise; Sorin, Céline; Rébeillé, Fabrice; Hourton-Cabassa, Cécile; Colas des Francs-Small, Catherine

    2003-08-01

    Formate dehydrogenase (FDH, EC 1.2.1.2.) is a soluble mitochondrial enzyme capable of oxidizing formate into CO2 in the presence of NAD+. It is abundant in non-green tissues and scarce in photosynthetic tissues. Under stress, FDH transcripts (and protein) accumulate in leaves, and leaf mitochondria acquire the ability to use formate as a respiratory substrate. In this paper, we describe the analysis of transgenic potato plants under-expressing FDH, obtained in order to understand the physiological function of FDH. Plants expressing low FDH activities were selected and the study was focused on a line (AS23) showing no detectable FDH activity. AS23 plants were morphologically indistinguishable from control plants, and grew normally under standard conditions. However, mitochondria isolated from AS23 tubers could not use formate as a respiratory substrate. Steady-state levels of formate were higher in AS23 leaves and tubers than in control plants. Tubers of untransformed plants oxidized 14C formate into 14CO2 but AS23 tubers accumulated it. In order to reveal a possible phenotype under stress conditions, control and AS23 plants were submitted to drought and cold. These treatments dramatically induced FDH transcripts in control plants but, whatever the growth conditions, no 1.4 kb FDH transcripts were detected in leaves of AS23 plants. Amongst various biochemical and molecular differences between stressed AS23 and control plants, the most striking was a dramatically faster accumulation of proline in the leaves of drought-stressed plants under-expressing FDH.

  13. Non-Markovianity-assisted steady state entanglement.

    PubMed

    Huelga, Susana F; Rivas, Ángel; Plenio, Martin B

    2012-04-20

    We analyze the steady state entanglement generated in a coherently coupled dimer system subject to dephasing noise as a function of the degree of Markovianity of the evolution. By keeping fixed the effective noise strength while varying the memory time of the environment, we demonstrate that non-Markovianity is an essential, quantifiable resource that may support the formation of steady state entanglement whereas purely Markovian dynamics governed by Lindblad master equations lead to separable steady states. This result illustrates possible mechanisms leading to long-lived entanglement in purely decohering, possibly local, environments. We present a feasible experimental demonstration of this noise assisted phenomenon using a system of trapped ions.

  14. Relationships of body mass index with serum carotenoids, tocopherols and retinol at steady-state and in response to a carotenoid-rich vegetable diet intervention in Filipino schoolchildren.

    PubMed

    Ribaya-Mercado, Judy D; Maramag, Cherry C; Tengco, Lorena W; Blumberg, Jeffrey B; Solon, Florentino S

    2008-04-01

    In marginally nourished children, information is scarce regarding the circulating concentrations of carotenoids and tocopherols, and physiological factors influencing their circulating levels. We determined the serum concentrations of carotenoids, tocopherols and retinol at steady state and in response to a 9-week vegetable diet intervention in 9-12-year-old girls (n=54) and boys (n=65) in rural Philippines. We determined cross-sectional relationships of BMI (body mass index) with serum micronutrient levels, and whether BMI is a determinant of serum carotenoid responses to the ingestion of carotenoid-rich vegetables. We measured dietary nutrient intakes and assessed inflammation by measurement of serum C-reactive protein levels. The children had low serum concentrations of carotenoids, tocopherols and retinol as compared with published values for similar-aged children in the U.S.A. The low serum retinol levels can be ascribed to inadequate diets and were not the result of confounding due to inflammation. Significant inverse correlations of BMI and serum all-trans-beta-carotene, 13-cis-beta-carotene, alpha-carotene, lutein, zeaxanthin and alpha-tocopherol (but not beta-cryptoxanthin, lycopene and retinol) were observed among girls at baseline. The dietary intervention markedly enhanced the serum concentrations of all carotenoids. Changes in serum all-trans-beta-carotene and alpha-carotene (but not changes in lutein, zeaxanthin and beta-cryptoxanthin) in response to the dietary intervention were inversely associated with BMI in girls and boys. Thus, in Filipino school-aged children, BMI is inversely related to the steady-state serum concentrations of certain carotenoids and vitamin E, but not vitamin A, and is a determinant of serum beta- and alpha-carotene responses, but not xanthophyll responses, to the ingestion of carotenoid-rich vegetable meals.

  15. A high-density EEG investigation into steady state binaural beat stimulation.

    PubMed

    Goodin, Peter; Ciorciari, Joseph; Baker, Kate; Carey, Anne-Marie; Carrey, Anne-Marie; Harper, Michelle; Kaufman, Jordy

    2012-01-01

    Binaural beats are an auditory phenomenon that has been suggested to alter physiological and cognitive processes including vigilance and brainwave entrainment. Some personality traits measured by the NEO Five Factor Model have been found to alter entrainment using pulsing light stimuli, but as yet no studies have examined if this occurs using steady state presentation of binaural beats for a relatively short presentation of two minutes. This study aimed to examine if binaural beat stimulation altered vigilance or cortical frequencies and if personality traits were involved. Thirty-one participants were played binaural beat stimuli designed to elicit a response at either the Theta (7 Hz) or Beta (16 Hz) frequency bands while undertaking a zero-back vigilance task. EEG was recorded from a high-density electrode cap. No significant differences were found in vigilance or cortical frequency power during binaural beat stimulation compared to a white noise control period. Furthermore, no significant relationships were detected between the above and the Big Five personality traits. This suggests a short presentation of steady state binaural beats are not sufficient to alter vigilance or entrain cortical frequencies at the two bands examined and that certain personality traits were not more susceptible than others.

  16. A High-Density EEG Investigation into Steady State Binaural Beat Stimulation

    PubMed Central

    Goodin, Peter; Ciorciari, Joseph; Baker, Kate; Carrey, Anne-Marie; Harper, Michelle; Kaufman, Jordy

    2012-01-01

    Binaural beats are an auditory phenomenon that has been suggested to alter physiological and cognitive processes including vigilance and brainwave entrainment. Some personality traits measured by the NEO Five Factor Model have been found to alter entrainment using pulsing light stimuli, but as yet no studies have examined if this occurs using steady state presentation of binaural beats for a relatively short presentation of two minutes. This study aimed to examine if binaural beat stimulation altered vigilance or cortical frequencies and if personality traits were involved. Thirty-one participants were played binaural beat stimuli designed to elicit a response at either the Theta (7 Hz) or Beta (16 Hz) frequency bands while undertaking a zero-back vigilance task. EEG was recorded from a high-density electrode cap. No significant differences were found in vigilance or cortical frequency power during binaural beat stimulation compared to a white noise control period. Furthermore, no significant relationships were detected between the above and the Big Five personality traits. This suggests a short presentation of steady state binaural beats are not sufficient to alter vigilance or entrain cortical frequencies at the two bands examined and that certain personality traits were not more susceptible than others. PMID:22496862

  17. Accuracy of auditory steady state and auditory brainstem responses to detect the preventive effect of polyphenols on age-related hearing loss in Sprague-Dawley rats.

    PubMed

    Sanz-Fernández, Ricardo; Sánchez-Rodriguez, Carolina; Granizo, José Juan; Durio-Calero, Enrique; Martín-Sanz, Eduardo

    2016-02-01

    Aging causes histological, electrophysiological and molecular changes in the cochlea. The free radical theory of aging, has obtained consensus, and the mitochondrion is reported to play a key role in aging as a major source of reactive oxygen species. In the last years, there has been a significant increase in the interest in polyphenols because of the antioxidant properties and their role in the prevention of various diseases associated with oxidative stress, including aging. The aim of this study was to evaluate the preventive effect of different polyphenols on ARHL with auditory-evoked potentials. 100 Healthy female Sprague-Dawley (SD) rats were used for this study. Five groups were created based on the age of the rats, in months: 3, 6, 12, 18 and 24 months old. Two additional groups were created based on the treatment received. In the control group, 50 animals were assigned to no treatment. In the treated group, 50 animals were given a vehicle mixture of polyphenols for the half of the life before euthanization. Nine frequencies were tested (0.5-16 kHz) with ASSR and tone-burst ABR, performed on all of the rats prior to sacrifice. 100-μs auditory clicks ABRs were also recorded. A significant decrease in the audition was detected with ABR and ASSR in both treated and non-treated groups, as the different groups became older. This deterioration was more accurately measured at acute frequencies. Significantly lower thresholds were observed in the treated rats in the 6, 12 and 18-month-old group in the treated rats compared with the control group. All of the thresholds elicited using the ASSR technique were lower than the thresholds obtained using the ABR, regardless of the stimulus type. The present study demonstrated the benefits of the polyphenols, which generated a significant protection against ARHL, with significantly improved ASSR and tone-burst ABR auditory thresholds in rats receiving treatment with polyphenols.

  18. Practical steady-state enzyme kinetics.

    PubMed

    Lorsch, Jon R

    2014-01-01

    Enzymes are key components of most biological processes. Characterization of enzymes is therefore frequently required during the study of biological systems. Steady-state kinetics provides a simple and rapid means of assessing the substrate specificity of an enzyme. When combined with site-directed mutagenesis (see Site-Directed Mutagenesis), it can be used to probe the roles of particular amino acids in the enzyme in substrate recognition and catalysis. Effects of interaction partners and posttranslational modifications can also be assessed using steady-state kinetics. This overview explains the general principles of steady-state enzyme kinetics experiments in a practical, rather than theoretical, way. Any biochemistry textbook will have a section on the theory of Michaelis-Menten kinetics, including derivations of the relevant equations. No specific enzymatic assay is described here, although a method for monitoring product formation or substrate consumption over time (an assay) is required to perform the experiments described.

  19. Network inference in the nonequilibrium steady state

    NASA Astrophysics Data System (ADS)

    Dettmer, Simon L.; Nguyen, H. Chau; Berg, Johannes

    2016-11-01

    Nonequilibrium systems lack an explicit characterization of their steady state like the Boltzmann distribution for equilibrium systems. This has drastic consequences for the inference of the parameters of a model when its dynamics lacks detailed balance. Such nonequilibrium systems occur naturally in applications like neural networks and gene regulatory networks. Here, we focus on the paradigmatic asymmetric Ising model and show that we can learn its parameters from independent samples of the nonequilibrium steady state. We present both an exact inference algorithm and a computationally more efficient, approximate algorithm for weak interactions based on a systematic expansion around mean-field theory. Obtaining expressions for magnetizations and two- and three-point spin correlations, we establish that these observables are sufficient to infer the model parameters. Further, we discuss the symmetries characterizing the different orders of the expansion around the mean field and show how different types of dynamics can be distinguished on the basis of samples from the nonequilibrium steady state.

  20. Pre-Steady-State Decoding of the Bicoid Morphogen Gradient

    PubMed Central

    Bergmann, Sven; Sandler, Oded; Sberro, Hila; Shnider, Sara; Schejter, Eyal; Shilo, Ben-Zion; Barkai, Naama

    2007-01-01

    Morphogen gradients are established by the localized production and subsequent diffusion of signaling molecules. It is generally assumed that cell fates are induced only after morphogen profiles have reached their steady state. Yet, patterning processes during early development occur rapidly, and tissue patterning may precede the convergence of the gradient to its steady state. Here we consider the implications of pre-steady-state decoding of the Bicoid morphogen gradient for patterning of the anterior–posterior axis of the Drosophila embryo. Quantitative analysis of the shift in the expression domains of several Bicoid targets (gap genes) upon alteration of bcd dosage, as well as a temporal analysis of a reporter for Bicoid activity, suggest that a transient decoding mechanism is employed in this setting. We show that decoding the pre-steady-state morphogen profile can reduce patterning errors caused by fluctuations in the rate of morphogen production. This can explain the surprisingly small shifts in gap and pair-rule gene expression domains observed in response to alterations in bcd dosage. PMID:17298180

  1. High-frequency combination coding-based steady-state visual evoked potential for brain computer interface

    SciTech Connect

    Zhang, Feng; Zhang, Xin; Xie, Jun; Li, Yeping; Han, Chengcheng; Lili, Li; Wang, Jing; Xu, Guang-Hua

    2015-03-10

    This study presents a new steady-state visual evoked potential (SSVEP) paradigm for brain computer interface (BCI) systems. The goal of this study is to increase the number of targets using fewer stimulation high frequencies, with diminishing subject’s fatigue and reducing the risk of photosensitive epileptic seizures. The new paradigm is High-Frequency Combination Coding-Based High-Frequency Steady-State Visual Evoked Potential (HFCC-SSVEP).Firstly, we studied SSVEP high frequency(beyond 25 Hz)response of SSVEP, whose paradigm is presented on the LED. The SNR (Signal to Noise Ratio) of high frequency(beyond 40 Hz) response is very low, which is been unable to be distinguished through the traditional analysis method; Secondly we investigated the HFCC-SSVEP response (beyond 25 Hz) for 3 frequencies (25Hz, 33.33Hz, and 40Hz), HFCC-SSVEP produces n{sup n} with n high stimulation frequencies through Frequence Combination Code. Further, Animproved Hilbert-huang transform (IHHT)-based variable frequency EEG feature extraction method and a local spectrum extreme target identification algorithmare adopted to extract time-frequency feature of the proposed HFCC-SSVEP response.Linear predictions and fixed sifting (iterating) 10 time is used to overcome the shortage of end effect and stopping criterion,generalized zero-crossing (GZC) is used to compute the instantaneous frequency of the proposed SSVEP respondent signals, the improved HHT-based feature extraction method for the proposed SSVEP paradigm in this study increases recognition efficiency, so as to improve ITR and to increase the stability of the BCI system. what is more, SSVEPs evoked by high-frequency stimuli (beyond 25Hz) minimally diminish subject’s fatigue and prevent safety hazards linked to photo-induced epileptic seizures, So as to ensure the system efficiency and undamaging.This study tests three subjects in order to verify the feasibility of the proposed method.

  2. A simplified analytical solution for thermal response of a one-dimensional, steady state transpiration cooling system in radiative and convective environment

    NASA Technical Reports Server (NTRS)

    Kubota, H.

    1976-01-01

    A simplified analytical method for calculation of thermal response within a transpiration-cooled porous heat shield material in an intense radiative-convective heating environment is presented. The essential assumptions of the radiative and convective transfer processes in the heat shield matrix are the two-temperature approximation and the specified radiative-convective heatings of the front surface. Sample calculations for porous silica with CO2 injection are presented for some typical parameters of mass injection rate, porosity, and material thickness. The effect of these parameters on the cooling system is discussed.

  3. The Politics of the Steady State

    ERIC Educational Resources Information Center

    Taylor, Charles

    1978-01-01

    A steady state society has limits pertaining to population size, non-renewable resources, and production which emits heat or substances into soil, water, or the atmosphere. Respecting these limits means renouncing exponential quantitative growth and accepting a universally available consumption standard. (SW)

  4. Steady-state inductive spheromak operation

    DOEpatents

    Janos, A.C.; Jardin, S.C.; Yamada, M.

    1985-02-20

    The inductively formed spheromak configuration (S-1) can be maintained in a highly stable and controlled fashion. The method described eliminates the restriction to pulsed spheromak plasmas or the use of electrodes for steady-state operation, and, therefore, is a reactor-relevant formation and sustainment method.

  5. Steady-state inductive spheromak operation

    DOEpatents

    Janos, Alan C.; Jardin, Stephen C.; Yamada, Masaaki

    1987-01-01

    The inductively formed spheromak plasma can be maintained in a highly stable and controlled fashion. Steady-state operation is obtained by forming the plasma in the linked mode, then oscillating the poloidal and toroidal fields such that they have different phases. Preferably, the poloidal and magnetic fields are 90.degree. out of phase.

  6. Steady-state spheromak reactor studies. Revision

    SciTech Connect

    Krakowski, R.A.; Hagenson, R.L.

    1985-01-01

    After summarizing the essential elements of a gun-sustained spheromak, the potential for a steady-state is explored by means of a comprehensive physics/engineering/costing model. A range of cost-optimized reactor design point is presented, and the sensitivity of cost to key physics, engineering, and operational variables is reported.

  7. Steady-state linear optical properties and Kerr nonlinear optical response of a four-level quantum dot with phonon-assisted transition

    NASA Astrophysics Data System (ADS)

    Yan-Chao, She; Ting-Ting, Luo; Wei-Xi, Zhang; Mao-Wu, Ran; Deng-Long, Wang

    2016-01-01

    The linear optical properties and Kerr nonlinear optical response in a four-level loop configuration GaAs/AlGaAs semiconductor quantum dot are analytically studied with the phonon-assisted transition (PAT). It is shown that the changes among a single electromagnetically induced transparency (EIT) window, a double EIT window and the amplification of the probe field in the absorption curves can be controlled by varying the strength of PAT κ. Meanwhile, double switching from the anomalous dispersion regime to the normal dispersion regime can likely be achieved by increasing the Rabi energy of the external optical control field. Furthermore, we demonstrate that the group velocity of the probe field can be practically regulated by varying the PAT and the intensity of the optical control field. In the nonlinear case, it is shown that the large SPM and XPM can be achieved as linear absorption vanishes simultaneously, and the PAT can suppress both third-order self-Kerr and the cross-Kerr nonlinear effect of the QD. Our study is much more practical than its atomic counterpart due to its flexible design and the controllable interference strength, and may provide some new possibilities for technological applications. Project supported by the National Natural Science Foundation of China (Grant No. 61367003), the Scientific Research Fund of Hunan Provincial Education Department, China (Grant No. 12A140), and the Scientific Research Fund of Guizhou Provincial Education Department, China (Grant Nos. KY[2015]384 and KY[2015]446).

  8. Distinctive Steady-State Heart Rate and Blood Pressure Responses to Passive Robotic Leg Exercise and Functional Electrical Stimulation during Head-Up Tilt

    PubMed Central

    Sarabadani Tafreshi, Amirehsan; Riener, Robert; Klamroth-Marganska, Verena

    2016-01-01

    Introduction: Tilt tables enable early mobilization of patients by providing verticalization. But there is a high risk of orthostatic hypotension provoked by verticalization, especially after neurological diseases such as spinal cord injury. Robot-assisted tilt tables might be an alternative as they add passive robotic leg exercise (PE) that can be enhanced with functional electrical stimulation (FES) to the verticalization, thus reducing the risk of orthostatic hypotension. We hypothesized that the influence of PE on the cardiovascular system during verticalization (i.e., head-up tilt) depends on the verticalization angle, and FES strengthens the PE influence. To test our hypotheses, we investigated the PE effects on the cardiovascular parameters heart rate (HR), and systolic and diastolic blood pressures (sBP, dBP) at different angles of verticalization in a healthy population. Methods: Ten healthy subjects on a robot-assisted tilt table underwent four different study protocols while HR, sBP, and dBP were measured: (1) head-up tilt to 60° and 71° without PE; (2) PE at 20°, 40°, and 60° of head-up tilt; (3) PE while constant FES intensity was applied to the leg muscles, at 20°, 40°, and 60° of head-up tilt; (4) PE with variation of the applied FES intensity at 0°, 20°, 40°, and 60° of head-up tilt. Linear mixed models were used to model changes in HR, sBP, and dBP responses. Results: The models show that: (1) head-up tilt alone resulted in statistically significant increases in HR and dBP, but no change in sBP. (2) PE during head-up tilt resulted in statistically significant changes in HR, sBP, and dBP, but not at each angle and not always in the same direction (i.e., increase or decrease of cardiovascular parameters). Neither adding (3) FES at constant intensity to PE nor (4) variation of FES intensity during PE had any statistically significant effects on the cardiovascular parameters. Conclusion: The effect of PE on the cardiovascular system during

  9. Steady state statistical correlations predict bistability in reaction motifs.

    PubMed

    Chakravarty, Suchana; Barik, Debashis

    2017-03-01

    Various cellular decision making processes are regulated by bistable switches that take graded input signals and convert them to binary all-or-none responses. Traditionally, a bistable switch generated by a positive feedback loop is characterized either by a hysteretic signal response curve with two distinct signaling thresholds or by characterizing the bimodality of the response distribution in the bistable region. To identify the intrinsic bistability of a feedback regulated network, here we propose that bistability can be determined by correlating higher order moments and cumulants (≥2) of the joint steady state distributions of two components connected in a positive feedback loop. We performed stochastic simulations of four feedback regulated models with intrinsic bistability and we show that for a bistable switch with variation of the signal dose, the steady state variance vs. covariance adopts a signatory cusp-shaped curve. Further, we find that the (n + 1)th order cross-cumulant vs. nth order cross-cumulant adopts a closed loop structure for at least n = 3. We also propose that our method is capable of identifying systems without intrinsic bistability even though the system may show bimodality in the marginal response distribution. The proposed method can be used to analyze single cell protein data measured at steady state from experiments such as flow cytometry.

  10. Captured by the pain: pain steady-state evoked potentials are not modulated by selective spatial attention.

    PubMed

    Blöchl, Maria; Franz, Marcel; Miltner, Wolfgang H R; Weiss, Thomas

    2015-04-07

    Attention has been shown to affect the neural processing of pain. However, the exact mechanisms underlying this modulation remain unknown. Here, we used a new method called pain steady-state evoked potentials (PSSEPs) to investigate whether selective spatial attention affects EEG responses to tonic painful stimuli. In general, steady-state evoked potentials reflect changes in the EEG spectrum at a certain frequency that correspond to the frequency of a train of applied stimuli. In this study, high intensity transcutaneous electrical stimulation was delivered to both hands simultaneously with 31 Hz and 37 Hz, respectively. Subject׳s attention was directed to one of the two trains of stimulation in order to detect a small gap that was occasionally interspersed into the stimulus trains. Thereby, they had to ignore the stimulation applied to the other hand. Results show that PSSEPs were induced at 31 Hz and 37 Hz at frontal and central electrodes. PSSEPs occurred contralaterally to the respective hand stimulated with that frequency. Surprisingly, the magnitude of PSSEPs was not modulated by spatial attention towards one of the two stimuli. Our results indicate that attention can hardly be shifted between two simultaneously applied tonic painful stimulations.

  11. Intense steady state neutron source. The CNR reactor

    SciTech Connect

    Difilippo, F.C.; Moon, R.M.; Gambill, W.R.; Moon, R.M.; Primm, R.T. III; West, C.D.

    1986-01-01

    The Center for Neutron Research (CNR) has been proposed in response to the needs - neutron flux, spectrum, and experimental facilities - that have been identified through workshops, studies, and discussions by the neutron-scattering, isotope, and materials irradiation research communities. The CNR is a major new experimental facility consisting of a reactor-based steady state neutron source of unprecedented flux, together with extensive facilities and instruments for neutron scattering, isotope production, materials irradiation, and other areas of research.

  12. Multiple Color Stimulus Induced Steady State Visual Evoked Potentials

    DTIC Science & Technology

    2007-11-02

    MULTIPLE COLOR STIMULUS INDUCED STEADY STATE VISUAL EVOKED POTENTIALS M. Cheng, X. Gao, S. Gao, D. Xu Institute of Biomedical Engineering...characteristics of high SNR and effectiveness in short-term identification of evoked responses. In most of the SSVEP experiments, single high...frequency stimuli are used. To characterize the complex rhythms in SSVEP, a new multiple color stimulus pattern is proposed in this paper. FFT and

  13. Steady- and non-steady-state carbonate-silicate controls on atmospheric CO2

    USGS Publications Warehouse

    Sundquist, E.T.

    1991-01-01

    Two contrasting hypotheses have recently been proposed for the past long-term relation between atmospheric CO2 and the carbonate-silicate geochemical cycle. One approach (Berner, 1990) suggests that CO2 levels have varied in a manner that has maintained chemical weathering and carbonate sedimentation at a steady state with respect to tectonically controlled decarbonation reactions. A second approach (Raymo et al., 1988), applied specificlly to the late Cenozoic, suggests a decrease in CO2 caused by an uplift-induced increase in chemical weathering, without regard to the rate of decarbonation. According to the steady-state (first) hypothesis, increased weathering and carbonate sedimentation are generally associated with increasing atmospheric CO2, whereas the uplift (second) hypothesis implies decreasing CO2 under the same conditions. An ocean-atmosphere-sediment model has been used to assess the response of atmospheric CO2 and carbonate sedimentation to global perturbations in chemical weathering and decarbonation reactions. Although this assessment is theoretical and cannot yet be related to the geologic record, the model simulations compare steady-state and non-steady-state carbonate-silicate cycle response. The e-fold response time of the 'CO2-weathering' feedback mechanism is between 300 and 400 ka. The response of carbonate sedimentation is much more rapid. These response times provide a measure of the strength of steady-state assumptions, and imply that certain systematic relations are sustained throughout steady-state and non-steady-state scenarios for the carbonate-silicate cycle. The simulations suggest that feedbacks can maintain the system near a steady state, but that non-steady-state effects may contribute to long-term trends. The steady-state and uplift hypotheses are not necessarily incompatible over time scales of a few million years. ?? 1991.

  14. Steady state compact toroidal plasma production

    DOEpatents

    Turner, William C.

    1986-01-01

    Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.

  15. Variational methods in steady state diffusion problems

    SciTech Connect

    Lee, C.E.; Fan, W.C.P.; Bratton, R.L.

    1983-01-01

    Classical variational techniques are used to obtain accurate solutions to the multigroup multiregion one dimensional steady state neutron diffusion equation. Analytic solutions are constructed for benchmark verification. Functionals with cubic trial functions and conservational lagrangian constraints are exhibited and compared with nonconservational functionals with respect to neutron balance and to relative flux and current at interfaces. Excellent agreement of the conservational functionals using cubic trial functions is obtained in comparison with analytic solutions.

  16. Theory of Steady-State Superradiance

    NASA Astrophysics Data System (ADS)

    Xu, Minghui

    In this thesis, I describe the theoretical development of the superradiant laser, or laser in the extreme bad-cavity regime. In this regime, the cavity decay rate is much greater than the atomic dynamics. The atoms emit photons into the cavity mode superradiantly in steady state. We develop group-theoretic methods that enable us to exactly solve mesoscopic systems with hundreds of atoms. We demonstrate the synchronization of atomic dipoles in steady-state superradiance. With this synchronized system, we propose conditional Ramsey spectroscopy which allows us to observe Ramsey fringes indefinitely, even in the presence of atomic decoherence. Furthermore, we explore manifestations of synchronization in the quantum realm with two superradiant atomic ensembles. We show that two such ensembles exhibit a dynamical phase transition from two disparate oscillators to quantum phase-locked dynamics. Finally, we study the mechanical eect of the light-atom interaction in the steady-state superradiance. We find efficient many-body cooling of atoms. The work described in this thesis lays the theoretical foundation for the superradiant laser and for a potential future of active optical frequency standards.

  17. Attenuated Fast Steady-State Visual Evoked Potentials During Human Sleep.

    PubMed

    Sharon, Omer; Nir, Yuval

    2017-02-25

    During sleep, external sensory events rarely elicit a behavioral response or affect perception. However, how sensory processing differs between wakefulness and sleep remains unclear. A major difficulty in this field stems from using brief auditory stimuli that often trigger nonspecific high-amplitude "K-complex" responses and complicate interpretation. To overcome this challenge, here we delivered periodic visual flicker stimulation across sleep and wakefulness while recording high-density electroencephalography (EEG) in humans. We found that onset responses can be separated from frequency-specific steady-state visual evoked potentials (SSVEPs) selectively observed over visual cortex. Sustained SSVEPs in response to fast (8/10 Hz) stimulation are substantially stronger in wakefulness than in both nonrapid eye movement (NREM) and REM sleep, whereas SSVEP responses to slow (3/5 Hz) stimulation are stronger in both NREM and REM sleep than in wakefulness. Despite wake-like spontaneous activity, responses in REM sleep were similar to those in NREM sleep and different than wakefulness, in accordance with perceptual disconnection during REM sleep. Finally, analysis of amplitude and phase in single trials revealed that stronger fast SSVEPs in wakefulness are driven by more consistent phase locking and increased induced power. These results suggest that the sleeping brain is unable to effectively synchronize large neuronal populations in response to rapid sensory stimulation.

  18. Intensity fluctuations in steady-state superradiance

    SciTech Connect

    Meiser, D.; Holland, M. J.

    2010-06-15

    Alkaline-earth-metal-like atoms with ultranarrow optical transitions enable superradiance in steady state. The emitted light promises to have an unprecedented stability with a linewidth as narrow as a few millihertz. In order to evaluate the potential usefulness of this light source as an ultrastable oscillator in clock and precision metrology applications, it is crucial to understand the noise properties of this device. In this paper, we present a detailed analysis of the intensity fluctuations by means of Monte Carlo simulations and semiclassical approximations. We find that the light exhibits bunching below threshold, is to a good approximation coherent in the superradiant regime, and is chaotic above the second threshold.

  19. Steady state stresses in ribbon parachute canopies

    NASA Technical Reports Server (NTRS)

    Garrard, W. L.; Wu, K. Y.; Muramoto, K. K.

    1984-01-01

    An experimental study of the steady state stresses in model ribbon parachute canopies is presented. The distribution of circumferential stress was measured in the horizontal ribbons of two parachutes using Omega sensors. Canopy pressure distributions and overall drag were also measured. Testing was conducted in the University of Minnesota Low-Speed Wind Tunnel at dynamic pressures ranging from 1.0 to 1.5 inches of water. The stresses in the parachute canopies were calculated using the parachute structural analysis code, CANO. It was found that the general shape of the measured and calculated stress distributions was fairly similar; however, the measured stresses were somewhat less than the calculated stresses.

  20. Gravitational steady states of solar coronal loops

    NASA Astrophysics Data System (ADS)

    Sugiyama, Linda E.; Asgari-Targhi, M.

    2017-02-01

    Coronal loops on the surface of the sun appear to consist of curved, plasma-confining magnetic flux tubes or "ropes," anchored at both ends in the photosphere. Toroidal loops carrying current are inherently unstable to expansion in the major radius due to toroidal-curvature-induced imbalances in the magnetic and plasma pressures. An ideal MHD analysis of a simple isolated loop with density and pressure higher than the surrounding corona, based on the theory of magnetically confined toroidal plasmas, shows that the radial force balance depends on the loop internal structure and varies over parameter space. It provides a unified picture of simple loop steady states in terms of the plasma beta βo, the inverse aspect ratio ɛ =a /Ro , and the MHD gravitational parameter G ̂≡g a /vA2 , all at the top of the loop, where g is the acceleration due to gravity, a the average minor radius, and vA the shear Alfvén velocity. In the high and low beta tokamak orderings, βo=2 noT /(Bo2/2 μo)˜ɛ1 and ɛ2 , that fit many loops, the solar gravity can sustain nonaxisymmetric steady states at G ̂˜ɛ βo that represent the maximum stable height. At smaller G ̂≤ɛ2βo , the loop is axisymmetric to leading order and stabilized primarily by the two fixed loop ends. Very low beta, nearly force-free, steady states with βo˜ɛ3 may also exist, with or without gravity, depending on higher order effects. The thin coronal loops commonly observed in solar active regions have ɛ ≃0.02 and fit the high beta steady states. G ̂ increases with loop height. Fatter loops in active regions that form along magnetic neutral lines and may lead to solar flares and Coronal Mass Ejections have ɛ ≃0.1 -0.2 and may fit the low beta ordering. Larger loops tend to have G ̂>ɛ βo and be unstable to radial expansion because the exponential hydrostatic reduction in the density at the loop-top reduces the gravitational force -ρG ̂ R ̂ below the level that balances expansion, in agreement with

  1. Intense steady state electron beam generator

    DOEpatents

    Hershcovitch, Ady; Kovarik, Vincent J.; Prelec, Krsto

    1990-01-01

    An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source.

  2. Energy repartition in the nonequilibrium steady state

    NASA Astrophysics Data System (ADS)

    Yan, Peng; Bauer, Gerrit E. W.; Zhang, Huaiwu

    2017-01-01

    The concept of temperature in nonequilibrium thermodynamics is an outstanding theoretical issue. We propose an energy repartition principle that leads to a spectral (mode-dependent) temperature in steady-state nonequilibrium systems. The general concepts are illustrated by analytic solutions of the classical Heisenberg spin chain connected to Langevin heat reservoirs with arbitrary temperature profiles. Gradients of external magnetic fields are shown to localize spin waves in a Wannier-Zeemann fashion, while magnon interactions renormalize the spectral temperature. Our generic results are applicable to other thermodynamic systems such as Newtonian liquids, elastic solids, and Josephson junctions.

  3. Steady-state plasma transition in the Venus ionosheath

    NASA Technical Reports Server (NTRS)

    Perez-De-tejada, H.; Intriligator, D. S.; Strangeway, R. J.

    1991-01-01

    The results of an extended analysis of the plasma and electric field data of the Pioneer Venus Orbiter (PVO) are presented. The persistent presence of a plasma transition embedded in the flanks of the Venus ionosheath between the bow shock and the ionopause is reported. This transition is identified by the repeated presence of characteristic bursts in the 30 kHz channel of the electric field detector of the PVO. The observed electric field signals coincide with the onset of different plasma conditions in the inner ionosheath where more rarified plasma fluxes are measured. The repeated identification of this intermediate ionosheath transition in the PVO data indicates that it is present as a steady state feature of the Venus plasma environment. The distribution of PVO orbits in which the transition is observed suggests that it is more favorably detected in the vicinity of and downstream from the terminator.

  4. Statistical steady state in turbulent droplet condensation

    NASA Astrophysics Data System (ADS)

    Siewert, Christoph; Bec, Jérémie; Krstulovic, Giorgio

    2017-01-01

    Motivated by systems in which droplets grow and shrink in a turbulence-driven supersaturation field, we investigate the problem of turbulent condensation in a general manner. Using direct numerical simulations we show that the turbulent fluctuations of the supersaturation field offer different conditions for the growth of droplets which evolve in time due to turbulent transport and mixing. Based on that, we propose a Lagrangian stochastic model for condensation and evaporation of small droplets in turbulent flows. It consists of a set of stochastic integro-differential equations for the joint evolution of the squared radius and the supersaturation along the droplet trajectories. The model has two parameters fixed by the total amount of water and the thermodynamic properties, as well as the Lagrangian integral timescale of the turbulent supersaturation. The model reproduces very well the droplet size distributions obtained from direct numerical simulations and their time evolution. A noticeable result is that, after a stage where the squared radius simply diffuses, the system converges exponentially fast to a statistical steady state independent of the initial conditions. The main mechanism involved in this convergence is a loss of memory induced by a significant number of droplets undergoing a complete evaporation before growing again. The statistical steady state is characterised by an exponential tail in the droplet mass distribution. These results reconcile those of earlier numerical studies, once these various regimes are considered.

  5. An Intuitive Approach to Steady-State Kinetics.

    ERIC Educational Resources Information Center

    Raines, Ronald T.; Hansen, David E.

    1988-01-01

    Attempts to provide an intuitive understanding of steady state kinetics. Discusses the meaning of steady state and uses free energy profiles to illustrate and follow complex kinetic and thermodynamic relationships. Provides examples with explanations. (MVL)

  6. STEADY-STATE SOLUTIONS TO PBPK MODELS AND THEIR APPLICATIONS TO RISK ASSESSMENT I: ROUTE-TO-ROUTE EXTRAPOLATION OF VOLATILE CHEMICALS - AUTHORS' RESPONSE TO LETTER BY DR. KENNETH BOGEN

    EPA Science Inventory

    Dear Editor: We are disappointed that Dr. Bogen felt our paper(1) “adds little new” to previously published work utilizing steady state solutions to PBPK models. Moreover, it was not our intention to be either “dismissive” or “misleading” in our admittedly brief citation of the...

  7. Vocal sequences suppress spiking in the bat auditory cortex while evoking concomitant steady-state local field potentials

    NASA Astrophysics Data System (ADS)

    Hechavarría, Julio C.; Beetz, M. Jerome; Macias, Silvio; Kössl, Manfred

    2016-12-01

    The mechanisms by which the mammalian brain copes with information from natural vocalization streams remain poorly understood. This article shows that in highly vocal animals, such as the bat species Carollia perspicillata, the spike activity of auditory cortex neurons does not track the temporal information flow enclosed in fast time-varying vocalization streams emitted by conspecifics. For example, leading syllables of so-called distress sequences (produced by bats subjected to duress) suppress cortical spiking to lagging syllables. Local fields potentials (LFPs) recorded simultaneously to cortical spiking evoked by distress sequences carry multiplexed information, with response suppression occurring in low frequency LFPs (i.e. 2–15 Hz) and steady-state LFPs occurring at frequencies that match the rate of energy fluctuations in the incoming sound streams (i.e. >50 Hz). Such steady-state LFPs could reflect underlying synaptic activity that does not necessarily lead to cortical spiking in response to natural fast time-varying vocal sequences.

  8. Vocal sequences suppress spiking in the bat auditory cortex while evoking concomitant steady-state local field potentials

    PubMed Central

    Hechavarría, Julio C.; Beetz, M. Jerome; Macias, Silvio; Kössl, Manfred

    2016-01-01

    The mechanisms by which the mammalian brain copes with information from natural vocalization streams remain poorly understood. This article shows that in highly vocal animals, such as the bat species Carollia perspicillata, the spike activity of auditory cortex neurons does not track the temporal information flow enclosed in fast time-varying vocalization streams emitted by conspecifics. For example, leading syllables of so-called distress sequences (produced by bats subjected to duress) suppress cortical spiking to lagging syllables. Local fields potentials (LFPs) recorded simultaneously to cortical spiking evoked by distress sequences carry multiplexed information, with response suppression occurring in low frequency LFPs (i.e. 2–15 Hz) and steady-state LFPs occurring at frequencies that match the rate of energy fluctuations in the incoming sound streams (i.e. >50 Hz). Such steady-state LFPs could reflect underlying synaptic activity that does not necessarily lead to cortical spiking in response to natural fast time-varying vocal sequences. PMID:27976691

  9. Steady-state models of photosynthesis.

    PubMed

    von Caemmerer, Susanne

    2013-09-01

    In the challenge to increase photosynthetic rate per leaf area mathematical models of photosynthesis can be used to help interpret gas exchange measurements made under different environmental conditions and predict underlying photosynthetic biochemistry. To do this successfully it is important to improve the modelling of temperature dependencies of CO₂ assimilation and gain better understanding of internal CO₂ diffusion limitations. Despite these shortcomings steady-state models of photosynthesis provide simple easy to use tools for thought experiments to explore photosynthetic pathway changes such as redirecting photorespiratory CO₂, inserting bicarbonate pumps into C₃ chloroplasts or inserting C₄ photosynthesis into rice. Here a number of models derived from the C₃ model by Farquhar, von Caemmerer and Berry are discussed and compared.

  10. Steady-State Motion Visual Evoked Potential (SSMVEP) Based on Equal Luminance Colored Enhancement

    PubMed Central

    Han, Chengcheng; Zhang, Sicong; Luo, Ailing; Chen, Chaoyang

    2017-01-01

    Steady-state visual evoked potential (SSVEP) is one of the typical stimulation paradigms of brain-computer interface (BCI). It has become a research approach to improve the performance of human-computer interaction, because of its advantages including multiple objectives, less recording electrodes for electroencephalogram (EEG) signals, and strong anti-interference capacity. Traditional SSVEP using light flicker stimulation may cause visual fatigue with a consequent reduction of recognition accuracy. To avoid the negative impacts on the brain response caused by prolonged strong visual stimulation for SSVEP, steady-state motion visual evoked potential (SSMVEP) stimulation method was used in this study by an equal-luminance colored ring-shaped checkerboard paradigm. The movement patterns of the checkerboard included contraction and expansion, which produced less discomfort to subjects. Feature recognition algorithms based on power spectrum density (PSD) peak was used to identify the peak frequency on PSD in response to visual stimuli. Results demonstrated that the equal-luminance red-green stimulating paradigm within the low frequency spectrum (lower than 15 Hz) produced higher power of SSMVEP and recognition accuracy than black-white stimulating paradigm. PSD-based SSMVEP recognition accuracy was 88.15±6.56%. There was no statistical difference between canonical correlation analysis (CCA) (86.57±5.37%) and PSD on recognition accuracy. This study demonstrated that equal-luminance colored ring-shaped checkerboard visual stimulation evoked SSMVEP with better SNR on low frequency spectrum of power density and improved the interactive performance of BCI. PMID:28060906

  11. Steady-state and non-steady state operation of counter-current chromatography devices.

    PubMed

    Kostanyan, Artak E; Ignatova, Svetlana N; Sutherland, Ian A; Hewitson, Peter; Zakhodjaeva, Yulya A; Erastov, Andrey A

    2013-11-01

    Different variants of separation processes based on steady-state (continuous sample loading) and non-steady state (batch) operating modes of CCC columns have been analyzed and compared. The analysis is carried out on the basis of the modified equilibrium cell model, which takes into account both mechanisms of band broadening - interphase mass transfer and axial mixing. A full theoretical treatment of the intermittent counter-current chromatography with short sample loading time is performed. Analytical expressions are presented allowing the simulation of the intermittent counter-current chromatography separations for various experimental conditions. Chromatographic and extraction separations have been compared and advantages and disadvantages of the two methods have been evaluated. Further technical development of the CCC machines to implement counter-current extraction separations is considered.

  12. Steady State Vapor Bubble in Pool Boiling

    PubMed Central

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.

    2016-01-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics. PMID:26837464

  13. Inconsistencies in steady-state thermodynamics

    NASA Astrophysics Data System (ADS)

    Dickman, Ronald; Motai, Ricardo

    2014-03-01

    We address the issue of extending thermodynamics to nonequilibrium steady states. Using driven stochastic lattice gases, we ask whether consistent definitions of an effective chemical potential μ, and an effective temperature Te, are possible. μ and Te are determined via coexistence, i.e., zero flux of particles and energy between the driven system and a reservoir. In the lattice gas with nearest-neighbor exclusion, temperature is not relevant, and we find that the effective chemical potential, a function of density and drive strength, satisfies the zeroth law, and correctly predicts the densities of coexisting systems. In the Katz-Lebowitz-Spohn driven lattice gas both μ and Te need to be defined. We show analytically that in this case the zeroth law is violated for Metropolis exchange rates, and determine the size of the violations numerically. The zeroth law appears to be violated for generic exchange rates. Remarkably, the system-reservoir coupling proposed by Sasa and Tasaki [J. Stat. Phys. 125, 125 (2006), 10.1007/s10955-005-9021-7] is free of inconsistencies, and the zeroth law holds. This is because the rate depends only on the state of the donor system, and is independent of that of the acceptor.

  14. Maximal lactate steady state in Judo

    PubMed Central

    de Azevedo, Paulo Henrique Silva Marques; Pithon-Curi, Tania; Zagatto, Alessandro Moura; Oliveira, João; Perez, Sérgio

    2014-01-01

    Summary Background: the purpose of this study was to verify the validity of respiratory compensation threshold (RCT) measured during a new single judo specific incremental test (JSIT) for aerobic demand evaluation. Methods: to test the validity of the new test, the JSIT was compared with Maximal Lactate Steady State (MLSS), which is the gold standard procedure for aerobic demand measuring. Eight well-trained male competitive judo players (24.3 ± 7.9 years; height of 169.3 ± 6.7cm; fat mass of 12.7 ± 3.9%) performed a maximal incremental specific test for judo to assess the RCT and performed on 30-minute MLSS test, where both tests were performed mimicking the UchiKomi drills. Results: the intensity at RCT measured on JSIT was not significantly different compared to MLSS (p=0.40). In addition, it was observed high and significant correlation between MLSS and RCT (r=0.90, p=0.002), as well as a high agreement. Conclusions: RCT measured during JSIT is a valid procedure to measure the aerobic demand, respecting the ecological validity of Judo. PMID:25332923

  15. Steady State Vapor Bubble in Pool Boiling.

    PubMed

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C; Maroo, Shalabh C

    2016-02-03

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.

  16. Steady state volcanism - Evidence from eruption histories of polygenetic volcanoes

    NASA Technical Reports Server (NTRS)

    Wadge, G.

    1982-01-01

    Cumulative volcano volume curves are presented as evidence for steady-state behavior at certain volcanoes and to develop a model of steady-state volcanism. A minimum criteria of five eruptions over a year was chosen to characterize a steady-state volcano. The subsequent model features a constant head of magmatic pressure from a reservoir supplied from depth, a sawtooth curve produced by the magma arrivals or discharge from the subvolcanic reservoir, large volume eruptions with long repose periods, and conditions of nonsupply of magma. The behavior of Mts. Etna, Nyamuragira, and Kilauea are described and show continuous levels of plasma output resulting in cumulative volume increases. Further discussion is made of steady-state andesitic and dacitic volcanism, long term patterns of the steady state, and magma storage, and the lack of a sufficient number of steady-state volcanoes in the world is taken as evidence that further data is required for a comprehensive model.

  17. Defining Features of Steady-State Timbres

    NASA Astrophysics Data System (ADS)

    Hall, Michael D.

    1995-01-01

    Three experiments were conducted to define steady -state features of timbre for a group of well-trained musicians. Experiment 1 evaluated whether or not pairs of three critical dimensions of timbre--spectral slope (6 or 12 dB/octave), formant structure (/a/ or /i/ vowel), and inharmonicity of partials (harmonic or inharmonic)--were processed in a separable or integral fashion. Accuracy and speed for classification of values along one dimension were examined under different conditions of variability along a second dimension (fixed, correlated, or orthogonal). Spectral slope and formant structure were integral, with classification speed for the target dimension depending upon variability along the orthogonal dimension. In contrast, evidence of asymmetric separability was obtained for inharmonicity. Classification speed for slope and formant structure did not depend on inharmonicity, whereas RT for the target dimension of inharmonicity was strongly influenced by variability along either slope or formant structure. Since the results of Experiment 1 provided a basis for manipulating spectral slope and formant structure as a single feature, these dimensions were correlated in Experiment 2. Subjects searched for targets containing potential features of timbre within arrays of 1-4 inharmonic distractor pitches. Distractors were homogeneous with respect to the dimensions of timbre. When targets had /a/ formants with shallow spectral slopes, search time increased nonlinearly with array size in a manner consistent with the parallel processing of items, and thus feature search. Feature search was not obtained for targets with /i/ formants and steep slopes. Thus, the feature was coded as the presence or absence of /a/ formants with shallow spectral slopes. A search task using heterogeneous distractor values along slope/formant structure was used in Experiment 3 to evaluate whether or not the feature of timbre and pitch were automatically conjoined (integral). Search times for

  18. Extending the definition of entropy to nonequilibrium steady states

    PubMed Central

    Ruelle, David P.

    2003-01-01

    We study the nonequilibrium statistical mechanics of a finite classical system subjected to nongradient forces ξ and maintained at fixed kinetic energy (Hoover–Evans isokinetic thermostat). We assume that the microscopic dynamics is sufficiently chaotic (Gallavotti–Cohen chaotic hypothesis) and that there is a natural nonequilibrium steady-state ρξ. When ξ is replaced by ξ + δξ, one can compute the change δρ of ρξ (linear response) and define an entropy change δS based on energy considerations. When ξ is varied around a loop, the total change of S need not vanish: Outside of equilibrium the entropy has curvature. However, at equilibrium (i.e., if ξ is a gradient) we show that the curvature is zero, and that the entropy S(ξ + δξ) near equilibrium is well defined to second order in δξ. PMID:12629215

  19. Extending the definition of entropy to nonequilibrium steady states.

    PubMed

    Ruelle, David P

    2003-03-18

    We study the nonequilibrium statistical mechanics of a finite classical system subjected to nongradient forces xi and maintained at fixed kinetic energy (Hoover-Evans isokinetic thermostat). We assume that the microscopic dynamics is sufficiently chaotic (Gallavotti-Cohen chaotic hypothesis) and that there is a natural nonequilibrium steady-state rho(xi). When xi is replaced by xi + deltaxi, one can compute the change deltarho of rho(xi) (linear response) and define an entropy change deltaS based on energy considerations. When xi is varied around a loop, the total change of S need not vanish: Outside of equilibrium the entropy has curvature. However, at equilibrium (i.e., if xi is a gradient) we show that the curvature is zero, and that the entropy S(xi + deltaxi) near equilibrium is well defined to second order in deltaxi.

  20. Entropy Production and Non-Equilibrium Steady States

    NASA Astrophysics Data System (ADS)

    Suzuki, Masuo

    2013-01-01

    The long-term issue of entropy production in transport phenomena is solved by separating the symmetry of the non-equilibrium density matrix ρ(t) in the von Neumann equation, as ρ(t) = ρs(t) + ρa(t) with the symmetric part ρs(t) and antisymmetric part ρa(t). The irreversible entropy production (dS/dt)irr is given in M. Suzuki, Physica A 390(2011)1904 by (dS/dt)irr = Tr( {H}(dρ s{(t)/dt))}/T for the Hamiltonian {H} of the relevant system. The general formulation of the extended von Neumann equation with energy supply and heat extraction is reviewed from the author's paper (M. S.,Physica A391(2012)1074). irreversibility; entropy production; transport phenomena; electric conduction; thermal conduction; linear response; Kubo formula; steady state; non-equilibrium density matrix; energy supply; symmetry-separated von Neumann equation; unboundedness.

  1. The steady-state assumption in oscillating and growing systems.

    PubMed

    Reimers, Alexandra-M; Reimers, Arne C

    2016-10-07

    The steady-state assumption, which states that the production and consumption of metabolites inside the cell are balanced, is one of the key aspects that makes an efficient analysis of genome-scale metabolic networks possible. It can be motivated from two different perspectives. In the time-scales perspective, we use the fact that metabolism is much faster than other cellular processes such as gene expression. Hence, the steady-state assumption is derived as a quasi-steady-state approximation of the metabolism that adapts to the changing cellular conditions. In this article we focus on the second perspective, stating that on the long run no metabolite can accumulate or deplete. In contrast to the first perspective it is not immediately clear how this perspective can be captured mathematically and what assumptions are required to obtain the steady-state condition. By presenting a mathematical framework based on the second perspective we demonstrate that the assumption of steady-state also applies to oscillating and growing systems without requiring quasi-steady-state at any time point. However, we also show that the average concentrations may not be compatible with the average fluxes. In summary, we establish a mathematical foundation for the steady-state assumption for long time periods that justifies its successful use in many applications. Furthermore, this mathematical foundation also pinpoints unintuitive effects in the integration of metabolite concentrations using nonlinear constraints into steady-state models for long time periods.

  2. Tendon organ sensitivity to steady-state isotonic contraction of in-series motor units in feline peroneus tertius muscle.

    PubMed Central

    Petit, J; Scott, J J; Reynolds, K J

    1997-01-01

    1. Measurements have been made of the sensitivity of tendon organs to steady-state, isotonic contractions of single and groups of in-series motor units in the peroneus tertius muscle of the cat hindlimb. 2. Linear relationships were found between the Ib afferent discharge and the contractile tension generated by tetanic stimulation of single motor units. These relationships held for the fast, fatiguable (FF) units and for all but the lowest tensions generated by the slow (S) and some fast, fatigue resistant (FR) units. The sensitivity of the organs was independent of the contractile properties of the units. 3. Groups of three motor units were stimulated isotonically at low rates (around 30 Hz), but asynchronously to produce a smooth tension profile. Again, linear relationships pertained between the discharge rate and the tension, and the sensitivity was the same for different motor unit types. 4. Under isotonic conditions, therefore, the tendon organs showed linear responses to the tension with similar sensitivities, indicating that tendon organs may have the capacity to signal faithfully steady-state contractile tensions. PMID:9097946

  3. Fabrication and Characterization of Ultrathin-ring Electrodes for Pseudo-steady-state Amperometric Detection.

    PubMed

    Kitazumi, Yuki; Hamamoto, Katsumi; Noda, Tatsuo; Shirai, Osamu; Kano, Kenji

    2015-01-01

    The fabrication of ultrathin-ring electrodes with a diameter of 2 mm and a thickness of 100 nm is established. The ultrathin-ring electrodes provide a large density of pseudo-steady-state currents, and realize pseudo-steady-state amperometry under quiescent conditions without a Faraday cage. Under the limiting current conditions, the current response at the ultrathin-ring electrode can be well explained by the theory of the microband electrode response. Cyclic voltammograms at the ultrathin-ring electrode show sigmoidal characteristics with some hysteresis. Numerical simulation reveals that the hysteresis can be ascribed to the time-dependence of pseudo-steady-state current. The performance of amperometry with the ultrathin-ring electrode has been verified in its application to redox enzyme kinetic measurements.

  4. A Note on Equations for Steady-State Optimal Landscapes

    SciTech Connect

    Liu, H.H.

    2010-06-15

    Based on the optimality principle (that the global energy expenditure rate is at its minimum for a given landscape under steady state conditions) and calculus of variations, we have derived a group of partial differential equations for describing steady-state optimal landscapes without explicitly distinguishing between hillslopes and channel networks. Other than building on the well-established Mining's equation, this work does not rely on any empirical relationships (such as those relating hydraulic parameters to local slopes). Using additional constraints, we also theoretically demonstrate that steady-state water depth is a power function of local slope, which is consistent with field data.

  5. Steady-state decoupling and design of linear multivariable systems

    NASA Technical Reports Server (NTRS)

    Thaler, G. J.

    1974-01-01

    A constructive criterion for decoupling the steady states of a linear time-invariant multivariable system is presented. This criterion consists of a set of inequalities which, when satisfied, will cause the steady states of a system to be decoupled. Stability analysis and a new design technique for such systems are given. A new and simple connection between single-loop and multivariable cases is found. These results are then applied to the compensation design for NASA STOL C-8A aircraft. Both steady-state decoupling and stability are justified through computer simulations.

  6. Steady-state sweep visual evoked potential processing denoised by wavelet transform

    NASA Astrophysics Data System (ADS)

    Weiderpass, Heinar A.; Yamamoto, Jorge F.; Salomão, Solange R.; Berezovsky, Adriana; Pereira, Josenilson M.; Sacai, Paula Y.; de Oliveira, José P.; Costa, Marcio A.; Burattini, Marcelo N.

    2008-03-01

    Visually evoked potential (VEP) is a very small electrical signal originated in the visual cortex in response to periodic visual stimulation. Sweep-VEP is a modified VEP procedure used to measure grating visual acuity in non-verbal and preverbal patients. This biopotential is buried in a large amount of electroencephalographic (EEG) noise and movement related artifact. The signal-to-noise ratio (SNR) plays a dominant role in determining both systematic and statistic errors. The purpose of this study is to present a method based on wavelet transform technique for filtering and extracting steady-state sweep-VEP. Counter-phase sine-wave luminance gratings modulated at 6 Hz were used as stimuli to determine sweep-VEP grating acuity thresholds. The amplitude and phase of the second-harmonic (12 Hz) pattern reversal response were analyzed using the fast Fourier transform after the wavelet filtering. The wavelet transform method was used to decompose the VEP signal into wavelet coefficients by a discrete wavelet analysis to determine which coefficients yield significant activity at the corresponding frequency. In a subsequent step only significant coefficients were considered and the remaining was set to zero allowing a reconstruction of the VEP signal. This procedure resulted in filtering out other frequencies that were considered noise. Numerical simulations and analyses of human VEP data showed that this method has provided higher SNR when compared with the classical recursive least squares (RLS) method. An additional advantage was a more appropriate phase analysis showing more realistic second-harmonic amplitude value during phase brake.

  7. The steady-state visual evoked potential in vision research: A review

    PubMed Central

    Norcia, Anthony M.; Appelbaum, L. Gregory; Ales, Justin M.; Cottereau, Benoit R.; Rossion, Bruno

    2015-01-01

    Periodic visual stimulation and analysis of the resulting steady-state visual evoked potentials were first introduced over 80 years ago as a means to study visual sensation and perception. From the first single-channel recording of responses to modulated light to the present use of sophisticated digital displays composed of complex visual stimuli and high-density recording arrays, steady-state methods have been applied in a broad range of scientific and applied settings.The purpose of this article is to describe the fundamental stimulation paradigms for steady-state visual evoked potentials and to illustrate these principles through research findings across a range of applications in vision science. PMID:26024451

  8. An Operational Definition of the Steady State in Enzyme Kinetics.

    ERIC Educational Resources Information Center

    Barnsley, E. A.

    1990-01-01

    The Briggs-Haldane assumption is used as the basis for the development of a kinetic model for enzyme catalysis. An alternative definition of the steady state and examples of realistic mechanisms are provided. (KR)

  9. SNR analysis of high-frequency steady-state visual evoked potentials from the foveal and extrafoveal regions of human retina.

    PubMed

    Lin, Fang-Cheng; Zao, John K; Tu, Kuan-Chung; Wang, Yijun; Huang, Yi-Pai; Chuang, Che-Wei; Kuo, Hen-Yuan; Chien, Yu-Yi; Chou, Ching-Chi; Jung, Tzyy-Ping

    2012-01-01

    With brain-computer interface (BCI) applications in mind, we analyzed the amplitudes and the signal-to-noise ratios (SNR) of steady-state visual evoked potentials (SSVEP) induced in the foveal and extra-foveal regions of human retina. Eight subjects (age 20-55) have been exposed to 2° circular and 16°-18° annular visual stimulation produced by white LED lights flickering between 5Hz and 65Hz in 5Hz increments. Their EEG signals were recorded using a 64-channel NeuroScan system and analyzed using non-parametric spectral and canonical convolution techniques. Subjects' perception of flickering and their levels of comfort towards the visual stimulation were also noted. Almost all subjects showed distinctively higher SNR in their foveal SSVEP responses between 25Hz and 45Hz. They also noticed less flickering and felt more comfortable with the visual stimulation between 30Hz and 45Hz. These empirical evidences suggest that lights flashing above the critical flicker fusion rates (CFF) of human vision may be used as effective and comfortable stimuli in SSVEP BCI applications.

  10. The Enlisted Steady State-Simulation (ESS-SIM) Tool

    DTIC Science & Technology

    2014-07-01

    The Enlisted Steady State-Simulation ( ESS -SIM) Tool David M. Rodney • Peggy A. Golfin • Molly F. McIntosh DIM-2014-U-007587-Final July 2014 This...situation. We built and made use of a simulation model, ESS -Sim (Enlisted Steady- State Simulation), to obtain insights into attainable levels of...fleet manning and estimate the impact of policy changes on fleet man- ning. This information memorandum describes this model. Model overview We built ESS

  11. Steady-state and dynamic network modes for perceptual expectation

    PubMed Central

    Choi, Uk-Su; Sung, Yul-Wan; Ogawa, Seiji

    2017-01-01

    Perceptual expectation can attenuate repetition suppression, the stimulus-induced neuronal response generated by repeated stimulation, suggesting that repetition suppression is a top-down modulatory phenomenon. However, it is still unclear which high-level brain areas are involved and how they interact with low-level brain areas. Further, the temporal range over which perceptual expectation can effectively attenuate repetition suppression effects remains unclear. To elucidate the details of this top-down modulatory process, we used two short and long inter-stimulus intervals for a perceptual expectation paradigm of paired stimulation. We found that top-down modulation enhanced the response to the unexpected stimulus when repetition suppression was weak and that the effect disappeared at 1,000 ms prior to stimulus exposure. The high-level areas involved in this process included the left inferior frontal gyrus (IFG_L) and left parietal lobule (IPL_L). We also found two systems providing modulatory input to the right fusiform face area (FFA_R): one from IFG_L and the other from IPL_L. Most importantly, we identified two states of networks through which perceptual expectation modulates sensory responses: one is a dynamic state and the other is a steady state. Our results provide the first functional magnetic resonance imaging (fMRI) evidence of temporally nested networks in brain processing. PMID:28079163

  12. Steady-state and dynamic network modes for perceptual expectation.

    PubMed

    Choi, Uk-Su; Sung, Yul-Wan; Ogawa, Seiji

    2017-01-12

    Perceptual expectation can attenuate repetition suppression, the stimulus-induced neuronal response generated by repeated stimulation, suggesting that repetition suppression is a top-down modulatory phenomenon. However, it is still unclear which high-level brain areas are involved and how they interact with low-level brain areas. Further, the temporal range over which perceptual expectation can effectively attenuate repetition suppression effects remains unclear. To elucidate the details of this top-down modulatory process, we used two short and long inter-stimulus intervals for a perceptual expectation paradigm of paired stimulation. We found that top-down modulation enhanced the response to the unexpected stimulus when repetition suppression was weak and that the effect disappeared at 1,000 ms prior to stimulus exposure. The high-level areas involved in this process included the left inferior frontal gyrus (IFG_L) and left parietal lobule (IPL_L). We also found two systems providing modulatory input to the right fusiform face area (FFA_R): one from IFG_L and the other from IPL_L. Most importantly, we identified two states of networks through which perceptual expectation modulates sensory responses: one is a dynamic state and the other is a steady state. Our results provide the first functional magnetic resonance imaging (fMRI) evidence of temporally nested networks in brain processing.

  13. ROLE OF NMDA, NICOTINIC, AND GABA RECEPTORS IN THE STEADY STATE VISUAL EVOKED POTENTIAL IN RATS.

    EPA Science Inventory

    This manuscript characterizes the receptor pathways involved in pattern-evoked potential generation in rats

    " NMDA and nicotinic acetylcholine receptors appear to be involved in the generation of the steady-state pattern evoked response in vivo.

    " The pattern evok...

  14. Abnormal Attention in Autism Shown by Steady-State Visual Evoked Potentials.

    ERIC Educational Resources Information Center

    Belmonte, Matthew

    2000-01-01

    Eight males with autism were required to shift attention between rapidly flashed targets alternating between left and right visual hemifields. When targets were separated by less than 700 ms, steady-state brain electrical response in both hemispheres was augmented and background EEG decreased for rightward shifts as compared with leftward shifts.…

  15. Mechanism of Non-Steady State Dissolution of Goethite in the Presence of Siderophores

    NASA Astrophysics Data System (ADS)

    Reichard, P. U.; Kretzschmar, R.; Kraemer, S. M.

    2003-12-01

    reproducible and the magnitude of dissolved iron corresponds to the reaction time of goethite with oxalate. Analogous non-steady state experiments were conducted, but with two other siderophores or citrate to induce non-steady state conditions: 40 microM of the bacterial siderophore desferrioxamine B (DFO-B), 40 microM of the fungal siderophore Ferrichrome, and 3 mM of citrate. Fast dissolution of iron was observed as a response to non-steady state. We also substituted the non-siderophore ligand oxalate by 500 microM citrate or 750 microM malonate and again observed fast dissolution after the non-steady state siderophore additions. Independent of the type of the ligands, a reproducible fast dissolution of iron followed by steady state dissolution was observed after the addition of the non-steady state ligand concentrations. Thus it can be said that the reproducible fast dissolution of iron under non-steady state conditions represents a general geochemical mechanism and an important process in the context of biological iron acquisition in natural systems. References Marschner, H., Roemheld, V. et al. (1986). "Different Strategies in Higher-Plants in Mobilization and Uptake of Iron". Journal of Plant Nutrition 9(3-7): 695-713. Roemheld, V. and Marschner, H. (1986)." Evidence for a Specific Uptake System for Iron Phytosiderophore in Roots of Grasses". Plant Physiology 80(1): 175-180.

  16. Multiple steady states in coupled flow tank reactors

    NASA Astrophysics Data System (ADS)

    Hunt, Katharine L. C.; Kottalam, J.; Hatlee, Michael D.; Ross, John

    1992-05-01

    Coupling between continuous-flow, stirred tank reactors (CSTR's), each having multiple steady states, can produce new steady states with different concentrations of the chemical species in each of the coupled tanks. In this work, we identify a kinetic potential ψ that governs the deterministic time evolution of coupled tank reactors, when the reaction mechanism permits a single-variable description of the states of the individual tanks; examples include the iodate-arsenous acid reaction, a cubic model suggested by Noyes, and two quintic models. Stable steady states correspond to minima of ψ, and unstable steady states to maxima or saddle points; marginally stable states typically correspond to saddle-node points. We illustrate the variation in ψ due to changes in the rate constant for external material intake (k0) and for exchange between tanks (kx). For fixed k0 values, we analyze the changes in numbers and types of steady states as kx increases from zero. We show that steady states disappear by pairwise coalescence; we also show that new steady states may appear with increasing kx, when the reaction mechanism is sufficiently complex. For fixed initial conditions, the steady state ultimately reached in a mixing experiment may depend on the exchange rate constant as a function of time, kx(t) : Adiabatic mixing is obtained in the limit of slow changes in kx(t) and instantaneous mixing in the limit as kx(t)→∞ while t remains small. Analyses based on the potential ψ predict the outcome of mixing experiments for arbitrary kx(t). We show by explicit counterexamples that a prior theory developed by Noyes does not correctly predict the instability points or the transitions between steady states of coupled tanks, to be expected in mixing experiments. We further show that the outcome of such experiments is not connected to the relative stability of steady states in individual tank reactors. We find that coupling may effectively stabilize the tanks. We provide

  17. Steady state solutions to dynamically loaded periodic structures

    NASA Technical Reports Server (NTRS)

    Kalinowski, A. J.

    1980-01-01

    The general problem of solving for the steady state (time domain) dynamic response (i.e., NASTRAN rigid format-8) of a general elastic periodic structure subject to a phase difference loading of the type encountered in traveling wave propagation problems was studied. Two types of structural configurations were considered; in the first type, the structure has a repeating pattern over a span that is long enough to be considered, for all practical purposes, as infinite; in the second type, the structure has structural rotational symmetry in the circumferential direction. The theory and a corresponding set of DMAP instructions which permits the NASTRAN user to automatically alter the rigid format-8 sequence to solve the intended class of problems are presented. Final results are recovered as with any ordinary rigid format-8 solution, except that the results are only printed for the typical periodic segment of the structure. A simple demonstration problem having a known exact solution is used to illustrate the implementation of the procedure.

  18. Maximally reliable spatial filtering of steady state visual evoked potentials.

    PubMed

    Dmochowski, Jacek P; Greaves, Alex S; Norcia, Anthony M

    2015-04-01

    Due to their high signal-to-noise ratio (SNR) and robustness to artifacts, steady state visual evoked potentials (SSVEPs) are a popular technique for studying neural processing in the human visual system. SSVEPs are conventionally analyzed at individual electrodes or linear combinations of electrodes which maximize some variant of the SNR. Here we exploit the fundamental assumption of evoked responses--reproducibility across trials--to develop a technique that extracts a small number of high SNR, maximally reliable SSVEP components. This novel spatial filtering method operates on an array of Fourier coefficients and projects the data into a low-dimensional space in which the trial-to-trial spectral covariance is maximized. When applied to two sample data sets, the resulting technique recovers physiologically plausible components (i.e., the recovered topographies match the lead fields of the underlying sources) while drastically reducing the dimensionality of the data (i.e., more than 90% of the trial-to-trial reliability is captured in the first four components). Moreover, the proposed technique achieves a higher SNR than that of the single-best electrode or the Principal Components. We provide a freely-available MATLAB implementation of the proposed technique, herein termed "Reliable Components Analysis".

  19. Steady-state compartmentalization of lipid membranes by active proteins.

    PubMed Central

    Sabra, M C; Mouritsen, O G

    1998-01-01

    Using a simple microscopic model of lipid-protein interactions, based on the hydrophobic matching principle, we study some generic aspects of lipid-membrane compartmentalization controlled by a dispersion of active integral membrane proteins. The activity of the proteins is simulated by conformational excitations governed by an external drive, and the deexcitation is controlled by interaction of the protein with its lipid surroundings. In response to the flux of energy into the proteins from the environment and the subsequent dissipation of energy into the lipid bilayer, the lipid-protein assembly reorganizes into a steady-state structure with a typical length scale determined by the strength of the external drive. In the specific case of a mixed dimyristoylphosphatidylcholine-distearoylphosphatidylcholine bilayer in the gel-fluid coexistence region, it is shown explicitly by computer simulation that the activity of an integral membrane protein can lead to a compartmentalization of the lipid-bilayer membrane. The compartmentalization is related to the dynamical process of phase separation and lipid domain formation. PMID:9533687

  20. Invertase activity of intact cells of Saccharomyces cerevisiae growing on sugar cane molasses. 1. Steady-state continuous culture tests

    SciTech Connect

    Vitolo, M.; Vairo, M.L.R.; Borzani, W.

    1985-08-01

    During the steady-state continuous culture of Saccharomyces cerevisiae on sugar cane blackstrap molasses under different experimental conditions, oscillatory variations of the invertase activity of the intact yeast cells were observed. The continuous morphological changes of the cells wall and of the periplasmic space affecting the interaction between invertase and sucrose molecules could be responsible by the observed oscillatory phenomena. The average invertase activity at the steady state is linearly correlated to the cell's growth rate.

  1. New Steady-State Quiescent High-Confinement Plasma in an Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Hu, J. S.; Sun, Z.; Guo, H. Y.; Li, J. G.; Wan, B. N.; Wang, H. Q.; Ding, S. Y.; Xu, G. S.; Liang, Y. F.; Mansfield, D. K.; Maingi, R.; Zou, X. L.; Wang, L.; Ren, J.; Zuo, G. Z.; Zhang, L.; Duan, Y. M.; Shi, T. H.; Hu, L. Q.; East Team

    2015-02-01

    A critical challenge facing the basic long-pulse high-confinement operation scenario (H mode) for ITER is to control a magnetohydrodynamic (MHD) instability, known as the edge localized mode (ELM), which leads to cyclical high peak heat and particle fluxes at the plasma facing components. A breakthrough is made in the Experimental Advanced Superconducting Tokamak in achieving a new steady-state H mode without the presence of ELMs for a duration exceeding hundreds of energy confinement times, by using a novel technique of continuous real-time injection of a lithium (Li) aerosol into the edge plasma. The steady-state ELM-free H mode is accompanied by a strong edge coherent MHD mode (ECM) at a frequency of 35-40 kHz with a poloidal wavelength of 10.2 cm in the ion diamagnetic drift direction, providing continuous heat and particle exhaust, thus preventing the transient heat deposition on plasma facing components and impurity accumulation in the confined plasma. It is truly remarkable that Li injection appears to promote the growth of the ECM, owing to the increase in Li concentration and hence collisionality at the edge, as predicted by GYRO simulations. This new steady-state ELM-free H -mode regime, enabled by real-time Li injection, may open a new avenue for next-step fusion development.

  2. Structural simplification of chemical reaction networks in partial steady states.

    PubMed

    Madelaine, Guillaume; Lhoussaine, Cédric; Niehren, Joachim; Tonello, Elisa

    2016-11-01

    We study the structural simplification of chemical reaction networks with partial steady state semantics assuming that the concentrations of some but not all species are constant. We present a simplification rule that can eliminate intermediate species that are in partial steady state, while preserving the dynamics of all other species. Our simplification rule can be applied to general reaction networks with some but few restrictions on the possible kinetic laws. We can also simplify reaction networks subject to conservation laws. We prove that our simplification rule is correct when applied to a module of a reaction network, as long as the partial steady state is assumed with respect to the complete network. Michaelis-Menten's simplification rule for enzymatic reactions falls out as a special case. We have implemented an algorithm that applies our simplification rules repeatedly and applied it to reaction networks from systems biology.

  3. Poissonian steady states: from stationary densities to stationary intensities.

    PubMed

    Eliazar, Iddo

    2012-10-01

    Markov dynamics are the most elemental and omnipresent form of stochastic dynamics in the sciences, with applications ranging from physics to chemistry, from biology to evolution, and from economics to finance. Markov dynamics can be either stationary or nonstationary. Stationary Markov dynamics represent statistical steady states and are quantified by stationary densities. In this paper, we generalize the notion of steady state to the case of general Markov dynamics. Considering an ensemble of independent motions governed by common Markov dynamics, we establish that the entire ensemble attains Poissonian steady states which are quantified by stationary Poissonian intensities and which hold valid also in the case of nonstationary Markov dynamics. The methodology is applied to a host of Markov dynamics, including Brownian motion, birth-death processes, random walks, geometric random walks, renewal processes, growth-collapse dynamics, decay-surge dynamics, Ito diffusions, and Langevin dynamics.

  4. Current Pressure Transducer Application of Model-based Prognostics Using Steady State Conditions

    NASA Technical Reports Server (NTRS)

    Teubert, Christopher; Daigle, Matthew J.

    2014-01-01

    Prognostics is the process of predicting a system's future states, health degradation/wear, and remaining useful life (RUL). This information plays an important role in preventing failure, reducing downtime, scheduling maintenance, and improving system utility. Prognostics relies heavily on wear estimation. In some components, the sensors used to estimate wear may not be fast enough to capture brief transient states that are indicative of wear. For this reason it is beneficial to be capable of detecting and estimating the extent of component wear using steady-state measurements. This paper details a method for estimating component wear using steady-state measurements, describes how this is used to predict future states, and presents a case study of a current/pressure (I/P) Transducer. I/P Transducer nominal and off-nominal behaviors are characterized using a physics-based model, and validated against expected and observed component behavior. This model is used to map observed steady-state responses to corresponding fault parameter values in the form of a lookup table. This method was chosen because of its fast, efficient nature, and its ability to be applied to both linear and non-linear systems. Using measurements of the steady state output, and the lookup table, wear is estimated. A regression is used to estimate the wear propagation parameter and characterize the damage progression function, which are used to predict future states and the remaining useful life of the system.

  5. A simplified approach to estimating the maximal lactate steady state.

    PubMed

    Snyder, A C; Woulfe, T; Welsh, R; Foster, C

    1994-01-01

    The exercise intensity associated with an elevated but stable blood lactate (HLa) concentration during constant load work (the maximal steady state, MSS) has received attention as a candidate for the "optimal" exercise intensity for endurance training. Identification of MSS ordinarily demands direct measurement of HLa or respiratory metabolism. The purpose of this study was to test the ability of heart rate (HR) to identify MSS during steady state exercise, similar to that used in conventional exercise prescription. Trained runners (n = 9) and cyclists (n = 12) performed incremental and steady state exercise. MSS was defined as the highest intensity in which blood lactate concentration increased < 1.0 mM from minutes 10 to 30. The next higher intensity workbout completed was defined as > MSS. HR models related to the presence or absence of steady state conditions were developed from the upper 95% confidence interval of MSS and the lower 95% confidence interval of > MSS. Cross validation of the model to predict MSS was performed using 21 running and 45 cycling exercise bouts in a separate group. Using the MSS upper 95% confidence interval model 84% and 76% of workbouts were correctly predicted in cyclists and runners, respectively. Using the > MSS lower 95% confidence interval model, 76% and 81% of workbouts were correctly predicted in cyclists and runners, respectively. Prediction errors tended to incorrectly predict non-steady state conditions when steady state had occurred (16/26) (62%). We conclude that use of these simple HR models may predict MSS with sufficient accuracy to be useful when direct HLa measurement is not available.

  6. Steady-state error of a system with fuzzy controller.

    PubMed

    Butkiewicz, B S

    1998-01-01

    We consider the problem of control error of a fuzzy system with feedback. The system consists of a plant, linear or nonlinear, fuzzy controller, and feedback loop. As controller we use both PD and PI fuzzy type controllers. We apply different t-norm and co-norm: logic, algebraic, Yager, Hamacher, bounded, drastic, etc. in the process of fuzzy reasoning. Triangular shape of membership functions is supposed, but we generalize the results obtained. Steady-state error of a system is calculated. We have obtained very interesting results. The steady-state error is identical for pairs of triangular t- and co-norms.

  7. Mapping current fluctuations of stochastic pumps to nonequilibrium steady states

    NASA Astrophysics Data System (ADS)

    Rotskoff, Grant M.

    2017-03-01

    We show that current fluctuations in a stochastic pump can be robustly mapped to fluctuations in a corresponding time-independent nonequilibrium steady state. We thus refine a recently proposed mapping so that it ensures equivalence of not only the averages, but also optimal representation of fluctuations in currents and density. Our mapping leads to a natural decomposition of the entropy production in stochastic pumps similar to the "housekeeping" heat. As a consequence of the decomposition of entropy production, the current fluctuations in weakly perturbed stochastic pumps are shown to satisfy a universal bound determined by the steady state entropy production.

  8. Steady-State Pursuit Is Driven by Object Motion Rather Than the Vector Average of Local Motions

    NASA Technical Reports Server (NTRS)

    Stone, Leland S.; Beutter, B. R.; Lorenceau, J. D.; Ahumada, Al (Technical Monitor)

    1997-01-01

    We have previously shown that humans can pursue the motion of objects whose trajectories can be recovered only by spatio-temporal integration of local motion signals. We now explore the integration rule used to derive the target-motion signal driving pursuit. We measured the pursuit response of 4 observers (2 naive) to the motion of a line-figure diamond viewed through two vertical bar apertures (0.2 cd/square m). The comers were always occluded so that only four line segments (93 cd/square m) were visible behind the occluding foreground (38 cd/square m). The diamond was flattened (40 & 140 degree vertex angles) such that vector averaging of the local normal motions and vertical integration (e.g. IOC) yield very I or different predictions, analogous to using a Type II plaid. The diamond moved along Lissajous-figure trajectories (Ax = Ay = 2 degrees; TFx = 0.8 Hz; TFy = 0.4 Hz). We presented only 1.25 cycles and used 6 different randomly interleaved initial relative phases to minimize the role of predictive strategies. Observers were instructed to track the diamond and reported that its motion was always coherent (unlike type II plaids). Saccade-free portions of the horizontal and vertical eye-position traces sampled at 240 Hz were fit by separate sinusoids. Pursuit gain with respect to the diamond averaged 0.7 across subjects and directions. The ratio of the mean vertical to horizontal amplitude of the pursuit response was 1.7 +/- 0.7 averaged across subjects (1SD). This is close to the prediction of 1.0 from vertical motion-integration rules, but far from 7.7 predicted by vector averaging and infinity predicted by segment- or terminator-tracking strategies. Because there is no retinal motion which directly corresponds to the diamond's motion, steady-state pursuit of our "virtual" diamond is not closed-loop in the traditional sense. Thus, accurate pursuit is unlikely to result simply from local retinal negative feedback. We conclude that the signal driving steady-state

  9. Steady-State Multiplicity Features of Chemically Reacting Systems.

    ERIC Educational Resources Information Center

    Luss, Dan

    1986-01-01

    Analyzes steady-state multiplicity in chemical reactors, focusing on the use of two mathematical tools, namely, the catastrophe theory and the singularity theory with a distinguished parameter. These tools can be used to determine the maximum number of possible solutions and the different types of bifurcation diagrams. (JN)

  10. Pressure updating methods for the steady-state fluid equations

    NASA Technical Reports Server (NTRS)

    Fiterman, A.; Turkel, E.; Vatsa, V.

    1995-01-01

    We consider the steady state equations for a compressible fluid. Since we wish to solve for a range of speeds we must consider the equations in conservation form. For transonic speeds these equations are of mixed type. Hence, the usual approach is to add time derivatives to the steady state equations and then march these equations in time. One then adds a time derivative of the density to the continuity equation, a derivative of the momentum to the momentum equation and a derivative of the total energy to the energy equation. This choice is dictated by the time consistent equations. However, since we are only interested in the steady state this is not necessary. Thus we shall consider the possibility of adding a time derivative of the pressure to the continuity equation and similar modifications for the energy equation. This can then be generalized to adding combinations of time derivatives to each equation since these vanish in the steady state. When using acceleration techniques such as residual smoothing, multigrid, etc. these are applied to the pressure rather than the density. Hence, the code duplicates the behavior of the incompressible equations for low speeds.

  11. CONTROL OF CRYPTOSPORIDIUM OOCYSTS BY STEADY-STATE CONVENTIONAL TREATMENT

    EPA Science Inventory

    Pilot-scale experiments have been performed to assess the ability of conventional treatment to control Cryptosporidium oocysts under steady-state conditions. The work was performed with a pilot plant that was designed to minimize flow rates and, as a result, the number of oocyst...

  12. Steady-State Pharmacokinetics of Bupropion SR in Juvenile Patients

    ERIC Educational Resources Information Center

    Daviss, W. Burleson; Perel, James M.; Rudolph, George R.; Axelson, David A.; Gilchrist, Richard; Nuss, Sharon; Birmaher, Boris; Brent, David A.

    2005-01-01

    Objective: To examine the steady-state pharmacokinetic properties of bupropion sustained release (SR) and their potential developmental differences in youths. Method: Eleven boys and eight girls aged 11 to 17 years old were prescribed bupropion SR monotherapy for attention-deficit/hyperactivity disorder (n = 16) and/or depressive disorders (n =…

  13. The concave river long profile: a morphodynamic steady state?

    NASA Astrophysics Data System (ADS)

    Blom, A.

    2011-12-01

    By definition, a morphodynamic steady state is governed by a spatially constant sediment transport rate. As the sediment transport rate is a function of shear stress associated with skin friction, the morphodynamic steady state has been considered to be governed by a spatially constant bed slope. For this reason, the typical concave river long profile has been considered to be a quasi-steady state. The river's steady state has been considered to be one with a spatially constant bed slope, with tributaries inducing a stepwise decrease in bed slope in streamwise direction. Yet, for the sediment transport rate to be spatially constant, it rather is the product of water surface slope and water depth associated with skin friction that needs to be constant. This implies that physical mechanisms that induce streamwise variation in the sediment transport rate can be compensated by a streamwise variation in bed slope so as to guarantee a spatially constant sediment transport rate. Following the river course, such physical mechanisms can be bedrock exposure, partial transport, and a spatially lagging bedform growth. At locations where tributaries increase the water discharge, the above mechanisms cause the river bed profile to be upward concave over a significant reach. At bifucations or at locations where river widening prevails, the river bed profile is upward convex.

  14. Combined Steady-State and Dynamic Heat Exchanger Experiment

    ERIC Educational Resources Information Center

    Luyben, William L.; Tuzla, Kemal; Bader, Paul N.

    2009-01-01

    This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…

  15. Equilibrium Binding and Steady-State Enzyme Kinetics.

    ERIC Educational Resources Information Center

    Dunford, H. Brian

    1984-01-01

    Points out that equilibrium binding and steady-state enzyme kinetics have a great deal in common and that related equations and error analysis can be cast in identical forms. Emphasizes that if one type of problem solution is taught, the other is also taught. Various methods of data analysis are evaluated. (JM)

  16. Identification of enzyme inhibitory mechanisms from steady-state kinetics.

    PubMed

    Fange, David; Lovmar, Martin; Pavlov, Michael Y; Ehrenberg, Måns

    2011-09-01

    Enzyme inhibitors are used in many areas of the life sciences, ranging from basic research to the combat of disease in the clinic. Inhibitors are traditionally characterized by how they affect the steady-state kinetics of enzymes, commonly analyzed on the assumption that enzyme-bound and free substrate molecules are in equilibrium. This assumption, implying that an enzyme-bound substrate molecule has near zero probability to form a product rather than dissociate, is valid only for very inefficient enzymes. When it is relaxed, more complex but also more information-rich steady-state kinetics emerges. Although solutions to the general steady-state kinetics problem exist, they are opaque and have been of limited help to experimentalists. Here we reformulate the steady-state kinetics of enzyme inhibition in terms of new parameters. These allow for assessment of ambiguities of interpretation due to kinetic scheme degeneracy and provide an intuitively simple way to analyze experimental data. We illustrate the method by concrete examples of how to assess scheme degeneracy and obtain experimental estimates of all available rate and equilibrium constants. We suggest simple, complementary experiments that can remove ambiguities and greatly enhance the accuracy of parameter estimation.

  17. Steady States of the Parametric Rotator and Pendulum

    ERIC Educational Resources Information Center

    Bouzas, Antonio O.

    2010-01-01

    We discuss several steady-state rotation and oscillation modes of the planar parametric rotator and pendulum with damping. We consider a general elliptic trajectory of the suspension point for both rotator and pendulum, for the latter at an arbitrary angle with gravity, with linear and circular trajectories as particular cases. We treat the…

  18. Steady State Load Characterization Fact Sheet: 2012 Chevy Volt

    SciTech Connect

    Scoffield, Don

    2015-03-01

    This fact sheet characterizes the steady state charging behavior of a 2012 Chevy Volt. Both level 1 charging (120 volt) and level 2 charging (208 volts) is investigated. This fact sheet contains plots of efficiency, power factor, and current harmonics as vehicle charging is curtailed. Prominent current harmonics are also displayed in a histogram for various charge rates.

  19. Density Functional Theory for Steady-State Nonequilibrium Molecular Junctions

    PubMed Central

    Liu, Shuanglong; Nurbawono, Argo; Zhang, Chun

    2015-01-01

    We present a density functional theory (DFT) for steady-state nonequilibrium quantum systems such as molecular junctions under a finite bias. Based on the steady-state nonequilibrium statistics that maps nonequilibrium to an effective equilibrium, we show that ground-state DFT (GS-DFT) is not applicable in this case and two densities, the total electron density and the density of current-carrying electrons, are needed to uniquely determine the properties of the corresponding nonequilibrium system. A self-consistent mean-field approach based on two densities is then derived. The theory is implemented into SIESTA computational package and applied to study nonequilibrium electronic/transport properties of a realistic carbon-nanotube (CNT)/Benzene junction. Results obtained from our steady-state DFT (SS-DFT) are compared with those of conventional GS-DFT based transport calculations. We show that SS-DFT yields energetically more stable nonequilibrium steady state, predicts significantly lower electric current, and is able to produce correct electronic structures in local equilibrium under a limiting case. PMID:26472080

  20. Steady-State Squeezing in the Micromaser Cavity Field

    NASA Technical Reports Server (NTRS)

    Nayak, N.

    1996-01-01

    It is shown that the radiation field in the presently operated micromaser cavity may be squeezed when pumped with polarized atoms. The squeezing is in the steady state field corresponding to the action similar to that of the conventional micromaser, with the effect of cavity dissipation during entire t(sub c) = tau + t(sub cav).

  1. Steady-state visual evoked potentials in the low frequency range in migraine: a study of habituation and variability phenomena.

    PubMed

    de Tommaso, Marina; Stramaglia, Sebastiano; Schoffelen, Jan Mathijs; Guido, Marco; Libro, Giuseppe; Losito, Luciana; Sciruicchio, Vittorio; Sardaro, Michele; Pellicoro, Mario; Puca, Franco Michele

    2003-08-01

    Previous studies have revealed that migraine patients display an increased photic driving to flash stimuli in the medium frequency range. The aim of this study was to perform a topographic analysis of steady-state visual evoked potentials (SVEPs) in the low frequency range (3-9 Hz), evaluating the temporal behaviour of the F1 amplitude by investigating habituation and variability phenomena. The main component of SVEPs, the F1, demonstrated an increased amplitude in several channels at 3 Hz. Behaviour of F1 amplitude was rather variable over time, and the wavelet-transform standard deviation was increased in migraine patients at a low stimulus rate. The discriminative value of the F1 mean amplitude and variability index, tested by both an artificial neural network classifier and a support vector machine, were high according to both methods. The increased photic driving in migraine should be subtended by a more generic abnormality of visual reactivity instead of a selective impairment of a visual subsystem. Temporal behaviour of SVEPs is not influenced by a clear tendency to habituation, but the F1 amplitude seemed to change in a complex way, which is better described by variability phenomena. An increased variability in response to flicker stimuli in migraine patients could be interpreted as an overactive regulation mechanism, prone to instability and consequently to headache attacks, whether spontaneous or triggered.

  2. Steady-State Dynamic Behavior of a Flexible Rotor With Auxiliary Support From a Clearance Bearing

    NASA Technical Reports Server (NTRS)

    Xie, Huajun; Flowers, George T.; Feng, Li; Lawrence, Charles T.

    1996-01-01

    This paper investigates the steady-state responses of a rotor system supported by auxiliary bearings in which there is a clearance between the rotor and the inner race of the bearing. A simulation model based upon the rotor of a production jet engine is developed and its steady-state behavior is explored over a wide range of operating conditions for various parametric configurations. Specifically, the influence of rotor imbalance, clearance, support stiffness and damping is studied. Bifurcation diagrams are used as a tool to examine the dynamic behavior of this system as a function of the afore mentioned parameters. The harmonic balance method is also employed for synchronous response cases. The observed dynamical responses is discussed and some insights into the behavior of such systems are presented.

  3. Steady state growth of E. Coli in low ammonium environment

    NASA Astrophysics Data System (ADS)

    Kim, Minsu; Deris, Barret; Zhang, Zhongge; Hwa, Terry

    2011-03-01

    Ammonium is the preferred nitrogen source for many microorganisms. In medium with low ammonium concentrations, enteric bacteria turn on the nitrogen responsive (ntr) genes to assimilate ammonium. Two proteins in E. coli, Glutamine synthetase (GS) and the Ammonium/methylammonium transporter AmtB play crucial roles in this regard. GS is the major ammonium assimilation enzyme below 1mM of NH4 + . AmtB is an inner membrane protein that transports NH4 + across the cell membrane against a concentration gradient. In order to study ammonium uptake at low NH4 + concentration at neutral pH, we developed a microfluidic flow chamber that maintains a homogenous nutrient environment during the course of exponential cell growth, even at very low concentration of nutrients. Cell growth can be accurately monitored using time-lapse microscopy. We followed steady state growth down to micro-molar range of NH4 + for the wild type and Δ amtB strains. The wild type strain is able to maintain the growth rate from 10mM down to a few uM of NH4 + , while the mutant exhibited reduced growth below ~ 20 ~uM of NH4 + . Simultaneous characterization of the expression levels of GS and AmtB using fluorescence reporters reveals that AmtB is turned on already at 1mM, but contributes to function only below ~ 30 ~uM in the wild-type. Down to ~ 20 ~uM of NH4 + , E.~coli can compensate the loss of AmtB by GS alone.

  4. Orbit response matrix measurements for 10Hz global orbit feedback in RHIC

    SciTech Connect

    Liu, C.; Minty, M.

    2010-10-01

    The 10 Hz global orbit feedback system (gofb) was designed to correct the 10 Hz horizontal beam perturbations in both rings that are suspected to be caused by vibrations of the final focusing quadrupoles (triplets). The full system envisioned for Run-11 consists of 36 BPMs, corresponding to 2 per triplet in each of the 12 triplet locations and two in each of the 6 arcs, and 1 dipole corrector at each triplet location for a total of 12 correctors. Prototype testing was successfully carried out during RHIC Run-10 in store condition with 4 new dipole correctors (with independent power supplies) and 8 stripline beam position monitors (BPMs) per accelerator. An SVD-based algorithm was used to compute the applied corrections. For Run-10, the response matrix was provided by W. W. MacKay. The response matrix R relates corrector angles to beam displacements at BPMs.

  5. Exploration of trade-offs between steady-state and dynamic properties in signaling cycles

    NASA Astrophysics Data System (ADS)

    Radivojevic, A.; Chachuat, B.; Bonvin, D.; Hatzimanikatis, V.

    2012-08-01

    In the intracellular signaling networks that regulate important cell processes, the base pattern comprises the cycle of reversible phosphorylation of a protein, catalyzed by kinases and opposing phosphatases. Mathematical modeling and analysis have been used for gaining a better understanding of their functions and to capture the rules governing system behavior. Since biochemical parameters in signaling pathways are not easily accessible experimentally, it is necessary to explore possibilities for both steady-state and dynamic responses in these systems. While a number of studies have focused on analyzing these properties separately, it is necessary to take into account both of these responses simultaneously in order to be able to interpret a broader range of phenotypes. This paper investigates the trade-offs between optimal characteristics of both steady-state and dynamic responses. Following an inverse sensitivity analysis approach, we use systematic optimization methods to find the biochemical and biophysical parameters that simultaneously achieve optimal steady-state and dynamic performance. Remarkably, we find that even a single covalent modification cycle can simultaneously and robustly achieve high ultrasensitivity, high amplification and rapid signal transduction. We also find that the response rise and decay times can be modulated independently by varying the activating- and deactivating-enzyme-to-interconvertible-protein ratios.

  6. Chirality, causality, and fluctuation-dissipation theorems in nonequilibrium steady states.

    PubMed

    Wang, Chenjie; Feldman, D E

    2013-01-18

    Edges of some quantum Hall liquids and a number of other systems exhibit chiral transport: excitations can propagate in one direction only, e.g., clockwise. We derive a family of fluctuation-dissipation relations in nonequilibrium steady states of such chiral systems. The theorems connect nonlinear response with fluctuations far from thermal equilibrium and hold only in case of chiral transport. They can be used to test the chiral or nonchiral character of the system.

  7. Steady state volcanism: Evidence from eruption histories of polygenetic volcanoes

    SciTech Connect

    Wadge, G.

    1982-05-10

    Some volcanoes erupt magma at average rates which are constant over periods of many years, even through this magma may appear in a complex series of eruptions. This constancy of output is tested by construction of a curve of cumulative volume of erupted magma, which is linear for steady state volcanism, and whose gradient defines the steady state rate Q/sub s/s. The assumption is made that Q/sub s/s is the rate at which magma is supplied to these polygenetic volcanoes. Five general types of eruptive behavior can be distinguished from the cumulative volume studied. These types are interpreted in terms of a simple model of batches of magma rising buoyantly through the crust and interacting with a small-capacity subvolcanic magma reservoir. Recognition of previous steady state behavior at a volcano may enable the cumulative volume curve to be used empirically as a constraint on the timing and volume of the next eruption. The steady state model thus has a limited predictive capability. With the exception of Kilauea (O/sub s/s = 4m/sup 3/ s/sup -1/) all the identified steady state volcanoes have values of Q/sub s/s of a few tenths of one cubic meter per second. These rates are consistent with the minimum flux rates required by theoretical cooling models of batches of magma traversing the crust. The similarity of these Q/sub s/s values of volcanoes (producing basalt, andesite, and dacite magmas) in very different tectonic settings suggests that the common factors of crustal buoyancy forces and the geotherm-controlled cooling rates control the dynamics of magma supply through the crust. Long-term dormancy at active volcanoes may be a manifestation of the steady accumulation of magma in large crustal reservoirs, a process that complements the intermittent periods of steady state output at the surface. This possibility has several implications, the most important of which is that it provides a constraint on the supply rate of new magma to the bases of plutons.

  8. Simulations of KSTAR high performance steady state operation scenarios

    NASA Astrophysics Data System (ADS)

    Na, Yong-Su; Kessel, C. E.; Park, J. M.; Yi, Sumin; Becoulet, A.; Sips, A. C. C.; Kim, J. Y.

    2009-11-01

    We report the results of predictive modelling of high performance steady state operation scenarios in KSTAR. Firstly, the capabilities of steady state operation are investigated with time-dependent simulations using a free-boundary plasma equilibrium evolution code coupled with transport calculations. Secondly, the reproducibility of high performance steady state operation scenarios developed in the DIII-D tokamak, of similar size to that of KSTAR, is investigated using the experimental data taken from DIII-D. Finally, the capability of ITER-relevant steady state operation is investigated in KSTAR. It is found that KSTAR is able to establish high performance steady state operation scenarios; βN above 3, H98(y, 2) up to 2.0, fBS up to 0.76 and fNI equals 1.0. In this work, a realistic density profile is newly introduced for predictive simulations by employing the scaling law of a density peaking factor. The influence of the current ramp-up scenario and the transport model is discussed with respect to the fusion performance and non-inductive current drive fraction in the transport simulations. As observed in the experiments, both the heating and the plasma current waveforms in the current ramp-up phase produce a strong effect on the q-profile, the fusion performance and also on the non-inductive current drive fraction in the current flattop phase. A criterion in terms of qmin is found to establish ITER-relevant steady state operation scenarios. This will provide a guideline for designing the current ramp-up phase in KSTAR. It is observed that the transport model also affects the predictive values of fusion performance as well as the non-inductive current drive fraction. The Weiland transport model predicts the highest fusion performance as well as non-inductive current drive fraction in KSTAR. In contrast, the GLF23 model exhibits the lowest ones. ITER-relevant advanced scenarios cannot be obtained with the GLF23 model in the conditions given in this work. Finally

  9. Simulations of KSTAR high performance steady state operation scenarios

    SciTech Connect

    Na, Y S; Kessel, C. E.; Park, Jin Myung; Yi, Sumin; Becoulet, A.; Sips, A C C; Kim, J Y

    2009-01-01

    We report the results of predictive modelling of high performance steady state operation scenarios in KSTAR. Firstly, the capabilities of steady state operation are investigated with time-dependent simulations using a free-boundary plasma equilibrium evolution code coupled with transport calculations. Secondly, the reproducibility of high performance steady state operation scenarios developed in the DIII-D tokamak, of similar size to that of KSTAR, is investigated using the experimental data taken from DIII-D. Finally, the capability of ITER-relevant steady state operation is investigated in KSTAR. It is found that KSTAR is able to establish high performance steady state operation scenarios; beta(N) above 3, H-98(y, 2) up to 2.0, f(BS) up to 0.76 and f(NI) equals 1.0. In this work, a realistic density profile is newly introduced for predictive simulations by employing the scaling law of a density peaking factor. The influence of the current ramp-up scenario and the transport model is discussed with respect to the fusion performance and non-inductive current drive fraction in the transport simulations. As observed in the experiments, both the heating and the plasma current waveforms in the current ramp-up phase produce a strong effect on the q-profile, the fusion performance and also on the non-inductive current drive fraction in the current flattop phase. A criterion in terms of q(min) is found to establish ITER-relevant steady state operation scenarios. This will provide a guideline for designing the current ramp-up phase in KSTAR. It is observed that the transport model also affects the predictive values of fusion performance as well as the non-inductive current drive fraction. The Weiland transport model predicts the highest fusion performance as well as non-inductive current drive fraction in KSTAR. In contrast, the GLF23 model exhibits the lowest ones. ITER-relevant advanced scenarios cannot be obtained with the GLF23 model in the conditions given in this work

  10. Extending Molecular Theory to Steady-State Diffusing Systems

    SciTech Connect

    FRINK,LAURA J. D.; SALINGER,ANDREW G.; THOMPSON,AIDAN P.

    1999-10-22

    Predicting the properties of nonequilibrium systems from molecular simulations is a growing area of interest. One important class of problems involves steady state diffusion. To study these cases, a grand canonical molecular dynamics approach has been developed by Heffelfinger and van Swol [J. Chem. Phys., 101, 5274 (1994)]. With this method, the flux of particles, the chemical potential gradients, and density gradients can all be measured in the simulation. In this paper, we present a complementary approach that couples a nonlocal density functional theory (DFT) with a transport equation describing steady-state flux of the particles. We compare transport-DFT predictions to GCMD results for a variety of ideal (color diffusion), and nonideal (uphill diffusion and convective transport) systems. In all cases excellent agreement between transport-DFT and GCMD calculations is obtained with diffusion coefficients that are invariant with respect to density and external fields.

  11. Multiplying steady-state culture in multi-reactor system.

    PubMed

    Erm, Sten; Adamberg, Kaarel; Vilu, Raivo

    2014-11-01

    Cultivation of microorganisms in batch experiments is fast and economical but the conditions therein change constantly, rendering quantitative data interpretation difficult. By using chemostat with controlled environmental conditions the physiological state of microorganisms is fixed; however, the unavoidable stabilization phase makes continuous methods resource consuming. Material can be spared by using micro scale devices, which however have limited analysis and process control capabilities. Described herein are a method and a system combining the high throughput of batch with the controlled environment of continuous cultivations. Microorganisms were prepared in one bioreactor followed by culture distribution into a network of bioreactors and continuation of independent steady state experiments therein. Accelerostat cultivation with statistical analysis of growth parameters demonstrated non-compromised physiological state following distribution, thus the method effectively multiplied steady state culture of microorganisms. The theoretical efficiency of the system was evaluated in inhibitory compound analysis using repeated chemostat to chemostat transfers.

  12. Optimal Control of Transitions between Nonequilibrium Steady States

    PubMed Central

    Zulkowski, Patrick R.; Sivak, David A.; DeWeese, Michael R.

    2013-01-01

    Biological systems fundamentally exist out of equilibrium in order to preserve organized structures and processes. Many changing cellular conditions can be represented as transitions between nonequilibrium steady states, and organisms have an interest in optimizing such transitions. Using the Hatano-Sasa Y-value, we extend a recently developed geometrical framework for determining optimal protocols so that it can be applied to systems driven from nonequilibrium steady states. We calculate and numerically verify optimal protocols for a colloidal particle dragged through solution by a translating optical trap with two controllable parameters. We offer experimental predictions, specifically that optimal protocols are significantly less costly than naive ones. Optimal protocols similar to these may ultimately point to design principles for biological energy transduction systems and guide the design of artificial molecular machines. PMID:24386112

  13. Hydrodynamics of stratified epithelium: Steady state and linearized dynamics

    NASA Astrophysics Data System (ADS)

    Yeh, Wei-Ting; Chen, Hsuan-Yi

    2016-05-01

    A theoretical model for stratified epithelium is presented. The viscoelastic properties of the tissue are assumed to be dependent on the spatial distribution of proliferative and differentiated cells. Based on this assumption, a hydrodynamic description of tissue dynamics at the long-wavelength, long-time limit is developed, and the analysis reveals important insights into the dynamics of an epithelium close to its steady state. When the proliferative cells occupy a thin region close to the basal membrane, the relaxation rate towards the steady state is enhanced by cell division and cell apoptosis. On the other hand, when the region where proliferative cells reside becomes sufficiently thick, a flow induced by cell apoptosis close to the apical surface enhances small perturbations. This destabilizing mechanism is general for continuous self-renewal multilayered tissues; it could be related to the origin of certain tissue morphology, tumor growth, and the development pattern.

  14. Nonequilibrium Steady States of a Stochastic Model System.

    NASA Astrophysics Data System (ADS)

    Zhang, Qiwei

    We study the nonequilibrium steady state of a stochastic lattice gas model, originally proposed by Katz, Lebowitz and Spohn (Phys. Rev. B 28: 1655 (1983)). Firstly, we solve the model on some small lattices exactly in order to see the general dependence of the steady state upon different parameters of the model. Nextly, we derive some analytical results for infinite lattice systems by taking some suitable limits. We then present some renormalization group results for the continuum version of the model via field theoretical techniques, the supersymmetry of the critical dynamics in zero field is also explored. Finally, we report some very recent 3-D Monte Carlo simulation results, which have been obtained by applying Multi-Spin-Coding techniques on a CDC vector supercomputer - Cyber 205 at John von Neumann Center.

  15. Turnover of messenger RNA: Polysome statistics beyond the steady state

    NASA Astrophysics Data System (ADS)

    Valleriani, A.; Ignatova, Z.; Nagar, A.; Lipowsky, R.

    2010-03-01

    The interplay between turnover or degradation and ribosome loading of messenger RNA (mRNA) is studied theoretically using a stochastic model that is motivated by recent experimental results. Random mRNA degradation affects the statistics of polysomes, i.e., the statistics of the number of ribosomes per mRNA as extracted from cells. Since ribosome loading of newly created mRNA chains requires some time to reach steady state, a fraction of the extracted mRNA/ribosome complexes does not represent steady state conditions. As a consequence, the mean ribosome density obtained from the extracted complexes is found to be inversely proportional to the mRNA length. On the other hand, the ribosome density profile shows an exponential decrease along the mRNA for prokaryotes and becomes uniform in eukaryotic cells.

  16. Harmonic coupling of steady-state visual evoked potentials.

    PubMed

    Krusienski, Dean J; Allison, Brendan Z

    2008-01-01

    Steady-state visual evoked potentials (SSVEPs) are oscillating components of the electroencephalogram (EEG) that are detected over the occipital areas, having frequencies corresponding to visual stimulus frequencies. SSVEPs have been demonstrated to be reliable control signals for operating a brain-computer interface (BCI). This study uses offline analyses to investigate the characteristics of SSVEP harmonic amplitude and phase coupling and the impact of using this information to construct a matched filter for continuously tracking the signal.

  17. Analytic Steady-State Accuracy of a Spacecraft Attitude Estimator

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis

    2000-01-01

    This paper extends Farrenkopf's analysis of a single-axis spacecraft attitude estimator using gyro and angle sensor data to include the angle output white noise of a rate-integrating gyro. Analytic expressions are derived for the steady-state pre-update and post-update angle and drift bias variances and for the state update equations. It is shown that only part of the state update resulting from the angle sensor measurement is propagated to future times.

  18. The approach to steady state using homogeneous and Cartesian coordinates.

    PubMed

    Gochberg, D F; Ding, Z

    2013-01-01

    Repeating an arbitrary sequence of RF pulses and magnetic field gradients will eventually lead to a steady-state condition in any magnetic resonance system. While numerical methods can quantify this trajectory, analytic analysis provides significantly more insight and a means for faster calculation. Recently, an analytic analysis using homogeneous coordinates was published. The current work further develops this line of thought and compares the relative merits of using a homogeneous or a Cartesian coordinate system.

  19. MUTATION RATES OF BACTERIA IN STEADY STATE POPULATIONS

    PubMed Central

    Fox, Maurice S.

    1955-01-01

    The breeder and the chemostat have been used to measure mutation rates for two mutations under a variety of steady state growth conditions. These rates have been found to be higher in complex medium than in minimal (F) medium. The effects of changes in nutritional conditions on these high rates have been described. In addition, the mutation rates at short generation times, in complex medium, have been shown to decrease with increasing generation time. PMID:13271726

  20. Steady state equivalence among autocatalytic peroxidase-oxidase reactions.

    PubMed

    Méndez-González, José; Femat, Ricardo

    2016-12-14

    Peroxidase-oxidase is an enzymatic reaction that can exhibit dynamical scenarios such as bistability, sustained oscillations, and Shilnikov chaos. In this work, we apply the chemical reaction network theory approach to find kinetic constants such that the associated mass action kinetics ordinary differential equations induced by three four dimensional structurally different enzymatic reaction systems can support the same steady states for several chemical species despite differences in their chemical nature.

  1. Steady state equivalence among autocatalytic peroxidase-oxidase reactions

    NASA Astrophysics Data System (ADS)

    Méndez-González, José; Femat, Ricardo

    2016-12-01

    Peroxidase-oxidase is an enzymatic reaction that can exhibit dynamical scenarios such as bistability, sustained oscillations, and Shilnikov chaos. In this work, we apply the chemical reaction network theory approach to find kinetic constants such that the associated mass action kinetics ordinary differential equations induced by three four dimensional structurally different enzymatic reaction systems can support the same steady states for several chemical species despite differences in their chemical nature.

  2. A correspondence principle for steady-state wave problems

    NASA Technical Reports Server (NTRS)

    Schmerr, L. W.

    1976-01-01

    A correspondence principle was developed for treating the steady state propagation of waves from sources moving along a plane surface or interface. This new principle allows one to obtain, in a unified manner, explicit solutions for any source velocity. To illustrate the correspondence principle in a particular case, the problem of a load moving at an arbitrary constant velocity along the surface of an elastic half-space is considered.

  3. Multiple steady states for characteristic initial value problems

    NASA Technical Reports Server (NTRS)

    Salas, M. D.; Abarbanel, S.; Gottlieb, D.

    1984-01-01

    The time dependent, isentropic, quasi-one-dimensional equations of gas dynamics and other model equations are considered under the constraint of characteristic boundary conditions. Analysis of the time evolution shows how different initial data may lead to different steady states and how seemingly anamolous behavior of the solution may be resolved. Numerical experimentation using time consistent explicit algorithms verifies the conclusions of the analysis. The use of implicit schemes with very large time steps leads to erroneous results.

  4. Transition of unsteady flows of evaporation to steady state

    NASA Astrophysics Data System (ADS)

    d'Almeida, Amah

    2008-07-01

    We investigate the half-space problem of evaporation and condensation in the scope of discrete kinetic theory. Exact solutions are found to the boundary value problem and the initial boundary value problems of the flow in the half space for a discrete velocity model. The results are used to analyze the transition of the unsteady solutions towards steady states. To cite this article: A. d'Almeida, C. R. Mecanique 336 (2008).

  5. Steady-state superradiance with alkaline-earth-metal atoms

    SciTech Connect

    Meiser, D.; Holland, M. J.

    2010-03-15

    Alkaline-earth-metal-like atoms with ultranarrow transitions open the door to a new regime of cavity quantum electrodynamics. That regime is characterized by a critical photon number that is many orders of magnitude smaller than what can be achieved in conventional systems. We show that it is possible to achieve superradiance in steady state with such systems. We discuss the basic underlying mechanisms as well as the key experimental requirements.

  6. Steady state magnetic field configurations for the earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Hau, L.-N.; Wolf, R. A.; Voigt, G.-H.; Wu, C. C.

    1989-01-01

    A two-dimensional, force-balance magnetic field model is presented. The theoretical existence of a steady state magnetic field configuration that is force-balanced and consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD is demonstrated. A numerical solution is obtained for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The results are consistent with the convection time sequences reported by Erickson (1985).

  7. A periodogram-based method for the detection of steady-state visually evoked potentials.

    PubMed

    Liavas, A P; Moustakides, G V; Henning, G; Psarakis, E Z; Husar, P

    1998-02-01

    The task of objective perimetry is to scan the visual field and find an answer about the function of the visual system. Flicker-burst stimulation--a physiological sensible combination of transient and steady-state stimulation--is used to generate deterministic sinusoidal responses or visually evoked potentials (VEP's) at the visual cortex, which are derived from the electroencephalogram by a suitable electrode array. In this paper we develop a new method for the detection of VEP's. Based on the periodogram of a time-series, we test the data for the presence of hidden periodic components, which correspond to steady-state VEP's. The method is applied successfully to real data.

  8. Non-steady-state operation of polymer/TiO2 photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Kirov, Kiril R.; Burlakov, Victor M.; Xie, Zhibin; Henry, Bernard M.; Carey, Michelle J.; Grovenor, Christopher R. M.; Burn, Paul L.; Assender, Hazel E.; Briggs, G. Andrew D.

    2004-11-01

    We present data on the initial period of operation of Gilch-route MEH-PPV/TiO2 composite solar cells (CSCs) which show that during this period the CSCs operate in a non-steady state regime. The behavior is complex and may include a gradual rise of the open circuit voltage (Voc) and of the short-circuit current density (Jsc) with time, a passage through a maximum of either or both parameters, and even a sign reversal. The mechanisms most probably contributing to the transient processes are: i) diffusion driven redistribution of charges resulting in the build up of a quasi steady state charge density profile across the device; ii) photo-doping resulting in a relatively slow increase of the average charge carrier concentration and consequently of the conductivity of the device. The latter is responsible for a strong decrease in Voc, and is evidenced by the significant increase in dark current after device illumination.

  9. Retinoic acid inhibits the cytoproliferative response to weak 50-Hz magnetic fields in neuroblastoma cells

    PubMed Central

    TRILLO, MARÍA ÁNGELES; MARTÍNEZ, MARÍA ANTONIA; CID, MARÍA ANTONIA; ÚBEDA, ALEJANDRO

    2012-01-01

    We previously reported that intermittent exposure to a 50-Hz magnetic field (MF) at 100 μT stimulates cell proliferation in the human neuroblastoma cell line NB69. The present study aimed to investigate whether the magnetic field-induced growth promotion also occurs at a lower magnetic flux density of 10 μT. To this purpose, NB69 cells were subjected for 42 h to intermittent exposure, 3 h on/3 h off, to a 50-Hz MF at a 10 or 100 μT magnetic flux density. The field exposure took place either in the presence or in the absence of the antiproliferative agent retinoic acid. At the end of the treatment and/or incubation period, the cell growth was estimated by hemocytometric counting and spectrophotometric analysis of total protein and DNA contents. Potential changes in DNA synthesis were also assessed through proliferating cell nuclear antigen (PCNA) immunolabeling. The results confirmed previously reported data that a 42-h exposure to a 50-Hz sine wave MF at 100 μT promotes cell growth in the NB69 cell line, and showed that 10 μT induces a similar proliferative response. This effect, which was significantly associated and linearly correlated with PCNA expression, was abolished by the presence of retinoic acid in the culture medium. PMID:23292364

  10. Adaptive control of unknown unstable steady states of dynamical systems.

    PubMed

    Pyragas, K; Pyragas, V; Kiss, I Z; Hudson, J L

    2004-08-01

    A simple adaptive controller based on a low-pass filter to stabilize unstable steady states of dynamical systems is considered. The controller is reference-free; it does not require knowledge of the location of the fixed point in the phase space. A topological limitation similar to that of the delayed feedback controller is discussed. We show that the saddle-type steady states cannot be stabilized by using the conventional low-pass filter. The limitation can be overcome by using an unstable low-pass filter. The use of the controller is demonstrated for several physical models, including the pendulum driven by a constant torque, the Lorenz system, and an electrochemical oscillator. Linear and nonlinear analyses of the models are performed and the problem of the basins of attraction of the stabilized steady states is discussed. The robustness of the controller is demonstrated in experiments and numerical simulations with an electrochemical oscillator, the dissolution of nickel in sulfuric acid; a comparison of the effect of using direct and indirect variables in the control is made. With the use of the controller, all unstable phase-space objects are successfully reconstructed experimentally.

  11. Cavitation modeling for steady-state CFD simulations

    NASA Astrophysics Data System (ADS)

    Hanimann, L.; Mangani, L.; Casartelli, E.; Widmer, M.

    2016-11-01

    Cavitation in hydraulic turbomachines is an important phenomenon to be considered for performance predictions. Correct analysis of the cavitation onset and its effect on the flow field while diminishing the pressure level need therefore to be investigated. Even if cavitation often appears as an unsteady phenomenon, the capability to compute it in a steady state formulation for the design and assessment phase in the product development process is very useful for the engineer. In the present paper the development and corresponding application of a steady state CFD solver is presented, based on the open source toolbox OpenFOAM®. In the first part a review of different cavitation models is presented. Adopting the mixture-type cavitation approach, various models are investigated and developed in a steady state CFD RANS solver. Particular attention is given to the coupling between cavitation and turbulence models as well as on the underlying numerical procedure, especially the integration in the pressure- correction step of pressure-based solvers, which plays an important role in the stability of the procedure. The performance of the proposed model is initially assessed on simple cases available in the open literature. In a second step results for different applications are presented, ranging from airfoils to pumps.

  12. STEADY-STATE MODEL OF SOLAR WIND ELECTRONS REVISITED

    SciTech Connect

    Yoon, Peter H.; Kim, Sunjung; Choe, G. S.

    2015-10-20

    In a recent paper, Kim et al. put forth a steady-state model for the solar wind electrons. The model assumed local equilibrium between the halo electrons, characterized by an intermediate energy range, and the whistler-range fluctuations. The basic wave–particle interaction is assumed to be the cyclotron resonance. Similarly, it was assumed that a dynamical steady state is established between the highly energetic superhalo electrons and high-frequency Langmuir fluctuations. Comparisons with the measured solar wind electron velocity distribution function (VDF) during quiet times were also made, and reasonable agreements were obtained. In such a model, however, only the steady-state solution for the Fokker–Planck type of electron particle kinetic equation was considered. The present paper complements the previous analysis by considering both the steady-state particle and wave kinetic equations. It is shown that the model halo and superhalo electron VDFs, as well as the assumed wave intensity spectra for the whistler and Langmuir fluctuations, approximately satisfy the quasi-linear wave kinetic equations in an approximate sense, thus further validating the local equilibrium model constructed in the paper by Kim et al.

  13. Addressable nanoelectrode membrane arrays: fabrication and steady-state behavior.

    PubMed

    Zoski, Cynthia G; Yang, Nianjun; He, Peixin; Berdondini, Luca; Koudelka-Hep, Milena

    2007-02-15

    An addressable nanoelectrode membrane array (ANEMA) based on a Au-filled track-etched polycarbonate membrane was fabricated. The Au-filled membrane was secured to a lithographically fabricated addressable ultramicroelectrode (UME) array patterned with 25 regularly spaced (100 microm center to center spacing), 10 microm diameter recessed Pt UMEs to create 25 microregions of 10 microm diameter nanoelectrode ensembles (NEEs) on the membrane. The steady-state voltammetric behavior of 1.0 mM Ru(NH(3))(6)Cl(3) and 1.0 mM ferrocene methanol in 0.1 M KCl on each of the micro NEEs resulted in sigmoidal-shaped voltammograms which were reproducible across the ANEMA. This reproducibility of the steady-state current was attributed to the overlapping hemispherical diffusion layers at the Au-filled nanopores of each 10 microm diameter NEE of a ANEMA. The track-etched polycarbonate membranes were filled using a gold electroless deposition procedure into the 30 nm diameter pores in the membrane. Electrical connection between the Au-filled template array and the lithographic UME platform array was achieved by potentiostatic electrodeposition of Cu from an acidic copper solution into each of the 25 recessed Pt UMEs on the UME array platform. A multiplexer unit capable of addressing 64 individual micro NEEs on an ANEMA is described. ANEMAs have advantages of high reproducibility, facile fabrication, multitime reuse of lithographically fabricated UME arrays, and purely steady-state behavior.

  14. Numerical computation of steady-state acoustic disturbances in flow

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Myers, M. K.

    1992-01-01

    Two time domain methods for computing two dimensional steady-state acoustic disturbances propagating through internal subsonic viscous flow fields in the presence of variable area are investigated. The first method solves the Navier-Stokes equations for the combined steady and acoustic field together and subtracts the steady flow to obtain the acoustic field. The second method solves a system of perturbation equations to obtain the acoustic disturbances, making use of a separate steady flow computation as input to the system. In each case the periodic steady-state acoustic fluctuations are obtained numerically on a supercomputer using a second order unsplit explicit MacCormack predictor-corrector method. Results show that the first method is not very effective for computing acoustic disturbances of even moderate amplitude. It appears that more accurate steady flow algorithms are required for this method to succeed. On the other hand, linear and nonlinear acoustic disturbances extracted from the perturbation approach are shown to exhibit expected behavior for the problems considered. It is also found that inflow boundary conditions for an equivalent uniform duct can be successfully applied to a nonuniform duct to obtain steady-state acoustic disturbances.

  15. Nonequilibrium Steady State Thermodynamics and Fluctuations for Stochastic Systems

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tooru; Cohen, E. G. D.

    2008-02-01

    We use the work done on and the heat removed from a system to maintain it in a nonequilibrium steady state for a thermodynamic-like description of such a system as well as of its fluctuations. Based on an extended Onsager-Machlup theory for nonequilibrium steady states we indicate two ambiguities, not present in an equilibrium state, in defining such work and heat: one due to a non-uniqueness of time-reversal procedures and another due to multiple possibilities to separate heat into work and an energy difference in nonequilibrium steady states. As a consequence, for such systems, the work and heat satisfy multiple versions of the first and second laws of thermodynamics as well as of their fluctuation theorems. Unique laws and relations appear only to be obtainable for concretely defined systems, using physical arguments to choose the relevant physical quantities. This is illustrated on a number of systems, including a Brownian particle in an electric field, a driven torsion pendulum, electric circuits and an energy transfer driven by a temperature difference.

  16. Basin stability measure of different steady states in coupled oscillators

    PubMed Central

    Rakshit, Sarbendu; Bera, Bidesh K.; Majhi, Soumen; Hens, Chittaranjan; Ghosh, Dibakar

    2017-01-01

    In this report, we investigate the stabilization of saddle fixed points in coupled oscillators where individual oscillators exhibit the saddle fixed points. The coupled oscillators may have two structurally different types of suppressed states, namely amplitude death and oscillation death. The stabilization of saddle equilibrium point refers to the amplitude death state where oscillations are ceased and all the oscillators converge to the single stable steady state via inverse pitchfork bifurcation. Due to multistability features of oscillation death states, linear stability theory fails to analyze the stability of such states analytically, so we quantify all the states by basin stability measurement which is an universal nonlocal nonlinear concept and it interplays with the volume of basins of attractions. We also observe multi-clustered oscillation death states in a random network and measure them using basin stability framework. To explore such phenomena we choose a network of coupled Duffing-Holmes and Lorenz oscillators which are interacting through mean-field coupling. We investigate how basin stability for different steady states depends on mean-field density and coupling strength. We also analytically derive stability conditions for different steady states and confirm by rigorous bifurcation analysis. PMID:28378760

  17. Analytical comparison of transient and steady state visual evoked cortical potentials

    NASA Technical Reports Server (NTRS)

    Junker, A. M.; Kenner, K. M.; Kleinman, D. L.; Mcclurg, T. D.

    1986-01-01

    To better describe the linear-dynamic properties of the human visual-cortical response system, transient and steady state Visual Evoked Response Potentials (VERP) were observed. The stimulus presentation device provided both the evoking stimulus (flickering or pulsing lights) and a video task display. The steady state stimulus was modulated by a complex, ten frequency, sum-of-sines, wave. The transient VERP was the time-locked average of the EEG to a series of narrow light pulses (pulse width of 10 msec). The Fourier transform of the averaged pulses had properties that approximate band limited white noise, i.e., a flat spectrum over the frequency region spanned by the 10 summed sines. The Fourier transform of both the steady state and the transient evoked potentials resulted in transfer that are equivalent and therefore comparable. To investigate the effects of task loading on evoked potentials, a grammatical reasoning task was provided. Results support the relevancy of continued application of a systems engineering approach for describing neurosensory functioning.

  18. Steady-State and Pre-Steady-State Kinetic Analysis of Mycobacterium smegmatis Cysteine Ligase (MshC)

    PubMed Central

    Fan, Fan; Luxenburger, Andreas; Painter, Gavin F.; Blanchard, John S

    2008-01-01

    Mycobacterium tuberculosis and many other members of the Actinomycetes family produce mycothiol, i.e., 1-D-myo-inosityl-2-(N-acetyl-L-cysteinyl)amido-2-deoxy-α-D-glucopyranoside (MSH or AcCys-GlcN-Ins), to act against oxidative and antibiotic stress. The biosynthesis of MSH is essential for cell growth, and has been proposed to proceed via a biosynthetic pathway involving four key enzymes, MshA-D. The MSH biosynthetic enzymes present potential targets for inhibitor design. With this as a long-term goal, we have carried out a kinetic and mechanistic characterization, using steady state and pre-steady state approaches, of the recombinant Mycobacterium smegmatis MshC. MshC catalyzes the ATP-dependent condensation of GlcN-Ins and cysteine to form Cys-GlcN-Ins. Initial velocity and inhibition studies show that the steady state kinetic mechanism of MshC is a Bi Uni Uni Bi Ping Pong mechanism, with ATP binding followed by cysteine binding, release of PPi, binding of GlcN-Ins, followed by the release of Cys-GlcN-Ins and AMP. The steady state kinetic parameters were determined to be: kcat equal to 3.15 s−1, and Km values of 1.8, 0.1, and 0.16 mM for ATP, cysteine, and GlcN-Ins, respectively. A stable bisubstrate analog, 5′-O-[N-(L-cysteinyl)sulfamonyl]adenosine, exhibits competitive inhibition versus ATP and non-competitive inhibition versus cysteine, with an inhibition constant of ~306 nM versus ATP. Single-turnover reactions of the first and second half reactions were determined using rapid quench techniques, giving rates of ~9.4 s−1 and ~5.2 s−1, respectively, consistent with the cysteinyl adenylate being a kinetically competent intermediate in the reaction by MshC. PMID:17848100

  19. Crank inertial load has little effect on steady-state pedaling coordination.

    PubMed

    Fregly, B J; Zajac, F E; Dairaghi, C A

    1996-12-01

    Inertial load can affect the control of a dynamic system whenever parts of the system are accelerated or decelerated. During steady-state pedaling, because within-cycle variations in crank angular acceleration still exist, the amount of crank inertia present (which varies widely with road-riding gear ratio) may affect the within-cycle coordination of muscles. However, the effect of inertial load on steady-state pedaling coordination is almost always assumed to be negligible, since the net mechanical energy per cycle developed by muscles only depends on the constant cadence and workload. This study test the hypothesis that under steady-state conditions, the net joint torques produced by muscles at the hip, knee, and ankle are unaffected by crank inertial load. To perform the investigation, we constructed a pedaling apparatus which could emulate the low inertial load of a standard ergometer or the high inertial load of a road bicycle in high gear. Crank angle and bilateral pedal force and angle data were collected from ten subjects instructed to pedal steadily (i.e., constant speed across cycles) and smoothly (i.e., constant speed within a cycle) against both inertias at a constant workload. Virtually no statistically significant changes were found in the net hip and knee muscle joint torques calculated from an inverse dynamics analysis. Though the net ankle muscle joint torque, as well as the one- and two-legged crank torque, showed statistically significant increases at the higher inertia, the changes were small. In contrast, large statistically significant reductions were found in crank kinematic variability both within a cycle and between cycles (i.e., cadence), primarily because a larger inertial load means a slower crank dynamic response. Nonetheless, the reduction in cadence variability was somewhat attenuated by a large statistically significant increase in one-legged crank torque variability. We suggest, therefore, that muscle coordination during steady-state

  20. A Series RCL Circuit Theory for Analyzing Non-Steady-State Water Uptake of Maize Plants

    NASA Astrophysics Data System (ADS)

    Zhuang, Jie; Yu, Gui-Rui; Nakayama, Keiichi

    2014-10-01

    Understanding water uptake and transport through the soil-plant continuum is vital for ecosystem management and agricultural water use. Plant water uptake under natural conditions is a non-steady transient flow controlled by root distribution, plant configuration, soil hydraulics, and climatic conditions. Despite significant progress in model development, a mechanistic description of transient water uptake has not been developed or remains incomplete. Here, based on advanced electrical network theory (RLC circuit theory), we developed a non-steady state biophysical model to mechanistically analyze the fluctuations of uptake rates in response to water stress. We found that the non-steady-state model captures the nature of instantaneity and hysteresis of plant water uptake due to the considerations of water storage in plant xylem and coarse roots (capacitance effect), hydraulic architecture of leaf system (inductance effect), and soil-root contact (fuse effect). The model provides insights into the important role of plant configuration and hydraulic heterogeneity in helping plants survive an adverse environment. Our tests against field data suggest that the non-steady-state model has great potential for being used to interpret the smart water strategy of plants, which is intrinsically determined by stem size, leaf size/thickness and distribution, root system architecture, and the ratio of fine-to-coarse root lengths.

  1. A Series RCL Circuit Theory for Analyzing Non-Steady-State Water Uptake of Maize Plants

    PubMed Central

    Zhuang, Jie; Yu, Gui-Rui; Nakayama, Keiichi

    2014-01-01

    Understanding water uptake and transport through the soil-plant continuum is vital for ecosystem management and agricultural water use. Plant water uptake under natural conditions is a non-steady transient flow controlled by root distribution, plant configuration, soil hydraulics, and climatic conditions. Despite significant progress in model development, a mechanistic description of transient water uptake has not been developed or remains incomplete. Here, based on advanced electrical network theory (RLC circuit theory), we developed a non-steady state biophysical model to mechanistically analyze the fluctuations of uptake rates in response to water stress. We found that the non-steady-state model captures the nature of instantaneity and hysteresis of plant water uptake due to the considerations of water storage in plant xylem and coarse roots (capacitance effect), hydraulic architecture of leaf system (inductance effect), and soil-root contact (fuse effect). The model provides insights into the important role of plant configuration and hydraulic heterogeneity in helping plants survive an adverse environment. Our tests against field data suggest that the non-steady-state model has great potential for being used to interpret the smart water strategy of plants, which is intrinsically determined by stem size, leaf size/thickness and distribution, root system architecture, and the ratio of fine-to-coarse root lengths. PMID:25335512

  2. A series RCL circuit theory for analyzing non-steady-state water uptake of maize plants.

    PubMed

    Zhuang, Jie; Yu, Gui-Rui; Nakayama, Keiichi

    2014-10-22

    Understanding water uptake and transport through the soil-plant continuum is vital for ecosystem management and agricultural water use. Plant water uptake under natural conditions is a non-steady transient flow controlled by root distribution, plant configuration, soil hydraulics, and climatic conditions. Despite significant progress in model development, a mechanistic description of transient water uptake has not been developed or remains incomplete. Here, based on advanced electrical network theory (RLC circuit theory), we developed a non-steady state biophysical model to mechanistically analyze the fluctuations of uptake rates in response to water stress. We found that the non-steady-state model captures the nature of instantaneity and hysteresis of plant water uptake due to the considerations of water storage in plant xylem and coarse roots (capacitance effect), hydraulic architecture of leaf system (inductance effect), and soil-root contact (fuse effect). The model provides insights into the important role of plant configuration and hydraulic heterogeneity in helping plants survive an adverse environment. Our tests against field data suggest that the non-steady-state model has great potential for being used to interpret the smart water strategy of plants, which is intrinsically determined by stem size, leaf size/thickness and distribution, root system architecture, and the ratio of fine-to-coarse root lengths.

  3. Steady-state analysis of a nonlinear rotor-housing system. [Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Noah, S. T.; Kim, Y. B.

    1990-01-01

    The periodic steady state response of a high pressure oxygen turbopump (HBOTP) of a Space Shuttle main engine (SSME), involving a clearance between the bearing and housing carrier, is sought. A harmonic balance method utilizig Fast Fourier Transform (FFT) algorithm is developed for the analysis. An impedance method is used to reduce the number of degrees of freedom to the displacements at the bearing clearance. Harmonic and subharmonic responses to imbalance for various system parameters are studied. The results show that the computational technique developed in this study is an effective and flexible method for determining the stable and unstable periodic response of complex rotor-housing systems with clearance type nonlinearity.

  4. A Steady-State Mass Transfer Model of Removing CPAs from Cryopreserved Blood with Hollow Fiber Modules

    PubMed Central

    Ding, Weiping; Zhou, Xiaoming; Heimfeld, Shelly; Reems, Jo-Anna; Gao, Dayong

    2010-01-01

    Hollow fiber modules are commonly used to conveniently and efficiently remove cryoprotective agents (CPAs) from cryopreserved cell suspensions. In this paper, a steady-state model coupling mass transfers across cell and hollow fiber membranes is theoretically developed to evaluate the removal of CPAs from cryopreserved blood using hollow fiber modules. This steady-state model complements the unsteady-state model which was presented in our previous study. As the steady-state model, unlike the unsteady-state model, can be used to evaluate the effect of ultrafiltration flow rates on the clearance of CPAs. The steady-state model is validated by experimental results and then is compared with the unsteady-state model. Using the steady-state model, the effects of ultrafiltration flow rates, NaCl concentrations in dialysate, blood flow rates and dialysate flow rates on CPA concentration variation and cell volume response are investigated in detail. According to the simulative results, the osmotic damage of red blood cells (RBCs) can easily be reduced by increasing ultrafiltration flow rates, increasing NaCl concentrations in dialysate, increasing blood flow rates or decreasing dialysate flow rates. PMID:20524740

  5. Posaconazole Plasma Concentrations on Days Three to Five Predict Steady-State Levels

    PubMed Central

    Prattes, Jürgen; Duettmann, Wiebke

    2016-01-01

    Low posaconazole plasma concentrations (PPCs) have been associated with breakthrough invasive fungal infections. We assessed the correlation between pre-steady-state PPCs (obtained between days 3 and 5) and PPCs obtained during steady state in 48 patients with underlying hematological malignancies receiving posaconazole oral-solution prophylaxis. Pre-steady-state PPCs correlated significantly with PPCs obtained at steady state (Spearman r = 0.754; P < 0.001). Receiver operating characteristic (ROC) curve analysis of pre-steady-state PPCs revealed an area under the curve (AUC) of 0.884 (95% confidence interval [CI], 0.790 to 0.977) for predicting satisfactory PPCs at steady state. PMID:27324763

  6. Mimicking Nonequilibrium Steady States with Time-Periodic Driving

    NASA Astrophysics Data System (ADS)

    Raz, O.; Subaşı, Y.; Jarzynski, C.

    2016-04-01

    Under static conditions, a system satisfying detailed balance generically relaxes to an equilibrium state in which there are no currents. To generate persistent currents, either detailed balance must be broken or the system must be driven in a time-dependent manner. A stationary system that violates detailed balance evolves to a nonequilibrium steady state (NESS) characterized by fixed currents. Conversely, a system that satisfies instantaneous detailed balance but is driven by the time-periodic variation of external parameters—also known as a stochastic pump (SP)—reaches a periodic state with nonvanishing currents. In both cases, these currents are maintained at the cost of entropy production. Are these two paradigmatic scenarios effectively equivalent? For discrete-state systems, we establish a mapping between nonequilibrium stationary states and stochastic pumps. Given a NESS characterized by a particular set of stationary probabilities, currents, and entropy production rates, we show how to construct a SP with exactly the same (time-averaged) values. The mapping works in the opposite direction as well. These results establish a proof of principle: They show that stochastic pumps are able to mimic the behavior of nonequilibrium steady states, and vice versa, within the theoretical framework of discrete-state stochastic thermodynamics. Nonequilibrium steady states and stochastic pumps are often used to model, respectively, biomolecular motors driven by chemical reactions and artificial molecular machines steered by the variation of external, macroscopic parameters. Our results loosely suggest that anything a biomolecular machine can do, an artificial molecular machine can do equally well. We illustrate this principle by showing that kinetic proofreading, a NESS mechanism that explains the low error rates in biochemical reactions, can be effectively mimicked by a constrained periodic driving.

  7. Typical pure nonequilibrium steady states and irreversibility for quantum transport.

    PubMed

    Monnai, Takaaki; Yuasa, Kazuya

    2016-07-01

    It is known that each single typical pure state in an energy shell of a large isolated quantum system well represents a thermal equilibrium state of the system. We show that such typicality holds also for nonequilibrium steady states (NESS's). We consider a small quantum system coupled to multiple infinite reservoirs. In the long run, the total system reaches a unique NESS. We identify a large Hilbert space from which pure states of the system are to be sampled randomly and show that the typical pure states well describe the NESS. We also point out that the irreversible relaxation to the unique NESS is important to the typicality of the pure NESS's.

  8. Stabilizing unstable steady states using multiple delay feedback control.

    PubMed

    Ahlborn, Alexander; Parlitz, Ulrich

    2004-12-31

    Feedback control with different and independent delay times is introduced and shown to be an efficient method for stabilizing fixed points (equilibria) of dynamical systems. In comparison to other delay based chaos control methods multiple delay feedback control is superior for controlling steady states and works also for relatively large delay times (sometimes unavoidable in experiments due to system dead times). To demonstrate this approach for stabilizing unstable fixed points we present numerical simulations of Chua's circuit and a successful experimental application for stabilizing a chaotic frequency doubled Nd-doped yttrium aluminum garnet laser.

  9. Nonequilibrium steady-state circulation and heat dissipation functional.

    PubMed

    Qian, H

    2001-08-01

    A nonequilibrium steady-state (NESS), different from an equilibrium, is sustained by circular balance rather than detailed balance. The circular fluxes are driven by energy input and heat dissipation, accompanied by a positive entropy production. Based on a Master equation formalism for NESS, we show the circulation is intimately related to the recently studied Gallavotti-Cohen symmetry of heat dissipation functional, which in turn suggests a Boltzmann's formulalike relation between rate constants and energy in NESS. Expanding this unifying view on NESS to diffusion is discussed.

  10. Steady-State-Preserving Simulation of Genetic Regulatory Systems

    PubMed Central

    Hou, Xilin

    2017-01-01

    A novel family of exponential Runge-Kutta (expRK) methods are designed incorporating the stable steady-state structure of genetic regulatory systems. A natural and convenient approach to constructing new expRK methods on the base of traditional RK methods is provided. In the numerical integration of the one-gene, two-gene, and p53-mdm2 regulatory systems, the new expRK methods are shown to be more accurate than their prototype RK methods. Moreover, for nonstiff genetic regulatory systems, the expRK methods are more efficient than some traditional exponential RK integrators in the scientific literature. PMID:28203268

  11. Steady State Vacuum Ultraviolet Exposure Facility With Automated Calibration Capability

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Sechkar, Edward A.; Dever, Joyce A.; Banks, Bruce A.

    2000-01-01

    NASA Glenn Research Center at Lewis Field designed and developed a steady state vacuum ultraviolet automated (SSVUVa) facility with in situ VUV intensity calibration capability. The automated feature enables a constant accelerated VUV radiation exposure over long periods of testing without breaking vacuum. This test facility is designed to simultaneously accommodate four isolated radiation exposure tests within the SSVUVa vacuum chamber. Computer-control of the facility for long, term continuous operation also provides control and recording of thermocouple temperatures, periodic recording of VUV lamp intensity, and monitoring of vacuum facility status. This paper discusses the design and capabilities of the SSVUVa facility.

  12. Quantum-classical correspondence in steady states of nonadiabatic systems

    SciTech Connect

    Fujii, Mikiya; Yamashita, Koichi

    2015-12-31

    We first present nonadiabatic path integral which is exact formulation of quantum dynamics in nonadiabatic systems. Then, by applying the stationary phase approximations to the nonadiabatic path integral, a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems is presented as a nonadiabatic trace formula. The present quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow degree of freedom, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels.

  13. System studies for quasi-steady-state advanced physics tokamak

    SciTech Connect

    Reid, R.L.; Peng, Y.K.M.

    1983-11-01

    Parametric studies were conducted using the Fusion Engineering Design Center (FEDC) Tokamak Systems Code to investigate the impact of veriation in physics parameters and technology limits on the performance and cost of a low q/sub psi/, high beta, quasi-steady-state tokamak for the purpose of fusion engineering experimentation. The features and characteristics chosen from each study were embodied into a single Advanced Physics Tokamak design for which a self-consistent set of parameters was generated and a value of capital cost was estimated.

  14. Steady State Creep of Zirconium at High and Intermediate Temperatures

    SciTech Connect

    Rosen, R.S.; Hayes, T.A.

    2000-04-08

    Creep of zirconium and zirconium alloys has been labeled ''anomalous.'' Researchers often report that zirconium and its alloys never reach true steady state creep and have stress exponents that continuously change with stress and temperature. Many varied interpretations have been offered explaining the creep behavior of zirconium. Some have suggested that creep is diffusion controlled, while others maintain that creep is dislocation glide controlled. Cumulative zirconium creep data will be presented based on an extensive literature review. An interpretation of results will be presented and compared to previous interpretations.

  15. Steady-State Solution of a Flexible Wing

    NASA Technical Reports Server (NTRS)

    Karkehabadi, Reza; Chandra, Suresh; Krishnamurthy, Ramesh

    1997-01-01

    A fluid-structure interaction code, ENSAERO, has been used to compute the aerodynamic loads on a swept-tapered wing. The code has the capability of using Euler or Navier-Stokes equations. Both options have been used and compared in the present paper. In the calculation of the steady-state solution, we are interested in knowing how the flexibility of the wing influences the lift coefficients. If the results of a flexible wing are not affected by the flexibility of the wing significantly, one could consider the wing to be rigid and reduce the problem from fluid-structure interaction to a fluid problem.

  16. Non-steady-state aerosol filtration in nanostructured fibrous media.

    PubMed

    Przekop, Rafal; Gradoń, Leon

    2011-06-28

    The filtration of aerosol particles using composites of nano- and microsized fibrous structures is a promising method for the effective separation of nanoparticles from gases. A multi-scale physical system describing the flow pattern and particle deposition at a non-steady-state condition requires an advanced method of modelling. The combination of lattice Boltzmann and Brownian dynamics was used for analysis of the particle deposition pattern in a fibrous system. The dendritic structures of deposits for neutral and charged fibres and particles are present. The efficiency of deposition, deposit morphology, porosity and fractal dimension were calculated for a selected operational condition of the process.

  17. Steady-state grain growth in UO{sub 2}

    SciTech Connect

    Galinari, C.M.; Lameiras, F.S.

    1998-06-05

    The authors have observed steady-state grain growth in sintered UO{sub 2} pellets of nuclear purity at 2,003 K under H{sub 2}. The behavior of the grain size distribution at different instants is consistent with the grain growth model proposed by one of the authors. The total number of grains was estimated using the Saltykov`s method, and the evolution is in accordance with the model proposed by Rhines and Craig. The parabolic growth law was observed for the mean intercept length with n = 0.4.

  18. Linear modeling of steady-state behavioral dynamics.

    PubMed Central

    Palya, William L; Walter, Donald; Kessel, Robert; Lucke, Robert

    2002-01-01

    The observed steady-state behavioral dynamics supported by unsignaled periods of reinforcement within repeating 2,000-s trials were modeled with a linear transfer function. These experiments employed improved schedule forms and analytical methods to improve the precision of the measured transfer function, compared to previous work. The refinements include both the use of multiple reinforcement periods that improve spectral coverage and averaging of independently determined transfer functions. A linear analysis was then used to predict behavior observed for three different test schedules. The fidelity of these predictions was determined. PMID:11831782

  19. Steady-state motion visual evoked potentials produced by oscillating Newton's rings: implications for brain-computer interfaces.

    PubMed

    Xie, Jun; Xu, Guanghua; Wang, Jing; Zhang, Feng; Zhang, Yizhuo

    2012-01-01

    In this study, we utilize a special visual stimulation protocol, called motion reversal, to present a novel steady-state motion visual evoked potential (SSMVEP)-based BCI paradigm that relied on human perception of motions oscillated in two opposite directions. Four Newton's rings with the oscillating expansion and contraction motions served as visual stimulators to elicit subjects' SSMVEPs. And four motion reversal frequencies of 8.1, 9.8, 12.25 and 14 Hz were tested. According to Canonical Correlation Analysis (CCA), the offline accuracy and ITR (mean ± standard deviation) over six healthy subjects were 86.56 ± 9.63% and 15.93 ± 3.83 bits/min, respectively. All subjects except one exceeded the level of 80% mean accuracy. Circular Hotelling's T-Squared test (T2 circ) also demonstrated that most subjects exhibited significantly strong stimulus-locked SSMVEP responses. The results of declining exponential fittings exhibited low-adaptation characteristics over the 100-s stimulation sequences in most experimental conditions. Taken together, these results suggest that the proposed paradigm can provide comparable performance with low-adaptation characteristic and less visual discomfort for BCI applications.

  20. Steady-State Motion Visual Evoked Potentials Produced by Oscillating Newton's Rings: Implications for Brain-Computer Interfaces

    PubMed Central

    Xie, Jun; Xu, Guanghua; Wang, Jing; Zhang, Feng; Zhang, Yizhuo

    2012-01-01

    In this study, we utilize a special visual stimulation protocol, called motion reversal, to present a novel steady-state motion visual evoked potential (SSMVEP)-based BCI paradigm that relied on human perception of motions oscillated in two opposite directions. Four Newton's rings with the oscillating expansion and contraction motions served as visual stimulators to elicit subjects' SSMVEPs. And four motion reversal frequencies of 8.1, 9.8, 12.25 and 14 Hz were tested. According to Canonical Correlation Analysis (CCA), the offline accuracy and ITR (mean ± standard deviation) over six healthy subjects were 86.56±9.63% and 15.93±3.83 bits/min, respectively. All subjects except one exceeded the level of 80% mean accuracy. Circular Hotelling's T-Squared test () also demonstrated that most subjects exhibited significantly strong stimulus-locked SSMVEP responses. The results of declining exponential fittings exhibited low-adaptation characteristics over the 100-s stimulation sequences in most experimental conditions. Taken together, these results suggest that the proposed paradigm can provide comparable performance with low-adaptation characteristic and less visual discomfort for BCI applications. PMID:22724028

  1. Exploring the temporal dynamics of sustained and transient spatial attention using steady-state visual evoked potentials.

    PubMed

    Zhang, Dan; Hong, Bo; Gao, Shangkai; Röder, Brigitte

    2017-03-03

    While the behavioral dynamics as well as the functional network of sustained and transient attention have extensively been studied, their underlying neural mechanisms have most often been investigated in separate experiments. In the present study, participants were instructed to perform an audio-visual spatial attention task. They were asked to attend to either the left or the right hemifield and to respond to deviant transient either auditory or visual stimuli. Steady-state visual evoked potentials (SSVEPs) elicited by two task irrelevant pattern reversing checkerboards flickering at 10 and 15 Hz in the left and the right hemifields, respectively, were used to continuously monitor the locus of spatial attention. The amplitude and phase of the SSVEPs were extracted for single trials and were separately analyzed. Sustained attention to one hemifield (spatial attention) as well as to the auditory modality (intermodal attention) increased the inter-trial phase locking of the SSVEP responses, whereas briefly presented visual and auditory stimuli decreased the single-trial SSVEP amplitude between 200 and 500 ms post-stimulus. This transient change of the single-trial amplitude was restricted to the SSVEPs elicited by the reversing checkerboard in the spatially attended hemifield and thus might reflect a transient re-orienting of attention towards the brief stimuli. Thus, the present results demonstrate independent, but interacting neural mechanisms of sustained and transient attentional orienting.

  2. An optimization-based design framework for steering steady states and improving robustness of glycolysis-glycogenolysis pathway.

    PubMed

    Panja, Surajit; Patra, Sourav; Mukherjee, Anirban; Basu, Madhumita; Sengupta, Sanghamitra; Dutta, Pranab K

    2013-02-01

    A robust synthesis technique is devised for synergism and saturation systems, commonly known as S-systems, for controlling the steady states of the glycolysis-glycogenolysis pathway. The development of the robust biochemical network is essential owing to the fragile response to the perturbation of intrinsic and extrinsic parameters of the nominal S-system. The synthesis problem is formulated in a computationally attractive convex optimization framework. The linear matrix inequalities are framed to aim at the minimization of steady-state error, improvement of robustness, and utilization of minimum control input to the biochemical network.

  3. Steady-state operation of spheromaks by inductive techniques

    SciTech Connect

    Janos, A.

    1984-04-01

    A method to maintain a steady-state spheromak configuration inductively using the S-1 Spheromak device is described. The S-1 Spheromak formation apparatus can be utilized to inject magnetic helicity continuously (C.W., not pulsed or D.C.) into the spheromak configuration after equilibrium is achieved in the linked mode of operation. Oscillation of both poloidal- and toroidal-field currents in the flux core (psi-phi Pumping), with proper phasing, injects a net time-averaged helicity into the plasma. Steady-state maintenance relies on flux conversion, which has been earlier identified. Relevant experimental data from the operation of S-1 are described. Helicity flow has been measured and the proposed injection scheme simulated. In a reasonable time practical voltages and frequencies can inject an amount of helicity comparable to that in the initial plasma. Plasma currents can be maintained or increased. This pumping technique is similar to F-THETA Pumping of a Reversed-Field-Pinch but is applied to this inverse-pinch formation.

  4. Steady-State ALPS for Real-Valued Problems

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.

    2009-01-01

    The two objectives of this paper are to describe a steady-state version of the Age-Layered Population Structure (ALPS) Evolutionary Algorithm (EA) and to compare it against other GAs on real-valued problems. Motivation for this work comes from our previous success in demonstrating that a generational version of ALPS greatly improves search performance on a Genetic Programming problem. In making steady-state ALPS some modifications were made to the method for calculating age and the method for moving individuals up layers. To demonstrate that ALPS works well on real-valued problems we compare it against CMA-ES and Differential Evolution (DE) on five challenging, real-valued functions and on one real-world problem. While CMA-ES and DE outperform ALPS on the two unimodal test functions, ALPS is much better on the three multimodal test problems and on the real-world problem. Further examination shows that, unlike the other GAs, ALPS maintains a genotypically diverse population throughout the entire search process. These findings strongly suggest that the ALPS paradigm is better able to avoid premature convergence then the other GAs.

  5. Ecological Implications of Steady State and Nonsteady State Bioaccumulation Models.

    PubMed

    McLeod, Anne M; Paterson, Gordon; Drouillard, Ken G; Haffner, G Douglas

    2016-10-18

    Accurate predictions on the bioaccumulation of persistent organic pollutants (POPs) are critical for hazard and ecosystem health assessments. Aquatic systems are influenced by multiple stressors including climate change and species invasions and it is important to be able to predict variability in POP concentrations in changing environments. Current steady state bioaccumulation models simplify POP bioaccumulation dynamics, assuming that pollutant uptake and elimination processes become balanced over an organism's lifespan. These models do not consider the complexity of dynamic variables such as temperature and growth rates which are known to have the potential to regulate bioaccumulation in aquatic organisms. We contrast a steady state (SS) bioaccumulation model with a dynamic nonsteady state (NSS) model and a no elimination (NE) model. We demonstrate that both the NSS and the NE models are superior at predicting both average concentrations as well as variation in POPs among individuals. This comparison demonstrates that temporal drivers, such as environmental fluctuations in temperature, growth dynamics, and modified food-web structure strongly determine contaminant concentrations and variability in a changing environment. These results support the recommendation of the future development of more dynamic, nonsteady state bioaccumulation models to predict hazard and risk assessments in the Anthropocene.

  6. New models for fast steady state magnetic reconnection

    NASA Technical Reports Server (NTRS)

    Priest, E. R.; Forbes, T. G.

    1986-01-01

    A new unified family of models for incompressible, steady-state magnetic reconnection in a finite region is presented. The models are obtained by expanding in powers of the Alfven Mach number and may be used to elucidate some of the puzzling properties of numerical experiments on reconnection which are not present in the classical models. The conditions imposed on the inflow boundary of the finite region determine which member of the family occurs. Petscheklien and Sonnerup like solutions are particular members. The Sonneruplike regime is a special case of a weak slow mode expansion in the inflow region, and it separates two classes of members with reversed currents. The Petscheklike regime is a singular case of a weak fast mode expansion, and it separates the hybrid regime from a regime of slow mode compressions. Care should be taken in deciding which type of reconnection is operating in a numerical experiment. Indeed, no experiment to date has used boundary conditions appropriate for demonstrating steady state Petschek reconnection.

  7. Steady-state mushy layers: Experiments and theory

    NASA Astrophysics Data System (ADS)

    Peppin, S.; Aussillous, P.; Huppert, Herbert E.; Grae Worster, M.

    2006-11-01

    A new facility has been developed to investigate mushy layers formed during the steady directional solidification of transparent aqueous solutions in a quasi-two-dimensional system. Experiments have been conducted on NaCl--H20 solutions by translating a Hele-Shaw cell at prescribed rates between fixed heat exchangers providing a temperature gradient of approximately 1,^0C/mm. Ice formed the primary solid phase and the dense residual fluid ponded within the mushy layer at the base of the system. Mathematical predictions of the steady-state temperature profile and mushy layer thickness as functions of freezing rate are in excellent agreement with experimental results. Experiments have also been performed on aqueous NH4Cl solutions, with the salt forming the primary solid phase, yielding buoyancy-driven convection in the mushy layer and the development of chimneys. The lifetime of the chimneys increased with decreasing freezing rate; however, no steady-state chimneys have been observed. Rather, a convecting chimney appears to deplete the surrounding solution and is eventually extinguished. At freezing rates larger than about 5.5,μm/s a uniform mushy layer develops with no chimneys. However, at rates larger than about 5,μm/s a second mode of behaviour is observed in which the mushy layer is thin and there is significant supercooling and nucleation above it. There is hysteresis between the two modes.

  8. Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism

    PubMed Central

    Fleming, R.M.T.; Thiele, I.; Provan, G.; Nasheuer, H.P.

    2010-01-01

    The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting in silico predictions are tested against fluxomic data for central metabolism in E. coli and compare favourably with in silico prediction by flux balance analysis. PMID:20230840

  9. Zonal Flow Growth Rates: Modulational Instability vs Statistical Steady States.

    NASA Astrophysics Data System (ADS)

    Krommes, J. A.; Kolesnikov, R. A.

    2002-11-01

    The nonlinear growth rate of zonal flows has been the subject of various investigations. The calculations can be grouped into two major classes: those based on modulational instability of a fixed pump wave;(L. Chen et al., Phys. Plasmas 7), 3129 (2000); P. N. Guzdar et al., Phys. Rev. Lett. 87, 015001 (2001); C. N. Lashmore-Davies et al., Phys. Plasmas 8, 5121 (2001). and those employing statistical formalism to describe a self-consistent, energy-conserving steady state.(J. A. Krommes and C.--B. Kim, Phys. Rev. E 62), 8508 (2000), and references therein. The results from these two approaches do not necessarily agree either in their dependence on parameters like the plasma pressure β, on the threshold for instability, or even, in some cases, on the sign. The reasons for such disagreements are isolated, and it is shown to what extent the steady-state statistical approach can be reconciled with a generic modulational instability calculation. Generalizations of the statistical formalism to the multifield systems appropriate for finite β are described. Specific calculations based on model systems are used to illustrate the general arguments.

  10. Steady States and Universal Conductance in a Quenched Luttinger Model

    NASA Astrophysics Data System (ADS)

    Langmann, Edwin; Lebowitz, Joel L.; Mastropietro, Vieri; Moosavi, Per

    2017-01-01

    We obtain exact analytical results for the evolution of a 1+1-dimensional Luttinger model prepared in a domain wall initial state, i.e., a state with different densities on its left and right sides. Such an initial state is modeled as the ground state of a translation invariant Luttinger Hamiltonian {H_{λ}} with short range non-local interaction and different chemical potentials to the left and right of the origin. The system evolves for time t > 0 via a Hamiltonian {H_{λ'}} which differs from {H_{λ}} by the strength of the interaction. Asymptotically in time, as {t to ∞}, after taking the thermodynamic limit, the system approaches a translation invariant steady state. This final steady state carries a current I and has an effective chemical potential difference {μ+ - μ-} between right- (+) and left- (-) moving fermions obtained from the two-point correlation function. Both I and {μ+ - μ-} depend on {λ} and {λ'}. Only for the case {λ = λ' = 0} does {μ+ - μ-} equal the difference in the initial left and right chemical potentials. Nevertheless, the Landauer conductance for the final state, {G = I/(μ+ - μ-)}, has a universal value equal to the conductance quantum {e^2/h} for the spinless case.

  11. Modeling steady-state methanogenic degradation of phenols in groundwater

    USGS Publications Warehouse

    Bekins, Barbara A.; Godsy, E. Michael; Goerlitz, Donald F.

    1993-01-01

    Field and microcosm observations of methanogenic phenolic compound degradation indicate that Monod kinetics governs the substrate disappearance but overestimates the observed biomass. In this paper we present modeling results from an ongoing multidisciplinary study of methanogenic biodegradation of phenolic compounds in a sand and gravel aquifer contaminated by chemicals and wastes used in wood treatment. Field disappearance rates of four phenols match those determined in batch microcosm studies previously performed by E.M. Godsy and coworkers. The degradation process appears to be at steady-state because even after a sustained influx over several decades, the contaminants still are disappearing in transport downgradient. The existence of a steady-state degradation profile of each substrate together with a low biomass density in the aquifer indicate that the bacteria population is exhibiting no net growth. This may be due to the oligotrophic nature of the biomass population in which utilization and growth are approximately independent of concentration for most of the concentration range. Thus a constant growth rate should exist over much of the contaminated area which may in turn be balanced by an unusually high decay or maintenance rate due to hostile conditions or predation.

  12. Steady-state wear and friction in boundary lubrication studies

    NASA Technical Reports Server (NTRS)

    Loomis, W. R.; Jones, W. R., Jr.

    1980-01-01

    A friction and wear study was made at 20 C to obtain improved reproducibility and reliability in boundary lubrication testing. Ester-base and C-ether-base fluids were used to lubricate a pure iron rider in sliding contact with a rotating M-50 steel disk in a friction and wear apparatus. Conditions included loads of 1/2 and 1 kg and sliding velocities of 3.6 to 18.2 m/min in a dry air atmosphere and stepwise time intervals from 1 to 250 min for wear measurements. The wear rate results were compared with those from previous studies where a single 25 min test period was used. Satisfactory test conditions for studying friction and wear in boundary lubrication for this apparatus were found to be 1 kg load; sliding velocities of 7.1 to 9.1 m/min (50 rpm disk speed); and use of a time stepwise test procedure. Highly reproducible steady-state wear rates and steady-state friction coefficients were determined under boundary conditions. Wear rates and coefficients of friction were constant following initially high values during run-in periods.

  13. Behavioral responses of California sea lions to mid-frequency (3250-3450 Hz) sonar signals.

    PubMed

    Houser, Dorian S; Martin, Stephen W; Finneran, James J

    2013-12-01

    Military sonar has the potential to negatively impact marine mammals. To investigate factors affecting behavioral disruption in California sea lions (Zalophus californianus), fifteen sea lions participated in a controlled exposure study using a simulated tactical sonar signal (1 s duration, 3250-3450 Hz) as a stimulus. Subjects were placed into groups of three and each group received a stimulus exposure of 125, 140, 155, 170, or 185 dB re: 1 μPa (rms). Each subject was trained to swim across an enclosure, touch a paddle, and return to the start location. Sound exposures occurred at the mid-point of the enclosure. Control and exposure sessions were run consecutively and each consisted of ten, 30-s trials. The occurrence and severity of behavioral responses were used to create acoustic dose-response and dose-severity functions. Age of the subject significantly affected the dose-response relationship, but not the dose-severity relationship. Repetitive exposures did not affect the dose-response relationship.

  14. Tracking Control for an Overactuated Hypersonic Air-Breathing Vehicle with Steady State Constraints (PREPRINT)

    DTIC Science & Technology

    2005-12-01

    choice of a steady state control is completely independent from the choice of a stabilizing control law. This separation is key for the methods we will...develop for steady state optimization in later sections. Combining the steady state with the stabilizing control , we can express the control law as u...for stabilizing control and optimization methods for steady state control, both unconstrained and constrained, we were able to produce promising results

  15. 40 CFR 86.1362-2010 - Steady-state testing with a ramped-modal cycle.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Torque(percent) 2 3 1a Steady-state 170 Warm Idle 0 1b Transition 20 Linear Transition Linear Transition. 2a Steady-state 173 A 100 2b Transition 20 Linear Transition Linear Transition. 3a Steady-state 219 B 50 3b Transition 20 B Linear Transition. 4a Steady-state 217 B 75 4b Transition 20 Linear...

  16. Steady-State Voltammetry of a Microelectrode in a Closed Bipolar Cell

    PubMed Central

    Cox, Jonathan T.; Guerrette, Joshua P.; Zhang, Bo

    2012-01-01

    Here we report the theory and experimental study of the steady-state voltammetric behavior of a microelectrode used as a limiting pole in a closed bipolar electrochemical cell. We show that the steady-state voltammetric response of a microelectrode used in a closed bipolar cell can be quantitatively understood by considering the responses of both poles in their respective conventional two-electrode setups. In comparison to a conventional electrochemical cell the voltammetric response of the bipolar cell has a similar sigmoidal shape and limiting current, however, the response is often slower than that of the typical two-electrode setup. This leads to a broader voltammogram and a decreased wave slope which can be somewhat misleading and appear that the process being studied is irreversible when it instead can be a result of the coupling of two reversible processes. We show that a large limiting current on the excess pole would facilitate the observation of a faster voltammetric response and both redox concentration and electrode area of the excess pole affect the wave shape. Both factors should be maximized in electroanalytical experiments in order to obtain fast voltammetric responses on the main electrode of interest and to detect quick changes in analyte concentrations. PMID:22992030

  17. 40 CFR Appendix II to Part 1042 - Steady-State Duty Cycles

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...%. 1bTransition 20 Linear transition Linear transition in torque. 2aSteady-state 166 63% 25%. 2bTransition 20 Linear transition Linear transition in torque. 3aSteady-state 570 91% 75%. 3bTransition 20 Linear transition Linear transition in torque. 4aSteady-state 175 80% 50%. 1 Speed terms are defined...

  18. 40 CFR Appendix II to Part 1042 - Steady-State Duty Cycles

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...%. 1bTransition 20 Linear transition Linear transition in torque. 2aSteady-state 166 63% 25%. 2bTransition 20 Linear transition Linear transition in torque. 3aSteady-state 570 91% 75%. 3bTransition 20 Linear transition Linear transition in torque. 4aSteady-state 175 80% 50%. 1 Speed terms are defined...

  19. 40 CFR Appendix II to Part 1042 - Steady-State Duty Cycles

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...%. 1bTransition 20 Linear transition Linear transition in torque. 2aSteady-state 166 63% 25%. 2bTransition 20 Linear transition Linear transition in torque. 3aSteady-state 570 91% 75%. 3bTransition 20 Linear transition Linear transition in torque. 4aSteady-state 175 80% 50%. 1 Speed terms are defined...

  20. Development of Steady-State Diffusion Gradients for the Cultivation of Degradative Microbial Consortia

    PubMed Central

    Wolfaardt, G. M.; Lawrence, J. R.; Hendry, M. J.; Robarts, R. D.; Caldwell, D. E.

    1993-01-01

    A diffusion gradient plate was constructed and evaluated for its potential use in the isolation of degradative microbial consortia from natural habitats. In this model, a steady-state concentration gradient of diclofop methyl, established by diffusion through an agarose gel, provided the carbon for microbial growth. Colonization of the gel surface was observed with epifluorescence and scanning confocal laser microscopy to determine microbial responses to the diclofop gradient. A detectable gradient developed over a narrow band (<10 mm). Consequently, quantitative analyses of the microbial response to the gradient were difficult to obtain. A two-dimensional, finite-element numerical transport model for advective-diffusive transport was used to simulate concentration and flux profiles in the physical model. The simulated profiles were correlated with the measured concentration gradient (R2 = 0.89) and the cell numbers on the gel surface (R2 = 0.85). The numerical model was subsequently used to redesign the physical model. The detectable concentration gradient in the modified physical model extended over the length of the gel (38 mm). The simulated profile again showed a good correlation with the measured profile (R2 = 0.96) and the microbial responses to the concentration gradient (R2 = 0.99). It was concluded that these gradients provide the steady-state environments needed to sustain steady-state consortia. They also provide a physical pathway for the development of degradative biofilms from low to high concentrations of toxicants and simulate conditions under which low concentrations of toxicant are supplied at a constant flux over long periods of time, such as the conditions that could occur in natural environments. Images PMID:16349007

  1. High magnetic field test of bismuth Hall sensors for ITER steady state magnetic diagnostic

    NASA Astrophysics Data System (ADS)

    Duran, I.; Entler, S.; Kohout, M.; Kočan, M.; Vayakis, G.

    2016-11-01

    Performance of bismuth Hall sensors developed for the ITER steady state magnetic diagnostic was investigated for high magnetic fields in the range ±7 T. Response of the sensors to the magnetic field was found to be nonlinear particularly within the range ±1 T. Significant contribution of the planar Hall effect to the sensors output voltage causing undesirable cross field sensitivity was identified. It was demonstrated that this effect can be minimized by the optimization of the sensor geometry and alignment with the magnetic field and by the application of "current-spinning technique."

  2. High magnetic field test of bismuth Hall sensors for ITER steady state magnetic diagnostic.

    PubMed

    Ďuran, I; Entler, S; Kohout, M; Kočan, M; Vayakis, G

    2016-11-01

    Performance of bismuth Hall sensors developed for the ITER steady state magnetic diagnostic was investigated for high magnetic fields in the range ±7 T. Response of the sensors to the magnetic field was found to be nonlinear particularly within the range ±1 T. Significant contribution of the planar Hall effect to the sensors output voltage causing undesirable cross field sensitivity was identified. It was demonstrated that this effect can be minimized by the optimization of the sensor geometry and alignment with the magnetic field and by the application of "current-spinning technique."

  3. Nonequilibrium steady states in contact: approximate thermodynamic structure and zeroth law for driven lattice gases.

    PubMed

    Pradhan, Punyabrata; Amann, Christian P; Seifert, Udo

    2010-10-08

    We explore driven lattice gases for the existence of an intensive thermodynamic variable which could determine "equilibration" between two nonequilibrium steady-state systems kept in weak contact. In simulations, we find that these systems satisfy surprisingly simple thermodynamic laws, such as the zeroth law and the fluctuation-response relation between the particle-number fluctuation and the corresponding susceptibility remarkably well. However, at higher densities, small but observable deviations from these laws occur due to nontrivial contact dynamics and the presence of long-range spatial correlations.

  4. NASA Lewis Steady-State Heat Pipe Code Architecture

    NASA Technical Reports Server (NTRS)

    Mi, Ye; Tower, Leonard K.

    2013-01-01

    NASA Glenn Research Center (GRC) has developed the LERCHP code. The PC-based LERCHP code can be used to predict the steady-state performance of heat pipes, including the determination of operating temperature and operating limits which might be encountered under specified conditions. The code contains a vapor flow algorithm which incorporates vapor compressibility and axially varying heat input. For the liquid flow in the wick, Darcy s formula is employed. Thermal boundary conditions and geometric structures can be defined through an interactive input interface. A variety of fluid and material options as well as user defined options can be chosen for the working fluid, wick, and pipe materials. This report documents the current effort at GRC to update the LERCHP code for operating in a Microsoft Windows (Microsoft Corporation) environment. A detailed analysis of the model is presented. The programming architecture for the numerical calculations is explained and flowcharts of the key subroutines are given

  5. Characterization of a class of stellarator steady states

    SciTech Connect

    Weitzner, Harold

    2011-01-15

    A stellarator steady state is obtained for a specific class of magnetic fields by a formal expansion in the small Larmor radius parameters of the coupled ion-electron Fokker-Planck equations. A system of relatively simple ordinary differential equations is given to determine the plasma profile functions, the number density, the temperature, and the electrostatic potential. A particular low collisionality ordering is used. The magnetic field is assumed to have stellarator symmetry of N periods in the toroidal direction and is approximated by a closed magnetic line configuration with rotational transform N/R. The magnetic field is nearly quasisymmetric. The chosen magnetic field also includes a small additional component leading to a configuration without closed lines or closed flux surfaces. The theoretical logic behind this choice of magnetic fields is also presented.

  6. Steady-state magma discharge at Etna 1971-81

    NASA Technical Reports Server (NTRS)

    Wadge, G.; Guest, J. E.

    1981-01-01

    Throughout the past decade Mount Etna has been in almost continuous activity and even during periods of repose incandescent lava has often been visible in at least one of the summit vents. Using observations by Italian, British and French volcanological teams, the volumes of lava produced by each eruption from 1971 to July 1981 have been estimated. The computed output of magma for this period approximates to a rate of 0.7 cu m/s. This is compared with the output rate estimates for Etna's historic past. The steady-state nature of the output during the past decade has implications for the interpretation of the volcano's internal plumbing and the petrology of its lavas, and the assumption that this state will be maintained allows a discussion of the timing and magnitude of future eruptions.

  7. Steady state asymmetric planetary electrical induction. [by solar wind

    NASA Technical Reports Server (NTRS)

    Horning, B. L.; Schubert, G.

    1974-01-01

    An analytic solution is presented for the steady state electric and magnetic fields induced by the motional electric field of the solar wind in the atmosphere or interior of a planet that is asymmetrically surrounded by solar wind plasma. The electrically conducting ionosphere or interior must be in direct electrical contact with the solar wind over the day side of the planet. The conducting region of the planet is modeled by a sphere or a spherical shell of arbitrarily stratified electrical conductivity. A monoconducting cylindrical cavity is assumed to extend downstream on the night side of the planet. The solar wind is assumed to be highly conducting so that the induced fields are confined to the planet and cavity. Induced currents close as sheet currents at the solar wind-cavity and solar wind-planet interfaces. Numerical evaluations of the analytic formulas are carried out for a uniformly conducting spherical model.

  8. Steady-state mushy layers: experiments and theory

    NASA Astrophysics Data System (ADS)

    Peppin, S. S. L.; Aussillous, P.; Huppert, Herbert E.; Grae Worster, M.

    A new facility has been developed to investigate the directional solidification of transparent aqueous solutions forming mushy layers in a quasi-two-dimensional system. Experiments have been conducted on NaCl H_{2}O solutions by translating a Hele-Shaw cell at prescribed rates between fixed heat exchangers providing a temperature gradient of approximately 1 (°) C mm(-1) . The mush liquid interface remained planar at all freezing velocities larger than 8 umum s(-1) , while steepling occurred at lower velocities. No significant undercooling of the mush liquid interface was detected at freezing velocities up to 12 umum s(-1) . Mathematical predictions of the steady-state temperature profile and mushy-layer thickness as functions of freezing rate are in excellent agreement with experimental measurements.

  9. Dust remobilization in fusion plasmas under steady state conditions

    NASA Astrophysics Data System (ADS)

    Tolias, P.; Ratynskaia, S.; De Angeli, M.; De Temmerman, G.; Ripamonti, D.; Riva, G.; Bykov, I.; Shalpegin, A.; Vignitchouk, L.; Brochard, F.; Bystrov, K.; Bardin, S.; Litnovsky, A.

    2016-02-01

    The first combined experimental and theoretical studies of dust remobilization by plasma forces are reported. The main theoretical aspects of remobilization in fusion devices under steady state conditions are analyzed. In particular, the dominant role of adhesive forces is highlighted and generic remobilization conditions—direct lift-up, sliding, rolling—are formulated. A novel experimental technique is proposed, based on controlled adhesion of dust grains on tungsten samples combined with detailed mapping of the dust deposition profile prior and post plasma exposure. Proof-of-principle experiments in the TEXTOR tokamak and the EXTRAP-T2R reversed-field pinch are presented. The versatile environment of the linear device Pilot-PSI allowed for experiments with different magnetic field topologies and varying plasma conditions that were complemented with camera observations.

  10. Modelling of pulsed and steady-state DEMO scenarios

    NASA Astrophysics Data System (ADS)

    Giruzzi, G.; Artaud, J. F.; Baruzzo, M.; Bolzonella, T.; Fable, E.; Garzotti, L.; Ivanova-Stanik, I.; Kemp, R.; King, D. B.; Schneider, M.; Stankiewicz, R.; Stępniewski, W.; Vincenzi, P.; Ward, D.; Zagórski, R.

    2015-07-01

    Scenario modelling for the demonstration fusion reactor (DEMO) has been carried out using a variety of simulation codes. Two DEMO concepts have been analysed: a pulsed tokamak, characterized by rather conventional physics and technology assumptions (DEMO1) and a steady-state tokamak, with moderately advanced physics and technology assumptions (DEMO2). Sensitivity to impurity concentrations, radiation, and heat transport models has been investigated. For DEMO2, the impact of current driven non-inductively by neutral beams has been studied by full Monte Carlo simulations of the fast ion distribution. The results obtained are a part of a more extensive research and development (R&D) effort carried out in the EU in order to develop a viable option for a DEMO reactor, to be adopted after ITER for fusion energy research.

  11. Steady-State Density Functional Theory for Finite Bias Conductances.

    PubMed

    Stefanucci, G; Kurth, S

    2015-12-09

    In the framework of density functional theory, a formalism to describe electronic transport in the steady state is proposed which uses the density on the junction and the steady current as basic variables. We prove that, in a finite window around zero bias, there is a one-to-one map between the basic variables and both local potential on as well as bias across the junction. The resulting Kohn-Sham system features two exchange-correlation (xc) potentials, a local xc potential, and an xc contribution to the bias. For weakly coupled junctions the xc potentials exhibit steps in the density-current plane which are shown to be crucial to describe the Coulomb blockade diamonds. At small currents these steps emerge as the equilibrium xc discontinuity bifurcates. The formalism is applied to a model benzene junction, finding perfect agreement with the orthodox theory of Coulomb blockade.

  12. Locating CVBEM collocation points for steady state heat transfer problems

    USGS Publications Warehouse

    Hromadka, T.V.

    1985-01-01

    The Complex Variable Boundary Element Method or CVBEM provides a highly accurate means of developing numerical solutions to steady state two-dimensional heat transfer problems. The numerical approach exactly solves the Laplace equation and satisfies the boundary conditions at specified points on the boundary by means of collocation. The accuracy of the approximation depends upon the nodal point distribution specified by the numerical analyst. In order to develop subsequent, refined approximation functions, four techniques for selecting additional collocation points are presented. The techniques are compared as to the governing theory, representation of the error of approximation on the problem boundary, the computational costs, and the ease of use by the numerical analyst. ?? 1985.

  13. A Steady-state Trio for Bretherton Equation

    NASA Astrophysics Data System (ADS)

    Niu, Zhao; Liu, Zeng; Cui, Jifeng

    2016-12-01

    To investigate if steady-state resonant solution exist for any system of weakly interacting waves in a dispersive medium, a trio is considered in the Bretherton equation based on the homotopy analysis method (HAM). Time-independent spectrum was found when all components were travelling in the same direction. Within the trio, the amplitude of longer component is larger than that of shorter one. As the difference of wave number between components in trio increases or the nonlinearity of whole system increases, the amplitudes of all components tends to increase simultaneously. These findings are helpful to enrich and deepen our understanding about resonant solutions in any dispersive medium, especially for a two-dimensional scenario.

  14. Relativistic hydrodynamics and non-equilibrium steady states

    NASA Astrophysics Data System (ADS)

    Spillane, Michael; Herzog, Christopher P.

    2016-10-01

    We review recent interest in the relativistic Riemann problem as a method for generating a non-equilibrium steady state. In the version of the problem under consideration, the initial conditions consist of a planar interface between two halves of a system held at different temperatures in a hydrodynamic regime. The new double shock solutions are in contrast with older solutions that involve one shock and one rarefaction wave. We use numerical simulations to show that the older solutions are preferred. Briefly we discuss the effects of a conserved charge. Finally, we discuss deforming the relativistic equations with a nonlinear term and how that deformation affects the temperature and velocity in the region connecting the asymptotic fluids.

  15. Transient and steady state modelling of a coupled WECS

    NASA Astrophysics Data System (ADS)

    Nathan, G. K.; Tan, J. K.

    The paper presents a method for simulation of a wind turbine using a dc motor. The armature and field voltages of the dc motor are independently regulated to obtain torque-speed characteristics which correspond to those of a wind turbine at different wind speeds. The mass moment of inertia of the wind turbine is represented by adding a rotating mass to a parallel shaft which is positively coupled to the motor shaft. To verify the method of simulation, an American multiblade wind turbine is chosen, loaded by coupling to a centrifugal pump. Using the principle of conservation of energy and characteristics of both constituent units, two mathematical models are proposed: one for steady state operation and another for the transient state. The close comparison between the theoretical and the experimental results validates the proposed models and the method of simulation. The experimental method is described and the results of the experimental and theoretical investigation are presented.

  16. Petri nets for steady state analysis of metabolic systems.

    PubMed

    Voss, Klaus; Heiner, Monika; Koch, Ina

    2011-01-01

    Computer assisted analysis and simulation of biochemical pathways can improve the understanding of the structure and the dynamics of cell processes considerably. The construction and quantitative analysis of kinetic models is often impeded by the lack of reliable data. However, as the topological structure of biochemical systems can be regarded to remain constant in time, a qualitative analysis of a pathway model was shown to be quite promising as it can render a lot of useful knowledge, e. g., about its structural invariants. The topic of this paper are pathways whose substances have reached a dynamic concentration equilibrium (steady state). It is argued that appreciated tools from biochemistry and also low-level Petri nets can yield only part of the desired results, whereas executable high-level net models lead to a number of valuable additional insights by combining symbolic analysis and simulation.

  17. Steady state analysis of metabolic pathways using Petri nets.

    PubMed

    Voss, Klaus; Heiner, Monika; Koch, Ina

    2003-01-01

    Computer assisted analysis and simulation of biochemical pathways can improve the understanding of the structure and the dynamics of cell processes considerably. The construction and quantitative analysis of kinetic models is often impeded by the lack of reliable data. However, as the topological structure of biochemical systems can be regarded to remain constant in time, a qualitative analysis of a pathway model was shown to be quite promising as it can render a lot of useful knowledge, e. g., about its structural invariants. The topic of this paper are pathways whose substances have reached a dynamic concentration equilibrium (steady state). It is argued that appreciated tools from biochemistry and also low-level Petri nets can yield only part of the desired results, whereas executable high-level net models lead to a number of valuable additional insights by combining symbolic analysis and simulation.

  18. Steady-state thermodynamics for population growth in fluctuating environments

    NASA Astrophysics Data System (ADS)

    Sughiyama, Yuki; Kobayashi, Tetsuya J.

    2017-01-01

    We report that population dynamics in fluctuating environments is characterized by a mathematically equivalent structure to steady-state thermodynamics. By employing the structure, population growth in fluctuating environments is decomposed into housekeeping and excess parts. The housekeeping part represents the integral of the stationary growth rate for each condition during a history of the environmental change. The excess part accounts for the excess growth induced by environmental fluctuations. Focusing on the excess growth, we obtain a Clausius inequality, which gives the upper bound of the excess growth. The equality is shown to be achieved in quasistatic environmental changes. We also clarify that this bound can be evaluated by the "lineage fitness", which is an experimentally observable quantity.

  19. Steady-state dynamic behavior of an auxiliary bearing supported rotor system

    NASA Technical Reports Server (NTRS)

    Xie, Huajun; Flowers, George T.; Lawrence, Charles

    1995-01-01

    This paper investigates the steady-state responses of a rotor system supported by auxiliary bearings in which there is a clearance between the rotor and the inner race of the bearing. A simulation model based upon the rotor of a production jet engine is developed and its steady-state behavior is explored over a wide range of operating conditions for various parametric configurations. Specifically, the influence of rotor imbalance, support stiffness, and damping is studied. It is found that imbalance may change the rotor responses dramatically in terms of frequency contents at certain operating speeds. Subharmonic responses of 2nd order through 10th order are all observed except the 9th order. Chaotic phenomenon is also observed. Jump phenomena (or double-valued responses) of both hard-spring type and soft-spring type are shown to occur at low operating speeds for systems with low auxiliary bearing damping or large clearance even with relatively small imbalance. The effect of friction between the shaft and the inner race of the bearing is also discussed.

  20. Effect of airway Pseudomonas aeruginosa isolation and infection on steady-state bronchiectasis in Guangzhou, China

    PubMed Central

    Guan, Wei-Jie; Gao, Yong-Hua; Xu, Gang; Lin, Zhi-Ya; Tang, Yan; Li, Hui-Min; Li, Zhi-Min; Zheng, Jin-Ping

    2015-01-01

    Background Current status of Pseudomonas aeruginosa (PA) infection in clinically stable bronchiectasis in mainland China remains unclear. Objective To compare the inflammation and lung function impairment in bronchiectasis patients isolated or infected with PA, potentially pathogenic microorganisms (PPMs) and commensals, and to identify factors associated with PA isolation and infection. Methods Patients with steady-state bronchiectasis and healthy subjects were recruited. Peripheral blood and sputum were sampled to determine inflammatory markers and bacterial loads in steady-state bronchiectasis and health. Spirometry and diffusing capacity were also measured. Results We enrolled 144 bronchiectasis patients and 23 healthy subjects. PA isolation and infection accounted for 44 and 39 patients, who demonstrated significant inflammatory responses and markedly impaired spirometry, but not diffusing capacity, compared with healthy subjects and patients isolated with other PPMs and commensals (all P<0.05). Except for heightened sputum inflammatory responses, there were no notable differences in serum inflammation and lung function as with the increased density of PA. Female gender [odds ratio (OR): 3.10 for PA isolation; OR: 3.74 for PA infection], 4 or more exacerbations within 2 years (OR: 3.74 for PA isolation, OR: 2.95 for PA infection) and cystic bronchiectasis (OR: 3.63 for PA isolation, OR: 4.47 for PA infection) were the factors consistently associated with PA isolation and infection. Conclusions PA elicits intense inflammation and lung function impairment in steady-state bronchiectasis. The density of PA does not correlate with most clinical indices. PA infection is associated with females, frequent exacerbations and cystic bronchiectasis. PMID:25973228

  1. A mathematical model of pan evaporation under steady state conditions

    NASA Astrophysics Data System (ADS)

    Lim, Wee Ho; Roderick, Michael L.; Farquhar, Graham D.

    2016-09-01

    In the context of changing climate, global pan evaporation records have shown a spatially-averaged trend of ∼ -2 to ∼ -3 mm a-2 over the past 30-50 years. This global phenomenon has motivated the development of the "PenPan" model (Rotstayn et al., 2006). However, the original PenPan model has yet to receive an independent experimental evaluation. Hence, we constructed an instrumented US Class A pan at Canberra Airport (Australia) and monitored it over a three-year period (2007-2010) to uncover the physics of pan evaporation under non-steady state conditions. The experimental investigations of pan evaporation enabled theoretical formulation and parameterisation of the aerodynamic function considering the wind, properties of air and (with or without) the bird guard effect. The energy balance investigation allowed for detailed formulation of the short- and long-wave radiation associated with the albedos and the emissivities of the pan water surface and the pan wall. Here, we synthesise and generalise those earlier works to develop a new model called the "PenPan-V2" model for application under steady state conditions (i.e., uses a monthly time step). Two versions (PenPan-V2C and PenPan-V2S) are tested using pan evaporation data available across the Australian continent. Both versions outperformed the original PenPan model with better representation of both the evaporation rate and the underlying physics of a US Class A pan. The results show the improved solar geometry related calculations (e.g., albedo, area) for the pan system led to a clear improvement in representing the seasonal cycle of pan evaporation. For general applications, the PenPan-V2S is simpler and suited for applications including an evaluation of long-term trends in pan evaporation.

  2. Steady-state spectroscopy of new biological probes

    NASA Astrophysics Data System (ADS)

    Abou-Zied, Osama K.

    2007-02-01

    The steady state absorption and fluorescence spectroscopy of 2-(2'-hydroxyphenyl)benzoxazole (HBO) and (2,2'-bipyridine)-3,3'-diol (BP(OH) II) were studied here free in solution and in human serum albumin (HSA) in order to test their applicability as new biological probes. HBO and BP(OH) II are known to undergo intramolecular proton transfers in the excited state. Their absorption and fluorescence spectra are sensitive to environmental change from hydrophilic to hydrophobic, thus allowing the opportunity to use them as environment-sensitive probes. The effect of water on the steady state spectra of the two molecules also shows unique features which may position them as water sensors in biological systems. For HBO in buffer, fluorescence is only due to the syn-keto tautomer, whereas in HSA the fluorescence is due to four species in equilibrium in the excited state (the syn-keto tautomer, the anti-enol tautomer, the solvated syn-enol tautomer, and the anion species of HBO). Analysis of the fluorescence spectra of HBO in HSA indicates that HBO is exposed to less water in the HBO:HSA complex. For the BP(OH) II molecule, unique absorption due to water was observed in the spectral region of 400-450 nm. This absorption decreases in the presence of HSA due to less accessibility to water as a result of binding to HSA. Fluorescence of BP(OH) II is due solely to the di-keto tautomer after double proton transfer in the excited state. The fluorescence peak of BP(OH) II shows a red-shift upon HSA recognition which is attributed to the hydrophobic environment inside the binding site of HSA. We discuss also the effect of probe-inclusion inside well-defined hydrophobic cavities of cyclodextrins.

  3. Steady state plasma operation in RF dominated regimes on EAST

    SciTech Connect

    Zhang, X. J.; Zhao, Y. P.; Gong, X. Z.; Hu, C. D.; Liu, F. K.; Hu, L. Q.; Wan, B. N. Li, J. G.

    2015-12-10

    Significant progress has recently been made on EAST in the 2014 campaign, including the enhanced CW H&CD system over 20MW heating power (LHCD, ICRH and NBI), more than 70 diagnostics, ITER-like W-monoblock on upper divertor, two inner cryo-pumps and RMP coils, enabling EAST to investigate long pulse H mode operation with dominant electron heating and low torque to address the critical issues for ITER. H-mode plasmas were achieved by new H&CD system or 4.6GHz LHCD alone for the first time. Long pulse high performance H mode has been obtained by LHCD alone up to 28s at H{sub 98}∼1.2 or by combing of ICRH and LHCD, no or small ELM was found in RF plasmas, which is essential for steady state operation in the future Tokamak. Plasma operation in low collision regimes were implemented by new 4.6GHz LHCD with core Te∼4.5keV. The non-inductive scenarios with high performance at high bootstrap current fraction have been demonstrated in RF dominated regimes for long pulse operation. Near full non-inductive CD discharges have been achieved. In addition, effective heating and decoupling method under multi-transmitter for ICRF system were developed in this campaign, etc. EAST could be in operation with over 30MW CW heating and current drive power (LHCD ICRH NBI and ECRH), enhanced diagnostic capabilities and full actively-cooled metal wall from 2015. It will therefore allow to access new confinement regimes and to extend these regimes towards to steady state operation.

  4. Steady state plasma operation in RF dominated regimes on EAST

    NASA Astrophysics Data System (ADS)

    Zhang, X. J.; Zhao, Y. P.; Gong, X. Z.; Hu, C. D.; Liu, F. K.; Hu, L. Q.; Wan, B. N.; Li, J. G.

    2015-12-01

    Significant progress has recently been made on EAST in the 2014 campaign, including the enhanced CW H&CD system over 20MW heating power (LHCD, ICRH and NBI), more than 70 diagnostics, ITER-like W-monoblock on upper divertor, two inner cryo-pumps and RMP coils, enabling EAST to investigate long pulse H mode operation with dominant electron heating and low torque to address the critical issues for ITER. H-mode plasmas were achieved by new H&CD system or 4.6GHz LHCD alone for the first time. Long pulse high performance H mode has been obtained by LHCD alone up to 28s at H98˜1.2 or by combing of ICRH and LHCD, no or small ELM was found in RF plasmas, which is essential for steady state operation in the future Tokamak. Plasma operation in low collision regimes were implemented by new 4.6GHz LHCD with core Te˜4.5keV. The non-inductive scenarios with high performance at high bootstrap current fraction have been demonstrated in RF dominated regimes for long pulse operation. Near full non-inductive CD discharges have been achieved. In addition, effective heating and decoupling method under multi-transmitter for ICRF system were developed in this campaign, etc. EAST could be in operation with over 30MW CW heating and current drive power (LHCD ICRH NBI and ECRH), enhanced diagnostic capabilities and full actively-cooled metal wall from 2015. It will therefore allow to access new confinement regimes and to extend these regimes towards to steady state operation.

  5. Concurrent visual and tactile steady-state evoked potentials index allocation of inter-modal attention: a frequency-tagging study.

    PubMed

    Porcu, Emanuele; Keitel, Christian; Müller, Matthias M

    2013-11-27

    We investigated effects of inter-modal attention on concurrent visual and tactile stimulus processing by means of stimulus-driven oscillatory brain responses, so-called steady-state evoked potentials (SSEPs). To this end, we frequency-tagged a visual (7.5Hz) and a tactile stimulus (20Hz) and participants were cued, on a trial-by-trial basis, to attend to either vision or touch to perform a detection task in the cued modality. SSEPs driven by the stimulation comprised stimulus frequency-following (i.e. fundamental frequency) as well as frequency-doubling (i.e. second harmonic) responses. We observed that inter-modal attention to vision increased amplitude and phase synchrony of the fundamental frequency component of the visual SSEP while the second harmonic component showed an increase in phase synchrony, only. In contrast, inter-modal attention to touch increased SSEP amplitude of the second harmonic but not of the fundamental frequency, while leaving phase synchrony unaffected in both responses. Our results show that inter-modal attention generally influences concurrent stimulus processing in vision and touch, thus, extending earlier audio-visual findings to a visuo-tactile stimulus situation. The pattern of results, however, suggests differences in the neural implementation of inter-modal attentional influences on visual vs. tactile stimulus processing.

  6. Steady state or non-steady state? Identifying driving mechanisms of oxygen isotope signatures of leaf transpiration in functionally distinct plant species

    NASA Astrophysics Data System (ADS)

    Dubbert, Maren; Kübert, Angelika; Cuntz, Matthias; Werner, Christiane

    2015-04-01

    Isotope techniques are widely applied in ecosystem studies. For example, isoflux models are used to separate soil evaporation from transpiration in ecosystems. These models often assume that plant transpiration occurs at isotopic steady state, i.e. that the transpired water shows the same isotopic signature as the source water. Yet, several studies found that transpiration did not occur at isotopic steady state, under both controlled and field conditions. Here we focused on identifying the internal and external factors which drive the isotopic signature of leaf transpiration. Using cavity ring-down spectroscopy (CRDS), the effect of both environmental variables and leaf physiological traits on δ18OT was investigated under controlled conditions. Six plant species with distinct leaf physiological traits were exposed to step changes in relative air humidity (RH), their response in δ18OT and gas exchange parameters and their leaf physiological traits were assessed. Moreover, two functionally distinct plant types (tree, i.e. Quercus suber, and grassland) of a semi-arid Mediterranean oak-woodland where observed under natural conditions throughout an entire growth period in the field. The species differed substantially in their leaf physiological traits and their turn-over times of leaf water. They could be grouped in species with fast (<60 min.), intermediate (ca. 120 min.) and slow (>240 min.) turn-over times, mostly due to differences in stomatal conductance, leaf water content or a combination of both. Changes in RH caused an immediate response in δ18OT, which were similarly strong in all species, while leaf physiological traits affected the subsequent response in δ18OT. The turn-over time of leaf water determined the speed of return to the isotopic steady or a stable δ18OT value (Dubbert & Kübert et al., in prep.). Under natural conditions, changes in environmental conditions over the diurnal cycle had a huge impact on the diurnal development of δ18OT in both

  7. Brain oscillatory 4-30 Hz responses during a visual n-back memory task with varying memory load.

    PubMed

    Pesonen, Mirka; Hämäläinen, Heikki; Krause, Christina M

    2007-03-23

    Brain oscillatory responses of 4-30 Hz EEG frequencies elicited during the performance of a visual n-back task were examined in 36 adult volunteers. Event-related desynchronization (ERD) and event-related synchronization (ERS) responses were examined separately for targets and non-targets in four different memory load conditions (0-, 1-, 2- and 3-back). The presentation of all stimuli in all memory load conditions elicited long-lasting theta frequency (approximately 4-6 Hz) ERS responses which were of greater magnitude for the target stimuli as compared to the non-target stimuli. Alpha frequency range (approximately 8-12 Hz) ERD responses were observed in all memory load conditions for both targets and non-targets. The duration of these alpha ERD responses increased with increasing memory load and reaction time. In all memory load conditions, early appearing beta rhythm (approximately 14-30 Hz) ERD responses were elicited, and with increasing memory load, these beta ERD responses became longer in duration. Additionally, beta ERS responses were observed in the 0- and 1-back memory load conditions. The current results reveal a complex interplay between brain oscillations at different frequencies during a cognitive task performance.

  8. Hydrodynamic Simulations of Steady-State Density Inversion in Vertically Shaken Granular Layers

    NASA Astrophysics Data System (ADS)

    Syeda, Farheen; Panfil, Josh; Bougie, Jon

    2013-11-01

    We investigate density inversion in shaken granular layers using three-dimensional, time-dependent continuum simulations to Navier-Stokes order for a layer of uniform, inelastic, frictionless spheres on a vertically oscillating plate. For given shaking strength, these simulations show cyclic time dependence of the granular layer correlated with the time-dependent oscillation of the plate for low accelerational amplitude. In such cases, the highest density region can be found near the plate during portions of the cycle. When the accelerational amplitude exceeds a critical value, the layer exhibits a steady-state density inversion, in which a high-density region is found far from the plate, supported by a lower-density, gas-like region below. For a variety of dimensionless shaking strengths S, we study the transition from a time-dependent, non-density-inverted state to a steady-state density inversion as a function of the dimensionless accelerational amplitude Γ. In each case, the density profile of the layer exhibits a cyclic oscillation at the driving frequency for low Γ and the response frequency matches the driving frequency through the transition. However, the amplitude of time-dependent response drops as Γ exceeds a critical value. This research is supported by the Loyola Undergraduate Research Opportunities Program.

  9. Motor unit firing rates of the gastrocnemii during maximal brief steady-state contractions in humans.

    PubMed

    Graham, Mitchell T; Rice, Charles L; Dalton, Brian H

    2016-02-01

    The human triceps surae (soleus, medial (MG) and lateral (LG) gastrocnemii) is complex and important for posture and gait. The soleus exhibits markedly lower motor unit firing rates (MUFRs; ∼16Hz) during maximal voluntary isometric contraction (MVC) than other limb muscles, but this information is unknown for the MG and LG. During multiple visits, subjects performed a series of 5-7, ∼7-s plantar flexor MVCs with tungsten microelectrodes inserted into the MG and LG. During a separate testing session, another group of subjects performed submaximal isometric contractions at 25%, 50%, and 75% MVC with inserted fine-wires in the MG, LG and soleus. Maximum steady-state MUFRs for MG and LG (∼23Hz) were not different, but faster than prior reports for the soleus. No differences between the three triceps surae components were detected for 25% or 50% MVC, but at 75% MVC, the MG MUFRs were 31% greater than soleus. The triceps surae exhibit similar torque modulation strategies at <75% MVC, but to achieve higher contraction intensities (>75% MVC) the gastrocnemii rely on faster rates to generate maximal torque than the soleus. Therefore, the MG and LG exhibit a larger range of MUFR capacities.

  10. The Budyko functions under non-steady-state conditions

    NASA Astrophysics Data System (ADS)

    Moussa, Roger; Lhomme, Jean-Paul

    2016-12-01

    The Budyko functions relate the evaporation ratio E / P (E is evaporation and P precipitation) to the aridity index Φ = Ep / P (Ep is potential evaporation) and are valid on long timescales under steady-state conditions. A new physically based formulation (noted as Moussa-Lhomme, ML) is proposed to extend the Budyko framework under non-steady-state conditions taking into account the change in terrestrial water storage ΔS. The variation in storage amount ΔS is taken as negative when withdrawn from the area at stake and used for evaporation and positive otherwise, when removed from the precipitation and stored in the area. The ML formulation introduces a dimensionless parameter HE = -ΔS / Ep and can be applied with any Budyko function. It represents a generic framework, easy to use at various time steps (year, season or month), with the only data required being Ep, P and ΔS. For the particular case where the Fu-Zhang equation is used, the ML formulation with ΔS ≤ 0 is similar to the analytical solution of Greve et al. (2016) in the standard Budyko space (Ep / P, E / P), a simple relationship existing between their respective parameters. The ML formulation is extended to the space [Ep / (P - ΔS), E / (P - ΔS)] and compared to the formulations of Chen et al. (2013) and Du et al. (2016). The ML (or Greve et al., 2016) feasible domain has a similar upper limit to that of Chen et al. (2013) and Du et al. (2016), but its lower boundary is different. Moreover, the domain of variation of Ep / (P - ΔS) differs: for ΔS ≤ 0, it is bounded by an upper limit 1 / HE in the ML formulation, while it is only bounded by a lower limit in Chen et al.'s (2013) and Du et al.'s (2016) formulations. The ML formulation can also be conducted using the dimensionless parameter HP = -ΔS / P instead of HE, which yields another form of the equations.

  11. Mantle Sulfur Cycle: A Case for Non-Steady State ?

    NASA Astrophysics Data System (ADS)

    Cartigny, Pierre; Labidi, Jabrane

    2016-04-01

    Data published over the last 5 years show that the early inference that mantle is isotopically homogeneous is no more valid. Instead, new generation data on lavas range over a significant 34S/32S variability of up to 5‰ with δ 34S values often correlated to Sr- and Nd-isotope compositions. This new set of data also reveals the Earth's mantle to have a sub-chondritic 34S/32S ratio, by about ˜ 1‰. We will present at the conference our published and unpublished data on samples characterizing the different mantle components (i.e. EM1, EM2, HIMU and LOMU). All illustrate 34S-enrichments compared to MORB with Δ 33S and Δ 36S values indistinguishable from CDT or chondrites at the 0.03‰ level. These data are consistent with the recycling of subducted components carrying sulfur with Δ 33S and Δ 36S-values close to zero. Archean rocks commonly display Δ 33S and Δ 36S values deviating from zero by 1 to 10 ‰. The lack of variations for Δ 33S and Δ 36S values in present day lava argue against the sampling of any subducted protolith of Archean age in their mantle source. Instead, our data are consistent with the occurrence of Proterozoic subducted sulfur in the source of the EM1, EM2, LOMU and HIMU endmember at the St-Helena island. This is in agreement with the age of those components early derived through the use of the Pb isotope systematic. Currently, the negative δ 34S-values of the depleted mantle seem to be associated with mostly positive values of enriched components. This would be inconsistent with the concept a steady state of sulfur. Assuming that the overall observations of recycled sulfur are not biased, the origin of such a non-steady state remains unclear. It could be related to the relatively compatible behavior of sulfur during partial melting, as the residue of present-day melting can be shown to always contain significant amounts of sulfide (50{%} of what is observed in a fertile source). This typical behavior likely prevents an efficient

  12. Critical Concavity of a Drainage Basin for Steady-State

    NASA Astrophysics Data System (ADS)

    Byun, Jongmin; Paik, Kyungrock

    2015-04-01

    Longitudinal profiles of natural streams are known to show concave forms. Saying A as drainage area, channel gradient S can be expressed as the power-law, S≈A-θ (Flint, 1974), which is one of the scale-invariant features of drainage basin. According to literature, θ of most natural streams falls into a narrow range (0.4 < θ < 0.7) (Tucker and Whipple, 2002). It leads to fundamental questions: 'Why does θ falls into such narrow range?' and 'How is this related with other power-law scaling relationships reported in natural drainage basins?' To answer above questions, we analytically derive θ for a steady-state drainage basin following Lane's equilibrium (Lane, 1955) throughout the corridor and named this specific case as the 'critical concavity'. In the derivation, sediment transport capacity is estimated by unit stream power model (Yang, 1976), yielding a power function of upstream area. Stability of channel at a local point occurs when incoming flux equals outgoing flux at the point. Therefore, given the drainage at steady-state where all channel beds are stable, the exponent of the power function should be zero. From this, we can determine the critical concavity. Considering ranges of variables associated in this derivation, critical concavity cannot be resolved as a single definite value, rather a range of critical concavity is suggested. This range well agrees with the widely reported range of θ (0.4 < θ < 0.7) in natural streams. In this theoretical study, inter-relationships between power-laws such as hydraulic geometry (Leopold and Maddock, 1953), dominant discharge-drainage area (Knighton et al., 1999), and concavity, are coupled into the power-law framework of stream power sediment transport model. This allows us to explore close relationships between their power-law exponents: their relative roles and sensitivity. Detailed analysis and implications will be presented. References Flint, J. J., 1974, Stream gradient as a function of order, magnitude

  13. Transcriptional monitoring of steady state and effects of anaerobic phases in chemostat cultures of the filamentous fungus Trichoderma reesei

    PubMed Central

    Rautio, Jari J; Smit, Bart A; Wiebe, Marilyn; Penttilä, Merja; Saloheimo, Markku

    2006-01-01

    Background Chemostat cultures are commonly used in production of cellular material for systems-wide biological studies. We have used the novel TRAC (transcript analysis with aid of affinity capture) method to study expression stability of approximately 30 process relevant marker genes in chemostat cultures of the filamentous fungus Trichoderma reesei and its transformant expressing laccase from Melanocarpus albomyces. Transcriptional responses caused by transient oxygen deprivations and production of foreign protein were also studied in T. reesei by TRAC. Results In cultures with good steady states, the expression of the marker genes varied less than 20% on average between sequential samples for at least 5 or 6 residence times. However, in a number of T. reesei cultures continuous flow did not result in a good steady state. Perturbations to the steady state were always evident at the transcriptional level, even when they were not measurable as changes in biomass or product concentrations. Both unintentional and intentional perturbations of the steady state demonstrated that a number of genes involved in growth, protein production and secretion are sensitive markers for culture disturbances. Exposure to anaerobic conditions caused strong responses at the level of gene expression, but surprisingly the cultures could regain their previous steady state quickly, even after 3 h O2 depletion. The main effect of producing M. albomyces laccase was down-regulation of the native cellulases compared with the host strain. Conclusion This study demonstrates the usefulness of transcriptional analysis by TRAC in ensuring the quality of chemostat cultures prior to costly and laborious genome-wide analysis. In addition TRAC was shown to be an efficient tool in studying gene expression dynamics in transient conditions. PMID:17010217

  14. Mechanism for multiplicity of steady states with distinct cell concentration in continuous culture of mammalian cells.

    PubMed

    Yongky, Andrew; Lee, Jongchan; Le, Tung; Mulukutla, Bhanu Chandra; Daoutidis, Prodromos; Hu, Wei-Shou

    2015-07-01

    Continuous culture for the production of biopharmaceutical proteins offers the possibility of steady state operations and thus more consistent product quality and increased productivity. Under some conditions, multiplicity of steady states has been observed in continuous cultures of mammalian cells, wherein with the same dilution rate and feed nutrient composition, steady states with very different cell and product concentrations may be reached. At those different steady states, cells may exhibit a high glycolysis flux with high lactate production and low cell concentration, or a low glycolysis flux with low lactate and high cell concentration. These different steady states, with different cell concentration, also have different productivity. Developing a mechanistic understanding of the occurrence of steady state multiplicity and devising a strategy to steer the culture toward the desired steady state is critical. We establish a multi-scale kinetic model that integrates a mechanistic intracellular metabolic model and cell growth model in a continuous bioreactor. We show that steady state multiplicity exists in a range of dilution rate in continuous culture as a result of the bistable behavior in glycolysis. The insights from the model were used to devise strategies to guide the culture to the desired steady state in the multiple steady state region. The model provides a guideline principle in the design of continuous culture processes of mammalian cells.

  15. Steady state quantum discord for circularly accelerated atoms

    SciTech Connect

    Hu, Jiawei; Yu, Hongwei

    2015-12-15

    We study, in the framework of open quantum systems, the dynamics of quantum entanglement and quantum discord of two mutually independent circularly accelerated two-level atoms in interaction with a bath of fluctuating massless scalar fields in the Minkowski vacuum. We assume that the two atoms rotate synchronically with their separation perpendicular to the rotating plane. The time evolution of the quantum entanglement and quantum discord of the two-atom system is investigated. For a maximally entangled initial state, the entanglement measured by concurrence diminishes to zero within a finite time, while the quantum discord can either decrease monotonically to an asymptotic value or diminish to zero at first and then followed by a revival depending on whether the initial state is antisymmetric or symmetric. When both of the two atoms are initially excited, the generation of quantum entanglement shows a delayed feature, while quantum discord is created immediately. Remarkably, the quantum discord for such a circularly accelerated two-atom system takes a nonvanishing value in the steady state, and this is distinct from what happens in both the linear acceleration case and the case of static atoms immersed in a thermal bath.

  16. Grand canonical steady-state simulation of nucleation

    NASA Astrophysics Data System (ADS)

    Horsch, Martin; Vrabec, Jadran

    2009-11-01

    Grand canonical molecular dynamics (GCMD) is applied to the nucleation process in a metastable phase near the spinodal, where nucleation occurs almost instantaneously and is limited to a very short time interval. With a variant of Maxwell's demon, proposed by McDonald [Am. J. Phys. 31, 31 (1963)], all nuclei exceeding a specified size are removed. In such a steady-state simulation, the nucleation process is sampled over an arbitrary time span and all properties of the metastable state, including the nucleation rate, can be obtained with an increased precision. As an example, a series of GCMD simulations with McDonald's demon is carried out for homogeneous vapor to liquid nucleation of the truncated-shifted Lennard-Jones (tsLJ) fluid, covering the entire relevant temperature range. The results are in agreement with direct nonequilibrium MD simulation in the canonical ensemble. It is confirmed for supersaturated vapors of the tsLJ fluid that the classical nucleation theory underpredicts the nucleation rate by two orders of magnitude.

  17. Nonequilibrium steady states of ideal bosonic and fermionic quantum gases

    NASA Astrophysics Data System (ADS)

    Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André

    2015-12-01

    We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013), 10.1103/PhysRevLett.111.240405]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.

  18. Quasi-steady state aerodynamics of the cheetah tail.

    PubMed

    Patel, Amir; Boje, Edward; Fisher, Callen; Louis, Leeann; Lane, Emily

    2016-08-15

    During high-speed pursuit of prey, the cheetah (Acinonyx jubatus) has been observed to swing its tail while manoeuvring (e.g. turning or braking) but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities.

  19. Quasi-steady state aerodynamics of the cheetah tail

    PubMed Central

    Boje, Edward; Fisher, Callen; Louis, Leeann; Lane, Emily

    2016-01-01

    ABSTRACT During high-speed pursuit of prey, the cheetah (Acinonyx jubatus) has been observed to swing its tail while manoeuvring (e.g. turning or braking) but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities. PMID:27412267

  20. The Path of Carbon in Photosynthesis XX. The Steady State

    DOE R&D Accomplishments Database

    Calvin, M.; Massini, Peter

    1952-09-01

    The separation of the phenomenon of photosynthesis in green plants into a photochemical reaction and into the light-dependent reduction of carbon dioxide is discussed, The reduction of carbon dioxide and the fate of the assimilated carbon were investigated with the help of the tracer technique (exposure of the planks to the radioactive C{sup 14}O{sub 2}) and of paper chromatography. A reaction cycle is proposed in which phosphoglyceric acid is the first isolable assimilations product. Analyses of the algal extracts which had assimilated radioactive carbon dioxide in a stationary condition ('steady-state' photosynthesis) for a long time provided further information concerning the proposed cycle and permitted the approximate estimation, for a number of compounds of what fraction of each compound was taking part in the cycle. The earlier supposition that light influences the respiration cycle was confirmed. The possibility of the assistance of {alpha}-lipoic acid, or of a related substance, in this influence and in the photosynthesis cycle, is discussed.

  1. Ising game: Nonequilibrium steady states of resource-allocation systems

    NASA Astrophysics Data System (ADS)

    Xin, C.; Yang, G.; Huang, J. P.

    2017-04-01

    Resource-allocation systems are ubiquitous in the human society. But how external fields affect the state of such systems remains poorly explored due to the lack of a suitable model. Because the behavior of spins pursuing energy minimization required by physical laws is similar to that of humans chasing payoff maximization studied in game theory, here we combine the Ising model with the market-directed resource-allocation game, yielding an Ising game. Based on the Ising game, we show theoretical, simulative and experimental evidences for a formula, which offers a clear expression of nonequilibrium steady states (NESSs). Interestingly, the formula also reveals a convertible relationship between the external field (exogenous factor) and resource ratio (endogenous factor), and a class of saturation as the external field exceeds certain limits. This work suggests that the Ising game could be a suitable model for studying external-field effects on resource-allocation systems, and it could provide guidance both for seeking more relations between NESSs and equilibrium states and for regulating human systems by choosing NESSs appropriately.

  2. Flavour fields in steady state: stress tensor and free energy

    NASA Astrophysics Data System (ADS)

    Banerjee, Avik; Kundu, Arnab; Kundu, Sandipan

    2016-02-01

    The dynamics of a probe brane in a given gravitational background is governed by the Dirac-Born-Infeld action. The corresponding open string metric arises naturally in studying the fluctuations on the probe. In Gauge-String duality, it is known that in the presence of a constant electric field on the worldvolume of the probe, the open string metric acquires an event horizon and therefore the fluctuation modes on the probe experience an effective temperature. In this article, we bring together various properties of such a system to a formal definition and a subsequent narration of the effective thermodynamics and the stress tensor of the corresponding flavour fields, also including a non-vanishing chemical potential. In doing so, we point out a potentially infinitely-degenerate scheme-dependence of regularizing the free energy, which nevertheless yields a universal contribution in certain cases. This universal piece appears as the coefficient of a log-divergence in free energy when a space-filling probe brane is embedded in AdS d+1-background, for d = 2, 4, and is related to conformal anomaly. For the special case of d = 2, the universal factor has a striking resemblance to the well-known heat current formula in (1 + 1)-dimensional conformal field theory in steady-state, which endows a plausible physical interpretation to it. Interestingly, we observe a vanishing conformal anomaly in d = 6.

  3. Models of steady state cooling flows in elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Vedder, Peter W.; Trester, Jeffrey J.; Canizares, Claude R.

    1988-01-01

    A comprehensive set of steady state models for spherically symmetric cooling flows in early-type galaxies is presented. It is found that a reduction of the supernova (SN) rate in ellipticals produces a decrease in the X-ray luminosity of galactic cooling flows and a steepening of the surface brightness profile. The mean X-ray temperature of the cooling flow is not affected noticeably by a change in the SN rate. The external pressure around a galaxy does not markedly change the luminosity of the gas within the galaxy but does change the mean temperature of the gas. The presence of a dark matter halo in a galaxy only changes the mean X-ray temperature slightly. The addition of a distribution of mass sinks which remove material from the general accretion flow reduces L(X) very slightly, flattens the surface brightness profile, and reduces the central surface brightness level to values close to those actually observed. A reduction in the stellar mass-loss rate only slightly reduces the X-ray luminosity of the cooling flow and flattens the surface brightness by a small amount.

  4. Optomechanically induced transparency associated with steady-state entanglement

    NASA Astrophysics Data System (ADS)

    He, Yong

    2015-01-01

    We theoretically investigate a two-cavity optomechanical system in which a cavity (cavity a ) couples to a mechanical resonator via radiation pressure and to another cavity (cavity c ) via a common waveguide. In the excitation of a strong pump filed to cavity a , the steady-state entanglement between cavity a and c , as a quantum channel, can be generated, which provides an indirect optical pathway to excite cavity c by means of the pump filed. Quantum interference between the direct and indirect optical pathways gives rise to an optomechanically induced transparency appearing in the probe transmission of cavity c . Unlike in a typical optomechanically induced transparency effect, the electromagnetical control of the transmission is implemented by resorting to the quantum channel. Furthermore, the coupling strength of the two cavities is an important factor of the quantum channel, which can influence the width of the transparency window and the bistable behavior of the mean photon number in cavity a . We also illustrate that the electromagnetical control via quantum channel can be exploited to implement the optical switch and the slow light.

  5. Steady State Turbulent Transport in Magnetic Fusion Plasmas

    SciTech Connect

    Lee, W. W.; Ethier, S.; Kolesnikov, R.; Wang, W. X.; Tang, W. M.

    2007-12-20

    For more than a decade, the study of microturbulence, driven by ion temperature gradient (ITG) drift instabilities in tokamak devices, has been an active area of research in magnetic fusion science for both experimentalists and theorists alike. One of the important impetus for this avenue of research was the discovery of the radial streamers associated the ITG modes in the early nineties using a Particle-In-Cell (PIC) code. Since then, ITG simulations based on the codes with increasing realism have become possible with the dramatic increase in computing power. The notable examples were the demonstration of the importance of nonlinearly generated zonal flows in regulating ion thermal transport and the transition from Bohm to GyroBoham scaling with increased device size. In this paper, we will describe another interesting nonlinear physical process associated with the parallel acceleration of the ions, that is found to play an important role for the steady state turbulent transport. Its discovery is again through the use of the modern massively parallel supercomputers.

  6. Modeling on the Steady State of Thwaites Glacier

    NASA Astrophysics Data System (ADS)

    Yu, H.; Rignot, E. J.; Morlighem, M.; Seroussi, H.

    2013-12-01

    Thwaites Glacier (TWG) is the second largest ice stream in West Antarctica in terms of ice discharge, and the broadest ice stream in Antarctica (120 km wide). Observations and theory suggest that its configuration is inherently unstable in a warming climate. Satellite observations have revealed grounding line retreat, ice thinning, ice stream broadening and in more recent years ice flow acceleration. The most important part of the glacier evolution involves its grounding line dynamics and the impact of ice-ocean interactions. In a region between the grounding line and the limit of the flexure zone, some 10 km downstream, however, the glacier is not in hydrostatic equilibrium. Proper treatment of the grounding line dynamics requires full Stokes solution. Here, we model the grounding line of TWG in 2D, full Stokes, with the goal to examine whether the glacier is in a steady state configuration or not. The model treats ice sheet and ice shelf as two fluids coupled through the ice mass flux (Nowicki, 2008). Water stress is used as a constraint on the ice shelf instead of hydrostatic equilibrium. We use radar interferometry (InSAR) measurements of ice velocity and grounding line position through time, Bedmap2 and IceBridge thickness, and surface mass balance from RACMO to constrain the model. The results are used to conclude on the state of dynamic balance of the glacier. This work is funded by NASA Cryospheric Science Program.

  7. The inductive, steady-state sustainment of stable spheromaks

    NASA Astrophysics Data System (ADS)

    Hossack, A. C.; Jarboe, T. R.; Morgan, K. D.; Sutherland, D. A.; Hansen, C. J.; Everson, C. J.; Penna, J. M.; Nelson, B. A.

    2016-10-01

    Inductive helicity injection current drive with imposed perturbations has led to the breakthrough of spheromak sustainment while maintaining stability. Sustained spheromaks show coherent, imposed plasma motion and low plasma-generated mode activity, indicating stability. Additionally, record current gain of 3.9 has been achieved with evidence of pressure confinement. The Helicity Injected Torus - Steady Inductive (HIT-SI) experiment studies efficient, steady-state current drive for magnetic confinement plasmas using a novel experimental method which is ideal for low aspect ratio, toroidal geometries and is compatible with closed flux surfaces. Analysis of surface magnetic probes indicates large n = 0 and 1 toroidal Fourier mode amplitudes and little energy in higher modes. Biorthogonal decomposition shows that almost all of the n = 1 energy is imposed by the injectors, rather than plasma-generated. Ion Doppler spectroscopy (IDS) measurements show coherent, imposed plasma motion of +/-2.5 cm in the region inside r 10 cm (a = 23 cm) and the size of the separate spheromak is consistent with that predicted by Imposed-dynamo Current Drive (IDCD). Coherent motion indicates that the spheromak is stable and a lack of plasma-generated n = 1 energy indicates that the maximum q is maintained below 1 for stability during sustainment.

  8. Fault Wear by Damage Evolution During Steady-State Slip

    NASA Astrophysics Data System (ADS)

    Lyakhovsky, Vladimir; Sagy, Amir; Boneh, Yuval; Reches, Ze'ev

    2014-11-01

    Slip along faults generates wear products such as gouge layers and cataclasite zones that range in thickness from sub-millimeter to tens of meters. The properties of these zones apparently control fault strength and slip stability. Here we present a new model of wear in a three-body configuration that utilizes the damage rheology approach and considers the process as a microfracturing or damage front propagating from the gouge zone into the solid rock. The derivations for steady-state conditions lead to a scaling relation for the damage front velocity considered as the wear-rate. The model predicts that the wear-rate is a function of the shear-stress and may vanish when the shear-stress drops below the microfracturing strength of the fault host rock. The simulated results successfully fit the measured friction and wear during shear experiments along faults made of carbonate and tonalite. The model is also valid for relatively large confining pressures, small damage-induced change of the bulk modulus and significant degradation of the shear modulus, which are assumed for seismogenic zones of earthquake faults. The presented formulation indicates that wear dynamics in brittle materials in general and in natural faults in particular can be understood by the concept of a "propagating damage front" and the evolution of a third-body layer.

  9. Steady-state and transient results on insulation materials

    SciTech Connect

    Graves, R.S.; Yarbrough, D.W.; McElroy, D.L.; Fine, H.A.

    1991-01-01

    The Unguarded Thin-Heater Apparatus (UTHA, ASTM C 1114) was used to determine the thermal conductivity (k), specific heat (C), and thermal diffusivity ({alpha}) of selected building materials from 24 to 50{degree}C. Steady-state and transient measurements yielded data on four types of material: gypsum wall board containing 0, 15, and 30 wt % wax; calcium silicate insulations with densities ({rho}) of 307, 444, and 605 kg/m{sup 3}; three wood products: southern yellow pine flooring (575 kg/m{sup 3}), Douglas fir plywood (501 kg/m{sup 3}), and white spruce flooring (452 kg/m{sup 3}); and two cellular plastic foams: extruded polystyrene (30 kg/m{sup 3}) blown with HCFC-142b and polyisocyanurate rigid board (30.2 kg/m{sup 3}) blown with CFC-11. The extruded polystyrene was measured several times after production (25 days, 45 days, 74 days, 131 days, and 227 days). The UTHA is an absolute technique that yields k with an uncertainty of less than {plus minus}2% as determined by modeling, by determinate error analyses, and by use of Standard Reference Materials SRM-1450b and SRM-1451. 37 refs., 5 figs., 10 tabs.

  10. Steady-state growth of the marine diatom Thalassiosira pseudonana

    SciTech Connect

    Olson, R.J.; SooHoo, J.B.; Kiefer, D.A.

    1980-09-01

    Seasonal studies of the vertical distribution of nitrate, nitrite, and phytoplankton in the oceans and studies using /sup 15/N as a tracer of nitrate metabolism indicate that the reduction of nitrate by phytoplankton is a source of nitrite in the upper waters of the ocean. To better understand this process, the relationship between nitrate uptake and nitrite production has been examined with continuous cultures of the small marine diatom Thalassiosira pseudonana. In a turbidostat culture, the rates of nitrite production by T. Pseudonana increase with light intensity. This process is only loosely coupled to rates of nitrate assimilation since the ratio of net nitrite production to total nitrate assimilation increases with increased rates of growth. In continuous cultures where steady-state concentrations of nitrate and nitrite were varied, T. pseudonana produced nitrite at rates which increased with increasing concentrations of nitrate. Again, the rates of nitrite production were uncoupled from rates of nitrate assimilation. The study was used to derive a mathematical description of nitrate and nitrite metabolism by T. pseudonana. The validity of this model was supported by the results of a study in which /sup 15/N-labeled nitrite was introduced into the continuous culture, and the model was used to examine patterns in distribution of nitrite in the Antarctic Ocean and the Sargasso Sea.

  11. Steady State Analysis of Small Molten Salt Reactor

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takahisa; Mitachi, Koshi; Suzuki, Takashi

    The Molten Salt Reactor (MSR) is a thermal neutron reactor with graphite moderation and operates on the thorium-uranium fuel cycle. The feature of the MSR is that fuel salt flows inside the reactor during the nuclear fission reaction. In the previous study, the authors developed numerical model with which to simulate the effects of fuel salt flow on the reactor characteristics. In this study, we apply the model to the steady-state analysis of a small MSR system and estimate the effects of fuel flow. The model consists of two-group neutron diffusion equations for fast and thermal neutron fluxes, transport equations for six-group delayed neutron precursors and energy conservation equations for fuel salt and the graphite moderator. The following results are obtained: (1) in the rated operation condition, the peaks of the neutron fluxes slightly move toward the bottom from the center of the reactor and the delayed neutron precursors are significantly carried by the fuel salt flow, and (2) the extension of residence time in the external-loop system and the rise of the fuel inflow temperature show weak negative reactivity effects, which decrease the neutron multiplication factor of the small MSR system.

  12. NASA Lewis steady-state heat pipe code users manual

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K.; Baker, Karl W.; Marks, Timothy S.

    1992-01-01

    The NASA Lewis heat pipe code was developed to predict the performance of heat pipes in the steady state. The code can be used as a design tool on a personal computer or with a suitable calling routine, as a subroutine for a mainframe radiator code. A variety of wick structures, including a user input option, can be used. Heat pipes with multiple evaporators, condensers, and adiabatic sections in series and with wick structures that differ among sections can be modeled. Several working fluids can be chosen, including potassium, sodium, and lithium, for which monomer-dimer equilibrium is considered. The code incorporates a vapor flow algorithm that treats compressibility and axially varying heat input. This code facilitates the determination of heat pipe operating temperatures and heat pipe limits that may be encountered at the specified heat input and environment temperature. Data are input to the computer through a user-interactive input subroutine. Output, such as liquid and vapor pressures and temperatures, is printed at equally spaced axial positions along the pipe as determined by the user.

  13. Mimicking Nonequilibrium Steady States with Time-Periodic Driving

    NASA Astrophysics Data System (ADS)

    Raz, Oren; Subasi, Yigit; Jarzynski, Christopher

    Under static conditions, a system satisfying detailed balance generically relaxes to an equilibrium state in which there are no currents: to generate persistent currents, either detailed balance must be broken or the system must be driven in a time-dependent manner. A stationary system that violates detailed balance evolves to a nonequilibrium steady state (NESS) characterized by fixed currents. Conversely, a system that satisfies instantaneous detailed balance but is driven by the time-periodic variation of external parameters - also known as a stochastic pump (SP) - reaches a periodic state with non-vanishing currents. In both cases, these currents are maintained at the cost of entropy production. Are these two paradigmatic scenarios effectively equivalent? For discrete-state systems we establish a mapping between NESS and SP. Given a NESS characterized by a particular set of stationary probabilities, currents and entropy production rates, we show how to construct a SP with exactly the same (time-averaged) values. The mapping works in the opposite direction as well. These results establish a proof of principle: they show that SP are able to mimic the behavior of NESS, and vice-versa, within the theoretical framework of discrete-state stochastic thermodynamics.

  14. Dynamic steady state of periodically driven quantum systems

    NASA Astrophysics Data System (ADS)

    Yudin, V. I.; Taichenachev, A. V.; Basalaev, M. Yu.

    2016-01-01

    Using the density matrix formalism, we prove the existence of the periodic steady state for an arbitrary periodically driven system described by linear dynamic equations. This state has the same period as the modulated external influence, and it is realized as an asymptotic solution (t →+∞ ) due to relaxation processes. The presented derivation simultaneously contains a simple and effective computational algorithm (without using either the Floquet or Fourier formalisms), which automatically guarantees a full account of all frequency components. As a particular example, for three-level Λ system we calculate the line shape and field-induced shift of the dark resonance formed by the field with a periodically modulated phase. Also we have analytically solved a basic theoretical problem of the direct frequency comb spectroscopy, when the two-level system is driven by the periodic sequence of rectangular pulses. In this case, the radical dependence of the spectroscopy line shape on pulse area is found. Moreover, the existence of quasiforbidden spectroscopic zones, in which the Ramsey fringes are significantly reduced, is predicted. Our results have a wide area of applications in laser physics, spectroscopy, atomic clocks, and magnetometry. Also they can be useful for any area of quantum physics where periodically driven systems are considered.

  15. Magnetocentrifugal Winds in 3D: Nonaxisymmetric Steady State

    SciTech Connect

    Anderson, Jeffrey M.; Li, Zhi-Yun; Krasnopolsky, Ruben; Blandford, Roger D.; /SLAC

    2006-11-28

    Outflows can be loaded and accelerated to high speeds along rapidly rotating, open magnetic field lines by centrifugal forces. Whether such magnetocentrifugally driven winds are stable is a longstanding theoretical problem. As a step towards addressing this problem, we perform the first large-scale 3D MHD simulations that extend to a distance {approx} 10{sup 2} times beyond the launching region, starting from steady 2D (axisymmetric) solutions. In an attempt to drive the wind unstable, we increase the mass loading on one half of the launching surface by a factor of {radical}10, and reduce it by the same factor on the other half. The evolution of the perturbed wind is followed numerically. We find no evidence for any rapidly growing instability that could disrupt the wind during the launching and initial phase of propagation, even when the magnetic field of the magnetocentrifugal wind is toroidally dominated all the way to the launching surface. The strongly perturbed wind settles into a new steady state, with a highly asymmetric mass distribution. The distribution of magnetic field strength is, in contrast, much more symmetric. We discuss possible reasons for the apparent stability, including stabilization by an axial poloidal magnetic field, which is required to bend field lines away from the vertical direction and produce a magnetocentrifugal wind in the first place.

  16. Classical quasi-steady state reduction-A mathematical characterization

    NASA Astrophysics Data System (ADS)

    Goeke, Alexandra; Walcher, Sebastian; Zerz, Eva

    2017-04-01

    We discuss parameter dependent polynomial ordinary differential equations that model chemical reaction networks. By classical quasi-steady state (QSS) reduction we understand the following familiar (heuristically motivated) mathematical procedure: Set the rate of change for certain (a priori chosen) variables equal to zero and use the resulting algebraic equations to obtain a system of smaller dimension for the remaining variables. This procedure will generally be valid only for certain parameter ranges. We start by showing that the reduction is accurate if and only if the corresponding parameter is what we call a QSS parameter value, and that the reduction is approximately accurate if and only if the corresponding parameter is close to a QSS parameter value. The QSS parameter values can be characterized by polynomial equations and inequations, hence parameter ranges for which QSS reduction is valid are accessible in an algorithmic manner. A defining characteristic of a QSS parameter value is that the algebraic variety defined by the QSS relations is invariant for the differential equation. A closer investigation of the associated systems shows the existence of further invariant sets; here singular perturbations enter the picture in a natural manner. We compare QSS reduction and singular perturbation reduction, and show that, while they do not agree in general, they do, up to lowest order in a small parameter, for a quite large and relevant class of examples. This observation, in turn, allows the computation of QSS reductions even in cases where an explicit resolution of the polynomial equations is not possible.

  17. Cell-Autonomous Gβ Signaling Defines Neuron-Specific Steady State Serotonin Synthesis in Caenorhabditis elegans

    PubMed Central

    Xu, Lu; Choi, Sunju; Xie, Yusu; Sze, Ji Ying

    2015-01-01

    Heterotrimeric G proteins regulate a vast array of cellular functions via specific intracellular effectors. Accumulating pharmacological and biochemical studies implicate Gβ subunits as signaling molecules interacting directly with a wide range of effectors to modulate downstream cellular responses, in addition to their role in regulating Gα subunit activities. However, the native biological roles of Gβ-mediated signaling pathways in vivo have been characterized only in a few cases. Here, we identified a Gβ GPB-1 signaling pathway operating in specific serotonergic neurons to the define steady state serotonin (5-HT) synthesis, through a genetic screen for 5-HT synthesis mutants in Caenorhabditis elegans. We found that signaling through cell autonomous GPB-1 to the OCR-2 TRPV channel defines the baseline expression of 5-HT synthesis enzyme tryptophan hydroxylase tph-1 in ADF chemosensory neurons. This Gβ signaling pathway is not essential for establishing the serotonergic cell fates and is mechanistically separated from stress-induced tph-1 upregulation. We identified that ADF-produced 5-HT controls specific innate rhythmic behaviors. These results revealed a Gβ-mediated signaling operating in differentiated cells to specify intrinsic functional properties, and indicate that baseline TPH expression is not a default generic serotonergic fate, but is programmed in a cell-specific manner in the mature nervous system. Cell-specific regulation of TPH expression could be a general principle for tailored steady state 5-HT synthesis in functionally distinct neurons and their regulation of innate behavior. PMID:26402365

  18. Meteoric Metal Layer in Mars' Atmosphere: Steady-state Flux and Meteor Showers

    NASA Astrophysics Data System (ADS)

    Crismani, Matteo; Schneider, Nicholas; Jain, Sonal; Plane, John; Diego Carrillo-Sanchez, Juan; Deighan, Justin; Stevens, Michael; Evans, Scott; Chaffin, Michael; Stewart, Ian; Jakosky, Bruce

    2016-04-01

    We report on a steady state metal ion layer at Mars produced by meteoric ablation in the upper atmosphere as observed by the Imaging Ultraviolet Spectrograph (IUVS) on MAVEN. The response of the Martian atmosphere to meteoroid influx constrains cometary activity, dust dynamics, ionospheric production at Mars and meteoric smoke may represent a site of nucleation for high altitude clouds. Using observations that span more than an Earth year, we find this layer is global and steady state, contrary to previous observations, but in accordance with predictions. IUVS observations cover a range of observation conditions, which allows us to determine the variability of the Mg+ layer seasonally and geographically. In December 2015, Mars encountered three predicted meteor showers, and analysis of these events will determine whether Mars' atmosphere responds to such events dramatically, as was the case with comet Siding Spring, or more similarly to Earth. Mg is also detected, but Mg/Mg+ less than predicted by factor >3, indicative of undetermined chemical processes in the Mars atmosphere.

  19. Human Dendritic Cell Functional Specialization in Steady-State and Inflammation

    PubMed Central

    Boltjes, Arjan; van Wijk, Femke

    2014-01-01

    Dendritic cells (DC) represent a heterogeneous population of antigen-presenting cells that are crucial in initiating and shaping immune responses. Although all DC are capable of antigen-uptake, processing, and presentation to T cells, DC subtypes differ in their origin, location, migration patterns, and specialized immunological roles. While in recent years, there have been rapid advances in understanding DC subset ontogeny, development, and function in mice, relatively little is known about the heterogeneity and functional specialization of human DC subsets, especially in tissues. In steady-state, DC progenitors deriving from the bone marrow give rise to lymphoid organ-resident DC and to migratory tissue DC that act as tissue sentinels. During inflammation additional DC and monocytes are recruited to the tissues where they are further activated and promote T helper cell subset polarization depending on the environment. In the current review, we will give an overview of the latest developments in human DC research both in steady-state and under inflammatory conditions. In this context, we review recent findings on DC subsets, DC-mediated cross-presentation, monocyte-DC relationships, inflammatory DC development, and DC-instructed T-cell polarization. Finally, we discuss the potential role of human DC in chronic inflammatory diseases. PMID:24744755

  20. Transient and steady State Patterns in Gravel Bars Following Sediment Supply Increases

    NASA Astrophysics Data System (ADS)

    Podolak, C.; Wilcock, P.

    2011-12-01

    Bedforms in a gravel-bed river respond to a combination of water discharge, sediment supply, and valley-scale geometry. The bed configuration can also vary between transient and steady-state conditions. Field and flume observations of gravel bedform responses to changes in sediment supply have focused primarily on decreased sediment supply, and those that have dealt with increased sediment supply have found cases of both increasing relief and decreasing relief. We present gravel bedform configurations under conditions of increased sediment supply in both field and laboratory conditions. The field study tracked the response of the Sandy River, Oregon after an increase in sediment flux due to the 2007 Marmot Dam removal in which nearly 750,000 m3 of impounded sediment which was made available for transport and resulted in a several-fold increase in annual sediment flux. The flume experiments introduced perturbation in a planar gravel bed (gravel D50 = 10mm, 15% sand) prompting alternate bar formation. Sediment was then manually added to the recirculating flume (in essence operating it as a feed flume) increasing flux rates by 50%. Upon reaching a steady state, the upstream flux was then augmented again to double the steady state rate. In response to the increased sediment supply the bed topography steepened to transport the imposed sediment flux. In both flume and field, the final bed response to increased sediment supply was deposition of a sediment wedge, steeping the channel slope with little change in bar morphology. Although the location and morphology of the bedforms were similar as the bed configuration stabilized, the transient response showed different patterns of deposition across the stream. A pattern of decreasing relief both from bar tops eroding and pools filling was observed as well as the migration of smaller wavelength high-celerity gravel bars as the bed decreased in relief. To explore the transient response we modeled both cases with a 2-D depth

  1. Brain activity during the memorization of visual scenes from TV commercials: an application of high resolution EEG and steady state somatosensory evoked potentials technologies.

    PubMed

    Astolfi, Laura; Fallani, Fabrizio De Vico; Cincotti, Febo; Mattia, Donatella; Bianchi, Luigi; Marciani, Maria Grazia; Salinari, Serenella; Gaudiano, Imma; Scarano, Gaetano; Soranzo, Ramon; Babiloni, Fabio

    2009-11-01

    The aim of this study was to elucidate if the TV commercials that were remembered by the subjects after their observation within a documentary elicited particular brain activity when compared to the activity generated during the observation of TV commercials that were forgotten. High resolution EEG recordings were performed in a group of 10 healthy subjects with the steady state somatosensory evoked potentials (SSSEPs) technique, in which a series of light electrical stimulation at the left wrist were delivered at the frequency of 20Hz. The brain activity was indexed by the phase delay of the EEG spectral responses at 20Hz with respect to the stimulus delivering and evaluated at the scalp level as well as at the cortical surface using several regions of interest coincident with the Brodmann areas (BAs). Results suggest that the cerebral processes involved during the observation of TV commercials that were remembered by the population examined (RMB dataset) are generated by the posterior parietal cortices and the prefrontal areas, rather bilaterally. These results are compatible with previously results obtained in literature by using MEG and fMRI devices during similar experimental tasks. High resolution EEG is able to summarize, with the use of SSSEPs methodologies, the behavior of the estimated cortical networks subserving the proposed memory tasks. It is likely that such tool could play a role in the next future for the investigation of the neural substrates of the human behavior in decision-making and recognition tasks.

  2. A homotopy method based on WENO schemes for solving steady state problems of hyperbolic conservation laws

    DTIC Science & Technology

    2012-09-03

    use of so-called probability-one methods [22]. The significant advantage of homotopy method to compute steady state solutions is free of Courant ...A homotopy method based on WENO schemes for solving steady state problems of hyperbolic conservation laws Wenrui Hao∗ Jonathan D. Hauenstein† Chi...robustness of the new method . Keywords homotopy continuation, hyperbolic conservation laws, WENO scheme, steady state problems. ∗Department of Applied and

  3. Near real-time response matrix calibration for 10 Hz GOFB

    SciTech Connect

    Liu C.; Hulsart, R.; Marusic, A.; Mernick, K.; Michnoff, R.; Minty, M.

    2012-05-20

    The 10 Hz global orbit feedback (GOFB), for damping the trajectory perturbation ({approx}10 Hz) due to the vibrations of the triplet quadrupoles, is operational. The correction algorithm uses transfer functions between the beam position monitors and correctors obtained from the online optics model and a correction algorithm based on singular value decomposition (SVD). Recently the calibration of the transfer functions was measured using beam position measurements acquired while modulating dedicated correctors. In this report, the feedback results with model matrix and measured matrix are compared.

  4. Effect of higher frequency on the classification of steady-state visual evoked potentials

    NASA Astrophysics Data System (ADS)

    Won, Dong-Ok; Hwang, Han-Jeong; Dähne, Sven; Müller, Klaus-Robert; Lee, Seong-Whan

    2016-02-01

    Objective. Most existing brain-computer interface (BCI) designs based on steady-state visual evoked potentials (SSVEPs) primarily use low frequency visual stimuli (e.g., <20 Hz) to elicit relatively high SSVEP amplitudes. While low frequency stimuli could evoke photosensitivity-based epileptic seizures, high frequency stimuli generally show less visual fatigue and no stimulus-related seizures. The fundamental objective of this study was to investigate the effect of stimulation frequency and duty-cycle on the usability of an SSVEP-based BCI system. Approach. We developed an SSVEP-based BCI speller using multiple LEDs flickering with low frequencies (6-14.9 Hz) with a duty-cycle of 50%, or higher frequencies (26-34.7 Hz) with duty-cycles of 50%, 60%, and 70%. The four different experimental conditions were tested with 26 subjects in order to investigate the impact of stimulation frequency and duty-cycle on performance and visual fatigue, and evaluated with a questionnaire survey. Resting state alpha powers were utilized to interpret our results from the neurophysiological point of view. Main results. The stimulation method employing higher frequencies not only showed less visual fatigue, but it also showed higher and more stable classification performance compared to that employing relatively lower frequencies. Different duty-cycles in the higher frequency stimulation conditions did not significantly affect visual fatigue, but a duty-cycle of 50% was a better choice with respect to performance. The performance of the higher frequency stimulation method was also less susceptible to resting state alpha powers, while that of the lower frequency stimulation method was negatively correlated with alpha powers. Significance. These results suggest that the use of higher frequency visual stimuli is more beneficial for performance improvement and stability as time passes when developing practical SSVEP-based BCI applications.

  5. There are no steady state processes in compaction

    NASA Astrophysics Data System (ADS)

    Dysthe, D. K.

    2003-04-01

    Compaction of sediments is normally thought to start with grain sliding and cataclastic grain crushing. Then the ductile dissolution-precipitation creep processes take over. Modeling of this process normally neglects all collective rearrangement processes and regard simple packings of grains that slowly deform by steady state pressure solution creep. From simple geometrical reasoning we know, however that imperfect packings of plastic grains must undergo rearrangement during compaction. Such rearrangement will drastically alter the microscopic, or "primitive processes" of compaction. Recent research has questioned the fundamental mechanisms ("primitive processes") of dissolution-precipitation creep. Do grain contacts heal or dissolve? Why is there asymmetric dissolution? Does pressure solution creep in single contacts ever reach steady state? Can transient free face dissolution feed back on pressure solution creep in the contacts? The emerging radical change in our understanding of dissolution-precipitation creep as a dynamic, transient process is driven by new experiments and reevaluation of the fundamental theory. The same change in viewpoint is necessary on all time and length scales. I will present experiments [1-8] and simulations [9-11] of complex compaction behaviour [1], transient primitive processes of pressure solution creep in the contacts [2-4], free face dissolution [5] and crack healing [6]. I will also show that macroscopic observation of compaction shows smooth, universal behaviour [7]. Microscopic observation of compaction shows transient collective behaviour at all scales. Evidence points in the direction that compaction is dominated by transient processes with interacting instabilities. The interaction causes intermittency or switching between processes. A new, more complex theory of compaction is necessary to explain how the cooperative microscopic phenomena contribute to the simple, universal, macroscopic behaviour. 1. Uri, L., et. al., in

  6. Computational multiple steady states for enzymatic esterification of ethanol and oleic acid in an isothermal CSTR.

    PubMed

    Ho, Pang-Yen; Chuang, Guo-Syong; Chao, An-Chong; Li, Hsing-Ya

    2005-05-01

    The capacity of complex biochemical reaction networks (consisting of 11 coupled non-linear ordinary differential equations) to show multiple steady states, was investigated. The system involved esterification of ethanol and oleic acid by lipase in an isothermal continuous stirred tank reactor (CSTR). The Deficiency One Algorithm and the Subnetwork Analysis were applied to determine the steady state multiplicity. A set of rate constants and two corresponding steady states are computed. The phenomena of bistability, hysteresis and bifurcation are discussed. Moreover, the capacity of steady state multiplicity is extended to the family of the studied reaction networks.

  7. Hopf and steady state bifurcation analysis in a ratio-dependent predator-prey model

    NASA Astrophysics Data System (ADS)

    Zhang, Lai; Liu, Jia; Banerjee, Malay

    2017-03-01

    In this paper, we perform spatiotemporal bifurcation analysis in a ratio-dependent predator-prey model and derive explicit conditions for the existence of non-constant steady states that emerge through steady state bifurcation from related constant steady states. These explicit conditions are numerically verified in details and further compared to those conditions ensuring Turing instability. We find that (1) Turing domain is identical to the parametric domain where there exists only steady state bifurcation, which implies that Turing patterns are stable non-constant steady states, but the opposite is not necessarily true; (2) In non-Turing domain, steady state bifurcation and Hopf bifurcation act in concert to determine the emergent spatial patterns, that is, non-constant steady state emerges through steady state bifurcation but it may be unstable if the destabilising effect of Hopf bifurcation counteracts the stabilising effect of diffusion, leading to non-stationary spatial patterns; (3) Coupling diffusion into an ODE model can significantly enrich population dynamics by inducing alternative non-constant steady states (four different states are observed, two stable and two unstable), in particular when diffusion interacts with different types of bifurcation; (4) Diffusion can promote species coexistence by saving species which otherwise goes to extinction in the absence of diffusion.

  8. An analytical description of balanced steady-state free precession with finite radio-frequency excitation.

    PubMed

    Bieri, Oliver

    2011-02-01

    Conceptually, the only flaw in the standard steady-state free precession theory is the assumption of quasi-instantaneous radio-frequency pulses, and 10-20% signal deviations from theory are observed for common balanced steady-state free precession protocols. This discrepancy in the steady-state signal can be resolved by a simple T(2) substitution taking into account reduced transverse relaxation effects during finite radio-frequency excitation. However, finite radio-frequency effects may also affect the transient phase of balanced steady-state free precession, its contrast or its spin-echo nature and thereby have an adverse effect on common steady-state free precession magnetization preparation methods. As a result, an in-depth understanding of finite radio-frequency effects is not only of fundamental theoretical interest but also has direct practical implications. In this article, an analytical solution for balanced steady-state free precession with finite radio-frequency pulses is derived for the transient phase (under ideal conditions) and in the steady state demonstrating that balanced steady-state free precession key features are preserved but revealing an unexpected dependency of finite radio-frequency effects on relaxation times for the transient decay. Finally, the mathematical framework reveals that finite radio-frequency theory can be understood as a generalization of alternating repetition time and fluctuating equilibrium steady-state free precession sequence schemes.

  9. Steady-state and transient electronic dynamics in granular metals

    NASA Astrophysics Data System (ADS)

    Chen, Wei

    In this thesis two very different approaches, steady state and transient, are taken to help understand the electronic dynamics in the nanogranular Cux(SiO2)1-x composite thin films. The electrical conductivity and thermopower are measured from 2 K to room temperature with the Cu volume fraction x varying from 1 down to 0.43. At low temperatures, a T dependence of the electrical conductivity is observed well above the percolation threshold due to the disorder-enhanced electron-electron interaction and as the metal-insulator transition is approached, the electrical conductivity assumes a T1/3 dependence. The thermopower is found to be small and rather insensitive to the degree of disorder in the system. It varies linearly with temperatures at both low and high temperatures. Annealing has considerable influence to the behavior of the electrical conductivity while introducing little changes to the thermopower. Femtosecond pump-probe experiments were performed on a series of Cu x(SiO2)1-x composite films with volume fraction x varying from 0.7 to 1.0 to study the reflectivity change DeltaR/R as a function of composition and temperature. It is discovered that DeltaR/R undergoes drastic changes as the metal content is lowered. Very small amount of SiO 2 inclusions can start to result in qualitatively different Delta R/R behavior from pure Cu. Changes in the dielectric constant of Cu are investigated and possible explanations for the DeltaR/R behaviors in the composite films are discussed.

  10. A steady-state model of the lunar ejecta cloud

    NASA Astrophysics Data System (ADS)

    Christou, Apostolos

    2014-05-01

    Every airless body in the solar system is surrounded by a cloud of ejecta produced by the impact of interplanetary meteoroids on its surface [1]. Such ``dust exospheres'' have been observed around the Galilean satellites of Jupiter [2,3]. The prospect of long-term robotic and human operations on the Moon by the US and other countries has rekindled interest on the subject [4]. This interest has culminated with the - currently ongoing - investigation of the Moon's dust exosphere by the LADEE spacecraft [5]. Here a model is presented of a ballistic, collisionless, steady state population of ejecta launched vertically at randomly distributed times and velocities and moving under constant gravity. Assuming a uniform distribution of launch times I derive closed form solutions for the probability density functions (pdfs) of the height distribution of particles and the distribution of their speeds in a rest frame both at the surface and at altitude. The treatment is then extended to particle motion with respect to a moving platform such as an orbiting spacecraft. These expressions are compared with numerical simulations under lunar surface gravity where the underlying ejection speed distribution is (a) uniform (b) a power law. I discuss the predictions of the model, its limitations, and how it can be validated against near-surface and orbital measurements.[1] Gault, D. Shoemaker, E.M., Moore, H.J., 1963, NASA TN-D 1767. [2] Kruger, H., Krivov, A.V., Hamilton, D. P., Grun, E., 1999, Nature, 399, 558. [3] Kruger, H., Krivov, A.V., Sremcevic, M., Grun, E., 2003, Icarus, 164, 170. [4] Grun, E., Horanyi, M., Sternovsky, Z., 2011, Planetary and Space Science, 59, 1672. [5] Elphic, R.C., Hine, B., Delory, G.T., Salute, J.S., Noble, S., Colaprete, A., Horanyi, M., Mahaffy, P., and the LADEE Science Team, 2014, LPSC XLV, LPI Contr. 1777, 2677.

  11. Experimental Realization of Nearly Steady-State Toroidal Electron Plasmas

    NASA Astrophysics Data System (ADS)

    Stoneking, M. R.

    2008-11-01

    Non-neutral plasmas are routinely confined in the uniform magnetic field of a Penning-Malmberg trap for arbitrarily long times and approach thermal equilibrium. Theory predicts that dynamically stable and therefore long-lived equilibria exist for non-neutral plasmas confined in the curved, non-uniform field of a toroidal trap, but that ultimately thermal equilibrium states do not exist. On long timescales, the poloidal ExB rotation through the non-uniform toroidal magnetic field leads to magnetic pumping transport. A new experiment has, for the first time, demonstrated the existence of a stable, long-lived (i.e. nearly steady-state) toroidal equilibrium for pure electron plasmas and is poised to observe the magnetic pumping transport mechanism. Electron plasmas with densities of order 10^6 cm-3 are trapped in the Lawrence Non-neutral Torus II for several seconds. LNT II is a high aspect ratio (Ro/a 10), partially toroidal trap (a 270^o arc with Bo=670 G). The m=1 diocotron mode is launched and detected using isolated segments of a fully-sectored conducting boundary and its frequency is used to determine the total trapped charge as a function of time. The observed confinement time ( 3 s) approaches the theoretical limit ( 6 s) set by the magnetic pumping transport mechanism of Crooks and O'Neil. We also present equilibrium modeling and numerical simulation of the toroidal m=1 mode constrained by experimental data. Future work includes the identification of the dominant transport mechanisms via confinement scaling experiments and measurement of the m=2 mode frequency, and development of a strategy for making a transition to fully toroidal confinement. J.P. Marler and M.R. Stoneking, Phys. Rev. Lett. 100, 155001 (2008). S.M. Crooks and T.M. O'Neil, Phys Plamas 3, 2533 (1996).

  12. Nonequilibrium steady states in a model for prebiotic evolution

    NASA Astrophysics Data System (ADS)

    Wynveen, A.; Fedorov, I.; Halley, J. W.

    2014-02-01

    Some statistical features of steady states of a Kauffman-like model for prebiotic evolution are reported from computational studies. We postulate that the interesting "lifelike" states will be characterized by a nonequilibrium distribution of species and a time variable species self-correlation function. Selecting only such states from the population of final states produced by the model yields the probability of the appearance of such states as a function of a parameter p of the model. p is defined as the probability that a possible reaction in the the artificial chemistry actually appears in the network of chemical reactions. Small p corresponds to sparse networks utilizing a small fraction of the available reactions. We find that the probability of the appearance of such lifelike states exhibits a maximum as a function of p: at large p, most final states are in chemical equilibrium and hence are excluded by our criterion. At very small p, the sparseness of the network makes the probability of formation of any nontrivial dynamic final state low, yielding a low probability of production of lifelike states in this limit as well. We also report results on the diversity of the lifelike states (as defined here) that are produced. Repeated starts of the model evolution with different random number seeds in a given reaction network lead to final lifelike states which have a greater than random likelihood of resembling one another. Thus a form of "convergence" is observed. On the other hand, in different reaction networks with the same p, lifelike final states are statistically uncorrelated. In summary, the main results are (1) there is an optimal p or "sparseness" for production of lifelike states in our model—neither very dense nor very sparse networks are optimal—and (2) for a given p or sparseness, the resulting lifelike states can be extremely different. We discuss some possible implications for studies of the origin of life.

  13. Impact of aquifer desaturation on steady-state river seepage

    NASA Astrophysics Data System (ADS)

    Morel-Seytoux, Hubert J.; Miracapillo, Cinzia; Mehl, Steffen

    2016-02-01

    Flow exchange between surface and ground water is of great importance be it for beneficial allocation and use of the water resources or for the proper exercise of water rights. That exchange can take place under a saturated or unsaturated flow regime. Which regimes occur depend on conditions in the vicinity of the interactive area. Withdrawals partially sustained by seepage may not bring about desaturation but greater amounts eventually will. The problem considered in this paper deals only with the steady-state case. It is meant as a first step toward a simple, yet accurate and physically based treatment of the transient situation. The primary purpose of the article is to provide simple criteria for determination of the initiation of desaturation in an aquifer originally in saturated hydraulic connection with a river or a recharge area. The extent of the unsaturated zone in the aquifer will increase with increasing withdrawals while at the same time the seepage rate from the river increases. However the seepage increase will stop once infiltration takes place strictly by gravity in the aquifer and is no longer opposed by the capillary rise from the water table below the riverbed. Following desaturation simple criteria are derived and simple analytical formulae provided to estimate the river seepage based on the position of the water table mound below the clogging layer and at some distance away from the river bank. They fully account for the unsaturated flow phenomena, including the existence of a drainage entry pressure. Two secondary objectives were to verify that (1) the assumption of uniform vertical flow through a clogging layer and that (2) the approximation of the water table mound below the seepage area as a flat surface were both reasonably legitimate. This approach will be especially advantageous for the implementation of the methodology in large-scale applications of integrated hydrologic models used for management.

  14. Steady-state and dynamic performance of a gas-lubricated seal

    NASA Technical Reports Server (NTRS)

    Colsher, R.; Shapiro, W.

    1972-01-01

    Steady-state and dynamic performance of a gas-lubricated, self-acting face seal was determined using numerical methods based on a variable grid, finite-difference, time-transient procedure. Results were obtained for a gas turbine main shaft seal operating at 206.9 newton per square centimeter (300 psi) sealed air pressure and 152.4 meters per second (500 ft/sec) sliding velocity. Analysis of the seal dynamics revealed that the response of the seal nosepiece to runout of the seat face is markedly affected by secondary seal friction and by nosepiece inertia. The nosepiece response was determined for various levels of secondary seal friction and seat face runout magnitudes.

  15. [Fitting hearing aids in early childhood based on auditory evoked potentials in steady states].

    PubMed

    Zenker Castro, F; Fernández Belda, R; Barajas de Prat, J J

    2006-11-01

    The purpose of the Newborn Hearing Screening Program is to achieve early. Identification and appropriate intervention for hearing loss. Hearing aids are the most frequent intervention for deafness. Paediatric specific clinical protocols for fitting hearing aids always recommend accurate characterisation of hearing thresholds in newborns. In this sense, electrophysiological procedures are specially indicated in determined hearing sensibility from the first age of life since it is an objective and reliable procedure. 20 normal hearing subject and 17 hearing loss subjects participated in this study. Auditory Steady State Responses (ASSR) were obtained from all of them. Hearing aid fitting was established from the electrophysiological responses. Dynamic range, gain, compression ratio and maximum output of the hearing aid were obtained from the intensity amplitude function of the ASSR. The procedure discussed in this study is specially indicated in newborns and very young children in which other test are not suitable.

  16. Brain oscillatory 4-35 Hz EEG responses during an n-back task with complex visual stimuli.

    PubMed

    Palomäki, Jussi; Kivikangas, Markus; Alafuzoff, Aleksander; Hakala, Tero; Krause, Christina M

    2012-05-10

    Brain oscillatory responses of 4-35 Hz EEG frequencies elicited during performance of a visual n-back task with complex visual stimuli were assessed in 20 adult volunteers. Spectral power changes were assessed separately for target and non-target stimuli in four different memory load conditions (0, 1, 2, and 3-back). The presentation of both target and non-target stimuli elicited long-lasting ~4-8 Hz power increases, which were more prominent at the beginning of stimulus onset during presentation of target stimuli, as compared to non-target stimuli, in the 0-back memory load condition. ~8-25 Hz power decreases appeared at stimulus onset. These power decreases were more prominent during the presentation of target stimuli, as compared to non-target stimuli, and their duration increased as a function of memory load between the 0-, 1-, and 2-back, but not the 3-back, memory load conditions. The current results provide further evidence in support of the notion of a complex interplay between both ~4-8 Hz power increases and ~8-25 Hz power decreases during cognitive memory task performance.

  17. Development of an annoyance model based upon elementary auditory sensations for steady-state aircraft interior noise containing tonal components

    NASA Technical Reports Server (NTRS)

    Angerer, James R.; Mccurdy, David A.; Erickson, Richard A.

    1991-01-01

    The purpose of this investigation was to develop a noise annoyance model, superior to those already in use, for evaluating passenger response to sounds containing tonal components which may be heard within current and future commercial aircraft. The sound spectra investigated ranged from those being experienced by passengers on board turbofan powered aircraft now in service to those cabin noise spectra passengers may experience within advanced propeller-driven aircraft of the future. A total of 240 sounds were tested in this experiment. Sixty-six of these 240 sounds were steady state, while the other 174 varied temporally due to tonal beating. Here, the entire experiment is described, but the analysis is limited to those responses elicited by the 66 steady-state sounds.

  18. Rod Bundle Heat Transfer: Steady-State Steam Cooling Experiments

    SciTech Connect

    Spring, J.P.; McLaughlin, D.M.

    2006-07-01

    Through the joint efforts of the Pennsylvania State University and the United States Nuclear Regulatory Commission, an experimental rod bundle heat transfer (RBHT) facility was designed and built. The rod bundle consists of a 7 x 7 square pitch array with spacer grids and geometry similar to that found in a modern pressurized water reactor. From this facility, a series of steady-state steam cooling experiments were performed. The bundle inlet Reynolds number was varied from 1 400 to 30 000 over a pressure range from 1.36 to 4 bars (20 to 60 psia). The bundle inlet steam temperature was controlled to be at saturation for the specified pressure and the fluid exit temperature exceeded 550 deg. C in the highest power tests. One important quantity of interest is the local convective heat transfer coefficient defined in terms of the local bulk mean temperature of the flow, local wall temperature, and heat flux. Steam temperatures were measured at the center of selected subchannels along the length of the bundle by traversing miniaturized thermocouples. Using an analogy between momentum and energy transport, a method was developed for relating the local subchannel centerline temperature measurement to the local bulk mean temperature. Wall temperatures were measured using internal thermocouples strategically placed along the length of each rod and the local wall heat flux was obtained from an inverse conduction program. The local heat transfer coefficient was calculated from the data at each rod thermocouple location. The local heat transfer coefficients calculated for locations where the flow was fully developed were compared against several published correlations. The Weisman and El-Genk correlations were found to agree best with the RBHT steam cooling data, especially over the range of turbulent Reynolds numbers. The effect of spacer grids on the heat transfer enhancement was also determined from instrumentation placed downstream of the spacer grid locations. The local

  19. Progress Towards High-Performance, Steady-State Spherical Torus

    SciTech Connect

    Lawrence Livermore National Laboratory

    2004-01-04

    Research on the spherical torus (or spherical tokamak) (ST) is being pursued to explore the scientific benefits of modifying the field line structure from that in more moderate aspect ratio devices, such as the conventional tokamak. The ST experiments are being conducted in various US research facilities including the MA-class National Spherical Torus Experiment (NSTX) at Princeton, and three medium sized ST research facilities: PEGASUS at University of Wisconsin, HIT-II at University of Washington, and CDX-U at Princeton. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a Demo device, are being discussed. For these, it is essential to develop high performance, steady-state operational scenarios. The relevant scientific issues are energy confinement, MHD stability at high beta ({beta}), non-inductive sustainment, Ohmic-solenoid-free start-up, and power and particle handling. In the confinement area, the NSTX experiments have shown that the confinement can be up to 50% better than the ITER-98-pby2 H-mode scaling, consistent with the requirements for an ST-based CTF and Demo. In NSTX, CTF-relevant average toroidal beta values {beta}{sub T} of up to 35% with a near unity central {beta}{sub T} have been obtained. NSTX will be exploring advanced regimes where {beta}{sub T} up to 40% can be sustained through active stabilization of resistive wall modes. To date, the most successful technique for non-inductive sustainment in NSTX is the high beta poloidal regime, where discharges with a high non-inductive fraction ({approx}60% bootstrap current+NBI current drive) were sustained over the resistive skin time. Research on radio-frequency (RF) based heating and current drive utilizing high harmonic fastwave and electron Bernstein wave is also pursued on NSTX, PEGASUS, and CDX-U. For non-inductive start-up, the coaxial helicity injection, developed in HIT/HIT-II, has been adopted on NSTX

  20. Steady-state visually evoked potential topography during the Wisconsin card sorting test.

    PubMed

    Silberstein, R B; Ciorciari, J; Pipingas, A

    1995-01-01

    This paper describes, for the first time, changes in steady-state visually evoked potential (SSVEP) topography associated with the performance of a computerised version of the Wisconsin card sort test (WCS). The SSVEP was recorded from 64 scalp sites and was elicited by a 13 Hz spatially uniform visual flicker presented continuously while 16 subjects performed the WCS. in the WCS, the sort criterion was automatically changed after subjects had sorted 10 cards correctly. Feedback on the 11th card always constituted a cue for a change in the sort criterion. It was found that in the 1-2 sec interval after the occurrence of the cue to change sort criterion, the prefrontal, central and right parieto-temporal regions showed a pronounced attenuation in SSVEP amplitude and an increase in phase lag. These changes, interpreted as an increase in regional cortical activity, are not apparent in the equivalent portions of the WCS when the sort criterion does not need to be changed. These results indicate that the levels of prefrontal and right parieto-temporal activity varied during the performance of the WCS, peaking at the times a change in sort criterion was required.

  1. One-dimensional steady-state stream water-quality model

    USGS Publications Warehouse

    Bauer, Daniel P.; Jennings, Marshall E.; Miller, Jeffrey E.

    1979-01-01

    A computer program, based on a one-dimensional mathematical model which predicts the stream water-quality response characteristics from waste source inputs, is described and documented. Variables predicted include dissolved oxygen, biochemical oxygen demand, nitrogen forms, total and fecal-coliform bacteria, orthophosphate-phosphorus, and various conservative substances. The model is based primarily on the Streeter-Phelps oxygen-sag equation. Special options of the program include the capability of handling nonpont source waste inputs and anoxic conditions. The model formulation is based on a steady-state assumption which requires constant flow rate of waste and stream discharges and associated parameters. To achieve a problem solution, each reach of a stream system is broken into a given number of subreaches, generally defined by locations of waste or tributary inflow points. All waste constituents are assumed to be completely mixed within any cross section. (Woodard-USGS)

  2. Signatures of nonlinear optomechanics and engineering of nonclassical mechanical steady states

    NASA Astrophysics Data System (ADS)

    Borkje, Kjetil

    2013-03-01

    Motivated by recent improvements in coupling strength between light and mechanical motion, we study the strong coupling regime of cavity optomechanics theoretically. We focus on the regime where the optomechanical coupling rate is still small compared to the mechanical resonance frequency, but where the mechanically induced Kerr nonlinearity is significant. The response of the system to an optical drive is characterized. The average photon number in the cavity as a function of drive detuning can feature several peaks due to multi-photon transitions. Furthermore, we show that by optically driving the system at multiple frequencies, multi-photon transitions can facilitate the engineering of nonclassical steady states of the mechanical oscillator. The author acknowledges financial support from The Danish Council for Independent Research under the Sapere Aude program.

  3. Inexact Picard iterative scheme for steady-state nonlinear diffusion in random heterogeneous media.

    PubMed

    Mohan, P Surya; Nair, Prasanth B; Keane, Andy J

    2009-04-01

    In this paper, we present a numerical scheme for the analysis of steady-state nonlinear diffusion in random heterogeneous media. The key idea is to iteratively solve the nonlinear stochastic governing equations via an inexact Picard iteration scheme, wherein the nonlinear constitutive law is linearized using the current guess of the solution. The linearized stochastic governing equations are then spatially discretized and approximately solved using stochastic reduced basis projection schemes. The approximation to the solution process thus obtained is used as the guess for the next iteration. This iterative procedure is repeated until an appropriate convergence criterion is met. Detailed numerical studies are presented for diffusion in a square domain for varying degrees of nonlinearity. The numerical results are compared against benchmark Monte Carlo simulations, and it is shown that the proposed approach provides good approximations for the response statistics at modest computational effort.

  4. Spatial smoothing of canonical correlation analysis for steady state visual evoked potential based brain computer interfaces.

    PubMed

    Ryu, Shingo; Higashi, Hiroshi; Tanaka, Toshihisa; Nakauchi, Shigeki; Minami, Tetsuto

    2016-08-01

    Brain computer interface (BCI) is a system for communication between people and computers via brain activity. Steady-state visual evoked potentials (SSVEPs), a brain response observed in EEG, are evoked by flickering stimuli. SSVEP is one of the promising paradigms for BCI. Canonical correlation analysis (CCA) is widely used for EEG signal processing in SSVEP-based BCIs. However, the classification accuracy of CCA with short signal length is low. In order to solve the problem, we propose a regularization which works in such a way that the CCA spatial filter becomes spatially smooth to give robustness in short signal length condition. The spatial filter is designed in a parameter space spanned by a spatially smooth basis which are given by a graph Fourier transform of three dimensional electrode coordinates. We compared the classification accuracy of the proposed regularized CCA with the standard CCA. The result shows that the proposed CCA outperforms the standard CCA in short signal length condition.

  5. Steady state simulation of the chemo-electro-mechanical behavior of hydrogels.

    SciTech Connect

    Suthar, K. J.; Ghantasala, M. K.; Mancini, D. C.

    2010-08-01

    The simulation results of the swelling of hydrogels in steady state conditions are presented with an emphasis on its response to environmental stimuli such as solvent pH and external electrical potential. The simulation uses numerical model consisting of three partial differential equations namely the Nernst-Planck equation, Poisson's equation for electric potential, and the mechanical field equation. Finite element analysis is carried out using multiphysics software, COMSOL, employing a moving mesh method in two dimensions. The effect of buffer solution concentration, fixed charge density, solution pH (2-12), and electric potential (0-2 V) on the swelling or deflection characteristics are studied in separate simulations. These results are in agreement with other published experimental results.

  6. 40 CFR 92.130 - Determination of steady-state concentrations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... concentrations. 92.130 Section 92.130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR....130 Determination of steady-state concentrations. (a)(1) For HC and NOX emissions, a steady-state concentration measurement, measured after 300 seconds (or 840 seconds for notch 8) of testing shall be...

  7. 40 CFR 92.130 - Determination of steady-state concentrations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... concentrations. 92.130 Section 92.130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR....130 Determination of steady-state concentrations. (a)(1) For HC and NOX emissions, a steady-state concentration measurement, measured after 300 seconds (or 840 seconds for notch 8) of testing shall be...

  8. 40 CFR 92.130 - Determination of steady-state concentrations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... concentrations. 92.130 Section 92.130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR....130 Determination of steady-state concentrations. (a)(1) For HC and NOX emissions, a steady-state concentration measurement, measured after 300 seconds (or 840 seconds for notch 8) of testing shall be...

  9. 40 CFR 92.130 - Determination of steady-state concentrations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... concentrations. 92.130 Section 92.130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR....130 Determination of steady-state concentrations. (a)(1) For HC and NOX emissions, a steady-state concentration measurement, measured after 300 seconds (or 840 seconds for notch 8) of testing shall be...

  10. 40 CFR 92.130 - Determination of steady-state concentrations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... concentrations. 92.130 Section 92.130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR....130 Determination of steady-state concentrations. (a)(1) For HC and NOX emissions, a steady-state concentration measurement, measured after 300 seconds (or 840 seconds for notch 8) of testing shall be...

  11. Constructive interference in steady-state/FIESTA-C clinical applications in neuroimaging.

    PubMed

    Kulkarni, Makarand; Kulkami, Makarand

    2011-04-01

    High spatial resolution is one of the major problems in neuroimaging, particularly in cranial and spinal nerve imaging. Constructive interference in steady-state/fast imaging employing steady-state acquisition with phase cycling is a robust sequence in imaging the cranial and spinal nerve pathologies. This pictorial review is a concise article about the applications of this sequence in neuroimaging with clinical examples.

  12. 40 CFR 85.2230 - Steady state test dynamometer-EPA 91.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Steady state test dynamometer-EPA 91. 85.2230 Section 85.2230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Warranty Short Tests § 85.2230 Steady state test dynamometer—EPA 91. (a) Special calendar and model...

  13. Phased Array Ghost Elimination (PAGE) for Segmented SSFP Imaging With Interrupted Steady-State

    PubMed Central

    Kellman, Peter; Guttman, Michael A.; Herzka, Daniel A.; McVeigh, Elliot R.

    2007-01-01

    Steady-state free precession (SSFP) has recently proven to be valuable for cardiac imaging due to its high signal-to-noise ratio and blood-myocardium contrast. Data acquired using ECG-triggered, segmented sequences during the approach to steady-state, or return to steady-state after interruption, may have ghost artifacts due to periodic k-space distortion. Schemes involving several preparatory RF pulses have been proposed to restore steady-state, but these consume imaging time during early systole. Alternatively, the phased-array ghost elimination (PAGE) method may be used to remove ghost artifacts from the first several frames. PAGE was demonstrated for cardiac cine SSFP imaging with interrupted steady-state using a simple alpha/2 magnetization preparation and storage scheme and a spatial tagging preparation. PMID:12465121

  14. On the use of steady-state signal equations for 2D TrueFISP imaging.

    PubMed

    Coolen, Bram F; Heijman, Edwin; Nicolay, Klaas; Strijkers, Gustav J

    2009-07-01

    To explain the signal behavior in 2D-TrueFISP imaging, a slice excitation profile should be considered that describes a variation of effective flip angles and magnetization phases after excitation. These parameters can be incorporated into steady-state equations to predict the final signal within a pixel. The use of steady-state equations assumes that excitation occurs instantaneously, although in reality this is a nonlinear process. In addition, often the flip angle variation within the slice excitation profile is solely considered when using steady-state equations, while TrueFISP is especially known for its sensitivity to phase variations. The purpose of this study was therefore to evaluate the precision of steady-state equations in calculating signal intensities in 2D TrueFISP imaging. To that end, steady-state slice profiles and corresponding signal intensities were calculated as function of flip angle, RF phase advance and pulse shape. More complex Bloch simulations were considered as a gold standard, which described every excitation within the sequence until steady state was reached. They were used to analyze two different methods based on steady-state equations. In addition, measurements on phantoms were done with corresponding imaging parameters. Although the Bloch simulations described the steady-state slice profile formation better than methods based on steady-state equations, the latter performed well in predicting the steady-state signal resulting from it. In certain cases the phase variation within the slice excitation profile did not even have to be taken into account.

  15. Full-field inspection of three-dimensional structures using steady-state acoustic wavenumber spectroscopy

    NASA Astrophysics Data System (ADS)

    Koskelo, Elise Anne C.; Flynn, Eric B.

    2017-02-01

    Inspection of and around joints, beams, and other three-dimensional structures is integral to practical nondestructive evaluation of large structures. Non-contact, scanning laser ultrasound techniques offer an automated means of physically accessing these regions. However, to realize the benefits of laser-scanning techniques, simultaneous inspection of multiple surfaces at different orientations to the scanner must not significantly degrade the signal level nor diminish the ability to distinguish defects from healthy geometric features. In this study, we evaluated the implementation of acoustic wavenumber spectroscopy for inspecting metal joints and crossbeams from interior angles. With this technique, we used a single-tone, steady-state, ultrasonic excitation to excite the joints via a single transducer attached to one surface. We then measured the full-field velocity responses using a scanning Laser Doppler vibrometer and produced maps of local wavenumber estimates. With the high signal level associated with steady-state excitation, scans could be performed at surface orientations of up to 45 degrees. We applied camera perspective projection transformations to remove the distortion in the scans due to a known projection angle, leading to a significant improvement in the local estimates of wavenumber. Projection leads to asymmetrical distortion in the wavenumber in one direction, making it possible to estimate view angle even when neither it nor the nominal wavenumber is known. Since plate thinning produces a purely symmetric increase in wavenumber, it also possible to independently estimate the degree of hidden corrosion. With a two-surface joint, using the wavenumber estimate maps, we were able to automatically calculate the orthographic projection component of each angled surface in the scan area.

  16. Nonconstant Positive Steady States and Pattern Formation of 1D Prey-Taxis Systems

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Song, Yang; Shao, Lingjie

    2016-08-01

    Prey-taxis is the process that predators move preferentially toward patches with highest density of prey. It is well known to have an important role in biological control and the maintenance of biodiversity. To model the coexistence and spatial distributions of predator and prey species, this paper concerns nonconstant positive steady states of a wide class of prey-taxis systems with general functional responses over 1D domain. Linearized stability of the positive equilibrium is analyzed to show that prey-taxis destabilizes prey-predator homogeneity when prey repulsion (e.g., due to volume-filling effect in predator species or group defense in prey species) is present, and prey-taxis stabilizes the homogeneity otherwise. Then, we investigate the existence and stability of nonconstant positive steady states to the system through rigorous bifurcation analysis. Moreover, we provide detailed and thorough calculations to determine properties such as pitchfork and turning direction of the local branches. Our stability results also provide a stable wave mode selection mechanism for thee reaction-advection-diffusion systems including prey-taxis models considered in this paper. Finally, we provide numerical studies of prey-taxis systems with Holling-Tanner kinetics to illustrate and support our theoretical findings. Our numerical simulations demonstrate that the 2× 2 prey-taxis system is able to model the formation and evolution of various striking patterns, such as spikes, periodic oscillations, and coarsening even when the domain is one-dimensional. These dynamics can model the coexistence and spatial distributions of interacting prey and predator species. We also give some insights on how system parameters influence pattern formation in these models.

  17. Nonconstant Positive Steady States and Pattern Formation of 1D Prey-Taxis Systems

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Song, Yang; Shao, Lingjie

    2017-02-01

    Prey-taxis is the process that predators move preferentially toward patches with highest density of prey. It is well known to have an important role in biological control and the maintenance of biodiversity. To model the coexistence and spatial distributions of predator and prey species, this paper concerns nonconstant positive steady states of a wide class of prey-taxis systems with general functional responses over 1D domain. Linearized stability of the positive equilibrium is analyzed to show that prey-taxis destabilizes prey-predator homogeneity when prey repulsion (e.g., due to volume-filling effect in predator species or group defense in prey species) is present, and prey-taxis stabilizes the homogeneity otherwise. Then, we investigate the existence and stability of nonconstant positive steady states to the system through rigorous bifurcation analysis. Moreover, we provide detailed and thorough calculations to determine properties such as pitchfork and turning direction of the local branches. Our stability results also provide a stable wave mode selection mechanism for thee reaction-advection-diffusion systems including prey-taxis models considered in this paper. Finally, we provide numerical studies of prey-taxis systems with Holling-Tanner kinetics to illustrate and support our theoretical findings. Our numerical simulations demonstrate that the 2× 2 prey-taxis system is able to model the formation and evolution of various striking patterns, such as spikes, periodic oscillations, and coarsening even when the domain is one-dimensional. These dynamics can model the coexistence and spatial distributions of interacting prey and predator species. We also give some insights on how system parameters influence pattern formation in these models.

  18. A potential-based inversion of unconfined steady-state hydraulic tomography.

    PubMed

    Cardiff, M; Barrash, W; Kitanidis, P K; Malama, B; Revil, A; Straface, S; Rizzo, E

    2009-01-01

    The importance of estimating spatially variable aquifer parameters such as transmissivity is widely recognized for studies in resource evaluation and contaminant transport. A useful approach for mapping such parameters is inverse modeling of data from series of pumping tests, that is, via hydraulic tomography. This inversion of field hydraulic tomographic data requires development of numerical forward models that can accurately represent test conditions while maintaining computational efficiency. One issue this presents is specification of boundary and initial conditions, whose location, type, and value may be poorly constrained. To circumvent this issue when modeling unconfined steady-state pumping tests, we present a strategy that analyzes field data using a potential difference method and that uses dipole pumping tests as the aquifer stimulation. By using our potential difference approach, which is similar to modeling drawdown in confined settings, we remove the need for specifying poorly known boundary condition values and natural source/sink terms within the problem domain. Dipole pumping tests are complementary to this strategy in that they can be more realistically modeled than single-well tests due to their conservative nature, quick achievement of steady state, and the insensitivity of near-field response to far-field boundary conditions. After developing the mathematical theory, our approach is first validated through a synthetic example. We then apply our method to the inversion of data from a field campaign at the Boise Hydrogeophysical Research Site. Results from inversion of nine pumping tests show expected geologic features, and uncertainty bounds indicate that hydraulic conductivity is well constrained within the central site area.

  19. Efficient Steady-State Solution Techniques for Variably Saturated Groundwater Flow

    NASA Astrophysics Data System (ADS)

    Farthing, M. W.; Kees, C. E.; Coffey, T. S.; Kelley, C. T.; Miller, C. T.

    2002-12-01

    We consider the simulation of steady-state variably saturated groundwater flow using Richards' equation. The difficulties associated with solving Richards' equation numerically are well known. Most discretization approaches for Richards' equation lead to nonlinear systems that are large and difficult to solve. The solution of nonlinear systems for steady-state problems can be particularly challenging, since a good initial guess for the steady-state solution is often hard to obtain, and the resulting linear systems may be poorly scaled. Common approaches like modified Picard iteration or variations of Newton's method have their advantages but perform poorly with standard globalization techniques under certain conditions. Pseudo-transient continuation has been used in computational fluid dynamics for some time to obtain steady-state solutions for problems in which Newton's method with standard line-search strategies fails. It combines aspects of backward Euler time integration and Newton's method to select intermediate estimates of the steady-state solution. In this work, we examine the use of pseudo-transient continuation methods for Richards' equation. We evaluate their performance for steady-state problems in heterogeneous domains by comparing them with Newton's method using standard globalization techniques. We investigate the methods' performance with both direct and preconditioned Krylov iterative linear solvers. We then make recommendations for robust and efficient approaches to obtain steady-state solutions for Richards' equation under a variety of conditions.

  20. Strategies for investigating the plant metabolic network with steady-state metabolic flux analysis: lessons from an Arabidopsis cell culture and other systems.

    PubMed

    Kruger, N J; Masakapalli, S K; Ratcliffe, R G

    2012-03-01

    Steady-state (13)C metabolic flux analysis (MFA) is currently the experimental method of choice for generating flux maps of the compartmented network of primary metabolism in heterotrophic and mixotrophic plant tissues. While statistically robust protocols for the application of steady-state MFA to plant tissues have been developed by several research groups, the implementation of the method is still far from routine. The effort required to produce a flux map is more than justified by the information that it contains about the metabolic phenotype of the system, but it remains the case that steady-state MFA is both analytically and computationally demanding. This article provides an overview of principles that underpin the implementation of steady-state MFA, focusing on the definition of the metabolic network responsible for redistribution of the label, experimental considerations relating to data collection, the modelling process that allows a set of metabolic fluxes to be deduced from the labelling data, and the interpretation of flux maps. The article draws on published studies of Arabidopsis cell cultures and other systems, including developing oilseeds, with the aim of providing practical guidance and strategies for handling the issues that arise when applying steady-state MFA to the complex metabolic networks encountered in plants.

  1. The condensation of ampholytes in steady state moving boundaries - Analysis by computer simulation

    NASA Technical Reports Server (NTRS)

    Mosher, Richard A.; Thormann, Wolfgang

    1986-01-01

    A digital simulation of the behavior of amphoteric sample components in moving steady state boundaries is presented. Complete computer simulation data, including profiles of concentration, conductivity and pH as functions of time, are given for both cationic and anionic electrolyte configurations which incorporate one amphoteric sample constituent. The condensation of ampholytes in steady state moving boundaries is shown to proceed via an isotachophoretic mechanism and not by isoelectric focusing. Mobility (velocity) relationships necessary for sample components to form steady state zones are discussed.

  2. Bifurcation in the Steady-State Height of Colloidal Particles near an Electrode in Oscillatory Electric Fields: Evidence for a Tertiary Potential Minimum

    NASA Astrophysics Data System (ADS)

    Woehl, T. J.; Chen, B. J.; Heatley, K. L.; Talken, N. H.; Bukosky, S. C.; Dutcher, C. S.; Ristenpart, W. D.

    2015-01-01

    Application of an oscillatory electric field is known to alter the separation distance between micron-scale colloidal particles and an adjacent electrode. This behavior is believed to be partially due to a lift force caused by electrohydrodynamic flow generated around each particle, with previous work focused on identifying a single steady-state "height" of the individual particles over the electrode. Here, we report the existence of a pronounced bifurcation in the particle height in response to low-frequency electric fields. Optical and confocal microscopy observations reveal that application of a ˜100 Hz field induces some of the particles to rapidly move several particle diameters up from the electrode, while the others move closer to the electrode. Statistics compiled from repeated trials demonstrate that the likelihood for a particle to move up follows a binomial distribution, indicating that the height bifurcation is random and does not result from membership in some distinct subpopulation of particles. The fraction of particles that move up increases with increased applied potential and decreased frequency, in a fashion qualitatively consistent with an energy landscape predicated on competition between electrohydrodynamic flow, colloidal interactions, and gravitational forces. Taken together, the results provide evidence for the existence of a deep tertiary minimum in the effective electrode-particle interaction potential at a surprisingly large distance from the electrode.

  3. Absolute Steady-State Thermal Conductivity Measurements by Use of a Transient Hot-Wire System.

    PubMed

    Roder, H M; Perkins, R A; Laesecke, A; Nieto de Castro, C A

    2000-01-01

    A transient hot-wire apparatus was used to measure the thermal conductivity of argon with both steady-state and transient methods. The effects of wire diameter, eccentricity of the wire in the cavity, axial conduction, and natural convection were accounted for in the analysis of the steady-state measurements. Based on measurements on argon, the relative uncertainty at the 95 % level of confidence of the new steady-state measurements is 2 % at low densities. Using the same hot wires, the relative uncertainty of the transient measurements is 1 % at the 95 % level of confidence. This is the first report of thermal conductivity measurements made by two different methods in the same apparatus. The steady-state method is shown to complement normal transient measurements at low densities, particularly for fluids where the thermophysical properties at low densities are not known with high accuracy.

  4. A closed-loop control scheme for steering steady states of glycolysis and glycogenolysis pathway.

    PubMed

    Panja, Surajit; Patra, Sourav; Mukherjee, Anirban; Basu, Madhumita; Sengupta, Sanghamitra; Dutta, Pranab K

    2013-01-01

    Biochemical networks normally operate in the neighborhood of one of its multiple steady states. It may reach from one steady state to other within a finite time span. In this paper, a closed-loop control scheme is proposed to steer states of the glycolysis and glycogenolysis (GG) pathway from one of its steady states to other. The GG pathway is modeled in the synergism and saturation system formalism, known as S-system. This S-system model is linearized into the controllable Brunovsky canonical form using a feedback linearization technique. For closed-loop control, the linear-quadratic regulator (LQR) and the linear-quadratic gaussian (LQG) regulator are invoked to design a controller for tracking prespecified steady states. In the feedback linearization technique, a global diffeomorphism function is proposed that facilitates in achieving the regulation requirement. The robustness of the regulated GG pathway is studied considering input perturbation and with measurement noise.

  5. Spin-locked balanced steady-state free-precession (slSSFP).

    PubMed

    Witschey, Walter R T; Borthakur, Ari; Elliott, Mark A; Magland, Jeremy; McArdle, Erin L; Wheaton, Andrew; Reddy, Ravinder

    2009-10-01

    A spin-locked balanced steady-state free-precession (slSSFP) pulse sequence is described that combines a balanced gradient-echo acquisition with an off-resonance spin-lock pulse for fast MRI. The transient and steady-state magnetization trajectory was solved numerically using the Bloch equations and was shown to be similar to balanced steady-state free-precession (bSSFP) for a range of T(2)/T(1) and flip angles, although the slSSFP steady-state could be maintained with considerably lower radio frequency (RF) power. In both simulations and brain scans performed at 7T, slSSFP was shown to exhibit similar contrast and signal-to-noise ratio (SNR) efficiency to bSSFP, but with significantly lower power.

  6. Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X

    SciTech Connect

    Bosch, H.-S.; Wolf, R. C.; Andreeva, T.; Cardella, A; Erckmann, V.; Gantenbein, G; Hathiramani, D; Kasparek, W; Klinger, T.; Koenig, R; Kornejew, P; Laqua, H P; Lechte, C; Michel, G; Peacock, A.; Sunn Pedersen, T; Thumm, M; Turkin, Yu.; Wegener, Lutz; Werner, A.; Zhang, D; Beidler, C.; Bozhenkov, S.; Brown, T.; Geiger, J.; Harris, Jeffrey H; Heitzenroeder, P.; Lumsdaine, Arnold; Maassberg, H.; Marushchenko, N B; Neilson, G. H.; Otte, M; Rummel, Thomas; Spong, Donald A; Tretter, Jorg

    2013-01-01

    The next step in the Wendelstein stellarator line is the large superconducting device Wendelstein 7-X, currently under construction in Greifswald, Germany. Steady-state operation is an intrinsic feature of stellarators, and one key element of the Wendelstein 7-X mission is to demonstrate steady-state operation under plasma conditions relevant for a fusion power plant. Steady-state operation of a fusion device, on the one hand, requires the implementation of special technologies, giving rise to technical challenges during the design, fabrication and assembly of such a device. On the other hand, also the physics development of steady-state operation at high plasma performance poses a challenge and careful preparation. The electron cyclotron resonance heating system, diagnostics, experiment control and data acquisition are prepared for plasma operation lasting 30 min. This requires many new technological approaches for plasma heating and diagnostics as well as new concepts for experiment control and data acquisition.

  7. Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Bosch, H.-S.; Wolf, R. C.; Andreeva, T.; Baldzuhn, J.; Birus, D.; Bluhm, T.; Bräuer, T.; Braune, H.; Bykov, V.; Cardella, A.; Durodié, F.; Endler, M.; Erckmann, V.; Gantenbein, G.; Hartmann, D.; Hathiramani, D.; Heimann, P.; Heinemann, B.; Hennig, C.; Hirsch, M.; Holtum, D.; Jagielski, J.; Jelonnek, J.; Kasparek, W.; Klinger, T.; König, R.; Kornejew, P.; Kroiss, H.; Krom, J. G.; Kühner, G.; Laqua, H.; Laqua, H. P.; Lechte, C.; Lewerentz, M.; Maier, J.; McNeely, P.; Messiaen, A.; Michel, G.; Ongena, J.; Peacock, A.; Pedersen, T. S.; Riedl, R.; Riemann, H.; Rong, P.; Rust, N.; Schacht, J.; Schauer, F.; Schroeder, R.; Schweer, B.; Spring, A.; Stäbler, A.; Thumm, M.; Turkin, Y.; Wegener, L.; Werner, A.; Zhang, D.; Zilker, M.; Akijama, T.; Alzbutas, R.; Ascasibar, E.; Balden, M.; Banduch, M.; Baylard, Ch.; Behr, W.; Beidler, C.; Benndorf, A.; Bergmann, T.; Biedermann, C.; Bieg, B.; Biel, W.; Borchardt, M.; Borowitz, G.; Borsuk, V.; Bozhenkov, S.; Brakel, R.; Brand, H.; Brown, T.; Brucker, B.; Burhenn, R.; Buscher, K.-P.; Caldwell-Nichols, C.; Cappa, A.; Cardella, A.; Carls, A.; Carvalho, P.; Ciupiński, Ł.; Cole, M.; Collienne, J.; Czarnecka, A.; Czymek, G.; Dammertz, G.; Dhard, C. P.; Davydenko, V. I.; Dinklage, A.; Drevlak, M.; Drotziger, S.; Dudek, A.; Dumortier, P.; Dundulis, G.; Eeten, P. v.; Egorov, K.; Estrada, T.; Faugel, H.; Fellinger, J.; Feng, Y.; Fernandes, H.; Fietz, W. H.; Figacz, W.; Fischer, F.; Fontdecaba, J.; Freund, A.; Funaba, T.; Fünfgelder, H.; Galkowski, A.; Gates, D.; Giannone, L.; García Regaña, J. M.; Geiger, J.; Geißler, S.; Greuner, H.; Grahl, M.; Groß, S.; Grosman, A.; Grote, H.; Grulke, O.; Haas, M.; Haiduk, L.; Hartfuß, H.-J.; Harris, J. H.; Haus, D.; Hein, B.; Heitzenroeder, P.; Helander, P.; Heller, R.; Hidalgo, C.; Hildebrandt, D.; Höhnle, H.; Holtz, A.; Holzhauer, E.; Holzthüm, R.; Huber, A.; Hunger, H.; Hurd, F.; Ihrke, M.; Illy, S.; Ivanov, A.; Jablonski, S.; Jaksic, N.; Jakubowski, M.; Jaspers, R.; Jensen, H.; Jenzsch, H.; Kacmarczyk, J.; Kaliatk, T.; Kallmeyer, J.; Kamionka, U.; Karaleviciu, R.; Kern, S.; Keunecke, M.; Kleiber, R.; Knauer, J.; Koch, R.; Kocsis, G.; Könies, A.; Köppen, M.; Koslowski, R.; Koshurinov, J.; Krämer-Flecken, A.; Krampitz, R.; Kravtsov, Y.; Krychowiak, M.; Krzesinski, G.; Ksiazek, I.; Kubkowska, M.; Kus, A.; Langish, S.; Laube, R.; Laux, M.; Lazerson, S.; Lennartz, M.; Li, C.; Lietzow, R.; Lohs, A.; Lorenz, A.; Louche, F.; Lubyako, L.; Lumsdaine, A.; Lyssoivan, A.; Maaßberg, H.; Marek, P.; Martens, C.; Marushchenko, N.; Mayer, M.; Mendelevitch, B.; Mertens, Ph.; Mikkelsen, D.; Mishchenko, A.; Missal, B.; Mizuuchi, T.; Modrow, H.; Mönnich, T.; Morizaki, T.; Murakami, S.; Musielok, F.; Nagel, M.; Naujoks, D.; Neilson, H.; Neubauer, O.; Neuner, U.; Nocentini, R.; Noterdaeme, J.-M.; Nührenberg, C.; Obermayer, S.; Offermanns, G.; Oosterbeek, H.; Otte, M.; Panin, A.; Pap, M.; Paquay, S.; Pasch, E.; Peng, X.; Petrov, S.; Pilopp, D.; Pirsch, H.; Plaum, B.; Pompon, F.; Povilaitis, M.; Preinhaelter, J.; Prinz, O.; Purps, F.; Rajna, T.; Récsei, S.; Reiman, A.; Reiter, D.; Remmel, J.; Renard, S.; Rhode, V.; Riemann, J.; Rimkevicius, S.; Riße, K.; Rodatos, A.; Rodin, I.; Romé, M.; Roscher, H.-J.; Rummel, K.; Rummel, Th.; Runov, A.; Ryc, L.; Sachtleben, J.; Samartsev, A.; Sanchez, M.; Sano, F.; Scarabosio, A.; Schmid, M.; Schmitz, H.; Schmitz, O.; Schneider, M.; Schneider, W.; Scheibl, L.; Scholz, M.; Schröder, G.; Schröder, M.; Schruff, J.; Schumacher, H.; Shikhovtsev, I. V.; Shoji, M.; Siegl, G.; Skodzik, J.; Smirnow, M.; Speth, E.; Spong, D. A.; Stadler, R.; Sulek, Z.; Szabó, V.; Szabolics, T.; Szetefi, T.; Szökefalvi-Nagy, Z.; Tereshchenko, A.; Thomsen, H.; Thumm, M.; Timmermann, D.; Tittes, H.; Toi, K.; Tournianski, M.; Toussaint, U. v.; Tretter, J.; Tulipán, S.; Turba, P.; Uhlemann, R.; Urban, J.; Urbonavicius, E.; Urlings, P.; Valet, S.; Van Eester, D.; Van Schoor, M.; Vervier, M.; Viebke, H.; Vilbrandt, R.; Vrancken, M.; Wauters, T.; Weissgerber, M.; Weiß, E.; Weller, A.; Wendorf, J.; Wenzel, U.; Windisch, T.; Winkler, E.; Winkler, M.; Wolowski, J.; Wolters, J.; Wrochna, G.; Xanthopoulos, P.; Yamada, H.; Yokoyama, M.; Zacharias, D.; Zajac, J.; Zangl, G.; Zarnstorff, M.; Zeplien, H.; Zoletnik, S.; Zuin, M.

    2013-12-01

    The next step in the Wendelstein stellarator line is the large superconducting device Wendelstein 7-X, currently under construction in Greifswald, Germany. Steady-state operation is an intrinsic feature of stellarators, and one key element of the Wendelstein 7-X mission is to demonstrate steady-state operation under plasma conditions relevant for a fusion power plant. Steady-state operation of a fusion device, on the one hand, requires the implementation of special technologies, giving rise to technical challenges during the design, fabrication and assembly of such a device. On the other hand, also the physics development of steady-state operation at high plasma performance poses a challenge and careful preparation. The electron cyclotron resonance heating system, diagnostics, experiment control and data acquisition are prepared for plasma operation lasting 30 min. This requires many new technological approaches for plasma heating and diagnostics as well as new concepts for experiment control and data acquisition.

  8. On the theory of steady-state crystallization with a non-equilibrium mushy layer

    NASA Astrophysics Data System (ADS)

    Alexandrov, D. V.; Alexandrova, I. V.; Ivanov, A. A.

    2016-12-01

    Complete analytical solutions of nonlinear equations describing the steady-state directional crystallization of binary melts with a nonequilibrium mushy layer, where the processes of nucleation and growth of crystals occur, are constructed.

  9. Quasi steady-state aerodynamic model development for race vehicle simulations

    NASA Astrophysics Data System (ADS)

    Mohrfeld-Halterman, J. A.; Uddin, M.

    2016-01-01

    Presented in this paper is a procedure to develop a high fidelity quasi steady-state aerodynamic model for use in race car vehicle dynamic simulations. Developed to fit quasi steady-state wind tunnel data, the aerodynamic model is regressed against three independent variables: front ground clearance, rear ride height, and yaw angle. An initial dual range model is presented and then further refined to reduce the model complexity while maintaining a high level of predictive accuracy. The model complexity reduction decreases the required amount of wind tunnel data thereby reducing wind tunnel testing time and cost. The quasi steady-state aerodynamic model for the pitch moment degree of freedom is systematically developed in this paper. This same procedure can be extended to the other five aerodynamic degrees of freedom to develop a complete six degree of freedom quasi steady-state aerodynamic model for any vehicle.

  10. Decoding of the sound frequency from the steady-state neural activities in rat auditory cortex.

    PubMed

    Shiramatsu, Tomoyo I; Noda, Takahiro; Kanzaki, Ryohei; Takahashi, Hirokazu

    2013-01-01

    In the auditory cortex, onset activities have been extensively investigated as a cortical representation of sound information such as sound frequency. Yet, less attention has been paid to date to steady-state activities following the onset activities. In this study, we used machine learning to investigate whether steady-state activities in the presence of continuous sounds represent the sound frequency. Sparse Logistic Regression (SLR) decoded the sound frequency from band specific power or phase locking value (PLV) of local field potentials (LFP) from the fourth layer of the auditory cortex of anesthetized rats. Consequently, we found that SLR was able to decode the sound frequency from steady-state neural activities as well as onset activities. This result demonstrates that the steady-state activities contain information about the sound such as sound frequency.

  11. Steady-state existence of passive vector fields under the Kraichnan model.

    PubMed

    Arponen, Heikki

    2010-03-01

    The steady-state existence problem for Kraichnan advected passive vector models is considered for isotropic and anisotropic initial values in arbitrary dimension. The models include the magnetohydrodynamic (MHD) equations, linear pressure model, and linearized Navier-Stokes (LNS) equations. In addition to reproducing the previously known results for the MHD model, we obtain the values of the Kraichnan model roughness parameter xi for which the LNS steady state exists.

  12. Steady-state ab initio laser theory for N-level lasers.

    PubMed

    Cerjan, Alexander; Chong, Yidong; Ge, Li; Stone, A Douglas

    2012-01-02

    We show that Steady-state Ab initio Laser Theory (SALT) can be applied to find the stationary multimode lasing properties of an N-level laser. This is achieved by mapping the N-level rate equations to an effective two-level model of the type solved by the SALT algorithm. This mapping yields excellent agreement with more computationally demanding N-level time domain solutions for the steady state.

  13. Bifurcation analysis of steady-state flows in the lid-driven cavity

    NASA Astrophysics Data System (ADS)

    Nuriev, A. N.; Egorov, A. G.; Zaitseva, O. N.

    2016-12-01

    The paper is devoted to the study of the non-uniqueness issues of a steady-state flow in the square lid-driven cavity. A range 0\\lt {Re} \\lt 20000 of Reynolds numbers is considered in which a numerical bifurcation analysis is carried out. The analysis allows us to localize several branches of the steady-state solution and also to investigate their stability.

  14. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models.

    PubMed

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.

  15. Steady-state entanglement of a Bose-Einstein condensate and a nanomechanical resonator

    SciTech Connect

    Asjad, Muhammad; Saif, Farhan

    2011-09-15

    We analyze the steady-state entanglement between Bose-Einstein condensate trapped inside an optical cavity with a moving end mirror (nanomechanical resonator) driven by a single mode laser. The quantized laser field mediates the interaction between the Bose-Einstein condensate and nanomechanical resonator. In particular, we study the influence of temperature on the entanglement of the coupled system, and note that the steady-state entanglement is fragile with respect to temperature.

  16. Steady-state 2. pi. pulses under conditions of passive locking of laser modes

    SciTech Connect

    Komarov, K.P.; Ugozhaev, V.D.

    1984-06-01

    A theoretical study is made of laser mode locking in the regime of self-induced transparency of a passive filter. It is shown that there is a solution in the form of ultrashort steady-state 2..pi.. pulses. The range of stability of this regime and its characteristics are determined. By way of example, estimates are obtained of parameters of a steady-state pulse emitted by an alexandrite laser with a potassium absorption cell.

  17. The effect of oxygen on denitrification during steady-state growth of Paracoccus halodenitrificans

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Betlach, M.; Kritikos, G.

    1984-01-01

    Steady-state cultures of Paracoccus halodenitrificans were grown anaerobically prior to establishing steady states at different concentrations of oxygen. In the absence of oxygen, nitrate-limited cultures produced dinitrogen, and as the oxygen supply increased, these cultures produced nitrous oxide, then nitrite. These changes reflected two phenomena: the inactivation of nitrous oxide reductase by oxygen and the diversion of electrons from nitrite to oxygen.

  18. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models

    PubMed Central

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization. PMID:27243005

  19. Steady-state evoked potentials possibilities for mental-state estimation

    NASA Technical Reports Server (NTRS)

    Junker, Andrew M.; Schnurer, John H.; Ingle, David F.; Downey, Craig W.

    1988-01-01

    The use of the human steady-state evoked potential (SSEP) as a possible measure of mental-state estimation is explored. A method for evoking a visual response to a sum-of-ten sine waves is presented. This approach provides simultaneous multiple frequency measurements of the human EEG to the evoking stimulus in terms of describing functions (gain and phase) and remnant spectra. Ways in which these quantities vary with the addition of performance tasks (manual tracking, grammatical reasoning, and decision making) are presented. Models of the describing function measures can be formulated using systems engineering technology. Relationships between model parameters and performance scores during manual tracking are discussed. Problems of unresponsiveness and lack of repeatability of subject responses are addressed in terms of a need for loop closure of the SSEP. A technique to achieve loop closure using a lock-in amplifier approach is presented. Results of a study designed to test the effectiveness of using feedback to consciously connect humans to their evoked response are presented. Findings indicate that conscious control of EEG is possible. Implications of these results in terms of secondary tasks for mental-state estimation and brain actuated control are addressed.

  20. Eliciting steady-state visual evoked potentials by means of stereoscopic displays

    NASA Astrophysics Data System (ADS)

    Calore, Enrico; Gadia, Davide; Marini, Daniele

    2014-03-01

    Brain-Computer Interfaces (BCIs) provide users communication and control capabilities by analyzing their brain activity. A technique to implement BCIs, used recently also in Virtual Reality (VR) environments, is based on the Steady State Visual Evoked Potentials (SSVEPs) detection. Exploiting the SSVEP response, BCIs could be implemented showing targets flickering at different frequencies and detecting which is gazed by the observer analyzing her/his electroencephalographic (EEG) signals. In this work, we evaluate the use of stereoscopic displays for the presentation of SSVEP eliciting stimuli, comparing their effectiveness between monoscopic and stereoscopic stimuli. Moreover we propose a novel method to elicit SSVEP responses exploiting the stereoscopic displays capability of presenting dichoptic stimuli. We have created an experimental scene to present flickering stimuli on an active stereoscopic display, obtaining reliable control of the targets' frequency independently for the two stereo views. Using an EEG acquisition device, we analyzed the SSVEP responses from a group of subjects. From the preliminary results, we got evidence that stereoscopic displays represent valid devices for the presentation of SSVEP stimuli. Moreover, the use of different flickering frequencies for the two views of a single stimulus proved to elicit non-linear interactions between the stimulation frequencies, clearly visible in the EEG signal. This suggests interesting applications for SSVEP-based BCIs in VR environments able to overcome some limitations imposed by the refresh frequency of standard displays, but also the use of commodity stereoscopic displays to implement binocular rivalry experiments.

  1. Steady state effects in a two-pulse diffusion-weighted sequence

    SciTech Connect

    Zubkov, Mikhail; Stait-Gardner, Timothy; Price, William S.; Stilbs, Peter

    2015-04-21

    In conventional nuclear magnetic resonance (NMR) diffusion measurements a significant amount of experimental time is used up by magnetization recovery, serving to prevent the formation of the steady state, as in the latter case the manifestation of diffusion is modulated by multiple applications of the pulse sequence and conventional diffusion coefficient inference procedures are generally not applicable. Here, an analytical expression for diffusion-related effects in a two-pulse NMR experiment (e.g., pulsed-gradient spin echo) in the steady state mode (with repetition times less than the longitudinal relaxation time of the sample) is derived by employing a Fourier series expansion within the solution of the Bloch-Torrey equations. Considerations are given for the transition conditions between the full relaxation and the steady state experiment description. The diffusion coefficient of a polymer solution (polyethylene glycol) is measured by a two-pulse sequence in the full relaxation mode and for a range of repetition times, approaching the rapid steady state experiment. The precision of the fitting employing the presented steady state solution by far exceeds that of the conventional fitting. Additionally, numerical simulations are performed yielding results strongly supporting the proposed description of the NMR diffusion measurements in the steady state.

  2. Steady state multiplicity of two-step biological conversion systems with general kinetics.

    PubMed

    Volcke, E I P; Sbarciog, M; Noldus, E J L; De Baets, B; Loccufier, M

    2010-12-01

    This study analyses the steady state behaviour of biological conversion systems with general kinetics, in which two consecutive reactions are carried out by two groups of micro-organisms. The model considered is a realistic description of wastewater treatment processes. A step-wise procedure is followed to reveal the mechanisms affecting the occurrence of steady states in terms of the process input variables. It is clearly demonstrated how taking into account inhibition effects by simply including additional inhibition terms to the kinetic expressions, a common practice, influences the model's long term behaviour. The overall steady state behaviour of the model has been summarized in easy-to-interpret operating diagrams, depicting the occurrence of steady states in terms of the reactor dilution rate and the influent substrate concentration, with well-defined boundaries between distinct operating regions. This knowledge is crucial for modelers as steady state multiplicity--in the sense that more than one steady state can be reached depending on the initial conditions--may remain undetected during simulation. The obtained results may also serve for experimental design and for model validation based on experimental findings.

  3. Efficient steady-state solution techniques for variably saturated groundwater flow

    NASA Astrophysics Data System (ADS)

    Farthing, Matthew W.; Kees, Christopher E.; Coffey, Todd S.; Kelley, C. T.; Miller, Cass T.

    We consider the simulation of steady-state variably saturated groundwater flow using Richards' equation (RE). The difficulties associated with solving RE numerically are well known. Most discretization approaches for RE lead to nonlinear systems that are large and difficult to solve. The solution of nonlinear systems for steady-state problems can be particularly challenging, since a good initial guess for the steady-state solution is often hard to obtain, and the resulting linear systems may be poorly scaled. Common approaches like Picard iteration or variations of Newton's method have their advantages but perform poorly with standard globalization techniques under certain conditions. Pseudo-transient continuation has been used in computational fluid dynamics for some time to obtain steady-state solutions for problems in which Newton's method with standard line-search strategies fails. Here, we examine the use of pseudo-transient continuation as well as Newton's method combined with standard globalization techniques for steady-state problems in heterogeneous domains. We investigate the methods' performance with direct and preconditioned Krylov iterative linear solvers. We then make recommendations for robust and efficient approaches to obtain steady-state solutions for RE under a range of conditions.

  4. Analysis of steady-state and dynamical radially-symmetric problems of nonlinear viscoelasticity

    NASA Astrophysics Data System (ADS)

    Stepanov, Alexey B.

    This thesis treats radially symmetric steady states and radially symmetric motions of nonlinearly elastic and viscoelastic plates and shells subject to dead-load and hydrostatic pressures on their boundaries and with the plate subject to centrifugal force. The plates and shells are described by specializations of the exact (nonlinear) equations of three-dimensional continuum mechanics. The treatment in every case is very general and encompasses large classes of constitutive functions (characterizing the material response). We first treat the radially symmetric steady states of plates and shells and the radially symmetric steady rotations of plates. We show that the existence, multiplicity, and qualitative behavior of solutions for problems accounting for the live loads due to hydrostatic pressure and centrifugal force depend critically on the material properties of the bodies, physically reasonable refined descriptions of which are given and examined here with great care, and on the nature of boundary conditions. he treatment here, giving new and sharp results, employs several different mathematical tools, ranging from phase-plane analysis to the mathematically more sophisticated direct methods of the Calculus of Variations, fixed-point theorems, and global continuation methods, each of which has different strengths and weaknesses for handling intrinsic difficulties in the mechanics. We then treat the initial-boundary-value problems for the radially symmetric motions of annular plates and spherical shells that consist of a nonlinearly viscoelastic material of strain-rate type. We discuss a range of physically natural constitutive equations. We first show that when the material is strong in a suitable sense relative to externally applied loads, solutions exist for all time, depend continuously on the data, and consequently are unique. We study the role of the constitutive restrictions and that of the regularity of the data in ensuring the preclusion of a total

  5. Illustrating the Steady-State Condition and the Single-Molecule Kinetic Method with the NMDA Receptor

    ERIC Educational Resources Information Center

    Kosman, Daniel J.

    2009-01-01

    The steady-state is a fundamental aspect of biochemical pathways in cells; indeed, the concept of steady-state is a definition of life itself. In a simple enzyme kinetic scheme, the steady-state condition is easy to define analytically but experimentally often difficult to capture because of its evanescent quality; the initial, constant velocity…

  6. Slow and deep respiration suppresses steady-state sympathetic nerve activity in patients with chronic heart failure: from modeling to clinical application.

    PubMed

    Harada, Daisuke; Asanoi, Hidetsugu; Takagawa, Junya; Ishise, Hisanari; Ueno, Hiroshi; Oda, Yoshitaka; Goso, Yukiko; Joho, Shuji; Inoue, Hiroshi

    2014-10-15

    Influences of slow and deep respiration on steady-state sympathetic nerve activity remain controversial in humans and could vary depending on disease conditions and basal sympathetic nerve activity. To elucidate the respiratory modulation of steady-state sympathetic nerve activity, we modeled the dynamic nature of the relationship between lung inflation and muscle sympathetic nerve activity (MSNA) in 11 heart failure patients with exaggerated sympathetic outflow at rest. An autoregressive exogenous input model was utilized to simulate entire responses of MSNA to variable respiratory patterns. In another 18 patients, we determined the influence of increasing tidal volume and slowing respiratory frequency on MSNA; 10 patients underwent a 15-min device-guided slow respiration and the remaining 8 had no respiratory modification. The model predicted that a 1-liter, step increase of lung volume decreased MSNA dynamically; its nadir (-33 ± 22%) occurred at 2.4 s; and steady-state decrease (-15 ± 5%), at 6 s. Actually, in patients with the device-guided slow and deep respiration, respiratory frequency effectively fell from 16.4 ± 3.9 to 6.7 ± 2.8/min (P < 0.0001) with a concomitant increase in tidal volume from 499 ± 206 to 1,177 ± 497 ml (P < 0.001). Consequently, steady-state MSNA was decreased by 31% (P < 0.005). In patients without respiratory modulation, there were no significant changes in respiratory frequency, tidal volume, and steady-state MSNA. Thus slow and deep respiration suppresses steady-state sympathetic nerve activity in patients with high levels of resting sympathetic tone as in heart failure.

  7. Does the speed of shortening affect steady-state force depression in cat soleus muscle?

    PubMed

    Leonard, T R; Herzog, W

    2005-11-01

    It has been stated repeatedly for the past 50 years that the steady-state force depression following shortening of an activated muscle depends on the speed of shortening. However, these statements were based on results from experiments in which muscles were shortened at different speeds but identical activation levels. Therefore, the force during shortening was changed in accordance with the force-velocity relationship of muscles: that is, increasing speeds of shortening were associated with decreasing forces, and vice versa. Consequently, it is not possible at present to distinguish whether force depression is caused by the changes in speed, as frequently stated, or the associated changes in force, or both. The purpose of this study was to test if force depression depends on the speed of shortening. We hypothesized that force depression was dependent on the force but not the speed of contraction. Our prediction is that the amount of force depression after shortening contractions at different speeds could be similar if the force during contraction was controlled at a similar level. Cat soleus muscles (n=7) were shortened by 9 or 12 mm at speeds of 3, 9, and 27 mm/s, first with a constant activation during shortening (30Hz), then with activation levels that were reduced (<30Hz) for the slow speeds (3 and 9 mm/s) to approximate the shortening forces of the fast speed contractions (27 mm/s). If done properly, force depression could be precisely matched at the three different speeds, indicating that force depression was related to the force during the shortening contraction but not to the speed. However, in order to match force depression, the forces during shortening had to be systematically greater for the slow compared to the fast speeds of shortening, suggesting that force depression also depends on the level of activation, as force depression at constant activation levels can only be matched if the force during shortening, evaluated by the mechanical work, is

  8. GCM simulations of volcanic aerosol forcing. I - Climate changes induced by steady-state perturbations

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Rind, David; Lacis, Andrew; Hansen, James E.; Sato, Makiko; Ruedy, Reto

    1993-01-01

    The response of the climate system to a temporally and spatially constant amount of volcanic particles is simulated using a general circulation model (GCM). The optical depth of the aerosols is chosen so as to produce approximately the same amount of forcing as results from doubling the present CO2 content of the atmosphere and from the boundary conditions associated with the peak of the last ice age. The climate changes produced by long-term volcanic aerosol forcing are obtained by differencing this simulation and one made for the present climate with no volcanic aerosol forcing. The simulations indicate that a significant cooling of the troposphere and surface can occur at times of closely spaced multiple sulfur-rich volcanic explosions that span time scales of decades to centuries. The steady-state climate response to volcanic forcing includes a large expansion of sea ice, especially in the Southern Hemisphere; a resultant large increase in surface and planetary albedo at high latitudes; and sizable changes in the annually and zonally averaged air temperature.

  9. Elasticity of mechanical oscillators in nonequilibrium steady states: Experimental, numerical, and theoretical results

    NASA Astrophysics Data System (ADS)

    Conti, Livia; De Gregorio, Paolo; Bonaldi, Michele; Borrielli, Antonio; Crivellari, Michele; Karapetyan, Gagik; Poli, Charles; Serra, Enrico; Thakur, Ram-Krishna; Rondoni, Lamberto

    2012-06-01

    We study experimentally, numerically, and theoretically the elastic response of mechanical resonators along which the temperature is not uniform, as a consequence of the onset of steady-state thermal gradients. Two experimental setups and designs are employed, both using low-loss materials. In both cases, we monitor the resonance frequencies of specific modes of vibration, as they vary along with variations of temperatures and of temperature differences. In one case, we consider the first longitudinal mode of vibration of an aluminum alloy resonator; in the other case, we consider the antisymmetric torsion modes of a silicon resonator. By defining the average temperature as the volume-weighted mean of the temperatures of the respective elastic sections, we find out that the elastic response of an object depends solely on it, regardless of whether a thermal gradient exists and, up to 10% imbalance, regardless of its magnitude. The numerical model employs a chain of anharmonic oscillators, with first- and second-neighbor interactions and temperature profiles satisfying Fourier's Law to a good degree. Its analysis confirms, for the most part, the experimental findings and it is explained theoretically from a statistical mechanics perspective with a loose notion of local equilibrium.

  10. Steady-state visually evoked potential correlates of human body perception.

    PubMed

    Giabbiconi, Claire-Marie; Jurilj, Verena; Gruber, Thomas; Vocks, Silja

    2016-11-01

    In cognitive neuroscience, interest in the neuronal basis underlying the processing of human bodies is steadily increasing. Based on functional magnetic resonance imaging studies, it is assumed that the processing of pictures of human bodies is anchored in a network of specialized brain areas comprising the extrastriate and the fusiform body area (EBA, FBA). An alternative to examine the dynamics within these networks is electroencephalography, more specifically so-called steady-state visually evoked potentials (SSVEPs). In SSVEP tasks, a visual stimulus is presented repetitively at a predefined flickering rate and typically elicits a continuous oscillatory brain response at this frequency. This brain response is characterized by an excellent signal-to-noise ratio-a major advantage for source reconstructions. The main goal of present study was to demonstrate the feasibility of this method to study human body perception. To that end, we presented pictures of bodies and contrasted the resulting SSVEPs to two control conditions, i.e., non-objects and pictures of everyday objects (chairs). We found specific SSVEPs amplitude differences between bodies and both control conditions. Source reconstructions localized the SSVEP generators to a network of temporal, occipital and parietal areas. Interestingly, only body perception resulted in activity differences in middle temporal and lateral occipitotemporal areas, most likely reflecting the EBA/FBA.

  11. Steady-state heat conduction in multilayered composite plates and shells

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Burton, W. S.

    1991-01-01

    A study is made of a predictor-corrector procedure for the accurate determination of the temperature and heat flux distributions in thick multilayered composite plates and shells. A linear through-the-thickness temperature distribution is used in the predictor phase. The functional dependence of temperature on the thickness coordinate is then calculated a posteriori and used in the corrector phase. Extensive numerical results are presented for linear steady-state heat conduction problems, showing the effects of variation in the geometric and lamination parameters on the accuracy of the thermal response predictions of the predictor-corrector approach. Both antisymmetrically laminated anisotropic plates and multilayered orthotropic cylinders are considered. The solutions are assumed to be periodic in the surface coordinates. For each problem the standard of comparison is taken to be the analytic three-dimensional solution based on treating each layer as a homogeneous anisotropic medium. The potential of the predictor-corrector approach for predicting the thermal response of multilayered plates and shells with complicated geometry is discussed.

  12. Steady state, erosional continuity, and the topography of landscapes developed in layered rocks

    NASA Astrophysics Data System (ADS)

    Perne, Matija; Covington, Matthew D.; Thaler, Evan A.; Myre, Joseph M.

    2017-01-01

    The concept of topographic steady state has substantially informed our understanding of the relationships between landscapes, tectonics, climate, and lithology. In topographic steady state, erosion rates are equal everywhere, and steepness adjusts to enable equal erosion rates in rocks of different strengths. This conceptual model makes an implicit assumption of vertical contacts between different rock types. Here we hypothesize that landscapes in layered rocks will be driven toward a state of erosional continuity, where retreat rates on either side of a contact are equal in a direction parallel to the contact rather than in the vertical direction. For vertical contacts, erosional continuity is the same as topographic steady state, whereas for horizontal contacts it is equivalent to equal rates of horizontal retreat on either side of a rock contact. Using analytical solutions and numerical simulations, we show that erosional continuity predicts the form of flux steady-state landscapes that develop in simulations with horizontally layered rocks. For stream power erosion, the nature of continuity steady state depends on the exponent, n, in the erosion model. For n = 1, the landscape cannot maintain continuity. For cases where n ≠ 1, continuity is maintained, and steepness is a function of erodibility that is predicted by the theory. The landscape in continuity steady state can be quite different from that predicted by topographic steady state. For n < 1 continuity predicts that channels incising subhorizontal layers will be steeper in the weaker rock layers. For subhorizontal layered rocks with different erodibilities, continuity also predicts larger slope contrasts than in topographic steady state. Therefore, the relationship between steepness and erodibility within a sequence of layered rocks is a function of contact dip. For the subhorizontal limit, the history of layers exposed at base level also influences the steepness-erodibility relationship. If uplift rate

  13. Theoretical and experimental steady-state rotordynamics of an adaptive Air Film Damper with Metal Rubber

    NASA Astrophysics Data System (ADS)

    Yanhong, Ma; Zhichao, Liang; Hong, Wang; Dayi, Zhang; Jie, Hong

    2013-10-01

    hydrodynamic air film, the maximum stiffness of the MR can be captured. Compared to the steady-state properties of the rotor system without an AFD, the eccentricity of the journal ɛj, amplitude ratio A, transmitted force F, and the force transmissibility T all decrease significantly in the rotor system of an AFD by providing damping and additional stiffness. It is validated that greater stiffness and damping of MR benefits the steady-state properties of the rotor system. Based on the experimental investigation, the mechanism and the vibration track process of the floating ring are validated. During the whole operational process of the AFD, the phase of the floating ring always lags behind the journal, indicating that a damping effect is provided to the rotor system. The frequency response peak of the rotor system with an AFD is smaller than the one without an AFD, and the critical speed of the AFD is elevated; these serve to verify that additional stiffness was provided to the rotor. Moreover, a smaller initial air film clearance can generate a larger air film force, which provides additional stiffness to the rotor system and has a better effect on vibration control.

  14. An Efficient Steady-State Analysis Method for Large Boolean Networks with High Maximum Node Connectivity

    PubMed Central

    Hong, Changki; Hwang, Jeewon; Cho, Kwang-Hyun; Shin, Insik

    2015-01-01

    Boolean networks have been widely used to model biological processes lacking detailed kinetic information. Despite their simplicity, Boolean network dynamics can still capture some important features of biological systems such as stable cell phenotypes represented by steady states. For small models, steady states can be determined through exhaustive enumeration of all state transitions. As the number of nodes increases, however, the state space grows exponentially thus making it difficult to find steady states. Over the last several decades, many studies have addressed how to handle such a state space explosion. Recently, increasing attention has been paid to a satisfiability solving algorithm due to its potential scalability to handle large networks. Meanwhile, there still lies a problem in the case of large models with high maximum node connectivity where the satisfiability solving algorithm is known to be computationally intractable. To address the problem, this paper presents a new partitioning-based method that breaks down a given network into smaller subnetworks. Steady states of each subnetworks are identified by independently applying the satisfiability solving algorithm. Then, they are combined to construct the steady states of the overall network. To efficiently apply the satisfiability solving algorithm to each subnetwork, it is crucial to find the best partition of the network. In this paper, we propose a method that divides each subnetwork to be smallest in size and lowest in maximum node connectivity. This minimizes the total cost of finding all steady states in entire subnetworks. The proposed algorithm is compared with others for steady states identification through a number of simulations on both published small models and randomly generated large models with differing maximum node connectivities. The simulation results show that our method can scale up to several hundreds of nodes even for Boolean networks with high maximum node connectivity. The

  15. An Efficient Steady-State Analysis Method for Large Boolean Networks with High Maximum Node Connectivity.

    PubMed

    Hong, Changki; Hwang, Jeewon; Cho, Kwang-Hyun; Shin, Insik

    2015-01-01

    Boolean networks have been widely used to model biological processes lacking detailed kinetic information. Despite their simplicity, Boolean network dynamics can still capture some important features of biological systems such as stable cell phenotypes represented by steady states. For small models, steady states can be determined through exhaustive enumeration of all state transitions. As the number of nodes increases, however, the state space grows exponentially thus making it difficult to find steady states. Over the last several decades, many studies have addressed how to handle such a state space explosion. Recently, increasing attention has been paid to a satisfiability solving algorithm due to its potential scalability to handle large networks. Meanwhile, there still lies a problem in the case of large models with high maximum node connectivity where the satisfiability solving algorithm is known to be computationally intractable. To address the problem, this paper presents a new partitioning-based method that breaks down a given network into smaller subnetworks. Steady states of each subnetworks are identified by independently applying the satisfiability solving algorithm. Then, they are combined to construct the steady states of the overall network. To efficiently apply the satisfiability solving algorithm to each subnetwork, it is crucial to find the best partition of the network. In this paper, we propose a method that divides each subnetwork to be smallest in size and lowest in maximum node connectivity. This minimizes the total cost of finding all steady states in entire subnetworks. The proposed algorithm is compared with others for steady states identification through a number of simulations on both published small models and randomly generated large models with differing maximum node connectivities. The simulation results show that our method can scale up to several hundreds of nodes even for Boolean networks with high maximum node connectivity. The

  16. Steady state analysis of Boolean molecular network models via model reduction and computational algebra

    PubMed Central

    2014-01-01

    Background A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. Results This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. Conclusions The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate

  17. Cell kinetics of GM-CFC in the steady state

    SciTech Connect

    Hagan, M.P.; MacVittie, T.J.; Dodgen, D.P.

    1985-07-01

    The kinetics of cell turnover for myeloid/monocyte cells that form colonies in agar (GM-CFC) were measured through the progressive increase in their sensitivity to 313-nm light during a period of cell labeling with BrdCyd. Two components of cell killing with distinctly separate labeling kinetics revealed both the presence of two generations within the GM-CFC compartment and the properties of the kinetics of the precursors of the GM-CFC. These precursors of the GM-CFC were not assayable in a routine GM-CFC assay when pregnant mouse uterus extract and mouse L-cell-conditioned medium were used to stimulate colony formation but were revealed by the labeling kinetics of the assayable GM-CFC. Further, these precursor cells appeared to enter the assayable GM-CFC population from a noncycling state. This was evidenced by the failure of the majority of these cells to incorporate BrdCyd during five days of infusion. The half-time for cell turnover within this precursor compartment was measured to be approximately 5.5 days. Further, these normally noncycling cells proliferated rapidly in response to endotoxin. High-proliferative-potential colony-forming cells (HPP-CFC) were tested as a candidate for this precursor population. The results of the determination of the kinetics for these cells showed that the HPP-CFC exist largely in a Go state, existing at an average rate of once every four days. The slow turnover time for these cells and their response to endotoxin challenge are consistent with a close relationship between the HPP-CFC and the Go pool of cells that is the direct precursor of the GM-CFC.

  18. Macrosegregation during steady-state arrayed growth of dendrites in directionally solidified Pb-Sn alloys

    NASA Astrophysics Data System (ADS)

    Tewari, S. N.; Shah, Rajesh

    1992-12-01

    Macrosegregation along the length of the directionally solidified samples is produced when Pb-Sn alloys (10 to 58 wt pct Sn) are directionally solidified in a positive thermal gradient (melt on top, solid below, and gravity pointing down) with steady-state dendritic arrayed morphology (the length of the mushy zone, much smaller than the initial length of the melt column, re- maining nearly constant during growth). The extent of the macrosegregation increases with increasing tin content, becomes maximum for 33.3 wt pct Sn, and decreases with further in- crease in tin content. The intensity of the interdendritic thermosolutal convection responsible for the longitudinal macrosegregation can be represented by the effective partition coefficient ( k ɛ), an empirical parameter obtained from the dependence of the longitudinal macrosegregation on fraction distance solidified. The extent of the macrosegregation appears to be related to a parameter, {λ{1/2}ƒ E ( C E - C t )}, where λ1, is the primary dendrite spacing, f E is the volume fraction of the interdendritic melt, and C E and C t , are the eutectic composition and the melt composition ahead of the dendrite tips, respectively.

  19. Understanding the approximations of mode-coupling theory for sheared steady states of colloids

    NASA Astrophysics Data System (ADS)

    Nandi, Saroj Kumar

    2015-10-01

    The lack of clarity of various mode-coupling theory (MCT) approximations, even in equilibrium, makes it hard to understand the relation between various MCT approaches for sheared steady states as well as their regime of validity. Here we try to understand these approximations indirectly by deriving the MCT equations through two different approaches for a colloidal system under shear, first through a microscopic approach, as suggested by Zaccarelli et al., and second through fluctuating hydrodynamics, where the approximations used in the derivation are quite clear. The qualitative similarity of our theory with a number of existing theories show that linear response theory might play a role in various approximations employed in deriving those theories and one needs to be careful while applying them for systems arbitrarily far away from equilibrium, such as a granular system or when shear is very strong. As a by-product of our calculation, we obtain the extension of the Yvon-Born-Green (YBG) equation for a sheared system and under the assumption of random-phase approximation, the YBG equation yields the distorted structure factor that was earlier obtained through different approaches.

  20. Single-molecule measurement of the effective temperature in non-equilibrium steady states

    NASA Astrophysics Data System (ADS)

    Dieterich, E.; Camunas-Soler, J.; Ribezzi-Crivellari, M.; Seifert, U.; Ritort, F.

    2015-11-01

    Temperature is a well-defined quantity for systems in equilibrium. For glassy systems, it has been extended to the non-equilibrium regime, showing up as an effective quantity in a modified version of the fluctuation-dissipation theorem. However, experimental evidence supporting this definition remains scarce. Here, we present the first direct experimental demonstration of the effective temperature by measuring correlations and responses in single molecules in non-equilibrium steady states generated under external random forces. We combine experiment, analytical theory and simulations for systems with different levels of complexity, ranging from a single bead in an optical trap to two-state and multiple-state DNA hairpins. From these data, we extract a unifying picture for the existence of an effective temperature based on the relative order of various timescales characterizing intrinsic relaxation and external driving. Our study thus introduces driven small systems as a fertile ground to address fundamental concepts in statistical physics, condensed-matter physics and biophysics.

  1. Modeling of steady-state convective cooling of cylindrical Li-ion cells

    NASA Astrophysics Data System (ADS)

    Shah, K.; Drake, S. J.; Wetz, D. A.; Ostanek, J. K.; Miller, S. P.; Heinzel, J. M.; Jain, A.

    2014-07-01

    While Lithium-ion batteries have the potential to serve as an excellent means of energy storage, they suffer from several operational safety concerns. Temperature excursion beyond a specified limit for a Lithium-ion battery triggers a sequence of decomposition and release, which can preclude thermal runaway events and catastrophic failure. To optimize liquid or air-based convective cooling approaches, it is important to accurately model the thermal response of Lithium-ion cells to convective cooling, particularly in high-rate discharge applications where significant heat generation is expected. This paper presents closed-form analytical solutions for the steady-state temperature profile in a convectively cooled cylindrical Lithium-ion cell. These models account for the strongly anisotropic thermal conductivity of cylindrical Lithium-ion batteries due to the spirally wound electrode assembly. Model results are in excellent agreement with experimentally measured temperature rise in a thermal test cell. Results indicate that improvements in radial thermal conductivity and axial convective heat transfer coefficient may result in significant peak temperature reduction. Battery sizing optimization using the analytical model is discussed, indicating the dependence of thermal performance of the cell on its size and aspect ratio. Results presented in this paper may aid in accurate thermal design and thermal management of Lithium-ion batteries.

  2. Entropy and Nonlinear Nonequilibrium Thermodynamic Relation for Heat Conducting Steady States

    NASA Astrophysics Data System (ADS)

    Komatsu, Teruhisa S.; Nakagawa, Naoko; Sasa, Shin-Ichi; Tasaki, Hal

    2011-01-01

    Among various possible routes to extend entropy and thermodynamics to nonequilibrium steady states (NESS), we take the one which is guided by operational thermodynamics and the Clausius relation. In our previous study, we derived the extended Clausius relation for NESS, where the heat in the original relation is replaced by its "renormalized" counterpart called the excess heat, and the Gibbs-Shannon expression for the entropy by a new symmetrized Gibbs-Shannon-like expression. Here we concentrate on Markov processes describing heat conducting systems, and develop a new method for deriving thermodynamic relations. We first present a new simpler derivation of the extended Clausius relation, and clarify its close relation with the linear response theory. We then derive a new improved extended Clausius relation with a "nonlinear nonequilibrium" contribution which is written as a correlation between work and heat. We argue that the "nonlinear nonequilibrium" contribution is unavoidable, and is determined uniquely once we accept the (very natural) definition of the excess heat. Moreover it turns out that to operationally determine the difference in the nonequilibrium entropy to the second order in the temperature difference, one may only use the previous Clausius relation without a nonlinear term or must use the new relation, depending on the operation (i.e., the path in the parameter space). This peculiar "twist" may be a clue to a better understanding of thermodynamics and statistical mechanics of NESS.

  3. A lower limb exoskeleton control system based on steady state visual evoked potentials

    NASA Astrophysics Data System (ADS)

    Kwak, No-Sang; Müller, Klaus-Robert; Lee, Seong-Whan

    2015-10-01

    Objective. We have developed an asynchronous brain-machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked potentials (SSVEPs). Approach. By decoding electroencephalography signals in real-time, users are able to walk forward, turn right, turn left, sit, and stand while wearing the exoskeleton. SSVEP stimulation is implemented with a visual stimulation unit, consisting of five light emitting diodes fixed to the exoskeleton. A canonical correlation analysis (CCA) method for the extraction of frequency information associated with the SSVEP was used in combination with k-nearest neighbors. Main results. Overall, 11 healthy subjects participated in the experiment to evaluate performance. To achieve the best classification, CCA was first calibrated in an offline experiment. In the subsequent online experiment, our results exhibit accuracies of 91.3 ± 5.73%, a response time of 3.28 ± 1.82 s, an information transfer rate of 32.9 ± 9.13 bits/min, and a completion time of 1100 ± 154.92 s for the experimental parcour studied. Significance. The ability to achieve such high quality BMI control indicates that an SSVEP-based lower limb exoskeleton for gait assistance is becoming feasible.

  4. Neurophysiological assessment of perceived image quality using steady-state visual evoked potentials

    NASA Astrophysics Data System (ADS)

    Bosse, Sebastian; Acqualagna, Laura; Porbadnigk, Anne K.; Curio, Gabriel; Müller, Klaus-Robert; Blankertz, Benjamin; Wiegand, Thomas

    2015-09-01

    An approach to the neural measurement of perceived image quality using electroencephalography (EEG) is presented. 6 different images were tested on 6 different distortion levels. The distortions were introduced by a hybrid video encoder. The presented study consists of two parts: In a first part, subjects were asked to evaluate the quality of the test stimuli behaviorally during a conventional psychophysical test using a degradation category rating procedure. In a second part, subjects were presented undistorted and distorted texture images in a periodically alternating fashion at a fixed frequency. This alternating presentation elicits so called steady-state visual evoked potentials (SSVEP) as a brain response that can be measured on the scalp. The amplitude of modulations in the brain signals is significantly and strongly negatively correlated with the magnitude of visual impairment reported by the subjects. This neurophysiological approach to image quality assessment may potentially lead to a more objective evaluation, as behavioral approaches suffer from drawbacks such as biases, inter-subject variances and limitations to test duration.

  5. A novel multiple frequency stimulation method for steady state VEP based brain computer interfaces.

    PubMed

    Srihari Mukesh, T M; Jaganathan, V; Reddy, M Ramasubba

    2006-01-01

    The objective is to increase the number of selections in brain computer interfaces (BCI) by recording and analyzing the steady state visual evoked potential response to dual stimulation. A BCI translates the VEP signals into user commands. The frequency band from which stimulation frequency can be selected is limited for SSVEP. This paper discusses a method to increase the number of commands by using a suitable combination of frequencies for stimulation. A biopotential amplifier based on the driven right leg circuit (DRL) is used to record 60 s epochs of the SSVEP (O(z)-A(1)) on 15 subjects using simultaneous overlapped stimulation (6, 7, 12, 13 and 14 Hzs and corresponding half frequencies). The power spectrum of each recording is obtained by frequency domain averaging of 400 ms SSVEPs and the spectral peaks were normalized. The spectral peaks of the combination frequencies of stimulation are predominant compared to individual stimulating frequencies. This method increases the number of selections by using a limited number of stimulating frequencies in BCI. For example, six selections are possible by generating only three frequencies.

  6. Caffeine Affects Time to Exhaustion and Substrate Oxidation during Cycling at Maximal Lactate Steady State.

    PubMed

    Cruz, Rogério Santos de Oliveira; de Aguiar, Rafael Alves; Turnes, Tiago; Guglielmo, Luiz Guilherme Antonacci; Beneke, Ralph; Caputo, Fabrizio

    2015-06-30

    This study analyzed the effects of caffeine intake on whole-body substrate metabolism and exercise tolerance during cycling by using a more individualized intensity for merging the subjects into homogeneous metabolic responses (the workload associated with the maximal lactate steady state-MLSS). MLSS was firstly determined in eight active males (25 ± 4 years, 176 ± 7 cm, 77 ± 11 kg) using from two to four constant-load tests of 30 min. On two following occasions, participants performed a test until exhaustion at the MLSS workload 1 h after taking either 6 mg/kg of body mass of caffeine or placebo (dextrose), in a randomized, double-blinded manner. Respiratory exchange ratio was calculated from gas exchange measurements. There was an improvement of 22.7% in time to exhaustion at MLSS workload following caffeine ingestion (95% confidence limits of ±10.3%, p = 0.002), which was accompanied by decrease in respiratory exchange ratio (p = 0.001). These results reinforce findings indicating that sparing of the endogenous carbohydrate stores could be one of the several physiological effects of caffeine during submaximal performance around 1 h.

  7. An RBCC protein implicated in maintenance of steady-state neuregulin receptor levels.

    PubMed

    Diamonti, A John; Guy, Pamela M; Ivanof, Caryn; Wong, Karen; Sweeney, Colleen; Carraway, Kermit L

    2002-03-05

    Despite numerous recent advances in our understanding of the molecular mechanisms underlying receptor tyrosine kinase down-regulation and degradation in response to growth factor binding, relatively little is known about ligand-independent receptor tyrosine kinase degradation mechanisms. In a screen for proteins that might regulate the trafficking or localization of the ErbB3 receptor, we have identified a tripartite or RBCC (RING, B-box, coiled-coil) protein that interacts with the cytoplasmic tail of the receptor in an activation-independent manner. We have named this protein Nrdp1 for neuregulin receptor degradation protein-1. Northern blotting reveals ubiquitous distribution of Nrdp1 in human adult tissues, but message is particularly prominent in heart, brain, and skeletal muscle. Nrdp1 interacts specifically with the neuregulin receptors ErbB3 and ErbB4 and not with epidermal growth factor receptor or ErbB2. When coexpressed in COS7 cells, Nrdp1 mediates the redistribution of ErbB3 from the cell surface to intracellular compartments and induces the suppression of ErbB3 and ErbB4 receptor levels but not epidermal growth factor receptor or ErbB2 levels. A putative dominant-negative form of Nrdp1 potentiates neuregulin-stimulated Erk1/2 activity in transfected MCF7 breast tumor cells. Our observations suggest that Nrdp1 may act to regulate steady-state cell surface neuregulin receptor levels, thereby influencing the efficiency of neuregulin signaling.

  8. An RBCC protein implicated in maintenance of steady-state neuregulin receptor levels

    PubMed Central

    Diamonti, A. John; Guy, Pamela M.; Ivanof, Caryn; Wong, Karen; Sweeney, Colleen; Carraway, Kermit L.

    2002-01-01

    Despite numerous recent advances in our understanding of the molecular mechanisms underlying receptor tyrosine kinase down-regulation and degradation in response to growth factor binding, relatively little is known about ligand-independent receptor tyrosine kinase degradation mechanisms. In a screen for proteins that might regulate the trafficking or localization of the ErbB3 receptor, we have identified a tripartite or RBCC (RING, B-box, coiled–coil) protein that interacts with the cytoplasmic tail of the receptor in an activation-independent manner. We have named this protein Nrdp1 for neuregulin receptor degradation protein-1. Northern blotting reveals ubiquitous distribution of Nrdp1 in human adult tissues, but message is particularly prominent in heart, brain, and skeletal muscle. Nrdp1 interacts specifically with the neuregulin receptors ErbB3 and ErbB4 and not with epidermal growth factor receptor or ErbB2. When coexpressed in COS7 cells, Nrdp1 mediates the redistribution of ErbB3 from the cell surface to intracellular compartments and induces the suppression of ErbB3 and ErbB4 receptor levels but not epidermal growth factor receptor or ErbB2 levels. A putative dominant-negative form of Nrdp1 potentiates neuregulin-stimulated Erk1/2 activity in transfected MCF7 breast tumor cells. Our observations suggest that Nrdp1 may act to regulate steady-state cell surface neuregulin receptor levels, thereby influencing the efficiency of neuregulin signaling. PMID:11867753

  9. Understanding the approximations of mode-coupling theory for sheared steady states of colloids.

    PubMed

    Nandi, Saroj Kumar

    2015-10-01

    The lack of clarity of various mode-coupling theory (MCT) approximations, even in equilibrium, makes it hard to understand the relation between various MCT approaches for sheared steady states as well as their regime of validity. Here we try to understand these approximations indirectly by deriving the MCT equations through two different approaches for a colloidal system under shear, first through a microscopic approach, as suggested by Zaccarelli et al., and second through fluctuating hydrodynamics, where the approximations used in the derivation are quite clear. The qualitative similarity of our theory with a number of existing theories show that linear response theory might play a role in various approximations employed in deriving those theories and one needs to be careful while applying them for systems arbitrarily far away from equilibrium, such as a granular system or when shear is very strong. As a by-product of our calculation, we obtain the extension of the Yvon-Born-Green (YBG) equation for a sheared system and under the assumption of random-phase approximation, the YBG equation yields the distorted structure factor that was earlier obtained through different approaches.

  10. Comparison between a steady-state and a transient flow model and related radionuclide concentration predictions

    NASA Astrophysics Data System (ADS)

    Gedeon, M.; Mallants, D.

    2012-04-01

    Radionuclide concentration predictions in aquifers play an important role in estimating impact of planned surface disposal of radioactive waste in Belgium, developed by the Belgian Agency for Radioactive Waste and Enriched Fissile Materials (ONDRAF), who also coordinates and leads the corresponding research. Long-term concentration predictions are based on a steady-state flow solution obtained by a cascade of multi-scale models from the catchment to the detailed (site) scale performed in MODFLOW. To test the concept and accuracy of the groundwater flow solution and conservativeness of the concentration predictions obtained therewith, a transient model, considered more realistic, was set up in a sub-domain of the intermediate scale steady-state model. Besides the modelling domain reduction, the transient model was and exact copy of the steady-state model, having the infiltration as the only time-varying parameter. The transient model was run for a twenty-year period, whereas the results were compared to the steady-state results based on infiltration value and observations averaged over the same period. The comparison of the steady-state and transient flow solutions includes the analyses of the goodness of fit, the parameter sensitivities, relative importance of the individual observations and one-percent sensitivity maps. The steady-state and transient flow solutions were subsequently translated into a site-scale transport model, used to predict the radionuclide concentrations in a hypothetical well in the aquifers. The translation of the flow solutions between the models of distinct scales was performed using the Local grid refinement method available in MODFLOW. In the site-scale models, MT3DMS transport simulations were performed to obtain respective concentration predictions in a hypothetical well, situated at 70 meters from the disposal tumuli. The equilibrium concentrations based on a constant source flux achieved using a steady-state solution were then

  11. Epoxide hydrolase-catalyzed enantioselective conversion of trans-stilbene oxide: Insights into the reaction mechanism from steady-state and pre-steady-state enzyme kinetics.

    PubMed

    Archelas, Alain; Zhao, Wei; Faure, Bruno; Iacazio, Gilles; Kotik, Michael

    2016-02-01

    A detailed kinetic study based on steady-state and pre-steady-state measurements is described for the highly enantioselective epoxide hydrolase Kau2. The enzyme, which is a member of the α/β-hydrolase fold family, preferentially reacts with the (S,S)-enantiomer of trans-stilbene oxide (TSO) with an E value of ∼200. The enzyme follows a classical two-step catalytic mechanism with formation of an alkyl-enzyme intermediate in the first step and hydrolysis of this intermediate in a rate-limiting second step. Tryptophan fluorescence quenching during TSO conversion appears to correlate with alkylation of the enzyme. The steady-state data are consistent with (S,S) and (R,R)-TSO being two competing substrates with marked differences in k(cat) and K(M) values. The high enantiopreference of the epoxide hydrolase is best explained by pronounced differences in the second-order alkylation rate constant (k2/K(S)) and the alkyl-enzyme hydrolysis rate k3 between the (S,S) and (R,R)-enantiomers of TSO. Our data suggest that during conversion of (S,S)-TSO the two active site tyrosines, Tyr(157) and Tyr(259), serve mainly as electrophilic catalysts in the alkylation half-reaction, polarizing the oxirane oxygen of the bound epoxide through hydrogen bond formation, however, without fully donating their hydrogens to the forming alkyl-enzyme intermediate.

  12. Synchronous machine steady-state stability analysis using an artificial neural network

    SciTech Connect

    Chen, C.R.; Hsu, Y.Y. . Dept. of Electrical Engineering)

    1991-03-01

    A new type of artificial neural network is proposed for the steady-state stability analysis of a synchronous generator. In the developed artificial neutral network, those system variables which play an important role in steady-state stability such as generator outputs and power system stabilizer parameters are employed as the inputs. The output of the neural net provides the information on steady-state stability. Once the connection weights of the neural network have been learned using a set of training data derived off-line, the neural net can be applied to analyze the steady-state stability of the system time. To demonstrate the effectiveness of the proposed neural net, steady-state stability analysis is performed on a synchronous generator connected to a large power system. It is found that the proposed neural net requires much less training time than the multilayer feedforward network with backpropagation-momentum learning algorithm. It is also concluded from the test results that correct stability assessment can be achieved by the neural network.

  13. Perception of steady-state vowels and vowelless syllables by adults and children

    NASA Astrophysics Data System (ADS)

    Nittrouer, Susan

    2005-04-01

    Vowels can be produced as long, isolated, and steady-state, but that is not how they are found in natural speech. Instead natural speech consists of almost continuously changing (i.e., dynamic) acoustic forms from which mature listeners recover underlying phonetic form. Some theories suggest that children need steady-state information to recognize vowels (and so learn vowel systems), even though that information is sparse in natural speech. The current study examined whether young children can recover vowel targets from dynamic forms, or whether they need steady-state information. Vowel recognition was measured for adults and children (3, 5, and 7 years) for natural productions of /dæd/, /dUd/ /æ/, /U/ edited to make six stimulus sets: three dynamic (whole syllables; syllables with middle 50-percent replaced by cough; syllables with all but the first and last three pitch periods replaced by cough), and three steady-state (natural, isolated vowels; reiterated pitch periods from those vowels; reiterated pitch periods from the syllables). Adults scored nearly perfectly on all but first/last three pitch period stimuli. Children performed nearly perfectly only when the entire syllable was heard, and performed similarly (near 80%) for all other stimuli. Consequently, children need dynamic forms to perceive vowels; steady-state forms are not preferred.

  14. A stability analysis of the power-law steady state of marine size spectra.

    PubMed

    Datta, Samik; Delius, Gustav W; Law, Richard; Plank, Michael J

    2011-10-01

    This paper investigates the stability of the power-law steady state often observed in marine ecosystems. Three dynamical systems are considered, describing the abundance of organisms as a function of body mass and time: a "jump-growth" equation, a first order approximation which is the widely used McKendrick-von Foerster equation, and a second order approximation which is the McKendrick-von Foerster equation with a diffusion term. All of these yield a power-law steady state. We derive, for the first time, the eigenvalue spectrum for the linearised evolution operator, under certain constraints on the parameters. This provides new knowledge of the stability properties of the power-law steady state. It is shown analytically that the steady state of the McKendrick-von Foerster equation without the diffusion term is always unstable. Furthermore, numerical plots show that eigenvalue spectra of the McKendrick-von Foerster equation with diffusion give a good approximation to those of the jump-growth equation. The steady state is more likely to be stable with a low preferred predator:prey mass ratio, a large diet breadth and a high feeding efficiency. The effects of demographic stochasticity are also investigated and it is concluded that these are likely to be small in real systems.

  15. Steady-state analysis of activated sludge processes with a settler model including sludge compression.

    PubMed

    Diehl, S; Zambrano, J; Carlsson, B

    2016-01-01

    A reduced model of a completely stirred-tank bioreactor coupled to a settling tank with recycle is analyzed in its steady states. In the reactor, the concentrations of one dominant particulate biomass and one soluble substrate component are modelled. While the biomass decay rate is assumed to be constant, growth kinetics can depend on both substrate and biomass concentrations, and optionally model substrate inhibition. Compressive and hindered settling phenomena are included using the Bürger-Diehl settler model, which consists of a partial differential equation. Steady-state solutions of this partial differential equation are obtained from an ordinary differential equation, making steady-state analysis of the entire plant difficult. A key result showing that the ordinary differential equation can be replaced with an approximate algebraic equation simplifies model analysis. This algebraic equation takes the location of the sludge-blanket during normal operation into account, allowing for the limiting flux capacity caused by compressive settling to easily be included in the steady-state mass balance equations for the entire plant system. This novel approach grants the possibility of more realistic solutions than other previously published reduced models, comprised of yet simpler settler assumptions. The steady-state concentrations, solids residence time, and the wastage flow ratio are functions of the recycle ratio. Solutions are shown for various growth kinetics; with different values of biomass decay rate, influent volumetric flow, and substrate concentration.

  16. Analytical solution of steady-state equations for chemical reaction networks with bilinear rate laws.

    PubMed

    Halász, Adám M; Lai, Hong-Jian; McCabe Pryor, Meghan; Radhakrishnan, Krishnan; Edwards, Jeremy S

    2013-01-01

    True steady states are a rare occurrence in living organisms, yet their knowledge is essential for quasi-steady-state approximations, multistability analysis, and other important tools in the investigation of chemical reaction networks (CRN) used to describe molecular processes on the cellular level. Here, we present an approach that can provide closed form steady-state solutions to complex systems, resulting from CRN with binary reactions and mass-action rate laws. We map the nonlinear algebraic problem of finding steady states onto a linear problem in a higher-dimensional space. We show that the linearized version of the steady-state equations obeys the linear conservation laws of the original CRN. We identify two classes of problems for which complete, minimally parameterized solutions may be obtained using only the machinery of linear systems and a judicious choice of the variables used as free parameters. We exemplify our method, providing explicit formulae, on CRN describing signal initiation of two important types of RTK receptor-ligand systems, VEGF and EGF-ErbB1.

  17. Analytical Solution of Steady State Equations for Chemical Reaction Networks with Bilinear Rate Laws

    PubMed Central

    Halász, Ádám M.; Lai, Hong-Jian; McCabe, Meghan M.; Radhakrishnan, Krishnan; Edwards, Jeremy S.

    2014-01-01

    True steady states are a rare occurrence in living organisms, yet their knowledge is essential for quasi-steady state approximations, multistability analysis, and other important tools in the investigation of chemical reaction networks (CRN) used to describe molecular processes on the cellular level. Here we present an approach that can provide closed form steady-state solutions to complex systems, resulting from CRN with binary reactions and mass-action rate laws. We map the nonlinear algebraic problem of finding steady states onto a linear problem in a higher dimensional space. We show that the linearized version of the steady state equations obeys the linear conservation laws of the original CRN. We identify two classes of problems for which complete, minimally parameterized solutions may be obtained using only the machinery of linear systems and a judicious choice of the variables used as free parameters. We exemplify our method, providing explicit formulae, on CRN describing signal initiation of two important types of RTK receptor-ligand systems, VEGF and EGF-ErbB1. PMID:24334389

  18. Effect of steady-state faldaprevir on the pharmacokinetics of steady-state methadone and buprenorphine-naloxone in subjects receiving stable addiction management therapy.

    PubMed

    Joseph, David; Schobelock, Michael J; Riesenberg, Robert R; Vince, Bradley D; Webster, Lynn R; Adeniji, Abidemi; Elgadi, Mabrouk; Huang, Fenglei

    2015-01-01

    The effects of steady-state faldaprevir on the safety, pharmacokinetics, and pharmacodynamics of steady-state methadone and buprenorphine-naloxone were assessed in 34 healthy male and female subjects receiving stable addiction management therapy. Subjects continued receiving a stable oral dose of either methadone (up to a maximum dose of 180 mg per day) or buprenorphine-naloxone (up to a maximum dose of 24 mg-6 mg per day) and also received oral faldaprevir (240 mg) once daily (QD) for 8 days following a 480-mg loading dose. Serial blood samples were taken for pharmacokinetic analysis. The pharmacodynamics of the opioid maintenance regimens were evaluated by the objective and subjective opioid withdrawal scales. Coadministration of faldaprevir with methadone or buprenorphine-naloxone resulted in geometric mean ratios for the steady-state area under the concentration-time curve from 0 to 24 h (AUC(0-24,ss)), the steady-state maximum concentration of the drug in plasma (C(max,ss)), and the steady-state concentration of the drug in plasma at 24 h (C(24,ss)) of 0.92 to 1.18 for (R)-methadone, (S)-methadone, buprenorphine, norbuprenorphine, and naloxone, with 90% confidence intervals including, or very close to including, 1.00 (no effect), suggesting a limited overall effect of faldaprevir. Although individual data showed moderate variability in the exposures between subjects and treatments, there was no evidence of symptoms of opiate overdose or withdrawal either during the coadministration of faldaprevir with methadone or buprenorphine-naloxone or after faldaprevir dosing was stopped. Similar faldaprevir exposures were observed in the methadone- and buprenorphine-naloxone-treated subjects. In conclusion, faldaprevir at 240 mg QD can be coadministered with methadone or buprenorphine-naloxone without dose adjustment, although given the relatively narrow therapeutic windows of these agents, monitoring for opiate overdose and withdrawal may still be appropriate. (This

  19. Electronic transport characterization of silicon wafers by spatially resolved steady-state photocarrier radiometric imaging

    SciTech Connect

    Wang, Qian; Li, Bincheng

    2015-09-28

    Spatially resolved steady-state photocarrier radiometric (PCR) imaging technique is developed to characterize the electronic transport properties of silicon wafers. Based on a nonlinear PCR theory, simulations are performed to investigate the effects of electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) on the steady-state PCR intensity profiles. The electronic transport parameters of an n-type silicon wafer are simultaneously determined by fitting the measured steady-state PCR intensity profiles to the three-dimensional nonlinear PCR model. The determined transport parameters are in good agreement with the results obtained by the conventional modulated PCR technique with multiple pump beam radii.

  20. Understanding time scales of diffusive fluxes and the implication for steady state and steady shape conditions

    NASA Astrophysics Data System (ADS)

    Jazaei, Farhad; Simpson, Matthew J.; Clement, T. Prabhakar

    2017-01-01

    The diffusion equation is one of the most commonly used models for describing environmental problems involving heat, solute, and water transport. A diffusive system can be either transient or steady state. When a system is transient, the dependent variable (e.g., temperature, concentration, or hydraulic head) varies with time; whereas at steady state, the temporal variations are negligible. Here we consider an intermediate state, called steady shape, corresponding to the situation where temporal variations in diffusive fluxes are negligible but the dependent variable may remain transient. We present a general theoretical framework for identifying steady shape conditions and propose a novel method for evaluating the time scale needed for a diffusive system to approach both steady shape and steady state conditions.

  1. Exact steady state manifold of a boundary driven spin-1 Lai-Sutherland chain

    NASA Astrophysics Data System (ADS)

    Ilievski, Enej; Prosen, Tomaž

    2014-05-01

    We present an explicit construction of a family of steady state density matrices for an open integrable spin-1 chain with bilinear and biquadratic interactions, also known as the Lai-Sutherland model, driven far from equilibrium by means of two oppositely polarizing Markovian dissipation channels localized at the boundary. The steady state solution exhibits n+1 fold degeneracy, for a chain of length n, due to existence of (strong) Liouvillian U(1) symmetry. The latter can be exploited to introduce a chemical potential and define a grand canonical nonequilibrium steady state ensemble. The matrix product form of the solution entails an infinitely-dimensional representation of a non-trivial Lie algebra (semidirect product of sl2 and a non-nilpotent radical) and hints to a novel Yang-Baxter integrability structure.

  2. Sickle cell disease painful crisis and steady state differentiation by proton magnetic resonance.

    PubMed

    Fernández, Adolfo A; Cabal, Carlos A; Lores, Manuel A; Losada, Jorge; Pérez, Enrique R

    2009-01-01

    The delay time of the Hb S polymerization process was investigated in 63 patients with sickle cell disease during steady state and 10 during painful crisis starting from spin-spin proton magnetic resonance (PMR) time behavior measured at 36 degrees C and during spontaneous deoxygenation. We found a significant decrease of delay time as a result of the crisis (36 +/- 10%) and two well-differentiated ranges of values for each state: 273-354 min for steady state and 166-229 min for crisis with an uncertainty region of 15%. It is possible to use PMR as an objective and quantitative method in order to differentiate both clinical conditions of the sickle cell patient, but a more clear differentiation can be established comparing the delay time (td) value of one patient during crisis with his own td value during steady state.

  3. Steady-state solutions of a diffusive energy-balance climate model and their stability

    NASA Technical Reports Server (NTRS)

    Ghil, M.

    1975-01-01

    A diffusive energy-balance climate model, governed by a nonlinear parabolic partial differential equation, was studied. Three positive steady-state solutions of this equation are found; they correspond to three possible climates of our planet: an interglacial (nearly identical to the present climate), a glacial, and a completely ice-covered earth. Models similar to the main one are considered, and the number of their steady states was determined. All the models have albedo continuously varying with latitude and temperature, and entirely diffusive horizontal heat transfer. The stability under small perturbations of the main model's climates was investigated. A stability criterion is derived, and its application shows that the present climate and the deep freeze are stable, whereas the model's glacial is unstable. The dependence was examined of the number of steady states and of their stability on the average solar radiation.

  4. Current Control in ITER Steady State Plasmas With Neutral Beam Steering

    SciTech Connect

    R.V. Budny

    2009-09-10

    Predictions of quasi steady state DT plasmas in ITER are generated using the PTRANSP code. The plasma temperatures, densities, boundary shape, and total current (9 - 10 MA) anticipated for ITER steady state plasmas are specified. Current drive by negative ion neutral beam injection, lower-hybrid, and electron cyclotron resonance are calculated. Four modes of operation with different combinations of current drive are studied. For each mode, scans with the NNBI aimed at differing heights in the plasma are performed to study effects of current control on the q profile. The timeevolution of the currents and q are calculated to evaluate long duration transients. Quasi steady state, strongly reversed q profiles are predicted for some beam injection angles if the current drive and bootstrap currents are sufficiently large.

  5. Exact Nonequilibrium Steady State of a Strongly Driven Open XXZ Chain

    NASA Astrophysics Data System (ADS)

    Prosen, Tomaž

    2011-09-01

    An exact and explicit ladder-tensor-network ansatz is presented for the nonequilibrium steady state of an anisotropic Heisenberg XXZ spin-1/2 chain which is driven far from equilibrium with a pair of Lindblad operators acting on the edges of the chain only. We show that the steady-state density operator of a finite system of size n is—apart from a normalization constant—a polynomial of degree 2n-2 in the coupling constant. Efficient computation of physical observables is facilitated in terms of a transfer operator reminiscent of a classical Markov process. In the isotropic case we find cosine spin profiles, 1/n2 scaling of the spin current, and long-range correlations in the steady state. This is a fully nonperturbative extension of a recent result [Phys. Rev. Lett. 106, 217206 (2011)PRLTAO0031-900710.1103/PhysRevLett.106.217206].

  6. Effect of lidocaine and quinidine on steady-state characteristics and recovery kinetics of (dV/dt)max in guinea pig ventricular myocardium.

    PubMed

    Chen, C M; Gettes, L S; Katzung, B G

    1975-07-01

    We studied the effects of quinidine and lidocaine on the steady-state relationship between membrane potential and the maximum rate of rise of the action potential, (dV/dt)max, and on the recovery kinetics of (dV/dt)max in guinea pig papillary muscles. The steady-state relationships were determined in fibers stimulated at 0.2/sec and depolarized with KCl. Recovery kinetics were determined at various resting membrane potentials by assessing (dV/dt)max in progressively earlier premature action potentials. Lidocaine caused a dose-dependent decrease in (dV/dt)max, shifted the curve defining the steady-state relationship along the voltage axis in the direction of more negative potentials, and slowed the recovery kinetics of (dV/dt)max. Quinidine caused a dose-dependent decrease in (dV/dt)max but did not alter the shape of the curves defining either the steady-state relationship or the recovery kinetics of (dV/dt)max. Both drugs depressed membrane responsiveness as determined in premature action potentials originating from incompletely repolarized fibers. Our study indicates that the mechanisms whereby quinidine and lidocaine influence (dV/dt)max are different. It is possible that this difference may underlie some of the differences in the clinical effects of these two drugs.

  7. Abiotic stress-induced oscillations in steady-state transcript levels of Group 3 LEA protein genes in the moss, Physcomitrella patens.

    PubMed

    Shinde, Suhas; Shinde, Rupali; Downey, Frances; Ng, Carl K-Y

    2013-01-01

    The moss, Physcomitrella patens is a non-seed land plant belonging to early diverging lineages of land plants following colonization of land in the Ordovician period in Earth's history. Evidence suggests that mosses can be highly tolerant of abiotic stress. We showed previously that dehydration stress and abscisic acid treatments induced oscillations in steady-state levels of LEA (Late Embryogenesis Abundant) protein transcripts, and that removal of ABA resulted in rapid attenuation of oscillatory increases in transcript levels. Here, we show that other abiotic stresses like salt and osmotic stresses also induced oscillations in steady-state transcript levels and that the amplitudes of the oscillatory increases in steady-state transcript levels are reflective of the severity of the abiotic stress treatment. Together, our results suggest that oscillatory increases in transcript levels in response to abiotic stresses may be a general phenomenon in P. patens and that temporally dynamic increases in steady-state transcript levels may be important for adaptation to life in constantly fluctuating environmental conditions.

  8. The Effects of High Intensity Interval Training vs Steady State Training on Aerobic and Anaerobic Capacity

    PubMed Central

    Foster, Carl; Farland, Courtney V.; Guidotti, Flavia; Harbin, Michelle; Roberts, Brianna; Schuette, Jeff; Tuuri, Andrew; Doberstein, Scott T.; Porcari, John P.

    2015-01-01

    High intensity interval training (HIIT) has become an increasingly popular form of exercise due to its potentially large effects on exercise capacity and small time requirement. This study compared the effects of two HIIT protocols vs steady-state training on aerobic and anaerobic capacity following 8-weeks of training. Fifty-five untrained college-aged subjects were randomly assigned to three training groups (3x weekly). Steady-state (n = 19) exercised (cycle ergometer) 20 minutes at 90% of ventilatory threshold (VT). Tabata (n = 21) completed eight intervals of 20s at 170% VO2max/10s rest. Meyer (n = 15) completed 13 sets of 30s (20 min) @ 100% PVO2 max/ 60s recovery, average PO = 90% VT. Each subject did 24 training sessions during 8 weeks. Results: There were significant (p < 0.05) increases in VO2max (+19, +18 and +18%) and PPO (+17, +24 and +14%) for each training group, as well as significant increases in peak (+8, + 9 and +5%) & mean (+4, +7 and +6%) power during Wingate testing, but no significant differences between groups. Measures of the enjoyment of the training program indicated that the Tabata protocol was significantly less enjoyable (p < 0.05) than the steady state and Meyer protocols, and that the enjoyment of all protocols declined (p < 0.05) across the duration of the study. The results suggest that although HIIT protocols are time efficient, they are not superior to conventional exercise training in sedentary young adults. Key points Steady state training equivalent to HIIT in untrained students Mild interval training presents very similar physiologic challenge compared to steady state training HIIT (particularly very high intensity variants were less enjoyable than steady state or mild interval training Enjoyment of training decreases across the course of an 8 week experimental training program PMID:26664271

  9. Mass transport in salt repositories: Steady-state transport through interbeds

    SciTech Connect

    Hwang, Y.; Lee, W.W.-L.; Chambre, P.L.; Pigford, T.H. . Dept. of Nuclear Engineering)

    1989-03-01

    Salt has long been a candidate for geologic disposal of nuclear waste. Because salt is extremely soluble in water, the existence of rock salt in the ground atest to the long-term stability of the salt. Both bedded salt and salt domes have been considered for nuclear waste disposal in the United States and Europe. While the salt is known to be quite pure in salt domes, bedded salt is interlaced with beds of sediments. Traditionally rock salt has not been considered water-conducting, but sediments layers would be classical porous media, capable of conducting water. Therefore there is interest in determining whether interbeds in bedded salt constitute pathway for radionuclide migration. In this report we consider steady-state migration of radionuclides from a single waste cylinder into a single interbed. Two approaches are used. In 1982 Neretnieks proposed an approach for calculating the steady-state transport of oxidants to a copper container. We have adapted that approach for calculating steady-state radionuclide migration away from the waste package, as a first approximation. We have also analyzed the problem of time-dependent radionuclide diffusion from a container through a backfill layer into a fracture, and we used the steady-state solution from that problem for comparison. Section 2 gives a brief summary of the geology of interbeds in bedded salt. Section 3 presents the mass transfer resistances approach of Neretnieks, summarizing the formulation and giving numerical illustrations of the steady-state two-dimensional diffusion analysis. Section 4 gives a brief statement of the steady-state result from a related analysis. Conclusions are stated in Section 5. 13 refs., 5 figs., 2 tabs.

  10. High spatial resolution brain functional MRI using submillimeter balanced steady-state free precession acquisition

    SciTech Connect

    Wu, Pei-Hsin; Chung, Hsiao-Wen; Tsai, Ping-Huei; Wu, Ming-Long; Chuang, Tzu-Chao; Shih, Yi-Yu; Huang, Teng-Yi

    2013-12-15

    Purpose: One of the technical advantages of functional magnetic resonance imaging (fMRI) is its precise localization of changes from neuronal activities. While current practice of fMRI acquisition at voxel size around 3 × 3 × 3 mm{sup 3} achieves satisfactory results in studies of basic brain functions, higher spatial resolution is required in order to resolve finer cortical structures. This study investigated spatial resolution effects on brain fMRI experiments using balanced steady-state free precession (bSSFP) imaging with 0.37 mm{sup 3} voxel volume at 3.0 T. Methods: In fMRI experiments, full and unilateral visual field 5 Hz flashing checkerboard stimulations were given to healthy subjects. The bSSFP imaging experiments were performed at three different frequency offsets to widen the coverage, with functional activations in the primary visual cortex analyzed using the general linear model. Variations of the spatial resolution were achieved by removing outerk-space data components. Results: Results show that a reduction in voxel volume from 3.44 × 3.44 × 2 mm{sup 3} to 0.43 × 0.43 × 2 mm{sup 3} has resulted in an increase of the functional activation signals from (7.7 ± 1.7)% to (20.9 ± 2.0)% at 3.0 T, despite of the threefold SNR decreases in the original images, leading to nearly invariant functional contrast-to-noise ratios (fCNR) even at high spatial resolution. Activation signals aligning nicely with gray matter sulci at high spatial resolution would, on the other hand, have possibly been mistaken as noise at low spatial resolution. Conclusions: It is concluded that the bSSFP sequence is a plausible technique for fMRI investigations at submillimeter voxel widths without compromising fCNR. The reduction of partial volume averaging with nonactivated brain tissues to retain fCNR is uniquely suitable for high spatial resolution applications such as the resolving of columnar organization in the brain.

  11. SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis

    SciTech Connect

    Basehore, K.L.; Todreas, N.E.

    1980-08-01

    Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries.

  12. S3C: EBT Steady-State Shooting code description and user's guide

    SciTech Connect

    Downum, W.B.

    1983-09-01

    The Oak Ridge National Laboratory (ORNL) one-dimensional (1-D) Steady-State Shooting code (S3C) for ELMO Bumpy Torus (EBT) plasmas is described. Benchmark calculations finding the steady-state density and electron and ion temperature profiles for a known neutral density profile and known external energy sources are carried out. Good agreement is obtained with results from the ORNL Radially Resolved Time Dependent 1-D Transport code for an EBT-Q type reactor. The program logic is described, along with the physics models in each code block and the variable names used. Sample input and output files are listed, along with the main code.

  13. A quaternionic map for the steady states of the Heisenberg spin-chain

    NASA Astrophysics Data System (ADS)

    Mehta, Mitaxi P.; Dutta, Souvik; Tiwari, Shubhanshu

    2014-01-01

    We show that the steady states of the classical Heisenberg XXX spin-chain in an external magnetic field can be found by iterations of a quaternionic map. A restricted model, e.g., the xy spin-chain is known to have spatially chaotic steady states and the phase space occupied by these chaotic states is known to go through discrete changes as the field strength is varied. The same phenomenon is studied for the xxx spin-chain. It is seen that in this model the phase space volume varies smoothly with the external field.

  14. Mass-Radius Spirals for Steady State Families of the Vlasov-Poisson System

    NASA Astrophysics Data System (ADS)

    Ramming, Tobias; Rein, Gerhard

    2017-02-01

    We consider spherically symmetric steady states of the Vlasov-Poisson system, which describe equilibrium configurations of galaxies or globular clusters. If the microscopic equation of state, i.e., the dependence of the steady state on the particle energy (and angular momentum) is fixed, a one-parameter family of such states is obtained. In the polytropic case the mass of the state along such a one-parameter family is a monotone function of its radius. We prove that for the King, Woolley-Dickens, and related models this mass-radius relation takes the form of a spiral.

  15. Steady-state creep of complexly reinforced shallow metal-composite shells

    NASA Astrophysics Data System (ADS)

    Yankovskii, A. P.

    2010-05-01

    The problem of deformation of shallow shells of variable thickness reinforced with fibers of constant cross section, whose all phases operate under the conditions of steady-state creep, is formulated. The system of resolving equations and the corresponding boundary conditions are analyzed, and the procedure for solving this problem is developed. A way of approximate solution of such problems in the case of transient creep is indicated. The particular calculations performed show that the compliance of thin-walled structures, under the conditions of steady-state creep, greatly depends on the structure of reinforcement.

  16. Three-state, steady-state Ising systems: Monte Carlo and Bragg-Williams treatments

    PubMed Central

    Hill, Terrell L.; Chen, Yi-Der

    1981-01-01

    In two earlier papers, the steady-state critical and phase-transition properties of a lattice of three-state enzyme molecules were studied by using the “closed” Bragg-Williams (BW), or mean field, approximation. The “open” BW and Monte Carlo methods are applied to the same problem in this paper by using finite lattices. The open BW treatment provides a way of locating the cut across a van der Waals type of loop encountered in a phase transition in the closed BW system. Thermodynamic-like methods cannot be used for this purpose as they can with two-state, steady-state systems. PMID:16592956

  17. Non-equilibrium steady states: fluctuations and large deviations of the density and of the current

    NASA Astrophysics Data System (ADS)

    Derrida, Bernard

    2007-07-01

    These lecture notes give a short review of methods such as the matrix ansatz, the additivity principle or the macroscopic fluctuation theory, developed recently in the theory of non-equilibrium phenomena. They show how these methods allow us to calculate the fluctuations and large deviations of the density and the current in non-equilibrium steady states of systems like exclusion processes. The properties of these fluctuations and large deviation functions in non-equilibrium steady states (for example, non-Gaussian fluctuations of density or non-convexity of the large deviation function which generalizes the notion of free energy) are compared with those of systems at equilibrium.

  18. Phenytoin pharmacokinetic analysis and steady-state level prediction using a programmable calculator.

    PubMed

    Ng, P K

    1980-07-01

    This paper describes the use of a programmable calculator (HP-97) to determine the individualized Michaelis-Menten parameters of phenytoin by utilising the linear regression technique in fitting data of multiple doses and corresponding steady-state concentrations to a linear-transformed Michaelis-Menten equation and solving for the Michaelis-Menten parameters. In addition, the calculator program can predict the corresponding steady-state concentration of phenytoin for any given dose used in an individual by employing the derived Michaelis-Menten parameters and the Michaelis-Menten equation.

  19. Spectral characteristics of steady-state Lévy flights in confinement potential profiles

    NASA Astrophysics Data System (ADS)

    Kharcheva, A. A.; Dubkov, A. A.; Dybiec, B.; Spagnolo, B.; Valenti, D.

    2016-05-01

    The steady-state correlation characteristics of superdiffusion in the form of Lévy flights in one-dimensional confinement potential profiles are investigated both theoretically and numerically. Specifically, for Cauchy stable noise we calculate the steady-state probability density function for an infinitely deep rectangular potential well and for a symmetric steep potential well of the type U(x)\\propto {{x}2m} . For these potential profiles and arbitrary Lévy index α, we obtain the asymptotic expression of the spectral power density.

  20. Transient and steady-state velocity of domain walls for a complete range of drive fields

    NASA Technical Reports Server (NTRS)

    Bourne, H. C., Jr.; Bartran, D. S.

    1974-01-01

    Approximate analytic solutions for transient and steady-state 180 deg domain wall motion in bulk magnetic material are obtained from the dynamic torque equations with a Gilbert damping term. The results for the Walker region in which the transient solution approaches the familiar Walker steady-state solution are presented in a slightly new form for completeness. An analytic solution corresponding to larger drive fields predicts an oscillatory motion with an average value which decreases with drive field for reasonable values of the damping parameter. These results agree with those obtained by a computer solution of the torque equation and those obtained with the assumption of a very large anisotropy field.

  1. Characterization of polyester films used in capacitors. 1: Transient and steady-state conductivity

    NASA Astrophysics Data System (ADS)

    Thielen, A.; Niezette, J.; Feyder, G.; Vanderschueren, J.

    1994-10-01

    Charging and discharging currents flowing through polyethylene terephthalate (PET) ultrathin films (1.5 - 12 micrometers) were measured by the use of a two-electrode configuration involving opposite lateral contacts. A study of the influence of electrification time, applied electric field, film thickness, nature of electrodes, and water content was carried out on both transient and steady-state conduction. The transient behavior can be interpreted in terms of dipolar orientation and relaxation processes while steady-state conductivity can be mainly accounted for in terms of Schottky emission. A comparison between PET and polyethylene naphthalate films is also reported.

  2. Clinical feasibility of brain-computer interface based on steady-state visual evoked potential in patients with locked-in syndrome: Case studies.

    PubMed

    Hwang, Han-Jeong; Han, Chang-Hee; Lim, Jeong-Hwan; Kim, Yong-Wook; Choi, Soo-In; An, Kwang-Ok; Lee, Jun-Hak; Cha, Ho-Seung; Hyun Kim, Seung; Im, Chang-Hwan

    2017-03-01

    Although the feasibility of brain-computer interface (BCI) systems based on steady-state visual evoked potential (SSVEP) has been extensively investigated, only a few studies have evaluated its clinical feasibility in patients with locked-in syndrome (LIS), who are the main targets of BCI technology. The main objective of this case report was to share our experiences of SSVEP-based BCI experiments involving five patients with LIS, thereby providing researchers with useful information that can potentially help them to design BCI experiments for patients with LIS. In our experiments, a four-class online SSVEP-based BCI system was implemented and applied to four of five patients repeatedly on multiple days to investigate its test-retest reliability. In the last experiments with two of the four patients, the practical usability of our BCI system was tested using a questionnaire survey. All five patients showed clear and distinct SSVEP responses at all four fundamental stimulation frequencies (6, 6.66, 7.5, 10 Hz), and responses at harmonic frequencies were also observed in three patients. Mean classification accuracy was 76.99% (chance level = 25%). The test-retest reliability experiments demonstrated stable performance of our BCI system over different days even when the initial experimental settings (e.g., electrode configuration, fixation time, visual angle) used in the first experiment were used without significant modifications. Our results suggest that SSVEP-based BCI paradigms might be successfully used to implement clinically feasible BCI systems for severely paralyzed patients.

  3. Disruption of the auditory response to a regular click train by a single, extra click.

    PubMed

    Lütkenhöner, Bernd; Patterson, Roy D

    2015-06-01

    It has been hypothesized that the steady-state response to a periodic sequence of clicks can be modeled as the superposition of responses to single clicks. Here, this hypothesis is challenged by presenting an extra click halfway between two consecutive clicks of a regular series, while measuring the auditory evoked field. After a solitary click at time zero, the click series sounded from 100 to 900 ms, with the extra click presented around 500 ms. The silent period between two stimulus sequences was 310-390 ms (uniformly distributed) so that one stimulation cycle lasted, on average, 1250 ms. Five different click rates between 20 and 60 Hz were examined. The disturbance caused by the extra click was revealed by subtracting the estimated steady-state response from the joint response to the click series and the extra click. The early peaks of the single-click response effectively coincide with same-polarity peaks of the 20-Hz steady-state response. Nevertheless, prediction of the latter from the former proved impossible. However, the 40-Hz steady-state response can be predicted reasonably well from the 20-Hz steady-state response. Somewhat surprisingly, the amplitude of the evoked response to the extra click grew when the click rate of the train was increased from 20 to 30 Hz; the opposite effect would have been expected from research on adaptation. The smaller amplitude at lower click rates might be explained by forward suppression. In this case, the apparent escape from suppression at higher rates might indicate that the clicks belonging to the periodic train are being integrated into an auditory stream, possibly in much the same manner as in classical stream segregation experiments.

  4. Sustained attention in context conditioning: Evidence from steady-state VEPs.

    PubMed

    Kastner, Anna K; Pauli, Paul; Wieser, Matthias J

    2015-12-01

    In classical fear conditioning an aversive event is paired repeatedly with a predictive stimulus, which later elicits fear. Repeated presentation of an aversive event in the absence of a predictive cue however may induce anxiety, and the context may gain a threatening value. As such conditioned anxiety can be considered a sustained reaction compared to phasic fear, it would be interesting to track continuous cortical responses during context conditioning. The present study realized a differential context conditioning paradigm and assessed sustained cortical activations to the threatening and the safe context and how neutral cues are processed within both contexts. Two pictures of different office rooms presented for 20s served as contexts. One room became associated with an unpleasant noise that was presented unpredictably (CTX+) while the other office (CTX-) was never associated with this unpleasant noise. After acquisition, a social agent or an object was presented as a distractor in both contexts. Cortical activations in response to contexts and distractors were assessed separately by steady-state visually evoked potentials (ssVEPs) using frequency tagging. Results revealed enhanced ssVEP-amplitudes for CTX+ compared to CTX- in a lateral occipital cluster during acquisition. Similarly, CTX+ elicited higher ssVEP-amplitudes during the test phase, and these context conditioning effects were not reduced by the simultaneous presentation of novel distractors. These results indicate that context conditioning was successfully implemented and that the anxiety context received facilitated cortical processing across the whole viewing time. We conclude that threatening contexts capture attention over a longer period of time, and are immune to distraction by new objects.

  5. Research on steady-state visual evoked potentials in 3D displays

    NASA Astrophysics Data System (ADS)

    Chien, Yu-Yi; Lee, Chia-Ying; Lin, Fang-Cheng; Huang, Yi-Pai; Ko, Li-Wei; Shieh, Han-Ping D.

    2015-05-01

    Brain-computer interfaces (BCIs) are intuitive systems for users to communicate with outer electronic devices. Steady state visual evoked potential (SSVEP) is one of the common inputs for BCI systems due to its easy detection and high information transfer rates. An advanced interactive platform integrated with liquid crystal displays is leading a trend to provide an alternative option not only for the handicapped but also for the public to make our lives more convenient. Many SSVEP-based BCI systems have been studied in a 2D environment; however there is only little literature about SSVEP-based BCI systems using 3D stimuli. 3D displays have potentials in SSVEP-based BCI systems because they can offer vivid images, good quality in presentation, various stimuli and more entertainment. The purpose of this study was to investigate the effect of two important 3D factors (disparity and crosstalk) on SSVEPs. Twelve participants participated in the experiment with a patterned retarder 3D display. The results show that there is a significant difference (p-value<0.05) between large and small disparity angle, and the signal-to-noise ratios (SNRs) of small disparity angles is higher than those of large disparity angles. The 3D stimuli with smaller disparity and lower crosstalk are more suitable for applications based on the results of 3D perception and SSVEP responses (SNR). Furthermore, we can infer the 3D perception of users by SSVEP responses, and modify the proper disparity of 3D images automatically in the future.

  6. Are type III-IV muscle afferents required for a normal steady-state exercise hyperpnoea in humans?

    PubMed

    Dempsey, Jerome A; Blain, Grégory M; Amann, Markus

    2014-02-01

    When tested in isolation, stimuli associated with respiratory CO2 exchange, feedforward central command and type III-IV muscle afferent feedback have each been shown to be capable of eliciting exercise-like cardio-ventilatory responses, but their relative contributions in a setting of physiological exercise remains controversial. We reasoned that in order to determine whether any of these regulators are obligatory to the exercise hyperpnoea each needs to be removed or significantly diminished in a setting of physiological steady-state exercise, during which all recognized stimuli (and other potential modulators) are normally operative. In the past few years we and others have used intrathecal fentanyl, a μ-opiate receptor agonist, in humans to reduce the input from type III-IV opiate-sensitive muscle afferents. During various types of intensities and durations of exercise a sustained hypoventilation, as well as reduced systemic pressure and cardioacceleration, were consistently observed with this blockade. These data provide the basis for the hypothesis that type III-IV muscle afferents are obligatory to the hyperpnoea of mild to moderate intensity rhythmic, large muscle, steady-state exercise. We discuss the limitations of these studies, the reasons for their disagreement with previous negative findings, the nature of the muscle afferent feedback stimulus and the need for future investigations.

  7. Combined magnetic and kinetic control of advanced tokamak steady state scenarios based on semi-empirical modelling

    NASA Astrophysics Data System (ADS)

    Moreau, D.; Artaud, J. F.; Ferron, J. R.; Holcomb, C. T.; Humphreys, D. A.; Liu, F.; Luce, T. C.; Park, J. M.; Prater, R.; Turco, F.; Walker, M. L.

    2015-06-01

    This paper shows that semi-empirical data-driven models based on a two-time-scale approximation for the magnetic and kinetic control of advanced tokamak (AT) scenarios can be advantageously identified from simulated rather than real data, and used for control design. The method is applied to the combined control of the safety factor profile, q(x), and normalized pressure parameter, βN, using DIII-D parameters and actuators (on-axis co-current neutral beam injection (NBI) power, off-axis co-current NBI power, electron cyclotron current drive power, and ohmic coil). The approximate plasma response model was identified from simulated open-loop data obtained using a rapidly converging plasma transport code, METIS, which includes an MHD equilibrium and current diffusion solver, and combines plasma transport nonlinearity with 0D scaling laws and 1.5D ordinary differential equations. The paper discusses the results of closed-loop METIS simulations, using the near-optimal ARTAEMIS control algorithm (Moreau D et al 2013 Nucl. Fusion 53 063020) for steady state AT operation. With feedforward plus feedback control, the steady state target q-profile and βN are satisfactorily tracked with a time scale of about 10 s, despite large disturbances applied to the feedforward powers and plasma parameters. The robustness of the control algorithm with respect to disturbances of the H&CD actuators and of plasma parameters such as the H-factor, plasma density and effective charge, is also shown.

  8. Differences in nitric oxide steady states between arginine, hypoxanthine, uracil auxotrophs (AHU) and non-AHU strains of Neisseria gonorrhoeae during anaerobic respiration in the presence of nitrite.

    PubMed

    Barth, Kenneth; Clark, Virginia L

    2008-08-01

    Neisseria gonorrhoeae can grow by anaerobic respiration using nitrite as an alternative electron acceptor. Under these growth conditions, N. gonorrhoeae produces and degrades nitric oxide (NO), an important host defense molecule. Laboratory strain F62 has been shown to establish and maintain a NO steady-state level that is a function of the nitrite reductase/NO reductase ratio and is independent of cell number. The nitrite reductase activities (122-197 nmol NO2 reduced x min(-1) x OD600(-1)) and NO reductase activities (88-155 nmol NO reduced x min(-1) x OD600(-1)) in a variety of gonococcal clinical isolates were similar to the specific activities seen in F62 (241 nmol NO2 reduced x min(-1) x OD600(-1) and 88 nmol NO reduced x min(-1) x OD600(-1), respectively). In seven gonococcal strains, the NO steady-state levels established in the presence of nitrite were similar to that of F62 (801-2121 nmol x L-1 NO), while six of the strains, identified as arginine, hypoxanthine, and uracil auxotrophs (AHU), that cause asymptomatic infection in men had either two- to threefold (373-579 nmol x L-1 NO) or about 100-fold (13-24 nmol x L-1 NO) lower NO steady-state concentrations. All tested strains in the presence of a NO donor, 2,2'-(hydroxynitrosohydrazono)bis-ethanimine/NO, quickly lowered and maintained NO levels in the noninflammatory range of NO (<300 nmol x L-1). The generation of a NO steady-state concentration was directly affected by alterations in respiratory control in both F62 and an AHU strain, although differences in membrane function are suspected to be responsible for NO steady-state level differences in AHU strains.

  9. Transient and steady state photoelectronic analysis in TlInSe{sub 2} crystals

    SciTech Connect

    Qasrawi, A.F.; Gasanly, N.M.

    2011-08-15

    Highlights: {yields} The steady state and time dependent photoconductivity kinetics of the TlInSe{sub 2} crystals are investigated in the temperature region of 100-350 K. {yields} The photocurrent of the sample exhibited linear, sublinear, and supralinear recombination mechanisms, at, above and below 160 K, respectively. {yields} Steady state photoconductivity revealed two recombination centres located at 234 and 94 meV. {yields} The transient photoconductivity is limited by a trapping center located at 173 meV. {yields} The capture coefficient of the trap for holes was determined as 3.11 x 10{sup -22} cm{sup -2}. -- Abstract: The temperature and illumination effects on the transient and steady state photoconductivities of TlInSe{sub 2} crystals have been studied. Namely, two recombination centres located at 234 and at 94 meV and one trap center located at 173 meV were determined from the temperature-dependent steady state and transient photoconductivities, respectively. The illumination dependence of photoconductivity indicated the domination of sublinear and supralinear recombination mechanisms above and below 160 K, respectively. The change in the recombination mechanism is attributed to the exchange of roles between the linear recombination at the surface and trapping centres in the crystal, which become dominant as temperature decreases. The transient photoconductivity measurement allowed the determination of the capture coefficient of traps for holes as 3.11 x 10{sup -22} cm{sup -2}.

  10. Quantifying biases in non-steady state chamber measurements of soil-atmosphere gas exchange

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Limitations of non-steady state (NSS) chamber methods for determining soil-to-atmosphere trace gas exchange rates have been recognized for several decades. Of these limitations, the so-called “chamber effect” is one of the most challenging to overcome. The chamber effect can be defined as the inhere...

  11. 40 CFR 86.1362-2010 - Steady-state testing with a ramped-modal cycle.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Torque(percent) 2 3 1a Steady-state 170 Warm Idle 0 1b Transition 20 Linear Transition Linear Transition..., command a linear progression from the speed or torque setting of the current mode to the speed or torque setting of the next mode. 3 The percent torque is relative to maximum torque at the commanded engine...

  12. 40 CFR 86.1362 - Steady-state testing with a ramped-modal cycle.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Torque(percent) 2 3 1a Steady-state 170 Warm Idle 0. 1b Transition 20 Linear Transition Linear Transition... transition phase, command a linear progression from the speed or torque setting of the current mode to the speed or torque setting of the next mode. 3 The percent torque is relative to maximum torque at...

  13. 40 CFR 86.1362-2007 - Steady-state testing with a ramped-modal cycle.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Torque(percent) 2,3 1a Steady-state 170 Warm Idle 0 1b Transition 20 Linear Transition Linear Transition... progression from the speed or torque setting of the current mode to the speed or torque setting of the next mode. 3 The percent torque is relative to maximum torque at the commanded engine speed. (c) During...

  14. 40 CFR 86.1362-2007 - Steady-state testing with a ramped-modal cycle.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Torque(percent) 2,3 1a Steady-state 170 Warm Idle 0 1b Transition 20 Linear Transition Linear Transition... progression from the speed or torque setting of the current mode to the speed or torque setting of the next mode. 3 The percent torque is relative to maximum torque at the commanded engine speed. (c) During...

  15. 40 CFR 86.1362-2010 - Steady-state testing with a ramped-modal cycle.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Torque(percent) 2 3 1a Steady-state 170 Warm Idle 0 1b Transition 20 Linear Transition Linear Transition..., command a linear progression from the speed or torque setting of the current mode to the speed or torque setting of the next mode. 3 The percent torque is relative to maximum torque at the commanded engine...

  16. 40 CFR 86.1362-2007 - Steady-state testing with a ramped-modal cycle.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Torque(percent) 2,3 1a Steady-state 170 Warm Idle 0 1b Transition 20 Linear Transition Linear Transition... progression from the speed or torque setting of the current mode to the speed or torque setting of the next mode. 3 The percent torque is relative to maximum torque at the commanded engine speed. (c) During...

  17. Steady-State Fluorescence Anisotropy to Investigate Flavonoids Binding to Proteins

    ERIC Educational Resources Information Center

    Ingersoll, Christine M.; Strollo, Christen M.

    2007-01-01

    The steady-state fluorescence anisotropy is employed to study the binding of protein of a model protein, human serum albumin, to a commonly used flavonoid, quercetin. The experiment describes the thermodynamics, as well as the biochemical interactions of such binding effectively.

  18. Computer program simplifies transient and steady-state temperature prediction for complex body shapes

    NASA Technical Reports Server (NTRS)

    Giebler, K. N.

    1966-01-01

    Computer program evaluates heat transfer modes and calculates either the transient or steady-state temperature distributions throughout an object of complex shape when heat sources are applied to specified points on the object. It uses an electrothermal model to simulate the conductance, heat capacity, and temperature potential of the object.

  19. User's instructions for the 41-node thermoregulatory model (steady state version)

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1974-01-01

    A user's guide for the steady-state thermoregulatory model is presented. The model was modified to provide conversational interaction on a remote terminal, greater flexibility for parameter estimation, increased efficiency of convergence, greater choice of output variable and more realistic equations for respiratory and skin diffusion water losses.

  20. Impurity shielding criteria for steady state hydrogen plasmas in the LHD, a heliotron-type device

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Kobayashi, M.; Yoshimura, S.; Tamura, N.; Yoshinuma, M.; Tanaka, K.; Suzuki, C.; Peterson, B. J.; Sakamoto, R.; Morisaki, T.; the LHD Experiment Group

    2014-07-01

    Impurity behavior has so far been investigated in steady state hydrogen plasmas in the Large Helical Device, which is a heliotron-type device and excellent for steady state operation. There was always found to be an impurity accumulation window, as observed before (Nakamura et al 2002 Plasma Phys. Control. Fusion 44 2121, Nakamura et al 2003 Nucl. Fusion 43 219). To clarify the boundary conditions, the dependences of impurity transport on edge plasma parameters are investigated with a database of steady state hydrogen discharges, and the boundary conditions for the impurity accumulation window are discussed. It is found that two different types of impurity screening effects are essential for preventing intrinsic impurities from entering the core plasma. One of them is due to positive radial electric field at the plasma edge on the low collisionality side and the other is impurity retention caused by friction force in the ergodic layer on the high collisionality side. The classification of steady state discharges on n-T space shows that the impurity behavior can be predicted by the impurity shielding criteria based on each empirical scaling.

  1. Efficient Decoding With Steady-State Kalman Filter in Neural Interface Systems

    PubMed Central

    Malik, Wasim Q.; Truccolo, Wilson; Brown, Emery N.; Hochberg, Leigh R.

    2011-01-01

    The Kalman filter is commonly used in neural interface systems to decode neural activity and estimate the desired movement kinematics. We analyze a low-complexity Kalman filter implementation in which the filter gain is approximated by its steady-state form, computed offline before real-time decoding commences. We evaluate its performance using human motor cortical spike train data obtained from an intracortical recording array as part of an ongoing pilot clinical trial. We demonstrate that the standard Kalman filter gain converges to within 95% of the steady-state filter gain in 1.5 ± 0.5 s (mean ± s.d.). The difference in the intended movement velocity decoded by the two filters vanishes within 5 s, with a correlation coefficient of 0.99 between the two decoded velocities over the session length. We also find that the steady-state Kalman filter reduces the computational load (algorithm execution time) for decoding the firing rates of 25 ± 3 single units by a factor of 7.0 ± 0.9. We expect that the gain in computational efficiency will be much higher in systems with larger neural ensembles. The steady-state filter can thus provide substantial runtime efficiency at little cost in terms of estimation accuracy. This far more efficient neural decoding approach will facilitate the practical implementation of future large-dimensional, multisignal neural interface systems. PMID:21078582

  2. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION & LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    SciTech Connect

    HU, T.A.

    2005-10-27

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

  3. 40 CFR Appendix II to Part 1042 - Steady-State Duty Cycles

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Steady-State Duty Cycles II Appendix II to Part 1042 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Pt....

  4. TRANSIENT AND STEADY STATE STUDY OF PURE AND MIXED REFRIGERANTS IN A RESIDENTIAL HEAT PUMP

    EPA Science Inventory

    The report gives results of an experimental and theoretical investigation of the transient and steady state performance of a residential air-conditioning/heat pump (AC/HP) operating with different refrigerants. (NOTE: The project was motivated by environmental concerns related to...

  5. Steady-State Clinical Pharmacokinetics of Bupropion Extended-Release In Youths

    ERIC Educational Resources Information Center

    Daviss, W. Burleson; Perel, James M.; Birmaher, Boris; Rudolph, George R.; Melhem, Imad; Axelson, David A.; Brent, David A.

    2006-01-01

    Objective: To examine in children and adolescents the 24-hour, steady-state clinical pharmacokinetics of an extended-release (XL) formulation of bupropion (Wellbutrin XL). Method: Subjects were six male and four female patients (ages 11.5-16.2 years) prescribed bupropion XL in morning daily doses of either 150 mg (n = 5) or 300 mg (n = 5) for at…

  6. Incorporation of wind generation to the Mexican power grid: Steady state analysis

    SciTech Connect

    Tovar, J.H.; Guardado, J.L.; Cisneros, F.; Cadenas, R.; Lopez, S.

    1997-09-01

    This paper describes a steady state analysis related with the incorporation of large amounts of eolic generation into the Mexican power system. An equivalent node is used to represent individual eolic generators in the wind farm. Possible overloads, losses, voltage and reactive profiles and estimated severe contingencies are analyzed. Finally, the conclusions of this study are presented.

  7. Unified analysis of transient and steady-state electrophosphorescence using exciton and polaron dynamics modeling

    NASA Astrophysics Data System (ADS)

    Hershey, Kyle W.; Holmes, Russell J.

    2016-11-01

    Phosphorescent organic light-emitting devices (OLEDs) can suffer a significant reduction in device efficiency under high current density excitation. This steady-state efficiency roll-off is frequently modeled by including losses from exciton-exciton and exciton-polaron quenching. Despite success in modeling the steady-state efficiency roll-off, the corresponding transient electroluminescence behavior has not been modeled as effectively using the same quenching processes. In this work, both the steady-state and transient electroluminescence behavior of phosphorescent OLEDs based on tris[2-phenylpyridinato-C2,N]Iridium(III) (Ir(ppy)3) are successfully reproduced by considering a dynamic polaron population. Within this model, polarons are able to either form excitons or leak through the device emissive layer, reducing the overall efficiency. This formalism permits a natural and rigorous connection between exciton and polaron dynamics and device charge balance, with the charge balance cast as the efficiency of exciton formation. The full dynamics model reproduces both the rise and decay of transient electroluminescence, as well as the full dependence of the external quantum efficiency on current density. Fit parameters are independently verified using separate studies of transient and steady-state photoluminescence. The model provides a complete picture for the dynamics present during the electrical operation of phosphorescent OLEDs, while also offering a direct route to elucidate exciton formation.

  8. Stable long-term blood formation by stem cells in murine steady-state hematopoiesis.

    PubMed

    Zavidij, Oksana; Ball, Claudia R; Herbst, Friederike; Oppel, Felix; Fessler, Sylvia; Schmidt, Manfred; von Kalle, Christof; Glimm, Hanno

    2012-09-01

    Hematopoietic stem cells (HSCs) generate all mature blood cells during the whole lifespan of an individual. However, the clonal contribution of individual HSC and progenitor cells in steady-state hematopoiesis is poorly understood. To investigate the activity of HSCs under steady-state conditions, murine HSC and progenitor cells were genetically marked in vivo by integrating lentiviral vectors (LVs) encoding green fluorescent protein (GFP). Hematopoietic contribution of individual marked clones was monitored by determination of lentiviral integration sites using highly sensitive linear amplification-mediated-polymerase chain reaction. A remarkably stable small proportion of hematopoietic cells expressed GFP in LV-injected animals for up to 24 months, indicating stable marking of murine steady-state hematopoiesis. Analysis of the lentiviral integration sites revealed that multiple hematopoietic clones with both myeloid and lymphoid differentiation potential contributed to long-term hematopoiesis. In contrast to intrafemoral vector injection, intravenous administration of LV preferentially targeted short-lived progenitor cells. Myelosuppressive treatment of mice prior to LV-injection did not affect the marking efficiency. Our study represents the first continuous analysis of clonal behavior of genetically marked hematopoietic cells in an unmanipulated system, providing evidence that multiple clones are simultaneously active in murine steady-state hematopoiesis.

  9. Steady-state choice between four alternatives obeys the constant-ratio rule.

    PubMed

    Bensemann, Joshua; Lobb, Brenda; Podlesnik, Christopher A; Elliffe, Douglas

    2015-07-01

    We investigated why violations to the constant-ratio rule, an assumption of the generalized matching law, occur in procedures that arrange frequent changes to reinforcer ratios. Our investigation produced steady-state data and compared them with data from equivalent, frequently changing procedures. Six pigeons responded in a four-alternative concurrent-schedule experiment with an arranged reinforcer-rate ratio of 27:9:3:1. The same four variable-interval schedules were used in every condition, for 50 sessions, and the physical location of each schedule was changed across conditions. The experiment was a steady-state version of a frequently changing procedure in which the locations of four VI schedules were changed every 10 reinforcers. We found that subjects' responding was consistent with the constant-ratio rule in the steady-state procedure. Additionally, local analyses showed that preference after reinforcement was towards the alternative that was likely to produce the next reinforcer, instead of being towards the just-reinforced alternative as in frequently changing procedures. This suggests that the effect of a reinforcer on preference is fundamentally different in rapidly changing and steady-state environments. Comparing this finding to the existing literature suggests that choice is more influenced by reinforcer-generated signals when the reinforcement contingencies often change.

  10. A Sequential Procedure for Determining the Length of a Steady-State Simulation.

    DTIC Science & Technology

    1977-04-01

    A common problem faced by simulators is that of constructing a confidence interval for the steady-state mean of a stochastic process. We have...procedure based on the method of batch means for constructing a confidence interval with coverage close to the desired level. Empirical results for a large

  11. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    SciTech Connect

    HU TA

    2009-10-26

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

  12. 40 CFR Appendix II to Part 1039 - Steady-State Duty Cycles

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... II to Part 1039 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Pt. 1039, App. II Appendix II to Part 1039—Steady-State Duty Cycles (a) The following duty cycles apply for...

  13. 40 CFR Appendix C to Subpart S of... - Steady-State Short Test Standards

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 2 2011-07-01 2011-07-01 false Steady-State Short Test Standards C Appendix C to Subpart S of Part 51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED.../Maintenance Program Requirements Pt. 51, Subpt. S, App. C Appendix C to Subpart S of Part...

  14. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems mod...

  15. Elimination of Thermodynamically Infeasible Loops in Steady-State Metabolic Models

    PubMed Central

    Schellenberger, Jan; Lewis, Nathan E.; Palsson, Bernhard Ø.

    2011-01-01

    The constraint-based reconstruction and analysis (COBRA) framework has been widely used to study steady-state flux solutions in genome-scale metabolic networks. One shortcoming of current COBRA methods is the possible violation of the loop law in the computed steady-state flux solutions. The loop law is analogous to Kirchhoff's second law for electric circuits, and states that at steady state there can be no net flux around a closed network cycle. Although the consequences of the loop law have been known for years, it has been computationally difficult to work with. Therefore, the resulting loop-law constraints have been overlooked. Here, we present a general mixed integer programming approach called loopless COBRA (ll-COBRA), which can be used to eliminate all steady-state flux solutions that are incompatible with the loop law. We apply this approach to improve flux predictions on three common COBRA methods: flux balance analysis, flux variability analysis, and Monte Carlo sampling of the flux space. Moreover, we demonstrate that the imposition of loop-law constraints with ll-COBRA improves the consistency of simulation results with experimental data. This method provides an additional constraint for many COBRA methods, enabling the acquisition of more realistic simulation results. PMID:21281568

  16. A hybrid multigrid technique for computing steady-state solutions to supersonic flows

    NASA Technical Reports Server (NTRS)

    Sanders, Richard

    1992-01-01

    Recently, Li and Sanders have introduced a class of finite difference schemes to approximate generally discontinuous solutions to hyperbolic systems of conservation laws. These equations have the form together with relevant boundary conditions. When modelling hypersonic spacecraft reentry, the differential equations above are frequently given by the compressible Euler equations coupled with a nonequilibrium chemistry model. For these applications, steady state solutions are often sought. Many tens (to hundreds) of super computer hours can be devoted to a single three space dimensional simulation. The primary difficulty is the inability to rapidly and reliably capture the steady state. In these notes, we demonstrate that a particular variant from the schemes presented can be combined with a particular multigrid approach to capture steady state solutions to the compressible Euler equations in one space dimension. We show that the rate of convergence to steady state coming from this multigrid implementation is vastly superior to the traditional approach of artificial time relaxation. Moreover, we demonstrate virtual grid independence. That is, the rate of convergence does not depend on the degree of spatial grid refinement.

  17. Einstein's steady-state theory: an abandoned model of the cosmos

    NASA Astrophysics Data System (ADS)

    O'Raifeartaigh, Cormac; McCann, Brendan; Nahm, Werner; Mitton, Simon

    2014-09-01

    We present a translation and analysis of an unpublished manuscript by Albert Einstein in which he attempted to construct a `steady-state' model of the universe. The manuscript, which appears to have been written in early 1931, demonstrates that Einstein once explored a cosmic model in which the mean density of matter in an expanding universe is maintained constant by the continuous formation of matter from empty space. This model is very different to previously known Einsteinian models of the cosmos (both static and dynamic) but anticipates the later steady-state cosmology of Hoyle, Bondi and Gold in some ways. We find that Einstein's steady-state model contains a fundamental flaw and suggest that it was abandoned for this reason. We also suggest that he declined to explore a more sophisticated version because he found such theories rather contrived. The manuscript is of historical interest because it reveals that Einstein debated between steady-state and evolving models of the cosmos decades before a similar debate took place in the cosmological community.

  18. The Cost Structure of Higher Education: Implications for Governmental Policy in Steady State.

    ERIC Educational Resources Information Center

    Lyell, Edward H.

    The historical pattern of resource allocation in American higher education as exemplified by public colleges in Colorado was examined. The reliance upon average cost information in making resource allocation decisions was critiqued for the special problems that arise from student enrollment decline or steady state. A model of resource allocation…

  19. 40 CFR Appendix D to Subpart S of... - Steady-State Short Test Equipment

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .../Maintenance Program Requirements Pt. 51, Subpt. S, App. D Appendix D to Subpart S of Part 51—Steady-State..., a flexible sample line, a water removal system, particulate trap, sample pump, flow control... flow rate in each leg of the probe has been measured under two sample pump flow rates (the normal...

  20. 40 CFR Appendix D to Subpart S of... - Steady-State Short Test Equipment

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .../Maintenance Program Requirements Pt. 51, Subpt. S, App. D Appendix D to Subpart S of Part 51—Steady-State..., a flexible sample line, a water removal system, particulate trap, sample pump, flow control... flow rate in each leg of the probe has been measured under two sample pump flow rates (the normal...

  1. 40 CFR Appendix C to Subpart S of... - Steady-State Short Test Standards

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Steady-State Short Test Standards C Appendix C to Subpart S of Part 51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED.../Maintenance Program Requirements Pt. 51, Subpt. S, App. C Appendix C to Subpart S of Part...

  2. Steady State Flammable Gas Release Rate Calculation and Lower Flammability Level Evaluation for Hanford Tank Waste

    SciTech Connect

    HU, T.A.

    2000-04-27

    This work is to assess the steady-state flammability level at normal and off-normal ventilation conditions in the tank dome space for 177 double-shell and single-shell tanks at Hanford. Hydrogen generation rate was calculated for 177 tanks using rate equation model developed recently.

  3. Walkway Length Determination for Steady State Walking in Young and Older Adults

    ERIC Educational Resources Information Center

    Macfarlane, Pamela A.; Looney, Marilyn A.

    2008-01-01

    The primary purpose of this study was to determine acceleration (AC) and deceleration (DC) distances that would accommodate young and older adults walking at their preferred and fast speeds. A secondary purpose was to determine the minimal walkway length needed to record six steady state (SS) steps (three full gait cycles) for younger and older…

  4. Radioactivity computation of steady-state and pulsed fusion reactors operation

    SciTech Connect

    Attaya, H.

    1994-06-01

    Different mathematical methods are used to calculate the nuclear transmutation in steady-state and pulsed neutron irradiation. These methods are the Schuer decomposition, the eigenvector decomposition, and the Pade approximation of the matrix exponential function. In the case of the linear decay chain approximation, a simple algorithm is used to evaluate the transition matrices.

  5. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    DOEpatents

    Bers, Abraham

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to estalish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated inthe plasma.

  6. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    DOEpatents

    Fisch, Nathaniel J.

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to establish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated in the plasma.

  7. Thermal shock behaviour of blisters on W surface during combined steady-state/pulsed plasma loading

    NASA Astrophysics Data System (ADS)

    Jia, Y. Z.; Liu, W.; Xu, B.; Luo, G.-N.; Li, C.; Qu, S. L.; Morgan, T. W.; De Temmerman, G.

    2015-09-01

    The thermal shock behaviour of blister-covered W surfaces during combined steady-state/pulsed plasma loading was studied by scanning electron microscopy and electron backscatter diffraction. The W samples were first exposed to steady-state D plasma to induce blisters on the surface, and then the blistered surfaces were exposed to steady-state/pulsed plasma. Growth and cracking of blisters were observed after the exposure to the steady-state/pulsed plasma, while no obvious damage occurred on the surface area not covered with blisters. The results confirm that blisters induced by D plasma might represent weak spots on the W surface when exposed to transient heat load of ELMs. The cracks on blisters were different from the cracks due to the transient heat loads reported before, and they were assumed to be caused by stress and strain due to the gas expansion inside the blisters during the plasma pulses. Moreover, most of cracks were found to appear on the blisters formed on grains with surface orientation near [1 1 1].

  8. Theoretical comparison of advanced methods for calculating nitrous oxide fluxes using non-steady state chambers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several flux-calculation (FC) schemes are available for determining soil-to-atmosphere emissions of nitrous oxide (N2O) and other trace gases using data from non-steady-state flux chambers. Recently developed methods claim to provide more accuracy in estimating the true pre-deployment flux (f0) comp...

  9. Pre-steady-state kinetics for hydrolysis of insoluble cellulose by cellobiohydrolase Cel7A.

    PubMed

    Cruys-Bagger, Nicolaj; Elmerdahl, Jens; Praestgaard, Eigil; Tatsumi, Hirosuke; Spodsberg, Nikolaj; Borch, Kim; Westh, Peter

    2012-05-25

    The transient kinetic behavior of enzyme reactions prior to the establishment of steady state is a major source of mechanistic information, yet this approach has not been utilized for cellulases acting on their natural substrate, insoluble cellulose. Here, we elucidate the pre-steady-state regime for the exo-acting cellulase Cel7A using amperometric biosensors and an explicit model for processive hydrolysis of cellulose. This analysis allows the identification of a pseudo-steady-state period and quantification of a processivity number as well as rate constants for the formation of a threaded enzyme complex, processive hydrolysis, and dissociation, respectively. These kinetic parameters elucidate limiting factors in the cellulolytic process. We concluded, for example, that Cel7A cleaves about four glycosidic bonds/s during processive hydrolysis. However, the results suggest that stalling the processive movement and low off-rates result in a specific activity at pseudo-steady state that is 10-25-fold lower. It follows that the dissociation of the enzyme-substrate complex (half-time of ~30 s) is rate-limiting for the investigated system. We suggest that this approach can be useful in attempts to unveil fundamental reasons for the distinctive variability in hydrolytic activity found in different cellulase-substrate systems.

  10. Programmable calculator uses equation to figure steady-state gas-pipeline flow

    SciTech Connect

    Holmberg, E.

    1982-04-26

    Because it is accurate and consistent over a wide range of variables, the Colebrook-White (C-W) formula serves as the basis for many methods of calculating turbulent flow in gas pipelines. Oilconsult reveals a simple way to adapt the C-W formula to calculate steady-state pipeline flow using the TI-59 programmable calculator.

  11. 40 CFR Appendix C to Subpart S of... - Steady-State Short Test Standards

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 2 2012-07-01 2012-07-01 false Steady-State Short Test Standards C Appendix C to Subpart S of Part 51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED.../Maintenance Program Requirements Pt. 51, Subpt. S, App. C Appendix C to Subpart S of Part...

  12. 40 CFR Appendix C to Subpart S of... - Steady-State Short Test Standards

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 2 2014-07-01 2014-07-01 false Steady-State Short Test Standards C Appendix C to Subpart S of Part 51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED.../Maintenance Program Requirements Pt. 51, Subpt. S, App. C Appendix C to Subpart S of Part...

  13. Efficient decoding with steady-state Kalman filter in neural interface systems.

    PubMed

    Malik, Wasim Q; Truccolo, Wilson; Brown, Emery N; Hochberg, Leigh R

    2011-02-01

    The Kalman filter is commonly used in neural interface systems to decode neural activity and estimate the desired movement kinematics. We analyze a low-complexity Kalman filter implementation in which the filter gain is approximated by its steady-state form, computed offline before real-time decoding commences. We evaluate its performance using human motor cortical spike train data obtained from an intracortical recording array as part of an ongoing pilot clinical trial. We demonstrate that the standard Kalman filter gain converges to within 95% of the steady-state filter gain in 1.5±0.5 s (mean ±s.d.). The difference in the intended movement velocity decoded by the two filters vanishes within 5 s, with a correlation coefficient of 0.99 between the two decoded velocities over the session length. We also find that the steady-state Kalman filter reduces the computational load (algorithm execution time) for decoding the firing rates of 25±3 single units by a factor of 7.0±0.9. We expect that the gain in computational efficiency will be much higher in systems with larger neural ensembles. The steady-state filter can thus provide substantial runtime efficiency at little cost in terms of estimation accuracy. This far more efficient neural decoding approach will facilitate the practical implementation of future large-dimensional, multisignal neural interface systems.

  14. An implicit steady-state initialization package for the RELAP5 computer code

    SciTech Connect

    Paulsen, M.P.; Peterson, C.E.; Odar, F.

    1995-08-01

    A direct steady-state initialization (DSSI) method has been developed and implemented in the RELAP5 hydrodynamic analysis program. It provides a means for users to specify a small set of initial conditions which are then propagated through the remainder of the system. The DSSI scheme utilizes the steady-state form of the RELAP5 balance equations for nonequilibrium two-phase flow. It also employs the RELAP5 component models and constitutive model packages for wall-to-phase and interphase momentum and heat exchange. A fully implicit solution of the linearized hydrodynamic equations is implemented. An implicit coupling scheme is used to augment the standard steady-state heat conduction solution for steam generator use. It solves the primary-side tube region energy equations, heat conduction equations, wall heat flux boundary conditions, and overall energy balance equation as a coupled system of equations and improves convergence. The DSSI method for initializing RELAP5 problems to steady-state conditions has been compared with the transient solution scheme using a suite of test problems including; adiabatic single-phase liquid and vapor flow through channels with and without healing and area changes; a heated two-phase test bundle representative of BWR core conditions; and a single-loop PWR model.

  15. Steady-state chlorophyll flourescence (Fs) as a tool to monitor plant heat and drought stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop yield decreases when photosynthesis is limited by heat or drought conditions. Yet farmers do not monitor crop photosynthesis because it is difficult to measure at the field scale in real time. Steady-state chlorophyll fluorescence (Fs) can be used at the field level as an indirect measure of p...

  16. DYNGEN: A program for calculating steady-state and transient performance of turbojet and turbofan engines

    NASA Technical Reports Server (NTRS)

    Sellers, J. F.; Daniele, C. J.

    1975-01-01

    The DYNGEN, a digital computer program for analyzing the steady state and transient performance of turbojet and turbofan engines, is described. The DYNGEN is based on earlier computer codes (SMOTE, GENENG, and GENENG 2) which are capable of calculating the steady state performance of turbojet and turbofan engines at design and off-design operating conditions. The DYNGEN has the combined capabilities of GENENG and GENENG 2 for calculating steady state performance; to these the further capability for calculating transient performance was added. The DYNGEN can be used to analyze one- and two-spool turbojet engines or two- and three-spool turbofan engines without modification to the basic program. A modified Euler method is used by DYNGEN to solve the differential equations which model the dynamics of the engine. This new method frees the programmer from having to minimize the number of equations which require iterative solution. As a result, some of the approximations normally used in transient engine simulations can be eliminated. This tends to produce better agreement when answers are compared with those from purely steady state simulations. The modified Euler method also permits the user to specify large time steps (about 0.10 sec) to be used in the solution of the differential equations. This saves computer execution time when long transients are run. Examples of the use of the program are included, and program results are compared with those from an existing hybrid-computer simulation of a two-spool turbofan.

  17. 40 CFR 86.1362-2007 - Steady-state testing with a ramped-modal cycle.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... procedures specified in § 86.1363-2007 through the 2009 model year. (a) Start sampling at the beginning of the first mode and continue sampling until the end of the last mode. Calculate emissions as described... meets the applicable steady-state emission standards: RMC mode Time in mode (seconds) Enginespeed...

  18. 40 CFR 86.1362-2010 - Steady-state testing with a ramped-modal cycle.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... describes how to test engines under steady-state conditions. For model years through 2009, manufacturers may use the mode order described in this section or in § 86.1362-2007. Starting in model year 2010 manufacturers must use the mode order described in this section with the following exception: for model...

  19. A Steady State Visually Evoked Potential Investigation of Memory and Ageing

    ERIC Educational Resources Information Center

    Macpherson, Helen; Pipingas, Andrew; Silberstein, Richard

    2009-01-01

    Old age is generally accompanied by a decline in memory performance. Specifically, neuroimaging and electrophysiological studies have revealed that there are age-related changes in the neural correlates of episodic and working memory. This study investigated age-associated changes in the steady state visually evoked potential (SSVEP) amplitude and…

  20. Advancing the detection of steady-state visual evoked potentials in brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Abu-Alqumsan, Mohammad; Peer, Angelika

    2016-06-01

    Objective. Spatial filtering has proved to be a powerful pre-processing step in detection of steady-state visual evoked potentials and boosted typical detection rates both in offline analysis and online SSVEP-based brain-computer interface applications. State-of-the-art detection methods and the spatial filters used thereby share many common foundations as they all build upon the second order statistics of the acquired Electroencephalographic (EEG) data, that is, its spatial autocovariance and cross-covariance with what is assumed to be a pure SSVEP response. The present study aims at highlighting the similarities and differences between these methods. Approach. We consider the canonical correlation analysis (CCA) method as a basis for the theoretical and empirical (with real EEG data) analysis of the state-of-the-art detection methods and the spatial filters used thereby. We build upon the findings of this analysis and prior research and propose a new detection method (CVARS) that combines the power of the canonical variates and that of the autoregressive spectral analysis in estimating the signal and noise power levels. Main results. We found that the multivariate synchronization index method and the maximum contrast combination method are variations of the CCA method. All three methods were found to provide relatively unreliable detections in low signal-to-noise ratio (SNR) regimes. CVARS and the minimum energy combination methods were found to provide better estimates for different SNR levels. Significance. Our theoretical and empirical results demonstrate that the proposed CVARS method outperforms other state-of-the-art detection methods when used in an unsupervised fashion. Furthermore, when used in a supervised fashion, a linear classifier learned from a short training session is able to estimate the hidden user intention, including the idle state (when the user is not attending to any stimulus), rapidly, accurately and reliably.