Science.gov

Sample records for i-like proviral genome

  1. Molecular cloning of human T-cell lymphotrophic virus type I-like proviral genome from the peripheral lymphocyte DNA of a patient with chronic neurologic disorders

    SciTech Connect

    Reddy, E.P.; Mettus, R.V.; DeFreitas, E.; Wroblewska, Z.; Cisco, M.; Koprowski, H. )

    1988-05-01

    Human T-cell lymphotropic virus type 1 (HTLV-I), the etiologic agent of human T-cell leukemia, has recently been shown to be associated with neurologic disorders such as tropical spastic paraparesis, HTLV-associated myelopathy, and possibly with multiple sclerosis. In this communication, the authors have examined one specific case of neurologic disorder that can be classified as multiple sclerosis or tropical spastic paraparesis. The patient suffering from chronic neurologic disorder was found to contain antibodies to HTLV-I envelope and gag proteins in his serum and cerebrospinal fluid. Lymphocytes from peripheral blood and cerebrospinal fluid of the patient were shown to express viral RNA sequences by in situ hybridization. Southern blot analysis of the patient lymphocyte DNA revealed the presence of HTLV-I-related sequences. Blot-hybridization analysis of the RNA from fresh peripheral lymphocytes stimulated with interleukin 2 revealed the presence of abundant amounts of genomic viral RNA with little or no subgenomic RNA. They have clones the proviral genome from the DNA of the peripheral lymphocytes and determined its restriction map. This analysis shows that this proviral genome is very similar if not identical to that of the prototype HTLV-I genome.

  2. Genome-wide Determinants of Proviral Targeting, Clonal Abundance and Expression in Natural HTLV-1 Infection

    PubMed Central

    Melamed, Anat; Laydon, Daniel J.; Gillet, Nicolas A.; Tanaka, Yuetsu; Taylor, Graham P.; Bangham, Charles R. M.

    2013-01-01

    The regulation of proviral latency is a central problem in retrovirology. We postulate that the genomic integration site of human T lymphotropic virus type 1 (HTLV-1) determines the pattern of expression of the provirus, which in turn determines the abundance and pathogenic potential of infected T cell clones in vivo. We recently developed a high-throughput method for the genome-wide amplification, identification and quantification of proviral integration sites. Here, we used this protocol to test two hypotheses. First, that binding sites for transcription factors and chromatin remodelling factors in the genome flanking the proviral integration site of HTLV-1 are associated with integration targeting, spontaneous proviral expression, and in vivo clonal abundance. Second, that the transcriptional orientation of the HTLV-1 provirus relative to that of the nearest host gene determines spontaneous proviral expression and in vivo clonal abundance. Integration targeting was strongly associated with the presence of a binding site for specific host transcription factors, especially STAT1 and p53. The presence of the chromatin remodelling factors BRG1 and INI1 and certain host transcription factors either upstream or downstream of the provirus was associated respectively with silencing or spontaneous expression of the provirus. Cells expressing HTLV-1 Tax protein were significantly more frequent in clones of low abundance in vivo. We conclude that transcriptional interference and chromatin remodelling are critical determinants of proviral latency in natural HTLV-1 infection. PMID:23555266

  3. Chromosomal distribution of endogenous Jaagsiekte sheep retrovirus proviral sequences in the sheep genome.

    PubMed

    Carlson, Jonathan; Lyon, Monique; Bishop, Jeanette; Vaiman, Anne; Cribiu, Edmond; Mornex, Jean-François; Brown, Susan; Knudson, Dennis; DeMartini, James; Leroux, Caroline

    2003-09-01

    A family of endogenous retroviruses (enJSRV) closely related to Jaagsiekte sheep retrovirus (JSRV) is ubiquitous in domestic and wild sheep and goats. Southern blot hybridization studies indicate that there is little active replication or movement of the enJSRV proviruses in these species. Two approaches were used to investigate the distribution of proviral loci in the sheep genome. Fluorescence in situ hybridization (FISH) to metaphase chromosome spreads using viral DNA probes was used to detect loci on chromosomes. Hybridization signals were reproducibly detected on seven sheep chromosomes and eight goat chromosomes in seven cell lines. In addition, a panel of 30 sheep-hamster hybrid cell lines, each of which carries one or more sheep chromosomes and which collectively contain the whole sheep genome, was examined for enJSRV sequences. DNA from each of the lines was used as a template for PCR with JSRV gag-specific primers. A PCR product was amplified from 27 of the hybrid lines, indicating that JSRV gag sequences are found on at least 15 of the 28 sheep chromosomes, including those identified by FISH. Thus, enJSRV proviruses are essentially randomly distributed among the chromosomes of sheep and goats. FISH and/or Southern blot hybridization on DNA from several of the sheep-hamster hybrid cell lines suggests that loci containing multiple copies of enJSRV are present on chromosomes 6 and 9. The origin and functional significance of these arrays is not known. PMID:12915578

  4. Specific Destruction of HIV Proviral p17 Gene in T Lymphoid Cells Achieved by the Genome Editing Technology

    PubMed Central

    Kishida, Tsunao; Ejima, Akika; Mazda, Osam

    2016-01-01

    Recent development in genome editing technologies has enabled site-directed deprivation of a nucleotide sequence in the chromosome in mammalian cells. Human immunodeficiency (HIV) infection causes integration of proviral DNA into the chromosome, which potentially leads to re-emergence of the virus, but conventional treatment cannot delete the proviral DNA sequence from the cells infected with HIV. In the present study, the transcription activator-like effector nucleases (TALENs) specific for the HIV p17 gene were constructed, and their activities to destroy the target sequence were evaluated. SSA assay showed a high activity of a pair of p17-specific TALENs. A human T lymphoid cell line, Jurkat, was infected with a lentivirus vector followed by transfection with the TALEN–HIV by electroporation. The target sequence was destructed in approximately 10–95% of the p17 polymerase chain reaction clones, and the efficiencies depended on the Jurkat–HIV clones. Because p17 plays essential roles for assembly and budding of HIV, and this gene has relatively low nucleotide sequence diversity, genome editing procedures targeting p17 may provide a therapeutic benefit for HIV infection. PMID:27446041

  5. Single genome amplification of proviral HIV-1 DNA from dried blood spot specimens collected during early infant screening programs in Lusaka, Zambia.

    PubMed

    Seu, Lillian; Mwape, Innocent; Guffey, M Bradford

    2014-07-01

    The ability to evaluate individual HIV-1 virions from the quasispecies of vertically infected infants was evaluated in a field setting at the Centre for Infectious Disease Research in Zambia. Infant heel-prick blood specimens were spotted onto dried blood spot (DBS) filter paper cards at government health clinics. Nucleic acid was extracted and used as a template for HIV-1 proviral DNA detection by a commercial Amplicor HIV-1 PCR test (Roche, version 1.5). On samples that tested positive by commercial diagnostic assay, amplification of DNA was performed using an in-house assay of the 5' and 3' region of the HIV-1 genome. Additionally, fragments covering 1200 nucleotides within pol (full length protease and partial reverse transcriptase) and 1400 nucleotides within env (variable 1-variable 5 region) were further analyzed by single genome amplification (SGA). In summary, we have demonstrated an in-house assay for amplifying the 5' and 3' proviral HIV-1 DNA as well as pol and env proviral DNA fragments from DBS cards collected and analyzed entirely in Zambia. In conclusion, this study shows the feasibility of utilizing DBS cards to amplify the whole proviral HIV-1 genome as well as perform SGA on key HIV-1 genes.

  6. Single genome amplification of proviral HIV-1 DNA from dried blood spot specimens collected during early infant screening programs in Lusaka, Zambia.

    PubMed

    Seu, Lillian; Mwape, Innocent; Guffey, M Bradford

    2014-07-01

    The ability to evaluate individual HIV-1 virions from the quasispecies of vertically infected infants was evaluated in a field setting at the Centre for Infectious Disease Research in Zambia. Infant heel-prick blood specimens were spotted onto dried blood spot (DBS) filter paper cards at government health clinics. Nucleic acid was extracted and used as a template for HIV-1 proviral DNA detection by a commercial Amplicor HIV-1 PCR test (Roche, version 1.5). On samples that tested positive by commercial diagnostic assay, amplification of DNA was performed using an in-house assay of the 5' and 3' region of the HIV-1 genome. Additionally, fragments covering 1200 nucleotides within pol (full length protease and partial reverse transcriptase) and 1400 nucleotides within env (variable 1-variable 5 region) were further analyzed by single genome amplification (SGA). In summary, we have demonstrated an in-house assay for amplifying the 5' and 3' proviral HIV-1 DNA as well as pol and env proviral DNA fragments from DBS cards collected and analyzed entirely in Zambia. In conclusion, this study shows the feasibility of utilizing DBS cards to amplify the whole proviral HIV-1 genome as well as perform SGA on key HIV-1 genes. PMID:24667303

  7. Single genome amplification of proviral HIV-1 DNA from dried blood spot specimens collected during early infant screening programs in Lusaka, Zambia

    PubMed Central

    Seu, Lillian; Mwape, Innocent; Guffey, M. Bradford

    2014-01-01

    The ability to evaluate individual HIV-1 virions from the quasispecies of vertically infected infants was evaluated in a field setting at the Centre for Infectious Disease Research in Zambia. Infant heel-prick blood specimens were spotted onto dried blood spot (DBS) filter paper cards at government health clinics. Nucleic acid was extracted and used as a template for HIV-1 proviral DNA detection by a commercial Amplicor HIV-1 PCR test (Roche, version 1.5). On samples that tested positive by commercial diagnostic assay, amplification of DNA was performed using an in-house assay of the 5′ and 3′ region of the HIV-1 genome. Additionally, fragments covering 1200 nucleotides within pol (full length protease and partial reverse transcriptase) and 1400 nucleotides within env (variable 1-variable 5 region) were further analyzed by single genome amplification (SGA). In summary, we have demonstrated an in-house assay for amplifying the 5′ and 3′ proviral HIV-1 DNA as well as pol and env proviral DNA fragments from DBS cards collected and analyzed entirely in Zambia. In conclusion, this study shows the feasibility of utilizing DBS cards to amplify the whole proviral HIV-1 genome as well as perform SGA on key HIV-1 genes. PMID:24667303

  8. Genome-based identification of cancer genes by proviral tagging in mouse retrovirus-induced T-cell lymphomas.

    PubMed

    Kim, Rachel; Trubetskoy, Alla; Suzuki, Takeshi; Jenkins, Nancy A; Copeland, Neal G; Lenz, Jack

    2003-02-01

    The identification of tumor-inducing genes is a driving force for elucidating the molecular mechanisms underlying cancer. Many retroviruses induce tumors by insertion of viral DNA adjacent to cellular oncogenes, resulting in altered expression and/or structure of the encoded proteins. The availability of the mouse genome sequence now allows analysis of retroviral common integration sites in murine tumors to be used as a genetic screen for identification of large numbers of candidate cancer genes. By positioning the sequences of inverse PCR-amplified, virus-host junction fragments within the mouse genome, 19 target genes were identified in T-cell lymphomas induced by the retrovirus SL3-3. The candidate cancer genes included transcription factors (Fos, Gfi1, Lef1, Myb, Myc, Runx3, and Sox3), all three D cyclins, Ras signaling pathway components (Rras2/TC21 and Rasgrp1), and Cmkbr7/CCR7. The most frequent target was Rras2. Insertions as far as 57 kb away from the transcribed portion were associated with substantially increased transcription of Rras2, and no coding sequence mutations, including those typically involved in Ras activation, were detected. These studies demonstrate the power of genome-based analysis of retroviral insertion sites for cancer gene discovery, identify several new genes worth examining for a role in human cancer, and implicate the pathways in which those genes act in lymphomagenesis. They also provide strong genetic evidence that overexpression of unmutated Rras2 contributes to tumorigenesis, thus suggesting that it may also do so if it is inappropriately expressed in human tumors.

  9. Genome-Based Identification of Cancer Genes by Proviral Tagging in Mouse Retrovirus-Induced T-Cell Lymphomas

    PubMed Central

    Kim, Rachel; Trubetskoy, Alla; Suzuki, Takeshi; Jenkins, Nancy A.; Copeland, Neal G.; Lenz, Jack

    2003-01-01

    The identification of tumor-inducing genes is a driving force for elucidating the molecular mechanisms underlying cancer. Many retroviruses induce tumors by insertion of viral DNA adjacent to cellular oncogenes, resulting in altered expression and/or structure of the encoded proteins. The availability of the mouse genome sequence now allows analysis of retroviral common integration sites in murine tumors to be used as a genetic screen for identification of large numbers of candidate cancer genes. By positioning the sequences of inverse PCR-amplified, virus-host junction fragments within the mouse genome, 19 target genes were identified in T-cell lymphomas induced by the retrovirus SL3-3. The candidate cancer genes included transcription factors (Fos, Gfi1, Lef1, Myb, Myc, Runx3, and Sox3), all three D cyclins, Ras signaling pathway components (Rras2/TC21 and Rasgrp1), and Cmkbr7/CCR7. The most frequent target was Rras2. Insertions as far as 57 kb away from the transcribed portion were associated with substantially increased transcription of Rras2, and no coding sequence mutations, including those typically involved in Ras activation, were detected. These studies demonstrate the power of genome-based analysis of retroviral insertion sites for cancer gene discovery, identify several new genes worth examining for a role in human cancer, and implicate the pathways in which those genes act in lymphomagenesis. They also provide strong genetic evidence that overexpression of unmutated Rras2 contributes to tumorigenesis, thus suggesting that it may also do so if it is inappropriately expressed in human tumors. PMID:12525640

  10. Ultra-Deep Sequencing of HIV-1 near Full-Length and Partial Proviral Genomes Reveals High Genetic Diversity among Brazilian Blood Donors

    PubMed Central

    Pessôa, Rodrigo; Loureiro, Paula; Esther Lopes, Maria; Carneiro-Proietti, Anna B. F.; Sabino, Ester C; Busch, Michael P.; Sanabani, Sabri S

    2016-01-01

    Background Here, we aimed to gain a comprehensive picture of the HIV-1 diversity in the northeast and southeast part of Brazil. To this end, a high-throughput sequencing-by-synthesis protocol and instrument were used to characterize the near full length (NFLG) and partial HIV-1 proviral genome in 259 HIV-1 infected blood donors at four major blood centers in Brazil: Pro-Sangue foundation (São Paulo state (SP), n 51), Hemominas foundation (Minas Gerais state (MG), n 41), Hemope foundation (Recife state (PE), n 96) and Hemorio blood bank (Rio de Janeiro (RJ), n 70). Materials and Methods A total of 259 blood samples were obtained from 195 donors with long-standing infections and 64 donors with a lack of stage information. DNA was extracted from the peripheral blood mononuclear cells (PBMCs) to amplify the HIV-1 NFLGs from five overlapping fragments. The amplicons were molecularly bar-coded, pooled, and sequenced by Illumina paired-end protocol. Results Of the 259 samples studied, 208 (80%) NFLGs and 49 (18.8%) partial fragments were de novo assembled into contiguous sequences and successfully subtyped. Of these 257 samples, 183 (71.2%) were pure subtypes consisting of clade B (n = 167, 65%), C (n = 10, 3.9%), F1 (n = 4, 1.5%), and D (n = 2, 0.7%). Recombinant viruses were detected in 74 (28.8%) samples and consist of unique BF1 (n = 41, 15.9%), BC (n = 7, 2.7%), BCF1 (n = 4, 1.5%), CF1 and CDK (n = 1, 0.4%, each), CRF70_BF1 (n = 4, 1.5%), CRF71_BF1 (n = 12, 4.7%), and CRF72_BF1 (n = 4, 1.5%). Evidence of dual infection was detected in four patients coinfected with the same subtype (n = 3) and distinct subtype (n = 1). Conclusion Based on this work, subtype B appears to be the prevalent subtype followed by a high proportion of intersubtype recombinants that appeared to be arising continually in this country. Our study represents the largest analysis of the viral NFLG ever undertaken worldwide and provides insights into the understanding the genesis of the HIV-1

  11. Structure and evolution of a proviral locus of Glyptapanteles indiensis bracovirus

    PubMed Central

    Desjardins, Christopher A; Gundersen-Rindal, Dawn E; Hostetler, Jessica B; Tallon, Luke J; Fuester, Roger W; Schatz, Michael C; Pedroni, Monica J; Fadrosh, Douglas W; Haas, Brian J; Toms, Bradley S; Chen, Dan; Nene, Vishvanath

    2007-01-01

    Background Bracoviruses (BVs), a group of double-stranded DNA viruses with segmented genomes, are mutualistic endosymbionts of parasitoid wasps. Virus particles are replication deficient and are produced only by female wasps from proviral sequences integrated into the wasp genome. Virus particles are injected along with eggs into caterpillar hosts, where viral gene expression facilitates parasitoid survival and therefore perpetuation of proviral DNA. Here we describe a 223 kbp region of Glyptapanteles indiensis genomic DNA which contains a part of the G. indiensis bracovirus (GiBV) proviral genome. Results Eighteen of ~24 GiBV viral segment sequences are encoded by 7 non-overlapping sets of BAC clones, revealing that some proviral segment sequences are separated by long stretches of intervening DNA. Two overlapping BACs, which contain a locus of 8 tandemly arrayed proviral segments flanked on either side by ~35 kbp of non-packaged DNA, were sequenced and annotated. Structural and compositional analyses of this cluster revealed it exhibits a G+C and nucleotide composition distinct from the flanking DNA. By analyzing sequence polymorphisms in the 8 GiBV viral segment sequences, we found evidence for widespread selection acting on both protein-coding and non-coding DNA. Comparative analysis of viral and proviral segment sequences revealed a sequence motif involved in the excision of proviral genome segments which is highly conserved in two other bracoviruses. Conclusion Contrary to current concepts of bracovirus proviral genome organization our results demonstrate that some but not all GiBV proviral segment sequences exist in a tandem array. Unexpectedly, non-coding DNA in the 8 proviral genome segments which typically occupies ~70% of BV viral genomes is under selection pressure suggesting it serves some function(s). We hypothesize that selection acting on GiBV proviral sequences maintains the genetic island-like nature of the cluster of proviral genome segments

  12. The chromosomal integration site determines the tissue-specific methylation of mouse mammary tumour virus proviral genes.

    PubMed Central

    Günzburg, W H; Groner, B

    1984-01-01

    Multiple endogenous mouse mammary tumour virus (MMTV) proviral genes are present at different chromosomal locations in inbred mouse strains. Proviral DNA methylation is location and tissue specific. The methylation patterns are stably inherited and appear to be conferred upon the viral DNA by the flanking mouse genomic DNA. In transformed cells, either mammary carcinoma cells, or cells immortalized by SV40 in vitro, the stable pattern of methylation is lost. Although hypomethylation of proviral genes, both in normal and in transformed tissue, accompanies MMTV-specific RNA expression, it is also observed in non-expressing tissues. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:6329738

  13. Partial molecular characterization of different proviral strains of bovine leukemia virus.

    PubMed

    Juliarena, Marcela A; Lendez, Pamela A; Gutierrez, Silvina E; Forletti, Agustina; Rensetti, Daniel E; Ceriani, Maria Carolina

    2013-01-01

    Bovine leukemia virus (BLV)-infected cattle were classified by their proviral load into low and high proviral load profiles (LPL and HPL, respectively). Blood from these animals was used to infect sheep to obtain multiple identical copies of integrated provirus. An env fragment of BLV was amplified from all infected sheep and sequenced. The sequences that were obtained were compared to already published BLV genome sequence, resulting in three clusters. Mutations could not be attributed to the passage of provirus from cattle to sheep and subsequent amplification and sequencing. The description of two different proviral load profiles, the association of the BoLA-DRB3.2 0902 allele with the LPL profile, the availability of complete BLV sequences, and the comparison of a variable region of the env gene from carefully characterized cattle are still not enough to explain the presence of animals in every herd that are resistant to BLV dissemination. PMID:22965577

  14. Risk factors associated with increased bovine leukemia virus proviral load in infected cattle in Japan from 2012 to 2014.

    PubMed

    Ohno, Ayumu; Takeshima, Shin-nosuke; Matsumoto, Yuki; Aida, Yoko

    2015-12-01

    Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, a malignant B cell lymphoma. BLV has spread worldwide and causes serious problems. After infection, the BLV genome is integrated into the host DNA and can be amplified during periods of latency. We previously designed degenerate primers using the Coordination of Common Motifs (CoCoMo) algorithm to establish a new quantitative real-time PCR method (BLV-CoCoMo-qPCR-2) of measuring the proviral load of both known and novel BLV variants. Here, we aimed to examine the correlation between proviral load and risk factors for BLV infection, such as breeding systems, parousity, and colostrum feeding. Blood and serum samples were collected from 83 BLV-positive farms in 22 prefectures of Japan, and the BLV proviral load and anti-BLV antibody levels were measured. BLV was detected in 73.3% (1039/1,417) of cattle by BLV-CoCoMo-qPCR-2 and the provirus was detected in 93 of 1039 antibody-negative samples. The results showed that the proviral load increased with progression of lymphocytosis. Next, the risk factors associated with increasing BLV infection rate were examined along with any association with proviral load. The proviral load was higher in cattle with lymphocytosis than in healthy cattle, and higher in multiparous cows than in nulliparous cows. Finally, proviral loads were higher in contact breeding systems than in non-contact breeding systems. Taken together, these findings may help to formulate a plan for eliminating BLV from contaminated farms. This is the first nationwide study to estimate BLV proviral load in Japanese cattle.

  15. Microplitis demolitor Bracovirus Proviral Loci and Clustered Replication Genes Exhibit Distinct DNA Amplification Patterns during Replication

    PubMed Central

    Simmonds, Tyler J.; Thomas, Sarah A.; Strand, Michael R.

    2015-01-01

    ABSTRACT Polydnaviruses are large, double-stranded DNA viruses that are beneficial symbionts of parasitoid wasps. Polydnaviruses in the genus Bracovirus (BVs) persist in wasps as proviruses, and their genomes consist of two functional components referred to as proviral segments and nudivirus-like genes. Prior studies established that the DNA domains where proviral segments reside are amplified during replication and that segments within amplified loci are circularized before packaging into nucleocapsids. One DNA domain where nudivirus-like genes are located is also amplified but never packaged into virions. We recently sequenced the genome of the braconid Microplitis demolitor, which carries M. demolitor bracovirus (MdBV). Here, we took advantage of this resource to characterize the DNAs that are amplified during MdBV replication using a combination of Illumina and Pacific Biosciences sequencing approaches. The results showed that specific nucleotide sites identify the boundaries of amplification for proviral loci. Surprisingly, however, amplification of loci 3, 4, 6, and 8 produced head-to-tail concatemeric intermediates; loci 1, 2, and 5 produced head-to-head/tail-to-tail concatemers; and locus 7 yielded no identified concatemers. Sequence differences at amplification junctions correlated with the types of amplification intermediates the loci produced, while concatemer processing gave rise to the circularized DNAs that are packaged into nucleocapsids. The MdBV nudivirus-like gene cluster was also amplified, albeit more weakly than most proviral loci and with nondiscrete boundaries. Overall, the MdBV genome exhibited three patterns of DNA amplification during replication. Our data also suggest that PacBio sequencing could be useful in studying the replication intermediates produced by other DNA viruses. IMPORTANCE Polydnaviruses are of fundamental interest because they provide a novel example of viruses evolving into beneficial symbionts. All polydnaviruses are

  16. Quantitative HIV-1 proviral DNA detection: a multicentre analysis.

    PubMed

    De Rossi, Anita; Zanchetta, Marisa; Vitone, Francesca; Antonelli, Guido; Bagnarelli, Patrizia; Buonaguro, Luigi; Capobianchi, Maria Rosaria; Clementi, Massimo; Abbate, Isabella; Canducci, Filippo; Monachetti, Alessia; Riva, Elisabetta; Rozera, Gabriella; Scagnolari, Carolina; Tagliamonte, Maria; Re, Maria Carla

    2010-10-01

    Despite the widespread use of molecular biology techniques, standardized methods for the measurement of HIV-1 proviral DNA are currently lacking and several discordant results are still present in different studies. To assess the clinical meaning of the proviral DNA load, a study group comprising seven different laboratories was set up to standardize a HIV-1 proviral DNA quantification method able to assess the DNA proviral load of the most relevant circulating HIV-1 subtypes. Reference samples (24 cellular samples infected with HIV-1 clade B, and 40 samples of peripheral blood mononuclear cells containing different concentrations of plasmids expressing different HIV-1 clades) were distributed and tested blindly. All laboratories employed hTERT gene as housekeeping gene and primers within the gag gene to quantify different HIV-1 clades. Inter-laboratory results did not differ statistically but showed only minor variations concerning HIV-1 DNA amounts and different HIV clades, with a good agreement among the laboratories participating in the study. Since test standardization represents a key step for future application in clinical practice, further studies of the patients' samples are in progress to establish the real meaning and utility of the proviral DNA load for clinical management of HIV-1 infected patients. PMID:21213587

  17. Multiple proviral integration events after virological synapse-mediated HIV-1 spread

    SciTech Connect

    Russell, Rebecca A.; Martin, Nicola; Mitar, Ivonne; Jones, Emma; Sattentau, Quentin J.

    2013-08-15

    HIV-1 can move directly between T cells via virological synapses (VS). Although aspects of the molecular and cellular mechanisms underlying this mode of spread have been elucidated, the outcomes for infection of the target cell remain incompletely understood. We set out to determine whether HIV-1 transfer via VS results in productive, high-multiplicity HIV-1 infection. We found that HIV-1 cell-to-cell spread resulted in nuclear import of multiple proviruses into target cells as seen by fluorescence in-situ hybridization. Proviral integration into the target cell genome was significantly higher than that seen in a cell-free infection system, and consequent de novo viral DNA and RNA production in the target cell detected by quantitative PCR increased over time. Our data show efficient proviral integration across VS, implying the probability of multiple integration events in target cells that drive productive T cell infection. - Highlights: • Cell-to-cell HIV-1 infection delivers multiple vRNA copies to the target cell. • Cell-to-cell infection results in productive infection of the target cell. • Cell-to-cell transmission is more efficient than cell-free HIV-1 infection. • Suggests a mechanism for recombination in cells infected with multiple viral genomes.

  18. Highly efficient germ-line transmission of proviral insertions in zebrafish.

    PubMed Central

    Gaiano, N; Allende, M; Amsterdam, A; Kawakami, K; Hopkins, N

    1996-01-01

    An important technology in model organisms is the ability to make transgenic animals. In the past, transgenic technology in zebrafish has been limited by the relatively low efficiency with which transgenes could be generated using either DNA microinjection or retroviral infection. Previous efforts to generate transgenic zebrafish with retroviral vectors used a pseudotyped virus with a genome based on the Moloney murine leukemia virus and the envelope protein of the vesicular stomatitis virus. This virus was injected into blastula-stage zebrafish, and 16% of the injected embryos transmitted proviral insertions to their offspring, with most founders transmitting a single insertion to approximately 2% of their progeny. In an effort to improve this transgenic frequency, we have generated pseudotyped viral stocks of two new Moloney-based genomes. These viral stocks have titers up to two orders of magnitude higher than that used previously. Injection of these viruses resulted in a dramatic increase in transgenic efficiency; over three different experiments, 83% (110/133) of the injected embryos transmitted proviral insertions to 24% of their offspring. Furthermore, founders made with one of the viruses transmitted an average of 11 different insertions through their germ line. These results represent a 50- to 100-fold improvement in the efficiency of generating transgenic zebrafish, making it now feasible for a single lab to rapidly generate tens to hundreds of thousands of transgenes. Consequently, large-scale insertional mutagenesis strategies, previously limited to invertebrates, may now be possible in a vertebrate. Images Fig. 2 PMID:8755552

  19. HIV Excision Utilizing CRISPR/Cas9 Technology: Attacking the Proviral Quasispecies in Reservoirs to Achieve a Cure

    PubMed Central

    Dampier, Will; Nonnemacher, Michael R.; Sullivan, Neil T.; Jacobson, Jeffrey M.; Wigdahl, Brian

    2015-01-01

    Recently several gene-editing technologies developed are being explored for their potential utility in providing new and unique treatments for HIV. One of these technologies is the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas)9 system. This system is being explored for its utility against host genes important to HIV infection, namely the HIV coreceptor CCR5, and for excision of the integrated genome from infected cells by targeting selected genes or genomic regions, especially the HIV-1 promoter or long terminal repeat (LTR). One of the major hurdles with the development of this technology for use in patients is defining the LTR sequence spectrum within the viral quasispecies present in the integrated virus and how that effects the number of guide RNAs (gRNAs) required to completely excise all proviral genomes. In this study, the Drexel Medicine CNS AIDS Research and Eradication Study (CARES) Cohort was utilized to demonstrate that [1] the predominant sequence of the integrated proviral LTR within the PBMC compartment shows a decrease in the amount of variation per year regardless of the type of therapy; [2] predominant HIV-1 LTR sequence undergoes continued genetic change with respect to the predominant genotype in these cells for at least 6 years while on effective suppressive ART; [3] using next generation sequencing (NGS), to demonstrate that 4 of the 8 patient samples examined could have a complete gRNA regimen designed to target all known quasispecies; and [4] length of HAART therapy may reduce the number of gRNA required to eradicate provirus as shown by NGS and gRNA design for longitudinal samples of patient A0017 in the CARES cohort. Overall, these studies demonstrate the feasibility of addressing at least one of the major technological challenges of CRISPR/Cas9-mediated HIV-1 proviral genome eradication involving the effective targeting of all viral quasispecies in a given patient sample. PMID:25893217

  20. Association of TNF-α gene promoter region polymorphisms in bovine leukemia virus (BLV)-infected cattle with different proviral loads.

    PubMed

    Lendez, Pamela Anahi; Passucci, Juan Antonio; Poli, Mario Andres; Gutierrez, Silvina Elena; Dolcini, Guillermina Laura; Ceriani, Maria Carolina

    2015-08-01

    Tumor necrosis factor alpha (TNF-α) is a pleiotropic cytokine involved in the immune response against viral and other infections. Its expression levels are affected by a polymorphism in the promoter region of the gene. Bovine leukemia virus is a retrovirus that infects cattle and develops two different infection profiles in the host. One profile is characterized by a high number of proviral copies integrated into the host genome and a strong immune response against the virus, while the most relevant property of the other profile is that the number of copies integrated into the host genome is almost undetectable and the immune response is very weak. We selected a population of cattle sufficiently large for statistical analysis and classified them according to whether they had a high or low proviral load (HPL or LPL). Polymorphisms in the promoter region were identified by PCR-RFLP. The results indicated that, in the HPL group, the three possible genotypes were normally distributed and that, in the LPL group, there was a significant association between the proviral load and a low frequency of the G/G genotype at position -824. PMID:26051703

  1. Association of TNF-α gene promoter region polymorphisms in bovine leukemia virus (BLV)-infected cattle with different proviral loads.

    PubMed

    Lendez, Pamela Anahi; Passucci, Juan Antonio; Poli, Mario Andres; Gutierrez, Silvina Elena; Dolcini, Guillermina Laura; Ceriani, Maria Carolina

    2015-08-01

    Tumor necrosis factor alpha (TNF-α) is a pleiotropic cytokine involved in the immune response against viral and other infections. Its expression levels are affected by a polymorphism in the promoter region of the gene. Bovine leukemia virus is a retrovirus that infects cattle and develops two different infection profiles in the host. One profile is characterized by a high number of proviral copies integrated into the host genome and a strong immune response against the virus, while the most relevant property of the other profile is that the number of copies integrated into the host genome is almost undetectable and the immune response is very weak. We selected a population of cattle sufficiently large for statistical analysis and classified them according to whether they had a high or low proviral load (HPL or LPL). Polymorphisms in the promoter region were identified by PCR-RFLP. The results indicated that, in the HPL group, the three possible genotypes were normally distributed and that, in the LPL group, there was a significant association between the proviral load and a low frequency of the G/G genotype at position -824.

  2. Long-Range HIV Genotyping Using Viral RNA and Proviral DNA for Analysis of HIV Drug Resistance and HIV Clustering

    PubMed Central

    Novitsky, Vlad; Zahralban-Steele, Melissa; McLane, Mary Fran; Moyo, Sikhulile; van Widenfelt, Erik; Gaseitsiwe, Simani; Makhema, Joseph

    2015-01-01

    The goal of the study was to improve the methodology of HIV genotyping for analysis of HIV drug resistance and HIV clustering. Using the protocol of Gall et al. (A. Gall, B. Ferns, C. Morris, S. Watson, M. Cotten, M. Robinson, N. Berry, D. Pillay, and P. Kellam, J Clin Microbiol 50:3838–3844, 2012, doi:10.1128/JCM.01516-12), we developed a robust methodology for amplification of two large fragments of viral genome covering about 80% of the unique HIV-1 genome sequence. Importantly, this method can be applied to both viral RNA and proviral DNA amplification templates, allowing genotyping in HIV-infected subjects with suppressed viral loads (e.g., subjects on antiretroviral therapy [ART]). The two amplicons cover critical regions across the HIV-1 genome (including pol and env), allowing analysis of mutations associated with resistance to protease inhibitors, reverse transcriptase inhibitors (nucleoside reverse transcriptase inhibitors [NRTIs] and nonnucleoside reverse transcriptase inhibitors [NNRTIs]), integrase strand transfer inhibitors, and virus entry inhibitors. The two amplicons generated span 7,124 bp, providing substantial sequence length and numbers of informative sites for comprehensive phylogenic analysis and greater refinement of viral linkage analyses in HIV prevention studies. The long-range HIV genotyping from proviral DNA was successful in about 90% of 212 targeted blood specimens collected in a cohort where the majority of patients had suppressed viral loads, including 65% of patients with undetectable levels of HIV-1 RNA loads. The generated amplicons could be sequenced by different methods, such as population Sanger sequencing, single-genome sequencing, or next-generation ultradeep sequencing. The developed method is cost-effective—the cost of the long-range HIV genotyping is under $140 per subject (by Sanger sequencing)—and has the potential to enable the scale up of public health HIV prevention interventions. PMID:26041893

  3. Long-Range HIV Genotyping Using Viral RNA and Proviral DNA for Analysis of HIV Drug Resistance and HIV Clustering.

    PubMed

    Novitsky, Vlad; Zahralban-Steele, Melissa; McLane, Mary Fran; Moyo, Sikhulile; van Widenfelt, Erik; Gaseitsiwe, Simani; Makhema, Joseph; Essex, M

    2015-08-01

    The goal of the study was to improve the methodology of HIV genotyping for analysis of HIV drug resistance and HIV clustering. Using the protocol of Gall et al. (A. Gall, B. Ferns, C. Morris, S. Watson, M. Cotten, M. Robinson, N. Berry, D. Pillay, and P. Kellam, J Clin Microbiol 50:3838-3844, 2012, doi:10.1128/JCM.01516-12), we developed a robust methodology for amplification of two large fragments of viral genome covering about 80% of the unique HIV-1 genome sequence. Importantly, this method can be applied to both viral RNA and proviral DNA amplification templates, allowing genotyping in HIV-infected subjects with suppressed viral loads (e.g., subjects on antiretroviral therapy [ART]). The two amplicons cover critical regions across the HIV-1 genome (including pol and env), allowing analysis of mutations associated with resistance to protease inhibitors, reverse transcriptase inhibitors (nucleoside reverse transcriptase inhibitors [NRTIs] and nonnucleoside reverse transcriptase inhibitors [NNRTIs]), integrase strand transfer inhibitors, and virus entry inhibitors. The two amplicons generated span 7,124 bp, providing substantial sequence length and numbers of informative sites for comprehensive phylogenic analysis and greater refinement of viral linkage analyses in HIV prevention studies. The long-range HIV genotyping from proviral DNA was successful in about 90% of 212 targeted blood specimens collected in a cohort where the majority of patients had suppressed viral loads, including 65% of patients with undetectable levels of HIV-1 RNA loads. The generated amplicons could be sequenced by different methods, such as population Sanger sequencing, single-genome sequencing, or next-generation ultradeep sequencing. The developed method is cost-effective-the cost of the long-range HIV genotyping is under $140 per subject (by Sanger sequencing)-and has the potential to enable the scale up of public health HIV prevention interventions. PMID:26041893

  4. Characterization of a new ViI-like Erwinia amylovora bacteriophage phiEa2809.

    PubMed

    Lagonenko, Alexander L; Sadovskaya, Olga; Valentovich, Leonid N; Evtushenkov, Anatoly N

    2015-04-01

    Erwinia amylovora is a Gram-negative plant pathogenic bacteria causing fire blight disease in many Rosaceae species. A novel E. amylovora bacteriophage, phiEa2809, was isolated from symptomless apple leaf sample collected in Belarus. This phage was also able to infect Pantoea agglomerans strains. The genome of phiEa2809 is a double-stranded linear DNA 162,160 bp in length, including 145 ORFs and one tRNA gene. The phiEa2809 genomic sequence is similar to the genomes of the Serratia plymutica phage MAM1, Shigella phage AG-3, Dickeya phage vB DsoM LIMEstone1 and Salmonella phage ViI and lacks similarity to described E. amylovora phage genomes. Based on virion morphology (an icosahedral head, long contractile tail) and genome structure, phiEa2809 was classified as a member of Myoviridae, ViI-like bacteriophages group. PhiEa2809 is the firstly characterized ViI-like bacteriophage able to lyse E. amylovora.

  5. Rapid detection of HIV-1 proviral DNA for early infant diagnosis using recombinase polymerase amplification.

    PubMed

    Boyle, David S; Lehman, Dara A; Lillis, Lorraine; Peterson, Dylan; Singhal, Mitra; Armes, Niall; Parker, Mathew; Piepenburg, Olaf; Overbaugh, Julie

    2013-04-02

    Early diagnosis and treatment of human immunodeficiency virus type 1 (HIV-1) infection in infants can greatly reduce mortality rates. However, current infant HIV-1 diagnostics cannot reliably be performed at the point of care, often delaying treatment and compromising its efficacy. Recombinase polymerase amplification (RPA) is a novel technology that is ideal for an HIV-1 diagnostic, as it amplifies target DNA in <20 min at a constant temperature, without the need for complex thermocycling equipment. Here we tested 63 HIV-1-specific primer and probe combinations and identified two RPA assays that target distinct regions of the HIV-1 genome (long terminal repeat [LTR] and pol) and can reliably detect 3 copies of proviral DNA by the use of fluorescence detection and lateral-flow strip detection. These pol and LTR primers amplified 98.6% and 93%, respectively, of the diverse HIV-1 variants tested. This is the first example of an isothermal assay that consistently detects all of the major HIV-1 global subtypes.

  6. No evidence of HTLV-I proviral integration in lymphoproliferative disorders associated with cutaneous T-cell lymphoma.

    PubMed Central

    Wood, G. S.; Schaffer, J. M.; Boni, R.; Dummer, R.; Burg, G.; Takeshita, M.; Kikuchi, M.

    1997-01-01

    Several recent studies have reported detection of HTLV-I genetic sequences in patients with cutaneous T-cell lymphoma (CTCL) including mycosis fungoides and Sezary syndrome. The purpose of this study was to determine whether HTLV-I was detectable in lesional tissues of patients suffering from diseases known to be associated with CTCL. Thirty-five cases were obtained from diverse geographical locations including Ohio, California, Switzerland, and Japan. Six of them had concurrent CTCL. Cases were analyzed using a combination of genomic polymerase chain reaction (PCR)/ Southern blot, dot blot, and Southern blot analyses. All assays were specific for HTLV-I provirus. Sensitivity ranged from approximately 10(-6) for PCR-based studies to 10(-2) for unamplified genomic blotting. Lesional DNA from patients with lymphomatoid papulosis (fourteen cases), Hodgkin's disease (twelve cases), and CD30+ large-cell lymphoma (nine cases) was tested for the HTLV-I proviral pX region using a genomic PCR assay followed by confirmatory Southern blot analysis with a nested oligonucleotide pX probe. All cases were uniformly negative. All of the Hodgkin's disease cases, eight of the large-cell lymphoma cases, and six of the lymphomatoid papulosis cases were then subjected to dot blot analysis of genomic DNA using a full-length HTLV-I proviral DNA probe that spans all regions of the HTLV-I genome. Again, all cases were negative. Finally, eleven of the Hodgkin's disease cases were also subjected to Southern blot analysis of EcoRI-digested genomic DNA using the same full-length HTLV-I probe. Once again, all cases were negative. These findings indicated that, despite utilization of a variety of sensitive and specific molecular biological methods, HTLV-I genetic sequences were not detectable in patients with CTCL-associated lymphoproliferative disorders. These results strongly suggest that the HTLV-I retrovirus is not involved in the pathogenesis of these diseases. Images Figure 1 Figure 2

  7. Comparative analysis of viral RNA signatures on different RIG-I-like receptors

    PubMed Central

    Sanchez David, Raul Y; Combredet, Chantal; Sismeiro, Odile; Dillies, Marie-Agnès; Jagla, Bernd; Coppée, Jean-Yves; Mura, Marie; Guerbois Galla, Mathilde; Despres, Philippe; Tangy, Frédéric; Komarova, Anastassia V

    2016-01-01

    The RIG-I-like receptors (RLRs) play a major role in sensing RNA virus infection to initiate and modulate antiviral immunity. They interact with particular viral RNAs, most of them being still unknown. To decipher the viral RNA signature on RLRs during viral infection, we tagged RLRs (RIG-I, MDA5, LGP2) and applied tagged protein affinity purification followed by next-generation sequencing (NGS) of associated RNA molecules. Two viruses with negative- and positive-sense RNA genome were used: measles (MV) and chikungunya (CHIKV). NGS analysis revealed that distinct regions of MV genome were specifically recognized by distinct RLRs: RIG-I recognized defective interfering genomes, whereas MDA5 and LGP2 specifically bound MV nucleoprotein-coding region. During CHIKV infection, RIG-I associated specifically to the 3’ untranslated region of viral genome. This study provides the first comparative view of the viral RNA ligands for RIG-I, MDA5 and LGP2 in the presence of infection. DOI: http://dx.doi.org/10.7554/eLife.11275.001 PMID:27011352

  8. Comparative analysis of viral RNA signatures on different RIG-I-like receptors.

    PubMed

    Sanchez David, Raul Y; Combredet, Chantal; Sismeiro, Odile; Dillies, Marie-Agnès; Jagla, Bernd; Coppée, Jean-Yves; Mura, Marie; Guerbois Galla, Mathilde; Despres, Philippe; Tangy, Frédéric; Komarova, Anastassia V

    2016-01-01

    The RIG-I-like receptors (RLRs) play a major role in sensing RNA virus infection to initiate and modulate antiviral immunity. They interact with particular viral RNAs, most of them being still unknown. To decipher the viral RNA signature on RLRs during viral infection, we tagged RLRs (RIG-I, MDA5, LGP2) and applied tagged protein affinity purification followed by next-generation sequencing (NGS) of associated RNA molecules. Two viruses with negative- and positive-sense RNA genome were used: measles (MV) and chikungunya (CHIKV). NGS analysis revealed that distinct regions of MV genome were specifically recognized by distinct RLRs: RIG-I recognized defective interfering genomes, whereas MDA5 and LGP2 specifically bound MV nucleoprotein-coding region. During CHIKV infection, RIG-I associated specifically to the 3' untranslated region of viral genome. This study provides the first comparative view of the viral RNA ligands for RIG-I, MDA5 and LGP2 in the presence of infection. PMID:27011352

  9. Detection of monoclonal integration of bovine leukemia virus proviral DNA as a malignant marker in two enzootic bovine leukosis cases with difficult clinical diagnosis

    PubMed Central

    MIURA, Saori; HORIUCHI, Noriyuki; MATSUMOTO, Kotaro; KOBAYASHI, Yoshiyasu; KAWAZU, Shin-ichiro; INOKUMA, Hisashi

    2015-01-01

    Monoclonal integration of bovine leukemia virus (BLV) proviral DNA into bovine genomes was detected in peripheral blood from two clinical cases of enzootic bovine leukosis (EBL) without enlargement of superficial lymph nodes. A BLV-specific probe hybridized with 1 to 3 EcoRI and HindIII fragments in these 2 atypical EBL cattle by Southern blotting and hybridization, as well as in 3 typical EBL cattle. The probe also hybridized to a large number of EcoRI and HindIII fragments in 5 cattle with persistent leukosis. These results suggest that the detection of monoclonal integration of BLV provirus into the host genome may serve as a marker of monoclonal proliferation and malignancy in difficult to diagnose EBL cattle. PMID:25766769

  10. Low proviral small ruminant lentivirus load as biomarker of natural restriction in goats.

    PubMed

    Crespo, Helena; Bertolotti, Luigi; Proffiti, Margherita; Cascio, Paolo; Cerruti, Fulvia; Acutis, Pier Luigi; de Andrés, Damián; Reina, Ramsés; Rosati, Sergio

    2016-08-30

    Small ruminant lentiviruses (SRLV) globally affect welfare and production of sheep and goats and are mainly controlled through elimination of infected animals, independently of the viral kinetics within the single animal. Control programs are based on highly sensitive serological tests, however the existence of low antibody responders leads to the permanent presence of seronegative infected animals in the flock, thus perpetuating the infection. On the other hand, long-term non-progressors show a detectable antibody response not indicative of a shedding animal, suggesting immune contention of infection. In this study, we analyse two goat populations within the same herd, harbouring low or high proviral SRLV loads respectively, both showing a robust antibody response. In vivo findings were confirmed in vitro since fibroblastic cell lines obtained from one high and one low proviral load representative goats, showed respectively a high and a faint production of virus upon infection with reference and field circulating SRLV strains. Differences in virus production were relieved when strain CAEV-Co was used for experimental infection. We analysed LTR promoter activity, proviral load, entry step and production of virus and viral proteins. Intriguingly, proteasomal activity was higher in fibroblasts from low proviral load animals and proteasome inhibition increased viral production in both cell lines, suggesting the implication of active proteasome-dependent restriction factors. Among them, we analysed relative expression and sequences of TRIM5α, APOBEC3 (Z1, Z2, Z3 and Z2-Z3) and BST-2 (Tetherin) and found a global antiviral status in low proviral carriers that may confer protection against viral shedding and disease onset. PMID:27527777

  11. Negative Elongation Factor Is Required for the Maintenance of Proviral Latency but Does Not Induce Promoter-Proximal Pausing of RNA Polymerase II on the HIV Long Terminal Repeat

    PubMed Central

    Jadlowsky, Julie K.; Wong, Julian Y.; Graham, Amy C.; Dobrowolski, Curtis; Devor, Renee L.; Adams, Mark D.; Fujinaga, Koh

    2014-01-01

    The role of the negative elongation factor (NELF) in maintaining HIV latency was investigated following small hairpin RNA (shRNA) knockdown of the NELF-E subunit, a condition that induced high levels of proviral transcription in latently infected Jurkat T cells. Chromatin immunoprecipitation (ChIP) assays showed that latent proviruses accumulate RNA polymerase II (RNAP II) on the 5′ long terminal repeat (LTR) but not on the 3′ LTR. NELF colocalizes with RNAP II, and its level increases following proviral induction. RNAP II pause sites on the HIV provirus were mapped to high resolution by ChIP with high-throughput sequencing (ChIP-Seq). Like cellular promoters, RNAP II accumulates at around position +30, but HIV also shows additional pausing at +90, which is immediately downstream of a transactivation response (TAR) element and other distal sites on the HIV LTR. Following NELF-E knockdown or tumor necrosis factor alpha (TNF-α) stimulation, promoter-proximal RNAP II levels increase up to 3-fold, and there is a dramatic increase in RNAP II levels within the HIV genome. These data support a kinetic model for proviral transcription based on continuous replacement of paused RNAP II during both latency and productive transcription. In contrast to most cellular genes, HIV is highly activated by the combined effects of NELF-E depletion and activation of initiation by TNF-α, suggesting that opportunities exist to selectively activate latent HIV proviruses. PMID:24636995

  12. Proviral amplification of the Gypsy endogenous retrovirus of Drosophila melanogaster involves env-independent invasion of the female germline.

    PubMed

    Chalvet, F; Teysset, L; Terzian, C; Prud'homme, N; Santamaria, P; Bucheton, A; Pélisson, A

    1999-05-01

    Gypsy is an infectious endogenous retrovirus of Drosophila melanogaster. The gypsy proviruses replicate very efficiently in the genome of the progeny of females homozygous for permissive alleles of the flamenco gene. This replicative transposition is correlated with derepression of gypsy expression, specifically in the somatic cells of the ovaries of the permissive mothers. The determinism of this amplification was studied further by making chimeric mothers containing different permissive/restrictive and somatic/germinal lineages. We show here that the derepression of active proviruses in the permissive soma is necessary and sufficient to induce proviral insertions in the progeny, even if the F1 flies derive from restrictive germ cells devoid of active proviruses. Therefore, gypsy endogenous multiplication results from the transfer of some gypsy-encoded genetic material from the soma towards the germen of the mother and its subsequent insertion into the chromosomes of the progeny. This transfer, however, is not likely to result from retroviral infection of the germline. Indeed, we also show here that the insertion of a tagged gypsy element, mutant for the env gene, occurs at high frequency, independently of the production of gypsy Env proteins by any transcomplementing helper. The possible role of the env gene for horizontal transfer to new hosts is discussed. PMID:10228177

  13. Widespread Genome Reorganization of an Obligate Virus Mutualist

    PubMed Central

    Burke, Gaelen R.; Walden, Kimberly K. O.; Whitfield, James B.; Robertson, Hugh M.; Strand, Michael R.

    2014-01-01

    The family Polydnaviridae is of interest because it provides the best example of viruses that have evolved a mutualistic association with their animal hosts. Polydnaviruses in the genus Bracovirus are strictly associated with parasitoid wasps in the family Braconidae, and evolved ∼100 million years ago from a nudivirus. Each wasp species relies on its associated bracovirus to parasitize hosts, while each bracovirus relies on its wasp for vertical transmission. Prior studies establish that bracovirus genomes consist of proviral segments and nudivirus-like replication genes, but how these components are organized in the genomes of wasps is unknown. Here, we sequenced the genome of the wasp Microplitis demolitor to characterize the proviral genome of M. demolitor bracovirus (MdBV). Unlike nudiviruses, bracoviruses produce virions that package multiple circular, double-stranded DNAs. DNA segments packaged into MdBV virions resided in eight dispersed loci in the M. demolitor genome. Each proviral segment was bounded by homologous motifs that guide processing to form mature viral DNAs. Rapid evolution of proviral segments obscured homology between other bracovirus-carrying wasps and MdBV. However, some domains flanking MdBV proviral loci were shared with other species. All MdBV genes previously identified to encode proteins required for replication were identified. Some of these genes resided in a multigene cluster but others, including subunits of the RNA polymerase that transcribes structural genes and integrases that process proviral segments, were widely dispersed in the M. demolitor genome. Overall, our results indicate that genome dispersal is a key feature in the evolution of bracoviruses into mutualists. PMID:25232843

  14. Widespread genome reorganization of an obligate virus mutualist.

    PubMed

    Burke, Gaelen R; Walden, Kimberly K O; Whitfield, James B; Robertson, Hugh M; Strand, Michael R

    2014-09-01

    The family Polydnaviridae is of interest because it provides the best example of viruses that have evolved a mutualistic association with their animal hosts. Polydnaviruses in the genus Bracovirus are strictly associated with parasitoid wasps in the family Braconidae, and evolved ∼100 million years ago from a nudivirus. Each wasp species relies on its associated bracovirus to parasitize hosts, while each bracovirus relies on its wasp for vertical transmission. Prior studies establish that bracovirus genomes consist of proviral segments and nudivirus-like replication genes, but how these components are organized in the genomes of wasps is unknown. Here, we sequenced the genome of the wasp Microplitis demolitor to characterize the proviral genome of M. demolitor bracovirus (MdBV). Unlike nudiviruses, bracoviruses produce virions that package multiple circular, double-stranded DNAs. DNA segments packaged into MdBV virions resided in eight dispersed loci in the M. demolitor genome. Each proviral segment was bounded by homologous motifs that guide processing to form mature viral DNAs. Rapid evolution of proviral segments obscured homology between other bracovirus-carrying wasps and MdBV. However, some domains flanking MdBV proviral loci were shared with other species. All MdBV genes previously identified to encode proteins required for replication were identified. Some of these genes resided in a multigene cluster but others, including subunits of the RNA polymerase that transcribes structural genes and integrases that process proviral segments, were widely dispersed in the M. demolitor genome. Overall, our results indicate that genome dispersal is a key feature in the evolution of bracoviruses into mutualists.

  15. HIV Drug Resistance Mutations in Proviral DNA from a Community Treatment Program

    PubMed Central

    Derache, Anne; Shin, Hyoung-Shik; Balamane, Maya; White, Elizabeth; Israelski, Dennis; Klausner, Jeffrey D.; Freeman, Alexandra H.; Katzenstein, David

    2015-01-01

    Background Drug resistance mutations archived in resting memory CD4+ cells may persist despite suppression of HIV RNA to <50 copies/ml. We sequenced pol gene from proviral DNA among viremic and suppressed patients to identify drug resistance mutations. Methods The Peninsula AIDS Research Cohort study enrolled and followed over 2 years 120 HIV infected patients from San Mateo and San Francisco Counties. HIV-1 pol genotyping by bulk sequencing was performed on 38 DNA and RNA from viremic patients and DNA only among 82 suppressed patients at baseline. Antiretroviral susceptibility was predicted by HIVDB.stanford.edu. Results Among 120 subjects, 81% were on antiretroviral therapy and had been treated for a median time of 7 years. Thirty-two viremic patients showed concordant RNA and DNA genotypes (84%); the discordant profiles were mainly observed in patients with low-level viremia. Among suppressed patients, 21 had drug resistance mutations in proviral DNA (26%) with potential resistance to one, two or three ARV classes in 16, 4 and 1 samples respectively. Conclusions The high level of genotype concordance between DNA and RNA in viremic patients suggested that DNA genotyping might be used to assess drug resistance in resource-limited settings, and further investigation of extracted DNA from dried blood spots is needed. Drug resistance mutations in proviral DNA in 26% of subjects with less than 50 copies/ml pose a risk for the transmission of drug resistant virus with virologic failure, treatment interruption or decreased adherence. PMID:25635815

  16. Administration of a Toll-like receptor 9 agonist decreases the proviral reservoir in virologically suppressed HIV-infected patients.

    PubMed

    Winckelmann, Anni A; Munk-Petersen, Lærke V; Rasmussen, Thomas A; Melchjorsen, Jesper; Hjelholt, Thomas J; Montefiori, David; Østergaard, Lars; Søgaard, Ole S; Tolstrup, Martin

    2013-01-01

    Toll-like receptor (TLR) agonists can reactivate HIV from latently infected cells in vitro. We aimed to investigate the TLR-9 agonist, CPG 7909's in vivo effect on the proviral HIV reservoir and HIV-specific immunity. This was a post-hoc analysis of a double-blind randomized controlled vaccine trial. HIV-infected adults were randomized 1:1 to receive pneumococcal vaccines with or without 1 mg CPG 7909 as adjuvant at 0, 3 and 9 months. In patients on suppressive antiretroviral therapy we quantified proviral DNA at 0, 3, 4, 9, and 10 months (31 subjects in the CPG group and 37 in the placebo-adjuvant group). Furthermore, we measured HIV-specific antibodies, characterized T cell phenotypes and HIV-specific T cell immunity. We observed a mean reduction in proviral DNA in the CPG group of 12.6% (95% CI: -23.6-0.0) following each immunization whereas proviral DNA in the placebo-adjuvant group remained largely unchanged (6.7% increase; 95% CI: -4.2-19.0 after each immunization, p = 0.02). Among participants with additional cryo-preserved PBMCs, HIV-specific CD8+ T cell immunity as indicated by increased expression of degranulation marker CD107a and macrophage inflammatory protein 1β (MIP1β) tended to be up-regulated following immunization with CPG 7909 compared with placebo as adjuvant. Further, increasing proportion of HIV-specific CD107a and MIP1β-expressing CD8+ T cells were strongly correlated with decreasing proviral load. No changes were observed in T cell phenotype distribution, HIV-specific CD4+ T cell immunity, or HIV-specific antibodies. TLR9-adjuvanted pneumococcal vaccination decreased proviral load. Reductions in proviral load correlated with increasing levels of HIV specific CD8+ T cells. Further investigation into the potential effect of TLR9 agonists on HIV latency is warranted. PMID:23637967

  17. Negative regulatory element associated with potentially functional promoter and enhancer elements in the long terminal repeats of endogenous murine leukemia virus-related proviral sequences.

    PubMed Central

    Ch'ang, L Y; Yang, W K; Myer, F E; Yang, D M

    1989-01-01

    Three series of recombinant DNA clones were constructed, with the bacterial chloramphenicol acetyltransferase (CAT) gene as a quantitative indicator, to examine the activities of promoter and enhancer sequence elements in the 5' long terminal repeat (LTR) of murine leukemia virus (MuLV)-related proviral sequences isolated from the mouse genome. Transient CAT expression was determined in mouse NIH 3T3, human HT1080, and mink CCL64 cultured cells transfected with the LTR-CAT constructs. The 700-base-pair (bp) LTRs of three polytropic MuLV-related proviral clones and the 750-bp LTRs of four modified polytropic proviral clones, in complete structures either with or without the adjacent downstream sequences, all showed very little or negligible activities for CAT expression, while ecotropic MuLV LTRs were highly active. The MuLV-related LTRs were divided into three portions and examined separately. The 3' portion of the MuLV-related LTRs that contains the CCAAC and TATAA boxes was found to be a functional promoter, being about one-half to one-third as active as the corresponding portion of ecotropic MuLV LTRs. A MboI-Bg/II fragment, representing the distinct 190- to 200-bp inserted segment in the middle, was found to be a potential enhancer, especially when examined in combination with the simian virus 40 promoter in CCL64 cells. A PstI-MboI fragment of the 5' portion, which contains the protein-binding motifs of the enhancer segment as well as the upstream LTR sequences, showed moderate enhancer activities in CCL6 cells but was virtually inactive in NIH 3T3 cells and HT1080 cells; addition of this fragment to the ecotropic LTR-CAT constructs depressed CAT expression. Further analyses using chimeric LTR constructs located the presence of a strong negative regulatory element within the region containing the 5' portion of the enhancer and the immediate upstream sequences in the MuLV-related LTRs. Images PMID:2542587

  18. Competitive PCR for Quantification of BM5d Proviral DNA in Mice with AIDS

    PubMed Central

    Casabianca, Anna; Vallanti, Giuliana; Magnani, Mauro

    1998-01-01

    Murine AIDS in C57BL/6 mice is caused by a unique mixture of murine leukemia viruses. We report the use of a competitive PCR to detect and quantitate BM5d proviral DNA. This assay allowed discrimination among endogenous wild-type murine retroviruses and BM5d sequences. Furthermore, the method was subsequently used to evaluate the amount of BM5d in infected mice and in infected AZT (zidovudine)-treated mice, providing an effective way to quantitatively evaluate drug efficacy in the murine AIDS model. PMID:9666028

  19. N-myc is frequently activated by proviral insertion in MuLV-induced T cell lymphomas.

    PubMed Central

    van Lohuizen, M; Breuer, M; Berns, A

    1989-01-01

    We report a new common proviral insertion site in murine leukemia virus-induced T cell lymphomas to be N-myc. Proviral activation of N-myc was found in 35% of independently induced primary tumors. The vast majority of the proviral insertions occur within a small segment of the 3'-untranslated region of the N-myc gene, directly downstream of the protein-encoding domain. This results in an increased level of expression of a truncated N-myc mRNA. Together with the previously shown c-myc activation we now find involvement of myc genes in greater than 75% of the primary T cell lymphomas induced by Moloney murine leukemia virus in C57BL10 and BALB/c mice, and show for the first time that N-myc can be over-expressed by a mechanism other than gene amplification. Images PMID:2653809

  20. Complete Summary of a Four-Part Research Project for the "I Like Me!" Program.

    ERIC Educational Resources Information Center

    Demoulin, Donald F.

    This report is a compilation of four different studies involving kindergartners (N=950) who participated in the "I LIKE ME!" program. I LIKE ME! is a 12-week program that uses a personalized reader with "I" statements as positive inducements for learning and achievement for kindergartners. The goals of the program are to bring home, school, and…

  1. Detection, purification, and characterization of two species of covalently closed circular proviral DNA molecules of bovine leukemia virus.

    PubMed Central

    Kashmiri, S V; Mehdi, R; Ferrer, J F

    1983-01-01

    Cocultivation of uninfected and bovine leukemia virus-producing bat cells yielded, in addition to the unintegrated linear DNA duplex, DNA molecules that migrated as 4.4- and 4.8-kilobase-pair DNA fragments in gel electrophoresis. These DNA molecules were purified by acid-phenol extraction and cleaved with restriction endonucleases EcoRI, and HindIII, which have one recognition site each on the bovine leukemia virus proviral DNA. Such cleavage generated DNA molecules of approximately 10.0 and 9.4 kilobase pairs, thus indicating the existence of two species of covalently closed circular molecules of bovine leukemia virus proviral DNA. Images PMID:6300454

  2. Patterns of proviral insertion and deletion in avian leukosis virus-induced lymphomas.

    PubMed Central

    Robinson, H L; Gagnon, G C

    1986-01-01

    Sixty-eight lymphomas induced by eight different avian leukosis viruses have been analyzed on Southern blots for virus-induced mutations in the chicken c-myc gene. Sixty-six of the lymphomas exhibited a proviral insertion in c-myc, whereas one exhibited a new transduction of c-myc. Sixty-four of the proviral insertions were in the same transcriptional orientation as c-myc. Two were in the opposite transcriptional orientation. All of the insertions were upstream of the protein-coding sequences of c-myc, with most residing in the first exon or the first intron of c-myc. All of the lymphoma-inducing proviruses had deletions that included either sequences near the 5' long terminal repeat (LTR) or an LTR. The most frequent lymphoma-inducing provirus appeared to have retained both of its LTRs, but had lost sequences near its 5' LTR. The second and third most frequent lymphoma-inducing proviruses consisted of solo LTRs or of proviruses that had lost the 5' LTR as well as some internal sequences. Twenty-four insertions were mapped in c-myc. Each of these mapped to within 150 base pairs of one of the five DNase I-hypersensitive sites that occur in a 3-kilobase region immediately 5' to the protein-coding sequences of c-myc. One lymphoma contained a new c-myc transducing virus. This virus, MYC-3475, caused rapid-onset myelocytomatosis. Images PMID:3001351

  3. Vaccination of rhesus macaques with a vif-deleted simian immunodeficiency virus proviral DNA vaccine

    SciTech Connect

    Sparger, Ellen E. Dubie, Robert A.; Shacklett, Barbara L.; Cole, Kelly S.; Chang, W.L.; Luciw, Paul A.

    2008-05-10

    Studies in non-human primates, with simian immunodeficiency virus (SIV) and simian/human immunodeficiency virus (SHIV) have demonstrated that live-attenuated viral vaccines are highly effective; however these vaccine viruses maintain a low level of pathogenicity. Lentivirus attenuation associated with deletion of the viral vif gene carries a significantly reduced risk for pathogenicity, while retaining the potential for virus replication of low magnitude in the host. This report describes a vif-deleted simian immunodeficiency virus (SIV)mac239 provirus that was tested as an attenuated proviral DNA vaccine by inoculation of female rhesus macaques. SIV-specific interferon-{gamma} enzyme-linked immunospot responses of low magnitude were observed after immunization with plasmid containing the vif-deleted SIV provirus. However, vaccinated animals displayed strong sustained virus-specific T cell proliferative responses and increasing antiviral antibody titers. These immune responses suggested either persistent vaccine plasmid expression or low level replication of vif-deleted SIV in the host. Immunized and unvaccinated macaques received a single high dose vaginal challenge with pathogenic SIVmac251. A transient suppression of challenge virus load and a greater median survival time was observed for vaccinated animals. However, virus loads for vaccinated and unvaccinated macaques were comparable by twenty weeks after challenge and overall survival curves for the two groups were not significantly different. Thus, a vif-deleted SIVmac239 proviral DNA vaccine is immunogenic and capable of inducing a transient suppression of pathogenic challenge virus, despite severe attenuation of the vaccine virus.

  4. Association of Sicca Syndrome with Proviral Load and Proinflammatory Cytokines in HTLV-1 Infection

    PubMed Central

    Lima, Clara Mônica; Santos, Silvane; Dourado, Adriana; Carvalho, Natália B.; Bittencourt, Valéria; Lessa, Marcus Miranda; Siqueira, Isadora; Carvalho, Edgar M.

    2016-01-01

    The Sjögren syndrome has been diagnosed in patients with HTLV-1 associated myelopathy and dry mouth and dry eyes are documented in HTLV-1 carriers. However the diagnosis of Sjögren syndrome in these subjects has been contested. In this cross-sectional study, we evaluated the role of immunological factors and proviral load, in sicca syndrome associated with HTLV-1 in patients without myelopathy. Subjects were recruited in the HTLV-1 Clinic, from 2009 to 2011. The proviral load and cytokine levels (IFN-γ, TNF-α, IL-5, and IL-10) were obtained from a database containing the values presented by the subjects at admission in the clinic. Of the 272 participants, 59 (21.7%) had sicca syndrome and in all of them anti-Sjögren syndrome related antigen A (SSA) and antigen B (SSB) were negatives. The production of TNF-α and IFN-γ was higher in the group with sicca syndrome (P < 0.05) than in HTLV-1 infected subjects without sicca syndrome. Our data indicates that patients with sicca syndrome associated with HTLV-1 do not have Sjögren syndrome. However the increased production of TNF-α and IFN-γ in this group of patients may contribute to the pathogenesis of sicca syndrome associated with HTLV-1. PMID:26904697

  5. Structural and phylogenetic analysis of the MHC class I-like Fc receptor gene

    SciTech Connect

    Kandil, Eman; Ishibashi, Teruo; Kasahara, Masanori

    1995-06-01

    The intestinal epithelium of neonatal mice and rats expresses an Fc receptor that mediates selective uptake of IgG in mothers`milk. This receptor (FcRn), which helps newborn animals to acquire passive immunity, is an MHC class I-like heterodimer made up of a heavy chain and {beta}{sub 2}-microglobulin. In the present study, we determined the genomic structure of a mouse gene (FcRn) encoding the heavy of FcRn. The overall exon-intron organization of the Fcrn gene was similar to that of the Fcrn gene, thus providing structural evidence that Fcrn os a bona fide class I gene. The 5{prime}-flanking region of the Fcrn gene contained the binding motifs for two cytokine-inducible transcription factors, NF-IL6 and NF1. However, regulatory elements found in MHC class I genes (enhancer A, enhancer B, and the IFN response element) were absent. Phylogenetic tree analysis suggested that, like the MICA, AZGP1, and CD1 genes, the Fcrn gene diverged form MHC class I genes after the emergence of amphibians but before the split of placental and marsupial mammals. Consistent with this result, Southern blot analysis with a mouse Fcrn cDNA probe detected cross-hybridizing bands in various mammalian species and chickens. Sequence analysis of the Fcrn gene isolated from eight mouse strains showed that the membrane-distal domain of FcRn has at least three amino acid variants. The fact that Fcrn is a single copy gene indicates that it is expressed in both the neonatal intestine and the fetal yolk sac. 74 refs., 7 figs., 2 tabs.

  6. Detection of a troponin I-like protein in non-striated muscle of the tardigrades (water bears).

    PubMed

    Obinata, Takashi; Ono, Kanako; Ono, Shoichiro

    2011-03-01

    Tardigrades, also known as water bears, have somatic muscle fibers that are responsible for movement of their body and legs. These muscle fibers contain thin and thick filaments in a non-striated pattern. However, the regulatory mechanism of muscle contraction in tardigrades is unknown. In the absence of extensive molecular and genomic information, we detected a protein of 31 kDa in whole lysates of tardigrades that cross-reacted with the antibody raised against nematode troponin I (TnI). TnI is a component of the troponin complex that regulates actin-myosin interaction in a Ca(2+)-dependent and actin-linked manner. This TnI-like protein was co-extracted with actin in a buffer containing ATP and EGTA, which is known to induce relaxation of a troponin-regulated contractile system. The TnI-like protein was specifically expressed in the somatic muscle fibers in adult animals and partially co-localized with actin filaments in a non-striated manner. Interestingly, the pharyngeal muscle did not express this protein. These observations suggest that the non-striated somatic muscle of tardigrades has an actin-linked and troponin-regulated system for muscle contraction.

  7. Detection of Bovine Leukaemia Virus Antibodies and Proviral DNA in Colostrum Replacers.

    PubMed

    Choudhury, B; Finnegan, C; Phillips, A; Horigan, M; Pollard, T; Steinbach, F

    2015-10-01

    Great Britain has been bovine leukaemia virus (BLV) disease free since 1999. We recently reported three separate incidents of BLV seropositivity on farms with home-reared cattle due to the use of colostrum replacer rather than infection with BLV (Emerg. Infect. Dis., 19, 2013, 1027). These cases were all linked via the use of the same brand of colostrum replacer. Here, we investigate further by examining multiple brands of colostrum replacer for proviral DNA and BLV antibodies. BLV antibodies were detected in 7 of the colostrum replacers tested, with PCR concurring in two cases. Thus, the use of these BLV antibody-positive colostrum replacers may also lead to false-positive serological diagnostics. PMID:24268042

  8. ADAR2 editing enzyme is a novel human immunodeficiency virus-1 proviral factor.

    PubMed

    Doria, Margherita; Tomaselli, Sara; Neri, Francesca; Ciafrè, Silvia Anna; Farace, Maria Giulia; Michienzi, Alessandro; Gallo, Angela

    2011-05-01

    The adenosine deaminases acting on RNA (ADAR) enzymes catalyse conversion of adenosine to inosine in dsRNA. A positive effect of ADAR1 on human immunodeficiency virus type 1 (HIV-1) replication has recently been reported. Here, we show that another ADAR enzyme, ADAR2, positively affects the replication process of HIV-1. We found that, analogously to ADAR1, ADAR2 enhances the release of progeny virions by an editing-dependent mechanism. However, differently from the ADAR1 enzyme, ADAR2 does not increase the infectious potential of the virus. Importantly, downregulation of ADAR2 in Jurkat cells significantly impairs viral replication. Therefore, ADAR2 shares some but not all proviral functions of ADAR1. These results suggest a novel role of ADAR2 as a viral regulator. PMID:21289159

  9. Investigation of the bovine leukemia virus proviral DNA in human leukemias and lung cancers in Korea.

    PubMed

    Lee, Jehoon; Kim, Yonggoo; Kang, Chang Suk; Cho, Dae Hyun; Shin, Dong Hwan; Yum, Young Na; Oh, Jae Ho; Kim, Sheen Hee; Hwang, Myung Sil; Lim, Chul Joo; Yang, Ki Hwa; Han, Kyungja

    2005-08-01

    The bovine leukemia virus (BLV) is the causative agent of enzootic bovine leucosis. This study investigated the presence of the BLV in leukemia (179 acute lymphoblastic leukemia, 292 acute myeloid leukemia and 46 chronic myelogenous leukemia cases) and 162 lung cancer patients (139 adenocarcinoma, 23 squamous cell carcinoma) to determine if the BLV is a causative organism of leukemia and lung cancer in Koreans. A BLV infection was confirmed in human cells by PCR using a BLV-8 primer combination. All 517 cases of human leukemia and 162 lung cancer were negative for a PCR of the BLV proviral DNA. In conclusion, although meat has been imported from BLV endemic areas, the BLV infection does not appear to be the cause of human leukemia or lung cancer in Koreans. These results can be used as a control for further studies on the BLV in Koreans. PMID:16100451

  10. Telomere Length, Proviral Load and Neurologic Impairment in HTLV-1 and HTLV-2-Infected Subjects.

    PubMed

    Usadi, Benjamin; Bruhn, Roberta; Lin, Jue; Lee, Tzong-Hae; Blackburn, Elizabeth; Murphy, Edward L

    2016-01-01

    Short or damaged telomeres have been implicated in degenerative conditions. We hypothesized that analysis of telomere length (TL) in human T-cell lymphotropic virus (HTLV) infection and HTLV-associated neuropathy might provide clues to the etiology of HTLV-associated disease and viral dynamics. A subset of 45 human T-cell lymphotropic virus type 1 (HTLV-1), 45 human T-cell lymphotropic virus type 2 (HTLV-2), and 45 seronegative subjects was selected from the larger HTLV Outcomes Study (HOST) cohort, matched on age, sex and race/ethnicity. Telomere-to-single-copy gene (T/S) ratio (a measure of TL) and HTLV-1 and HTLV-2 proviral loads were measured in peripheral blood mononuclear cells (PBMCs) using quantitative PCR (qPCR). Vibration sensation measured by tuning fork during neurologic examinations performed as part of the HOST study allowed for an assessment of peripheral neuropathy. TL was compared between groups using t-tests, linear and logistic regression. Mean T/S ratio was 1.02 ± 0.16 in HTLV-1, 1.03 ± 0.17 in HTLV-2 and 0.99 ± 0.18 in HTLV seronegative subjects (p = 0.322). TL was not associated with HTLV-1 or -2 proviral load. Shorter TL was significantly associated with impaired vibration sense in the HTLV-2 positive group only. Overall, we found no evidence that telomere length was affected by chronic HTLV-1 and HTLV-2 infection. That TL was only associated with peripheral neuropathy in the HTLV-2-positive group is intriguing, but should be interpreted cautiously. Studies with larger sample size and telomere length measurement in lymphocyte subsets may clarify the relationship between TL and HTLV-infection. PMID:27529270

  11. Telomere Length, Proviral Load and Neurologic Impairment in HTLV-1 and HTLV-2-Infected Subjects

    PubMed Central

    Usadi, Benjamin; Bruhn, Roberta; Lin, Jue; Lee, Tzong-Hae; Blackburn, Elizabeth; Murphy, Edward L.

    2016-01-01

    Short or damaged telomeres have been implicated in degenerative conditions. We hypothesized that analysis of telomere length (TL) in human T-cell lymphotropic virus (HTLV) infection and HTLV-associated neuropathy might provide clues to the etiology of HTLV-associated disease and viral dynamics. A subset of 45 human T-cell lymphotropic virus type 1 (HTLV-1), 45 human T-cell lymphotropic virus type 2 (HTLV-2), and 45 seronegative subjects was selected from the larger HTLV Outcomes Study (HOST) cohort, matched on age, sex and race/ethnicity. Telomere-to-single-copy gene (T/S) ratio (a measure of TL) and HTLV-1 and HTLV-2 proviral loads were measured in peripheral blood mononuclear cells (PBMCs) using quantitative PCR (qPCR). Vibration sensation measured by tuning fork during neurologic examinations performed as part of the HOST study allowed for an assessment of peripheral neuropathy. TL was compared between groups using t-tests, linear and logistic regression. Mean T/S ratio was 1.02 ± 0.16 in HTLV-1, 1.03 ± 0.17 in HTLV-2 and 0.99 ± 0.18 in HTLV seronegative subjects (p = 0.322). TL was not associated with HTLV-1 or -2 proviral load. Shorter TL was significantly associated with impaired vibration sense in the HTLV-2 positive group only. Overall, we found no evidence that telomere length was affected by chronic HTLV-1 and HTLV-2 infection. That TL was only associated with peripheral neuropathy in the HTLV-2-positive group is intriguing, but should be interpreted cautiously. Studies with larger sample size and telomere length measurement in lymphocyte subsets may clarify the relationship between TL and HTLV-infection. PMID:27529270

  12. Functional genomics in the mouse.

    PubMed

    Perkins, Archibald S

    2002-08-01

    The mouse is the premier genetic model organism for the study of human disease and development. With the recent advances in sequencing of the human and mouse genomes, there is strong interest now in large-scale approaches to decipher the function of mouse genes using various mutagenesis technologies. This review discusses what tools are currently available for manipulating and mutagenizing the mouse genome, such as ethylnitrosourea and gene trap mutagenesis, engineered inversions and deletions using the cre-lox system, and proviral insertional mutagenesis in somatic cells, and how these are being used to uncover gene function.

  13. Differential regulation of NF-κB-mediated proviral and antiviral host gene expression by primate lentiviral Nef and Vpu proteins.

    PubMed

    Sauter, Daniel; Hotter, Dominik; Van Driessche, Benoît; Stürzel, Christina M; Kluge, Silvia F; Wildum, Steffen; Yu, Hangxing; Baumann, Bernd; Wirth, Thomas; Plantier, Jean-Christophe; Leoz, Marie; Hahn, Beatrice H; Van Lint, Carine; Kirchhoff, Frank

    2015-02-01

    NF-κB is essential for effective transcription of primate lentiviral genomes and also activates antiviral host genes. Here, we show that the early protein Nef of most primate lentiviruses enhances NF-κB activation. In contrast, the late protein Vpu of HIV-1 and its simian precursors inhibits activation of NF-κB, even in the presence of Nef. Although this effect of Vpu did not correlate with its ability to interact with β-TrCP, it involved the stabilization of IκB and reduced nuclear translocation of p65. Interestingly, however, Vpu did not affect casein kinase II-mediated phosphorylation of p65. Lack of Vpu was associated with increased NF-κB activation and induction of interferon and interferon-stimulated genes (ISGs) in HIV-1-infected T cells. Thus, HIV-1 and its simian precursors employ Nef to boost NF-κB activation early during the viral life cycle to initiate proviral transcription, while Vpu is used to downmodulate NF-κB-dependent expression of ISGs at later stages.

  14. Identification of full-length proviral DNA of porcine endogenous retrovirus from Chinese Wuzhishan miniature pigs inbred.

    PubMed

    Ma, Yuyuan; Lv, Maomin; Xu, Shu; Wu, Jianmin; Tian, Kegong; Zhang, Jingang

    2010-07-01

    Existence of porcine endogenous retrovirus (PERV) hinders pigs to be used in clinical xenotransplantation to alleviate the shortage of human transplants. Chinese miniature pigs are potential organ donors for xenotransplantation in China. However, so far, an adequate level of information on the molecular characteristics of PERV from Chinese miniature pigs has not been available. We described here the cloning and characterization of full-length proviral DNA of PERV from Chinese Wuzhishan miniature pigs inbred (WZSP). Full-length nucleotide sequences of PERV-WZSP and other PERVs were aligned and phylogenetic tree was constructed from deduced amino-acid sequences of env. The results demonstrated that the full-length proviral DNA of PERV-WZSP belongs to gammaretrovirus and shares high similarity with other PERVs. Sequence analysis also suggested that different patterns of LTR existed in the same porcine germ line and partial PERV-C sequence may recombine with PERV-A sequence in LTR.

  15. A common proviral integration region, fit-1, in T-cell tumors induced by myc-containing feline leukemia viruses.

    PubMed

    Tsujimoto, H; Fulton, R; Nishigaki, K; Matsumoto, Y; Hasegawa, A; Tsujimoto, A; Cevario, S; O'Brien, S J; Terry, A; Onions, D

    1993-10-01

    Feline leukemia viruses carrying transduced v-myc genes (myc-FeLV) induce tumors of clonal origin, suggesting that activated myc alone is not sufficient for tumorigenesis. To investigate the hypothesis that insertional mutagenesis plays a role by activating genes which collaborate with v-myc, we looked for evidence of common proviral integration sites in these tumors. By inverse polymerase chain reaction we identified a 6-kb domain, designated fit-1, in which FeLV proviruses were inserted in four of nine (44%) T-cell tumors induced by myc-FeLV. The fit-1 locus was mapped to feline chromosome B2 and appears to be distinct from known oncogenes located on this chromosome. Fit-1 represents a novel common proviral integration region which may harbor a cellular gene which acts in concert with the myc gene in T-cell tumorigenesis. PMID:8396812

  16. APOBEC3H Haplotypes and HIV-1 Pro-Viral vif DNA Sequence Diversity in Early Untreated HIV-1 Infection

    PubMed Central

    Gourraud, PA; Karaouni, A; Woo, JM; Schmidt, T; Oksenberg, JR; Hecht, FM; Liegler, TJ; Barbour, JD

    2011-01-01

    We examined single nucleotide polymorphisms (SNP) in the APOBEC3 locus on chromosome 22, paired to population sequences of pro-viral HIV-1 vif of peripheral blood mononuclear cells (PBMC), from 96 recently HIV-1 infected treatment naïve adults. We found evidence for the existence of an APOBEC3H linkage disequilibrium (LD) block associated with variation in GA->AA, or APOBEC3F signature, sequence changes in pro-viral HIV-1 vif sequence (top significant 10 SNPs with a top-significant p=4.8×10−3). We identified a common 5 position risk haplotype distal to APOBEC3H (A3Hrh). These markers were in high LD (D′ = 1; r2=0.98) to a previously described A3H ‘RED’ haplotype containing a variant (E121) with enhanced susceptibility to HIV-1 Vif (Zhen et al 2009 [1]). This association is confirmed by a haplotype analysis: Homozygote carriers of the A3Hrh had lower GA->AA (A3F) sequence editing on pro-viral HIV-1 vif sequence (p = 0.01), and lower HIV-1 RNA levels over time during early, untreated HIV-1 infection, (p = 0.015 mixed effects model). This effect may be due to enhanced susceptibility of A3H forms to HIV-1 Vif mediated viral suppression of sequence editing activity, slowing viral diversification and escape from immune responses. PMID:21167246

  17. Estimation of bovine leukemia virus (BLV) proviral load harbored by lymphocyte subpopulations in BLV-infected cattle at the subclinical stage of enzootic bovine leucosis using BLV-CoCoMo-qPCR

    PubMed Central

    2013-01-01

    Background Bovine leukemia virus (BLV) is associated with enzootic bovine leukosis (EBL), which is the most common neoplastic disease of cattle. BLV infection may remain clinically silent at the aleukemic (AL) stage, cause persistent lymphocytosis (PL), or, more rarely, B cell lymphoma. BLV has been identified in B cells, CD2+ T cells, CD3+ T cells, CD4+ T cells, CD8+ T cells, γ/δ T cells, monocytes, and granulocytes in infected cattle that do not have tumors, although the most consistently infected cell is the CD5+ B cell. The mechanism by which BLV causes uncontrolled CD5+ B cell proliferation is unknown. Recently, we developed a new quantitative real-time polymerase chain reaction (PCR) method, BLV-CoCoMo-qPCR, which enabled us to demonstrate that the proviral load correlates not only with BLV infection, as assessed by syncytium formation, but also with BLV disease progression. The present study reports the distribution of BLV provirus in peripheral blood mononuclear cell subpopulations isolated from BLV-infected cows at the subclinical stage of EBL as examined by cell sorting and BLV-CoCoMo-qPCR. Results Phenotypic characterization of five BLV-infected but clinically normal cattle with a proviral load of > 100 copies per 1 × 105 cells identified a high percentage of CD5+ IgM+ cells (but not CD5- IgM+ B cells, CD4+ T cells, or CD8+T cells). These lymphocyte subpopulations were purified from three out of five cattle by cell sorting or using magnetic beads, and the BLV proviral load was estimated using BLV-CoCoMo-qPCR. The CD5+ IgM+ B cell population in all animals harbored a higher BLV proviral load than the other cell populations. The copy number of proviruses infecting CD5- IgM+ B cells, CD4+ cells, and CD8+ T cells (per 1 ml of blood) was 1/34 to 1/4, 1/22 to 1/3, and 1/31 to 1/3, respectively, compared with that in CD5+ IgM+ B cells. Moreover, the BLV provirus remained integrated into the genomic DNA of CD5+ IgM+ B cells, CD5- IgM+ B cells, CD4+ T

  18. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs

    PubMed Central

    Karlas, Alexander; Berre, Stefano; Couderc, Thérèse; Varjak, Margus; Braun, Peter; Meyer, Michael; Gangneux, Nicolas; Karo-Astover, Liis; Weege, Friderike; Raftery, Martin; Schönrich, Günther; Klemm, Uwe; Wurzlbauer, Anne; Bracher, Franz; Merits, Andres; Meyer, Thomas F.; Lecuit, Marc

    2016-01-01

    Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the cellular pathways in which human proviral genes are involved and identify druggable targets. Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA, have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-of-function screening and pathway analysis for the rational identification of small molecules with therapeutic potential and pave the way for the development of new, host-directed, antiviral agents. PMID:27177310

  19. Regulated expression of mouse mammary tumor proviral genes in cells of the B lineage

    PubMed Central

    1991-01-01

    We evaluated the expression of mouse mammary tumor proviral (MMTV) transcripts during B cell ontogeny and compared levels of RNA in B lymphocytes and B cell lines with levels in other cells of the hematopoietic lineage and in a mammary cell line. We demonstrate that MMTV transcripts are expressed as early as the pro-B cell stage in ontogeny and are expressed at basal constitutive levels throughout most of the B cell developmental pathway. The level of MMTV expression in B cells is similar to constitutive levels in mammary tissues and two to three orders of magnitude greater than in activated T cells. Levels of MMTV transcripts in B cells are not solely due to positional effects. Transient transfection assays showed that MMTV upregulation resulted from transcriptional activation of the viral LTR, indicating that there are specific and inducible transcription factors that regulate MMTV expression in B cells. MMTV transcripts could not be upregulated in pre- B cell lines but could be induced in some mature B cell lines. There was a correlation between the ability to stimulate B cells to secrete antibody and the ability to induce upregulated MMTV expression. Evidence is presented that suggests that the principal transcription factors involved in MMTV expression do not include the B cell factors OTF-2 or NF-kappa B, but rather are likely to be novel factors that are induced during differentiation to antibody secretion. A hypothesis for why mammary tumor viruses are well adapted for expression in cells of the B lineage is proposed, and the implications of this for the documented influence of MMTV gene products on the T cell repertoire are discussed. PMID:1660524

  20. Kinetics of HIV-1 CTL epitopes recognized by HLA I alleles in HIV-infected individuals at times near primary infection: the Provir/Latitude45 study.

    PubMed

    Papuchon, Jennifer; Pinson, Patricia; Guidicelli, Gwenda-Line; Bellecave, Pantxika; Thomas, Réjean; LeBlanc, Roger; Reigadas, Sandrine; Taupin, Jean-Luc; Baril, Jean Guy; Routy, Jean Pierre; Wainberg, Mark; Fleury, Hervé

    2014-01-01

    In patients responding successfully to ART, the next therapeutic step is viral cure. An interesting strategy is antiviral vaccination, particularly involving CD8 T cell epitopes. However, attempts at vaccination are dependent on the immunogenetic background of individuals. The Provir/Latitude 45 project aims to investigate which CTL epitopes in proviral HIV-1 will be recognized by the immune system when HLA alleles are taken into consideration. A prior study (Papuchon et al, PLoS ONE 2013) showed that chronically-infected patients under successful ART exhibited variations of proviral CTL epitopes compared to a reference viral strain (HXB2) and that a generic vaccine may not be efficient. Here, we investigated viral and/or proviral CTL epitopes at different time points in recently infected individuals of the Canadian primary HIV infection cohort and assessed the affinity of these epitopes for HLA alleles during the study period. An analysis of the results confirms that it is not possible to fully predict which epitopes will be recognized by the HLA alleles of the patients if the reference sequences and epitopes are taken as the basis of simulation. Epitopes may be seen to vary in circulating RNA and proviral DNA. Despite this confirmation, the overall variability of the epitopes was low in these patients who are temporally close to primary infection.

  1. Genetic determinants of feline leukemia virus-induced lymphoid tumors: patterns of proviral insertion and gene rearrangement.

    PubMed

    Tsatsanis, C; Fulton, R; Nishigaki, K; Tsujimoto, H; Levy, L; Terry, A; Spandidos, D; Onions, D; Neil, J C

    1994-12-01

    The genetic basis of feline leukemia virus (FeLV)-induced lymphoma was investigated in a series of 63 lymphoid tumors and tumor cell lines of presumptive T-cell origin. These were examined for virus-induced rearrangements of the c-myc, flvi-2 (bmi-1), fit-1, and pim-1 loci, for T-cell receptor (TCR) gene rearrangements, and for the presence of env recombinant FeLV (FeLV-B). The myc locus was most frequently affected in naturally occurring lymphomas (32%; n = 38) either by transduction (21%) or by proviral insertion (11%). Proviral insertions were also common at flvi-2 (24%). The two other loci were occupied in a smaller number of the naturally occurring tumors (fit-1, 8%; pim-1, 5%). Examination of the entire set of tumors showed that significant numbers were affected at two (19%) or three (5%) of the loci. Occupation of the fit-1 locus was observed most frequently in tumors induced by FeLV-myc strains, while flvi-2 insertions occurred with similar frequency in the presence or absence of obvious c-myc activation. These results suggest a hierarchy of mutational events in the genesis of feline T-cell lymphomas by FeLV and implicate insertion at fit-1 as a late progression step. The strongest links observed were with T-cell development, as monitored by rearrangement status of the TCR beta-chain gene, which was positively associated with activation of myc (P < 0.001), and with proviral insertion at flvi-2 (P = 0.02). This analysis also revealed a genetically distinct subset of thymic lymphomas with unrearranged TCR beta-chain genes in which the known target loci were involved very infrequently. The presence of env recombinant FeLV (FeLV-B) showed a negative correlation with proviral insertion at fit-1, possibly due to the rapid onset of these tumors. These results shed further light on the multistep process of FeLV leukemogenesis and the relationships between lymphoid cell maturation and susceptibility to FeLV transformation.

  2. Genetic determinants of feline leukemia virus-induced lymphoid tumors: patterns of proviral insertion and gene rearrangement.

    PubMed

    Tsatsanis, C; Fulton, R; Nishigaki, K; Tsujimoto, H; Levy, L; Terry, A; Spandidos, D; Onions, D; Neil, J C

    1994-12-01

    The genetic basis of feline leukemia virus (FeLV)-induced lymphoma was investigated in a series of 63 lymphoid tumors and tumor cell lines of presumptive T-cell origin. These were examined for virus-induced rearrangements of the c-myc, flvi-2 (bmi-1), fit-1, and pim-1 loci, for T-cell receptor (TCR) gene rearrangements, and for the presence of env recombinant FeLV (FeLV-B). The myc locus was most frequently affected in naturally occurring lymphomas (32%; n = 38) either by transduction (21%) or by proviral insertion (11%). Proviral insertions were also common at flvi-2 (24%). The two other loci were occupied in a smaller number of the naturally occurring tumors (fit-1, 8%; pim-1, 5%). Examination of the entire set of tumors showed that significant numbers were affected at two (19%) or three (5%) of the loci. Occupation of the fit-1 locus was observed most frequently in tumors induced by FeLV-myc strains, while flvi-2 insertions occurred with similar frequency in the presence or absence of obvious c-myc activation. These results suggest a hierarchy of mutational events in the genesis of feline T-cell lymphomas by FeLV and implicate insertion at fit-1 as a late progression step. The strongest links observed were with T-cell development, as monitored by rearrangement status of the TCR beta-chain gene, which was positively associated with activation of myc (P < 0.001), and with proviral insertion at flvi-2 (P = 0.02). This analysis also revealed a genetically distinct subset of thymic lymphomas with unrearranged TCR beta-chain genes in which the known target loci were involved very infrequently. The presence of env recombinant FeLV (FeLV-B) showed a negative correlation with proviral insertion at fit-1, possibly due to the rapid onset of these tumors. These results shed further light on the multistep process of FeLV leukemogenesis and the relationships between lymphoid cell maturation and susceptibility to FeLV transformation. PMID:7966623

  3. Analysis of the Prevalence of HTLV-1 Proviral DNA in Cervical Smears and Carcinomas from HIV Positive and Negative Kenyan Women.

    PubMed

    He, Xiaotong; Maranga, Innocent O; Oliver, Anthony W; Gichangi, Peter; Hampson, Lynne; Hampson, Ian N

    2016-01-01

    The oncogenic retrovirus human T-cell lymphotropic virus type 1 (HTLV-1) is endemic in some countries although its prevalence and relationship with other sexually transmitted infections in Sub-Saharan Africa is largely unknown. A novel endpoint PCR method was used to analyse the prevalence of HTLV-1 proviral DNA in genomic DNA extracted from liquid based cytology (LBC) cervical smears and invasive cervical carcinomas (ICCs) obtained from human immunodeficiency virus-positive (HIV+ve) and HIV-negative (HIV-ve) Kenyan women. Patient sociodemographic details were recorded by structured questionnaire and these data analysed with respect to HIV status, human papillomavirus (HPV) type (Papilocheck(®)) and cytology. This showed 22/113 (19.5%) of LBC's from HIV+ve patients were positive for HTLV-1 compared to 4/111 (3.6%) of those from HIV-ve women (p = 0.0002; odds ratio (OR) = 6.42 (2.07-26.56)). Only 1/37 (2.7%) of HIV+ve and none of the 44 HIV-ve ICC samples were positive for HTLV-1. There was also a significant correlation between HTLV-1 infection, numbers of sexual partners (p < 0.05) and smoking (p < 0.01). Using this unique method, these data suggest an unexpectedly high prevalence of HTLV-1 DNA in HIV+ve women in this geographical location. However, the low level of HTLV-1 detected in HIV+ve ICC samples was unexpected and the reasons for this are unclear. PMID:27608036

  4. Analysis of the Prevalence of HTLV-1 Proviral DNA in Cervical Smears and Carcinomas from HIV Positive and Negative Kenyan Women

    PubMed Central

    He, Xiaotong; Maranga, Innocent O.; Oliver, Anthony W.; Gichangi, Peter; Hampson, Lynne; Hampson, Ian N.

    2016-01-01

    The oncogenic retrovirus human T-cell lymphotropic virus type 1 (HTLV-1) is endemic in some countries although its prevalence and relationship with other sexually transmitted infections in Sub-Saharan Africa is largely unknown. A novel endpoint PCR method was used to analyse the prevalence of HTLV-1 proviral DNA in genomic DNA extracted from liquid based cytology (LBC) cervical smears and invasive cervical carcinomas (ICCs) obtained from human immunodeficiency virus-positive (HIV+ve) and HIV-negative (HIV−ve) Kenyan women. Patient sociodemographic details were recorded by structured questionnaire and these data analysed with respect to HIV status, human papillomavirus (HPV) type (Papilocheck®) and cytology. This showed 22/113 (19.5%) of LBC’s from HIV+ve patients were positive for HTLV-1 compared to 4/111 (3.6%) of those from HIV−ve women (p = 0.0002; odds ratio (OR) = 6.42 (2.07–26.56)). Only 1/37 (2.7%) of HIV+ve and none of the 44 HIV−ve ICC samples were positive for HTLV-1. There was also a significant correlation between HTLV-1 infection, numbers of sexual partners (p < 0.05) and smoking (p < 0.01). Using this unique method, these data suggest an unexpectedly high prevalence of HTLV-1 DNA in HIV+ve women in this geographical location. However, the low level of HTLV-1 detected in HIV+ve ICC samples was unexpected and the reasons for this are unclear. PMID:27608036

  5. Pulmonary surfactant mitigates silver nanoparticle toxicity in human alveolar type-I-like epithelial cells.

    PubMed

    Sweeney, Sinbad; Leo, Bey Fen; Chen, Shu; Abraham-Thomas, Nisha; Thorley, Andrew J; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng Jim; Shaffer, Milo S P; Chung, Kian Fan; Ryan, Mary P; Porter, Alexandra E; Tetley, Teresa D

    2016-09-01

    Accompanying increased commercial applications and production of silver nanomaterials is an increased probability of human exposure, with inhalation a key route. Nanomaterials that deposit in the pulmonary alveolar region following inhalation will interact firstly with pulmonary surfactant before they interact with the alveolar epithelium. It is therefore critical to understand the effects of human pulmonary surfactant when evaluating the inhalation toxicity of silver nanoparticles. In this study, we evaluated the toxicity of AgNPs on human alveolar type-I-like epithelial (TT1) cells in the absence and presence of Curosurf(®) (a natural pulmonary surfactant substitute), hypothesising that the pulmonary surfactant would act to modify toxicity. We demonstrated that 20nm citrate-capped AgNPs induce toxicity in human alveolar type I-like epithelial cells and, in agreement with our hypothesis, that pulmonary surfactant acts to mitigate this toxicity, possibly through reducing AgNP dissolution into cytotoxic Ag(+) ions. For example, IL-6 and IL-8 release by TT1 cells significantly increased 10.7- and 35-fold, respectively (P<0.01), 24h after treatment with 25μg/ml AgNPs. In contrast, following pre-incubation of AgNPs with Curosurf(®), this effect was almost completely abolished. We further determined that the mechanism of this toxicity is likely associated with Ag(+) ion release and lysosomal disruption, but not with increased reactive oxygen species generation. This study provides a critical understanding of the toxicity of AgNPs in target human alveolar type-I-like epithelial cells and the role of pulmonary surfactant in mitigating this toxicity. The observations reported have important implications for the manufacture and application of AgNPs, in particular for applications involving use of aerosolised AgNPs.

  6. Molecular mechanisms of viral inhibitors of RIG-I-like receptors

    PubMed Central

    Leung, Daisy W.; Basler, Christopher F.; Amarasinghe, Gaya K.

    2012-01-01

    Activation of innate immune signaling pathways through cytosolic RIG-I like receptors (RLR) is a critical response that is antagonized by many viruses. A variety of RNA related pathogen associated molecular patterns have been identified and their role in RLR activation has been examined. Recent studies suggest that several virally encoded components that antagonize RLR signaling interact with and inhibit the interferon (IFN)-α/β activation pathway using both RNA-dependent and RNA-independent mechanisms. The structural basis for these RLR inhibitory mechanisms, as well as the multifunctional nature of viral RLR antagonists, is reviewed in the context of recent biochemical and structural studies. PMID:22325030

  7. "At First I Just Said 'I Like Girls'": Coming out with an Affinity, Not an Identity

    ERIC Educational Resources Information Center

    Guittar, Nicholas A.

    2014-01-01

    Contemporary youth are increasingly engaging in coming out prior to the formation of concrete sexual identities. They are coming out with an "affinity:" affirming to themselves and expressing to others that "I like girls" or "I like boys." This study centers on the experiences of 13 individuals who all came out with…

  8. MHC class I-like genes in cattle, MHCLA, with similarity to genes encoding NK cell stimulatory ligands.

    PubMed

    Larson, Joshua H; Rebeiz, Mark J; Stiening, Chad M; Windish, Ryan L; Beever, Jonathan E; Lewin, Harris A

    2003-04-01

    A comparative genomics approach for mining databases of expressed sequence tags (ESTs) was used to identify two members of a novel MHC class I gene family in cattle. These paralogous genes, named MHC class I-like gene family A1 ( MHCLA1) and MHCLA2, were shown by phylogenetic analysis to be related to human and mouse genes encoding NK cell stimulatory ligands, ULBP, RAET, H60 and Raet-1. Radiation hybrid mapping placed cattle MHCLA1 on BTA9, which, on the basis of existing comparative mapping data, identified the ULBP, RAET1, H60 and Raet1 genes as homologues of the cattle MHCLA genes. However, the human and mouse orthologues of MHCLA1 and MHCLA2 could not be defined due to extensive sequence divergence from all known members of the ULBP1/ RAET1/H60/Raet1 gene family. The cattle MHCLA1 molecule is predicted to be missing an alpha(3) domain, similar to the human and mouse homologues. Like the human ULBP genes, MHCLA1 was found to be transcribed constitutively in a variety of fetal and adult tissues by RT-PCR. The patterns of hybridization obtained by Southern blotting using MHCLA1 as a probe and DNA from 14 species representing five mammalian orders suggests that the MHCLA genes evolved rapidly in the Cetartiodactyla. Previous findings demonstrating that ULBPs serve as ligands for the NK cell NKG2D stimulatory receptor, and that this interaction can be blocked by a human cytomegalovirus glycoprotein that binds to ULBPs, suggests that the extensive divergence found among the cattle, human and mouse MHCLA homologues is due to selection exerted by viral pathogens.

  9. The Z Proteins of Pathogenic but Not Nonpathogenic Arenaviruses Inhibit RIG-i-Like Receptor-Dependent Interferon Production

    PubMed Central

    Xing, Junji; Ly, Hinh

    2014-01-01

    ABSTRACT Arenavirus pathogens cause a wide spectrum of diseases in humans ranging from central nervous system disease to lethal hemorrhagic fevers with few treatment options. The reason why some arenaviruses can cause severe human diseases while others cannot is unknown. We find that the Z proteins of all known pathogenic arenaviruses, lymphocytic choriomeningitis virus (LCMV) and Lassa, Junin, Machupo, Sabia, Guanarito, Chapare, Dandenong, and Lujo viruses, can inhibit retinoic acid-inducible gene 1 (RIG-i) and Melanoma Differentiation-Associated protein 5 (MDA5), in sharp contrast to those of 14 other nonpathogenic arenaviruses. Inhibition of the RIG-i-like receptors (RLRs) by pathogenic Z proteins is mediated by the protein-protein interactions of Z and RLRs, which lead to the disruption of the interactions between RLRs and mitochondrial antiviral signaling (MAVS). The Z-RLR interactive interfaces are located within the N-terminal domain (NTD) of the Z protein and the N-terminal CARD domains of RLRs. Swapping of the LCMV Z NTD into the nonpathogenic Pichinde virus (PICV) genome does not affect virus growth in Vero cells but significantly inhibits the type I interferon (IFN) responses and increases viral replication in human primary macrophages. In summary, our results show for the first time an innate immune-system-suppressive mechanism shared by the diverse pathogenic arenaviruses and thus shed important light on the pathogenic mechanism of human arenavirus pathogens. IMPORTANCE We show that all known human-pathogenic arenaviruses share an innate immune suppression mechanism that is based on viral Z protein-mediated RLR inhibition. Our report offers important insights into the potential mechanism of arenavirus pathogenesis, provides a convenient way to evaluate the pathogenic potential of known and/or emerging arenaviruses, and reveals a novel target for the development of broad-spectrum therapies to treat this group of diverse pathogens. More broadly, our

  10. RIG-I-like receptor regulation in virus infection and immunity

    PubMed Central

    Chan, Ying Kai; Gack, Michaela U

    2016-01-01

    Mammalian cells have the intrinsic capacity to detect viral pathogens and to initiate an antiviral response that is characterized by the induction of interferons (IFNs) and proinflammatory cytokines. A delicate regulation of the signaling pathways that lead to cytokine production is needed to ensure effective clearance of the virus, while preventing tissue damage caused by excessive cytokine release. Here, we focus on the mechanisms that modulate the signal transduction triggered by RIG-I-like receptors (RLRs) and their adaptor protein MAVS, key components of the host machinery for sensing foreign RNA. Specifically, we summarize recent advances in understanding how RLR signaling is regulated by posttranslational and posttranscriptional mechanisms, microRNAs (miRNAs) and autophagy. We further discuss how viruses target these regulatory mechanisms for immune evasion. PMID:25644461

  11. Viral MHC class I-like molecule allows evasion of NK cell effector responses in vivo.

    PubMed

    Pyzik, Michal; Dumaine, Anne; Dumaine, Anne A; Charbonneau, Benoît; Fodil-Cornu, Nassima; Jonjic, Stipan; Vidal, Silvia M

    2014-12-15

    The outcome of mouse CMV (MCMV) infection varies among different inbred mouse strains depending on NK cell effector functions governed through recognition receptor triggering. NK cells from different mouse strains possess diverse repertoires of activating or inhibitory Ly49 receptors, which share some of their polymorphic MHC class I (MHC-I) ligands. By examining the NK cell response to MCMV infection in novel BALB substrains congenic for different MHC (or H-2 in mice) haplotypes, we show that recognition of viral MHC-I-like protein m157 by inhibitory Ly49C receptor allows escape from NK cell control of viral replication. Dominant inhibition by Ly49C bound to self-H-2(b) encoded MHC-I molecules masks this effect, which only becomes apparent in distinct H-2 haplotypes, such as H-2(f). The recognition of m157-expressing cells by Ly49C resulted in both decreased NK cell killing in vitro and reduced rejection in vivo. Further, control of infection with m157-deletant (Δm157) MCMV was improved in mice carrying H-2 molecules unrecognized by Ly49C but allowing expansion of NK cell effectors expressing activating Ly49L receptors. Hence, our study is the first, to our knowledge, to demonstrate that MHC-I mimicry strategies used by MCMV to avoid NK cell control are biologically relevant during in vivo viral infection. Of value for human studies is that only a few genetic assortments conditional on the repertoires of viral MHC-I-like proteins/host NK receptors/MHC haplotypes should allow efficient protection against CMV infection.

  12. Cancer therapies activate RIG-I-like receptor pathway through endogenous non-coding RNAs.

    PubMed

    Ranoa, Diana Rose E; Parekh, Akash D; Pitroda, Sean P; Huang, Xiaona; Darga, Thomas; Wong, Anthony C; Huang, Lei; Andrade, Jorge; Staley, Jonathan P; Satoh, Takashi; Akira, Shizuo; Weichselbaum, Ralph R; Khodarev, Nikolai N

    2016-05-01

    Emerging evidence indicates that ionizing radiation (IR) and chemotherapy activate Type I interferon (IFN) signaling in tumor and host cells. However, the mechanism of induction is poorly understood. We identified a novel radioprotective role for the DEXH box RNA helicase LGP2 (DHX58) through its suppression of IR-induced cytotoxic IFN-beta [1]. LGP2 inhibits activation of the RIG-I-like receptor (RLR) pathway upon binding of viral RNA to the cytoplasmic sensors RIG-I (DDX58) and MDA5 (IFIH1) and subsequent IFN signaling via the mitochondrial adaptor protein MAVS (IPS1). Here we show that MAVS is necessary for IFN-beta induction and interferon-stimulated gene expression in the response to IR. Suppression of MAVS conferred radioresistance in normal and cancer cells. Germline deletion of RIG-I, but not MDA5, protected mice from death following total body irradiation, while deletion of LGP2 accelerated the death of irradiated animals. In human tumors depletion of RIG-I conferred resistance to IR and different classes of chemotherapy drugs. Mechanistically, IR stimulated the binding of cytoplasmic RIG-I with small endogenous non-coding RNAs (sncRNAs), which triggered IFN-beta activity. We demonstrate that the small nuclear RNAs U1 and U2 translocate to the cytoplasm after IR treatment, thus stimulating the formation of RIG-I: RNA complexes and initiating downstream signaling events. Taken together, these findings suggest that the physiologic responses to radio-/chemo-therapy converge on an antiviral program in recruitment of the RLR pathway by a sncRNA-dependent activation of RIG-I which commences cytotoxic IFN signaling. Importantly, activation of interferon genes by radiation or chemotherapy is associated with a favorable outcome in patients undergoing treatment for cancer. To our knowledge, this is the first demonstration of a cell-intrinsic response to clinically relevant genotoxic treatments mediated by an RNA-dependent mechanism.

  13. Cancer therapies activate RIG-I-like receptor pathway through endogenous non-coding RNAs

    PubMed Central

    Ranoa, Diana Rose E.; Parekh, Akash D.; Pitroda, Sean P.; Huang, Xiaona; Darga, Thomas; Wong, Anthony C.; Huang, Lei; Andrade, Jorge; Staley, Jonathan P.; Satoh, Takashi; Akira, Shizuo

    2016-01-01

    Emerging evidence indicates that ionizing radiation (IR) and chemotherapy activate Type I interferon (IFN) signaling in tumor and host cells. However, the mechanism of induction is poorly understood. We identified a novel radioprotective role for the DEXH box RNA helicase LGP2 (DHX58) through its suppression of IR-induced cytotoxic IFN-beta [1]. LGP2 inhibits activation of the RIG-I-like receptor (RLR) pathway upon binding of viral RNA to the cytoplasmic sensors RIG-I (DDX58) and MDA5 (IFIH1) and subsequent IFN signaling via the mitochondrial adaptor protein MAVS (IPS1). Here we show that MAVS is necessary for IFN-beta induction and interferon-stimulated gene expression in the response to IR. Suppression of MAVS conferred radioresistance in normal and cancer cells. Germline deletion of RIG-I, but not MDA5, protected mice from death following total body irradiation, while deletion of LGP2 accelerated the death of irradiated animals. In human tumors depletion of RIG-I conferred resistance to IR and different classes of chemotherapy drugs. Mechanistically, IR stimulated the binding of cytoplasmic RIG-I with small endogenous non-coding RNAs (sncRNAs), which triggered IFN-beta activity. We demonstrate that the small nuclear RNAs U1 and U2 translocate to the cytoplasm after IR treatment, thus stimulating the formation of RIG-I: RNA complexes and initiating downstream signaling events. Taken together, these findings suggest that the physiologic responses to radio-/chemo-therapy converge on an antiviral program in recruitment of the RLR pathway by a sncRNA-dependent activation of RIG-I which commences cytotoxic IFN signaling. Importantly, activation of interferon genes by radiation or chemotherapy is associated with a favorable outcome in patients undergoing treatment for cancer. To our knowledge, this is the first demonstration of a cell-intrinsic response to clinically relevant genotoxic treatments mediated by an RNA-dependent mechanism. PMID:27034163

  14. Genome editing strategies: potential tools for eradicating HIV-1/AIDS

    PubMed Central

    Khalili, Kamel; Gordon, Jennifer; Cosentino, Laura; Hu, Wenhui

    2015-01-01

    Current therapy for controlling HIV-1 infection and preventing AIDS progression has profoundly decreased viral replication in cells susceptible to HIV-1 infection, but it does not eliminate the low level of viral replication in latently infected cells which contain integrated copies of HIV-1 proviral DNA. There is an urgent need for the development of HIV-1 genome eradication strategies that will lead to a permanent or “sterile” cure of HIV-1/AIDS. In the past few years, novel nuclease-initiated genome editing tools have been developing rapidly, including ZFNs, TALENs, and the CRISPR/Cas9 system. These surgical knives, which can excise any genome, provide a great opportunity to eradicate the HIV-1 genome by targeting highly conserved regions of the HIV-1 long terminal repeats or essential viral genes. Given the time consuming and costly engineering of target-specific ZFNs and TALENs, the RNA-guided endonuclease Cas9 technology has emerged as a simpler and more versatile technology to allow permanent removal of integrated HIV-1 proviral DNA in eukaryotic cells, and hopefully animal models or human patients. The major unmet challenges of this approach at present include inefficient nuclease gene delivery, potential off-target cleavage, and cell-specific genome targeting. Nanoparticle or lentivirus-mediated delivery of next generation Cas9 technologies including nickase or RNA-guided FokI nuclease (RFN) will further improve the potential for genome editing to become a promising approach for curing HIV-1/AIDS. PMID:25716921

  15. Genotypic tropism testing in proviral DNA to guide maraviroc initiation in aviremic subjects: 48-week analysis of the PROTEST study

    PubMed Central

    Garcia, Federico; Poveda, Eva; Jesús Pérez-Elías, Maria; Hernández Quero, José; Àngels Ribas, Maria; Martínez-Madrid, Onofre J; Flores, Juan; Crespo, Manel; Gutiérrez, Félix; García-Deltoro, Miguel; Imaz, Arkaitz; Ocampo, Antonio; Artero, Arturo; Blanco, Francisco; Bernal, Enrique; Pasquau, Juan; Mínguez-Gallego, Carlos; Pérez, Núria; Aiestarán, Aintzane; Paredes, Roger

    2014-01-01

    Introduction In a previous interim 24-week virological safety analysis of the PROTEST study [1], initiation of Maraviroc (MVC) plus 2 nucleoside reverse-transcriptase inhibitors (NRTIs) in aviremic subjects based on genotypic tropism testing of proviral HIV-1 DNA was associated with low rates of virological failure. Here we present the final 48-week analysis of the study. Methods PROTEST was a phase 4, prospective, single-arm clinical trial (ID: NCT01378910) carried on in 24 HIV care centres in Spain. Maraviroc-naïve HIV-1-positive adults with HIV-1 RNA (VL) <50 c/mL on stable ART during the previous 6 months, requiring an ART change due to toxicity, with no antiretroviral resistance to the ART started, and R5 HIV by proviral DNA genotypic tropism testing (defined as a G2P FPR >10% in a singleton), initiated MVC with 2 NRTIs and were followed for 48 weeks. Virological failure was defined as two consecutive VL>50 c/mL. Recent adherence was calculated as: (# pills taken/# pills prescribed during the previous week)*100. Results Tropism results were available from 141/175 (80.6%) subjects screened: 87/141 (60%) were R5 and 74/87 (85%) were finally included in the study. Their median age was 48 years, 16% were women, 31% were MSM, 36% had CDC category C at study entry, 62% were HCV+ and 10% were HBV+. Median CD4+ counts were 616 cells/mm3 at screening, and median nadir CD4+ counts were 143 cells/mm3. Previous ART included PIs in 46 (62%) subjects, NNRTIs in 27 (36%) and integrase inhibitors (INIs) in 1 (2%). The main reasons for treatment change were dyslipidemia (42%), gastrointestinal symptoms (22%), and liver toxicity (15%). MVC was given alongside TDF/FTC in 40 (54%) subjects, ABC/3TC in 30 (40%), AZT/3TC in 2 (3%) and ABC/TDF in 2 (3%). Sixty-two (84%) subjects maintained VL<50 c/mL through week 48, whereas 12 (16%) discontinued treatment: two (3%) withdrew informed consent, one (1%) had a R5→X4 shift in HIV tropism between the screening and baseline visits, one

  16. HIV Type 1 (HIV-1) Proviral Reservoirs Decay Continuously Under Sustained Virologic Control in HIV-1–Infected Children Who Received Early Treatment

    PubMed Central

    Luzuriaga, Katherine; Tabak, Barbara; Garber, Manuel; Chen, Ya Hui; Ziemniak, Carrie; McManus, Margaret M.; Murray, Danielle; Strain, Matthew C.; Richman, Douglas D.; Chun, Tae-Wook; Cunningham, Coleen K.; Persaud, Deborah

    2014-01-01

    Background. Early initiation of combination antiretroviral therapy (cART) to human immunodeficiency virus type 1 (HIV-1)–infected infants controls HIV-1 replication and reduces mortality. Methods. Plasma viremia (lower limit of detection, <2 copies/mL), T-cell activation, HIV-1–specific immune responses, and the persistence of cells carrying replication-competent virus were quantified during long-term effective combination antiretroviral therapy (cART) in 4 perinatally HIV-1–infected youth who received treatment early (the ET group) and 4 who received treatment late (the LT group). Decay in peripheral blood mononuclear cell (PBMC) proviral DNA levels was also measured over time in the ET youth. Results. Plasma viremia was not detected in any ET youth but was detected in all LT youth (median, 8 copies/mL; P = .03). PBMC proviral load was significantly lower in ET youth (median, 7 copies per million PBMCs) than in LT youth (median, 181 copies; P = .03). Replication-competent virus was recovered from all LT youth but only 1 ET youth. Decay in proviral DNA was noted in all 4 ET youth in association with limited T-cell activation and with absent to minimal HIV-1–specific immune responses. Conclusions. Initiation of early effective cART during infancy significantly limits circulating levels of proviral and replication-competent HIV-1 and promotes continuous decay of viral reservoirs. Continued cART with reduction in HIV-1 reservoirs over time may facilitate HIV-1 eradication strategies. PMID:24850788

  17. Toll-like receptors, IFN-γ and IL-12 expression in bovine leukemia virus-infected animals with low or high proviral load.

    PubMed

    Farias, María Victoria Nieto; Lendez, Pamela Anahí; Marin, Maia; Quintana, Silvina; Martínez-Cuesta, Lucía; Ceriani, María Carolina; Dolcini, Guillermina Laura

    2016-08-01

    Bovine leukemia virus (BLV) infection is widespread mainly in dairy cattle and 5-10% of infected animals will die due to lymphosarcoma; most cattle remain asymptomatic but 30% develop persistent lymphocytosis (PL). BLV transmission depends on infected cell exchange and thus, proviral load is determinant. Understanding the mechanisms which govern the control of viral dissemination will be desirable for the design of effective therapeutic or preventive strategies for BLV. The development of high proviral load (HPL) or low proviral load (LPL) might be associated to genetic factors and humoral immune responses, however cellular responses are not fully described. We aimed to characterize cytokines and toll-like receptors (TLR) expression related to the proviral load profiles. IFN-γ and IL-12 mRNA expression level was significantly higher in PBMC from infected cattle (LPL n=6 and HPL n=7) compared to uninfected animals (n=5). While no significant differences were observed in IL-12 expression between LPL and HPL group, IFN-γ expression was significantly higher in LPL animals. Infected cattle exhibited higher expression levels of TLR3, 7-9. Animals with HPL had significantly higher expression of TLR7/8 than uninfected cattle. TLR8 and TLR9 were up-regulated in HPL group, and TLR3 was up-regulated in LPL group. This is the first report related to TLR gene expression in BLV infected cattle and represents evidence of the involvement of these receptors in BLV recognition. Further studies on different subpopulations of immune cells may help clarify their role in response to BLV and its consequences on viral dissemination. PMID:27473994

  18. Long-Term Control of Human Immunodeficiency Virus-1 Replication Despite Extensive Resistance to Current Antiretroviral Regimens: Clonal Analysis of Resistance Mutations in Proviral Deoxyribonucleic Acid

    PubMed Central

    Stella-Ascariz, Natalia; Montejano, Rocio; Martin-Vicente, María; Mingorance, Jesús; Pérez-Valero, Ignacio; Bernardino, José I.; Arribas, Jose R.

    2016-01-01

    Archived resistance mutations compromise antiretroviral treatment. We have investigated 3 selected aviremic patients who had extensive historical resistance to their current regimen. All 3 patients underwent unstructured treatment interruptions associated to the re-emergence of wild-type virus before starting their current suppressive regimes. Almost all historical resistance mutations detected in plasma were found in circulating proviral deoxyribonucleic acid. None of the clones analyzed was fully resistant to the current antiretroviral regimen. PMID:27006965

  19. Long terminal repeat of murine retroviral DNAs: sequence analysis, host-proviral junctions, and preintegration site.

    PubMed Central

    Van Beveren, C; Rands, E; Chattopadhyay, S K; Lowy, D R; Verma, I M

    1982-01-01

    The nucleotide sequence of the long terminal repeat (LTR) of three murine retroviral DNAs has been determined. The data indicate that the U5 region (sequences originating from the 5' end of the genome) of various LTRs is more conserved than the U3 region (sequences from the 3' end of the genome). The location and sequence of the control elements such as the 5' cap, "TATA-like" sequences, "CCAAT-box," and presumptive polyadenylic acid addition signal AATAAA in the various LTRs are nearly identical. Some murine retroviral DNAs contain a duplication of sequences within the LTR ranging in size from 58 to 100 base pairs. A variant of molecularly cloned Moloney murine sarcoma virus DNA in which one of the two LTRs integrated into the viral DNA was also analyzed. A 4-base-pair duplication was generated at the site of integration of LTR in the viral DNA. The host-viral junction of two molecularly cloned AKR-murine leukemia virus DNAs (clones 623 and 614) was determined. In the case of AKR-623 DNA, a 3- or 4-base-pair direct repeat of cellular sequences flanking the viral DNA was observed. However, AKR-614 DNA contained a 5-base-pair repeat of cellular sequences. The nucleotide sequence of the preintegration site of AKR-623 DNA revealed that the cellular sequences duplicated during integration are present only once. Finally, a striking homology between the sequences flanking the preintegration site and viral LTRs was observed. Images PMID:6281466

  20. The Icsbp locus is a common proviral insertion site in mature B-cell lymphomas/plasmacytomas induced by exogenous murine leukemia virus

    SciTech Connect

    Ma Shiliang; Sorensen, Annette Balle; Kunder, Sandra; Sorensen, Karina Dalsgaard; Quintanilla-Martinez, Leticia; Morris, David W.; Schmidt, Joerg; Pedersen, Finn Skou . E-mail: fsp@mb.au.dk

    2006-09-01

    ICSBP (interferon consensus sequence binding protein)/IRF8 (interferon regulatory factor 8) is an interferon gamma-inducible transcription factor expressed predominantly in hematopoietic cells, and down-regulation of this factor has been observed in chronic myelogenous leukemia and acute myeloid leukemia in man. By screening about 1200 murine leukemia virus (MLV)-induced lymphomas, we found proviral insertions at the Icsbp locus in 14 tumors, 13 of which were mature B-cell lymphomas or plasmacytomas. Only one was a T-cell lymphoma, although such tumors constituted about half of the samples screened. This indicates that the Icsbp locus can play a specific role in the development of mature B-lineage malignancies. Two proviral insertions in the last Icsbp exon were found to act by a poly(A)-insertion mechanism. The remaining insertions were found within or outside Icsbp. Since our results showed expression of Icsbp RNA and protein in all end-stage tumor samples, a simple tumor suppressor function of ICSBP is not likely. Interestingly, proviral insertions at Icsbp have not been reported from previous extensive screenings of mature B-cell lymphomas induced by endogenous MLVs. We propose that ICSBP might be involved in an early modulation of an immune response to exogenous MLVs that might also play a role in proliferation of the mature B-cell lymphomas.

  1. Getting beyond "I Like the Book": Creating Space for Critical Literacy in K-6 Classrooms. Second Edition

    ERIC Educational Resources Information Center

    Vasquez, Vivian

    2010-01-01

    "Getting Beyond "I Like the Book": Creating Space for Critical Literacy in K-6 Classrooms" (second edition) draws you into life in classrooms where students and teachers together use critical literacy as a framework for taking on local and global issues like racism and gender using books and everyday texts such as school posters and…

  2. Evolution of innate-like T cells and their selection by MHC class I-like molecules.

    PubMed

    Edholm, Eva-Stina; Banach, Maureen; Robert, Jacques

    2016-08-01

    Until recently, major histocompatibility complex (MHC) class I-like-restricted innate-like αβT (iT) cells expressing an invariant or semi-invariant T cell receptor (TCR) repertoire were thought to be a recent evolutionary acquisition restricted to mammals. However, molecular and functional studies in Xenopus laevis have demonstrated that iT cells, defined as MHC class I-like-restricted innate-like αβT cells with a semi-invariant TCR, are evolutionarily conserved and prominent from early development in amphibians. As these iT cells lack the specificity conferred by conventional αβ TCRs, it is generally considered that they are specialized to recognize conserved antigens equivalent to pathogen-associated molecular patterns. Thus, one advantage offered by the MHC class I-like iT cell-based recognition system is that it can be adapted to a common pathogen and function on the basis of a relatively small number of T cells. Although iT cells have only been functionally described in mammals and amphibians, the identification of non-classical MHC/MHC class I-like genes in other groups of endothermic and ectothermic vertebrates suggests that iT cells have a broader phylogenetic distribution than previously envisioned. In this review, we discuss the possible role of iT cells during the emergence of the jawed vertebrate adaptive immune system.

  3. Evolution of innate-like T cells and their selection by MHC class I-like molecules.

    PubMed

    Edholm, Eva-Stina; Banach, Maureen; Robert, Jacques

    2016-08-01

    Until recently, major histocompatibility complex (MHC) class I-like-restricted innate-like αβT (iT) cells expressing an invariant or semi-invariant T cell receptor (TCR) repertoire were thought to be a recent evolutionary acquisition restricted to mammals. However, molecular and functional studies in Xenopus laevis have demonstrated that iT cells, defined as MHC class I-like-restricted innate-like αβT cells with a semi-invariant TCR, are evolutionarily conserved and prominent from early development in amphibians. As these iT cells lack the specificity conferred by conventional αβ TCRs, it is generally considered that they are specialized to recognize conserved antigens equivalent to pathogen-associated molecular patterns. Thus, one advantage offered by the MHC class I-like iT cell-based recognition system is that it can be adapted to a common pathogen and function on the basis of a relatively small number of T cells. Although iT cells have only been functionally described in mammals and amphibians, the identification of non-classical MHC/MHC class I-like genes in other groups of endothermic and ectothermic vertebrates suggests that iT cells have a broader phylogenetic distribution than previously envisioned. In this review, we discuss the possible role of iT cells during the emergence of the jawed vertebrate adaptive immune system. PMID:27368412

  4. Use of a rapid and simple method to extract proviral DNA in the identification of HIV-1 by PCR.

    PubMed

    Tagliaferro, L; Corbelli, M; Maietta, G; Pellegrino, V; Pignatelli, P

    1995-07-01

    DNA extraction is a critical step in PCR analysis and is closely related to its sensitivity. Traditional methods, based on phenol-chloroform extraction, require more time and the use of toxic reagents. GeneReleaser (Bio Ventures Inc.) is a commercial product which releases DNA from whole blood, cell cultures, bacterial colonies and the like. Cells lysis and DNA extraction are accomplished directly in the amplification tube on a thermocycler. We used GeneReleaser in the identification of HIV-1 proviral DNA by PCR on whole blood samples. All samples arrived at our laboratory for HIV-1 detection were treated with two different procedures. The classical one was based on the lysis of separated lymphocytes by proteinase K, while the other consisted in DNA extraction by GeneReleaser from 5 microliters of whole blood in sodium citrate. All samples were amplified for HIV-1 GAG region; to prevent carry-over contamination Uracil N-glycosylase (UNG) sterilization was performed. Amplified sequences were revealed using the DEIA commercial system (Sorin Biomedica, Italy). To verify the suitability both of cell lysates and GeneReleaser DNA-extracted samples for PCR, we amplified a specific sequence of HLA-DQ-alpha gene. Initial data indicate that this new method might reduce the performance time of PCR (DNA extraction time was around 15 minutes) and improve PCR sensitivity.

  5. Proviral integration site for Moloney murine leukemia virus (PIM) kinases promote human T helper 1 cell differentiation.

    PubMed

    Tahvanainen, Johanna; Kyläniemi, Minna K; Kanduri, Kartiek; Gupta, Bhawna; Lähteenmäki, Hanna; Kallonen, Teemu; Rajavuori, Anna; Rasool, Omid; Koskinen, Päivi J; Rao, Kanury V S; Lähdesmäki, Harri; Lahesmaa, Riitta

    2013-02-01

    The differentiation of human primary T helper 1 (Th1) cells from naïve precursor cells is regulated by a complex, interrelated signaling network. The identification of factors regulating the early steps of Th1 cell polarization can provide important insight in the development of therapeutics for many inflammatory and autoimmune diseases. The serine/threonine-specific proviral integration site for Moloney murine leukemia virus (PIM) kinases PIM1 and PIM2 have been implicated in the cytokine-dependent proliferation and survival of lymphocytes. We have established that the third member of this family, PIM3, is also expressed in human primary Th cells and identified a new function for the entire PIM kinase family in T lymphocytes. Although PIM kinases are expressed more in Th1 than Th2 cells, we demonstrate here that these kinases positively influence Th1 cell differentiation. Our RNA interference results from human primary Th cells also suggest that PIM kinases promote the production of IFNγ, the hallmark cytokine produced by Th1 cells. Consistent with this, they also seem to be important for the up-regulation of the critical Th1-driving factor, T box expressed in T cells (T-BET), and the IL-12/STAT4 signaling pathway during the early Th1 differentiation process. In summary, we have identified PIM kinases as new regulators of human primary Th1 cell differentiation, thus providing new insights into the mechanisms controlling the selective development of human Th cell subsets. PMID:23209281

  6. Mutation in the primer binding site of the type 1 human immunodeficiency virus genome affects virus production and infectivity.

    PubMed Central

    Nagashunmugam, T; Velpandi, A; Goldsmith, C S; Zaki, S R; Kalyanaraman, V S; Srinivasan, A

    1992-01-01

    In an effort to understand the contribution of the primer-binding site (PBS) region to human immunodeficiency virus (HIV) replication, we have constructed a mutant HIV proviral DNA with an alteration in the 5' end of the PBS. The PBS mutant proviral DNA was characterized by transfection of the viral DNA into CD4+ and non-CD4+ target cells. The results indicate that mutation in the PBS reduced the level of viral particles released into the medium of transfected cells in comparison to wild-type proviral DNA. The viral particles were noninfectious upon transmission to established CD4+ cell lines and phytohemagglutinin-stimulated peripheral blood lymphocytes. Electron microscopic analysis of the transfected cells revealed no abnormalities in the structure of the virion directed by the mutant proviral DNA. Also, the protein and RNA contents of the mutant virions were similar to the wild type. The quantitation of intracellular viral structural protein in the transfected cells, however, indicated that the PBS mutation may have an effect on the assembly of viral particles in addition to completely abolishing reverse transcription of viral RNA into DNA. These results provide evidence that the PBS region of the viral genome has multiple functions in HIV-1 replication. Images PMID:1373895

  7. Genetic Modeling of PIM Proteins in Cancer: Proviral Tagging and Cooperation with Oncogenes, Tumor Suppressor Genes, and Carcinogens

    PubMed Central

    Aguirre, Enara; Renner, Oliver; Narlik-Grassow, Maja; Blanco-Aparicio, Carmen

    2014-01-01

    The PIM proteins, which were initially discovered as proviral insertion sites in Moloney-murine leukemia virus infection, are a family of highly homologous serine/threonine kinases that have been reported to be overexpressed in hematological malignancies and solid tumors. The PIM proteins have also been associated with metastasis and overall treatment responses and implicated in the regulation of apoptosis, metabolism, the cell cycle, and homing and migration, which makes these proteins interesting targets for anti-cancer drug discovery. The use of retroviral insertional mutagenesis and refined approaches such as complementation tagging has allowed the identification of myc, pim, and a third group of genes (including bmi1 and gfi1) as complementing genes in lymphomagenesis. Moreover, mouse modeling of human cancer has provided an understanding of the molecular pathways that are involved in tumor initiation and progression at the physiological level. In particular, genetically modified mice have allowed researchers to further elucidate the role of each of the Pim isoforms in various tumor types. PIM kinases have been identified as weak oncogenes because experimental overexpression in lymphoid tissue, prostate, and liver induces tumors at a relatively low incidence and with a long latency. However, very strong synergistic tumorigenicity between Pim1/2 and c-Myc and other oncogenes has been observed in lymphoid tissues. Mouse models have also been used to study whether the inhibition of specific PIM isoforms is required to prevent carcinogen-induced sarcomas, indicating that the absence of Pim2 and Pim3 greatly reduces sarcoma growth and bone invasion; the extent of this effect is similar to that observed in the absence of all three isoforms. This review will summarize some of the animal models that have been used to understand the isoform-specific contribution of PIM kinases to tumorigenesis. PMID:24860787

  8. Genetic Modeling of PIM Proteins in Cancer: Proviral Tagging and Cooperation with Oncogenes, Tumor Suppressor Genes, and Carcinogens.

    PubMed

    Aguirre, Enara; Renner, Oliver; Narlik-Grassow, Maja; Blanco-Aparicio, Carmen

    2014-01-01

    The PIM proteins, which were initially discovered as proviral insertion sites in Moloney-murine leukemia virus infection, are a family of highly homologous serine/threonine kinases that have been reported to be overexpressed in hematological malignancies and solid tumors. The PIM proteins have also been associated with metastasis and overall treatment responses and implicated in the regulation of apoptosis, metabolism, the cell cycle, and homing and migration, which makes these proteins interesting targets for anti-cancer drug discovery. The use of retroviral insertional mutagenesis and refined approaches such as complementation tagging has allowed the identification of myc, pim, and a third group of genes (including bmi1 and gfi1) as complementing genes in lymphomagenesis. Moreover, mouse modeling of human cancer has provided an understanding of the molecular pathways that are involved in tumor initiation and progression at the physiological level. In particular, genetically modified mice have allowed researchers to further elucidate the role of each of the Pim isoforms in various tumor types. PIM kinases have been identified as weak oncogenes because experimental overexpression in lymphoid tissue, prostate, and liver induces tumors at a relatively low incidence and with a long latency. However, very strong synergistic tumorigenicity between Pim1/2 and c-Myc and other oncogenes has been observed in lymphoid tissues. Mouse models have also been used to study whether the inhibition of specific PIM isoforms is required to prevent carcinogen-induced sarcomas, indicating that the absence of Pim2 and Pim3 greatly reduces sarcoma growth and bone invasion; the extent of this effect is similar to that observed in the absence of all three isoforms. This review will summarize some of the animal models that have been used to understand the isoform-specific contribution of PIM kinases to tumorigenesis. PMID:24860787

  9. Hybridization Capture Reveals Evolution and Conservation across the Entire Koala Retrovirus Genome

    PubMed Central

    Ishida, Yasuko; Cui, Pin; Vielgrader, Hanna; Helgen, Kristofer M.; Roca, Alfred L.; Greenwood, Alex D.

    2014-01-01

    The koala retrovirus (KoRV) is the only retrovirus known to be in the midst of invading the germ line of its host species. Hybridization capture and next generation sequencing were used on modern and museum DNA samples of koala (Phascolarctos cinereus) to examine ca. 130 years of evolution across the full KoRV genome. Overall, the entire proviral genome appeared to be conserved across time in sequence, protein structure and transcriptional binding sites. A total of 138 polymorphisms were detected, of which 72 were found in more than one individual. At every polymorphic site in the museum koalas, one of the character states matched that of modern KoRV. Among non-synonymous polymorphisms, radical substitutions involving large physiochemical differences between amino acids were elevated in env, potentially reflecting anti-viral immune pressure or avoidance of receptor interference. Polymorphisms were not detected within two functional regions believed to affect infectivity. Host sequences flanking proviral integration sites were also captured; with few proviral loci shared among koalas. Recently described variants of KoRV, designated KoRV-B and KoRV-J, were not detected in museum samples, suggesting that these variants may be of recent origin. PMID:24752422

  10. Hybridization capture reveals evolution and conservation across the entire Koala retrovirus genome.

    PubMed

    Tsangaras, Kyriakos; Siracusa, Matthew C; Nikolaidis, Nikolas; Ishida, Yasuko; Cui, Pin; Vielgrader, Hanna; Helgen, Kristofer M; Roca, Alfred L; Greenwood, Alex D

    2014-01-01

    The koala retrovirus (KoRV) is the only retrovirus known to be in the midst of invading the germ line of its host species. Hybridization capture and next generation sequencing were used on modern and museum DNA samples of koala (Phascolarctos cinereus) to examine ca. 130 years of evolution across the full KoRV genome. Overall, the entire proviral genome appeared to be conserved across time in sequence, protein structure and transcriptional binding sites. A total of 138 polymorphisms were detected, of which 72 were found in more than one individual. At every polymorphic site in the museum koalas, one of the character states matched that of modern KoRV. Among non-synonymous polymorphisms, radical substitutions involving large physiochemical differences between amino acids were elevated in env, potentially reflecting anti-viral immune pressure or avoidance of receptor interference. Polymorphisms were not detected within two functional regions believed to affect infectivity. Host sequences flanking proviral integration sites were also captured; with few proviral loci shared among koalas. Recently described variants of KoRV, designated KoRV-B and KoRV-J, were not detected in museum samples, suggesting that these variants may be of recent origin.

  11. Genome variation in the hyperthermophilic archaeon Aeropyrum

    PubMed Central

    Daifuku, Takashi; Yoshida, Takashi; Sako, Yoshihiko

    2013-01-01

    Aeropyrum spp are aerobic, heterotrophic, and hyperthermophilic marine archaea. There are two closely related Aeropyrum species, Aeropyrum camini and Aeropyrum pernix, which are isolated from geographically distinct locations. Recently, we compared their genome sequences to determine their genomic variation. They possess highly conserved small genomes, reflecting their close relationship. The entire genome similarity may result from their survival strategies in adapting to extreme environmental conditions. Meanwhile, synteny disruptions were observed in some regions including clustered regularly interspaced short palindromic repeats elements. Further, the largest portion of their non-orthologous genes were genes in the two proviral regions of A. pernix (Aeropyrum pernix spindle-shaped virus 1 and Aeropyrum pernix ovoid virus 1) or ORFans considered to be derived from viruses. Our data shows that genomic diversification of Aeropyrum spp may be substantially induced by viruses. This suggests that Aeropyrum spp may have a large pan-genome that can be extended by viruses, while each of the species shares a highly conserved small genome specializing for extreme environments. PMID:24251075

  12. Results of external quality assessment for proviral DNA testing of HIV tropism in the Maraviroc Switch collaborative study.

    PubMed

    Tu, Elise; Swenson, Luke C; Land, Sally; Pett, Sarah; Emery, Sean; Marks, Kat; Kelleher, Anthony D; Kaye, Steve; Kaiser, Rolf; Schuelter, Eugene; Harrigan, Richard

    2013-07-01

    The Maraviroc Switch collaborative study (MARCH) is a study in aviremic patients on stable antiretroviral therapy and utilizes population-based sequencing of proviral DNA to determine HIV tropism and susceptibility to maraviroc. An external quality assessment (EQA) program was implemented to ensure competency in assessing the tropism of clinical samples conducted by MARCH laboratories (n = 14). The MARCH EQA has three prestudy phases assessing V3 loop sequencing and tropism determination using the bioinformatic algorithm geno2pheno, which generates a false-positive rate (FPR). DNA sequences with low FPRs are more likely to be from CXCR4-using (X4) viruses. Phase 1 of the EQA involved chromatogram interpretation. Phases 2, 2/3, and 3 involved patient and clonal samples. Clinical samples used in these phases were from treatment-experienced HIV-infected volunteers; 18/20 had viral loads of <50 copies/ml, and 10/15 were CXCR4-tropic on prior phenotyping. All samples were tested in triplicate, and any replicate with a geno2pheno FPR of <10% was designated X4. Performance was deemed adequate if ≤2 R5 and ≤1 X4 specimens were miscalled. For several clinical samples in the EQA, triplicate testing revealed marked DNA variability (FPR range, 0 to 96.7%). Therefore, a consensus-based approach was employed for each sample, i.e., a median FPR across laboratories was used to define sample tropism. Further sequencing analysis showed mixed viral populations in the clinical samples, explaining the differences in tropism predictions. All laboratories passed the EQA after achieving predefined competence thresholds in either of the phase 2 rounds. The use of clinical samples from patients resembling those who were likely to be screened in the MARCH, coupled with triplicate testing, revealed inherent DNA variability that might have been missed if single or duplicate testing and/or clonal samples alone were used. These data highlight the importance of intensive EQA of tropism

  13. Rapid, point-of-care extraction of human immunodeficiency virus type 1 proviral DNA from whole blood for detection by real-time PCR.

    PubMed

    Jangam, Sujit R; Yamada, Douglas H; McFall, Sally M; Kelso, David M

    2009-08-01

    PCR detection of human immunodeficiency virus type 1 (HIV-1) proviral DNA is the method recommended for use for the diagnosis of HIV-1 infection in infants in limited-resource settings. Currently, testing must be performed in central laboratories, which are usually located some distance from health care facilities. While the collection and transportation of samples, such as dried blood spots, has improved test accessibility, the results are often not returned for several weeks. To enable PCR to be performed at the point of care while the mothers wait, we have developed a vertical filtration method that uses a separation membrane and an absorbent pad to extract cellular DNA from whole blood in less than 2 min. Cells are trapped in the separation membrane as the specimen is collected, and then a lysis buffer is added. The membrane retains the DNA, while the buffer washes away PCR inhibitors, which get wicked into the absorbent blotter pad. The membrane containing the entrapped DNA is then added to the PCR mixture without further purification. The method demonstrates a high degree of reproducibility and analytical sensitivity and allows the quantification of as few as 20 copies of HIV-1 proviral DNA from 100 microl of blood. In a blinded study with 182 longitudinal samples from infants (ages, 0 to 72 weeks) obtained from the Women and Infants Transmission Study, our assay demonstrated a sensitivity of 99% and a specificity of 100%. PMID:19644129

  14. "I like Art Because..."

    ERIC Educational Resources Information Center

    Leishear, Christina Chiddo

    2012-01-01

    There is a lot of creative energy between students and their art materials. In this lesson, the author discusses materials an artist may use to create a work of art--paint, a paintbrush, a palette, crayons, markers, pastels, and so on. Each student sketched a picture of themselves holding some tools that can be used in art. The objectives of this…

  15. Lethal osteogenesis imperfecta congenita and a 300 base pair gene deletion for an alpha 1(I)-like collagen.

    PubMed Central

    Pope, F M; Cheah, K S; Nicholls, A C; Price, A B; Grosveld, F G

    1984-01-01

    Broad boned lethal osteogenesis imperfecta is a severely crippling disease of unknown cause. By means of recombinant DNA technology a 300 base pair deletion in an alpha 1(I)-like collagen gene was detected in six patients and four complete parent-child groups including patients with this disease. One from each set of the patients' clinically unaffected parents also carried the deletion, implying that affected patients were genetic compounds. The study suggests that prenatal diagnosis should be possible with 100% accuracy in subjects without the deletion and with 50% accuracy in those who possess it (who would be either heterozygous--normal, or affected with the disease). Images FIG 1 FIG 2 FIG 3 FIG 4 PMID:6419953

  16. Virion-associated HIV-1 Vpr: variable amount in virus particles derived from cells upon virus infection or proviral DNA transfection.

    PubMed

    Singh, S P; Tungaturthi, P; Cartas, M; Tomkowicz, B; Rizvi, T A; Khan, S A; Kalyanaraman, V S; Srinivasan, A

    2001-04-25

    Human immunodeficiency virus type-1 (HIV-1) Vpr is a virion-associated protein implicated to have a role in AIDS pathogenesis. In regard to the amount of Vpr incorporated into virus particles, the published data vary widely. To address this, we quantitated Vpr in virus particles derived from diverse sources that are used to evaluate the biological effect of Vpr. Virus particles from infected cells showed only a small amount of Vpr. Interestingly, virus particles from cells cotransfected with HIV-1 proviral DNA lacking Vpr coding sequences (NLDeltaVpr) and a Vpr expression plasmid showed a drastic increase (29.4-fold) in the incorporation of Vpr. Furthermore, cotransfection involving NLDeltaVpr and different concentrations of Vpr expression plasmid resulted in virus particles containing Vpr in proportion to the Vpr expression plasmid used. The differences in virus particles with respect to Vpr as revealed by these studies should be taken into account in assessing the effect of Vpr.

  17. Casein kinase I-like protein kinases encoded by YCK1 and YCK2 are required for yeast morphogenesis.

    PubMed Central

    Robinson, L C; Menold, M M; Garrett, S; Culbertson, M R

    1993-01-01

    Casein kinase I is an acidotropic protein kinase class that is widely distributed among eukaryotic cell types. In the yeast Saccharomyces cerevisiae, the casein kinase I isoform encoded by the gene pair YCK1 and YCK2 is a 60- to 62-kDa membrane-associated form. The Yck proteins perform functions essential for growth and division; either alone supports growth, but loss of function of both is lethal. We report here that casein kinase I-like activity is associated with a soluble Yck2-beta-galactosidase fusion protein in vitro and that thermolabile protein kinase activity is exhibited by a protein encoded by fusion of a temperature-sensitive yck2 allele with lacZ. Cells carrying the yck2-2ts allele arrest at restrictive temperature with multiple, elongated buds containing multiple nuclei. This phenotype suggests that the essential functions of the Yck proteins include roles in bud morphogenesis, possibly in control of cell growth polarity, and in cytokinesis or cell separation. Further, a genetic relationship between the yck2ts allele and deletion of CDC55 indicates that the function of Yck phosphorylation may be related to that of protein phosphatase 2A activity. Images PMID:8474447

  18. Pyruvate Carboxylase Activates the RIG-I-like Receptor-Mediated Antiviral Immune Response by Targeting the MAVS signalosome

    PubMed Central

    Cao, Zhongying; Zhou, Yaqin; Zhu, Shengli; Feng, Jian; Chen, Xueyuan; Liu, Shi; Peng, Nanfang; Yang, Xiaodan; Xu, Gang; Zhu, Ying

    2016-01-01

    When retinoic acid-inducible gene 1 protein (RIG-I)-like receptors sense viral dsRNA in the cytosol, RIG-I and melanoma differentiation-associated gene 5 (MDA5) are recruited to the mitochondria to interact with mitochondrial antiviral signaling protein (MAVS) and initiate antiviral immune responses. In this study, we demonstrate that the biotin-containing enzyme pyruvate carboxylase (PC) plays an essential role in the virus-triggered activation of nuclear factor kappa B (NF-κB) signaling mediated by MAVS. PC contributes to the enhanced production of type I interferons (IFNs) and pro-inflammatory cytokines, and PC knockdown inhibits the virus-triggered innate immune response. In addition, PC shows extensive antiviral activity against RNA viruses, including influenza A virus (IAV), human enterovirus 71 (EV71), and vesicular stomatitis virus (VSV). Furthermore, PC mediates antiviral action by targeting the MAVS signalosome and induces IFNs and pro-inflammatory cytokines by promoting phosphorylation of NF-κB inhibitor-α (IκBα) and the IκB kinase (IKK) complex, as well as NF-κB nuclear translocation, which leads to activation of interferon-stimulated genes (ISGs), including double-stranded RNA-dependent protein kinase (PKR) and myxovirus resistance protein 1 (Mx1). Our findings suggest that PC is an important player in host antiviral signaling. PMID:26906558

  19. Type I interferons induce lung protease responses following respiratory syncytial virus infection via RIG-I-like receptors

    PubMed Central

    Foronjy, Robert F.; Taggart, Clifford C.; Dabo, Abdoulaye J.; Weldon, Sinéad; Cummins, Neville; Geraghty, Patrick

    2014-01-01

    The role of proteases in viral infection of the lung is poorly understood. Thus, we examined MMP and cathepsin proteases in respiratory syncytial virus (RSV) infected mouse lungs. RSV induced gene expression for matrix metalloproteinases (MMP) -2, -3, -7, -8, -9, -10, -12, -13, -14, -16, -17, -19, -20, -25, -27, -28 and cathepsins B, C, E, G, H, K, L1, S, W and Z in the airways of FVB/NJ mice. Increased proteases were present in the bronchoalveolar lavage fluid (BALF) and lung tissue during infection. Mitochondrial antiviral-signaling protein (Mavs) and Trif deficient mice were exposed to RSV. Mavs deficient mice had significantly lower expression of airway MMP-2, -3, -7, -8, -9, -10, -12, -13 and -28 and cathepsins C, G, K, S, W and Z. In lung epithelial cells, retinoic acid–inducible gene-1 (RIG-I) was identified as the major RIG-I- like receptor (RLR) required for RSV induced protease expression via MAVS. Overexpression of RIG-I or treatment with IFN-β in these cells induced MMP and cathepsin gene and protein expression. The significance of RIG-1 protease induction was demonstrated by the fact that inhibiting proteases with batimastat, E64 or ribavirin prevented airway hyperresponsiveness and enhanced viral clearance in RSV infected mice. PMID:25005357

  20. Measuring Monomer-to-Filament Transition of MAVS as an In Vitro Activity Assay for RIG-I-Like Receptors.

    PubMed

    Wu, Bin; Huoh, Yu-San; Hur, Sun

    2016-01-01

    During viral infection, the innate immune RIG-I like receptors (RLRs) recognize viral double stranded RNA (dsRNA) and trigger filament assembly of the adaptor protein Mitochondrial Anti-viral Signaling protein (MAVS). The MAVS filament then activates anti-viral signaling events including the up-regulation of type I interferon expression. In recent years, much insight has been gained into how RLRs recognize dsRNA, but the precise mechanism of how activated RLRs stimulate MAVS filament formation remains less understood. In this chapter, we describe an in vitro reconstitution assay that we have previously developed to study the RLR-catalyzed filament assembly of MAVS. We provide technical guidance for purifying the caspase activation recruitment domain (CARD) of MAVS (MAVS(CARD)) as a functional monomer and also preformed filament seed. We also describe the methods to monitor the monomer-to-filament transition of MAVS(CARD) upon stimulation. This protocol provides a minimalist approach to studying RLR signaling events and can potentially be applied to elucidate signaling mechanisms of other innate immune receptors, such as Toll-like receptors and inflammasomes, that involve higher order assemblies of CARDs or related domains for their downstream signal activation.

  1. The first invertebrate RIG-I-like receptor (RLR) homolog gene in the pacific oyster Crassostrea gigas.

    PubMed

    Zhang, Yang; Yu, Feng; Li, Jun; Tong, Ying; Zhang, Yuehuan; Yu, Ziniu

    2014-10-01

    Retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) is a pivotal receptor that detects numerous RNA and DNA viruses and mediates the innate induction of interferons and pro-inflammatory cytokines upon viral infection. In the present study, we cloned and characterized the first RIG-I gene in a marine mollusk, Crassostrea gigas, and designated it as CgRIG-I. The full-length CgRIG-I cDNA is 3436 bp, including 5'- and 3'-untranslated regions (UTRs) of 93 bp and 286 bp, respectively, and an open reading frame (ORF) of 3057 bp. The gene encodes a 1018 amino acid polypeptide with an estimated molecular mass of 116.5 kDa. SMART analysis showed that the CgRIG-I protein had the typical conserved domains, including the caspase activation and recruitment domains (CARDs), the RNA helicase domain and the C-terminal regulatory domain (RD). Phylogenetic analysis revealed that CgRIG-I was grouped into the clade of its vertebrate homologs. Moreover, CgRIG-I expression could be specifically increased after stimulation by poly(I:C) rather than by other PAMPs such as lipopolysaccharide (LPS), peptidoglycan (PGN), heat-killed Listeria monocytogenes (HKLM) and heat-killed Vibrio alginolyticus (HKVA). Meanwhile, six IRF, three STAT and one NF-κB predicted sites were identified in the CgRIG-I promoter, which was consistent with its high responsiveness to poly(I:C). In summary, this report provides the first CgRIG-I sequence of a mollusk, but its function in the antiviral immune response requires further investigation.

  2. APOBEC3G Generates Nonsense Mutations in Human T-Cell Leukemia Virus Type 1 Proviral Genomes In Vivo ▿ †

    PubMed Central

    Fan, Jun; Ma, Guangyong; Nosaka, Kisato; Tanabe, Junko; Satou, Yorifumi; Koito, Atsushi; Wain-Hobson, Simon; Vartanian, Jean-Pierre; Matsuoka, Masao

    2010-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) induces cell proliferation after infection, leading to efficient transmission by cell-to-cell contact. After a long latent period, a fraction of carriers develop adult T-cell leukemia (ATL). Genetic changes in the tax gene in ATL cells were reported in about 10% of ATL cases. To determine genetic changes that may occur throughout the provirus, we determined the entire sequence of the HTLV-1 provirus in 60 ATL cases. Abortive genetic changes, including deletions, insertions, and nonsense mutations, were frequent in all viral genes except the HBZ gene, which is transcribed from the minus strand of the virus. G-to-A base substitutions were the most frequent mutations in ATL cells. The sequence context of G-to-A mutations was in accordance with the preferred target sequence of human APOBEC3G (hA3G). The target sequences of hA3G were less frequent in the plus strand of the HBZ coding region than in other coding regions of the HTLV-1 provirus. Nonsense mutations in viral genes including tax were also observed in proviruses from asymptomatic carriers, indicating that these mutations were generated during reverse transcription and prior to oncogenesis. The fact that hA3G targets the minus strand during reverse transcription explains why the HBZ gene is not susceptible to such nonsense mutations. HTLV-1-infected cells likely take advantage of hA3G to escape from the host immune system by losing expression of viral proteins. PMID:20463074

  3. Amplification of mouse mammary tumor virus genomes in non-mammary tumor cells.

    PubMed Central

    Racevskis, J; Beyer, H

    1989-01-01

    Extra proviral copies of mouse mammary tumor virus (MMTV) are known to be present in the genomes of certain T-cell lymphomas of mice. Analysis of additional non-mammary tumor cell types known to express MMTV transcripts and antigens revealed the presence of extra acquired MMTV proviruses in a pituitary tumor cell line, a macrophage line, and Leydig testicular tumor cells. The nature of the amplified MMTV proviruses in these various tumor cell types differed with regard to copy number and presence of alterations in the long terminal repeat region. Images PMID:2535749

  4. Treatment of mice with 5-azacytidine efficiently activates silent retroviral genomes in different tissues.

    PubMed Central

    Jaenisch, R; Schnieke, A; Harbers, K

    1985-01-01

    The drug 5-azacytidine was injected into mice to activate silent retroviral genomes. The Mov-7 and Mov-10 substrains of mice were used, each of which carries a Moloney murine leukemia provirus with mutations in the coding regions at nonidentical positions. These proviral genomes are highly methylated and are not expressed in the animal. A single injection of the drug into postnatal mice induced transcription of the endogenous defective proviral genomes in thymus, spleen, and liver at 3 days after treatment. No viral transcription was detected in the brain of drug-exposed animals. When postnatal Mov-7/Mov-10 F1 mice were treated with the drug, infectious virus was generated efficiently and resulted in virus spread and viremia in all animals by 3 weeks of age. In contrast, infectious virus was not generated in F1 mice that had been treated during gestation with up to sublethal doses of the drug. Our results demonstrate that injection of 5-azacytidine can be used to efficiently and reproducibly activate silent genes in different cell populations of postnatal mice. Images PMID:2579397

  5. Hot topic: Bovine leukemia virus (BLV)-infected cows with low proviral load are not a source of infection for BLV-free cattle.

    PubMed

    Juliarena, Marcela A; Barrios, Clarisa N; Ceriani, M Carolina; Esteban, Eduardo N

    2016-06-01

    The bovine leukemia virus (BLV) causes leukemia or lymphoma in cattle. Although most BLV-infected animals do not develop the disease, they maintain the transmission chain of BLV at the herd level. As a feasible approach to control the virus, selection of cattle carrying the BoLA-DRB3*0902 allele has been proposed, as this allele is strongly associated with a BLV infection profile or the low proviral load (LPL) phenotype. To test whether these cattle affect the BLV transmission chain under natural conditions, selected BLV-infected LPL-BoLA-DRB3*0902 heterozygous cows were incorporated into a BLV-negative dairy herd. An average ratio of 5.4 (range 4.17-6.37) BLV-negative cows per BLV-infected cow was maintained during the 20mo of the experiment, and no BLV-negative cattle became infected. The BLV incidence rate in this herd was thus zero, whereas BLV incidence rates in different local herds varied from 0.06 to 0.17 cases per 100 cattle-days. This finding strongly suggests that LPL-BoLA-DRB3*0902 cattle disrupted the BLV-transmission chain in the study period.

  6. Proviral integration site 2 is required for interleukin-6 expression induced by interleukin-1, tumour necrosis factor-α and lipopolysaccharide

    PubMed Central

    Yang, Jianfei; Li, Xiang; Hanidu, Adedayo; Htut, Tin M; Sellati, Rosemarie; Wang, Lian; Jiang, Huiping; Li, Jun

    2010-01-01

    PIM (proviral integration site) kinases are a distinct class of serine/threonine-specific kinases consisting of PIM1, PIM2 and PIM3. PIM2 is known to function in apoptosis pathways. Expression of PIM2 is highly induced by pro-inflammatory stimuli but the role of PIM2 in the expression of pro-inflammatory cytokines is unclear. In this study, we showed that over-expression of PIM2 in HeLa cells as well as in human umbilical vein endothelial cells enhanced interleukin-1β (IL-1β) -induced and tumour necrosis factor-α-induced IL-6 expression, whereas over-expression of a kinase-dead PIM2 mutant had the opposite effect. Studies with small interfering RNA specific to PIM2 further confirmed that IL-6 expression in HeLa cells requires PIM2. To investigate the function of PIM2 further, we generated PIM2-deficient mice. It was found that IL-6 production was significantly decreased from PIM2-deficient spleen cells after stimulation with lipopolysaccharide. Taken together, we demonstrated an important function of PIM2 in controlling the expression of the pro-inflammatory cytokine IL-6. PIM2 inhibitors may be beneficial for IL-6-mediated diseases such as rheumatoid arthritis. PMID:20465571

  7. Proviral integration site 2 is required for interleukin-6 expression induced by interleukin-1, tumour necrosis factor-α and lipopolysaccharide.

    PubMed

    Yang, Jianfei; Li, Xiang; Hanidu, Adedayo; Htut, Tin M; Sellati, Rosemarie; Wang, Lian; Jiang, Huiping; Li, Jun

    2010-10-01

    PIM (proviral integration site) kinases are a distinct class of serine/threonine-specific kinases consisting of PIM1, PIM2 and PIM3. PIM2 is known to function in apoptosis pathways. Expression of PIM2 is highly induced by pro-inflammatory stimuli but the role of PIM2 in the expression of pro-inflammatory cytokines is unclear. In this study, we showed that over-expression of PIM2 in HeLa cells as well as in human umbilical vein endothelial cells enhanced interleukin-1β (IL-1β) -induced and tumour necrosis factor-α-induced IL-6 expression, whereas over-expression of a kinase-dead PIM2 mutant had the opposite effect. Studies with small interfering RNA specific to PIM2 further confirmed that IL-6 expression in HeLa cells requires PIM2. To investigate the function of PIM2 further, we generated PIM2-deficient mice. It was found that IL-6 production was significantly decreased from PIM2-deficient spleen cells after stimulation with lipopolysaccharide. Taken together, we demonstrated an important function of PIM2 in controlling the expression of the pro-inflammatory cytokine IL-6. PIM2 inhibitors may be beneficial for IL-6-mediated diseases such as rheumatoid arthritis.

  8. Insights into HIV-1 proviral transcription from integrative structure and dynamics of the Tat:AFF4:P-TEFb:TAR complex

    PubMed Central

    Schulze-Gahmen, Ursula; Echeverria, Ignacia; Stjepanovic, Goran; Bai, Yun; Lu, Huasong; Schneidman-Duhovny, Dina; Doudna, Jennifer A; Zhou, Qiang; Sali, Andrej; Hurley, James H

    2016-01-01

    HIV-1 Tat hijacks the human superelongation complex (SEC) to promote proviral transcription. Here we report the 5.9 Å structure of HIV-1 TAR in complex with HIV-1 Tat and human AFF4, CDK9, and CycT1. The TAR central loop contacts the CycT1 Tat-TAR recognition motif (TRM) and the second Tat Zn2+-binding loop. Hydrogen-deuterium exchange (HDX) shows that AFF4 helix 2 is stabilized in the TAR complex despite not touching the RNA, explaining how it enhances TAR binding to the SEC 50-fold. RNA SHAPE and SAXS data were used to help model the extended (Tat Arginine-Rich Motif) ARM, which enters the TAR major groove between the bulge and the central loop. The structure and functional assays collectively support an integrative structure and a bipartite binding model, wherein the TAR central loop engages the CycT1 TRM and compact core of Tat, while the TAR major groove interacts with the extended Tat ARM. DOI: http://dx.doi.org/10.7554/eLife.15910.001 PMID:27731797

  9. Hot topic: Bovine leukemia virus (BLV)-infected cows with low proviral load are not a source of infection for BLV-free cattle.

    PubMed

    Juliarena, Marcela A; Barrios, Clarisa N; Ceriani, M Carolina; Esteban, Eduardo N

    2016-06-01

    The bovine leukemia virus (BLV) causes leukemia or lymphoma in cattle. Although most BLV-infected animals do not develop the disease, they maintain the transmission chain of BLV at the herd level. As a feasible approach to control the virus, selection of cattle carrying the BoLA-DRB3*0902 allele has been proposed, as this allele is strongly associated with a BLV infection profile or the low proviral load (LPL) phenotype. To test whether these cattle affect the BLV transmission chain under natural conditions, selected BLV-infected LPL-BoLA-DRB3*0902 heterozygous cows were incorporated into a BLV-negative dairy herd. An average ratio of 5.4 (range 4.17-6.37) BLV-negative cows per BLV-infected cow was maintained during the 20mo of the experiment, and no BLV-negative cattle became infected. The BLV incidence rate in this herd was thus zero, whereas BLV incidence rates in different local herds varied from 0.06 to 0.17 cases per 100 cattle-days. This finding strongly suggests that LPL-BoLA-DRB3*0902 cattle disrupted the BLV-transmission chain in the study period. PMID:27085403

  10. Lack of evidence to support the association of a single IL28B genotype SNP rs12979860 with the HTLV-1 clinical outcomes and proviral load

    PubMed Central

    2012-01-01

    Background The Interleukin 28B (IL28B) rs12979860 polymorphisms was recently reported to be associated with the human T-cell leukemia virus type 1 (HTLV-1) proviral load (PvL) and the development of the HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Methods In an attempt to examine this hypothesis, we assessed the association of the rs12979860 genotypes with HTLV-1 PvL levels and clinical status in 112 unrelated Brazilian subjects (81 HTLV-1 asymptomatic carriers, 24 individuals with HAM/TSP and 7 with Adult T cell Leukemia/Lymphoma (ATLL)). Results All 112 samples were successfully genotyped and their PvLs compared. Neither the homozygote TT nor the heterozygote CT mutations nor the combination genotypes (TT/CT) were associated with a greater PvL. We also observed no significant difference in allele distribution between asymptomatic carriers and patients with HTLV-1 associated HAM/TSP. Conclusions Our study failed to support the previously reported positive association between the IL28B rs12979860 polymorphisms and an increased risk of developing HAM/TSP in the Brazilian population. PMID:23259930

  11. Endogenous Retroviruses in Fish Genomes: From Relics of Past Infections to Evolutionary Innovations?

    PubMed

    Naville, Magali; Volff, Jean-Nicolas

    2016-01-01

    The increasing availability of fish genome sequences has allowed to gain new insights into the diversity and host distribution of retroviruses in fish and other vertebrates. This distribution can be assessed through the identification and analysis of endogenous retroviruses, which are proviral remnants of past infections integrated in genomes. Retroviral sequences are probably important for evolution through their ability to induce rearrangements and to contribute regulatory and coding sequences; they may also protect their host against new infections. We argue that the current mass of genome sequences will soon strongly improve our understanding of retrovirus diversity and evolution in aquatic animals, with the identification of new/re-emerging elements and host resistance genes that restrict their infectivity.

  12. Endogenous Retroviruses in Fish Genomes: From Relics of Past Infections to Evolutionary Innovations?

    PubMed Central

    Naville, Magali; Volff, Jean-Nicolas

    2016-01-01

    The increasing availability of fish genome sequences has allowed to gain new insights into the diversity and host distribution of retroviruses in fish and other vertebrates. This distribution can be assessed through the identification and analysis of endogenous retroviruses, which are proviral remnants of past infections integrated in genomes. Retroviral sequences are probably important for evolution through their ability to induce rearrangements and to contribute regulatory and coding sequences; they may also protect their host against new infections. We argue that the current mass of genome sequences will soon strongly improve our understanding of retrovirus diversity and evolution in aquatic animals, with the identification of new/re-emerging elements and host resistance genes that restrict their infectivity. PMID:27555838

  13. The DNA cytosine deaminase APOBEC3H haplotype I likely contributes to breast and lung cancer mutagenesis.

    PubMed

    Starrett, Gabriel J; Luengas, Elizabeth M; McCann, Jennifer L; Ebrahimi, Diako; Temiz, Nuri A; Love, Robin P; Feng, Yuqing; Adolph, Madison B; Chelico, Linda; Law, Emily K; Carpenter, Michael A; Harris, Reuben S

    2016-01-01

    Cytosine mutations within TCA/T motifs are common in cancer. A likely cause is the DNA cytosine deaminase APOBEC3B (A3B). However, A3B-null breast tumours still have this mutational bias. Here we show that APOBEC3H haplotype I (A3H-I) provides a likely solution to this paradox. A3B-null tumours with this mutational bias have at least one copy of A3H-I despite little genetic linkage between these genes. Although deemed inactive previously, A3H-I has robust activity in biochemical and cellular assays, similar to A3H-II after compensation for lower protein expression levels. Gly105 in A3H-I (versus Arg105 in A3H-II) results in lower protein expression levels and increased nuclear localization, providing a mechanism for accessing genomic DNA. A3H-I also associates with clonal TCA/T-biased mutations in lung adenocarcinoma suggesting this enzyme makes broader contributions to cancer mutagenesis. These studies combine to suggest that A3B and A3H-I, together, explain the bulk of 'APOBEC signature' mutations in cancer. PMID:27650891

  14. The DNA cytosine deaminase APOBEC3H haplotype I likely contributes to breast and lung cancer mutagenesis

    PubMed Central

    Starrett, Gabriel J.; Luengas, Elizabeth M.; McCann, Jennifer L.; Ebrahimi, Diako; Temiz, Nuri A.; Love, Robin P.; Feng, Yuqing; Adolph, Madison B.; Chelico, Linda; Law, Emily K.; Carpenter, Michael A.; Harris, Reuben S

    2016-01-01

    Cytosine mutations within TCA/T motifs are common in cancer. A likely cause is the DNA cytosine deaminase APOBEC3B (A3B). However, A3B-null breast tumours still have this mutational bias. Here we show that APOBEC3H haplotype I (A3H-I) provides a likely solution to this paradox. A3B-null tumours with this mutational bias have at least one copy of A3H-I despite little genetic linkage between these genes. Although deemed inactive previously, A3H-I has robust activity in biochemical and cellular assays, similar to A3H-II after compensation for lower protein expression levels. Gly105 in A3H-I (versus Arg105 in A3H-II) results in lower protein expression levels and increased nuclear localization, providing a mechanism for accessing genomic DNA. A3H-I also associates with clonal TCA/T-biased mutations in lung adenocarcinoma suggesting this enzyme makes broader contributions to cancer mutagenesis. These studies combine to suggest that A3B and A3H-I, together, explain the bulk of ‘APOBEC signature' mutations in cancer. PMID:27650891

  15. Flow cytometric detection of human immunodeficiency virus type 1 proviral DNA by the polymerase chain reaction incorporating digoxigenin- or fluorescein-labeled dUTP

    SciTech Connect

    Yang, Gang; Olson, J.C.; Pu, R.; Vyas, G.N.

    1995-10-01

    Serological assays are routinely used in the laboratory diagnosis of human immunodeficiency virus type-1 (HrV-1) infection, but the polymerase chain reaction (PCR) is ultimately the most sensitive and direct method for establishing definitive diagnosis. As an alternative to the conventional radioactive PCR procedure we have developed and evaluated a pair of rapid nonradioisotopic flow cytometric detection methods. Using heminested PCR we directly incorporated fluorescein-12-dUTP (fluo-dUTP) or digoxigenin-11-dUTP (dig-dUTP) into the PCR-amplicons. The labeled amplicons were hybridized with biotinylated antisense and sense probes, followed by capture of the hybrid DNA using streptavidin-coated beads which were finally analyzed in a flow cytometer by (1) direct detection of the fluorescence intensity of the amplicons incorporating fluo-dUTP and (2) immunodetection of the amplicons incorporating dig-dUTP by anti-digoxigenin IgG labeled with fluorescein isothiocyanate (FITC). Although both assays were functionally comparable with radiolabeled probe in reliably detecting as low as five copies of HIV-1 proviral DNA sequences, the immunodetection of dig-dUTP consistently yielded higher mean channel fluorescence and gave a stable signal over an extended period of 12-14 weeks. In testing a panel of 20 pedigreed PBMC specimens from blood donors with or without HIV-1 infection, the results of both flow cytometric assays were identical with those of the conventional radioactive procedure. Therefore, we conclude that the dig-dUTP incorporation in amplicons, hybridization with a pair of sense-antisense biotinylated probes and immunodetection of hybrids by flow cytometric analyses is the nonisotopic method of choice for PCR-diagnosis of HIV-1 infection. 21 refs., 2 figs., 4 tabs.

  16. Low Proviral Load is Associated with Indeterminate Western Blot Patterns in Human T-Cell Lymphotropic Virus Type 1 Infected Individuals: Could Punctual Mutations be Related?

    PubMed Central

    Cánepa, Camila; Salido, Jimena; Ruggieri, Matías; Fraile, Sindy; Pataccini, Gabriela; Berini, Carolina; Biglione, Mirna

    2015-01-01

    Background: indeterminate Western blot (WB) patterns are a major concern for diagnosis of human T-cell lymphotropic virus type 1 (HTLV-1) infection, even in non-endemic areas. Objectives: (a) to define the prevalence of indeterminate WB among different populations from Argentina; (b) to evaluate if low proviral load (PVL) is associated with indeterminate WB profiles; and (c) to describe mutations in LTR and tax sequence of these cases. Results: Among 2031 samples, 294 were reactive by screening. Of them, 48 (16.3%) were WB indeterminate and of those 15 (31.3%) were PCR+. Quantitative real-time PCR (qPCR) was performed to 52 HTLV-1+ samples, classified as Group 1 (G1): 25 WB+ samples from individuals with pathologies; Group 2 (G2): 18 WB+ samples from asymptomatic carriers (AC); and Group 3 (G3): 9 seroindeterminate samples from AC. Median PVL was 4.78, 2.38, and 0.15 HTLV-1 copies/100 PBMCs, respectively; a significant difference (p=0.003) was observed. Age and sex were associated with PVL in G1 and G2, respectively. Mutations in the distal and central regions of Tax Responsive Elements (TRE) 1 and 2 of G3 were observed, though not associated with PVL.The 8403A>G mutation of the distal region, previously related to high PVL, was absent in G3 but present in 50% of WB+ samples (p = 0.03). Conclusions: indeterminate WB results confirmed later as HTLV-1 positive may be associated with low PVL levels. Mutations in LTR and tax are described;  their functional relevance remains to be determined. PMID:26516904

  17. Multiple invasions of an infectious retrovirus in cat genomes.

    PubMed

    Shimode, Sayumi; Nakagawa, So; Miyazawa, Takayuki

    2015-01-01

    Endogenous retroviruses (ERVs) are remnants of ancient retroviral infections of host germ-line cells. While most ERVs are defective, some are active and express viral proteins. The RD-114 virus is a replication-competent feline ERV, and several feline cell lines produce infectious RD-114 viral particles. All domestic cats are considered to have an ERV locus encoding a replication-competent RD-114 virus in their genomes; however, the locus has not been identified. In this study, we investigated RD-114 virus-related proviral loci in genomes of domestic cats, and found that none were capable of producing infectious viruses. We also found that all domestic cats have an RD-114 virus-related sequence on chromosome C2, termed RDRS C2a, but populations of the other RDRSs are different depending on the regions where cats live or breed. Our results indicate that RDRS C2a, the oldest RD-114-related provirus, entered the host genome before an ancestor of domestic cats started diverging and the other new RDRSs might have integrated into migrating cats in Europe. We also show that infectious RD-114 virus can be resurrected by the recombination between two non-infectious RDRSs. From these data, we conclude that cats do not harbor infectious RD-114 viral loci in their genomes and RD-114-related viruses invaded cat genomes multiple times. PMID:25641657

  18. Multiple invasions of an infectious retrovirus in cat genomes

    PubMed Central

    Shimode, Sayumi; Nakagawa, So; Miyazawa, Takayuki

    2015-01-01

    Endogenous retroviruses (ERVs) are remnants of ancient retroviral infections of host germ-line cells. While most ERVs are defective, some are active and express viral proteins. The RD-114 virus is a replication-competent feline ERV, and several feline cell lines produce infectious RD-114 viral particles. All domestic cats are considered to have an ERV locus encoding a replication-competent RD-114 virus in their genomes; however, the locus has not been identified. In this study, we investigated RD-114 virus-related proviral loci in genomes of domestic cats, and found that none were capable of producing infectious viruses. We also found that all domestic cats have an RD-114 virus-related sequence on chromosome C2, termed RDRS C2a, but populations of the other RDRSs are different depending on the regions where cats live or breed. Our results indicate that RDRS C2a, the oldest RD-114-related provirus, entered the host genome before an ancestor of domestic cats started diverging and the other new RDRSs might have integrated into migrating cats in Europe. We also show that infectious RD-114 virus can be resurrected by the recombination between two non-infectious RDRSs. From these data, we conclude that cats do not harbor infectious RD-114 viral loci in their genomes and RD-114-related viruses invaded cat genomes multiple times. PMID:25641657

  19. Multiple invasions of an infectious retrovirus in cat genomes.

    PubMed

    Shimode, Sayumi; Nakagawa, So; Miyazawa, Takayuki

    2015-02-02

    Endogenous retroviruses (ERVs) are remnants of ancient retroviral infections of host germ-line cells. While most ERVs are defective, some are active and express viral proteins. The RD-114 virus is a replication-competent feline ERV, and several feline cell lines produce infectious RD-114 viral particles. All domestic cats are considered to have an ERV locus encoding a replication-competent RD-114 virus in their genomes; however, the locus has not been identified. In this study, we investigated RD-114 virus-related proviral loci in genomes of domestic cats, and found that none were capable of producing infectious viruses. We also found that all domestic cats have an RD-114 virus-related sequence on chromosome C2, termed RDRS C2a, but populations of the other RDRSs are different depending on the regions where cats live or breed. Our results indicate that RDRS C2a, the oldest RD-114-related provirus, entered the host genome before an ancestor of domestic cats started diverging and the other new RDRSs might have integrated into migrating cats in Europe. We also show that infectious RD-114 virus can be resurrected by the recombination between two non-infectious RDRSs. From these data, we conclude that cats do not harbor infectious RD-114 viral loci in their genomes and RD-114-related viruses invaded cat genomes multiple times.

  20. APOBEC3 proteins can copackage and comutate HIV-1 genomes

    PubMed Central

    Desimmie, Belete A.; Burdick, Ryan C.; Izumi, Taisuke; Doi, Hibiki; Shao, Wei; Alvord, W. Gregory; Sato, Kei; Koyanagi, Yoshio; Jones, Sara; Wilson, Eleanor; Hill, Shawn; Maldarelli, Frank; Hu, Wei-Shau; Pathak, Vinay K.

    2016-01-01

    Although APOBEC3 cytidine deaminases A3G, A3F, A3D and A3H are packaged into virions and inhibit viral replication by inducing G-to-A hypermutation, it is not known whether they are copackaged and whether they can act additively or synergistically to inhibit HIV-1 replication. Here, we showed that APOBEC3 proteins can be copackaged by visualization of fluorescently-tagged APOBEC3 proteins using single-virion fluorescence microscopy. We further determined that viruses produced in the presence of A3G + A3F and A3G + A3H, exhibited extensive comutation of viral cDNA, as determined by the frequency of G-to-A mutations in the proviral genomes in the contexts of A3G (GG-to-AG) and A3D, A3F or A3H (GA-to-AA) edited sites. The copackaging of A3G + A3F and A3G + A3H resulted in an additive increase and a modest synergistic increase (1.8-fold) in the frequency of GA-to-AA mutations, respectively. We also identified distinct editing site trinucleotide sequence contexts for each APOBEC3 protein and used them to show that hypermutation of proviral DNAs from seven patients was induced by A3G, A3F (or A3H), A3D and A3G + A3F (or A3H). These results indicate that APOBEC3 proteins can be copackaged and can comutate the same genomes, and can cooperate to inhibit HIV replication. PMID:27439715

  1. De Novo Transcriptome Analysis Provides Insights into Immune Related Genes and the RIG-I-Like Receptor Signaling Pathway in the Freshwater Planarian (Dugesia japonica)

    PubMed Central

    Deng, Hongkuan; Zhang, Yichao; Sun, Xiaowen; Zhu, Guangzhong; Liu, Baohua; Zhao, Bosheng

    2016-01-01

    Background The freshwater planarian Dugesia japonica (D. japonica) possesses extraordinary ability to regenerate lost organs or body parts. Interestingly, in the process of regeneration, there is little wound infection, suggesting that D. japonica has a formidable innate immune system. The importance of immune system prompted us to search for immune-related genes and RIG-I-like receptor signaling pathways. Results Transcriptome sequencing of D. japonica was performed on an IlluminaHiSeq2000 platform. A total of 27,180 transcripts were obtained by Trinity assembler. CEGMA analysis and mapping of all trimmed reads back to the assembly result showed that our transcriptome assembly covered most of the whole transcriptome. 23,888 out of 27,180 transcripts contained ORF (open reading fragment), and were highly similar to those in Schistosoma mansoni using BLASTX analysis. 8,079 transcripts (29.7%) and 8,668 (31.9%) were annotated by Blast2GO and KEGG respectively. A DYNLRB-like gene was cloned to verify its roles in the immune response. Finally, the expression patterns of 4 genes (RIG-I, TRAF3, TRAF6, P38) in the RIG-I-like receptor signaling pathway were detected, and the results showed they are very likely to be involved in planarian immune response. Conclusion RNA-Seq analysis based on the next-generation sequencing technology was an efficient approach to discover critical genes and to understand their corresponding biological functions. Through GO and KEGG analysis, several critical and conserved signaling pathways and genes related to RIG-I-like receptor signaling pathway were identified. Four candidate genes were selected to identify their expression dynamics in the process of pathogen stimulation. These annotated transcripts of D. japonica provide a useful resource for subsequent investigation of other important pathways. PMID:26986572

  2. Cytomegalovirus Replication in Semen Is Associated with Higher Levels of Proviral HIV DNA and CD4+ T Cell Activation during Antiretroviral Treatment

    PubMed Central

    Massanella, Marta; Richman, Douglas D.; Little, Susan J.; Spina, Celsa A.; Vargas, Milenka V.; Lada, Steven M.; Daar, Eric S.; Dube, Michael P.; Haubrich, Richard H.; Morris, Sheldon R.; Smith, Davey M.

    2014-01-01

    ABSTRACT Asymptomatic cytomegalovirus (CMV) replication occurs frequently in the genital tract in untreated HIV-infected men and is associated with increased immune activation and HIV disease progression. To determine the connections between CMV-associated immune activation and the size of the viral reservoir, we evaluated the interactions between (i) asymptomatic seminal CMV replication, (ii) levels of T cell activation and proliferation in blood, and (iii) the size and transcriptional activity of the HIV DNA reservoir in blood from 53 HIV-infected men on long-term antiretroviral therapy (ART) with suppressed HIV RNA in blood plasma. We found that asymptomatic CMV shedding in semen was associated with significantly higher levels of proliferating and activated CD4+ T cells in blood (P < 0.01). Subjects with detectable CMV in semen had approximately five times higher average levels of HIV DNA in blood CD4+ T cells than subjects with no CMV. There was also a trend for CMV shedders to have increased cellular (multiply spliced) HIV RNA transcription (P = 0.068) compared to participants without CMV, but it is unclear if this transcription pattern is associated with residual HIV replication. In multivariate analysis, the presence of seminal plasma CMV (P = 0.04), detectable 2-long terminal repeat (2-LTR), and lower nadir CD4+ (P < 0.01) were independent predictors of higher levels of proviral HIV DNA in blood. Interventions aimed at reducing seminal CMV and associated immune activation may be important for HIV curative strategies. Future studies of anti-CMV therapeutics will help to establish causality and determine the mechanisms underlying these described associations. IMPORTANCE Almost all individuals infected with HIV are also infected with cytomegalovirus (CMV), and the replication dynamics of the two viruses likely influence each other. This study investigated interactions between asymptomatic CMV replication within the male genital tract, levels of inflammation in

  3. Genes affected by mouse mammary tumor virus (MMTV) proviral insertions in mouse mammary tumors are deregulated or mutated in primary human mammary tumors

    PubMed Central

    Callahan, Robert; Mudunuri, Uma; Bargo, Sharon; Raafat, Ahmed; McCurdy, David; Boulanger, Corinne; Lowther, William; Stephens, Robert; Luke, Brian T.; Stewart, Claudia; Wu, Xiaolin; Munroe, David; Smith, Gilbert H.

    2012-01-01

    The accumulation of mutations is a contributing factor in the initiation of premalignant mammary lesions and their progression to malignancy and metastasis. We have used a mouse model in which the carcinogen is the mouse mammary tumor virus (MMTV) which induces clonal premalignant mammary lesions and malignant mammary tumors by insertional mutagenesis. Identification of the genes and signaling pathways affected in MMTV-induced mouse mammary lesions provides a rationale for determining whether genetic alteration of the human orthologues of these genes/pathways may contribute to human breast carcinogenesis. A high-throughput platform for inverse PCR to identify MMTV-host junction fragments and their nucleotide sequences in a large panel of MMTV-induced lesions was developed. Validation of the genes affected by MMTV-insertion was carried out by microarray analysis. Common integration site (CIS) means that the gene was altered by an MMTV proviral insertion in at least two independent lesions arising in different hosts. Three of the new genes identified as CIS for MMTV were assayed for their capability to confer on HC11 mouse mammary epithelial cells the ability for invasion, anchorage independent growth and tumor development in nude mice. Analysis of MMTV induced mammary premalignant hyperplastic outgrowth (HOG) lines and mammary tumors led to the identification of CIS restricted to 35 loci. Within these loci members of the Wnt, Fgf and Rspo gene families plus two linked genes (Npm3 and Ddn) were frequently activated in tumors induced by MMTV. A second group of 15 CIS occur at a low frequency (2-5 observations) in mammary HOGs or tumors. In this latter group the expression of either Phf19 or Sdc2 was shown to increase HC11 cells invasion capability. Foxl1 expression conferred on HC11 cells the capability for anchorage-independent colony formation in soft agar and tumor development in nude mice. The published transcriptome and nucleotide sequence analysis of gene

  4. H3K27 Demethylation at the Proviral Promoter Sensitizes Latent HIV to the Effects of Vorinostat in Ex Vivo Cultures of Resting CD4+ T Cells

    PubMed Central

    Tripathy, Manoj K.; McManamy, Mary E. M.; Burch, Brandon D.; Archin, Nancie M.

    2015-01-01

    ABSTRACT Histone methyltransferase inhibitors (HMTis) and histone deacetylase inhibitors (HDACis) are reported to synergistically induce the expression of latent human immunodeficiency virus type 1 (HIV-1), but studies have largely been performed with cell lines. As specific and potent HMTis directed at EZH1 (enhancer of zeste 2 Polycomb repressive complex 2 subunit 1)/EZH2 are now in human testing, we wished to rigorously test such an inhibitor in a primary resting T-cell model of HIV latency. We found that GSK343, a potent and selective EZH2/EZH1 inhibitor, reduced trimethylation of histone 3 at lysine 27 (H3K27) of the HIV provirus in resting cells. Remarkably, this epigenetic change was not associated with increased proviral expression in latently infected resting cells. However, following the reduction in H3K27 at the HIV long terminal repeat (LTR), subsequent exposure to the HDACi suberoylanilide hydroxamic acid or vorinostat (VOR) resulted in increases in HIV gag RNA and HIV p24 antigen production that were up to 2.5-fold greater than those induced by VOR alone. Therefore, in primary resting CD4+ T cells, true mechanistic synergy in the reversal of HIV latency may be achieved by the combination of HMTis and HDACis. Although other cellular effects of EZH2 inhibition may contribute to the sensitization of the HIV LTR to subsequent exposure to VOR, and to increase viral antigen production, this synergistic effect is directly associated with H3K27 demethylation at nucleosome 1 (Nuc-1). Based upon our findings, the combination of HMTis and HDACis should be considered for testing in animal models or clinical trials. IMPORTANCE Demethylation of H3K27 mediated by the histone methyltransferase inhibitor GSK343 in primary resting T cells is slow, occurring over 96 h, but by itself does not result in a significant upregulation of cell-associated HIV RNA expression or viral antigen production. However, following H3K27 demethylation, latent viral expression within

  5. Glucocorticoids facilitate the transcription from the human cytomegalovirus major immediate early promoter in glucocorticoid receptor- and nuclear factor-I-like protein-dependent manner

    SciTech Connect

    Inoue-Toyoda, Maki; Kato, Kohsuke; Nagata, Kyosuke; Yoshikawa, Hiroyuki

    2015-02-27

    Human cytomegalovirus (HCMV) is a common and usually asymptomatic virus agent in healthy individuals. Initiation of HCMV productive infection depends on expression of the major immediate early (MIE) genes. The transcription of HCMV MIE genes is regulated by a diverse set of transcription factors. It was previously reported that productive HCMV infection is triggered probably by elevation of the plasma hydroxycorticoid level. However, it is poorly understood whether the transcription of MIE genes is directly regulated by glucocorticoid. Here, we found that the dexamethasone (DEX), a synthetic glucocorticoid, facilitates the transcription of HCMV MIE genes through the MIE promoter and enhancer in a glucocorticoid receptor (GR)-dependent manner. By competitive EMSA and reporter assays, we revealed that an NF-I like protein is involved in DEX-mediated transcriptional activation of the MIE promoter. Thus, this study supports a notion that the increased level of hydroxycorticoid in the third trimester of pregnancy reactivates HCMV virus production from the latent state. - Highlights: • DEX facilitates the transcription from the HCMV MIE promoter. • GR is involved in DEX-dependent transcription from the HCMV MIE promoter. • A 17 bp repeat is responsible for the HCMV MIE promoter activation by DEX. • An NF-I-like protein is involved in the HCMV MIE promoter activation by DEX.

  6. Self-renewal of leukemia stem cells in Friend virus-induced erythroleukemia requires proviral insertional activation of Spi1 and hedgehog signaling but not mutation of p53.

    PubMed

    Hegde, Shailaja; Hankey, Pamela; Paulson, Robert F

    2012-02-01

    Friend virus induces erythroleukemia through a characteristic two-stage progression. The prevailing model proposes that during the initial, polyclonal stage of disease most of the infected cells terminally differentiate, resulting in acute erythrocytosis. In the late stage of disease, a clonal leukemia develops through the acquisition of new mutations--proviral insertional activation of Spi1/Pu.1 and mutation of p53. Previous work from our laboratory demonstrated that Friend virus activates the bone morphogenic protein 4 (BMP4)-dependent stress erythropoiesis pathway, which leads to the rapid expansion of stress erythroid progenitors, which are the targets for Friend virus in the spleen. We recently showed that stress erythroid progenitors have intrinsic self-renewal ability and therefore could function as leukemia stem cells (LSCs) when infected with Friend virus. Here, we show that the two stages of Friend virus-induced disease are caused by infection of distinct stress progenitor populations in the spleen. The development of leukemia relies on the ability of the virus to hijack the intrinsic self-renewal capability of stress erythroid progenitors leading to the generation of LSCs. Two signals are required for the self-renewal of Friend virus LSCs proviral insertional activation of Spi1/Pu.1 and Hedgehog-dependent signaling. Surprisingly, mutation of p53 is not observed in LSCs. These data establish a new model for Friend virus-induced erythroleukemia and demonstrate the utility of Friend virus as a model system to study LSC self-renewal.

  7. De Novo Transcriptome Analysis Shows That SAV-3 Infection Upregulates Pattern Recognition Receptors of the Endosomal Toll-Like and RIG-I-Like Receptor Signaling Pathways in Macrophage/Dendritic Like TO-Cells

    PubMed Central

    Xu, Cheng; Evensen, Øystein; Mweemba, Hetron Munang’andu

    2016-01-01

    A fundamental step in cellular defense mechanisms is the recognition of “danger signals” made of conserved pathogen associated molecular patterns (PAMPs) expressed by invading pathogens, by host cell germ line coded pattern recognition receptors (PRRs). In this study, we used RNA-seq and the Kyoto encyclopedia of genes and genomes (KEGG) to identify PRRs together with the network pathway of differentially expressed genes (DEGs) that recognize salmonid alphavirus subtype 3 (SAV-3) infection in macrophage/dendritic like TO-cells derived from Atlantic salmon (Salmo salar L) headkidney leukocytes. Our findings show that recognition of SAV-3 in TO-cells was restricted to endosomal Toll-like receptors (TLRs) 3 and 8 together with RIG-I-like receptors (RLRs) and not the nucleotide-binding oligomerization domain-like receptors NOD-like receptor (NLRs) genes. Among the RLRs, upregulated genes included the retinoic acid inducible gene I (RIG-I), melanoma differentiation association 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2). The study points to possible involvement of the tripartite motif containing 25 (TRIM25) and mitochondrial antiviral signaling protein (MAVS) in modulating RIG-I signaling being the first report that links these genes to the RLR pathway in SAV-3 infection in TO-cells. Downstream signaling suggests that both the TLR and RLR pathways use interferon (IFN) regulatory factors (IRFs) 3 and 7 to produce IFN-a2. The validity of RNA-seq data generated in this study was confirmed by quantitative real time qRT-PCR showing that genes up- or downregulated by RNA-seq were also up- or downregulated by RT-PCR. Overall, this study shows that de novo transcriptome assembly identify key receptors of the TLR and RLR sensors engaged in host pathogen interaction at cellular level. We envisage that data presented here can open a road map for future intervention strategies in SAV infection of salmon. PMID:27110808

  8. Toll-like Receptor 3, RIG-I-like Receptors and the NLRP3 Inflammasome: Key Modulators of Innate Immune Responses to Double-stranded RNA Viruses

    PubMed Central

    Yu, Man; Levine, Stewart J.

    2011-01-01

    Double-stranded RNA (dsRNA), the genetic material for many RNA viruses, induces robust host immune responses via pattern recognition receptors, which include Toll-like receptor 3 (TLR3), retinoic acid-inducible gene-I-like receptors (RLRs) and the multi-protein NLRP3 inflammasome complex. The engagement of dsRNA receptors or inflammasome activation by viral dsRNA initiates complex intracellular signaling cascades that play essential roles in inflammation and innate immune responses, as well as the resultant development of adaptive immunity. This review focuses on signaling pathways mediated by TLR3, RLRs and the NLRP3 inflammasome, as well as the potential use of agonists and antagonists that target these pathways to treat disease. PMID:21466970

  9. Expression, purification, crystallization and preliminary X-ray analysis of the PaaI-like thioesterase SAV0944 from Staphylococcus aureus.

    PubMed

    Khandokar, Yogesh B; Roman, Noelia; Smith, Kate M; Srivastava, Parul; Forwood, Jade K

    2014-02-01

    Staphylococcus aureus is the causative agent of many diseases, including meningitis, bacteraemia, pneumonia, food poisoning and toxic shock syndrome. Structural characterization of the PaaI-like thioesterase SAV0944 (SaPaaI) from S. aureus subsp. aureus Mu50 will aid in understanding its potential as a new therapeutic target by knowledge of its molecular details and cellular functions. Here, the recombinant expression, purification and crystallization of SaPaaI thioesterase from S. aureus are reported. This protein initially crystallized with the ligand coenzyme A using the hanging-drop vapour-diffusion technique with condition No. 40 of Crystal Screen from Hampton Research at 296 K. Optimal final conditions consisting of 24% PEG 4000, 100 mM sodium citrate pH 6.5, 12% 2-propanol gave single diffraction-quality crystals. These crystals diffracted to beyond 2 Å resolution at the Australian Synchrotron and belonged to space group P12(1)1, with unit-cell parameters a = 44.05, b = 89.05, c = 60.74 Å, β = 100.5°. Initial structure determination and refinement gave an R factor and R(free) of 17.3 and 22.0%, respectively, confirming a positive solution in obtaining phases using molecular replacement.

  10. Creation of Bt rice expressing a fusion protein of Cry1Ac and Cry1I-like using a green tissue-specific promoter.

    PubMed

    Yang, Yong-Yi; Mei, Feng; Zhang, Wei; Shen, Zhicheng; Fang, Jun

    2014-08-01

    The insecticidal genes from Bacillus thuringiensis Berliner (Bt) have long been successfully used for development of insect-resistant rice. However, commercial planting of Bt rice has been delayed by the concern over food safety, although no scientific evidence is ever found to justify the concern. To address this safety concern, we developed a transgenic insect-resistant rice line using a green tissue promoter to minimize the Bt protein expression in the rice seeds. The Bt protein expressed in the rice was a fusion protein of two different Bt toxins, Cry1Ac and Cry1I-like protein. The fusion of the two toxins may be helpful to delay the development of insect resistance to Bt rice. Laboratory and field bioassays demonstrated that the transgenic rice plants created by this study were highly active against the rice leaf folder Cnaphalocrocis medinalis (Guenée) and the striped stem borer Chilo suppressalis (Walker). Western analysis indicated that the fusion protein was specifically expressed in green tissues but not in seeds. Therefore, the transgenic rice created in this study should be useful to mitigate the food safety concern and to delay the development of insect resistance.

  11. A comparison of the leech Theromyzon tessulatum angiotensin I-like molecule with forms of vertebrate angiotensinogens: a hormonal system conserved in the course of evolution.

    PubMed

    Laurent, V; Bulet, P; Salzet, M

    1995-05-12

    After five steps of purification including gel permeation, anti-angiotensin I affinity column chromatography followed by reverse-phase HPLC, a peptide immunoreactive to two different antisera (anti-angiotensin II and anti-angiotensin I) was purified to homogeneity from extracts of the leech Theromyzon tessulatum. The first 14 amino acid residues of the purified peptide (DRVYIHPFHLLXWG) established by automated Edman degradation, reveal the existence in leeches of an angiotensin I-like molecule close to human angiotensin I. The sequence of the purified peptide presents 78.5% of homology with the N-terminal part of human angiotensinogen. Moreover, in its sequence, this peptide presents the cleavage sites of vertebrate angiotensin metabolic enzymes, i.e. the renin and the angiotensin-converting enzyme. This finding constitutes the first biochemical characterization of an angiotensin I in Invertebrates. It also reflects the high conservation of angiotensins in the course of evolution, suggesting a fundamental role of this family in fluid homeostasis.

  12. Retinoic acid-inducible gene-I-like receptor (RLR)-mediated antiviral innate immune responses in the lower respiratory tract: Roles of TRAF3 and TRAF5.

    PubMed

    Chiba, Yuki; Matsumiya, Tomoh; Satoh, Tsugumi; Hayakari, Ryo; Furudate, Ken; Xing, Fei; Yoshida, Hidemi; Tanji, Kunikazu; Mizukami, Hiroki; Imaizumi, Tadaatsu; Ito, Etsuro

    2015-11-13

    Upon viral infection, the cytoplasmic viral sensor retinoic acid-inducible gene-I (RIG-I) recognizes viral RNA to activate antiviral signaling to induce type I interferon (IFN). RIG-I-like receptors (RLRs) activate antiviral signaling in a tissue-specific manner. The molecular mechanism underlying antiviral signaling in the respiratory system remains unclear. We studied antiviral signaling in the lower respiratory tract (LRT), which is the site of many harmful viral infections. Epithelial cells of the LRT can be roughly divided into two groups: bronchial epithelial cells (BECs) and pulmonary alveolar epithelial cells (AECs). These two cell types exhibit different phenotypes; therefore, we hypothesized that these cells may play different roles in antiviral innate immunity. We found that BECs exhibited higher antiviral activity than AECs. TNF receptor-associated factor 3 (TRAF3) has been shown to be a crucial molecule in RLR signaling. The expression levels of TRAF3 and TRAF5, which have conserved domains that are nearly identical, in the LRT were examined. We found that the bronchus exhibited the highest expression levels of TRAF3 and TRAF5 in the LRT. These findings suggest the importance of the bronchus in antiviral innate immunity in the LRT and indicate that TRAF3 and TRAF5 may contribute to RLR signaling. PMID:26454171

  13. HSCARG Negatively Regulates the Cellular Antiviral RIG-I Like Receptor Signaling Pathway by Inhibiting TRAF3 Ubiquitination via Recruiting OTUB1

    PubMed Central

    Peng, Yanyan; Xu, Ruidan; Zheng, Xiaofeng

    2014-01-01

    RIG-I like receptors (RLRs) recognize cytosolic viral RNA and initiate innate immunity; they increase the production of type I interferon (IFN) and the transcription of a series of antiviral genes to protect the host organism. Accurate regulation of the RLR pathway is important for avoiding tissue injury induced by excessive immune response. HSCARG is a newly reported negative regulator of NF-κB. Here we demonstrated that HSCARG participates in innate immunity. HSCARG inhibited the cellular antiviral response in an NF-κB independent manner, whereas deficiency of HSCARG had an opposite effect. After viral infection, HSCARG interacted with tumor necrosis receptor-associated factor 3 (TRAF3) and inhibited its ubiquitination by promoting the recruitment of OTUB1 to TRAF3. Knockout of HSCARG attenuated the de-ubiquitination of TRAF3 by OTUB1, and knockdown of OTUB1 abolished the effect of HSCARG. HSCARG also interacted with Ikappa-B kinase epsilon (IKKε) after viral infection and impaired the association between TRAF3 and IKKε, which further decreased the phosphorylation of IKKε and interferon response factor 3 (IRF3), thus suppressed the dimerization and nuclear translocation of IRF3. Moreover, knockdown of TRAF3 dampened the inhibitory effect of IFN-β transcription by HSCARG, suggesting that TRAF3 is necessary for HSCARG to down-regulate RLR pathway. This study demonstrated that HSCARG is a negative regulator that enables balanced antiviral innate immunity. PMID:24763515

  14. Creation of Bt rice expressing a fusion protein of Cry1Ac and Cry1I-like using a green tissue-specific promoter.

    PubMed

    Yang, Yong-Yi; Mei, Feng; Zhang, Wei; Shen, Zhicheng; Fang, Jun

    2014-08-01

    The insecticidal genes from Bacillus thuringiensis Berliner (Bt) have long been successfully used for development of insect-resistant rice. However, commercial planting of Bt rice has been delayed by the concern over food safety, although no scientific evidence is ever found to justify the concern. To address this safety concern, we developed a transgenic insect-resistant rice line using a green tissue promoter to minimize the Bt protein expression in the rice seeds. The Bt protein expressed in the rice was a fusion protein of two different Bt toxins, Cry1Ac and Cry1I-like protein. The fusion of the two toxins may be helpful to delay the development of insect resistance to Bt rice. Laboratory and field bioassays demonstrated that the transgenic rice plants created by this study were highly active against the rice leaf folder Cnaphalocrocis medinalis (Guenée) and the striped stem borer Chilo suppressalis (Walker). Western analysis indicated that the fusion protein was specifically expressed in green tissues but not in seeds. Therefore, the transgenic rice created in this study should be useful to mitigate the food safety concern and to delay the development of insect resistance. PMID:25195461

  15. Strategies of highly pathogenic RNA viruses to block dsRNA detection by RIG-I-like receptors: hide, mask, hit.

    PubMed

    Zinzula, Luca; Tramontano, Enzo

    2013-12-01

    Double-stranded RNA (dsRNA) is synthesized during the course of infection by RNA viruses as a byproduct of replication and transcription and acts as a potent trigger of the host innate antiviral response. In the cytoplasm of the infected cell, recognition of the presence of viral dsRNA as a signature of "non-self" nucleic acid is carried out by RIG-I-like receptors (RLRs), a set of dedicated helicases whose activation leads to the production of type I interferon α/β (IFN-α/β). To overcome the innate antiviral response, RNA viruses encode suppressors of IFN-α/β induction, which block RLRs recognition of dsRNA by means of different mechanisms that can be categorized into: (i) dsRNA binding and/or shielding ("hide"), (ii) dsRNA termini processing ("mask") and (iii) direct interaction with components of the RLRs pathway ("hit"). In light of recent functional, biochemical and structural findings, we review the inhibition mechanisms of RLRs recognition of dsRNA displayed by a number of highly pathogenic RNA viruses with different disease phenotypes such as haemorrhagic fever (Ebola, Marburg, Lassa fever, Lujo, Machupo, Junin, Guanarito, Crimean-Congo, Rift Valley fever, dengue), severe respiratory disease (influenza, SARS, Hendra, Hantaan, Sin Nombre, Andes) and encephalitis (Nipah, West Nile).

  16. Variation of the Virus-Related Elements within Syntenic Genomes of the Hyperthermophilic Archaeon Aeropyrum

    PubMed Central

    Daifuku, Takashi; Yoshida, Takashi; Kitamura, Takayuki; Kawaichi, Satoshi; Inoue, Takahiro; Nomura, Keigo; Yoshida, Yui; Kuno, Sotaro

    2013-01-01

    The increasing number of genome sequences of archaea and bacteria show their adaptation to different environmental conditions at the genomic level. Aeropyrum spp. are aerobic and hyperthermophilic archaea. Aeropyrum camini was isolated from a deep-sea hydrothermal vent, and Aeropyrum pernix was isolated from a coastal solfataric vent. To investigate the adaptation strategy in each habitat, we compared the genomes of the two species. Shared genome features were a small genome size, a high GC content, and a large portion of orthologous genes (86 to 88%). The genomes also showed high synteny. These shared features may have been derived from the small number of mobile genetic elements and the lack of a RecBCD system, a recombinational enzyme complex. In addition, the specialized physiology (aerobic and hyperthermophilic) of Aeropyrum spp. may also contribute to the entire-genome similarity. Despite having stable genomes, interference of synteny occurred with two proviruses, A. pernix spindle-shaped virus 1 (APSV1) and A. pernix ovoid virus 1 (APOV1), and clustered regularly interspaced short palindromic repeat (CRISPR) elements. Spacer sequences derived from the A. camini CRISPR showed significant matches with protospacers of the two proviruses infecting A. pernix, indicating that A. camini interacted with viruses closely related to APSV1 and APOV1. Furthermore, a significant fraction of the nonorthologous genes (41 to 45%) were proviral genes or ORFans probably originating from viruses. Although the genomes of A. camini and A. pernix were conserved, we observed nonsynteny that was attributed primarily to virus-related elements. Our findings indicated that the genomic diversification of Aeropyrum spp. is substantially caused by viruses. PMID:23872576

  17. Characterization of the Promoter Motif Regulated by PSPTO_1209 a FecI-like ECF Sigma Factor of Pseudomonas syringae pv. tomato DC3000

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomanads are renowned for their capacity to adapt to diverse environments, a fact that is reflected in the fraction of their genomes dedicated to encoding transcription regulators. Members of the Pseudomonas genus include species that are adapted to pathogenic and symbiotic lifestyles in associ...

  18. Efficient intracellular retrotransposition of an exogenous primate retrovirus genome

    PubMed Central

    Heinkelein, Martin; Pietschmann, Thomas; Jármy, Gergely; Dressler, Marco; Imrich, Horst; Thurow, Jana; Lindemann, Dirk; Bock, Michael; Moebes, Astrid; Roy, Jacqueline; Herchenröder, Ottmar; Rethwilm, Axel

    2000-01-01

    The foamy virus (FV) subgroup of Retroviridae reverse transcribe their RNA (pre-)genome late in the replication cycle before leaving an infected cell. We studied whether a marker gene-transducing FV vector is able to shuttle to the nucleus and integrate into host cell genomic DNA. While a potential intracellular retrotransposition of vectors derived from other retroviruses was below the detection limit of our assay, we found that up to 5% of cells transfected with the FV vector were stably transduced, harboring 1 to ∼10 vector integrants. Generation of the integrants depended on expression of functional capsid, reverse transcriptase and integrase proteins, and did not involve an extracellular step. PCR analysis of the U3 region of the 5′ long terminal repeat and determination of proviral integration sites showed that a reverse transcription step had taken place to generate the integrants. Co-expression of a mutated envelope allowing particle egress and avoiding extracellular infection resulted in a significantly increased rescue of cells harboring integrants, suggesting that accumulation of proviruses via intracellular retrotransposition represents an integral part of the FV replication strategy. PMID:10880456

  19. Comparative analysis of transcriptional profiles of retinoic-acid-induced gene I-like receptors and interferons in seven tissues from ducks infected with avian Tembusu virus.

    PubMed

    Fu, Guanghua; Chen, Cuiteng; Huang, Yu; Cheng, Longfei; Fu, Qiuling; Wan, Chunhe; Shi, Shaohua; Chen, Hongmei; Liu, Wei

    2016-01-01

    Avian Tembusu virus (ATV), an emerging virus that mainly infects laying and breeding ducks in China, has caused severe economic loss in duck industry. However, there have been no reports about host innate immune responses during ATV infection and its correlation with clinical signs or pathology. To identify the roles of these immune factors in the innate host response to ATV infection, quantitative real-time PCR (qPCR) was used to analyze the transcriptional profiles on the genes encoding two retinoic-acid-induced gene I (RIG-I)-like receptors (RLRs) and two interferons (INF-α and INF-γ) in seven tissues of an ATV-infected shelduck. After infection with ATV, both RLR genes were significantly upregulated (P < 0.05) in all seven tissues. The peak expression levels of the two RLR genes were observed at 24 hours postinfection (hpi) and were higher in non-lymphoid tissues (liver, lung, kidney, and ovary) than in lymphoid tissues (thymus, spleen and bursa). Although the transcription levels of both IFN genes were also upregulated, they showed different time-dependent expression patterns compared with those of the RLR genes. In addition, the highest mRNA expression of the two IFN genes was observed in the ovary at 6 hpi. This observation suggests that the ovary is the primary target tissue in ATV infection and explains the clinical characteristics of the primary pathological changes in the ovaries of ATV-infected ducks. Our results, for the first time, elucidate the differential and coordinated expression profiles of two RLRs and two IFNs in an ATV-infected shelduck.

  20. Nano-titanium dioxide bioreactivity with human alveolar type-I-like epithelial cells: Investigating crystalline phase as a critical determinant.

    PubMed

    Sweeney, Sinbad; Berhanu, Deborah; Ruenraroengsak, Pakatip; Thorley, Andrew J; Valsami-Jones, Eugenia; Tetley, Teresa D

    2015-05-01

    There can be significant variability between bioreactivity studies of nanomaterials that are apparently the same, possibly reflecting differences in the models used and differing sources of experimental material. In this study, we have generated two crystal forms of titanium dioxide nanoparticles (nano-TiO2), pure anatase and pure rutile to address the hypothesis that the bioreactivity of these nanoparticles with human alveolar epithelium will depend on their crystal phase. We used a human alveolar type-I-like epithelial cell model (TT1; generated in-house from primary human alveolar epithelial type II cells); these cells cover 95% of the alveolar epithelial surface area and are an important target cell for inhaled nanomaterials. Using literature as a guide, we hypothesised that pure anatase nano-TiO2 would display greater bioreactivity with TT1 cells in comparison to pure rutile nano-TiO2. However, we found the profile and pattern of inflammatory mediator release was similar between these two nano-TiO2 formats, although pure rutile treatment caused a small, but consistently greater, response for IL-6, IL-8 and MCP-1. Interestingly, the temporal induction of oxidative stress (increased reactive oxygen species levels and depleted glutathione) varied markedly between the different nano-TiO2 formats. We have shown that a combination of using nanomaterials synthesised specifically for toxicological study and the use of a highly relevant, reproducible human lung cell model, offers a useful approach to delineating the physicochemical properties of nanomaterials that may be important in their cellular reactivity.

  1. RIG-I-like helicases induce immunogenic cell death of pancreatic cancer cells and sensitize tumors toward killing by CD8+ T cells

    PubMed Central

    Duewell, P; Steger, A; Lohr, H; Bourhis, H; Hoelz, H; Kirchleitner, S V; Stieg, M R; Grassmann, S; Kobold, S; Siveke, J T; Endres, S; Schnurr, M

    2014-01-01

    Pancreatic cancer is characterized by a microenvironment suppressing immune responses. RIG-I-like helicases (RLH) are immunoreceptors for viral RNA that induce an antiviral response program via the production of type I interferons (IFN) and apoptosis in susceptible cells. We recently identified RLH as therapeutic targets of pancreatic cancer for counteracting immunosuppressive mechanisms and apoptosis induction. Here, we investigated immunogenic consequences of RLH-induced tumor cell death. Treatment of murine pancreatic cancer cell lines with RLH ligands induced production of type I IFN and proinflammatory cytokines. In addition, tumor cells died via intrinsic apoptosis and displayed features of immunogenic cell death, such as release of HMGB1 and translocation of calreticulin to the outer cell membrane. RLH-activated tumor cells led to activation of dendritic cells (DCs), which was mediated by tumor-derived type I IFN, whereas TLR, RAGE or inflammasome signaling was dispensable. Importantly, CD8α+ DCs effectively engulfed apoptotic tumor material and cross-presented tumor-associated antigen to naive CD8+ T cells. In comparison, tumor cell death mediated by oxaliplatin, staurosporine or mechanical disruption failed to induce DC activation and antigen presentation. Tumor cells treated with sublethal doses of RLH ligands upregulated Fas and MHC-I expression and were effectively sensitized towards Fas-mediated apoptosis and cytotoxic T lymphocyte (CTL)-mediated lysis. Vaccination of mice with RLH-activated tumor cells induced protective antitumor immunity in vivo. In addition, MDA5-based immunotherapy led to effective tumor control of established pancreatic tumors. In summary, RLH ligands induce a highly immunogenic form of tumor cell death linking innate and adaptive immunity. PMID:25012502

  2. Aquaculture Genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genomics chapter covers the basics of genome mapping and sequencing and the current status of several relevant species. The chapter briefly describes the development and use of (cDNA, BAC, etc.) libraries for mapping and obtaining specific sequence information. Other topics include comparative ...

  3. Lentivirus Gene Transfer in Murine Hematopoietic Progenitor Cells Is Compromised by a Delay in Proviral Integration and Results in Transduction Mosaicism and Heterogeneous Gene Expression in Progeny Cells

    PubMed Central

    Mikkola, Hanna; Woods, Niels-Bjarne; Sjögren, Marketa; Helgadottir, Hildur; Hamaguchi, Isao; Jacobsen, Sten-Eirik; Trono, Didier; Karlsson, Stefan

    2000-01-01

    Human immunodeficiency virus type 1-based lentivirus vectors containing the green fluorescent protein (GFP) gene were used to transduce murine Lin− c-kit+ Sca1+ primitive hematopoietic progenitor cells. Following transduction, the cells were plated into hematopoietic progenitor cell assays in methylcellulose and the colonies were scored for GFP positivity. After incubation for 20 h, lentivirus vectors transduced 27.3% ± 6.7% of the colonies derived from unstimulated target cells, but transduction was more efficient when the cells were supported with stem cell factor (SCF) alone (42.0% ± 5.5%) or SCF, interleukin-3 (IL-3), and IL-6 (53.3 ± 1.8%) during transduction. The, vesicular stomatitis virus glycoprotein-pseudotyped MGIN oncoretrovirus control vector required IL-3, IL-6, and SCF for significant transduction (39.3 ± 9.4%). Interestingly, only a portion of the progeny cells within the lentivirus-transduced methylcellulose colonies expressed GFP, in contrast to the homogeneous expression in oncoretrovirus-transduced colonies. Secondary plating of the primary GFP+ lentivirus vector-transduced colonies revealed vector PCR+ GFP+ (42%), vector PCR− GFP− (46%), and vector PCR+ GFP− (13%) secondary colonies, indicating true genetic mosaicism with respect to the viral genome in the progeny cells. The degree of vector mosaicism in individual colonies could be reduced by extending the culture time after transduction and before plating into the clonal progenitor cell assay, indicating a delay in the lentiviral integration process. Furthermore, supplementation with exogenous deoxynucleoside triphosphates during transduction decreased mosaicism within the colonies. Although cytokine stimulation during transduction correlates with higher transduction efficiency, rapid cell division after transduction may result in loss of the viral genome in the progeny cells. Therefore, optimal transduction may require activation without promoting intense cell proliferation prior

  4. Antarctic Genomics

    PubMed Central

    Clarke, Andrew; Cockell, Charles S.; Convey, Peter; Detrich III, H. William; Fraser, Keiron P. P.; Johnston, Ian A.; Methe, Barbara A.; Murray, Alison E.; Peck, Lloyd S.; Römisch, Karin; Rogers, Alex D.

    2004-01-01

    With the development of genomic science and its battery of technologies, polar biology stands on the threshold of a revolution, one that will enable the investigation of important questions of unprecedented scope and with extraordinary depth and precision. The exotic organisms of polar ecosystems are ideal candidates for genomic analysis. Through such analyses, it will be possible to learn not only the novel features that enable polar organisms to survive, and indeed thrive, in their extreme environments, but also fundamental biological principles that are common to most, if not all, organisms. This article aims to review recent developments in Antarctic genomics and to demonstrate the global context of such studies. PMID:18629155

  5. The Encapsidated Genome of Microplitis demolitor Bracovirus Integrates into the Host Pseudoplusia includens ▿ ‡

    PubMed Central

    Beck, Markus H.; Zhang, Shu; Bitra, Kavita; Burke, Gaelen R.; Strand, Michael R.

    2011-01-01

    Polydnaviruses (PDVs) are symbionts of parasitoid wasps that function as gene delivery vehicles in the insects (hosts) that the wasps parasitize. PDVs persist in wasps as integrated proviruses but are packaged as circularized and segmented double-stranded DNAs into the virions that wasps inject into hosts. In contrast, little is known about how PDV genomic DNAs persist in host cells. Microplitis demolitor carries Microplitis demolitor bracovirus (MdBV) and parasitizes the host Pseudoplusia includens. MdBV infects primarily host hemocytes and also infects a hemocyte-derived cell line from P. includens called CiE1 cells. Here we report that all 15 genomic segments of the MdBV encapsidated genome exhibited long-term persistence in CiE1 cells. Most MdBV genes expressed in hemocytes were persistently expressed in CiE1 cells, including members of the glc gene family whose products transformed CiE1 cells into a suspension culture. PCR-based integration assays combined with cloning and sequencing of host-virus junctions confirmed that genomic segments J and C persisted in CiE1 cells by integration. These genomic DNAs also rapidly integrated into parasitized P. includens. Sequence analysis of wasp-viral junction clones showed that the integration of proviral segments in M. demolitor was associated with a wasp excision/integration motif (WIM) known from other bracoviruses. However, integration into host cells occurred in association with a previously unknown domain that we named the host integration motif (HIM). The presence of HIMs in most MdBV genomic DNAs suggests that the integration of each genomic segment into host cells occurs through a shared mechanism. PMID:21880747

  6. Stress Granule Components G3BP1 and G3BP2 Play a Proviral Role Early in Chikungunya Virus Replication

    PubMed Central

    Scholte, Florine E. M.; Tas, Ali; Albulescu, Irina C.; Žusinaite, Eva; Merits, Andres; Snijder, Eric J.

    2015-01-01

    ABSTRACT Stress granules (SGs) are protein-mRNA aggregates that are formed in response to environmental stresses, resulting in translational inhibition. SGs are generally believed to play an antiviral role and are manipulated by many viruses, including various alphaviruses. GTPase-activating protein (SH3 domain)-binding protein 1 (G3BP1) is a key component and commonly used marker of SGs. Its homolog G3BP2 is a less extensively studied SG component. Here, we demonstrate that Chikungunya virus (CHIKV) infection induces cytoplasmic G3BP1- and G3BP2-containing granules that differ from bona fide SGs in terms of morphology, composition, and behavior. For several Old World alphaviruses it has been shown that nonstructural protein 3 (nsP3) interacts with G3BPs, presumably to inhibit SG formation, and we have confirmed this interaction in CHIKV-infected cells. Surprisingly, CHIKV also relied on G3BPs for efficient replication, as simultaneous depletion of G3BP1 and G3BP2 reduced viral RNA levels, CHIKV protein expression, and viral progeny titers. The G3BPs colocalized with CHIKV nsP2 and nsP3 in cytoplasmic foci, but no colocalization with nsP1, nsP4, or dsRNA was observed. Furthermore, G3BPs could not be detected in a cellular fraction enriched for CHIKV replication/transcription complexes, suggesting that they are not directly involved in CHIKV RNA synthesis. Depletion of G3BPs did not affect viral entry, translation of incoming genomes, or nonstructural polyprotein processing but resulted in severely reduced levels of negative-stranded (and consequently also positive-stranded) RNA. This suggests a role for the G3BPs in the switch from translation to genome amplification, although the exact mechanism by which they act remains to be explored. IMPORTANCE Chikungunya virus (CHIKV) causes a severe polyarthritis that has affected millions of people since its reemergence in 2004. The lack of approved vaccines or therapeutic options and the ongoing explosive outbreak in the

  7. Genomic Testing

    MedlinePlus

    ... Working Group Independent Web site Informing the effective integration of genomics into health practice—Lynch syndrome ACCE Model for Evaluating Genetic Tests Recommendations by the EGAPP Working Group Top of ... ...

  8. Pan-vertebrate comparative genomics unmasks retrovirus macroevolution.

    PubMed

    Hayward, Alexander; Cornwallis, Charlie K; Jern, Patric

    2015-01-13

    Although extensive research has demonstrated host-retrovirus microevolutionary dynamics, it has been difficult to gain a deeper understanding of the macroevolutionary patterns of host-retrovirus interactions. Here we use recent technological advances to infer broad patterns in retroviral diversity, evolution, and host-virus relationships by using a large-scale phylogenomic approach using endogenous retroviruses (ERVs). Retroviruses insert a proviral DNA copy into the host cell genome to produce new viruses. ERVs are provirus insertions in germline cells that are inherited down the host lineage and consequently present a record of past host-viral associations. By mining ERVs from 65 host genomes sampled across vertebrate diversity, we uncover a great diversity of ERVs, indicating that retroviral sequences are much more prevalent and widespread across vertebrates than previously appreciated. The majority of ERV clades that we recover do not contain known retroviruses, implying either that retroviral lineages are highly transient over evolutionary time or that a considerable number of retroviruses remain to be identified. By characterizing the distribution of ERVs, we show that no major vertebrate lineage has escaped retroviral activity and that retroviruses are extreme host generalists, having an unprecedented ability for rampant host switching among distantly related vertebrates. In addition, we examine whether the distribution of ERVs can be explained by host factors predicted to influence viral transmission and find that internal fertilization has a pronounced effect on retroviral colonization of host genomes. By capturing the mode and pattern of retroviral evolution and contrasting ERV diversity with known retroviral diversity, our study provides a cohesive framework to understand host-virus coevolution better.

  9. Pan-vertebrate comparative genomics unmasks retrovirus macroevolution

    PubMed Central

    Hayward, Alexander; Cornwallis, Charlie K.; Jern, Patric

    2015-01-01

    Although extensive research has demonstrated host-retrovirus microevolutionary dynamics, it has been difficult to gain a deeper understanding of the macroevolutionary patterns of host–retrovirus interactions. Here we use recent technological advances to infer broad patterns in retroviral diversity, evolution, and host–virus relationships by using a large-scale phylogenomic approach using endogenous retroviruses (ERVs). Retroviruses insert a proviral DNA copy into the host cell genome to produce new viruses. ERVs are provirus insertions in germline cells that are inherited down the host lineage and consequently present a record of past host–viral associations. By mining ERVs from 65 host genomes sampled across vertebrate diversity, we uncover a great diversity of ERVs, indicating that retroviral sequences are much more prevalent and widespread across vertebrates than previously appreciated. The majority of ERV clades that we recover do not contain known retroviruses, implying either that retroviral lineages are highly transient over evolutionary time or that a considerable number of retroviruses remain to be identified. By characterizing the distribution of ERVs, we show that no major vertebrate lineage has escaped retroviral activity and that retroviruses are extreme host generalists, having an unprecedented ability for rampant host switching among distantly related vertebrates. In addition, we examine whether the distribution of ERVs can be explained by host factors predicted to influence viral transmission and find that internal fertilization has a pronounced effect on retroviral colonization of host genomes. By capturing the mode and pattern of retroviral evolution and contrasting ERV diversity with known retroviral diversity, our study provides a cohesive framework to understand host–virus coevolution better. PMID:25535393

  10. HIV-1 Vpr N-terminal tagging affects alternative splicing of the viral genome

    PubMed Central

    Baeyens, Ann; Naessens, Evelien; Van Nuffel, Anouk; Weening, Karin E.; Reilly, Anne-Marie; Claeys, Eva; Trypsteen, Wim; Vandekerckhove, Linos; Eyckerman, Sven; Gevaert, Kris; Verhasselt, Bruno

    2016-01-01

    To facilitate studies on Vpr function in replicating HIV-1, we aimed to tag the protein in an infectious virus. First we showed that N-, but not C-terminal HA/FLAG tagging of Vpr protein preserves Vpr cytopathicity. Cloning the tags into proviral DNA however ablated viral production and replication. By construction of additional viral variants we could show this defect was not protein- but RNA-dependent and sequence specific, and characterized by oversplicing of the genomic RNA. Simulation of genomic RNA folding suggested that introduction of the tag sequence induced an alternative folding structure in a region enriched in splice sites and splicing regulatory sequences. In silico predictions identified the HA/His6-Vpr tagging in HIV-1 to affect mRNA folding less than HA/FLAG-Vpr tagging. In vitro infectivity and mRNA splice pattern improved but did not reach wild-type values. Thus, sequence-specific insertions may interfere with mRNA splicing, possibly due to altered RNA folding. Our results point to the complexity of viral RNA genome sequence interactions. This should be taken into consideration when designing viral manipulation strategies, for both research as for biological interventions. PMID:27721439

  11. Imaging genomics

    PubMed Central

    Thompson, Paul M.; Martin, Nicholas G.; Wright, Margaret J.

    2010-01-01

    Purpose of review Imaging genomics is an emerging field that is rapidly identifying genes that influence the brain, cognition, and risk for disease. Worldwide, thousands of individuals are being scanned with high-throughput genotyping (genome-wide scans), and new imaging techniques [high angular resolution diffusion imaging and resting state functional magnetic resonance imaging (MRI)] that provide fine-grained measures of the brain’s structural and functional connectivity. Along with clinical diagnosis and cognitive testing, brain imaging offers highly reproducible measures that can be subjected to genetic analysis. Recent findings Recent studies of twin, pedigree, and population-based datasets have discovered several candidate genes that consistently show small to moderate effects on brain measures. Many studies measure single phenotypes from the images, such as hippocampal volume, but voxel-wise genomic methods can plot the profile of genetic association at each 3D point in the brain. This exploits the full arsenal of imaging statistics to discover and replicate gene effects. Summary Imaging genomics efforts worldwide are now working together to discover and replicate many promising leads. By studying brain phenotypes closer to causative gene action, larger gene effects are detectable with realistic sample sizes obtainable from meta-analysis of smaller studies. Imaging genomics has broad applications to dementia, mental illness, and public health. PMID:20581684

  12. Genome databases

    SciTech Connect

    Courteau, J.

    1991-10-11

    Since the Genome Project began several years ago, a plethora of databases have been developed or are in the works. They range from the massive Genome Data Base at Johns Hopkins University, the central repository of all gene mapping information, to small databases focusing on single chromosomes or organisms. Some are publicly available, others are essentially private electronic lab notebooks. Still others limit access to a consortium of researchers working on, say, a single human chromosome. An increasing number incorporate sophisticated search and analytical software, while others operate as little more than data lists. In consultation with numerous experts in the field, a list has been compiled of some key genome-related databases. The list was not limited to map and sequence databases but also included the tools investigators use to interpret and elucidate genetic data, such as protein sequence and protein structure databases. Because a major goal of the Genome Project is to map and sequence the genomes of several experimental animals, including E. coli, yeast, fruit fly, nematode, and mouse, the available databases for those organisms are listed as well. The author also includes several databases that are still under development - including some ambitious efforts that go beyond data compilation to create what are being called electronic research communities, enabling many users, rather than just one or a few curators, to add or edit the data and tag it as raw or confirmed.

  13. Listeria Genomics

    NASA Astrophysics Data System (ADS)

    Cabanes, Didier; Sousa, Sandra; Cossart, Pascale

    The opportunistic intracellular foodborne pathogen Listeria monocytogenes has become a paradigm for the study of host-pathogen interactions and bacterial adaptation to mammalian hosts. Analysis of L. monocytogenes infection has provided considerable insight into how bacteria invade cells, move intracellularly, and disseminate in tissues, as well as tools to address fundamental processes in cell biology. Moreover, the vast amount of knowledge that has been gathered through in-depth comparative genomic analyses and in vivo studies makes L. monocytogenes one of the most well-studied bacterial pathogens. This chapter provides an overview of progress in the exploration of genomic, transcriptomic, and proteomic data in Listeria spp. to understand genome evolution and diversity, as well as physiological aspects of metabolism used by bacteria when growing in diverse environments, in particular in infected hosts.

  14. Genome Informatics

    PubMed Central

    Winslow, Raimond L.; Boguski, Mark S.

    2005-01-01

    This article reviews recent advances in genomics and informatics relevant to cardiovascular research. In particular, we review the status of (1) whole genome sequencing efforts in human, mouse, rat, zebrafish, and dog; (2) the development of data mining and analysis tools; (3) the launching of the National Heart, Lung, and Blood Institute Programs for Genomics Applications and Proteomics Initiative; (4) efforts to characterize the cardiac transcriptome and proteome; and (5) the current status of computational modeling of the cardiac myocyte. In each instance, we provide links to relevant sources of information on the World Wide Web and critical appraisals of the promises and the challenges of an expanding and diverse information landscape. PMID:12750305

  15. Comparative genomics - a perspective.

    PubMed

    Sivashankari, Selvarajan; Shanmughavel, Piramanayagam

    2007-03-27

    The rapidly emerging field of comparative genomics has yielded dramatic results. Comparative genome analysis has become feasible with the availability of a number of completely sequenced genomes. Comparison of complete genomes between organisms allow for global views on genome evolution and the availability of many completely sequenced genomes increases the predictive power in deciphering the hidden information in genome design, function and evolution. Thus, comparison of human genes with genes from other genomes in a genomic landscape could help assign novel functions for un-annotated genes. Here, we discuss the recently used techniques for comparative genomics and their derived inferences in genome biology.

  16. Comparative genomics - A perspective

    PubMed Central

    Sivashankari, Selvarajan; Shanmughavel, Piramanayagam

    2007-01-01

    The rapidly emerging field of comparative genomics has yielded dramatic results. Comparative genome analysis has become feasible with the availability of a number of completely sequenced genomes. Comparison of complete genomes between organisms allow for global views on genome evolution and the availability of many completely sequenced genomes increases the predictive power in deciphering the hidden information in genome design, function and evolution. Thus, comparison of human genes with genes from other genomes in a genomic landscape could help assign novel functions for un-annotated genes. Here, we discuss the recently used techniques for comparative genomics and their derived inferences in genome biology. PMID:17597925

  17. Genome cartography: charting the apicomplexan genome.

    PubMed

    Kissinger, Jessica C; DeBarry, Jeremy

    2011-08-01

    Genes reside in particular genomic contexts that can be mapped at many levels. Historically, 'genetic maps' were used primarily to locate genes. Recent technological advances in the determination of genome sequences have made the analysis and comparison of whole genomes possible and increasingly tractable. What do we see if we shift our focus from gene content (the 'inventory' of genes contained within a genome) to the composition and organization of a genome? This review examines what has been learned about the evolution of the apicomplexan genome as well as the significance and impact of genomic location on our understanding of the eukaryotic genome and parasite biology.

  18. Citrus Genomics

    PubMed Central

    Talon, Manuel; Gmitter Jr., Fred G.

    2008-01-01

    Citrus is one of the most widespread fruit crops globally, with great economic and health value. It is among the most difficult plants to improve through traditional breeding approaches. Currently, there is risk of devastation by diseases threatening to limit production and future availability to the human population. As technologies rapidly advance in genomic science, they are quickly adapted to address the biological challenges of the citrus plant system and the world's industries. The historical developments of linkage mapping, markers and breeding, EST projects, physical mapping, an international citrus genome sequencing project, and critical functional analysis are described. Despite the challenges of working with citrus, there has been substantial progress. Citrus researchers engaged in international collaborations provide optimism about future productivity and contributions to the benefit of citrus industries worldwide and to the human population who can rely on future widespread availability of this health-promoting and aesthetically pleasing fruit crop. PMID:18509486

  19. Characterization and comparative analysis of a simian foamy virus complete genome isolated from Brazilian capuchin monkeys.

    PubMed

    Troncoso, Lian L; Muniz, Cláudia P; Siqueira, Juliana D; Curty, Gislaine; Schrago, Carlos G; Augusto, Anderson; Fedullo, Luiz; Soares, Marcelo A; Santos, André F

    2015-10-01

    Foamy viruses infect a wide range of placental mammals, including primates. However, despite of great diversity of New World primates, only three strains of neotropical simian foamy viruses (SFV) have been described. Only after 40 years since serological characterization, the complete sequence of an SFVcap strain infecting a family of six capuchin monkeys (Sapajus xanthosternos) was obtained. Co-culture of primate peripheral blood mononuclear cells with Cf2Th canine cells was established and monitored for the appearance of cytopathic effects, PCR amplification of integrated SFV proviral genome and viral reverse transcriptase activity. The novel SFVcap was fully sequenced through a next-generation sequencing protocol. Phylogenetic analysis of the complete genome grouped SFVcap and SFVmar, both infecting primate species of the Cebidae family with a genetic similarity of approximately 85%. Similar ORF sizes were observed among SFV from neotropical primates, and env and pol genes were the most conserved. Neotropical SFV presented the smallest LTRs among exogenous mammalians. The novel SFVcap strain provides a valuable research tool for the FV community.

  20. Ancient genomics

    PubMed Central

    Der Sarkissian, Clio; Allentoft, Morten E.; Ávila-Arcos, María C.; Barnett, Ross; Campos, Paula F.; Cappellini, Enrico; Ermini, Luca; Fernández, Ruth; da Fonseca, Rute; Ginolhac, Aurélien; Hansen, Anders J.; Jónsson, Hákon; Korneliussen, Thorfinn; Margaryan, Ashot; Martin, Michael D.; Moreno-Mayar, J. Víctor; Raghavan, Maanasa; Rasmussen, Morten; Velasco, Marcela Sandoval; Schroeder, Hannes; Schubert, Mikkel; Seguin-Orlando, Andaine; Wales, Nathan; Gilbert, M. Thomas P.; Willerslev, Eske; Orlando, Ludovic

    2015-01-01

    The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field's focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past. PMID:25487338

  1. Application of targeted enrichment to next-generation sequencing of retroviruses integrated into the host human genome

    PubMed Central

    Miyazato, Paola; Katsuya, Hiroo; Fukuda, Asami; Uchiyama, Yoshikazu; Matsuo, Misaki; Tokunaga, Michiyo; Hino, Shinjiro; Nakao, Mitsuyoshi; Satou, Yorifumi

    2016-01-01

    The recent development and advancement of next-generation sequencing (NGS) technologies have enabled the characterization of the human genome at extremely high resolution. In the retrovirology field, NGS technologies have been applied to integration-site analysis and deep sequencing of viral genomes in combination with PCR amplification using virus-specific primers. However, virus-specific primers are not available for some epigenetic analyses, like chromatin immunoprecipitation sequencing (ChIP-seq) assays. Viral sequences are poorly detected without specific PCR amplification because proviral DNA is very scarce compared to human genomic DNA. Here, we have developed and evaluated the use of biotinylated DNA probes for the capture of viral genetic fragments from a library prepared for NGS. Our results demonstrated that viral sequence detection was hundreds or thousands of times more sensitive after enrichment, enabling us to reduce the economic burden that arises when attempting to analyze the epigenetic landscape of proviruses by NGS. In addition, the method is versatile enough to analyze proviruses that have mismatches compared to the DNA probes. Taken together, we propose that this approach is a powerful tool to clarify the mechanisms of transcriptional and epigenetic regulation of retroviral proviruses that have, until now, remained elusive. PMID:27321866

  2. Elimination of HIV-1 Genomes from Human T-lymphoid Cells by CRISPR/Cas9 Gene Editing

    PubMed Central

    Kaminski, Rafal; Chen, Yilan; Fischer, Tracy; Tedaldi, Ellen; Napoli, Alessandro; Zhang, Yonggang; Karn, Jonathan; Hu, Wenhui; Khalili, Kamel

    2016-01-01

    We employed an RNA-guided CRISPR/Cas9 DNA editing system to precisely remove the entire HIV-1 genome spanning between 5′ and 3′ LTRs of integrated HIV-1 proviral DNA copies from latently infected human CD4+ T-cells. Comprehensive assessment of whole-genome sequencing of HIV-1 eradicated cells ruled out any off-target effects by our CRISPR/Cas9 technology that might compromise the integrity of the host genome and further showed no effect on several cell health indices including viability, cell cycle and apoptosis. Persistent co-expression of Cas9 and the specific targeting guide RNAs in HIV-1-eradicated T-cells protected them against new infection by HIV-1. Lentivirus-delivered CRISPR/Cas9 significantly diminished HIV-1 replication in infected primary CD4+ T-cell cultures and drastically reduced viral load in ex vivo culture of CD4+ T-cells obtained from HIV-1 infected patients. Thus, gene editing using CRISPR/Cas9 may provide a new therapeutic path for eliminating HIV-1 DNA from CD4+ T-cells and potentially serve as a novel and effective platform toward curing AIDS. PMID:26939770

  3. Application of targeted enrichment to next-generation sequencing of retroviruses integrated into the host human genome.

    PubMed

    Miyazato, Paola; Katsuya, Hiroo; Fukuda, Asami; Uchiyama, Yoshikazu; Matsuo, Misaki; Tokunaga, Michiyo; Hino, Shinjiro; Nakao, Mitsuyoshi; Satou, Yorifumi

    2016-01-01

    The recent development and advancement of next-generation sequencing (NGS) technologies have enabled the characterization of the human genome at extremely high resolution. In the retrovirology field, NGS technologies have been applied to integration-site analysis and deep sequencing of viral genomes in combination with PCR amplification using virus-specific primers. However, virus-specific primers are not available for some epigenetic analyses, like chromatin immunoprecipitation sequencing (ChIP-seq) assays. Viral sequences are poorly detected without specific PCR amplification because proviral DNA is very scarce compared to human genomic DNA. Here, we have developed and evaluated the use of biotinylated DNA probes for the capture of viral genetic fragments from a library prepared for NGS. Our results demonstrated that viral sequence detection was hundreds or thousands of times more sensitive after enrichment, enabling us to reduce the economic burden that arises when attempting to analyze the epigenetic landscape of proviruses by NGS. In addition, the method is versatile enough to analyze proviruses that have mismatches compared to the DNA probes. Taken together, we propose that this approach is a powerful tool to clarify the mechanisms of transcriptional and epigenetic regulation of retroviral proviruses that have, until now, remained elusive. PMID:27321866

  4. Lateral genomics.

    PubMed

    Doolittle, W F

    1999-12-01

    More than 20 complete prokaryotic genome sequences are now publicly available, each by itself an unparalleled resource for understanding organismal biology. Collectively, these data are even more powerful: they could force a dramatic reworking of the framework in which we understand biological evolution. It is possible that a single universal phylogenetic tree is not the best way to depict relationships between all living and extinct species. Instead a web- or net-like pattern, reflecting the importance of horizontal or lateral gene transfer between lineages of organisms, might provide a more appropriate visual metaphor. Here, I ask whether this way of thinking is really justified, and explore its implications.

  5. The retrovirus HTLV-1 inserts an ectopic CTCF-binding site into the human genome

    PubMed Central

    Satou, Yorifumi; Miyazato, Paola; Ishihara, Ko; Yaguchi, Hiroko; Melamed, Anat; Miura, Michi; Fukuda, Asami; Nosaka, Kisato; Watanabe, Takehisa; Rowan, Aileen G.; Nakao, Mitsuyoshi

    2016-01-01

    Human T-lymphotropic virus type 1 (HTLV-1) is a retrovirus that causes malignant and inflammatory diseases in ∼10% of infected people. A typical host has between 104 and 105 clones of HTLV-1–infected T lymphocytes, each clone distinguished by the genomic integration site of the single-copy HTLV-1 provirus. The HTLV-1 bZIP (HBZ) factor gene is constitutively expressed from the minus strand of the provirus, whereas plus-strand expression, required for viral propagation to uninfected cells, is suppressed or intermittent in vivo, allowing escape from host immune surveillance. It remains unknown what regulates this pattern of proviral transcription and latency. Here, we show that CTCF, a key regulator of chromatin structure and function, binds to the provirus at a sharp border in epigenetic modifications in the pX region of the HTLV-1 provirus in T cells naturally infected with HTLV-1. CTCF is a zinc-finger protein that binds to an insulator region in genomic DNA and plays a fundamental role in controlling higher order chromatin structure and gene expression in vertebrate cells. We show that CTCF bound to HTLV-1 acts as an enhancer blocker, regulates HTLV-1 mRNA splicing, and forms long-distance interactions with flanking host chromatin. CTCF-binding sites (CTCF-BSs) have been propagated throughout the genome by transposons in certain primate lineages, but CTCF binding has not previously been described in present-day exogenous retroviruses. The presence of an ectopic CTCF-BS introduced by the retrovirus in tens of thousands of genomic locations has the potential to cause widespread abnormalities in host cell chromatin structure and gene expression. PMID:26929370

  6. Genomes on ice.

    PubMed

    Parkhill, Julian

    2016-03-01

    This month's Genome Watch discusses the analysis of a Helicobacter pylori genome from the preserved Copper-Age mummy known as the Iceman and how ancient genomes shed light on the history of bacterial pathogens. PMID:26853114

  7. Genomes on ice.

    PubMed

    Parkhill, Julian

    2016-03-01

    This month's Genome Watch discusses the analysis of a Helicobacter pylori genome from the preserved Copper-Age mummy known as the Iceman and how ancient genomes shed light on the history of bacterial pathogens.

  8. Whole Genome Sequencing

    MedlinePlus

    ... you want to learn. Search form Search Whole Genome Sequencing You are here Home Testing & Services Testing ... the full story, click here . What is whole genome sequencing? Whole genome sequencing is the mapping out ...

  9. Ensembl genomes 2016: more genomes, more complexity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent...

  10. Ensembl Genomes 2016: more genomes, more complexity

    PubMed Central

    Kersey, Paul Julian; Allen, James E.; Armean, Irina; Boddu, Sanjay; Bolt, Bruce J.; Carvalho-Silva, Denise; Christensen, Mikkel; Davis, Paul; Falin, Lee J.; Grabmueller, Christoph; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Aranganathan, Naveen K.; Langridge, Nicholas; Lowy, Ernesto; McDowall, Mark D.; Maheswari, Uma; Nuhn, Michael; Ong, Chuang Kee; Overduin, Bert; Paulini, Michael; Pedro, Helder; Perry, Emily; Spudich, Giulietta; Tapanari, Electra; Walts, Brandon; Williams, Gareth; Tello–Ruiz, Marcela; Stein, Joshua; Wei, Sharon; Ware, Doreen; Bolser, Daniel M.; Howe, Kevin L.; Kulesha, Eugene; Lawson, Daniel; Maslen, Gareth; Staines, Daniel M.

    2016-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces. PMID:26578574

  11. Evolutionary Conservation of Orthoretroviral Long Terminal Repeats (LTRs) and ab initio Detection of Single LTRs in Genomic Data

    PubMed Central

    Benachenhou, Farid; Jern, Patric; Oja, Merja; Sperber, Göran; Blikstad, Vidar; Somervuo, Panu; Kaski, Samuel; Blomberg, Jonas

    2009-01-01

    Background Retroviral LTRs, paired or single, influence the transcription of both retroviral and non-retroviral genomic sequences. Vertebrate genomes contain many thousand endogenous retroviruses (ERVs) and their LTRs. Single LTRs are difficult to detect from genomic sequences without recourse to repetitiveness or presence in a proviral structure. Understanding of LTR structure increases understanding of LTR function, and of functional genomics. Here we develop models of orthoretroviral LTRs useful for detection in genomes and for structural analysis. Principal Findings Although mutated, ERV LTRs are more numerous and diverse than exogenous retroviral (XRV) LTRs. Hidden Markov models (HMMs), and alignments based on them, were created for HML- (human MMTV-like), general-beta-, gamma- and lentiretroviruslike LTRs, plus a general-vertebrate LTR model. Training sets were XRV LTRs and RepBase LTR consensuses. The HML HMM was most sensitive and detected 87% of the HML LTRs in human chromosome 19 at 96% specificity. By combining all HMMs with a low cutoff, for screening, 71% of all LTRs found by RepeatMasker in chromosome 19 were found. HMM consensus sequences had a conserved modular LTR structure. Target site duplications (TG-CA), TATA (occasionally absent), an AATAAA box and a T-rich region were prominent features. Most of the conservation was located in, or adjacent to, R and U5, with evidence for stem loops. Several of the long HML LTRs contained long ORFs inserted after the second A rich module. HMM consensus alignment allowed comparison of functional features like transcriptional start sites (sense and antisense) between XRVs and ERVs. Conclusion The modular conserved and redundant orthoretroviral LTR structure with three A-rich regions is reminiscent of structurally relaxed Giardia promoters. The five HMMs provided a novel broad range, repeat-independent, ab initio LTR detection, with prospects for greater generalisation, and insight into LTR structure, which may

  12. Funding Opportunity: Genomic Data Centers

    Cancer.gov

    Funding Opportunity CCG, Funding Opportunity Center for Cancer Genomics, CCG, Center for Cancer Genomics, CCG RFA, Center for cancer genomics rfa, genomic data analysis network, genomic data analysis network centers,

  13. Genome Mapping in Plant Comparative Genomics.

    PubMed

    Chaney, Lindsay; Sharp, Aaron R; Evans, Carrie R; Udall, Joshua A

    2016-09-01

    Genome mapping produces fingerprints of DNA sequences to construct a physical map of the whole genome. It provides contiguous, long-range information that complements and, in some cases, replaces sequencing data. Recent advances in genome-mapping technology will better allow researchers to detect large (>1kbp) structural variations between plant genomes. Some molecular and informatics complications need to be overcome for this novel technology to achieve its full utility. This technology will be useful for understanding phenotype responses due to DNA rearrangements and will yield insights into genome evolution, particularly in polyploids. In this review, we outline recent advances in genome-mapping technology, including the processes required for data collection and analysis, and applications in plant comparative genomics.

  14. Enabling functional genomics with genome engineering.

    PubMed

    Hilton, Isaac B; Gersbach, Charles A

    2015-10-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances.

  15. Enabling functional genomics with genome engineering.

    PubMed

    Hilton, Isaac B; Gersbach, Charles A

    2015-10-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances. PMID:26430154

  16. Cytoplasmic Utilization of Human Immunodeficiency Virus Type 1 Genomic RNA Is Not Dependent on a Nuclear Interaction with Gag

    PubMed Central

    Hoffmann, Bianca; Ohs, Inga; Blissenbach, Maik; Brandt, Sabine; Tippler, Bettina; Grunwald, Thomas; Überla, Klaus

    2012-01-01

    In some retroviruses, such as Rous sarcoma virus and prototype foamy virus, Gag proteins are known to shuttle between the nucleus and the cytoplasm and are implicated in nuclear export of the viral genomic unspliced RNA (gRNA) for subsequent encapsidation. A similar function has been proposed for human immunodeficiency virus type 1 (HIV-1) Gag based on the identification of nuclear localization and export signals. However, the ability of HIV-1 Gag to transit through the nucleus has never been confirmed. In addition, the lentiviral Rev protein promotes efficient nuclear gRNA export, and previous reports indicate a cytoplasmic interaction between Gag and gRNA. Therefore, functional effects of HIV-1 Gag on gRNA and its usage were explored. Expression of gag in the absence of Rev was not able to increase cytoplasmic gRNA levels of subgenomic, proviral, or lentiviral vector constructs, and gene expression from genomic reporter plasmids could not be induced by Gag provided in trans. Furthermore, Gag lacking the reported nuclear localization and export signals was still able to mediate an efficient packaging process. Although small amounts of Gag were detectable in the nuclei of transfected cells, a Crm1-dependent nuclear export signal in Gag could not be confirmed. Thus, our study does not provide any evidence for a nuclear function of HIV-1 Gag. The encapsidation process of HIV-1 therefore clearly differs from that of Rous sarcoma virus and prototype foamy virus. PMID:22258250

  17. Navigating yeast genome maintenance with functional genomics.

    PubMed

    Measday, Vivien; Stirling, Peter C

    2016-03-01

    Maintenance of genome integrity is a fundamental requirement of all organisms. To address this, organisms have evolved extremely faithful modes of replication, DNA repair and chromosome segregation to combat the deleterious effects of an unstable genome. Nonetheless, a small amount of genome instability is the driver of evolutionary change and adaptation, and thus a low level of instability is permitted in populations. While defects in genome maintenance almost invariably reduce fitness in the short term, they can create an environment where beneficial mutations are more likely to occur. The importance of this fact is clearest in the development of human cancer, where genome instability is a well-established enabling characteristic of carcinogenesis. This raises the crucial question: what are the cellular pathways that promote genome maintenance and what are their mechanisms? Work in model organisms, in particular the yeast Saccharomyces cerevisiae, has provided the global foundations of genome maintenance mechanisms in eukaryotes. The development of pioneering genomic tools inS. cerevisiae, such as the systematic creation of mutants in all nonessential and essential genes, has enabled whole-genome approaches to identifying genes with roles in genome maintenance. Here, we review the extensive whole-genome approaches taken in yeast, with an emphasis on functional genomic screens, to understand the genetic basis of genome instability, highlighting a range of genetic and cytological screening modalities. By revealing the biological pathways and processes regulating genome integrity, these analyses contribute to the systems-level map of the yeast cell and inform studies of human disease, especially cancer.

  18. Navigating yeast genome maintenance with functional genomics.

    PubMed

    Measday, Vivien; Stirling, Peter C

    2016-03-01

    Maintenance of genome integrity is a fundamental requirement of all organisms. To address this, organisms have evolved extremely faithful modes of replication, DNA repair and chromosome segregation to combat the deleterious effects of an unstable genome. Nonetheless, a small amount of genome instability is the driver of evolutionary change and adaptation, and thus a low level of instability is permitted in populations. While defects in genome maintenance almost invariably reduce fitness in the short term, they can create an environment where beneficial mutations are more likely to occur. The importance of this fact is clearest in the development of human cancer, where genome instability is a well-established enabling characteristic of carcinogenesis. This raises the crucial question: what are the cellular pathways that promote genome maintenance and what are their mechanisms? Work in model organisms, in particular the yeast Saccharomyces cerevisiae, has provided the global foundations of genome maintenance mechanisms in eukaryotes. The development of pioneering genomic tools inS. cerevisiae, such as the systematic creation of mutants in all nonessential and essential genes, has enabled whole-genome approaches to identifying genes with roles in genome maintenance. Here, we review the extensive whole-genome approaches taken in yeast, with an emphasis on functional genomic screens, to understand the genetic basis of genome instability, highlighting a range of genetic and cytological screening modalities. By revealing the biological pathways and processes regulating genome integrity, these analyses contribute to the systems-level map of the yeast cell and inform studies of human disease, especially cancer. PMID:26323482

  19. Exploring Other Genomes: Bacteria.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    2001-01-01

    Points out the importance of genomes other than the human genome project and provides information on the identified bacterial genomes Pseudomonas aeuroginosa, Leprosy, Cholera, Meningitis, Tuberculosis, Bubonic Plague, and plant pathogens. Considers the computer's use in genome studies. (Contains 14 references.) (YDS)

  20. Identification of N-(4-((1R,3S,5S)-3-Amino-5-methylcyclohexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5-fluoropicolinamide (PIM447), a Potent and Selective Proviral Insertion Site of Moloney Murine Leukemia (PIM) 1, 2, and 3 Kinase Inhibitor in Clinical Trials for Hematological Malignancies.

    PubMed

    Burger, Matthew T; Nishiguchi, Gisele; Han, Wooseok; Lan, Jiong; Simmons, Robert; Atallah, Gordana; Ding, Yu; Tamez, Victoriano; Zhang, Yanchen; Mathur, Michelle; Muller, Kristine; Bellamacina, Cornelia; Lindvall, Mika K; Zang, Richard; Huh, Kay; Feucht, Paul; Zavorotinskaya, Tatiana; Dai, Yumin; Basham, Steve; Chan, Julie; Ginn, Elaine; Aycinena, Alex; Holash, Jocelyn; Castillo, Joseph; Langowski, John L; Wang, Yingyun; Chen, Min Y; Lambert, Amy; Fritsch, Christine; Kauffmann, Audry; Pfister, Estelle; Vanasse, K Gary; Garcia, Pablo D

    2015-11-12

    Pan proviral insertion site of Moloney murine leukemia (PIM) 1, 2, and 3 kinase inhibitors have recently begun to be tested in humans to assess whether pan PIM kinase inhibition may provide benefit to cancer patients. Herein, the synthesis, in vitro activity, in vivo activity in an acute myeloid leukemia xenograft model, and preclinical profile of the potent and selective pan PIM kinase inhibitor compound 8 (PIM447) are described. Starting from the reported aminopiperidyl pan PIM kinase inhibitor compound 3, a strategy to improve the microsomal stability was pursued resulting in the identification of potent aminocyclohexyl pan PIM inhibitors with high metabolic stability. From this aminocyclohexyl series, compound 8 entered the clinic in 2012 in multiple myeloma patients and is currently in several phase 1 trials of cancer patients with hematological malignancies. PMID:26505898

  1. Seroprevalence and genomic divergence of circulating strains of feline immunodeficiency virus among Felidae and Hyaenidae species.

    PubMed

    Troyer, Jennifer L; Pecon-Slattery, Jill; Roelke, Melody E; Johnson, Warren; VandeWoude, Sue; Vazquez-Salat, Nuria; Brown, Meredith; Frank, Laurence; Woodroffe, Rosie; Winterbach, Christiaan; Winterbach, Hanlie; Hemson, Graham; Bush, Mitch; Alexander, Kathleen A; Revilla, Eloy; O'Brien, Stephen J

    2005-07-01

    Feline immunodeficiency virus (FIV) infects numerous wild and domestic feline species and is closely related to human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). Species-specific strains of FIV have been described for domestic cat (Felis catus), puma (Puma concolor), lion (Panthera leo), leopard (Panthera pardus), and Pallas' cat (Otocolobus manul). Here, we employ a three-antigen Western blot screening (domestic cat, puma, and lion FIV antigens) and PCR analysis to survey worldwide prevalence, distribution, and genomic differentiation of FIV based on 3,055 specimens from 35 Felidae and 3 Hyaenidae species. Although FIV infects a wide variety of host species, it is confirmed to be endemic in free-ranging populations of nine Felidae and one Hyaenidae species. These include the large African carnivores (lion, leopard, cheetah, and spotted hyena), where FIV is widely distributed in multiple populations; most of the South American felids (puma, jaguar, ocelot, margay, Geoffroy's cat, and tigrina), which maintain a lower FIV-positive level throughout their range; and two Asian species, the Pallas' cat, which has a species-specific strain of FIV, and the leopard cat, which has a domestic cat FIV strain in one population. Phylogenetic analysis of FIV proviral sequence demonstrates that most species for which FIV is endemic harbor monophyletic, genetically distinct species-specific FIV strains, suggesting that FIV transfer between cat species has occurred in the past but is quite infrequent today.

  2. Seroprevalence and Genomic Divergence of Circulating Strains of Feline Immunodeficiency Virus among Felidae and Hyaenidae Species†

    PubMed Central

    Troyer, Jennifer L.; Pecon-Slattery, Jill; Roelke, Melody E.; Johnson, Warren; VandeWoude, Sue; Vazquez-Salat, Nuria; Brown, Meredith; Frank, Laurence; Woodroffe, Rosie; Winterbach, Christiaan; Winterbach, Hanlie; Hemson, Graham; Bush, Mitch; Alexander, Kathleen A.; Revilla, Eloy; O'Brien, Stephen J.

    2005-01-01

    Feline immunodeficiency virus (FIV) infects numerous wild and domestic feline species and is closely related to human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). Species-specific strains of FIV have been described for domestic cat (Felis catus), puma (Puma concolor), lion (Panthera leo), leopard (Panthera pardus), and Pallas' cat (Otocolobus manul). Here, we employ a three-antigen Western blot screening (domestic cat, puma, and lion FIV antigens) and PCR analysis to survey worldwide prevalence, distribution, and genomic differentiation of FIV based on 3,055 specimens from 35 Felidae and 3 Hyaenidae species. Although FIV infects a wide variety of host species, it is confirmed to be endemic in free-ranging populations of nine Felidae and one Hyaenidae species. These include the large African carnivores (lion, leopard, cheetah, and spotted hyena), where FIV is widely distributed in multiple populations; most of the South American felids (puma, jaguar, ocelot, margay, Geoffroy's cat, and tigrina), which maintain a lower FIV-positive level throughout their range; and two Asian species, the Pallas' cat, which has a species-specific strain of FIV, and the leopard cat, which has a domestic cat FIV strain in one population. Phylogenetic analysis of FIV proviral sequence demonstrates that most species for which FIV is endemic harbor monophyletic, genetically distinct species-specific FIV strains, suggesting that FIV transfer between cat species has occurred in the past but is quite infrequent today. PMID:15956574

  3. Probing conformational changes in the I-like domain and the cysteine-rich repeat of human beta 3 integrins following disulfide bond disruption by cysteine mutations: identification of cysteine 598 involved in alphaIIbbeta3 activation.

    PubMed

    Chen, P; Melchior, C; Brons, N H; Schlegel, N; Caen, J; Kieffer, N

    2001-10-19

    We have investigated receptor function and epitope expression of recombinant alpha(IIb)beta(3) mutated at Cys(177) or Cys(273) in the I-like domain as well as Cys(598), located in the fourth repeat of the membrane-proximal cysteine-rich region and mutated in a Glanzmann's thrombasthenia type II patient. The beta(3) mutants beta(3)C177A, beta(3)C273A, and beta(3)C598Y exhibited a decreased electrophoretic mobility in SDS-polyacrylamide gel electrophoresis under nonreducing conditions, confirming the disruption of the respective disulfide loops. Despite reduced surface expression, the alpha(IIb)beta(3)C177A, alpha(IIb)beta(3)C273A, and alpha(IIb)beta(3)C598Y receptors mediated cell adhesion to immobilized fibrinogen and translocated into focal adhesion plaques. The beta(3)C598Y mutation, but not the beta(3)C177A or beta(3)C273A mutations, induced spontaneous binding of the ligand mimetic monoclonal antibody PAC-1, while the beta(3)C177A and beta(3)C273A mutants exhibited reduced complex stability in the absence of Ca(2+). Epitope mapping of function-blocking monoclonal antibodies (mAbs) allowed the identification of two distinct subgroups; mAbs A2A9, pl2-46, 10E5, and P256 did not interact with alpha(IIb)beta(3)C273A and bound only weakly to alpha(IIb)beta(3)C177A, while mAbs AP2, LM609 and 7E3 bound normally to mutant alpha(IIb)beta(3)C273A, but interacted only weakly with mutant alpha(IIb)beta(3)C177A. Furthermore, a cryptic epitope recognized by mAb 4D10G3 and not exposed on wild type alpha(IIb)beta(3) became accessible only on mutant alpha(IIb)beta(3)C177A and was mapped to the 60-kDa chymotrypsin fragment of beta(3). Finally, the ligand-induced binding site (LIBS) epitopes AP5, D3, LIBS1, and LIBS2 were spontaneously expressed on all three mutants independent of RGDS or dithiothreitol treatment. Our results provide evidence that disruption of a single cysteine disulfide bond in the cysteine-rich repeat domain, but not in the I-like domain, activates integrin

  4. Genome Maps, a new generation genome browser.

    PubMed

    Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín

    2013-07-01

    Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org.

  5. Genome Maps, a new generation genome browser

    PubMed Central

    Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín

    2013-01-01

    Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org. PMID:23748955

  6. Genome Maps, a new generation genome browser.

    PubMed

    Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín

    2013-07-01

    Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org. PMID:23748955

  7. Evaluation of All Nonsynonymous Single-Nucleotide Polymorphisms in the Gene Encoding Human Deoxyribonuclease I-Like 1, Possibly Implicated in the Blocking of Endocytosis-Mediated Foreign Gene Transfer

    PubMed Central

    Ueki, Misuzu; Kimura-Kataoka, Kaori; Fujihara, Junko; Iida, Reiko; Yasuda, Toshihiro

    2014-01-01

    Many nonsynonymous single-nucleotide polymorphisms (SNPs) in the human deoxyribonuclease I-like 1 (DNase 1L1) gene, possibly implicated in the blocking of endocytosis-mediated foreign gene transfer, have been identified, but only limited population data are available and no studies have evaluated whether such SNPs are functional. Genotyping of all 21 nonsynonymous human DNase 1L1 SNPs was performed in 16 different populations representing three ethnic groups using the PCR-restriction fragment length polymorphism technique. All of the nonsynonymous SNPs, except for SNP p.Val122Ile in Caucasian populations, exhibited a monoallelic distribution in all of the populations. On the basis of alterations in the activity levels resulting from the corresponding amino acid substitutions, two activity-abolishing and four activity-reducing SNPs were confirmed to be functional. Although all of the nonsynonymous SNPs that affected the catalytic activity showed extremely low genetic heterogeneity, it seems plausible that a minor allele of six SNPs producing a loss-of-function or extremely low-activity variant could serve directly as a genetic risk factor for diseases. Especially, the amino acid residues in activity-abolishing SNPs were conserved in animal DNases 1L1. Furthermore, results of phylogenetic analysis suggest that DNase 1L1 might have appeared latest among the DNase I family during the course of molecular evolution. PMID:24329527

  8. JGI Fungal Genomics Program

    SciTech Connect

    Grigoriev, Igor V.

    2011-03-14

    Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here

  9. Genomic Encyclopedia of Fungi

    SciTech Connect

    Grigoriev, Igor

    2012-08-10

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 150 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  10. Genomics and Health Impact Update

    MedlinePlus

    ... Genomics in Practice Newborn Screening Pharmacogenomics Reproductive Health Tools and Databases About the Genomics & Health Impact Update The Office of Public Health Genomics provides updated and credible ...

  11. Plant genomics: an overview.

    PubMed

    Campos-de Quiroz, Hugo

    2002-01-01

    Recent technological advancements have substantially expanded our ability to analyze and understand plant genomes and to reduce the gap existing between genotype and phenotype. The fast evolving field of genomics allows scientists to analyze thousand of genes in parallel, to understand the genetic architecture of plant genomes and also to isolate the genes responsible for mutations. Furthermore, whole genomes can now be sequenced. This review addresses these issues and also discusses ways to extract biological meaning from DNA data. Although genomic issuesare addressed from a plant perspective, this review provides insights into the genomic analyses of other organisms. PMID:12462991

  12. Genomic Data Commons | Office of Cancer Genomics

    Cancer.gov

    The NCI’s Center for Cancer Genomics launches the Genomic Data Commons (GDC), a unified data sharing platform for the cancer research community. The mission of the GDC is to enable data sharing across the entire cancer research community, to ultimately support precision medicine in oncology.

  13. Harvesting rice's dispensable genome.

    PubMed

    Wing, Rod A

    2015-01-01

    A rapid and cost-effective approach has been developed to harvest and map the dispensable genome, that is, population-level natural sequence variation within a species that is not present in static genome assemblies. PMID:26429765

  14. Genomic Data Commons launches

    Cancer.gov

    The Genomic Data Commons (GDC), a unified data system that promotes sharing of genomic and clinical data between researchers, launched today with a visit from Vice President Joe Biden to the operations center at the University of Chicago.

  15. GENOMICS AND ENVIRONMENTAL RESEARCH

    EPA Science Inventory

    The impact of recently developed and emerging genomics technologies on environmental sciences has significant implications for human and ecological risk assessment issues. The linkage of data generated from genomics, transcriptomics, proteomics, metabalomics, and ecology can be ...

  16. Exploiting the genome

    SciTech Connect

    Block, S.; Cornwall, J.; Dyson, F.; Koonin, S.; Lewis, N.; Schwitters, R.

    1998-09-11

    In 1997, JASON conducted a DOE-sponsored study of the human genome project with special emphasis on the areas of technology, quality assurance and quality control, and informatics. The present study has two aims: first, to update the 1997 Report in light of recent developments in genome sequencing technology, and second, to consider possible roles for the DOE in the ''post-genomic" era, following acquisition of the complete human genome sequence.

  17. The Genomic Medicine Game.

    PubMed

    Tran, Elvis; de Andrés-Galiana, Enrique J; Benitez, Sonia; Martin-Sanchez, Fernando; Lopez-Campos, Guillermo H

    2016-01-01

    With advancements in genomics technology, health care has been improving and new paradigms of medicine such as genomic medicine have evolved. The education of clinicians, researchers and students to face the challenges posed by these new approaches, however, has been often lagging behind. From this the Genomic Medicine Game, an educational tool, was created for the purpose of conceptualizing the key components of Genomic Medicine. A number of phenotype-genotype associations were found through a literature review, which was used to be a base for the concepts the Genomic Medicine Game would focus on. Built in Java, the game was successfully tested with promising results. PMID:27577486

  18. Bacterial Genome Instability

    PubMed Central

    Darmon, Elise

    2014-01-01

    SUMMARY Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease. PMID:24600039

  19. Nucleic Acid Binding by Mason-Pfizer Monkey Virus CA Promotes Virus Assembly and Genome Packaging

    PubMed Central

    Füzik, Tibor; Píchalová, Růžena; Schur, Florian K. M.; Strohalmová, Karolína; Křížová, Ivana; Hadravová, Romana; Rumlová, Michaela; Briggs, John A. G.

    2016-01-01

    ABSTRACT The Gag polyprotein of retroviruses drives immature virus assembly by forming hexameric protein lattices. The assembly is primarily mediated by protein-protein interactions between capsid (CA) domains and by interactions between nucleocapsid (NC) domains and RNA. Specific interactions between NC and the viral RNA are required for genome packaging. Previously reported cryoelectron microscopy analysis of immature Mason-Pfizer monkey virus (M-PMV) particles suggested that a basic region (residues RKK) in CA may serve as an additional binding site for nucleic acids. Here, we have introduced mutations into the RKK region in both bacterial and proviral M-PMV vectors and have assessed their impact on M-PMV assembly, structure, RNA binding, budding/release, nuclear trafficking, and infectivity using in vitro and in vivo systems. Our data indicate that the RKK region binds and structures nucleic acid that serves to promote virus particle assembly in the cytoplasm. Moreover, the RKK region appears to be important for recruitment of viral genomic RNA into Gag particles, and this function could be linked to changes in nuclear trafficking. Together these observations suggest that in M-PMV, direct interactions between CA and nucleic acid play important functions in the late stages of the viral life cycle. IMPORTANCE Assembly of retrovirus particles is driven by the Gag polyprotein, which can self-assemble to form virus particles and interact with RNA to recruit the viral genome into the particles. Generally, the capsid domains of Gag contribute to essential protein-protein interactions during assembly, while the nucleocapsid domain interacts with RNA. The interactions between the nucleocapsid domain and RNA are important both for identifying the genome and for self-assembly of Gag molecules. Here, we show that a region of basic residues in the capsid protein of the betaretrovirus Mason-Pfizer monkey virus (M-PMV) contributes to interaction of Gag with nucleic acid. This

  20. Enabling responsible public genomics.

    PubMed

    Conley, John M; Doerr, Adam K; Vorhaus, Daniel B

    2010-01-01

    As scientific understandings of genetics advance, researchers require increasingly rich datasets that combine genomic data from large numbers of individuals with medical and other personal information. Linking individuals' genetic data and personal information precludes anonymity and produces medically significant information--a result not contemplated by the established legal and ethical conventions governing human genomic research. To pursue the next generation of human genomic research and commerce in a responsible fashion, scientists, lawyers, and regulators must address substantial new issues, including researchers' duties with respect to clinically significant data, the challenges to privacy presented by genomic data, the boundary between genomic research and commerce, and the practice of medicine. This Article presents a new model for understanding and addressing these new challenges--a "public genomics" premised on the idea that ethically, legally, and socially responsible genomics research requires openness, not privacy, as its organizing principle. Responsible public genomics combines the data contributed by informed and fully consenting information altruists and the research potential of rich datasets in a genomic commons that is freely and globally available. This Article examines the risks and benefits of this public genomics model in the context of an ambitious genetic research project currently under way--the Personal Genome Project. This Article also (i) demonstrates that large-scale genomic projects are desirable, (ii) evaluates the risks and challenges presented by public genomics research, and (iii) determines that the current legal and regulatory regimes restrict beneficial and responsible scientific inquiry while failing to adequately protect participants. The Article concludes by proposing a modified normative and legal framework that embraces and enables a future of responsible public genomics.

  1. Identification and characterization of SNJ2, the first temperate pleolipovirus integrating into the genome of the SNJ1-lysogenic archaeal strain.

    PubMed

    Liu, Ying; Wang, Jiao; Liu, Yang; Wang, Yuchen; Zhang, Ziqian; Oksanen, Hanna M; Bamford, Dennis H; Chen, Xiangdong

    2015-12-01

    Proviral regions have been identified in the genomes of many haloarchaea, but only a few archaeal halophilic temperate viruses have been studied. Here, we report a new virus, SNJ2, originating from archaeal strain Natrinema sp. J7-1. We demonstrate that this temperate virus coexists with SNJ1 virus and is dependent on SNJ1 for efficient production. Here, we show that SNJ1 is an icosahedral membrane-containing virus, whereas SNJ2 is a pleomorphic one. Instead of producing progeny virions and forming plaques, SNJ2 integrates into the host tRNA(Met) gene. The virion contains a discontinuous, circular, double-stranded DNA genome of 16 992 bp, in which both nicks and single-stranded regions are present preceded by a 'GCCCA' motif. Among 25 putative SNJ2 open reading frames (ORFs), five of them form a cluster of conserved ORFs homologous to archaeal pleolipoviruses isolated from hypersaline environments. Two structural protein encoding genes in the conserved cluster were verified in SNJ2. Furthermore, SNJ2-like proviruses containing the conserved gene cluster were identified in the chromosomes of archaea belonging to 10 different genera. Comparison of SNJ2 and these proviruses suggests that they employ a similar integration strategy into a tRNA gene. PMID:26331239

  2. Whole-exome/genome sequencing and genomics.

    PubMed

    Grody, Wayne W; Thompson, Barry H; Hudgins, Louanne

    2013-12-01

    As medical genetics has progressed from a descriptive entity to one focused on the functional relationship between genes and clinical disorders, emphasis has been placed on genomics. Genomics, a subelement of genetics, is the study of the genome, the sum total of all the genes of an organism. The human genome, which is contained in the 23 pairs of nuclear chromosomes and in the mitochondrial DNA of each cell, comprises >6 billion nucleotides of genetic code. There are some 23,000 protein-coding genes, a surprisingly small fraction of the total genetic material, with the remainder composed of noncoding DNA, regulatory sequences, and introns. The Human Genome Project, launched in 1990, produced a draft of the genome in 2001 and then a finished sequence in 2003, on the 50th anniversary of the initial publication of Watson and Crick's paper on the double-helical structure of DNA. Since then, this mass of genetic information has been translated at an ever-increasing pace into useable knowledge applicable to clinical medicine. The recent advent of massively parallel DNA sequencing (also known as shotgun, high-throughput, and next-generation sequencing) has brought whole-genome analysis into the clinic for the first time, and most of the current applications are directed at children with congenital conditions that are undiagnosable by using standard genetic tests for single-gene disorders. Thus, pediatricians must become familiar with this technology, what it can and cannot offer, and its technical and ethical challenges. Here, we address the concepts of human genomic analysis and its clinical applicability for primary care providers.

  3. HeteroGenome: database of genome periodicity

    PubMed Central

    Chaley, Maria; Kutyrkin, Vladimir; Tulbasheva, Gayane; Teplukhina, Elena; Nazipova, Nafisa

    2014-01-01

    We present the first release of the HeteroGenome database collecting latent periodicity regions in genomes. Tandem repeats and highly divergent tandem repeats along with the regions of a new type of periodicity, known as profile periodicity, have been collected for the genomes of Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans and Drosophila melanogaster. We obtained data with the aid of a spectral-statistical approach to search for reliable latent periodicity regions (with periods up to 2000 bp) in DNA sequences. The original two-level mode of data presentation (a broad view of the region of latent periodicity and a second level indicating conservative fragments of its structure) was further developed to enable us to obtain the estimate, without redundancy, that latent periodicity regions make up ∼10% of the analyzed genomes. Analysis of the quantitative and qualitative content of located periodicity regions on all chromosomes of the analyzed organisms revealed dominant characteristic types of periodicity in the genomes. The pattern of density distribution of latent periodicity regions on chromosome unambiguously characterizes each chromosome in genome. Database URL: http://www.jcbi.ru/lp_baze/ PMID:24857969

  4. The tiniest tiny genomes.

    PubMed

    Moran, Nancy A; Bennett, Gordon M

    2014-01-01

    Starting in 2006, surprisingly tiny genomes have been discovered from numerous bacterial symbionts of insect hosts. Despite their size, each retains some genes that enable provisioning of limiting nutrients or other capabilities required by hosts. Genome sequence analyses show that genome reduction is an ongoing process, resulting in a continuum of sizes, with the smallest genome currently known at 112 kilobases. Genome reduction is typical in host-restricted symbionts and pathogens, but the tiniest genomes are restricted to symbionts required by hosts and restricted to specialized host cells, resulting from long coevolution with hosts. Genes are lost in all functional categories, but core genes for central informational processes, including genes encoding ribosomal proteins, are mostly retained, whereas genes underlying production of cell envelope components are especially depleted. Thus, these entities retain cell-like properties but are heavily dependent on coadaptation of hosts, which continuously evolve to support the symbionts upon which they depend.

  5. State of cat genomics.

    PubMed

    O'Brien, Stephen J; Johnson, Warren; Driscoll, Carlos; Pontius, Joan; Pecon-Slattery, Jill; Menotti-Raymond, Marilyn

    2008-06-01

    Our knowledge of cat family biology was recently expanded to include a genomics perspective with the completion of a draft whole genome sequence of an Abyssinian cat. The utility of the new genome information has been demonstrated by applications ranging from disease gene discovery and comparative genomics to species conservation. Patterns of genomic organization among cats and inbred domestic cat breeds have illuminated our view of domestication, revealing linkage disequilibrium tracks consequent of breed formation, defining chromosome exchanges that punctuated major lineages of mammals and suggesting ancestral continental migration events that led to 37 modern species of Felidae. We review these recent advances here. As the genome resources develop, the cat is poised to make a major contribution to many areas in genetics and biology.

  6. The cyanobacterial genome core and the origin of photosynthesis

    PubMed Central

    Mulkidjanian, Armen Y.; Koonin, Eugene V.; Makarova, Kira S.; Mekhedov, Sergey L.; Sorokin, Alexander; Wolf, Yuri I.; Dufresne, Alexis; Partensky, Frédéric; Burd, Henry; Kaznadzey, Denis; Haselkorn, Robert; Galperin, Michael Y.

    2006-01-01

    Comparative analysis of 15 complete cyanobacterial genome sequences, including “near minimal” genomes of five strains of Prochlorococcus spp., revealed 1,054 protein families [core cyanobacterial clusters of orthologous groups of proteins (core CyOGs)] encoded in at least 14 of them. The majority of the core CyOGs are involved in central cellular functions that are shared with other bacteria; 50 core CyOGs are specific for cyanobacteria, whereas 84 are exclusively shared by cyanobacteria and plants and/or other plastid-carrying eukaryotes, such as diatoms or apicomplexans. The latter group includes 35 families of uncharacterized proteins, which could also be involved in photosynthesis. Only a few components of cyanobacterial photosynthetic machinery are represented in the genomes of the anoxygenic phototrophic bacteria Chlorobium tepidum, Rhodopseudomonas palustris, Chloroflexus aurantiacus, or Heliobacillus mobilis. These observations, coupled with recent geological data on the properties of the ancient phototrophs, suggest that photosynthesis originated in the cyanobacterial lineage under the selective pressures of UV light and depletion of electron donors. We propose that the first phototrophs were anaerobic ancestors of cyanobacteria (“procyanobacteria”) that conducted anoxygenic photosynthesis using a photosystem I-like reaction center, somewhat similar to the heterocysts of modern filamentous cyanobacteria. From procyanobacteria, photosynthesis spread to other phyla by way of lateral gene transfer. PMID:16924101

  7. Genome Aliquoting Revisited

    NASA Astrophysics Data System (ADS)

    Warren, Robert; Sankoff, David

    We prove that the genome aliquoting problem, the problem of finding a recent polyploid ancestor of a genome, with breakpoint distance can be solved in polynomial time. We propose an aliquoting algorithm that is a 2-approximation for the genome aliquoting problem with double cut and join distance, improving upon the previous best solution to this problem, Feijão and Meidanis' 4-approximation algorithm.

  8. Querying genomic databases

    SciTech Connect

    Baehr, A.; Hagstrom, R.; Joerg, D.; Overbeek, R.

    1991-09-01

    A natural-language interface has been developed that retrieves genomic information by using a simple subset of English. The interface spares the biologist from the task of learning database-specific query languages and computer programming. Currently, the interface deals with the E. coli genome. It can, however, be readily extended and shows promise as a means of easy access to other sequenced genomic databases as well.

  9. Genome packaging in viruses.

    PubMed

    Sun, Siyang; Rao, Venigalla B; Rossmann, Michael G

    2010-02-01

    Genome packaging is a fundamental process in a viral life cycle. Many viruses assemble preformed capsids into which the genomic material is subsequently packaged. These viruses use a packaging motor protein that is driven by the hydrolysis of ATP to condense the nucleic acids into a confined space. How these motor proteins package viral genomes had been poorly understood until recently, when a few X-ray crystal structures and cryo-electron microscopy (cryo-EM) structures became available. Here we discuss various aspects of genome packaging and compare the mechanisms proposed for packaging motors on the basis of structural information. PMID:20060706

  10. Filarial and Wolbachia genomics.

    PubMed

    Scott, A L; Ghedin, E; Nutman, T B; McReynolds, L A; Poole, C B; Slatko, B E; Foster, J M

    2012-01-01

    Filarial nematode parasites, the causative agents for a spectrum of acute and chronic diseases including lymphatic filariasis and river blindness, threaten the well-being and livelihood of hundreds of millions of people in the developing regions of the world. The 2007 publication on a draft assembly of the 95-Mb genome of the human filarial parasite Brugia malayi- representing the first helminth parasite genome to be sequenced - has been followed in rapid succession by projects that have resulted in the genome sequencing of six additional filarial species, seven nonfilarial nematode parasites of animals and nearly 30 plant parasitic and free-living species. Parallel to the genomic sequencing, transcriptomic and proteomic projects have facilitated genome annotation, expanded our understanding of stage-associated gene expression and provided a first look at the role of epigenetic regulation of filarial genomes through microRNAs. The expansion in filarial genomics will also provide a significant enrichment in our knowledge of the diversity and variability in the genomes of the endosymbiotic bacterium Wolbachia leading to a better understanding of the genetic principles that govern filarial-Wolbachia mutualism. The goal here is to provide an overview of the trends and advances in filarial and Wolbachia genomics. PMID:22098559

  11. Disentangling associated genomes.

    PubMed

    Sloan, Daniel B; Bennett, Gordon M; Engel, Philipp; Williams, David; Ochman, Howard

    2013-01-01

    The recovery and assembly of genome sequences from samples containing communities of organisms pose several challenges. Because it is rarely possible to disassociate the resident organisms prior to sequencing, a major obstacle is the assignment of sequences to a single genome that can be fully assembled. This chapter delineates many of the decisions, methodologies, and approaches that can lead to the generation of complete or nearly complete microbial genome sequences from heterogeneous samples-that is, the procedures that allow us to turn metagenomes into genomes.

  12. Between two fern genomes.

    PubMed

    Sessa, Emily B; Banks, Jo Ann; Barker, Michael S; Der, Joshua P; Duffy, Aaron M; Graham, Sean W; Hasebe, Mitsuyasu; Langdale, Jane; Li, Fay-Wei; Marchant, D Blaine; Pryer, Kathleen M; Rothfels, Carl J; Roux, Stanley J; Salmi, Mari L; Sigel, Erin M; Soltis, Douglas E; Soltis, Pamela S; Stevenson, Dennis W; Wolf, Paul G

    2014-01-01

    Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense diversity of extant ferns. Together, this pair of genomes will facilitate myriad large-scale comparative analyses across ferns and all land plants. Here we review the unique biological characteristics of ferns and describe a number of outstanding questions in plant biology that will benefit from the addition of ferns to the set of taxa with sequenced nuclear genomes. We explain why the fern clade is pivotal for understanding genome evolution across land plants, and we provide a rationale for how knowledge of fern genomes will enable progress in research beyond the ferns themselves.

  13. Fungal Genomics Program

    SciTech Connect

    Grigoriev, Igor

    2012-03-12

    The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scale genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.

  14. [Landscape and ecological genomics].

    PubMed

    2013-10-01

    Landscape genomics is the modern version of landscape genetics, a discipline that arose approximately 10 years ago as a combination of population genetics, landscape ecology, and spatial statistics. It studies the effects of environmental variables on gene flow and other microevolutionary processes that determine genetic connectivity and variations in populations. In contrast to population genetics, it operates at the level of individual specimens rather than at the level of population samples. Another important difference between landscape genetics and genomics and population genetics is that, in the former, the analysis of gene flow and local adaptations takes quantitative account of landforms and features of the matrix, i.e., hostile spaces that separate species habitats. Landscape genomics is a part of population ecogenomics, which, along with community genomics, is a major part of ecological genomics. One of the principal purposes of landscape genomics is the identification and differentiation of various genome-wide and locus-specific effects. The approaches and computation tools developed for combined analysis of genomic and landscape variables make it possible to detect adaptation-related genome fragments, which facilitates the planning of conservation efforts and the prediction of species' fate in response to expected changes in the environment. PMID:25508669

  15. [Landscape and ecological genomics].

    PubMed

    Tetushkin, E Ia

    2013-10-01

    Landscape genomics is the modern version of landscape genetics, a discipline that arose approximately 10 years ago as a combination of population genetics, landscape ecology, and spatial statistics. It studies the effects of environmental variables on gene flow and other microevolutionary processes that determine genetic connectivity and variations in populations. In contrast to population genetics, it operates at the level of individual specimens rather than at the level of population samples. Another important difference between landscape genetics and genomics and population genetics is that, in the former, the analysis of gene flow and local adaptations takes quantitative account of landforms and features of the matrix, i.e., hostile spaces that separate species habitats. Landscape genomics is a part of population ecogenomics, which, along with community genomics, is a major part of ecological genomics. One of the principal purposes of landscape genomics is the identification and differentiation of various genome-wide and locus-specific effects. The approaches and computation tools developed for combined analysis of genomic and landscape variables make it possible to detect adaptation-related genome fragments, which facilitates the planning of conservation efforts and the prediction of species' fate in response to expected changes in the environment. PMID:25474890

  16. Between Two Fern Genomes

    PubMed Central

    2014-01-01

    Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense diversity of extant ferns. Together, this pair of genomes will facilitate myriad large-scale comparative analyses across ferns and all land plants. Here we review the unique biological characteristics of ferns and describe a number of outstanding questions in plant biology that will benefit from the addition of ferns to the set of taxa with sequenced nuclear genomes. We explain why the fern clade is pivotal for understanding genome evolution across land plants, and we provide a rationale for how knowledge of fern genomes will enable progress in research beyond the ferns themselves. PMID:25324969

  17. Home - The Cancer Genome Atlas - Cancer Genome - TCGA

    Cancer.gov

    The Cancer Genome Atlas (TCGA) is a comprehensive and coordinated effort to accelerate our understanding of the molecular basis of cancer through the application of genome analysis technologies, including large-scale genome sequencing.

  18. Genetics and Genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Good progress is being made on genetics and genomics of sugar beet, however it is in process and the tools are now being generated and some results are being analyzed. The GABI BeetSeq project released a first draft of the sugar beet genome of KWS2320, a dihaploid (see http://bvseq.molgen.mpg.de/Gen...

  19. The UCSC Genome Browser

    PubMed Central

    Karolchik, Donna; Hinrichs, Angie S.; Kent, W. James

    2009-01-01

    The University of California Santa Cruz (UCSC) Genome Browser (genome.ucsc.edu) is a popular Web-based tool for quickly displaying a requested portion of a genome at any scale, accompanied by a series of aligned annotation “tracks”. The annotations—generated by the UCSC Genome Bioinformatics Group and external collaborators—display gene predictions, mRNA and expressed sequence tag alignments, simple nucleotide polymorphisms, expression and regulatory data, phenotype and variation data, and pairwise and multiple-species comparative genomics data. All information relevant to a region is presented in one window, facilitating biological analysis and interpretation. The database tables underlying the Genome Browser tracks can be viewed, downloaded, and manipulated using another Web-based application, the UCSC Table Browser. Users can upload data as custom annotation tracks in both browsers for research or educational use. This unit describes how to use the Genome Browser and Table Browser for genome analysis, download the underlying database tables, and create and display custom annotation tracks. PMID:19957273

  20. National Human Genome Research Institute

    MedlinePlus

    ... Director Organization Reports & Publications Español The National Human Genome Research Institute conducts genetic and genomic research, funds ... study, led by researchers at the National Human Genome Research Institute and the Eunice Kennedy Shriver National ...

  1. Genomic Instability and Cancer

    PubMed Central

    Yao, Yixin; Dai, Wei

    2014-01-01

    Genomic instability is a characteristic of most cancer cells. It is an increased tendency of genome alteration during cell division. Cancer frequently results from damage to multiple genes controlling cell division and tumor suppressors. It is known that genomic integrity is closely monitored by several surveillance mechanisms, DNA damage checkpoint, DNA repair machinery and mitotic checkpoint. A defect in the regulation of any of these mechanisms often results in genomic instability, which predisposes the cell to malignant transformation. Posttranslational modifications of the histone tails are closely associated with regulation of the cell cycle as well as chromatin structure. Nevertheless, DNA methylation status is also related to genomic integrity. We attempt to summarize recent developments in this field and discuss the debate of driving force of tumor initiation and progression. PMID:25541596

  2. Microbial Genomes Multiply

    NASA Technical Reports Server (NTRS)

    Doolittle, Russell F.

    2002-01-01

    The publication of the first complete sequence of a bacterial genome in 1995 was a signal event, underscored by the fact that the article has been cited more than 2,100 times during the intervening seven years. It was a marvelous technical achievement, made possible by automatic DNA-sequencing machines. The feat is the more impressive in that complete genome sequencing has now been adopted in many different laboratories around the world. Four years ago in these columns I examined the situation after a dozen microbial genomes had been completed. Now, with upwards of 60 microbial genome sequences determined and twice that many in progress, it seems reasonable to assess just what is being learned. Are new concepts emerging about how cells work? Have there been practical benefits in the fields of medicine and agriculture? Is it feasible to determine the genomic sequence of every bacterial species on Earth? The answers to these questions maybe Yes, Perhaps, and No, respectively.

  3. The UCSC Genome Browser

    PubMed Central

    Karolchik, Donna; Hinrichs, Angie S.; Kent, W. James

    2011-01-01

    The University of California Santa Cruz (UCSC) Genome Browser is a popular Web-based tool for quickly displaying a requested portion of a genome at any scale, accompanied by a series of aligned annotation “tracks.” The annotations generated by the UCSC Genome Bioinformatics Group and external collaborators include gene predictions, mRNA and expressed sequence tag alignments, simple nucleotide polymorphisms, expression and regulatory data, phenotype and variation data, and pairwise and multiple-species comparative genomics data. All information relevant to a region is presented in one window, facilitating biological analysis and interpretation. The database tables underlying the Genome Browser tracks can be viewed, downloaded, and manipulated using another Web-based application, the UCSC Table Browser. Users can upload personal datasets in a wide variety of formats as custom annotation tracks in both browsers for research or educational purposes. PMID:21975940

  4. Phytozome Comparative Plant Genomics Portal

    SciTech Connect

    Goodstein, David; Batra, Sajeev; Carlson, Joseph; Hayes, Richard; Phillips, Jeremy; Shu, Shengqiang; Schmutz, Jeremy; Rokhsar, Daniel

    2014-09-09

    The Dept. of Energy Joint Genome Institute is a genomics user facility supporting DOE mission science in the areas of Bioenergy, Carbon Cycling, and Biogeochemistry. The Plant Program at the JGI applies genomic, analytical, computational and informatics platforms and methods to: 1. Understand and accelerate the improvement (domestication) of bioenergy crops 2. Characterize and moderate plant response to climate change 3. Use comparative genomics to identify constrained elements and infer gene function 4. Build high quality genomic resource platforms of JGI Plant Flagship genomes for functional and experimental work 5. Expand functional genomic resources for Plant Flagship genomes

  5. Evolution of genome architecture.

    PubMed

    Koonin, Eugene V

    2009-02-01

    Charles Darwin believed that all traits of organisms have been honed to near perfection by natural selection. The empirical basis underlying Darwin's conclusions consisted of numerous observations made by him and other naturalists on the exquisite adaptations of animals and plants to their natural habitats and on the impressive results of artificial selection. Darwin fully appreciated the importance of heredity but was unaware of the nature and, in fact, the very existence of genomes. A century and a half after the publication of the "Origin", we have the opportunity to draw conclusions from the comparisons of hundreds of genome sequences from all walks of life. These comparisons suggest that the dominant mode of genome evolution is quite different from that of the phenotypic evolution. The genomes of vertebrates, those purported paragons of biological perfection, turned out to be veritable junkyards of selfish genetic elements where only a small fraction of the genetic material is dedicated to encoding biologically relevant information. In sharp contrast, genomes of microbes and viruses are incomparably more compact, with most of the genetic material assigned to distinct biological functions. However, even in these genomes, the specific genome organization (gene order) is poorly conserved. The results of comparative genomics lead to the conclusion that the genome architecture is not a straightforward result of continuous adaptation but rather is determined by the balance between the selection pressure, that is itself dependent on the effective population size and mutation rate, the level of recombination, and the activity of selfish elements. Although genes and, in many cases, multigene regions of genomes possess elaborate architectures that ensure regulation of expression, these arrangements are evolutionarily volatile and typically change substantially even on short evolutionary scales when gene sequences diverge minimally. Thus, the observed genome

  6. The UCSC Genome Browser.

    PubMed

    Karolchik, Donna; Hinrichs, Angie S; Kent, W James

    2012-12-01

    The University of California Santa Cruz (UCSC) Genome Browser is a popular Web-based tool for quickly displaying a requested portion of a genome at any scale, accompanied by a series of aligned annotation "tracks." The annotations generated by the UCSC Genome Bioinformatics Group and external collaborators include gene predictions, mRNA and expressed sequence tag alignments, simple nucleotide polymorphisms, expression and regulatory data, phenotype and variation data, and pairwise and multiple-species comparative genomics data. All information relevant to a region is presented in one window, facilitating biological analysis and interpretation. The database tables underlying the Genome Browser tracks can be viewed, downloaded, and manipulated using another Web-based application, the UCSC Table Browser. Users can upload personal datasets in a wide variety of formats as custom annotation tracks in both browsers for research or educational purposes. This unit describes how to use the Genome Browser and Table Browser for genome analysis, download the underlying database tables, and create and display custom annotation tracks.

  7. NCBI viral genomes resource.

    PubMed

    Brister, J Rodney; Ako-Adjei, Danso; Bao, Yiming; Blinkova, Olga

    2015-01-01

    Recent technological innovations have ignited an explosion in virus genome sequencing that promises to fundamentally alter our understanding of viral biology and profoundly impact public health policy. Yet, any potential benefits from the billowing cloud of next generation sequence data hinge upon well implemented reference resources that facilitate the identification of sequences, aid in the assembly of sequence reads and provide reference annotation sources. The NCBI Viral Genomes Resource is a reference resource designed to bring order to this sequence shockwave and improve usability of viral sequence data. The resource can be accessed at http://www.ncbi.nlm.nih.gov/genome/viruses/ and catalogs all publicly available virus genome sequences and curates reference genome sequences. As the number of genome sequences has grown, so too have the difficulties in annotating and maintaining reference sequences. The rapid expansion of the viral sequence universe has forced a recalibration of the data model to better provide extant sequence representation and enhanced reference sequence products to serve the needs of the various viral communities. This, in turn, has placed increased emphasis on leveraging the knowledge of individual scientific communities to identify important viral sequences and develop well annotated reference virus genome sets.

  8. The Banana Genome Hub

    PubMed Central

    Droc, Gaëtan; Larivière, Delphine; Guignon, Valentin; Yahiaoui, Nabila; This, Dominique; Garsmeur, Olivier; Dereeper, Alexis; Hamelin, Chantal; Argout, Xavier; Dufayard, Jean-François; Lengelle, Juliette; Baurens, Franc-Christophe; Cenci, Alberto; Pitollat, Bertrand; D’Hont, Angélique; Ruiz, Manuel; Rouard, Mathieu; Bocs, Stéphanie

    2013-01-01

    Banana is one of the world’s favorite fruits and one of the most important crops for developing countries. The banana reference genome sequence (Musa acuminata) was recently released. Given the taxonomic position of Musa, the completed genomic sequence has particular comparative value to provide fresh insights about the evolution of the monocotyledons. The study of the banana genome has been enhanced by a number of tools and resources that allows harnessing its sequence. First, we set up essential tools such as a Community Annotation System, phylogenomics resources and metabolic pathways. Then, to support post-genomic efforts, we improved banana existing systems (e.g. web front end, query builder), we integrated available Musa data into generic systems (e.g. markers and genetic maps, synteny blocks), we have made interoperable with the banana hub, other existing systems containing Musa data (e.g. transcriptomics, rice reference genome, workflow manager) and finally, we generated new results from sequence analyses (e.g. SNP and polymorphism analysis). Several uses cases illustrate how the Banana Genome Hub can be used to study gene families. Overall, with this collaborative effort, we discuss the importance of the interoperability toward data integration between existing information systems. Database URL: http://banana-genome.cirad.fr/ PMID:23707967

  9. The banana genome hub.

    PubMed

    Droc, Gaëtan; Larivière, Delphine; Guignon, Valentin; Yahiaoui, Nabila; This, Dominique; Garsmeur, Olivier; Dereeper, Alexis; Hamelin, Chantal; Argout, Xavier; Dufayard, Jean-François; Lengelle, Juliette; Baurens, Franc-Christophe; Cenci, Alberto; Pitollat, Bertrand; D'Hont, Angélique; Ruiz, Manuel; Rouard, Mathieu; Bocs, Stéphanie

    2013-01-01

    Banana is one of the world's favorite fruits and one of the most important crops for developing countries. The banana reference genome sequence (Musa acuminata) was recently released. Given the taxonomic position of Musa, the completed genomic sequence has particular comparative value to provide fresh insights about the evolution of the monocotyledons. The study of the banana genome has been enhanced by a number of tools and resources that allows harnessing its sequence. First, we set up essential tools such as a Community Annotation System, phylogenomics resources and metabolic pathways. Then, to support post-genomic efforts, we improved banana existing systems (e.g. web front end, query builder), we integrated available Musa data into generic systems (e.g. markers and genetic maps, synteny blocks), we have made interoperable with the banana hub, other existing systems containing Musa data (e.g. transcriptomics, rice reference genome, workflow manager) and finally, we generated new results from sequence analyses (e.g. SNP and polymorphism analysis). Several uses cases illustrate how the Banana Genome Hub can be used to study gene families. Overall, with this collaborative effort, we discuss the importance of the interoperability toward data integration between existing information systems. Database URL: http://banana-genome.cirad.fr/

  10. Ensembl comparative genomics resources

    PubMed Central

    Muffato, Matthieu; Beal, Kathryn; Fitzgerald, Stephen; Gordon, Leo; Pignatelli, Miguel; Vilella, Albert J.; Searle, Stephen M. J.; Amode, Ridwan; Brent, Simon; Spooner, William; Kulesha, Eugene; Yates, Andrew; Flicek, Paul

    2016-01-01

    Evolution provides the unifying framework with which to understand biology. The coherent investigation of genic and genomic data often requires comparative genomics analyses based on whole-genome alignments, sets of homologous genes and other relevant datasets in order to evaluate and answer evolutionary-related questions. However, the complexity and computational requirements of producing such data are substantial: this has led to only a small number of reference resources that are used for most comparative analyses. The Ensembl comparative genomics resources are one such reference set that facilitates comprehensive and reproducible analysis of chordate genome data. Ensembl computes pairwise and multiple whole-genome alignments from which large-scale synteny, per-base conservation scores and constrained elements are obtained. Gene alignments are used to define Ensembl Protein Families, GeneTrees and homologies for both protein-coding and non-coding RNA genes. These resources are updated frequently and have a consistent informatics infrastructure and data presentation across all supported species. Specialized web-based visualizations are also available including synteny displays, collapsible gene tree plots, a gene family locator and different alignment views. The Ensembl comparative genomics infrastructure is extensively reused for the analysis of non-vertebrate species by other projects including Ensembl Genomes and Gramene and much of the information here is relevant to these projects. The consistency of the annotation across species and the focus on vertebrates makes Ensembl an ideal system to perform and support vertebrate comparative genomic analyses. We use robust software and pipelines to produce reference comparative data and make it freely available. Database URL: http://www.ensembl.org. PMID:26896847

  11. Ensembl comparative genomics resources.

    PubMed

    Herrero, Javier; Muffato, Matthieu; Beal, Kathryn; Fitzgerald, Stephen; Gordon, Leo; Pignatelli, Miguel; Vilella, Albert J; Searle, Stephen M J; Amode, Ridwan; Brent, Simon; Spooner, William; Kulesha, Eugene; Yates, Andrew; Flicek, Paul

    2016-01-01

    Evolution provides the unifying framework with which to understand biology. The coherent investigation of genic and genomic data often requires comparative genomics analyses based on whole-genome alignments, sets of homologous genes and other relevant datasets in order to evaluate and answer evolutionary-related questions. However, the complexity and computational requirements of producing such data are substantial: this has led to only a small number of reference resources that are used for most comparative analyses. The Ensembl comparative genomics resources are one such reference set that facilitates comprehensive and reproducible analysis of chordate genome data. Ensembl computes pairwise and multiple whole-genome alignments from which large-scale synteny, per-base conservation scores and constrained elements are obtained. Gene alignments are used to define Ensembl Protein Families, GeneTrees and homologies for both protein-coding and non-coding RNA genes. These resources are updated frequently and have a consistent informatics infrastructure and data presentation across all supported species. Specialized web-based visualizations are also available including synteny displays, collapsible gene tree plots, a gene family locator and different alignment views. The Ensembl comparative genomics infrastructure is extensively reused for the analysis of non-vertebrate species by other projects including Ensembl Genomes and Gramene and much of the information here is relevant to these projects. The consistency of the annotation across species and the focus on vertebrates makes Ensembl an ideal system to perform and support vertebrate comparative genomic analyses. We use robust software and pipelines to produce reference comparative data and make it freely available. Database URL: http://www.ensembl.org.

  12. Center for Cancer Genomics | Office of Cancer Genomics

    Cancer.gov

    The Center for Cancer Genomics (CCG) was established to unify the National Cancer Institute's activities in cancer genomics, with the goal of advancing genomics research and translating findings into the clinic to improve the precise diagnosis and treatment of cancers. In addition to promoting genomic sequencing approach

  13. Genomics and plant breeding.

    PubMed

    Aljanabi, S

    2001-01-01

    Much of our most basic understanding of genetics has its roots in plant genetics and crop breeding. The study of plants has led to important insights into highly conserved biological process and a wealth of knowledge about development. Agriculture is now well positioned to take its share benefit from genomics. The primary sequences of most plant genes will be determined over the next few years. Informatics and functional genomics will help identify those genes that can be best utilized to crop production and quality through genetic engineering and plant breeding. Recent developments in plant genomics are reviewed.

  14. What Is a Genome?

    PubMed

    Goldman, Aaron David; Landweber, Laura F

    2016-07-01

    The genome is often described as the information repository of an organism. Whether millions or billions of letters of DNA, its transmission across generations confers the principal medium for inheritance of organismal traits. Several emerging areas of research demonstrate that this definition is an oversimplification. Here, we explore ways in which a deeper understanding of genomic diversity and cell physiology is challenging the concepts of physical permanence attached to the genome as well as its role as the sole information source for an organism. PMID:27442251

  15. Sampling in landscape genomics.

    PubMed

    Manel, Stéphanie; Albert, Cécile H; Yoccoz, Nigel G

    2012-01-01

    Landscape genomics, based on the sampling of individuals genotyped for a large number of markers, may lead to the identification of regions of the genome correlated to selection pressures caused by the environment. In this chapter, we discuss sampling strategies to be used in a landscape genomics approach. We suggest that designs based on model-based stratification using the climatic and/or biological spaces are in general more efficient than designs based on the geographic space. More work is needed to identify designs that allow disentangling environmental selection pressures versus other processes such as range expansions or hierarchical population structure.

  16. Human Genome Program

    SciTech Connect

    Not Available

    1993-01-01

    The DOE Human Genome program has grown tremendously, as shown by the marked increase in the number of genome-funded projects since the last workshop held in 1991. The abstracts in this book describe the genome research of DOE-funded grantees and contractors and invited guests, and all projects are represented at the workshop by posters. The 3-day meeting includes plenary sessions on ethical, legal, and social issues pertaining to the availability of genetic data; sequencing techniques, informatics support; and chromosome and cDNA mapping and sequencing.

  17. Human Genome Project

    SciTech Connect

    Block, S.; Cornwall, J.; Dally, W.; Dyson, F.; Fortson, N.; Joyce, G.; Kimble, H. J.; Lewis, N.; Max, C.; Prince, T.; Schwitters, R.; Weinberger, P.; Woodin, W. H.

    1998-01-04

    The study reviews Department of Energy supported aspects of the United States Human Genome Project, the joint National Institutes of Health/Department of Energy program to characterize all human genetic material, to discover the set of human genes, and to render them accessible for further biological study. The study concentrates on issues of technology, quality assurance/control, and informatics relevant to current effort on the genome project and needs beyond it. Recommendations are presented on areas of the genome program that are of particular interest to and supported by the Department of Energy.

  18. What Is a Genome?

    PubMed Central

    Goldman, Aaron David; Landweber, Laura F.

    2016-01-01

    The genome is often described as the information repository of an organism. Whether millions or billions of letters of DNA, its transmission across generations confers the principal medium for inheritance of organismal traits. Several emerging areas of research demonstrate that this definition is an oversimplification. Here, we explore ways in which a deeper understanding of genomic diversity and cell physiology is challenging the concepts of physical permanence attached to the genome as well as its role as the sole information source for an organism. PMID:27442251

  19. Comparative primate genomics: emerging patterns of genome content and dynamics.

    PubMed

    Rogers, Jeffrey; Gibbs, Richard A

    2014-05-01

    Advances in genome sequencing technologies have created new opportunities for comparative primate genomics. Genome assemblies have been published for various primate species, and analyses of several others are underway. Whole-genome assemblies for the great apes provide remarkable new information about the evolutionary origins of the human genome and the processes involved. Genomic data for macaques and other non-human primates offer valuable insights into genetic similarities and differences among species that are used as models for disease-related research. This Review summarizes current knowledge regarding primate genome content and dynamics, and proposes a series of goals for the near future.

  20. Comparative primate genomics: emerging patterns of genome content and dynamics.

    PubMed

    Rogers, Jeffrey; Gibbs, Richard A

    2014-05-01

    Advances in genome sequencing technologies have created new opportunities for comparative primate genomics. Genome assemblies have been published for various primate species, and analyses of several others are underway. Whole-genome assemblies for the great apes provide remarkable new information about the evolutionary origins of the human genome and the processes involved. Genomic data for macaques and other non-human primates offer valuable insights into genetic similarities and differences among species that are used as models for disease-related research. This Review summarizes current knowledge regarding primate genome content and dynamics, and proposes a series of goals for the near future. PMID:24709753

  1. Comparative primate genomics: emerging patterns of genome content and dynamics

    PubMed Central

    Rogers, Jeffrey; Gibbs, Richard A.

    2014-01-01

    Preface Advances in genome sequencing technologies have created new opportunities for comparative primate genomics. Genome assemblies have been published for several primates, with analyses of several others underway. Whole genome assemblies for the great apes provide remarkable new information about the evolutionary origins of the human genome and the processes involved. Genomic data for macaques and other nonhuman primates provide valuable insight into genetic similarities and differences among species used as models for disease-related research. This review summarizes current knowledge regarding primate genome content and dynamics and offers a series of goals for the near future. PMID:24709753

  2. Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine

    PubMed Central

    Elsik, Christine G.; Tayal, Aditi; Diesh, Colin M.; Unni, Deepak R.; Emery, Marianne L.; Nguyen, Hung N.; Hagen, Darren E.

    2016-01-01

    We report an update of the Hymenoptera Genome Database (HGD) (http://HymenopteraGenome.org), a model organism database for insect species of the order Hymenoptera (ants, bees and wasps). HGD maintains genomic data for 9 bee species, 10 ant species and 1 wasp, including the versions of genome and annotation data sets published by the genome sequencing consortiums and those provided by NCBI. A new data-mining warehouse, HymenopteraMine, based on the InterMine data warehousing system, integrates the genome data with data from external sources and facilitates cross-species analyses based on orthology. New genome browsers and annotation tools based on JBrowse/WebApollo provide easy genome navigation, and viewing of high throughput sequence data sets and can be used for collaborative genome annotation. All of the genomes and annotation data sets are combined into a single BLAST server that allows users to select and combine sequence data sets to search. PMID:26578564

  3. Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine.

    PubMed

    Elsik, Christine G; Tayal, Aditi; Diesh, Colin M; Unni, Deepak R; Emery, Marianne L; Nguyen, Hung N; Hagen, Darren E

    2016-01-01

    We report an update of the Hymenoptera Genome Database (HGD) (http://HymenopteraGenome.org), a model organism database for insect species of the order Hymenoptera (ants, bees and wasps). HGD maintains genomic data for 9 bee species, 10 ant species and 1 wasp, including the versions of genome and annotation data sets published by the genome sequencing consortiums and those provided by NCBI. A new data-mining warehouse, HymenopteraMine, based on the InterMine data warehousing system, integrates the genome data with data from external sources and facilitates cross-species analyses based on orthology. New genome browsers and annotation tools based on JBrowse/WebApollo provide easy genome navigation, and viewing of high throughput sequence data sets and can be used for collaborative genome annotation. All of the genomes and annotation data sets are combined into a single BLAST server that allows users to select and combine sequence data sets to search. PMID:26578564

  4. Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine.

    PubMed

    Elsik, Christine G; Tayal, Aditi; Diesh, Colin M; Unni, Deepak R; Emery, Marianne L; Nguyen, Hung N; Hagen, Darren E

    2016-01-01

    We report an update of the Hymenoptera Genome Database (HGD) (http://HymenopteraGenome.org), a model organism database for insect species of the order Hymenoptera (ants, bees and wasps). HGD maintains genomic data for 9 bee species, 10 ant species and 1 wasp, including the versions of genome and annotation data sets published by the genome sequencing consortiums and those provided by NCBI. A new data-mining warehouse, HymenopteraMine, based on the InterMine data warehousing system, integrates the genome data with data from external sources and facilitates cross-species analyses based on orthology. New genome browsers and annotation tools based on JBrowse/WebApollo provide easy genome navigation, and viewing of high throughput sequence data sets and can be used for collaborative genome annotation. All of the genomes and annotation data sets are combined into a single BLAST server that allows users to select and combine sequence data sets to search.

  5. The rise of genomics.

    PubMed

    Weissenbach, Jean

    2016-01-01

    A brief history of the development of genomics is provided. Complete sequencing of genomes of uni- and multicellular organisms is based on important progress in sequencing and bioinformatics. Evolution of these methods is ongoing and has triggered an explosion in data production and analysis. Initial analyses focused on the inventory of genes encoding proteins. Completeness and quality of gene prediction remains crucial. Genome analyses profoundly modified our views on evolution, biodiversity and contributed to the detection of new functions, yet to be fully elucidated, such as those fulfilled by non-coding RNAs. Genomics has become the basis for the study of biology and provides the molecular support for a bunch of large-scale studies, the omics.

  6. Vita Genomics, Inc.

    PubMed

    Shih-Hsin Wu, Lawrence; Su, Chun-Lin; Chen, Ellson

    2007-06-01

    Vita Genomics, Inc., centered in Taiwan and China, aims to be a premier genomics-based biotechnological and biopharmaceutical company in the Asia-Pacific region. The company focuses on conducting pharmacogenomics research, in vitro diagnosis product development and specialty contract research services in both genomics and pharmacogenomics fields. We are now initiating a drug rescue program designed to resurrect drugs that have failed in the previous clinical trials owing to low efficacies. This program applies pharmacogenomics approaches using biomarkers to screen subsets of patients who may respond better or avoid adverse responses to the test drugs. Vita Genomics, Inc. has envisioned itself as an important player in the healthcare industry offering advanced molecular diagnostic products and services, revolutionizing thedrug-development process and providing pharmacogenomic solutions.

  7. Platyzoan mitochondrial genomes.

    PubMed

    Wey-Fabrizius, Alexandra R; Podsiadlowski, Lars; Herlyn, Holger; Hankeln, Thomas

    2013-11-01

    Platyzoa is a putative lophotrochozoan (spiralian) subtaxon within the protostome clade of Metazoa, comprising a range of biologically diverse, mostly small worm-shaped animals. The monophyly of Platyzoa, the relationships between the putative subgroups Platyhelminthes, Gastrotricha and Gnathifera (the latter comprising at least Gnathostomulida, "Rotifera" and Acanthocephala) as well as some aspects of the internal phylogenies of these subgroups are highly debated. Here we review how complete mitochondrial (mt) genome data contribute to these debates. We highlight special features of the mt genomes and discuss problems in mtDNA phylogenies of the clade. Mitochondrial genome data seem to be insufficient to resolve the position of the platyzoan clade within the Spiralia but can help to address internal phylogenetic questions. The present review includes a tabular survey of all published platyzoan mt genomes. PMID:23274056

  8. Surveying genome replication

    PubMed Central

    Kearsey, Stephen

    2002-01-01

    Two recent studies have added microarrays to the toolkit used to analyze the origins of replication in yeast chromosomes, providing a fuller picture of how genomic DNA replication is organized. PMID:12093380

  9. Epidemiology & Genomics Research Program

    Cancer.gov

    The Epidemiology and Genomics Research Program, in the National Cancer Institute's Division of Cancer Control and Population Sciences, funds research in human populations to understand the determinants of cancer occurrence and outcomes.

  10. Mouse genome database 2016.

    PubMed

    Bult, Carol J; Eppig, Janan T; Blake, Judith A; Kadin, James A; Richardson, Joel E

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data.

  11. Mouse genome database 2016

    PubMed Central

    Bult, Carol J.; Eppig, Janan T.; Blake, Judith A.; Kadin, James A.; Richardson, Joel E.

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data. PMID:26578600

  12. Mouse genome database 2016.

    PubMed

    Bult, Carol J; Eppig, Janan T; Blake, Judith A; Kadin, James A; Richardson, Joel E

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data. PMID:26578600

  13. Lophotrochozoan mitochondrial genomes

    SciTech Connect

    Valles, Yvonne; Boore, Jeffrey L.

    2005-10-01

    Progress in both molecular techniques and phylogeneticmethods has challenged many of the interpretations of traditionaltaxonomy. One example is in the recognition of the animal superphylumLophotrochozoa (annelids, mollusks, echiurans, platyhelminthes,brachiopods, and other phyla), although the relationships within thisgroup and the inclusion of some phyla remain uncertain. While much ofthis progress in phylogenetic reconstruction has been based on comparingsingle gene sequences, we are beginning to see the potential of comparinglarge-scale features of genomes, such as the relative order of genes.Even though tremendous progress is being made on the sequencedetermination of whole nuclear genomes, the dataset of choice forgenome-level characters for many animals across a broad taxonomic rangeremains mitochondrial genomes. We review here what is known aboutmitochondrial genomes of the lophotrochozoans and discuss the promisethat this dataset will enable insight into theirrelationships.

  14. The genomics of adaptation.

    PubMed

    Radwan, Jacek; Babik, Wiesław

    2012-12-22

    The amount and nature of genetic variation available to natural selection affect the rate, course and outcome of evolution. Consequently, the study of the genetic basis of adaptive evolutionary change has occupied biologists for decades, but progress has been hampered by the lack of resolution and the absence of a genome-level perspective. Technological advances in recent years should now allow us to answer many long-standing questions about the nature of adaptation. The data gathered so far are beginning to challenge some widespread views of the way in which natural selection operates at the genomic level. Papers in this Special Feature of Proceedings of the Royal Society B illustrate various aspects of the broad field of adaptation genomics. This introductory article sets up a context and, on the basis of a few selected examples, discusses how genomic data can advance our understanding of the process of adaptation.

  15. Platyzoan mitochondrial genomes.

    PubMed

    Wey-Fabrizius, Alexandra R; Podsiadlowski, Lars; Herlyn, Holger; Hankeln, Thomas

    2013-11-01

    Platyzoa is a putative lophotrochozoan (spiralian) subtaxon within the protostome clade of Metazoa, comprising a range of biologically diverse, mostly small worm-shaped animals. The monophyly of Platyzoa, the relationships between the putative subgroups Platyhelminthes, Gastrotricha and Gnathifera (the latter comprising at least Gnathostomulida, "Rotifera" and Acanthocephala) as well as some aspects of the internal phylogenies of these subgroups are highly debated. Here we review how complete mitochondrial (mt) genome data contribute to these debates. We highlight special features of the mt genomes and discuss problems in mtDNA phylogenies of the clade. Mitochondrial genome data seem to be insufficient to resolve the position of the platyzoan clade within the Spiralia but can help to address internal phylogenetic questions. The present review includes a tabular survey of all published platyzoan mt genomes.

  16. Androgen receptor genomic regulation

    PubMed Central

    Jin, Hong-Jian; Kim, Jung

    2013-01-01

    The transcriptional activity of the androgen receptor (AR) is not only critical for the normal development and function of the prostate but also pivotal to the onset and progression of prostate cancer (PCa). The studies of AR transcriptional regulation were previously limited to a handful of AR-target genes. Owing to the development of various high-throughput genomic technologies, significant advances have been made in recent years. Here we discuss the discoveries of genome-wide androgen-regulated genes in PCa cell lines, animal models and tissues using expression microarray and sequencing, the mapping of genomic landscapes of AR using Combining Chromatin Immunoprecipitation (ChIP)-on-chip and ChIP-seq assays, the interplay of transcriptional cofactors in defining AR binding profiles, and the genomic regulation and AR reprogramming in advanced PCa. PMID:25237629

  17. Genomic definition of species

    SciTech Connect

    Crkvenjakov, R.; Drmanac, R.

    1991-07-01

    The subject of this paper is the definition of species based on the assumption that genome is the fundamental level for the origin and maintenance of biological diversity. For this view to be logically consistent it is necessary to assume the existence and operation of the new law which we call genome law. For this reason the genome law is included in the explanation of species phenomenon presented here even if its precise formulation and elaboration are left for the future. The intellectual underpinnings of this definition can be traced to Goldschmidt. We wish to explore some philosophical aspects of the definition of species in terms of the genome. The point of proposing the definition on these grounds is that any real advance in evolutionary theory has to be correct in both its philosophy and its science.

  18. An Introduction to Genome Annotation.

    PubMed

    Campbell, Michael S; Yandell, Mark

    2015-12-17

    Genome projects have evolved from large international undertakings to tractable endeavors for a single lab. Accurate genome annotation is critical for successful genomic, genetic, and molecular biology experiments. These annotations can be generated using a number of approaches and available software tools. This unit describes methods for genome annotation and a number of software tools commonly used in gene annotation.

  19. Biobanks for Genomics and Genomics for Biobanks

    PubMed Central

    Ducournau, Pascal; Gourraud, Pierre-Antoine; Pontille, David

    2003-01-01

    Biobanks include biological samples and attached databases. Human biobanks occur in research, technological development and medical activities. Population genomics is highly dependent on the availability of large biobanks. Ethical issues must be considered: protecting the rights of those people whose samples or data are in biobanks (information, autonomy, confidentiality, protection of private life), assuring the non-commercial use of human body elements and the optimal use of samples and data. They balance other issues, such as protecting the rights of researchers and companies, allowing long-term use of biobanks while detailed information on future uses is not available. At the level of populations, the traditional form of informed consent is challenged. Other dimensions relate to the rights of a group as such, in addition to individual rights. Conditions of return of results and/or benefit to a population need to be defined. With ‘large-scale biobanking’ a marked trend in genomics, new societal dimensions appear, regarding communication, debate, regulation, societal control and valorization of such large biobanks. Exploring how genomics can help health sector biobanks to become more rationally constituted and exploited is an interesting perspective. For example, evaluating how genomic approaches can help in optimizing haematopoietic stem cell donor registries using new markers and high-throughput techniques to increase immunogenetic variability in such registries is a challenge currently being addressed. Ethical issues in such contexts are important, as not only individual decisions or projects are concerned, but also national policies in the international arena and organization of democratic debate about science, medicine and society. PMID:18629026

  20. Molluscan Evolutionary Genomics

    SciTech Connect

    Simison, W. Brian; Boore, Jeffrey L.

    2005-12-01

    In the last 20 years there have been dramatic advances in techniques of high-throughput DNA sequencing, most recently accelerated by the Human Genome Project, a program that has determined the three billion base pair code on which we are based. Now this tremendous capability is being directed at other genome targets that are being sampled across the broad range of life. This opens up opportunities as never before for evolutionary and organismal biologists to address questions of both processes and patterns of organismal change. We stand at the dawn of a new 'modern synthesis' period, paralleling that of the early 20th century when the fledgling field of genetics first identified the underlying basis for Darwin's theory. We must now unite the efforts of systematists, paleontologists, mathematicians, computer programmers, molecular biologists, developmental biologists, and others in the pursuit of discovering what genomics can teach us about the diversity of life. Genome-level sampling for mollusks to date has mostly been limited to mitochondrial genomes and it is likely that these will continue to provide the best targets for broad phylogenetic sampling in the near future. However, we are just beginning to see an inroad into complete nuclear genome sequencing, with several mollusks and other eutrochozoans having been selected for work about to begin. Here, we provide an overview of the state of molluscan mitochondrial genomics, highlight a few of the discoveries from this research, outline the promise of broadening this dataset, describe upcoming projects to sequence whole mollusk nuclear genomes, and challenge the community to prepare for making the best use of these data.

  1. Near full-length genome analysis of low prevalent human immunodeficiency virus type 1 subclade F1 in São Paulo, Brazil

    PubMed Central

    Sanabani, Sabri Saeed; Pastena, Évelyn Regina de Souza; Neto, Walter Kleine; Barreto, Claudia C; Ferrari, Kelly T; Kalmar, Erika MN; Ferreira, Suzete; Sabino, Ester Cerdeira

    2009-01-01

    Background The genetic diversity of the human immunodeficiency virus type 1 (HIV-1) is critical to lay the groundwork for the design of successful drugs or vaccine. In this study we aimed to characterize and define the molecular prevalence of HIV-1 subclade F1 currently circulating in São Paulo, Brazil. Methods A total of 36 samples were selected from 888 adult patients residing in São Paulo who had previously been diagnosed in two independent studies in our laboratory as being infected with subclade F1 based on pol subgenomic fragment sequencing. Proviral DNA was amplified from the purified genomic DNA of all 36 blood samples by 5 fragments overlapping PCR followed by direct sequencing. Sequence data were obtained from the 5 fragments of pure subclade F1 and phylogenetic trees were constructed and compared with previously published sequences. Subclades F1 that exhibited mosaic structure with other subtypes were omitted from any further analysis Results Our methods of fragment amplification and sequencing confirmed that only 5 sequences inferred from pol region as subclade F1 also holds true for the genome as a whole and, thus, estimated the true prevalence at 0.56%. The results also showed a single phylogenetic cluster of the Brazilian subclade F1 along with non-Brazilian South American isolates in both subgenomic and the full-length genomes analysis with an overall intrasubtype nucleotide divergence of 6.9%. The nucleotide differences within the South American and Central African F1 strains, in the C2-C3 env, were 8.5% and 12.3%, respectively. Conclusion All together, our findings showed a surprisingly low prevalence rate of subclade F1 in Brazil and suggest that these isolates originated in Central Africa and subsequently introduced to South America. PMID:19531216

  2. Cytotoxic Effects during Knock Out of Multiple Porcine Endogenous Retrovirus (PERV) Sequences in the Pig Genome by Zinc Finger Nucleases (ZFN).

    PubMed

    Semaan, Marwan; Ivanusic, Daniel; Denner, Joachim

    2015-01-01

    Xenotransplantation has been proposed as a solution to the shortage of suitable human donors for transplantation and pigs are currently favoured as donor animals. However, xenotransplantation may be associated with the transmission of zoonotic microorganisms. Whereas most porcine microorganisms representing a risk for the human recipient may be eliminated by designated pathogen free breeding, multiple copies of porcine endogenous retroviruses (PERVs) are integrated in the genome of all pigs and cannot be eliminated this way. PERVs are released as infectious particles and infect human cells. The zinc finger nuclease (ZFN) technology allows knocking out specifically cellular genes, however it was not yet used to eliminate multiple integrated proviral sequences with a strong conservation in the target sequence. To reduce the risk of horizontal PERV transmission and to knock out as many as possible proviruses, for the first time the powerful tool of the ZFN technology was used. ZFN were designed to bind specifically to sequences conserved in all known replication-competent proviruses. Expression and transport of the ZFN into the nucleus was shown by Western blot analysis, co-localisation analysis, PLA and FRET. Survival of transfected cells was analysed using fluorescent ZFN and cell counting. After transfection a strong expression of the ZFN proteins and a co-localisation of the expressed ZFN proteins were shown. However, expression of the ZFN was found to be extremely toxic for the transfected cells. The induced cytotoxicity was likely due to the specific cutting of the high copy number of the PERV proviruses, which is also commonly observed when ZFN with low specificity cleave numerous off-target sites in a genome. This is the first attempt to knock out multiple, nearly identical, genes in a cellular genome using ZFN. The attempt failed, and other strategies should be used to prevent PERV transmission.

  3. Human Genome Annotation

    NASA Astrophysics Data System (ADS)

    Gerstein, Mark

    A central problem for 21st century science is annotating the human genome and making this annotation useful for the interpretation of personal genomes. My talk will focus on annotating the 99% of the genome that does not code for canonical genes, concentrating on intergenic features such as structural variants (SVs), pseudogenes (protein fossils), binding sites, and novel transcribed RNAs (ncRNAs). In particular, I will describe how we identify regulatory sites and variable blocks (SVs) based on processing next-generation sequencing experiments. I will further explain how we cluster together groups of sites to create larger annotations. Next, I will discuss a comprehensive pseudogene identification pipeline, which has enabled us to identify >10K pseudogenes in the genome and analyze their distribution with respect to age, protein family, and chromosomal location. Throughout, I will try to introduce some of the computational algorithms and approaches that are required for genome annotation. Much of this work has been carried out in the framework of the ENCODE, modENCODE, and 1000 genomes projects.

  4. An archaeal genomic signature

    NASA Technical Reports Server (NTRS)

    Graham, D. E.; Overbeek, R.; Olsen, G. J.; Woese, C. R.

    2000-01-01

    Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal "design fabric." Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org).

  5. How the genome folds

    NASA Astrophysics Data System (ADS)

    Lieberman Aiden, Erez

    2012-02-01

    I describe Hi-C, a novel technology for probing the three-dimensional architecture of whole genomes by coupling proximity-based ligation with massively parallel sequencing. Working with collaborators at the Broad Institute and UMass Medical School, we used Hi-C to construct spatial proximity maps of the human genome at a resolution of 1Mb. These maps confirm the presence of chromosome territories and the spatial proximity of small, gene-rich chromosomes. We identified an additional level of genome organization that is characterized by the spatial segregation of open and closed chromatin to form two genome-wide compartments. At the megabase scale, the chromatin conformation is consistent with a fractal globule, a knot-free conformation that enables maximally dense packing while preserving the ability to easily fold and unfold any genomic locus. The fractal globule is distinct from the more commonly used globular equilibrium model. Our results demonstrate the power of Hi-C to map the dynamic conformations of whole genomes.

  6. Human Social Genomics

    PubMed Central

    Cole, Steven W.

    2014-01-01

    A growing literature in human social genomics has begun to analyze how everyday life circumstances influence human gene expression. Social-environmental conditions such as urbanity, low socioeconomic status, social isolation, social threat, and low or unstable social status have been found to associate with differential expression of hundreds of gene transcripts in leukocytes and diseased tissues such as metastatic cancers. In leukocytes, diverse types of social adversity evoke a common conserved transcriptional response to adversity (CTRA) characterized by increased expression of proinflammatory genes and decreased expression of genes involved in innate antiviral responses and antibody synthesis. Mechanistic analyses have mapped the neural “social signal transduction” pathways that stimulate CTRA gene expression in response to social threat and may contribute to social gradients in health. Research has also begun to analyze the functional genomics of optimal health and thriving. Two emerging opportunities now stand to revolutionize our understanding of the everyday life of the human genome: network genomics analyses examining how systems-level capabilities emerge from groups of individual socially sensitive genomes and near-real-time transcriptional biofeedback to empirically optimize individual well-being in the context of the unique genetic, geographic, historical, developmental, and social contexts that jointly shape the transcriptional realization of our innate human genomic potential for thriving. PMID:25166010

  7. Ebolavirus comparative genomics

    DOE PAGES

    Jun, Se-Ran; Leuze, Michael R.; Nookaew, Intawat; Uberbacher, Edward C.; Land, Miriam; Zhang, Qian; Wanchai, Visanu; Chai, Juanjuan; Nielsen, Morten; Trolle, Thomas; et al

    2015-07-14

    The 2014 Ebola outbreak in West Africa is the largest documented for this virus. We examine the dynamics of this genome, comparing more than one hundred currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms a distinct group from all other sequenced viral genomes. All filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable divergence in sequences between the three genera Ebolavirus, Cuevavirus, and Marburgvirus within the family Filoviridae. Whereas all ebolavirus genomes are quite similar (multiple sequences of themore » same strain are often identical), variation is most common in the intergenic regions and within specific areas of the genes encoding the glycoprotein (GP), nucleoprotein (NP), and polymerase (L). We predict regions that could contain epitope-binding sites, which might be good vaccine targets. In conclusion, this information, combined with glycosylation sites and experimentally determined epitopes, can identify the most promising regions for the development of therapeutic strategies.« less

  8. An archaeal genomic signature.

    PubMed

    Graham, D E; Overbeek, R; Olsen, G J; Woese, C R

    2000-03-28

    Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal "design fabric." Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org).

  9. A Review on Genomics APIs

    PubMed Central

    Swaminathan, Rajeswari; Huang, Yungui; Moosavinasab, Soheil; Buckley, Ronald; Bartlett, Christopher W.; Lin, Simon M.

    2015-01-01

    The constant improvement and falling prices of whole human genome Next Generation Sequencing (NGS) has resulted in rapid adoption of genomic information at both clinics and research institutions. Considered together, the complexity of genomics data, due to its large volume and diversity along with the need for genomic data sharing, has resulted in the creation of Application Programming Interface (API) for secure, modular, interoperable access to genomic data from different applications, platforms, and even organizations. The Genomics APIs are a set of special protocols that assist software developers in dealing with multiple genomic data sources for building seamless, interoperable applications leading to the advancement of both genomic and clinical research. These APIs help define a standard for retrieval of genomic data from multiple sources as well as to better package genomic information for integration with Electronic Health Records. This review covers three currently available Genomics APIs: a) Google Genomics, b) SMART Genomics, and c) 23andMe. The functionalities, reference implementations (if available) and authentication protocols of each API are reviewed. A comparative analysis of the different features across the three APIs is provided in the Discussion section. Though Genomics APIs are still under active development and have yet to reach widespread adoption, they hold the promise to make building of complicated genomics applications easier with downstream constructive effects on healthcare. PMID:26702340

  10. A Review on Genomics APIs.

    PubMed

    Swaminathan, Rajeswari; Huang, Yungui; Moosavinasab, Soheil; Buckley, Ronald; Bartlett, Christopher W; Lin, Simon M

    2016-01-01

    The constant improvement and falling prices of whole human genome Next Generation Sequencing (NGS) has resulted in rapid adoption of genomic information at both clinics and research institutions. Considered together, the complexity of genomics data, due to its large volume and diversity along with the need for genomic data sharing, has resulted in the creation of Application Programming Interface (API) for secure, modular, interoperable access to genomic data from different applications, platforms, and even organizations. The Genomics APIs are a set of special protocols that assist software developers in dealing with multiple genomic data sources for building seamless, interoperable applications leading to the advancement of both genomic and clinical research. These APIs help define a standard for retrieval of genomic data from multiple sources as well as to better package genomic information for integration with Electronic Health Records. This review covers three currently available Genomics APIs: a) Google Genomics, b) SMART Genomics, and c) 23andMe. The functionalities, reference implementations (if available) and authentication protocols of each API are reviewed. A comparative analysis of the different features across the three APIs is provided in the Discussion section. Though Genomics APIs are still under active development and have yet to reach widespread adoption, they hold the promise to make building of complicated genomics applications easier with downstream constructive effects on healthcare. PMID:26702340

  11. WheatGenome.info: A Resource for Wheat Genomics Resource.

    PubMed

    Lai, Kaitao

    2016-01-01

    An integrated database with a variety of Web-based systems named WheatGenome.info hosting wheat genome and genomic data has been developed to support wheat research and crop improvement. The resource includes multiple Web-based applications, which are implemented as a variety of Web-based systems. These include a GBrowse2-based wheat genome viewer with BLAST search portal, TAGdb for searching wheat second generation genome sequence data, wheat autoSNPdb, links to wheat genetic maps using CMap and CMap3D, and a wheat genome Wiki to allow interaction between diverse wheat genome sequencing activities. This portal provides links to a variety of wheat genome resources hosted at other research organizations. This integrated database aims to accelerate wheat genome research and is freely accessible via the web interface at http://www.wheatgenome.info/ .

  12. WheatGenome.info: A Resource for Wheat Genomics Resource.

    PubMed

    Lai, Kaitao

    2016-01-01

    An integrated database with a variety of Web-based systems named WheatGenome.info hosting wheat genome and genomic data has been developed to support wheat research and crop improvement. The resource includes multiple Web-based applications, which are implemented as a variety of Web-based systems. These include a GBrowse2-based wheat genome viewer with BLAST search portal, TAGdb for searching wheat second generation genome sequence data, wheat autoSNPdb, links to wheat genetic maps using CMap and CMap3D, and a wheat genome Wiki to allow interaction between diverse wheat genome sequencing activities. This portal provides links to a variety of wheat genome resources hosted at other research organizations. This integrated database aims to accelerate wheat genome research and is freely accessible via the web interface at http://www.wheatgenome.info/ . PMID:26519407

  13. GenomeVista

    2002-11-04

    Aligning large vertebrate genomes that are structurally complex poses a variety of problems not encountered on smaller scales. Such genomes are rich in repetitive elements and contain multiple segmental duplications, which increases the difficulty of identifying true orthologous SNA segments in alignments. The sizes of the sequences make many alignment algorithms designed for comparing single proteins extremely inefficient when processing large genomic intervals. We integrated both local and global alignment tools and developed a suitemore » of programs for automatically aligning large vertebrate genomes and identifying conserved non-coding regions in the alignments. Our method uses the BLAT local alignment program to find anchors on the base genome to identify regions of possible homology for a query sequence. These regions are postprocessed to find the best candidates which are then globally aligned using the AVID global alignment program. In the last step conserved non-coding segments are identified using VISTA. Our methods are fast and the resulting alignments exhibit a high degree of sensitivity, covering more than 90% of known coding exons in the human genome. The GenomeVISTA software is a suite of Perl programs that is built on a MySQL database platform. The scheduler gets control data from the database, builds a queve of jobs, and dispatches them to a PC cluster for execution. The main program, running on each node of the cluster, processes individual sequences. A Perl library acts as an interface between the database and the above programs. The use of a separate library allows the programs to function independently of the database schema. The library also improves on the standard Perl MySQL database interfere package by providing auto-reconnect functionality and improved error handling.« less

  14. Using comparative genomics to reorder the human genome sequence into a virtual sheep genome

    PubMed Central

    Dalrymple, Brian P; Kirkness, Ewen F; Nefedov, Mikhail; McWilliam, Sean; Ratnakumar, Abhirami; Barris, Wes; Zhao, Shaying; Shetty, Jyoti; Maddox, Jillian F; O'Grady, Margaret; Nicholas, Frank; Crawford, Allan M; Smith, Tim; de Jong, Pieter J; McEwan, John; Oddy, V Hutton; Cockett, Noelle E

    2007-01-01

    Background Is it possible to construct an accurate and detailed subgene-level map of a genome using bacterial artificial chromosome (BAC) end sequences, a sparse marker map, and the sequences of other genomes? Results A sheep BAC library, CHORI-243, was constructed and the BAC end sequences were determined and mapped with high sensitivity and low specificity onto the frameworks of the human, dog, and cow genomes. To maximize genome coverage, the coordinates of all BAC end sequence hits to the cow and dog genomes were also converted to the equivalent human genome coordinates. The 84,624 sheep BACs (about 5.4-fold genome coverage) with paired ends in the correct orientation (tail-to-tail) and spacing, combined with information from sheep BAC comparative genome contigs (CGCs) built separately on the dog and cow genomes, were used to construct 1,172 sheep BAC-CGCs, covering 91.2% of the human genome. Clustered non-tail-to-tail and outsize BACs located close to the ends of many BAC-CGCs linked BAC-CGCs covering about 70% of the genome to at least one other BAC-CGC on the same chromosome. Using the BAC-CGCs, the intrachromosomal and interchromosomal BAC-CGC linkage information, human/cow and vertebrate synteny, and the sheep marker map, a virtual sheep genome was constructed. To identify BACs potentially located in gaps between BAC-CGCs, an additional set of 55,668 sheep BACs were positioned on the sheep genome with lower confidence. A coordinate conversion process allowed us to transfer human genes and other genome features to the virtual sheep genome to display on a sheep genome browser. Conclusion We demonstrate that limited sequencing of BACs combined with positioning on a well assembled genome and integrating locations from other less well assembled genomes can yield extensive, detailed subgene-level maps of mammalian genomes, for which genomic resources are currently limited. PMID:17663790

  15. Translational genomics for plant breeding with the genome sequence explosion.

    PubMed

    Kang, Yang Jae; Lee, Taeyoung; Lee, Jayern; Shim, Sangrea; Jeong, Haneul; Satyawan, Dani; Kim, Moon Young; Lee, Suk-Ha

    2016-04-01

    The use of next-generation sequencers and advanced genotyping technologies has propelled the field of plant genomics in model crops and plants and enhanced the discovery of hidden bridges between genotypes and phenotypes. The newly generated reference sequences of unstudied minor plants can be annotated by the knowledge of model plants via translational genomics approaches. Here, we reviewed the strategies of translational genomics and suggested perspectives on the current databases of genomic resources and the database structures of translated information on the new genome. As a draft picture of phenotypic annotation, translational genomics on newly sequenced plants will provide valuable assistance for breeders and researchers who are interested in genetic studies.

  16. Genomes to Proteomes

    SciTech Connect

    Panisko, Ellen A.; Grigoriev, Igor; Daly, Don S.; Webb-Robertson, Bobbie-Jo; Baker, Scott E.

    2009-03-01

    Biologists are awash with genomic sequence data. In large part, this is due to the rapid acceleration in the generation of DNA sequence that occurred as public and private research institutes raced to sequence the human genome. In parallel with the large human genome effort, mostly smaller genomes of other important model organisms were sequenced. Projects following on these initial efforts have made use of technological advances and the DNA sequencing infrastructure that was built for the human and other organism genome projects. As a result, the genome sequences of many organisms are available in high quality draft form. While in many ways this is good news, there are limitations to the biological insights that can be gleaned from DNA sequences alone; genome sequences offer only a bird's eye view of the biological processes endemic to an organism or community. Fortunately, the genome sequences now being produced at such a high rate can serve as the foundation for other global experimental platforms such as proteomics. Proteomic methods offer a snapshot of the proteins present at a point in time for a given biological sample. Current global proteomics methods combine enzymatic digestion, separations, mass spectrometry and database searching for peptide identification. One key aspect of proteomics is the prediction of peptide sequences from mass spectrometry data. Global proteomic analysis uses computational matching of experimental mass spectra with predicted spectra based on databases of gene models that are often generated computationally. Thus, the quality of gene models predicted from a genome sequence is crucial in the generation of high quality peptide identifications. Once peptides are identified they can be assigned to their parent protein. Proteins identified as expressed in a given experiment are most useful when compared to other expressed proteins in a larger biological context or biochemical pathway. In this chapter we will discuss the automatic

  17. Structure of the FBJ murine osteosarcoma virus genome: molecular cloning of its associated helper virus and the cellular homolog of the v-fos gene from mouse and human cells.

    PubMed Central

    Curran, T; MacConnell, W P; van Straaten, F; Verma, I M

    1983-01-01

    The 8.2-kilobase (kb) unintegrated circular DNA form of the FBJ murine leukemia virus (FBJ-MLV) was linearized by cleavage at the single HindIII site, molecularly cloned into bacteriophage Charon 30, and subsequently subcloned into pBR322 (pFBJ-MLV-1). Both FBJ-MLV virion RNA and pFBJ-MLV-1 DNA were used to investigate the arrangement of helper virus sequences in the FBJ murine osteosarcoma virus genome (FBJ-MSV) by heteroduplex formation with cloned FBJ-MSV proviral DNA. The results showed that the FBJ-MSV genome contained 0.8 kb of helper virus sequence at its 5' terminus and 0.98 kb at its 3' terminus. Approximately 6.8 kb of helper virus sequence had been deleted, and 1.7 kb of unrelated sequence was inserted into the FBJ-MSV genome. This substituted region contains v-fos, the transforming gene of FBJ-MSV. Using a probe specific for v-fos, we have cloned homologous sequences (c-fos) from mouse and human chromosomal DNA. Heteroduplex analysis of FBJ-MSV DNA with these recombinant clones showed that both the c-fos(mouse) and the c-fos(human) sequences hybridized to the entire 1.7-kb v-fos region. However, five regions of homology of 0.27, 0.26, 0.14, 0.5, and 0.5 kb were separated by four regions of nonhomology of 0.76, 0.55, 0.1, and 0.1 kb from 5' to 3' with respect to the FBJ-MSV genome. The size of these sequences showed striking similarity in both c-fos(mouse) and c-fos(human). Images PMID:6306448

  18. Genomics, health, and society.

    PubMed

    Chan, Chee Khoon

    2002-01-01

    On June 27, 2001, the World Health Organization conducted hearings in Geneva for a Special Report on Genomics & Health. Initially intended as a document to address the ethical, legal, and social implications of the gathering genomics resolution (ELSI), the terms of reference of the report were significantly modified to give primary emphasis to a scientific and technological assessment of the implications of genomics for human health. The Citizens' Health Initiative, one of two NGOs invited to make submissions at these consultations, suggested that no less important than the scientific and technical assessment was a perspective which gave due attention to the social context and political economy of scientific/technological development and its deployment. The article below touches upon neglected health priorities of poor countries, intellectual property rights and patents, risk management, insurance and discrimination, and predictive (prenatal) testing, reproductive choice, and eugenics. PMID:17208760

  19. Genomics of preterm birth.

    PubMed

    Swaggart, Kayleigh A; Pavlicev, Mihaela; Muglia, Louis J

    2015-02-02

    The molecular mechanisms controlling human birth timing at term, or resulting in preterm birth, have been the focus of considerable investigation, but limited insights have been gained over the past 50 years. In part, these processes have remained elusive because of divergence in reproductive strategies and physiology shown by model organisms, making extrapolation to humans uncertain. Here, we summarize the evolution of progesterone signaling and variation in pregnancy maintenance and termination. We use this comparative physiology to support the hypothesis that selective pressure on genomic loci involved in the timing of parturition have shaped human birth timing, and that these loci can be identified with comparative genomic strategies. Previous limitations imposed by divergence of mechanisms provide an important new opportunity to elucidate fundamental pathways of parturition control through increasing availability of sequenced genomes and associated reproductive physiology characteristics across diverse organisms.

  20. Genomics, health, and society.

    PubMed

    Chan, Chee Khoon

    2002-01-01

    On June 27, 2001, the World Health Organization conducted hearings in Geneva for a Special Report on Genomics & Health. Initially intended as a document to address the ethical, legal, and social implications of the gathering genomics resolution (ELSI), the terms of reference of the report were significantly modified to give primary emphasis to a scientific and technological assessment of the implications of genomics for human health. The Citizens' Health Initiative, one of two NGOs invited to make submissions at these consultations, suggested that no less important than the scientific and technical assessment was a perspective which gave due attention to the social context and political economy of scientific/technological development and its deployment. The article below touches upon neglected health priorities of poor countries, intellectual property rights and patents, risk management, insurance and discrimination, and predictive (prenatal) testing, reproductive choice, and eugenics.

  1. Pancreatic cancer genomics.

    PubMed

    Chang, David K; Grimmond, Sean M; Biankin, Andrew V

    2014-02-01

    Pancreatic cancer is one of the most lethal malignancies. The overall median survival even with treatment is only 6-9 months, with almost 90% succumbing to the disease within a year of diagnosis. It is characterised by an intense desmoplastic stroma that may contribute to therapeutic resistance, and poses significant challenges for genomic sequencing studies. It is recalcitrant to almost all therapies and consequently remains the fourth leading cause of cancer death in Western societies. Genomic studies are unveiling a vast heterogeneity of mutated genes, and this diversity may explain why conventional clinical trial designs have mostly failed to demonstrate efficacy in unselected patients. Those that are available offer only marginal benefits overall, but are associated with clinically significant responses in as yet undefined subgroups. This chapter describes our current understanding of the genomics of pancreatic cancer and the potential impact of these findings on our approaches to treatment.

  2. Domestication and plant genomes.

    PubMed

    Tang, Haibao; Sezen, Uzay; Paterson, Andrew H

    2010-04-01

    The techniques of plant improvement have been evolving with the advancement of technology, progressing from crop domestication by Neolithic humans to scientific plant breeding, and now including DNA-based genotyping and genetic engineering. Archeological findings have shown that early human ancestors often unintentionally selected for and finally fixed a few major domestication traits over time. Recent advancement of molecular and genomic tools has enabled scientists to pinpoint changes to specific chromosomal regions and genetic loci that are responsible for dramatic morphological and other transitions that distinguish crops from their wild progenitors. Extensive studies in a multitude of additional crop species, facilitated by rapid progress in sequencing and resequencing(s) of crop genomes, will further our understanding of the genomic impact from both the unusual population history of cultivated plants and millennia of human selection.

  3. SINGLE CELL GENOME SEQUENCING

    PubMed Central

    Yilmaz, Suzan; Singh, Anup K.

    2011-01-01

    Whole genome amplification and next-generation sequencing of single cells has become a powerful approach for studying uncultivated microorganisms that represent 90–99 % of all environmental microbes. Single cell sequencing enables not only the identification of microbes but also linking of functions to species, a feat not achievable by metagenomic techniques. Moreover, it allows the analysis of low abundance species that may be missed in community-based analyses. It has also proved very useful in complementing metagenomics in the assembly and binning of single genomes. With the advent of drastically cheaper and higher throughput sequencing technologies, it is expected that single cell sequencing will become a standard tool in studying the genome and transcriptome of microbial communities. PMID:22154471

  4. Berkeley Quantitative Genome Browser

    2008-02-29

    The Berkeley Quantitative Genome Browser provides graphical browsing functionality for genomic data organized, at a minimum, by sequence and position. While supporting the annotation browsing features typical of many other genomic browsers, additional emphasis is placed on viewing and utilizing quantitative data. Data may be read from GFF, SGR, FASTA or any column delimited format. Once the data has been read into the browser's buffer, it may be searched. filtered or subjected to mathematical transformation.more » The browser also supplies some graphical design manipulation functionality geared towards preparing figures for presentations or publication. A plug-in mechanism enables development outside the core functionality that adds more advanced or esoteric analysis capabilities. BBrowse's development and distribution is open-source and has been built to run on Linux, OSX and MS Windows operating systems.« less

  5. Berkeley Quantitative Genome Browser

    SciTech Connect

    Hechmer, Aaron

    2008-02-29

    The Berkeley Quantitative Genome Browser provides graphical browsing functionality for genomic data organized, at a minimum, by sequence and position. While supporting the annotation browsing features typical of many other genomic browsers, additional emphasis is placed on viewing and utilizing quantitative data. Data may be read from GFF, SGR, FASTA or any column delimited format. Once the data has been read into the browser's buffer, it may be searched. filtered or subjected to mathematical transformation. The browser also supplies some graphical design manipulation functionality geared towards preparing figures for presentations or publication. A plug-in mechanism enables development outside the core functionality that adds more advanced or esoteric analysis capabilities. BBrowse's development and distribution is open-source and has been built to run on Linux, OSX and MS Windows operating systems.

  6. Genomics of Salmonella Species

    NASA Astrophysics Data System (ADS)

    Canals, Rocio; McClelland, Michael; Santiviago, Carlos A.; Andrews-Polymenis, Helene

    Progress in the study of Salmonella survival, colonization, and virulence has increased rapidly with the advent of complete genome sequencing and higher capacity assays for transcriptomic and proteomic analysis. Although many of these techniques have yet to be used to directly assay Salmonella growth on foods, these assays are currently in use to determine Salmonella factors necessary for growth in animal models including livestock animals and in in vitro conditions that mimic many different environments. As sequencing of the Salmonella genome and microarray analysis have revolutionized genomics and transcriptomics of salmonellae over the last decade, so are new high-throughput sequencing technologies currently accelerating the pace of our studies and allowing us to approach complex problems that were not previously experimentally tractable.

  7. Genomics of Volvocine Algae

    PubMed Central

    Umen, James G.; Olson, Bradley J.S.C.

    2015-01-01

    Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics. PMID:25883411

  8. Genes, genome and Gestalt.

    PubMed

    Grisolia, Cesar Koppe

    2005-01-01

    According to Gestalt thinking, biological systems cannot be viewed as the sum of their elements, but as processes of the whole. To understand organisms we must start from the whole, observing how the various parts are related. In genetics, we must observe the genome over and above the sum of its genes. Either loss or addition of one gene in a genome can change the function of the organism. Genomes are organized in networks of genes, which need to be well integrated. In the case of genetically modified organisms (GMOs), for example, soybeans, rats, Anopheles mosquitoes, and pigs, the insertion of an exogenous gene into a receptive organism generally causes disturbance in the networks, resulting in the breakdown of gene interactions. In these cases, genetic modification increased the genetic load of the GMO and consequently decreased its adaptability (fitness). Therefore, it is hard to claim that the production of such organisms with an increased genetic load does not have ethical implications.

  9. Ebolavirus comparative genomics

    PubMed Central

    Jun, Se-Ran; Leuze, Michael R.; Nookaew, Intawat; Uberbacher, Edward C.; Land, Miriam; Zhang, Qian; Wanchai, Visanu; Chai, Juanjuan; Nielsen, Morten; Trolle, Thomas; Lund, Ole; Buzard, Gregory S.; Pedersen, Thomas D.; Wassenaar, Trudy M.; Ussery, David W.

    2015-01-01

    The 2014 Ebola outbreak in West Africa is the largest documented for this virus. To examine the dynamics of this genome, we compare more than 100 currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms a distinct group from all other sequenced viral genomes. All filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable divergence in sequences between the three genera Ebolavirus, Cuevavirus and Marburgvirus within the family Filoviridae. Whereas all ebolavirus genomes are quite similar (multiple sequences of the same strain are often identical), variation is most common in the intergenic regions and within specific areas of the genes encoding the glycoprotein (GP), nucleoprotein (NP) and polymerase (L). We predict regions that could contain epitope-binding sites, which might be good vaccine targets. This information, combined with glycosylation sites and experimentally determined epitopes, can identify the most promising regions for the development of therapeutic strategies. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). PMID:26175035

  10. Brief Guide to Genomics: DNA, Genes and Genomes

    MedlinePlus

    ... guía de genómica A Brief Guide to Genomics DNA, Genes and Genomes Deoxyribonucleic acid (DNA) is the ... and lead to a disease such as cancer. DNA Sequencing Sequencing simply means determining the exact order ...

  11. The genomics of mycobacteria.

    PubMed

    Viale, M N; Zumárraga, M J; Araújo, F R; Zarraga, A M; Cataldi, A A; Romano, M I; Bigi, F

    2016-04-01

    The species Mycobacterium bovis and Mycobacterium avium subspecies paratuberculosis are the causal agents, respectively, of tuberculosis and paratuberculosis in animals. Both mycobacteria, especially M. bovis, are also important to public health because they can infect humans. In recent years, this and the impact of tuberculosis and paratuberculosis on animal production have led to significant advances in knowledge about both pathogens and their host interactions. This article describes the contribution of genomics and functional genomics to studies of the evolution, virulence, epidemiology and diagnosis of both these pathogenic mycobacteria. PMID:27217180

  12. Methanococcus jannaschii genome: revisited

    NASA Technical Reports Server (NTRS)

    Kyrpides, N. C.; Olsen, G. J.; Klenk, H. P.; White, O.; Woese, C. R.

    1996-01-01

    Analysis of genomic sequences is necessarily an ongoing process. Initial gene assignments tend (wisely) to be on the conservative side (Venter, 1996). The analysis of the genome then grows in an iterative fashion as additional data and more sophisticated algorithms are brought to bear on the data. The present report is an emendation of the original gene list of Methanococcus jannaschii (Bult et al., 1996). By using a somewhat more updated database and more relaxed (and operator-intensive) pattern matching methods, we were able to add significantly to, and in a few cases amend, the gene identification table originally published by Bult et al. (1996).

  13. The genomics of mycobacteria.

    PubMed

    Viale, M N; Zumárraga, M J; Araújo, F R; Zarraga, A M; Cataldi, A A; Romano, M I; Bigi, F

    2016-04-01

    The species Mycobacterium bovis and Mycobacterium avium subspecies paratuberculosis are the causal agents, respectively, of tuberculosis and paratuberculosis in animals. Both mycobacteria, especially M. bovis, are also important to public health because they can infect humans. In recent years, this and the impact of tuberculosis and paratuberculosis on animal production have led to significant advances in knowledge about both pathogens and their host interactions. This article describes the contribution of genomics and functional genomics to studies of the evolution, virulence, epidemiology and diagnosis of both these pathogenic mycobacteria.

  14. The cancer genome

    PubMed Central

    Stratton, Michael R.; Campbell, Peter J.; Futreal, P. Andrew

    2010-01-01

    All cancers arise as a result of changes that have occurred in the DNA sequence of the genomes of cancer cells. Over the past quarter of a century much has been learnt about these mutations and the abnormal genes that operate in human cancers. We are now, however, moving into an era in which it will be possible to obtain the complete DNA sequence of large numbers of cancer genomes. These studies will provide us with a detailed and comprehensive perspective on how individual cancers have developed. PMID:19360079

  15. Genomic standards consortium projects.

    PubMed

    Field, Dawn; Sterk, Peter; Kottmann, Renzo; De Smet, J Wim; Amaral-Zettler, Linda; Cochrane, Guy; Cole, James R; Davies, Neil; Dawyndt, Peter; Garrity, George M; Gilbert, Jack A; Glöckner, Frank Oliver; Hirschman, Lynette; Klenk, Hans-Peter; Knight, Rob; Kyrpides, Nikos; Meyer, Folker; Karsch-Mizrachi, Ilene; Morrison, Norman; Robbins, Robert; San Gil, Inigo; Sansone, Susanna; Schriml, Lynn; Tatusova, Tatiana; Ussery, Dave; Yilmaz, Pelin; White, Owen; Wooley, John; Caporaso, Gregory

    2014-06-15

    The Genomic Standards Consortium (GSC) is an open-membership community that was founded in 2005 to work towards the development, implementation and harmonization of standards in the field of genomics. Starting with the defined task of establishing a minimal set of descriptions the GSC has evolved into an active standards-setting body that currently has 18 ongoing projects, with additional projects regularly proposed from within and outside the GSC. Here we describe our recently enacted policy for proposing new activities that are intended to be taken on by the GSC, along with the template for proposing such new activities.

  16. Genomic Advances to Improve Biomass for Biofuels (Genomics and Bioenergy)

    SciTech Connect

    Rokhsar, Daniel

    2008-02-11

    Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

  17. The Brachypodium genome sequence: a resource for oat genomics research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oat (Avena sativa) is an important cereal crop used as both an animal feed and for human consumption. Genetic and genomic research on oat is hindered because it is hexaploid and possesses a large (13 Gb) genome. Diploid Avena relatives have been employed for genetic and genomic studies, but only mod...

  18. Tick Genomics: The Ixodes genome project and beyond

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ticks and mites (subphylum Chelicerata; subclass Acari) are important pests of animals and plants worldwide. The Ixodes scapularis (black-legged tick) genome sequencing project marks the beginning of the genomics era for the field of acarology. This project is the first to sequence the genome of a...

  19. Sixty years of genome biology

    PubMed Central

    2013-01-01

    Sixty years after Watson and Crick published the double helix model of DNA's structure, thirteen members of Genome Biology's Editorial Board select key advances in the field of genome biology subsequent to that discovery. PMID:23651518

  20. Genomic Data Commons launches - TCGA

    Cancer.gov

    The Genomic Data Commons (GDC), a unified data system that promotes sharing of genomic and clinical data between researchers, launched today with a visit from Vice President Joe Biden to the operations center at the University of Chicago.

  1. Recent Advances in Cotton Genomics

    PubMed Central

    Zhang, Hong-Bin; Li, Yaning; Wang, Baohua; Chee, Peng W.

    2008-01-01

    Genome research promises to promote continued and enhanced plant genetic improvement. As a world's leading crop and a model system for studies of many biological processes, genomics research of cottons has advanced rapidly in the past few years. This article presents a comprehensive review on the recent advances of cotton genomics research. The reviewed areas include DNA markers, genetic maps, mapped genes and QTLs, ESTs, microarrays, gene expression profiling, BAC and BIBAC libraries, physical mapping, genome sequencing, and applications of genomic tools in cotton breeding. Analysis of the current status of each of the genome research areas suggests that the areas of physical mapping, QTL fine mapping, genome sequencing, nonfiber and nonovule EST development, gene expression profiling, and association studies between gene expression and fiber trait performance should be emphasized currently and in near future to accelerate utilization of the genomics research achievements for enhancing cotton genetic improvement. PMID:18288253

  2. The tomato genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tomato genome sequence was undertaken at a time when state-of-the-art sequencing methodologies were undergoing a transition to co-called next generation methodologies. The result was an international consortium undertaking a strategy merging both old and new approaches. Because biologists were...

  3. The Nostoc punctiforme Genome

    SciTech Connect

    John C. Meeks

    2001-12-31

    Nostoc punctiforme is a filamentous cyanobacterium with extensive phenotypic characteristics and a relatively large genome, approaching 10 Mb. The phenotypic characteristics include a photoautotrophic, diazotrophic mode of growth, but N. punctiforme is also facultatively heterotrophic; its vegetative cells have multiple development alternatives, including terminal differentiation into nitrogen-fixing heterocysts and transient differentiation into spore-like akinetes or motile filaments called hormogonia; and N. punctiforme has broad symbiotic competence with fungi and terrestrial plants, including bryophytes, gymnosperms and an angiosperm. The shotgun-sequencing phase of the N. punctiforme strain ATCC 29133 genome has been completed by the Joint Genome Institute. Annotation of an 8.9 Mb database yielded 7432 open reading frames, 45% of which encode proteins with known or probable known function and 29% of which are unique to N. punctiforme. Comparative analysis of the sequence indicates a genome that is highly plastic and in a state of flux, with numerous insertion sequences and multilocus repeats, as well as genes encoding transposases and DNA modification enzymes. The sequence also reveals the presence of genes encoding putative proteins that collectively define almost all characteristics of cyanobacteria as a group. N. punctiforme has an extensive potential to sense and respond to environmental signals as reflected by the presence of more than 400 genes encoding sensor protein kinases, response regulators and other transcriptional factors. The signal transduction systems and any of the large number of unique genes may play essential roles in the cell differentiation and symbiotic interaction properties of N. punctiforme.

  4. Genetics, genomics and fertility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to enhance the sustainability of dairy businesses, new management tools are needed to increase the fertility of dairy cattle. Genomic selection has been successfully used by AI studs to screen potential sires and significantly decrease the generation interval of bulls. Buoyed by the success...

  5. Genomics in Cardiovascular Disease

    PubMed Central

    Roberts, Robert; Marian, A.J.; Dandona, Sonny; Stewart, Alexandre F.R.

    2013-01-01

    A paradigm shift towards biology occurred in the 1990’s subsequently catalyzed by the sequencing of the human genome in 2000. The cost of DNA sequencing has gone from millions to thousands of dollars with sequencing of one’s entire genome costing only $1,000. Rapid DNA sequencing is being embraced for single gene disorders, particularly for sporadic cases and those from small families. Transmission of lethal genes such as associated with Huntington’s disease can, through in-vitro fertilization, avoid passing it on to one’s offspring. DNA sequencing will meet the challenge of elucidating the genetic predisposition for common polygenic diseases, especially in determining the function of the novel common genetic risk variants and identifying the rare variants, which may also partially ascertain the source of the missing heritability. The challenge for DNA sequencing remains great, despite human genome sequences being 99.5% identical, the 3 million single nucleotide polymorphisms (SNPs) responsible for most of the unique features add up to 60 new mutations per person which, for 7 billion people, is 420 billion mutations. It is claimed that DNA sequencing has increased 10,000 fold while information storage and retrieval only 16 fold. The physician and health user will be challenged by the convergence of two major trends, whole genome sequencing and the storage/retrieval and integration of the data. PMID:23524054

  6. The Human Genome Program

    SciTech Connect

    Bell, G.I.

    1989-01-01

    Early in 1986, Charles DeLisi, then head of the Office of Health and Environmental Research at the Department of Energy (DOE) requested the Los Alamos National Laboratory (LANL) to organize a workshop charged with inquiring whether the state of technology and potential payoffs in biological knowledge and medical practice were such as to justify an organized program to map and sequence the human genome. The DOE's interest arose from its mission to assess the effects of radiation and other products of energy generation on human health in general and genetic material in particular. The workshop concluded that the technology was ripe, the benefits would be great, and a national program should be promptly initiated. Later committees, reporting to DOE, to the NIH, to the Office of Technology Assessment of the US Congress, and to the National Academy of Science have reviewed these issues more deliberately and come to the same conclusion. As a consequence, there has been established in the United States, a Human Genome Program, with funding largely from the NIH and the DOE, as indicated in Table 1. Moreover, the Program has attracted international interest, and Great Britain, France, Italy, and the Soviet Union, among other countries, have been reported to be starting human genome initiatives. Coordination of these programs, clearly in the interests of each, remains to be worked out, although an international Human Genome Organization (HUGO) is considering such coordination. 5 refs., 1 fig., 2 tabs.

  7. RIKEN mouse genome encyclopedia.

    PubMed

    Hayashizaki, Yoshihide

    2003-01-01

    We have been working to establish the comprehensive mouse full-length cDNA collection and sequence database to cover as many genes as we can, named Riken mouse genome encyclopedia. Recently we are constructing higher-level annotation (Functional ANnoTation Of Mouse cDNA; FANTOM) not only with homology search based annotation but also with expression data profile, mapping information and protein-protein database. More than 1,000,000 clones prepared from 163 tissues were end-sequenced to classify into 159,789 clusters and 60,770 representative clones were fully sequenced. As a conclusion, the 60,770 sequences contained 33,409 unique. The next generation of life science is clearly based on all of the genome information and resources. Based on our cDNA clones we developed the additional system to explore gene function. We developed cDNA microarray system to print all of these cDNA clones, protein-protein interaction screening system, protein-DNA interaction screening system and so on. The integrated database of all the information is very useful not only for analysis of gene transcriptional network and for the connection of gene to phenotype to facilitate positional candidate approach. In this talk, the prospect of the application of these genome resourced should be discussed. More information is available at the web page: http://genome.gsc.riken.go.jp/.

  8. CGAT: computational genomics analysis toolkit.

    PubMed

    Sims, David; Ilott, Nicholas E; Sansom, Stephen N; Sudbery, Ian M; Johnson, Jethro S; Fawcett, Katherine A; Berlanga-Taylor, Antonio J; Luna-Valero, Sebastian; Ponting, Chris P; Heger, Andreas

    2014-05-01

    Computational genomics seeks to draw biological inferences from genomic datasets, often by integrating and contextualizing next-generation sequencing data. CGAT provides an extensive suite of tools designed to assist in the analysis of genome scale data from a range of standard file formats. The toolkit enables filtering, comparison, conversion, summarization and annotation of genomic intervals, gene sets and sequences. The tools can both be run from the Unix command line and installed into visual workflow builders, such as Galaxy.

  9. TUTORIAL ON NETWORK GENOMICS.

    SciTech Connect

    Forst, C.

    2001-01-01

    With the ever-increasing genomic information pouring into the databases researchers start to look for pattern in genomes. Key questions are the identification of function. In the past function was mainly understood to be assigned to a single gene isolated from other cellular components or mechanisms. Sequence comparison fo single genes and their products (proteins) as well as of intergenic space are a consequence of a well established one-gene one-function interpretation. prediction of function solely by sequence similarity searches are powerful techniques that initiated the advent of bioinformatics and computational biology. Seminal work on sequence alignment by Temple Smith and Michael Waterman [33] and sequence searches with the BLAST algorithm by Altschul et al. [2] provide essential methods for sequence based determination of function. Similar outstanding contributions to determination of function have been archived in the area of structure prediction, molecular modeling and molecular dynamics. Techniques covering ab initio and homology modeling up to biophysical interpretation of long-run molecular dynamics simulations are mentioned ehre. With the ever-increasing number of information of different genetic/genomic origin, new aspect are looked for that deviate from the single gene at a time method. Especially with the identification of surprisingly few human genes the emerging perception in the scientific community that the concept of function has to be extended to include other sequence based as well as non-sequenced based information. A schema of determination of function by different concepts is shown in Figure 1. The tutorial is comprised of the following sections: The first two sections discuss the differences between genomic and non-genomic based context information, section three will cover combined methods. Finally, section four lsits web-resources and databases. All presented approaches extensively employ comparative methods.

  10. Plant functional genomics.

    PubMed

    Holtorf, Hauke; Guitton, Marie-Christine; Reski, Ralf

    2002-06-01

    Functional genome analysis of plants has entered the high-throughput stage. The complete genome information from key species such as Arabidopsis thaliana and rice is now available and will further boost the application of a range of new technologies to functional plant gene analysis. To broadly assign functions to unknown genes, different fast and multiparallel approaches are currently used and developed. These new technologies are based on known methods but are adapted and improved to accommodate for comprehensive, large-scale gene analysis, i.e. such techniques are novel in the sense that their design allows researchers to analyse many genes at the same time and at an unprecedented pace. Such methods allow analysis of the different constituents of the cell that help to deduce gene function, namely the transcripts, proteins and metabolites. Similarly the phenotypic variations of entire mutant collections can now be analysed in a much faster and more efficient way than before. The different methodologies have developed to form their own fields within the functional genomics technological platform and are termed transcriptomics, proteomics, metabolomics and phenomics. Gene function, however, cannot solely be inferred by using only one such approach. Rather, it is only by bringing together all the information collected by different functional genomic tools that one will be able to unequivocally assign functions to unknown plant genes. This review focuses on current technical developments and their impact on the field of plant functional genomics. The lower plant Physcomitrella is introduced as a new model system for gene function analysis, owing to its high rate of homologous recombination.

  11. Mitochondrial genomes as living 'fossils'.

    PubMed

    Small, Ian

    2013-04-15

    The huge variation between mitochondrial genomes makes untangling their evolutionary histories difficult. Richardson et al. report on the remarkably unaltered 'fossil' genome of the tulip tree, giving us many clues as to how the mitochondrial genomes of flowering plants have evolved over the last 150 million years, and raising questions about how such extraordinary sequence conservation can be maintained.

  12. Personal genomes: no bad news?

    PubMed

    Chadwick, Ruth

    2011-02-01

    Issues in genetics and genomics have been centre stage in Bioethics for much of its history, and have given rise to both negative and positive imagined futures. Ten years after the completion of the Human Genome Project, it is a good time to assess developments. The promise of whole genome sequencing of individuals requires reflection on personalization, genetic determinism, and privacy.

  13. Genomic selection in plant breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic selection (GS) is a method to predict the genetic value of selection candidates based on the genomic estimated breeding value (GEBV) predicted from high-density markers positioned throughout the genome. Unlike marker-assisted selection, the GEBV is based on all markers including both minor ...

  14. Analysis of genomic DNA with the UCSC genome browser.

    PubMed

    Pevsner, Jonathan

    2009-01-01

    Genomic DNA is being sequenced and annotated at a rapid rate, with terabases of DNA currently deposited in GenBank and other repositories. Genome browsers provide an essential collection of resources to visualize and analyze chromosomal DNA. The University of California, Santa Cruz (UCSC) Genome Browser provides annotations from the level of single nucleotides to whole chromosomes for four dozen metazoan and other species. The Genome Browser may be used to address a wide range of problems in bioinformatics (e.g., sequence analysis), comparative genomics, and evolution.

  15. Triple Therapy with Prednisolone, Pegylated Interferon and Sodium Valproate Improves Clinical Outcome and Reduces Human T-Cell Leukemia Virus Type 1 (HTLV-1) Proviral Load, Tax and HBZ mRNA Expression in Patients with HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis.

    PubMed

    Boostani, Reza; Vakili, Rosita; Hosseiny, Samane Sadat; Shoeibi, Ali; Fazeli, Bahare; Etemadi, Mohammad Mehdi; Sabet, Faeze; Valizade, Narges; Rezaee, Seyed Abdolrahim

    2015-10-01

    Considering that there is no effective treatment for human T-cell leukemia virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis, this study aimed to assess the impact of triple combination therapy-interferon-α, valproic acid, and prednisolone-on clinical outcomes, main HTLV-1 viral factors, and host anti-HTLV-1 antibody response. HTLV-1 proviral load (PVL), and HBZ and Tax mRNA expression levels were measured in peripheral blood mononuclear cells of 13 patients with HTLV-1-associated myelopathy/tropical spastic paraparesis before and after treatment with 180 μg pegylated interferon once a week, 10-20 mg/kg/day sodium valproate, and 5 mg/day prednisolone for 25 weeks using a TaqMan real-time polymerase chain reaction assay. Furthermore, anti-HTLV-1 titer, Osame Motor Disability Score, Ashworth spasticity scale, and urinary symptoms (through standard questionnaire and clinical monitoring) were assessed in patients before and after the treatment. HTLV-1 PVL and HBZ expression significantly decreased after the treatment [PVL from 1443 ± 282 to 660 ± 137 copies/10(4) peripheral blood mononuclear cells (p = 0.01); and HBZ from 8.0 ± 1.5 to 3.0 ± 0.66 (p < 0.01)]. Tax mRNA expression decreased after the treatment from 2.26 ± 0.45 to 1.44 ± 0.64, but this reduction was not statistically significant (p = 0.10). Furthermore, anti-HTLV-1 titer reduced dramatically after the treatment, from 3123 ± 395 to 815 ± 239 (p < 0.01). Clinical signs and symptoms, according to Osame Motor Disability Score and Ashworth score, improved significantly (both p < 0.01). Urinary symptoms and sensory disturbances with lower back pain were reduced, though not to a statistically significant degree. Although signs and symptoms of spasticity were improved, frequent urination and urinary incontinence were not significantly affected by the triple therapy. The results provide new insight into the complicated conditions

  16. Triple Therapy with Prednisolone, Pegylated Interferon and Sodium Valproate Improves Clinical Outcome and Reduces Human T-Cell Leukemia Virus Type 1 (HTLV-1) Proviral Load, Tax and HBZ mRNA Expression in Patients with HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis.

    PubMed

    Boostani, Reza; Vakili, Rosita; Hosseiny, Samane Sadat; Shoeibi, Ali; Fazeli, Bahare; Etemadi, Mohammad Mehdi; Sabet, Faeze; Valizade, Narges; Rezaee, Seyed Abdolrahim

    2015-10-01

    Considering that there is no effective treatment for human T-cell leukemia virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis, this study aimed to assess the impact of triple combination therapy-interferon-α, valproic acid, and prednisolone-on clinical outcomes, main HTLV-1 viral factors, and host anti-HTLV-1 antibody response. HTLV-1 proviral load (PVL), and HBZ and Tax mRNA expression levels were measured in peripheral blood mononuclear cells of 13 patients with HTLV-1-associated myelopathy/tropical spastic paraparesis before and after treatment with 180 μg pegylated interferon once a week, 10-20 mg/kg/day sodium valproate, and 5 mg/day prednisolone for 25 weeks using a TaqMan real-time polymerase chain reaction assay. Furthermore, anti-HTLV-1 titer, Osame Motor Disability Score, Ashworth spasticity scale, and urinary symptoms (through standard questionnaire and clinical monitoring) were assessed in patients before and after the treatment. HTLV-1 PVL and HBZ expression significantly decreased after the treatment [PVL from 1443 ± 282 to 660 ± 137 copies/10(4) peripheral blood mononuclear cells (p = 0.01); and HBZ from 8.0 ± 1.5 to 3.0 ± 0.66 (p < 0.01)]. Tax mRNA expression decreased after the treatment from 2.26 ± 0.45 to 1.44 ± 0.64, but this reduction was not statistically significant (p = 0.10). Furthermore, anti-HTLV-1 titer reduced dramatically after the treatment, from 3123 ± 395 to 815 ± 239 (p < 0.01). Clinical signs and symptoms, according to Osame Motor Disability Score and Ashworth score, improved significantly (both p < 0.01). Urinary symptoms and sensory disturbances with lower back pain were reduced, though not to a statistically significant degree. Although signs and symptoms of spasticity were improved, frequent urination and urinary incontinence were not significantly affected by the triple therapy. The results provide new insight into the complicated conditions

  17. The perennial ryegrass GenomeZipper: targeted use of genome resources for comparative grass genomics.

    PubMed

    Pfeifer, Matthias; Martis, Mihaela; Asp, Torben; Mayer, Klaus F X; Lübberstedt, Thomas; Byrne, Stephen; Frei, Ursula; Studer, Bruno

    2013-02-01

    Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The perennial ryegrass GenomeZipper is an ordered, information-rich genome scaffold, facilitating map-based cloning and genome assembly in perennial ryegrass and closely related Poaceae species. It also represents a milestone in describing synteny between perennial ryegrass and fully sequenced model grass genomes, thereby increasing our understanding of genome organization and evolution in the most important temperate forage and turf grass species.

  18. Nongenetic functions of the genome.

    PubMed

    Bustin, Michael; Misteli, Tom

    2016-05-01

    The primary function of the genome is to store, propagate, and express the genetic information that gives rise to a cell's architectural and functional machinery. However, the genome is also a major structural component of the cell. Besides its genetic roles, the genome affects cellular functions by nongenetic means through its physical and structural properties, particularly by exerting mechanical forces and by serving as a scaffold for binding of cellular components. Major cellular processes affected by nongenetic functions of the genome include establishment of nuclear structure, signal transduction, mechanoresponses, cell migration, and vision in nocturnal animals. We discuss the concept, mechanisms, and implications of nongenetic functions of the genome.

  19. Informational laws of genome structures

    NASA Astrophysics Data System (ADS)

    Bonnici, Vincenzo; Manca, Vincenzo

    2016-06-01

    In recent years, the analysis of genomes by means of strings of length k occurring in the genomes, called k-mers, has provided important insights into the basic mechanisms and design principles of genome structures. In the present study, we focus on the proper choice of the value of k for applying information theoretic concepts that express intrinsic aspects of genomes. The value k = lg2(n), where n is the genome length, is determined to be the best choice in the definition of some genomic informational indexes that are studied and computed for seventy genomes. These indexes, which are based on information entropies and on suitable comparisons with random genomes, suggest five informational laws, to which all of the considered genomes obey. Moreover, an informational genome complexity measure is proposed, which is a generalized logistic map that balances entropic and anti-entropic components of genomes and is related to their evolutionary dynamics. Finally, applications to computational synthetic biology are briefly outlined.

  20. Informational laws of genome structures

    PubMed Central

    Bonnici, Vincenzo; Manca, Vincenzo

    2016-01-01

    In recent years, the analysis of genomes by means of strings of length k occurring in the genomes, called k-mers, has provided important insights into the basic mechanisms and design principles of genome structures. In the present study, we focus on the proper choice of the value of k for applying information theoretic concepts that express intrinsic aspects of genomes. The value k = lg2(n), where n is the genome length, is determined to be the best choice in the definition of some genomic informational indexes that are studied and computed for seventy genomes. These indexes, which are based on information entropies and on suitable comparisons with random genomes, suggest five informational laws, to which all of the considered genomes obey. Moreover, an informational genome complexity measure is proposed, which is a generalized logistic map that balances entropic and anti-entropic components of genomes and is related to their evolutionary dynamics. Finally, applications to computational synthetic biology are briefly outlined. PMID:27354155

  1. Evolution of small prokaryotic genomes

    PubMed Central

    Martínez-Cano, David J.; Reyes-Prieto, Mariana; Martínez-Romero, Esperanza; Partida-Martínez, Laila P.; Latorre, Amparo; Moya, Andrés; Delaye, Luis

    2015-01-01

    As revealed by genome sequencing, the biology of prokaryotes with reduced genomes is strikingly diverse. These include free-living prokaryotes with ∼800 genes as well as endosymbiotic bacteria with as few as ∼140 genes. Comparative genomics is revealing the evolutionary mechanisms that led to these small genomes. In the case of free-living prokaryotes, natural selection directly favored genome reduction, while in the case of endosymbiotic prokaryotes neutral processes played a more prominent role. However, new experimental data suggest that selective processes may be at operation as well for endosymbiotic prokaryotes at least during the first stages of genome reduction. Endosymbiotic prokaryotes have evolved diverse strategies for living with reduced gene sets inside a host-defined medium. These include utilization of host-encoded functions (some of them coded by genes acquired by gene transfer from the endosymbiont and/or other bacteria); metabolic complementation between co-symbionts; and forming consortiums with other bacteria within the host. Recent genome sequencing projects of intracellular mutualistic bacteria showed that previously believed universal evolutionary trends like reduced G+C content and conservation of genome synteny are not always present in highly reduced genomes. Finally, the simplified molecular machinery of some of these organisms with small genomes may be used to aid in the design of artificial minimal cells. Here we review recent genomic discoveries of the biology of prokaryotes endowed with small gene sets and discuss the evolutionary mechanisms that have been proposed to explain their peculiar nature. PMID:25610432

  2. Informational laws of genome structures.

    PubMed

    Bonnici, Vincenzo; Manca, Vincenzo

    2016-01-01

    In recent years, the analysis of genomes by means of strings of length k occurring in the genomes, called k-mers, has provided important insights into the basic mechanisms and design principles of genome structures. In the present study, we focus on the proper choice of the value of k for applying information theoretic concepts that express intrinsic aspects of genomes. The value k = lg2(n), where n is the genome length, is determined to be the best choice in the definition of some genomic informational indexes that are studied and computed for seventy genomes. These indexes, which are based on information entropies and on suitable comparisons with random genomes, suggest five informational laws, to which all of the considered genomes obey. Moreover, an informational genome complexity measure is proposed, which is a generalized logistic map that balances entropic and anti-entropic components of genomes and is related to their evolutionary dynamics. Finally, applications to computational synthetic biology are briefly outlined. PMID:27354155

  3. Comparative genomics of Brassicaceae crops.

    PubMed

    Sharma, Ashutosh; Li, Xiaonan; Lim, Yong Pyo

    2014-05-01

    The family Brassicaceae is one of the major groups of the plant kingdom and comprises diverse species of great economic, agronomic and scientific importance, including the model plant Arabidopsis. The sequencing of the Arabidopsis genome has revolutionized our knowledge in the field of plant biology and provides a foundation in genomics and comparative biology. Genomic resources have been utilized in Brassica for diversity analyses, construction of genetic maps and identification of agronomic traits. In Brassicaceae, comparative sequence analysis across the species has been utilized to understand genome structure, evolution and the detection of conserved genomic segments. In this review, we focus on the progress made in genetic resource development, genome sequencing and comparative mapping in Brassica and related species. The utilization of genomic resources and next-generation sequencing approaches in improvement of Brassica crops is also discussed. PMID:24987286

  4. Pharmacogenetics and personal genomes

    PubMed Central

    Wagner, Michael J

    2010-01-01

    While pharmacogenetics - the correlation of genotype and response to medicines - currently has a small but measurable impact on the prescribing practice of clinicians, the advent of the `personal genome' is likely to change this significantly. Advances in high-throughput technologies aimed at characterizing human genetic variation, including chip-based genotyping and next-generation sequencing, are poised to provide a flood of information that will affect both pharmacogenetic discovery and pharmacogenetic application in clinical practice. In order for this flood of information to not overwhelm both researchers and clinicians alike, a variety of new and expanded information management tools will be needed, including electronic medical records, bioinformatic algorithms for analyzing sequence data, information management systems for storing, retrieving and interpreting whole-genome sequence data, and pharmacogenetic decision tools for prescribers. PMID:20190862

  5. Viruses within animal genomes.

    PubMed

    De Brognier, A; Willems, L

    2016-04-01

    Viruses and their hosts can co-evolve to reach a fragile equilibrium that allows the survival of both. An excess of pathogenicity in the absence of a reservoir would be detrimental to virus survival. A significant proportion of all animal genomes has been shaped by the insertion of viruses that subsequently became 'fossilised'. Most endogenous viruses have lost the capacity to replicate via an infectious cycle and now replicate passively. The insertion of endogenous viruses has contributed to the evolution of animal genomes, for example in the reproductive biology of mammals. However, spontaneous viral integration still occasionally occurs in a number of virus-host systems. This constitutes a potential risk to host survival but also provides an opportunity for diversification and evolution.

  6. [Genomics in medicine].

    PubMed

    Ruiz Esparza-Garrido, Ruth; Velázquez-Flores, Miguel Angel; Arenas-Aranda, Diego Julio; Salamanca-Gómez, Fabio

    2014-01-01

    The development of new fields of study in genetics, as the -omic sciences (transcriptomics, proteomics, metabolomics), has allowed the study of the regulation and expression of genomes. Therefore, nowadays it is possible to study global alterations--in the whole genome--and their effect at the protein and metabolic levels. Importantly, this new way of studying genetics has opened new areas of knowledge, and new cellular mechanisms that regulate the functioning of biological systems have been elucidated. In the clinical field, in the last years new molecular tools have been implemented. These tools are favorable to a better classification, diagnosis and prognosis of several human diseases. Additionally, in some cases best treatments, which improve the quality of life of patients, have been established. Due to the previous assertion, it is important to review and divulge changes in the study of genetics as a result of the development of the -omic sciences, which is the aim of this review.

  7. [Genomics medicine and oncology].

    PubMed

    Michielin, Olivier; Coukos, George

    2014-05-01

    Progress in genomics with, in particular, high throughput next generation sequencing is revolutionizing oncology. The impact of these techniques is seen on the one hand the identification of germline mutations that predispose to a given type of cancer, allowing for a personalized care of patients or healthy carriers and, on the other hand, the characterization of all acquired somatic mutation of the tumor cell, opening the door to personalized treatment targeting the driver oncogenes. In both cases, next generation sequencing techniques allow a global approach whereby the integrality of the genome mutations is analyzed and correlated with the clinical data. The benefits on the quality of care delivered to our patients are extremely impressive. PMID:24800772

  8. Lessons from Structural Genomics*

    PubMed Central

    Terwilliger, Thomas C.; Stuart, David; Yokoyama, Shigeyuki

    2010-01-01

    A decade of structural genomics, the large-scale determination of protein structures, has generated a wealth of data and many important lessons for structural biology and for future large-scale projects. These lessons include a confirmation that it is possible to construct large-scale facilities that can determine the structures of a hundred or more proteins per year, that these structures can be of high quality, and that these structures can have an important impact. Technology development has played a critical role in structural genomics, the difficulties at each step of determining a structure of a particular protein can be quantified, and validation of technologies is nearly as important as the technologies themselves. Finally, rapid deposition of data in public databases has increased the impact and usefulness of the data and international cooperation has advanced the field and improved data sharing. PMID:19416074

  9. Profiling the cancer genome.

    PubMed

    Cowin, Prue A; Anglesio, Michael; Etemadmoghadam, Dariush; Bowtell, David D L

    2010-01-01

    Cancer profiling studies have had a profound impact on our understanding of the biology of cancers in a number of ways, including providing insights into the biological heterogeneity of specific cancer types, identification of novel oncogenes and tumor suppressors, and defining pathways that interact to drive the growth of individual cancers. Several large-scale genomic studies are underway that aim to catalog all biologically significant mutational events in each cancer type, and these findings will allow researchers to understand how mutational networks function within individual tumors. The identification of molecular predictive and prognostic tools to facilitate treatment decisions is an important step for individualized patient therapy and, ultimately, in improving patient outcomes. Whereas there are still significant challenges to implementing genomic testing and targeted therapy into routine clinical practice, rapid technological advancements provide hope for overcoming these obstacles.

  10. eGenomics: Cataloguing Our Complete Genome Collection III

    PubMed Central

    Field, Dawn; Garrity, George; Gray, Tanya; Selengut, Jeremy; Sterk, Peter; Thomson, Nick; Tatusova, Tatiana; Cochrane, Guy; Glöckner, Frank Oliver; Kottmann, Renzo; Lister, Allyson L.; Tateno, Yoshio; Vaughan, Robert

    2007-01-01

    This meeting report summarizes the proceedings of the “eGenomics: Cataloguing our Complete Genome Collection III” workshop held September 11–13, 2006, at the National Institute for Environmental eScience (NIEeS), Cambridge, United Kingdom. This 3rd workshop of the Genomic Standards Consortium was divided into two parts. The first half of the three-day workshop was dedicated to reviewing the genomic diversity of our current and future genome and metagenome collection, and exploring linkages to a series of existing projects through formal presentations. The second half was dedicated to strategic discussions. Outcomes of the workshop include a revised “Minimum Information about a Genome Sequence” (MIGS) specification (v1.1), consensus on a variety of features to be added to the Genome Catalogue (GCat), agreement by several researchers to adopt MIGS for imminent genome publications, and an agreement by the EBI and NCBI to input their genome collections into GCat for the purpose of quantifying the amount of optional data already available (e.g., for geographic location coordinates) and working towards a single, global list of all public genomes and metagenomes.

  11. Genomic landscape of liposarcoma.

    PubMed

    Kanojia, Deepika; Nagata, Yasunobu; Garg, Manoj; Lee, Dhong Hyun; Sato, Aiko; Yoshida, Kenichi; Sato, Yusuke; Sanada, Masashi; Mayakonda, Anand; Bartenhagen, Christoph; Klein, Hans-Ulrich; Doan, Ngan B; Said, Jonathan W; Mohith, S; Gunasekar, Swetha; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Miyano, Satoru; Myklebost, Ola; Yang, Henry; Dugas, Martin; Meza-Zepeda, Leonardo A; Silberman, Allan W; Forscher, Charles; Tyner, Jeffrey W; Ogawa, Seishi; Koeffler, H Phillip

    2015-12-15

    Liposarcoma (LPS) is the most common type of soft tissue sarcoma accounting for 20% of all adult sarcomas. Due to absence of clinically effective treatment options in inoperable situations and resistance to chemotherapeutics, a critical need exists to identify novel therapeutic targets. We analyzed LPS genomic landscape using SNP arrays, whole exome sequencing and targeted exome sequencing to uncover the genomic information for development of specific anti-cancer targets. SNP array analysis indicated known amplified genes (MDM2, CDK4, HMGA2) and important novel genes (UAP1, MIR557, LAMA4, CPM, IGF2, ERBB3, IGF1R). Carboxypeptidase M (CPM), recurrently amplified gene in well-differentiated/de-differentiated LPS was noted as a putative oncogene involved in the EGFR pathway. Notable deletions were found at chromosome 1p (RUNX3, ARID1A), chromosome 11q (ATM, CHEK1) and chromosome 13q14.2 (MIR15A, MIR16-1). Significantly and recurrently mutated genes (false discovery rate < 0.05) included PLEC (27%), MXRA5 (21%), FAT3 (24%), NF1 (20%), MDC1 (10%), TP53 (7%) and CHEK2 (6%). Further, in vitro and in vivo functional studies provided evidence for the tumor suppressor role for Neurofibromin 1 (NF1) gene in different subtypes of LPS. Pathway analysis of recurrent mutations demonstrated signaling through MAPK, JAK-STAT, Wnt, ErbB, axon guidance, apoptosis, DNA damage repair and cell cycle pathways were involved in liposarcomagenesis. Interestingly, we also found mutational and copy number heterogeneity within a primary LPS tumor signifying the importance of multi-region sequencing for cancer-genome guided therapy. In summary, these findings provide insight into the genomic complexity of LPS and highlight potential druggable pathways for targeted therapeutic approach.

  12. Genomic landscape of liposarcoma

    PubMed Central

    Kanojia, Deepika; Nagata, Yasunobu; Garg, Manoj; Lee, Dhong Hyun; Sato, Aiko; Yoshida, Kenichi; Sato, Yusuke; Sanada, Masashi; Mayakonda, Anand; Bartenhagen, Christoph; Klein, Hans-Ulrich; Doan, Ngan B.; Said, Jonathan W.; Mohith, S.; Gunasekar, Swetha; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Miyano, Satoru; Myklebost, Ola; Yang, Henry; Dugas, Martin; Meza-Zepeda, Leonardo A.; Silberman, Allan W.; Forscher, Charles; Tyner, Jeffrey W.; Ogawa, Seishi; Koeffler, H. Phillip

    2015-01-01

    Liposarcoma (LPS) is the most common type of soft tissue sarcoma accounting for 20% of all adult sarcomas. Due to absence of clinically effective treatment options in inoperable situations and resistance to chemotherapeutics, a critical need exists to identify novel therapeutic targets. We analyzed LPS genomic landscape using SNP arrays, whole exome sequencing and targeted exome sequencing to uncover the genomic information for development of specific anti-cancer targets. SNP array analysis indicated known amplified genes (MDM2, CDK4, HMGA2) and important novel genes (UAP1, MIR557, LAMA4, CPM, IGF2, ERBB3, IGF1R). Carboxypeptidase M (CPM), recurrently amplified gene in well-differentiated/de-differentiated LPS was noted as a putative oncogene involved in the EGFR pathway. Notable deletions were found at chromosome 1p (RUNX3, ARID1A), chromosome 11q (ATM, CHEK1) and chromosome 13q14.2 (MIR15A, MIR16-1). Significantly and recurrently mutated genes (false discovery rate < 0.05) included PLEC (27%), MXRA5 (21%), FAT3 (24%), NF1 (20%), MDC1 (10%), TP53 (7%) and CHEK2 (6%). Further, in vitro and in vivo functional studies provided evidence for the tumor suppressor role for Neurofibromin 1 (NF1) gene in different subtypes of LPS. Pathway analysis of recurrent mutations demonstrated signaling through MAPK, JAK-STAT, Wnt, ErbB, axon guidance, apoptosis, DNA damage repair and cell cycle pathways were involved in liposarcomagenesis. Interestingly, we also found mutational and copy number heterogeneity within a primary LPS tumor signifying the importance of multi-region sequencing for cancer-genome guided therapy. In summary, these findings provide insight into the genomic complexity of LPS and highlight potential druggable pathways for targeted therapeutic approach. PMID:26643872

  13. Genome sequencing conference II

    SciTech Connect

    Not Available

    1990-01-01

    Genome Sequencing Conference 2 was held September 30 to October 30, 1990. 26 speaker abstracts and 33 poster presentations were included in the program report. New and improved methods for DNA sequencing and genetic mapping were presented. Many of the papers were concerned with accuracy and speed of acquisition of data with computers and automation playing an increasing role. Individual papers have been processed separately for inclusion on the database.

  14. Clinical Genomic Database

    PubMed Central

    Solomon, Benjamin D.; Nguyen, Anh-Dao; Bear, Kelly A.; Wolfsberg, Tyra G.

    2013-01-01

    Technological advances have greatly increased the availability of human genomic sequencing. However, the capacity to analyze genomic data in a clinically meaningful way lags behind the ability to generate such data. To help address this obstacle, we reviewed all conditions with genetic causes and constructed the Clinical Genomic Database (CGD) (http://research.nhgri.nih.gov/CGD/), a searchable, freely Web-accessible database of conditions based on the clinical utility of genetic diagnosis and the availability of specific medical interventions. The CGD currently includes a total of 2,616 genes organized clinically by affected organ systems and interventions (including preventive measures, disease surveillance, and medical or surgical interventions) that could be reasonably warranted by the identification of pathogenic mutations. To aid independent analysis and optimize new data incorporation, the CGD also includes all genetic conditions for which genetic knowledge may affect the selection of supportive care, informed medical decision-making, prognostic considerations, reproductive decisions, and allow avoidance of unnecessary testing, but for which specific interventions are not otherwise currently available. For each entry, the CGD includes the gene symbol, conditions, allelic conditions, clinical categorization (for both manifestations and interventions), mode of inheritance, affected age group, description of interventions/rationale, links to other complementary databases, including databases of variants and presumed pathogenic mutations, and links to PubMed references (>20,000). The CGD will be regularly maintained and updated to keep pace with scientific discovery. Further content-based expert opinions are actively solicited. Eventually, the CGD may assist the rapid curation of individual genomes as part of active medical care. PMID:23696674

  15. Mapping the human genome

    SciTech Connect

    Annas, G.C.; Elias, S.

    1992-01-01

    This article is a review of the book Mapping the Human Genome: Using Law and Ethics as Guides, edited by George C. Annas and Sherman Elias. The book is a collection of essays on the subject of using ethics and laws as guides to justify human gene mapping. It addresses specific issues such problems related to eugenics, patents, insurance as well as broad issues such as the societal definitions of normality.

  16. Genomic landscape of liposarcoma.

    PubMed

    Kanojia, Deepika; Nagata, Yasunobu; Garg, Manoj; Lee, Dhong Hyun; Sato, Aiko; Yoshida, Kenichi; Sato, Yusuke; Sanada, Masashi; Mayakonda, Anand; Bartenhagen, Christoph; Klein, Hans-Ulrich; Doan, Ngan B; Said, Jonathan W; Mohith, S; Gunasekar, Swetha; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Miyano, Satoru; Myklebost, Ola; Yang, Henry; Dugas, Martin; Meza-Zepeda, Leonardo A; Silberman, Allan W; Forscher, Charles; Tyner, Jeffrey W; Ogawa, Seishi; Koeffler, H Phillip

    2015-12-15

    Liposarcoma (LPS) is the most common type of soft tissue sarcoma accounting for 20% of all adult sarcomas. Due to absence of clinically effective treatment options in inoperable situations and resistance to chemotherapeutics, a critical need exists to identify novel therapeutic targets. We analyzed LPS genomic landscape using SNP arrays, whole exome sequencing and targeted exome sequencing to uncover the genomic information for development of specific anti-cancer targets. SNP array analysis indicated known amplified genes (MDM2, CDK4, HMGA2) and important novel genes (UAP1, MIR557, LAMA4, CPM, IGF2, ERBB3, IGF1R). Carboxypeptidase M (CPM), recurrently amplified gene in well-differentiated/de-differentiated LPS was noted as a putative oncogene involved in the EGFR pathway. Notable deletions were found at chromosome 1p (RUNX3, ARID1A), chromosome 11q (ATM, CHEK1) and chromosome 13q14.2 (MIR15A, MIR16-1). Significantly and recurrently mutated genes (false discovery rate < 0.05) included PLEC (27%), MXRA5 (21%), FAT3 (24%), NF1 (20%), MDC1 (10%), TP53 (7%) and CHEK2 (6%). Further, in vitro and in vivo functional studies provided evidence for the tumor suppressor role for Neurofibromin 1 (NF1) gene in different subtypes of LPS. Pathway analysis of recurrent mutations demonstrated signaling through MAPK, JAK-STAT, Wnt, ErbB, axon guidance, apoptosis, DNA damage repair and cell cycle pathways were involved in liposarcomagenesis. Interestingly, we also found mutational and copy number heterogeneity within a primary LPS tumor signifying the importance of multi-region sequencing for cancer-genome guided therapy. In summary, these findings provide insight into the genomic complexity of LPS and highlight potential druggable pathways for targeted therapeutic approach. PMID:26643872

  17. Marsupial and monotreme genomes.

    PubMed

    Koina, E; Fong, J; Graves, J A Marshall

    2006-01-01

    Marsupials and monotremes are 'alternative mammals', independent experiments of mammalian evolution that diverged from placental mammals 180 and 210 million years ago (MYA), respectively. Marsupials (e.g. kangaroo, opossum) and monotremes (e.g. platypus) differ from placental mammals in many characteristics, particularly reproduction. With their early divergence from placentals, they fill the phylogenetic gap between the mammal-reptile divergence 310 MYA and the placental radiation 100 MYA. Their genomes are similar in size to those of placentals, but their chromosomes are quite distinctive. Marsupials have a few very large and very conserved chromosomes, while monotremes show a reptile-like size dichotomy and have a unique chain of ten sex chromosomes. Studies of gene arrangement in marsupials and monotremes have delivered many surprises that necessitate re-evaluation of the function and control of several genes in all mammals including humans, and provide new insights into the evolution of the mammalian genome, particularly the sex chromosomes. With the imminent sequencing of the genomes of two marsupials (the short-tailed grey Brazilian opossum and an Australian model kangaroo) and the platypus, much more detailed comparisons become possible. Even the first few analyses of marsupial and platypus sequences confirm the value of sequence comparisons for finding new genes and regulatory regions and exploring their function, as well as deducing how they evolved. PMID:18753774

  18. Mapping the human genome

    SciTech Connect

    Cantor, Charles R.

    1989-06-01

    The following pages aim to lay a foundation for understanding the excitement surrounding the ''human genome project,'' as well as to convey a flavor of the ongoing efforts and plans at the Human Genome Center at the Lawrence Berkeley Laboratory. Our own work, of course, is only part of a broad international effort that will dramatically enhance our understanding of human molecular genetics before the end of this century. In this country, the bulk of the effort will be carried out under the auspices of the Department of Energy and the National Institutes of Health, but significant contributions have already been made both by nonprofit private foundations and by private corporation. The respective roles of the DOE and the NIH are being coordinated by an inter-agency committee, the aims of which are to emphasize the strengths of each agency, to facilitate cooperation, and to avoid unnecessary duplication of effort. The NIH, for example, will continue its crucial work in medical genetics and in mapping the genomes of nonhuman species. The DOE, on the other hand, has unique experience in managing large projects, and its national laboratories are repositories of expertise in physics, engineering, and computer science, as well as the life sciences. The tools and techniques the project will ultimately rely on are thus likely to be developed in multidisciplinary efforts at laboratories like LBL. Accordingly, we at LBL take great pride in this enterprise -- an enterprise that will eventually transform our understanding of ourselves.

  19. Aedes aegypti genomics.

    PubMed

    Severson, David W; Knudson, Dennis L; Soares, Marcelo B; Loftus, Brendan J

    2004-07-01

    The mosquito, Aedes aegypti, is the primary, worldwide arthropod vector for the yellow fever and dengue viruses. As it is also one of the most tractable mosquito species for laboratory studies, it has been and remains one of the most intensively studied arthropod species. This has resulted in the development of detailed genetic and physical maps for Ae. aegypti and considerable insight into its genome organization. The research community is well-advanced in developing important molecular tools that will facilitate a whole genome sequencing effort. This includes generation of BAC clone end sequences, physical mapping of selected BAC clones and generation of EST sequences. Whole genome sequence information for Ae. aegypti will provide important insight into mosquito chromosome evolution and allow for the identification of genes and gene function. These functions may be common to all mosquitoes or perhaps unique to individual species, possibly specific to host-seeking and blood-feeding behaviors, as well as the innate immune response to pathogens encountered during blood-feeding. This information will be invaluable to the global effort to develop novel strategies for preventing arthropod-borne disease transmission.

  20. I Liked It till Pythagoras: The Public's Views of Mathematics

    ERIC Educational Resources Information Center

    Leder, Gilah C.; Forgasz, Helen J.

    2010-01-01

    Gender differences in mathematics learning have attracted sustained attention in Australia and internationally. Over time, female participation in academic fields and careers long considered male domains has improved. Yet recent mathematics achievement data reveal that gender gaps favouring males appear to have re-opened. In our study we explored…

  1. I Like Chocolate Ice Cream: A Lesson in Thinking Civics

    ERIC Educational Resources Information Center

    Waterson, Robert A.

    2012-01-01

    In curricula that encourages philosophy as having an integral role in educational programs, students get the opportunity to wonder and speculate, in a natural state surrounded by questions. A. K. Salmon notes that when thinking becomes a part of a young child's routine, the child becomes more open and responsive to situations that require thinking…

  2. Whole-genome sequencing for comparative genomics and de novo genome assembly.

    PubMed

    Benjak, Andrej; Sala, Claudia; Hartkoorn, Ruben C

    2015-01-01

    Next-generation sequencing technologies for whole-genome sequencing of mycobacteria are rapidly becoming an attractive alternative to more traditional sequencing methods. In particular this technology is proving useful for genome-wide identification of mutations in mycobacteria (comparative genomics) as well as for de novo assembly of whole genomes. Next-generation sequencing however generates a vast quantity of data that can only be transformed into a usable and comprehensible form using bioinformatics. Here we describe the methodology one would use to prepare libraries for whole-genome sequencing, and the basic bioinformatics to identify mutations in a genome following Illumina HiSeq or MiSeq sequencing, as well as de novo genome assembly following sequencing using Pacific Biosciences (PacBio).

  3. Genome of horsepox virus.

    PubMed

    Tulman, E R; Delhon, G; Afonso, C L; Lu, Z; Zsak, L; Sandybaev, N T; Kerembekova, U Z; Zaitsev, V L; Kutish, G F; Rock, D L

    2006-09-01

    Here we present the genomic sequence of horsepox virus (HSPV) isolate MNR-76, an orthopoxvirus (OPV) isolated in 1976 from diseased Mongolian horses. The 212-kbp genome contained 7.5-kbp inverted terminal repeats and lacked extensive terminal tandem repetition. HSPV contained 236 open reading frames (ORFs) with similarity to those in other OPVs, with those in the central 100-kbp region most conserved relative to other OPVs. Phylogenetic analysis of the conserved region indicated that HSPV is closely related to sequenced isolates of vaccinia virus (VACV) and rabbitpox virus, clearly grouping together these VACV-like viruses. Fifty-four HSPV ORFs likely represented fragments of 25 orthologous OPV genes, including in the central region the only known fragmented form of an OPV ribonucleotide reductase large subunit gene. In terminal genomic regions, HSPV lacked full-length homologues of genes variably fragmented in other VACV-like viruses but was unique in fragmentation of the homologue of VACV strain Copenhagen B6R, a gene intact in other known VACV-like viruses. Notably, HSPV contained in terminal genomic regions 17 kbp of OPV-like sequence absent in known VACV-like viruses, including fragments of genes intact in other OPVs and approximately 1.4 kb of sequence present only in cowpox virus (CPXV). HSPV also contained seven full-length genes fragmented or missing in other VACV-like viruses, including intact homologues of the CPXV strain GRI-90 D2L/I4R CrmB and D13L CD30-like tumor necrosis factor receptors, D3L/I3R and C1L ankyrin repeat proteins, B19R kelch-like protein, D7L BTB/POZ domain protein, and B22R variola virus B22R-like protein. These results indicated that HSPV contains unique genomic features likely contributing to a unique virulence/host range phenotype. They also indicated that while closely related to known VACV-like viruses, HSPV contains additional, potentially ancestral sequences absent in other VACV-like viruses.

  4. p21X mRNA is expressed as a singly spliced pX transcript from defective provirus genomes having a partial deletion of the pol-env region in human T-cell leukemia virus type 1-infected cells.

    PubMed Central

    Orita, S; Kobayashi, H; Aono, Y; Saiga, A; Maeda, M; Igarashi, H

    1993-01-01

    In addition to the three typical transcripts such as genomic/gag-pol mRNA, env mRNA and tax/rex mRNA, we previously found the singly spliced pX mRNA, termed p21X mRNA, responsible for producing the p21X protein in human T-cell leukemia virus type 1 (HTLV-1)-infected cells. Our finding of the p21X mRNA being constitutively expressed in the fresh peripheral blood mononuclear cells (PBMCs) from patients with ATL has suggested that the expression mechanism is quite different from that of the others. In this paper, the expression mechanism of p21X mRNA was investigated by analyzing the organization of the proviral genomes present in the representative HTLV-1-infected cell lines which are positive or negative for the expression of p21X mRNA. Southern and PCR analyses show that most of the analyzed cell lines contain both one complete and one defective genome each. However, one cell line without the p21X mRNA expression, C91/PL, contains only the complete genome, suggesting that the complete HTLV-1 has no ability to express p21X mRNA in spite of having the ability to produce the infectious virus. The defective genomes of the p21X mRNA positive cell lines, MT-2 and H582, have a large deletion of the entire pol and parts of the gag and env regions including the common domain of the second exon of the doubly spliced tax/rex mRNA, while another defective genome of the p21X mRNA negative cell line, MT-1, has a deletion within the gag-pol gene. We show that these defective genomes have the ability to express their distinct, defective genomic mRNA, suggesting they are active. The defective genomic mRNAs in MT-2 and H582 cells retain the first splice donor and the second splice acceptor sites, suggesting the possibility of synthesizing p21X mRNA by splicing singly with these sites. These findings assume that defective HTLV-1 genomes deleting the second exon region acquire the ability to express p21X mRNA but no ability to express tax/rex mRNA. Such a deletion may explain the

  5. Genome-wide association and genomic selection in animal breeding.

    PubMed

    Hayes, Ben; Goddard, Mike

    2010-11-01

    Results from genome-wide association studies in livestock, and humans, has lead to the conclusion that the effect of individual quantitative trait loci (QTL) on complex traits, such as yield, are likely to be small; therefore, a large number of QTL are necessary to explain genetic variation in these traits. Given this genetic architecture, gains from marker-assisted selection (MAS) programs using only a small number of DNA markers to trace a limited number of QTL is likely to be small. This has lead to the development of alternative technology for using the available dense single nucleotide polymorphism (SNP) information, called genomic selection. Genomic selection uses a genome-wide panel of dense markers so that all QTL are likely to be in linkage disequilibrium with at least one SNP. The genomic breeding values are predicted to be the sum of the effect of these SNPs across the entire genome. In dairy cattle breeding, the accuracy of genomic estimated breeding values (GEBV) that can be achieved and the fact that these are available early in life have lead to rapid adoption of the technology. Here, we discuss the design of experiments necessary to achieve accurate prediction of GEBV in future generations in terms of the number of markers necessary and the size of the reference population where marker effects are estimated. We also present a simple method for implementing genomic selection using a genomic relationship matrix. Future challenges discussed include using whole genome sequence data to improve the accuracy of genomic selection and management of inbreeding through genomic relationships.

  6. The fungal genome initiative and lessons learned from genome sequencing.

    PubMed

    Cuomo, Christina A; Birren, Bruce W

    2010-01-01

    The sequence of Saccharomyces cerevisiae enabled systematic genome-wide experimental approaches, demonstrating the power of having the complete genome of an organism. The rapid impact of these methods on research in yeast mobilized an effort to expand genomic resources for other fungi. The "fungal genome initiative" represents an organized genome sequencing effort to promote comparative and evolutionary studies across the fungal kingdom. Through such an approach, scientists can not only better understand specific organisms but also illuminate the shared and unique aspects of fungal biology that underlie the importance of fungi in biomedical research, health, food production, and industry. To date, assembled genomes for over 100 fungi are available in public databases, and many more sequencing projects are underway. Here, we discuss both examples of findings from comparative analysis of fungal sequences, with a specific emphasis on yeast genomes, and on the analytical approaches taken to mine fungal genomes. New sequencing methods are accelerating comparative studies of fungi by reducing the cost and difficulty of sequencing. This has driven more common use of sequencing applications, such as to study genome-wide variation in populations or to deeply profile RNA transcripts. These and further technological innovations will continue to be piloted in yeasts and other fungi, and will expand the applications of sequencing to study fungal biology. PMID:20946837

  7. The Saccharomyces Genome Database: Exploring Genome Features and Their Annotations.

    PubMed

    Cherry, J Michael

    2015-12-01

    Genomic-scale assays result in data that provide information over the entire genome. Such base pair resolution data cannot be summarized easily except via a graphical viewer. A genome browser is a tool that displays genomic data and experimental results as horizontal tracks. Genome browsers allow searches for a chromosomal coordinate or a feature, such as a gene name, but they do not allow searches by function or upstream binding site. Entry into a genome browser requires that you identify the gene name or chromosomal coordinates for a region of interest. A track provides a representation for genomic results and is displayed as a row of data shown as line segments to indicate regions of the chromosome with a feature. Another type of track presents a graph or wiggle plot that indicates the processed signal intensity computed for a particular experiment or set of experiments. Wiggle plots are typical for genomic assays such as the various next-generation sequencing methods (e.g., chromatin immunoprecipitation [ChIP]-seq or RNA-seq), where it represents a peak of DNA binding, histone modification, or the mapping of an RNA sequence. Here we explore the browser that has been built into the Saccharomyces Genome Database (SGD).

  8. Genomic Data Commons and Genomic Cloud Pilots - Google Hangout

    Cancer.gov

    Join us for a live, moderated discussion about two NCI efforts to expand access to cancer genomics data: the Genomic Data Commons and Genomic Cloud Pilots. NCI subject matters experts will include Louis M. Staudt, M.D., Ph.D., Director Center for Cancer Genomics, Warren Kibbe, Ph.D., Director, NCI Center for Biomedical Informatics and Information Technology, and moderated by Anthony Kerlavage, Ph.D., Chief, Cancer Informatics Branch, Center for Biomedical Informatics and Information Technology. We welcome your questions before and during the Hangout on Twitter using the hashtag #AskNCI.

  9. The Anolis Lizard Genome: An Amniote Genome without Isochores?

    PubMed Central

    Costantini, Maria; Greif, Gonzalo; Alvarez-Valin, Fernando; Bernardi, Giorgio

    2016-01-01

    Two articles published 5 years ago concluded that the genome of the lizard Anolis carolinensis is an amniote genome without isochores. This claim was apparently contradicting previous results on the general presence of an isochore organization in all vertebrate genomes tested (including Anolis). In this investigation, we demonstrate that the Anolis genome is indeed heterogeneous in base composition, since its macrochromosomes comprise isochores mainly from the L2 and H1 families (a moderately GC-poor and a moderately GC-rich family, respectively), and since the majority of the sequenced microchromosomes consists of H1 isochores. These families are associated with different features of genome structure, including gene density and compositional correlations (e.g., GC3 vs flanking sequence GC and intron GC), as in the case of mammalian and avian genomes. Moreover, the assembled Anolis chromosomes have an enormous number of gaps, which could be due to sequencing problems in GC-rich regions of the genome. In conclusion, the Anolis genome is no exception to the general rule of an isochore organization in the genomes of vertebrates (and other eukaryotes). PMID:26992416

  10. The genome of Eucalyptus grandis.

    PubMed

    Myburg, Alexander A; Grattapaglia, Dario; Tuskan, Gerald A; Hellsten, Uffe; Hayes, Richard D; Grimwood, Jane; Jenkins, Jerry; Lindquist, Erika; Tice, Hope; Bauer, Diane; Goodstein, David M; Dubchak, Inna; Poliakov, Alexandre; Mizrachi, Eshchar; Kullan, Anand R K; Hussey, Steven G; Pinard, Desre; van der Merwe, Karen; Singh, Pooja; van Jaarsveld, Ida; Silva-Junior, Orzenil B; Togawa, Roberto C; Pappas, Marilia R; Faria, Danielle A; Sansaloni, Carolina P; Petroli, Cesar D; Yang, Xiaohan; Ranjan, Priya; Tschaplinski, Timothy J; Ye, Chu-Yu; Li, Ting; Sterck, Lieven; Vanneste, Kevin; Murat, Florent; Soler, Marçal; Clemente, Hélène San; Saidi, Naijib; Cassan-Wang, Hua; Dunand, Christophe; Hefer, Charles A; Bornberg-Bauer, Erich; Kersting, Anna R; Vining, Kelly; Amarasinghe, Vindhya; Ranik, Martin; Naithani, Sushma; Elser, Justin; Boyd, Alexander E; Liston, Aaron; Spatafora, Joseph W; Dharmwardhana, Palitha; Raja, Rajani; Sullivan, Christopher; Romanel, Elisson; Alves-Ferreira, Marcio; Külheim, Carsten; Foley, William; Carocha, Victor; Paiva, Jorge; Kudrna, David; Brommonschenkel, Sergio H; Pasquali, Giancarlo; Byrne, Margaret; Rigault, Philippe; Tibbits, Josquin; Spokevicius, Antanas; Jones, Rebecca C; Steane, Dorothy A; Vaillancourt, René E; Potts, Brad M; Joubert, Fourie; Barry, Kerrie; Pappas, Georgios J; Strauss, Steven H; Jaiswal, Pankaj; Grima-Pettenati, Jacqueline; Salse, Jérôme; Van de Peer, Yves; Rokhsar, Daniel S; Schmutz, Jeremy

    2014-06-19

    Eucalypts are the world's most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled >94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.

  11. Domestication genomics: evidence from animals.

    PubMed

    Wang, Guo-Dong; Xie, Hai-Bing; Peng, Min-Sheng; Irwin, David; Zhang, Ya-Ping

    2014-02-01

    Animal domestication has far-reaching significance for human society. The sequenced genomes of domesticated animals provide critical resources for understanding the genetic basis of domestication. Various genomic analyses have shed a new light on the mechanism of artificial selection and have allowed the mapping of genes involved in important domestication traits. Here, we summarize the published genomes of domesticated animals that have been generated over the past decade, as well as their origins, from a phylogenomic point of view. This review provides a general description of the genomic features encountered under a two-stage domestication process. We also introduce recent findings for domestication traits based on results from genome-wide association studies and selective-sweep scans for artificially selected genomic regions. Particular attention is paid to issues relating to the costs of domestication and the convergent evolution of genes between domesticated animals and humans.

  12. Big Data: Astronomical or Genomical?

    PubMed

    Stephens, Zachary D; Lee, Skylar Y; Faghri, Faraz; Campbell, Roy H; Zhai, Chengxiang; Efron, Miles J; Iyer, Ravishankar; Schatz, Michael C; Sinha, Saurabh; Robinson, Gene E

    2015-07-01

    Genomics is a Big Data science and is going to get much bigger, very soon, but it is not known whether the needs of genomics will exceed other Big Data domains. Projecting to the year 2025, we compared genomics with three other major generators of Big Data: astronomy, YouTube, and Twitter. Our estimates show that genomics is a "four-headed beast"--it is either on par with or the most demanding of the domains analyzed here in terms of data acquisition, storage, distribution, and analysis. We discuss aspects of new technologies that will need to be developed to rise up and meet the computational challenges that genomics poses for the near future. Now is the time for concerted, community-wide planning for the "genomical" challenges of the next decade.

  13. Big Data: Astronomical or Genomical?

    PubMed

    Stephens, Zachary D; Lee, Skylar Y; Faghri, Faraz; Campbell, Roy H; Zhai, Chengxiang; Efron, Miles J; Iyer, Ravishankar; Schatz, Michael C; Sinha, Saurabh; Robinson, Gene E

    2015-07-01

    Genomics is a Big Data science and is going to get much bigger, very soon, but it is not known whether the needs of genomics will exceed other Big Data domains. Projecting to the year 2025, we compared genomics with three other major generators of Big Data: astronomy, YouTube, and Twitter. Our estimates show that genomics is a "four-headed beast"--it is either on par with or the most demanding of the domains analyzed here in terms of data acquisition, storage, distribution, and analysis. We discuss aspects of new technologies that will need to be developed to rise up and meet the computational challenges that genomics poses for the near future. Now is the time for concerted, community-wide planning for the "genomical" challenges of the next decade. PMID:26151137

  14. Mosquito genomics: progress and challenges.

    PubMed

    Severson, David W; Behura, Susanta K

    2012-01-01

    The whole-genome sequencing of mosquitoes has facilitated our understanding of fundamental biological processes at their basic molecular levels and holds potential for application to mosquito control and prevention of mosquito-borne disease transmission. Draft genome sequences are available for Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus. Collectively, these represent the major vectors of African malaria, dengue fever and yellow fever viruses, and lymphatic filariasis, respectively. Rapid advances in genome technologies have revealed detailed information on genome architecture as well as phenotype-specific transcriptomics and proteomics. These resources allow for detailed comparative analyses within and across populations as well as species. Next-generation sequencing technologies will likely promote a proliferation of genome sequences for additional mosquito species as well as for individual insects. Here we review the current status of genome research in mosquitoes and identify potential areas for further investigations.

  15. The Giardia genome project database.

    PubMed

    McArthur, A G; Morrison, H G; Nixon, J E; Passamaneck, N Q; Kim, U; Hinkle, G; Crocker, M K; Holder, M E; Farr, R; Reich, C I; Olsen, G E; Aley, S B; Adam, R D; Gillin, F D; Sogin, M L

    2000-08-15

    The Giardia genome project database provides an online resource for Giardia lamblia (WB strain, clone C6) genome sequence information. The database includes edited single-pass reads, the results of BLASTX searches, and details of progress towards sequencing the entire 12 million-bp Giardia genome. Pre-sorted BLASTX results can be retrieved based on keyword searches and BLAST searches of the high throughput Giardia data can be initiated from the web site or through NCBI. Descriptions of the genomic DNA libraries, project protocols and summary statistics are also available. Although the Giardia genome project is ongoing, new sequences are made available on a bi-monthly basis to ensure that researchers have access to information that may assist them in the search for genes and their biological function. The current URL of the Giardia genome project database is www.mbl.edu/Giardia.

  16. Programs | Office of Cancer Genomics

    Cancer.gov

    OCG facilitates cancer genomics research through a series of highly-focused programs. These programs generate and disseminate genomic data for use by the cancer research community. OCG programs also promote advances in technology-based infrastructure and create valuable experimental reagents and tools. OCG programs encourage collaboration by interconnecting with other genomics and cancer projects in order to accelerate translation of findings into the clinic. Below are OCG’s current, completed, and initiated programs:

  17. Genomics Nursing Faculty Champion Initiative

    PubMed Central

    Jenkins, Jean; Calzone, Kathleen A.

    2016-01-01

    Nurse faculty are challenged to keep up with the emerging and fast-paced field of genomics and the mandate to prepare the nursing workforce to be able to translate genomic research advances into routine clinical care. Using Faculty Champions and other options, the initiative stimulated curriculum development and promoted genomics curriculum integration. The authors summarize this yearlong initiative for undergraduate and graduate nursing faculty. PMID:24300251

  18. Fungal Genome Sequencing and Bioenergy

    SciTech Connect

    Baker, Scott E.; Thykaer, Jette; Adney, William S.; Brettin, T.; Brockman, Fred J.; D'haeseleer, Patrik; Martinez, Antonio D.; Miller, R. M.; Rokhsar, Daniel S.; Schadt, Christopher W.; Torok, Tamas; Tuskan, Gerald; Bennett, Joan W.; Berka, Randy; Briggs, Steve; Heitman, Joseph; Taylor, John; Turgeon, Barbara G.; Werner-Washburne, Maggie; Himmel, Michael E.

    2008-09-30

    To date, the number of ongoing filamentous fungal genome sequencing projects is almost tenfold fewer than those of bacterial and archaeal genome projects. The fungi chosen for sequencing represent narrow kingdom diversity; most are pathogens or models. We advocate an ambitious, forward-looking phylogenetic-based genome sequencing program, designed to capture metabolic diversity within the fungal kingdom, thereby enhancing research into alternative bioenergy sources, bioremediation, and fungal-environment interactions.

  19. Fungal Genome Sequencing and Bioenergy

    SciTech Connect

    Baker, Scott; Thykaer, Jette; Adney, William S; Brettin, Tom; Brockman, Fred; Dhaeseleer, Patrick; Martinez, A diego; Miller, R michael; Rokhsar, Daniel; Schadt, Christopher Warren; Torok, Tamas; Tuskan, Gerald A; Bennett, Joan; Berka, Randy; Briggs, Steven; Heitman, Joseph; Taylor, John; Turgeon, Gillian; Werner-Washburne, Maggie; Himmel, Michael E

    2008-01-01

    To date, the number of ongoing filamentous fungal genome sequencing projects is almost tenfold fewer than those of bacterial and archaeal genome projects. The fungi chosen for sequencing represent narrow kingdom diversity; most are pathogens or models. We advocate an ambitious, forward-looking phylogenetic-based genome sequencing program, designed to capture metabolic diversity within the fungal kingdom, thereby enhancing research into alternative bioenergy sources, bioremediation, and fungal-environment interactions. Published by Elsevier Ltd on behalf of The British Mycological Society.

  20. Fungal Genome Sequencing and Bioenergy

    SciTech Connect

    Schadt, Christopher Warren; Baker, Scott; Thykaer, Jette; Adney, William S; Brettin, Tom; Brockman, Fred; Dhaeseleer, Patrick; Martinez, A diego; Miller, R michael; Rokhsar, Daniel; Torok, Tamas; Tuskan, Gerald A; Bennett, Joan; Berka, Randy; Briggs, Steven; Heitman, Joseph; Rizvi, L; Taylor, John; Turgeon, Gillian; Werner-Washburne, Maggie; Himmel, Michael

    2008-01-01

    To date, the number of ongoing filamentous fungal genome sequencing projects is almost tenfold fewer than those of bacterial and archaeal genome projects. The fungi chosen for sequencing represent narrow kingdom diversity; most are pathogens or models. We advocate an ambitious, forward-looking phylogenetic-based genome sequencing program, designed to capture metabolic diversity within the fungal kingdom, thereby enhancing research into alternative bioenergy sources, bioremediation, and fungal-environment interactions.

  1. Genomics of Bacillus Species

    NASA Astrophysics Data System (ADS)

    Økstad, Ole Andreas; Kolstø, Anne-Brit

    Members of the genus Bacillus are rod-shaped spore-forming bacteria belonging to the Firmicutes, the low G+C gram-positive bacteria. The Bacillus genus was first described and classified by Ferdinand Cohn in Cohn (1872), and Bacillus subtilis was defined as the type species (Soule, 1932). Several Bacilli may be linked to opportunistic infections. However, pathogenicity among Bacillus spp. is mainly a feature of bacteria belonging to the Bacillus cereus group, including B. cereus, Bacillus anthracis, and Bacillus thuringiensis. Here we review the genomics of B. cereus group bacteria in relation to their roles as etiological agents of two food poisoning syndromes (emetic and diarrhoeal).

  2. Bacterial genome reengineering.

    PubMed

    Zhou, Jindan; Rudd, Kenneth E

    2011-01-01

    The web application PrimerPair at ecogene.org generates large sets of paired DNA sequences surrounding- all protein and RNA genes of Escherichia coli K-12. Many DNA fragments, which these primers amplify, can be used to implement a genome reengineering strategy using complementary in vitro cloning and in vivo recombineering. The integration of a primer design tool with a model organism database increases the level of quality control. Computer-assisted design of gene primer pairs relies upon having highly accurate genomic DNA sequence information that exactly matches the DNA of the cells being used in the laboratory to ensure predictable DNA hybridizations. It is equally crucial to have confidence that the predicted start codons define the locations of genes accurately. Annotations in the EcoGene database are queried by PrimerPair to eliminate pseudogenes, IS elements, and other problematic genes before the design process starts. These projects progressively familiarize users with the EcoGene content, scope, and application interfaces that are useful for genome reengineering projects. The first protocol leads to the design of a pair of primer sequences that were used to clone and express a single gene. The N-terminal protein sequence was experimentally verified and the protein was detected in the periplasm. This is followed by instructions to design PCR primer pairs for cloning gene fragments encoding 50 periplasmic proteins without their signal peptides. The design process begins with the user simply designating one pair of forward and reverse primer endpoint positions relative to all start and stop codon positions. The gene name, genomic coordinates, and primer DNA sequences are reported to the user. When making chromosomal deletions, the integrity of the provisional primer design is checked to see whether it will generate any unwanted double deletions with adjacent genes. The bad designs are recalculated and replacement primers are provided alongside the

  3. The human genome project

    SciTech Connect

    Bell, G.I.

    1991-06-01

    The Human Genome Project will obtain high-resolution genetic and physical maps of each human chromosome and, somewhat later, of the complete nucleotide sequence of the deoxyribonucleic acid (DNA) in a human cell. The talk will begin with an extended introduction to explain the Project to nonbiologists and to show that map construction and sequence determination require extensive computation in order to determine the correct order of the mapped entities and to provide estimates of uncertainty. Computational analysis of the sequence data will become an increasingly important part of the project, and some computational challenges are described. 5 refs.

  4. Theory of prokaryotic genome evolution

    PubMed Central

    Sela, Itamar; Wolf, Yuri I.; Koonin, Eugene V.

    2016-01-01

    Bacteria and archaea typically possess small genomes that are tightly packed with protein-coding genes. The compactness of prokaryotic genomes is commonly perceived as evidence of adaptive genome streamlining caused by strong purifying selection in large microbial populations. In such populations, even the small cost incurred by nonfunctional DNA because of extra energy and time expenditure is thought to be sufficient for this extra genetic material to be eliminated by selection. However, contrary to the predictions of this model, there exists a consistent, positive correlation between the strength of selection at the protein sequence level, measured as the ratio of nonsynonymous to synonymous substitution rates, and microbial genome size. Here, by fitting the genome size distributions in multiple groups of prokaryotes to predictions of mathematical models of population evolution, we show that only models in which acquisition of additional genes is, on average, slightly beneficial yield a good fit to genomic data. These results suggest that the number of genes in prokaryotic genomes reflects the equilibrium between the benefit of additional genes that diminishes as the genome grows and deletion bias (i.e., the rate of deletion of genetic material being slightly greater than the rate of acquisition). Thus, new genes acquired by microbial genomes, on average, appear to be adaptive. The tight spacing of protein-coding genes likely results from a combination of the deletion bias and purifying selection that efficiently eliminates nonfunctional, noncoding sequences. PMID:27702904

  5. Preemptive public policy for genomics.

    PubMed

    Carlson, Rick J

    2008-02-01

    To many, genomics is merely exploitable technology for the leviathan of biotechnology. This is both shallow and short sighted. Genomics is applied knowledge based on profound and evolving science about how living things develop, how healthy or sick we are, and what our future will be like. In health care, genomics technologies are disruptive yet potentially cost-effective because they enable primary prevention, the antidote to runaway costs and declining productivity. The challenges to integration are great, however, and many bioethical and social-policy implications are alarming. Because it is poorly understood today, we must debate genomics vigorously if we are to act wisely. Public policy must lead.

  6. Genomic medicine and neurological disease

    PubMed Central

    Boone, Philip M.; Wiszniewski, Wojciech; Lupski, James R.

    2011-01-01

    Genomic medicine” refers to the diagnosis, optimized management, and treatment of disease—as well as screening, counseling, and disease gene identification—in the context of information provided by an individual patient’s personal genome. Genomic medicine, to some extent synonymous with “personalized medicine,” has been made possible by recent advances in genome technologies. Genomic medicine represents a new approach to health care and disease management that attempts to optimize the care of a patient based upon information gleaned from his or her personal genome sequence. In this review, we describe recent progress in genomic medicine as it relates to neurological disease. Many neurological disorders either segregate as Mendelian phenotypes or occur sporadically in association with a new mutation in a single gene. Heritability also contributes to other neurological conditions that appear to exhibit more complex genetics. In addition to discussing current knowledge in this field, we offer suggestions for maximizing the utility of genomic information in clinical practice as the field of genomic medicine unfolds. PMID:21594611

  7. Insights into structural variations and genome rearrangements in prokaryotic genomes.

    PubMed

    Periwal, Vinita; Scaria, Vinod

    2015-01-01

    Structural variations (SVs) are genomic rearrangements that affect fairly large fragments of DNA. Most of the SVs such as inversions, deletions and translocations have been largely studied in context of genetic diseases in eukaryotes. However, recent studies demonstrate that genome rearrangements can also have profound impact on prokaryotic genomes, leading to altered cell phenotype. In contrast to single-nucleotide variations, SVs provide a much deeper insight into organization of bacterial genomes at a much better resolution. SVs can confer change in gene copy number, creation of new genes, altered gene expression and many other functional consequences. High-throughput technologies have now made it possible to explore SVs at a much refined resolution in bacterial genomes. Through this review, we aim to highlight the importance of the less explored field of SVs in prokaryotic genomes and their impact. We also discuss its potential applicability in the emerging fields of synthetic biology and genome engineering where targeted SVs could serve to create sophisticated and accurate genome editing.

  8. Parsing of genomic graffiti

    SciTech Connect

    Tibbetts, C.; Golden, J. III; Torgersen, D.

    1996-12-31

    A focal point of modern biology is investigation of wide varieties of phenomena at the level of molecular genetics. The nucleotide sequences of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) define the ultimate resolution of this reductionist approach to understand the determinants of heritable traits. The structure and function of genes, their composite genomic organization, and their regulated expression have been studied in systems representing every class of organism. Many human diseases or pathogenic syndromes can be directly attributed to inherited defects in either the regulated expression, or the quality of the products of specific genes. Genetic determinants of susceptibility to infectious agents or environmental hazards are amply documented. Mapping and sequencing of the DNA molecules encoding human genes have provided powerful technology for pharmaceutical bioengineering and forensic investigations. From an alternative perspective, we may anticipate that voluminous archives of singular DNA sequences alone will not suffice to define and understand the functional determinants of genome organization, allelic diversity and evolutionary plasticity of living organisms. New insights will accumulate pertaining to human evolutionary origins and relationships of human biology to models based on other mammals. Investigators of population genetics and epidemiology now exploit the technology of molecular genetics to more powerfully probe variation within the human gene pool at the level of DNA sequences. 40 refs., 7 figs., 2 tabs.

  9. Genomics of human longevity.

    PubMed

    Slagboom, P E; Beekman, M; Passtoors, W M; Deelen, J; Vaarhorst, A A M; Boer, J M; van den Akker, E B; van Heemst, D; de Craen, A J M; Maier, A B; Rozing, M; Mooijaart, S P; Heijmans, B T; Westendorp, R G J

    2011-01-12

    In animal models, single-gene mutations in genes involved in insulin/IGF and target of rapamycin signalling pathways extend lifespan to a considerable extent. The genetic, genomic and epigenetic influences on human longevity are expected to be much more complex. Strikingly however, beneficial metabolic and cellular features of long-lived families resemble those in animals for whom the lifespan is extended by applying genetic manipulation and, especially, dietary restriction. Candidate gene studies in humans support the notion that human orthologues from longevity genes identified in lower species do contribute to longevity but that the influence of the genetic variants involved is small. Here we discuss how an integration of novel study designs, labour-intensive biobanking, deep phenotyping and genomic research may provide insights into the mechanisms that drive human longevity and healthy ageing, beyond the associations usually provided by molecular and genetic epidemiology. Although prospective studies of humans from the cradle to the grave have never been performed, it is feasible to extract life histories from different cohorts jointly covering the molecular changes that occur with age from early development all the way up to the age at death. By the integration of research in different study cohorts, and with research in animal models, biological research into human longevity is thus making considerable progress.

  10. A Taste of Algal Genomes from the Joint Genome Institute

    SciTech Connect

    Kuo, Alan; Grigoriev, Igor

    2012-06-17

    Algae play profound roles in aquatic food chains and the carbon cycle, can impose health and economic costs through toxic blooms, provide models for the study of symbiosis, photosynthesis, and eukaryotic evolution, and are candidate sources for bio-fuels; all of these research areas are part of the mission of DOE's Joint Genome Institute (JGI). To date JGI has sequenced, assembled, annotated, and released to the public the genomes of 18 species and strains of algae, sampling almost all of the major clades of photosynthetic eukaryotes. With more algal genomes currently undergoing analysis, JGI continues its commitment to driving forward basic and applied algal science. Among these ongoing projects are the pan-genome of the dominant coccolithophore Emiliania huxleyi, the interrelationships between the 4 genomes in the nucleomorph-containing Bigelowiella natans and Guillardia theta, and the search for symbiosis genes of lichens.

  11. Human Genome Program Image Gallery (from genomics.energy.gov)

    DOE Data Explorer

    This collection contains approximately 240 images from the genome programs of DOE's Office of Science. The images are divided into galleries related to biofuels research, systems biology, and basic genomics. Each image has a title, a basic citation, and a credit or source. Most of the images are original graphics created by the Genome Management Information System (GMIS). GMIS images are recognizable by their credit line. Permission to use these graphics is not needed, but please credit the U.S. Department of Energy Genome Programs and provide the website http://genomics.energy.gov. Other images were provided by third parties and not created by the U.S. Department of Energy. Users must contact the person listed in the credit line before using those images. The high-resolution images can be downloaded.

  12. Genomicus: five genome browsers for comparative genomics in eukaryota.

    PubMed

    Louis, Alexandra; Muffato, Matthieu; Roest Crollius, Hugues

    2013-01-01

    Genomicus (http://www.dyogen.ens.fr/genomicus/) is a database and an online tool that allows easy comparative genomic visualization in >150 eukaryote genomes. It provides a way to explore spatial information related to gene organization within and between genomes and temporal relationships related to gene and genome evolution. For the specific vertebrate phylum, it also provides access to ancestral gene order reconstructions and conserved non-coding elements information. We extended the Genomicus database originally dedicated to vertebrate to four new clades, including plants, non-vertebrate metazoa, protists and fungi. This visualization tool allows evolutionary phylogenomics analysis and exploration. Here, we describe the graphical modules of Genomicus and show how it is capable of revealing differential gene loss and gain, segmental or genome duplications and study the evolution of a locus through homology relationships.

  13. u-Genome: a database on genome design in unicellular genomes.

    PubMed

    Sakharkar, Kishore Ramaji; Chaturvedi, Iti; Chow, Vincent T K; Kwoh, Chee Keong; Kangueane, Pandjassarame; Sakharkar, Meena Kishore

    2005-01-01

    Unicellular eukaryotes were among the first ones to be selected for complete genome sequencing because of the small size of their genomes and their interactions with humans and a broad range of animals and plants. Currently, ten completely sequenced unicellular genome sequences have been publicly released and as the number of available unicellular genomes increases, comparative genomics analysis within this group of organisms becomes more and more instructive. However, such an analysis is difficult to carry out without a suitable platform gathering not only the original annotations but also relevant information available in public databases or obtained by applying common bioinformatics methods. With the aim of solving these difficulties, we have developed a web-accessible database named u-Genome, the unicellular genome design database. The database is unique in featuring three datasets namely (1) orthologous proteins (2) paralogous proteins and (3) statistical distributions on exons, introns, intergenic DNA and correlations between them. A tool, Uniview, designed to visualize the gene structures for individual genes in the genome is also integrated. This database is of importance in understanding unicellular genome design and architecture and evolution related studies. The database is available through a web interface at http://sege.ntu.edu.sg/wester/ugenome.

  14. OryzaGenome: Genome Diversity Database of Wild Oryza Species.

    PubMed

    Ohyanagi, Hajime; Ebata, Toshinobu; Huang, Xuehui; Gong, Hao; Fujita, Masahiro; Mochizuki, Takako; Toyoda, Atsushi; Fujiyama, Asao; Kaminuma, Eli; Nakamura, Yasukazu; Feng, Qi; Wang, Zi-Xuan; Han, Bin; Kurata, Nori

    2016-01-01

    The species in the genus Oryza, encompassing nine genome types and 23 species, are a rich genetic resource and may have applications in deeper genomic analyses aiming to understand the evolution of plant genomes. With the advancement of next-generation sequencing (NGS) technology, a flood of Oryza species reference genomes and genomic variation information has become available in recent years. This genomic information, combined with the comprehensive phenotypic information that we are accumulating in our Oryzabase, can serve as an excellent genotype-phenotype association resource for analyzing rice functional and structural evolution, and the associated diversity of the Oryza genus. Here we integrate our previous and future phenotypic/habitat information and newly determined genotype information into a united repository, named OryzaGenome, providing the variant information with hyperlinks to Oryzabase. The current version of OryzaGenome includes genotype information of 446 O. rufipogon accessions derived by imputation and of 17 accessions derived by imputation-free deep sequencing. Two variant viewers are implemented: SNP Viewer as a conventional genome browser interface and Variant Table as a text-based browser for precise inspection of each variant one by one. Portable VCF (variant call format) file or tab-delimited file download is also available. Following these SNP (single nucleotide polymorphism) data, reference pseudomolecules/scaffolds/contigs and genome-wide variation information for almost all of the closely and distantly related wild Oryza species from the NIG Wild Rice Collection will be available in future releases. All of the resources can be accessed through http://viewer.shigen.info/oryzagenome/. PMID:26578696

  15. Meeting our friend, the genome.

    PubMed

    Kirby, M

    1998-01-01

    (1) Encounter with the genome. (2) Difficulties in the path. (3) Legal and ethical implications. (4) Patenting genes. (5) The genome and evolution. (6) An adjunct to medicine or a new world? (7) Forbidden territory or the next step for humanity? (8) Informed decisions.

  16. Fueling Future with Algal Genomics

    SciTech Connect

    Grigoriev, Igor

    2012-07-05

    Algae constitute a major component of fundamental eukaryotic diversity, play profound roles in the carbon cycle, and are prominent candidates for biofuel production. The US Department of Energy Joint Genome Institute (JGI) is leading the world in algal genome sequencing (http://jgi.doe.gov/Algae) and contributes of the algal genome projects worldwide (GOLD database, 2012). The sequenced algal genomes offer catalogs of genes, networks, and pathways. The sequenced first of its kind genomes of a haptophyte E.huxleyii, chlorarachniophyte B.natans, and cryptophyte G.theta fill the gaps in the eukaryotic tree of life and carry unique genes and pathways as well as molecular fossils of secondary endosymbiosis. Natural adaptation to conditions critical for industrial production is encoded in algal genomes, for example, growth of A.anophagefferens at very high cell densities during the harmful algae blooms or a global distribution across diverse environments of E.huxleyii, able to live on sparse nutrients due to its expanded pan-genome. Communications and signaling pathways can be derived from simple symbiotic systems like lichens or complex marine algae metagenomes. Collectively these datasets derived from algal genomics contribute to building a comprehensive parts list essential for algal biofuel development.

  17. From genes to genome biology

    SciTech Connect

    Pennisi, E.

    1996-06-21

    This article describes a change in the approach to mapping genomes, from looking at one gene at a time, to other approaches. Strategies include everything from lab techniques to computer programs designed to analyze whole batches of genes at once. Also included is a update on the work on the human genome.

  18. Genomic medicine: too great expectations?

    PubMed

    O'Rourke, P P

    2013-08-01

    As advances in genomic medicine have captured the interest and enthusiasm of the public, an unintended consequence has been the creation of unrealistic expectations. Because these expectations may have a negative impact on individuals as well as genomics in general, it is important that they be understood and confronted.

  19. Genome rearrangements: mother knows best!

    PubMed

    Chalker, Douglas L

    2005-10-25

    In Paramecium, developmentally programmed genome rearrangements can be altered by the presence of homologous sequences within the maternal somatic nucleus. Newly identified RNA-binding proteins appear to mediate the transfer of homologous sequence information from the maternal to the developing somatic nucleus, facilitating epigenetic regulation of this large-scale genome reorganization. PMID:16243019

  20. Cloud computing for comparative genomics

    PubMed Central

    2010-01-01

    Background Large comparative genomics studies and tools are becoming increasingly more compute-expensive as the number of available genome sequences continues to rise. The capacity and cost of local computing infrastructures are likely to become prohibitive with the increase, especially as the breadth of questions continues to rise. Alternative computing architectures, in particular cloud computing environments, may help alleviate this increasing pressure and enable fast, large-scale, and cost-effective comparative genomics strategies going forward. To test this, we redesigned a typical comparative genomics algorithm, the reciprocal smallest distance algorithm (RSD), to run within Amazon's Elastic Computing Cloud (EC2). We then employed the RSD-cloud for ortholog calculations across a wide selection of fully sequenced genomes. Results We ran more than 300,000 RSD-cloud processes within the EC2. These jobs were farmed simultaneously to 100 high capacity compute nodes using the Amazon Web Service Elastic Map Reduce and included a wide mix of large and small genomes. The total computation time took just under 70 hours and cost a total of $6,302 USD. Conclusions The effort to transform existing comparative genomics algorithms from local compute infrastructures is not trivial. However, the speed and flexibility of cloud computing environments provides a substantial boost with manageable cost. The procedure designed to transform the RSD algorithm into a cloud-ready application is readily adaptable to similar comparative genomics problems. PMID:20482786

  1. Speciation: Genomic Archipelagos in a Crater Lake.

    PubMed

    Ronco, Fabrizia; Salzburger, Walter

    2016-03-01

    The opening stages of speciation remain poorly understood, especially from a genomic perspective. The genomes of newly discovered crater-lake cichlid fish shed light on the early phases of diversification and suggest that selection acts on multiple genomic regions.

  2. All about the Human Genome Project (HGP)

    MedlinePlus

    ... full human sequence All About The Human Genome Project (HGP) The Human Genome Project (HGP) was one of the great feats of ... Organisms A Quarter Century after the Human Genome Project's Launch: Lessons Beyond the Base Pairs October 1, ...

  3. Overview of the yeast genome.

    PubMed

    Mewes, H W; Albermann, K; Bähr, M; Frishman, D; Gleissner, A; Hani, J; Heumann, K; Kleine, K; Maierl, A; Oliver, S G; Pfeiffer, F; Zollner, A

    1997-05-29

    The collaboration of more than 600 scientists from over 100 laboratories to sequence the Saccharomyces cerevisiae genome was the largest decentralised experiment in modern molecular biology and resulted in a unique data resource representing the first complete set of genes from a eukaryotic organism. 12 million bases were sequenced in a truly international effort involving European, US, Canadian and Japanese laboratories. While the yeast genome represents only a small fraction of the information in today's public sequence databases, the complete, ordered and non-redundant sequence provides an invaluable resource for the detailed analysis of cellular gene function and genome architecture. In terms of throughput, completeness and information content, yeast has always been the lead eukaryotic organism in genomics; it is still the largest genome to be completely sequenced.

  4. Tuberculosis: from genome to vaccine.

    PubMed

    de Jonge, Marien I; Brosch, Roland; Brodin, Priscille; Demangel, Caroline; Cole, Stewart T

    2005-08-01

    The availability of mycobacterial genome sequences has paved the way to identifying potential tuberculosis vaccine candidates in order to replace the currently used bacillus Calmette-Guérin (BCG) vaccines that show variable protective efficacy in adults. Genomics provides the basis for bioinformatic, transcriptomic and proteomic analysis, increases screening efficiency and enables valuable information concerning the biology and virulence of the mycobacterial species to be extracted by comparative genomics. Although in silico results must be confirmed in vitro and in vivo, bioinformatic analysis of the genomes is highlighting candidates for testing. For designing subunit vaccines, attenuated or improved recombinant whole-cell live vaccines, information from the genomes of the human host and pathogenic mycobacterial species is of great help.

  5. Advances in targeted genome editing.

    PubMed

    Perez-Pinera, Pablo; Ousterout, David G; Gersbach, Charles A

    2012-08-01

    New technologies have recently emerged that enable targeted editing of genomes in diverse systems. This includes precise manipulation of gene sequences in their natural chromosomal context and addition of transgenes to specific genomic loci. This progress has been facilitated by advances in engineering targeted nucleases with programmable, site-specific DNA-binding domains, including zinc finger proteins and transcription activator-like effectors (TALEs). Recent improvements have enhanced nuclease performance, accelerated nuclease assembly, and lowered the cost of genome editing. These advances are driving new approaches to many areas of biotechnology, including biopharmaceutical production, agriculture, creation of transgenic organisms and cell lines, and studies of genome structure, regulation, and function. Genome editing is also being investigated in preclinical and clinical gene therapies for many diseases.

  6. Big Data: Astronomical or Genomical?

    PubMed Central

    Stephens, Zachary D.; Lee, Skylar Y.; Faghri, Faraz; Campbell, Roy H.; Zhai, Chengxiang; Efron, Miles J.; Iyer, Ravishankar; Schatz, Michael C.; Sinha, Saurabh; Robinson, Gene E.

    2015-01-01

    Genomics is a Big Data science and is going to get much bigger, very soon, but it is not known whether the needs of genomics will exceed other Big Data domains. Projecting to the year 2025, we compared genomics with three other major generators of Big Data: astronomy, YouTube, and Twitter. Our estimates show that genomics is a “four-headed beast”—it is either on par with or the most demanding of the domains analyzed here in terms of data acquisition, storage, distribution, and analysis. We discuss aspects of new technologies that will need to be developed to rise up and meet the computational challenges that genomics poses for the near future. Now is the time for concerted, community-wide planning for the “genomical” challenges of the next decade. PMID:26151137

  7. Genomic Approaches to Zebrafish Cancer.

    PubMed

    White, Richard M

    2016-01-01

    The zebrafish has emerged as an important model for studying cancer biology. Identification of DNA, RNA and chromatin abnormalities can give profound insight into the mechanisms of tumorigenesis and the there are many techniques for analyzing the genomes of these tumors. Here, I present an overview of the available technologies for analyzing tumor genomes in the zebrafish, including array based methods as well as next-generation sequencing technologies. I also discuss the ways in which zebrafish tumor genomes can be compared to human genomes using cross-species oncogenomics, which act to filter genomic noise and ultimately uncover central drivers of malignancy. Finally, I discuss downstream analytic tools, including network analysis, that can help to organize the alterations into coherent biological frameworks that can then be investigated further. PMID:27165352

  8. [The mitochondrial genome of protists].

    PubMed

    Odintsova, M S; Iurina, N P

    2002-06-01

    The data on the structure and functions of the mitochondrial genomes of protists (Protozoa and unicellular red and green algae) are reviewed. It is emphasized that mitochondrial gene structure and composition, as well as organization of mitochondrial genomes in protists are more diverse than in multicellular eukaryotes. The gene content of mitochondrial genomes of protists are closer to those of plants than animals or fungi. In the protist mitochondrial DNA, both the universal (as in higher plants) and modified (as in animals and fungi) genetic codes are used. In the overwhelming majority of cases, protist mitochondrial genomes code for the major and minor rRNA components, some tRNAs, and about 30 proteins of the respiratory chain and ribosomes. Based on comparison of the mitochondrial genomes of various protists, the origin and evolution of mitochondria are briefly discussed.

  9. Epistasis correlates to genomic complexity

    PubMed Central

    Sanjuán, Rafael; Elena, Santiago F.

    2006-01-01

    Whether systematic genetic interactions (epistasis) occur at the genomic scale remains a challenging topic in evolutionary biology. Epistasis should make a significant contribution to variation in complex traits and influence the evolution of genetic systems as sex, diploidy, dominance, or the contamination of genomes with deleterious mutations. We have collected data from widely different organisms and quantified epistasis in a common, per-generation scale. Simpler genomes, such as those of RNA viruses, display antagonistic epistasis (mutations have smaller effects together than expected); bacterial microorganisms do not apparently deviate from independent effects, whereas in multicellular eukaryotes, a transition toward synergistic epistasis occurs (mutations have larger effects together than expected). We propose that antagonistic epistasis might be a property of compact genomes with few nonpleiotropic biological functions, whereas in complex genomes, synergism might emerge from mutational robustness. PMID:16983079

  10. Privacy in the Genomic Era

    PubMed Central

    NAVEED, MUHAMMAD; AYDAY, ERMAN; CLAYTON, ELLEN W.; FELLAY, JACQUES; GUNTER, CARL A.; HUBAUX, JEAN-PIERRE; MALIN, BRADLEY A.; WANG, XIAOFENG

    2015-01-01

    Genome sequencing technology has advanced at a rapid pace and it is now possible to generate highly-detailed genotypes inexpensively. The collection and analysis of such data has the potential to support various applications, including personalized medical services. While the benefits of the genomics revolution are trumpeted by the biomedical community, the increased availability of such data has major implications for personal privacy; notably because the genome has certain essential features, which include (but are not limited to) (i) an association with traits and certain diseases, (ii) identification capability (e.g., forensics), and (iii) revelation of family relationships. Moreover, direct-to-consumer DNA testing increases the likelihood that genome data will be made available in less regulated environments, such as the Internet and for-profit companies. The problem of genome data privacy thus resides at the crossroads of computer science, medicine, and public policy. While the computer scientists have addressed data privacy for various data types, there has been less attention dedicated to genomic data. Thus, the goal of this paper is to provide a systematization of knowledge for the computer science community. In doing so, we address some of the (sometimes erroneous) beliefs of this field and we report on a survey we conducted about genome data privacy with biomedical specialists. Then, after characterizing the genome privacy problem, we review the state-of-the-art regarding privacy attacks on genomic data and strategies for mitigating such attacks, as well as contextualizing these attacks from the perspective of medicine and public policy. This paper concludes with an enumeration of the challenges for genome data privacy and presents a framework to systematize the analysis of threats and the design of countermeasures as the field moves forward. PMID:26640318

  11. [Genomics and personalized medicine].

    PubMed

    Mooser, Vincent

    2014-05-01

    Personalized medicine has a substantial potential to transform the way diseases will be predicted, prevented and treated. The field will greatly benefit from novel DNA sequencing technologies, in particular commoditization of individual whole genome sequencing. This evolution cannot be stopped, and the medical and scientific community, as well as the society at large, have the responsibility to anticipate the expected benefits from this revolution, but also the potential risks associated with it. Massive investments will be needed for the potential of personalized medicine to be realized, and for the field to come to maturity. In particular, a paradigm change in the way clinical research is done is needed. Switzerland and its Western part pro-actively anticipate these changes.

  12. Genomics in Neurological Disorders

    PubMed Central

    Han, Guangchun; Sun, Jiya; Wang, Jiajia; Bai, Zhouxian; Song, Fuhai; Lei, Hongxing

    2014-01-01

    Neurological disorders comprise a variety of complex diseases in the central nervous system, which can be roughly classified as neurodegenerative diseases and psychiatric disorders. The basic and translational research of neurological disorders has been hindered by the difficulty in accessing the pathological center (i.e., the brain) in live patients. The rapid advancement of sequencing and array technologies has made it possible to investigate the disease mechanism and biomarkers from a systems perspective. In this review, recent progresses in the discovery of novel risk genes, treatment targets and peripheral biomarkers employing genomic technologies will be discussed. Our major focus will be on two of the most heavily investigated neurological disorders, namely Alzheimer’s disease and autism spectrum disorder. PMID:25108264

  13. Stress, genomes, and evolution

    PubMed Central

    Wilson, John H.

    2010-01-01

    Evolutionary change, whether in populations of organisms or malignant tumor cells, is contingent on the availability of inherited variation for natural selection to act upon. It is becoming clear that the Hsp90 chaperone, which normally functions to buffer client proteins against the effects of genetic variation, plays a central role in this process. Severe environmental stress can overwhelm the chaperone's buffering capacity, causing previously cryptic genetic variation to be expressed. Recent studies now indicate that in addition to exposing existing variation, Hsp90 can induce novel epigenetic and genetic changes. We discuss key findings that suggest a rich set of pathways by which Hsp90 can mediate the influences of the environment on the genome. PMID:20521130

  14. A Genome-Wide Landscape of Retrocopies in Primate Genomes.

    PubMed

    Navarro, Fábio C P; Galante, Pedro A F

    2015-08-01

    Gene duplication is a key factor contributing to phenotype diversity across and within species. Although the availability of complete genomes has led to the extensive study of genomic duplications, the dynamics and variability of gene duplications mediated by retrotransposition are not well understood. Here, we predict mRNA retrotransposition and use comparative genomics to investigate their origin and variability across primates. Analyzing seven anthropoid primate genomes, we found a similar number of mRNA retrotranspositions (∼7,500 retrocopies) in Catarrhini (Old Word Monkeys, including humans), but a surprising large number of retrocopies (∼10,000) in Platyrrhini (New World Monkeys), which may be a by-product of higher long interspersed nuclear element 1 activity in these genomes. By inferring retrocopy orthology, we dated most of the primate retrocopy origins, and estimated a decrease in the fixation rate in recent primate history, implying a smaller number of species-specific retrocopies. Moreover, using RNA-Seq data, we identified approximately 3,600 expressed retrocopies. As expected, most of these retrocopies are located near or within known genes, present tissue-specific and even species-specific expression patterns, and no expression correlation to their parental genes. Taken together, our results provide further evidence that mRNA retrotransposition is an active mechanism in primate evolution and suggest that retrocopies may not only introduce great genetic variability between lineages but also create a large reservoir of potentially functional new genomic loci in primate genomes. PMID:26224704

  15. Linking the genomes of nonmodel teleosts through comparative genomics.

    PubMed

    Sarropoulou, E; Nousdili, D; Magoulas, A; Kotoulas, G

    2008-01-01

    Recently the genomes of two more teleost species have been released: the medaka (Oryzias latipes), and the three-spined stickleback (Gasterosteus aculateus). The rapid developments in genomics of fish species paved the way to new and valuable research in comparative genetics and genomics. With the accumulation of information in model species, the genetic and genomic characterization of nonmodel, but economically important species, is now feasible. Furthermore, comparison of low coverage gene maps of aquacultured fish species against fully sequenced fish species will enhance the efficiency of candidate genes identification projected for quantitative trait loci (QTL) scans for traits of commercial interest. This study shows the syntenic relationship between the genomes of six different teleost species, including three fully sequenced model species: Tetraodon nigroviridis, Oryzias latipes, Gasterosteus aculateus, and three marine species of commercial and evolutionary interest: Sparus aurata, Dicentrarchus labrax, Oreochromis spp. All three commercial fish species belong to the order Perciformes, which is the richest in number of species (approximately 10,000) but poor in terms of available genomic information and tools. Syntenic relationships were established by using 800 EST and microsatellites sequences successfully mapped on the RH map of seabream. Comparison to the stickleback genome produced most positive BLAT hits (58%) followed by medaka (32%) and Tetraodon (30%). Thus, stickleback was used as the major stepping stone to compare seabass and tilapia to seabream. In addition to the significance for the aquaculture industry, this approach can encompass important ecological and evolutionary implications. PMID:18297360

  16. Integrated genome browser: visual analytics platform for genomics

    PubMed Central

    Norris, David C.; Loraine, Ann E.

    2016-01-01

    Motivation: Genome browsers that support fast navigation through vast datasets and provide interactive visual analytics functions can help scientists achieve deeper insight into biological systems. Toward this end, we developed Integrated Genome Browser (IGB), a highly configurable, interactive and fast open source desktop genome browser. Results: Here we describe multiple updates to IGB, including all-new capabilities to display and interact with data from high-throughput sequencing experiments. To demonstrate, we describe example visualizations and analyses of datasets from RNA-Seq, ChIP-Seq and bisulfite sequencing experiments. Understanding results from genome-scale experiments requires viewing the data in the context of reference genome annotations and other related datasets. To facilitate this, we enhanced IGB’s ability to consume data from diverse sources, including Galaxy, Distributed Annotation and IGB-specific Quickload servers. To support future visualization needs as new genome-scale assays enter wide use, we transformed the IGB codebase into a modular, extensible platform for developers to create and deploy all-new visualizations of genomic data. Availability and implementation: IGB is open source and is freely available from http://bioviz.org/igb. Contact: aloraine@uncc.edu PMID:27153568

  17. Association analysis of variant near ZNF389 with ewe cumulative production in three sheep breeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Description: Genome-wide association identified a gene region including ZNF389 as highly associated with small ruminant lentivirus (SRLV) proviral concentration among infected sheep. Within this region, a deletion variant near ZNF389 was associated with control of SRLV proviral concentration in mult...

  18. Microbial Genomics Data from the DOE Joint Genome Institute (JGI)

    DOE Data Explorer

    The JGI makes high-quality genome sequencing data freely available to the greater scientific community through its web portal. Having played a significant role in the federally funded Human Genome Project -- generating the complete sequences of Chromosomes 5, 16, and 19--the JGI has now moved on to contributing in other critical areas of genomics research. While NIH-funded genome sequencing activities continue to emphasize human biomedical targets and applications, the JGI has since shifted its focus to the non-human components of the biosphere, particularly those relevant to the science mission of the Department of Energy. With efficiencies of scale established at the PGF, and capacity now exceeding three billion bases generated on a monthly basis, the JGI has tackled scores of additional genomes. These include more than 60 microbial genomes and many important multicellular organisms and communities of microbes. In partnership with other federal institutions and universities, the JGI is in the process of sequencing a frog (Xenopus tropicalis), a green alga (Chlamydomonas reinhardtii), a diatom (Thalassiosira pseudonana) , the cottonwood tree (Populus trichocarpa), and a host of agriculturally important plants and plant pathogens. Microorganisms, for example those that thrive under extreme conditions such as high acidity, radiation, and metal contamination, are of particular interest to the DOE and JGI. Investigations by JGI and its partners are shedding light on the cellular machinery of microbes and how they can be harnessed to clean up contaminated soil or water, capture carbon from the atmosphere, and produce potentially important sources of energy such as hydrogen and methane. [Excerpt from the JGI page "Who We Are" at http://www.jgi.doe.gov/whoweare/whoweare.html] From the JGI webportal users can view a photo grid of organisims, check assemblies for status, access the Integrated Microbial Genomes (IMG) system to do comparative analysis of publicly available

  19. Study of Full-Length Porcine Endogenous Retrovirus Genomes with Envelope Gene Polymorphism in a Specific-Pathogen-Free Large White Swine Herd

    PubMed Central

    Bösch, Steffi; Arnauld, Claire; Jestin, André

    2000-01-01

    Specific-pathogen-free (SPF) swine appear to be the most appropriate candidate for pig to human xenotransplantation. Still, the risk of endogenous retrovirus transmission represents a major obstacle, since two human-tropic porcine endogenous retroviruses (PERVs) had been characterized in vitro (P. Le Tissier, J. P. Stoye, Y. Takeuchi, C. Patience, and R. A. Weiss, Nature 389:681–682, 1997). Here we addressed the question of PERV distribution in a French Large White SPF pig herd in vivo. First, PCR screening for previously described PERV envelope genes envA, envB, and envC (D. E. Akiyoshi, M. Denaro, H. Zhu, J. L. Greenstein, P. Banerjee, and J. A. Fishman, J. Virol. 72:4503–4507, 1998; Le Tissier et al., op. cit.). demonstrated ubiquity of envA and envB sequences, whereas envC genes were absent in some animals. On this basis, selective out-breeding of pigs of remote origin might be a means to reduce proviral load in organ donors. Second, we investigated PERV genome carriage in envC negative swine. Eleven distinct full-length PERV transcripts were isolated. The sequence of the complete envelope open reading frame was determined. The deduced amino acid sequences revealed the existence of four clones with functional and five clones with defective PERV PK-15 A- and B-like envelope sequences. The occurrence of easily detectable levels of PERV variants in different pig tissues in vivo heightens the need to assess PERV transmission in xenotransplantation animal models. PMID:10954559

  20. Comparative genome mapping in Brassica.

    PubMed

    Lagercrantz, U; Lydiate, D J

    1996-12-01

    A Brassica nigra genetic linkage map was developed from a highly polymorphic cross analyzed with a set of low copy number Brassica RFLP probes. The Brassica genome is extensively duplicated with eight distinct sets of chromosomal segments, each present in three copies, covering virtually the whole genome. Thus, B. nigra could be descended from a hexaploid ancestor. A comparative analysis of B. nigra, B. oleracea and B. rapa genomes, based on maps developed using a common set of RFLP probes, was also performed. The three genomes have distinct chromosomal structures differentiated by a large number of rearrangements, but collinear regions involving virtually the whole of each the three genomes were identified. The genic contents of B. nigra, B. oleracea and B. rapa were basically equivalent and differences in chromosome number (8, 9 and 10, respectively) are probably the result of chromosome fusions and/ or fissions. The strong conservation of overall genic content across the three Brassica genomes mirrors the conservation of genic content observed over a much longer evolutionary span in cereals. However, the rate of chromosomal rearrangement in crucifers is much higher than that observed in cereal genomes.

  1. Jumbled genomes: missing Apicomplexan synteny.

    PubMed

    DeBarry, Jeremy D; Kissinger, Jessica C

    2011-10-01

    Whole-genome comparisons provide insight into genome evolution by informing on gene repertoires, gene gains/losses, and genome organization. Most of our knowledge about eukaryotic genome evolution is derived from studies of multicellular model organisms. The eukaryotic phylum Apicomplexa contains obligate intracellular protist parasites responsible for a wide range of human and veterinary diseases (e.g., malaria, toxoplasmosis, and theileriosis). We have developed an in silico protein-encoding gene based pipeline to investigate synteny across 12 apicomplexan species from six genera. Genome rearrangement between lineages is extensive. Syntenic regions (conserved gene content and order) are rare between lineages and appear to be totally absent across the phylum, with no group of three genes found on the same chromosome and in the same order within 25 kb up- and downstream of any orthologous genes. Conserved synteny between major lineages is limited to small regions in Plasmodium and Theileria/Babesia species, and within these conserved regions, there are a number of proteins putatively targeted to organelles. The observed overall lack of synteny is surprising considering the divergence times and the apparent absence of transposable elements (TEs) within any of the species examined. TEs are ubiquitous in all other groups of eukaryotes studied to date and have been shown to be involved in genomic rearrangements. It appears that there are different criteria governing genome evolution within the Apicomplexa relative to other well-studied unicellular and multicellular eukaryotes. PMID:21504890

  2. Microbial Lifestyle and Genome Signatures

    PubMed Central

    Dutta, Chitra; Paul, Sandip

    2012-01-01

    Microbes are known for their unique ability to adapt to varying lifestyle and environment, even to the extreme or adverse ones. The genomic architecture of a microbe may bear the signatures not only of its phylogenetic position, but also of the kind of lifestyle to which it is adapted. The present review aims to provide an account of the specific genome signatures observed in microbes acclimatized to distinct lifestyles or ecological niches. Niche-specific signatures identified at different levels of microbial genome organization like base composition, GC-skew, purine-pyrimidine ratio, dinucleotide abundance, codon bias, oligonucleotide composition etc. have been discussed. Among the specific cases highlighted in the review are the phenomena of genome shrinkage in obligatory host-restricted microbes, genome expansion in strictly intra-amoebal pathogens, strand-specific codon usage in intracellular species, acquisition of genome islands in pathogenic or symbiotic organisms, discriminatory genomic traits of marine microbes with distinct trophic strategies, and conspicuous sequence features of certain extremophiles like those adapted to high temperature or high salinity. PMID:23024607

  3. Components of Adenovirus Genome Packaging

    PubMed Central

    Ahi, Yadvinder S.; Mittal, Suresh K.

    2016-01-01

    Adenoviruses (AdVs) are icosahedral viruses with double-stranded DNA (dsDNA) genomes. Genome packaging in AdV is thought to be similar to that seen in dsDNA containing icosahedral bacteriophages and herpesviruses. Specific recognition of the AdV genome is mediated by a packaging domain located close to the left end of the viral genome and is mediated by the viral packaging machinery. Our understanding of the role of various components of the viral packaging machinery in AdV genome packaging has greatly advanced in recent years. Characterization of empty capsids assembled in the absence of one or more components involved in packaging, identification of the unique vertex, and demonstration of the role of IVa2, the putative packaging ATPase, in genome packaging have provided compelling evidence that AdVs follow a sequential assembly pathway. This review provides a detailed discussion on the functions of the various viral and cellular factors involved in AdV genome packaging. We conclude by briefly discussing the roles of the empty capsids, assembly intermediates, scaffolding proteins, portal vertex and DNA encapsidating enzymes in AdV assembly and packaging. PMID:27721809

  4. [Genome editing of industrial microorganism].

    PubMed

    Zhu, Linjiang; Li, Qi

    2015-03-01

    Genome editing is defined as highly-effective and precise modification of cellular genome in a large scale. In recent years, such genome-editing methods have been rapidly developed in the field of industrial strain improvement. The quickly-updating methods thoroughly change the old mode of inefficient genetic modification, which is "one modification, one selection marker, and one target site". Highly-effective modification mode in genome editing have been developed including simultaneous modification of multiplex genes, highly-effective insertion, replacement, and deletion of target genes in the genome scale, cut-paste of a large DNA fragment. These new tools for microbial genome editing will certainly be applied widely, and increase the efficiency of industrial strain improvement, and promote the revolution of traditional fermentation industry and rapid development of novel industrial biotechnology like production of biofuel and biomaterial. The technological principle of these genome-editing methods and their applications were summarized in this review, which can benefit engineering and construction of industrial microorganism.

  5. The genome of Eucalyptus grandis

    SciTech Connect

    Myburg, Alexander A.; Grattapaglia, Dario; Tuskan, Gerald A.; Hellsten, Uffe; Hayes, Richard D.; Grimwood, Jane; Jenkins, Jerry; Lindquist, Erika; Tice, Hope; Bauer, Diane; Goodstein, David M.; Dubchak, Inna; Poliakov, Alexandre; Mizrachi, Eshchar; Kullan, Anand R. K.; Hussey, Steven G.; Pinard, Desre; van der Merwe, Karen; Singh, Pooja; van Jaarsveld, Ida; Silva-Junior, Orzenil B.; Togawa, Roberto C.; Pappas, Marilia R.; Faria, Danielle A.; Sansaloni, Carolina P.; Petroli, Cesar D.; Yang, Xiaohan; Ranjan, Priya; Tschaplinski, Timothy J.; Ye, Chu-Yu; Li, Ting; Sterck, Lieven; Vanneste, Kevin; Murat, Florent; Soler, Marçal; Clemente, Hélène San; Saidi, Naijib; Cassan-Wang, Hua; Dunand, Christophe; Hefer, Charles A.; Bornberg-Bauer, Erich; Kersting, Anna R.; Vining, Kelly; Amarasinghe, Vindhya; Ranik, Martin; Naithani, Sushma; Elser, Justin; Boyd, Alexander E.; Liston, Aaron; Spatafora, Joseph W.; Dharmwardhana, Palitha; Raja, Rajani; Sullivan, Christopher; Romanel, Elisson; Alves-Ferreira, Marcio; Külheim, Carsten; Foley, William; Carocha, Victor; Paiva, Jorge; Kudrna, David; Brommonschenkel, Sergio H.; Pasquali, Giancarlo; Byrne, Margaret; Rigault, Philippe; Tibbits, Josquin; Spokevicius, Antanas; Jones, Rebecca C.; Steane, Dorothy A.; Vaillancourt, René E.; Potts, Brad M.; Joubert, Fourie; Barry, Kerrie; Pappas, Georgios J.; Strauss, Steven H.; Jaiswal, Pankaj; Grima-Pettenati, Jacqueline; Salse, Jérôme; Van de Peer, Yves; Rokhsar, Daniel S.; Schmutz, Jeremy

    2014-06-11

    Eucalypts are the world s most widely planted hardwood trees. Their broad adaptability, rich species diversity, fast growth and superior multipurpose wood, have made them a global renewable resource of fiber and energy that mitigates human pressures on natural forests. We sequenced and assembled >94% of the 640 Mbp genome of Eucalyptus grandis into its 11 chromosomes. A set of 36,376 protein coding genes were predicted revealing that 34% occur in tandem duplications, the largest proportion found thus far in any plant genome. Eucalypts also show the highest diversity of genes for plant specialized metabolism that act as chemical defence against biotic agents and provide unique pharmaceutical oils. Resequencing of a set of inbred tree genomes revealed regions of strongly conserved heterozygosity, likely hotspots of inbreeding depression. The resequenced genome of the sister species E. globulus underscored the high inter-specific genome colinearity despite substantial genome size variation in the genus. The genome of E. grandis is the first reference for the early diverging Rosid order Myrtales and is placed here basal to the Eurosids. This resource expands knowledge on the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.

  6. Genome Modeling System: A Knowledge Management Platform for Genomics

    PubMed Central

    Griffith, Malachi; Griffith, Obi L.; Smith, Scott M.; Ramu, Avinash; Callaway, Matthew B.; Brummett, Anthony M.; Kiwala, Michael J.; Coffman, Adam C.; Regier, Allison A.; Oberkfell, Ben J.; Sanderson, Gabriel E.; Mooney, Thomas P.; Nutter, Nathaniel G.; Belter, Edward A.; Du, Feiyu; Long, Robert L.; Abbott, Travis E.; Ferguson, Ian T.; Morton, David L.; Burnett, Mark M.; Weible, James V.; Peck, Joshua B.; Dukes, Adam; McMichael, Joshua F.; Lolofie, Justin T.; Derickson, Brian R.; Hundal, Jasreet; Skidmore, Zachary L.; Ainscough, Benjamin J.; Dees, Nathan D.; Schierding, William S.; Kandoth, Cyriac; Kim, Kyung H.; Lu, Charles; Harris, Christopher C.; Maher, Nicole; Maher, Christopher A.; Magrini, Vincent J.; Abbott, Benjamin S.; Chen, Ken; Clark, Eric; Das, Indraniel; Fan, Xian; Hawkins, Amy E.; Hepler, Todd G.; Wylie, Todd N.; Leonard, Shawn M.; Schroeder, William E.; Shi, Xiaoqi; Carmichael, Lynn K.; Weil, Matthew R.; Wohlstadter, Richard W.; Stiehr, Gary; McLellan, Michael D.; Pohl, Craig S.; Miller, Christopher A.; Koboldt, Daniel C.; Walker, Jason R.; Eldred, James M.; Larson, David E.; Dooling, David J.; Ding, Li; Mardis, Elaine R.; Wilson, Richard K.

    2015-01-01

    In this work, we present the Genome Modeling System (GMS), an analysis information management system capable of executing automated genome analysis pipelines at a massive scale. The GMS framework provides detailed tracking of samples and data coupled with reliable and repeatable analysis pipelines. The GMS also serves as a platform for bioinformatics development, allowing a large team to collaborate on data analysis, or an individual researcher to leverage the work of others effectively within its data management system. Rather than separating ad-hoc analysis from rigorous, reproducible pipelines, the GMS promotes systematic integration between the two. As a demonstration of the GMS, we performed an integrated analysis of whole genome, exome and transcriptome sequencing data from a breast cancer cell line (HCC1395) and matched lymphoblastoid line (HCC1395BL). These data are available for users to test the software, complete tutorials and develop novel GMS pipeline configurations. The GMS is available at https://github.com/genome/gms. PMID:26158448

  7. [Human genome project: a federator program of genomic medicine].

    PubMed

    Sfar, S; Chouchane, L

    2008-05-01

    The Human Genome Project improves our understanding of the molecular genetics basis of the inherited and complex diseases such as diabetes, schizophrenia, and cancer. Information from the human genome sequence is essential for several antenatal and neonatal screening programmes. The new genomic tools emerging from this project have revolutionized biology and medicine and have transformed our understanding of health and the provision of healthcare. Its implications pervade all areas of medicine, from disease prediction and prevention to the diagnosis and treatment of all forms of disease. Increasingly, it will be possible to drive predisposition testing into clinical practice, to develop new treatments or to adapt available treatments more specifically to an individual's genetic make-up. This genomic information should transform the traditional medications that are effective for every members of the population to personalized medicine and personalized therapy. The pharmacogenomics could give rise to a new generation of highly effective drugs that treat causes, not just symptoms.

  8. Genome Modeling System: A Knowledge Management Platform for Genomics.

    PubMed

    Griffith, Malachi; Griffith, Obi L; Smith, Scott M; Ramu, Avinash; Callaway, Matthew B; Brummett, Anthony M; Kiwala, Michael J; Coffman, Adam C; Regier, Allison A; Oberkfell, Ben J; Sanderson, Gabriel E; Mooney, Thomas P; Nutter, Nathaniel G; Belter, Edward A; Du, Feiyu; Long, Robert L; Abbott, Travis E; Ferguson, Ian T; Morton, David L; Burnett, Mark M; Weible, James V; Peck, Joshua B; Dukes, Adam; McMichael, Joshua F; Lolofie, Justin T; Derickson, Brian R; Hundal, Jasreet; Skidmore, Zachary L; Ainscough, Benjamin J; Dees, Nathan D; Schierding, William S; Kandoth, Cyriac; Kim, Kyung H; Lu, Charles; Harris, Christopher C; Maher, Nicole; Maher, Christopher A; Magrini, Vincent J; Abbott, Benjamin S; Chen, Ken; Clark, Eric; Das, Indraniel; Fan, Xian; Hawkins, Amy E; Hepler, Todd G; Wylie, Todd N; Leonard, Shawn M; Schroeder, William E; Shi, Xiaoqi; Carmichael, Lynn K; Weil, Matthew R; Wohlstadter, Richard W; Stiehr, Gary; McLellan, Michael D; Pohl, Craig S; Miller, Christopher A; Koboldt, Daniel C; Walker, Jason R; Eldred, James M; Larson, David E; Dooling, David J; Ding, Li; Mardis, Elaine R; Wilson, Richard K

    2015-07-01

    In this work, we present the Genome Modeling System (GMS), an analysis information management system capable of executing automated genome analysis pipelines at a massive scale. The GMS framework provides detailed tracking of samples and data coupled with reliable and repeatable analysis pipelines. The GMS also serves as a platform for bioinformatics development, allowing a large team to collaborate on data analysis, or an individual researcher to leverage the work of others effectively within its data management system. Rather than separating ad-hoc analysis from rigorous, reproducible pipelines, the GMS promotes systematic integration between the two. As a demonstration of the GMS, we performed an integrated analysis of whole genome, exome and transcriptome sequencing data from a breast cancer cell line (HCC1395) and matched lymphoblastoid line (HCC1395BL). These data are available for users to test the software, complete tutorials and develop novel GMS pipeline configurations. The GMS is available at https://github.com/genome/gms. PMID:26158448

  9. Genome Modeling System: A Knowledge Management Platform for Genomics.

    PubMed

    Griffith, Malachi; Griffith, Obi L; Smith, Scott M; Ramu, Avinash; Callaway, Matthew B; Brummett, Anthony M; Kiwala, Michael J; Coffman, Adam C; Regier, Allison A; Oberkfell, Ben J; Sanderson, Gabriel E; Mooney, Thomas P; Nutter, Nathaniel G; Belter, Edward A; Du, Feiyu; Long, Robert L; Abbott, Travis E; Ferguson, Ian T; Morton, David L; Burnett, Mark M; Weible, James V; Peck, Joshua B; Dukes, Adam; McMichael, Joshua F; Lolofie, Justin T; Derickson, Brian R; Hundal, Jasreet; Skidmore, Zachary L; Ainscough, Benjamin J; Dees, Nathan D; Schierding, William S; Kandoth, Cyriac; Kim, Kyung H; Lu, Charles; Harris, Christopher C; Maher, Nicole; Maher, Christopher A; Magrini, Vincent J; Abbott, Benjamin S; Chen, Ken; Clark, Eric; Das, Indraniel; Fan, Xian; Hawkins, Amy E; Hepler, Todd G; Wylie, Todd N; Leonard, Shawn M; Schroeder, William E; Shi, Xiaoqi; Carmichael, Lynn K; Weil, Matthew R; Wohlstadter, Richard W; Stiehr, Gary; McLellan, Michael D; Pohl, Craig S; Miller, Christopher A; Koboldt, Daniel C; Walker, Jason R; Eldred, James M; Larson, David E; Dooling, David J; Ding, Li; Mardis, Elaine R; Wilson, Richard K

    2015-07-01

    In this work, we present the Genome Modeling System (GMS), an analysis information management system capable of executing automated genome analysis pipelines at a massive scale. The GMS framework provides detailed tracking of samples and data coupled with reliable and repeatable analysis pipelines. The GMS also serves as a platform for bioinformatics development, allowing a large team to collaborate on data analysis, or an individual researcher to leverage the work of others effectively within its data management system. Rather than separating ad-hoc analysis from rigorous, reproducible pipelines, the GMS promotes systematic integration between the two. As a demonstration of the GMS, we performed an integrated analysis of whole genome, exome and transcriptome sequencing data from a breast cancer cell line (HCC1395) and matched lymphoblastoid line (HCC1395BL). These data are available for users to test the software, complete tutorials and develop novel GMS pipeline configurations. The GMS is available at https://github.com/genome/gms.

  10. The bonobo genome compared with the chimpanzee and human genomes.

    PubMed

    Prüfer, Kay; Munch, Kasper; Hellmann, Ines; Akagi, Keiko; Miller, Jason R; Walenz, Brian; Koren, Sergey; Sutton, Granger; Kodira, Chinnappa; Winer, Roger; Knight, James R; Mullikin, James C; Meader, Stephen J; Ponting, Chris P; Lunter, Gerton; Higashino, Saneyuki; Hobolth, Asger; Dutheil, Julien; Karakoç, Emre; Alkan, Can; Sajjadian, Saba; Catacchio, Claudia Rita; Ventura, Mario; Marques-Bonet, Tomas; Eichler, Evan E; André, Claudine; Atencia, Rebeca; Mugisha, Lawrence; Junhold, Jörg; Patterson, Nick; Siebauer, Michael; Good, Jeffrey M; Fischer, Anne; Ptak, Susan E; Lachmann, Michael; Symer, David E; Mailund, Thomas; Schierup, Mikkel H; Andrés, Aida M; Kelso, Janet; Pääbo, Svante

    2012-06-28

    Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other.

  11. Orthology for comparative genomics in the mouse genome database.

    PubMed

    Dolan, Mary E; Baldarelli, Richard M; Bello, Susan M; Ni, Li; McAndrews, Monica S; Bult, Carol J; Kadin, James A; Richardson, Joel E; Ringwald, Martin; Eppig, Janan T; Blake, Judith A

    2015-08-01

    The mouse genome database (MGD) is the model organism database component of the mouse genome informatics system at The Jackson Laboratory. MGD is the international data resource for the laboratory mouse and facilitates the use of mice in the study of human health and disease. Since its beginnings, MGD has included comparative genomics data with a particular focus on human-mouse orthology, an essential component of the use of mouse as a model organism. Over the past 25 years, novel algorithms and addition of orthologs from other model organisms have enriched comparative genomics in MGD data, extending the use of orthology data to support the laboratory mouse as a model of human biology. Here, we describe current comparative data in MGD and review the history and refinement of orthology representation in this resource.

  12. Applied genomics: Tools ranging from genomic prediction to bioconservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This invited presentation will provide an overview of the development of genomic tools in cattle and goats, and how these approaches and methodologies can be adapted for bioconservation of endangered ruminant species....

  13. Comparative genomics reveals insights into avian genome evolution and adaptation.

    PubMed

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M; Lee, Chul; Storz, Jay F; Antunes, Agostinho; Greenwold, Matthew J; Meredith, Robert W; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S; Gatesy, John; Hoffmann, Federico G; Opazo, Juan C; Håstad, Olle; Sawyer, Roger H; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A; Green, Richard E; O'Brien, Stephen J; Griffin, Darren; Johnson, Warren E; Haussler, David; Ryder, Oliver A; Willerslev, Eske; Graves, Gary R; Alström, Per; Fjeldså, Jon; Mindell, David P; Edwards, Scott V; Braun, Edward L; Rahbek, Carsten; Burt, David W; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D; Gilbert, M Thomas P; Wang, Jun

    2014-12-12

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. PMID:25504712

  14. Orthology for comparative genomics in the mouse genome database.

    PubMed

    Dolan, Mary E; Baldarelli, Richard M; Bello, Susan M; Ni, Li; McAndrews, Monica S; Bult, Carol J; Kadin, James A; Richardson, Joel E; Ringwald, Martin; Eppig, Janan T; Blake, Judith A

    2015-08-01

    The mouse genome database (MGD) is the model organism database component of the mouse genome informatics system at The Jackson Laboratory. MGD is the international data resource for the laboratory mouse and facilitates the use of mice in the study of human health and disease. Since its beginnings, MGD has included comparative genomics data with a particular focus on human-mouse orthology, an essential component of the use of mouse as a model organism. Over the past 25 years, novel algorithms and addition of orthologs from other model organisms have enriched comparative genomics in MGD data, extending the use of orthology data to support the laboratory mouse as a model of human biology. Here, we describe current comparative data in MGD and review the history and refinement of orthology representation in this resource. PMID:26223881

  15. Behavior, Brain, and Genome in Genomic Disorders: Finding the Correspondences

    PubMed Central

    Grigorenko, Elena L.; Urban, Alexander E.; Mencl, Einar

    2014-01-01

    Objective Within the last decade or so, there has been an acceleration of research attempting to connect specific genetic lesions to patterns of brain structure and activation. This article comments on observations that have been made based on these recent data and discusses their importance for the field of investigations into developmental disorders. Method In making these observations, we focus on one specific genomic lesion, the well-studied, yet still incompletely understood, 22q11.2 deletion syndrome (22q11.2DS). Results We demonstrate the degree of variability in the phenotype that occurs at both the brain and behavioral levels of genomic disorders, and describe how this variability is, upon close inspection, represented at the genomic level. Conclusion We emphasize the importance of combining genetic/genomic analyses and neuroimaging for research and for future clinical diagnostic purposes, and for the purposes of developing individualized, patient-tailored treatment and remediation approaches. PMID:20814258

  16. Comparative genomics reveals insights into avian genome evolution and adaptation.

    PubMed

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M; Lee, Chul; Storz, Jay F; Antunes, Agostinho; Greenwold, Matthew J; Meredith, Robert W; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S; Gatesy, John; Hoffmann, Federico G; Opazo, Juan C; Håstad, Olle; Sawyer, Roger H; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A; Green, Richard E; O'Brien, Stephen J; Griffin, Darren; Johnson, Warren E; Haussler, David; Ryder, Oliver A; Willerslev, Eske; Graves, Gary R; Alström, Per; Fjeldså, Jon; Mindell, David P; Edwards, Scott V; Braun, Edward L; Rahbek, Carsten; Burt, David W; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D; Gilbert, M Thomas P; Wang, Jun

    2014-12-12

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.

  17. Comparative genomics reveals insights into avian genome evolution and adaptation

    PubMed Central

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M.; Lee, Chul; Storz, Jay F.; Antunes, Agostinho; Greenwold, Matthew J.; Meredith, Robert W.; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R.; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T.; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V.; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S.; Gatesy, John; Hoffmann, Federico G.; Opazo, Juan C.; Håstad, Olle; Sawyer, Roger H.; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W.; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F.; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A.; Green, Richard E.; O’Brien, Stephen J.; Griffin, Darren; Johnson, Warren E.; Haussler, David; Ryder, Oliver A.; Willerslev, Eske; Graves, Gary R.; Alström, Per; Fjeldså, Jon; Mindell, David P.; Edwards, Scott V.; Braun, Edward L.; Rahbek, Carsten; Burt, David W.; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D.; Gilbert, M. Thomas P.; Wang, Jun

    2015-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. PMID:25504712

  18. Capturing prokaryotic dark matter genomes.

    PubMed

    Gasc, Cyrielle; Ribière, Céline; Parisot, Nicolas; Beugnot, Réjane; Defois, Clémence; Petit-Biderre, Corinne; Boucher, Delphine; Peyretaillade, Eric; Peyret, Pierre

    2015-12-01

    Prokaryotes are the most diverse and abundant cellular life forms on Earth. Most of them, identified by indirect molecular approaches, belong to microbial dark matter. The advent of metagenomic and single-cell genomic approaches has highlighted the metabolic capabilities of numerous members of this dark matter through genome reconstruction. Thus, linking functions back to the species has revolutionized our understanding of how ecosystem function is sustained by the microbial world. This review will present discoveries acquired through the illumination of prokaryotic dark matter genomes by these innovative approaches.

  19. Chemical genomics in plant biology.

    PubMed

    Sadhukhan, Ayan; Sahoo, Lingaraj; Panda, Sanjib Kumar

    2012-06-01

    Chemical genomics is a newly emerged and rapidly progressing field in biology, where small chemical molecules bind specifically and reversibly to protein(s) to modulate their function(s), leading to the delineation and subsequent unravelling of biological processes. This approach overcomes problems like lethality and redundancy of classical genetics. Armed with the powerful techniques of combinatorial synthesis, high-throughput screening and target discovery chemical genomics expands its scope to diverse areas in biology. The well-established genetic system of Arabidopsis model allows chemical genomics to enter into the realm of plant biology exploring signaling pathways of growth regulators, endomembrane signaling cascades, plant defense mechanisms and many more events.

  20. Human genome. 1993 Program report

    SciTech Connect

    Not Available

    1994-03-01

    The purpose of this report is to update the Human Genome 1991-92 Program Report and provide new information on the DOE genome program to researchers, program managers, other government agencies, and the interested public. This FY 1993 supplement includes abstracts of 60 new or renewed projects and listings of 112 continuing and 28 completed projects. These two reports, taken together, present the most complete published view of the DOE Human Genome Program through FY 1993. Research is progressing rapidly toward 15-year goals of mapping and sequencing the DNA of each of the 24 different human chromosomes.

  1. Capturing prokaryotic dark matter genomes.

    PubMed

    Gasc, Cyrielle; Ribière, Céline; Parisot, Nicolas; Beugnot, Réjane; Defois, Clémence; Petit-Biderre, Corinne; Boucher, Delphine; Peyretaillade, Eric; Peyret, Pierre

    2015-12-01

    Prokaryotes are the most diverse and abundant cellular life forms on Earth. Most of them, identified by indirect molecular approaches, belong to microbial dark matter. The advent of metagenomic and single-cell genomic approaches has highlighted the metabolic capabilities of numerous members of this dark matter through genome reconstruction. Thus, linking functions back to the species has revolutionized our understanding of how ecosystem function is sustained by the microbial world. This review will present discoveries acquired through the illumination of prokaryotic dark matter genomes by these innovative approaches. PMID:26100932

  2. Where are we in genomics?

    PubMed

    Hocquette, J F

    2005-06-01

    Genomic studies provide scientists with methods to quickly analyse genes and their products en masse. The first high-throughput techniques to be developed were sequencing methods. A great number of genomes from different organisms have thus been sequenced. Genomics is now shifting to the study of gene expression and function. In the past 5-10 years genomics, proteomics and high-throughput microarray technologies have fundamentally changed our ability to study the molecular basis of cells and tissues in health and diseases, giving a new comprehensive view. For example, in cancer research we have seen new diagnostic opportunities for tumour classification, and prognostication. A new exciting development is metabolomics and lab-on-a-chip techniques (which combine miniaturization and automation) for metabolic studies. However, to interpret the large amount of data, extensive computational development is required. In the coming years, we will see the study of biological networks dominating the scene in Physiology. The great accumulation of genomics information will be used in computer programs to simulate biologic processes. Originally developed for genome analysis, bioinformatics now encompasses a wide range of fields in biology from gene studies to integrated biology (i.e. combination of different data sets from genes to metabolites). This is systems biology which aims to study biological organisms as a whole. In medicine, scientific results and applied biotechnologies arising from genomics will be used for effective prediction of diseases and risk associated with drugs. Preventive medicine and medical therapy will be personalized. Widespread applications of genomics for personalized medicine will require associations of gene expression pattern with diagnoses, treatment and clinical data. This will help in the discovery and development of drugs. In agriculture and animal science, the outcomes of genomics will include improvement in food safety, in crop yield, in

  3. Genome dynamics during experimental evolution.

    PubMed

    Barrick, Jeffrey E; Lenski, Richard E

    2013-12-01

    Evolutionary changes in organismal traits may occur either gradually or suddenly. However, until recently, there has been little direct information about how phenotypic changes are related to the rate and the nature of the underlying genotypic changes. Technological advances that facilitate whole-genome and whole-population sequencing, coupled with experiments that 'watch' evolution in action, have brought new precision to and insights into studies of mutation rates and genome evolution. In this Review, we discuss the evolutionary forces and ecological processes that govern genome dynamics in various laboratory systems in the context of relevant population genetic theory, and we relate these findings to evolution in natural populations.

  4. Genome dynamics during experimental evolution

    PubMed Central

    Barrick, Jeffrey E.; Lenski, Richard E.

    2014-01-01

    Evolutionary changes in organismal traits may occur gradually or suddenly. Until recently, however, there has been little direct information about how phenotypic changes are related to the rate and nature of underlying changes in genotype. Technological advances enabling whole-genome and whole-population sequencing coupled with experiments that watch evolution in action have brought new precision and insights to studies of mutation rates and genome evolution. Here, we discuss the evolutionary forces and ecological processes that govern genome dynamics in various laboratory systems in the context of relevant population genetic theory, and we relate these findings to evolution in natural populations. PMID:24166031

  5. Radiation Induced Genomic Instability

    SciTech Connect

    Morgan, William F.

    2011-03-01

    Radiation induced genomic instability can be observed in the progeny of irradiated cells multiple generations after irradiation of parental cells. The phenotype is well established both in vivo (Morgan 2003) and in vitro (Morgan 2003), and may be critical in radiation carcinogenesis (Little 2000, Huang et al. 2003). Instability can be induced by both the deposition of energy in irradiated cells as well as by signals transmitted by irradiated (targeted) cells to non-irradiated (non-targeted) cells (Kadhim et al. 1992, Lorimore et al. 1998). Thus both targeted and non-targeted cells can pass on the legacy of radiation to their progeny. However the radiation induced events and cellular processes that respond to both targeted and non-targeted radiation effects that lead to the unstable phenotype remain elusive. The cell system we have used to study radiation induced genomic instability utilizes human hamster GM10115 cells. These cells have a single copy of human chromosome 4 in a background of hamster chromosomes. Instability is evaluated in the clonal progeny of irradiated cells and a clone is considered unstable if it contains three or more metaphase sub-populations involving unique rearrangements of the human chromosome (Marder and Morgan 1993). Many of these unstable clones have been maintained in culture for many years and have been extensively characterized. As initially described by Clutton et al., (Clutton et al. 1996) many of our unstable clones exhibit persistently elevated levels of reactive oxygen species (Limoli et al. 2003), which appear to be due dysfunctional mitochondria (Kim et al. 2006, Kim et al. 2006). Interestingly, but perhaps not surprisingly, our unstable clones do not demonstrate a “mutator phenotype” (Limoli et al. 1997), but they do continue to rearrange their genomes for many years. The limiting factor with this system is the target – the human chromosome. While some clones demonstrate amplification of this chromosome and thus lend

  6. Identification of genomic sites for CRISPR/Cas9-based genome editing in the Vitis vinifera genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CRISPR/Cas9 has been recently demonstrated as an effective and popular genome editing tool for modifying genomes of human, animals, microorganisms, and plants. Success of such genome editing is highly dependent on the availability of suitable target sites in the genomes to be edited. Many specific t...

  7. Challenges in Whole-Genome Annotation of Pyrosequenced Eukaryotic Genomes

    SciTech Connect

    Kuo, Alan; Grigoriev, Igor

    2009-04-17

    Pyrosequencing technologies such as 454/Roche and Solexa/Illumina vastly lower the cost of nucleotide sequencing compared to the traditional Sanger method, and thus promise to greatly expand the number of sequenced eukaryotic genomes. However, the new technologies also bring new challenges such as shorter reads and new kinds and higher rates of sequencing errors, which complicate genome assembly and gene prediction. At JGI we are deploying 454 technology for the sequencing and assembly of ever-larger eukaryotic genomes. Here we describe our first whole-genome annotation of a purely 454-sequenced fungal genome that is larger than a yeast (>30 Mbp). The pezizomycotine (filamentous ascomycote) Aspergillus carbonarius belongs to the Aspergillus section Nigri species complex, members of which are significant as platforms for bioenergy and bioindustrial technology, as members of soil microbial communities and players in the global carbon cycle, and as agricultural toxigens. Application of a modified version of the standard JGI Annotation Pipeline has so far predicted ~;;10k genes. ~;;12percent of these preliminary annotations suffer a potential frameshift error, which is somewhat higher than the ~;;9percent rate in the Sanger-sequenced and conventionally assembled and annotated genome of fellow Aspergillus section Nigri member A. niger. Also,>90percent of A. niger genes have potential homologs in the A. carbonarius preliminary annotation. Weconclude, and with further annotation and comparative analysis expect to confirm, that 454 sequencing strategies provide a promising substrate for annotation of modestly sized eukaryotic genomes. We will also present results of annotation of a number of other pyrosequenced fungal genomes of bioenergy interest.

  8. The Materials Genome Project

    NASA Astrophysics Data System (ADS)

    Aourag, H.

    2008-09-01

    In the past, the search for new and improved materials was characterized mostly by the use of empirical, trial- and-error methods. This picture of materials science has been changing as the knowledge and understanding of fundamental processes governing a material's properties and performance (namely, composition, structure, history, and environment) have increased. In a number of cases, it is now possible to predict a material's properties before it has even been manufactured thus greatly reducing the time spent on testing and development. The objective of modern materials science is to tailor a material (starting with its chemical composition, constituent phases, and microstructure) in order to obtain a desired set of properties suitable for a given application. In the short term, the traditional "empirical" methods for developing new materials will be complemented to a greater degree by theoretical predictions. In some areas, computer simulation is already used by industry to weed out costly or improbable synthesis routes. Can novel materials with optimized properties be designed by computers? Advances in modelling methods at the atomic level coupled with rapid increases in computer capabilities over the last decade have led scientists to answer this question with a resounding "yes'. The ability to design new materials from quantum mechanical principles with computers is currently one of the fastest growing and most exciting areas of theoretical research in the world. The methods allow scientists to evaluate and prescreen new materials "in silico" (in vitro), rather than through time consuming experimentation. The Materials Genome Project is to pursue the theory of large scale modeling as well as powerful methods to construct new materials, with optimized properties. Indeed, it is the intimate synergy between our ability to predict accurately from quantum theory how atoms can be assembled to form new materials and our capacity to synthesize novel materials atom

  9. Invisible genomes: the genomics revolution and patenting practice.

    PubMed

    Bostanci, Adam; Calvert, Jane

    2008-03-01

    In the mid-1990s, the company Human Genome Sciences submitted three potentially revolutionary patent applications to the US Patent and Trademark Office, each of which claimed the entire genome sequence of a microorganism. The patent examiners, however, objected to these applications, and after negotiation they were eventually re-written to resemble more traditional gene patents. In this paper, which is based on a study of the patent examination files, we examine the reasons why these patent applications were unsuccessful in their original form. We show that with respect to utility and novelty, the patent attorney's case built on an understanding of the genome as a computer-related invention. The patent examiners did not object to the patenting of complete genome sequences as computer-related inventions on moral grounds or in terms of the distinction between a discovery and an invention. Instead, their objections were based on classification, rules and procedure. Rather than patent examiners having a notion of a genome that should not be patented, the notion of a 'genome', and the ways in which it may be different from a 'gene', played no role in these debates. We discuss the consequences of our findings for patenting in the biosciences. PMID:18331958

  10. Whole-genome haplotyping approaches and genomic medicine.

    PubMed

    Glusman, Gustavo; Cox, Hannah C; Roach, Jared C

    2014-01-01

    Genomic information reported as haplotypes rather than genotypes will be increasingly important for personalized medicine. Current technologies generate diploid sequence data that is rarely resolved into its constituent haplotypes. Furthermore, paradigms for thinking about genomic information are based on interpreting genotypes rather than haplotypes. Nevertheless, haplotypes have historically been useful in contexts ranging from population genetics to disease-gene mapping efforts. The main approaches for phasing genomic sequence data are molecular haplotyping, genetic haplotyping, and population-based inference. Long-read sequencing technologies are enabling longer molecular haplotypes, and decreases in the cost of whole-genome sequencing are enabling the sequencing of whole-chromosome genetic haplotypes. Hybrid approaches combining high-throughput short-read assembly with strategic approaches that enable physical or virtual binning of reads into haplotypes are enabling multi-gene haplotypes to be generated from single individuals. These techniques can be further combined with genetic and population approaches. Here, we review advances in whole-genome haplotyping approaches and discuss the importance of haplotypes for genomic medicine. Clinical applications include diagnosis by recognition of compound heterozygosity and by phasing regulatory variation to coding variation. Haplotypes, which are more specific than less complex variants such as single nucleotide variants, also have applications in prognostics and diagnostics, in the analysis of tumors, and in typing tissue for transplantation. Future advances will include technological innovations, the application of standard metrics for evaluating haplotype quality, and the development of databases that link haplotypes to disease. PMID:25473435

  11. The Global Cancer Genomics Consortium: interfacing genomics and cancer medicine.

    PubMed

    2012-08-01

    The Global Cancer Genomics Consortium (GCGC) is an international collaborative platform that amalgamates cancer biologists, cutting-edge genomics, and high-throughput expertise with medical oncologists and surgical oncologists; they address the most important translational questions that are central to cancer research and treatment. The annual GCGC symposium was held at the Advanced Centre for Treatment Research and Education in Cancer, Mumbai, India, from November 9 to 11, 2011. The symposium showcased international next-generation sequencing efforts that explore cancer-specific transcriptomic changes, single-nucleotide polymorphism, and copy number variations in various types of cancers, as well as the structural genomics approach to develop new therapeutic targets and chemical probes. From the spectrum of studies presented at the symposium, it is evident that the translation of emerging cancer genomics knowledge into clinical applications can only be achieved through the integration of multidisciplinary expertise. In summary, the GCGC symposium provided practical knowledge on structural and cancer genomics approaches, as well as an exclusive platform for focused cancer genomics endeavors. PMID:22628426

  12. Computational Genomics: From Genome Sequence To Global Gene Regulation

    NASA Astrophysics Data System (ADS)

    Li, Hao

    2000-03-01

    As various genome projects are shifting to the post-sequencing phase, it becomes a big challenge to analyze the sequence data and extract biological information using computational tools. In the past, computational genomics has mainly focused on finding new genes and mapping out their biological functions. With the rapid accumulation of experimental data on genome-wide gene activities, it is now possible to understand how genes are regulated on a genomic scale. A major mechanism for gene regulation is to control the level of transcription, which is achieved by regulatory proteins that bind to short DNA sequences - the regulatory elements. We have developed a new approach to identifying regulatory elements in genomes. The approach formalizes how one would proceed to decipher a ``text'' consisting of a long string of letters written in an unknown language that did not delineate words. The algorithm is based on a statistical mechanics model in which the sequence is segmented probabilistically into ``words'' and a ``dictionary'' of ``words'' is built concurrently. For the control regions in the yeast genome, we built a ``dictionary'' of about one thousand words which includes many known as well as putative regulatory elements. I will discuss how we can use this dictionary to search for genes that are likely to be regulated in a similar fashion and to analyze gene expression data generated from DNA micro-array experiments.

  13. The Global Cancer Genomics Consortium: interfacing genomics and cancer medicine.

    PubMed

    2012-08-01

    The Global Cancer Genomics Consortium (GCGC) is an international collaborative platform that amalgamates cancer biologists, cutting-edge genomics, and high-throughput expertise with medical oncologists and surgical oncologists; they address the most important translational questions that are central to cancer research and treatment. The annual GCGC symposium was held at the Advanced Centre for Treatment Research and Education in Cancer, Mumbai, India, from November 9 to 11, 2011. The symposium showcased international next-generation sequencing efforts that explore cancer-specific transcriptomic changes, single-nucleotide polymorphism, and copy number variations in various types of cancers, as well as the structural genomics approach to develop new therapeutic targets and chemical probes. From the spectrum of studies presented at the symposium, it is evident that the translation of emerging cancer genomics knowledge into clinical applications can only be achieved through the integration of multidisciplinary expertise. In summary, the GCGC symposium provided practical knowledge on structural and cancer genomics approaches, as well as an exclusive platform for focused cancer genomics endeavors.

  14. The soft genome

    PubMed Central

    Anava, Sarit; Posner, Rachel; Rechavi, Oded

    2014-01-01

    Caenorhabditis elegans (C. elegans) nematodes transmit small RNAs across generations, a process that enables transgenerational regulation of genes. In contrast to changes to the DNA sequence, transgenerational transmission of small RNA-mediated responses is reversible, and thus enables “soft” or “flexible” inheritance of acquired characteristics. Until very recently only introduction of foreign genetic material (viruses, transposons, transgenes) was shown to directly lead to inheritance of small RNAs. New discoveries however, demonstrate that starvation also triggers inheritance of endogenous small RNAs in C.elegans. Multiple generations of worms inherit starvation-responsive endogenous small RNAs, and starvation also results in heritable extension of the progeny's lifespan. In this Commentary paper we explore the intriguing possibility that large parts of the genome and many additional traits are similarly subjected to heritable small RNA-mediated regulation, and focus on the potential influence of transgenerational RNAi on the worm's physiology. While the universal relevance of this mechanism remains to be discovered, we will examine how the discoveries made in worms already challenge long held dogmas in genetics and evolution. PMID:26430554

  15. Genomics: implications for toxicology.

    PubMed

    Olden, K; Guthrie, J

    2001-01-25

    The primary goal of the Environmental Genome Project (EGP) is the identification of human polymorphisms indicative of susceptibility to specific environmental agents. Despite evidence for a substantial genetic contribution to disease variation in the population, progress towards identifying specific genes has been slow. To date, most of the advances in our understanding of human diseases has come from genetic analyses of monogenic diseases that affect a relatively small portion of the population. The principal strategy of the EGP involves resequencing DNA samples from populations representative of the US racial and ethnic groups to develop a database of variations. Polymorphisms in specific genes may also be detected by gene-expression profiling. The identification of polymorphisms by resequencing is straightforward, and can be accomplished with minimal difficulty. Gene-expression profiling is still problematic; however, determining the functional significance of the allelic variations will be a monumental challenge involving sophisticated proteomics and population-based and animal model studies. These studies will change radically the practice of public health and clinical medicine, and the approach to the development of pharmaceuticals.

  16. Genome Statute and Legislation Database

    MedlinePlus

    ... of page Last Reviewed: February 29, 2016 Get Email Updates Advancing human health through genomics research Privacy Copyright Contact Accessibility Plug-ins Site Map Staff Directory FOIA Share Top

  17. Do Echinoderm Genomes Measure Up?

    PubMed Central

    Cameron, R. Andrew; Kudtarkar, Parul; Gordon, Susan M.; Worley, Kim C.; Gibbs, Richard A.

    2015-01-01

    Echinoderm genome sequences are a corpus of useful information about a clade of animals that serve as research models in fields ranging from marine ecology to cell and developmental biology. Genomic information from echinoids has contributed to insights into the gene interactions that drive the developmental process at the molecular level. Such insights often rely heavily on genomic information and the kinds of questions that can be asked thus depend on the quality of the sequence information. Here we describe the history of echinoderm genomic sequence assembly and present details about the quality of the data obtained. All of the sequence information discussed here is posted on the echinoderm information web system, Echinobase.org. PMID:25701080

  18. Genomic Resources for Cancer Epidemiology

    Cancer.gov

    This page provides links to research resources, complied by the Epidemiology and Genomics Research Program, that may be of interest to genetic epidemiologists conducting cancer research, but is not exhaustive.

  19. Genomic Datasets for Cancer Research

    Cancer.gov

    A variety of datasets from genome-wide association studies of cancer and other genotype-phenotype studies, including sequencing and molecular diagnostic assays, are available to approved investigators through the Extramural National Cancer Institute Data Access Committee.

  20. Collaborators | Office of Cancer Genomics

    Cancer.gov

    The TARGET initiative is jointly managed within the National Cancer Institute (NCI) by the Office of Cancer Genomics (OCG)Opens in a New Tab and the Cancer Therapy Evaluation Program (CTEP)Opens in a New Tab.

  1. Genomic understanding of glioblastoma expanded

    Cancer.gov

    Glioblastoma multiforme (GBM) was the first cancer type to be systematically studied by TCGA in 2008. In a new, complementary report, TCGA experts examined more than 590 GBM samples--the largest to date utilizing genomic characterization techniques and ne

  2. Modeling Epistasis in Genomic Selection.

    PubMed

    Jiang, Yong; Reif, Jochen C

    2015-10-01

    Modeling epistasis in genomic selection is impeded by a high computational load. The extended genomic best linear unbiased prediction (EG-BLUP) with an epistatic relationship matrix and the reproducing kernel Hilbert space regression (RKHS) are two attractive approaches that reduce the computational load. In this study, we proved the equivalence of EG-BLUP and genomic selection approaches, explicitly modeling epistatic effects. Moreover, we have shown why the RKHS model based on a Gaussian kernel captures epistatic effects among markers. Using experimental data sets in wheat and maize, we compared different genomic selection approaches and concluded that prediction accuracy can be improved by modeling epistasis for selfing species but may not for outcrossing species. PMID:26219298

  3. Evolutionary genomics: transdomain gene transfers.

    PubMed

    Bordenstein, Seth R

    2007-11-01

    Biologists have until now conceded that bacterial gene transfer to multicellular animals is relatively uncommon in Nature. A new study showing promiscuous insertions of bacterial endosymbiont genes into invertebrate genomes ushers in a shift in this paradigm.

  4. Orchestrating the Human Genome Project.

    PubMed

    Cantor, C R

    1990-04-01

    The Human Genome Project is under way. The Department of Energy and the National Institutes of Health are cooperating effectively to develop organizational structures and scientific priorities that should keep the project on schedule and within its budget.

  5. Legal issues in genomic medicine.

    PubMed

    Reilly, P R

    2001-03-01

    Society has entered uncharted territory regarding how, when and where genetic information can be used. This article discusses the major issues raised by increased access to genomic information, which will ultimately be resolved by legislation or the courts.

  6. The European Renal Genome Project

    PubMed Central

    Antignac, C; Brändli, AW; Christensen, EI; Cox, RD; Davidson, D; Davies, JA; Devuyst, O; Eichele, G; Hastie, ND; Verroust, PJ; Schedl, A; Meij, IC

    2005-01-01

    Rapid progress in genome research creates a wealth of information on the functional annotation of mammalian genome sequences. However, as we accumulate large amounts of scientific information we are facing problems of how to integrate and relate the data produced by various genomic approaches. Here, we propose the novel concept of an organ atlas where diverse data from expression maps to histological findings to mutant phenotypes can be queried, compared and visualized in the context of a three-dimensional reconstruction of the organ. We will seek proof of concept for the organ atlas by elucidating genetic pathways involved in development and pathophysiology of the kidney. Such a kidney atlas may provide a paradigm for a new systems-biology approach in functional genome research aimed at understanding the genetic bases of organ development, physiology and disease. PMID:19521566

  7. Do echinoderm genomes measure up?

    PubMed

    Cameron, R Andrew; Kudtarkar, Parul; Gordon, Susan M; Worley, Kim C; Gibbs, Richard A

    2015-08-01

    Echinoderm genome sequences are a corpus of useful information about a clade of animals that serve as research models in fields ranging from marine ecology to cell and developmental biology. Genomic information from echinoids has contributed to insights into the gene interactions that drive the developmental process at the molecular level. Such insights often rely heavily on genomic information and the kinds of questions that can be asked thus depend on the quality of the sequence information. Here we describe the history of echinoderm genomic sequence assembly and present details about the quality of the data obtained. All of the sequence information discussed here is posted on the echinoderm information web system, Echinobase.org.

  8. The emergence of physiological genomics.

    PubMed

    Cowley, A W

    1999-01-01

    'Physiological genomics' represents a research paradigm shift emerging to define the functions of tens of thousands of newly discovered genes which are expected to emerge from the sequencing of the human genome and other model organisms. Genomic tools, which will allow a higher efficiency of identification of gene function, are being developed at remarkable speed. This article discusses some of the genomic and bioinformatic tools currently available or under development to provide the infrastructure for mapping and identification of gene function in simple organisms (bacteria, zebrafish, fly, worm) and complex mammalian organisms (mouse and rat). The problems facing the scientific community in the implementation of this functional approach are discussed as it is now evident that new technological and organizational infrastructures are emerging to link genes to overall function of whole organisms.

  9. 2004 Structural, Function and Evolutionary Genomics

    SciTech Connect

    Douglas L. Brutlag Nancy Ryan Gray

    2005-03-23

    This Gordon conference will cover the areas of structural, functional and evolutionary genomics. It will take a systematic approach to genomics, examining the evolution of proteins, protein functional sites, protein-protein interactions, regulatory networks, and metabolic networks. Emphasis will be placed on what we can learn from comparative genomics and entire genomes and proteomes.

  10. Genome Sequence of Burkholderia pseudomallei NCTC 13392

    PubMed Central

    Sahl, Jason W.; Stone, Joshua K.; Gelhaus, H. Carl; Warren, Richard L.; Cruttwell, Caroline J.; Funnell, Simon G.; Keim, Paul

    2013-01-01

    Here, we describe the draft genome sequence of Burkholderia pseudomallei NCTC 13392. This isolate has been distributed as K96243, but distinct genomic differences have been identified. The genomic sequence of this isolate will provide the genomic context for previously conducted functional studies. PMID:23704173

  11. Genomic Aspects of Research Involving Polyploid Plants

    SciTech Connect

    Yang, Xiaohan; Ye, Chuyu; Tschaplinski, Timothy J; Wullschleger, Stan D; Tuskan, Gerald A

    2011-01-01

    Almost all extant plant species have spontaneously doubled their genomes at least once in their evolutionary histories, resulting in polyploidy which provided a rich genomic resource for evolutionary processes. Moreover, superior polyploid clones have been created during the process of crop domestication. Polyploid plants generated by evolutionary processes and/or crop domestication have been the intentional or serendipitous focus of research dealing with the dynamics and consequences of genome evolution. One of the new trends in genomics research is to create synthetic polyploid plants which provide materials for studying the initial genomic changes/responses immediately after polyploid formation. Polyploid plants are also used in functional genomics research to study gene expression in a complex genomic background. In this review, we summarize the recent progress in genomics research involving ancient, young, and synthetic polyploid plants, with a focus on genome size evolution, genomics diversity, genomic rearrangement, genetic and epigenetic changes in duplicated genes, gene discovery, and comparative genomics. Implications on plant sciences including evolution, functional genomics, and plant breeding are presented. It is anticipated that polyploids will be a regular subject of genomics research in the foreseeable future as the rapid advances in DNA sequencing technology create unprecedented opportunities for discovering and monitoring genomic and transcriptomic changes in polyploid plants. The fast accumulation of knowledge on polyploid formation, maintenance, and divergence at whole-genome and subgenome levels will not only help plant biologists understand how plants have evolved and diversified, but also assist plant breeders in designing new strategies for crop improvement.

  12. Eukaryotic Genomics Data from the DOE Joint Genome Institute (JGI)

    DOE Data Explorer

    The JGI makes high-quality genome sequencing data freely available to the greater scientific community through its web portal. Having played a significant role in the federally funded Human Genome Project -- generating the complete sequences of Chromosomes 5, 16, and 19--the JGI has now moved on to contributing in other critical areas of genomics research. While NIH-funded genome sequencing activities continue to emphasize human biomedical targets and applications, the JGI has since shifted its focus to the non-human components of the biosphere, particularly those relevant to the science mission of the Department of Energy. With efficiencies of scale established at the PGF, and capacity now exceeding three billion bases generated on a monthly basis, the JGI has tackled scores of additional genomes. These include more than 60 microbial genomes and many important multicellular organisms and communities of microbes. In partnership with other federal institutions and universities, the JGI is in the process of sequencing a frog (Xenopus tropicalis), a green alga (Chlamydomonas reinhardtii), a diatom (Thalassiosira pseudonana) , the cottonwood tree (Populus trichocarpa), and a host of agriculturally important plants and plant pathogens. Microorganisms, for example those that thrive under extreme conditions such as high acidity, radiation, and metal contamination, are of particular interest to the DOE and JGI. Investigations by JGI and its partners are shedding light on the cellular machinery of microbes and how they can be harnessed to clean up contaminated soil or water, capture carbon from the atmosphere, and produce potentially important sources of energy such as hydrogen and methane. [Excerpt from the JGI page "Who We Are" at http://www.jgi.doe.gov/whoweare/whoweare.html] From the JGI webportal users can choose Eukaryotic genomes from a photo list, access the JGI FTP directories to download data files, use the Tree of Life navigation tool, or choose a genome and go

  13. Contact | Office of Cancer Genomics

    Cancer.gov

    For more information about the Office of Cancer Genomics, please contact: Office of Cancer Genomics National Cancer Institute 31 Center Drive, 10A07 Bethesda, Maryland 20892-2580 Phone: (301) 451-8027 Fax: (301) 480-4368 Email: ocg@mail.nih.gov *Please note that this site will not function properly in Internet Explorer unless you completely turn off the Compatibility View*

  14. Genome shortcut leads to problems

    SciTech Connect

    Anderson, C.

    1993-03-19

    Mega YACs (yeast artificial chromosomes), which can carry DNA sequences up to 1.4 million bases long, were anticipated as a major for mapping the human genome. They have been found to have as much as 80% chimerism, however, and contain many deletions and rearrangements. This makes them useless for high-resolution mapping, but they are effective for connecting points over long distances. Mega YACs are still useful for mapping 95% of the human genome.

  15. Genomic medicine implementation: learning by example.

    PubMed

    Williams, Marc S

    2014-03-01

    Genomic Medicine is beginning to emerge into clinical practice. The National Human Genome Research Institute's Genomic Medicine Working Group consists of organizations that have begun to implement some aspect of genomic medicine (e.g., family history, systematic implementation of Mendelian disease program, pharmacogenomics, whole exome/genome sequencing). This article concisely reviews the working group and provides a broader context for the articles in the special issue including an assessment of anticipated provider needs and ethical, legal, and social issues relevant to the implementation of genomic medicine. The challenges of implementation of innovation in clinical practice and the potential value of genomic medicine are discussed.

  16. Mutational dynamics of aroid chloroplast genomes.

    PubMed

    Ahmed, Ibrar; Biggs, Patrick J; Matthews, Peter J; Collins, Lesley J; Hendy, Michael D; Lockhart, Peter J

    2012-01-01

    A characteristic feature of eukaryote and prokaryote genomes is the co-occurrence of nucleotide substitution and insertion/deletion (indel) mutations. Although similar observations have also been made for chloroplast DNA, genome-wide associations have not been reported. We determined the chloroplast genome sequences for two morphotypes of taro (Colocasia esculenta; family Araceae) and compared these with four publicly available aroid chloroplast genomes. Here, we report the extent of genome-wide association between direct and inverted repeats, indels, and substitutions in these aroid chloroplast genomes. We suggest that alternative but not mutually exclusive hypotheses explain the mutational dynamics of chloroplast genome evolution. PMID:23204304

  17. Implementing genomic medicine in pathology.

    PubMed

    Williams, Eli S; Hegde, Madhuri

    2013-07-01

    The finished sequence of the Human Genome Project, published 50 years after Watson and Crick's seminal paper on the structure of DNA, pushed human genetics into the public eye and ushered in the genomic era. A significant, if overlooked, aspect of the race to complete the genome was the technology that propelled scientists to the finish line. DNA sequencing technologies have become more standardized, automated, and capable of higher throughput. This technology has continued to grow at an astounding rate in the decade since the Human Genome Project was completed. Today, massively parallel sequencing, or next-generation sequencing (NGS), allows the detection of genetic variants across the entire genome. This ability has led to the identification of new causes of disease and is changing the way we categorize, treat, and manage disease. NGS approaches such as whole-exome sequencing and whole-genome sequencing are rapidly becoming an affordable genetic testing strategy for the clinical laboratory. One test can now provide vast amounts of health information pertaining not only to the disease of interest, but information that may also predict adult-onset disease, reveal carrier status for a rare disease and predict drug responsiveness. The issue of what to do with these incidental findings, along with questions pertaining to NGS testing strategies, data interpretation and storage, and applying genetic testing results into patient care, remains without a clear answer. This review will explore these issues and others relevant to the implementation of NGS in the clinical laboratory. PMID:23752086

  18. Genomic expression during human myelopoiesis

    PubMed Central

    Ferrari, Francesco; Bortoluzzi, Stefania; Coppe, Alessandro; Basso, Dario; Bicciato, Silvio; Zini, Roberta; Gemelli, Claudia; Danieli, Gian Antonio; Ferrari, Sergio

    2007-01-01

    Background Human myelopoiesis is an exciting biological model for cellular differentiation since it represents a plastic process where multipotent stem cells gradually limit their differentiation potential, generating different precursor cells which finally evolve into distinct terminally differentiated cells. This study aimed at investigating the genomic expression during myeloid differentiation through a computational approach that integrates gene expression profiles with functional information and genome organization. Results Gene expression data from 24 experiments for 8 different cell types of the human myelopoietic lineage were used to generate an integrated myelopoiesis dataset of 9,425 genes, each reliably associated to a unique genomic position and chromosomal coordinate. Lists of genes constitutively expressed or silent during myelopoiesis and of genes differentially expressed in commitment phase of myelopoiesis were first identified using a classical data analysis procedure. Then, the genomic distribution of myelopoiesis genes was investigated integrating transcriptional and functional characteristics of genes. This approach allowed identifying specific chromosomal regions significantly highly or weakly expressed, and clusters of differentially expressed genes and of transcripts related to specific functional modules. Conclusion The analysis of genomic expression during human myelopoiesis using an integrative computational approach allowed discovering important relationships between genomic position, biological function and expression patterns and highlighting chromatin domains, including genes with coordinated expression and lineage-specific functions. PMID:17683550

  19. Comparative genomic analyses in Asparagus.

    PubMed

    Kuhl, Joseph C; Havey, Michael J; Martin, William J; Cheung, Foo; Yuan, Qiaoping; Landherr, Lena; Hu, Yi; Leebens-Mack, James; Town, Christopher D; Sink, Kenneth C

    2005-12-01

    Garden asparagus (Asparagus officinalis L.) belongs to the monocot family Asparagaceae in the order Asparagales. Onion (Allium cepa L.) and Asparagus officinalis are 2 of the most economically important plants of the core Asparagales, a well supported monophyletic group within the Asparagales. Coding regions in onion have lower GC contents than the grasses. We compared the GC content of 3374 unique expressed sequence tags (ESTs) from A. officinalis with Lycoris longituba and onion (both members of the core Asparagales), Acorus americanus (sister to all other monocots), the grasses, and Arabidopsis. Although ESTs in A. officinalis and Acorus had a higher average GC content than Arabidopsis, Lycoris, and onion, all were clearly lower than the grasses. The Asparagaceae have the smallest nuclear genomes among all plants in the core Asparagales, which typically have huge genomes. Within the Asparagaceae, European Asparagus species have approximately twice the nuclear DNA of that of southern African Asparagus species. We cloned and sequenced 20 genomic amplicons from European A. officinalis and the southern African species Asparagus plumosus and observed no clear evidence for a recent genome doubling in A. officinalis relative to A. plumosus. These results indicate that members of the genus Asparagus with smaller genomes may be useful genomic models for plants in the core Asparagales. PMID:16391674

  20. Evolutionary genomics of environmental pollution.

    PubMed

    Whitehead, Andrew

    2014-01-01

    Chemical toxins have been a persistent source of evolutionary challenges throughout the history of life, and deep within the genomic storehouse of evolutionary history lay ancient adaptations to diverse chemical poisons. However, the rate of change of contemporary environments mediated by human-introduced pollutants is rapidly screening this storehouse and severely testing the adaptive potential of many species. In this chapter, we briefly review the deep history of evolutionary adaptation to environmental toxins, and then proceed to describe the attributes of stressors and populations that may facilitate contemporary adaptation to pollutants introduced by humans. We highlight that phenotypes derived to enable persistence in polluted habitats may be multi-dimensional, requiring global genome-scale tools and approaches to uncover their mechanistic basis, and include examples of recent progress in the field. The modern tools of genomics offer promise for discovering how pollutants interact with genomes on physiological timescales, and also for discovering what genomic attributes of populations may enable resistance to pollutants over evolutionary timescales. Through integration of these sophisticated genomics tools and approaches with an understanding of the deep historical forces that shaped current populations, a more mature understanding of the mechanistic basis of contemporary ecological-evolutionary dynamics should emerge.

  1. Widespread Recurrent Evolution of Genomic Features

    PubMed Central

    Maeso, Ignacio; Roy, Scott William; Irimia, Manuel

    2012-01-01

    The recent explosion of genome sequences from all major phylogenetic groups has unveiled an unexpected wealth of cases of recurrent evolution of strikingly similar genomic features in different lineages. Here, we review the diverse known types of recurrent evolution in eukaryotic genomes, with a special focus on metazoans, ranging from reductive genome evolution to origins of splice-leader trans-splicing, from tandem exon duplications to gene family expansions. We first propose a general classification scheme for evolutionary recurrence at the genomic level, based on the type of driving force—mutation or selection—and the environmental and genomic circumstances underlying these forces. We then discuss various cases of recurrent genomic evolution under this scheme. Finally, we provide a broader context for repeated genomic evolution, including the unique relationship of genomic recurrence with the genotype–phenotype map, and the ways in which the study of recurrent genomic evolution can be used to understand fundamental evolutionary processes. PMID:22417916

  2. Comparative genomic hybridization with single cells after whole genome amplification

    SciTech Connect

    Haddad, B.R.; Baldini, A.; Hughes, M.R.

    1994-09-01

    Conventional karyotype analysis is the ideal way to diagnose chromosomal imbalances. However it requires cell culture and chromosome preparation. There are instances where a very small number of cells are available for cytogenetic evaluation and chromosomes cannot be obtained. Comparative genomic hybridization (CGH) is a novel molecular cytogenetic technique that provides information about genetic imbalances affecting the genome. The power of this technique lies in its ability to detect genetic imbalances using total genomic DNA. We have previously demonstrated the feasibility of whole genome amplification from single cells for subsequent analysis of multiple genetic loci by PCR. In this present work, we combine whole genome amplification with CGH to detect chromosomal imbalances from small numbers of cells. Both cytogenetically normal and abnormal cells were individually picked by micromanipulation and subjected to whole genome amplification using random oligonucleotide primers. Amplified test and control DNA were differentially labeled by incorporation of digoxigenin or biotin, mixed together and hybridized to normal male metaphase spreads. Hybridization was detected with two fluorochromes, rhodamine-anti-digoxigenin and FITC -Avidin. Ratio of intensities of the two fluorochromes along the target chromosomes was analyzed using locally developed computer imaging software. Using the combination of whole genome amplification and CGH, we were able to detect different chromosomal aneuploidies from 30, 20, and 10 cells. It can also be applied to the analysis of fetal cells sorted from maternal circulation, or to tumor cells obtained from needle biopsies or from different body fluids and effusions. Finally, its successful application to single cells will have a great impact on preimplantation diagnosis.

  3. Genome size and genome evolution in diploid Triticeae species.

    PubMed

    Eilam, T; Anikster, Y; Millet, E; Manisterski, J; Sagi-Assif, O; Feldman, M

    2007-11-01

    One of the intriguing issues concerning the dynamics of plant genomes is the occurrence of intraspecific variation in nuclear DNA amount. The aim of this work was to assess the ranges of intraspecific, interspecific, and intergeneric variation in nuclear DNA content of diploid species of the tribe Triticeae (Poaceae) and to examine the relation between life form or habitat and genome size. Altogether, 438 plants representing 272 lines that belong to 22 species were analyzed. Nuclear DNA content was estimated by flow cytometry. Very small intraspecific variation in DNA amount was found between lines of Triticeae diploid species collected from different habitats or between different morphs. In contrast to the constancy in nuclear DNA amount at the intraspecific level, there are significant differences in genome size between the various diploid species. Within the genus Aegilops, the 1C DNA amount ranged from 4.84 pg in A. caudata to 7.52 pg in A. sharonensis; among genera, the 1C DNA amount ranged from 4.18 pg in Heteranthelium piliferum to 9.45 pg in Secale montanum. No evidence was found for a smaller genome size in annual, self-pollinating species relative to perennial, cross-pollinating ones. Diploids that grow in the southern part of the group's distribution have larger genomes than those growing in other parts of the distribution. The contrast between the low variation at the intraspecific level and the high variation at the interspecific one suggests that changes in genome size originated in close temporal proximity to the speciation event, i.e., before, during, or immediately after it. The possible effects of sudden changes in genome size on speciation processes are discussed.

  4. Integrative Genomics-Based Discovery of Novel Regulators of the Innate Antiviral Response

    PubMed Central

    van der Lee, Robin; ter Horst, Rob; Szklarczyk, Radek; Netea, Mihai G.; Andeweg, Arno C.; van Kuppeveld, Frank J. M.; Huynen, Martijn A.

    2015-01-01

    The RIG-I-like receptor (RLR) pathway is essential for detecting cytosolic viral RNA to trigger the production of type I interferons (IFNα/β) that initiate an innate antiviral response. Through systematic assessment of a wide variety of genomics data, we discovered 10 molecular signatures of known RLR pathway components that collectively predict novel members. We demonstrate that RLR pathway genes, among others, tend to evolve rapidly, interact with viral proteins, contain a limited set of protein domains, are regulated by specific transcription factors, and form a tightly connected interaction network. Using a Bayesian approach to integrate these signatures, we propose likely novel RLR regulators. RNAi knockdown experiments revealed a high prediction accuracy, identifying 94 genes among 187 candidates tested (~50%) that affected viral RNA-induced production of IFNβ. The discovered antiviral regulators may participate in a wide range of processes that highlight the complexity of antiviral defense (e.g. MAP3K11, CDK11B, PSMA3, TRIM14, HSPA9B, CDC37, NUP98, G3BP1), and include uncharacterized factors (DDX17, C6orf58, C16orf57, PKN2, SNW1). Our validated RLR pathway list (http://rlr.cmbi.umcn.nl/), obtained using a combination of integrative genomics and experiments, is a new resource for innate antiviral immunity research. PMID:26485378

  5. Genomics and museum specimens.

    PubMed

    Nachman, Michael W

    2013-12-01

    Nearly 25 years ago, Allan Wilson and colleagues isolated DNA sequences from museum specimens of kangaroo rats (Dipodomys panamintinus) and compared these sequences with those from freshly collected animals (Thomas et al. 1990). The museum specimens had been collected up to 78 years earlier, so the two samples provided a direct temporal comparison of patterns of genetic variation. This was not the first time DNA sequences had been isolated from preserved material, but it was the first time it had been carried out with a population sample. Population geneticists often try to make inferences about the influence of historical processes such as selection, drift, mutation and migration on patterns of genetic variation in the present. The work of Wilson and colleagues was important in part because it suggested a way in which population geneticists could actually study genetic change in natural populations through time, much the same way that experimentalists can do with artificial populations in the laboratory. Indeed, the work of Thomas et al. (1990) spawned dozens of studies in which museum specimens were used to compare historical and present-day genetic diversity (reviewed in Wandeler et al. 2007). All of these studies, however, were limited by the same fundamental problem: old DNA is degraded into short fragments. As a consequence, these studies mostly involved PCR amplification of short templates, usually short stretches of mitochondrial DNA or microsatellites. In this issue, Bi et al. (2013) report a breakthrough that should open the door to studies of genomic variation in museum specimens. They used target enrichment (exon capture) and next-generation (Illumina) sequencing to compare patterns of genetic variation in historic and present-day population samples of alpine chipmunks (Tamias alpinus) (Fig. 1). The historic samples came from specimens collected in 1915, so the temporal span of this comparison is nearly 100 years.

  6. Brazil: public health genomics.

    PubMed

    Castilla, E E; Luquetti, D V

    2009-01-01

    Brazil represents half of South America and one third of Latin America, having more than 186 million inhabitants. After China and India it is the third largest developing country in the world. The wealth is unequally distributed among the states and among the people. Brazil has a large and complex health care system. A Universal Public Health System (SUS: Sistema SPACEnico de Saúde) covers the medical expenses for 80% of the population. The genetic structure of the population is very complex, including a large proportion of tri- hybrid persons, genetic isolates, and a panmictic large majority. Genetic services are offered at 64 genetic centers, half of them public and free. Nationwide networks are operating for inborn errors of metabolism, oncogenetics, and craniofacial anomalies. The Brazilian Society of Medical Genetics (SBGM) has granted 120 board certifications since 1986, and 7 recognized residences in medical genetics are operating in the country. Three main public health actions promoted by the federal government have been undertaken in the last decade, ultimately aimed at the prevention of birth defects. Since 1999, birth defects are reported for all 3 million annual live births, several vaccination strategies aim at the eradication of rubella, and wheat and maize flours are fortified with folic acid. Currently, the government distributes over 2 million US dollars to finance 14 research projects aimed at providing the basis for the adequate prevention and care of genetics disorders through the SUS. Continuity of this proactive attitude of the government in the area of genomics in public health is desired. PMID:19023184

  7. The Norway spruce genome sequence and conifer genome evolution.

    PubMed

    Nystedt, Björn; Street, Nathaniel R; Wetterbom, Anna; Zuccolo, Andrea; Lin, Yao-Cheng; Scofield, Douglas G; Vezzi, Francesco; Delhomme, Nicolas; Giacomello, Stefania; Alexeyenko, Andrey; Vicedomini, Riccardo; Sahlin, Kristoffer; Sherwood, Ellen; Elfstrand, Malin; Gramzow, Lydia; Holmberg, Kristina; Hällman, Jimmie; Keech, Olivier; Klasson, Lisa; Koriabine, Maxim; Kucukoglu, Melis; Käller, Max; Luthman, Johannes; Lysholm, Fredrik; Niittylä, Totte; Olson, Ake; Rilakovic, Nemanja; Ritland, Carol; Rosselló, Josep A; Sena, Juliana; Svensson, Thomas; Talavera-López, Carlos; Theißen, Günter; Tuominen, Hannele; Vanneste, Kevin; Wu, Zhi-Qiang; Zhang, Bo; Zerbe, Philipp; Arvestad, Lars; Bhalerao, Rishikesh; Bohlmann, Joerg; Bousquet, Jean; Garcia Gil, Rosario; Hvidsten, Torgeir R; de Jong, Pieter; MacKay, John; Morgante, Michele; Ritland, Kermit; Sundberg, Björn; Thompson, Stacey Lee; Van de Peer, Yves; Andersson, Björn; Nilsson, Ove; Ingvarsson, Pär K; Lundeberg, Joakim; Jansson, Stefan

    2013-05-30

    Conifers have dominated forests for more than 200 million years and are of huge ecological and economic importance. Here we present the draft assembly of the 20-gigabase genome of Norway spruce (Picea abies), the first available for any gymnosperm. The number of well-supported genes (28,354) is similar to the >100 times smaller genome of Arabidopsis thaliana, and there is no evidence of a recent whole-genome duplication in the gymnosperm lineage. Instead, the large genome size seems to result from the slow and steady accumulation of a diverse set of long-terminal repeat transposable elements, possibly owing to the lack of an efficient elimination mechanism. Comparative sequencing of Pinus sylvestris, Abies sibirica, Juniperus communis, Taxus baccata and Gnetum gnemon reveals that the transposable element diversity is shared among extant conifers. Expression of 24-nucleotide small RNAs, previously implicated in transposable element silencing, is tissue-specific and much lower than in other plants. We further identify numerous long (>10,000 base pairs) introns, gene-like fragments, uncharacterized long non-coding RNAs and short RNAs. This opens up new genomic avenues for conifer forestry and breeding.

  8. Genomic repeats, genome plasticity and the dynamics of Mycoplasma evolution

    PubMed Central

    Rocha, Eduardo P. C.; Blanchard, Alain

    2002-01-01

    Mycoplasmas evolved by a drastic reduction in genome size, but their genomes contain numerous repeated sequences with important roles in their evolution. We have established a bioinformatic strategy to detect the major recombination hot-spots in the genomes of Mycoplasma pneumoniae, Mycoplasma genitalium, Ureaplasma urealyticum and Mycoplasma pulmonis. This allowed the identification of large numbers of potentially variable regions, as well as a comparison of the relative recombination potentials of different genomic regions. Different trends are perceptible among mycoplasmas, probably due to different functional and structural constraints. The largest potential for illegitimate recombination in M.pulmonis is found at the vsa locus and its comparison in two different strains reveals numerous changes since divergence. On the other hand, the main M.pneumoniae and M.genitalium adhesins rely on large distant repeats and, hence, homologous recombination for variation. However, the relation between the existence of repeats and antigenic variation is not necessarily straightforward, since repeats of P1 adhesin were found to be anti-correlated with epitopes recognized by patient antibodies. These different strategies have important consequences for the structures of genomes, since large distant repeats correlate well with the major chromosomal rearrangements. Probably to avoid such events, mycoplasmas strongly avoid inverse repeats, in comparison to co-oriented repeats. PMID:11972343

  9. The mouse genome informatics and the mouse genome database

    SciTech Connect

    Maltais, L.J.; Blackburn, R.E.; Bradt, D.W.

    1994-09-01

    The Mouse Genome Database (MGD) is a centralized, comprehensive database of the mouse genome that includes genetic mapping data, comparative mapping data, gene descriptions, mutant phenotype descriptions, strains and allelic polymorphism data, inbred strain characteristics, physical mapping data, and molecular probes and clones data. Data in MGD are obtained from the published literature and by electronic transfer from laboratories working on large backcross panels of mice. MGD provides tools that enable the user to search the database, retrieve data, generate reports, analyze data, annotate records, and build genetic maps. The Encyclopedia of the Mouse Genome provides a graphic user interface to mouse genome data. It consists of software tools including: LinkMap, a graphic display of genetic linkage maps with the ability to magnify regions of high locus density: CytoMap, a graphic display of cytogenetic maps showing banded chromosomes with cytogenetic locations of genes and chromosomal aberrations; CATS, a catalog searching tool for text retrieval of mouse locus descriptions. These software tools provide access to the following data sets: Chromosome Committee Reports, MIT Genome Center data, GBASE reports, Mouse Locus Catalog (MLC), and Mouse Cytogenetic Mapping Data. The MGD is available to the scientific community through the World Wide Web (WWW) and Gopher. In addition GBASE can be accessed via the Internet.

  10. Genomic disorders: A window into human gene and genome evolution

    PubMed Central

    Carvalho, Claudia M. B.; Zhang, Feng; Lupski, James R.

    2010-01-01

    Gene duplications alter the genetic constitution of organisms and can be a driving force of molecular evolution in humans and the great apes. In this context, the study of genomic disorders has uncovered the essential role played by the genomic architecture, especially low copy repeats (LCRs) or segmental duplications (SDs). In fact, regardless of the mechanism, LCRs can mediate or stimulate rearrangements, inciting genomic instability and generating dynamic and unstable regions prone to rapid molecular evolution. In humans, copy-number variation (CNV) has been implicated in common traits such as neuropathy, hypertension, color blindness, infertility, and behavioral traits including autism and schizophrenia, as well as disease susceptibility to HIV, lupus nephritis, and psoriasis among many other clinical phenotypes. The same mechanisms implicated in the origin of genomic disorders may also play a role in the emergence of segmental duplications and the evolution of new genes by means of genomic and gene duplication and triplication, exon shuffling, exon accretion, and fusion/fission events. PMID:20080665

  11. GOLD: The Genomes Online Database

    DOE Data Explorer

    Kyrpides, Nikos; Liolios, Dinos; Chen, Amy; Tavernarakis, Nektarios; Hugenholtz, Philip; Markowitz, Victor; Bernal, Alex

    Since its inception in 1997, GOLD has continuously monitored genome sequencing projects worldwide and has provided the community with a unique centralized resource that integrates diverse information related to Archaea, Bacteria, Eukaryotic and more recently Metagenomic sequencing projects. As of September 2007, GOLD recorded 639 completed genome projects. These projects have their complete sequence deposited into the public archival sequence databases such as GenBank EMBL,and DDBJ. From the total of 639 complete and published genome projects as of 9/2007, 527 were bacterial, 47 were archaeal and 65 were eukaryotic. In addition to the complete projects, there were 2158 ongoing sequencing projects. 1328 of those were bacterial, 59 archaeal and 771 eukaryotic projects. Two types of metadata are provided by GOLD: (i) project metadata and (ii) organism/environment metadata. GOLD CARD pages for every project are available from the link of every GOLD_STAMP ID. The information in every one of these pages is organized into three tables: (a) Organism information, (b) Genome project information and (c) External links. [The Genomes On Line Database (GOLD) in 2007: Status of genomic and metagenomic projects and their associated metadata, Konstantinos Liolios, Konstantinos Mavromatis, Nektarios Tavernarakis and Nikos C. Kyrpides, Nucleic Acids Research Advance Access published online on November 2, 2007, Nucleic Acids Research, doi:10.1093/nar/gkm884]

    The basic tables in the GOLD database that can be browsed or searched include the following information:

    • Gold Stamp ID
    • Organism name
    • Domain
    • Links to information sources
    • Size and link to a map, when available
    • Chromosome number, Plas number, and GC content
    • A link for downloading the actual genome data
    • Institution that did the sequencing
    • Funding source
    • Database where information resides
    • Publication status and information

    • GIPSy: Genomic island prediction software.

      PubMed

      Soares, Siomar C; Geyik, Hakan; Ramos, Rommel T J; de Sá, Pablo H C G; Barbosa, Eudes G V; Baumbach, Jan; Figueiredo, Henrique C P; Miyoshi, Anderson; Tauch, Andreas; Silva, Artur; Azevedo, Vasco

      2016-08-20

      Bacteria are highly diverse organisms that are able to adapt to a broad range of environments and hosts due to their high genomic plasticity. Horizontal gene transfer plays a pivotal role in this genome plasticity and in evolution by leaps through the incorporation of large blocks of genome sequences, ordinarily known as genomic islands (GEIs). GEIs may harbor genes encoding virulence, metabolism, antibiotic resistance and symbiosis-related functions, namely pathogenicity islands (PAIs), metabolic islands (MIs), resistance islands (RIs) and symbiotic islands (SIs). Although many software for the prediction of GEIs exist, they only focus on PAI prediction and present other limitations, such as complicated installation and inconvenient user interfaces. Here, we present GIPSy, the genomic island prediction software, a standalone and user-friendly software for the prediction of GEIs, built on our previously developed pathogenicity island prediction software (PIPS). We also present four application cases in which we crosslink data from literature to PAIs, MIs, RIs and SIs predicted by GIPSy. Briefly, GIPSy correctly predicted the following previously described GEIs: 13 PAIs larger than 30kb in Escherichia coli CFT073; 1 MI for Burkholderia pseudomallei K96243, which seems to be a miscellaneous island; 1 RI of Acinetobacter baumannii AYE, named AbaR1; and, 1 SI of Mesorhizobium loti MAFF303099 presenting a mosaic structure. GIPSy is the first life-style-specific genomic island prediction software to perform analyses of PAIs, MIs, RIs and SIs, opening a door for a better understanding of bacterial genome plasticity and the adaptation to new traits. PMID:26376473

    • GIPSy: Genomic island prediction software.

      PubMed

      Soares, Siomar C; Geyik, Hakan; Ramos, Rommel T J; de Sá, Pablo H C G; Barbosa, Eudes G V; Baumbach, Jan; Figueiredo, Henrique C P; Miyoshi, Anderson; Tauch, Andreas; Silva, Artur; Azevedo, Vasco

      2016-08-20

      Bacteria are highly diverse organisms that are able to adapt to a broad range of environments and hosts due to their high genomic plasticity. Horizontal gene transfer plays a pivotal role in this genome plasticity and in evolution by leaps through the incorporation of large blocks of genome sequences, ordinarily known as genomic islands (GEIs). GEIs may harbor genes encoding virulence, metabolism, antibiotic resistance and symbiosis-related functions, namely pathogenicity islands (PAIs), metabolic islands (MIs), resistance islands (RIs) and symbiotic islands (SIs). Although many software for the prediction of GEIs exist, they only focus on PAI prediction and present other limitations, such as complicated installation and inconvenient user interfaces. Here, we present GIPSy, the genomic island prediction software, a standalone and user-friendly software for the prediction of GEIs, built on our previously developed pathogenicity island prediction software (PIPS). We also present four application cases in which we crosslink data from literature to PAIs, MIs, RIs and SIs predicted by GIPSy. Briefly, GIPSy correctly predicted the following previously described GEIs: 13 PAIs larger than 30kb in Escherichia coli CFT073; 1 MI for Burkholderia pseudomallei K96243, which seems to be a miscellaneous island; 1 RI of Acinetobacter baumannii AYE, named AbaR1; and, 1 SI of Mesorhizobium loti MAFF303099 presenting a mosaic structure. GIPSy is the first life-style-specific genomic island prediction software to perform analyses of PAIs, MIs, RIs and SIs, opening a door for a better understanding of bacterial genome plasticity and the adaptation to new traits.

    • Unraveling the 3D genome: genomics tools for multiscale exploration.

      PubMed

      Risca, Viviana I; Greenleaf, William J

      2015-07-01

      A decade of rapid method development has begun to yield exciting insights into the 3D architecture of the metazoan genome and the roles it may play in regulating transcription. Here we review core methods and new tools in the modern genomicist's toolbox at three length scales, ranging from single base pairs to megabase-scale chromosomal domains, and discuss the emerging picture of the 3D genome that these tools have revealed. Blind spots remain, especially at intermediate length scales spanning a few nucleosomes, but thanks in part to new technologies that permit targeted alteration of chromatin states and time-resolved studies, the next decade holds great promise for hypothesis-driven research into the mechanisms that drive genome architecture and transcriptional regulation.

    • Saccharomyces Genome Database: the genomics resource of budding yeast

      PubMed Central

      Cherry, J. Michael; Hong, Eurie L.; Amundsen, Craig; Balakrishnan, Rama; Binkley, Gail; Chan, Esther T.; Christie, Karen R.; Costanzo, Maria C.; Dwight, Selina S.; Engel, Stacia R.; Fisk, Dianna G.; Hirschman, Jodi E.; Hitz, Benjamin C.; Karra, Kalpana; Krieger, Cynthia J.; Miyasato, Stuart R.; Nash, Rob S.; Park, Julie; Skrzypek, Marek S.; Simison, Matt; Weng, Shuai; Wong, Edith D.

      2012-01-01

      The Saccharomyces Genome Database (SGD, http://www.yeastgenome.org) is the community resource for the budding yeast Saccharomyces cerevisiae. The SGD project provides the highest-quality manually curated information from peer-reviewed literature. The experimental results reported in the literature are extracted and integrated within a well-developed database. These data are combined with quality high-throughput results and provided through Locus Summary pages, a powerful query engine and rich genome browser. The acquisition, integration and retrieval of these data allow SGD to facilitate experimental design and analysis by providing an encyclopedia of the yeast genome, its chromosomal features, their functions and interactions. Public access to these data is provided to researchers and educators via web pages designed for optimal ease of use. PMID:22110037

    • Saccharomyces Genome Database: the genomics resource of budding yeast.

      PubMed

      Cherry, J Michael; Hong, Eurie L; Amundsen, Craig; Balakrishnan, Rama; Binkley, Gail; Chan, Esther T; Christie, Karen R; Costanzo, Maria C; Dwight, Selina S; Engel, Stacia R; Fisk, Dianna G; Hirschman, Jodi E; Hitz, Benjamin C; Karra, Kalpana; Krieger, Cynthia J; Miyasato, Stuart R; Nash, Rob S; Park, Julie; Skrzypek, Marek S; Simison, Matt; Weng, Shuai; Wong, Edith D

      2012-01-01

      The Saccharomyces Genome Database (SGD, http://www.yeastgenome.org) is the community resource for the budding yeast Saccharomyces cerevisiae. The SGD project provides the highest-quality manually curated information from peer-reviewed literature. The experimental results reported in the literature are extracted and integrated within a well-developed database. These data are combined with quality high-throughput results and provided through Locus Summary pages, a powerful query engine and rich genome browser. The acquisition, integration and retrieval of these data allow SGD to facilitate experimental design and analysis by providing an encyclopedia of the yeast genome, its chromosomal features, their functions and interactions. Public access to these data is provided to researchers and educators via web pages designed for optimal ease of use. PMID:22110037

    • Human Genome Education Program

      SciTech Connect

      Richard Myers; Lane Conn

      2000-05-01

      The funds from the DOE Human Genome Program, for the project period 2/1/96 through 1/31/98, have provided major support for the curriculum development and field testing efforts for two high school level instructional units: Unit 1, ''Exploring Genetic Conditions: Genes, Culture and Choices''; and Unit 2, ''DNA Snapshots: Peaking at Your DNA''. In the original proposal, they requested DOE support for the partial salary and benefits of a Field Test Coordinator position to: (1) complete the field testing and revision of two high school curriculum units, and (2) initiate the education of teachers using these units. During the project period of this two-year DOE grant, a part-time Field-Test Coordinator was hired (Ms. Geraldine Horsma) and significant progress has been made in both of the original proposal objectives. Field testing for Unit 1 has occurred in over 12 schools (local and non-local sites with diverse student populations). Field testing for Unit 2 has occurred in over 15 schools (local and non-local sites) and will continue in 12-15 schools during the 96-97 school year. For both curricula, field-test sites and site teachers were selected for their interest in genetics education and in hands-on science education. Many of the site teachers had no previous experience with HGEP or the unit under development. Both of these first-year biology curriculum units, which contain genetics, biotechnology, societal, ethical and cultural issues related to HGP, are being implemented in many local and non-local schools (SF Bay Area, Southern California, Nebraska, Hawaii, and Texas) and in programs for teachers. These units will reach over 10,000 students in the SF Bay Area and continues to receive support from local corporate and private philanthropic organizations. Although HGEP unit development is nearing completion for both units, data is still being gathered and analyzed on unit effectiveness and student learning. The final field testing result from this analysis will

    • The UCSC Genome Browser database: 2015 update.

      PubMed

      Rosenbloom, Kate R; Armstrong, Joel; Barber, Galt P; Casper, Jonathan; Clawson, Hiram; Diekhans, Mark; Dreszer, Timothy R; Fujita, Pauline A; Guruvadoo, Luvina; Haeussler, Maximilian; Harte, Rachel A; Heitner, Steve; Hickey, Glenn; Hinrichs, Angie S; Hubley, Robert; Karolchik, Donna; Learned, Katrina; Lee, Brian T; Li, Chin H; Miga, Karen H; Nguyen, Ngan; Paten, Benedict; Raney, Brian J; Smit, Arian F A; Speir, Matthew L; Zweig, Ann S; Haussler, David; Kuhn, Robert M; Kent, W James

      2015-01-01

      Launched in 2001 to showcase the draft human genome assembly, the UCSC Genome Browser database (http://genome.ucsc.edu) and associated tools continue to grow, providing a comprehensive resource of genome assemblies and annotations to scientists and students worldwide. Highlights of the past year include the release of a browser for the first new human genome reference assembly in 4 years in December 2013 (GRCh38, UCSC hg38), a watershed comparative genomics annotation (100-species multiple alignment and conservation) and a novel distribution mechanism for the browser (GBiB: Genome Browser in a Box). We created browsers for new species (Chinese hamster, elephant shark, minke whale), 'mined the web' for DNA sequences and expanded the browser display with stacked color graphs and region highlighting. As our user community increasingly adopts the UCSC track hub and assembly hub representations for sharing large-scale genomic annotation data sets and genome sequencing projects, our menu of public data hubs has tripled.

    • Advances in Genome Biology & Technology

      SciTech Connect

      Thomas J. Albert, Jon R. Armstrong, Raymond K. Auerback, W. Brad Barbazuk, et al.

      2007-12-01

      This year's meeting focused on the latest advances in new DNA sequencing technologies and the applications of genomics to disease areas in biology and biomedicine. Daytime plenary sessions highlighted cutting-edge research in areas such as complex genetic diseases, comparative genomics, medical sequencing, massively parallel DNA sequencing, and synthetic biology. Technical approaches being developed and utilized in contemporary genomics research were presented during evening concurrent sessions. Also, as in previous years, poster sessions bridged the morning and afternoon plenary sessions. In addition, for the third year in a row, the Advances in Genome Biology and Technology (AGBT) meeting was preceded by a pre-meeting workshop that aimed to provide an introductory overview for trainees and other meeting attendees. This year, speakers at the workshop focused on next-generation sequencing technologies, including their experiences, findings, and helpful advise for others contemplating using these platforms in their research. Speakers from genome centers and core sequencing facilities were featured and the workshop ended with a roundtable discussion, during which speakers fielded questions from the audience.

    • Comparative genomics for biodiversity conservation.

      PubMed

      Grueber, Catherine E

      2015-01-01

      Genomic approaches are gathering momentum in biology and emerging opportunities lie in the creative use of comparative molecular methods for revealing the processes that influence diversity of wildlife. However, few comparative genomic studies are performed with explicit and specific objectives to aid conservation of wild populations. Here I provide a brief overview of comparative genomic approaches that offer specific benefits to biodiversity conservation. Because conservation examples are few, I draw on research from other areas to demonstrate how comparing genomic data across taxa may be used to inform the characterisation of conservation units and studies of hybridisation, as well as studies that provide conservation outcomes from a better understanding of the drivers of divergence. A comparative approach can also provide valuable insight into the threatening processes that impact rare species, such as emerging diseases and their management in conservation. In addition to these opportunities, I note areas where additional research is warranted. Overall, comparing and contrasting the genomic composition of threatened and other species provide several useful tools for helping to preserve the molecular biodiversity of the global ecosystem.

  1. Expanding genomics of mycorrhizal symbiosis

    DOE PAGES

    Kuo, Alan; Kohler, Annegret; Martin, Francis M.; Grigoriev, Igor V.

    2014-11-04

    The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolvemore » through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism.« less

  2. Expanding genomics of mycorrhizal symbiosis

    SciTech Connect

    Kuo, Alan; Kohler, Annegret; Martin, Francis M.; Grigoriev, Igor V.

    2014-11-04

    The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolve through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism.

  3. NCBI prokaryotic genome annotation pipeline.

    PubMed

    Tatusova, Tatiana; DiCuccio, Michael; Badretdin, Azat; Chetvernin, Vyacheslav; Nawrocki, Eric P; Zaslavsky, Leonid; Lomsadze, Alexandre; Pruitt, Kim D; Borodovsky, Mark; Ostell, James

    2016-08-19

    Recent technological advances have opened unprecedented opportunities for large-scale sequencing and analysis of populations of pathogenic species in disease outbreaks, as well as for large-scale diversity studies aimed at expanding our knowledge across the whole domain of prokaryotes. To meet the challenge of timely interpretation of structure, function and meaning of this vast genetic information, a comprehensive approach to automatic genome annotation is critically needed. In collaboration with Georgia Tech, NCBI has developed a new approach to genome annotation that combines alignment based methods with methods of predicting protein-coding and RNA genes and other functional elements directly from sequence. A new gene finding tool, GeneMarkS+, uses the combined evidence of protein and RNA placement by homology as an initial map of annotation to generate and modify ab initio gene predictions across the whole genome. Thus, the new NCBI's Prokaryotic Genome Annotation Pipeline (PGAP) relies more on sequence similarity when confident comparative data are available, while it relies more on statistical predictions in the absence of external evidence. The pipeline provides a framework for generation and analysis of annotation on the full breadth of prokaryotic taxonomy. For additional information on PGAP see https://www.ncbi.nlm.nih.gov/genome/annotation_prok/ and the NCBI Handbook, https://www.ncbi.nlm.nih.gov/books/NBK174280/. PMID:27342282

  4. Manipulating duckweed through genome duplication.

    PubMed

    Vunsh, R; Heinig, U; Malitsky, S; Aharoni, A; Avidov, A; Lerner, A; Edelman, M

    2015-01-01

    Significant inter- and intraspecific genetic variation exists in duckweed, thus the potential for genome plasticity and manipulation is high. Polyploidy is recognised as a major mechanism of adaptation and speciation in plants. We produced several genome-duplicated lines of Landoltia punctata (Spirodela oligorrhiza) from both whole plants and regenerating explants using a colchicine-based cocktail. These lines stably maintained an enlarged frond and root morphology. DNA ploidy levels determined by florescence-activated cell sorting indicated genome duplication. Line A4 was analysed after 75 biomass doublings. Frond area, fresh and dry weights, rhizoid number and length were significantly increased versus wild type, while the growth rate was unchanged. This resulted in accumulation of biomass 17-20% faster in the A4 plants. We sought to determine if specific differences in gene products are found in the genome duplicated lines. Non-targeted ultra performance LC-quadrupole time of flight mass spectrometry was employed to compare some of the lines and the wild type to seek identification of up-regulated metabolites. We putatively identified differential metabolites in Line A65 as caffeoyl hexoses. The combination of directed genome duplication and metabolic profiling might offer a path for producing stable gene expression, leading to altered production of secondary metabolites. PMID:25040392

  5. Evolutionary engineering by genome shuffling.

    PubMed

    Biot-Pelletier, Damien; Martin, Vincent J J

    2014-05-01

    An upsurge in the bioeconomy drives the need for engineering microorganisms with increasingly complex phenotypes. Gains in productivity of industrial microbes depend on the development of improved strains. Classical strain improvement programmes for the generation, screening and isolation of such mutant strains have existed for several decades. An alternative to traditional strain improvement methods, genome shuffling, allows the directed evolution of whole organisms via recursive recombination at the genome level. This review deals chiefly with the technical aspects of genome shuffling. It first presents the diversity of organisms and phenotypes typically evolved using this technology and then reviews available sources of genetic diversity and recombination methodologies. Analysis of the literature reveals that genome shuffling has so far been restricted to microorganisms, both prokaryotes and eukaryotes, with an overepresentation of antibiotics- and biofuel-producing microbes. Mutagenesis is the main source of genetic diversity, with few studies adopting alternative strategies. Recombination is usually done by protoplast fusion or sexual recombination, again with few exceptions. For both diversity and recombination, prospective methods that have not yet been used are also presented. Finally, the potential of genome shuffling for gaining insight into the genetic basis of complex phenotypes is also discussed. PMID:24595425

  6. Comparative genomics for biodiversity conservation

    PubMed Central

    Grueber, Catherine E.

    2015-01-01

    Genomic approaches are gathering momentum in biology and emerging opportunities lie in the creative use of comparative molecular methods for revealing the processes that influence diversity of wildlife. However, few comparative genomic studies are performed with explicit and specific objectives to aid conservation of wild populations. Here I provide a brief overview of comparative genomic approaches that offer specific benefits to biodiversity conservation. Because conservation examples are few, I draw on research from other areas to demonstrate how comparing genomic data across taxa may be used to inform the characterisation of conservation units and studies of hybridisation, as well as studies that provide conservation outcomes from a better understanding of the drivers of divergence. A comparative approach can also provide valuable insight into the threatening processes that impact rare species, such as emerging diseases and their management in conservation. In addition to these opportunities, I note areas where additional research is warranted. Overall, comparing and contrasting the genomic composition of threatened and other species provide several useful tools for helping to preserve the molecular biodiversity of the global ecosystem. PMID:26106461

  7. NCBI prokaryotic genome annotation pipeline.

    PubMed

    Tatusova, Tatiana; DiCuccio, Michael; Badretdin, Azat; Chetvernin, Vyacheslav; Nawrocki, Eric P; Zaslavsky, Leonid; Lomsadze, Alexandre; Pruitt, Kim D; Borodovsky, Mark; Ostell, James

    2016-08-19

    Recent technological advances have opened unprecedented opportunities for large-scale sequencing and analysis of populations of pathogenic species in disease outbreaks, as well as for large-scale diversity studies aimed at expanding our knowledge across the whole domain of prokaryotes. To meet the challenge of timely interpretation of structure, function and meaning of this vast genetic information, a comprehensive approach to automatic genome annotation is critically needed. In collaboration with Georgia Tech, NCBI has developed a new approach to genome annotation that combines alignment based methods with methods of predicting protein-coding and RNA genes and other functional elements directly from sequence. A new gene finding tool, GeneMarkS+, uses the combined evidence of protein and RNA placement by homology as an initial map of annotation to generate and modify ab initio gene predictions across the whole genome. Thus, the new NCBI's Prokaryotic Genome Annotation Pipeline (PGAP) relies more on sequence similarity when confident comparative data are available, while it relies more on statistical predictions in the absence of external evidence. The pipeline provides a framework for generation and analysis of annotation on the full breadth of prokaryotic taxonomy. For additional information on PGAP see https://www.ncbi.nlm.nih.gov/genome/annotation_prok/ and the NCBI Handbook, https://www.ncbi.nlm.nih.gov/books/NBK174280/.

  8. Expanding genomics of mycorrhizal symbiosis

    PubMed Central

    Kuo, Alan; Kohler, Annegret; Martin, Francis M.; Grigoriev, Igor V.

    2014-01-01

    The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolve through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism. PMID:25408690

  9. Bacterial pathogen genomics and vaccines.

    PubMed

    Moxon, Richard; Rappuoli, Rino

    2002-01-01

    Infectious diseases remain a major cause of deaths and disabilities in the world, the majority of which are caused by bacteria. Although immunisation is the most cost effective and efficient means to control microbial diseases, vaccines are not yet available to prevent many major bacterial infections. Examples include dysentery (shigellosis), gonorrhoea, trachoma, gastric ulcers and cancer (Helicobacter pylori). Improved vaccines are needed to combat some diseases for which current vaccines are inadequate. Tuberculosis, for example, remains rampant throughout most countries in the world and represents a global emergency heightened by the pandemic of HIV. The availability of complete genome sequences has dramatically changed the opportunities for developing novel and improved vaccines and facilitated the efficiency and rapidity of their development. Complete genomic databases provide an inclusive catalogue of all potential candidate vaccines for any bacterial pathogen. In conjunction with adjunct technologies, including bioinformatics, random mutagenesis, microarrays, and proteomics, a systematic and comprehensive approach to identifying vaccine discovery can be undertaken. Genomics must be used in conjunction with population biology to ensure that the vaccine can target all pathogenic strains of a species. A proof in principle of the utility of genomics is provided by the recent exploitation of the complete genome sequence of Neisseria meningitidis group B.

  10. The genome of Prunus mume

    PubMed Central

    Zhang, Qixiang; Chen, Wenbin; Sun, Lidan; Zhao, Fangying; Huang, Bangqing; Yang, Weiru; Tao, Ye; Wang, Jia; Yuan, Zhiqiong; Fan, Guangyi; Xing, Zhen; Han, Changlei; Pan, Huitang; Zhong, Xiao; Shi, Wenfang; Liang, Xinming; Du, Dongliang; Sun, Fengming; Xu, Zongda; Hao, Ruijie; Lv, Tian; Lv, Yingmin; Zheng, Zequn; Sun, Ming; Luo, Le; Cai, Ming; Gao, Yike; Wang, Junyi; Yin, Ye; Xu, Xun; Cheng, Tangren; Wang, Jun

    2012-01-01

    Prunus mume (mei), which was domesticated in China more than 3,000 years ago as ornamental plant and fruit, is one of the first genomes among Prunus subfamilies of Rosaceae been sequenced. Here, we assemble a 280M genome by combining 101-fold next-generation sequencing and optical mapping data. We further anchor 83.9% of scaffolds to eight chromosomes with genetic map constructed by restriction-site-associated DNA sequencing. Combining P. mume genome with available data, we succeed in reconstructing nine ancestral chromosomes of Rosaceae family, as well as depicting chromosome fusion, fission and duplication history in three major subfamilies. We sequence the transcriptome of various tissues and perform genome-wide analysis to reveal the characteristics of P. mume, including its regulation of early blooming in endodormancy, immune response against bacterial infection and biosynthesis of flower scent. The P. mume genome sequence adds to our understanding of Rosaceae evolution and provides important data for improvement of fruit trees. PMID:23271652

  11. Transcriptional Regulation: a Genomic Overview

    PubMed Central

    Riechmann, José Luis

    2002-01-01

    The availability of the Arabidopsis thaliana genome sequence allows a comprehensive analysis of transcriptional regulation in plants using novel genomic approaches and methodologies. Such a genomic view of transcription first necessitates the compilation of lists of elements. Transcription factors are the most numerous of the different types of proteins involved in transcription in eukaryotes, and the Arabidopsis genome codes for more than 1,500 of them, or approximately 6% of its total number of genes. A genome-wide comparison of transcription factors across the three eukaryotic kingdoms reveals the evolutionary generation of diversity in the components of the regulatory machinery of transcription. However, as illustrated by Arabidopsis, transcription in plants follows similar basic principles and logic to those in animals and fungi. A global view and understanding of transcription at a cellular and organismal level requires the characterization of the Arabidopsis transcriptome and promoterome, as well as of the interactome, the localizome, and the phenome of the proteins involved in transcription. PMID:22303220

  12. Genomic profiling of breast cancers

    PubMed Central

    Curtis, Christina

    2015-01-01

    Purpose of review To describe recent advances in the application of advanced genomic technologies towards the identification of biomarkers of prognosis and treatment response in breast cancer. Recent findings Advances in high-throughput genomic profiling such as massively parallel sequencing have enabled researchers to catalogue the spectrum of somatic alterations in breast cancers. These tools also hold promise for precision medicine through accurate patient prognostication, stratification, and the dynamic monitoring of treatment response. For example, recent efforts have defined robust molecular subgroups of breast cancer and novel subtype-specific oncogenes. In addition, previously unappreciated activating mutations in human epidermal growth factor receptor 2 have been reported, suggesting new therapeutic opportunities. Genomic profiling of cell-free tumor DNA and circulating tumor cells has been used to monitor disease burden and the emergence of resistance, and such ‘liquid biopsy’ approaches may facilitate the early, noninvasive detection of aggressive disease. Finally, single-cell genomics is coming of age and will contribute to an understanding of breast cancer evolutionary dynamics. Summary Here, we highlight recent studies that employ high-throughput genomic technologies in an effort to elucidate breast cancer biology, discover new therapeutic targets, improve prognostication and stratification, and discuss the implications for precision cancer medicine. PMID:25502431

  13. Pseudomonas genomes: diverse and adaptable.

    PubMed

    Silby, Mark W; Winstanley, Craig; Godfrey, Scott A C; Levy, Stuart B; Jackson, Robert W

    2011-07-01

    Members of the genus Pseudomonas inhabit a wide variety of environments, which is reflected in their versatile metabolic capacity and broad potential for adaptation to fluctuating environmental conditions. Here, we examine and compare the genomes of a range of Pseudomonas spp. encompassing plant, insect and human pathogens, and environmental saprophytes. In addition to a large number of allelic differences of common genes that confer regulatory and metabolic flexibility, genome analysis suggests that many other factors contribute to the diversity and adaptability of Pseudomonas spp. Horizontal gene transfer has impacted the capability of pathogenic Pseudomonas spp. in terms of disease severity (Pseudomonas aeruginosa) and specificity (Pseudomonas syringae). Genome rearrangements likely contribute to adaptation, and a considerable complement of unique genes undoubtedly contributes to strain- and species-specific activities by as yet unknown mechanisms. Because of the lack of conserved phenotypic differences, the classification of the genus has long been contentious. DNA hybridization and genome-based analyses show close relationships among members of P. aeruginosa, but that isolates within the Pseudomonas fluorescens and P. syringae species are less closely related and may constitute different species. Collectively, genome sequences of Pseudomonas spp. have provided insights into pathogenesis and the genetic basis for diversity and adaptation.

  14. Manipulating duckweed through genome duplication.

    PubMed

    Vunsh, R; Heinig, U; Malitsky, S; Aharoni, A; Avidov, A; Lerner, A; Edelman, M

    2015-01-01

    Significant inter- and intraspecific genetic variation exists in duckweed, thus the potential for genome plasticity and manipulation is high. Polyploidy is recognised as a major mechanism of adaptation and speciation in plants. We produced several genome-duplicated lines of Landoltia punctata (Spirodela oligorrhiza) from both whole plants and regenerating explants using a colchicine-based cocktail. These lines stably maintained an enlarged frond and root morphology. DNA ploidy levels determined by florescence-activated cell sorting indicated genome duplication. Line A4 was analysed after 75 biomass doublings. Frond area, fresh and dry weights, rhizoid number and length were significantly increased versus wild type, while the growth rate was unchanged. This resulted in accumulation of biomass 17-20% faster in the A4 plants. We sought to determine if specific differences in gene products are found in the genome duplicated lines. Non-targeted ultra performance LC-quadrupole time of flight mass spectrometry was employed to compare some of the lines and the wild type to seek identification of up-regulated metabolites. We putatively identified differential metabolites in Line A65 as caffeoyl hexoses. The combination of directed genome duplication and metabolic profiling might offer a path for producing stable gene expression, leading to altered production of secondary metabolites.

  15. Genomic signatures in microbes -- properties and applications.

    PubMed

    Bohlin, Jon

    2011-03-22

    The ratio of genomic oligonucleotide frequencies relative to the mean genomic AT/GC content has been shown to be similar for closely related species and, therefore, said to reflect a "genomic signature". The genomic signature has been found to be more similar within genomes than between closely related genomes. Furthermore, genomic signatures of closely related organisms are, in turn, more similar than more distantly related organisms. Since the genomic signature is remarkably stable within a genome, it can be extracted from only a fraction of the genomic DNA sequence. Genomic signatures, therefore, have many applications. The most notable examples include recognition of pathogenicity islands in microbial genomes and identification of hosts from arbitrary DNA sequences, the latter being of great importance in metagenomics. What shapes the genomic signature in microbial DNA has been readily discussed, but difficult to pinpoint exactly. Most attempts so far have mainly focused on correlations from in silico data. This mini-review seeks to summarize possible influences shaping the genomic signature and to survey a set of applications.

  16. Genomes on the Edge: Programmed Genome Instability in Ciliates

    PubMed Central

    Bracht, John R.; Fang, Wenwen; Goldman, Aaron David; Dolzhenko, Egor; Stein, Elizabeth M.; Landweber, Laura F.

    2013-01-01

    Ciliates are an ancient and diverse group of microbial eukaryotes that have emerged as powerful models for RNA-mediated epigenetic inheritance. They possess extensive sets of both tiny and long noncoding RNAs that, together with a suite of proteins that includes transposases, orchestrate a broad cascade of genome rearrangements during somatic nuclear development. This Review emphasizes three important themes: the remarkable role of RNA in shaping genome structure, recent discoveries that unify many deeply diverged ciliate genetic systems, and a surprising evolutionary “sign change” in the role of small RNAs between major species groups. PMID:23374338

  17. [Comparison of mitochondrial genomes of bivalves].

    PubMed

    SONG, Wen-Tao; GAO, Xiang-Gang; LI, Yun-Feng; LIU, Wei-Dong; LIU, Ying; HE, Chong-Bo

    2009-11-01

    The structure and organization of mitochondrial genomes of 14 marine bivalves and two freshwater bivalves were analyzed using comparative genomics and bioinformatics methods. The results showed that the organization and gene order of the mitochondrial genomes of these bivalve species studied were different from each other. The size, organization, gene numbers, and gene order of mitochondrial genomes in bivalves at different taxa were different. Phylogenetic analysis using the whole mitochondrial genomes and all the coding genes showed different results-- phylogenetic analysis conducted using the whole mitochondrial genomes was consistent with the existing classification and phylogenetic analysis conducted using all coding genes not consistent with the existing classification.

  18. A physical map of the human genome

    SciTech Connect

    McPherson, J.D.; Marra, M.; Hillier, L.; Waterston, R.H.; Chinwalla, A.; Wallis, J.; Sekhon, M.; Wylie, K.; Mardis, E.R.; Wilson, R.K.; Fulton, R.; Kucaba, T.A.; Wagner-McPherson, C.; Barbazuk, W.B.; Gregory, S.G.; Humphray, S.J.; French, L.; Evans, R.S.; Bethel, G.; Whittaker, A.; Holden, J.L.; McCann, O.T.; Dunham, A.; Soderlund, C.; Scott, C.E.; Bentley, D.R.; Schuler, G.; Chen, H.-C.; Jang, W.; Green, E.D.; Idol, J.R.; Maduro, V.V. Braden; Montgomery, K.T.; Lee, E.; Miller, A.; Emerling, S.; Kucherlapati; Gibbs, R.; Scherer, S.; Gorrell, J.H.; Sodergren, E.; Clerc-Blankenburg, K.; Tabor, P.; Naylor, S.; Garcia, D.; de Jong, P.J.; Catanese, J.J.; Nowak, N.; Osoegawa, K.; Qin, S.; Rowen, L.; Madan, A.; Dors, M.; Hood, L.; Trask, B.; Friedman, C.; Massa, H.; Cheung, V.G.; Kirsch, I.R.; Reid, T.; Yonescu, R.; Weissenbach, J.; Bruls, T.; Heilig, R.; Branscomb, E.; Olsen, A.; Doggett, N.; Cheng, J.F.; Hawkins, T.; Myers, R.M.; Shang, J.; Ramirez, L.; Schmutz, J.; Velasquez, O.; Dixon, K.; Stone, N.E.; Cox, D.R.; Haussler, D.; Kent, W.J.; Furey, T.; Rogic, S.; Kennedy, S.; Jones, S.; Rosenthal, A.; Wen, G.; Schilhabel, M.; Gloeckner, G.; Nyakatura, G.; Siebert, R.; Schlegelberger, B.; Korenberg, J.; Chen, X.N.; Fujiyama, A.; Hattori, M.; Toyoda, A.; Yada, T.; Park, H.S.; Sakaki, Y.; Shimizu, N.; Asakawa, S.; Kawasaki, K.; Sasaki, T.; Shintani, A.; Shimizu, A.; Shibuya, K.; Kudoh, J.; Minoshima, S.; Ramser, J.; Seranski, P.; Hoff, C.; Poustka, A.; Reinhardt, R.; Lehrach, H.

    2001-01-01

    The human genome is by far the largest genome to be sequenced, and its size and complexity present many challenges for sequence assembly. The International Human Genome Sequencing Consortium constructed a map of the whole genome to enable the selection of clones for sequencing and for the accurate assembly of the genome sequence. Here we report the construction of the whole-genome bacterial artificial chromosome (BAC) map and its integration with previous landmark maps and information from mapping efforts focused on specific chromosomal regions. We also describe the integration of sequence data with the map.

  19. Genomics and the origin of species.

    PubMed

    Seehausen, Ole; Butlin, Roger K; Keller, Irene; Wagner, Catherine E; Boughman, Janette W; Hohenlohe, Paul A; Peichel, Catherine L; Saetre, Glenn-Peter; Bank, Claudia; Brännström, Ake; Brelsford, Alan; Clarkson, Chris S; Eroukhmanoff, Fabrice; Feder, Jeffrey L; Fischer, Martin C; Foote, Andrew D; Franchini, Paolo; Jiggins, Chris D; Jones, Felicity C; Lindholm, Anna K; Lucek, Kay; Maan, Martine E; Marques, David A; Martin, Simon H; Matthews, Blake; Meier, Joana I; Möst, Markus; Nachman, Michael W; Nonaka, Etsuko; Rennison, Diana J; Schwarzer, Julia; Watson, Eric T; Westram, Anja M; Widmer, Alex

    2014-03-01

    Speciation is a fundamental evolutionary process, the knowledge of which is crucial for understanding the origins of biodiversity. Genomic approaches are an increasingly important aspect of this research field. We review current understanding of genome-wide effects of accumulating reproductive isolation and of genomic properties that influence the process of speciation. Building on this work, we identify emergent trends and gaps in our understanding, propose new approaches to more fully integrate genomics into speciation research, translate speciation theory into hypotheses that are testable using genomic tools and provide an integrative definition of the field of speciation genomics.

  20. Environmental Influences on Genomic Imprinting.

    PubMed

    Kappil, Maya; Lambertini, Luca; Chen, Jia

    2015-06-01

    Genomic imprinting refers to the epigenetic mechanism that results in the mono-allelic expression of a subset of genes in a parent-of-origin manner. These haploid genes are highly active in the placenta and are functionally implicated in the appropriate development of the fetus. Furthermore, the epigenetic marks regulating imprinted expression patterns are established early in development. These characteristics make genomic imprinting a potentially useful biomarker for environmental insults, especially during the in utero or early development stages, and for health outcomes later in life. Herein, we critically review the current literature regarding environmental influences on imprinted genes and summarize findings that suggest that imprinted loci are sensitive to known teratogenic agents, such as alcohol and tobacco, as well as less established factors with the potential to manipulate the in utero environment, including assisted reproductive technology. Finally, we discuss the potential of genomic imprinting to serve as an environmental sensor during early development.