Sample records for i1 receptor antagonist

  1. NMDA receptor antagonists inhibit catalepsy induced by either dopamine D1 or D2 receptor antagonists.

    PubMed

    Moore, N A; Blackman, A; Awere, S; Leander, J D

    1993-06-11

    In the present study, we investigated the ability of NMDA receptor antagonists to inhibit catalepsy induced by haloperidol, or SCH23390 and clebopride, selective dopamine D1 and D2 receptor antagonists respectively. Catalepsy was measured by recording the time the animal remained with its forepaws placed over a rod 6 cm above the bench. Pretreatment with either the non-competitive NMDA receptor antagonist, MK-801 (0.25-0.5 mg/kg i.p.) or the competitive antagonist, LY274614 (10-20 mg/kg i.p.) reduced the cataleptic response produced by haloperidol (10 mg/kg), SCH23390 (2.5-10 mg/kp i.p.) or clebopride (5-20 mg/kg i.p.). This demonstrates that NMDA receptor antagonists will reduce both dopamine D1 and D2 receptor antagonist-induced catalepsy. Muscle relaxant doses of chlordiazepoxide (10 mg/kg i.p.) failed to reduce the catalepsy induced by haloperidol, suggesting that the anticataleptic effect of the NMDA receptor antagonists was not due to a non-specific action. These results support the hypothesis that NMDA receptor antagonists may have beneficial effects in disorders involving reduced dopaminergic function, such as Parkinson's disease.

  2. Mortality Benefit of Recombinant Human Interleukin-1 Receptor Antagonist for Sepsis Varies by Initial Interleukin-1 Receptor Antagonist Plasma Concentration.

    PubMed

    Meyer, Nuala J; Reilly, John P; Anderson, Brian J; Palakshappa, Jessica A; Jones, Tiffanie K; Dunn, Thomas G; Shashaty, Michael G S; Feng, Rui; Christie, Jason D; Opal, Steven M

    2018-01-01

    Plasma interleukin-1 beta may influence sepsis mortality, yet recombinant human interleukin-1 receptor antagonist did not reduce mortality in randomized trials. We tested for heterogeneity in the treatment effect of recombinant human interleukin-1 receptor antagonist by baseline plasma interleukin-1 beta or interleukin-1 receptor antagonist concentration. Retrospective subgroup analysis of randomized controlled trial. Multicenter North American and European clinical trial. Five hundred twenty-nine subjects with sepsis and hypotension or hypoperfusion, representing 59% of the original trial population. Random assignment of placebo or recombinant human interleukin-1 receptor antagonist × 72 hours. We measured prerandomization plasma interleukin-1 beta and interleukin-1 receptor antagonist and tested for statistical interaction between recombinant human interleukin-1 receptor antagonist treatment and baseline plasma interleukin-1 receptor antagonist or interleukin-1 beta concentration on 28-day mortality. There was significant heterogeneity in the effect of recombinant human interleukin-1 receptor antagonist treatment by plasma interleukin-1 receptor antagonist concentration whether plasma interleukin-1 receptor antagonist was divided into deciles (interaction p = 0.046) or dichotomized (interaction p = 0.028). Interaction remained present across different predicted mortality levels. Among subjects with baseline plasma interleukin-1 receptor antagonist above 2,071 pg/mL (n = 283), recombinant human interleukin-1 receptor antagonist therapy reduced adjusted mortality from 45.4% to 34.3% (adjusted risk difference, -0.12; 95% CI, -0.23 to -0.01), p = 0.044. Mortality in subjects with plasma interleukin-1 receptor antagonist below 2,071 pg/mL was not reduced by recombinant human interleukin-1 receptor antagonist (adjusted risk difference, +0.07; 95% CI, -0.04 to +0.17), p = 0.230. Interaction between plasma interleukin-1 beta concentration and recombinant human

  3. Effects of an orally active vasopressin V1 receptor antagonist.

    PubMed

    Burrell, L M; Phillips, P A; Stephenson, J; Risvanis, J; Hutchins, A M; Johnston, C I

    1993-05-01

    1. This paper reports on the in vitro and in vivo characteristics of a non-peptide vasopressin V1 receptor antagonist 1-(1-[4-(3-acetylaminopropoxy)benzoyl]-4-piperidyl)-3,4-dihydro-2( 1H)- quinolinone (OPC-21268). 2. OPC-21268 caused a concentration-dependent displacement of the selective V1 receptor antagonist radioligand, [125I]-[d(CH2)5, sarcosine7]AVP from vasopressin V1 receptors in rat liver and kidney membranes, inhibitory concentration of 50% (IC50) 4 x 10(-8), 0.3 mol/L liver and 1.5 x 10(-8), 0.2 mol/L kidney. OPC-21268 had little effect on the selective V2 antagonist radioligand [3H]desGly-NH2(9)-d(CH2)5[D-Ileu2, Ileu4]AVP binding to V2 receptors in renal membranes (IC50 > 10(-4) mol/L). 3. After oral administration to rats, OPC-21268 was an effective V1 antagonist to both liver and kidney V1 receptors, in a dose-dependent manner. 4. These studies confirm that OPC-21268 is a potent non-peptide, orally effective V1 vasopressin receptor antagonist.

  4. Functionalized Congeners of P2Y1 Receptor Antagonists:

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Castro, Sonia; Maruoka, Hiroshi; Hong, Kunlun

    2010-01-01

    The P2Y{sub 1} receptor is a prothrombotic G protein-coupled receptor (GPCR) activated by ADP. Preference for the North (N) ring conformation of the ribose moiety of adenine nucleotide 3',5'-bisphosphate antagonists of the P2Y{sub 1} receptor was established by using a ring-constrained methanocarba (a bicyclo[3.1.0]hexane) ring as a ribose substitute. A series of covalently linkable N{sup 6}-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphates containing extended 2-alkynyl chains was designed, and binding affinity at the human (h) P2Y{sub 1} receptor determined. The chain of these functionalized congeners contained hydrophilic moieties, a reactive substituent, or biotin, linked via an amide. Variation of the chain length and position of anmore » intermediate amide group revealed high affinity of carboxylic congener 8 (K{sub i} 23 nM) and extended amine congener 15 (K{sub i} 132 nM), both having a 2-(1-pentynoyl) group. A biotin conjugate 18 containing an extended {epsilon}-aminocaproyl spacer chain exhibited higher affinity than a shorter biotinylated analogue. Alternatively, click coupling of terminal alkynes of homologous 2-dialkynyl nucleotide derivatives to alkyl azido groups produced triazole derivatives that bound to the P2Y{sub 1} receptor following deprotection of the bisphosphate groups. The preservation of receptor affinity of the functionalized congeners was consistent with new P2Y{sub 1} receptor modeling and ligand docking. Attempted P2Y{sub 1} antagonist conjugation to PAMAM dendrimer carriers by amide formation or palladium-catalyzed reaction between an alkyne on the dendrimer and a 2-iodopurine-derivatized nucleotide was unsuccessful. A dialkynyl intermediate containing the chain length favored in receptor binding was conjugated to an azide-derivatized dendrimer, and the conjugate inhibited ADP-promoted human platelet aggregation. This is the first example of attaching a strategically functionalized P2Y receptor antagonist to a PAMAM

  5. Reduced sickle erythrocyte dehydration in vivo by endothelin-1 receptor antagonists.

    PubMed

    Rivera, Alicia

    2007-09-01

    Elevated plasma levels of cytokines such as endothelin-1 (ET-1) have been shown to be associated with sickle cell disease (SCD). However, the role of ET-1 in the pathophysiology of SCD is not entirely clear. I now show that treatment of SAD mice, a transgenic mouse model of SCD, with BQ-788 (0.33 mg.kg(-1).day(-1) intraperitoneally for 14 days), an ET-1 receptor B (ET(B)) antagonist, induced a significant decrease in Gardos channel activity (1.7 +/- 0.1 to 1.0 +/- 0.4 mmol.10(13) cell(-1).h(-1), n = 3, P = 0.019) and reduced the erythrocyte density profile by decreasing the mean density (D(50); n = 4, P = 0.012). These effects were not observed in mice treated with BQ-123, an ET-1 receptor A (ET(A)) antagonist. A mixture of both antagonists induced a similar change in density profile as with BQ-788 alone that was associated with an increase in mean cellular volume and a decrease in corpuscular hemoglobin concentration mean. I also observed in vitro effects of ET-1 on human sickle erythrocyte dehydration that was blocked by BQ-788 and a mixture of ET(B)/ET(A) antagonists but not by ET(A) antagonist alone. These results show that erythrocyte hydration status in vivo is mediated via activation of the ET(B) receptor, leading to Gardos channel modulation in SCD.

  6. Design of novel neurokinin 1 receptor antagonists based on conformationally constrained aromatic amino acids and discovery of a potent chimeric opioid agonist-neurokinin 1 receptor antagonist

    PubMed Central

    Ballet, Steven; Feytens, Debby; Buysse, Koen; Chung, Nga N.; Lemieux, Carole; Tumati, Suneeta; Keresztes, Attila; Van Duppen, Joost; Lai, Josephine; Varga, Eva; Porreca, Frank; Schiller, Peter W.; Broeck, Jozef Vanden; Tourwé, Dirk

    2011-01-01

    A screening of conformationally constrained aromatic amino acids as base cores for the preparation of new NK1 receptor antagonists resulted in the discovery of three new NK1 receptor antagonists, 19 [Ac-Aba-Gly-NH-3′,5′-(CF3)2-Bn], 20 [Ac-Aba-Gly-NMe-3′,5′-(CF3)2-Bn] and 23 [Ac-Tic-NMe-3′,5′-(CF3)2-Bn], which were able to counteract the agonist effect of substance P, the endogenous ligand of NK1R. The most active NK1 antagonist of the series, 20 [Ac-Aba-Gly-NMe-3′,5′-(CF3)2-Bn], was then used in the design of a novel, potent chimeric opioid agonist-NK1 receptor antagonist, 35 [Dmt-D-Arg-Aba-Gly-NMe-3′,5′-(CF3)2-Bn], which combines the N-terminus of the established Dmt1-DALDA agonist opioid pharmacophore (H-Dmt-D-Arg-Phe-Lys-NH2) and 20, the NK1R ligand. The opioid component of the chimeric compound 35, i.e. Dmt-D-Arg-Aba-Gly-NH2 36, also proved to be an extremely potent and balanced μ- and δ opioid receptor agonist with subnanomolar binding and in vitro functional activity. PMID:21413804

  7. Non-NMDA receptor antagonist-induced drinking in rat

    NASA Technical Reports Server (NTRS)

    Xu, Z.; Johnson, A. K.

    1998-01-01

    Glutamate has been implicated in the central control of mechanisms that maintain body fluid homeostasis. The present studies demonstrate that intracerebroventricular (i.c.v.) injections of the non-N-methyl-d-aspartate (NMDA) receptor antagonists 6, 7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyano-7-nitroquinoxaline-2,3 dione (CNQX) induce drinking in rats. The dipsogenic effect of i.c.v. DNQX was antagonized by the non-NMDA receptor agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). The water intake induced by DNQX was also blocked by pretreatment with a NMDA receptor antagonist, MK-801, but not by angiotensin type 1 (AT1) or acetylcholine muscarinic receptor antagonists (losartan and atropine). The results indicate that non-NMDA receptors may exert a tonic inhibitory effect within brain circuits that control dipsogenic activity and that functional integrity of NMDA receptors may be required for the non-NMDA receptor antagonists to induce water intake. Copyright 1998 Published by Elsevier Science B.V.

  8. Nonpeptidic urotensin-II receptor antagonists I: in vitro pharmacological characterization of SB-706375

    PubMed Central

    Douglas, Stephen A; Behm, David J; Aiyar, Nambi V; Naselsky, Diane; Disa, Jyoti; Brooks, David P; Ohlstein, Eliot H; Gleason, John G; Sarau, Henry M; Foley, James J; Buckley, Peter T; Schmidt, Dulcie B; Wixted, William E; Widdowson, Katherine; Riley, Graham; Jin, Jian; Gallagher, Timothy F; Schmidt, Stanley J; Ridgers, Lance; Christmann, Lisa T; Keenan, Richard M; Knight, Steven D; Dhanak, Dashyant

    2005-01-01

    SB-706375 potently inhibited [125I]hU-II binding to both mammalian recombinant and ‘native' UT receptors (Ki 4.7±1.5 to 20.7±3.6 nM at rodent, feline and primate recombinant UT receptors and Ki 5.4±0.4 nM at the endogenous UT receptor in SJRH30 cells). Prior exposure to SB-706375 (1 μM, 30 min) did not alter [125I]hU-II binding affinity or density in recombinant cells (KD 3.1±0.4 vs 5.8±0.9 nM and Bmax 3.1±1.0 vs 2.8±0.8 pmol mg−1) consistent with a reversible mode of action. The novel, nonpeptidic radioligand [3H]SB-657510, a close analogue of SB-706375, bound to the monkey UT receptor (KD 2.6±0.4 nM, Bmax 0.86±0.12 pmol mg−1) in a manner that was inhibited by both U-II isopeptides and SB-706375 (Ki 4.6±1.4 to 17.6±5.4 nM) consistent with the sulphonamides and native U-II ligands sharing a common UT receptor binding domain. SB-706375 was a potent, competitive hU-II antagonist across species with pKb 7.29–8.00 in HEK293-UT receptor cells (inhibition of [Ca2+]i-mobilization) and pKb 7.47 in rat isolated aorta (inhibition of contraction). SB-706375 also reversed tone established in the rat aorta by prior exposure to hU-II (Kapp∼20 nM). SB-706375 was a selective U-II antagonist with ⩾100-fold selectivity for the human UT receptor compared to 86 distinct receptors, ion channels, enzymes, transporters and nuclear hormones (Ki/IC50>1 μM). Accordingly, the contractile responses induced in isolated aortae by KCl, phenylephrine, angiotensin II and endothelin-1 were unaltered by SB-706375 (1 μM). In summary, SB-706375 is a high-affinity, surmountable, reversible and selective nonpeptide UT receptor antagonist with cross-species activity that will assist in delineating the pathophysiological actions of U-II in mammals. PMID:15852036

  9. Behavioral, biological, and chemical perspectives on targeting CRF1 receptor antagonists to treat alcoholism

    PubMed Central

    Zorrilla, Eric P.; Heilig, Markus; de Wit, Harriet; Shaham, Yavin

    2013-01-01

    Background Alcohol use disorders are chronic disabling conditions for which existing pharmacotherapies have only modest efficacy. In the present review, derived from the 2012 Behavior, Biology and Chemistry “Translational Research in Addiction” symposium, we summarize the anti-relapse potential of corticotropin-releasing factor type 1 (CRF1) receptor antagonists to reduce negative emotional symptoms of acute and protracted alcohol withdrawal and stress-induced relapse to alcohol seeking. Methods We review the biology of CRF1 systems, the activity of CRF1 receptor antagonists in animal models of anxiolytic and antidepressant activity, and experimental findings in alcohol addiction models. We also update the clinical trial status of CRF1 receptor antagonists, including pexacerfont (BMS-562086), emicerfont (GW876008), verucerfont (GSK561679), CP316311, SSR125543A, R121919/NBI30775, R317573/19567470/CRA5626, and ONO-2333Ms. Finally, we discuss the potential heterogeneity and pharmacogenomics of CRF1 receptor pharmacotherapy for alcohol dependence. Results The evidence suggests that brain penetrant-CRF1 receptor antagonists have therapeutic potential for alcohol dependence. Lead compounds with clinically desirable pharmacokinetic properties now exist, and longer receptor residence rates (i.e., slow dissociation) may predict greater CRF1 receptor antagonist efficacy. Functional variants in genes that encode CRF system molecules, including polymorphisms in Crhr1 (rs110402, rs1876831, rs242938) and Crhbp genes (rs10055255, rs3811939) may promote alcohol seeking and consumption by altering basal or stress-induced CRF system activation. Conclusions Ongoing clinical trials with pexacerfont and verucerfont in moderately to highly severe dependent anxious alcoholics may yield insight as to the role of CRF1 receptor antagonists in a personalized medicine approach to treat drug or alcohol dependence. PMID:23294766

  10. Characterization of a novel non-peptide vasopressin V1 receptor antagonist (OPC-21268) in the rat.

    PubMed

    Burrell, L M; Phillips, P A; Stephenson, J; Risvanis, J; Hutchins, A M; Johnston, C I

    1993-08-01

    A non-peptide, orally effective, vasopressin (AVP) V1 receptor antagonist 1-(1-[4-(3-acetylaminopropoxy) benzoyl]-4-piperidyl)-3,4-dihydro-2(1H)-quinolinone (OPC-21268) has recently been described. This paper reports the in-vitro and in-vivo characterization of OPC-21268 binding to vasopressin receptors in rat liver and kidney. OPC-21268 caused a concentration-dependent displacement of the selective V1 receptor antagonist radioligand, 125I-labelled [d(CH2)5,sarcosine7]AVP to V1 receptors in both rat liver and kidney medulla membranes. The concentration of OPC-21268 that displaced 50% of specific AVP binding (IC50) was 40 +/- 3 nmol/l for liver V1 and 15 +/- 2 nmol/l for kidney V1 receptors (mean +/- S.E.M.; n = 3). OPC-21268 had little effect on the selective V2 antagonist radioligand [3H]desGly-NH2(9)]d(CH2)5,D-Ile2,Ile4] AVP binding to V2 receptors in renal medulla membranes (IC50 > 0.1 mmol/l). After oral administration to rats, OPC-21268 was an effective V1 antagonist in a time- and dose-dependent manner. Binding kinetic studies showed that OPC-21268 acted as a competitive antagonist at the liver V1 receptor in vitro and in vivo, in addition to its in-vitro competitive effects at the renal V1 receptor. OPC-21268 shows promise as an orally active V1 antagonist.

  11. Non-selectivity of new bradykinin antagonists for B1 receptors.

    PubMed

    Rhaleb, N E; Gobeil, F; Regoli, D

    1992-01-01

    Two new B1 receptor antagonists, [Hyp3,Thi5,DTic7,Oic8]desArg9-BK and DArg[Hyp3,Thi5,DTic7,Oic8]desArg9-BK were tested in vitro on the rabbit jugular vein and the guinea pig ileum (preparations containing B2 receptors) and on the rabbit aorta (preparation containing B1 receptors) for pharmacological characterization. The results indicate that both compounds are antagonists on both B1 and B2 receptors, are competitive and discriminate between B2A and B2B receptor subtypes.

  12. Kinin B1 receptor antagonists containing alpha-methyl-L-phenylalanine: in vitro and in vivo antagonistic activities.

    PubMed

    Gobeil, F; Charland, S; Filteau, C; Perron, S I; Neugebauer, W; Regoli, D

    1999-03-01

    -To protect from metabolism and to improve potency of the AcLys-[D-betaNal7,Ile8]desArg9-bradykinin (BK) (R 715), we prepared and tested 3 analogues containing alpha-methyl-L-Phe ([alphaMe]Phe) in position 5: these are the AcLys-[(alphaMe)Phe5,D-betaNal7, Ile8]desArg9BK (R 892), Lys-Lys-[(alphaMe)Phe5,D-betaNal7, Ile8]desArg9BK (R 913), and AcLys-Lys-[(alphaMe)Phe5,D-betaNal7, Ile8]desArg9BK (R 914). The new compounds were tested against the contractile effect induced by desArg9BK on 2 B1 receptor bioassays, the human umbilical vein, and the rabbit aorta. Their antagonistic activities were compared with those of the early prototypes (Lys-[Leu8]desArg9BK and [Leu8]desArg9BK) and with other recently described peptide antagonists. The 3 (alphaMe)Phe analogues showed high antagonistic potencies (pA2) at both the human (8.8, 7.7, and 8. 7, respectively) and rabbit (8.6, 7.8, and 8.6, respectively) B1 receptors. No antagonistic effects (pA2<5) were observed on the B2 receptors that mediate the contractile effects of BK on the human umbilical vein, the rabbit jugular vein, and the guinea pig ileum. Moreover, these new B1 antagonists were found to be resistant to in vitro degradation by purified angiotensin-converting enzyme from rabbit lung. The Nalpha-acetylated forms, R 892 and R 914, were resistant to aminopeptidases from human plasma. In vivo antagonistic potencies (ID50) of B1 receptor antagonists were evaluated in anesthetized lipopolysaccharide-treated (for B1 receptor) and nontreated (for B2 receptor) rabbits against the hypotensive effects of exogenous desArg9BK and BK. R 892 efficiently inhibited (ID50 2.8 nmol/kg IV) hypotension induced by desArg9BK without affecting that evoked by BK (ID50 >600 nmol/kg IV). Conversely, the peptide antagonists Lys-Lys-[Hyp3,Igl5,D-Igl7,Oic8]desArg9BK (B 9858) and DArg-[Hyp3,Thi5,D-Tic7,Oic8] desArg9BK (S 0765) showed dual B1/B2 receptor antagonism in vitro and in vivo. It is concluded that R 892 and congeners provide selective

  13. Chemokine receptor antagonists: part 2.

    PubMed

    Pease, James E; Horuk, Richard

    2009-02-01

    The first part of this two-part review discussed approaches to generating antagonists for some of the CC chemokine receptors, including CCR1, CCR2, CCR3, and CCR4. This second part of the series concludes the review by describing antagonists for CCR5, CCR8, CCR9, CXCR3, CXCR4, and promiscuous antagonists. Chemokine receptor antagonists have found mixed success as therapeutics. Although one antagonist--maraviroc, a CCR5 inhibitor to treat AIDS--has been registered as an approved drug, this is the only success so far. There have been many failures in the clinic and we discuss the idea of promiscuous receptor antagonists as an alternative approach.

  14. Design and Synthesis of Benzimidazoles As Novel Corticotropin-Releasing Factor 1 Receptor Antagonists.

    PubMed

    Mochizuki, Michiyo; Kori, Masakuni; Kobayashi, Katsumi; Yano, Takahiko; Sako, Yuu; Tanaka, Maiko; Kanzaki, Naoyuki; Gyorkos, Albert C; Corrette, Christopher P; Cho, Suk Young; Pratt, Scott A; Aso, Kazuyoshi

    2016-03-24

    Benzazole derivatives with a flexible aryl group bonded through a one-atom linker as a new scaffold for a corticotropin-releasing factor 1 (CRF1) receptor antagonist were designed, synthesized, and evaluated. We expected that structural diversity could be expanded beyond that of reported CRF1 receptor antagonists. In a structure-activity relationship study, 4-chloro-N(2)-(4-chloro-2-methoxy-6-methylphenyl)-1-methyl-N(7),N(7)-dipropyl-1H-benzimidazole-2,7-diamine 29g had the most potent binding activity against a human CRF1 receptor and the antagonistic activity (IC50 = 9.5 and 88 nM, respectively) without concerns regarding cytotoxicity at 30 μM. Potent CRF1 receptor-binding activity in brain in an ex vivo test and suppression of stress-induced activation of the hypothalamus-pituitary-adrenocortical (HPA) axis were also observed at 138 μmol/kg of compound 29g after oral administration in mice. Thus, the newly designed benzimidazole 29g showed in vivo CRF1 receptor antagonistic activity and good brain penetration, indicating that it is a promising lead for CRF1 receptor antagonist drug discovery research.

  15. Design of novel neurokinin 1 receptor antagonists based on conformationally constrained aromatic amino acids and discovery of a potent chimeric opioid agonist-neurokinin 1 receptor antagonist.

    PubMed

    Ballet, Steven; Feytens, Debby; Buysse, Koen; Chung, Nga N; Lemieux, Carole; Tumati, Suneeta; Keresztes, Attila; Van Duppen, Joost; Lai, Josephine; Varga, Eva; Porreca, Frank; Schiller, Peter W; Vanden Broeck, Jozef; Tourwé, Dirk

    2011-04-14

    A screening of conformationally constrained aromatic amino acids as base cores for the preparation of new NK1 receptor antagonists resulted in the discovery of three new NK1 receptor antagonists, 19 [Ac-Aba-Gly-NH-3',5'-(CF(3))(2)-Bn], 20 [Ac-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], and 23 [Ac-Tic-NMe-3',5'-(CF(3))(2)-Bn], which were able to counteract the agonist effect of substance P, the endogenous ligand of NK1R. The most active NK1 antagonist of the series, 20 [Ac-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], was then used in the design of a novel, potent chimeric opioid agonist-NK1 receptor antagonist, 35 [Dmt-D-Arg-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], which combines the N terminus of the established Dmt(1)-DALDA agonist opioid pharmacophore (H-Dmt-D-Arg-Phe-Lys-NH(2)) and 20, the NK1R ligand. The opioid component of the chimeric compound 35, that is, Dmt-D-Arg-Aba-Gly-NH(2) (36), also proved to be an extremely potent and balanced μ and δ opioid receptor agonist with subnanomolar binding and in vitro functional activity.

  16. Vasopressin and a nonpeptide antidiuretic hormone receptor antagonist (OPC-31260).

    PubMed

    Burrell, L M; Phillips, P A; Stephenson, J M; Risvanis, J; Johnston, C I

    1994-03-01

    The development of nonpeptide orally active AVP analogues has provided a new tool with which to assess the physiological and pathophysiological role of vasopressin (AVP). We have previously characterised the nonpeptide vasopressin V1 receptor antagonist OPC-21268, and now report the in vitro characterisation of the nonpeptide V2 receptor antagonist OPC-31260 in the rat. OPC-31260 caused a concentration-dependent displacement of the selective AVP V2 receptor antagonist radioligand, [3H]desGly-NH2(9)[d(CH2)5, D-Ile2,Ile4]AVP from V2 receptors in rat kidney medulla membranes. The concentration of OPC-31260 that displaced 50% of specific AVP binding (IC50) was 20 +/- 2 nmol/l for renal V2 receptors. OPC-31260 also caused a concentration-dependent displacement of the selective AVP V1 receptor antagonist radioligand, [125I]-[d(CH2)5,sarcosine7]AVP from V1 receptors in both rat liver and kidney medulla membranes. The IC50 was 500 +/- 30 nmol/l for both renal and liver V1 receptors. After oral administration to rats, OPC-31260 was an effective inhibitor of AVP at renal V2 and liver V1 receptors in a time-dependent manner. In vitro binding kinetic studies showed that OPC-31260 was a competitive antagonist at both the renal V2 receptor and the hepatic V1 receptor. OPC-31260 is a nonpeptide, orally effective competitive inhibitor of AVP with a V2:V1 receptor selectivity ratio of 25:1 indicating relative V2 receptor selectivity.

  17. Design, synthesis and biological evaluation of a bivalent micro opiate and adenosine A1 receptor antagonist.

    PubMed

    Mathew, Smitha C; Ghosh, Nandita; By, Youlet; Berthault, Aurélie; Virolleaud, Marie-Alice; Carrega, Louis; Chouraqui, Gaëlle; Commeiras, Laurent; Condo, Jocelyne; Attolini, Mireille; Gaudel-Siri, Anouk; Ruf, Jean; Parrain, Jean-Luc; Rodriguez, Jean; Guieu, Régis

    2009-12-01

    The cross talk between different membrane receptors is the source of increasing research. We designed and synthesized a new hetero-bivalent ligand that has antagonist properties on both A(1) adenosine and mu opiate receptors with a K(i) of 0.8+/-0.05 and 0.7+/-0.03 microM, respectively. This hybrid molecule increases cAMP production in cells that over express the mu receptor as well as those over expressing the A(1) adenosine receptor and reverses the antalgic effects of mu and A(1) adenosine receptor agonists in animals.

  18. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist.

    PubMed

    Aksentijevich, Ivona; Masters, Seth L; Ferguson, Polly J; Dancey, Paul; Frenkel, Joost; van Royen-Kerkhoff, Annet; Laxer, Ron; Tedgård, Ulf; Cowen, Edward W; Pham, Tuyet-Hang; Booty, Matthew; Estes, Jacob D; Sandler, Netanya G; Plass, Nicole; Stone, Deborah L; Turner, Maria L; Hill, Suvimol; Butman, John A; Schneider, Rayfel; Babyn, Paul; El-Shanti, Hatem I; Pope, Elena; Barron, Karyl; Bing, Xinyu; Laurence, Arian; Lee, Chyi-Chia R; Chapelle, Dawn; Clarke, Gillian I; Ohson, Kamal; Nicholson, Marc; Gadina, Massimo; Yang, Barbara; Korman, Benjamin D; Gregersen, Peter K; van Hagen, P Martin; Hak, A Elisabeth; Huizing, Marjan; Rahman, Proton; Douek, Daniel C; Remmers, Elaine F; Kastner, Daniel L; Goldbach-Mansky, Raphaela

    2009-06-04

    Autoinflammatory diseases manifest inflammation without evidence of infection, high-titer autoantibodies, or autoreactive T cells. We report a disorder caused by mutations of IL1RN, which encodes the interleukin-1-receptor antagonist, with prominent involvement of skin and bone. We studied nine children from six families who had neonatal onset of sterile multifocal osteomyelitis, periostitis, and pustulosis. Response to empirical treatment with the recombinant interleukin-1-receptor antagonist anakinra in the first patient prompted us to test for the presence of mutations and changes in proteins and their function in interleukin-1-pathway genes including IL1RN. We identified homozygous mutations of IL1RN in nine affected children, from one family from Newfoundland, Canada, three families from The Netherlands, and one consanguineous family from Lebanon. A nonconsanguineous patient from Puerto Rico was homozygous for a genomic deletion that includes IL1RN and five other interleukin-1-family members. At least three of the mutations are founder mutations; heterozygous carriers were asymptomatic, with no cytokine abnormalities in vitro. The IL1RN mutations resulted in a truncated protein that is not secreted, thereby rendering cells hyperresponsive to interleukin-1beta stimulation. Patients treated with anakinra responded rapidly. We propose the term deficiency of the interleukin-1-receptor antagonist, or DIRA, to denote this autosomal recessive autoinflammatory disease caused by mutations affecting IL1RN. The absence of interleukin-1-receptor antagonist allows unopposed action of interleukin-1, resulting in life-threatening systemic inflammation with skin and bone involvement. (ClinicalTrials.gov number, NCT00059748.) 2009 Massachusetts Medical Society

  19. PSNCBAM-1, a novel allosteric antagonist at cannabinoid CB1 receptors with hypophagic effects in rats.

    PubMed

    Horswill, J G; Bali, U; Shaaban, S; Keily, J F; Jeevaratnam, P; Babbs, A J; Reynet, C; Wong Kai In, P

    2007-11-01

    Rimonabant (Acomplia, SR141716A), a cannabinoid CB1 receptor inverse agonist, has recently been approved for the treatment of obesity. There are, however, concerns regarding its side effect profile. Developing a CB1 antagonist with a different pharmacological mechanism may lead to a safer alternative. To this end we have screened a proprietary small molecule library and have discovered a novel class of allosteric antagonist at CB1 receptors. Herein, we have characterized an optimized prototypical molecule, PSNCBAM-1, and its hypophagic effects in vivo. A CB1 yeast reporter assay was used as a primary screen. PSNCBAM-1 was additionally characterized in [35S]-GTPgammaS, cAMP and radioligand binding assays. An acute rat feeding model was used to evaluate its effects on food intake and body weight in vivo. In CB1 receptor yeast reporter assays, PSNCBAM-1 blocked the effects induced by agonists such as CP55,940, WIN55212-2, anandamide (AEA) or 2-arachidonoyl glycerol (2-AG). The antagonist characteristics of PSNCBAM-1 were confirmed in [35S]-GTPgammaS binding and cAMP assays and was shown to be non-competitive by Schild analyses. PSNCBAM-1 did not affect CB2 receptors. In radioligand binding assays, PSNCBAM-1 increased the binding of [3H]CP55,940 despite its antagonist effects. In an acute rat feeding model, PSNCBAM-1 decreased food intake and body weight. PSNCBAM-1 exerted its effects through selective allosteric modulation of the CB1 receptor. The acute effects on food intake and body weight induced in rats provide a first report of in vivo activity for an allosteric CB1 receptor antagonist.

  20. OPC-21268, an orally effective, nonpeptide vasopressin V1 receptor antagonist.

    PubMed

    Yamamura, Y; Ogawa, H; Chihara, T; Kondo, K; Onogawa, T; Nakamura, S; Mori, T; Tominaga, M; Yabuuchi, Y

    1991-04-26

    An orally effective, nonpeptide, vasopressin V1 receptor antagonist, OPC-21268, has been identified. This compound selectively antagonized binding to the V1 subtype of the vasopressin receptor in a competitive manner. In vivo, the compound acted as a specific antagonist of arginine vasopressin (AVP)-induced vasoconstriction. After oral administration in conscious rats, the compound also antagonized pressor responses to AVP. OPC-21268 can be used to study the physiological role of AVP and may be therapeutically useful in the treatment of hypertension and congestive heart failure.

  1. Competitive antagonists discriminate between NK2 tachykinin receptor subtypes.

    PubMed

    Maggi, C A; Patacchini, R; Giuliani, S; Rovero, P; Dion, S; Regoli, D; Giachetti, A; Meli, A

    1990-07-01

    1. We have compared the ability of various tachykinins and selective tachykinin receptor agonists to induce contraction of the endothelium-denuded rabbit pulmonary artery (RPA) and hamster trachea (HT) and have estimated the affinity of some newly developed NK2 selective antagonists in the same tissues. 2. In confirmation of previous findings, experiments with the agonists indicated that NK2 receptors are the main if not the sole mediators of the response to tachykinins in both RPA and HT. No evidence for significant degradation of neurokinin A (NKA) was found in either tissue when experiments were repeated in the presence of a mixture of peptidase inhibitors (thiorphan, captopril and bestatin, 1 microM each). 3. The peptide antagonists tested were: Peptide I = [Tyr5, D-Trp6,8,9, Arg10]-NKA(4-10); Peptide II = [Tyr5, D-Trp6,8,9, Arg10]-NKA(3-10); Peptide III = Ac-Leu-Asp-Gln-Trp-Phe-Gly-NH2. The three peptides produced a concentration-dependent rightward shift of the concentration-response curve to NKA in both RPA and HT with no significant depression of the maximal response attainable. The slopes of the Schild plots were not significantly different from unity, indicating a competitive antagonism. Peptides I and II were about 100 times more potent in the RPA than in the HT, while Peptide III was about 100 times more potent in the HT than RPA. 4. The pA2 values obtained in these two tissues with the three antagonists were not significantly different when tested in the absence or presence of peptidase inhibitors, or when a selective NK2 receptor agonist, [beta Ala8]-NKA(4-10) was used instead of NKA. Similar pA2 values were obtained after 15 or 90min of incubation with the antagonists. Peptides I, II and III had no inhibitory effect on contractions produced by noradrenaline in the RPA or by carbachol in the HT. 5. Peptides I, II and III showed weak or no antagonistic activity toward the vasodilatator effect of substance P in the dog carotid artery (NK, receptor

  2. Structural determinants for antagonist pharmacology that distinguish the rho1 GABAC receptor from GABAA receptors.

    PubMed

    Zhang, Jianliang; Xue, Fenqin; Chang, Yongchang

    2008-10-01

    GABA receptor (GABAR) types C (GABACR) and A (GABAAR) are both GABA-gated chloride channels that are distinguished by their distinct competitive antagonist properties. The structural mechanism underlying these distinct properties is not well understood. In this study, using previously identified binding residues as a guide, we made individual or combined mutations of nine binding residues in the rho1 GABACR subunit to their counterparts in the alpha1beta2gamma2 GABAAR or reverse mutations in alpha1 or beta2 subunits. The mutants were expressed in Xenopus laevis oocytes and tested for sensitivities of GABA-induced currents to the GABAA and GABAC receptor antagonists. The results revealed that bicuculline insensitivity of the rho1 GABACR was mainly determined by Tyr106, Phe138 and Phe240 residues. Gabazine insensitivity of the rho1 GABACR was highly dependent on Tyr102, Tyr106, and Phe138. The sensitivity of the rho1 GABACR to 3-aminopropyl-phosphonic acid and its analog 3-aminopropyl-(methyl)phosphinic acid mainly depended on residues Tyr102, Val140, FYS240-242, and Phe138. Thus, the residues Tyr102, Tyr106, Phe138, and Phe240 in the rho1 GABACR are major determinants for its antagonist properties distinct from those in the GABAAR. In addition, Val140 in the GABACR contributes to 3-APA binding. In conclusion, we have identified the key structural elements underlying distinct antagonist properties for the GABACR. The mechanistic insights were further extended and discussed in the context of antagonists docking to the homology models of GABAA or GABAC receptors.

  3. PSNCBAM-1, a novel allosteric antagonist at cannabinoid CB1 receptors with hypophagic effects in rats

    PubMed Central

    Horswill, J G; Bali, U; Shaaban, S; Keily, J F; Jeevaratnam, P; Babbs, A J; Reynet, C; Wong Kai In, P

    2007-01-01

    Background and purpose: Rimonabant (AcompliaTM, SR141716A), a cannabinoid CB1 receptor inverse agonist, has recently been approved for the treatment of obesity. There are, however, concerns regarding its side effect profile. Developing a CB1 antagonist with a different pharmacological mechanism may lead to a safer alternative. To this end we have screened a proprietary small molecule library and have discovered a novel class of allosteric antagonist at CB1 receptors. Herein, we have characterized an optimized prototypical molecule, PSNCBAM-1, and its hypophagic effects in vivo. Experimental approach: A CB1 yeast reporter assay was used as a primary screen. PSNCBAM-1 was additionally characterized in [35S]-GTPγS, cAMP and radioligand binding assays. An acute rat feeding model was used to evaluate its effects on food intake and body weight in vivo. Key results: In CB1 receptor yeast reporter assays, PSNCBAM-1 blocked the effects induced by agonists such as CP55,940, WIN55212-2, anandamide (AEA) or 2-arachidonoyl glycerol (2-AG). The antagonist characteristics of PSNCBAM-1 were confirmed in [35S]-GTPγS binding and cAMP assays and was shown to be non-competitive by Schild analyses. PSNCBAM-1 did not affect CB2 receptors. In radioligand binding assays, PSNCBAM-1 increased the binding of [3H]CP55,940 despite its antagonist effects. In an acute rat feeding model, PSNCBAM-1 decreased food intake and body weight. Conclusions and implications: PSNCBAM-1 exerted its effects through selective allosteric modulation of the CB1 receptor. The acute effects on food intake and body weight induced in rats provide a first report of in vivo activity for an allosteric CB1 receptor antagonist. PMID:17592509

  4. MEN15596, a novel nonpeptide tachykinin NK2 receptor antagonist.

    PubMed

    Cialdai, Cecilia; Tramontana, Manuela; Patacchini, Riccardo; Lecci, Alessandro; Catalani, Claudio; Catalioto, Rose-Marie; Meini, Stefania; Valenti, Claudio; Altamura, Maria; Giuliani, Sandro; Maggi, Carlo Alberto

    2006-11-07

    The pharmacological profile of MEN15596 or (6-methyl-benzo[b]thiophene-2-carboxylic acid [1-(2-phenyl-1R-{[1-(tetrahydropyran-4-ylmethyl)-piperidin-4-ylmethyl]-carbamoyl}-ethylcarbamoyl)-cyclopentyl]-amide), a novel potent and selective tachykinin NK2 receptor antagonist endowed with oral activity, is described. At the human recombinant tachykinin NK2 receptor, MEN15596 showed subnanomolar affinity (pKi 10.1) and potently antagonized (pKB 9.1) the neurokinin A-induced intracellular calcium release. MEN15596 selectivity for the tachykinin NK2 receptor was assessed by binding studies at the recombinant tachykinin NK1 (pKi 6.1) and NK3 (pKi 6.4) receptors, and at a number of 34 molecular targets including receptors, transporters and ion channels. In isolated smooth muscle preparations MEN15596 showed a marked species selectivity at the tachykinin NK2 receptor with the highest antagonist potency in guinea-pig colon, human and pig bladder (pKB 9.3, 9.2 and 8.8, respectively) whereas it was three orders of magnitude less potent in the rat and mouse urinary bladder (pKB 6.3 and 5.8, respectively). In agreement with binding experiments, MEN15596 showed low potency in blocking selective NK1 or NK3 receptor agonist-induced contractions of guinea-pig ileum preparations (pA2receptor agonist, [betaAla8]neurokinin A(4-10) (3 nmol/kg i.v.), either after intravenous (ED50 0.18 micromol/kg), intraduodenal (ED50 3.16 micromol/kg) or oral administration (10-30 micromol/kg) without affecting, at 3 micromol/kg, i.v., the colonic contractions produced by the NK1 receptor selective agonist [Sar9]substance P sulfone (3 nmol/kg i.v.). In addition MEN15596 was effective in inhibiting bronchoconstriction produced by i.v. administration of [betaAla8]neurokinin A(4-10). Overall the results indicate that MEN15596 is a potent and selective

  5. Neurokinin-1 receptor antagonists for chemotherapy-induced nausea and vomiting.

    PubMed

    Aziz, Fahad

    2012-07-01

    Chemotherapy can be a life-prolonging treatment for many cancer patients, but it is often associated with profound nausea and vomiting that is so distressing that patients may delay or decline treatment to avoid these side effects. The discovery of several NK1 receptor antagonists is a big revolution to dealt this problem. NK1 receptor antagonists prevent both acute and delayed chemotherapy-induced nausea and vomiting (CINV). These agents act centrally at NK-1 receptors in vomiting centers within the central nervous system to block their activation by substance P released as an unwanted consequence of chemotherapy. By controlling nausea and vomiting, these agents help improve patients' daily living and their ability to complete multiple cycles of chemotherapy. They are effective for both moderately and highly emetogenic chemotherapy regimens. Their use might be associated with increased infection rates; however, additional appraisal of specific data from RCTs is needed.

  6. Potential antipsychotic properties of central cannabinoid (CB1) receptor antagonists.

    PubMed

    Roser, Patrik; Vollenweider, Franz X; Kawohl, Wolfram

    2010-03-01

    Delta(9)-Tetrahydrocannabinol (Delta(9)-THC), the principal psychoactive constituent of the Cannabis sativa plant, and other agonists at the central cannabinoid (CB(1)) receptor may induce characteristic psychomotor effects, psychotic reactions and cognitive impairment resembling schizophrenia. These effects of Delta(9)-THC can be reduced in animal and human models of psychopathology by two exogenous cannabinoids, cannabidiol (CBD) and SR141716. CBD is the second most abundant constituent of Cannabis sativa that has weak partial antagonistic properties at the CB(1) receptor. CBD inhibits the reuptake and hydrolysis of anandamide, the most important endogenous CB(1) receptor agonist, and exhibits neuroprotective antioxidant activity. SR141716 is a potent and selective CB(1) receptor antagonist. Since both CBD and SR141716 can reverse many of the biochemical, physiological and behavioural effects of CB(1) receptor agonists, it has been proposed that both CBD and SR141716 have antipsychotic properties. Various experimental studies in animals, healthy human volunteers, and schizophrenic patients support this notion. Moreover, recent studies suggest that cannabinoids such as CBD and SR141716 have a pharmacological profile similar to that of atypical antipsychotic drugs. In this review, both preclinical and clinical studies investigating the potential antipsychotic effects of both CBD and SR141716 are presented together with the possible underlying mechanisms of action.

  7. Prostanoid receptor antagonists: development strategies and therapeutic applications

    PubMed Central

    Jones, RL; Giembycz, MA; Woodward, DF

    2009-01-01

    Identification of the primary products of cyclo-oxygenase (COX)/prostaglandin synthase(s), which occurred between 1958 and 1976, was followed by a classification system for prostanoid receptors (DP, EP1, EP2 …) based mainly on the pharmacological actions of natural and synthetic agonists and a few antagonists. The design of potent selective antagonists was rapid for certain prostanoid receptors (EP1, TP), slow for others (FP, IP) and has yet to be achieved in certain cases (EP2). While some antagonists are structurally related to the natural agonist, most recent compounds are ‘non-prostanoid’ (often acyl-sulphonamides) and have emerged from high-throughput screening of compound libraries, made possible by the development of (functional) assays involving single recombinant prostanoid receptors. Selective antagonists have been crucial to defining the roles of PGD2 (acting on DP1 and DP2 receptors) and PGE2 (on EP1 and EP4 receptors) in various inflammatory conditions; there are clear opportunities for therapeutic intervention. The vast endeavour on TP (thromboxane) antagonists is considered in relation to their limited pharmaceutical success in the cardiovascular area. Correspondingly, the clinical utility of IP (prostacyclin) antagonists is assessed in relation to the cloud hanging over the long-term safety of selective COX-2 inhibitors. Aspirin apart, COX inhibitors broadly suppress all prostanoid pathways, while high selectivity has been a major goal in receptor antagonist development; more targeted therapy may require an intermediate position with defined antagonist selectivity profiles. This review is intended to provide overviews of each antagonist class (including prostamide antagonists), covering major development strategies and current and potential clinical usage. PMID:19624532

  8. Antinociceptive effects of MSVIII-19, a functional antagonist of the GluK1 kainate receptor

    PubMed Central

    Qiu, Chang-Shen; Wyhe, Leanne Lash-Van; Sasaki, Makoto; Sakai, Ryuichi; Swanson, Geoffrey T.; Gereau, Robert W.

    2011-01-01

    The ionotropic glutamate receptor subunit, GluK1 (GluR5), is expressed in many regions of nervous system related to sensory transmission. Recently, a selective ligand for the GluK1 receptor, MSVIII-19 (8,9-dideoxy-neodysiherbaine), was synthesized as a derivative of dysiherbaine, a toxin isolated from the marine sponge Lendenfeldia chodrodes. MSVIII-19 potently desensitizes GluK1 receptors without channel activation, rendering it useful as a functional antagonist. Given the high selectivity for GluK1 and the proposed role for this glutamate receptor in nociception, we sought to test the analgesic potential of MSVIII-19 in a series of models of inflammatory, neuropathic, and visceral pain in mice. MSVIII-19 delivered intrathecally (i.t.) dose-dependently reduced formalin-induced spontaneous behaviors and reduced thermal hypersensitivity 3 hours after formalin injection and 24 hours after complete freund’s adjuvant-induced inflammation, but had no effect on mechanical sensitivity in the same models. I.T. MSVIII-19 significantly reduced both thermal hyperalgesia and mechanical hypersensitivity in the chronic constriction injury model of neuropathic pain, but had no effect in the acetic acid model of visceral pain. Peripheral administration of MSVIII-19 had no analgesic efficacy in any of these models. Finally, i.t. MSVIII-19 did not alter responses in tail flick tests or performance on the accelerating RotaRod. These data suggest that spinal administration of MSVIII-19 reverses hypersensitivity in several models of pain in mice, supporting the clinical potential of GluK1 antagonists for the management of pain. PMID:21324591

  9. Attenuation in rats of impairments of memory by scopolamine, a muscarinic receptor antagonist, by mecamylamine, a nicotinic receptor antagonist.

    PubMed

    Newman, L A; Gold, P E

    2016-03-01

    Scopolamine, a muscarinic antagonist, impairs learning and memory for many tasks, supporting an important role for the cholinergic system in these cognitive functions. The findings are most often interpreted to indicate that a decrease in postsynaptic muscarinic receptor activation mediates the memory impairments. However, scopolamine also results in increased release of acetylcholine in the brain as a result of blocking presynaptic muscarinic receptors. The present experiments assess whether scopolamine-induced increases in acetylcholine release may impair memory by overstimulating postsynaptic cholinergic nicotinic receptors, i.e., by reaching the high end of a nicotinic receptor activation inverted-U dose-response function. Rats tested in a spontaneous alternation task showed dose-dependent working memory deficits with systemic injections of mecamylamine and scopolamine. When an amnestic dose of scopolamine (0.15 mg/kg) was co-administered with a subamnestic dose of mecamylamine (0.25 mg/kg), this dose of mecamylamine significantly attenuated the scopolamine-induced memory impairments. We next assessed the levels of acetylcholine release in the hippocampus in the presence of scopolamine and mecamylamine. Mecamylamine injections resulted in decreased release of acetylcholine, while scopolamine administration caused a large increase in acetylcholine release. These findings indicate that a nicotinic antagonist can attenuate impairments in memory produced by a muscarinic antagonist. The nicotinic antagonist may block excessive activation of nicotinic receptors postsynaptically or attenuate increases in acetylcholine release presynaptically. Either effect of a nicotinic antagonist-to decrease scopolamine-induced increases in acetylcholine output or to decrease postsynaptic acetylcholine receptor activation-may mediate the negative effects on memory of muscarinic antagonists.

  10. An Autoinflammatory Disease with Deficiency of the Interleukin-1Receptor Antagonist

    PubMed Central

    Aksentijevich, Ivona; Masters, Seth L.; Ferguson, Polly J.; Dancey, Paul; Frenkel, Joost; van Royen-Kerkhoff, Annet; Laxer, Ron; Tedgård, Ulf; Cowen, Edward W.; Pham, Tuyet-Hang; Booty, Matthew; Estes, Jacob D.; Sandler, Netanya G.; Plass, Nicole; Stone, Deborah L.; Turner, Maria L.; Hill, Suvimol; Butman, John A.; Schneider, Rayfel; Babyn, Paul; El-Shanti, Hatem I.; Pope, Elena; Barron, Karyl; Bing, Xinyu; Laurence, Arian; Lee, Chyi-Chia R.; Chapelle, Dawn; Clarke, Gillian I.; Ohson, Kamal; Nicholson, Marc; Gadina, Massimo; Yang, Barbara; Korman, Benjamin D.; Gregersen, Peter K.; van Hagen, P. Martin; Hak, A. Elisabeth; Huizing, Marjan; Rahman, Proton; Douek, Daniel C.; Remmers, Elaine F.; Kastner, Daniel L.; Goldbach-Mansky, Raphaela

    2010-01-01

    Background Autoinflammatory diseases manifest inflammation without evidence of infection, high-titer autoantibodies, or autoreactive T cells. We report a disorder caused by mutations of IL1RN, which encodes the interleukin-1receptor antagonist, with prominent involvement of skin and bone. Methods We studied nine children from six families who had neonatal onset of sterile multifocal osteomyelitis, periostitis, and pustulosis. Response to empirical treatment with the recombinant interleukin-1receptor antagonist anakinra in the first patient prompted us to test for the presence of mutations and changes in proteins and their function in interleukin-1–pathway genes including IL1RN. Results We identified homozygous mutations of IL1RN in nine affected children, from one family from Newfoundland, Canada, three families from the Netherlands, and one consanguineous family from Lebanon. A nonconsanguineous patient from Puerto Rico was homozygous for a genomic deletion that includes IL1RN and five other interleukin-1–family members. At least three of the mutations are founder mutations; heterozygous carriers were asymptomatic, with no cytokine abnormalities in vitro. The IL1RN mutations resulted in a truncated protein that is not secreted, thereby rendering cells hyperresponsive to interleukin-1β stimulation. Patients treated with anakinra responded rapidly. Conclusions We propose the term deficiency of the interleukin-1receptor antagonist, or DIRA, to denote this autosomal recessive autoinflammatory disease caused by mutations affecting IL1RN. The absence of interleukin-1receptor antagonist allows unopposed action of interleukin-1, resulting in life-threatening systemic inflammation with skin and bone involvement. (ClinicalTrials.gov number, NCT00059748.) PMID:19494218

  11. Discovery of potent peptide-mimetic antagonists for the human thrombin receptor, protease-activated receptor-1 (PAR-1).

    PubMed

    Maryanoff, Bruce E; Zhang, Han-Cheng; Andrade-Gordon, Patricia; Derian, Claudia K

    2003-03-01

    Protease-activated receptors (PARs) represent a unique family of seven-transmembrane G-protein-coupled receptors, which are enzymatically cleaved to expose a new extracellular N-terminus that acts as a tethered activating ligand. PAR-1 is cleaved and activated by the serine protease alpha-thrombin, is expressed in various tissues (e.g. platelets and vascular cells), and is involved in cellular responses associated with hemostasis, proliferation, and tissue injury. By using a de novo design approach, we have discovered a series of potent heterocycle-based peptide-miimetic antagonists of PAR-1, exemplified by advanced leads RWJ-56110 (22) and RWJ-58259 (32). These compounds are potent, selective PAR-1 antagonists, devoid of PAR-1 agonist and thrombin inhibitory activity: they bind to PAR-1, interfere with calcium mobilization and cellular functions associated with PAR-1, and do not affect PAR-2, PAR-3, or PAR-4. RWJ-56110 was determined to be a direct inhibitor of PAR-1 activation and internalization, without affecting PAR-1 N-terminal cleavage. At high concentrations of alpha-thrombin, RWJ-56110 fully blocked activation responses in human vascular cells, but not in human platelets; whereas, at high concentrations of TRAP-6, RWJ-56110 blocked activation responses in both cell types. This result is consistent with the presence of another thrombin receptor on human platelets, namely PAR-4. RWJ-56110 and RWJ-58259 clearly interrupt the binding of a tethered ligand to its receptor. RWJ-58259 demonstrated antirestenotic activity in a rat balloon angioplasty model and antithrombotic activity in a cynomolgus monkey arterial injury model. Such PAR-1 antagonists should not only serve as useful tools to delineate the physiological and pathophysiological roles of PAR-1, but also may have therapeutic potential for treating thrombosis and restenosis in humans.

  12. Comparative, general pharmacology of SDZ NKT 343, a novel, selective NK1 receptor antagonist

    PubMed Central

    Walpole, C S J; Brown, M C S; James, I F; Campbell, E A; McIntyre, P; Docherty, R; Ko, S; Hedley, L; Ewan, S; Buchheit, K-H; Urban, L A

    1998-01-01

    The in vitro and in vivo pharmacology of SDZ NKT 343 (2-nitrophenyl-carbamoyl-(S)-prolyl-(S)-3-(2-naphthyl)alanyl-N-benzyl-N-methylamide), a novel tachykinin NK1 receptor antagonist was investigated.SDZ NKT 343 inhibited [3H]-substance P binding to the human NK1 receptor in transfected Cos-7 cell membranes (IC50=0.62±0.11 nM). In comparison, in the same assay Ki values for FK888, CP 99,994, SR 140,333 and RPR 100,893 were 2.13±0.04 nM, 0.96±0.20 nM, 0.15±0.06 nM and 1.77±0.41 nM, respectively. SDZ NKT 343 showed a markedly lower affinity at rat NK1 receptors in whole forebrain membranes (IC50=451±139 nM).SDZ NKT 343 caused an increase in EC50 as well as reduction in the number of binding sites (Bmax) determined for [3H]-substance P, suggesting a non-competitive interaction at the human NK1 receptor. SDZ NKT 343 also caused a reduction in the maximum elevation of [Ca2+]i evoked by substance P (SP) in human U373MG cells and depressed the maximum [Sar9]SP sulphone-induced contraction of the guinea-pig isolated ileum. The antagonism of SP effects on U373MG cells by SDZ NKT 343 was reversible.SDZ NKT 343 showed weak affinity to human NK2 and NK3 receptors in transfected Cos-7 cells (Ki of 0.52±0.04 μM and 3.4±1.2 μM, respectively). SDZ NKT 343 was inactive in a broad array of binding assays including the bradykinin B2 receptor the histamine H1 receptor, opiate receptors and adrenoceptors. SDZ NKT 343 only weakly inhibited the voltage-activated Ca2+ and Na+currents in guinea-pig dorsal root ganglion neurones. The enantiomer of SDZ NKT 343, (R,R)-SDZ NKT 343 was about 1000 times less active at human NK1 receptors expressed in Cos-7 cell membranes.Contractions of the guinea-pig ileum by [Sar9]SP sulphone were inhibited by SDZ NKT 343 in a concentration-dependent manner, with an IC50=1.60±0.94 nM, while the enantiomer (R,R)-SDZ NKT 343 was 100 times less active (IC50=162±26 nM). In comparison, in the same assay IC50 values for other NK1

  13. Agonist and antagonist actions of antipsychotic agents at 5-HT1A receptors: a [35S]GTPgammaS binding study.

    PubMed

    Newman-Tancredi, A; Gavaudan, S; Conte, C; Chaput, C; Touzard, M; Verrièle, L; Audinot, V; Millan, M J

    1998-08-21

    Recombinant human (h) 5-HT1A receptor-mediated G-protein activation was characterised in membranes of transfected Chinese hamster ovary (CHO) cells by use of guanosine-5'-O-(3-[35S]thio)-triphosphate ([35S]GTPgammaS binding). The potency and efficacy of 21 5-HT receptor agonists and antagonists was determined. The agonists, 5-CT (carboxamidotryptamine) and flesinoxan displayed high affinity (subnanomolar Ki values) and high efficacy (Emax > 90%, relative to 5-HT = 100%). In contrast, ipsapirone, zalospirone and buspirone displayed partial agonist activity. EC50s for agonist stimulation of [35S]GTPgammaS binding correlated well with Ki values from competition binding (r = +0.99). Among the compounds tested for antagonist activity, methiothepin and (+)butaclamol exhibited 'inverse agonist' behaviour, inhibiting basal [35S]GTPgammaS binding. The actions of 17 antipsychotic agents were investigated. Clozapine and several putatively 'atypical' antipsychotic agents, including ziprasidone, quetiapine and tiospirone, exhibited partial agonist activity and marked affinity at h5-HT1A receptors, similar to their affinity at hD2 dopamine receptors. In contrast, risperidone and sertindole displayed low affinity at h5-HT1A receptors and behaved as 'neutral' antagonists, inhibiting 5-HT-stimulated [35S]GTPgammaS binding. Likewise the 'typical' neuroleptics, haloperidol, pimozide, raclopride and chlorpromazine exhibited relatively low affinity and 'neutral' antagonist activity at h5-HT1A receptors with Ki values which correlated with their respective Kb values. The present data show that (i) [35S]GTPgammaS binding is an effective method to evaluate the efficacy and potency of agonists and antagonists at recombinant human 5-HT1A receptors. (ii) Like clozapine, several putatively 'atypical' antipsychotic drugs display balanced serotonin h5-HT1A/dopamine hD2 receptor affinity and partial agonist activity at h5-HT1A receptors. (iii) Several 'typical' and some putatively 'atypical

  14. Sigma1 receptor antagonists determine the behavioral pattern of the methamphetamine-induced stereotypy in mice

    PubMed Central

    Kitanaka, J.; Kitanaka, N.; Tatsuta, T.; Hall, F.S.; Uhl, G.R.; Tanaka, K.; Nishiyama, N.; Morita, Y.; Takemura, M.

    2011-01-01

    Objective The effects of sigma receptor antagonists on methamphetamine (METH)-induced stereotypy have not been examined. We examined the effects of sigma antagonists on METH-induced stereotypy in mice. Results The administration of METH (10 mg/kg) to male ddY mice induced stereotyped behavior consisting of biting (90.1%), sniffing (4.2%), head bobbing (4.1%), and circling (1.7%) during an observation period of 1 h. Pretreatment of the mice with BMY 14802 (α-(4-fluorophenyl)-4-(5-fluoro-2-pyrimidinyl)-1-piperazinebutanol; 1, 5, and 10 mg/kg), a non-specific sigma receptor antagonist, significantly increased METH-induced sniffing (19.2, 30.5, and 43.8% of total stereotypical behavior) but decreased biting (76.6, 66.9, and 49.3% of total stereotypical behavior) in a dose-dependent manner. This response was completely abolished by (+)-SKF 10,047 ([2S-(2α,6α,11R)]-1,2,3,4,5,6-hexahydro-6,11-dimethyl-3-(2-propenyl)-2,6-methano-3-benzazocin-8-ol; 4 and 10 mg/kg), a putative sigma1 receptor agonist, and partially by PB 28 (1-cyclohexyl-4-[3-(1,2,3,4-tetrahydro-5-methoxy-1-naphthalen-1-yl)-n-propyl]piperazine; 1 and 10 mg/kg), a putative sigma2 receptor agonist. The BMY 14802 action on METH-induced stereotypy was mimicked by BD 1047 (N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine; 10 mg/kg), a putative sigma1 receptor antagonist, but not by SM-21 ((±)-tropanyl 2-(4-chlorophenoxy)butanoate; 1 mg/kg), a putative sigma2 receptor antagonist. The BD 1047 effect on METH-induced stereotypy was also abolished completely by (+)-SKF 10,047 and partially by PB 28. The overall frequency of METH-induced stereotypical behavior was unchanged with these sigma receptor ligands, despite the alteration in particular behavioral patterns. The BMY 14802 action on METH-induced stereotypy was unaffected by pretreatment with centrally acting histamine H1 receptor antagonists (pyrilamine or ketotifen, 10 mg/kg), suggesting that these effects are independent of histamine H1

  15. Cyproheptadine Enhances the I K of Mouse Cortical Neurons through Sigma-1 Receptor-Mediated Intracellular Signal Pathway

    PubMed Central

    He, Yan-Lin; Zhang, Chun-Lei; Gao, Xiao-Fei; Yao, Jin-Jing; Hu, Chang-Long; Mei, Yan-Ai

    2012-01-01

    Cyproheptadine (CPH) is a histamine- and serotonin-receptor antagonist, and its effects are observed recently in the modulation of multiple intracellular signals. In this study, we used cortical neurons and HEK-293 cells transfected with Kv2.1 α-subunit to address whether CPH modify neural voltage-gated K+ channels by a mechanism independent of its serotonergic and histaminergic properties. Our results demonstrate that intracellularly delivered CPH increased the I K by reducing the activity of protein kinas A (PKA). Inhibition of Gi eliminated the CPH-induced effect on both the I K and PKA. Blocking of 5-HT-, M-, D2-, H1- or H2- type GPCR receptors with relevant antagonists did not eliminate the CPH-induced effect on the I K. Antagonists of the sigma-1 receptor, however, blocked the effect of CPH. Moreover, the inhibition of sigma-1 by siRNA knockdown significantly reduced the CPH-induced effect on the I K. On the contrary, sigma-1 receptor agonist mimicked the effects of CPH on the induction of I K. A ligand-receptor binding assay indicated that CPH bound to the sigma-1 receptor. Similar effect of CPH were obtained from HEK-293 cells transfected with the α-subunit of Kv2.1. In overall, we reveal for the first time that CPH enhances the I K by modulating activity of PKA, and that the associated activation of the sigma-1 receptor/Gi-protein pathway might be involved. Our findings illustrate an uncharacterized effect of CPH on neuron excitability through the I K, which is independent of histamine H1 and serotonin receptors. PMID:22844454

  16. Attenuation in rats of impairments of memory by scopolamine, a muscarinic receptor antagonist, by mecamylamine, a nicotinic receptor antagonist

    PubMed Central

    Newman, L. A.

    2015-01-01

    Rationale Scopolamine, a muscarinic antagonist, impairs learning and memory for many tasks, supporting an important role for the cholinergic system in these cognitive functions. The findings are most often interpreted to indicate that a decrease in postsynaptic muscarinic receptor activation mediates the memory impairments. However, scopolamine also results in increased release of acetylcholine in the brain as a result of blocking presynaptic muscarinic receptors. Objectives The present experiments assess whether scopolamine-induced increases in acetylcholine release may impair memory by overstimulating postsynaptic cholinergic nicotinic receptors, i.e., by reaching the high end of a nicotinic receptor activation inverted-U dose-response function. Results Rats tested in a spontaneous alternation task showed dose-dependent working memory deficits with systemic injections of mecamylamine and scopolamine. When an amnestic dose of scopolamine (0.15 mg/kg) was co-administered with a subamnestic dose of mecamylamine (0.25 mg/kg), this dose of mecamylamine significantly attenuated the scopolamine-induced memory impairments. We next assessed the levels of acetylcholine release in the hippocampus in the presence of scopolamine and mecamylamine. Mecamylamine injections resulted in decreased release of acetylcholine, while scopolamine administration caused a large increase in acetylcholine release. Conclusions These findings indicate that a nicotinic antagonist can attenuate impairments in memory produced by a muscarinic antagonist. The nicotinic antagonist may block excessive activation of nicotinic receptors postsynaptically or attenuate increases in acetylcholine release presynaptically. Either effect of a nicotinic antagonist—to decrease scopolamine-induced increases in acetylcholine output or to decrease post-synaptic acetylcholine receptor activation—may mediate the negative effects on memory of muscarinic antagonists. PMID:26660295

  17. Design and Synthesis of a Series of l-trans-4-Substituted Prolines as Selective Antagonists for the Ionotropic Glutamate Receptors Including Functional and X-ray Crystallographic Studies of New Subtype Selective Kainic Acid Receptor Subtype 1 (GluK1) Antagonist (2S,4R)-4-(2-Carboxyphenoxy)pyrrolidine-2-carboxylic Acid.

    PubMed

    Krogsgaard-Larsen, Niels; Delgar, Claudia G; Koch, Karina; Brown, Patricia M G E; Møller, Charlotte; Han, Liwei; Huynh, Tri H V; Hansen, Stinne W; Nielsen, Birgitte; Bowie, Derek; Pickering, Darryl S; Kastrup, Jette Sandholm; Frydenvang, Karla; Bunch, Lennart

    2017-01-12

    Ionotropic glutamate receptor antagonists are valuable tool compounds for studies of neurological pathways in the central nervous system. On the basis of rational ligand design, a new class of selective antagonists, represented by (2S,4R)-4-(2-carboxyphenoxy)pyrrolidine-2-carboxylic acid (1b), for cloned homomeric kainic acid receptors subtype 1 (GluK1) was attained (K i = 4 μM). In a functional assay, 1b displayed full antagonist activity with IC 50 = 6 ± 2 μM. A crystal structure was obtained of 1b when bound in the ligand binding domain of GluK1. A domain opening of 13-14° was seen compared to the structure with glutamate, consistent with 1b being an antagonist. A structure-activity relationship study showed that the chemical nature of the tethering atom (C, O, or S) linking the pyrrolidine ring and the phenyl ring plays a key role in the receptor selectivity profile and that substituents on the phenyl ring are well accommodated by the GluK1 receptor.

  18. P2X1 Receptor Antagonists Inhibit HIV-1 Fusion by Blocking Virus-Coreceptor Interactions

    PubMed Central

    Giroud, Charline; Marin, Mariana; Hammonds, Jason; Spearman, Paul

    2015-01-01

    ABSTRACT HIV-1 Env glycoprotein-mediated fusion is initiated upon sequential binding of Env to CD4 and the coreceptor CXCR4 or CCR5. Whereas these interactions are thought to be necessary and sufficient to promote HIV-1 fusion, other host factors can modulate this process. Previous studies reported potent inhibition of HIV-1 fusion by selective P2X1 receptor antagonists, including NF279, and suggested that these receptors play a role in HIV-1 entry. Here we investigated the mechanism of antiviral activity of NF279 and found that this compound does not inhibit HIV-1 fusion by preventing the activation of P2X1 channels but effectively blocks the binding of the virus to CXCR4 or CCR5. The notion of an off-target effect of NF279 on HIV-1 fusion is supported by the lack of detectable expression of P2X1 receptors in cells used in fusion experiments and by the fact that the addition of ATP or the enzymatic depletion of ATP in culture medium does not modulate viral fusion. Importantly, NF279 fails to inhibit HIV-1 fusion with cell lines and primary macrophages when added at an intermediate stage downstream of Env-CD4-coreceptor engagement. Conversely, in the presence of NF279, HIV-1 fusion is arrested downstream of CD4 binding but prior to coreceptor engagement. NF279 also antagonizes the signaling function of CCR5, CXCR4, and another chemokine receptor, as evidenced by the suppression of calcium responses elicited by specific ligands and by recombinant gp120. Collectively, our results demonstrate that NF279 is a dual HIV-1 coreceptor inhibitor that interferes with the functional engagement of CCR5 and CXCR4 by Env. IMPORTANCE Inhibition of P2X receptor activity suppresses HIV-1 fusion and replication, suggesting that P2X signaling is involved in HIV-1 entry. However, mechanistic experiments conducted in this study imply that P2X1 receptor is not expressed in target cells or involved in viral fusion. Instead, we found that inhibition of HIV-1 fusion by a specific P2X1

  19. P2X1 Receptor Antagonists Inhibit HIV-1 Fusion by Blocking Virus-Coreceptor Interactions.

    PubMed

    Giroud, Charline; Marin, Mariana; Hammonds, Jason; Spearman, Paul; Melikyan, Gregory B

    2015-09-01

    HIV-1 Env glycoprotein-mediated fusion is initiated upon sequential binding of Env to CD4 and the coreceptor CXCR4 or CCR5. Whereas these interactions are thought to be necessary and sufficient to promote HIV-1 fusion, other host factors can modulate this process. Previous studies reported potent inhibition of HIV-1 fusion by selective P2X1 receptor antagonists, including NF279, and suggested that these receptors play a role in HIV-1 entry. Here we investigated the mechanism of antiviral activity of NF279 and found that this compound does not inhibit HIV-1 fusion by preventing the activation of P2X1 channels but effectively blocks the binding of the virus to CXCR4 or CCR5. The notion of an off-target effect of NF279 on HIV-1 fusion is supported by the lack of detectable expression of P2X1 receptors in cells used in fusion experiments and by the fact that the addition of ATP or the enzymatic depletion of ATP in culture medium does not modulate viral fusion. Importantly, NF279 fails to inhibit HIV-1 fusion with cell lines and primary macrophages when added at an intermediate stage downstream of Env-CD4-coreceptor engagement. Conversely, in the presence of NF279, HIV-1 fusion is arrested downstream of CD4 binding but prior to coreceptor engagement. NF279 also antagonizes the signaling function of CCR5, CXCR4, and another chemokine receptor, as evidenced by the suppression of calcium responses elicited by specific ligands and by recombinant gp120. Collectively, our results demonstrate that NF279 is a dual HIV-1 coreceptor inhibitor that interferes with the functional engagement of CCR5 and CXCR4 by Env. Inhibition of P2X receptor activity suppresses HIV-1 fusion and replication, suggesting that P2X signaling is involved in HIV-1 entry. However, mechanistic experiments conducted in this study imply that P2X1 receptor is not expressed in target cells or involved in viral fusion. Instead, we found that inhibition of HIV-1 fusion by a specific P2X1 receptor antagonist, NF

  20. In vitro and in vivo biological activities of SR140333, a novel potent non-peptide tachykinin NK1 receptor antagonist.

    PubMed

    Emonds-Alt, X; Doutremepuich, J D; Heaulme, M; Neliat, G; Santucci, V; Steinberg, R; Vilain, P; Bichon, D; Ducoux, J P; Proietto, V

    1993-12-21

    (S)1-(2-[3-(3,4-dichlorophenyl)-1-(3-isopropoxyphenylacetyl)pip eridin-3- yl]ethyl)-4-phenyl-1-azoniabicyclo[2.2.2]octane chloride (SR140333) is a new non-peptide antagonist of tachykinin NK1 receptors. SR140333 potently, selectively and competitively inhibited substance P binding to NK1 receptors from various animal species, including humans. In vitro, it was a potent antagonist in functional assays for NK1 receptors such as [Sar9,Met(O2)11]substance P-induced endothelium-dependent relaxation of rabbit pulmonary artery and contraction of guinea-pig ileum. Up to 1 microM, it had no effect in bioassays for NK2 ([beta Ala8]neurokinin A-induced contraction of endothelium-deprived rabbit pulmonary artery) and NK3 ([MePhe7]neurokinin B-induced contraction of rat portal vein) receptors. The antagonism exerted by SR140333 toward NK1 receptors was apparently non-competitive, with pD2' values (antagonism potency evaluated by the negative logarithm of the molar concentration of antagonist that produces a 50% reduction of the maximal response to the agonist) between 9.65 and 10.16 in the different assays. SR140333 also blocked in vitro [Sar9,Met(O2)11]substance P-induced release of acetylcholine from rat striatum. In vivo, SR140333 exerted highly potent antagonism toward [Sar9,Met(O2)11]substance P-induced hypotension in dogs (ED50 = 3 micrograms/kg i.v.), bronchoconstriction in guinea-pig (ED50 = 42 micrograms/kg i.v.) and plasma extravasation in rats (ED50 = 7 micrograms/kg i.v.). Finally, it also blocked the activation of rat thalamic neurons after nociceptive stimulation (ED50 = 0.2 micrograms/kg i.v.).

  1. Antihyperalgesic activity of a novel nonpeptide bradykinin B1 receptor antagonist in transgenic mice expressing the human B1 receptor

    PubMed Central

    Fox, Alyson; Kaur, Satbir; Li, Bifang; Panesar, Moh; Saha, Uma; Davis, Clare; Dragoni, Ilaria; Colley, Sian; Ritchie, Tim; Bevan, Stuart; Burgess, Gillian; McIntyre, Peter

    2005-01-01

    We describe the properties of a novel nonpeptide kinin B1 receptor antagonist, NVP-SAA164, and demonstrate its in vivo activity in models of inflammatory pain in transgenic mice expressing the human B1 receptor. NVP-SAA164 showed high affinity for the human B1 receptor expressed in HEK293 cells (Ki 8 nM), and inhibited increases in intracellular calcium induced by desArg10kallidin (desArg10KD) (IC50 33 nM). While a similar high affinity was observed in monkey fibroblasts (Ki 7.7 nM), NVP-SAA164 showed no affinity for the rat B1 receptor expressed in Cos-7 cells. In transgenic mice in which the native B1 receptor was deleted and the gene encoding the human B1 receptor was inserted (hB1 knockin, hB1-KI), hB1 receptor mRNA was induced in tissues following LPS treatment. No mRNA encoding the mouse or human B1 receptor was detected in mouse B1 receptor knockout (mB1-KO) mice following LPS treatment. Freund's complete adjuvant-induced mechanical hyperalgesia was similar in wild-type and hB1-KI mice, but was significantly reduced in mB1-KO animals. Mechanical hyperalgesia induced by injection of the B1 agonist desArg10KD into the contralateral paw 24 h following FCA injection was similar in wild-type and hB1-KI mice, but was absent in mB1-KO animals. Oral administration of NVP-SAA164 produced a dose-related reversal of FCA-induced mechanical hyperalgesia and desArg10KD-induced hyperalgesia in hB1-KI mice, but was inactive against inflammatory pain in wild-type mice. These data demonstrate the use of transgenic technology to investigate the in vivo efficacy of species selective agents and show that NVP-SAA164 is a novel orally active B1 receptor antagonist, providing further support for the utility of B1 receptor antagonists in inflammatory pain conditions in man. PMID:15685199

  2. A selective, non-peptide CRF receptor 1 antagonist prevents sodium lactate-induced acute panic-like responses.

    PubMed

    Shekhar, Anantha; Johnson, Philip L; Fitz, Stephanie D; Nakazato, Atsuro; Chaki, Shigeyuki; Steckler, Thomas; Schmidt, Mark

    2011-04-01

    Corticotropin releasing factor (CRF) is implicated in a variety of stress-related disorders such as depression and anxiety, and blocking CRF receptors is a putative strategy for treating such disorders. Using a well-studied animal model of panic, we tested the efficacy of JNJ19567470/CRA5626, a selective, non-peptidergic CRF type 1 receptor (CRF1) antagonist (3, 10 and 40 mg/kg intraperitoneal injection), in preventing the sodium lactate (NaLac)-induced panic-like behavioural and cardiovascular responses. Adult male rats with chronic reduction of GABA levels (by inhibition of GABA synthesis with l-allyglycine, a glutamic acid decarboxylase inhibitor) in the dorsomedial/perifornical hypothalamus are highly anxious and exhibit physiological and behavioural responses to intravenous NaLac infusions similar to patients with panic disorder. These 'panic-prone' rats pre-treated with vehicle injections displayed NaLac-induced increases in autonomic responses (i.e. tachycardia and hypertensive responses), anxiety-like behaviour in the social interaction test, and flight-like increases in locomotor activity. However, systemically injecting such panic-prone rats with the highest dose of CRF1 receptor antagonist prior to NaLac infusions blocked all NaLac-induced behaviour and cardiovascular responses. These data suggest that selective CRF1 receptor antagonists could be a novel target for developing anti-panic drugs that are as effective as benzodiazepines in acute treatment of a panic attack without the deleterious side-effects (e.g. sedation and cognitive impairment) associated with benzodiazepines.

  3. A novel human-based receptor antagonist of sustained action reveals body weight control by endogenous GLP-1.

    PubMed

    Patterson, James T; Ottaway, Nickki; Gelfanov, Vasily M; Smiley, David L; Perez-Tilve, Diego; Pfluger, Paul T; Tschöp, Matthias H; Dimarchi, Richard D

    2011-02-18

    Ex-4 (9-39)a is a well characterized GLP-1 receptor antagonist that suffers from two notable limitations, its nonhuman amino acid sequence and its relatively short in vivo duration of action. Comparable N-terminal shortening of human GLP-1 lessens agonism but does not provide a high potency antagonist. Through a series of GLP-1/Ex-4 hybrid peptides, the minimal structural changes required to generate a pure GLP-1-based antagonist were identified as Glu16, Val19, and Arg20, yielding an antagonist of approximately 3-fold greater in vitro potency compared with Ex-4 (9-39)a. The structural basis of antagonism appears to result from stabilization of the α helix combined with enhanced electrostatic and hydrophobic interactions with the extracellular domain of the receptor. Site-specific acylation of the human-based antagonist yielded a peptide of increased potency as a GLP-1 receptor antagonist and 10-fold greater selectivity relative to the GIP receptor. The acylated antagonist demonstrated sufficient duration of action to maintain inhibitory activity when administered as a daily subcutaneous injection. The sustained pharmacokinetics and enhanced human sequence combine to form an antagonist optimized for clinical study. Daily administration of this antagonist by subcutaneous injection to diet-induced obese mice for 1 week caused a significant increase in food intake, body weight, and glucose intolerance, demonstrating endogenous GLP-1 as a relevant hormone in mammalian energy balance in the obese state.

  4. Effects of YM471, a nonpeptide AVP V(1A) and V(2) receptor antagonist, on human AVP receptor subtypes expressed in CHO cells and oxytocin receptors in human uterine smooth muscle cells.

    PubMed

    Tsukada, J; Tahara, A; Tomura, Y; Wada Ki; Kusayama, T; Ishii, N; Yatsu, T; Uchida, W; Taniguchi, N; Tanaka, A

    2001-07-01

    YM471, (Z)-4'-[4,4-difluoro-5-[2-(4-dimethylaminopiperidino)-2-oxoethylidene]-2,3,4,5-tetrahydro-1H-1-benzoazepine-1-carbonyl]-2-phenylbenzanilide monohydrochloride, is a newly synthesized potent vasopressin (AVP) receptor antagonist. Its effects on binding to and signal transduction by cloned human AVP receptors (V(1A), V(1B) and V(2)) stably expressed in Chinese hamster ovary (CHO) cells, and oxytocin receptors in human uterine smooth muscle cells (USMC) were studied. YM471 potently inhibited specific [(3)H]-AVP binding to V(1A) and V(2) receptors with K(i) values of 0.62 nM and 1.19 nM, respectively. In contrast, YM471 exhibited much lower affinity for V(1B) and oxytocin receptors with K(i) values of 16.4 microM and 31.6 nM, respectively. In CHO cells expressing V(1A) receptors, YM471 potently inhibited AVP-induced intracellular Ca(2+) concentration ([Ca(2+)](i)) increase, exhibiting an IC(50) value of 0.56 nM. However, in human USMC expressing oxytocin receptors, YM471 exhibited much lower potency in inhibiting oxytocin-induced [Ca(2+)](i) increase (IC(50)=193 nM), and did not affect AVP-induced [Ca(2+)](i) increase in CHO cells expressing V(1B) receptors. Furthermore, in CHO cells expressing V(2) receptors, YM471 potently inhibited the production of cyclic AMP stimulated by AVP with an IC(50) value of 1.88 nM. In all assays, YM471 showed no agonistic activity. These results demonstrate that YM471 is a potent, nonpeptide human V(1A) and V(2) receptor antagonist which will be a valuable tool in defining the physiologic and pharmacologic actions of AVP.

  5. Agonists and antagonists for P2 receptors

    PubMed Central

    Jacobson, Kenneth A.; Costanzi, Stefano; Joshi, Bhalchandra V.; Besada, Pedro; Shin, Dae Hong; Ko, Hyojin; Ivanov, Andrei A.; Mamedova, Liaman

    2015-01-01

    Recent work has identified nucleotide agonists selective for P2Y1, P2Y2 and P2Y6 receptors and nucleotide antagonists selective for P2Y1, P2Y12 and P2X1 receptors. Selective non-nucleotide antagonists have been reported for P2Y1, P2Y2, P2Y6, P2Y12, P2Y13, P2X2/3/P2X3 and P2X7 receptors. For example, the dinucleotide INS 37217 (Up4dC) potently activates the P2Y2 receptor, and the non-nucleotide antagonist A-317491 is selective for P2X2/3/P2X3 receptors. Nucleotide analogues in which the ribose moiety is substituted by a variety of novel ring systems, including conformation-ally locked moieties, have been synthesized as ligands for P2Y receptors. The focus on conformational factors of the ribose-like moiety allows the inclusion of general modifications that lead to enhanced potency and selectivity. At P2Y1,2,4,11 receptors, there is a preference for the North conformation as indicated with (N)-methanocarba analogues. The P2Y1 antagonist MRS2500 inhibited ADP-induced human platelet aggregation with an IC50 of 0.95 nM. MRS2365, an (N)-methanocarba analogue of 2-MeSADP, displayed potency (EC50) of 0.4 nM at the P2Y1 receptor, with >10 000-fold selectivity in comparison to P2Y12 and P2Y13 receptors. At P2Y6 receptors there is a dramatic preference for the South conformation. Three-dimensional structures of P2Y receptors have been deduced from structure activity relationships (SAR), mutagenesis and modelling studies. Detailed three-dimensional structures of P2X receptors have not yet been proposed. PMID:16805423

  6. Cellular and behavioural profile of the novel, selective neurokinin1 receptor antagonist, vestipitant: a comparison to other agents.

    PubMed

    Brocco, Mauricette; Dekeyne, Anne; Mannoury la Cour, Clotilde; Touzard, Manuelle; Girardon, Sylvie; Veiga, Sylvie; de Nanteuil, Guillaume; deJong, Trynke R; Olivier, Berend; Millan, Mark J

    2008-10-01

    This study characterized the novel neurokinin (NK)(1) antagonist, vestipitant, under clinical evaluation for treatment of anxiety and depression. Vestipitant possessed high affinity for human NK(1) receptors (pK(i), 9.4), and potently blocked Substance P-mediated phosphorylation of Extracellular-Regulated-Kinase. In vivo, it occupied central NK(1) receptors in gerbils (Inhibitory Dose(50), 0.11 mg/kg). At similar doses, it abrogated nociception elicited by formalin in gerbils, and blocked foot-tapping and locomotion elicited by the NK(1) agonist, GR73632, in gerbils and guinea pigs, respectively. Further, vestipitant attenuated fear-induced foot-tapping in gerbils, separation-induced distress-vocalizations in guinea pigs, marble-burying behaviour in mice, and displayed anxiolytic actions in Vogel conflict and fear-induced ultrasonic vocalization procedures in rats. These actions were mimicked by CP99,994, L733,060 and GR205,171 which acted stereoselectively vs its less active isomer, GR226,206. In conclusion, vestipitant is a potent NK(1) receptor antagonist: its actions support the utility of NK(1) receptor blockade in the alleviation of anxiety and, possibly, depression.

  7. Substance P-induced inflammatory responses in guinea-pig skin: the effect of specific NK1 receptor antagonists and the role of endogenous mediators.

    PubMed Central

    Walsh, D T; Weg, V B; Williams, T J; Nourshargh, S

    1995-01-01

    1. The sensory neuropeptide substance P (SP), when released from sensory nerves, has been implicated in the development of neurogenic inflammation. In the present study, using an in vivo model system, we have characterized and investigated the mechanisms underlying SP-induced leukocyte accumulation and oedema formation in the guinea-pig. 2. Intradermally injected SP (i.d., 10(-13) - 10(-9) mol per site), induced a dose- and time-dependent accumulation of 111In-neutrophils, 111In-eosinophils and oedema formation as measured by the local accumulation of i.v. injected 125I-albumin. The leukocyte accumulation evoked by SP was significant at 10(-10) and 10(-9) mol per site, whereas oedema formation was significant at the lowest dose tested (10(-13) mol per site). 3. The NK1 receptor antagonists, CP-96,345 (1 mg kg-1, i.v.) and RP-67,580 (10 micrograms per site, i.d.), significantly attenuated the oedema formation induced by the lower doses of SP. Oedema formation and leukocyte accumulation induced by 10(-9) mol per site SP were unaffected by either antagonist. 4. SP-elicited responses were not significantly affected by the platelet activating factor (PAF) receptor antagonist, UK-74,505 (2.5 mg kg-1, i.v.) or the H1 histamine receptor antagonist, chlorpheniramine (10(-8) mol per site, i.d.). However, the 111In-eosinophil accumulation, but not the 111In-neutrophil accumulation or oedema formation, induced by SP was significantly inhibited by the specific 5-lipoxygenase (5-LO) inhibitor, ZM-230,487 (10(-8) mol per site, i.d.).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7541689

  8. Novel long‐acting antagonists of muscarinic ACh receptors

    PubMed Central

    Randáková, Alena; Rudajev, Vladimír; Doležal, Vladimír; Boulos, John

    2018-01-01

    Background and Purpose The aim of this study was to develop potent and long‐acting antagonists of muscarinic ACh receptors. The 4‐hexyloxy and 4‐butyloxy derivatives of 1‐[2‐(4‐oxidobenzoyloxy)ethyl]‐1,2,3,6‐tetrahydropyridin‐1‐ium were synthesized and tested for biological activity. Antagonists with long‐residence time at receptors are therapeutic targets for the treatment of several neurological and psychiatric human diseases. Their long‐acting effects allow for reduced daily doses and adverse effects. Experimental Approach The binding and antagonism of functional responses to the agonist carbachol mediated by 4‐hexyloxy compounds were investigated in CHO cells expressing individual subtypes of muscarinic receptors and compared with 4‐butyloxy analogues. Key Results The 4‐hexyloxy derivatives were found to bind muscarinic receptors with micromolar affinity and antagonized the functional response to carbachol with a potency ranging from 30 nM at M1 to 4 μM at M3 receptors. Under washing conditions to reverse antagonism, the half‐life of their antagonistic action ranged from 1.7 h at M2 to 5 h at M5 receptors. Conclusions and Implications The 4‐hexyloxy derivatives were found to be potent long‐acting M1‐preferring antagonists. In view of current literature, M1‐selective antagonists may have therapeutic potential for striatal cholinergic dystonia, delaying epileptic seizure after organophosphate intoxication or relieving depression. These compounds may also serve as a tool for research into cognitive deficits. PMID:29498041

  9. The effects of cannabinoid CB1, CB2 and vanilloid TRPV1 receptor antagonists on cocaine addictive behavior in rats.

    PubMed

    Adamczyk, Przemysław; Miszkiel, Joanna; McCreary, Andrew C; Filip, Małgorzata; Papp, Mariusz; Przegaliński, Edmund

    2012-03-20

    There is evidence that indicates that tonic activation of cannabinoid CB1 receptors plays a role in extinction/reinstatement of cocaine seeking-behavior but is not involved in the maintenance of cocaine self-administration. To further explore the importance of other endocannabinoid-related receptors in an animal model of cocaine addiction, the present paper examines cannabinoid CB2 receptor antagonist N-((1S)-endo-1,3,3-trimethylbicyclo(2.2.1)heptan-2-yl)-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528) and the transient receptor potential vanilloid type-1 (TRPV1) receptor antagonist N-(3-methoxyphenyl)-4-chlorocinnamide (SB366791) on intravenous (i.v.) cocaine self-administration and extinction/reinstatement of cocaine-seeking behavior in rats. For comparison and reference purposes, the effect of the cannabinoid CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) was also examined. Moreover, for comparison effects of those drugs on operant lever responding for artificial (cocaine) vs. natural (food) reward, food self-administration was also evaluated. Our findings show that AM251 (1-3mg/kg), SR144528 (0.1-1mg/kg) and SB366791 (0.3-1mg/kg) did not affect cocaine self-administration. However, AM251 (0.1-1mg/kg), SR144528 (0.1-1mg/kg) and SB366791 (0.1-1mg/kg) decreased cocaine-induced reinstatement of cocaine-seeking behavior, and AM251 (0.3-1mg/kg) decreased cue-induced reinstatement. Moreover, AM251 (3mg/kg), SR144528 (0.1-1mg/kg) and SB366791 (0.1-1mg/kg) slightly decreased food self-administration behavior, but only AM251 (3mg/kg) reduced food reward. In conclusion, our results indicate for the first time, that tonic activation of CB2 or TRPV1 receptors is involved in cocaine-induced reinstatement of cocaine-seeking behavior, but their activity is not necessary for the rewarding effect of this psychostimulant. In contrast to CB1 receptors, neither CB2 nor

  10. Hit-to-lead optimization of 2-(1H-pyrazol-1-yl)-thiazole derivatives as a novel class of EP1 receptor antagonists.

    PubMed

    Atobe, Masakazu; Naganuma, Kenji; Kawanishi, Masashi; Morimoto, Akifumi; Kasahara, Ken-ichi; Ohashi, Shigeki; Suzuki, Hiroko; Hayashi, Takahiko; Miyoshi, Shiro

    2013-11-15

    We describe a medicinal chemistry approach to generate a series of 2-(1H-pyrazol-1-yl)thiazole compounds that act as selective EP1 receptor antagonists. The obtained results suggest that compound 12 provides the best EP1 receptor antagonist activity and demonstrates good oral pharmacokinetics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Nonpeptide vasopressin receptor antagonists: development of selective and orally active V1a, V2 and V1b receptor ligands.

    PubMed

    Serradeil-Le Gal, C; Wagnon, J; Valette, G; Garcia, G; Pascal, M; Maffrand, J P; Le Fur, G

    2002-01-01

    The involvement of vasopressin (AVP) in several pathological states has been reported recently and the selective blockade of the different AVP receptors could offer new clinical perspectives. During the past few years, various selective, orally active AVP V1a (OPC-21268, SR49059 (Relcovaptan)), V2 (OPC-31260, OPC-41061 (Tolvaptan), VPA-985 (Lixivaptan), SR121463, VP-343, FR-161282) and mixed V1a/V2 (YM-087 (Conivaptan), JTV-605, CL-385004) receptor antagonists have been intensively studied in various animal models and have reached, Phase IIb clinical trials for some of them. For many years now, our laboratory has focused on the identification of nonpeptide vasopressin antagonists with suitable oral bioavailability. Using random screening on small molecule libraries, followed by rational SAR and modelization, we identified a chemical series of 1-phenylsulfonylindolines which first yielded SR49059, a V1a receptor antagonist prototype. This compound displayed high affinity for animal and human V1a receptors and antagonized various V1a AVP-induced effects in vitro and in vivo (intracellular [Ca2+] increase, platelet aggregation, vascular smooth muscle cell proliferation, hypertension and coronary vasospasm). We and others have used this compound to study the role of AVP in various animal models. Recent findings from clinical trials show a potential interest for SR49059 in the treatment of dysmenorrhea and in Raynaud's disease. Structural modifications and simplifications performed in the SR49059 chemical series yielded highly specific V2 receptor antagonists (N-arylsulfonyl-oxindoles), amongst them SR121463 which possesses powerful oral aquaretic properties in various animal species and in man. SR121463 is well-tolerated and dose-dependently increases urine output and decreases urine osmolality. It induces free water-excretion without affecting electrolyte balance in contrast to classical diuretics (e.g. furosemide and hydrochlorothiazide). Notably, in cirrhotic rats

  12. Effects of muscarinic receptor antagonists on cocaine discrimination in wild-type mice and in muscarinic receptor M1, M2, and M4 receptor knockout mice.

    PubMed

    Joseph, Lauren; Thomsen, Morgane

    2017-06-30

    Muscarinic M 1 /M 4 receptor stimulation can reduce abuse-related effects of cocaine and may represent avenues for treating cocaine addiction. Muscarinic antagonists can mimic and enhance effects of cocaine, including discriminative stimulus (S D ) effects, but the receptor subtypes mediating those effects are not known. A better understanding of the complex cocaine/muscarinic interactions is needed to evaluate and develop potential muscarinic-based medications. Here, knockout mice lacking M 1 , M 2 , or M 4 receptors (M 1 -/- , M 2 -/- , M 4 -/- ), as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline. Muscarinic receptor antagonists with no subtype selectivity (scopolamine), or preferential affinity at the M 1 , M 2 , or M 4 subtype (telenzepine, trihexyphenidyl; methoctramine, AQ-RA 741; tropicamide) were tested alone and in combination with cocaine. In intact animals, antagonists with high affinity at M 1 /M 4 receptors partially substituted for cocaine and increased the S D effect of cocaine, while M 2 -preferring antagonists did not substitute, and reduced the S D effect of cocaine. The cocaine-like effects of scopolamine were absent in M 1 -/- mice. The cocaine S D attenuating effects of methoctramine were absent in M 2 -/- mice and almost absent in M 1 -/- mice. The findings indicate that the cocaine-like S D effects of muscarinic antagonists are primarily mediated through M 1 receptors, with a minor contribution of M 4 receptors. The data also support our previous findings that stimulation of M 1 receptors and M 4 receptors can each attenuate the S D effect of cocaine, and show that this can also be achieved by blocking M 2 autoreceptors, likely via increased acetylcholine release. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Thromboxane receptor density is increased in human cardiovascular disease with evidence for inhibition at therapeutic concentrations by the AT1 receptor antagonist losartan

    PubMed Central

    Katugampola, Sidath D; Davenport, Anthony P

    2001-01-01

    The aim of this study was to establish how thromboxane receptors (TP) respond to the increase in levels of plasma thromboxane observed in both cardiac (cardiomyopathy, ischaemic heart disease and pulmonary hypertension) and vascular disease (atherosclerosis of coronary artery disease and accelerated atherosclerosis of saphenous vein grafts).The agonist radioligand [125I]-BOP, bound rapidly to TP receptors in normal human cardiovascular tissue, displaying high affinity in left ventricle (KD 0.23±0.06 nM, Bmax 28.4±5.7 fmol mg−1 protein) and reversibility with a t1/2 of 10 min (n=five individuals±s.e.mean).In the heart, TP receptor density in the right ventricle of primary pulmonary hypertensive patients were significantly increased (66.6±6 fmol mg−1 protein) compared to non-diseased right ventricle (37.9±4.1 fmol mg−1 protein, n=six individuals±s.e.mean, P<0.05).In diseased vessels, TP receptor densities were significantly increased (3 fold in the intimal layer) in atherosclerotic coronary arteries, saphenous vein grafts with severe intimal thickening (n=8 – 12 individuals, P<0.05) and aortic tissue (n=5 – 6 individuals, P<0.05), compared with normal vessels.Losartan, tested at therapeutic doses, competed for [125I]-BOP binding to human vascular tissue, suggesting that some of the anti-hypertensive effects of this AT1 receptor antagonist could also be mediated by blocking human TP receptors.The differential distribution of TP receptors in the human cardiovascular system and the alteration of receptor density, accompanying the increase in endogenous thromboxane levels in cardiovascular disease, suggest that TP receptors represent a significant target for therapeutic interventions and highlights the importance for the development of novel selective antagonist for use in humans. PMID:11724743

  14. Two affinities for a single antagonist at the neuronal NK1 tachykinin receptor: evidence from quantitation of receptor endocytosis.

    PubMed

    Jenkinson, K M; Southwell, B R; Furness, J B

    1999-01-01

    1. In smooth muscle contractility assays, many NK1 receptor (NK1r) antagonists inhibit responses to the neurotransmitter, substance P (SP), and its analogue, septide, with markedly different potency, leading to the proposal that there is a septide-preferring receptor related to the NK1r. 2. We used fluorescence immunohistochemistry and confocal microscopy to visualize agonist-induced NK1r endocytosis and analyse agonist/antagonist interactions at native NK1r in neurons of the myenteric plexus of guinea-pig ileum. 3. SP and septide gave sigmoid log concentration-response curves and were equipotent in inducing NK1r endocytosis. 4. The NK1r antagonists, CP-99994 (2S,3S)-3-(2-methoxybenzyl)amino-2-phenylpiperidine dihydrochloride and MEN-10581, cyclo(Leu,[CH2NH]Lys(benzyloxycarbonyl)-Gln-Trp-Phe-betaAla) were both more potent in inhibiting endocytosis (50 x and 8 x greater respectively) against septide than against SP. 5. The results suggest that SP and septide interact differently with the NK1r, and that a single antagonist can exhibit different affinities at a single NK1r population, depending on the agonist with which it competes. Thus it may not be necessary to posit a separate septide-preferring tachykinin receptor.

  15. (D-Phe/sup 12/)bombesin analogues: a new class of bombesin receptor antagonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinz-Erian, P.; Coy, D.H.; Tamura, M.

    1987-03-01

    Previous attempts to develop analogues of bombesin that function as specific receptor antagonists have been unsuccessful. Alteration of the histidine in luteinizing hormone releasing factor has resulted in analogues that function as competitive antagonists. In the present study the authors have used a similar strategy and altered the histidine in bombesin. (D-Phe/sup 12/)bombesin, (D-Phe/sup 12/,Leu/sup 14/)bombesin, and (Try/sup 4/, D-)je/sup 12/) bombesin did not stimulate amylase release from guinea pig pancreatic acini when present alone, but each analog inhibited bombesin-stimulated secretion. For each analog, detectable inhibition occurred at 1 ..mu..M and half-maximal inhibition at 4 ..mu..M. Each analog inhibited amylasemore » release by bombesin and other agonists that stimulate secretion by interacting with bombesin receptors. The analogues of bombesin did not alter stimulation by substance P or other agonists that interact with other receptors. The inhibition of the action of bombesin was competitive with Schild plots having slopes of 1.0. Each analog also inhibited binding of /sup 125/I-labeled (Try/sup 4/) bombesin but not /sup 125/I-labeled substance P. These results demonstrate that (D-Phe/sup 12/) analogues of bombesin function as bombesin receptor antagonists and are the only bombesin receptor antagonists that interact only with the bombesin receptor. Because of their specificity, these analogues may prove useful for defining the role of bombesin in various physiological or pathological processes.« less

  16. Two affinities for a single antagonist at the neuronal NK1 tachykinin receptor: evidence from quantitation of receptor endocytosis

    PubMed Central

    Jenkinson, Karl M; Southwell, Bridget R; Furness, John B

    1999-01-01

    In smooth muscle contractility assays, many NK1 receptor (NK1r) antagonists inhibit responses to the neurotransmitter, substance P (SP), and its analogue, septide, with markedly different potency, leading to the proposal that there is a septide-preferring receptor related to the NK1r.We used fluorescence immunohistochemistry and confocal microscopy to visualize agonist-induced NK1r endocytosis and analyse agonist/antagonist interactions at native NK1r in neurons of the myenteric plexus of guinea-pig ileum.SP and septide gave sigmoid log concentration-response curves and were equipotent in inducing NK1r endocytosis.The NK1r antagonists, CP-99994 (2S,3S)-3-(2-methoxybenzyl)amino-2-phenylpiperidine dihydrochloride and MEN-10581, cyclo(Leuψ[CH2NH]Lys(benzyloxycarbonyl)-Gln-Trp-Phe-βAla) were both more potent in inhibiting endocytosis (50× and 8× greater respectively) against septide than against SP.The results suggest that SP and septide interact differently with the NK1r, and that a single antagonist can exhibit different affinities at a single NK1r population, depending on the agonist with which it competes. Thus it may not be necessary to posit a separate septide-preferring tachykinin receptor. PMID:10051129

  17. Blocking Alcoholic Steatosis in Mice with a Peripherally Restricted Purine Antagonist of the Type 1 Cannabinoid Receptor.

    PubMed

    Amato, George S; Manke, Amruta; Harris, Danni L; Wiethe, Robert W; Vasukuttan, Vineetha; Snyder, Rodney W; Lefever, Timothy W; Cortes, Ricardo; Zhang, Yanan; Wang, Shaobin; Runyon, Scott P; Maitra, Rangan

    2018-05-24

    Type 1 cannabinoid receptor (CB1) antagonists have demonstrated promise for the treatment of obesity, liver disease, metabolic syndrome, and dyslipidemias. However, the inhibition of CB1 receptors in the central nervous system can produce adverse effects, including depression, anxiety, and suicidal ideation. Efforts are now underway to produce peripherally restricted CB1 antagonists to circumvent CNS-associated undesirable effects. In this study, a series of analogues were explored in which the 4-aminopiperidine group of compound 2 was replaced with aryl- and heteroaryl-substituted piperazine groups both with and without a spacer. This resulted in mildly basic, potent antagonists of human CB1 (hCB1). The 2-chlorobenzyl piperazine, 25, was found to be potent ( K i = 8 nM); to be >1000-fold selective for hCB1 over hCB2; to have no hERG liability; and to possess favorable ADME properties including high oral absorption and negligible CNS penetration. Compound 25 was tested in a mouse model of alcohol-induced liver steatosis and found to be efficacious. Taken together, 25 represents an exciting lead compound for further clinical development or refinement.

  18. Orally active vasopressin V1a receptor antagonist, SRX251, selectively blocks aggressive behavior.

    PubMed

    Ferris, Craig F; Lu, Shi-Fang; Messenger, Tara; Guillon, Christophe D; Heindel, Ned; Miller, Marvin; Koppel, Gary; Robert Bruns, F; Simon, Neal G

    2006-02-01

    Arginine vasopressin functions as a neurochemical signal in the brain to affect social behavior. There is an expanding literature from animal and human studies showing that vasopressin, through the vasopressin 1A receptor (V1A), can stimulate aggressive behavior. Using a novel monocylic beta lactam platform, a series of orally active vasopressin V1a antagonists was developed with high affinity for the human receptor. SRX251 was chosen from this series of V1a antagonists to screen for effects on serenic activity in a resident-intruder model of offensive aggression. Resident, male Syrian golden hamsters were given oral doses of SRX251 or intraperitoneal Manning compound, a selective V1a receptor antagonist with reduced brain penetrance, at doses of 0.2 microg, 20 microg, 2 mg/kg or vehicle. When tested 90-120 min later, SRX251, but not Manning compound, caused a significant dose-dependent reduction in offensive aggression toward intruders as measured by latency to bite and number of bites. The reduction in aggression persisted for over 6 h and was no longer present 12 h post treatment. SRX251 did not alter the amount of time the resident investigated the intruder, olfactory communication, general motor activity, or sexual motivation. These data corroborate previous studies showing a role for vasopressin neurotransmission in aggression and suggest that V1a receptor antagonists may be used to treat interpersonal violence co-occurring with such illness as ADHD, autism, bipolar disorder, and substance abuse.

  19. A cross-laboratory preclinical study on the effectiveness of interleukin-1 receptor antagonist in stroke

    PubMed Central

    Maysami, Samaneh; Wong, Raymond; Pradillo, Jesus M; Denes, Adam; Dhungana, Hiramani; Malm, Tarja; Koistinaho, Jari; Orset, Cyrille; Rahman, Mahbubur; Rubio, Marina; Schwaninger, Markus; Vivien, Denis; Bath, Philip M; Rothwell, Nancy J

    2015-01-01

    Stroke represents a global challenge and is a leading cause of permanent disability worldwide. Despite much effort, translation of research findings to clinical benefit has not yet been successful. Failure of neuroprotection trials is considered, in part, due to the low quality of preclinical studies, low level of reproducibility across different laboratories and that stroke co-morbidities have not been fully considered in experimental models. More rigorous testing of new drug candidates in different experimental models of stroke and initiation of preclinical cross-laboratory studies have been suggested as ways to improve translation. However, to our knowledge, no drugs currently in clinical stroke trials have been investigated in preclinical cross-laboratory studies. The cytokine interleukin 1 is a key mediator of neuronal injury, and the naturally occurring interleukin 1 receptor antagonist has been reported as beneficial in experimental studies of stroke. In the present paper, we report on a preclinical cross-laboratory stroke trial designed to investigate the efficacy of interleukin 1 receptor antagonist in different research laboratories across Europe. Our results strongly support the therapeutic potential of interleukin 1 receptor antagonist in experimental stroke and provide further evidence that interleukin 1 receptor antagonist should be evaluated in more extensive clinical stroke trials. PMID:26661169

  20. Preclinical and clinical characterization of the selective 5-HT(1A) receptor antagonist DU-125530 for antidepressant treatment.

    PubMed

    Scorza, M C; Lladó-Pelfort, L; Oller, S; Cortés, R; Puigdemont, D; Portella, M J; Pérez-Egea, R; Alvarez, E; Celada, P; Pérez, V; Artigas, F

    2012-11-01

    The antidepressant efficacy of selective 5-HT reuptake inhibitors (SSRI) and other 5-HT-enhancing drugs is compromised by a negative feedback mechanism involving 5-HT(1A) autoreceptor activation by the excess 5-HT produced by these drugs in the somatodendritic region of 5-HT neurones. 5-HT(1A) receptor antagonists augment antidepressant-like effects in rodents by preventing this negative feedback, and the mixed β-adrenoceptor/5-HT(1A) receptor antagonist pindolol improves clinical antidepressant effects by preferentially interacting with 5-HT(1A) autoreceptors. However, it is unclear whether 5-HT(1A) receptor antagonists not discriminating between pre- and post-synaptic 5-HT(1A) receptors would be clinically effective. We characterized the pharmacological properties of the 5-HT(1A) receptor antagonist DU-125530 using receptor autoradiography, intracerebral microdialysis and electrophysiological recordings. Its capacity to accelerate/enhance the clinical effects of fluoxetine was assessed in a double-blind, randomized, 6 week placebo-controlled trial in 50 patients with major depression (clinicaltrials.gov identifier NCT01119430). DU-125530 showed equal (low nM) potency to displace agonist and antagonist binding to pre- and post-synaptic 5-HT(1A) receptors in rat and human brain. It antagonized suppression of 5-hydroxytryptaminergic activity evoked by 8-OH-DPAT and SSRIs in vivo. DU-125530 augmented SSRI-induced increases in extracellular 5-HT as effectively as in mice lacking 5-HT(1A) receptors, indicating a silent, maximal occupancy of pre-synaptic 5-HT(1A) receptors at the dose used. However, DU-125530 addition to fluoxetine did not accelerate nor augment its antidepressant effects. DU-125530 is an excellent pre- and post-synaptic 5-HT(1A) receptor antagonist. However, blockade of post-synaptic 5- HT(1A) receptors by DU-125530 cancels benefits obtained by enhancing pre-synaptic 5-hydroxytryptaminergic function. © 2011 The Authors. British Journal of

  1. Combining the α1-Adrenergic Receptor Antagonist, Prazosin, with the β-Adrenergic Receptor Antagonist, Propranolol, Reduces Alcohol Drinking More Effectively Than Either Drug Alone

    PubMed Central

    Rasmussen, Dennis D; Beckwith, Lauren E; Kincaid, Carrie L; Froehlich, Janice C

    2014-01-01

    Background Evidence suggests that activation of the noradrenergic system may contribute to alcohol drinking in animals and humans. Our previous studies demonstrated that blocking α1-adrenergic receptors with the antagonist, prazosin, decreased alcohol drinking in rats under various conditions. Since noradrenergic activation is also regulated by β-adrenergic receptors, we now examine the effects of the β-adrenergic receptor antagonist, propranolol, alone or in combination with prazosin, on alcohol drinking in rats selectively bred for high voluntary alcohol intake and alcohol preference (P line). Methods Two studies were conducted with male P rats. In study one, rats were allowed to become alcohol-dependent during 14 weeks of ad libitum access to food, water and 20% alcohol and the effect of propranolol (5–15 mg/kg, IP) and prazosin (1–2 mg/kg, IP) on alcohol intake during withdrawal were assessed. In study two, the effect of propranolol (5 mg/kg, IP) and prazosin (2 mg/kg, IP) on alcohol intake following prolonged imposed abstinence was assessed. Results Alcohol drinking following propranolol treatment was variable, but the combination of propranolol + prazosin consistently suppressed alcohol drinking during both alcohol withdrawal and following prolonged imposed abstinence, and the combination of these two drugs was more effective than was treatment with either drug alone. Conclusions Treatment with prazosin + propranolol, or a combination of other centrally active α1- and β-adrenergic receptor antagonists, may assist in preventing alcohol relapse in some individuals. PMID:24891220

  2. Modulation of neurological deficits and expression of glutamate receptors during experimental autoimmune encephalomyelitis after treatment with selected antagonists of glutamate receptors.

    PubMed

    Sulkowski, Grzegorz; Dąbrowska-Bouta, Beata; Strużyńska, Lidia

    2013-01-01

    The aim of our investigation was to characterize the role of group I mGluRs and NMDA receptors in pathomechanisms of experimental autoimmune encephalomyelitis (EAE), the rodent model of MS. We tested the effects of LY 367385 (S-2-methyl-4-carboxyphenylglycine, a competitive antagonist of mGluR1), MPEP (2-methyl-6-(phenylethynyl)-pyridine, an antagonist of mGluR5), and the uncompetitive NMDA receptor antagonists amantadine and memantine on modulation of neurological deficits observed in rats with EAE. The neurological symptoms of EAE started at 10-11 days post-injection (d.p.i.) and peaked after 12-13 d.p.i. The protein levels of mGluRs and NMDA did not increase in early phases of EAE (4 d.p.i.), but starting from 8 d.p.i. to 25 d.p.i., we observed a significant elevation of mGluR1 and mGluR5 protein expression by about 20% and NMDA protein expression by about 10% over the control at 25 d.p.i. The changes in protein levels were accompanied by changes in mRNA expression of group I mGluRs and NMDARs. During the late disease phase (20-25 d.p.i.), the mRNA expression levels reached 300% of control values. In contrast, treatment with individual receptor antagonists resulted in a reduction of mRNA levels relative to untreated animals.

  3. Pharmacological significance of the interplay between angiotensin receptors: MAS receptors as putative final mediators of the effects elicited by angiotensin AT1 receptors antagonists.

    PubMed

    Pernomian, Larissa; Pernomian, Laena; Gomes, Mayara S; da Silva, Carlos H T P

    2015-12-15

    The interplay between angiotensin AT1 receptors and MAS receptors relies on several inward regulatory mechanisms from renin-angiotensin system (RAS) including the functional crosstalk between angiotensin II and angiotensin-(1-7), the competitive AT1 antagonism exhibited by angiotensin-(1-7), the antagonist feature assigned to AT1/MAS heterodimerization on AT1 signaling and the AT1-mediated downregulation of angiotensin-converting enzyme 2 (ACE2). Recently, such interplay has acquired an important significance to RAS Pharmacology since a few studies have supporting strong evidences that MAS receptors mediate the effects elicited by AT1 antagonists. The present Perspective provides an overview of the regulatory mechanisms involving AT1 and MAS receptors, their significance to RAS Pharmacology and the future directions on the interplay between angiotensin receptors. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. In vitro and in vivo pharmacology of CP-945,598, a potent and selective cannabinoid CB(1) receptor antagonist for the management of obesity.

    PubMed

    Hadcock, John R; Griffith, David A; Iredale, Phillip A; Carpino, Phillip A; Dow, Robert L; Black, Shawn C; O'Connor, Rebecca; Gautreau, Denise; Lizano, Jeffrey S; Ward, Karen; Hargrove, Diane M; Kelly-Sullivan, Dawn; Scott, Dennis O

    2010-04-02

    Cannabinoid CB(1) receptor antagonists exhibit pharmacologic properties favorable for the treatment of metabolic disease. CP-945,598 (1-[9-(4-chlorophenyl)-8-(2-chlorophenyl)-9H-purin-6-yl]-4-ethylamino piperidine-4-carboxylic acid amide hydrochloride) is a recently discovered selective, high affinity, competitive CB(1) receptor antagonist that inhibits both basal and cannabinoid agonist-mediated CB(1) receptor signaling in vitro and in vivo. CP-945,598 exhibits sub-nanomolar potency at human CB(1) receptors in both binding (K(i)=0.7 nM) and functional assays (K(i)=0.2 nM). The compound has low affinity (K(i)=7600 nM) for human CB(2) receptors. In vivo, CP-945,598 reverses four cannabinoid agonist-mediated CNS-driven responses (hypo-locomotion, hypothermia, analgesia, and catalepsy) to a synthetic cannabinoid receptor agonist. CP-945,598 exhibits dose and concentration-dependent anorectic activity in two models of acute food intake in rodents, fast-induced re-feeding and spontaneous, nocturnal feeding. CP-945,598 also acutely stimulates energy expenditure in rats and decreases the respiratory quotient indicating a metabolic switch to increased fat oxidation. CP-945,598 at 10mg/kg promoted a 9%, vehicle adjusted weight loss in a 10 day weight loss study in diet-induced obese mice. Concentration/effect relationships combined with ex vivo brain CB(1) receptor occupancy data were used to evaluate efficacy in behavioral, food intake, and energy expenditure studies. Together, these in vitro, ex vivo, and in vivo data indicate that CP-945,598 is a novel CB(1) receptor competitive antagonist that may further our understanding of the endocannabinoid system. 2010 Elsevier Inc. All rights reserved.

  5. [125I]-GR231118: a high affinity radioligand to investigate neuropeptide Y Y1 and Y4 receptors

    PubMed Central

    Dumont, Yvan; Quirion, Rémi

    2000-01-01

    GR231118 (also known as 1229U91 and GW1229), a purported Y1 antagonist and Y4 agonist was radiolabelled using the chloramine T method. [125I]-GR231118 binding reached equilibrium within 10 min at room temperature and remained stable for at least 4 h. Saturation binding experiments showed that [125I]-GR231118 binds with very high affinity (Kd of 0.09–0.24 nM) in transfected HEK293 cells with the rat Y1 and Y4 receptor cDNA and in rat brain membrane homogenates. No specific binding sites could be detected in HEK293 cells transfected with the rat Y2 or Y5 receptor cDNA demonstrating the absence of significant affinity of GR231118 for these two receptor classes. Competition binding experiments revealed that specific [125I]-GR231118 binding in rat brain homogenates is most similar to that observed in HEK293 cells transfected with the rat Y1, but not rat Y4, receptor cDNA. Autoradiographic studies demonstrated that [125I]-GR231118 binding sites were fully inhibited by the Y1 antagonist BIBO3304 in most areas of the rat brain. Interestingly, high percentage of [125I]-GR231118/BIBO3304-insensitive binding sites were detected in few areas. These [125I]-GR231118/BIBO3304-insensitive binding sites likely represent labelling to the Y4 receptor subtype. In summary, [125I]-GR231118 is a new radiolabelled probe to investigate the Y1 and Y4 receptors; its major advantage being its high affinity. Using highly selective Y1 antagonists such as BIBO3304 or BIBP3226 it is possible to block the binding of [125I]-GR231118 to the Y1 receptor allowing for the characterization and visualization of the purported Y4 subtype. PMID:10694200

  6. Characterization of the hypothermic effects of imidazoline I2 receptor agonists in rats

    PubMed Central

    Thorn, David A; An, Xiao-Fei; Zhang, Yanan; Pigini, Maria; Li, Jun-Xu

    2012-01-01

    BACKGROUND AND PURPOSE Imidazoline I2 receptors have been implicated in several CNS disorders. Although several I2 receptor agonists have been described, no simple and sensitive in vivo bioassay is available for studying I2 receptor ligands. This study examined I2 receptor agonist-induced hypothermia as a functional in vivo assay of I2 receptor agonism. EXPERIMENTAL APPROACH Different groups of rats were used to examine the effects of I2 receptor agonists on the rectal temperature and locomotion. The pharmacological mechanisms were investigated by combining I2 receptor ligands and different antagonists. KEY RESULTS All the selective I2 receptor agonists examined (2-BFI, diphenyzoline, phenyzoline, CR4056, tracizoline, BU224 and S22687, 3.2–56 mg·kg–1, i.p.) dose-dependently and markedly decreased the rectal temperature (hypothermia) in rats, with varied duration of action. Pharmacological mechanism of the observed hypothermia was studied by combining the I2 receptor agonists (2-BFI, BU224, tracizoline and diphenyzoline) with imidazoline I2 receptor/ α2 adrenoceptor antagonist idazoxan, selective I1 receptor antagonist efaroxan, α2 adrenoceptor antagonist/5-HT1A receptor agonist yohimbine. Idazoxan but not yohimbine or efaroxan attenuated the hypothermic effects of 2-BFI, BU224, tracizoline and diphenyzoline, supporting the I2 receptor mechanism. In contrast, both idazoxan and yohimbine attenuated hypothermia induced by the α2 adrenoceptor agonist clonidine. Among all the I2 receptor agonists studied, only S22687 markedly increased the locomotor activity in rats. CONCLUSIONS AND IMPLICATIONS Imidazoline I2 receptor agonists can produce hypothermic effects, which are primarily mediated by I2 receptors. These data suggest that I2 receptor agonist-induced hypothermia is a simple and sensitive in vivo assay for studying I2 receptor ligands. PMID:22324428

  7. μ Opioid receptor: novel antagonists and structural modeling

    NASA Astrophysics Data System (ADS)

    Kaserer, Teresa; Lantero, Aquilino; Schmidhammer, Helmut; Spetea, Mariana; Schuster, Daniela

    2016-02-01

    The μ opioid receptor (MOR) is a prominent member of the G protein-coupled receptor family and the molecular target of morphine and other opioid drugs. Despite the long tradition of MOR-targeting drugs, still little is known about the ligand-receptor interactions and structure-function relationships underlying the distinct biological effects upon receptor activation or inhibition. With the resolved crystal structure of the β-funaltrexamine-MOR complex, we aimed at the discovery of novel agonists and antagonists using virtual screening tools, i.e. docking, pharmacophore- and shape-based modeling. We suggest important molecular interactions, which active molecules share and distinguish agonists and antagonists. These results allowed for the generation of theoretically validated in silico workflows that were employed for prospective virtual screening. Out of 18 virtual hits evaluated in in vitro pharmacological assays, three displayed antagonist activity and the most active compound significantly inhibited morphine-induced antinociception. The new identified chemotypes hold promise for further development into neurochemical tools for studying the MOR or as potential therapeutic lead candidates.

  8. Harmane produces hypotension following microinjection into the RVLM: possible role of I(1)-imidazoline receptors.

    PubMed

    Musgrave, I F; Badoer, E

    2000-03-01

    The beta-carboline, harmane (0.1 - 1.0 nmol) produces dose dependent hypotension when microinjected unilaterally into the rostral ventrolateral medulla (RVLM) of the anaesthetized rat. The potency of harmane on blood pressure is similar to that of the imidazoline, clonidine. The hypotensive effects of both clonidine and harmane are reversed by microinjection of the relatively I(1)-receptor selective antagonist efaroxan (20 nmol). These results are consistent with harmane acting at an I(1)-receptor in the RVLM. This is the first report of an endogenous ligand for I(1)-receptors that has central effects on blood pressure.

  9. Residues remote from the binding pocket control the antagonist selectivity towards the corticotropin-releasing factor receptor-1

    NASA Astrophysics Data System (ADS)

    Sun, Xianqiang; Cheng, Jianxin; Wang, Xu; Tang, Yun; Ågren, Hans; Tu, Yaoquan

    2015-01-01

    The corticotropin releasing factors receptor-1 and receptor-2 (CRF1R and CRF2R) are therapeutic targets for treating neurological diseases. Antagonists targeting CRF1R have been developed for the potential treatment of anxiety disorders and alcohol addiction. It has been found that antagonists targeting CRF1R always show high selectivity, although CRF1R and CRF2R share a very high rate of sequence identity. This has inspired us to study the origin of the selectivity of the antagonists. We have therefore built a homology model for CRF2R and carried out unbiased molecular dynamics and well-tempered metadynamics simulations for systems with the antagonist CP-376395 in CRF1R or CRF2R to address this issue. We found that the side chain of Tyr6.63 forms a hydrogen bond with the residue remote from the binding pocket, which allows Tyr6.63 to adopt different conformations in the two receptors and results in the presence or absence of a bottleneck controlling the antagonist binding to or dissociation from the receptors. The rotameric switch of the side chain of Tyr3566.63 allows the breaking down of the bottleneck and is a perquisite for the dissociation of CP-376395 from CRF1R.

  10. Residues remote from the binding pocket control the antagonist selectivity towards the corticotropin-releasing factor receptor-1

    PubMed Central

    Sun, Xianqiang; Cheng, Jianxin; Wang, Xu; Tang, Yun; Ågren, Hans; Tu, Yaoquan

    2015-01-01

    The corticotropin releasing factors receptor-1 and receptor-2 (CRF1R and CRF2R) are therapeutic targets for treating neurological diseases. Antagonists targeting CRF1R have been developed for the potential treatment of anxiety disorders and alcohol addiction. It has been found that antagonists targeting CRF1R always show high selectivity, although CRF1R and CRF2R share a very high rate of sequence identity. This has inspired us to study the origin of the selectivity of the antagonists. We have therefore built a homology model for CRF2R and carried out unbiased molecular dynamics and well-tempered metadynamics simulations for systems with the antagonist CP-376395 in CRF1R or CRF2R to address this issue. We found that the side chain of Tyr6.63 forms a hydrogen bond with the residue remote from the binding pocket, which allows Tyr6.63 to adopt different conformations in the two receptors and results in the presence or absence of a bottleneck controlling the antagonist binding to or dissociation from the receptors. The rotameric switch of the side chain of Tyr3566.63 allows the breaking down of the bottleneck and is a perquisite for the dissociation of CP-376395 from CRF1R. PMID:25628267

  11. Residues remote from the binding pocket control the antagonist selectivity towards the corticotropin-releasing factor receptor-1.

    PubMed

    Sun, Xianqiang; Cheng, Jianxin; Wang, Xu; Tang, Yun; Ågren, Hans; Tu, Yaoquan

    2015-01-28

    The corticotropin releasing factors receptor-1 and receptor-2 (CRF1R and CRF2R) are therapeutic targets for treating neurological diseases. Antagonists targeting CRF1R have been developed for the potential treatment of anxiety disorders and alcohol addiction. It has been found that antagonists targeting CRF1R always show high selectivity, although CRF1R and CRF2R share a very high rate of sequence identity. This has inspired us to study the origin of the selectivity of the antagonists. We have therefore built a homology model for CRF2R and carried out unbiased molecular dynamics and well-tempered metadynamics simulations for systems with the antagonist CP-376395 in CRF1R or CRF2R to address this issue. We found that the side chain of Tyr(6.63) forms a hydrogen bond with the residue remote from the binding pocket, which allows Tyr(6.63) to adopt different conformations in the two receptors and results in the presence or absence of a bottleneck controlling the antagonist binding to or dissociation from the receptors. The rotameric switch of the side chain of Tyr356(6.63) allows the breaking down of the bottleneck and is a perquisite for the dissociation of CP-376395 from CRF1R.

  12. Quantitative pharmacological analysis of antagonist binding kinetics at CRF1 receptors in vitro and in vivo

    PubMed Central

    Ramsey, Simeon J; Attkins, Neil J; Fish, Rebecca; van der Graaf, Piet H

    2011-01-01

    BACKGROUND AND PURPOSE A series of novel non-peptide corticotropin releasing factor type-1 receptor (CRF1) antagonists were found to display varying degrees of insurmountable and non-competitive behaviour in functional in vitro assays. We describe how we attempted to relate this behaviour to ligand receptor-binding kinetics in a quantitative manner and how this resulted in the development and implementation of an efficient pharmacological screening method based on principles described by Motulsky and Mahan. EXPERIMENTAL APPROACH A non-equilibrium binding kinetic assay was developed to determine the receptor binding kinetics of non-peptide CRF1 antagonists. Nonlinear, mixed-effects modelling was used to obtain estimates of the compounds association and dissociation rates. We present an integrated pharmacokinetic–pharmacodynamic (PKPD) approach, whereby the time course of in vivo CRF1 receptor binding of novel compounds can be predicted on the basis of in vitro assays. KEY RESULTS The non-competitive antagonist behaviour appeared to be correlated to the CRF1 receptor off-rate kinetics. The integrated PKPD model suggested that, at least in a qualitative manner, the in vitro assay can be used to triage and select compounds for further in vivo investigations. CONCLUSIONS AND IMPLICATIONS This study provides evidence for a link between ligand offset kinetics and insurmountable/non-competitive antagonism at the CRF1 receptor. The exact molecular pharmacological nature of this association remains to be determined. In addition, we have developed a quantitative framework to study and integrate in vitro and in vivo receptor binding kinetic behaviour of CRF1 receptor antagonists in an efficient manner in a drug discovery setting. PMID:21449919

  13. SCH 206272: a potent, orally active tachykinin NK(1), NK(2), and NK(3) receptor antagonist.

    PubMed

    Anthes, John C; Chapman, Richard W; Richard, Christian; Eckel, Stephen; Corboz, Michel; Hey, John A; Fernandez, Xiomara; Greenfeder, Scott; McLeod, Robbie; Sehring, Susan; Rizzo, Charles; Crawley, Yvette; Shih, Neng-Yang; Piwinski, John; Reichard, Greg; Ting, Pauline; Carruthers, Nick; Cuss, Francis M; Billah, Motasim; Kreutner, William; Egan, Robert W

    2002-08-23

    Experiments were performed to characterize the pharmacology of SCH 206272 [(R,R)-1'[5-[(3,5-dichlorobenzoyl)methylamino]-3-(3,4-dichlorophenyl)-4(Z)-(methoxyimino)pentyl]-N-methyl-2-oxo-[1,4'bipiperidine]-3-acetamide] as a potent and selective antagonist of tachykinin (NK) NK(1), NK(2), and NK(3) receptors. SCH 206272 inhibited binding at human tachykinin NK(1), NK(2), and NK(3) receptors (K(i) = 1.3, 0.4, and 0.3 nM, respectively) and antagonized [Ca(2+)](i) mobilization in Chinese hamster ovary (CHO) cells expressing the cloned human tachykinin NK(1), NK(2), or NK(3) receptors. SCH 206272 inhibited relaxation of the human pulmonary artery (pK(b) = 7.7 +/- 0.3) induced by the tachykinin NK(1) receptor agonist, [Met-O-Me] substance P and contraction of the human bronchus (pK(b = 8.2 +/- 0.3) induced by the tachykinin NK(2) receptor agonist, neurokinin A. In isolated guinea pig tissues, SCH 206272 inhibited substance P-induced enhancement of electrical field stimulated contractions of the vas deferens, (pK(b = 7.6 +/- 0.2), NKA-induced contraction of the bronchus (pK(b) = 7.7 +/- 0.2), and senktide-induced contraction of the ileum. In vivo, oral SCH 206272 (0.1-10 mg/kg, p.o.) inhibited substance P-induced airway microvascular leakage and neurokinin A-induced bronchospasm in the guinea pig. In a canine in vivo model, SCH 206272 (0.1-3 mg/kg, p.o.) inhibited NK(1) and NK(2) activities induced by exogenous substance P and neurokinin A. Furthermore, in guinea pig models involving endogenously released tachykinins, SCH 206272 inhibited hyperventilation-induced bronchospasm, capsaicin-induced cough, and airway microvascular leakage induced by nebulized hypertonic saline. These data demonstrate that SCH 206272 is a potent, orally active tachykinin NK(1), NK(2), and NK(3) receptor antagonist. This compound may have beneficial effects in diseases thought to be mediated by tachykinins, such as cough, asthma, and chronic obstructive pulmonary disease. Copyright 2002 Elsevier

  14. Effects of YM471, a nonpeptide AVP V1A and V2 receptor antagonist, on human AVP receptor subtypes expressed in CHO cells and oxytocin receptors in human uterine smooth muscle cells

    PubMed Central

    Tsukada, Junko; Tahara, Atsuo; Tomura, Yuichi; Wada, Koh-ichi; Kusayama, Toshiyuki; Ishii, Noe; Yatsu, Takeyuki; Uchida, Wataru; Taniguchi, Nobuaki; Tanaka, Akihiro

    2001-01-01

    YM471, (Z)-4′-{4,4-difluoro-5-[2-(4-dimethylaminopiperidino)-2-oxoethylidene]-2,3,4,5-tetrahydro-1H-1-benzoazepine-1-carbonyl}-2-phenylbenzanilide monohydrochloride, is a newly synthesized potent vasopressin (AVP) receptor antagonist. Its effects on binding to and signal transduction by cloned human AVP receptors (V1A, V1B and V2) stably expressed in Chinese hamster ovary (CHO) cells, and oxytocin receptors in human uterine smooth muscle cells (USMC) were studied. YM471 potently inhibited specific [3H]-AVP binding to V1A and V2 receptors with Ki values of 0.62 nM and 1.19 nM, respectively. In contrast, YM471 exhibited much lower affinity for V1B and oxytocin receptors with Ki values of 16.4 μM and 31.6 nM, respectively. In CHO cells expressing V1A receptors, YM471 potently inhibited AVP-induced intracellular Ca2+ concentration ([Ca2+]i) increase, exhibiting an IC50 value of 0.56 nM. However, in human USMC expressing oxytocin receptors, YM471 exhibited much lower potency in inhibiting oxytocin-induced [Ca2+]i increase (IC50=193 nM), and did not affect AVP-induced [Ca2+]i increase in CHO cells expressing V1B receptors. Furthermore, in CHO cells expressing V2 receptors, YM471 potently inhibited the production of cyclic AMP stimulated by AVP with an IC50 value of 1.88 nM. In all assays, YM471 showed no agonistic activity. These results demonstrate that YM471 is a potent, nonpeptide human V1A and V2 receptor antagonist which will be a valuable tool in defining the physiologic and pharmacologic actions of AVP. PMID:11429400

  15. Effect of single point mutations of the human tachykinin NK1 receptor on antagonist affinity.

    PubMed

    Lundstrom, K; Hawcock, A B; Vargas, A; Ward, P; Thomas, P; Naylor, A

    1997-10-15

    Molecular modelling and site-directed mutagenesis were used to identify eleven amino acid residues which may be involved in antagonist binding of the human tachykinin NK1 receptor. Recombinant receptors were expressed in mammalian cells using the Semliki Forest virus system. Wild type and mutant receptors showed similar expression levels in BHK and CHO cells, verified by metabolic labelling. Binding affinities were determined for a variety of tachykinin NK1 receptor antagonists in SFV-infected CHO cells. The binding affinity for GR203040, CP 99,994 and CP 96,345 was significantly reduced by mutant Q165A. The mutant F268A significantly reduced the affinity for GR203040 and CP 99,994 and the mutant H197A had reduced affinity for CP 96,345. All antagonists seemed to bind in a similar region of the receptor, but do not all rely on the same binding site interactions. Functional coupling to G-proteins was assayed by intracellular Ca2+ release in SFV-infected CHO cells. The wild type receptor and all mutants except A162L and F268A responded to substance P stimulation.

  16. Implementation of a Fluorescence-Based Screening Assay Identifies Histamine H3 Receptor Antagonists Clobenpropit and Iodophenpropit as Subunit-Selective N-Methyl-d-Aspartate Receptor Antagonists

    PubMed Central

    Hansen, Kasper B.; Mullasseril, Praseeda; Dawit, Sara; Kurtkaya, Natalie L.; Yuan, Hongjie; Vance, Katie M.; Orr, Anna G.; Kvist, Trine; Ogden, Kevin K.; Le, Phuong; Vellano, Kimberly M.; Lewis, Iestyn; Kurtkaya, Serdar; Du, Yuhong; Qui, Min; Murphy, T. J.; Snyder, James P.; Bräuner-Osborne, Hans

    2010-01-01

    N-Methyl-d-aspartate (NMDA) receptors are ligand-gated ion channels that mediate a slow, Ca2+-permeable component of excitatory synaptic transmission in the central nervous system and play a pivotal role in synaptic plasticity, neuronal development, and several neurological diseases. We describe a fluorescence-based assay that measures NMDA receptor-mediated changes in intracellular calcium in a BHK-21 cell line stably expressing NMDA receptor NR2D with NR1 under the control of a tetracycline-inducible promoter (Tet-On). The assay selectively identifies allosteric modulators by using supramaximal concentrations of glutamate and glycine to minimize detection of competitive antagonists. The assay is validated by successfully identifying known noncompetitive, but not competitive NMDA receptor antagonists among 1800 screened compounds from two small focused libraries, including the commercially available library of pharmacologically active compounds. Hits from the primary screen are validated through a secondary screen that used two-electrode voltage-clamp recordings on recombinant NMDA receptors expressed in Xenopus laevis oocytes. This strategy identified several novel modulators of NMDA receptor function, including the histamine H3 receptor antagonists clobenpropit and iodophenpropit, as well as the vanilloid receptor transient receptor potential cation channel, subfamily V, member 1 (TRPV1) antagonist capsazepine. These compounds are noncompetitive antagonists and the histamine H3 receptor ligand showed submicromolar potency at NR1/NR2B NMDA receptors, which raises the possibility that compounds can be developed that act with high potency on both glutamate and histamine receptor systems simultaneously. Furthermore, it is possible that some actions attributed to histamine H3 receptor inhibition in vivo may also involve NMDA receptor antagonism. PMID:20197375

  17. Interleukin 1 Receptor Antagonist Deficiency Presenting as Infantile Pustulosis Mimicking Infantile Pustular Psoriasis

    PubMed Central

    Minkis, Kira; Aksentijevich, Ivona; Goldbach-Mansky, Raphaela; Magro, Cynthia; Scott, Rachelle; Davis, Jessica G.; Sardana, Niti; Herzog, Ronit

    2012-01-01

    Background Deficiency of interleukin 1 receptor antagonist (DIRA) is a recently described autoinflammatory syndrome of skin and bone caused by recessive mutations in the gene encoding the interleukin 1 receptor antagonist. Few studies have been published about this debilitating condition. Early identification is critical for targeted lifesaving intervention. Observations A male infant, born to nonconsanguineous Puerto Rican parents, was referred for management of a pustular eruption diagnosed as pustular psoriasis. At 2 months of age, the infant developed a pustular eruption. After extensive evaluation, he was confirmed to be homozygous for a 175-kb genomic deletion on chromosome 2 that includes the IL1RN gene, commonly found in Puerto Ricans. Therapy with anakinra was initiated, with rapid clearance of skin lesions and resolution of systemic inflammation. Conclusions Recent identification of DIRA as a disease entity, compounded by the limited number of reported cases, makes early identification difficult. It is critical to consider this entity in the differential diagnosis of infantile pustulosis. Targeted therapy with the recombinant human interleukin 1 receptor antagonist anakinra can be lifesaving if initiated early. A high carrier frequency of the 175-kb DIRA-associated genomic deletion in the Puerto Rican population strongly supports testing infants presenting with unexplained pustulosis in patients from this geographic region. PMID:22431714

  18. State-dependent and -independent effects of dialyzing excitatory neuromodulator receptor antagonists into the ventral respiratory column

    PubMed Central

    Langer, Thomas M.; Neumueller, Suzanne E.; Crumley, Emma; Burgraff, Nicholas J.; Talwar, Sawan; Hodges, Matthew R.; Pan, Lawrence

    2017-01-01

    Unilateral dialysis of the broad-spectrum muscarinic receptor antagonist atropine (50 mM) into the ventral respiratory column [(VRC) including the pre-Bötzinger complex region] of awake goats increased pulmonary ventilation (V̇i) and breathing frequency (f), conceivably due to local compensatory increases in serotonin (5-HT) and substance P (SP) measured in effluent mock cerebral spinal fluid (mCSF). In contrast, unilateral dialysis of a triple cocktail of antagonists to muscarinic (atropine; 5 mM), neurokinin-1, and 5-HT receptors does not alter V̇i or f, but increases local SP. Herein, we tested hypotheses that 1) local compensatory 5-HT and SP responses to 50 mM atropine dialyzed into the VRC of goats will not differ between anesthetized and awake states; and 2) bilateral dialysis of the triple cocktail of antagonists into the VRC of awake goats will not alter V̇i or f, but will increase local excitatory neuromodulators. Through microtubules implanted into the VRC of goats, probes were inserted to dialyze mCSF alone (time control), 50 mM atropine, or the triple cocktail of antagonists. We found 1) equivalent increases in local 5-HT and SP with 50 mM atropine dialysis during wakefulness compared with isoflurane anesthesia, but V̇i and f only increased while awake; and 2) dialyses of the triple cocktail of antagonists increased V̇i, f, 5-HT, and SP (<0.05) during both day and night studies. We conclude that the mechanisms governing local neuromodulator levels are state independent, and that bilateral excitatory receptor blockade elicits an increase in breathing, presumably due to a local, (over)compensatory neuromodulator response. NEW & NOTEWORTHY The two major findings are as follows: 1) during unilateral dialysis of 50 mM atropine into the ventral respiratory column to block excitatory muscarinic receptor activity, a compensatory increase in other neuromodulators was state independent, but the ventilatory response appears to be state dependent; and 2) the

  19. State-dependent and -independent effects of dialyzing excitatory neuromodulator receptor antagonists into the ventral respiratory column.

    PubMed

    Langer, Thomas M; Neumueller, Suzanne E; Crumley, Emma; Burgraff, Nicholas J; Talwar, Sawan; Hodges, Matthew R; Pan, Lawrence; Forster, Hubert V

    2017-02-01

    Unilateral dialysis of the broad-spectrum muscarinic receptor antagonist atropine (50 mM) into the ventral respiratory column [(VRC) including the pre-Bötzinger complex region] of awake goats increased pulmonary ventilation (V̇i) and breathing frequency (f), conceivably due to local compensatory increases in serotonin (5-HT) and substance P (SP) measured in effluent mock cerebral spinal fluid (mCSF). In contrast, unilateral dialysis of a triple cocktail of antagonists to muscarinic (atropine; 5 mM), neurokinin-1, and 5-HT receptors does not alter V̇i or f, but increases local SP. Herein, we tested hypotheses that 1 ) local compensatory 5-HT and SP responses to 50 mM atropine dialyzed into the VRC of goats will not differ between anesthetized and awake states; and 2 ) bilateral dialysis of the triple cocktail of antagonists into the VRC of awake goats will not alter V̇i or f, but will increase local excitatory neuromodulators. Through microtubules implanted into the VRC of goats, probes were inserted to dialyze mCSF alone (time control), 50 mM atropine, or the triple cocktail of antagonists. We found 1 ) equivalent increases in local 5-HT and SP with 50 mM atropine dialysis during wakefulness compared with isoflurane anesthesia, but V̇i and f only increased while awake; and 2 ) dialyses of the triple cocktail of antagonists increased V̇i, f, 5-HT, and SP (<0.05) during both day and night studies. We conclude that the mechanisms governing local neuromodulator levels are state independent, and that bilateral excitatory receptor blockade elicits an increase in breathing, presumably due to a local, (over)compensatory neuromodulator response. NEW & NOTEWORTHY The two major findings are as follows: 1) during unilateral dialysis of 50 mM atropine into the ventral respiratory column to block excitatory muscarinic receptor activity, a compensatory increase in other neuromodulators was state independent, but the ventilatory response appears to be state dependent; and 2

  20. Orexin OX2 Receptor Antagonists as Sleep Aids.

    PubMed

    Jacobson, Laura H; Chen, Sui; Mir, Sanjida; Hoyer, Daniel

    The discovery of the orexin system represents the single major progress in the sleep field of the last three to four decades. The two orexin peptides and their two receptors play a major role in arousal and sleep/wake cycles. Defects in the orexin system lead to narcolepsy with cataplexy in humans and dogs and can be experimentally reproduced in rodents. At least six orexin receptor antagonists have reached Phase II or Phase III clinical trials in insomnia, five of which are dual orexin receptor antagonists (DORAs) that target both OX 1 and OX 2 receptors (OX 2 Rs). All clinically tested DORAs induce and maintain sleep: suvorexant, recently registered in the USA and Japan for insomnia, represents the first hypnotic principle that acts in a completely different manner from the current standard medications. It is clear, however, that in the clinic, all DORAs promote sleep primarily by increasing rapid eye movement (REM) and are almost devoid of effects on slow-wave (SWS) sleep. At present, there is no consensus on whether the sole promotion of REM sleep has a negative impact in patients suffering from insomnia. However, sleep onset REM (SOREM), which has been documented with DORAs, is clearly an undesirable effect, especially for narcoleptic patients and also in fragile populations (e.g. elderly patients) where REM-associated loss of muscle tone may promote an elevated risk of falls. Debate thus remains as to the ideal orexin agent to achieve a balanced increase in REM and non-rapid eye movement (NREM) sleep. Here, we review the evidence that an OX 2 R antagonist should be at least equivalent, or perhaps superior, to a DORA for the treatment of insomnia. An OX 2 R antagonist may produce more balanced sleep than a DORA. Rodent sleep experiments show that the OX 2 R is the primary target of orexin receptor antagonists in sleep modulation. Furthermore, an OX 2 R antagonist should, in theory, have a lower narcoleptic/cataplexic potential. In the clinic, the situation

  1. Harmane produces hypotension following microinjection into the RVLM: possible role of I1-imidazoline receptors

    PubMed Central

    Musgrave, I F; Badoer, E

    2000-01-01

    The β-carboline, harmane (0.11.0 nmol) produces dose dependent hypotension when microinjected unilaterally into the rostral ventrolateral medulla (RVLM) of the anaesthetized rat. The potency of harmane on blood pressure is similar to that of the imidazoline, clonidine. The hypotensive effects of both clonidine and harmane are reversed by microinjection of the relatively I1-receptor selective antagonist efaroxan (20 nmol). These results are consistent with harmane acting at an I1-receptor in the RVLM. This is the first report of an endogenous ligand for I1-receptors that has central effects on blood pressure. PMID:10725251

  2. Synergism of virtual screening and medicinal chemistry: identification and optimization of allosteric antagonists of metabotropic glutamate receptor 1.

    PubMed

    Noeske, Tobias; Trifanova, Dina; Kauss, Valerjans; Renner, Steffen; Parsons, Christopher G; Schneider, Gisbert; Weil, Tanja

    2009-08-01

    We report the identification of novel potent and selective metabotropic glutamate receptor 1 (mGluR1) antagonists by virtual screening and subsequent hit optimization. For ligand-based virtual screening, molecules were represented by a topological pharmacophore descriptor (CATS-2D) and clustered by a self-organizing map (SOM). The most promising compounds were tested in mGluR1 functional and binding assays. We identified a potent chemotype exhibiting selective antagonistic activity at mGluR1 (functional IC(50)=0.74+/-0.29 microM). Hit optimization yielded lead structure 16 with an affinity of K(i)=0.024+/-0.001 microM and greater than 1000-fold selectivity for mGluR1 versus mGluR5. Homology-based receptor modelling suggests a binding site compatible with previously reported mutation studies. Our study demonstrates the usefulness of ligand-based virtual screening for scaffold-hopping and rapid lead structure identification in early drug discovery projects.

  3. Tachykinin-mediated respiratory effects in conscious guinea pigs: modulation by NK1 and NK2 receptor antagonists.

    PubMed

    Kudlacz, E M; Logan, D E; Shatzer, S A; Farrell, A M; Baugh, L E

    1993-09-07

    Tachykinins, in particular neurokinin A and substance P, produce a number of airway effects which may contribute to respiratory diseases such as asthma. We examined the ability of aerosolized substance P, neurokinin A or capsaicin to produce respiratory alterations in conscious guinea pigs using modified whole body plethysmography. Substance P-mediated dyspnea and significant respiratory events were inhibited by the NK1 receptor antagonist, CP-96,345. Neurokinin A-mediated respiratory effects were ablated by the NK2 receptor antagonists: MEN 10207, MDL 29,913 and SR 48,968, the latter being the most potent. The peptide-based antagonist, MEN 10207, produced respiratory effects itself suggesting partial agonist activity. The cyclic hexapeptide, MDL 29,913, relaxed airway smooth muscle via mechanisms other than tachykinin antagonism. NK2 but not NK1 receptor antagonists were able to delay the onset of capsaicin-induced dyspnea, although alone they did not usually (in approximately 10% of the animals) eliminate the response. However, when NK2 receptor antagonists were combined with CP-96,345, the incidence of dyspnea induced by capsaicin decreased significantly (40%) suggesting that both tachykinins contribute to dyspnea in this system.

  4. Interactions between angiotensin AT1 receptor antagonists and second-generation antiepileptic drugs in the test of maximal electroshock.

    PubMed

    Łukawski, Krzysztof; Janowska, Agnieszka; Jakubus, Tomasz; Czuczwar, Stanisław J

    2014-06-01

    The anticonvulsant activity of angiotensin AT1 receptor antagonists, losartan (2-n-butyl-4-chloro-5-hydroxymethyl-1-[(2'(1H-tetrazol-5-yl)-biphenil-4-yl)methyl]imidazole) and telmisartan (49-[(1,49-dimethyl-29-propyl[2,69-bi-1H-benzimidazo]-19-yl)methyl]-[1,19-biphenyl]-2-carboxylic acid), has been reported recently. It is suggested that AT1 receptor antagonists may affect the protective action of antiepileptic drugs. The aim of this study was to determine the influence of losartan and telmisartan on the anticonvulsant activity of some second-generation antiepileptics (lamotrigine - LTG, oxcarbazepine - OXC, and topiramate - TPM). For this purpose, the maximal electroshock seizure (MES) test in mice was used. Additionally, the drug combinations were checked for adverse effects in the passive avoidance and chimney tests. In the MES test, losartan at the doses of 30 and 50 mg/kg, administered intraperitoneally (i.p.), potentiated the protective action of LTG (P < 0.01). This interaction was not accompanied by a significant change of LTG level either in plasma or in the brain. Telmisartan at the dose of 30 mg/kg i.p. enhanced the anticonvulsant action of TPM (P < 0.01). However, this interaction was pharmacokinetic in nature, as telmisartan significantly increased plasma and total brain concentrations of TPM (P < 0.001). The combinations of AT1 receptor antagonists with antiepileptic drugs did not affect retention in the passive avoidance test or motor coordination in the chimney test. The potentiation of the anticonvulsant action of LTG by losartan probably on account of pharmacodynamic interactions, make this combination important for further experimental and clinical studies. The combination of telmisartan and TPM is less beneficial due to pharmacokinetic interactions. © 2013 The Authors Fundamental and Clinical Pharmacology © 2013 Société Française de Pharmacologie et de Thérapeutique.

  5. Diadenosine polyphosphates as antagonists of the endogenous P2Y1 receptor in rat brain capillary endothelial cells of the B7 and B10 clones

    PubMed Central

    Vigne, Paul; Breittmayer, Jean Philippe; Frelin, Christian

    2000-01-01

    Diadenosine polyphosphates (ApnAs, n=2–7) are considered as stress mediators in the cardiovascular system. They act both via identified P2 purinoceptors and via yet to be characterized receptors. This study analyses the actions of ApnAs in clones of rat brain capillary endothelial cells that express P2Y1 receptors (B10 cells) or both P2Y1 and P2Y2 receptors (B7 cells).B10 cells responded to Ap3A with rises in intracellular Ca2+ concentration ([Ca2+]i). This response was prevented by adenosine-3′-phosphate-5′-phosphate, an antagonist of P2Y1 receptors. It was largely suppressed by a treatment with apyrase VII or with creatine phosphokinase/creatine phosphate to degrade contaminating ADP.ApnAs inhibited ADP induced increases in [Ca2+]i mediated by P2Y1 receptors by shifting ADP concentration-response curves to larger concentrations. Apparent Ki values were estimated to be 6 μM for Ap4A, 10 μM for Ap5A and 47 μM for Ap6A. Ap2A and Ap3A were much less active.ApnAs were neither agonists nor antagonists of the endogenous P2Y2 receptor in B7 cells.ApnAs are neither agonists nor antagonists of the Gi-coupled, ADP receptor in B10 cells.The results suggest that most actions of ApnAs in B7 and B10 cells can be accounted for by endogenous P2Y1 receptors. Ap4A, Ap5A and Ap6A are specific antagonists of endogenous Ca2+-coupled P2Y1 receptors. PMID:10742308

  6. Antibronchospastic activity of MEN10,627, a novel tachykinin NK2 receptor antagonist, in guinea-pig airways.

    PubMed

    Perretti, F; Ballati, L; Manzini, S; Maggi, C A; Evangelista, S

    1995-01-24

    The antibronchospastic activity against acetylcholine, antigen, histamine plus platelet-activating factor (PAF) or the selective tachykinin neurokinin (NK)1 and NK2 receptor agonists of the novel tachykinin NK2 receptor antagonist, MEN10,627 (cyclo(Met-Asp-Trp-Phe-Dap-Leu)cyclo(2 beta-5 beta)), was studied in anesthetized guinea-pigs. MEN10,627 (30-100 nmol/kg i.v.) reduced in a dose-dependent manner the bronchospasm induced by the tachykinin NK2 receptor agonist [beta Ala8]neurokinin A-(4-10) and the effect of the highest dose lasted up to 5 h from its administration. Conversely, airway constriction induced by the NK1 receptor agonist [Sar9]substance P sulfone or acetylcholine was unaffected by MEN10,627 up to a dose of 3 mumol/kg i.v. In animals sensitized with ovalbumin and pretreated with the endopeptidase inhibitor phosphoramidon, the aerosolized antigen produced a bronchospasm which was inhibited by MEN10,627 (30-100 nmol/kg i.v.) but not by the tachykinin NK1 receptor antagonist, (+/-)-CP96,345 ([2R,3R-cis- and [2S,3S)-cis-2-(diphenylmethyl)-N-[(2-methoxyphenyl)-methyl]-1- azabicyclo[2.2.2]octan-3-amine]) (3 mumol/kg i.v.). Both MEN10,627 (30-100 nmol/kg i.v.) and (+/-)-CP96,345 (30-300 nmol/kg i.v.) reduced the PAF-induced hyperresponsiveness to histamine, without affecting the hypotension induced by PAF or the bronchospasm induced by histamine in guinea-pigs not exposed to PAF, showing the involvement of both tachykinin NK1 and NK2 receptors in this model. In summary, MEN10,627 behaves as a potent, selective and long-lasting tachykinin NK2 receptor antagonist in vivo. Further, tachykinin NK2 receptors could be activated during allergic responses and in the development of airway hyperresponsiveness.

  7. Preclinical pharmacology of bilastine, a new selective histamine H1 receptor antagonist: receptor selectivity and in vitro antihistaminic activity.

    PubMed

    Corcóstegui, Reyes; Labeaga, Luis; Innerárity, Ana; Berisa, Agustin; Orjales, Aurelio

    2005-01-01

    This study aimed to establish the receptor selectivity and antihistaminic activity of bilastine, a new selective antihistamine receptor antagonist. In vitro experiments were conducted using a receptor binding screening panel and guinea-pig and rat tissues. Antihistaminic activity was determined using H1 receptor binding studies and in vitro H1 antagonism studies conducted in guinea-pig tissues and human cell lines. Receptor selectivity was established using a receptor binding screening panel and a receptor antagonism screening conducted in guinea-pig, rat and rabbit tissues. Inhibition of inflammatory mediators was determined through the Schultz-Dale reaction in sensitised guinea-pig ileum. Bilastine binds to histamine H1-receptors as indicated by its displacement of [3H]-pyrilamine from H1-receptors expressed in guinea-pig cerebellum and human embryonic kidney (HEK) cell lines. The studies conducted on guinea-pig smooth muscle demonstrated the capability of bilastine to antagonise H1-receptors. Bilastine is selective for histamine H1-receptors as shown in receptor-binding screening conducted to determine the binding capacity of bilastine to 30 different receptors. The specificity of its H1-receptor antagonistic activity was also demonstrated in a series of in vitro experiments conducted on guinea-pig and rat tissues. The results of these studies confirmed the lack of significant antagonism against serotonin, bradykinin, leukotriene D4, calcium, muscarinic M3-receptors, alpha1-adrenoceptors, beta2-adrenoceptors, and H2- and H3-receptors. The results of the in vitro Schultz-Dale reaction demonstrated that bilastine also has anti-inflammatory activity. These preclinical studies provide evidence that bilastine has H1- antihistamine activity, with high specificity for H1-receptors, and poor or no affinity for other receptors. Bilastine has also been shown to have anti-inflammatory properties.

  8. Antagonistic targeting of the histamine H3 receptor decreases caloric intake in higher mammalian species.

    PubMed

    Malmlöf, Kjell; Hastrup, Sven; Wulff, Birgitte Schellerup; Hansen, Barbara C; Peschke, Bernd; Jeppesen, Claus Bekker; Hohlweg, Rolf; Rimvall, Karin

    2007-04-15

    The main purpose of this study was to examine the effects of a selective histamine H(3) receptor antagonist, NNC 38-1202, on caloric intake in pigs and in rhesus monkeys. The compound was given intragastrically (5 or 15 mg/kg), to normal pigs (n=7) and subcutaneously (1 or 0.1mg/kg) to obese rhesus monkeys (n=9). The energy intake recorded following administration of vehicle to the same animals served as control for the effect of the compound. In addition, rhesus monkey and pig histamine H(3) receptors were cloned from hypothalamic tissues and expressed in mammalian cell lines. The in vitro antagonist potencies of NNC 38-1202 at the H(3) receptors were determined using a functional GTPgammaS binding assay. Porcine and human H(3) receptors were found to have 93.3% identity at the amino acid level and the close homology between the monkey and human H(3) receptors (98.4% identity) was confirmed. The antagonist potencies of NNC 38-1202 at the porcine, monkey and human histamine H(3) receptors were high as evidenced by K(i)-values being clearly below 20 nM, whereas the K(i)-value on the rat H(3) receptor was significantly higher (56+/-6.0 nM). NNC 38-1202, given to pigs in a dose of 15 mg/kg, produced a significant (p<0.05) reduction (55%) of calorie intake compared with vehicle alone, (132.6+/-10.0 kcal/kgday versus 59.7+/-10.2 kcal/kgday). In rhesus monkeys administration of 0.1 and 1mg/kg decreased (p<0.05) average calorie intakes by 40 and 75%, respectively. In conclusion, the present study demonstrates that antagonistic targeting of the histamine H(3) receptor decreases caloric intake in higher mammalian species.

  9. 5-HT6 receptor agonists and antagonists enhance learning and memory in a conditioned emotion response paradigm by modulation of cholinergic and glutamatergic mechanisms

    PubMed Central

    Woods, S; Clarke, NN; Layfield, R; Fone, KCF

    2012-01-01

    BACKGROUND AND PURPOSE 5-HT6 receptors are abundant in the hippocampus, nucleus accumbens and striatum, supporting their role in learning and memory. Selective 5-HT6 receptor antagonists produce pro-cognitive effects in several learning and memory paradigms while 5-HT6 receptor agonists have been found to enhance and impair memory. EXPERIMENTAL APPROACH The conditioned emotion response (CER) paradigm was validated in rats. Then we examined the effect of the 5-HT6 receptor antagonist, EMD 386088 (10 mg·kg−1, i.p.), and agonists, E-6801 (2.5 mg·kg−1, i.p.) and EMD 386088 (5 mg·kg−1, i.p.) on CER-induced behaviour either alone or after induction of memory impairment by the muscarinic receptor antagonist, scopolamine (0.3 mg·kg−1, i.p) or the NMDA receptor antagonist, MK-801 (0.1 mg·kg−1, i.p). KEY RESULTS Pairing unavoidable foot shocks with a light and tone cue during CER training induced a robust freezing response, providing a quantitative index of contextual memory when the rat was returned to the shock chamber 24 h later. Pretreatment (−20 min pre-training) with scopolamine or MK-801 reduced contextual freezing 24 h after CER training, showing production of memory impairment. Immediate post-training administration of 5-HT6 receptor antagonist, SB-270146, and agonists, EMD 386088 and E-6801, had little effect on CER freezing when given alone, but all significantly reversed scopolamine- and MK-801-induced reduction in freezing. CONCLUSION AND IMPLICATIONS Both the 5-HT6 receptor agonists and antagonist reversed cholinergic- and glutamatergic-induced deficits in associative learning. These findings support the therapeutic potential of 5-HT6 receptor compounds in the treatment of cognitive dysfunction, such as seen in Alzheimer's disease and schizophrenia. PMID:22568655

  10. Effect of Combined Treatment with AT1 Receptor Antagonists and Tiagabine on Seizures, Memory and Motor Coordination in Mice.

    PubMed

    Łukawski, Krzysztof; Janowska, Agnieszka; Czuczwar, Stanisław J

    2015-01-01

    Losartan and telmisartan, angiotensin AT1 receptor antagonists, are widely used antihypertensive drugs in patients. It is also known that arterial hypertension is often present in people with epilepsy, therefore, drug interactions between AT1 receptor antagonists and antiepileptic drugs can occur in clinical practice. The aim of the current study was to assess the effect of losartan and telmisartan on the anticonvulsant activity of tiagabine, a second-generation antiepileptic drug, in mice. Additionally, the effect of the combined treatment with AT1 receptor antagonists and TGB on long-term memory and motor coordination has been assessed in animals. The study was performed on male Swiss mice. Convulsions were examined in the maximal electroshock seizure threshold test. Long-term memory was measured in the passive-avoidance task and motor coordination was evaluated in the chimney test. AT1 receptor antagonists and TGB were administered intraperitoneally. Losartan (50 mg/kg) or telmisartan (30 mg/kg) did not influence the anticonvulsant activity of TGB applied at doses of 2, 4 and 6 mg/kg. However, both AT1 receptor antagonists in combinations with TGB (6 mg/kg) impaired motor coordination in the chimney test. The concomitant treatment of the drugs did not decrease retention in the passive avoidance task. It is suggested that losartan and telmisartan should not affect the anticonvulsant action of TGB in people with epilepsy. Because the combined treatment with AT1 receptor antagonists and TGB led to neurotoxic effects in animals, caution is advised during concomitant use of these drugs in patients.

  11. Classification and virtual screening of androgen receptor antagonists.

    PubMed

    Li, Jiazhong; Gramatica, Paola

    2010-05-24

    Computational tools, such as quantitative structure-activity relationship (QSAR), are highly useful as screening support for prioritization of substances of very high concern (SVHC). From the practical point of view, QSAR models should be effective to pick out more active rather than inactive compounds, expressed as sensitivity in classification works. This research investigates the classification of a big data set of endocrine-disrupting chemicals (EDCs)-androgen receptor (AR) antagonists, mainly aiming to improve the external sensitivity and to screen for potential AR binders. The kNN, lazy IB1, and ADTree methods and the consensus approach were used to build different models, which improve the sensitivity on external chemicals from 57.1% (literature) to 76.4%. Additionally, the models' predictive abilities were further validated on a blind collected data set (sensitivity: 85.7%). Then the proposed classifiers were used: (i) to distinguish a set of AR binders into antagonists and agonists; (ii) to screen a combined estrogen receptor binder database to find out possible chemicals that can bind to both AR and ER; and (iii) to virtually screen our in-house environmental chemical database. The in silico screening results suggest: (i) that some compounds can affect the normal endocrine system through a complex mechanism binding both to ER and AR; (ii) new EDCs, which are nonER binders, but can in silico bind to AR, are recognized; and (iii) about 20% of compounds in a big data set of environmental chemicals are predicted as new AR antagonists. The priority should be given to them to experimentally test the binding activities with AR.

  12. WAY 267,464, a non-peptide oxytocin receptor agonist, impairs social recognition memory in rats through a vasopressin 1A receptor antagonist action.

    PubMed

    Hicks, Callum; Ramos, Linnet; Reekie, Tristan A; Narlawar, Rajeshwar; Kassiou, Michael; McGregor, Iain S

    2015-08-01

    Recent in vitro studies suggest that the oxytocin receptor (OTR) agonist WAY 267,464 has vasopressin 1A receptor (V1AR) antagonist effects. This might limit its therapeutic potential due to the positive involvement of the V1AR in social behavior. The objective of this study was to assess functional V1AR antagonist-like effects of WAY 267,464 in vivo using a test of social recognition memory. Adult experimental rats were tested for their recognition of a juvenile conspecific rat that they had briefly met 30 or 120 min previously. The modulatory effects of vasopressin (AVP), the selective V1AR antagonist SR49059, and WAY 267,464 were examined together with those of the selective OTR antagonist Compound 25 (C25). Drugs were administered immediately after the first meeting. Control rats showed recognition of juveniles at a 30 min, but not a 120 min retention interval. AVP (0.005, but not 0.001 mg/kg intraperitoneal (i.p.)) improved memory such that recognition was evident after 120 min. This was prevented by pretreatment with SR49059 (1 mg/kg) and WAY 267,464 (10, 30, and 100 mg/kg). Given alone, SR49059 (1 mg/kg) and WAY 267,464 (30 and 100 mg/kg) impaired memory at a 30 min retention interval. The impairment with WAY 267,464 was not prevented by C25 (5 mg/kg), suggesting V1AR rather than OTR mediation of the effect. Given alone, C25 also impaired memory. These results highlight a tonic role for endogenous AVP (and oxytocin) in social recognition memory and indicate that WAY 267,464 functions in vivo as a V1AR antagonist to prevent the memory-enhancing effects of AVP.

  13. NOP Receptor Mediates Anti-analgesia Induced by Agonist-Antagonist Opioids

    PubMed Central

    Gear, Robert W.; Bogen, Oliver; Ferrari, Luiz F.; Green, Paul G.; Levine, Jon D.

    2014-01-01

    Clinical studies have shown that agonist-antagonist opioid analgesics that produce their analgesic effect via action on the kappa-opioid receptor, produce a delayed-onset anti-analgesia in men but not women, an effect blocked by co-administration of a low dose of naloxone. We now report the same time-dependent anti-analgesia and its underlying mechanism in an animal model. Using the Randall-Selitto paw-withdrawal assay in male rats, we found that nalbuphine, pentazocine, and butorphanol each produced analgesia during the first hour followed by anti-analgesia starting at ~90 minutes after administration in males but not females, closely mimicking its clinical effects. As observed in humans, co-administration of nalbuphine with naloxone in a dose ratio of 12.5:1 blocked anti-analgesia but not analgesia. Administration of the highly selective kappa-opioid receptor agonist U69,593 produced analgesia without subsequent anti-analgesia, and confirmed by the failure of the selective kappa antagonist nor-binaltorphimine to block nalbuphine-induced anti-analgesia, indicating that anti-analgesia is not mediated by kappa-opioid receptors. We therefore tested the role of other receptors in nalbuphine anti-analgesia. Nociceptin/orphanin FQ (NOP) and sigma-1 and sigma-2 receptors were chosen on the basis of their known anti-analgesic effects and receptor binding studies. The selective NOP receptor antagonists, JTC801, and J113397, but not the sigma receptor antagonist, BD 1047, antagonized nalbuphine anti-analgesia. Furthermore, the NOP receptor agonist NNC 63-0532 produced anti-analgesia with the same delay in onset observed with the three agonist-antagonists, but without producing preceding analgesia and this anti-analgesia was also blocked by naloxone. These results strongly support the suggestion that clinically used agonist-antagonists act at the NOP receptor to produce anti-analgesia. PMID:24188792

  14. Synthesis, structure-activity relationships, and in vivo evaluation of N3-phenylpyrazinones as novel corticotropin-releasing factor-1 (CRF1) receptor antagonists.

    PubMed

    Hartz, Richard A; Ahuja, Vijay T; Arvanitis, Argyrios G; Rafalski, Maria; Yue, Eddy W; Denhart, Derek J; Schmitz, William D; Ditta, Jonathan L; Deskus, Jeffrey A; Brenner, Allison B; Hobbs, Frank W; Payne, Joseph; Lelas, Snjezana; Li, Yu-Wen; Molski, Thaddeus F; Mattson, Gail K; Peng, Yong; Wong, Harvey; Grace, James E; Lentz, Kimberley A; Qian-Cutrone, Jingfang; Zhuo, Xiaoliang; Shu, Yue-Zhong; Lodge, Nicholas J; Zaczek, Robert; Combs, Andrew P; Olson, Richard E; Bronson, Joanne J; Mattson, Ronald J; Macor, John E

    2009-07-23

    Evidence suggests that corticotropin-releasing factor-1 (CRF(1)) receptor antagonists may offer therapeutic potential for the treatment of diseases associated with elevated levels of CRF such as anxiety and depression. A pyrazinone-based chemotype of CRF(1) receptor antagonists was discovered. Structure-activity relationship studies led to the identification of numerous potent analogues including 12p, a highly potent and selective CRF(1) receptor antagonist with an IC(50) value of 0.26 nM. The pharmacokinetic properties of 12p were assessed in rats and Cynomolgus monkeys. Compound 12p was efficacious in the defensive withdrawal test (an animal model of anxiety) in rats. The synthesis, structure-activity relationships and in vivo properties of compounds within the pyrazinone chemotype are described.

  15. Distortion of KB estimates of endothelin-1 ETA and ETB receptor antagonists in pulmonary arteries: Possible role of an endothelin-1 clearance mechanism.

    PubMed

    Angus, James A; Hughes, Richard J A; Wright, Christine E

    2017-12-01

    Dual endothelin ET A and ET B receptor antagonists are approved therapy for pulmonary artery hypertension (PAH). We hypothesized that ET B receptor-mediated clearance of endothelin-1 at specific vascular sites may compromise this targeted therapy. Concentration-response curves (CRC) to endothelin-1 or the ET B agonist sarafotoxin S6c were constructed, with endothelin receptor antagonists, in various rat and mouse isolated arteries using wire myography or in rat isolated trachea. In rat small mesenteric arteries, bosentan displaced endothelin-1 CRC competitively indicative of ET A receptor antagonism. In rat small pulmonary arteries, bosentan 10 μmol L -1 left-shifted the endothelin-1 CRC, demonstrating potentiation consistent with antagonism of an ET B receptor-mediated endothelin-1 clearance mechanism. Removal of endothelium or L-NAME did not alter the EC 50 or Emax of endothelin-1 nor increase the antagonism by BQ788. In the presence of BQ788 and L-NAME, bosentan displayed ET A receptor antagonism. In rat trachea (ET B ), bosentan was a competitive ET B antagonist against endothelin-1 or sarafotoxin S6c. Modeling showed the importance of dual receptor antagonism where the potency ratio of ET A to ET B antagonism is close to unity. In conclusion, the rat pulmonary artery is an example of a special vascular bed where the resistance to antagonism of endothelin-1 constriction by ET dual antagonists, such as bosentan or the ET B antagonist BQ788, is possibly due to the competition of potentiation of endothelin-1 by blockade of ET B -mediated endothelin-1 clearance located on smooth muscle and antagonism of ET A - and ET B -mediated contraction. This conclusion may have direct application for the efficacy of endothelin-1 antagonists for treating PAH. © 2017 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

  16. The pharmacology of GR203040, a novel, potent and selective non-peptide tachykinin NK1 receptor antagonist.

    PubMed Central

    Beattie, D. T.; Beresford, I. J.; Connor, H. E.; Marshall, F. H.; Hawcock, A. B.; Hagan, R. M.; Bowers, J.; Birch, P. J.; Ward, P.

    1995-01-01

    maximum agonist response (apparent pKB values of 11.9, 11.2 and 11.1 respectively). 5. In anaesthetized rabbits, GR203040 antagonized reductions in carotid arterial vascular resistance evoked by SPOMe, injected via the lingual artery (DR10 (i.e. the dose producing a dose-ratio of 10) = 1.1 micrograms kg-1, i.v.). At a dose 20 fold greater than its DR10 value (i.e. 22 micrograms kg-1, i.v.), significant antagonism was evident more than 2 h after GR203040 administration. 6. In anaesthetized rats, GR203040 (3 and 10 mg kg-1, i.v.) produced a dose-dependent inhibition of plasma protein extravasation in dura mater, conjunctiva, eyelid and lip in response to electrical stimulation of the trigeminal ganglion. 7. It is concluded that GR203040 is one of the most potent and selective NK1 receptor antagonists yet described, and as such, has considerable potential as a pharmacological tool to characterize the physiological and pathological roles of substance P and NK1 receptors. GR203040 may also have potential as a novel therapeutic agent for the treatment of conditions such as migraine, emesis and pain. PMID:8719789

  17. Combination of behaviorally sub-effective doses of glutamate NMDA and dopamine D1 receptor antagonists impairs executive function.

    PubMed

    Desai, Sagar J; Allman, Brian L; Rajakumar, Nagalingam

    2017-04-14

    Impairment of executive function is a core feature of schizophrenia. Preclinical studies indicate that injections of either N-methyl d-aspartate (NMDA) or dopamine D 1 receptor blockers impair executive function. Despite the prevailing notion based on postmortem findings in schizophrenia that cortical areas have marked suppression of glutamate and dopamine, recent in vivo imaging studies suggest that abnormalities of these neurotransmitters in living patients may be quite subtle. Thus, we hypothesized that modest impairments in both glutamate and dopamine function can act synergistically to cause executive dysfunction. In the present study, we investigated the effect of combined administration of "behaviorally sub-effective" doses of NMDA and dopamine D 1 receptor antagonists on executive function. An operant conditioning-based set-shifting task was used to assess behavioral flexibility in rats that were systemically injected with NMDA and dopamine D 1 receptor antagonists individually or in combination prior to task performance. Separate injections of the NMDA receptor antagonist, MK-801, and the dopamine D 1 receptor antagonist, SCH 23390, at low doses did not impair set-shifting; however, the combined administration of these same behaviorally sub-effective doses of the antagonists significantly impaired the performance during set-shifting without affecting learning, retrieval of the memory of the initial rule, latency of responses or the number of omissions. The combined treatment also produced an increased number of perseverative errors. Our results indicate that NMDA and D 1 receptor blockade act synergistically to cause behavioral inflexibility, and as such, subtle abnormalities in glutamatergic and dopaminergic systems may act cooperatively to cause deficits in executive function. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Competitive antagonists discriminate between NK2 tachykinin receptor subtypes.

    PubMed Central

    Maggi, C. A.; Patacchini, R.; Giuliani, S.; Rovero, P.; Dion, S.; Regoli, D.; Giachetti, A.; Meli, A.

    1990-01-01

    1. We have compared the ability of various tachykinins and selective tachykinin receptor agonists to induce contraction of the endothelium-denuded rabbit pulmonary artery (RPA) and hamster trachea (HT) and have estimated the affinity of some newly developed NK2 selective antagonists in the same tissues. 2. In confirmation of previous findings, experiments with the agonists indicated that NK2 receptors are the main if not the sole mediators of the response to tachykinins in both RPA and HT. No evidence for significant degradation of neurokinin A (NKA) was found in either tissue when experiments were repeated in the presence of a mixture of peptidase inhibitors (thiorphan, captopril and bestatin, 1 microM each). 3. The peptide antagonists tested were: Peptide I = [Tyr5, D-Trp6,8,9, Arg10]-NKA(4-10); Peptide II = [Tyr5, D-Trp6,8,9, Arg10]-NKA(3-10); Peptide III = Ac-Leu-Asp-Gln-Trp-Phe-Gly-NH2. The three peptides produced a concentration-dependent rightward shift of the concentration-response curve to NKA in both RPA and HT with no significant depression of the maximal response attainable. The slopes of the Schild plots were not significantly different from unity, indicating a competitive antagonism. Peptides I and II were about 100 times more potent in the RPA than in the HT, while Peptide III was about 100 times more potent in the HT than RPA. 4. The pA2 values obtained in these two tissues with the three antagonists were not significantly different when tested in the absence or presence of peptidase inhibitors, or when a selective NK2 receptor agonist, [beta Ala8]-NKA(4-10) was used instead of NKA.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2167737

  19. The discovery of tropane-derived CCR5 receptor antagonists.

    PubMed

    Armour, Duncan R; de Groot, Marcel J; Price, David A; Stammen, Blanda L C; Wood, Anthony; Perros, Manos; Burt, Catherine

    2006-04-01

    The development of compound 1, a piperidine-based CCR5 receptor antagonist with Type I CYP2D6 inhibition, into the tropane-derived analogue 5, is described. This compound, which is devoid of CYP2D6 liabilities, is a highly potent ligand for the CCR5 receptor and has broad-spectrum activity against a range of clinically relevant HIV isolates. The identification of human ether a-go-go-related gene channel inhibition within this series is described and the potential for QTc interval prolongation discussed. Furthermore, structure activity relationship (SAR) around the piperidine moiety is also described.

  20. Biaryls as potent, tunable dual neurokinin 1 receptor antagonists and serotonin transporter inhibitors.

    PubMed

    Degnan, Andrew P; Tora, George O; Han, Ying; Rajamani, Ramkumar; Bertekap, Robert; Krause, Rudolph; Davis, Carl D; Hu, Joanna; Morgan, Daniel; Taylor, Sarah J; Krause, Kelly; Li, Yu-Wen; Mattson, Gail; Cunningham, Melissa A; Taber, Matthew T; Lodge, Nicholas J; Bronson, Joanne J; Gillman, Kevin W; Macor, John E

    2015-08-01

    Depression is a serious illness that affects millions of patients. Current treatments are associated with a number of undesirable side effects. Neurokinin 1 receptor (NK1R) antagonists have recently been shown to potentiate the antidepressant effects of serotonin-selective reuptake inhibitors (SSRIs) in a number of animal models. Herein we describe the optimization of a biaryl chemotype to provide a series of potent dual NK1R antagonists/serotonin transporter (SERT) inhibitors. Through the choice of appropriate substituents, the SERT/NK1R ratio could be tuned to afford a range of target selectivity profiles. This effort culminated in the identification of an analog that demonstrated oral bioavailability, favorable brain uptake, and efficacy in the gerbil foot tap model. Ex vivo occupancy studies with compound 58 demonstrated the ability to maintain NK1 receptor saturation (>88% occupancy) while titrating the desired level of SERT occupancy (11-84%) via dose selection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Emerging growth factor receptor antagonists for the treatment of renal cell carcinoma.

    PubMed

    Zahoor, Haris; Rini, Brian I

    2016-12-01

    The landscape of systemic treatment for metastatic renal cell carcinoma (RCC) has dramatically changed with the introduction of targeted agents including vascular endothelial growth factor (VEGF) inhibitors. Recently, multiple new agents including growth factor receptor antagonists and a checkpoint inhibitor were approved for the treatment of refractory metastatic RCC based on encouraging benefit shown in clinical trials. Areas covered: The background and biological rationale of existing treatment options including a brief discussion of clinical trials which led to their approval, is presented. This is followed by reviewing the limitations of these therapeutic options, medical need to develop new treatments and major goals of ongoing research. We then discuss two recently approved growth factor receptor antagonists i.e. cabozantinib and lenvatinib, and a recently approved checkpoint inhibitor, nivolumab, and issues pertaining to drug development, and future directions in treatment of metastatic RCC. Expert opinion: Recently approved growth factor receptor antagonists have shown encouraging survival benefit but associated drug toxicity is a major issue. Nivolumab, a programmed death 1 (PD-1) checkpoint inhibitor, has similarly shown survival benefit and is well tolerated. With multiple options now available in this patient population, the right sequence of these agents remains to be determined.

  2. Inverse agonist and neutral antagonist actions of synthetic compounds at an insect 5-HT1 receptor.

    PubMed

    Troppmann, B; Balfanz, S; Baumann, A; Blenau, W

    2010-04-01

    5-Hydroxytryptamine (5-HT) has been shown to control and modulate many physiological and behavioural functions in insects. In this study, we report the cloning and pharmacological properties of a 5-HT(1) receptor of an insect model for neurobiology, physiology and pharmacology. A cDNA encoding for the Periplaneta americana 5-HT(1) receptor was amplified from brain cDNA. The receptor was stably expressed in HEK 293 cells, and the functional and pharmacological properties were determined in cAMP assays. Receptor distribution was investigated by RT-PCR and by immunocytochemistry using an affinity-purified polyclonal antiserum. The P. americana 5-HT(1) receptor (Pea5-HT(1)) shares pronounced sequence and functional similarity with mammalian 5-HT(1) receptors. Activation with 5-HT reduced adenylyl cyclase activity in a dose-dependent manner. Pea5-HT(1) was expressed as a constitutively active receptor with methiothepin acting as a neutral antagonist, and WAY 100635 as an inverse agonist. Receptor mRNA was present in various tissues including brain, salivary glands and midgut. Receptor-specific antibodies showed that the native protein was expressed in a glycosylated form in membrane samples of brain and salivary glands. This study marks the first pharmacological identification of an inverse agonist and a neutral antagonist at an insect 5-HT(1) receptor. The results presented here should facilitate further analyses of 5-HT(1) receptors in mediating central and peripheral effects of 5-HT in insects.

  3. Solid-phase synthesis and structure-activity relationships of novel biarylethers as melanin-concentrating hormone receptor-1 antagonists.

    PubMed

    Ma, Vu; Bannon, Anthony W; Baumgartner, Jamie; Hale, Clarence; Hsieh, Faye; Hulme, Christopher; Rorrer, Kirk; Salon, John; van Staden, Carlo; Tempest, Paul

    2006-10-01

    Melanin-concentrating hormone (MCH) is a cyclic 19 amino acid orexigenic neuropeptide. The action of MCH on feeding is thought to involve the activation of its respective G protein-coupled receptor MCH-R1. Consequently, antagonists that block MCH regulated MCH-R1 activity may provide a viable approach to the treatment of diet-induced obesity. This communication reports the discovery of a novel MCH-R1 receptor antagonist, the biarylether 7, identified through high throughput screening. The solid-phase synthesis and structure-activity relationship of related analogs is described.

  4. Discovery of an imidazopyridine-containing 1,4-benzodiazepine nonpeptide vitronectin receptor (alpha v beta 3) antagonist with efficacy in a restenosis model.

    PubMed

    Keenan, R M; Lago, M A; Miller, W H; Ali, F E; Cousins, R D; Hall, L B; Hwang, S M; Jakas, D R; Kwon, C; Louden, C; Nguyen, T T; Ohlstein, E H; Rieman, D J; Ross, S T; Samanen, J M; Smith, B R; Stadel, J; Takata, D T; Vickery, L; Yuan, C C; Yue, T L

    1998-11-17

    In the 3-oxo-1,4-benzodiazepine-2-acetic acid series of vitronectin receptor (alpha v beta 3) antagonists, a compound containing an imidazopyridine arginine mimetic was discovered which had sufficient potency and i.v. pharmacokinetics for demonstration of efficacy in a rat restenosis model.

  5. [11C]AZ10419096 - a full antagonist PET radioligand for imaging brain 5-HT1B receptors.

    PubMed

    Lindberg, Anton; Nag, Sangram; Schou, Magnus; Takano, Akihiro; Matsumoto, Junya; Amini, Nahid; Elmore, Charles S; Farde, Lars; Pike, Victor W; Halldin, Christer

    2017-11-01

    The serotonergic system is widely present in all regions of the central nervous system (CNS) and plays a key modulatory role in many of its functions. Positron emission tomography (PET) is used to study several serotonin receptors in CNS in vivo. The G-protein coupled receptor 5-HT 1B is mostly present in the occipital cortex and in midbrain and is linked to several psychiatric disorders. There is evidence that agonist PET radioligands for neuroreceptors are more sensitive to endogenous neurotransmitters than antagonists. Our previously developed 5-HT 1B receptor PET radioligand, [ 11 C]AZ10419369, is now considered a partial agonist. In this work we are aiming to develop a full antagonist PET radioligand for imaging brain 5-HT 1B receptors, and evaluate its sensitivity to increased endogenous serotonin concentration. [ 11 C]AZ10419096 was synthesized by rapid methylation of the prepared corresponding N-desmethyl precursor with [ 11 C]methyl triflate. Five PET measurements were performed in cynomolgus monkeys, consisting of two at baseline, one after treatment of a monkey with a 5-HT 1B antagonist, AR-A000002, and two in which fenfluramine was administered during scanning to induce endogenous serotonin release. [ 11 C]AZ10419096 was synthesized in high yield and purity within 30 min, including purification, formulation and sterile filtration. The baseline PET measurements demonstrated [ 11 C]AZ10419096 to have favorable radioligand characteristics, including high specific binding in brain regions that have high 5-HT 1B density, such as occipital cortex and globus pallidus, as well as subsequent rapid elimination from brain and a minor abundance of lipophilic radiometabolites in plasma. AR-A00002 completely blocked radioligand receptor-specific binding. Fenfluramine produced a distinct displacement of radioligand consistent with an expected increase of synaptic endogenous serotonin concentration. [ 11 C]AZ10419096, a full 5-HT 1B antagonist PET radioligand

  6. Differential effects of m1 and m2 receptor antagonists in perirhinal cortex on visual recognition memory in monkeys

    PubMed Central

    Wu, Wei; Saunders, Richard C.; Mishkin, Mortimer; Turchi, Janita

    2012-01-01

    Microinfusions of the nonselective muscarinic antagonist scopolamine into perirhinal cortex impairs performance on visual recognition tasks, indicating that muscarinic receptors in this region play a pivotal role in recognition memory. To assess the mnemonic effects of selective blockade in perirhinal cortex of muscarinic receptor subtypes, we locally infused either the m1-selective antagonist pirenzepine or the m2-selective antagonist methoctramine in animals performing one-trial visual recognition, and compared these scores with those following infusions of equivalent volumes of saline. Compared to these control infusions, injections of pirenzepine, but not of methoctramine, significantly impaired recognition accuracy. Further, similar doses of scopolamine and pirenzepine yielded similar deficits, suggesting that the deficits obtained earlier with scopolamine were due mainly, if not exclusively, to blockade of m1 receptors. The present findings indicate that m1 and m2 receptors have functionally dissociable roles, and that the formation of new visual memories is critically dependent on the cholinergic activation of m1 receptors located on perirhinal cells. PMID:22561485

  7. Differential effects of m1 and m2 receptor antagonists in perirhinal cortex on visual recognition memory in monkeys.

    PubMed

    Wu, Wei; Saunders, Richard C; Mishkin, Mortimer; Turchi, Janita

    2012-07-01

    Microinfusions of the nonselective muscarinic antagonist scopolamine into perirhinal cortex impairs performance on visual recognition tasks, indicating that muscarinic receptors in this region play a pivotal role in recognition memory. To assess the mnemonic effects of selective blockade in perirhinal cortex of muscarinic receptor subtypes, we locally infused either the m1-selective antagonist pirenzepine or the m2-selective antagonist methoctramine in animals performing one-trial visual recognition, and compared these scores with those following infusions of equivalent volumes of saline. Compared to these control infusions, injections of pirenzepine, but not of methoctramine, significantly impaired recognition accuracy. Further, similar doses of scopolamine and pirenzepine yielded similar deficits, suggesting that the deficits obtained earlier with scopolamine were due mainly, if not exclusively, to blockade of m1 receptors. The present findings indicate that m1 and m2 receptors have functionally dissociable roles, and that the formation of new visual memories is critically dependent on the cholinergic activation of m1 receptors located on perirhinal cells. Published by Elsevier Inc.

  8. Melanocortin Antagonist Tetrapeptides with Minimal Agonist Activity at the Mouse Melanocortin-3 Receptor

    PubMed Central

    2014-01-01

    The melanocortin system regulates many important functions in the body. There are five melanocortin G protein-coupled receptor subtypes known to date. Herein, we report a structure–activity relationship (SAR) study of a tetrapeptide lead discovered through a double substitution strategy at the melanocortin core His-Phe-Arg-Trp sequence. Several compounds were identified with micromolar agonist activity at the mouse melanocortin-1 (mMC1R) and mouse melanocortin-5 receptor (mMC5R) subtypes, weak antagonist activity at the mouse melanocortin-3 receptor (mMC3R), and potent antagonist activity at the mouse melanocortin-4 receptor (mMC4R). Two compounds (2 and 3) were nanomolar mMC4R antagonists with no mMC3R antagonist activity observed. Additionally, we identified three tetrapeptide MC3R antagonists (1, 6, and 7) that possess minimal mMC3R agonist activity only at 100 μM, not commonly observed for mMC3R/mMC4R antagonists. These novel molecular templates have the potential as molecular probes to better differentiate the roles of the centrally expressed MC3 and MC4 receptors. PMID:25699138

  9. UTILIZATION OF THE LEAST SHREW AS A RAPID AND SELECTIVE SCREENING MODEL FOR THE ANTIEMETIC POTENTIAL AND BRAIN PENETRATION OF SUBSTANCE P AND NK1 RECEPTOR ANTAGONISTS

    PubMed Central

    Darmani, Nissar A.; Wang, Yaozhi; Abad, Joseph; Ray, Andrew P.; Thrush, Gerald R.; Ramirez, Juan

    2008-01-01

    Substance P (SP) is thought to play a cardinal role in emesis via the activation of central tachykinin NK1 receptors during the delayed phase of vomiting produced by chemotherapeutics. Although the existing supportive evidence is significant, due to lack of an appropriate animal model, the evidence is indirect. As yet, no study has confirmed that emesis produced by SP or a selective NK1 receptor agonist is sensitive to brain penetrating antagonists of either NK1, NK2, or NK3 receptors. The goals of this investigation were to demonstrate: 1) whether intraperitoneal (i.p.) administration of either SP, a brain penetrating (GR73632) or non-penetrating (e.g. SarMet – SP) NK1 receptor agonist, an NK2 receptor agonist (GR64349), or an NK3 receptor agonist (Pro7-NKB), would induce vomiting and/or scratching in the least shrew (Cryptotis parva) in a dose-dependent manner; and whether these effects are sensitive to the above selective receptor antagonists; 2) whether an exogenous emetic dose of SP (50 mg/kg, i.p.) can penetrate into the shrew brain stem and frontal cortex; 3) whether GR73632 (2.5 mg/kg, i.p.)-induced activation of NK1 receptors increases Fos-measured neuronal activity in the neurons of both brain stem emetic nuclei and the enteric nervous system of the gut; and 4) whether selective ablation of peripheral NK1 receptors can affect emesis produced by GR73632. The results clearly demonstrated that while SP produced vomiting only, GR73632 caused both emesis and scratching behavior dose-dependently in shrews, and these effects were sensitive to NK1-, but not NK2- or NK3-receptor antagonists. Neither the selective, non-penetrating NK1 receptor agonists, nor the selective NK2- or NK3-receptor agonists, caused a significant dose-dependent behavioral effect. An emetic dose of SP selectively and rapidly penetrated the brain stem but not the frontal cortex. Systemic GR73632 increased Fos expression in the enteric nerve plexi, the medial subnucleus of nucleus tractus

  10. Inverse agonist and neutral antagonist actions of synthetic compounds at an insect 5-HT1 receptor

    PubMed Central

    Troppmann, B; Balfanz, S; Baumann, A; Blenau, W

    2010-01-01

    Background and purpose: 5-Hydroxytryptamine (5-HT) has been shown to control and modulate many physiological and behavioural functions in insects. In this study, we report the cloning and pharmacological properties of a 5-HT1 receptor of an insect model for neurobiology, physiology and pharmacology. Experimental approach: A cDNA encoding for the Periplaneta americana 5-HT1 receptor was amplified from brain cDNA. The receptor was stably expressed in HEK 293 cells, and the functional and pharmacological properties were determined in cAMP assays. Receptor distribution was investigated by RT-PCR and by immunocytochemistry using an affinity-purified polyclonal antiserum. Key results: The P. americana 5-HT1 receptor (Pea5-HT1) shares pronounced sequence and functional similarity with mammalian 5-HT1 receptors. Activation with 5-HT reduced adenylyl cyclase activity in a dose-dependent manner. Pea5-HT1 was expressed as a constitutively active receptor with methiothepin acting as a neutral antagonist, and WAY 100635 as an inverse agonist. Receptor mRNA was present in various tissues including brain, salivary glands and midgut. Receptor-specific antibodies showed that the native protein was expressed in a glycosylated form in membrane samples of brain and salivary glands. Conclusions and implications: This study marks the first pharmacological identification of an inverse agonist and a neutral antagonist at an insect 5-HT1 receptor. The results presented here should facilitate further analyses of 5-HT1 receptors in mediating central and peripheral effects of 5-HT in insects. PMID:20233210

  11. The 5-HT2A receptor antagonist M100907 is more effective in counteracting NMDA antagonist- than dopamine agonist-induced hyperactivity in mice.

    PubMed

    Carlsson, M L; Martin, P; Nilsson, M; Sorensen, S M; Carlsson, A; Waters, S; Waters, N

    1999-01-01

    The purpose of the present study was to compare the effectiveness of the selective 5-HT2A antagonist M100907 in different psychosis models. The classical neuroleptic haloperidol was used as reference compound. Two hyperdopaminergia and two hypoglutamatergia mouse models were used. Hyperdopaminergia was produced by the DA releaser d-amphetamine or the DA uptake inhibitor GBR 12909. Hypoglutamatergia was produced by the un-competitive NMDA receptor antagonist MK-801 or the competitive NMDA receptor antagonist D-CPPene. M100907 was found to counteract the locomotor stimulant effects of the NMDA receptor antagonists MK-801 and D-CPPene, but spontaneous locomotion, d-amphetamine- and GBR-12909-induced hyperactivity were not significantly affected. Haloperidol, on the other hand, antagonized both NMDA antagonist- and DA agonist-induced hyperactivity, as well as spontaneous locomotion in the highest dose used. Based on the present and previous results we draw the conclusion that 5-HT2A receptor antagonists are particularly effective against behavioural anomalies resulting from hypoglutamatergia of various origins. The clinical implications of our results and conclusions would be that a 5-HT2A receptor antagonist, due to i a the low side effect liability, could be the preferable treatment strategy in various disorders associated with hypoglutamatergia; such conditions might include schizophrenia, childhood autism and dementia disorders.

  12. Discovery of spiropiperidine-based potent and selective Orexin-2 receptor antagonists.

    PubMed

    Fujimoto, Tatsuhiko; Tomata, Yoshihide; Kunitomo, Jun; Hirozane, Mariko; Marui, Shogo

    2011-11-01

    To generate novel human Orexin-2 Receptor (OX2R) antagonists, a spiropiperidine based scaffold was designed and a SAR study was carried out. Compound 4f possessed the highest OX2R antagonistic activity with an IC(50) value of 3nM with 450-fold selectivity against Orexin-1 Receptor (OX1R). Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Endothelin A receptor antagonists in congestive heart failure: blocking the beast while leaving the beauty untouched?

    PubMed

    Spieker, L E; Noll, G; Ruschitzka, F T; Lüscher, T F

    2001-12-01

    Congestive heart failure (CHF) is a disease process characterized by impaired left ventricular function, increased peripheral and pulmonary vascular resistance and reduced exercise tolerance and dyspnea. Thus, mediators involved in the control of myocardial function and vascular tone may be involved in its pathophysiology. The family of endothelins (ET) consists of four closely related peptides, ET-1, ET-2, ET-3, and ET-4, which cause vasoconstriction, cell proliferation, and myocardial effects through activation of ET(A) receptors. In contrast, endothelial ET(B) receptors mediate vasodilation via release of nitric oxide and prostacyclin. In addition, ET(B) receptors in the lung are a major pathway for the clearance of ET-1 from plasma. Thus, infusion of an ET(A) receptor antagonist into the brachial artery in healthy humans leads to vasodilation whereas infusion of an ET(B) receptor antagonist causes vasoconstriction. ET-1 plasma levels are elevated in CHF and correlate both with the hemodynamic severity and with symptoms. Plasma levels of ET-1 and its precursor, big ET-1, are strong independent predictors of death in patients after myocardial infarction and with CHF. ET-1 contributes to increased systemic and pulmonary vascular resistance, vascular dysfunction, myocardial ischemia, and renal impairment in CHF. Selective ET(A) as well as combined ET(A/B) receptor antagonists have been studied in patients with CHF showing impressive hemodynamic improvements (i.e. reduced peripheral vascular and pulmonary resistance as well as increased cardiac output). These results indicate that ET receptor antagonists indeed have a potential to improve hemodynamics, symptoms, and potentially prognosis of CHF which still carries a high mortality.

  14. Synthesis and SAR of highly potent and selective dopamine D3-receptor antagonists: variations on the 1H-pyrimidin-2-one theme.

    PubMed

    Geneste, Hervé; Amberg, Wilhelm; Backfisch, Gisela; Beyerbach, Armin; Braje, Wilfried M; Delzer, Jürgen; Haupt, Andreas; Hutchins, Charles W; King, Linda L; Sauer, Daryl R; Unger, Liliane; Wernet, Wolfgang

    2006-04-01

    In our efforts to further pursue one of the most selective dopamine D(3)-receptor antagonists reported to date, we now describe the synthesis and SAR of novel and highly selective dopamine D(3) antagonists based on a 1H-pyridin-2-one or on a urea scaffold. The most potent compounds exhibited K(i) values toward the D(3) receptor in the nano- to subnanomolar range and high selectivity versus the related D(2) dopamine receptor. Thus, 1H-pyridin-2-one 7b displays oral bioavailability (F=37%) as well as brain penetration (brain plasma ratio 3.7) in rat. Within the urea series, an excellent D(3) versus D(2) selectivity (>100-fold) could be achieved by removal of one NH group (compound 6), although bioavailability (rat) was suboptimal (F<10%). These data significantly enhance our understanding of the D(3) pharmacophore and are expected to lead to novel approaches for the treatment of schizophrenia.

  15. Effect of GABA receptor agonists or antagonists injected spinally on the blood glucose level in mice.

    PubMed

    Sim, Yun-Beom; Park, Soo-Hyun; Kang, Yu-Jung; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Suh, Hong-Won

    2013-05-01

    The possible roles of gamma-amino butyric acid (GABA) receptors located in the spinal cord for the regulation of the blood glucose level were studied in ICR mice. We found in the present study that intrathecal (i.t.) injection with baclofen (a GABAB receptor agonist; 1-10 μg/5 μl) or bicuculline (a GABAA receptor antagonist; 1-10 μg/5 μl) caused an elevation of the blood glucose level in a dose-dependent manner. The hyperglycemic effect induced by baclofen was more pronounced than that induced by bicuculline. However, muscimol (a GABAA receptor agonist; 1-5 μg/5 μl) or phaclofen (a GABAB receptor antagonist; 5-10 μg/5 μl) administered i.t. did not affect the blood glucose level. Baclofen-induced elevation of the blood glucose was dose-dependently attenuated by phaclofen. Furthermore, i.t. pretreatment with pertussis toxin (PTX; 0.05 or 0.1 μg/5 μl) for 6 days dose-dependently reduced the hyperglycemic effect induced by baclofen. Our results suggest that GABAB receptors located in the spinal cord play important roles for the elevation of the blood glucose level. Spinally located PTX-sensitive G-proteins appear to be involved in hyperglycemic effect induced by baclofen. Furthermore, inactivation of GABAA receptors located in the spinal cord appears to be responsible for tonic up-regulation of the blood glucose level.

  16. Anxiolytic-like and antidepressant-like activities of MCL0129 (1-[(S)-2-(4-fluorophenyl)-2-(4-isopropylpiperadin-1-yl)ethyl]-4-[4-(2-methoxynaphthalen-1-yl)butyl]piperazine), a novel and potent nonpeptide antagonist of the melanocortin-4 receptor.

    PubMed

    Chaki, Shigeyuki; Hirota, Shiho; Funakoshi, Takeo; Suzuki, Yoshiko; Suetake, Sayoko; Okubo, Taketoshi; Ishii, Takaaki; Nakazato, Atsuro; Okuyama, Shigeru

    2003-02-01

    We investigated the effects of a novel melanocortin-4 (MC4) receptor antagonist,1-[(S)-2-(4-fluorophenyl)-2-(4-isopropylpiperadin-1-yl)ethyl]-4-[4-(2-methoxynaphthalen-1-yl)butyl]piperazine (MCL0129) on anxiety and depression in various rodent models. MCL0129 inhibited [(125)I][Nle(4)-D-Phe(7)]-alpha-melanocyte-stimulating hormone (alpha-MSH) binding to MC4 receptor with a K(i) value of 7.9 nM, without showing affinity for MC1 and MC3 receptors. MCL0129 at 1 microM had no apparent affinity for other receptors, transporters, and ion channels related to anxiety and depression except for a moderate affinity for the sigma(1) receptor, serotonin transporter, and alpha(1)-adrenoceptor, which means that MCL0129 is selective for the MC4 receptor. MCL0129 attenuated the alpha-MSH-increased cAMP formation in COS-1 cells expressing the MC4 receptor, whereas MCL0129 did not affect basal cAMP levels, thereby indicating that MCL0129 acts as an antagonist at the MC4 receptor. Swim stress markedly induced anxiogenic-like effects in both the light/dark exploration task in mice and the elevated plus-maze task in rats, and MCL0129 reversed the stress-induced anxiogenic-like effects. Under nonstress conditions, MCL0129 prolonged time spent in the light area in the light/dark exploration task and suppressed marble-burying behavior. MCL0129 shortened immobility time in the forced swim test and reduced the number of escape failures in inescapable shocks in the learned helplessness test, thus indicating an antidepressant potential. In contrast, MCL0129 had negligible effects on spontaneous locomotor activity, Rotarod performance, and hexobarbital-induced anesthesia. These observations indicate that MCL0129 is a potent and selective MC4 antagonist with anxiolytic- and antidepressant-like activities in various rodent models. MC4 receptor antagonists may prove effective for treating subjects with stress-related disorders such as depression and/or anxiety.

  17. Non-peptidic antagonists of the CGRP receptor, BIBN4096BS and MK-0974, interact with the calcitonin receptor-like receptor via methionine-42 and RAMP1 via tryptophan-74.

    PubMed

    Miller, Philip S; Barwell, James; Poyner, David R; Wigglesworth, Mark J; Garland, Stephen L; Donnelly, Dan

    2010-01-01

    The receptor for calcitonin gene-related peptide (CGRP) has been the target for the development of novel small molecule antagonists for the treatment of migraine. Two such antagonists, BIBN4096BS and MK-0974, have shown great promise in clinical trials and hence a deeper understanding of the mechanism of their interaction with the receptor is now required. The structure of the CGRP receptor is unusual since it is comprised of a hetero-oligomeric complex between the calcitonin receptor-like receptor (CRL) and an accessory protein (RAMP1). Both the CLR and RAMP1 components have extracellular domains which interact with each other and together form part of the peptide-binding site. It seems likely that the antagonist binding site will also be located on the extracellular domains and indeed Trp-74 of RAMP1 has been shown to form part of the binding site for BIBN4096BS. However, despite a chimeric study demonstrating the role of the N-terminal domain of CLR in antagonist binding, no specific residues have been identified. Here we carry out a mutagenic screen of the extreme N-terminal domain of CLR (residues 23-63) and identify a mutant, Met-42-Ala, which displays 48-fold lower affinity for BIBN4096BS and almost 900-fold lower affinity for MK-0974. In addition, we confirm that the Trp-74-Lys mutation at human RAMP1 reduces BIBN4096BS affinity by over 300-fold and show for the first time a similar effect for MK-0974 affinity. The data suggest that the non-peptide antagonists occupy a binding site close to the interface of the N-terminal domains of CLR and RAMP1. Copyright 2009 Elsevier Inc. All rights reserved.

  18. Bucindolol, a nonselective beta 1- and beta 2-adrenergic receptor antagonist, decreases beta-adrenergic receptor density in cultured embryonic chick cardiac myocyte membranes.

    PubMed

    Asano, K; Zisman, L S; Yoshikawa, T; Headley, V; Bristow, M R; Port, J D

    2001-06-01

    Bucindolol and carvedilol, nonselective beta1- and beta2-adrenergic receptor antagonists, have been widely used in clinical therapeutic trials of congestive heart failure. The aim of the current study was to investigate long-term effects of bucindolol or carvedilol on beta-adrenergic receptor protein and gene expression in cardiac myocytes. Embryonic chick cardiac myocytes were cultured and incubated with bucindolol (1 microM), carvedilol (1 microM), or norepinephrine (1 microM) for 24 h. 125I-iodocyanopindolol binding assays demonstrated that incubation with norepinephrine or bucindolol, but not carvedilol, significantly decreased beta-adrenergic receptor density in crude membranes prepared from the myocytes. Neither bucindolol nor carvedilol significantly stimulated adenylyl cyclase activity in membranes from drug-untreated cells. Unlike by norepinephrine, the receptor density reduction by bucindolol incubation was not accompanied by a change in beta1-adrenergic receptor messenger RNA abundance. A decrease in membrane beta-adrenergic receptor density without a change in cognate messenger RNA abundance was also observed in hamster DDT1 MF2 cell line incubated with bucindolol (1 microM, 24 h). We conclude that incubation with bucindolol, but not carvedilol, results in true reduction of beta-adrenergic receptor density in chick cardiac myocyte membranes by mechanisms that are distinct from those responsible for receptor density reduction by the agonist norepinephrine.

  19. Heterogeneity of binding of muscarinic receptor antagonists in rat brain homogenates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.H.; el-Fakahany, E.E.

    1985-06-01

    The binding properties of (-)-(/sup 3/H)quinuclidinyl benzilate and (/sup 3/H) N-methylscopolamine to muscarinic acetylcholine receptors have been investigated in rat brain homogenates. The binding of both antagonists demonstrated high affinity and saturability. Analysis of the binding data resulted in linear Scatchard plots. However, (-)-(/sup 3/H)quinuclidinyl benzilate showed a significantly higher maximal binding capacity than that of (/sup 3/H)N-methylscopolamine. Displacement of both ligands with several muscarinic receptor antagonists resulted in competition curves in accordance with the law of mass-action for quinuclidinyl benzilate, atropine and scopolamine. A similar profile was found for the quaternary ammonium analogs of atropine and scopolamine when (/supmore » 3/H)N-methylscopolamine was used to label the receptors. However, when these hydrophilic antagonists were used to displace (-)-(/sup 3/H) quinuclidinyl benzilate binding, they showed interaction with high- and low-affinity binding sites. On the other hand, the nonclassical muscarinic receptor antagonist, pirenzepine, was able to displace both ligands from two binding sites. The present data are discussed in terms of the relationship of this anomalous heterogenity of binding of these hydrophilic muscarinic receptor antagonists and the proposed M1 and M2 receptor subtypes.« less

  20. Use of NK1 receptor antagonists in the exploration of physiological functions of substance P and neurokinin A.

    PubMed

    Otsuka, M; Yoshioka, K; Yanagisawa, M; Suzuki, H; Zhao, F Y; Guo, J Z; Hosoki, R; Kurihara, T

    1995-07-01

    Tachykinin NK1 receptor antagonists were used to explore the physiological functions of substance P (SP) and neurokinin A (NKA). Pharmacological profiles of three NK1 receptor antagonists, GR71251, GR82334, and RP 67580, were examined in the isolated spinal cord preparation of the neonatal rat. These tachykinin receptor antagonists exhibited considerable specificities and antagonized the actions of both SP and NKA to induce the depolarization of ventral roots. Electrical stimulation of the saphenous nerve with C-fiber strength evoked a depolarization lasting about 30 s of the ipsilateral L3 ventral root. This response, which is referred to as saphenous-nerve-evoked slow ventral root potential (VRP), was depressed by these NK1 receptor antagonists. In contrast, the saphenous-nerve-evoked slow VRP was potentiated by application of a mixture of peptidase inhibitors, including thiorphan, actinonin, and captopril in the presence of naloxone, but not after further addition of GR71251. Likewise, in the isolated coeliac ganglion of the guinea pig, electrical stimulation of the mesenteric nerves evoked in some ganglionic cells slow excitatory postsynaptic potentials (EPSPs), which were depressed by GR71251 and potentiated by peptidase inhibitors. These results further support the notion that SP and NKA serve as neurotransmitters producing slow EPSPs in the neonatal rat spinal cord and guinea pig prevertebral ganglia.

  1. Label-Free, LC-MS-Based Assays to Quantitate Small-Molecule Antagonist Binding to the Mammalian BLT1 Receptor.

    PubMed

    Chen, Xun; Stout, Steven; Mueller, Uwe; Boykow, George; Visconti, Richard; Siliphaivanh, Phieng; Spencer, Kerrie; Presland, Jeremy; Kavana, Michael; Basso, Andrea D; McLaren, David G; Myers, Robert W

    2017-08-01

    We have developed and validated label-free, liquid chromatography-mass spectrometry (LC-MS)-based equilibrium direct and competition binding assays to quantitate small-molecule antagonist binding to recombinant human and mouse BLT1 receptors expressed in HEK 293 cell membranes. Procedurally, these binding assays involve (1) equilibration of the BLT1 receptor and probe ligand, with or without a competitor; (2) vacuum filtration through cationic glass fiber filters to separate receptor-bound from free probe ligand; and (3) LC-MS analysis in selected reaction monitoring mode for bound probe ligand quantitation. Two novel, optimized probe ligands, compounds 1 and 2, were identified by screening 20 unlabeled BLT1 antagonists for direct binding. Saturation direct binding studies confirmed the high affinity, and dissociation studies established the rapid binding kinetics of probe ligands 1 and 2. Competition binding assays were established using both probe ligands, and the affinities of structurally diverse BLT1 antagonists were measured. Both binding assay formats can be executed with high specificity and sensitivity and moderate throughput (96-well plate format) using these approaches. This highly versatile, label-free method for studying ligand binding to membrane-associated receptors should find broad application as an alternative to traditional methods using labeled ligands.

  2. Pharmacology of modality-specific transient receptor potential vanilloid-1 antagonists that do not alter body temperature.

    PubMed

    Reilly, Regina M; McDonald, Heath A; Puttfarcken, Pamela S; Joshi, Shailen K; Lewis, LaGeisha; Pai, Madhavi; Franklin, Pamela H; Segreti, Jason A; Neelands, Torben R; Han, Ping; Chen, Jun; Mantyh, Patrick W; Ghilardi, Joseph R; Turner, Teresa M; Voight, Eric A; Daanen, Jerome F; Schmidt, Robert G; Gomtsyan, Arthur; Kort, Michael E; Faltynek, Connie R; Kym, Philip R

    2012-08-01

    The transient receptor potential vanilloid-1 (TRPV1) channel is involved in the development and maintenance of pain and participates in the regulation of temperature. The channel is activated by diverse agents, including capsaicin, noxious heat (≥ 43°C), acidic pH (< 6), and endogenous lipids including N-arachidonoyl dopamine (NADA). Antagonists that block all modes of TRPV1 activation elicit hyperthermia. To identify efficacious TRPV1 antagonists that do not affect temperature antagonists representing multiple TRPV1 pharmacophores were evaluated at recombinant rat and human TRPV1 channels with Ca(2+) flux assays, and two classes of antagonists were identified based on their differential ability to inhibit acid activation. Although both classes of antagonists completely blocked capsaicin- and NADA-induced activation of TRPV1, select compounds only partially inhibited activation of the channel by protons. Electrophysiology and calcitonin gene-related peptide release studies confirmed the differential pharmacology of these antagonists at native TRPV1 channels in the rat. Comparison of the in vitro pharmacological properties of these TRPV1 antagonists with their in vivo effects on core body temperature confirms and expands earlier observations that acid-sparing TRPV1 antagonists do not significantly increase core body temperature. Although both classes of compounds elicit equivalent analgesia in a rat model of knee joint pain, the acid-sparing antagonist tested is not effective in a mouse model of bone cancer pain.

  3. Interaction between Antagonist of Cannabinoid Receptor and Antagonist of Adrenergic Receptor on Anxiety in Male Rat.

    PubMed

    Komaki, Alireza; Abdollahzadeh, Fatemeh; Sarihi, Abdolrahman; Shahidi, Siamak; Salehi, Iraj

    2014-01-01

    Anxiety is among the most common and treatable mental disorders. Adrenergic and cannabinoid systems have an important role in the neurobiology of anxiety. The elevated plus-maze (EPM) has broadly been used to investigate anxiolytic and anxiogenic compounds. The present study investigated the effects of intraperitoneal (IP) injection of cannabinoid CB1 receptor antagonist (AM251) in the presence of alpha-1 adrenergic antagonist (Prazosin) on rat behavior in the EPM. In this study, the data were obtained from male Wistar rat, which weighing 200- 250 g. Animal behavior in EPM were videotaped and saved in computer for 10 min after IP injection of saline, AM251 (0.3 mg/kg), Prazosin (0.3 mg/kg) and AM251 + Prazosin, subsequently scored for conventional indices of anxiety. During the test period, the number of open and closed arms entries, the percentage of entries into the open arms of the EPM, and the spent time in open and closed arms were recorded. Diazepam was considered as a positive control drug with anxiolytic effect (0.3, 0.6, 1.2 mg/kg). Diazepam increased the number of open arm entries and the percentage of spent time on the open arms. IP injection of AM251 before EPM trial decreased open arms exploration and open arm entry. Whereas, Prazosin increased open arms exploration and open arm entry. This study showed that both substances in simultaneous injection have conflicting effects on the responses of each of these two compounds in a single injection. Injection of CB1 receptor antagonist may have an anxiogenic profile in rat, whereas adrenergic antagonist has an anxiolytic effect. Further investigations are essential for better understanding of anxiolytic and anxiogenic properties and neurobiological mechanisms of action and probable interactions of the two systems.

  4. [Effect of agonist and antagonist of 5-HT(1A) receptors on learning in female rats during ovarian cycle].

    PubMed

    Fedotova, Iu O; Ordian, N E

    2010-01-01

    The involvement of 5-HT(1A) receptors in learning/memory processes during ovary cycle was assessed in the adult female rats. 8-OH-DPAT (0.05 mg/kg, s.c.), 5-HT(1A) receptor agonist and NAN-190 (0.1 mg/kg, i.p.), 5-HT(1A) receptor antagonist were injected chronically to adult female rats. Learning of these animals was assessed in different models: passive avoidance performance and Morris water maze. Chronic NAN-190 administration to females resulted in the appearance of the passive avoidance performance in proestrous and estrous, as distinct from the control animals, but failed to change the dynamics of spatial learning in Morris water maze. Chronic 8-OH-DPAT administration similarly impaired non-spatial and spatial learning in females during all phases of ovary cycle. The results of the study suggest modulating role of 5-HT(1A) receptors in learning/memory processes during ovary cycle in the adult female rats.

  5. Roles of threonine 192 and asparagine 382 in agonist and antagonist interactions with M1 muscarinic receptors

    PubMed Central

    Huang, Xi-Ping; Nagy, Peter I; Williams, Frederick E; Peseckis, Steven M; Messer, William S

    1999-01-01

    Conserved amino acids, such as Thr in transmembrane domains (TM) V and Asn in TM VI of muscarinic receptors, may be important in agonist binding and/or receptor activation. In order to determine the functional roles of Thr192 and Asn382 in human M1 receptors in ligand binding and receptor activation processes, we created and characterized mutant receptors with Thr192 or Asn382 substituted by Ala.HM1 wild-type (WT) and mutant receptors [HM1(Thr192Ala) and HM1(Asn382Ala)] were stably expressed in A9 L cells. The Kd values for 3H-(R)-QNB and Ki values for other classical muscarinic antagonists were similar at HM1(WT) and HM1(Thr192Ala) mutant receptors, yet higher at HM1(Asn382Ala) mutant receptors. Carbachol exhibited lower potency and efficacy in stimulating PI hydrolysis via HM1(Thr192Ala) mutant receptors, and intermediate agonist activity at the HM1(Asn382Ala) mutant receptors.The Asn382 residue in TM VI but not the Thr192 residue in TM V of the human M1 receptor appears to participate directly in antagonist binding. Both Thr192 and Asn382 residues are involved differentially in agonist binding and/or receptor activation processes, yet the Asn382 residue is less important than Thr192 in agonist activation of M1 receptors.Molecular modelling studies indicate that substitution of Thr192 or Asn382 results in the loss of hydrogen-bond interactions and changes in the agonist binding mode associated with an increase in hydrophobic interactions between ligand and receptor. PMID:10188986

  6. Neurokinin-1 receptor antagonists CP-96,345 and L-733,060 protect mice from cytokine-mediated liver injury.

    PubMed

    Bang, Renate; Sass, Gabriele; Kiemer, Alexandra K; Vollmar, Angelika M; Neuhuber, Winfried L; Tiegs, Gisa

    2003-04-01

    Previously, we have shown that primary afferent sensory neurons are necessary for disease activity in T cell-mediated immune hepatitis in mice. In the present study, we analyzed the possible role of substance P (SP), an important proinflammatory neuropeptide of these nerve fibers, in an in vivo mouse model of liver inflammation. Liver injury was induced by bacterial lipopolysaccharide (LPS) in D-galactosamine (GalN)-sensitized mice. Depletion of primary afferent nerve fibers by neonatal capsaicin treatment down-regulated circulating levels of the proinflammatory cytokines tumor necrosis factor-alpha (TNFalpha) and interferon-gamma (IFNgamma) and protected mice from GalN/LPS-induced liver injury. Likewise, pretreatment of mice with antagonists of the SP-specific neurokinin-1 receptor (NK-1R), i.e., (2S,3S)-cis-2-(diphenylmethyl)-N-((2-methoxyphenyl)-methyl)-1-azabicyclo(2.2.2.)-octan-3-amine (CP-96,345) and (2S,3S)3-([3,5-bis(trifluoromethyl)phenyl]methoxy)-2-phenylpiperidine (L-733,060), dose dependently protected mice from GalN/LPS-induced liver injury. The presence of the NK-1R in the murine liver was demonstrated by reverse transcription-polymerase chain reaction, sequence analysis, and immunocytochemistry. NK-1R blockade reduced inflammatory liver damage, i.e., edema formation, neutrophil infiltration, hepatocyte apoptosis, and necrosis. To get further insight into the mechanism by which receptor blockade attenuated GalN/LPS-induced liver damage, we analyzed plasma levels and intrahepatic expression of TNFalpha, IFNgamma, interleukin (IL)-6, and IL-10. NK-1R blockade clearly inhibited GalN/LPS-induced production of TNFalpha and IFNgamma, whereas synthesis of the hepatoprotective cytokines IL-6 and IL-10 was increased. NK-1 receptor antagonists might be potent drugs for treatment of inflammatory liver disease, most likely by inhibiting SP effects.

  7. Synthesis and characterization of potent and selective mu-opioid receptor antagonists, [Dmt(1), D-2-Nal(4)]endomorphin-1 (Antanal-1) and [Dmt(1), D-2-Nal(4)]endomorphin-2 (Antanal-2).

    PubMed

    Fichna, Jakub; do-Rego, Jean-Claude; Chung, Nga N; Lemieux, Carole; Schiller, Peter W; Poels, Jeroen; Broeck, Jozef Vanden; Costentin, Jean; Janecka, Anna

    2007-02-08

    To synthesize potent antagonists of the mu-opioid receptor, we prepared a series of endomorphin-1 and endomorphin-2 analogues with 3-(1-naphthyl)-d-alanine (d-1-Nal) or 3-(2-naphthyl)-d-alanine (d-2-Nal) in position 4. Some of these analogues displayed weak antagonist properties. We tried to strengthen these properties by introducing the structurally modified tyrosine residue 2,6-dimethyltyrosine (Dmt) in place of Tyr1. Among the synthesized compounds, [Dmt1, d-2-Nal4]endomorphin-1, designated antanal-1, and [Dmt1, d-2-Nal4]endomorphin-2, designated antanal-2, turned out to be highly potent and selective mu-opioid receptor antagonists, as judged on the basis of two functional assays, the receptor binding assay and the hot plate test of analgesia. Interestingly, another analogue of this series, [Dmt1, d-1-Nal4]endomorphin-1, turned out to be a moderately potent mixed mu-agonist/delta-antagonist.

  8. Involvement of N-methyl-d-aspartate receptors in the antidepressant-like effect of 5-hydroxytryptamine 3 antagonists in mouse forced swimming test and tail suspension test.

    PubMed

    Kordjazy, Nastaran; Haj-Mirzaian, Arya; Amiri, Shayan; Ostadhadi, Sattar; Amini-Khoei, Hossein; Dehpour, Ahmad Reza

    2016-02-01

    Recent evidence indicates that 5-hydroxytryptamine 3 (5-HT3) antagonists such as ondansetron and tropisetron exert positive behavioral effects in animal models of depression. Due to the ionotropic nature of 5-HT3 and N-methyl-d-aspartate (NMDA) receptors, plus their contribution to the pathophysiology of depression, we investigated the possible role of NMDA receptors in the antidepressant-like effect of 5-HT3 receptor antagonists in male mice. In order to evaluate the animals' behavior in response to different treatments, we performed open-field test (OFT), forced swimming test (FST), and tail-suspension test (TST), which are considered as valid tasks for measuring locomotor activity and depressive-like behaviors in mice. Our data revealed that intraperitoneal (i.p.) administration of tropisetron (5, 10, and 30mg/kg) and ondansetron (0.01, and 0.1μg/kg) significantly decreased the immobility time in FST and TST. Also, co-administration of subeffective doses of tropisetron (1mg/kg, i.p.) or ondansetron (0.001μg/kg, i.p.) with subeffective doses of NMDA receptor antagonists, ketamine (1mg/kg, i.p.), MK-801 (0.05mg/kg, i.p.) and magnesium sulfate (10mg/kg, i.p.) resulted in a reduced immobility time both in FST and TST. The subeffective dose of NMDA (NMDA receptor agonist, 75mg/kg, i.p.) abolished the effects of 5-HT3 antagonists in FST and TST, further supporting the presumed interaction between 5-HT3 and NMDA receptors. These treatments did not affect the locomotor behavior of animals in OFT. Finally, the results of our study suggest that the positive effects of 5-HT3 antagonists on the coping behavior of mice in FST and TST are at least partly mediated through NMDA receptors participation. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Does alpha 1-acid glycoprotein act as a non-functional receptor for alpha 1-adrenergic antagonists?

    PubMed

    Qin, M; Oie, S

    1994-11-01

    The ability of a variety of alpha 1-acid glycoproteins (AAG) to affect the intrinsic activity of the alpha 1-adrenergic antagonist prazosin was studied in rabbit aortic strip preparations. From these studies, the activity of AAG appears to be linked to their ability to bind the antagonist. However, a capability to bind prazosin was not the only requirement for this effect. The removal of sialic acid and partial removal of the galactose and mannose residues by periodate oxidation of human AAG all but eliminated the ability of AAG to affect the intrinsic pharmacologic activity of prazosin, although the binding of prazosin was not significantly affected. The presence of bovine AAG, a protein that has a low ability to bind prazosin, reduced the effect of human AAG on prazosin activity. Based upon these results, we propose that AAG is able to bind in the vicinity of the alpha 1-adrenoceptors, therefore extending the binding region for antagonists in such a way as to decrease the ability of the antagonist to interact with the receptor. The carbohydrate side-chains are important for the binding of AAG in the region of the adrenoceptor.

  10. Effects of dopamine D1-like and D2-like antagonists on cocaine discrimination in muscarinic receptor knockout mice.

    PubMed

    Thomsen, Morgane; Caine, Simon Barak

    2016-04-05

    Muscarinic and dopamine brain systems interact intimately, and muscarinic receptor ligands, like dopamine ligands, can modulate the reinforcing and discriminative stimulus (S(D)) effects of cocaine. To enlighten the dopamine/muscarinic interactions as they pertain to the S(D) effects of cocaine, we evaluated whether muscarinic M1, M2 or M4 receptors are necessary for dopamine D1 and/or D2 antagonist mediated modulation of the S(D) effects of cocaine. Knockout mice lacking M1, M2, or M4 receptors, as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline in a food-reinforced drug discrimination procedure. Effects of pretreatments with the dopamine D1 antagonist SCH 23390 and the dopamine D2 antagonist eticlopride were evaluated. In intact mice, both SCH 23390 and eticlopride attenuated the cocaine discriminative stimulus effect, as expected. SCH 23390 similarly attenuated the cocaine discriminative stimulus effect in M1 knockout mice, but not in mice lacking M2 or M4 receptors. The effects of eticlopride were comparable in each knockout strain. These findings demonstrate differences in the way that D1 and D2 antagonists modulate the S(D) effects of cocaine, D1 modulation being at least partially dependent upon activity at the inhibitory M2/M4 muscarinic subtypes, while D2 modulation appeared independent of these systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Role of central and peripheral adenosine receptors in the cardiovascular responses to intraperitoneal injections of adenosine A1 and A2A subtype receptor agonists.

    PubMed

    Schindler, Charles W; Karcz-Kubicha, Marzena; Thorndike, Eric B; Müller, Christa E; Tella, Srihari R; Ferré, Sergi; Goldberg, Steven R

    2005-03-01

    1. The cardiovascular effects of the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) and the adenosine A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680) were investigated in rats implanted with telemetry transmitters for the measurement of blood pressure and heart rate. 2. Intraperitoneal (i.p.) injections of the adenosine A1 receptor agonist CPA led to dose-dependent decreases in both blood pressure and heart rate. These effects of 0.3 mg kg(-1) CPA were antagonized by i.p. injections of the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dimethyl-xanthine (CPT), but not by i.p. injections of the adenosine A2A receptor antagonist 3-(3-hydroxypropyl)-8-(m-methoxystyryl)-7-methyl-1-propargylxanthine phosphate disodium salt (MSX-3). Injections (i.p.) of the peripherally acting nonselective adenosine antagonist 8-sulfophenyltheophylline (8-SPT) and the purported nonselective adenosine antagonist caffeine also antagonized the cardiovascular effects of CPA. 3. The adenosine A2A agonist CGS 21680 given i.p. produced a dose-dependent decrease in blood pressure and an increase in heart rate. These effects of 0.5 mg kg(-1) CGS 21680 were antagonized by i.p. injections of the adenosine A2A receptor antagonist MSX-3, but not by i.p. injections of the antagonists CPT, 8-SPT or caffeine. 4. Central administration (intracerebral ventricular) of CGS 21680 produced an increase in heart rate, but no change in blood pressure. MSX-3 given i.p. antagonized the effects of the central injection of CGS 21680. 5. These results suggest that adenosine A1 receptor agonists produce decreases in blood pressure and heart rate that are mediated by A1 receptors in the periphery, with little or no contribution of central adenosine A1 receptors to those effects. 6. The heart rate increasing effect of adenosine A2A agonists appears to be mediated by adenosine A2A receptors in the central nervous system. The blood pressure decreasing

  12. The muscarinic antagonists scopolamine and atropine are competitive antagonists at 5-HT3 receptors.

    PubMed

    Lochner, Martin; Thompson, Andrew J

    2016-09-01

    Scopolamine is a high affinity muscarinic antagonist that is used for the prevention of post-operative nausea and vomiting. 5-HT3 receptor antagonists are used for the same purpose and are structurally related to scopolamine. To examine whether 5-HT3 receptors are affected by scopolamine we examined the effects of this drug on the electrophysiological and ligand binding properties of 5-HT3A receptors expressed in Xenopus oocytes and HEK293 cells, respectively. 5-HT3 receptor-responses were reversibly inhibited by scopolamine with an IC50 of 2.09 μM. Competitive antagonism was shown by Schild plot (pA2 = 5.02) and by competition with the 5-HT3 receptor antagonists [(3)H]granisetron (Ki = 6.76 μM) and G-FL (Ki = 4.90 μM). The related molecule, atropine, similarly inhibited 5-HT evoked responses in oocytes with an IC50 of 1.74 μM, and competed with G-FL with a Ki of 7.94 μM. The reverse experiment revealed that granisetron also competitively bound to muscarinic receptors (Ki = 6.5 μM). In behavioural studies scopolamine is used to block muscarinic receptors and induce a cognitive deficit, and centrally administered concentrations can exceed the IC50 values found here. It is therefore possible that 5-HT3 receptors are also inhibited. Studies that utilise higher concentrations of scopolamine should be mindful of these potential off-target effects. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. The effect of the angiotensin II receptor, type 1 receptor antagonists, losartan and telmisartan, on thioacetamide-induced liver fibrosis in rats.

    PubMed

    Czechowska, G; Celinski, K; Korolczuk, A; Wojcicka, G; Dudka, J; Bojarska, A; Madro, A; Brzozowski, T

    2016-08-01

    It has been reported previously that the density of angiotensin II receptors is increased in the rat liver in experimentally-induced fibrosis. We hypothesized that pharmacological blockade of angiotensin receptors may produce beneficial effects in models of liver fibrosis. In this study, we used the widely used thioacetamide (TAA)-induced model of liver fibrosis (300 mg/L TAA ad libitum for 12 weeks). Rats received daily injections (i.p), lasting 4 weeks of the angiotensin II type 1 receptor antagonists, losartan 30 mg/kg (TAA + L) or telmisartan 10 mg/kg (TAA + T) and were compared to rat that received TAA alone. Chronic treatment with losartan and telmisartan was associated with a significant reduction in the activity of alkaline phosphatase, and decreased concentrations of tumor necrosis factor-alpha and transforming growth factor beta-1 compared to controls. We also found a significant reduction interleukin-6 in rats receiving telmisartan (P < 0.05) but not losartan. Both treatments increased the concentration of liver glutathione along with a concomitant decrease of GSSG compared to controls. In addition, increased paraoxonase 1 activity was observed in the serum of rats receiving telmisartan group compared to the TAA alone controls. Finally, histological evaluation of liver sections revealed losartan and telmisartan treatment was associated with reduced inflammation and liver fibrosis. Taken together, these results indicate that both telmisartan and losartan have anti-inflammatory and anti-oxidative properties in the TAA model of liver fibrosis. These finding add support to a growing body of literature indicating a potentially important role for the angiotensin system in liver fibrosis and indicate angiotensin antagonists may be useful agents for fibrosis treatment.

  14. The interleukin-1 receptor antagonist anakinra improves endothelial dysfunction in streptozotocin-induced diabetic rats.

    PubMed

    Vallejo, Susana; Palacios, Erika; Romacho, Tania; Villalobos, Laura; Peiró, Concepción; Sánchez-Ferrer, Carlos F

    2014-12-18

    Endothelial dysfunction is a crucial early phenomenon in vascular diseases linked to diabetes mellitus and associated to enhanced oxidative stress. There is increasing evidence about the role for pro-inflammatory cytokines, like interleukin-1β (IL-1β), in developing diabetic vasculopathy. We aimed to determine the possible involvement of this cytokine in the development of diabetic endothelial dysfunction, analysing whether anakinra, an antagonist of IL-1 receptors, could reduce this endothelial alteration by interfering with pro-oxidant and pro-inflammatory pathways into the vascular wall. In control and two weeks evolution streptozotocin-induced diabetic rats, either untreated or receiving anakinra, vascular reactivity and NADPH oxidase activity were measured, respectively, in isolated rings and homogenates from mesenteric microvessels, while nuclear factor (NF)-κB activation was determined in aortas. Plasma levels of IL-1β and tumor necrosis factor (TNF)-α were measured by ELISA. In isolated mesenteric microvessels from control rats, two hours incubation with IL-1β (1 to 10 ng/mL) produced a concentration-dependent impairment of endothelium-dependent relaxations, which were mediated by enhanced NADPH oxidase activity via IL-1 receptors. In diabetic rats treated with anakinra (100 or 160 mg/Kg/day for 3 or 7 days before sacrifice) a partial improvement of diabetic endothelial dysfunction occurred, together with a reduction of vascular NADPH oxidase and NF-κB activation. Endothelial dysfunction in diabetic animals was also associated to higher activities of the pro-inflammatory enzymes cyclooxygenase (COX) and the inducible isoform of nitric oxide synthase (iNOS), which were markedly reduced after anakinra treatment. Circulating IL-1β and TNF-α levels did not change in diabetic rats, but they were lowered by anakinra treatment. In this short-term model of type 1 diabetes, endothelial dysfunction is associated to an IL-1 receptor-mediated activation of

  15. Participation of dorsal periaqueductal gray 5-HT1A receptors in the panicolytic-like effect of the κ-opioid receptor antagonist Nor-BNI.

    PubMed

    Maraschin, Jhonatan Christian; Almeida, Camila Biesdorf; Rangel, Marcel Pereira; Roncon, Camila Marroni; Sestile, Caio César; Zangrossi, Hélio; Graeff, Frederico Guilherme; Audi, Elisabeth Aparecida

    2017-06-01

    Panic patients may have abnormalities in serotonergic and opioidergic neurotransmission. The dorsal periaqueductal gray (dPAG) plays an important role in organizing proximal defense, related to panic attacks. The 5-HT 1A receptor (5-HT 1A -R) is involved in regulating escape behavior that is organized in the dPAG. Activation of κ-opioid receptor (KOR) in this region causes anxiogenic effects. In this study, we investigated the involvement of KOR in regulating escape behavior, using systemic and intra-dPAG injection of the KOR antagonist Nor-BNI. As panic models, we used the elevated T-maze (ETM) and the dPAG electrical stimulation test (EST). We also evaluated whether activation of the 5-HT 1A -R or the μ-opioid receptor (MOR) in the dPAG contributes to the Nor-BNI effects. The results showed that systemic administration of Nor-BNI, either subcutaneously (2.0 and 4.0mg/kg) or intraperitoneally (2.0mg/kg), impaired escape in the EST, indicating a panicolytic-like effect. Intra-dPAG injection of this antagonist (6.8nmol) caused the same effect in the EST and in the ETM. Association of ineffective doses of Nor-BNI and the 5-HT 1A -R agonist 8-OH-DPAT caused panicolytic-like effect in these two tests. Previous administration of the 5-HT 1A -R antagonist WAY-100635, but not of the MOR antagonist CTOP, blocked the panicolytic-like effect of Nor-BNI. These results indicate that KOR enhances proximal defense in the dPAG through 5-HT 1A -R modulation, independently of MOR. Because former results indicate that the 5-HT 1A -R is involved in the antipanic action of antidepressants, KOR antagonists may be useful as adjunctive or alternative drug treatment of panic disorder. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. 2-Aminoethyl Methylphosphonate, a Potent and Rapidly Acting Antagonist of GABAA-ρ1 Receptors

    PubMed Central

    Xie, An; Yan, Jun; Yue, Lan; Feng, Feng; Mir, Fozia; Abdel-Halim, Heba; Chebib, Mary; Le Breton, Guy C.; Standaert, Robert F.; Qian, Haohua

    2011-01-01

    2-Aminoethyl methylphosphonate (2-AEMP), an analog of GABA, has been found to exhibit antagonist activity at GABAA-ρ1 (also known as ρ1 GABAC) receptors. The present study was undertaken to elucidate 2-AEMP's action and to test the activities of 2-AEMP analogs. Whole-cell patch-clamp techniques were used to record membrane currents in neuroblastoma cells stably transfected with human GABAA-ρ1 receptors. The action of 2-AEMP was compared with that of 1,2,5,6-tetrahydropyridin-4-yl methylphosphinic acid (TPMPA), a commonly used GABAA-ρ1 antagonist. With 10 μM GABA, 2-AEMP's IC50 (18 μM) differed by less than 2.5-fold from that of TPMPA (7 μM), and results obtained were consistent with a primarily competitive mode of inhibition by 2-AEMP. Terminating the presentation of 2-AEMP or TPMPA in the presence of GABA produced a release from inhibition. However, the rate of inhibition release upon the termination of 2-AEMP considerably exceeded that determined with termination of TPMPA. Moreover, when presented at concentrations near their respective IC50 values, the preincubation period associated with 2-AEMP's onset of inhibition was much shorter than that for TPMPA. Analogs of 2-AEMP possessing a benzyl or n-butyl rather than a methyl substituent at the phosphorus atom, as well as analogs bearing a C-methyl substituent on the aminoethyl side chain, exhibited reduced potency relative to 2-AEMP. Of these analogs, only (R)-2-aminopropyl methylphosphonate significantly diminished the response to 10 μM GABA. Structure-activity relationships are discussed in the context of molecular modeling of ligand binding to the antagonist binding site of the GABAA-ρ1 receptor. PMID:21810922

  17. I. Effects of a Dopamine Receptor Antagonist on Fathead Minnow, Pimephales promelas ,Reproduction

    EPA Science Inventory

    This study used a 21 d fathead minnow (Pimephales promelas) reproduction assay to test the hypothesis that exposure to the dopamine 2 receptor (D2R) antagonist, haloperidol, would impair fish reproduction. Additionally, a 96 h experiment with fathead minnows and zebrafish (Danio ...

  18. Rational Design of Potent Antagonists to the Human Growth Hormone Receptor

    NASA Astrophysics Data System (ADS)

    Fuh, Germaine; Cunningham, Brian C.; Fukunaga, Rikiro; Nagata, Shigekazu; Goeddel, David V.; Wells, James A.

    1992-06-01

    A hybrid receptor was constructed that contained the extracellular binding domain of the human growth hormone (hGH) receptor linked to the transmembrane and intracellular domains of the murine granulocyte colony-stimulating factor receptor. Addition of hGH to a myeloid leukemia cell line (FDC-P1) that expressed the hybrid receptor caused proliferation of these cells. The mechanism for signal transduction of the hybrid receptor required dimerization because monoclonal antibodies to the hGH receptor were agonists whereas their monovalent fragments were not. Receptor dimerization occurs sequentially-a receptor binds to site 1 on hGH, and then a second receptor molecule binds to site 2 on hGH. On the basis of this sequential mechanism, which may occur in many other cytokine receptors, inactive hGH analogs were designed that were potent antagonists to hGH-induced cell proliferation. Such antagonists could be useful for treating clinical conditions of hGH excess, such as acromegaly.

  19. MEN16132, a novel potent and selective nonpeptide antagonist for the human bradykinin B2 receptor. In vitro pharmacology and molecular characterization.

    PubMed

    Cucchi, Paola; Meini, Stefania; Bressan, Alessandro; Catalani, Claudio; Bellucci, Francesca; Santicioli, Paolo; Lecci, Alessandro; Faiella, Angela; Rotondaro, Luigi; Giuliani, Sandro; Giolitti, Alessandro; Quartara, Laura; Maggi, Carlo Alberto

    2005-12-28

    The pharmacological characterization of the novel nonpeptide antagonist for the B2 receptor, namely MEN16132 (4-(S)-Amino-5-(4-{4-[2,4-dichloro-3-(2,4-dimethyl-8-quinolyloxymethyl)phenylsulfonamido]-tetrahydro-2H-4-pyranylcarbonyl}piperazino)-5-oxopentyl](trimethyl)ammonium chloride hydrochloride) is presented. The affinity of MEN16132 for the bradykinin B2 receptor has been investigated by means of competition studies at [3H]bradykinin binding to membranes prepared from Chinese Hamster Ovary (CHO) cells expressing the human bradykinin B2 receptor (pKi 10.5), human lung fibroblasts (pKi 10.5), guinea pig airways (pKi 10.0), guinea pig ileum longitudinal smooth muscle (pKi 10.2), or guinea pig cultured colonic myocytes (pKi 10.3). In all assays MEN16132 was as potent as the peptide antagonist Icatibant, and from 3- to 100-fold more potent than the reference nonpeptide antagonists FR173657 or LF16-0687. The selectivity for the bradykinin B2 receptor was checked at the human bradykinin B1 receptor (pKi<5), and at a panel of 26 different receptors and channels. The antagonist potency was measured in functional assays, i.e., in blocking the bradykinin induced inositolphosphates (IP) accumulation at the human (CHO: pKB 10.3) and guinea pig (colonic myocytes: pKB 10.3) B2 receptor, or in antagonizing the bradykinin induced contractile responses in human (detrusor smooth muscle: pKB 9.9) and guinea pig (ileum longitudinal smooth muscle: pKB 10.1) tissues. In both functional assay types MEN16132 exerted a different antagonist pattern, i.e., surmountable at the human and insurmountable at the guinea pig bradykinin B2 receptors. Moreover, the receptor determinants important for the high affinity interaction of MEN16132 with the human bradykinin B2 receptor were investigated by means of radioligand binding studies performed at 24 point-mutated receptors. The results obtained revealed that residues in transmembrane segment 2 (W86A), 3 (I110A), 6 (W256A), and 7 (Y295A, Y295F but

  20. 5-HT1A receptor antagonists reduce food intake and body weight by reducing total meals with no conditioned taste aversion.

    PubMed

    Dill, M Joelle; Shaw, Janice; Cramer, Jeff; Sindelar, Dana K

    2013-11-01

    Serotonin acts through receptors controlling several physiological functions, including energy homeostasis regulation and food intake. Recent experiments demonstrated that 5-HT1A receptor antagonists reduce food intake. We sought to examine the microstructure of feeding with 5-HT1A receptor antagonists using a food intake monitoring system. We also examined the relationship between food intake, inhibition of binding and pharmacokinetic (PK) profiles of the antagonists. Ex vivo binding revealed that, at doses used in this study to reduce food intake, inhibition of binding of a 5-HT1A agonist by ~40% was reached in diet-induced obese (DIO) mice with a trend for higher binding in DIO vs. lean animals. Additionally, PK analysis detected levels from 2 to 24h post-compound administration. Male DIO mice were administered 5-HT1A receptor antagonists LY439934 (10 or 30 mg/kg, p.o.), WAY100635 (3 or 10mg/kg, s.c.), SRA-333 (10 or 30 mg/kg, p.o.), or NAD-299 (3 or 10mg/kg, s.c.) for 3 days and meal patterns were measured. Analyses revealed that for each antagonist, 24-h food intake was reduced through a specific decrease in the total number of meals. Compared to controls, meal number was decreased 14-35% in the high dose. Average meal size was not changed by any of the compounds. The reduction in food intake reduced body weight 1-4% compared to Vehicle controls. Subsequently, a conditioned taste aversion (CTA) assay was used to determine whether the feeding decrease might be an indicator of aversion, nausea, or visceral illness caused by the antagonists. Using a two bottle preference test, it was found that none of the compounds produced a CTA. The decrease in food intake does not appear to be a response to nausea or malaise. These results indicate that 5-HT1A receptor antagonist suppresses feeding, specifically by decreasing the number of meals, and induce weight loss without an aversive side effect. © 2013 Elsevier Inc. All rights reserved.

  1. Sigma receptor antagonists attenuate acute methamphetamine-induced hyperthermia by a mechanism independent of IL-1β mRNA expression in the hypothalamus

    PubMed Central

    Seminerio, Michael J.; Robson, Matthew J.; McCurdy, Christopher R.; Matsumoto, Rae R.

    2013-01-01

    Methamphetamine is currently one of the most widely abused drugs worldwide, with hyperthermia being a leading cause of death in methamphetamine overdose situations. Methamphetamine-induced hyperthermia involves a variety of cellular mechanisms, including increases in hypothalamic interleukin-1 beta (IL-1β) expression. Methamphetamine also interacts with sigma receptors and previous studies have shown that sigma receptor antagonists mitigate many of the behavioral and physiological effects of methamphetamine, including hyperthermia. The purpose of the current study was to determine if the attenuation of methamphetamine-induced hyperthermia by the sigma receptor antagonists, AZ66 and SN79, is associated with a concomitant attenuation of IL-1β mRNA expression, particularly in the hypothalamus. Methamphetamine produced doseand time-dependent increases in core body temperature and IL-1β mRNA expression in the hypothalamus, striatum, and cortex in male, Swiss Webster mice. Pretreatment with the sigma receptor antagonists, AZ66 and SN79, significantly attenuated methamphetamine-induced hyperthermia, but further potentiated IL-1β mRNA in the mouse hypothalamus when compared to animals treated with methamphetamine alone. These findings suggest sigma receptor antagonists attenuate methamphetamine-induced hyperthermia through a different mechanism from that involved in the modulation of hypothalamic IL-1β mRNA expression. PMID:22820108

  2. MOLECULAR PROBES FOR MUSCARINIC RECEPTORS: FUNCTIONALIZED CONGENERS OF SELECTIVE MUSCARINIC ANTAGONISTS

    PubMed Central

    Jacobson, Kenneth A.; Fischer, Bilha; van Rhee, A. Michiel

    2012-01-01

    Summary The muscarinic agonist oxotremorine and the tricyclic muscarinic antagonists pirenzepine and telenzepine have been derivatized using a functionalized congener approach for the purpose of synthesizing high affinity ligand probes that are suitable for conjugation with prosthetic groups, for receptor cross-linking, fluorescent and radioactive detection, etc. A novel fluorescent conjugate of TAC (telenzepine amine congener), an n-decylamino derivative of the ml-selective antagonist, with the fluorescent trisulfonated pyrene dye Cascade Blue may be useful for assaying the receptor as an alternative to radiotracers. In a rat m3 receptor mutant containing a single amino acid substitution in the sixth transmembrane domain (Asn507 to Ala) the parent telenzepine lost 636-fold in affinity, while TAC lost only 27-fold. Thus, the decylamino group of TAC stabilizes the bound state and thus enhances potency by acting as a distal anchor in the receptor binding site. We have built a computer-assisted molecular model of the transmembrane regions of muscarinic receptors based on homology with the G-protein coupled receptor rhodopsin, for which a low resolution structure is known. We have coordinated the antagonist pharmacophore (tricyclic and piperazine moieties) with residues of the third and seventh helices of the rat m3 receptor. Although the decylamino chain of TAC is likely to be highly flexible and may adopt many conformations, we located one possible site for a salt bridge formation with the positively charged −NH3+ group, i.e. Asp113 in helix II. PMID:10188781

  3. Change in pharmacological effect of endothelin receptor antagonists in rats with pulmonary hypertension: Role of ETB-receptor expression levels

    PubMed Central

    Sauvageau, Stéphanie; Thorin, Eric; Villeneuve, Louis; Dupuis, Jocelyn

    2013-01-01

    Background and purpose The endothelin (ET) system is activated in pulmonary arterial hypertension (PAH). The therapeutic value of pharmacological blockade of ET receptors has been demonstrated in various animal models and led to the current approval and continued development of these drugs for the therapy of human PAH. However, we currently incompletely comprehend what local modifications of this system occur as a consequence of PAH, particularly in small resistance arteries, and how this could affect the pharmacological response to ET receptor antagonists with various selectivities for the receptor subtypes. Therefore, the purposes of this study were to evaluate potential modifications of the pharmacology of the ET system in rat pulmonary resistance arteries from monocrotaline (MCT)-induced pulmonary arterial hypertension. Experimental approach ET-1 levels were quantified by ELISA. PreproET-1, ETA and ETB receptor mRNA expressions were quantified in pulmonary resistance arteries using Q-PCR, while protein expression was evaluated by Western blots. Reactivity to ET-1 of isolated pulmonary resistance arteries was measured in the presence of ETA (A-147627), ETB (A-192621) and dual ETA/B (bosentan) receptor antagonists. Key results In rats with PAH, plasma ET-1 increased (p < 0.001) while pulmonary levels were reduced (p < 0.05). In PAH arteries, preproET-1 (p < 0.05) and ETB receptor (p < 0.001) gene expressions were reduced, as were ETB receptor protein levels (p < 0.05). ET-1 induced similar vasoconstrictions in both groups. In arteries from sham animals, neither bosentan nor the ETA or the ETB receptor antagonists modified the response. In arteries from PAH rats, however, bosentan and the ETA receptor antagonist potently reduced the maximal contraction, while bosentan also reduced sensitivity (p < 0.01). Conclusions and implications The effectiveness of both selective ETA and dual ETA/B receptor antagonists is markedly increased in PAH. Down-regulation of

  4. Proton pump inhibitors versus histamine 2 receptor antagonists for stress ulcer prophylaxis in critically ill patients: a systematic review and meta-analysis.

    PubMed

    Alhazzani, Waleed; Alenezi, Farhan; Jaeschke, Roman Z; Moayyedi, Paul; Cook, Deborah J

    2013-03-01

    Critically ill patients may develop bleeding caused by stress ulceration. Acid suppression is commonly prescribed for patients at risk of stress ulcer bleeding. Whether proton pump inhibitors are more effective than histamine 2 receptor antagonists is unclear. To determine the efficacy and safety of proton pump inhibitors vs. histamine 2 receptor antagonists for the prevention of upper gastrointestinal bleeding in the ICU. We searched Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, ACPJC, CINHAL, online trials registries (clinicaltrials.gov, ISRCTN Register, WHO ICTRP), conference proceedings databases, and reference lists of relevant articles. Randomized controlled parallel group trials comparing proton pump inhibitors to histamine 2 receptor antagonists for the prevention of upper gastrointestinal bleeding in critically ill patients, published before March 2012. Two reviewers independently applied eligibility criteria, assessed quality, and extracted data. The primary outcomes were clinically important upper gastrointestinal bleeding and overt upper gastrointestinal bleeding; secondary outcomes were nosocomial pneumonia, ICU mortality, ICU length of stay, and Clostridium difficile infection. Trial authors were contacted for additional or clarifying information. Fourteen trials enrolling a total of 1,720 patients were included. Proton pump inhibitors were more effective than histamine 2 receptor antagonists at reducing clinically important upper gastrointestinal bleeding (relative risk 0.36; 95% confidence interval 0.19-0.68; p = 0.002; I = 0%) and overt upper gastrointestinal bleeding (relative risk 0.35; 95% confidence interval 0.21-0.59; p < 0.0001; I = 15%). There were no differences between proton pump inhibitors and histamine 2 receptor antagonists in the risk of nosocomial pneumonia (relative risk 1.06; 95% confidence interval 0.73-1.52; p = 0.76; I = 0%), ICU mortality (relative risk 1.01; 95% confidence interval 0.83-1.24; p = 0.91; I = 0

  5. Multiple templates-based homology modeling enhances structure quality of AT1 receptor: validation by molecular dynamics and antagonist docking.

    PubMed

    Sokkar, Pandian; Mohandass, Shylajanaciyar; Ramachandran, Murugesan

    2011-07-01

    We present a comparative account on 3D-structures of human type-1 receptor (AT1) for angiotensin II (AngII), modeled using three different methodologies. AngII activates a wide spectrum of signaling responses via the AT1 receptor that mediates physiological control of blood pressure and diverse pathological actions in cardiovascular, renal, and other cell types. Availability of 3D-model of AT1 receptor would significantly enhance the development of new drugs for cardiovascular diseases. However, templates of AT1 receptor with low sequence similarity increase the complexity in straightforward homology modeling, and hence there is a need to evaluate different modeling methodologies in order to use the models for sensitive applications such as rational drug design. Three models were generated for AT1 receptor by, (1) homology modeling with bovine rhodopsin as template, (2) homology modeling with multiple templates and (3) threading using I-TASSER web server. Molecular dynamics (MD) simulation (15 ns) of models in explicit membrane-water system, Ramachandran plot analysis and molecular docking with antagonists led to the conclusion that multiple template-based homology modeling outweighs other methodologies for AT1 modeling.

  6. Discovery of Mixed Pharmacology Melanocortin-3 Agonists and Melanocortin-4 Receptor Tetrapeptide Antagonist Compounds (TACOs) Based on the Sequence Ac-Xaa1-Arg-(pI)DPhe-Xaa4-NH2.

    PubMed

    Doering, Skye R; Freeman, Katie T; Schnell, Sathya M; Haslach, Erica M; Dirain, Marvin; Debevec, Ginamarie; Geer, Phaedra; Santos, Radleigh G; Giulianotti, Marc A; Pinilla, Clemencia; Appel, Jon R; Speth, Robert C; Houghten, Richard A; Haskell-Luevano, Carrie

    2017-05-25

    The centrally expressed melanocortin-3 and -4 receptors (MC3R/MC4R) have been studied as possible targets for weight management therapies, with a preponderance of studies focusing on the MC4R. Herein, a novel tetrapeptide scaffold [Ac-Xaa 1 -Arg-(pI)DPhe-Xaa 4 -NH 2 ] is reported. The scaffold was derived from results obtained from a MC3R mixture-based positional scanning campaign. From these results, a set of 48 tetrapeptides were designed and pharmacologically characterized at the mouse melanocortin-1, -3, -4, and -5 receptors. This resulted in the serendipitous discovery of nine compounds that were MC3R agonists (EC 50 < 1000 nM) and MC4R antagonists (5.7 < pA 2 < 7.8). The three most potent MC3R agonists, 18 [Ac-Arg-Arg-(pI)DPhe-Tic-NH 2 ], 1 [Ac-His-Arg-(pI)DPhe-Tic-NH 2 ], and 41 [Ac-Arg-Arg-(pI)DPhe-DNal(2')-NH 2 ] were more potent (EC 50 < 73 nM) than the melanocortin tetrapeptide Ac-His-DPhe-Arg-Trp-NH 2 . This template contains a sequentially reversed "Arg-(pI)DPhe" motif with respect to the classical "Phe-Arg" melanocortin signaling motif, which results in pharmacology that is first-in-class for the central melanocortin receptors.

  7. Neurotensin is an antagonist of the human neurotensin NT2 receptor expressed in Chinese hamster ovary cells.

    PubMed

    Vita, N; Oury-Donat, F; Chalon, P; Guillemot, M; Kaghad, M; Bachy, A; Thurneyssen, O; Garcia, S; Poinot-Chazel, C; Casellas, P; Keane, P; Le Fur, G; Maffrand, J P; Soubrie, P; Caput, D; Ferrara, P

    1998-11-06

    The human levocabastine-sensitive neurotensin NT2 receptor was cloned from a cortex cDNA library and stably expressed in Chinese hamster ovary (CHO) cells in order to study its binding and signalling characteristics. The receptor binds neurotensin as well as several other ligands already described for neurotensin NT1 receptor. It also binds levocabastine, a histamine H1 receptor antagonist that is not recognised by neurotensin NT1 receptor. Neurotensin binding to recombinant neurotensin NT2 receptor expressed in CHO cells does not elicit a biological response as determined by second messenger measurements. Levocabastine, and the peptides neuromedin N and xenin were also ineffective on neurotensin NT2 receptor activation. Experiments with the neurotensin NT1 receptor antagonists SR48692 and SR142948A, resulted in the unanticipated discovery that both molecules are potent agonists on neurotensin NT2 receptor. Both compounds, following binding to neurotensin NT2 receptor, enhance inositol phosphates (IP) formation with a subsequent [Ca2+]i mobilisation; induce arachidonic acid release; and stimulate mitogen-activated protein kinase (MAPK) activity. Interestingly, these activities are antagonised by neurotensin and levocabastine in a concentration-dependent manner. These activities suggest that the human neurotensin NT2 receptor may be of physiological importance and that a natural agonist for the receptor may exist.

  8. Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. III. Agonist and antagonist properties at serotonin, 5-HT(1) and 5-HT(2), receptor subtypes.

    PubMed

    Newman-Tancredi, Adrian; Cussac, Didier; Quentric, Yann; Touzard, Manuelle; Verrièle, Laurence; Carpentier, Nathalie; Millan, Mark J

    2002-11-01

    Although certain antiparkinson agents interact with serotonin (5-HT) receptors, little information is available concerning functional actions. Herein, we characterized efficacies of apomorphine, bromocriptine, cabergoline, lisuride, piribedil, pergolide, roxindole, and terguride at human (h)5-HT(1A), h5-HT(1B), and h5-HT(1D) receptors [guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding], and at h5-HT(2A), h5-HT(2B), and h5-HT(2C) receptors (depletion of membrane-bound [(3)H]phosphatydilinositol). All drugs stimulated h5-HT(1A) receptors with efficacies (compared with 5-HT, 100%) ranging from modest (apomorphine, 35%) to high (cabergoline, 93%). At h5-HT(1B) receptors, efficacies varied from mild (terguride, 37%) to marked (cabergoline, 102%) and potencies were modest (pEC(50) values of 5.8-7.6): h5-HT(1D) sites were activated with a similar range of efficacies and greater potency (7.1-8.5). Piribedil and apomorphine were inactive at h5-HT(1B) and h5-HT(1D) receptors. At h5-HT(2A) receptors, terguride, lisuride, bromocriptine, cabergoline, and pergolide displayed potent (7.6-8.8) agonist properties (49-103%), whereas apomorphine and roxindole were antagonists and piribedil was inactive. Only pergolide (113%/8.2) and cabergoline (123%/8.6) displayed pronounced agonist properties at h5-HT(2B) receptors. At 5-HT(2C) receptors, lisuride, bromocriptine, pergolide, and cabergoline were efficacious (75-96%) agonists, apomorphine and terguride were antagonists, and piribedil was inactive. MDL100,907 and SB242,084, selective antagonists at 5-HT(2A) and 5-HT(2C) receptors, respectively, abolished these actions of pergolide, cabergoline, and bromocriptine. In conclusion, antiparkinson agents display markedly different patterns of agonist and antagonist properties at multiple 5-HT receptor subtypes. Although all show modest (agonist) activity at 5-HT(1A) sites, their contrasting actions at 5-HT(2A) and 5-HT(2C) sites may be of particular significance to their

  9. Effects of angiotensin II type 1 receptor antagonist and temperature on prolonged cardioplegic arrest in neonatal rat myocytes.

    PubMed

    Lucchese, Gianluca; Cambi, Giulia Elisa; De Rita, Fabrizio; Franzoi, Mauro; Faggian, Giuseppe; Mazzucco, Alessandro; Modesti, Pietro Amedeo; Luciani, Giovanni Battista

    2013-08-01

    Cardioplegic arrest is a model of ischemia/reperfusion injury and results in the death of irreplaceable cardiac myocytes by a programmed cell death or apoptosis. Signal transducers and activators of transcription (STAT) signaling pathways play an important role in the modulation of apoptosis after ischemia and reperfusion. Angiotensin II type 1 (AT1) receptor antagonist added to cardioplegia could represent an additional modality for enhancing myocardial protection during cardioplegic arrest. To test that hypothesis, we studied the effect of AT1 receptor antagonism and cardioplegia temperature perfusion on STATs modulation during cardioplegic arrest in neonatal rat hearts. Isolated, nonworking hearts (n = 4 per group) from neonatal rats were perfused aerobically in the Langendorff mode according to the following scheme: Dulbecco's Modified Eagle's Medium solution (Group 1); cold (4°C) modified St. Thomas' Hospital no. 2 (MSTH2) cardioplegic solution (Group 2); cold (4°C) MSTH2 cardioplegic solution plus AT1 antagonist (Valsartan) (Group 3); and warm (34°C) MSTH2 cardioplegic solution (Group 4). Thus, myocytes were isolated by enzymatic digestion, and STAT1, STAT2, STAT3, and STAT5 were investigated in Western blot studies. Times to arrest after cardioplegia were 6-10 s for all groups with the exception of Group 1 (spontaneous arrest after 12-16 s). Total cardioplegia delivery volume was about 300 mL in 15 min. Perfusion with cold MSTH2 supplemented with AT1 receptor antagonist (Group 3) induced a significant reduction in STAT1, STAT2, and STAT5 tyrosine phosphorylation versus other groups (P < 0.05). The decreased activation of STAT1, STAT2, and STAT5 observed in Group 3 was accompanied by reduction of interleukin-1β (P < 0.05). On the other hand, STAT3 activation was significantly reduced in Groups 1 and 4 (P < 0.05). Only perfusion with AT1 receptor antagonist supplemented with cold MSTH2 significantly decreases the inflammatory

  10. Regulation of the neurotensin NT1 receptor in the developing rat brain following chronic treatment with the antagonist SR 48692

    PubMed Central

    Lépée-Lorgeoux, Isabelle; Betancur, Catalina; Souazé, Frédérique; Rostène, William; Bérod, Anne; Pélaprat, Didier

    2000-01-01

    The aim of the present study was to investigate the role of neurotensin in the regulation of NT1 receptors during postnatal development in the rat brain. Characterization of the ontogeny of neurotensin concentration and [125I]neurotensin binding to NT1 receptors in the brain at different embryonic and postnatal stages showed that neurotensin was highly expressed at birth, reaching peak levels at postnatal day 5 (P5), and decreasing thereafter. The transient rise in neurotensin levels preceded the maximal expression of NT1 receptors, observed at P10, suggesting that neurotensin may influence the developmental profile of NT1 receptors. Using primary cultures of cerebral cortex neurons from fetal rats, we showed that exposure to the neurotensin agonist JMV 449 (1 nM) decreased (−43%) the amount of NT1 receptor mRNA measured by reverse transcription-PCR, an effect that was abolished by the non-peptide NT1 receptor antagonist SR 48692 (1 μM). However, daily injection of SR 48692 to rat pups from birth for 5, 9 or 15 days, did not modify [125I]neurotensin binding in brain membrane homogenates. Moreover, postnatal blockade of neurotensin transmission did not alter the density and distribution of NT1 receptors assessed by quantitative autoradiography nor NT1 receptor mRNA expression measured by in situ hybridization in the cerebral cortex, caudate-putamen and midbrain. These results suggest that although NT1 receptor expression can be regulated in vitro by the agonist at an early developmental stage, neurotensin is not a major factor in the establishment of the ontogenetic pattern of these receptors in the rat brain. PMID:10797539

  11. Behavioural profiles in the mouse defence test battery suggest anxiolytic potential of 5-HT(1A) receptor antagonists.

    PubMed

    Griebel, G; Rodgers, R J; Perrault, G; Sanger, D J

    1999-05-01

    Compounds varying in selectivity as 5-HT1A receptor antagonists have recently been reported to produce anxiolytic-like effects comparable to those of benzodiazepines in the mouse elevated plus-maze procedure. In view of the potential clinical significance of these findings, the present experiments compared the behavioural effects of diazepam (0.5-3.0 mg/kg) with those of several non-selective 5-HT1A receptor antagonists [NAN-190, 0.1-3.0 mg/kg, MM-77, 0.03-1.0 mg/kg, (S)-UH-301, 0.3-3.0 mg/kg and pindobind-5-HT1A, 0.03-1.0 mg/kg], and three selective 5-HT1A receptor antagonists (WAY100635, 0.01-3.0 mg/kg, p-MPPI, 0.1-3.0 mg/kg and SL88.0338, 0.3-3.0 mg/kg) in the mouse defence test battery (MDTB). In this well-validated anxiolytic screening test, Swiss mice are directly confronted with a natural threat (a rat) as well as situations associated with this threat. Primary measures taken during and after rat confrontation were flight, risk assessment (RA), defensive threat/attack and escape attempts. Diazepam significantly decreased flight reactions after the rat was introduced into the runway, reduced RA activities of mice chased by the rat, increased RA responses displayed when subjects were constrained in a straight alley and reduced defensive upright postures and biting upon forced contact. All the selective 5-HT1A receptor antagonists and NAN-190 also reduced flight, RA in the chase test, and defensive threat and attack behaviours. (S)-UH-301 and pindobind-5-HT1A reduced RA in the chase test, but only partially modified defensive threat and attack. Unlike the other drugs tested, MM-77 produced significant effects only at doses which also markedly reduced spontaneous locomotor activity, suggesting a behaviourally non-specific action. In contrast to diazepam, the 5-HT1A receptor ligands failed to affect RA in the straight alley test. Following removal of the rat from the test area, only diazepam and (S)-UH-301 reduced escape behaviour (contextual defence) at doses

  12. Discovery of Tertiary Sulfonamides as Potent Liver X Receptor Antagonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuercher, William J.; Buckholz†, Richard G.; Campobasso, Nino

    2010-08-12

    Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists. GSK2033 (17) is the first potent cell-active LXR antagonist described to date. 17 may be a useful chemical probe to explore the cell biology of this orphan nuclear receptor.

  13. Discovery of tertiary sulfonamides as potent liver X receptor antagonists.

    PubMed

    Zuercher, William J; Buckholz, Richard G; Campobasso, Nino; Collins, Jon L; Galardi, Cristin M; Gampe, Robert T; Hyatt, Stephen M; Merrihew, Susan L; Moore, John T; Oplinger, Jeffrey A; Reid, Paul R; Spearing, Paul K; Stanley, Thomas B; Stewart, Eugene L; Willson, Timothy M

    2010-04-22

    Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists. GSK2033 (17) is the first potent cell-active LXR antagonist described to date. 17 may be a useful chemical probe to explore the cell biology of this orphan nuclear receptor.

  14. AM-37 and ST-36 Are Small Molecule Bombesin Receptor Antagonists.

    PubMed

    Moody, Terry W; Tashakkori, Nicole; Mantey, Samuel A; Moreno, Paola; Ramos-Alvarez, Irene; Leopoldo, Marcello; Jensen, Robert T

    2017-01-01

    While peptide antagonists for the gastrin-releasing peptide receptor (BB 2 R), neuromedin B receptor (BB 1 R), and bombesin (BB) receptor subtype-3 (BRS-3) exist, there is a need to develop non-peptide small molecule inhibitors for all three BBR. The BB agonist (BA)1 binds with high affinity to the BB 1 R, BB 2 R, and BRS-3. In this communication, small molecule BBR antagonists were evaluated using human lung cancer cells. AM-37 and ST-36 inhibited binding to human BB 1 R, BB 2 R, and BRS-3 with similar affinity ( K i = 1.4-10.8 µM). AM-13 and AM-14 were approximately an order of magnitude less potent than AM-37 and ST-36. The ability of BA1 to elevate cytosolic Ca 2+ in human lung cancer cells transfected with BB 1 R, BB 2 R, and BRS-3 was antagonized by AM-37 and ST-36. BA1 increased tyrosine phosphorylation of the EGFR and ERK in lung cancer cells, which was blocked by AM-37 and ST-36. AM-37 and ST-36 reduced the growth of lung cancer cells that have BBR. The results indicate that AM-37 and ST-36 function as small molecule BB receptor antagonists.

  15. Hit-to-lead optimization of pyrrolo[1,2-a]quinoxalines as novel cannabinoid type 1 receptor antagonists.

    PubMed

    Szabó, György; Kiss, Róbert; Páyer-Lengyel, Dóra; Vukics, Krisztina; Szikra, Judit; Baki, Andrea; Molnár, László; Fischer, János; Keseru, György M

    2009-07-01

    Hit-to-lead optimization of a novel series of N-alkyl-N-[2-oxo-2-(4-aryl-4H-pyrrolo[1,2-a]quinoxaline-5-yl)-ethyl]-carboxylic acid amides, derived from a high throughput screening (HTS) hit, are described. Subsequent optimization led to identification of in vitro potent cannabinoid 1 receptor (CB1R) antagonists representing a new class of compounds in this area.

  16. Spatial proximity between the VPAC1 receptor and the amino terminus of agonist and antagonist peptides reveals distinct sites of interaction.

    PubMed

    Ceraudo, Emilie; Hierso, Régine; Tan, Yossan-Var; Murail, Samuel; Rouyer-Fessard, Christiane; Nicole, Pascal; Robert, Jean-Claude; Jamin, Nadège; Neumann, Jean-Michel; Robberecht, Patrick; Laburthe, Marc; Couvineau, Alain

    2012-05-01

    Vasoactive intestinal peptide (VIP) plays a major role in pathophysiology. Our previous studies demonstrated that the VIP sequence 6-28 interacts with the N-terminal ectodomain (N-ted) of its receptor, VPAC1. Probes for VIP and receptor antagonist PG97-269 were synthesized with a photolabile residue/Bpa at various positions and used to explore spatial proximity with VPAC1. PG97-269 probes with Bpa at position 0, 6, and 24 behaved as high-affinity receptor antagonists (K(i)=12, 9, and 7 nM, respectively). Photolabeling experiments revealed that the [Bpa(0)]-VIP probe was in physical contact with VPAC1 Q(135), while [Bpa(0)]-PG97-269 was covalently bound to G(62) residue of N-ted, indicating different binding sites. In contrast, photolabeling with [Bpa(6)]- and [Bpa(24)]-PG97-269 showed that the distal domains of PG97-269 interacted with N-ted, as we previously showed for VIP. Substitution with alanine of the K(143), T(144), and T(147) residues located in the first transmembrane domain of VPAC1 induced a loss of receptor affinity (IC(50)=1035, 874, and 2070 nM, respectively), and pharmacological studies using VIP2-28 indicated that these three residues play an important role in VPAC1 interaction with the first histidine residue of VIP. These data demonstrate that VIP and PG97-269 bind to distinct domains of VPAC1.

  17. Reinforcing and neurochemical effects of cannabinoid CB1 receptor agonists, but not cocaine, are altered by an adenosine A2A receptor antagonist.

    PubMed

    Justinová, Zuzana; Ferré, Sergi; Redhi, Godfrey H; Mascia, Paola; Stroik, Jessica; Quarta, Davide; Yasar, Sevil; Müller, Christa E; Franco, Rafael; Goldberg, Steven R

    2011-07-01

    Several recent studies suggest functional and molecular interactions between striatal adenosine A(2A) and cannabinoid CB(1) receptors. Here, we demonstrate that A(2A) receptors selectively modulate reinforcing effects of cannabinoids. We studied effects of A(2A) receptor blockade on the reinforcing effects of delta-9-tetrahydrocannabinol (THC) and the endogenous CB(1) receptor ligand anandamide under a fixed-ratio schedule of intravenous drug injection in squirrel monkeys. A low dose of the selective adenosine A(2A) receptor antagonist MSX-3 (1 mg/kg) caused downward shifts of THC and anandamide dose-response curves. In contrast, a higher dose of MSX-3 (3 mg/kg) shifted THC and anandamide dose-response curves to the left. MSX-3 did not modify cocaine or food pellet self-administration. Also, MSX-3 neither promoted reinstatement of extinguished drug-seeking behavior nor altered reinstatement of drug-seeking behavior by non-contingent priming injections of THC. Finally, using in vivo microdialysis in freely-moving rats, a behaviorally active dose of MSX-3 significantly counteracted THC-induced, but not cocaine-induced, increases in extracellular dopamine levels in the nucleus accumbens shell. The significant and selective results obtained with the lower dose of MSX-3 suggest that adenosine A(2A) antagonists acting preferentially at presynaptic A(2A) receptors might selectively reduce reinforcing effects of cannabinoids that lead to their abuse. However, the appearance of potentiating rather than suppressing effects on cannabinoid reinforcement at the higher dose of MSX-3 would likely preclude the use of such a compound as a medication for cannabis abuse. Adenosine A(2A) antagonists with more selectivity for presynaptic versus postsynaptic receptors could be potential medications for treatment of cannabis abuse. Addiction Biology © 2010 Society for the Study of Addiction. No claim to original US government works.

  18. Small-Molecule “BRCA1-Mimetics” Are Antagonists of Estrogen Receptor

    PubMed Central

    Ma, Yongxian; Tomita, York; Preet, Anju; Clarke, Robert; Englund, Erikah; Grindrod, Scott; Nathan, Shyam; De Oliveira, Eliseu; Brown, Milton L.

    2014-01-01

    Context: Resistance to conventional antiestrogens is a major cause of treatment failure and, ultimately, death in breast cancer. Objective: The objective of the study was to identify small-molecule estrogen receptor (ER)-α antagonists that work differently from tamoxifen and other selective estrogen receptor modulators. Design: Based on in silico screening of a pharmacophore database using a computed model of the BRCA1-ER-α complex (with ER-α liganded to 17β-estradiol), we identified a candidate group of small-molecule compounds predicted to bind to a BRCA1-binding interface separate from the ligand-binding pocket and the coactivator binding site of ER-α. Among 40 candidate compounds, six inhibited estradiol-stimulated ER-α activity by at least 50% in breast carcinoma cells, with IC50 values ranging between 3 and 50 μM. These ER-α inhibitory compounds were further studied by molecular and cell biological techniques. Results: The compounds strongly inhibited ER-α activity at concentrations that yielded little or no nonspecific toxicity, but they produced only a modest inhibition of progesterone receptor activity. Importantly, the compounds blocked proliferation and inhibited ER-α activity about equally well in antiestrogen-sensitive and antiestrogen-resistant breast cancer cells. Representative compounds disrupted the interaction of BRCA1 and ER-α in the cultured cells and blocked the interaction of ER-α with the estrogen response element. However, the compounds had no effect on the total cellular ER-α levels. Conclusions: These findings suggest that we have identified a new class of ER-α antagonists that work differently from conventional antiestrogens (eg, tamoxifen and fulvestrant). PMID:25264941

  19. Lack of efficacy of L-759274, a novel neurokinin 1 (substance P) receptor antagonist, for the treatment of generalized anxiety disorder.

    PubMed

    Michelson, David; Hargreaves, Richard; Alexander, Robert; Ceesay, Paulette; Hietala, Jarmo; Lines, Christopher; Reines, Scott

    2013-02-01

    Preclinical studies suggest that substance P acting at neurokinin 1 (NK1) receptors may be involved in stress responses and NK1 receptor antagonists show activity in tests of anxiety. These data raise the possibility that NK1 receptor antagonists could be potential anxiolytic treatments in humans. We evaluated this hypothesis clinically using the NK1 antagonist L-759274. This is a randomized, double-blind, placebo- and active-controlled, multicentre, proof-of-concept trial. Patients with generalized anxiety disorder were randomized 1:1:1 to 6 wk of treatment with 40 mg L-759274 (n = 73), 1-6 mg lorazepam (n = 69) or placebo (n = 71). Efficacy was assessed using the Hamilton Anxiety Scale (HAMA). A positron emission tomography (PET) study was also performed in 16 healthy subjects to determine the relationship between NK1 receptor occupancy and plasma levels of L-759274 to verify adequate target engagement by the doses tested during the clinical trial. No statistically significant difference in mean change from baseline HAMA score at 6 wk was seen for L-759274 vs. placebo [difference = 1.0 (95% confidence intervals (CI) -1.2 to 3.2), p = 0.359] whereas the lorazepam group did show a significant improvement vs. placebo (difference = -2.7, 95% CI -5.0 to -0.4, p = 0.020) and L-759274 (difference = 3.7, 95% CI 1.5-6.0, p = 0.001]. Results from the PET study indicated that the L-759274 dosing regimen used in the clinical trial likely provided high levels of NK1 receptor occupancy (>90%), supporting the view that it was an adequate proof-of-concept trial. The NK1 receptor antagonist L-759274 does not appear to be efficacious for the treatment of generalized anxiety disorder.

  20. Antidepressant activity of nociceptin/orphanin FQ receptor antagonists in the mouse learned helplessness.

    PubMed

    Holanda, Victor A D; Medeiros, Iris U; Asth, Laila; Guerrini, Remo; Calo', Girolamo; Gavioli, Elaine C

    2016-07-01

    Pharmacological and genetic evidence support antidepressant-like effects elicited by the blockade of the NOP receptor. The learned helplessness (LH) model employs uncontrollable and unpredictable electric footshocks as a stressor stimulus to induce a depressive-like phenotype that can be reversed by classical antidepressants. The present study aimed to evaluate the action of NOP receptor antagonists in helpless mice. Male Swiss mice were subjected to the three steps of the LH paradigm (i.e., (1) induction, (2) screening, and (3) test). Only helpless animals were subjected to the test session. During the test session, animals were placed in the electrified chamber and the latency to escape after the footshock and the frequency of escape failures were recorded. The effect of the following treatments administered before the test session were evaluated: nortriptyline (30 mg/kg, ip, 60 min), fluoxetine (30 mg/kg, ip, four consecutive days of treatment), and NOP antagonists SB-612111 (1-10 mg/kg, ip, 30 min) and UFP-101 (1-10 nmol, icv, 5 min). To rule out possible biases, the effects of treatments on controllable stressful and non stressful situations were assessed. In helpless mice, nortriptyline, fluoxetine, UFP-101 (3-10 nmol), and SB-612111 (3-10 mg/kg) significantly reduced escape latencies and escape failures. No effects of drug treatments were observed in mice subjected to the controllable electric footshocks and non stressful situations. Acute treatment with NOP antagonists reversed helplessness similarly to the classical antidepressants. These findings support the proposal that NOP receptor antagonists are worthy of development as innovative antidepressant drugs.

  1. Homology modeling, binding site identification and docking study of human angiotensin II type I (Ang II-AT1) receptor.

    PubMed

    Vyas, Vivek K; Ghate, Manjunath; Patel, Kinjal; Qureshi, Gulamnizami; Shah, Surmil

    2015-08-01

    Ang II-AT1 receptors play an important role in mediating virtually all of the physiological actions of Ang II. Several drugs (SARTANs) are available, which can block the AT1 receptor effectively and lower the blood pressure in the patients with hypertension. Currently, there is no experimental Ang II-AT1 structure available; therefore, in this study we modeled Ang II-AT1 receptor structure using homology modeling followed by identification and characterization of binding sites and thereby assessing druggability of the receptor. Homology models were constructed using MODELLER and I-TASSER server, refined and validated using PROCHECK in which 96.9% of 318 residues were present in the favoured regions of the Ramachandran plots. Various Ang II-AT1 receptor antagonist drugs are available in the market as antihypertensive drug, so we have performed docking study with the binding site prediction algorithms to predict different binding pockets on the modeled proteins. The identification of 3D structures and binding sites for various known drugs will guide us for the structure-based drug design of novel compounds as Ang II-AT1 receptor antagonists for the treatment of hypertension. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  2. Characterization of SB-271046: A potent, selective and orally active 5-HT6 receptor antagonist

    PubMed Central

    Routledge, Carol; Bromidge, Steven M; Moss, Stephen F; Price, Gary W; Hirst, Warren; Newman, Helen; Riley, Graham; Gager, Tracey; Stean, Tania; Upton, Neil; Clarke, Stephen E; Brown, Anthony M; Middlemiss, Derek N

    2000-01-01

    SB-271046, potently displaced [3H]-LSD and [125I]-SB-258585 from human 5-HT6 receptors recombinantly expressed in HeLa cells in vitro (pKi 8.92 and 9.09 respectively). SB-271046 also displaced [125I]-SB-258585 from human caudate putamen and rat and pig striatum membranes (pKi 8.81, 9.02 and 8.55 respectively). SB-271046 was over 200 fold selective for the 5-HT6 receptor vs 55 other receptors, binding sites and ion channels. In functional studies on human 5-HT6 receptors SB-271046 competitively antagonized 5-HT-induced stimulation of adenylyl cyclase activity with a pA2 of 8.71. SB-271046 produced an increase in seizure threshold over a wide-dose range in the rat maximal electroshock seizure threshold (MEST) test, with a minimum effective dose of ⩽0.1 mg kg−1 p.o. and maximum effect at 4 h post-dose. The level of anticonvulsant activity achieved correlated well with the blood concentrations of SB-271046 (EC50 of 0.16 μM) and brain concentrations of 0.01–0.04 μM at Cmax. These data, together with the observed anticonvulsant activity of other selective 5-HT6 receptor antagonists, SB-258510 (10 mg kg−1, 2–6 h pre-test) and Ro 04-6790 (1–30 mg kg−1, 1 h pre-test), in the rat MEST test, suggest that the anticonvulsant properties of SB-271046 are likely to be mediated by 5-HT6 receptors. Overall, these studies demonstrate that SB-271046 is a potent and selective 5-HT6 receptor antagonist and is orally active in the rat MEST test. SB-271046 represents a valuable tool for evaluating the in vivo central function of 5-HT6 receptors. PMID:10928964

  3. Cysteinyl Leukotriene Receptor-1 Antagonists as Modulators of Innate Immune Cell Function

    PubMed Central

    Theron, A. J.; Steel, H. C.; Tintinger, G. R.; Gravett, C. M.; Anderson, R.; Feldman, C.

    2014-01-01

    Cysteinyl leukotrienes (cysLTs) are produced predominantly by cells of the innate immune system, especially basophils, eosinophils, mast cells, and monocytes/macrophages. Notwithstanding potent bronchoconstrictor activity, cysLTs are also proinflammatory consequent to their autocrine and paracrine interactions with G-protein-coupled receptors expressed not only on the aforementioned cell types, but also on Th2 lymphocytes, as well as structural cells, and to a lesser extent neutrophils and CD8+ cells. Recognition of the involvement of cysLTs in the immunopathogenesis of various types of acute and chronic inflammatory disorders, especially bronchial asthma, prompted the development of selective cysLT receptor-1 (cysLTR1) antagonists, specifically montelukast, pranlukast, and zafirlukast. More recently these agents have also been reported to possess secondary anti-inflammatory activities, distinct from cysLTR1 antagonism, which appear to be particularly effective in targeting neutrophils and monocytes/macrophages. Underlying mechanisms include interference with cyclic nucleotide phosphodiesterases, 5′-lipoxygenase, and the proinflammatory transcription factor, nuclear factor kappa B. These and other secondary anti-inflammatory mechanisms of the commonly used cysLTR1 antagonists are the major focus of the current review, which also includes a comparison of the anti-inflammatory effects of montelukast, pranlukast, and zafirlukast on human neutrophils in vitro, as well as an overview of both the current clinical applications of these agents and potential future applications based on preclinical and early clinical studies. PMID:24971371

  4. Inhibition of emesis by tachykinin NK1 receptor antagonists in Suncus murinus (house musk shrew).

    PubMed

    Rudd, J A; Ngan, M P; Wai, M K

    1999-02-05

    The anti-emetic potential of CP-122,721 ((+)-2S,3S)-3-(2-methoxy-5-trifluoromethoxybenzyl)amino-2-phenylpi peridine), CP-99,994 ((+)-(2S,3S)-3-(2-methoxybenzylamino)-2-phenylpiperidine), CP-100,263 ((-)-(2R,3R)-3-(2-methoxybenzylamino)-2-phenylpiperidine), RP 67580 ((3R, 7aR)-7,7-diphenyl-2-[1-imino-2-(2-methoxyphenyl)ethyl] po-hydroisoindol-4-one), FK 888 (N2-[(4R)-4-hydroxy-1-(1-methyl-1H-in-dole-3-yl)carbonyl-L-propyl] -N-methyl-N-phenylmethyl-1-3-(2-naphthyl)-alaninamide) and GR 82334 ([D-Pro9[spiro-g-lactam]Leu10]-physalaemin-(1-11)) was investigated to inhibit nicotine (5 mg/kg, s.c.)-, copper sulphate pentahydrate (120 mg/kg, intragastric)- and motion (4 cm horizontal displacement at 1 Hz for 5 min)-induced emesis in Suncus murinus. A 30 min intraperitoneal pre-treatment with CP-122,721, CP-99,994, RP 67580 and FK 888 significantly (P < 0.05) antagonized nicotine-induced emesis with ID50 values of 2.1, 2.3, 13.5 and 19.2 mg/kg, respectively CP-100,263, the less active enantiomer of CP-99,994, was inactive at doses up to 10 mg/kg. Infusion of GR 82334, CP-122,721, CP-99,994 and FK 888 into the dorsal vagal complex of the hindbrain also antagonized nicotine-induced emesis yielding ID50 values of 1.1, 3.0, 3.3 and 58.0 microg/dorsal vagal complex, respectively RP 67580 and CP-100,263 were inactive. RP 67580 and FK 888 failed to antagonize copper sulphate-induced emesis but CP-122,721 and CP-99,994 were active yielding ID50 values of 2.2 and 3.0 mg/kg, i.p., respectively. CP-99,994 also completely prevented motion-induced emesis at 10 mg/kg, i.p. (P < 0.05) and RP 67580 produced a significant reduction of motion-induced emesis at 10 mg/kg, i.p. (P < 0.05). These studies provide evidence of a central site of action of tachykinin NK1 receptor antagonists to inhibit nicotine-induced emesis in S. murinus and confirm the broad profile of inhibitory action. The rank order of potency of the antagonists following the intra-dorsal vagal complex administration suggests

  5. Delayed preconditioning with NMDA receptor antagonists in a rat model of perinatal asphyxia.

    PubMed

    Makarewicz, Dorota; Sulejczak, Dorota; Duszczyk, Małgorzata; Małek, Michał; Słomka, Marta; Lazarewicz, Jerzy W

    2014-01-01

    In vitro experiments have demonstrated that preconditioning primary neuronal cultures by temporary application of NMDA receptor antagonists induces long-term tolerance against lethal insults. In the present study we tested whether similar effects also occur in brain submitted to ischemia in vivo and whether the potential benefit outweighs the danger of enhancing the constitutive apoptosis in the developing brain. Memantine in pharmacologically relevant doses of 5 mg/kg or (+)MK-801 (3 mg/kg) was administered i.p. 24, 48, 72 and 96 h before 3-min global forebrain ischemia in adult Mongolian gerbils or prior to hypoxia/ischemia in 7-day-old rats. Neuronal loss in the hippocampal CA1 in gerbils or weight deficit of the ischemic hemispheres in the rat pups was evaluated after 14 days. Also, the number of apoptotic neurons in the immature rat brain was evaluated. In gerbils only the application of (+)MK-801 24 h before ischemia resulted in significant prevention of the loss of pyramidal neurons. In rat pups administration of (+)MK-801 at all studied times before hypoxia-ischemia, or pretreatment with memantine or with hypoxia taken as a positive control 48 to 92 h before the insult, significantly reduced brain damage. Both NMDA receptor antagonists equally reduced the number of apoptotic neurons after hypoxia-ischemia, while (+)MK-801-evoked potentiation of constitutive apoptosis greatly exceeded the effect of memantine. We ascribe neuroprotection induced in the immature rats by the pretreatment with both NMDA receptor antagonists 48 to 92 h before hypoxia-ischemia to tolerance evoked by preconditioning, while the neuroprotective effect of (+)MK-801 applied 24 h before the insults may be attributed to direct consequences of the inhibition of NMDA receptors. This is the first report demonstrating the phenomenon of inducing tolerance against hypoxia-ischemia in vivo in developing rat brain by preconditioning with NMDA receptor antagonists.

  6. Odontoblasts as sensory receptors: transient receptor potential channels, pannexin-1, and ionotropic ATP receptors mediate intercellular odontoblast-neuron signal transduction.

    PubMed

    Shibukawa, Yoshiyuki; Sato, Masaki; Kimura, Maki; Sobhan, Ubaidus; Shimada, Miyuki; Nishiyama, Akihiro; Kawaguchi, Aya; Soya, Manabu; Kuroda, Hidetaka; Katakura, Akira; Ichinohe, Tatsuya; Tazaki, Masakazu

    2015-04-01

    Various stimuli induce pain when applied to the surface of exposed dentin. However, the mechanisms underlying dentinal pain remain unclear. We investigated intercellular signal transduction between odontoblasts and trigeminal ganglion (TG) neurons following direct mechanical stimulation of odontoblasts. Mechanical stimulation of single odontoblasts increased the intracellular free calcium concentration ([Ca(2+)]i) by activating the mechanosensitive-transient receptor potential (TRP) channels TRPV1, TRPV2, TRPV4, and TRPA1, but not TRPM8 channels. In cocultures of odontoblasts and TG neurons, increases in [Ca(2+)]i were observed not only in mechanically stimulated odontoblasts, but also in neighboring odontoblasts and TG neurons. These increases in [Ca(2+)]i were abolished in the absence of extracellular Ca(2+) and in the presence of mechanosensitive TRP channel antagonists. A pannexin-1 (ATP-permeable channel) inhibitor and ATP-degrading enzyme abolished the increases in [Ca(2+)]i in neighboring odontoblasts and TG neurons, but not in the stimulated odontoblasts. G-protein-coupled P2Y nucleotide receptor antagonists also inhibited the increases in [Ca(2+)]i. An ionotropic ATP (P2X3) receptor antagonist inhibited the increase in [Ca(2+)]i in neighboring TG neurons, but not in stimulated or neighboring odontoblasts. During mechanical stimulation of single odontoblasts, a connexin-43 blocker did not have any effects on the [Ca(2+)]i responses observed in any of the cells. These results indicate that ATP, released from mechanically stimulated odontoblasts via pannexin-1 in response to TRP channel activation, transmits a signal to P2X3 receptors on TG neurons. We suggest that odontoblasts are sensory receptor cells and that ATP released from odontoblasts functions as a neurotransmitter in the sensory transduction sequence for dentinal pain.

  7. Potentiation of the gastric antisecretory activity of histamine H2-receptor antagonists by clebopride.

    PubMed

    Fernández, A G; Massingham, R; Roberts, D J

    1988-05-01

    The substituted benzamide, clebopride, at doses (0.03-3 mg kg-1 i.p.) that were without effect per se on the secretion of gastric acid in pylorus ligated (Shay) rats, potentiated the antisecretory effects of the histamine H2 receptor antagonists cimetidine and ranitidine in this model but not those of the muscarine receptor antagonist pirenzepine nor those of the proton pump inhibitor omeprazole. By contrast, clebopride was without influence on the inhibitory effects of cimetidine on pentagastrin-induced secretion in perfused stomach (Ghosh and Schild) preparations in anaesthetized rats. The significance of these findings is discussed in relation to the previously described potentiating effects of clebopride on the anti-ulcer activity of cimetidine in various experimental models, and the potential beneficial effects of such combined therapy in the clinic.

  8. Cannabinoid type 1 receptor antagonists for smoking cessation.

    PubMed

    Cahill, Kate; Ussher, Michael H

    2011-03-16

    Selective type 1 cannabinoid (CB1) receptor antagonists may assist with smoking cessation by restoring the balance of the endocannabinoid system, which can be disrupted by prolonged use of nicotine. They also seeks to address many smokers' reluctance to persist with a quit attempt because of concerns about weight gain. To determine whether selective CB1 receptor antagonists (currently rimonabant and taranabant) increase the numbers of people stopping smoking To assess their effects on weight change in successful quitters and in those who try to quit but fail. We searched the Cochrane Tobacco Addiction Review Group specialized register for trials, using the terms ('rimonabant' or 'taranabant') and 'smoking' in the title or abstract, or as keywords. We also searched MEDLINE, EMBASE, CINAHL and PsycINFO, using major MESH terms. We acquired electronic or paper copies of posters of preliminary trial results presented at the American Thoracic Society Meeting in 2005, and at the Society for Research on Nicotine and Tobacco European Meeting 2006. We also attempted to contact the authors of ongoing studies of rimonabant, and Sanofi Aventis (manufacturers of rimonabant). The most recent search was in January 2011. Types of studies Randomized controlled trialsTypes of participants Adult smokersTypes of interventions Selective CB1 receptor antagonists, such as rimonabant and taranabant. Types of outcome measures The primary outcome is smoking status at a minimum of six months after the start of treatment. We preferred sustained cessation rates to point prevalence, and biochemically verified cessation to self-reported quitting. We regarded smokers who drop out or are lost to follow up as continuing smokers. We have noted any adverse effects of treatment.A secondary outcome is weight change associated with the cessation attempt. Two authors checked the abstracts for relevance, and attempted to acquire full trial reports. One author extracted the data, and a second author checked

  9. Antinociceptive effects of imidazoline I2 receptor agonists in the formalin test in rats

    PubMed Central

    Thorn, David A; Qiu, Yanyan; Zhang, Yanan; Li, Jun-Xu

    2015-01-01

    The imidazoline I2 receptor is an emerging drug target for analgesics. This study extended previous studies by examining the antinociceptive effects of three I2 receptor agonists (2-BFI, BU224 and CR4056) in the formalin test. The receptor mechanisms and anatomical mediation of I2 receptor agonist-induced antinociception were also examined. Formalin-induced flinching responses (2%, 50µl) were quantified after treatment with I2 receptor agonists alone or in combination with the I2 receptor antagonist idazoxan. Anatomical mediation was studied by locally administering 2-BFI into the plantar surface or into the right lateral ventricle via cannulae (i.c.v). The locomotor activity was also examined after central (i.c.v.) administration of 2-BFI. 2-BFI (1–10 mg/kg, i.p.) and BU224 (1–10 mg/kg, i.p.) attenuated the spontaneous flinching response observed during 10 min (phase 1) and 20–60 min (phase 2) following formalin treatment, while CR4056 (1–32 mg/kg, i.p.) only decreased phase 2 flinching response. The I2 receptor antagonist idazoxan attenuated the antinociceptive effects of 2-BFI and BU224 during phase 1, but not phase 2. Peripheral administration of 2-BFI (1–10 mg/kg, i.pl) to the hindpaw of rats had no antinociceptive effects. In contrast, centrally delivered 2-BFI (10–100 µg, i.c.v.) dose-dependently attenuated phase 1 and phase 2 flinching at doses that did not reduce the locomotor activity. Together, these data revealed the differential antinociceptive effects of I2 receptor agonists and the differential antagonism profiles by idazoxan, suggesting the involvement of different I2 receptor subtypes in reducing different phases of formalin-induced pain-like behaviors. In addition, the results also suggest the central mediation of I2 receptor agonist-induced antinociceptive actions. PMID:26599907

  10. Pharmacological characterization of BR-A-657, a highly potent nonpeptide angiotensin II receptor antagonist.

    PubMed

    Chi, Yong Ha; Lee, Joo Han; Kim, Je Hak; Tan, Hyun Kwang; Kim, Sang Lin; Lee, Jae Yeol; Rim, Hong-Kun; Paik, Soo Heui; Lee, Kyung-Tae

    2013-01-01

    The pharmacological profile of BR-A-657, 2-n-butyl-5-dimethylamino-thiocarbonyl-methyl-6-methyl-3-{[2-(1H-tetrazole-5-yl)biphenyl-4-yl]methyl}-pyrimidin-4(3H)-one, a new nonpeptide AT1-selective angiotensin receptor antagonist, has been investigated in a variety of in vitro and in vivo experimental models. In the present study, BR-A-657 displaced [(125)I][Sar(1)-Ile(8)]angiotensin II (Ang II) from its specific binding sites to AT1 subtype receptors in membrane fractions of HEK-293 cells with an IC50 of 0.16 nM. In a functional assay using isolated rabbit thoracic aorta, BR-A-657 inhibited the contractile response to Ang II (pD'2: 9.15) with a significant reduction in the maximum. In conscious rats, BR-A-657 (0.01, 0.1, 1 mg/kg; intravenously (i.v.)) dose-dependently antagonized Ang II-induced pressor responses. In addition, BR-A-657 dose-dependently decreased mean arterial pressure in furosemide-treated rats and renal hypertensive rats. Moreover, BR-A-657 given orally at 1 and 3 mg/kg reduced blood pressure in conscious renal hypertensive rats. Taken together, these findings indicate that BR-A-657 is a potent and specific antagonist of Ang II at the AT1 receptor subtype, and reveal the molecular basis responsible for the marked lowering of blood pressure in conscious rats.

  11. AHR-16303B, a novel antagonist of 5-HT2 receptors and voltage-sensitive calcium channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, R.J.; Appell, K.C.; Kilpatrick, B.F.

    1991-01-01

    In vivo and in vitro methods were used to characterize AHR-16303B, a novel compound with antagonistic action at 5-HT2 receptors and voltage-sensitive calcium channels. The 5-HT2 receptor-antagonistic properties of AHR-16303B were demonstrated by inhibition of (a) (3H)ketanserin binding to rat cerebral cortical membranes (IC50 = 165 nM); (b) 5-hydroxytryptamine (5-HT)-induced foot edema in rats (minimum effective dose, (MED) = 0.32 mg/kg orally, p.o.); (c) 5-HT-induced vasopressor responses in spontaneously hypertensive rats (SHR) (ID50 = 0.18 mg/kg intravenously (i.v.), 1.8 mg/kg p.o.), (d) 5-HT-induced antidiuresis in rats (MED = 1 mg/kg p.o.), and (e) platelet aggregation induced by 5-HT + ADPmore » (IC50 = 1.5 mM). The calcium antagonist properties of AHR-16303B were demonstrated by inhibition of (a) (3H)nimodipine binding to voltage-sensitive calcium channels on rabbit skeletal muscle membranes (IC50 = 15 nM), (b) KCl-stimulated calcium flux into cultured PC12 cells (IC50 = 81 nM), and (c) CaCl2-induced contractions of rabbit thoracic aortic strips (pA2 = 8.84). AHR-16303B had little or no effect on binding of radioligands to dopamine2 (DA2) alpha 1, alpha 2, H1, 5-HT1 alpha, beta 2, muscarinic M1, or sigma opioid receptors; had no effect on 5-HT3 receptor-mediated vagal bradycardia; and had only minor negative inotropic, chronotropic, and dromotropic effects on isolated guinea pig atria. In conscious SHR, 30 mg/kg p.o. AHR-16303B completely prevented the vasopressor responses to i.v. 5-HT, and decreased blood pressure (BP) by 24% 3 h after dosing.« less

  12. AM-37 and ST-36 Are Small Molecule Bombesin Receptor Antagonists

    PubMed Central

    Moody, Terry W.; Tashakkori, Nicole; Mantey, Samuel A.; Moreno, Paola; Ramos-Alvarez, Irene; Leopoldo, Marcello; Jensen, Robert T.

    2017-01-01

    While peptide antagonists for the gastrin-releasing peptide receptor (BB2R), neuromedin B receptor (BB1R), and bombesin (BB) receptor subtype-3 (BRS-3) exist, there is a need to develop non-peptide small molecule inhibitors for all three BBR. The BB agonist (BA)1 binds with high affinity to the BB1R, BB2R, and BRS-3. In this communication, small molecule BBR antagonists were evaluated using human lung cancer cells. AM-37 and ST-36 inhibited binding to human BB1R, BB2R, and BRS-3 with similar affinity (Ki = 1.4–10.8 µM). AM-13 and AM-14 were approximately an order of magnitude less potent than AM-37 and ST-36. The ability of BA1 to elevate cytosolic Ca2+ in human lung cancer cells transfected with BB1R, BB2R, and BRS-3 was antagonized by AM-37 and ST-36. BA1 increased tyrosine phosphorylation of the EGFR and ERK in lung cancer cells, which was blocked by AM-37 and ST-36. AM-37 and ST-36 reduced the growth of lung cancer cells that have BBR. The results indicate that AM-37 and ST-36 function as small molecule BB receptor antagonists. PMID:28785244

  13. The novel micro-opioid receptor antagonist, [N-allyl-Dmt(1)]endomorphin-2, attenuates the enhancement of GABAergic neurotransmission by ethanol.

    PubMed

    Li, Qiang; Okada, Yoshio; Marczak, Ewa; Wilson, Wilkie A; Lazarus, Lawrence H; Swartzwelder, H S

    2009-01-01

    We investigated the effects of [N-allyl-Dmt(1)]endomorphin-2 (TL-319), a novel and highly potent micro-opioid receptor antagonist, on ethanol (EtOH)-induced enhancement of GABA(A) receptor-mediated synaptic activity in the hippocampus. Evoked and spontaneous inhibitory postsynaptic currents (eIPSCs and sIPSCs) were isolated from CA1 pyramidal cells from brain slices of male rats using whole-cell patch-clamp techniques. TL-319 had no effect on the baseline amplitude of eIPSCs or the frequency of sIPSCs. However, it induced a dose-dependent suppression of an ethanol-induced increase of sIPSC frequency with full reversal at concentrations of 500 nM and higher. The non-specific competitive opioid receptor antagonist naltrexone also suppressed EtOH-induced increases in sIPSC frequency but only at a concentration of 60 microM. These data indicate that blockade of micro-opioid receptors by low concentrations of [N-allyl-Dmt(1)]endomorphin-2 can reverse ethanol-induced increases in GABAergic neurotransmission and possibly alter its anxiolytic or sedative effects. This suggests the possibility that high potency opioid antagonists may emerge as possible candidate compounds for the treatment of ethanol addiction.

  14. Selectivity of antagonists for the Cys-loop native receptors for ACh, 5-HT and GABA in guinea-pig myenteric neurons.

    PubMed

    Juárez, E H; Ochoa-Cortés, F; Miranda-Morales, M; Espinosa-Luna, R; Montaño, L M; Barajas-López, C

    2014-01-01

    The three most common Cys-loop receptors expressed by myenteric neurons are nACh, 5-HT3 and GABAA . To investigate the function of these proteins researchers have used channel inhibitors such as hexamethonium (antagonist of nACh receptors), ondansetron (antagonist of 5-HT3 receptors), picrotoxin and bicuculline (both antagonists of GABAA receptors). The aim of this study was to investigate the specificity of these inhibitors on Cys-loop receptors of primary cultured neurons obtained from the guinea-pig small intestine. The whole-cell configuration of the patch clamp techniques was used to record membrane currents induced by ACh (IACh ), 5-HT (I5-HT ) and GABA (IGABA ) in the absence and the presence of various concentrations of hexamethonium, ondansetron, picrotoxin or bicuculline. The three Cys-loop receptors present in enteric neurons are expressed independently and they do not cross-desensitized. Hexamethonium inhibited IACh without affecting I5-HT and IGABA . Ondansetron inhibited I5-HT and also IACh but did not affect IGABA . Picrotoxin and bicuculline inhibited I5-HT , IACh and IGABA with different potency, being the lowest potency on 5-HT3 receptors. All these inhibitory effects were concentration dependent and reversible. Our observations showed that except for hexamethonium, all other inhibitors used here show different degrees of selectivity, which has to be considered when these antagonists are used in experimental studies aimed to investigate the functions of these receptors. In particular, in tissues expressing nACh receptors because these are the targets of all other inhibitors used here. The low potency of picrotoxin and bicuculline to inhibit 5-HT3 receptors suggests that these receptors are heteromeric proteins. © 2013 John Wiley & Sons Ltd.

  15. Ionotropic glutamate receptor antagonists and cancer therapy: time to think out of the box?

    PubMed

    Ribeiro, Mariana P C; Custódio, José B A; Santos, Armanda E

    2017-02-01

    Glutamate has a trophic function in the development of the central nervous system, regulating the proliferation and migration of neuronal progenitors. The resemblance between neuronal embryonic and tumor cells has paved the way for the investigation of the effects of glutamate on tumor cells. Indeed, tumor cells derived from neuronal tissue express ionotropic glutamate receptor (iGluRs) subunits and iGluR antagonists decrease cell proliferation. Likewise, iGluRs subunits are expressed in several peripheral cancer cells and blockade of the N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) ionotropic glutamate receptor subtypes decreases their proliferation and migration. Although these mechanisms are still being investigated, the inhibition of the mitogen-activated protein kinase pathway was shown to play a key role in the antiproliferative activity of iGluR antagonists. Importantly, MK-801, a NMDAR channel blocker, was effective and well tolerated in animal models of melanoma, lung, and breast cancers, suggesting that the blockade of iGluR signaling may represent a new strategy for cancer treatment. In this review, we focus on the significance of NMDA and AMPA receptor expression in tumor cells, as well as possible therapeutic strategies targeting these receptors.

  16. Tranylcypromine Substituted cis-Hydroxycyclobutylnaphthamides as Potent and Selective Dopamine D3 Receptor Antagonists

    PubMed Central

    2015-01-01

    We report a class of potent and selective dopamine D3 receptor antagonists based upon tranylcypromine. Although tranylcypromine has a low affinity for the rat D3 receptor (Ki = 12.8 μM), our efforts have yielded (1R,2S)-11 (CJ-1882), which has Ki values of 2.7 and 2.8 nM at the rat and human dopamine D3 receptors, respectively, and displays respective selectivities of >10000-fold and 223-fold over the rat and human D2 receptors. Evaluation in a β-arrestin functional assay showed that (1R,2S)-11 is a potent and competitive antagonist at the human D3 receptor. PMID:24848155

  17. Identification of novel thiazolo[5,4-d]pyrimidine derivatives as human A1 and A2A adenosine receptor antagonists/inverse agonists.

    PubMed

    Varano, Flavia; Catarzi, Daniela; Falsini, Matteo; Vincenzi, Fabrizio; Pasquini, Silvia; Varani, Katia; Colotta, Vittoria

    2018-07-23

    In this study a new set of thiazolo[5,4-d]pyrimidine derivatives was synthesized. These derivatives bear different substituents at positions 2 and 5 of the thiazolopyrimidine core while maintaining a free amino group at position-7. The new compounds were tested for their affinity and potency at human (h) A 1 , A 2A , A 2B and A 3 adenosine receptors expressed in CHO cells. The results reveal that the higher affinity of these new set of thiazolopyrimidines is toward the hA 1 and hA 2A adenosine receptors subtypes and is tuned by the substitution pattern at both the 2 and 5 positions of the thiazolopyrimidine nucleus. Functional studies evidenced that the compounds behaved as dual A 1 /A 2A antagonists/inverse agonists. Compound 3, bearing a 5-((2-methoxyphenyl) methylamino) group and a phenyl moiety at position 2, displayed the highest affinity (hA 1 K i  = 10.2 nM; hA 2A K i  = 4.72 nM) and behaved as a potent A 1 /A 2A antagonist/inverse agonist (hA 1 IC 50  = 13.4 nM; hA 2A IC 50  = 5.34 nM). Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Binding modes of dihydroquinoxalinones in a homology model of bradykinin receptor 1.

    PubMed

    Ha, Sookhee N; Hey, Pat J; Ransom, Rick W; Harrell, C Meacham; Murphy, Kathryn L; Chang, Ray; Chen, Tsing-Bau; Su, Dai-Shi; Markowitz, M Kristine; Bock, Mark G; Freidinger, Roger M; Hess, Fred J

    2005-05-27

    We report the first homology model of human bradykinin receptor B1 generated from the crystal structure of bovine rhodopsin as a template. Using an automated docking procedure, two B1 receptor antagonists of the dihydroquinoxalinone structural class were docked into the receptor model. Site-directed mutagenesis data of the amino acid residues in TM1, TM3, TM6, and TM7 were incorporated to place the compounds in the binding site of the homology model of the human B1 bradykinin receptor. The best pose in agreement with the mutation data was selected for detailed study of the receptor-antagonist interaction. To test the model, the calculated antagonist-receptor binding energy was correlated with the experimentally measured binding affinity (K(i)) for nine dihydroquinoxalinone analogs. The model was used to gain insight into the molecular mechanism for receptor function and to optimize the dihydroquinoxalinone analogs.

  19. Potentiation of oxycodone antinociception in mice by agmatine and BMS182874 via an imidazoline I2 receptor-mediated mechanism.

    PubMed

    Bhalla, Shaifali; Ali, Izna; Lee, Hyaera; Andurkar, Shridhar V; Gulati, Anil

    2013-01-01

    The potentiation of oxycodone antinociception by BMS182874 (endothelin-A (ET(A)) receptor antagonist) and agmatine (imidazoline receptor/α(2)-adrenoceptor agonist) is well-documented. It is also known that imidazoline receptors but not α(2)-adrenoceptors are involved in potentiation of oxycodone antinociception by agmatine and BMS182874 in mice. However, the involvement of specific imidazoline receptor subtypes (I(1), I(2), or both) in this interaction is not clearly understood. The present study was conducted to determine the involvement of imidazoline I(1) and I(2) receptors in agmatine- and BMS182874-induced potentiation of oxycodone antinociception in mice. Antinociceptive (tail flick and hot-plate) latencies were determined in male Swiss Webster mice treated with oxycodone, agmatine, BMS182874, and combined administration of oxycodone with agmatine or BMS182874. Efaroxan (imidazoline I(1) receptor antagonist) and BU224 (imidazoline I(2) receptor antagonist) were used to determine the involvement of I(1) and I(2) imidazoline receptors, respectively. Oxycodone produced significant antinociceptive response in mice which was not affected by efaroxan but was blocked by BU224. Agmatine-induced potentiation of oxycodone antinociception was blocked by BU224 but not by efaroxan. Similarly, BMS182874-induced potentiation of oxycodone antinociception was blocked by BU224 but not by efaroxan. This is the first report demonstrating that BMS182874- or agmatine-induced enhancement of oxycodone antinociception is blocked by BU224 but not by efaroxan. We conclude that imidazoline I(2) receptors but not imidazoline I(1) receptors are involved in BMS182874- and agmatine-induced potentiation of oxycodone antinociception in mice. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. The effects of sigma (σ1) receptor-selective ligands on muscarinic receptor antagonist-induced cognitive deficits in mice

    PubMed Central

    Malik, Maninder; Rangel-Barajas, Claudia; Sumien, Nathalie; Su, Chang; Singh, Meharvan; Chen, Zhenglan; Huang, Ren-Qi; Meunier, Johann; Maurice, Tangui; Mach, Robert H; Luedtke, Robert R

    2015-01-01

    Background and Purpose Cognitive deficits in patients with Alzheimer's disease, Parkinson's disease, traumatic brain injury and stroke often involve alterations in cholinergic signalling. Currently available therapeutic drugs provide only symptomatic relief. Therefore, novel therapeutic strategies are needed to retard and/or arrest the progressive loss of memory. Experimental Approach Scopolamine-induced memory impairment provides a rapid and reversible phenotypic screening paradigm for cognition enhancement drug discovery. Male C57BL/6J mice given scopolamine (1 mg·kg−1) were used to evaluate the ability of LS-1–137, a novel sigma (σ1) receptor-selective agonist, to improve the cognitive deficits associated with muscarinic antagonist administration. Key Results LS-1–137 is a high-affinity (Ki = 3.2 nM) σ1 receptor agonist that is 80-fold selective for σ1, compared with σ2 receptors. LS-1–137 binds with low affinity at D2-like (D2, D3 and D4) dopamine and muscarinic receptors. LS-1–137 was found to partially reverse the learning deficits associated with scopolamine administration using a water maze test and an active avoidance task. LS-1–137 treatment was also found to trigger the release of brain-derived neurotrophic factor from rat astrocytes. Conclusions and Implications The σ1 receptor-selective compound LS-1–137 may represent a novel candidate cognitive enhancer for the treatment of muscarinic receptor-dependent cognitive deficits. PMID:25573298

  1. Bone Morphogenetic Proteins, Antagonists and Receptors in Prostate Cancer

    DTIC Science & Technology

    2005-01-01

    expressed in prostate. This work investigates BMP receptors and BMP antagonists to understand the basic mechanisms to inhibit the BMP signaling in...during embryoge- nesis, and prostate cancer metastases to bone. BMP functions can be inhibited by antagonists such as Noggin or DAN. DAN is a protein...protein along with a constant 0-6 -1 10 100 1000 1O0ng/ml of BMP-6, we were able to show a ng/ml BMP-6 dose-dependent inhibition of BMP-6 activity in DU

  2. Angiotensin AT1 and AT2 receptor antagonists modulate nicotine-evoked [³H]dopamine and [³H]norepinephrine release.

    PubMed

    Narayanaswami, Vidya; Somkuwar, Sucharita S; Horton, David B; Cassis, Lisa A; Dwoskin, Linda P

    2013-09-01

    Tobacco smoking is the leading preventable cause of death in the United States. A major negative health consequence of chronic smoking is hypertension. Untoward addictive and cardiovascular sequelae associated with chronic smoking are mediated by nicotine-induced activation of nicotinic receptors (nAChRs) within striatal dopaminergic and hypothalamic noradrenergic systems. Hypertension involves both brain and peripheral angiotensin systems. Activation of angiotensin type-1 receptors (AT1) release dopamine and norepinephrine. The current study determined the role of AT1 and angiotensin type-2 (AT2) receptors in mediating nicotine-evoked dopamine and norepinephrine release from striatal and hypothalamic slices, respectively. The potential involvement of nAChRs in mediating effects of AT1 antagonist losartan and AT2 antagonist, 1-[[4-(dimethylamino)-3-methylphenyl]methyl]-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid (PD123319) was evaluated by determining their affinities for α4β2* and α7* nAChRs using [³H]nicotine and [³H]methyllycaconitine binding assays, respectively. Results show that losartan concentration-dependently inhibited nicotine-evoked [³H]dopamine and [³H]norepinephrine release (IC₅₀: 3.9 ± 1.2 and 2.2 ± 0.7 μM; Imax: 82 ± 3 and 89 ± 6%, respectively). In contrast, PD123319 did not alter nicotine-evoked norepinephrine release, and potentiated nicotine-evoked dopamine release. These results indicate that AT1 receptors modulate nicotine-evoked striatal dopamine and hypothalamic norepinephrine release. Furthermore, AT1 receptor activation appears to be counteracted by AT2 receptor activation in striatum. Losartan and PD123319 did not inhibit [³H]nicotine or [³H]methyllycaconitine binding, indicating that these AT1 and AT2 antagonists do not interact with the agonist recognition sites on α4β2* and α7* nAChRs to mediate these effects of nicotine. Thus, angiotensin receptors contribute to the effects of

  3. Antidepressant-like effects of scopolamine in mice are enhanced by the group II mGlu receptor antagonist LY341495.

    PubMed

    Podkowa, Karolina; Podkowa, Adrian; Sałat, Kinga; Lenda, Tomasz; Pilc, Andrzej; Pałucha-Poniewiera, Agnieszka

    2016-12-01

    Clinical studies have shown that the muscarinic receptor antagonist scopolamine induces a potent and rapid antidepressant effect relative to conventional antidepressants. However, potential undesirable effects, including memory impairment, partially limit the use of scopolamine in psychiatry. In the present study, we propose to overcome these limitations and enhance the therapeutic effects of scopolamine via administration in combination with the group II metabotropic glutamate (mGlu) receptor antagonist, LY341495. Joint administration of sub-effective doses of scopolamine (0.03 or 0.1 mg/kg, i.p.) with a sub-effective dose of LY341495 (0.1 mg/kg, i.p.) induced a profound antidepressant effect in the tail suspension test (TST) and in the forced swim test (FST) in mice. This drug combination did not impair memory, as measured using the Morris water maze (MWM), and did not influence the locomotor activity of mice. Furthermore, we found that an AMPA receptor antagonist, NBQX (10 mg/kg), completely reversed the antidepressant-like activity of a mixture of scopolamine and LY341495 in the TST. However, this effect was not influenced by para-chlorophenylalanine (PCPA) pre-treatment, indicating a lack of involvement of serotonergic system activation in the antidepressant-like effects of jointly given scopolamine and LY341495. Therefore, the combined administration of low doses of the antimuscarinic drug scopolamine and the group II mGlu receptor antagonist LY341495 might be a new, effective and safe strategy in the therapy of depression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effect of SR-49059, a vasopressin V1a antagonist, on human vascular smooth muscle cells.

    PubMed

    Serradeil-Le Gal, C; Herbert, J M; Delisee, C; Schaeffer, P; Raufaste, D; Garcia, C; Dol, F; Marty, E; Maffrand, J P; Le Fur, G

    1995-01-01

    The effects of SR-49059, a new nonpeptide and selective arginine vasopressin (AVP) V1a antagonist, were investigated in binding and functional studies on cultured human aortic vascular smooth muscle cells (VSMC). Characterization of human vascular V1a receptors, using a specific V1a radioiodinated ligand, showed that [125I]-linear AVP antagonist binding to human VSMC membranes was time dependent, reversible, and saturable. A single population of high-affinity binding sites (apparent equilibrium dissociation constant = 15 +/- 6 pM; maximum binding density = 36 +/- 5 fmol/mg protein, i.e., approximately 3,000 sites/cell) with the expected V1a profile was identified. Exposure of these cells to AVP dose-dependently produced cytosolic free [Ca2+] increase [AVP concentration required to obtain a half-maximal response (EC50) = 23 +/- 9 nM] and proliferation (EC50 = 3.2 +/- 0.5 nM). SR-49059 strongly and stereospecifically inhibited [125I]-linear AVP antagonist binding to VSMC V1a receptors [inhibition constant (Ki) = 1.4 +/- 0.3 nM], AVP-evoked Ca2+ increase [concentration of inhibitor required to obtain 50% inhibition of specific binding (IC50) = 0.41 +/- 0.06 nM], and the mitogenic effects induced by 100 nM AVP (IC50 = 0.83 +/- 0.04 nM). OPC-21268, another nonpeptide V1a antagonist, was more than two orders of magnitude less potent than SR-49059 in these models. However, the consistent affinity (Ki = 138 +/- 21 nM) and activity found with OPC-21268 on human VSMC in comparison with the inactivity already observed for other human V1a receptors (liver, platelets, adrenals, and uterus) strongly suggested the existence of human AVP V1a-receptor subtypes.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Anticonvulsant activity of a mGlu(4alpha) receptor selective agonist, (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid.

    PubMed

    Chapman, A G; Talebi, A; Yip, P K; Meldrum, B S

    2001-07-20

    The metabotropic Group III agonist, (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid (ACPT-1), selective for the mGlu(4alpha) receptor, suppresses sound-induced seizures in DBA/2 mice following its intracerebroventricular (i.c.v.) administration (ED(50) 5.6 [2.9-10.7], nmol i.c.v., 15 min, clonic phase) and in genetically epilepsy-prone (GEP) rats following focal administration into the inferior colliculus (ED(50) 0.08 [0.01-0.50], nmol, 60 min, clonic phase). ACPT-1 also protects against clonic seizures induced in DBA/2 mice by the Group I agonist, (RS)-3,5-dihydroxyphenylglycine (3,5-DHPG) (ED(50) 0.60 [0.29-1.2], nmol i.c.v.) and by the Group III antagonist, (RS)-alpha-methylserine-O-phosphate (MSOP) (ED(50) 49.3 [37.9-64.1], nmol i.c.v.). Another Group III agonist, (RS)-4-phosphonophenyl-glycine (PPG), preferentially activating the mGlu(8) receptor, previously shown to protect against sound-induced seizures in DBA/2 mice and GEP rats, also protects against seizures induced in DBA/2 by 3,5-DHPG (ED(50) 3.7 [2.4-5.7], nmol i.c.v.) and by the Group III antagonist, MSOP (ED(50) 40.2 [21.0-77.0], nmol i.c.v.). At very high doses (500 nmol i.c.v. and above), Group III antagonists have pro-convulsant and convulsant activity. The anticonvulsant protection against sound-induced seizures in DBA/2 mice provided by a fully protective dose (20 nmol, i.c.v.) of the mGlu(4) receptor agonist ACPT-1, is partially reversed by the co-administration of the Group III antagonists, MSOP, (RS)-alpha-methyl-4-phosphonophenylglycine (MPPG) or (S)-2-amino-2-methyl-4-phosphonobutanoic acid (MAP4), in the 20-50 nmol dose range. At doses of 50-200 nmol, MPPG and MAP4 cause further reversal of the ACPT-1 anticonvulsant protection, while the MSOP effect on ACPT-1 protection is abolished at higher doses. In contrast, the anticonvulsant protection against sound-induced seizures in DBA/2 mice provided by a fully protective dose (20 nmol, i.c.v.) of the mGlu(8) receptor agonist PPG, is not

  6. Dopamine D3/D2 Receptor Antagonist PF-4363467 Attenuates Opioid Drug-Seeking Behavior without Concomitant D2 Side Effects.

    PubMed

    Wager, Travis T; Chappie, Thomas; Horton, David; Chandrasekaran, Ramalakshmi Y; Samas, Brian; Dunn-Sims, Elizabeth R; Hsu, Cathleen; Nawreen, Nawshaba; Vanase-Frawley, Michelle A; O'Connor, Rebecca E; Schmidt, Christopher J; Dlugolenski, Keith; Stratman, Nancy C; Majchrzak, Mark J; Kormos, Bethany L; Nguyen, David P; Sawant-Basak, Aarti; Mead, Andy N

    2017-01-18

    Dopamine receptor antagonism is a compelling molecular target for the treatment of a range of psychiatric disorders, including substance use disorders. From our corporate compound file, we identified a structurally unique D3 receptor (D3R) antagonist scaffold, 1. Through a hybrid approach, we merged key pharmacophore elements from 1 and D3 agonist 2 to yield the novel D3R/D2R antagonist PF-4363467 (3). Compound 3 was designed to possess CNS drug-like properties as defined by its CNS MPO desirability score (≥4/6). In addition to good physicochemical properties, 3 exhibited low nanomolar affinity for the D3R (D3 K i = 3.1 nM), good subtype selectivity over D2R (D2 K i = 692 nM), and high selectivity for D3R versus other biogenic amine receptors. In vivo, 3 dose-dependently attenuated opioid self-administration and opioid drug-seeking behavior in a rat operant reinstatement model using animals trained to self-administer fentanyl. Further, traditional extrapyramidal symptoms (EPS), adverse side effects arising from D2R antagonism, were not observed despite high D2 receptor occupancy (RO) in rodents, suggesting that compound 3 has a unique in vivo profile. Collectively, our data support further investigation of dual D3R and D2R antagonists for the treatment of drug addiction.

  7. Past, present and future of A2A adenosine receptor antagonists in the therapy of Parkinson’s disease

    PubMed Central

    Armentero, Marie Therese; Pinna, Annalisa; Ferré, Sergi; Lanciego, José Luis; Müller, Christa E.; Franco, Rafael

    2011-01-01

    Several selective antagonists for adenosine A2A receptors (A2AR) are currently under evaluation in clinical trials (phases I to III) to treat Parkinson’s disease, and they will probably soon reach the market. The usefulness of these antagonists has been deduced from studies demonstrating functional interactions between dopamine D2 and adenosine A2A receptors in the basal ganglia. At present it is believed that A2AR antagonists can be used in combination with the dopamine precursor L-DOPA to minimize the motor symptoms of Parkinson’s patients. However, a considerable body of data indicates that in addition to ameliorating motor symptoms, adenosine A2AR antagonists may also prevent neurodegeneration. Despite these promising indications, one further issue must be considered in order to develop fully optimized anti-parkinsonian drug therapy, namely the existence of receptor (hetero)dimers/oligomers of G protein-coupled receptors, a topic currently the focus of intense debate within the scientific community. Dopamine D2 receptors (D2Rs) expressed in the striatum are known to form heteromers with A2A adenosine receptors. Thus, the development of heteromer-specific A2A receptor antagonists represents a promising strategy for the identification of more selective and safer drugs. PMID:21810444

  8. Interleukin 1 receptor antagonist (IL1RN) genetic variations condition post-orthodontic external root resorption in endodontically-treated teeth.

    PubMed

    Iglesias-Linares, Alejandro; Yañez-Vico, Rosa Ma; Ballesta-Mudarra, Sofía; Ortiz-Ariza, Estefanía; Mendoza-Mendoza, Asunción; Perea-Pérez, Evelio; Moreno-Fernández, Ana Ma; Solano-Reina, Enrique

    2013-06-01

    External apical root resorption (EARR) is a frequent iatrogenic problem following orthodontic treatment in endodontically-treated teeth, about which the literature reports substantial variability in post-orthodontic treatment EARR responses. The main focus of the present study is to clarify whether variants in the interleukin-1 receptor antagonist gene coding for the IL-1ra protein have a positive/negative influence on EARR of endodontically-treated teeth. Ninety-three orthodontic patients were genetically screened for a single nucleotide polymorphism (SNP:rs419598) in the IL1 cluster. The sample was classified into 2 groups: group 1 (affected-group) showed radiographic EARR of more than 2mm; group 2 (control-group), had no EARR or EARR ≤ to 2mm following orthodontic treatment on root-filled teeth. Logistic regression analysis was performed to obtain an adjusted estimate between the SNPs studied and EARR. Genotype distributions, allelic frequencies, adjusted odds ratios (OR) and 95% confidence intervals were also calculated. We found that subjects homozygous [1/1(TT)] for the IL1RN gene [OR:10.85; p=0.001;CI:95%] were at risk of EARR in root-filled teeth. Genetic variants in the antagonist axis balance of the IL1RN (rs419598) have a direct repercussion on the predisposition to post-orthodontic EARR in root-filled teeth. Variants in allele 1 of the interleukin-1 receptor antagonist gene(rs419598) are associated(p=0.001**) with an increased risk of suffering post-orthodontic EARR in root-filled teeth.

  9. Nonpeptidic angiotensin II AT₁ receptor antagonists derived from 6-substituted aminocarbonyl and acylamino benzimidazoles.

    PubMed

    Zhang, Jun; Wang, Jin-Liang; Yu, Wei-Fa; Zhou, Zhi-Ming; Tao, Wen-Chang; Wang, Yi-Cheng; Xue, Wei-Zhe; Xu, Di; Hao, Li-Ping; Han, Xiao-Feng; Fei, Fan; Liu, Ting; Liang, Ai-Hua

    2013-11-01

    Both 6-substituted aminocarbonyl and acylamino benzimidazole derivatives were designed and synthesized as nonpeptidic angiotensin II AT₁ receptor antagonists. Compounds 6f, 6g, 11e, 11f, 11g, and 12 showed nanomolar AT₁ receptor binding affinity and high AT₁ receptor selectivity over AT₂ receptor in a preliminary pharmacological evaluation. Among them, the two most active compounds 6f (AT₁ IC₅₀ = 3 nM, AT₂ IC₅₀ > 10,000 nM, PA₂ = 8.51) and 11g (AT₁ IC₅₀ = 0.1 nM, AT₂ IC₅₀ = 149 nM, PA₂ = 8.43) exhibited good antagonistic activity in isolated rabbit aortic strip functional assay. In addition, they were orally active AT₁ receptor antagonists in spontaneous hypertensive rats. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  10. IL-1 receptor-antagonist (IL-1Ra) knockout mice show anxiety-like behavior by aging.

    PubMed

    Wakabayashi, Chisato; Numakawa, Tadahiro; Odaka, Haruki; Ooshima, Yoshiko; Kiyama, Yuji; Manabe, Toshiya; Kunugi, Hiroshi; Iwakura, Yoichiro

    2015-07-10

    Interleukin 1 (IL-1) plays a critical role in stress responses, and its mRNA is induced in the brain by restraint stress. Previously, we reported that IL-1 receptor antagonist (IL-1Ra) knockout (KO) mice, which lacked IL-1Ra molecules that antagonize the IL-1 receptor, showed anti-depression-like behavior via adrenergic modulation at the age of 8 weeks. Here, we report that IL-1Ra KO mice display an anxiety-like phenotype that is induced spontaneously by aging in the elevated plus-maze (EPM) test. This anxiety-like phenotype was improved by the administration of diazepam. The expression of the anxiety-related molecule glucocorticoid receptor (GR) was significantly reduced in 20-week-old but not in 11-week-old IL-1Ra KO mice compared to wild-type (WT) littermates. The expression of the mineralocorticoid receptor (MR) was not altered between IL-1Ra KO mice and WT littermates at either 11 or 20 weeks old. Analysis of monoamine concentration in the hippocampus revealed that tryptophan, the serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA), and the dopamine metabolite homovanillic acid (HVA) were significantly increased in 20-week-old IL-1Ra KO mice compared to littermate WT mice. These findings strongly suggest that the anxiety-like behavior observed in older mice was caused by the complicated alteration of monoamine metabolism and/or GR expression in the hippocampus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Nonsteroidal antagonists of the mineralocorticoid receptor.

    PubMed

    Kolkhof, Peter; Nowack, Christina; Eitner, Frank

    2015-09-01

    The broad clinical use of steroidal mineralocorticoid receptor antagonists (MRAs) is limited by the potential risk of inducing hyperkalemia when given on top of renin-angiotensin system blockade. Drug discovery campaigns have been launched aiming for the identification of nonsteroidal MRAs with an improved safety profile. This review analyses the evidence for the potential of improved safety profiles of nonsteroidal MRAs and the current landscape of clinical trials with nonsteroidal MRAs. At least three novel nonsteroidal MRAs have reportedly demonstrated an improved therapeutic index (i.e. less risk for hyperkalemia) in comparison to steroidal antagonists in preclinical models. Five pharmaceutical companies have nonsteroidal MRAs in clinical development with a clear focus on the treatment of chronic kidney diseases. No clinical data have been published so far for MT-3995 (Mitsubishi), SC-3150 (Daiichi-Sankyo), LY2623091 (Eli Lilly) and PF-03882845 (Pfizer). In contrast, data from two clinical phase II trials are available for finerenone (Bayer) which demonstrated safety and efficacy in patients with heart failure and additional chronic kidney diseases, and significantly reduced albuminuria in patients with diabetic nephropathy. Neither hyperkalemia nor reductions in kidney function were limiting factors to its use. Novel, nonsteroidal MRAs are currently tested in clinical trials. Based on preclinical and first clinical data, these nonsteroidal MRAs might overcome the limitations of today's steroidal antagonists.

  12. Nonpeptide corticotropin-releasing hormone receptor type 1 antagonists and their applications in psychosomatic disorders.

    PubMed

    Contoreggi, Carlo; Rice, Kenner C; Chrousos, George

    2004-01-01

    Overproduction of corticotropin-releasing hormone (CRH) and stress system abnormalities are seen in psychiatric diseases such as depression, anxiety, eating disorders, and addiction. Investigations of CRH type 1 receptor (CRHR1) nonpeptide antagonists suggest therapeutic potential for treatment of these and other neuropsychiatric diseases. However, overproduction of CRH in the brain and on its periphery and disruption of the hypothalamic-pituitary-adrenal axis are also found in 'somatic' disorders. Some rare forms of Cushing's disease and related pituitary/adrenal disorders are obvious applications for CRHR1 antagonists. In addition, however, these antagonists may also be effective in treating more common somatic diseases. Patients with obesity and metabolic syndrome who often have subtle, but chronic hypothalamic-pituitary-adrenal hyperactivity, which may reflect central dysregulation of CRH and consequently glucocorticoid hypersecretion, could possibly be treated by administration of CRHR1 antagonists. Hormonal, autonomic, and immune aberrations are also present in chronic inflammatory, autoimmune, and allergic diseases, with considerable evidence linking CRH with the observed abnormalities. Furthermore, autonomic dysregulation is a prominent feature of common gastrointestinal disorders, such as irritable bowel syndrome and peptic ulcer disease. Patients with irritable bowel syndrome and other gastrointestinal disorders frequently develop altered pain perception and affective symptoms. CRH acts peripherally to modulate bowel activity both directly through the autonomic system and centrally by processing viscerosensory and visceromotor neural signals. This review presents clinical and preclinical evidence for the role of CRH in the pathophysiology of these disorders and for potential diagnostic and therapeutic applications of CRHR1 antagonists. Recognition of a dysfunctional stress system in these and other diseases will alter the understanding and treatment of

  13. Internalization of the chemokine receptor CCR4 can be evoked by orthosteric and allosteric receptor antagonists

    PubMed Central

    Ajram, Laura; Begg, Malcolm; Slack, Robert; Cryan, Jenni; Hall, David; Hodgson, Simon; Ford, Alison; Barnes, Ashley; Swieboda, Dawid; Mousnier, Aurelie; Solari, Roberto

    2014-01-01

    The chemokine receptor CCR4 has at least two natural agonist ligands, MDC (CCL22) and TARC (CCL17) which bind to the same orthosteric site with a similar affinity. Both ligands are known to evoke chemotaxis of CCR4-bearing T cells and also elicit CCR4 receptor internalization. A series of small molecule allosteric antagonists have been described which displace the agonist ligand, and inhibit chemotaxis. The aim of this study was to determine which cellular coupling pathways are involved in internalization, and if antagonists binding to the CCR4 receptor could themselves evoke receptor internalization. CCL22 binding coupled CCR4 efficiently to β-arrestin and stimulated GTPγS binding however CCL17 did not couple to β-arrestin and only partially stimulated GTPγS binding. CCL22 potently induced internalization of almost all cell surface CCR4, while CCL17 showed only weak effects. We describe four small molecule antagonists that were demonstrated to bind to two distinct allosteric sites on the CCR4 receptor, and while both classes inhibited agonist ligand binding and chemotaxis, one of the allosteric sites also evoked receptor internalization. Furthermore, we also characterize an N-terminally truncated version of CCL22 which acts as a competitive antagonist at the orthosteric site, and surprisingly also evokes receptor internalization without demonstrating any agonist activity. Collectively this study demonstrates that orthosteric and allosteric antagonists of the CCR4 receptor are capable of evoking receptor internalization, providing a novel strategy for drug discovery against this class of target. PMID:24534492

  14. Design of Phthalazinone Amide Histamine H1 Receptor Antagonists for Use in Rhinitis

    PubMed Central

    2017-01-01

    The synthesis of potent amide-containing phthalazinone H1 histamine receptor antagonists is described. Three analogues 3e, 3g, and 9g were equipotent with azelastine and were longer-acting in vitro. Amide 3g had low oral bioavailability, low brain-penetration, high metabolic clearance, and long duration of action in vivo, and it was suitable for once-daily dosing intranasally, with a predicted dose for humans of approximately 0.5 mg per day. PMID:28523114

  15. The CB1 receptor antagonist AM251 impairs reconsolidation of pavlovian fear memory in the rat basolateral amygdala.

    PubMed

    Ratano, Patrizia; Everitt, Barry J; Milton, Amy L

    2014-10-01

    We have investigated the requirement for signaling at CB1 receptors in the reconsolidation of a previously consolidated auditory fear memory, by infusing the CB1 receptor antagonist AM251, or the FAAH inhibitor URB597, directly into the basolateral amygdala (BLA) in conjunction with memory reactivation. AM251 disrupted memory restabilization, but only when administered after reactivation. URB597 produced a small, transient enhancement of memory restabilization when administered after reactivation. The amnestic effect of AM251 was rescued by coadministration of the GABAA receptor antagonist bicuculline at reactivation, indicating that the disruption of reconsolidation was mediated by altered GABAergic transmission in the BLA. These data show that the endocannabinoid system in the BLA is an important modulator of fear memory reconsolidation and that its effects on memory are mediated by an interaction with the GABAergic system. Thus, targeting the endocannabinoid system may have therapeutic potential to reduce the impact of maladaptive memories in neuropsychiatric disorders such as posttraumatic stress disorder.

  16. Stimuli of Sensory-Motor Nerves Terminate Arterial Contractile Effects of Endothelin-1 by CGRP and Dissociation of ET-1/ETA-Receptor Complexes

    PubMed Central

    Meens, Merlijn J. P. M. T.; Compeer, Matthijs G.; Hackeng, Tilman M.; van Zandvoort, Marc A.; Janssen, Ben J. A.; De Mey, Jo G. R.

    2010-01-01

    Background Endothelin-1 (ET-1), a long-acting paracrine mediator, is implicated in cardiovascular diseases but clinical trials with ET-receptor antagonists were not successful in some areas. We tested whether the quasi-irreversible receptor-binding of ET-1 (i) limits reversing effects of the antagonists and (ii) can be selectively dissociated by an endogenous counterbalancing mechanism. Methodology/Principal findings In isolated rat mesenteric resistance arteries, ETA-antagonists, endothelium-derived relaxing factors and synthetic vasodilators transiently reduced contractile effects of ET-1 but did not prevent persistent effects of the peptide. Stimuli of peri-vascular vasodilator sensory-motor nerves such as capsaicin not only reduced but also terminated long-lasting effects of ET-1. This was prevented by CGRP-receptor antagonists and was mimicked by exogenous calcitonin gene-related peptide (CGRP). Using 2-photon laser scanning microscopy in vital intact arteries, capsaicin and CGRP, but not ETA-antagonism, were observed to promote dissociation of pre-existing ET-1/ETA-receptor complexes. Conclusions Irreversible binding and activation of ETA-receptors by ET-1 (i) occur at an antagonist-insensitive site of the receptor and (ii) are selectively terminated by endogenously released CGRP. Hence, natural stimuli of sensory-motor nerves that stimulate release of endogenous CGRP can be considered for therapy of diseases involving ET-1. PMID:20532232

  17. Discovery of ONO-7300243 from a Novel Class of Lysophosphatidic Acid Receptor 1 Antagonists: From Hit to Lead

    PubMed Central

    2016-01-01

    Lysophosphatidic acid (LPA) evokes various physiological responses through a series of G protein-coupled receptors known as LPA1–6. A high throughput screen against LPA1 gave compound 7a as a hit. The subsequent optimization of 7a led to ONO-7300243 (17a) as a novel, potent LPA1 antagonist, which showed good efficacy in vivo. The oral dosing of 17a at 30 mg/kg led to reduced intraurethral pressure in rats. Notably, this compound was equal in potency to the α1 adrenoceptor antagonist tamsulosin, which is used in clinical practice to treat dysuria with benign prostatic hyperplasia (BPH). In contrast to tamsulosin, compound 17a had no impact on the mean blood pressure at this dose. These results suggest that LPA1 antagonists could be used to treat BPH without affecting the blood pressure. Herein, we report the hit-to-lead optimization of a unique series of LPA1 antagonists and their in vivo efficacy. PMID:27774128

  18. In hamsters the D1 receptor antagonist SCH23390 depresses ventilation during hypoxia.

    PubMed

    Schlenker, Evelyn H

    2008-01-02

    During exposure of animals to hypoxia, brain and blood dopamine levels increase stimulating dopaminergic receptors which influence the integrated ventilatory response to low oxygen. The purpose of the present study is to test the hypothesis that in conscious hamsters, systemic antagonism of D(1) receptors would depress their breathing in air and in response to hypoxic and hypercapnic challenges. Nine male hamsters were treated with saline or 0.25 mg/kg SCH-23390 (SCH), a D(1) receptor antagonist that crosses the blood-brain barrier. Ventilation was determined using the barometric method, and oxygen consumption and CO(2) production were evaluated utilizing the flow-through method. During exposure to air, SCH decreased frequency of breathing. During exposure to hypoxia (10% oxygen in nitrogen), relative to saline, SCH-treated hamsters decreased minute ventilation by decreasing tidal volume and oxygen consumption but not CO(2) production. During exposure to hypercapnia (5% CO(2) in 95% O(2)), frequency of breathing was decreased with SCH, but there was no significant effect on minute ventilation. Relative to saline treatment body temperature was lower in SCH-treated hamsters by 0.6 degrees C. These results demonstrate that in hamsters D(1) receptors can modulate control of ventilation in air and during hypoxia and hypercapnic exposures. Whether D(1) receptors located centrally or on carotid bodies modulate these effects is not clear from this study.

  19. Biochemical and pharmacological properties of SR 49059, a new, potent, nonpeptide antagonist of rat and human vasopressin V1a receptors.

    PubMed

    Serradeil-Le Gal, C; Wagnon, J; Garcia, C; Lacour, C; Guiraudou, P; Christophe, B; Villanova, G; Nisato, D; Maffrand, J P; Le Fur, G

    1993-07-01

    SR 49059, a new potent and selective orally active, nonpeptide vasopressin (AVP) antagonist has been characterized in several in vitro and in vivo models. SR 49059 showed high affinity for V1a receptors from rat liver (Ki = 1.6 +/- 0.2) and human platelets, adrenals, and myometrium (Ki ranging from 1.1 to 6.3 nM). The previously described nonpeptide V1 antagonist, OPC-21268, was almost inactive in human tissues at concentrations up to 100 microM. SR 49059 exhibited much lower affinity (two orders of magnitude or more) for AVP V2 (bovine and human), V1b (human), and oxytocin (rat and human) receptors and had no measurable affinity for a great number of other receptors. In vitro, AVP-induced contraction of rat caudal artery was competitively antagonized by SR 49059 (pA2 = 9.42). Furthermore, SR 49059 inhibited AVP-induced human platelet aggregation with an IC50 value of 3.7 +/- 0.4 nM, while OPC-21268 was inactive up to 20 microM. In vivo, SR 49059 inhibited the pressor response to exogenous AVP in pithed rats (intravenous) and in conscious normotensive rats (intravenous and per os) with a long duration of action (> 8 h at 10 mg/kg p.o). In all the biological assays used, SR 49059 was devoid of any intrinsic agonistic activity. Thus, SR 49059 is the most potent and selective nonpeptide AVP V1a antagonist described so far, with marked affinity, selectivity, and efficacy toward both animal and human receptors. With this original profile, SR 49059 constitutes a powerful tool for exploring the therapeutical usefulness of a selective V1a antagonist.

  20. Angiotensin II type 1 receptor antagonists in the treatment of hypertension in elderly patients: focus on patient outcomes

    PubMed Central

    Tadevosyan, Artavazd; MacLaughlin, Eric J; Karamyan, Vardan T

    2011-01-01

    Hypertension in the elderly is one of the main risk factors of cardiovascular and cerebrovascular diseases. Knowledge regarding the mechanisms of hypertension and specific considerations in managing hypertensive elderly through pharmacological intervention(s) is fundamental to improving clinical outcomes. Recent clinical studies in the elderly have provided evidence that angiotensin II type 1 (AT1) receptor antagonists can improve clinical outcomes to a similar or, in certain populations, an even greater extent than other classical arterial blood pressure-lowering agents. This newer class of antihypertensive agents presents several benefits, including potential for improved adherence, excellent tolerability profile with minimal first-dose hypotension, and a low incidence of adverse effects. Thus, AT1 receptor antagonists represent an appropriate option for many elderly patients with hypertension, type 2 diabetes, heart failure, and/or left ventricular dysfunction. PMID:22915967

  1. 1H-cyclopentapyrimidine-2,4(1H,3H)-dione-related ionotropic glutamate receptors ligands. structure-activity relationships and identification of potent and Selective iGluR5 modulators.

    PubMed

    Butini, Stefania; Pickering, Darryl S; Morelli, Elena; Coccone, Salvatore Sanna; Trotta, Francesco; De Angelis, Meri; Guarino, Egeria; Fiorini, Isabella; Campiani, Giuseppe; Novellino, Ettore; Schousboe, Arne; Christensen, Jeppe K; Gemma, Sandra

    2008-10-23

    (S)-CPW399 ((S)-1) is a potent and excitotoxic AMPA receptor partial agonist. Modifying the cyclopentane ring of (S)-1, we developed two of the most potent and selective functional antagonists (5 and 7) for kainate receptor (KA-R) subunit iGluR5. Derivatives 5 and 7, with their unique pharmacological profile, may lead to a better understanding of the different roles and modes of action of iGluR1-5 subunits, paving the way for the synthesis of new potent, subunit selective iGluR5 modulators.

  2. ABT-627, an endothelin ET(A) receptor-selective antagonist, attenuates tactile allodynia in a diabetic rat model of neuropathic pain.

    PubMed

    Jarvis, M F; Wessale, J L; Zhu, C Z; Lynch, J J; Dayton, B D; Calzadilla, S V; Padley, R J; Opgenorth, T J; Kowaluk, E A

    2000-01-24

    Tactile allodynia, the enhanced perception of pain in response to normally non-painful stimulation, represents a common complication of diabetic neuropathy. The activation of endothelin ET(A) receptors has been implicated in diabetes-induced reductions in peripheral neurovascularization and concomitant endoneurial hypoxia. Endothelin receptor activation has also been shown to alter the peripheral and central processing of nociceptive information. The present study was conducted to evaluate the antinociceptive effects of the novel endothelin ET(A) receptor-selective antagonist, 2R-(4-methoxyphenyl)-4S-(1,3-benzodioxol-5-yl)-1-(N, N-di(n-butyl)aminocarbonyl-methyl)-pyrrolidine-3R-carboxylic acid (ABT-627), in the streptozotocin-induced diabetic rat model of neuropathic pain. Rats were injected with 75 mg/kg streptozotocin (i. p.), and drug effects were assessed 8-12 weeks following streptozotocin treatment to allow for stabilization of blood glucose levels (>/=240 mg/dl) and tactile allodynia thresholds (i.p.) administration of ABT-627 (1 and 10 mg/kg) was found to produce a dose-dependent increase in tactile allodynia thresholds. A significant antinociceptive effect (40-50% increase in tactile allodynia thresholds, P<0.05) was observed at the dose of 10 mg/kg, i.p., within 0.5-2-h post-dosing. The antinociceptive effects of ABT-627 (10 mg kg(-1) day(-1), p.o.) were maintained following chronic administration of the antagonist in drinking water for 7 days. In comparison, morphine administered acutely at a dose of 8 mg/kg, i.p., produced a significant 90% increase in streptozotocin-induced tactile allodynia thresholds. The endothelin ET(B) receptor-selective antagonist, 2R-(4-propoxyphenyl)-4S-(1, 3-benzodioxol-5-yl)-1-(N-(2, 6-diethylphenyl)aminocarbonyl-methyl)-pyrrolidine-3R-carboxy lic acid (A-192621; 20 mg/kg, i.p.), did not significantly alter tactile allodynia thresholds in streptozotocin-treated rats. Although combined i.p. administration

  3. ``In silico'' study of the binding of two novel antagonists to the nociceptin receptor

    NASA Astrophysics Data System (ADS)

    Della Longa, Stefano; Arcovito, Alessandro

    2018-02-01

    Antagonists of the nociceptin receptor (NOP) are raising interest for their possible clinical use as antidepressant drugs. Recently, the structure of NOP in complex with some piperidine-based antagonists has been revealed by X-ray crystallography. In this study, a multi-flexible docking (MF-docking) procedure, i.e. docking to multiple receptor conformations extracted by preliminary molecular dynamics trajectories, together with hybrid quantum mechanics/molecular mechanics (QM/MM) simulations have been carried out to provide the binding mode of two novel NOP antagonists, one of them selective (BTRX-246040, formerly named LY-2940094) and one non selective (AT-076), i.e. able to inactivate NOP as well as the classical µ- k- and δ-opioid receptors (MOP KOP and DOP). According to our results, the pivotal role of residue D1303,32 (upper indexes are Ballesteros-Weinstein notations) is analogous to that enlighten by the already known X-ray structures of opioid receptors: binding of the molecules are predicted to require a slight readjustment of the hydrophobic pocket (residues Y1313,33, M1343,36, I2195,43, Q2806,52 and V2836,55) in the orthosteric site of NOP, accommodating either the pyridine-pyrazole (BTRX-246040) or the isoquinoline (AT-076) moiety of the ligand, in turn allowing the protonated piperidine nitrogen to maximize interaction (salt-bridge) with residue D1303,32 of the NOP, and the aromatic head to be sandwiched in optimal π-stacking between Y1313,33 and M1343,36. The QM/MM optimization after the MF-docking procedure has provided the more likely conformations for the binding to the NOP receptor of BTRX-246040 and AT-076, based on different pharmacophores and exhibiting different selectivity profiles. While the high selectivity for NOP of BTRX-246040 can be explained by interactions with NOP specific residues, the lack of selectivity of AT-076 could be associated to its ability to penetrate into the deep hydrophobic pocket of NOP, while retaining a

  4. Agonists and antagonists acting at P2X receptors: selectivity profiles and functional implications.

    PubMed

    Lambrecht, G

    2000-11-01

    P2X receptors are nucleotide-gated cation channels composed of homomeric or heteromeric assemblies of three subunits. In the past 7 years, an extended series (P2X1-7) of P2X subunits has been cloned from vertebrate tissues. In this rapidly expanding field, one of the main current challenges is to relate the cloned P2X receptor subtypes to the diverse physiological responses mediated by the native P2X receptors. However, the paucity of useful ligands, especially subtype-selective agonists and antagonists as well as radioligands, acts as a considerable impediment to progress. Most of the ligands available are highly limited in terms of their kinetics of action, receptor-affinity, subtype-selectivity and P2X receptor-specificity. Their suspected ability to be a substrate for ecto-nucleotidases or to inhibit these enzymes also complicates their use. A number of new antagonists at P2X receptors have recently been described which to some degree are more potent and more selective than earlier antagonists like suramin or pyridoxal-5'-phosphate-6-azophenyl 2',4'-disulfonate (PPADS). This work moves us closer to the ideal goal of classifying the recombinant and native P2X receptor subtypes on the basis of antagonist profiles. This review begins with a brief account of the current status of P2X receptors. It then focuses on the pharmacological properties of a series of key P2 receptor agonists and antagonists and will finish with the discussion of some related therapeutic possibilities.

  5. Crystal structure of the adenosine A 2A receptor bound to an antagonist reveals a potential allosteric pocket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Bingfa; Bachhawat, Priti; Chu, Matthew Ling-Hon

    The adenosine A2A receptor (A2AR) has long been implicated in cardiovascular disorders. As more selective A2AR ligands are being identified, its roles in other disorders, such as Parkinson’s disease, are starting to emerge, and A2AR antagonists are important drug candidates for nondopaminergic anti-Parkinson treatment. Here we report the crystal structure of A2A receptor bound to compound 1 (Cmpd-1), a novel A2AR/N-methyl D-aspartate receptor subtype 2B (NR2B) dual antagonist and potential anti-Parkinson candidate compound, at 3.5 Å resolution. The A2A receptor with a cytochrome b562-RIL (BRIL) fusion (A2AR–BRIL) in the intracellular loop 3 (ICL3) was crystallized in detergent micelles using vapor-phasemore » diffusion. Whereas A2AR–BRIL bound to the antagonist ZM241385 has previously been crystallized in lipidic cubic phase (LCP), structural differences in the Cmpd-1–bound A2AR–BRIL prevented formation of the lattice observed with the ZM241385–bound receptor. The crystals grew with a type II crystal lattice in contrast to the typical type I packing seen from membrane protein structures crystallized in LCP. Cmpd-1 binds in a position that overlaps with the native ligand adenosine, but its methoxyphenyl group extends to an exosite not previously observed in other A2AR structures. Structural analysis revealed that Cmpd-1 binding results in the unique conformations of two tyrosine residues, Tyr91.35 and Tyr2717.36, which are critical for the formation of the exosite. The structure reveals insights into antagonist binding that are not observed in other A2AR structures, highlighting flexibility in the binding pocket that may facilitate the development of A2AR-selective compounds for the treatment of Parkinson’s disease.« less

  6. 8-Substituted 1,3-dimethyltetrahydropyrazino[2,1-f]purinediones: Water-soluble adenosine receptor antagonists and monoamine oxidase B inhibitors.

    PubMed

    Brunschweiger, Andreas; Koch, Pierre; Schlenk, Miriam; Rafehi, Muhammad; Radjainia, Hamid; Küppers, Petra; Hinz, Sonja; Pineda, Felipe; Wiese, Michael; Hockemeyer, Jörg; Heer, Jag; Denonne, Frédéric; Müller, Christa E

    2016-11-01

    Multitarget approaches, i.e., addressing two or more targets simultaneously with a therapeutic agent, are hypothesized to offer additive therapeutic benefit for the treatment of neurodegenerative diseases. Validated targets for the treatment of Parkinson's disease are, among others, the A 2A adenosine receptor (AR) and the enzyme monoamine oxidase B (MAO-B). Additional blockade of brain A 1 ARs may also be beneficial. We recently described 8-benzyl-substituted tetrahydropyrazino[2,1-f]purinediones as a new lead structure for the development of such multi-target drugs. We have now designed a new series of tetrahydropyrazino[2,1-f]purinediones to extensively explore their structure-activity-relationships. Several compounds blocked human and rat A 1 and A 2A ARs at similar concentrations representing dual A 1 /A 2A antagonists with high selectivity versus the other AR subtypes. Among the best dual A 1 /A 2A AR antagonists were 8-(3-(4-chlorophenyl)propyl)-1,3-dimethyl-6,7,8,9-tetrahydropyrazino[2,1-f]purine-2,4(1H,3H)-dione (41, K i human A 1 : 65.5nM, A 2A : 230nM; K i rat A 1 : 352nM, A 2A : 316nM) and 1,3-dimethyl-8-((2-(thiophen-2-yl)thiazol-4-yl)methyl)-6,7,8,9-tetrahydropyrazino[2,1-f]purine-2,4(1H,3H)-dione (57, K i human A 1 : 642nM, A 2A : 203nM; K i rat A 1 : 166nM, A 2A : 121nM). Compound 57 was found to be well water-soluble (0.7mg/mL) at a physiological pH value of 7.4. One of the new compounds showed triple-target inhibition: (R)-1,3-dimethyl-8-(2,1,3,4-tetrahydronaphthalen-1-yl)-6,7,8,9-tetrahydropyrazino[2,1-f]purine-2,4(1H,3H)-dione (49) was about equipotent at A 1 and A 2A ARs and at MAO-B (K i human A 1 : 393nM, human A 2A : 595nM, IC 50 human MAO-B: 210nM) thus allowing future in vivo explorations of the intended multi-target approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. 5-HT2A receptor antagonists improve motor impairments in the MPTP mouse model of Parkinson's disease.

    PubMed

    Ferguson, Marcus C; Nayyar, Tultul; Deutch, Ariel Y; Ansah, Twum A

    2010-01-01

    Clinical observations have suggested that ritanserin, a 5-HT(2A/C) receptor antagonist may reduce motor deficits in persons with Parkinson's Disease (PD). To better understand the potential antiparkinsonian actions of ritanserin, we compared the effects of ritanserin with the selective 5-HT(2A) receptor antagonist M100907 and the selective 5-HT(2C) receptor antagonist SB 206553 on motor impairments in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP-treated mice exhibited decreased performance on the beam-walking apparatus. These motor deficits were reversed by acute treatment with L-3,4-dihydroxyphenylalanine (levodopa). Both the mixed 5-HT(2A/C) antagonist ritanserin and the selective 5-HT(2A) antagonist M100907 improved motor performance on the beam-walking apparatus. In contrast, SB 206553 was ineffective in improving the motor deficits in MPTP-treated mice. These data suggest that 5-HT(2A) receptor antagonists may represent a novel approach to ameliorate motor symptoms of Parkinson's disease. Published by Elsevier Ltd.

  8. 5-HT2A receptor antagonists improve motor impairments in the MPTP mouse model of Parkinson's disease

    PubMed Central

    Ferguson, Marcus C.; Nayyar, Tultul; Deutch, Ariel Y.; Ansah, Twum A.

    2010-01-01

    Clinical observations have suggested that ritanserin, a 5-HT2A/C receptor antagonist may reduce motor deficits in persons with Parkinson's Disease (PD). To better understand the potential antiparkinsonian actions of ritanserin, we compared the effects of ritanserin with the selective 5-HT2A receptor antagonist M100907 and the selective 5-HT2C receptor antagonist SB 206553 on motor impairments in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP-treated mice exhibited decreased performance on the beam-walking apparatus. These motor deficits were reversed by acute treatment with L-3,4-dihydroxyphenylalanine (levodopa). Both the mixed 5-HT2A/C antagonist ritanserin and the selective 5-HT2A antagonist M100907 improved motor performance on the beam-walking apparatus. In contrast, SB 206553 was ineffective in improving the motor deficits in MPTP-treated mice. These data suggest that 5-HT2A receptor antagonists may represent a novel approach to ameliorate motor symptoms of Parkinson's disease. PMID:20361986

  9. Antagonists for the orphan G-protein-coupled receptor GPR55 based on a coumarin scaffold.

    PubMed

    Rempel, Viktor; Volz, Nicole; Gläser, Franziska; Nieger, Martin; Bräse, Stefan; Müller, Christa E

    2013-06-13

    The orphan G-protein-coupled receptor GPR55, which is activated by 1-lysophosphatidylinositol and interacts with cannabinoid (CB) receptor ligands, has been proposed as a new potential drug target for the treatment of diabetes, Parkinson's disease, neuropathic pain, and cancer. We applied β-arrestin assays to identify 3-substituted coumarins as a novel class of antagonists and performed an extensive structure-activity relationship study for GPR55. Selectivity versus the related receptors CB1, CB2, and GPR18 was assessed. Among the 7-unsubstituted coumarins selective, competitive GPR55 antagonists were identified, such as 3-(2-hydroxybenzyl)-5-isopropyl-8-methyl-2H-chromen-2-one (12, PSB-SB-489, IC50 = 1.77 μM, pA2 = 0.547 μM). Derivatives with long alkyl chains in position 7 were potent, possibly allosteric GPR55 antagonists which showed ancillary CB receptor affinity. 7-(1,1-Dimethyloctyl)-5-hydroxy-3-(2-hydroxybenzyl)-2H-chromen-2-one (69, PSB-SB-487, IC50 = 0.113 μM, KB = 0.561 μM) and 7-(1,1-dimethylheptyl)-5-hydroxy-3-(2-hydroxybenzyl)-2H-chromen-2-one (67, PSB-SB-1203, IC50 = 0.261 μM) were the most potent GPR55 antagonists of the present series.

  10. Effects of tachykinin receptor agonists and antagonists on the guinea-pig isolated oesophagus.

    PubMed

    Kerr, K P

    2000-11-01

    1. Vagal nerve stimulation of the guinea-pig isolated oesophagus produced a triphasic tetrodotoxin (TTX)-sensitive contractile response. The third phase, which was resistant to ganglion blocking drugs, was selectively abolished by capsaicin, suggesting the involvement of one or more neuropeptides released from afferent neurons. Receptors on cholinergic neurons were subsequently activated because the response was atropine sensitive. Contractile responses resulting from exogenous substance P were abolished by atropine and TTX and enhanced by physostigmine. These findings suggest that the third phase may be mediated by the action of a substance P-like neuropeptide released from sensory nerve endings that subsequently activated cholinergic neurons. 2. The tachykinin receptors in the body of the guinea-pig oesophagus were characterized by determining the relative agonist potencies of natural tachykinins as well as tachykinin receptor-selective analogues. Antagonist affinities were also determined. The results indicated the presence of both NK2 and NK3 receptors. In addition, the effects of a cocktail of peptidase inhibitors (captopril, thiorphan and amastatin) on responses to various tachykinins and synthetic analogues were determined. The results indicate that one or more peptidases are present in this preparation. 3. Experiments using various tachykinin receptor antagonists were performed to determine whether the activation of tachykinin receptors played a role in the mediation of the third phase of the response to vagal nerve stimulation. While this response was unaffected by NK1 and NK2 receptor-selective antagonists, it was only partially inhibited (23%) by the NK3 receptor antagonist SR 142801. Thus, in the guinea-pig oesophagus, it appears that NK3 receptors play only a minor role in mediating a contractile response when afferent neurons are excited by vagal nerve stimulation.

  11. Effect of glutamate receptor antagonists and antirheumatic drugs on proliferation of synoviocytes in vitro.

    PubMed

    Parada-Turska, Jolanta; Rzeski, Wojciech; Majdan, Maria; Kandefer-Szerszeń, Martyna; Turski, Waldemar A

    2006-03-27

    One of the most striking features of inflammatory arthritis is the hyperplasia of synovial fibroblasts. It is not known whether the massive synovial hyperplasia characteristic of rheumatoid arthritis is due to the proliferation of synovial fibroblasts or to defective apoptosis. It has been found that glutamate receptor antagonists inhibit proliferation of different human tumour cells and the anticancer potential of glutamate receptor antagonists was suggested. Here, we investigated the effect of glutamate receptor antagonists and selected antirheumatic drugs on proliferation of synoviocytes in vitro. Experiments were conducted on rabbit synoviocytes cell line HIG-82 obtained from American Type Culture Collection (Menassas, VA, USA). Cell proliferation was assessed by means of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The IC50 value (the concentration of drug necessary to induce 50% inhibition) together with confidence limits was calculated. Glutamate receptor antagonists, 1-(4-aminophenyl)-3,5-dihydro-7,8-dimethoxy-4H-2,3-benzodiazepin-4-one (CFM-2), riluzole, memantine, 1-4-aminophenyl-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine (GYKI 52466), dizocilpine, ketamine and 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline (NBQX), inhibited proliferation of synoviocytes with the following IC50 values (in mM): 0.014, 0.017, 0.065, 0.102, 0.15, 0.435 and 1.16, respectively. Antirheumatic drugs, celecoxib, diclofenac, nimesulide, sulfasalazine, naproxen and methotrexate, inhibited proliferation of synoviocytes with the following IC50 values (in mM): 0.0043, 0.034, 0.044, 0.096, 0.385 and 1.123, respectively. Thus, the antiproliferative potential of glutamate receptor antagonists is comparable to that of antirheumatic drugs.

  12. Hypertension in response to autoantibodies to the angiotensin II type I receptor (AT1-AA) in pregnant rats: role of endothelin-1.

    PubMed

    LaMarca, Babbette; Parrish, Marc; Ray, Lillian Fournier; Murphy, Sydney R; Roberts, Lyndsay; Glover, Porter; Wallukat, Gerd; Wenzel, Katrin; Cockrell, Kathy; Martin, James N; Ryan, Michael J; Dechend, Ralf

    2009-10-01

    Agonistic autoantibodies to the angiotensin II type I receptor (AT1-AA) and endothelin -1 (ET-1) are suggested to be important links between placental ischemia and hypertension during preeclampsia. Activation of the angiotensin II type 1 receptor (AT1R) increases endothelial cell production of ET-1; however, the importance of ET-1 in response to AT1-AA-mediated AT1 R activation during preeclampsia is unknown. Furthermore, the role of AT1-AA-mediated increases in blood pressure during pregnancy remains unclear. The objective of this study was to test the hypothesis that AT1-AA, increased to levels observed in preeclamptic women and placental ischemic rats, increases mean arterial pressure (MAP) by activation of the ET-1 system. Chronic infusion of purified rat AT1-AA into normal pregnant (NP) rats for 7 days increased AT1-AA from 0.68+/-0.5 to 10.88+/-1.1 chronotropic units (P<0.001). The increased AT1-AA increased MAP from 99+/-1 to 119+/-2 mm Hg (P<0.001). The hypertension was associated with significant increases in renal cortices (11-fold) and placental (4-fold) ET-1. To determine whether ET-1 mediates AT1-AA-induced hypertension, pregnant rats infused with AT1-AA and NP rats were treated with an ET(A) receptor antagonist. MAP was 100+/-1 mm Hg in AT1-AA+ET(A) antagonist-treated rats versus 98+/-2 mm Hg in ET(A) antagonist-treated rats. Collectively, these data support the hypothesis that one potential pathway whereby AT1-AAs increase blood pressure during pregnancy is by an ET-1-dependent mechanism.

  13. Tryptophanol-derived oxazolopiperidone lactams: identification of a hit compound as NMDA receptor antagonist.

    PubMed

    Pereira, Nuno A L; Sureda, Francesc X; Esplugas, Roser; Pérez, Maria; Amat, Mercedes; Santos, Maria M M

    2014-08-01

    N-Methyl-D-aspartate receptors (NMDAR) exacerbated activation leads to neuron death through a phenomenon called excitotoxicity. These receptors are implicated in several neurological diseases (e.g., Alzheimer and Parkinson) and thus represent an important therapeutic target. We herein describe the study of enantiopure tryptophanol-derived oxazolopiperidone lactams as NMDA receptor antagonists. The most active hit exhibited an IC50 of 63.4 μM in cultured rat cerebellar granule neurons thus being 1.5 fold more active than clinically approved NMDA antagonist amantadine (IC50=92 μM). Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. σ Receptor antagonist attenuation of methamphetamine-induced neurotoxicity is correlated to body temperature modulation.

    PubMed

    Robson, Matthew J; Seminerio, Michael J; McCurdy, Christopher R; Coop, Andrew; Matsumoto, Rae R

    2013-01-01

    Methamphetamine (METH) causes hyperthermia and dopaminergic neurotoxicity in the rodent striatum. METH interacts with σ receptors and σ receptor antagonists normally mitigate METH-induced hyperthermia and dopaminergic neurotoxicity. The present study was undertaken because in two experiments, pretreatment with σ receptor antagonists failed to attenuate METH-induced hyperthermia in mice. This allowed us to determine whether the ability of σ receptor antagonists (AZ66 and AC927) to mitigate METH-induced neurotoxicity depends upon their ability to modulate METH-induced hyperthermia. Mice were treated using a repeated dosing paradigm and body temperatures recorded. Striatal dopamine was measured one week post-treatment. The data indicate that the ability of σ receptor antagonists to attenuate METH-induced dopaminergic neurotoxicity is linked to their ability to block METH-induced hyperthermia. The ability of σ receptor antagonists to mitigate METH-induced hyperthermia may contribute to its neuroprotective actions.

  15. Capsaicin-induced glutamate release is implicated in nociceptive processing through activation of ionotropic glutamate receptors and group I metabotropic glutamate receptor in primary afferent fibers.

    PubMed

    Jin, You-Hong; Yamaki, Fumiko; Takemura, Motohide; Koike, Yuichi; Furuyama, Akira; Yonehara, Norifumi

    2009-02-01

    Glutamate (Glu) is the major excitatory neurotransmitter in the central nervous system. The role of peripheral Glu and Glu receptors (GluRs) in nociceptive transmission is, however, still unclear. In the present study, we examined Glu levels released in the subcutaneous perfusate of the rat hind instep using a microdialysis catheter and the thermal withdrawal latency using the Plantar Test following injection of drugs associated with GluRs with/without capsaicin into the hindpaw. The injection of capsaicin into the rat hind instep caused an increase of Glu level in the s.c. perfusate. Capsaicin also significantly decreased withdrawal latency to irradiation. These effects of capsaicin were inhibited by pretreatment with capsazepine, a transient receptor potential vanilloid receptor 1 (TRPV1) competitive antagonist. Capsaicin-induced Glu release was also suppressed by combination with each antagonist of ionotropic GluRs (iGluRs: NMDA/AMPA receptors) and group I metabotropic GluR (mGluR), but not group II and group III mGluRs. Furthermore, these GluRs antagonists showed remarkable inhibition against capsaicin-induced thermal hyperalgesia. These results suggest that Glu is released from the peripheral endings of small-diameter afferent fibers by noxious stimulation and then activates peripheral iGluRs and group I mGluR in development and/or maintenance of nociception. Furthermore, the activation of peripheral NMDA/AMPA receptors and group I mGluR may be important in mechanisms whereby capsaicin evokes nociceptive responses.

  16. I1 Imidazoline Receptor: Novel Potential Cytoprotective Target of TVP1022, the S-Enantiomer of Rasagiline

    PubMed Central

    Frolov, Luba; Ovcharenko, Elena; Angel, Itzchak; Youdim, Moussa B. H.; Binah, Ofer

    2012-01-01

    TVP1022, the S-enantiomer of rasagiline (Azilect®) (N-propargyl-1R-aminoindan), exerts cyto/cardio-protective effects in a variety of experimental cardiac and neuronal models. Previous studies have demonstrated that the protective activity of TVP1022 and other propargyl derivatives involve the activation of p42/44 mitogen-activated protein kinase (MAPK) signaling pathway. In the current study, we further investigated the molecular mechanism of action and signaling pathways of TVP1022 which may account for the cyto/cardio-protective efficacy of the drug. Using specific receptor binding and enzyme assays, we demonstrated that the imidazoline 1 and 2 binding sites (I1 & I2) are potential targets for TVP1022 (IC50 = 9.5E-08 M and IC50 = 1.4E-07 M, respectively). Western blotting analysis showed that TVP1022 (1–20 µM) dose-dependently increased the immunoreactivity of phosphorylated p42 and p44 MAPK in rat pheochromocytoma PC12 cells and in neonatal rat ventricular myocytes (NRVM). This effect of TVP1022 was significantly attenuated by efaroxan, a selective I1 imidazoline receptor antagonist. In addition, the cytoprotective effect of TVP1022 demonstrated in NRVM against serum deprivation-induced toxicity was markedly inhibited by efaroxan, thus suggesting the importance of I1imidazoline receptor in mediating the cardioprotective activity of the drug. Our findings suggest that the I1imidazoline receptor represents a novel site of action for the cyto/cardio-protective efficacy of TVP1022. PMID:23166584

  17. I1 imidazoline receptor: novel potential cytoprotective target of TVP1022, the S-enantiomer of rasagiline.

    PubMed

    Barac, Yaron D; Bar-Am, Orit; Liani, Esti; Amit, Tamar; Frolov, Luba; Ovcharenko, Elena; Angel, Itzchak; Youdim, Moussa B H; Binah, Ofer

    2012-01-01

    TVP1022, the S-enantiomer of rasagiline (Azilect®) (N-propargyl-1R-aminoindan), exerts cyto/cardio-protective effects in a variety of experimental cardiac and neuronal models. Previous studies have demonstrated that the protective activity of TVP1022 and other propargyl derivatives involve the activation of p42/44 mitogen-activated protein kinase (MAPK) signaling pathway. In the current study, we further investigated the molecular mechanism of action and signaling pathways of TVP1022 which may account for the cyto/cardio-protective efficacy of the drug. Using specific receptor binding and enzyme assays, we demonstrated that the imidazoline 1 and 2 binding sites (I(1) & I(2)) are potential targets for TVP1022 (IC(50) =9.5E-08 M and IC(50) =1.4E-07 M, respectively). Western blotting analysis showed that TVP1022 (1-20 µM) dose-dependently increased the immunoreactivity of phosphorylated p42 and p44 MAPK in rat pheochromocytoma PC12 cells and in neonatal rat ventricular myocytes (NRVM). This effect of TVP1022 was significantly attenuated by efaroxan, a selective I(1) imidazoline receptor antagonist. In addition, the cytoprotective effect of TVP1022 demonstrated in NRVM against serum deprivation-induced toxicity was markedly inhibited by efaroxan, thus suggesting the importance of I(1)imidazoline receptor in mediating the cardioprotective activity of the drug. Our findings suggest that the I(1)imidazoline receptor represents a novel site of action for the cyto/cardio-protective efficacy of TVP1022.

  18. Identification of both NK1 and NK2 receptors in guinea-pig airways.

    PubMed Central

    McKee, K. T.; Millar, L.; Rodger, I. W.; Metters, K. M.

    1993-01-01

    1. NK1 and NK2 receptors have been characterized in guinea-pig lung membrane preparations by use of [125I-Tyr8]-substance P and [125I]-neurokinin A binding assays in conjunction with tachykinin-receptor selective agonists ([Sar9Met(O2)11]substance P for NK1 and [beta Ala8]neurokinin A (4-10) for NK2) and antagonists (CP-99,994 for NK1 and SR48968 for NK2). 2. The presence of high affinity, G-protein-coupled NK1 receptors in guinea-pig lung parenchymal membranes has been confirmed. The rank order of affinity for competing tachykinins was as predicted for an NK1 receptor: substance P = [Sar9Met(O2)11]substance P > substance P-methyl ester = physalaemin > neurokinin A = neurokinin B >> [beta Ala8]neurokinin A (4-10). The novel NK1 antagonist CP-99,994 has a Ki of 0.4 nM at this NK1 site. 3. In order to characterize [125I]-neurokinin A binding to guinea-pig lung, the number of [125I]-neurokinin A specific binding sites was increased 3-4 fold by purification of the parenchymal membranes over discontinuous sucrose gradients. The rank order of affinity determined for NK1- and NK2-receptor agonists and antagonists in competition for these sites showed that the majority (80%) of [125I]-neurokinin A specific binding was also to the NK1 receptor. 4. Under conditions where the guinea-pig lung parenchymal NK1 receptor was fully occupied by a saturating concentration of either [Sar9Met(O2)11]substance P (1 microM) or CP-99,994 (2.7 microM), residual [125I]-neurokinin A specific binding was inhibited in a concentration-dependent manner by both [beta Ala8]neurokinin A and SR48968. This result shows that the NK2 receptor is also present in these preparations.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7694756

  19. Design, synthesis and biological activity of 6-substituted carbamoyl benzimidazoles as new nonpeptidic angiotensin II AT₁ receptor antagonists.

    PubMed

    Zhang, Jun; Wang, Jin-Liang; Zhou, Zhi-Ming; Li, Zhi-Huai; Xue, Wei-Zhe; Xu, Di; Hao, Li-Ping; Han, Xiao-Feng; Fei, Fan; Liu, Ting; Liang, Ai-Hua

    2012-07-15

    A series of 6-substituted carbamoyl benzimidazoles were designed and synthesised as new nonpeptidic angiotensin II AT(1) receptor antagonists. The preliminary pharmacological evaluation revealed a nanomolar AT(1) receptor binding affinity for all compounds in the series, and a potent antagonistic activity in an isolated rabbit aortic strip functional assay for compounds 6f, 6g, 6h and 6k was also demonstrated. Furthermore, evaluation in spontaneous hypertensive rats and a preliminary toxicity evaluation showed that compound 6g is an orally active AT(1) receptor antagonist with low toxicity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. The role of 5 HT6-receptor antagonists in Alzheimer's disease: an update.

    PubMed

    Khoury, Rita; Grysman, Noam; Gold, Jake; Patel, Kush; Grossberg, George T

    2018-06-01

    Despite recent advances in Alzheimer's disease (AD) research, no breakthrough treatments have been discovered. Cholinesterase inhibitors and the NMDA-receptor antagonist memantine are currently the two approved symptomatic treatments for AD. 5-HT6 receptor antagonism has recently emerged as a promising treatment strategy to improve cognition in AD, with a modest side-effect profile. Areas covered: 5-HT6 receptors, exclusively found in the central nervous system, modulate primarily GABA and glutamate levels, facilitating the secondary release of other neurotransmitters including dopamine, noradrenaline, and acetylcholine, all of which are compromised in AD. This review discusses findings of preclinical and phase I-III clinical trials conducted with three major 5-HT6 receptor antagonists: idalopirdine, intepirdine, and SUVN-502, in the field of AD. Expert opinion: Despite early positive findings, larger phase-III trials have failed to demonstrate any statistically significant impact on cognition for both idalopirdine and intepirdine, as adjunct to cholinesterase inhibitors. Paradoxically, 5-HT6 receptor agonists have also been shown to have cognitive enhancing properties. Thus, a better understanding of the mechanism of action of the 5-HT6 receptor and its ligands is warranted. Investigating 5-HT6 receptor partial or inverse agonists may be promising in future AD trials.

  1. 5-HT7 Receptor Antagonists with an Unprecedented Selectivity Profile.

    PubMed

    Ates, Ali; Burssens, Pierre; Lorthioir, Olivier; Lo Brutto, Patrick; Dehon, Gwenael; Keyaerts, Jean; Coloretti, Francis; Lallemand, Bénédicte; Verbois, Valérie; Gillard, Michel; Vermeiren, Céline

    2018-04-23

    Selective leads: In this study, we generated a new series of serotonin 5-HT 7 receptor antagonists. Their synthesis, structure-activity relationships, and selectivity profiles are reported. This series includes 5-HT 7 antagonists with unprecedented high selectivity for the 5-HT 7 receptor, setting the stage for lead optimization of drugs acting on a range of neurological targets. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The antidepressant effects of curcumin in the forced swimming test involve 5-HT1 and 5-HT2 receptors.

    PubMed

    Wang, Rui; Xu, Ying; Wu, Hong-Li; Li, Ying-Bo; Li, Yu-Hua; Guo, Jia-Bin; Li, Xue-Jun

    2008-01-06

    Curcuma longa is a main constituent of many traditional Chinese medicines, such as Xiaoyao-san, used to manage mental disorders effectively. Curcumin is a major active component of C. longa and its antidepressant-like effect has been previously demonstrated in the forced swimming test. The purpose of this study was to explore the possible contribution of serotonin (5-HT) receptors in the behavioral effects induced by curcumin in this animal model of depression. 5-HT was depleted by the tryptophan hydroxylase inhibitor p-chlorophenylalanine (PCPA, 100 mg/kg, i.p.) prior to the administration of curcumin, and the consequent results showed that PCPA blocked the anti-immobility effect of curcumin in forced swimming test, suggesting the involvement of the serotonergic system. Moreover, pre-treatment of pindolol (10 mg/kg, i.p., a beta-adrenoceptors blocker/5-HT(1A/1B) receptor antagonist), 4-(2'-methoxy-phenyl)-1-[2'-(n-2''-pyridinyl)-p-iodobenzamino-]ethyl-piperazine (p-MPPI, 1 mg/kg, s.c., a selective 5-HT(1A) receptor antagonist), or 1-(2-(1-pyrrolyl)-phenoxy)-3-isopropylamino-2-propanol (isamoltane, 2.5 mg/kg, i.p., a 5-HT(1B) receptor antagonist) was found to prevent the effect of curcumin (10 mg/kg) in forced swimming test. On the other hand, a sub-effective dose of curcumin (2.5 mg/kg, p.o.) produced a synergistic effect when given jointly with (+)-8-hydroxy-2-(di-n-propylamino)tetralin, (8-OH-DPAT, 1 mg/kg, i.p., a 5-HT(1A) receptor agonist), anpirtoline (0.25 mg/kg, i.p., a 5-HT(1B) receptor agonist) or ritanserin (4 mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist), but not with ketanserin (5 mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist with higher affinity to 5-HT(2A) receptor) or R(-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI, 1 mg/kg, i.p., a 5-HT(2A) receptor agonist). Taken together, these results indicate that the antidepressant-like effect of curcumin in the forced swimming test is related to serotonergic system and may be mediated by, at least

  3. Identification of key residues involved in adrenomedullin binding to the AM1 receptor

    PubMed Central

    Watkins, HA; Au, M; Bobby, R; Archbold, JK; Abdul-Manan, N; Moore, JM; Middleditch, MJ; Williams, GM; Brimble, MA; Dingley, AJ; Hay, DL

    2013-01-01

    Background and Purpose Adrenomedullin (AM) is a peptide hormone whose receptors are members of the class B GPCR family. They comprise a heteromer between the GPCR, the calcitonin receptor-like receptor and one of the receptor activity-modifying proteins 1–3. AM plays a significant role in angiogenesis and its antagonist fragment AM22–52 can inhibit blood vessel and tumour growth. The mechanism by which AM interacts with its receptors is unknown. Experimental Approach We determined the AM22–52 binding epitope for the AM1 receptor extracellular domain using biophysical techniques, heteronuclear magnetic resonance spectroscopy and alanine scanning. Key Results Chemical shift perturbation experiments located the main binding epitope for AM22–52 at the AM1 receptor to the C-terminal 8 amino acids. Isothermal titration calorimetry of AM22–52 alanine-substituted peptides indicated that Y52, G51 and I47 are essential for AM1 receptor binding and that K46 and P49 and R44 have a smaller role to play. Characterization of these peptides at the full-length AM receptors was assessed in Cos7 cells by cAMP assay. This confirmed the essential role of Y52, G51 and I47 in binding to the AM1 receptor, with their substitution resulting in ≥100-fold reduction in antagonist potency compared with AM22–52. R44A, K46A, S48A and P49A AM22–52 decreased antagonist potency by approximately 10-fold. Conclusions and Implications This study localizes the main binding epitope of AM22–52 to its C-terminal amino acids and distinguishes essential residues involved in this binding. This will inform the development of improved AM receptor antagonists. PMID:23351143

  4. Novel selective agonists and antagonists confirm neurokinin NK1 receptors in guinea-pig vas deferens.

    PubMed Central

    Hall, J. M.; Morton, I. K.

    1991-01-01

    1. This study investigated the recognition characteristics of neurokinin receptors mediating potentiation of the contractile response to field stimulation in the guinea-pig vas deferens. 2. A predominant NK1 receptor population is strongly suggested by the relative activities of the common naturally-occurring tachykinin agonists, which fall within less than one order of magnitude. This conclusion is supported by the relative activities of the synthetic NK1 selective agonists substance P methyl ester, [Glp6,L-Pro9]-SP(6-11) and delta-aminovaleryl-[L-Pro9,N-MeLeu10]- SP(7-11) (GR73632) which were 0.78, 9.3 and 120 as active as substance P, respectively. Furthermore, the NK2 selective agonist [Lys3, Gly8,-R-gamma-lactam-Leu9]-NKA(3-10) (GR64349) was active only at the highest concentrations tested (greater than 10 microM), and the NK3 selective agonist, succ-[Asp6,N-MePhe8]-SP(6-11) (senktide) was essentially inactive (10 nM-32 microM). 3. [D-Arg1,D-Pro2,D-Trp7,9,Leu11]-SP(1-11) antagonized responses to neurokinin A, neurokinin B, physalaemin, eledoisin, [Glp6,D-Pro9]-SP(6-11), GR73632 and GR64349 (apparent pKB s 5.6-6.2), but was less potent in antagonizing responses to substance P, substance P methyl ester and [Glp6,L-Pro9]-SP(6-11) (apparent pKB s less than or equal to 5.0-5.0). 4. In contrast, the recently developed NK1-selective receptor antagonist [D-Pro9[Spiro-gamma-lactam]Leu10,Trp11]-SP(1-11) (GR71251) did not produce agonist-dependent pKB estimates. Schild plot analysis indicated a competitive interaction with a single receptor population where the antagonist had an estimated overall pKB of 7.58 +/- 0.13 for the four agonists of differing subtype selectivity tested (GR73632, GR64349, substance P methyl ester and neurokinin B).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1707714

  5. Cholecystokinin receptor antagonist halts progression of pancreatic cancer precursor lesions and fibrosis in mice.

    PubMed

    Smith, Jill P; Cooper, Timothy K; McGovern, Christopher O; Gilius, Evan L; Zhong, Qing; Liao, Jiangang; Molinolo, Alfredo A; Gutkind, J Silvio; Matters, Gail L

    2014-10-01

    Exogenous administration of cholecystokinin (CCK) induces hypertrophy and hyperplasia of the pancreas with an increase in DNA content. We hypothesized that endogenous CCK is involved in the malignant progression of pancreatic intraepithelial neoplasia (PanIN) lesions and the fibrosis associated with pancreatic cancer. The presence of CCK receptors in early PanIN lesions was examined by immunohistochemistry in mouse and human pancreas. Pdx1-Cre/LSL-Kras transgenic mice were randomized to receive either untreated drinking water or water supplemented with a CCK receptor antagonist (proglumide, 0.1 mg/mL). Pancreas from the mice were removed and examined histologically for number and grade of PanINs after 1, 2, or 4 months of antagonist therapy. Both CCK-A and CCK-B receptors were identified in early stage PanINs from mouse and human pancreas. The grade of PanIN lesions was reversed, and progression to advanced lesions arrested in mice treated with proglumide compared with the controls (P = 0.004). Furthermore, pancreatic fibrosis was significantly reduced in antagonist-treated animals compared with vehicle (P < 0.001). These findings demonstrate that endogenous CCK is in part responsible for the development and progression of pancreatic cancer. The use of CCK receptor antagonists may have a role in cancer prophylaxis in high-risk subjects and may reduce fibrosis in the microenvironment.

  6. CHOLECYSTOKININ RECEPTOR ANTAGONIST HALTS PROGRESSION OF PANCREATIC CANCER PRECURSOR LESIONS AND FIBROSIS IN MICE

    PubMed Central

    Smith, Jill P.; Cooper, Timothy K.; McGovern, Christopher O.; Gilius, Evan L.; Zhong, Qing; Liao, Jiangang; Molinolo, Alfredo A.; Gutkind, J. Silvio; Matters, Gail L.

    2014-01-01

    Objectives Exogenous administration of cholecystokinin (CCK) induces hypertrophy and hyperplasia of the pancreas with an increase in DNA content. We hypothesized that endogenous CCK is involved with the malignant progression of pancreatic intraepithelial neoplasia (PanIN) lesions and the fibrosis associated with pancreatic cancer. Methods The presence of CCK receptors in early PanIN lesions was examined by immunohistochemistry in mouse and human pancreas. Pdx1-Cre/LSL-KrasG12D transgenic mice were randomized to receive either untreated drinking water or water supplemented with a CCK-receptor antagonist (proglumide, 0.1mg/ml). Pancreas from mice were removed and examined histologically for number and grade of PanINs after 1, 2 or 4 months of antagonist therapy. Results Both CCK-A and CCK-B receptors were identified in early stage PanINs from mouse and human pancreas. The grade of PanIN lesions was reversed and progression to advanced lesions arrested in mice treated with proglumide compared to controls (p=0.004). Furthermore, pancreatic fibrosis was significantly reduced in antagonist-treated animals compared to vehicle (pitalic>0.001). Conclusions These findings demonstrate that endogenous CCK is in part responsible for the development and progression of pancreatic cancer. Use of CCK-receptor antagonists may have a role in cancer prophylaxis in high risk subjects, and may reduce fibrosis in the microenvironment. PMID:25058882

  7. In vitro pharmacological characterization of CJ-042794, a novel, potent, and selective prostaglandin EP(4) receptor antagonist.

    PubMed

    Murase, Akio; Taniguchi, Yasuhito; Tonai-Kachi, Hiroko; Nakao, Kazunari; Takada, Junji

    2008-01-16

    Activation of the prostaglandin E(2) (PGE(2)) EP(4) receptor, a G-protein-coupled receptor (GPCR), results in increases in intracellular cyclic AMP (cAMP) levels via stimulation of adenylate cyclase. Here we describe the in vitro pharmacological characterization of a novel EP(4) receptor antagonist, CJ-042794 (4-{(1S)-1-[({5-chloro-2-[(4-fluorophenyl)oxy]phenyl}carbonyl)amino]ethyl}benzoic acid). CJ-042794 inhibited [(3)H]-PGE(2) binding to the human EP(4) receptor with a mean pK(i) of 8.5, a binding affinity that was at least 200-fold more selective for the human EP(4) receptor than other human EP receptor subtypes (EP(1), EP(2), and EP(3)). CJ-042794 did not exhibit any remarkable binding to 65 additional proteins, including GPCRs, enzymes, and ion channels, suggesting that CJ-042794 is highly selective for the EP(4) receptor. CJ-042794 competitively inhibited PGE(2)-evoked elevations of intracellular cAMP levels in HEK293 cells overexpressing human EP(4) receptor with a mean pA(2) value of 8.6. PGE(2) inhibited the lipopolysaccharide (LPS)-induced production of tumor necrosis factor alpha (TNFalpha) in human whole blood (HWB); CJ-042794 reversed the inhibitory effects of PGE(2) on LPS-induced TNFalpha production in a concentration-dependent manner. These results suggest that CJ-042794, a novel, potent, and selective EP(4) receptor antagonist, has excellent pharmacological properties that make it a useful tool for exploring the physiological role of EP(4) receptors.

  8. Crystal structure of human glycine receptor-α3 bound to antagonist strychnine.

    PubMed

    Huang, Xin; Chen, Hao; Michelsen, Klaus; Schneider, Stephen; Shaffer, Paul L

    2015-10-08

    Neurotransmitter-gated ion channels of the Cys-loop receptor family are essential mediators of fast neurotransmission throughout the nervous system and are implicated in many neurological disorders. Available X-ray structures of prokaryotic and eukaryotic Cys-loop receptors provide tremendous insights into the binding of agonists, the subsequent opening of the ion channel, and the mechanism of channel activation. Yet the mechanism of inactivation by antagonists remains unknown. Here we present a 3.0 Å X-ray structure of the human glycine receptor-α3 homopentamer in complex with a high affinity, high-specificity antagonist, strychnine. Our structure allows us to explore in detail the molecular recognition of antagonists. Comparisons with previous structures reveal a mechanism for antagonist-induced inactivation of Cys-loop receptors, involving an expansion of the orthosteric binding site in the extracellular domain that is coupled to closure of the ion pore in the transmembrane domain.

  9. Identification of functional bitter taste receptors and their antagonist in chickens.

    PubMed

    Dey, Bapon; Kawabata, Fuminori; Kawabata, Yuko; Yoshida, Yuta; Nishimura, Shotaro; Tabata, Shoji

    2017-01-22

    Elucidation of the taste sense of chickens is important not only for the development of chicken feedstuffs for the chicken industry but also to help clarify the evolution of the taste sense among animals. There are three putative chicken bitter taste receptors, chicken T2R1 (cT2R1), cT2R2 and cT2R7, which were identified using genome information and cell-based assays. Previously, we have shown that cT2R1 is a functional bitter taste receptor through both cell-based assays and behavioral tests. In this study, therefore, we focused on the sensitivities of the other two bitter receptors, cT2R2 and cT2R7, by using their agonists in behavioral tests. We tested three agonists of cT2R2 and three agonists of cT2R7. In a 10-min drinking study, the intakes of cT2R2 agonist solutions were not different from that of water. On the other hand, the intakes of cT2R7 agonist solutions were significantly lower compared to water. In addition, we constructed cT2R1-and cT2R7-expressing cells in order to search for an antagonist for these functional bitter taste receptors. By using Ca 2+ imaging methods, we found that 6-methoxyflavanone (6-meth) can inhibit the activities of both cT2R1 and cT2R7. Moreover, 6-meth also inhibited the reduction of the intake of bitter solutions containing cT2R1 or cT2R7 agonists in behavioral tests. Taken together, these results suggested that cT2R7 is a functional bitter taste receptor like cT2R1, but that cT2R2 is not, and that 6-meth is an antagonist for these two functional chicken bitter taste receptors. This is the first identification of an antagonist of chicken bitter receptors. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Decrement in operant performance produced by NMDA receptor antagonists in the rat: tolerance and cross-tolerance.

    PubMed

    Dravolina, O A; Zvartau, E E; Bespalov, A Y

    2000-04-01

    Current perspectives on the clinical use of NMDA receptor antagonists infer repeated administration schedules for the management of different pathological states. The development of tolerance and cross-tolerance between different NMDA receptor antagonists may be an important factor contributing to the clinical efficacy of these drugs. The present study aimed to characterize the development of tolerance and cross-tolerance to the ability of various site-selective NMDA receptor antagonists to produce a decrement of operant responding (multiple extinction 9 s fixed-interval 1-s schedule of water reinforcement). Acute administration of D-CPPen (SDZ EAA 494; 1-5.6 mg/kg), dizocilpine (MK-801; 0.03-0.3 mg/kg), memantine (0.3-17 mg/kg), ACEA-1021 (10-56 mg/kg), and eliprodil (1-30 mg/kg) differentially affected operant responding. Both increases and decreases in response rates and accuracy of responding were observed. Repeated preexposure to D-CPPen (5.6 mg/kg, once a day for 7 days) attenuated a behavioral disruption produced by an acute challenge with D-CPPen or ACEA-1021, but potentiated the effects of dizocilpine, memantine, and eliprodil. Based on the present results, one can suggest that the repeated administration of a competitive NMDA receptor antagonist differentially affects the functional activity of various sites on NMDA receptor complex.

  11. NMDA or 5-HT receptor antagonists impair memory reconsolidation and induce various types of amnesia.

    PubMed

    Nikitin, V P; Solntseva, S V; Kozyrev, S A; Nikitin, P V; Shevelkin, A V

    2018-06-01

    Elucidation of amnesia mechanisms is one of the central problems in neuroscience with immense practical application. Previously, we found that conditioned food presentation combined with injection of a neurotransmitter receptor antagonist or protein synthesis inhibitor led to amnesia induction. In the present study, we investigated the time course and features of two amnesias: induced by impairment of memory reconsolidation using an NMDA glutamate receptor antagonist (MK-801) and a serotonin receptor antagonist (methiothepin, MET) on snails trained with food aversion conditioning. During the early period of amnesia (<10th day), the unpaired presentation of conditioned stimuli (CS) or unconditioned stimuli (US) in the same training context did not have an effect on both types of amnesia. Retraining an on 1st or 3rd day of amnesia induction facilitated memory formation, i.e. the number of CS + US pairings was lower than at initial training. On the 10th or 30th day after the MET/reminder, the number of CS + US pairings did not change between initial training and retraining. Retraining on the 10th or 30th day following the MK-801/reminder in the same or a new context of learning resulted in short, but not long-term, memory, and the number of CS + US pairings was higher than at the initial training. This type of amnesia was specific to the CS we used at initial training, since long-term memory for another kind of CS could be formed in the same snails. The attained results suggest that disruption of memory reconsolidation using antagonists of serotonin or NMDA glutamate receptors induced amnesias with different abilities to form long-term memory during the late period of development. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. P2Y1 receptor antagonists mitigate oxygen and glucose deprivation‑induced astrocyte injury.

    PubMed

    Guo, Hui; Liu, Zhong-Qiang; Zhou, Hui; Wang, Zhi-Ling; Tao, Yu-Hong; Tong, Yu

    2018-01-01

    The aim of the present study was to elucidate the effects of blocking the calcium signaling pathway of astrocytes (ASs) on oxygen and glucose deprivation (OGD)‑induced AS injury. The association between the changes in the concentrations of AS‑derived transmitter ATP and glutamic acid, and the changes in calcium signaling under the challenge of OGD were investigated. The cortical ASs of Sprague Dawley rats were cultured to establish the OGD models of ASs. The extracellular concentrations of ATP and glutamic acid in the normal group and the OGD group were detected, and the intracellular concentration of calcium ions (Ca2+) was detected. The effects of 2'‑deoxy‑N6‑methyl adenosine 3', 5'‑diphosphate diammonium salt (MRS2179), a P2Y1 receptor antagonist, on the release of calcium and glutamic acid of ASs under the condition of OGD were observed. The OGD challenge induced the release of glutamic acid and ATP by ASs in a time‑dependent manner, whereas elevation in the concentration of glutamic acid lagged behind that of the ATP and Ca2+. The concentration of Ca2+ inside ASs peaked 16 h after OGD, following which the concentration of Ca2+ was decreased. The effects of elevated release of glutamic acid by ASs when challenged by OGD may be blocked by MRS2179, a P2Y1 receptor antagonist. Furthermore, MRS2179 may significantly mitigate OGD‑induced AS injury and increase cell survival. The ASs of rats cultured in vitro expressed P2Y1 receptors, which may inhibit excessive elevation in the concentration of intracellular Ca2+. Avoidance of intracellular calcium overload and the excessive release of glutamic acid may be an important reason why MRS2179 mitigates OGD‑induced AS injury.

  13. CB1 Receptor Antagonist SR141716A Inhibits Ca2+-Induced Relaxation in CB1 Receptor–Deficient Mice

    PubMed Central

    Bukoski, Richard D.; Bátkai, Sándor; Járai, Zoltán; Wang, Yanlin; Offertaler, Laszlo; Jackson, William F.; Kunos, George

    2006-01-01

    Mesenteric branch arteries isolated from cannabinoid type 1 receptor knockout (CB1−/−) mice, their wild-type littermates (CB1+/+ mice), and C57BL/J wild-type mice were studied to test the hypothesis that murine arteries undergo high sensitivity Ca2+-induced relaxation that is CB1 receptor dependent. Confocal microscope analysis of mesenteric branch arteries from wild-type mice showed the presence of Ca2+ receptor–positive periadventitial nerves. Arterial segments of C57 control mice mounted on wire myographs contracted in response to 5 μmol/L norepinephrine and responded to the cumulative addition of extracellular Ca2+ with a concentration-dependent relaxation that reached a maximum of 72.0±6.3% of the prerelaxation tone and had an EC50 for Ca2+ of 2.90±0.54 mmol/L. The relaxation was antagonized by precontraction in buffer containing 100 mmol/L K+ and by pretreatment with 10 mmol/L tetraethylammonium. Arteries from CB1−/− and CB1+/+ mice also relaxed in response to extracellular Ca2+ with no differences being detected between the knockout and their littermate controls. SR141716A, a selective CB1 antagonist, caused concentration-dependent inhibition of Ca2+-induced relaxation in both the knockout and wild-type strains (60% inhibition at 1 μmol/L). O-1918, a cannabidiol analog, had a similar blocking effect in arteries of both wild-type and CB1−/− mice at 10 μmol/L. In contrast, 1 μmol/L SR144538, a cannabinoid type 2 receptor antagonist, or 50 μmol/L 18α-glycyrrhetinic acid, a gap junction blocker, were without effect. SR141716A (1 to 30 μmol/L) was also assessed for nonspecific actions on whole-cell K+ currents in isolated vascular smooth muscle cells. SR141716A inhibited macroscopic K+ currents at concentrations higher than those required to inhibit Ca2+-induced relaxation, and appeared to have little effect on currents through large conductance Ca2+-activated K+ channels. These data indicate that arteries of the mouse relax in response to

  14. Discovery of Indazoles as Potent, Orally Active Dual Neurokinin 1 Receptor Antagonists and Serotonin Transporter Inhibitors for the Treatment of Depression.

    PubMed

    Degnan, Andrew P; Tora, George O; Huang, Hong; Conlon, David A; Davis, Carl D; Hanumegowda, Umesh M; Hou, Xiaoping; Hsiao, Yi; Hu, Joanna; Krause, Rudolph; Li, Yu-Wen; Newton, Amy E; Pieschl, Rick L; Raybon, Joseph; Rosner, Thorsten; Sun, Jung-Hui; Taber, Matthew T; Taylor, Sarah J; Wong, Michael K; Zhang, Huiping; Lodge, Nicholas J; Bronson, Joanne J; Macor, John E; Gillman, Kevin W

    2016-12-21

    Combination studies of neurokinin 1 (NK1) receptor antagonists and serotonin-selective reuptake inhibitors (SSRIs) have shown promise in preclinical models of depression. Such a combination may offer important advantages over the current standard of care. Herein we describe the discovery and optimization of an indazole-based chemotype to provide a series of potent dual NK1 receptor antagonists/serotonin transporter (SERT) inhibitors to overcome issues of ion channel blockade. This effort culminated in the identification of compound 9, an analogue that demonstrated favorable oral bioavailability, excellent brain uptake, and robust in vivo efficacy in a validated depression model. Over the course of this work, a novel heterocycle-directed asymmetric hydrogenation was developed to facilitate installation of the key stereogenic center.

  15. From Chemotherapy-Induced Emesis to Neuroprotection: Therapeutic Opportunities for 5-HT3 Receptor Antagonists.

    PubMed

    Fakhfouri, Gohar; Mousavizadeh, Kazem; Mehr, Sharam Ejtemaei; Dehpour, Ahmad Reza; Zirak, Mohammad Reza; Ghia, Jean-Eric; Rahimian, Reza

    2015-12-01

    5-HT3 receptor antagonists are extensively used as efficacious agents in counteracting chemotherapy-induced emesis. Recent investigations have shed light on other potential effects (analgesic, anxiolytic, and anti-psychotic). Some studies have reported neuroprotective properties for the 5-HT3 receptor antagonists in vitro and in vivo. When administered to Aβ-challenged rat cortical neurons, 5-HT3 receptor antagonists substantially abated apoptosis, elevation of cytosolic Ca(2), glutamate release, reactive oxygen species (ROS) generation, and caspase-3 activity. In addition, in vivo studies show that 5-HT3 receptor antagonists possess, alongside their anti-emetic effects, notable immunomodulatory properties in CNS. We found that pretreatment with tropisetron significantly improved neurological deficits and diminished leukocyte transmigration into the brain, TNF-α level, and brain infarction in a murine model of embolic stroke. Our recent investigation revealed that tropisetron protects against Aβ-induced neurotoxicity in vivo through both 5-HT3 receptor-dependent and -independent pathways. Tropisetron, in vitro, was found to be an efficacious inhibitor of the signaling pathway leading to the activation of pro-inflammatory NF-κB, a transcription factor pivotal to the upregulation of several neuroinflammatory mediators in brain. This mini review summarizes novel evidence concerning effects of 5-HT3 antagonists and their possible mechanisms of action in ameliorating neurodegenerative diseases including Alzheimer, multiple sclerosis, and stroke. Further, we discuss some newly synthesized 5-HT3 receptor antagonists with dual properties of 5-HT3 receptor blockade/alpha-7 nicotinic receptor activator and their potential in management of memory impairment. Since 5-HT3 receptor antagonists possess a large therapeutic window, they can constitute a scaffold for design and synthesis of new neuroprotective medications.

  16. An antagonistic monoclonal antibody (B-N6) specific for the human neurotensin receptor-1.

    PubMed

    Ovigne, J M; Vermot-Desroches, C; Lecron, J C; Portier, M; Lupker, J; Pecceu, F; Wijdenes, J

    1998-06-01

    The neuropeptide neurotensin (NT) interacts with two types of human receptors (hNTR) termed hNTR-1 and hNTR-2. This study describes a monoclonal antibody (MAb) specific for hNTR-1, B-N6. This MAb binds specifically to hNTR-1, but not to hNTR-2 transfected CHO cells. B-N6 and NT display a reciprocal competition and react in a similar way to trypsin, suggesting that the B-N6 epitope is at or close to the NT binding site on the third extracellular loop. Unlike B-N6, NT induces hNTR-1 internalization. Although neither NT-FITC nor B-N6 binding was detected by flow cytometry on different human cells, specific mRNA expression for hNTR-1 was detected in these cells. In CHO cells expressing hNTR-1 and a luciferase gene coupled to the krox24 reporter, B-N6 and the antagonist SR 48692 inhibited NT-induced intracellular activation of krox24 in a dose-dependent manner. From these results it is concluded that B-N6 is an antagonistic anti-hNTR-1 MAb.

  17. Aberrant intestinal microbiota due to IL-1 receptor antagonist deficiency promotes IL-17- and TLR4-dependent arthritis.

    PubMed

    Rogier, Rebecca; Ederveen, Thomas H A; Boekhorst, Jos; Wopereis, Harm; Scher, Jose U; Manasson, Julia; Frambach, Sanne J C M; Knol, Jan; Garssen, Johan; van der Kraan, Peter M; Koenders, Marije I; van den Berg, Wim B; van Hijum, Sacha A F T; Abdollahi-Roodsaz, Shahla

    2017-06-23

    Perturbation of commensal intestinal microbiota has been associated with several autoimmune diseases. Mice deficient in interleukin-1 receptor antagonist (Il1rn -/- mice) spontaneously develop autoimmune arthritis and are susceptible to other autoimmune diseases such as psoriasis, diabetes, and encephalomyelitis; however, the mechanisms of increased susceptibility to these autoimmune phenotypes are poorly understood. We investigated the role of interleukin-1 receptor antagonist (IL-1Ra) in regulation of commensal intestinal microbiota, and assessed the involvement of microbiota subsets and innate and adaptive mucosal immune responses that underlie the development of spontaneous arthritis in Il1rn -/- mice. Using high-throughput 16S rRNA gene sequencing, we show that IL-1Ra critically maintains the diversity and regulates the composition of intestinal microbiota in mice. IL-1Ra deficiency reduced the intestinal microbial diversity and richness, and caused specific taxonomic alterations characterized by overrepresented Helicobacter and underrepresented Ruminococcus and Prevotella. Notably, the aberrant intestinal microbiota in IL1rn -/- mice specifically potentiated IL-17 production by intestinal lamina propria (LP) lymphocytes and skewed the LP T cell balance in favor of T helper 17 (Th17) cells, an effect transferable to WT mice by fecal microbiota. Importantly, LP Th17 cell expansion and the development of spontaneous autoimmune arthritis in IL1rn -/- mice were attenuated under germ-free condition. Selective antibiotic treatment revealed that tobramycin-induced alterations of commensal intestinal microbiota, i.e., reduced Helicobacter, Flexispira, Clostridium, and Dehalobacterium, suppressed arthritis in IL1rn -/- mice. The arthritis phenotype in IL1rn -/- mice was previously shown to depend on Toll-like receptor 4 (TLR4). Using the ablation of both IL-1Ra and TLR4, we here show that the aberrations in the IL1rn -/- microbiota are partly TLR4-dependent. We further

  18. β-Adrenergic Receptor Mediation of Stress-Induced Reinstatement of Extinguished Cocaine-Induced Conditioned Place Preference in Mice: Roles for β1 and β2 Adrenergic Receptors

    PubMed Central

    Vranjkovic, Oliver; Hang, Shona; Baker, David A.

    2012-01-01

    Stress can trigger the relapse of drug use in recovering cocaine addicts and reinstatement in rodent models through mechanisms that may involve norepinephrine release and β-adrenergic receptor activation. The present study examined the role of β-adrenergic receptor subtypes in the stressor-induced reinstatement of extinguished cocaine-induced (15 mg/kg i.p.) conditioned place preference in mice. Forced swim (6 min at 22°C) stress or activation of central noradrenergic neurotransmission by administration of the selective α2 adrenergic receptor antagonist 2-[(4,5-dihydro-1H-imidazol-2-yl)methyl]-2,3-dihydro-1-methyl-1H-isoindole (BRL-44,408) (10 mg/kg i.p.) induced reinstatement in wild-type, but not β- adrenergic receptor-deficient Adrb1/Adrb2 double-knockout, mice. In contrast, cocaine administration (15 mg/kg i.p.) resulted in reinstatement in both wild-type and β-adrenergic receptor knockout mice. Stress-induced reinstatement probably involved β2 adrenergic receptors. The β2 adrenergic receptor antagonist -(isopropylamino)-1-[(7-methyl-4-indanyl)oxy]butan-2-ol (ICI-118,551) (1 or 2 mg/kg i.p.) blocked reinstatement by forced swim or BRL-44,408, whereas administration of the nonselective β-adrenergic receptor agonist isoproterenol (2 or 4 mg/kg i.p.) or the β2 adrenergic receptor-selective agonist clenbuterol (2 or 4 mg/kg i.p.) induced reinstatement. Forced swim-induced, but not BRL-44,408-induced, reinstatement was also blocked by a high (20 mg/kg) but not low (10 mg/kg) dose of the β1 adrenergic receptor antagonist betaxolol, and isoproterenol-induced reinstatement was blocked by pretreatment with either ICI-118,551 or betaxolol, suggesting a potential cooperative role for β1 and β2 adrenergic receptors in stress-induced reinstatement. Overall, these findings suggest that targeting β-adrenergic receptors may represent a promising pharmacotherapeutic strategy for preventing drug relapse, particularly in cocaine addicts whose drug use is stress

  19. Role of muscarinic receptor antagonists in urgency and nocturia.

    PubMed

    Michel, Martin C; de la Rosette, Jean J M C H

    2005-09-01

    The overactive bladder (OAB) syndrome is defined as urgency, with or without urgency incontinence, usually accompanied by frequency and nocturia. Muscarinic receptor antagonists are the most established form of treatment for OAB, but until recently their effectiveness was only confirmed for symptoms of incontinence and frequency. In recent studies, selected muscarinic antagonists, including darifenacin, solifenacin, tolterodine and trospium, significantly reduced the number of urgency episodes per day relative to placebo. While some data raise the possibility that certain of these agents may be more effective than others in this regard, this variability in their effect on urgency needs to be confirmed in future studies. Moreover, it remains to be determined whether counting the number of urgency episodes or assessing the subjective intensity of the sensation of urgency more adequately reflects patient needs and therapeutic efficacy. For nocturia, muscarinic receptor antagonists have only inconsistently shown statistically greater effects than placebo. This inconsistency may relate to the multifactorial nature of nocturia, which even in patients with OAB can have many causes, not all of which may respond/be sensitive to muscarinic receptor antagonism.

  20. Endothelin-1 receptor antagonists regulate cell surface-associated protein disulfide isomerase in sickle cell disease

    PubMed Central

    Prado, Gregory N.; Romero, Jose R.; Rivera, Alicia

    2013-01-01

    Increased endothelin-1 (ET-1) levels, disordered thiol protein status, and erythrocyte hydration status play important roles in sickle cell disease (SCD) through unresolved mechanisms. Protein disulfide isomerase (PDI) is an oxidoreductase that mediates thiol/disulfide interchange reactions. We provide evidence that PDI is present in human and mouse erythrocyte membranes and that selective blockade with monoclonal antibodies against PDI leads to reduced Gardos channel activity (1.6±0.03 to 0.56±0.02 mmol·1013 cell−1·min−1, P<0.001) and density of sickle erythrocytes (D50: 1.115±0.001 to 1.104±0.001 g/ml, P=0.012) with an IC50 of 4 ng/ml. We observed that erythrocyte associated-PDI activity was increased in the presence of ET-1 (3.1±0.2 to 5.6±0.4%, P<0.0001) through a mechanism that includes casein kinase II. Consistent with these results, in vivo treatment of BERK sickle transgenic mice with ET-1 receptor antagonists lowered circulating and erythrocyte associated-PDI activity (7.1±0.3 to 5.2±0.2%, P<0.0001) while improving hematological parameters and Gardos channel activity. Thus, our results suggest that PDI is a novel target in SCD that regulates erythrocyte volume and oxidative stress and may contribute to cellular adhesion and endothelial activation leading to vasoocclusion as observed in SCD.—Prado, G. N., Romero, J. R., Rivera, A. Endothelin-1 receptor antagonists regulate cell surface-associated protein disulfide isomerase in sickle cell disease. PMID:23913858

  1. The Transient Receptor Potential Vanilloid 1 Antagonist Capsazepine Improves the Impaired Lung Mechanics during Endotoxemia.

    PubMed

    Cabral, Layla D M; Giusti-Paiva, Alexandre

    2016-11-01

    Acute lung injury (ALI) caused by systemic inflammatory response remains a leading cause of morbidity and mortality in critically ill patients. Management of patients with sepsis is largely limited to supportive therapies, reflecting an incomplete understanding of the underlying pathophysiology. Furthermore, there have been limited advances in the treatments for ALI. In this study, lung function and a histological analysis were performed to evaluate the impact of transient receptor potential vanilloid-1 receptor (TRPV1) antagonist (capsazepine; CPZ) on the lipopolysaccharide (LPS)-induced lung injury in mice. For this, adult mice pre-treated with CPZ or vehicle received intraperitoneal injections of LPS or saline and 24 hr after, the mice were anaesthetized, and lung mechanics was evaluated. The LPS-challenged mice exhibited substantial mechanical impairment, characterized by increases in respiratory system resistance, respiratory system elastance, tissue damping and tissue elastance. The pre-treatment with CPZ prevented the increase in respiratory system resistance and decreased the increase in tissue damping during endotoxemia. In addition, mice pre-treated with CPZ had an attenuated lung injury evidenced by reduction on collapsed area of the lung parenchyma induced by LPS. This suggests that the TRPV1 antagonist capsazepine has a protective effect on lung mechanics in ALI during endotoxemia and that it may be a target for enhanced therapeutic efficacy in ALI. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  2. The NK1 Receptor Antagonist L822429 Reduces Heroin Reinforcement

    PubMed Central

    Barbier, Estelle; Vendruscolo, Leandro F; Schlosburg, Joel E; Edwards, Scott; Juergens, Nathan; Park, Paula E; Misra, Kaushik K; Cheng, Kejun; Rice, Kenner C; Schank, Jesse; Schulteis, Gery; Koob, George F; Heilig, Markus

    2013-01-01

    Genetic deletion of the neurokinin 1 receptor (NK1R) has been shown to decrease the reinforcing properties of opioids, but it is unknown whether pharmacological NK1R blockade has the same effect. Here, we examined the effect of L822429, a rat-specific NK1R antagonist, on the reinforcing properties of heroin in rats on short (1 h: ShA) or long (12 h: LgA) access to intravenous heroin self-administration. ShA produces heroin self-administration rates that are stable over time, whereas LgA leads to an escalation of heroin intake thought to model important dependence-related aspects of addiction. L822429 reduced heroin self-administration and the motivation to consume heroin, measured using a progressive-ratio schedule, in both ShA and LgA rats. L822429 also decreased anxiety-like behavior in both groups, measured on the elevated plus maze, but did not affect mechanical hypersensitivity observed in LgA rats. Expression of TacR1 (the gene encoding NK1R) was decreased in reward- and stress-related brain areas both in ShA and LgA rats compared with heroin-naïve rats, but did not differ between the two heroin-experienced groups. In contrast, passive exposure to heroin produced increases in TacR1 expression in the prefrontal cortex and nucleus accumbens. Taken together, these results show that pharmacological NK1R blockade attenuates heroin reinforcement. The observation that animals with ShA and LgA to heroin were similarly affected by L822429 indicates that the SP/NK1R system is not specifically involved in neuroadaptations that underlie escalation resulting from LgA self-administration. Instead, the NK1R antagonist appears to attenuate acute, positively reinforcing properties of heroin and may be useful as an adjunct to relapse prevention in detoxified opioid-dependent subjects. PMID:23303056

  3. Modulation of basal and stress-induced amygdaloid substance P release by the potent and selective NK1 receptor antagonist L-822429.

    PubMed

    Singewald, Nicolas; Chicchi, Gary G; Thurner, Clemens C; Tsao, Kwei-Lan; Spetea, Mariana; Schmidhammer, Helmut; Sreepathi, Hari Kishore; Ferraguti, Francesco; Singewald, Georg M; Ebner, Karl

    2008-09-01

    It has been shown that anxiety and stress responses are modulated by substance P (SP) released within the amygdala. However, there is an important gap in our knowledge concerning the mechanisms regulating extracellular SP in this brain region. To study a possible self-regulating role of SP, we used a selective neurokinin-1 (NK1) receptor antagonist to investigate whether blockade of NK1 receptors results in altered basal and/or stress-evoked SP release in the medial amygdala (MeA), a critical brain area for a functional involvement of SP transmission in enhanced anxiety responses induced by stressor exposure. In vitro binding and functional receptor assays revealed that L-822429 represents a potent and selective rat NK1 receptor antagonist. Intra-amygdaloid administration of L-822429 via inverse microdialysis enhanced basal, but attenuated swim stress-induced SP release, while the low-affinity enantiomer of L-822429 had no effect. Using light and electron microscopy, synaptic contacts between SP-containing fibres and dendrites expressing NK1 receptors was demonstrated in the medial amygdala. Our findings suggest self-regulatory capacity of SP-mediated neurotransmission that differs in the effect on basal and stress-induced release of SP. Under basal conditions endogenous SP can serve as a signal that tonically inhibits its own release via a NK1 receptor-mediated negative feedback action, while under stress conditions SP release is further facilitated by activation of NK1 receptors, likely leading to high local levels of SP and activation of receptors to which SP binds with lower affinity.

  4. Discovery and characterization of ACT-335827, an orally available, brain penetrant orexin receptor type 1 selective antagonist.

    PubMed

    Steiner, Michel A; Gatfield, John; Brisbare-Roch, Catherine; Dietrich, Hendrik; Treiber, Alexander; Jenck, Francois; Boss, Christoph

    2013-06-01

    Stress relief: Orexin neuropeptides regulate arousal and stress processing through orexin receptor type 1 (OXR-1) and 2 (OXR-2) signaling. A selective OXR-1 antagonist, represented by a phenylglycine-amide substituted tetrahydropapaverine derivative (ACT-335827), is described that is orally available, penetrates the brain, and decreases fear, compulsive behaviors and autonomic stress reactions in rats. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Development of a human vasopressin V1a-receptor antagonist from an evolutionary-related insect neuropeptide

    NASA Astrophysics Data System (ADS)

    di Giglio, Maria Giulia; Muttenthaler, Markus; Harpsøe, Kasper; Liutkeviciute, Zita; Keov, Peter; Eder, Thomas; Rattei, Thomas; Arrowsmith, Sarah; Wray, Susan; Marek, Ales; Elbert, Tomas; Alewood, Paul F.; Gloriam, David E.; Gruber, Christian W.

    2017-02-01

    Characterisation of G protein-coupled receptors (GPCR) relies on the availability of a toolbox of ligands that selectively modulate different functional states of the receptors. To uncover such molecules, we explored a unique strategy for ligand discovery that takes advantage of the evolutionary conservation of the 600-million-year-old oxytocin/vasopressin signalling system. We isolated the insect oxytocin/vasopressin orthologue inotocin from the black garden ant (Lasius niger), identified and cloned its cognate receptor and determined its pharmacological properties on the insect and human oxytocin/vasopressin receptors. Subsequently, we identified a functional dichotomy: inotocin activated the insect inotocin and the human vasopressin V1b receptors, but inhibited the human V1aR. Replacement of Arg8 of inotocin by D-Arg8 led to a potent, stable and competitive V1aR-antagonist ([D-Arg8]-inotocin) with a 3,000-fold binding selectivity for the human V1aR over the other three subtypes, OTR, V1bR and V2R. The Arg8/D-Arg8 ligand-pair was further investigated to gain novel insights into the oxytocin/vasopressin peptide-receptor interaction, which led to the identification of key residues of the receptors that are important for ligand functionality and selectivity. These observations could play an important role for development of oxytocin/vasopressin receptor modulators that would enable clear distinction of the physiological and pathological responses of the individual receptor subtypes.

  6. Chronic 5-HT2 receptor blockade unmasks the role of 5-HT1F receptors in the inhibition of rat cardioaccelerator sympathetic outflow.

    PubMed

    García-Pedraza, José Ángel; Hernández-Abreu, Oswaldo; García, Mónica; Morán, Asunción; Villalón, Carlos M

    2018-04-01

    Serotonin (5-hydroxytryptamine; 5-HT) inhibits the rat cardioaccelerator sympathetic outflow by 5-HT 1B/1D/5 receptors. Because chronic blockade of sympatho-excitatory 5-HT 2 receptors is beneficial in several cardiovascular pathologies, this study investigated whether sarpogrelate (a 5-HT 2 receptor antagonist) alters the pharmacological profile of the above sympatho-inhibition. Rats were pretreated for 2 weeks with sarpogrelate in drinking water (30 mg/kg per day; sarpogrelate-treated group) or equivalent volumes of drinking water (control group). Animals were pithed and prepared for spinal stimulation (C 7 -T 1 ) of the cardioaccelerator sympathetic outflow or for intravenous (i.v.) bolus injections of noradrenaline. Both procedures produced tachycardic responses remaining unaltered after saline. Continuous i.v. infusions of 5-HT induced a cardiac sympatho-inhibition that was mimicked by the 5-HT receptor agonists 5-carboxamidotryptamine (5-CT; 5-HT 1/5A ), CP 93,129 (5-HT 1B ), or PNU 142633 (5-HT 1D ), but not by indorenate (5-HT 1A ) in both groups; whereas LY344864 (5-HT 1F ) mimicked 5-HT only in sarpogrelate-treated rats. In sarpogrelate-treated animals, i.v. GR 127935 (310 μg/kg; 5-HT 1B/1D/1F receptor antagonist) attenuated 5-CT-induced sympatho-inhibition and abolished LY344864-induced sympatho-inhibition; while GR 127935 plus SB 699551 (1 mg/kg; 5-HT 5A receptor antagonist) abolished 5-CT-induced inhibition. These results confirm the cardiac sympatho-inhibitory role of 5-HT 1B , 5-HT 1D , and 5-HT 5A receptors in both groups; nevertheless, sarpogrelate treatment specifically unmasked a cardiac sympatho-inhibition mediated by 5-HT 1F receptors.

  7. Functional antagonistic properties of clozapine at the 5-HT3 receptor.

    PubMed

    Hermann, B; Wetzel, C H; Pestel, E; Zieglgänsberger, W; Holsboer, F; Rupprecht, R

    1996-08-23

    The atypical neuroleptic clozapine is thought to exert its psychopharmacological actions through a variety of neurotransmitter receptors. It binds preferentially to D4 and 5-HT2 receptors; however, little is known on it's interaction with the 5-HT3 receptor. Using a cell line stably expressing the 5-HT3 receptor, whole-cell voltage-clamp analysis revealed functional antagonistic properties of clozapine at low nanomolar concentrations in view of a binding affinity in the upper nanomolar range. Because the concentration of clozapine required for an interaction with the 5-HT3 receptor can be achieved with therapeutical doses, functional antagonistic properties at this ligand-gated ion channel may contribute to its unique psychopharmacological profile.

  8. Arabidopsis Class I and Class II TCP Transcription Factors Regulate Jasmonic Acid Metabolism and Leaf Development Antagonistically1[C][W

    PubMed Central

    Danisman, Selahattin; van der Wal, Froukje; Dhondt, Stijn; Waites, Richard; de Folter, Stefan; Bimbo, Andrea; van Dijk, Aalt DJ; Muino, Jose M.; Cutri, Lucas; Dornelas, Marcelo C.; Angenent, Gerco C.; Immink, Richard G.H.

    2012-01-01

    TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1 (TCP) transcription factors control developmental processes in plants. The 24 TCP transcription factors encoded in the Arabidopsis (Arabidopsis thaliana) genome are divided into two classes, class I and class II TCPs, which are proposed to act antagonistically. We performed a detailed phenotypic analysis of the class I tcp20 mutant, showing an increase in leaf pavement cell sizes in 10-d-old seedlings. Subsequently, a glucocorticoid receptor induction assay was performed, aiming to identify potential target genes of the TCP20 protein during leaf development. The LIPOXYGENASE2 (LOX2) and class I TCP9 genes were identified as TCP20 targets, and binding of TCP20 to their regulatory sequences could be confirmed by chromatin immunoprecipitation analyses. LOX2 encodes for a jasmonate biosynthesis gene, which is also targeted by class II TCP proteins that are under the control of the microRNA JAGGED AND WAVY (JAW), although in an antagonistic manner. Mutation of TCP9, the second identified TCP20 target, resulted in increased pavement cell sizes during early leaf developmental stages. Analysis of senescence in the single tcp9 and tcp20 mutants and the tcp9tcp20 double mutants showed an earlier onset of this process in comparison with wild-type control plants in the double mutant only. Both the cell size and senescence phenotypes are opposite to the known class II TCP mutant phenotype in JAW plants. Altogether, these results point to an antagonistic function of class I and class II TCP proteins in the control of leaf development via the jasmonate signaling pathway. PMID:22718775

  9. The rabbit iris sphincter contains NK1 and NK3 but not NK2 receptors: a study with selective agonists and antagonists.

    PubMed

    Wang, Z Y; Håkanson, R

    1993-04-08

    Tachykinin analogues, claimed to be selective NK1, NK2 and NK3 receptor agonists, contracted the isolated rabbit iris sphincter muscle in a concentration-dependent manner. The contractions were not modified by the enkephalinase inhibitor thiorphan and the angiotensin-converting enzyme inhibitor captopril (10(-5) M of each). The pD2 values for (Sar9,Met(O2)11)SP (NK1 receptor agonist), (Nle10)NKA(4-10) (NK2 receptor agonist) and (MePhe7)NKB (NK3 receptor agonist) were 8.3, 6.1 and 8.2, respectively. (Sar9,Met(O2)11)SP was the most efficacious of the three agonists. The results are compatible with the presence of NK1 and NK3 receptors. The low pD2 value for the NK2 agonist may reflect a lack of NK2 receptors and interaction of the NK2 agonist with NK1 receptors. The contraction caused by the NK1 receptor agonist was inhibited competitively by the highly selective NK1 receptor antagonist (+/-) CP-96,345; the pA2 value was 5.5. Also the contraction caused by the NK2 receptor agonist was inhibited competitively by (+/-) CP-96,345 with a pA2 value of 5.7, supporting the view that the two agonists (Sar9,Met(O2)11)SP and (Nle10)NKA(4-10) interact with the same receptor. The selective NK2 receptor antagonist actinomycin D did not affect the contraction caused by the NK2 receptor agonist. We conclude that the rabbit iris sphincter muscle contains NK1 and probably NK3 receptors. We obtained no evidence for the presence of NK2 receptors.

  10. The Novel μ-Opioid Receptor Antagonist, [N-Allyl-Dmt1]Endomorphin-2, Attenuates the Enhancement of GABAergic Neurotransmission by Ethanol

    PubMed Central

    Li, Qiang; Okada, Yoshio; Marczak, Ewa; Wilson, Wilkie A.; Lazarus, Lawrence H.; Swartzwelder, H. S.

    2009-01-01

    Aims: We investigated the effects of [N-allyl-Dmt1]endomorphin-2 (TL-319), a novel and highly potent μ-opioid receptor antagonist, on ethanol (EtOH)-induced enhancement of GABAA receptor-mediated synaptic activity in the hippocampus. Methods: Evoked and spontaneous inhibitory postsynaptic currents (eIPSCs and sIPSCs) were isolated from CA1 pyramidal cells from brain slices of male rats using whole-cell patch-clamp techniques. Results: TL-319 had no effect on the baseline amplitude of eIPSCs or the frequency of sIPSCs. However, it induced a dose-dependent suppression of an ethanol-induced increase of sIPSC frequency with full reversal at concentrations of 500 nM and higher. The non-specific competitive opioid receptor antagonist naltrexone also suppressed EtOH-induced increases in sIPSC frequency but only at a concentration of 60 μM. Conclusion: These data indicate that blockade of μ-opioid receptors by low concentrations of [N-allyl-Dmt1]endomorphin-2 can reverse ethanol-induced increases in GABAergic neurotransmission and possibly alter its anxiolytic or sedative effects. This suggests the possibility that high potency opioid antagonists may emerge as possible candidate compounds for the treatment of ethanol addiction. PMID:18971291

  11. Cannabinoid CB1 receptor facilitation of substance P release in the rat spinal cord, measured as neurokinin 1 receptor internalization

    PubMed Central

    Zhang, Guohua; Chen, Wenling; Lao, Lijun; Marvizón, Juan Carlos G.

    2010-01-01

    The contribution of CB1 receptors in the spinal cord to cannabinoid analgesia is still unclear. The objective of this study was to investigate the effect of CB1 receptors on substance P release from primary afferent terminals in the spinal cord. Substance P release was measured as NK1 receptor internalization in lamina I neurons. It was induced in spinal cord slices by dorsal root stimulation and in live rats by a noxious stimulus. In spinal cord slices, the CB1 receptor antagonists AM251, AM281 and rimonabant partially but potently inhibited NK1 receptor internalization induced by electrical stimulation of the dorsal root. This was due to an inhibition of substance P release and not of NK1 receptor internalization itself, because AM251 and AM281 did not inhibit NK1 receptor internalization induced by exogenous substance P. The CB1 receptor agonist ACEA increased NK1 receptor internalization evoked by dorsal root stimulation. The effects of AM251 and ACEA cancelled each other. In vivo, AM251 injected intrathecally decreased NK1 receptor internalization in spinal segments L5 and L6 induced by noxious hind paw clamp. Intrathecal AM251 also produced analgesia to radiant heat stimulation of the paw. The inhibition by AM251 of NK1 receptor internalization was reversed by antagonists of μ-opioid and GABAB receptors. This indicates that CB1 receptors facilitate substance P release by inhibiting the release of GABA and opioids next to primary afferent terminals, producing disinhibition. This results in a pronociceptive effect of CB1 receptors in the spinal cord. PMID:20074214

  12. The Production of lnterleukin-1 Receptor Antagonist by Human Bronchogenic Carcinoma

    PubMed Central

    Smith, Daniel R.; Kunkel, Steven L.; Standiford, Theodore J.; Chensue, Stephen W.; Rolfe, Mark W.; Orringer, Mark B.; Whyte, Richard I.; Burdick, Marie D.; Danforth, Jean M.; Gilbert, Andrew R.; Strieter, Robert M.

    1993-01-01

    Bronchogenic carcinoma displays an aggressive clinical course that may reflect a capacity to evade host defenses. We postulated that tumors may elaborate interleukin-1 receptor antagonist protein (IRAP) to escape host interleukin-1-dependent responses. Homogenates of human bronchogenic lung tumors demonstrated significant increases of IRAP compared with normal lung tissue controls (n = 48). There was no significant difference in interleukin-1 β levels between tumor and normal lung tissue. Immunohistochemical staining localized IRAP to tumor cells. Semiquantitative pathological analysis demonstrated a modest inflammatory cell infiltrate with qualitative differences between tumors of different histology. Western blot analysis of tumor homogenates demonstrated several molecular weight forms of IRAP. Finally, antigenic IRAP was detected in supernatants of the human bronchogenic carcinoma cell line (A549) maintained in vitro. These findings illustrate the capacity of bronchogenic tumors to produce and secrete IRAP that may be important in tumor evasion of host defenses. ImagesFigure 3Figure 4 PMID:8362978

  13. An efficient synthesis of a rationally designed 1,5 disubstituted imidazole AT(1) angiotensin II receptor antagonist: reorientation of imidazole pharmacophore groups in losartan reserves high receptor affinity and confirms docking studies.

    PubMed

    Agelis, George; Roumelioti, Panagiota; Resvani, Amalia; Durdagi, Serdar; Androutsou, Maria-Eleni; Kelaidonis, Konstantinos; Vlahakos, Demetrios; Mavromoustakos, Thomas; Matsoukas, John

    2010-09-01

    A new 1,5 disubstituted imidazole AT(1) Angiotensin II (AII) receptor antagonist related to losartan with reversion of butyl and hydroxymethyl groups at the 2-, 5-positions of the imidazole ring was synthesized and evaluated for its antagonist activity (V8). In vitro results indicated that the reorientation of butyl and hydroxymethyl groups on the imidazole template of losartan retained high binding affinity to the AT(1) receptor concluding that the spacing of the substituents at the 2,5- positions is of primary importance. The docking studies are confirmed by binding assay results which clearly show a comparable binding score of the designed compound V8 with that of the prototype losartan. An efficient, regioselective and cost effective synthesis renders the new compound as an attractive candidate for advanced toxicological evaluation and a drug against hypertension.

  14. An efficient synthesis of a rationally designed 1,5 disubstituted imidazole AT1 Angiotensin II receptor antagonist: reorientation of imidazole pharmacophore groups in losartan reserves high receptor affinity and confirms docking studies

    NASA Astrophysics Data System (ADS)

    Agelis, George; Roumelioti, Panagiota; Resvani, Amalia; Durdagi, Serdar; Androutsou, Maria-Eleni; Kelaidonis, Konstantinos; Vlahakos, Demetrios; Mavromoustakos, Thomas; Matsoukas, John

    2010-09-01

    A new 1,5 disubstituted imidazole AT1 Angiotensin II (AII) receptor antagonist related to losartan with reversion of butyl and hydroxymethyl groups at the 2-, 5-positions of the imidazole ring was synthesized and evaluated for its antagonist activity ( V8). In vitro results indicated that the reorientation of butyl and hydroxymethyl groups on the imidazole template of losartan retained high binding affinity to the AT1 receptor concluding that the spacing of the substituents at the 2,5- positions is of primary importance. The docking studies are confirmed by binding assay results which clearly show a comparable binding score of the designed compound V8 with that of the prototype losartan. An efficient, regioselective and cost effective synthesis renders the new compound as an attractive candidate for advanced toxicological evaluation and a drug against hypertension.

  15. Discovery, synthesis, selectivity modulation and DMPK characterization of 5-azaspiro[2.4]heptanes as potent orexin receptor antagonists.

    PubMed

    Stasi, Luigi Piero; Artusi, Roberto; Bovino, Clara; Buzzi, Benedetta; Canciani, Luca; Caselli, Gianfranco; Colace, Fabrizio; Garofalo, Paolo; Giambuzzi, Silvia; Larger, Patrice; Letari, Ornella; Mandelli, Stefano; Perugini, Lorenzo; Pucci, Sabrina; Salvi, Matteo; Toro, PierLuigi

    2013-05-01

    Starting from a orexin 1 receptor selective antagonist 4,4-disubstituted piperidine series a novel potent 5-azaspiro[2.4]heptane dual orexin 1 and orexin 2 receptor antagonist class has been discovered. SAR and Pharmacokinetic optimization of this series is herein disclosed. Lead compound 15 exhibits potent activity against orexin 1 and orexin 2 receptors along with low cytochrome P450 inhibition potential, good brain penetration and oral bioavailability in rats. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. CJ-023,423, a novel, potent and selective prostaglandin EP4 receptor antagonist with antihyperalgesic properties.

    PubMed

    Nakao, Kazunari; Murase, Akio; Ohshiro, Hiroyuki; Okumura, Takako; Taniguchi, Kana; Murata, Yoko; Masuda, Masatoshi; Kato, Tomoki; Okumura, Yoshiyuki; Takada, Junji

    2007-08-01

    The prostaglandin (PG) EP(4) receptor subtype is expressed by peripheral sensory neurons. Although a potential role of EP(4) receptor in pain has been suggested, a limited number of selective ligands have made it difficult to explore the physiological functions of EP(4) or its potential as a new analgesic target. Here, we describe the in vitro and in vivo pharmacology of a novel EP(4) receptor antagonist, N-[({2-[4-(2-ethyl-4,6-dimethyl-1H-imidazo [4,5-c] pyridin-1-yl) phenyl]ethyl}amino) carbonyl]-4-methylbenzenesulfonamide (CJ-023,423). In vitro, CJ-023,423 inhibits [(3)H]PGE(2) binding to both human and rat EP(4) receptors with K(i) of 13 +/- 4 and 20 +/- 1 nM, respectively. CJ-023,423 is highly selective for the human EP(4) receptor over other human prostanoid receptor subtypes. It also inhibits PGE(2)-evoked elevation in intracellular cAMP at the human and rat EP(4) receptors with pA(2) of 8.3 +/- 0.03 and 8.2 +/- 0.2 nM, respectively. In vivo, oral administration of CJ-023,423 significantly reduces thermal hyperalgesia induced by intraplantar injection of PGE(2) (ED(50) = 12.8 mg/kg). CJ-023,423 is also effective in models of acute and chronic inflammatory pain. CJ-023,423 significantly reduces mechanical hyperalgesia in the carrageenan model. Furthermore, CJ-023,423 significantly reverses complete Freund's adjuvant-induced chronic inflammatory pain response. Taken together, the present data indicate that CJ-023,423, a highly potent and selective antagonist of both human and rat EP(4) receptors, produces antihyperalgesic effects in animal models of inflammatory pain. Thus, specific blockade of the EP(4) receptor signaling may represent a novel therapeutic approach for the treatment of inflammatory pain.

  17. Caffeine and Selective Adenosine Receptor Antagonists as New Therapeutic Tools for the Motivational Symptoms of Depression

    PubMed Central

    López-Cruz, Laura; Salamone, John D.; Correa, Mercè

    2018-01-01

    Major depressive disorder is one of the most common and debilitating psychiatric disorders. Some of the motivational symptoms of depression, such anergia (lack of self-reported energy) and fatigue are relatively resistant to traditional treatments such as serotonin uptake inhibitors. Thus, new pharmacological targets are being investigated. Epidemiological data suggest that caffeine consumption can have an impact on aspects of depressive symptomatology. Caffeine is a non-selective adenosine antagonist for A1/A2A receptors, and has been demonstrated to modulate behavior in classical animal models of depression. Moreover, selective adenosine receptor antagonists are being assessed for their antidepressant effects in animal studies. This review focuses on how caffeine and selective adenosine antagonists can improve different aspects of depression in humans, as well as in animal models. The effects on motivational symptoms of depression such as anergia, fatigue, and psychomotor slowing receive particular attention. Thus, the ability of adenosine receptor antagonists to reverse the anergia induced by dopamine antagonism or depletion is of special interest. In conclusion, although further studies are needed, it appears that caffeine and selective adenosine receptor antagonists could be therapeutic agents for the treatment of motivational dysfunction in depression. PMID:29910727

  18. Anti-idiotypic antibody: A new strategy for the development of a growth hormone receptor antagonist.

    PubMed

    Lan, Hainan; Zheng, Xin; Khan, Muhammad Akram; Li, Steven

    2015-11-01

    In general, traditional growth hormone receptor antagonist can be divided into two major classes: growth hormone (GH) analogues and anti-growth hormone receptor (GHR) antibodies. Herein, we tried to explore a new class of growth hormone receptor (GHR) antagonist that may have potential advantages over the traditional antagonists. For this, we developed a monoclonal anti-idiotypic antibody growth hormone, termed CG-86. A series of experiments were conducted to characterize and evaluate this antibody, and the results from a competitive receptor-binding assay, Enzyme Linked Immunosorbent Assays (ELISA) and epitope mapping demonstrate that CG-86 behaved as a typical Ab2β. Next, we examined its antagonistic activity using in vitro cell models, and the results showed that CG-86 could effectively inhibit growth hormone receptor-mediated signalling and effectively inhibit growth hormone-induced Ba/F3-GHR638 proliferation. In summary, these studies show that an anti-idiotypic antibody (CG-86) has promise as a novel growth hormone receptor antagonist. Furthermore, the current findings also suggest that anti-idiotypic antibody may represent a novel strategy to produce a new class of growth hormone receptor antagonist, and this strategy may be applied with other cytokines or growth factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Receptor residence time trumps drug-likeness and oral bioavailability in determining efficacy of complement C5a antagonists

    PubMed Central

    Seow, Vernon; Lim, Junxian; Cotterell, Adam J.; Yau, Mei-Kwan; Xu, Weijun; Lohman, Rink-Jan; Kok, W. Mei; Stoermer, Martin J.; Sweet, Matthew J.; Reid, Robert C.; Suen, Jacky Y.; Fairlie, David P.

    2016-01-01

    Drug discovery and translation are normally based on optimizing efficacy by increasing receptor affinity, functional potency, drug-likeness (rule-of-five compliance) and oral bioavailability. Here we demonstrate that residence time of a compound on its receptor has an overriding influence on efficacy, exemplified for antagonists of inflammatory protein complement C5a that activates immune cells and promotes disease. Three equipotent antagonists (3D53, W54011, JJ47) of inflammatory responses to C5a (3nM) were compared for drug-likeness, receptor affinity and antagonist potency in human macrophages, and anti-inflammatory efficacy in rats. Only the least drug-like antagonist (3D53) maintained potency in cells against higher C5a concentrations and had a much longer duration of action (t1/2 ~ 20 h) than W54011 or JJ47 (t1/2 ~ 1–3 h) in inhibiting macrophage responses. The unusually long residence time of 3D53 on its receptor was mechanistically probed by molecular dynamics simulations, which revealed long-lasting interactions that trap the antagonist within the receptor. Despite negligible oral bioavailability, 3D53 was much more orally efficacious than W54011 or JJ47 in preventing repeated agonist insults to induce rat paw oedema over 24 h. Thus, residence time on a receptor can trump drug-likeness in determining efficacy, even oral efficacy, of pharmacological agents. PMID:27094554

  20. Receptor residence time trumps drug-likeness and oral bioavailability in determining efficacy of complement C5a antagonists

    NASA Astrophysics Data System (ADS)

    Seow, Vernon; Lim, Junxian; Cotterell, Adam J.; Yau, Mei-Kwan; Xu, Weijun; Lohman, Rink-Jan; Kok, W. Mei; Stoermer, Martin J.; Sweet, Matthew J.; Reid, Robert C.; Suen, Jacky Y.; Fairlie, David P.

    2016-04-01

    Drug discovery and translation are normally based on optimizing efficacy by increasing receptor affinity, functional potency, drug-likeness (rule-of-five compliance) and oral bioavailability. Here we demonstrate that residence time of a compound on its receptor has an overriding influence on efficacy, exemplified for antagonists of inflammatory protein complement C5a that activates immune cells and promotes disease. Three equipotent antagonists (3D53, W54011, JJ47) of inflammatory responses to C5a (3nM) were compared for drug-likeness, receptor affinity and antagonist potency in human macrophages, and anti-inflammatory efficacy in rats. Only the least drug-like antagonist (3D53) maintained potency in cells against higher C5a concentrations and had a much longer duration of action (t1/2 ~ 20 h) than W54011 or JJ47 (t1/2 ~ 1-3 h) in inhibiting macrophage responses. The unusually long residence time of 3D53 on its receptor was mechanistically probed by molecular dynamics simulations, which revealed long-lasting interactions that trap the antagonist within the receptor. Despite negligible oral bioavailability, 3D53 was much more orally efficacious than W54011 or JJ47 in preventing repeated agonist insults to induce rat paw oedema over 24 h. Thus, residence time on a receptor can trump drug-likeness in determining efficacy, even oral efficacy, of pharmacological agents.

  1. [Selection of a melanine concentrating hormone receptor-1 (MCHR1) antagonists' focused library and its biological screening with AequoScreen].

    PubMed

    Flachner, Beáta; Hajdú, István; Dobi, Krisztina; Lorincz, Zsolt; Cseh, Sándor; Dormán, György

    2013-01-01

    Target focused libraries can be rapidly selected by 2D virtual screening methods from multimillion compounds' repositories if structures of active compounds are available. In the present study a multi-step virtual and in vitro screening cascade is reported to select Melanin Concentrating Hormone Receptor-1 (MCHR1) antagonists. The 2D similarity search combined with physicochemical parameter filtering is suitable for selecting candidates from multimillion compounds' repository. The seeds of the first round virtual screening were collected from the literature and commercial databases, while the seeds of the second round were the hits of the first round. In vitro screening underlined the efficiency of our approach, as in the second screening round the hit rate (8.6 %) significantly improved compared to the first round (1.9%), reaching the antagonist activity even below 10 nM.

  2. [The potential of group II metabotropic glutamate receptor antagonists as a novel antidepressant].

    PubMed

    Chaki, Shigeyuki

    2012-08-01

    Recently, abnormalities of glutamatergic transmission have been implicated in the pathophysiology of depression. Moreover, both ketamine, an NMDA receptor antagonist, and riluzole, a modulator of glutamatergic, transmission have been reported to be effective for the treatment of patients with treatment-refractory depression. Based on these findings, extensive studies to develop agents acting on glutamatergic transmission have been conducted. Glutamate receptors are divided into two main subtypes, ionotropic glutamate receptors and metabotropic glutamate (mGlu) receptors, both of which have subtypes. Of these, much attention has been paid to mGlu2/3 receptors. mGlu2/3 receptor antagonists such as MGS0039 and LY341495 have been reported to exert antidepressant effects in animal models of depression including the forced swim test, tail suspension test, learned helplessness paradigm, olfactory bulmectomy model and isolation rearing model, and to enhance serotonin release in the prefrontal cortex and dopamine release in the nucleus accumbens. Moreover, activation of AMPA receptor and mTOR signaling have been suggested to be involved in the antidepressant effects of mGlu2/3 receptor antagonists, as demonstrated in the actions of ketamine. Thus, mGlu2/3 receptor antagonists may share some neural networks with ketamine in exerting their antidepressant effects. In addition, the potential of other agents targeting glutamatergic transmission for novel antidepressants is being investigated.

  3. A review of granisetron, 5-hydroxytryptamine3 receptor antagonists, and other antiemetics.

    PubMed

    Hsu, Eric S

    2010-01-01

    Nausea and vomiting are 2 of the most upsetting adverse reactions of chemotherapy. Current guidelines propose 5-hydroxytryptamine3 (5-HT3) receptor antagonists as a pharmacologic intervention for acute and delayed nausea and vomiting [chemotherapy-induced nausea and vomiting (CINV)] associated with moderately and highly emetogenic chemotherapy. Meanwhile, both postoperative nausea and vomiting (PONV) and postdischarge nausea and vomiting are challenging situations after surgeries and procedures. Prophylactic and therapeutic combinations of antiemetics are recommended in patients at high risk of suffering from PONV and postdischarge nausea and vomiting. Granisetron (Kytril) is a selective 5-HT3 receptor antagonist that does not induce or inhibit the hepatic cytochrome P-450 system in vitro. There are also 4 other antagonists of 5-HT3 receptor (dolasetron, ondansetron, palonosetron, and tropisetron) being metabolized via the CYP2D6 and are subject to potential genetic polymorphism. The launch of a new class of antiemetics, the substance P/neurokinin1 receptor antagonists, was attributed to the scientific update on the central generator responsible for emesis and role of substance P. There has been mounting interest in exploring integrative medicine, either acupuncture or acustimulation of P6 (Nei-Kuwan), to complement the western medicine for prevention and management of nausea and vomiting. The potential application of cannabinoids, either alone or in combination with other agents of different mechanism, could contribute further to improve outcome in CINV. Implementation of future treatment guidelines for more effective management of CINV and PONV could certainly improve the efficacy and outcome of cancer and postoperative care.

  4. Receptor binding properties and antinociceptive effects of chimeric peptides consisting of a micro-opioid receptor agonist and an ORL1 receptor antagonist.

    PubMed

    Kawano, Susumu; Ito, Risa; Nishiyama, Miharu; Kubo, Mai; Matsushima, Tomoko; Minamisawa, Motoko; Ambo, Akihiro; Sasaki, Yusuke

    2007-07-01

    Receptor binding properties and antinociceptive activities of chimeric peptides linked by spacers were investigated. The peptides consisted of the micro-opioid receptor ligand dermorphin (Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH(2)) or its analog YRFB (Tyr-D-Arg-Phe-betaAla-NH(2)) linked to the ORL1 receptor ligand Ac-Arg-Tyr-Tyr-Arg-Ile-Lys-NH(2) (Ac-RYYRIK-NH(2)). All chimeric peptides were found to possess high receptor binding affinities for both micro-opioid and ORL1 receptors in mouse brain membranes although their binding affinities for both receptors in spinal membranes were significantly lower. Among them, chimeric peptide 2, which consists of dermorphin and Ac-RYYRIK-NH(2) connected by a long spacer, had the highest binding affinity towards both receptors. In the tail-flick test following intrathecal (i.t.) administration to mice, all chimeric peptides showed potent and dose-dependent antinociceptive activities with an ED(50) of 1.34-4.51 (pmol/mouse), nearly comparable to dermorphin alone (ED(50); 1.08 pmol/mouse). In contrast to their micro-opioid receptor binding profiles, intracerebroventricular (i.c.v.) administration of the chimeric peptides resulted in much less potent antinociceptive activity (ED(50) 5.55-100< pmol/mouse) than when administered i.t. (ED(50): 1.34-4.51 pmol/mouse). These results suggest the involvement of nociceptin-like agonistic effects of the Ac-RYYRIK pharmacophore in the peptides, and the regulation of mu-opioid receptor-mediated antinociception in brain. The present chimeric peptides may be useful as pharmacological tools for studies on micro-opioid receptor/ORL1 receptor heterodimers.

  5. Angiotensin‐II receptor 1 antagonist fetopathy – risk assessment, critical time period and vena cava thrombosis as a possible new feature

    PubMed Central

    Oppermann, Marc; Padberg, Stephanie; Kayser, Angela; Weber‐Schoendorfer, Corinna; Schaefer, Christof

    2013-01-01

    Aims Angiotensin‐II receptor 1 antagonists (AT1antagonists) may cause severe and even lethal fetopathy in late pregnancy. However, exposure still occurs in spite of warnings in package leaflets. This study aimed to assess the risk of fetopathy, the sensitive time window, and possible new symptoms in prospective as well as retrospective cases with AT1antagonist treatment during the second or third trimester of pregnancy. Methods Patients were enrolled by the Berlin Institute for Clinical Teratology and Drug Risk Assessment in Pregnancy between 1999 and 2011 through risk consultation. Symptoms defined as indicative of AT1antagonist fetopathy were: oligo‐/anhydramnios, renal insufficiency, lung hypoplasia, joint contractures, skull hypoplasia and fetal/neonatal death. Results In 5/29 (17%) prospectively enrolled cases with AT1antagonist exposure beyond the first trimester oligo‐/anhydramnios was diagnosed. Two infants showed additional symptoms of fetopathy. The risk is more than 30% if treatment continues beyond the 20th week of pregnancy. Oligo‐/anhydramnios was reversible after AT1antagonist withdrawal. Among 16 retrospective case reports, three infants presented with a thrombosis of the inferior vena cava in the vicinity of the renal veins. Four out of 13 live births did not survive. Conclusions Our survey suggests that the risk increases with duration of AT1antagonist treatment into late pregnancy and oligo‐/anhydramnios may be reversible after AT1antagonist discontinuation. Thrombosis of inferior vena cava may be a new feature of AT1antagonist fetopathy. AT1antagonist medication during pregnancy constitutes a considerable risk and must be discontinued immediately. In case of indicative diagnostic findings in either the fetus or newborn, previous maternal AT1antagonist exposure should be considered. PMID:22816796

  6. Acute Cocaine Induces Fast Activation of D1 Receptor and Progressive Deactivation of D2 Receptor Strial Neurons: In Vivo Optical Microprobe [Ca(superscript)2+]subscript)i Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, C.; Luo, Z.; Volkow, N.D.

    Cocaine induces fast dopamine increases in brain striatal regions, which are recognized to underlie its rewarding effects. Both dopamine D1 and D2 receptors are involved in cocaine's reward but the dynamic downstream consequences of cocaine effects in striatum are not fully understood. Here we used transgenic mice expressing EGFP under the control of either the D1 receptor (D1R) or the D2 receptor (D2R) gene and microprobe optical imaging to assess the dynamic changes in intracellular calcium ([Ca{sup 2+}]{sub i} ) responses (used as marker of neuronal activation) to acute cocaine in vivo separately for D1R- versus D2R-expressing neurons in striatum.more » Acute cocaine (8 mg/kg, i.p.) rapidly increased [Ca{sup 2+}]{sub i} in D1R-expressing neurons (10.6 {+-} 3.2%) in striatum within 8.3 {+-} 2.3 min after cocaine administration after which the increases plateaued; these fast [Ca{sup 2+}]{sub i} increases were blocked by pretreatment with a D1R antagonist (SCH23390). In contrast, cocaine induced progressive decreases in [Ca{sup 2+}]{sub i} in D2R-expressing neurons (10.4 {+-} 5.8%) continuously throughout the 30 min that followed cocaine administration; these slower [Ca{sup 2+}]{sub i} decreases were blocked by pretreatment with a D2R antagonist (raclopride). Since activation of striatal D1R-expressing neurons (direct-pathway) enhances cocaine reward, whereas activation of D2R expressing neurons suppresses it (indirect-pathway) (Lobo et al., 2010), this suggests that cocaine's rewarding effects entail both its fast stimulation ofD1R (resulting in abrupt activation of direct-pathway neurons) and a slower stimulation of D2R (resulting in longer-lasting deactivation of indirect-pathway neurons). We also provide direct in vivo evidence of D2R and D1R interactions in the striatal responses to acute cocaine administration.« less

  7. Shifting physician prescribing to a preferred histamine-2-receptor antagonist. Effects of a multifactorial intervention in a mixed-model health maintenance organization.

    PubMed

    Brufsky, J W; Ross-Degnan, D; Calabrese, D; Gao, X; Soumerai, S B

    1998-03-01

    This study was undertaken to determine whether a program of education, therapeutic reevaluation of eligible patients, and performance feedback could shift prescribing to cimetidine from other histamine-2 receptor antagonists, which commonly are used in the management of ulcers and reflux, and reduce costs without increasing rates of ulcer-related hospital admissions. This study used an interrupted monthly time series with comparison series in a large mixed-model health maintenance organization. Physicians employed in health centers (staff model) and physicians in independent medical groups contracting to provide health maintenance organization services (group model) participated. The comparative percentage prescribed of specific histamine-2 receptor antagonists (market share), total histamine-2 receptor antagonist prescribing, cost per histamine-2 receptor antagonist prescription, and the rate of hospitalization for gastrointestinal illness were assessed. In the staff model, therapeutic reevaluation resulted in a sudden increase in market share of the preferred histamine-2 receptor antagonist cimetidine (+53.8%) and a sudden decrease in ranitidine (-44.7%) and famotidine (-4.8%); subsequently, cimetidine market share grew by 1.1% per month. In the group model, therapeutic reevaluation resulted in increased cimetidine market share (+9.7%) and decreased prescribing of other histamine-2 receptor antagonists (ranitidine -11.6%; famotidine -1.2%). Performance feedback did not result in further changes in prescribing in either setting. Use of omeprazole, an expensive alternative, essentially was unchanged by the interventions, as were overall histamine-2 receptor antagonist prescribing and hospital admissions for gastrointestinal illnesses. This intervention, which cost approximately $60,000 to implement, resulted in estimated annual savings in histamine-2 receptor antagonist expenditures of $1.06 million. Annual savings in histamine-2 receptor antagonist expenditures

  8. Characterization of the tachykinin neurokinin-2 receptor in the human urinary bladder by means of selective receptor antagonists and peptidase inhibitors.

    PubMed

    Giuliani, S; Patacchini, R; Barbanti, G; Turini, D; Rovero, P; Quartara, L; Giachetti, A; Maggi, C A

    1993-11-01

    The tachykinin (NK2) receptor-mediating contraction of the human isolated bladder to NKA was investigated by studying the affinities of eight structurally different receptor-selective antagonists (linear peptides, cyclic peptides and pseudopeptides, nonpeptide NK2 receptor antagonists). The affinities of the antagonists were compared to those measured for the same ligands at the NK2 receptors previously characterized in the rabbit pulmonary artery and hamster trachea. In the presence of a cocktail of peptidase inhibitors (bestatin captopril and thiorphan, 1 microM each) no significant correlation was found between pA2 values measured in the human bladder vs. those measured in the other two NK2 receptor-bearing preparation. In the presence of the aminopeptidase inhibitor amastatin, however, pA2 values of linear antagonists bearing an N-terminal Asp residue MEN 10,207 and MEN 10,376 were significantly enhanced and these pA2 values were used for analysis; a significant correlation was found between pA2 values measured in the human urinary bladder and rabbit pulmonary artery. The pseudopeptide analog of NKA (4-10), MDL 28,564 which also bears a N-terminal Asp residue behaved as an agonist and its action was enhanced by amastatin. We conclude that the NK2 receptor-mediating contraction of the human urinary bladder smooth muscle is similar to that previously characterized in the rabbit pulmonary artery (NK2A receptor category); in the human bladder smooth muscle an amastatin-sensitive peptidase (possibly aminopeptidase A) limits biological activity of linear peptide derivatives of NKA bearing a N-terminal Asp residue.

  9. Antidepressant activity of the adenosine A2A receptor antagonist, istradefylline (KW-6002) on learned helplessness in rats.

    PubMed

    Yamada, Koji; Kobayashi, Minoru; Shiozaki, Shizuo; Ohta, Teruko; Mori, Akihisa; Jenner, Peter; Kanda, Tomoyuki

    2014-07-01

    Istradefylline, an adenosine A2A receptor antagonist, improves motor function in animal models of Parkinson's disease (PD) and in patients with PD. In addition, some A2A antagonists exert antidepressant-like activity in rodent models of depression, such as the forced swim and the tail suspension tests. We have investigated the effect of istradefylline on depression-like behaviors using the rat learned helplessness (LH) model. Acute, as well as chronic, oral administration of istradefylline significantly improved the inescapable shock (IES)-induced escape deficit with a degree of efficacy comparable to chronic treatment with the tricyclic antidepressant desipramine and the selective serotonin (5-HT) reuptake inhibitor, fluoxetine. Both the A1/A2A receptor nonspecific antagonist theophylline and the moderately selective antagonist CGS15943, but not the A1 selective antagonist DPCPX, ameliorated the IES-induced escape deficit. The enhancement of escape response by istradefylline was reversed by a local injection of the A2A specific agonist CGS21680 either into the nucleus accumbens, the caudate-putamen, or the paraventricular nucleus of the hypothalamus, but not by the A1 specific agonist R-PIA into the nucleus accumbens. Moreover, neither the 5-HT2A/2C receptor antagonist methysergide or the adrenergic α 2 antagonist yohimbine, nor the β-adrenergic antagonist propranolol, affected the improvement of escape response induced by istradefylline. Istradefylline exerts antidepressant-like effects via modulation of A2A receptor activity which is independent of monoaminergic transmission in the brain. Istradefylline may represent a novel treatment option for depression in PD as well as for the motor symptoms.

  10. Characterization of protoberberine analogs employed as novel human P2X{sub 7} receptor antagonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ga Eun; Lee, Won-Gil; Lee, Song-Yi

    The P2X{sub 7} receptor (P2X{sub 7}R), a member of the ATP-gated ion channel family, is regarded as a promising target for therapy of immune-related diseases including rheumatoid arthritis and chronic pain. A group of novel protoberberine analogs (compounds 3-5), discovered by screening of chemical libraries, was here investigated with respect to their function as P2X{sub 7}R antagonists. Compounds 3-5 non-competitively inhibited BzATP-induced ethidium ion influx into hP2X{sub 7}-expressing HEK293 cells, with IC{sub 50} values of 100-300 nM. This antagonistic action on the channel further confirmed that both BzATP-induced inward currents and Ca{sup 2+} influx were strongly inhibited by compounds 3-5more » in patch-clamp and Ca{sup 2+} influx assays. The antagonists also effectively suppressed downstream signaling of P2X{sub 7} receptors including IL-1{beta} release and phosphorylation of ERK1/2 and p38 proteins in hP2X{sub 7}-expressing HEK293 cells or in differentiated human monocytes (THP-1 cells). Moreover, IL-2 secretion from CD3/CD28-stimulated Jurkat T cell was also dramatically inhibited by the antagonist. These results imply that novel protoberberine analogs may modulate P2X{sub 7} receptor-mediated immune responses by allosteric inhibition of the receptor. - Graphical abstract: Display Omitted« less

  11. Attenuation of saccharin-seeking in rats by orexin/hypocretin receptor 1 antagonist.

    PubMed

    Cason, Angie M; Aston-Jones, Gary

    2013-08-01

    The orexin (Orx)/hypocretin system has been implicated in reward-seeking, especially for highly salient food and drug rewards. We recently demonstrated that signaling at the OxR1 receptor is involved in sucrose reinforcement and reinstatement of sucrose-seeking elicited by sucrose-paired cues in food-restricted rats. Because sucrose reinforcement has both a hedonic and caloric component, it remains unknown what aspect of this reward drives its reinforcing value. The present study examined the involvement of the Orx system in operant responding for saccharin, a noncaloric, hedonic (sweet) reward, and in cue-induced reinstatement of extinguished saccharin-seeking in ad libitum-fed vs food-restricted male subjects. Male Sprague Dawley rats were fed ad libitum or food-restricted and trained to self-administer saccharin. We determined the effects of pretreatment with the OxR1 receptor antagonist SB-334867 (SB; 10-30 mg/kg) on fixed ratio (FR) saccharin self-administration and on cue-induced reinstatement of extinguished saccharin-seeking. SB decreased responding and number of reinforcers earned during FR responding for saccharin and decreased cue-induced reinstatement of extinguished saccharin-seeking. All of these effects were obtained similarly in food-restricted and ad libitum-fed rats. These results indicate that signaling at the OxR1 receptor is involved in saccharin reinforcement and reinstatement of saccharin-seeking elicited by saccharin-paired cues regardless of food restriction. These findings lead us to conclude that the Orx system contributes to the motivational effects of hedonic food rewards, independently of caloric value and homeostatic needs.

  12. MIBE acts as antagonist ligand of both estrogen receptor α and GPER in breast cancer cells

    PubMed Central

    2012-01-01

    Introduction The multiple biological responses to estrogens are mainly mediated by the classical estrogen receptors ERα and ERβ, which act as ligand-activated transcription factors. ERα exerts a main role in the development of breast cancer; therefore, the ER antagonist tamoxifen has been widely used although its effectiveness is limited by de novo and acquired resistance. Recently, GPR30/GPER, a member of the seven-transmembrane G protein-coupled receptor family, has been implicated in mediating the effects of estrogens in various normal and cancer cells. In particular, GPER triggered gene expression and proliferative responses induced by estrogens and even ER antagonists in hormone-sensitive tumor cells. Likewise, additional ER ligands showed the ability to bind to GPER eliciting promiscuous and, in some cases, opposite actions through the two receptors. We synthesized a novel compound (ethyl 3-[5-(2-ethoxycarbonyl-1-methylvinyloxy)-1-methyl-1H-indol-3-yl]but-2-enoate), referred to as MIBE, and investigated its properties elicited through ERα and GPER in breast cancer cells. Methods Molecular modeling, binding experiments and functional assays were performed in order to evaluate the biological action exerted by MIBE through ERα and GPER in MCF7 and SkBr3 breast cancer cells. Results MIBE displayed the ability to act as an antagonist ligand for ERα and GPER as it elicited inhibitory effects on gene transcription and growth effects by binding to both receptors in breast cancer cells. Moreover, GPER was required for epidermal growth factor receptor (EGFR) and ERK activation by EGF as ascertained by using MIBE and performing gene silencing experiments. Conclusions Our findings provide novel insights on the functional cross-talk between GPER and EGFR signaling. Furthermore, the exclusive antagonistic activity exerted by MIBE on ERα and GPER could represent an innovative pharmacological approach targeting breast carcinomas which express one or both receptors at

  13. MIBE acts as antagonist ligand of both estrogen receptor α and GPER in breast cancer cells.

    PubMed

    Lappano, Rosamaria; Santolla, Maria Francesca; Pupo, Marco; Sinicropi, Maria Stefania; Caruso, Anna; Rosano, Camillo; Maggiolini, Marcello

    2012-01-17

    The multiple biological responses to estrogens are mainly mediated by the classical estrogen receptors ERα and ERβ, which act as ligand-activated transcription factors. ERα exerts a main role in the development of breast cancer; therefore, the ER antagonist tamoxifen has been widely used although its effectiveness is limited by de novo and acquired resistance. Recently, GPR30/GPER, a member of the seven-transmembrane G protein-coupled receptor family, has been implicated in mediating the effects of estrogens in various normal and cancer cells. In particular, GPER triggered gene expression and proliferative responses induced by estrogens and even ER antagonists in hormone-sensitive tumor cells. Likewise, additional ER ligands showed the ability to bind to GPER eliciting promiscuous and, in some cases, opposite actions through the two receptors. We synthesized a novel compound (ethyl 3-[5-(2-ethoxycarbonyl-1-methylvinyloxy)-1-methyl-1H-indol-3-yl]but-2-enoate), referred to as MIBE, and investigated its properties elicited through ERα and GPER in breast cancer cells. Molecular modeling, binding experiments and functional assays were performed in order to evaluate the biological action exerted by MIBE through ERα and GPER in MCF7 and SkBr3 breast cancer cells. MIBE displayed the ability to act as an antagonist ligand for ERα and GPER as it elicited inhibitory effects on gene transcription and growth effects by binding to both receptors in breast cancer cells. Moreover, GPER was required for epidermal growth factor receptor (EGFR) and ERK activation by EGF as ascertained by using MIBE and performing gene silencing experiments. Our findings provide novel insights on the functional cross-talk between GPER and EGFR signaling. Furthermore, the exclusive antagonistic activity exerted by MIBE on ERα and GPER could represent an innovative pharmacological approach targeting breast carcinomas which express one or both receptors at the beginning and/or during tumor

  14. Endothelin‐1 and its receptors on haemorrhoidal tissue: a potential site for therapeutic intervention

    PubMed Central

    Lohsiriwat, Varut; Scholefield, John H; Wilson, Vincent G

    2017-01-01

    Background and Purpose Haemorrhoids is a common anorectal condition affecting millions worldwide. We have studied the effect of endothelin‐1 (ET‐1) and the role of endothelin ETA and ETB receptors in haemorrhoid tissue. Experimental Approach Protein expression of ET‐1, ETA and ETB receptors were compared between haemorrhoids and normal rectal submucosa using Western blot analysis, with the localization of proteins determined by autoradiography and immunohistochemistry. Effects of ET‐1 and sarafotoxin 6a on human colonic and rectal arteries and veins was assessed by wire myography and the involvement of receptor subtypes established by selective antagonists. Key Results Dense binding of [125I]‐ET‐1 to haemorrhoidal sections was reduced by selective receptor antagonists. A higher density of ETB than ETA receptors was found in haemorrhoidal, than in control rectal tissue and confirmed by Western blot analysis. ETA and ETB receptors were localized to smooth muscle of haemorrhoidal arteries and veins, with ETB receptors on the endothelium. Human colonic and rectal arteries and veins were similarly sensitive to ET‐1 and affected by the ETA selective antagonist, but sarafotoxin S6a‐induced contractions were more pronounced in veins and antagonized by a selective ETB receptor antagonist. Conclusions and Implications ETA and ETB receptors are present in human haemorrhoids with ETB receptors predominating. ETA receptors are activated by ET‐1 to mediate a contraction in arteries and veins, but the latter are selectively activated by sarafotoxin S6a – a response that involves ETB receptors at low concentrations. Selective ETB agonists may have therapeutic potential to reduce congestion of the haemorrhoidal venous sinusoids. PMID:28095606

  15. Endothelin-1 and its receptors on haemorrhoidal tissue: a potential site for therapeutic intervention.

    PubMed

    Lohsiriwat, Varut; Scholefield, John H; Wilson, Vincent G; Dashwood, Michael R

    2017-04-01

    Haemorrhoids is a common anorectal condition affecting millions worldwide. We have studied the effect of endothelin-1 (ET-1) and the role of endothelin ET A and ET B receptors in haemorrhoid tissue. Protein expression of ET-1, ET A and ET B receptors were compared between haemorrhoids and normal rectal submucosa using Western blot analysis, with the localization of proteins determined by autoradiography and immunohistochemistry. Effects of ET-1 and sarafotoxin 6a on human colonic and rectal arteries and veins was assessed by wire myography and the involvement of receptor subtypes established by selective antagonists. Dense binding of [ 125 I]-ET-1 to haemorrhoidal sections was reduced by selective receptor antagonists. A higher density of ET B than ET A receptors was found in haemorrhoidal, than in control rectal tissue and confirmed by Western blot analysis. ET A and ET B receptors were localized to smooth muscle of haemorrhoidal arteries and veins, with ET B receptors on the endothelium. Human colonic and rectal arteries and veins were similarly sensitive to ET-1 and affected by the ET A selective antagonist, but sarafotoxin S6a-induced contractions were more pronounced in veins and antagonized by a selective ET B receptor antagonist. ET A and ET B receptors are present in human haemorrhoids with ET B receptors predominating. ET A receptors are activated by ET-1 to mediate a contraction in arteries and veins, but the latter are selectively activated by sarafotoxin S6a - a response that involves ET B receptors at low concentrations. Selective ET B agonists may have therapeutic potential to reduce congestion of the haemorrhoidal venous sinusoids. © 2017 The British Pharmacological Society.

  16. The effects of dopamine receptor 1 and 2 agonists and antagonists on sexual and aggressive behaviors in male green anoles.

    PubMed

    Smith, Alexandra N; Kabelik, David

    2017-01-01

    The propensity to exhibit social behaviors during interactions with same-sex and opposite-sex conspecifics is modulated by various neurotransmitters, including dopamine. Dopamine is a conserved neurotransmitter among vertebrates and dopaminergic receptors are also highly conserved among taxa. Activation of D1 and D2 dopamine receptor subtypes has been shown to modulate social behaviors, especially in mammalian and avian studies. However, the specific behavioral functions of these receptors vary across taxa. In reptiles there have been few studies examining the relationship between dopaminergic receptors and social behaviors. We therefore examined the effects of D1 and D2 agonists and antagonists on sexual and aggressive behaviors in the male green anole lizard (Anolis carolinensis). Treatment with high doses of both D1 and D2 agonists was found to impair both sexual and aggressive behaviors. However, the D1 agonist treatment was also found to impair motor function, suggesting that those effects were likely nonspecific. Lower doses of both agonists and antagonists failed to affect social behaviors. These findings provide some evidence for D2 receptor regulation of social behaviors, but in contrast with previous research, these effects are all inhibitory and no effects were found for manipulations of D1 receptors. A potential reason for the lack of more widespread effects on social behaviors using moderate or low drug doses is that systemic injection of drugs resulted in effects throughout the whole brain, thus affecting counteracting circuits which negated one another, making measurable changes in behavioral output difficult to detect. Future studies should administer drugs directly into brain regions known to regulate sexual and aggressive behaviors.

  17. Role of peripheral sigma-1 receptors in ischaemic pain: Potential interactions with ASIC and P2X receptors.

    PubMed

    Kwon, S G; Roh, D H; Yoon, S Y; Choi, S R; Choi, H S; Moon, J Y; Kang, S Y; Kim, H W; Han, H J; Beitz, A J; Oh, S B; Lee, J H

    2016-04-01

    The role of peripheral sigma-1 receptors (Sig-1Rs) in normal nociception and in pathologically induced pain conditions has not been thoroughly investigated. Since there is mounting evidence that Sig-1Rs modulate ischaemia-induced pathological conditions, we investigated the role of Sig-1Rs in ischaemia-induced mechanical allodynia (MA) and addressed their possible interaction with acid-sensing ion channels (ASICs) and P2X receptors at the ischaemic site. We used a rodent model of hindlimb thrombus-induced ischaemic pain (TIIP) to investigate their role. Western blot was performed to observe changes in Sig-1R expression in peripheral nervous tissues. MA was measured after intraplantar (i.pl.) injections of antagonists for the Sig-1, ASIC and P2X receptors in TIIP rats or agonists of each receptor in naïve rats. Sig-1R expression significantly increased in skin, sciatic nerve and dorsal root ganglia at 3 days post-TIIP surgery. I.pl. injections of the Sig-1R antagonist, BD-1047 on post-operative days 0-3 significantly attenuated the development of MA during the induction phase, but had no effect on MA when given during the maintenance phase (days 3-6 post-surgery). BD-1047 synergistically increased amiloride (an ASICs blocker)- and TNP-ATP (a P2X antagonist)-induced analgesic effects in TIIP rats. In naïve rats, i.pl. injection of Sig-1R agonist PRE-084 alone did not produce MA; but it did induce MA when co-administered with either an acidic pH solution or a sub-effective dose of αβmeATP. Peripheral Sig-1Rs contribute to the induction of ischaemia-induced MA via facilitation of ASICs and P2X receptors. Thus, peripheral Sig-1Rs represent a novel therapeutic target for the treatment of ischaemic pain. © 2015 European Pain Federation - EFIC®

  18. Effects of ionotropic glutamate receptor antagonists on rat dural artery diameter in an intravital microscopy model.

    PubMed

    Chan, K Y; Gupta, S; de Vries, R; Danser, A H J; Villalón, C M; Muñoz-Islas, E; Maassenvandenbrink, A

    2010-07-01

    During migraine, trigeminal nerves may release calcitonin gene-related peptide (CGRP), inducing cranial vasodilatation and central nociception; hence, trigeminal inhibition or blockade of craniovascular CGRP receptors may prevent this vasodilatation and abort migraine headache. Several preclinical studies have shown that glutamate receptor antagonists affect the pathophysiology of migraine. This study investigated whether antagonists of NMDA (ketamine and MK801), AMPA (GYKI52466) and kainate (LY466195) glutamate receptors affected dural vasodilatation induced by alpha-CGRP, capsaicin and periarterial electrical stimulation in rats, using intravital microscopy. Male Sprague-Dawley rats were anaesthetized and the overlying bone was thinned to visualize the dural artery. Then, vasodilator responses to exogenous (i.v. alpha-CGRP) and endogenous (released by i.v. capsaicin and periarterial electrical stimulation) CGRP were elicited in the absence or presence of the above antagonists. alpha-CGRP, capsaicin and periarterial electrical stimulation increased dural artery diameter. Ketamine and MK801 inhibited the vasodilator responses to capsaicin and electrical stimulation, while only ketamine attenuated those to alpha-CGRP. In contrast, GYKI52466 only attenuated the vasodilatation to exogenous alpha-CGRP, while LY466195 did not affect the vasodilator responses to endogenous or exogenous CGRP. Although GYKI52466 has not been tested clinically, our data suggest that it would not inhibit migraine via vascular mechanisms. Similarly, the antimigraine efficacy of LY466195 seems unrelated to vascular CGRP-mediated pathways and/or receptors. In contrast, the cranial vascular effects of ketamine and MK801 may represent a therapeutic mechanism, although the same mechanism might contribute, peripherally, to cardiovascular side effects.

  19. The hallucinogen d-lysergic diethylamide (LSD) decreases dopamine firing activity through 5-HT1A, D2 and TAAR1 receptors.

    PubMed

    De Gregorio, Danilo; Posa, Luca; Ochoa-Sanchez, Rafael; McLaughlin, Ryan; Maione, Sabatino; Comai, Stefano; Gobbi, Gabriella

    2016-11-01

    d-lysergic diethylamide (LSD) is a hallucinogenic drug that interacts with the serotonin (5-HT) system binding to 5-HT 1 and 5-HT 2 receptors. Little is known about its potential interactions with the dopamine (DA) neurons of the ventral tegmental area (VTA). Using in-vivo electrophysiology in male adult rats, we evaluated the effects of cumulative doses of LSD on VTA DA neuronal activity, compared these effects to those produced on 5-HT neurons in the dorsal raphe nucleus (DRN), and attempted to identify the mechanism of action mediating the effects of LSD on VTA DA neurons. LSD, at low doses (5-20μg/kg, i.v.) induced a significant decrease of DRN 5-HT firing activity through 5-HT 2A and D 2 receptors. At these low doses, LSD did not alter VTA DA neuronal activity. On the contrary, at higher doses (30-120μg/kg, i.v.), LSD dose-dependently decreased VTA DA firing activity. The depletion of 5-HT with p-chlorophenylalanine did not modulate the effects of LSD on DA firing activity. The inhibitory effects of LSD on VTA DA firing activity were prevented by the D 2 receptor antagonist haloperidol (50μg/kg, i.v.) and by the 5-HT 1A receptor antagonist WAY-100,635 (500μg/kg, i.v.). Notably, pretreatment with the trace amine-associate receptor 1 (TAAR 1 ) antagonist EPPTB (5mg/kg, i.v.) blocked the inhibitory effect of LSD on VTA DA neurons. These results suggest that LSD at high doses strongly affects DA mesolimbic neuronal activity in a 5-HT independent manner and with a pleiotropic mechanism of action involving 5-HT 1A, D 2 and TAAR 1 receptors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effects of combined administration of 5-HT1A and/or 5-HT1B receptor antagonists and paroxetine or fluoxetine in the forced swimming test in rats.

    PubMed

    Tatarczyńska, Ewa; Kłodzińska, Aleksandra; Chojnacka-Wójcik, Ewa

    2002-01-01

    Clinical data suggest that coadministration of pindolol, a 5-HT1A/5-HT1B/beta-adrenoceptor antagonist, and selective serotonin reuptake inhibitors (SSRIs) may shorten the time of onset of a clinical action and may increase beneficial effects of the therapy of drug-resistant depression. Effects of combined administration of SSRIs and 5-HT receptor ligands are currently evaluated in animal models for the detection of an antidepressant-like activity; however, the obtained results turned out to be inconsistent. The aim of the present study was to investigate effects of a 5-HT1A antagonist (WAY 100635), 5-HT1B antagonists (SB 216641 and GR 127935) or pindolol, given in combination with paroxetine or fluoxetine (SSRIs), in the forced swimming test in rats (Porsolt test). When given alone, paroxetine (10 and 20 mg/kg), fluoxetine (10 and 20 mg/kg), WAY 100635 (0.1 and 1 mg/kg), SB 216641 (2 mg/kg), GR 127935 (10 and 20 mg/kg) and pindolol (4 and 8 mg/kg) did not shorten the immobility time of rats in that test. Interestingly, SB 216641 administered alone at a dose of 4 mg/kg produced a significant reduction of the immobility time in that test. A combination of paroxetine (20 mg/kg) and WAY 100635 or pindolol failed to reveal a significant interaction; on the other hand, when paroxetine was given jointly with SB 216641 (2 mg/kg) or GR 127935 (10 and 20 mg/kg), that combination showed a significant antiimmobility action in the forced swimming test in rats. The active behaviors in that test did not reflect increased general activity because combined administration of both the 5-HT1B antagonists and paroxetine failed to alter the locomotor activity of rats, measured in the open field test. Coadministration of fluoxetine and all the antagonists used did not affect the behavior of rats in the forced swimming test. The obtained results seem to indicate that blockade of 5-HT1B receptors, but not 5-HT1A ones, can facilitate the antidepressant-like effect of paroxetine in the

  1. Thyroid Hormone Receptor Antagonists: From Environmental Pollution to Novel Small Molecules.

    PubMed

    Mackenzie, Louise S

    2018-01-01

    Thyroid hormone receptors (TRs) are nuclear receptors which control transcription, and thereby have effects in all cells within the body. TRs are an important regulator in many basic physiological processes including development, growth, metabolism, and cardiac function. The hyperthyroid condition results from an over production of thyroid hormones resulting in a continual stimulation of thyroid receptors which is detrimental for the patient. Therapies for hyperthyroidism are available, but there is a need for new small molecules that act as TR antagonists to treat hyperthyroidism. Many compounds exhibit TR antagonism and are considered detrimental to health. Some drugs in the clinic (most importantly, amiodarone) and environmental pollution exhibit TR antagonist properties and thus have the potential to induce hypothyroidism in some people. This chapter provides an overview of novel small molecules that have been specifically designed or screened for their TR antagonist activity as novel treatments for hyperthyroidism. While novel compounds have been identified, to date none have been developed sufficiently to enter clinical trials. Furthermore, a discussion on other sources of TR antagonists is discussed in terms of side effects of current drugs in the clinic as well as environmental pollution. © 2018 Elsevier Inc. All rights reserved.

  2. Synthesis and Evaluation of Orexin-1 Receptor Antagonists with Improved Solubility and CNS Permeability.

    PubMed

    Perrey, David A; Decker, Ann M; Zhang, Yanan

    2018-03-21

    Orexins are hypothalamic neuropeptides playing important roles in many functions including the motivation of addictive behaviors. Blockade of the orexin-1 receptor has been suggested as a potential strategy for the treatment of drug addiction. We have previously reported OX 1 receptor antagonists based on the tetrahydroisoquinoline scaffold with excellent OX 1 potency and selectivity; however, these compounds had high lipophilicity (clogP > 5) and low to moderate solubility. In an effort to improve their properties, we have designed and synthesized a series of analogues where the 7-position substituents known to favor OX 1 potency and selectivity were retained, and groups of different nature were introduced at the 1-position where substitution was generally tolerated as demonstrated in previous studies. Compound 44 with lower lipophilicity (clogP = 3.07) displayed excellent OX 1 potency ( K e = 5.7 nM) and selectivity (>1,760-fold over OX 2 ) in calcium mobilization assays. In preliminary ADME studies, 44 showed excellent kinetic solubility (>200 μM), good CNS permeability ( P app = 14.7 × 10 -6 cm/sec in MDCK assay), and low drug efflux (efflux ratio = 3.3).

  3. Cost-effectiveness of histamine receptor-2 antagonist versus proton pump inhibitor for stress ulcer prophylaxis in critically ill patients*.

    PubMed

    MacLaren, Robert; Campbell, Jon

    2014-04-01

    To examine the cost-effectiveness of using histamine receptor-2 antagonist or proton pump inhibitor for stress ulcer prophylaxis. Decision analysis model examining costs and effectiveness of using histamine receptor-2 antagonist or proton pump inhibitor for stress ulcer prophylaxis. Costs were expressed in 2012 U.S. dollars from the perspective of the institution and included drug regimens and the following outcomes: clinically significant stress-related mucosal bleed, ventilator-associated pneumonia, and Clostridium difficile infection. Effectiveness was the mortality risk associated with these outcomes and represented by survival. Costs, occurrence rates, and mortality probabilities were extracted from published data. A simulation model. A mixed adult ICU population. Histamine receptor-2 antagonist or proton pump inhibitor for 9 days of stress ulcer prophylaxis therapy. Output variables were expected costs, expected survival rates, incremental cost, and incremental survival rate. Univariate sensitivity analyses were conducted to determine the drivers of incremental cost and incremental survival. Probabilistic sensitivity analysis was conducted using second-order Monte Carlo simulation. For the base case analysis, the expected cost of providing stress ulcer prophylaxis was $6,707 with histamine receptor-2 antagonist and $7,802 with proton pump inhibitor, resulting in a cost saving of $1,095 with histamine receptor-2 antagonist. The associated mortality probabilities were 3.819% and 3.825%, respectively, resulting in an absolute survival benefit of 0.006% with histamine receptor-2 antagonist. The primary drivers of incremental cost and survival were the assumptions surrounding ventilator-associated pneumonia and bleed. The probabilities that histamine receptor-2 antagonist was less costly and provided favorable survival were 89.4% and 55.7%, respectively. A secondary analysis assuming equal rates of C. difficile infection showed a cost saving of $908 with histamine

  4. Models for H₃ receptor antagonist activity of sulfonylurea derivatives.

    PubMed

    Khatri, Naveen; Madan, A K

    2014-03-01

    The histamine H₃ receptor has been perceived as an auspicious target for the treatment of various central and peripheral nervous system diseases. In present study, a wide variety of 60 2D and 3D molecular descriptors (MDs) were successfully utilized for the development of models for the prediction of antagonist activity of sulfonylurea derivatives for histamine H₃ receptors. Models were developed through decision tree (DT), random forest (RF) and moving average analysis (MAA). Dragon software version 6.0.28 was employed for calculation of values of diverse MDs of each analogue involved in the data set. The DT classified and correctly predicted the input data with an impressive non-error rate of 94% in the training set and 82.5% during cross validation. RF correctly classified the analogues into active and inactive with a non-error rate of 79.3%. The MAA based models predicted the antagonist histamine H₃ receptor activity with non-error rate up to 90%. Active ranges of the proposed MAA based models not only exhibited high potency but also showed improved safety as indicated by relatively high values of selectivity index. The statistical significance of the models was assessed through sensitivity, specificity, non-error rate, Matthew's correlation coefficient and intercorrelation analysis. Proposed models offer vast potential for providing lead structures for development of potent but safe H₃ receptor antagonist sulfonylurea derivatives. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. The interleukin (IL)-1 cytokine family--Balance between agonists and antagonists in inflammatory diseases.

    PubMed

    Palomo, Jennifer; Dietrich, Damien; Martin, Praxedis; Palmer, Gaby; Gabay, Cem

    2015-11-01

    The interleukin (IL)-1 family of cytokines comprises 11 members, including 7 pro-inflammatory agonists (IL-1α, IL-1β, IL-18, IL-33, IL-36α, IL-36β, IL-36γ) and 4 defined or putative antagonists (IL-1R antagonist (IL-1Ra), IL-36Ra, IL-37, and IL-38) exerting anti-inflammatory activities. Except for IL-1Ra, IL-1 cytokines do not possess a leader sequence and are secreted via an unconventional pathway. In addition, IL-1β and IL-18 are produced as biologically inert pro-peptides that require cleavage by caspase-1 in their N-terminal region to generate active proteins. N-terminal processing is also required for full activity of IL-36 cytokines. The IL-1 receptor (IL-1R) family comprises 10 members and includes cytokine-specific receptors, co-receptors and inhibitory receptors. The signaling IL-1Rs share a common structure with three extracellular immunoglobulin (Ig) domains and an intracellular Toll-like/IL-1R (TIR) domain. IL-1 cytokines bind to their specific receptor, which leads to the recruitment of a co-receptor and intracellular signaling. IL-1 cytokines induce potent inflammatory responses and their activity is tightly controlled at the level of production, protein processing and maturation, receptor binding and post-receptor signaling by naturally occurring inhibitors. Some of these inhibitors are IL-1 family antagonists, while others are IL-1R family members acting as membrane-bound or soluble decoy receptors. An imbalance between agonist and antagonist levels can lead to exaggerated inflammatory responses. Several genetic modifications or mutations associated with dysregulated IL-1 activity and autoinflammatory disorders were identified in mouse models and in patients. These findings paved the road to the successful use of IL-1 inhibitors in diseases that were previously considered as untreatable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. 2-Aminoethyl Methylphosphonate, a Potent and Rapidly Acting Antagonist of GABA A-ρ1 Receptors

    DOE PAGES

    Xie, A.; Yan, J.; Yue, L.; ...

    2011-08-02

    All three classes of receptors for the inhibitory neurotransmitter GABA (GABAR) are expressed in the retina. This study investigated roles of GABAR, especially GABA(C)R (GABA(A)-rho), in retinal signaling in vivo by studying effects on the mouse electroretinogram (ERG) of genetic deletion of GABA(C)R versus pharmacological blockade using receptor antagonists. Brief full-field flash ERGs were recorded from anesthetized GABA(C)R(-/-) mice, and WT C57BL/6 (B6) mice, before and after intravitreal injection of GABA(C)R antagonists, TPMPA, 3-APMPA, or the more recently developed 2-AEMP; GABA(A)R antagonist, SR95531; GABA(B)R antagonist, CGP, and agonist, baclofen. Intravitreal injections of TPMPA and SR95531 were also made in Brownmore » Norway rats. The effect of 2-AEMP on GABA-induced current was tested directly in isolated rat rod bipolar cells, and 2-AEMP was found to preferentially block GABA(C)R in those cells. Maximum amplitudes of dark (DA) and light-adapted (LA) ERG b-waves were reduced in GABA(C)R(-/-) mice, compared to B6 mice, by 30-60%; a-waves were unaltered and oscillatory potential amplitudes were increased. In B6 mice, after injection of TPMPA (also in rats), 3-APMPA or 2-AEMP, ERGs became similar to ERGs of GABA(C)R(-/-) mice. Blockade of GABA(A)Rs and GABA(B)Rs, or agonism of GABA(B)Rs did not alter B6 DA b-wave amplitude. The negative scotopic threshold response (nSTR) was slightly less sensitive in GABA(C)R(-/-) than in B6 mice, and unaltered by 2-AEMP. However, amplitudes of nSTR and photopic negative response (PhNR), both of which originate from inner retina, were enhanced by TPMPA and 3-APMPA, each of which has GABA(B) agonist properties, and further increased by baclofen. The finding that genetic deletion of GABA(C)R, the GABA(C)R antagonist 2-AEMP, and other antagonists all reduced ERG b-wave amplitude, supports a role for CABA(C)R in determining the maximum response amplitude of bipolar cells contributing to the b-wave. GABA(C)R antagonists

  7. Pharmacological lineage analysis revealed the binding affinity of broad-spectrum substance P antagonists to receptors for gonadotropin-releasing peptide.

    PubMed

    Arai, Kazune; Kashiwazaki, Aki; Fujiwara, Yoko; Tsuchiya, Hiroyoshi; Sakai, Nobuya; Shibata, Katsushi; Koshimizu, Taka-aki

    2015-02-15

    A group of synthetic substance P (SP) antagonists, such as [Arg(6),D-Trp(7,9),N(Me)Phe(8)]-substance P(6-11) and [D-Arg(1),D-Phe(5),D-Trp(7,9),Leu(11)]-substance P, bind to a range of distinct G-protein-coupled receptor (GPCR) family members, including V1a vasopressin receptors, and they competitively inhibit agonist binding. This extended accessibility enabled us to identify a GPCR subset with a partially conserved binding site structure. By combining pharmacological data and amino acid sequence homology matrices, a pharmacological lineage of GPCRs that are sensitive to these two SP antagonists was constructed. We found that sensitivity to the SP antagonists was not limited to the Gq-protein-coupled V1a and V1b receptors; Gs-coupled V2 receptors and oxytocin receptors, which couple with both Gq and Gi, also demonstrated sensitivity. Unexpectedly, a dendrogram based on the amino acid sequences of 222 known GPCRs showed that a group of receptors sensitive to the SP antagonists are located in close proximity to vasopressin/oxytocin receptors. Gonadotropin-releasing peptide receptors, located near the vasopressin receptors in the dendrogram, were also sensitive to the SP analogs, whereas α1B adrenergic receptors, located more distantly from the vasopressin receptors, were not sensitive. Our finding suggests that pharmacological lineage analysis is useful in selecting subsets of candidate receptors that contain a conserved binding site for a ligand with broad-spectrum binding abilities. The knowledge that the binding site of the two broad-spectrum SP analogs partially overlaps with that of distinct peptide agonists is valuable for understanding the specificity/broadness of peptide ligands. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Progesterone receptor isoforms, agonists and antagonists differentially reprogram estrogen signaling

    PubMed Central

    Singhal, Hari; Greene, Marianne E.; Zarnke, Allison L.; Laine, Muriel; Al Abosy, Rose; Chang, Ya-Fang; Dembo, Anna G.; Schoenfelt, Kelly; Vadhi, Raga; Qiu, Xintao; Rao, Prakash; Santhamma, Bindu; Nair, Hareesh B.; Nickisch, Klaus J.; Long, Henry W.; Becker, Lev; Brown, Myles; Greene, Geoffrey L.

    2018-01-01

    Major roadblocks to developing effective progesterone receptor (PR)-targeted therapies in breast cancer include the lack of highly-specific PR modulators, a poor understanding of the pro- or anti-tumorigenic networks for PR isoforms and ligands, and an incomplete understanding of the cross talk between PR and estrogen receptor (ER) signaling. Through genomic analyses of xenografts treated with various clinically-relevant ER and PR-targeting drugs, we describe how the activation or inhibition of PR differentially reprograms estrogen signaling, resulting in the segregation of transcriptomes into separate PR agonist and antagonist-mediated groups. These findings address an ongoing controversy regarding the clinical utility of PR agonists and antagonists, alone or in combination with tamoxifen, for breast cancer management. Additionally, the two PR isoforms PRA and PRB, bind distinct but overlapping genomic sites and interact with different sets of co-regulators to differentially modulate estrogen signaling to be either pro- or anti-tumorigenic. Of the two isoforms, PRA inhibited gene expression and ER chromatin binding significantly more than PRB. Differential gene expression was observed in PRA and PRB-rich patient tumors and PRA-rich gene signatures had poorer survival outcomes. In support of antiprogestin responsiveness of PRA-rich tumors, gene signatures associated with PR antagonists, but not PR agonists, predicted better survival outcomes. The better patient survival associated with PR antagonists versus PR agonists treatments was further reflected in the higher in vivo anti-tumor activity of therapies that combine tamoxifen with PR antagonists and modulators. This study suggests that distinguishing common effects observed due to concomitant interaction of another receptor with its ligand (agonist or antagonist), from unique isoform and ligand-specific effects will inform the development of biomarkers for patient selection and translation of PR

  9. Highly Increased 125I-JR11 Antagonist Binding In Vitro Reveals Novel Indications for sst2 Targeting in Human Cancers.

    PubMed

    Reubi, Jean Claude; Waser, Beatrice; Mäcke, Helmut; Rivier, Jean

    2017-02-01

    There is recent in vitro and in vivo evidence that somatostatin receptor subtype 2 (sst 2 ) antagonists are better tools to target neuroendocrine tumors (NETs) than sst 2 agonists. Indeed, antagonists bind to a greater number of sst 2 sites than agonists. Whether sst 2 antagonists could be used successfully to target non-NETs, expressing low sst 2 density, is unknown. Here, we compare quantitatively 125 I-JR11 sst 2 antagonist binding in vitro with that of the sst 2 agonist 125 I-Tyr 3 -octreotide in large varieties of non-NET and NET. In vitro receptor autoradiography was performed with 125 I-JR11 and 125 I-Tyr 3 -octreotide in cancers from prostate, breast, colon, kidney, thyroid, and lymphoid tissues as well as NETs as reference. In general, 125 I-JR11 binds to many more sst 2 sites than 125 I-Tyr 3 -octreotide. In 13 breast cancers, 8 had a low binding (mean density, 844 ± 168 dpm/mg of tissue) with the agonist whereas 12 had a high binding (mean density, 4,447 ± 1,128 dpm/mg of tissue) with the antagonist. All 12 renal cell cancers showed a low binding of sst 2 with the agonist (mean density, 348 ± 49 dpm/mg of tissue) whereas all cases had a high sst 2 binding with the antagonist (mean density, 3,777 ± 582 dpm/mg of tissue). One of 5 medullary thyroid cancers was positive with the agonist, whereas 5 of 5 were positive with the antagonist. In 15 non-Hodgkin lymphomas, many more sst 2 sites were labeled with the antagonist than with the agonist. In 14 prostate cancers, none had sst 2 binding with the agonist and only 4 had a weak binding with the antagonist. None of 17 colon cancers showed sst 2 sites with the agonist, and only 3 cases were weakly positive with the antagonist. In the various tumor types, adjacent sst 2 -expressing tissues such as vessels, lymphocytes, nerves, mucosa, or stroma were more strongly labeled with the antagonist than with the agonist. The reference NET cases, incubated with a smaller amount of tracer, were also found to have many

  10. An assessment of the effects of serotonin 6 (5-HT6) receptor antagonists in rodent models of learning.

    PubMed

    Lindner, Mark D; Hodges, Donald B; Hogan, John B; Orie, Anitra F; Corsa, Jason A; Barten, Donna M; Polson, Craig; Robertson, Barbara J; Guss, Valerie L; Gillman, Kevin W; Starrett, John E; Gribkoff, Valentin K

    2003-11-01

    Antagonists of serotonin 6 (5-HT6) receptors have been reported to enhance cognition in animal models of learning, although this finding has not been universal. We have assessed the therapeutic potential of the specific 5-HT6 receptor antagonists 4-amino-N-(2,6-bis-methylamino-pyrimidin-4-yl)-benzenesulfonamide (Ro 04-6790) and 5-chloro-N-(4-methoxy-3-piperazin-1-yl-phenyl)-3-methyl-2-benzothiophenesulfonamide (SB-271046) in rodent models of cognitive function. Although mice express the 5-HT6 receptor and the function of this receptor has been investigated in mice, all reports of activity with 5-HT6 receptor antagonists have used rat models. In the present study, receptor binding revealed that the pharmacological properties of the mouse receptor are different from the rat and human receptor: Ro 04-6790 does not bind to the mouse 5-HT6 receptor, so all in vivo testing included in the present report was conducted in rats. We replicated previous reports that 5-HT6 receptor antagonists produce a stretching syndrome previously shown to be mediated through cholinergic mechanisms, but Ro 04-6790 and SB-271046 failed to attenuate scopolamine-induced deficits in a test of contextual fear conditioning. We also failed to replicate the significant effects reported previously in both an autoshaping task and in a version of the Morris water maze. The results of our experiments are not consistent with previous reports that suggested that 5-HT6 antagonists might have therapeutic potential for cognitive disorders.

  11. Discovery of an Orally Bioavailable Gonadotropin-Releasing Hormone Receptor Antagonist.

    PubMed

    Kim, Seon-Mi; Lee, Minhee; Lee, So Young; Park, Euisun; Lee, Soo-Min; Kim, Eun Jeong; Han, Min Young; Yoo, Taekyung; Ann, Jihyae; Yoon, Suyoung; Lee, Jiyoun; Lee, Jeewoo

    2016-10-13

    We developed a compound library for orally available gonadotropin-releasing hormone (GnRH) receptor antagonists that were based on a uracil scaffold. On the basis of in vitro activity and CYP inhibition profile, we selected 18a (SKI2496) for further in vivo studies. Compound 18a exhibited more selective antagonistic activity toward the human GnRH receptors over the GnRHRs in monkeys and rats, and this compound also showed inhibitory effects on GnRH-mediated signaling pathways. Pharmacokinetic and pharmacodynamic evaluations of 18a revealed improved bioavailability and superior gonadotropic suppression activity compared with Elagolix, the most clinically advanced compound. Considering that 18a exhibited highly potent and selective antagonistic activity toward the hGnRHRs along with favorable pharmacokinetic profiles, we believe that 18a may represent a promising candidate for an orally available hormonal therapy.

  12. Efficacy and safety of 5-hydroxytryptamine 3 receptor antagonists in irritable bowel syndrome: A systematic review and meta-analysis of randomized controlled trials

    PubMed Central

    Tang, Yurong; Xiong, Wenjie; Shen, Xiaoxue; Jiang, Ling; Lin, Lin

    2017-01-01

    Aim We assessed the efficacy and safety of 5-hydroxytryptamine (5-HT3) receptor antagonists in adults with non-constipated irritable bowel syndrome (IBS) or diarrhea-predominant IBS (IBS-D). Methods We searched PubMed, MEDLINE, EMBASE, and the Cochrane Controlled Trials Register for randomized controlled trials (RCTs) involving adults with non-constipated IBS or IBS-D that compared 5-HT3 receptor antagonists with placebo or other conventional treatment. Dichotomous symptom data were pooled to obtain the relative risk (RR) and 95% confidence intervals (CIs) for improving global IBS symptoms, abdominal pain and abnormal bowel habits, or stool consistency symptoms after therapy, and adverse events, including constipation. Meta- analysis was performed with Mantel Haenszel method using Revman 5.3 software. Results We included 21 RCTs; 16 were high quality (Jadad score ≥ 4). The pooled RR of global IBS symptoms improved by 5-HT3 receptor antagonists versus placebo or mebeverine was 1.56 (95% CI: 1.43–1.71); alosetron, ramosetron, and cilansetron had similar treatment effects. The pooled RR of abdominal pain relieved by 5-HT3 receptor antagonists versus placebo was 1.33 (95% CI: 1.26–1.39). The pooled RR showed that 5-HT3 receptor antagonists improved abnormal bowel habits or stool consistency symptoms (RR = 1.63, 95% CI: 1.33, 1.99). The pooled RR of adverse events following 5-HT3 receptor antagonist treatment was 1.15 (95% CI: 1.08, 1.22). Subgroup analysis indicated that alosetron had a high rate of adverse effects (RR = 1.16, 95% CI: 1.08, 1.25); adverse events following ramosetron treatment were not statistically significantly different. 5-HT3 receptor antagonists were likelier to cause constipation: the pooled RR of constipation developing with 5-HT3 receptor antagonist versus placebo was 3.71 (95% CI: 2.98–4.61). However, constipation was likelier in patients with non-constipated IBS after taking 5-HT3 receptor antagonists than in patients with IBS-D only

  13. Eplerenone: a selective aldosterone receptor antagonist for patients with heart failure.

    PubMed

    Barnes, Brian J; Howard, Patricia A

    2005-01-01

    To evaluate the pharmacology, pharmacokinetics, safety, and clinical use of eplerenone in heart failure (HF). English-language MEDLINE searches were performed from 1966 to May 2004. Key words included eplerenone, aldosterone receptor antagonist, heart failure, myocardial infarction, left-ventricular dysfunction, and cost-effectiveness. Additional references were identified from bibliographies of selected articles. Human trials evaluating the efficacy, safety, and cost-effectiveness of aldosterone receptor antagonists in HF were evaluated. Eplerenone is the first selective aldosterone receptor antagonist. The drug is indicated to improve the survival of stable patients with left-ventricular systolic dysfunction (ejection fraction <40%) and clinical evidence of HF following acute myocardial infarction. Efficacy and safety in this population have been demonstrated in a large, randomized clinical trial. Eplerenone is associated with severe and sometimes life-threatening hyperkalemia. Patients with reduced renal function and diabetes, as well as those on other drugs that increase potassium levels, are at highest risk. Eplerenone is metabolized by the cytochrome P450 system and may interact with drugs that interfere with this system. A major advantage of eplerenone over the nonselective aldosterone receptor antagonist spironolactone is lack of binding to progesterone and androgen receptors, which is associated with drug-induced gynecomastia, breast pain, and impotence. The addition of eplerenone to traditional HF therapy has been shown to reduce morbidity and mortality in patients who develop left-ventricular dysfunction after acute myocardial infarction. Eplerenone's selectivity reduces sex hormone-related adverse effects. Despite these benefits, the overall cost-effectiveness has yet to be determined.

  14. Inhibition of Ebola and Marburg Virus Entry by G Protein-Coupled Receptor Antagonists.

    PubMed

    Cheng, Han; Lear-Rooney, Calli M; Johansen, Lisa; Varhegyi, Elizabeth; Chen, Zheng W; Olinger, Gene G; Rong, Lijun

    2015-10-01

    Filoviruses, consisting of Ebola virus (EBOV) and Marburg virus (MARV), are among the most lethal infectious threats to mankind. Infections by these viruses can cause severe hemorrhagic fevers in humans and nonhuman primates with high mortality rates. Since there is currently no vaccine or antiviral therapy approved for humans, there is an urgent need to develop prophylactic and therapeutic options for use during filoviral outbreaks and bioterrorist attacks. One of the ideal targets against filoviral infection and diseases is at the entry step, which is mediated by the filoviral glycoprotein (GP). In this report, we screened a chemical library of small molecules and identified numerous inhibitors, which are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs, including histamine receptors, 5-HT (serotonin) receptors, muscarinic acetylcholine receptor, and adrenergic receptor. These inhibitors can effectively block replication of both infectious EBOV and MARV, indicating a broad antiviral activity of the GPCR antagonists. The time-of-addition experiment and microscopic studies suggest that GPCR antagonists block filoviral entry at a step following the initial attachment but prior to viral/cell membrane fusion. These results strongly suggest that GPCRs play a critical role in filoviral entry and GPCR antagonists can be developed as an effective anti-EBOV/MARV therapy. Infection of Ebola virus and Marburg virus can cause severe illness in humans with a high mortality rate, and currently there is no FDA-approved vaccine or therapeutic treatment available. The 2013-2015 epidemic in West Africa underscores a lack of our understanding in the infection and pathogenesis of these viruses and the urgency of drug discovery and development. In this study, we have identified numerous inhibitors that are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs. These inhibitors can effectively block replication of both infectious

  15. Inhibition of Ebola and Marburg Virus Entry by G Protein-Coupled Receptor Antagonists

    PubMed Central

    Cheng, Han; Lear-Rooney, Calli M.; Johansen, Lisa; Varhegyi, Elizabeth; Chen, Zheng W.; Olinger, Gene G.

    2015-01-01

    ABSTRACT Filoviruses, consisting of Ebola virus (EBOV) and Marburg virus (MARV), are among the most lethal infectious threats to mankind. Infections by these viruses can cause severe hemorrhagic fevers in humans and nonhuman primates with high mortality rates. Since there is currently no vaccine or antiviral therapy approved for humans, there is an urgent need to develop prophylactic and therapeutic options for use during filoviral outbreaks and bioterrorist attacks. One of the ideal targets against filoviral infection and diseases is at the entry step, which is mediated by the filoviral glycoprotein (GP). In this report, we screened a chemical library of small molecules and identified numerous inhibitors, which are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs, including histamine receptors, 5-HT (serotonin) receptors, muscarinic acetylcholine receptor, and adrenergic receptor. These inhibitors can effectively block replication of both infectious EBOV and MARV, indicating a broad antiviral activity of the GPCR antagonists. The time-of-addition experiment and microscopic studies suggest that GPCR antagonists block filoviral entry at a step following the initial attachment but prior to viral/cell membrane fusion. These results strongly suggest that GPCRs play a critical role in filoviral entry and GPCR antagonists can be developed as an effective anti-EBOV/MARV therapy. IMPORTANCE Infection of Ebola virus and Marburg virus can cause severe illness in humans with a high mortality rate, and currently there is no FDA-approved vaccine or therapeutic treatment available. The 2013-2015 epidemic in West Africa underscores a lack of our understanding in the infection and pathogenesis of these viruses and the urgency of drug discovery and development. In this study, we have identified numerous inhibitors that are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs. These inhibitors can effectively block replication of

  16. Cocaine Disrupts Histamine H3 Receptor Modulation of Dopamine D1 Receptor Signaling: σ1-D1-H3 Receptor Complexes as Key Targets for Reducing Cocaine's Effects

    PubMed Central

    Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Hoffmann, Hanne M.; Fuentes, Silvia; Rosell-Vilar, Santi; Gasperini, Paola; Rodríguez-Ruiz, Mar; Medrano, Mireia; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carme; Ferré, Sergi; Ortiz, Jordi; Canela, Enric

    2014-01-01

    The general effects of cocaine are not well understood at the molecular level. What is known is that the dopamine D1 receptor plays an important role. Here we show that a key mechanism may be cocaine's blockade of the histamine H3 receptor-mediated inhibition of D1 receptor function. This blockade requires the σ1 receptor and occurs upon cocaine binding to σ1-D1-H3 receptor complexes. The cocaine-mediated disruption leaves an uninhibited D1 receptor that activates Gs, freely recruits β-arrestin, increases p-ERK 1/2 levels, and induces cell death when over activated. Using in vitro assays with transfected cells and in ex vivo experiments using both rats acutely treated or self-administered with cocaine along with mice depleted of σ1 receptor, we show that blockade of σ1 receptor by an antagonist restores the protective H3 receptor-mediated brake on D1 receptor signaling and prevents the cell death from elevated D1 receptor signaling. These findings suggest that a combination therapy of σ1R antagonists with H3 receptor agonists could serve to reduce some effects of cocaine. PMID:24599455

  17. A long-lasting oral preformulation of the angiotensin II AT1 receptor antagonist losartan.

    PubMed

    De Paula, Washington X; Denadai, Ângelo M L; Braga, Aline N G; Shastri, V Prasad; Pinheiro, Sérgio V B; Frezard, Frederic; Santos, Robson A S; Sinisterra, Ruben D

    2018-05-10

    Losartan (Los), a non-peptidic orally active agent, reduces arterial pressure through specific and selective blockade of angiotensin II receptor AT1. However, this widely used AT1 antagonist presents low bioavailability and needs once or twice a day dosage. In order to improve its bioavailability, we used the host: guest strategy based on β-cyclodextrin (βCD). The results suggest that Los included in βCD showed a typical pulsatile release pattern after oral administration to rats, with increasing the levels of plasma of Los. In addition, the inclusion compound presented oral efficacy for 72 h, in contrast to Los alone, which shows antagonist effect for only 6 h. In transgenic (mREN2)L27 rats, the Los/βCD complex reduced blood pressure for about 6 d, whereas Los alone reduced blood pressure for only 2 d. More importantly, using this host: guest strategy, sustained release of Los for over a week via the oral route can be achieved without the need for encapsulation in a polymeric carrier. The proposed preformulation increased the efficacy reducing the dose or spacing between each dose intake.

  18. Blonanserin, an antipsychotic and dopamine D₂/D₃receptor antagonist, and ameliorated alcohol dependence.

    PubMed

    Takaki, Manabu; Ujike, Hiroshi

    2013-01-01

    Blonanserin (BNS) is used for treatment of both positive and negative symptoms of schizophrenia in Japan and Korea. Because BNS has weak α1 receptor blocking activities and is almost devoid of histamine H1 and muscarinic M1 antagonist activity, BNS is better tolerated than other atypical antipsychotics. A high degree of D₃ receptor blockage is reported to be predictive of drug abuse and alcoholism, and BNS has strong D₃ receptor antagonism. Thus, BNS may be useful in the treatment of alcoholism. We present a case in which BNS ameliorated alcohol dependence.

  19. N-Substituted cis-4a-(3-Hydroxyphenyl)-8a-methyloctahydroisoquinolines Are Opioid Receptor Pure Antagonists

    PubMed Central

    Carroll, F. Ivy; Chaudhari, Sachin; Thomas, James B.; Mascarella, S. Wayne; Gigstad, Kenneth M.; Deschamps, Jeffrey; Navarro, Hernán A.

    2008-01-01

    N-Substituted cis-4a-(3-hydroxyphenyl)-8a-methyloctahydroisoquinolines (6a–g) were designed and synthesized as conformationally constrained analogues of the trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidine (4) class of opioid receptor pure antagonists. The methyloctahydroisoquinolines 6a–g can exist in conformations where the 3-hydroxyphenyl substituent is either axial or equatorial similar to the (3-hydroxyphenyl)piperidines 4. The 3-hydroxyphenyl equatorial conformation is responsible for the antagonist activity observed in the (3-hydroxyphenyl)piperidine antagonists. Single crystal X-ray analysis of 6a shows that the 3-hydroxyphenyl equatorial conformation is favored in the solid state. Molecular modeling studies also suggest that the equatorial conformation has the lower potential energy relative to the axial conformation. Evaluation of compounds 6a–g in the [35S]GTP-γ-S in vitro functional assay showed that they were opioid receptor pure antagonists. N-[4a-(3-Hydroxyphenyl)-8a-methyl-2-(3-phenylpropyl)octahydroisoquinoline-6-yl]-3-(piperidin-1-yl)propionamide (6d) with a Ke of 0.27 nM at the κ opioid receptor with 154- and 46-fold selectively relative to the μ and δ receptors, respectively, possessed the best combination of κ potency and selectivity. PMID:16366600

  20. Central adenosine A1 receptors inhibit cough via suppression of excitatory glutamatergic and tachykininergic neurotransmission.

    PubMed

    El-Hashim, Ahmed Z; Mathews, Seena; Al-Shamlan, Fajer

    2018-05-16

    The A 1 adenosine receptor is reported to mediate several excitatory effects in the airways and has inhibitory effects in the central nervous system. In this study, we investigated the role of peripheral and central A 1 adenosine receptors in regulating cough and airway obstruction. Drugs were administered to guinea pigs via the inhaled or intracerebroventricular (i.c.v.) routes. Cough was induced by exposing guinea pigs to aerosolised 0.4 M citric acid, following drug inhalation or i.c.v. infusion, in a plethysmograph box. An automated analyzer recorded simultaneously both cough and airway obstruction. Inhaled A 1 receptor agonist, cyclopentyladenosine (CPA), dose-dependently inhibited cough (cough: 8 ± 3.4, 6.0 ± 4.5 and 1.9 ± 0.6 vs. 15.4 ± 3.7 for 0.3, 0.6 and 1, mg ml -1 vs. vehicle, respectively) and also inhibited airway obstruction. Similarly, CPA, administered i.c.v., inhibited both the citric acid-induced cough (cough: 21.3 ± 4.0 and 8.8 ± 3.4 vs. 23 ± 3.0 for 1.8 and 3 nmole ml -1 vs. vehicle, respectively) and airway obstruction; this was prevented by pretreatment with the A 1 adenosine receptor antagonist cyclopenty l-1,3-dipropylxanthine (DPCPX; i.c.v.). Treatment with DPCPX alone, dose-dependently enhanced the citric acid-induced cough and airway obstruction. This was reversed following treatment with either the GLUN1 receptor antagonist DL-2-amino-5-phosphonovaleric acid or the NK 1 receptor antagonist FK-888. These findings suggest that activation of either peripheral or central A 1 adenosine receptors inhibits citric acid-induced cough and airway obstruction. The data also suggest that tonic activation of central adenosine A 1 receptors serves as a negative regulator of cough and airway obstruction, secondary to inhibition of excitatory glutamatergic and tachykininergic neurotransmission. This article is protected by copyright. All rights reserved.

  1. Prevention of drug priming- and cue-induced reinstatement of MDMA-seeking behaviors by the CB1 cannabinoid receptor antagonist AM251.

    PubMed

    Nawata, Yoko; Kitaichi, Kiyoyuki; Yamamoto, Tsuneyuki

    2016-03-01

    3,4-Methylenedioxymethamphetamine (MDMA), a methamphetamine (METH) derivative, exhibits METH-like actions at monoamine transporters and positive reinforcing effects in rodents and primates. The purposes of the present study were to determine whether cross-reinstatement would be observed between MDMA and METH and if the cannabinoid receptor, a receptor known to play critical roles in the brain reward system, could modulate MDMA craving. Rats were trained to press a lever for intravenous MDMA (0.3mg/infusion) or METH (0.02mg/infusion) infusions under a fixed ratio 1 schedule paired with drug-associated cues (light and tone). Following drug self-administration acquisition training, rats underwent extinction training (an infusion of saline). Reinstatement tests were performed once the extinction criteria were achieved. In MDMA-trained rats, the MDMA-priming injection (3.2mg/kg, i.p.) or re-exposure to MDMA-associated cues reinstated MDMA-seeking behavior. Additionally, a priming injection of METH (1.0mg/kg, i.p.) also reinstated MDMA-seeking behavior. In contrast, none of the MDMA doses reinstated METH-seeking behavior in the METH-trained rats. The CB1 cannabinoid receptor antagonist AM251 markedly attenuated the MDMA-seeking behaviors induced by MDMA-priming injection or re-exposure to MDMA-associated cues in a dose-dependent manner. These findings show that MDMA has obvious addictive potential for reinstating drug-seeking behavior and that METH can be an effective stimulus for reinstating MDMA-seeking behaviors. Furthermore, based on the attenuating effect of AM251 in the reinstatement of MDMA-seeking behaviors, drugs that suppress CB1 receptors may be used in treatment of MDMA dependence. Copyright © 2016. Published by Elsevier Ireland Ltd.

  2. Regulation of ERRα Gene Expression by Estrogen Receptor Agonists and Antagonists in SKBR3 Breast Cancer Cells: Differential Molecular Mechanisms Mediated by G Protein-Coupled Receptor GPR30/GPER-1

    PubMed Central

    Li, Yin; Birnbaumer, Lutz; Teng, Christina T.

    2010-01-01

    In selected tissues and cell lines, 17β-estradiol (E2) regulates the expression of estrogen-related receptor α (ERRα), a member of the orphan nuclear receptor family. This effect is thought to be mediated by the estrogen receptor α (ERα). However in the ERα- and ERβ-negative SKBR3 breast cancer cell line, physiological levels of E2 also stimulate ERRα expression. Here, we explored the molecular mechanism that mediates estrogen action in ER-negative breast cancer cells. We observed that E2, the ERα agonist, as well as the ERα antagonists ICI 182,780 and tamoxifen (TAM), a selective ER modulator, stimulate the transcriptional activity of the ERRα gene and increase the production of ERRα protein in SKBR3 cells. Moreover, the ERRα downstream target genes expression and cellular proliferation are also increased. We show further that the G protein-coupled receptor GPR30/GPER-1 (GPER-1) mediates these effects. The GPER-1 specific ligand G-1 mimics the actions of E2, ICI 182,780, and TAM on ERRα expression, and changing the levels of GPER-1 mRNA by overexpression or small interfering RNA knockdown affected the expression of ERRα accordingly. Utilizing inhibitors, we delineate a different downstream pathway for ER agonist and ER antagonist-triggered signaling through GPER-1. We also find differential histone acetylation and transcription factor recruitment at distinct nucleosomes of the ERRα promoter, depending on whether the cells are activated with E2 or with ER antagonists. These findings provide insight into the molecular mechanisms of GPER-1/ERRα-mediated signaling and may be relevant to what happens in breast cancer cells escaping inhibitory control by TAM. PMID:20211987

  3. Effects of the 5-HT7 receptor antagonists SB-269970 and DR 4004 in autoshaping Pavlovian/instrumental learning task.

    PubMed

    Meneses, Alfredo

    2004-12-06

    There is an important debate regarding the functional role of the 5-HT(1A) and 5-HT(7) receptor in memory systems. Hence, the objective of this paper is to investigate the function of serotonin (5-hydroxytryptamine, 5-HT) in memory consolidation, utilising an autoshaping Pavlovian/instrumental learning test. Specific antagonists at 5-HT(1A) (WAY 100635) and 5-HT(7) (SB-269970 or DR 4004) receptors administered i.p. or s.c.) after training, significantly decreased the improvement of performance produced by the 5-HT(1A/7) agonist 8-OH-DPAT to levels lower than controls'. These same antagonists attenuated the decreased level of performance produced by mCPP, although they decrease the performance levels after p-chloroamphetamine (PCA) lesion of the 5-HT system, which has no effect on its own on the conditioned response. Moreover, SB-269970 or DR 4004 reversed amnesia induced by scopolamine and dizocilpine. These data confirm a role for 5-HT(1A) and 5-HT(7) receptors in memory formation and support the hypothesis that serotonergic, cholinergic, and glutamatergic systems interact in cognitively impaired animals. These findings support a potential role for both 5-HT(1A) and 5-HT(7) receptors in the pathophysiology and/or treatment of schizophrenia, cognitive deficits and the mechanism of action of atypical antipsychotic drugs.

  4. 1,2,4-Benzothiadiazine-1,1-dioxide derivatives as ionotropic glutamate receptor ligands: synthesis and structure-activity relationships.

    PubMed

    Varano, Flavia; Catarzi, Daniela; Colotta, Vittoria; Squarcialupi, Lucia; Matucci, Rosanna

    2014-11-01

    Ionotropic glutamate receptor (iGluR) modulators, specially AMPA receptor antagonists, are potential tools for numerous therapeutic applications in neurological disorders, including Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, epilepsy, chronic pain, and neuropathology ensuing from cerebral ischemia or cardiac arrest. In this work, the synthesis and binding affinities at the Gly/NMDA, AMPA, and kainic acid (KA) receptors of a new series of 1,2,4-benzothiadiazine-1,1-dioxide derivatives are reported. The results show that 1,2,4-benzothiadiazine-1,1-dioxide is a new scaffold for obtaining iGluR ligands. Moreover, this work has led us to the 7-(3-formylpyrrol-1-yl)-6-trifluoromethyl substituted compound 7, which displays the highest AMPA receptor affinity and high selectivity versus the Gly/NMDA (90-fold) and KA (46-fold) receptors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Endothelin-a receptor antagonist treatment improves the periosteal microcirculation after hindlimb ischemia and reperfusion in the rat.

    PubMed

    Wolfárd, Antal; Császár, József; Gera, László; Petri, András; Simonka, János Aurél; Balogh, Adáa; Boros, Mihály

    2002-12-01

    To examine the microcirculatory changes in the rat tibial periosteum after hindlimb ischemia and reperfusion and to evaluate the effects of endothelin-A (ET-A) receptor antagonist therapy in this condition. The healing and functioning of vascularized bone autografts depend mainly on the patency of the microcirculation, and the activation of ET-A receptors may be an important component of the tissue response that occurs during ischemia-reoxygenation injuries. Wistar rats were subjected to 1 hour of hindlimb ischemia and 3 hours of reperfusion. The periosteal microcirculation was visualized by intravital fluorescence microscopy. The leukocyte rolling and adherence in the postcapillary venules and the functional capillary density of the periosteum were determined. Two separate groups were treated with the selective ET-A receptor antagonist BQ 610 or the novel ET-A receptor antagonist ETR-p1/fl peptide at the onset of reperfusion. Reperfusion was accompanied by a significant decrease in functional capillary density and by an increase in the primary and secondary leukocyte-endothelial cell interactions. ET-A receptor inhibition reduced the leukocyte rolling and firm adherence and attenuated the decrease in functional capillary density in both treated groups. ET-1 plays a major role in microvascular dysfunction in the periosteum during reperfusion. The ET-1-ET-A receptor system might be an important target for tissue salvage therapy in transplantation surgery.

  6. Chemical function based pharmacophore generation of endothelin-A selective receptor antagonists.

    PubMed

    Funk, Oliver F; Kettmann, Viktor; Drimal, Jan; Langer, Thierry

    2004-05-20

    Both quantitative and qualitative chemical function based pharmacophore models of endothelin-A (ET(A)) selective receptor antagonists were generated by using the two algorithms HypoGen and HipHop, respectively, which are implemented in the Catalyst molecular modeling software. The input for HypoGen is a training set of 18 ET(A) antagonists exhibiting IC(50) values ranging between 0.19 nM and 67 microM. The best output hypothesis consists of five features: two hydrophobic (HY), one ring aromatic (RA), one hydrogen bond acceptor (HBA), and one negative ionizable (NI) function. The highest scoring Hip Hop model consists of six features: three hydrophobic (HY), one ring aromatic (RA), one hydrogen bond acceptor (HBA), and one negative ionizable (NI). It is the result of an input of three highly active, selective, and structurally diverse ET(A) antagonists. The predictive power of the quantitative model could be approved by using a test set of 30 compounds, whose activity values spread over 6 orders of magnitude. The two pharmacophores were tested according to their ability to extract known endothelin antagonists from the 3D molecular structure database of Derwent's World Drug Index. Thereby the main part of selective ET(A) antagonistic entries was detected by the two hypotheses. Furthermore, the pharmacophores were used to screen the Maybridge database. Six compounds were chosen from the output hit lists for in vitro testing of their ability to displace endothelin-1 from its receptor. Two of these are new potential lead compounds because they are structurally novel and exhibit satisfactory activity in the binding assay.

  7. Characterization of a Novel Small Molecule Subtype Specific Estrogen-Related Receptor α Antagonist in MCF-7 Breast Cancer Cells

    PubMed Central

    Chisamore, Michael J.; Cunningham, Michael E.; Flores, Osvaldo; Wilkinson, Hilary A.; Chen, J. Don

    2009-01-01

    Background The orphan nuclear receptor estrogen-related receptor α (ERRα) is a member of the nuclear receptor superfamily. It was identified through a search for genes encoding proteins related to estrogen receptor α (ERα). An endogenous ligand has not been found. Novel ERRα antagonists that are highly specific for binding to the ligand binding domain (LBD) of ERRα have been recently reported. Research suggests that ERRα may be a novel drug target to treat breast cancer and/or metabolic disorders and this has led to an effort to characterize the mechanisms of action of N-[(2Z)-3-(4,5-dihydro-1,3-thiazol-2-yl)-1,3-thiazolidin-2-yl idene]-5H dibenzo[a,d][7]annulen-5-amine, a novel ERRα specific antagonist. Methodology/Principal Findings We demonstrate this ERRα ligand inhibits ERRα transcriptional activity in MCF-7 cells by luciferase assay but does not affect mRNA levels measured by real-time RT-PCR. Also, ERα (ESR1) mRNA levels were not affected upon treatment with the ERRα antagonist, but other ERRα (ESRRA) target genes such as pS2 (TFF1), osteopontin (SPP1), and aromatase (CYP19A1) mRNA levels decreased. In vitro, the ERRα antagonist prevents the constitutive interaction between ERRα and nuclear receptor coactivators. Furthermore, we use Western blots to demonstrate ERRα protein degradation via the ubiquitin proteasome pathway is increased by the ERRα-subtype specific antagonist. We demonstrate by chromatin immunoprecipitation (ChIP) that the interaction between ACADM, ESRRA, and TFF1 endogenous gene promoters and ERRα protein is decreased when cells are treated with the ligand. Knocking-down ERRα (shRNA) led to similar genomic effects seen when MCF-7 cells were treated with our ERRα antagonist. Conclusions/Significance We report the mechanism of action of a novel ERRα specific antagonist that inhibits transcriptional activity of ERRα, disrupts the constitutive interaction between ERRα and nuclear coactivators, and induces proteasome

  8. Attenuation of Persistent Experimental Pancreatitis Pain by a Bradykinin B2 Receptor Antagonist

    PubMed Central

    Chen, Qingmin; Vera-Portocarrero, Louis P.; Ossipov, Michael H.; Vardanyan, Marina; Lai, Josephine; Porreca, Frank

    2017-01-01

    Objective The role of bradykinin (BK) receptors in activating and sensitizing peripheral nociceptors is well known. Recently, we showed that spinal dynorphin was pronociceptive through direct or indirect BK receptor activation. Here, we explored the potential role of BK receptors in pain associated with persistent pancreatitis in rats. Methods Experimental pancreatitis and abdominal hypersensitivity were induced by intravenous administrations of dibutyltin dichloride (DBTC). [des-Arg9-Leu8]BK (B1 antagonist) and HOE 140 (B2 antagonist) were given by intraperitoneal or intrathecal injection. Dynorphin antiserum was given intrathecally. Reverse transcription–polymerase chain reaction was used to detect spinal mRNA for BK receptors. Results Dibutyltin dichloride–induced pancreatitis upregulated B1 and B2 mRNA in the thoracic dorsal root ganglion and B2, but not B1, in the pancreas. No changes in spinal B1 or B2 mRNA were observed. Intraperitoneal or intrathecal administration of HOE 140 dose dependently abolished DBTC-induced abdominal hypersensitivity, whereas [des-Arg9-Leu8]BK was without effect by either route of administration. Antiserum to dynorphin (intrathecal) abolished DBTC-induced hypersensitivity. Conclusions These results suggest that blockade of peripheral or spinal BK B2 receptors may be an effective approach for diminishing pain associated with pancreatitis. Moreover, it is suggested that spinal dynorphin may maintain pancreatitis pain through direct or indirect activation of BK B2 receptors in the spinal cord. PMID:20531238

  9. Pharmacology of JB-9315, a new selective histamine H2-receptor antagonist.

    PubMed

    Palacios, B; Montero, M J; Sevilla, M A; San Román, L

    1998-02-01

    1. The histamine H2-receptor antagonistic activity and antisecretory and antiulcer effects of JB-9315 were studied in comparison with the standard H2 blocker ranitidine. 2. In vitro, JB-9315 is a competitive antagonist of histamine H2 receptors in the isolated, spontaneously beating guinea-pig right atrium, with a pA2 value of 7.30 relative to a value of 7.36 for ranitidine. JB-9315 was specific for the histamine H2 receptor because, at high concentration, it did not affect histamine- or acetylcholine-induced contractions in guinea-pig isolated ileum or rat isolated duodenum, respectively. 3. JB-9315 dose dependently inhibited histamine-, pentagastrin- or carbachol-stimulated acid secretion and basal secretion in the perfused stomach preparation of the anesthetized rat. In the pylorus-ligated rat after intraperitoneal administration, total acid output over 4 h was inhibited by JB-9315 with an ID50 of 32.8 mg/kg, confirming its H2-receptor antagonist properties. 4. JB-9315 showed antiulcer activity against cold stress plus indomethacin-induced lesions with an ID50 of 6.8 mg/kg. 5. JB-9315, 50 and 100 mg/kg, inhibited macroscopic gastric hemorrhagic lesions induced by ethanol. In contrast, ranitidine (50 mg/kg) failed to reduce these lesions. 6. These results indicate that JB-9315 is a new antiulcer drug that exerts a cytoprotective effect in addition to its gastric antisecretory activity.

  10. Analysing the effect of I1 imidazoline receptor ligands on DSS-induced acute colitis in mice.

    PubMed

    Fehér, Ágnes; Tóth, Viktória E; Al-Khrasani, Mahmoud; Balogh, Mihály; Lázár, Bernadette; Helyes, Zsuzsanna; Gyires, Klára; Zádori, Zoltán S

    2017-02-01

    Imidazoline receptors (IRs) have been recognized as promising targets in the treatment of numerous diseases; and moxonidine and rilmenidine, agonists of I 1 -IRs, are widely used as antihypertensive agents. Some evidence suggests that IR ligands may induce anti-inflammatory effects acting on I 1 -IRs or other molecular targets, which could be beneficial in patients with inflammatory bowel disease (IBD). On the other hand, several IR ligands may stimulate also alpha 2 -adrenoceptors, which were earlier shown to inhibit, but in more recent studies to rather aggravate colitis. Hence, this study aimed to analyse for the first time the effect of various I 1 -IR ligands on intestinal inflammation. Colitis was induced in C57BL/6 mice by adding dextran sulphate sodium (DSS) to the drinking water for 7 days. Mice were treated daily with different IR ligands: moxonidine and rilmenidine (I 1 -IR agonists), AGN 192403 (highly selective I 1 -IR ligand, putative antagonist), efaroxan (I 1 -IR antagonist), as well as with the endogenous IR agonists agmatine and harmane. It was found that moxonidine and rilmenidine at clinically relevant doses, similarly to the other IR ligands, do not have a significant impact on the macroscopic and histological signs of DSS-evoked inflammation. Likewise, colonic myeloperoxidase and serum interleukin-6 levels remained unchanged in response to these agents. Thus, our study demonstrates that imidazoline ligands do not influence significantly the severity of DSS-colitis in mice and suggest that they probably neither affect the course of IBD in humans. However, the translational value of these findings needs to be verified with other experimental colitis models and human studies.

  11. Cannabinoid-1 receptor (CB1R) blockers as medicines: beyond obesity and cardiometabolic disorders to substance abuse/drug addiction with CB1R neutral antagonists.

    PubMed

    Janero, David R

    2012-03-01

    Addiction to chemical substances with abuse potential presents medical needs largely unsolved by extant therapeutic strategies. Signal transmission through the cannabinoid-1 receptor (CB1R) in the central nervous system (CNS) modulates neurotransmitters/neuronal pathways contributing to the rewarding properties and hedonic effects of certain nondrug stimuli (e.g., food) and many prototypical addictive drugs, promoting excessive intake and its pathological consequences. Typical CB1R antagonists/inverse agonists reduce the rewarding effects and normalize behavioral phenotypes associated with food and abused drugs, but carry an unacceptable adverse-event profile that may reflect, at least partly, their intrinsic ability to alter basal homeostatic CB1R signaling in the CNS and elicit a negative efficacy response. Alternatively, peripherally biased CB1R inverse agonists with limited CNS permeability and putative CB1R neutral antagonists expressing modest (if any) inverse-agonist efficacy are garnering attention for treating obesity and related cardiometabolic complications with a potentially enhanced benefit-to-risk profile. This mini-review calls attention to the proposition that CB1R neutral antagonists offer attractive opportunities for pharmacotherapeutic exploitation in the substance abuse/drug addiction space, whereas the restricted CNS accessibility of peripherally biased CB1R inverse agonists circumscribes their therapeutic utility for this indication. The unique preclinical pharmacology, efficacy profiles, and reduced adverse-event risk of CB1R neutral antagonists make them worthy of translational study for their potential therapeutic application beyond obesity/cardiometabolic disease to include substance-abuse/drug-addiction disorders.

  12. Histamine H3 receptor antagonists display antischizophrenic activities in rats treated with MK-801.

    PubMed

    Mahmood, Danish; Akhtar, Mohd; Jahan, Kausar; Goswami, Dipanjan

    2016-09-01

    Animal models based on N-methyl-d-aspartate receptor blockade have been extensively used for schizophrenia. Ketamine and MK-801 produce behaviors related to schizophrenia and exacerbated symptoms in patients with schizophrenia, which led to the use of PCP (phencyclidine)- and MK-801 (dizocilpine)-treated animals as models for schizophrenia. The study investigated the effect of subchronic dosing (once daily, 7 days) of histamine H3 receptor (H3R) antagonists, ciproxifan (CPX) (3 mg/kg, i.p.), and clobenpropit (CBP) (15 mg/kg, i.p.) on MK-801 (0.2 mg/kg, i.p.)-induced locomotor activity and also measured dopamine and histamine levels in rat's brain homogenates. The study also included clozapine (CLZ) (3.0 mg/kg, i.p.) and chlorpromazine (CPZ) (3.0 mg/kg, i.p.), the atypical and typical antipsychotic, respectively. Atypical and typical antipsychotic was used to serve as clinically relevant reference agents to compare the effects of the H3R antagonists. MK-801 significantly increased horizontal locomotor activity, which was reduced with CPX and CBP. MK-801-induced locomotor hyperactivity attenuated by CPX and CBP was comparable to CLZ and CPZ. MK-801 raised striatal dopamine level, which was reduced in rats pretreated with CPX and CBP. CPZ also significantly lowered striatal dopamine levels, although the decrease was less robust compared to CLZ, CPX, and CBP. MK-801 increased histamine content although to a lesser degree. Subchronic treatment with CPX and CBP exhibited further increased histamine levels in the hypothalamus compared to MK-801 treatment alone. Histamine H3 receptor agonist, R-α methylhistamine (10 mg/kg, i.p.), counteracted the effect of CPX and CBP. The present study shows the positive effects of CPX and CBP on MK-801-induced schizophrenia-like behaviors in rodents.

  13. The group II metabotropic glutamate receptor agonist LY354740 and the D2 receptor antagonist haloperidol reduce locomotor hyperactivity but fail to rescue spatial working memory in GluA1 knockout mice.

    PubMed

    Boerner, Thomas; Bygrave, Alexei M; Chen, Jingkai; Fernando, Anushka; Jackson, Stephanie; Barkus, Chris; Sprengel, Rolf; Seeburg, Peter H; Harrison, Paul J; Gilmour, Gary; Bannerman, David M; Sanderson, David J

    2017-04-01

    Group II metabotropic glutamate receptor agonists have been suggested as potential anti-psychotics, at least in part, based on the observation that the agonist LY354740 appeared to rescue the cognitive deficits caused by non-competitive N-methyl-d-aspartate receptor (NMDAR) antagonists, including spatial working memory deficits in rodents. Here, we tested the ability of LY354740 to rescue spatial working memory performance in mice that lack the GluA1 subunit of the AMPA glutamate receptor, encoded by Gria1, a gene recently implicated in schizophrenia by genome-wide association studies. We found that LY354740 failed to rescue the spatial working memory deficit in Gria1 -/- mice during rewarded alternation performance in the T-maze. In contrast, LY354740 did reduce the locomotor hyperactivity in these animals to a level that was similar to controls. A similar pattern was found with the dopamine receptor antagonist haloperidol, with no amelioration of the spatial working memory deficit in Gria1 -/- mice, even though the same dose of haloperidol reduced their locomotor hyperactivity. These results with LY354740 contrast with the rescue of spatial working memory in models of glutamatergic hypofunction using non-competitive NMDAR antagonists. Future studies should determine whether group II mGluR agonists can rescue spatial working memory deficits with other NMDAR manipulations, including genetic models and other pharmacological manipulations of NMDAR function. © 2017 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Antagonism of bromocriptine-induced cage climbing behaviour in mice by the selective D-2 dopamine receptor antagonists, metoclopramide and molindone.

    PubMed

    Balsara, J J; Nandal, N V; Gada, V P; Bapat, T R; Chandorkar, A G

    1986-01-01

    Bromocriptine (5-30 mg/kg, ip), 2 hr after administration, induced cage climbing behaviour in mice. Pretreatment with haloperidol, an antagonist of both D-1 and D-2 dopamine receptors, metoclopramide and molindone, the selective D-2 dopamine receptor antagonists, effectively antagonised bromocriptine-induced climbing behaviour. The results indicate that bromocriptine most probably induces climbing behaviour in mice by stimulating the postsynaptic striatal D-2 dopamine receptors.

  15. Interleukin-1 Receptor Antagonist and Interleukin-4 Genes Variable Number Tandem Repeats Are Associated with Adiposity in Malaysian Subjects

    PubMed Central

    Kok, Yung-Yean; Ong, Hing-Huat

    2017-01-01

    Interleukin-1 receptor antagonist (IL1RA) intron 2 86 bp repeat and interleukin-4 (IL4) intron 3 70 bp repeat are variable number tandem repeats (VNTRs) that have been associated with various diseases, but their role in obesity is elusive. The objective of this study was to investigate the association of IL1RA and IL4 VNTRs with obesity and adiposity in 315 Malaysian subjects (128 M/187 F; 23 Malays/251 ethnic Chinese/41 ethnic Indians). The allelic distributions of IL1RA and IL4 were significantly different among ethnicities, and the alleles were associated with total body fat (TBF) classes. Individuals with IL1RA I/II genotype or allele II had greater risk of having higher overall adiposity, relative to those having the I/I genotype or I allele, respectively, even after controlling for ethnicity [Odds Ratio (OR) of I/II genotype = 12.21 (CI = 2.54, 58.79; p = 0.002); II allele = 5.78 (CI = 1.73, 19.29; p = 0.004)]. However, IL4 VNTR B2 allele was only significantly associated with overall adiposity status before adjusting for ethnicity [OR = 1.53 (CI = 1.04, 2.23; p = 0.03)]. Individuals with IL1RA II allele had significantly higher TBF than those with I allele (31.79 ± 2.52 versus 23.51 ± 0.40; p = 0.005). Taken together, IL1RA intron 2 VNTR seems to be a genetic marker for overall adiposity status in Malaysian subjects. PMID:28293435

  16. Interleukin-1 Receptor Antagonist and Interleukin-4 Genes Variable Number Tandem Repeats Are Associated with Adiposity in Malaysian Subjects.

    PubMed

    Kok, Yung-Yean; Ong, Hing-Huat; Say, Yee-How

    2017-01-01

    Interleukin-1 receptor antagonist ( IL1RA ) intron 2 86 bp repeat and interleukin-4 ( IL4 ) intron 3 70 bp repeat are variable number tandem repeats (VNTRs) that have been associated with various diseases, but their role in obesity is elusive. The objective of this study was to investigate the association of IL1RA and IL4 VNTRs with obesity and adiposity in 315 Malaysian subjects (128 M/187 F; 23 Malays/251 ethnic Chinese/41 ethnic Indians). The allelic distributions of IL1RA and IL4 were significantly different among ethnicities, and the alleles were associated with total body fat (TBF) classes. Individuals with IL1RA I/II genotype or allele II had greater risk of having higher overall adiposity, relative to those having the I/I genotype or I allele, respectively, even after controlling for ethnicity [Odds Ratio (OR) of I/II genotype = 12.21 (CI = 2.54, 58.79; p = 0.002); II allele = 5.78 (CI = 1.73, 19.29; p = 0.004)]. However, IL4 VNTR B2 allele was only significantly associated with overall adiposity status before adjusting for ethnicity [OR = 1.53 (CI = 1.04, 2.23; p = 0.03)]. Individuals with IL1RA II allele had significantly higher TBF than those with I allele (31.79 ± 2.52 versus 23.51 ± 0.40; p = 0.005). Taken together, IL1RA intron 2 VNTR seems to be a genetic marker for overall adiposity status in Malaysian subjects.

  17. Antiaggregant and antivasospastic properties of the new thromboxane A2 receptor antagonist sodium 4-[[1-[[[(4-chlorophenyl)sulfonyl]amino]methyl]cyclopentyl] methyl]benzeneacetate.

    PubMed

    Lardy, C; Rousselot, C; Chavernac, G; Depin, J C; Guerrier, D

    1994-11-01

    LCB 2853 (sodium 4-[[1-[[[(4-chlorophenyl)sulfonyl]amino]methyl]cyclopentyl] methyl]benzeneacetate, CAS 141335-11-7) was demonstrated to be a potent thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor antagonist in in vitro, ex vivo and in vivo experiments. The specific mechanism of action was studied in [3H]SQ 29548 receptor binding studies (pKi = 7.93) and was shown to be of competitive nature in U 46619-induced platelet aggregation (pA2 = 6.82). TXA2-dependent platelet rich plasma (PRP) aggregation (U 46619, arachidonic acid (AA), collagen, ADP or serotonin second phase) was inhibited in vitro in humans (IC50:0.037-0.65 mumol/l) and different animal species, as well as ex vivo i.v. rat and p.o. guinea-pig AA-induced aggregation (ED50 = 48 and 57 micrograms/kg). The U 46619-induced contractions of aorta, caudal artery and trachea were inhibited in a dose-dependent way (IC50 = 0.07, 0.02 and 0.5 mumol/l respectively). In vivo, both against platelet aggregation and vasoconstriction, LCB 2853 showed an ED50 lower than 1 mg/kg i.v. in rat AA-induced thrombocytopenia or U 46619-induced hypertension (ED50 = 0.25 and 0.16 mg/kg) as well as in AA-induced sudden death in the mouse (ED50 = 0.44 mg/kg). The U 46619-induced bronchoconstriction was blocked after i.v. administration of LCB 2853 (ED50 = 18.4 micrograms/kg). The duration of action observed in different models was 6 h by oral route and between 3 and 5 h by intravenous route. These properties in TXA2-dependent models led to further investigations of the antithrombotic activity of this novel TXA2 antagonist.

  18. Structure/function relationships of calcitonin analogues as agonists, antagonists, or inverse agonists in a constitutively activated receptor cell system.

    PubMed

    Pozvek, G; Hilton, J M; Quiza, M; Houssami, S; Sexton, P M

    1997-04-01

    The structure/function relationship of salmon calcitonin (sCT) analogues was investigated in heterologous calcitonin receptor (CTR) expression systems. sCT analogues with progressive amino-terminal truncations intermediate of sCT-(1-32) to sCT-(8-32) were examined for their ability to act as agonists, antagonists, or inverse agonists. Two CTR cell clones, B8-H10 and G12-E12, which express approximately 5 million and 25,000 C1b receptors/cell, respectively, were used for this study. The B8-H10 clone has an approximately 80-fold increase in basal levels of intracellular cAMP due to constitutive activation of the overexpressed receptor. In whole-cell competition binding studies, sCT-(1-32) was more potent than any of its amino-terminally truncated analogues in competition for 125I-sCT binding. In cAMP accumulation studies, sCT-(1-32) and modified analogues sCT-(2-32) and sCT-(3-32) had agonist activities. SDZ-216-710, with an amino-terminal truncation of four amino acids, behaved as a partial agonist/antagonist, whereas amino-terminal truncations of six or seven amino acid residues produced a 16-fold reduction in basal cAMP levels and attenuated the response to the agonist sCT-(1-32) in the constitutively active CTR system. This inverse agonist effect was insensitive to pertussis toxin inhibition. In contrast, the inverse agonist activity of these peptides was not observed in the nonconstitutively active CTR system, in which sCT analogues with amino-terminal truncations of four or more amino acids behaved as neutral competitive antagonists. These results suggest that the inverse agonist activity is mediated by stabilization of the inactive state of the receptor, which does not couple to G protein, and attenuates basal signaling initiated by ligand-independent activation of the effector adenylyl cyclase.

  19. Oxytocin and Vasopressin Agonists and Antagonists as Research Tools and Potential Therapeutics

    PubMed Central

    Manning, M; Misicka, A; Olma, A; Bankowski, K; Stoev, S; Chini, B; Durroux, T; Mouillac, B; Corbani, M; Guillon, G

    2012-01-01

    We recently reviewed the status of peptide and nonpeptide agonists and antagonists for the V1a, V1b and V2 receptors for arginine vasopressin (AVP) and the oxytocin receptor for oxytocin (OT). In the present review, we update the status of peptides and nonpeptides as: (i) research tools and (ii) therapeutic agents. We also present our recent findings on the design of fluorescent ligands for V1b receptor localisation and for OT receptor dimerisation. We note the exciting discoveries regarding two novel naturally occurring analogues of OT. Recent reports of a selective VP V1a agonist and a selective OT agonist point to the continued therapeutic potential of peptides in this field. To date, only two nonpeptides, the V2/V1a antagonist, conivaptan and the V2 antagonist tolvaptan have received Food and Drug Administration approval for clinical use. The development of nonpeptide AVP V1a, V1b and V2 antagonists and OT agonists and antagonists has recently been abandoned by Merck, Sanofi and Pfizer. A promising OT antagonist, Retosiban, developed at Glaxo SmithKline is currently in a Phase II clinical trial for the prevention of premature labour. A number of the nonpeptide ligands that were not successful in clinical trials are proving to be valuable as research tools. Peptide agonists and antagonists continue to be very widely used as research tools in this field. In this regard, we present receptor data on some of the most widely used peptide and nonpeptide ligands, as a guide for their use, especially with regard to receptor selectivity and species differences. PMID:22375852

  20. SSR126768A (4-chloro-3-[(3R)-(+)-5-chloro-1-(2,4-dimethoxybenzyl)-3-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-N-ethyl-N-(3-pyridylmethyl)-benzamide, hydrochloride): a new selective and orally active oxytocin receptor antagonist for the prevention of preterm labor.

    PubMed

    Serradeil-Le Gal, Claudine; Valette, Gérard; Foulon, Loïc; Germain, Guy; Advenier, Charles; Naline, Emmanuel; Bardou, Marc; Martinolle, Jean-Pierre; Pouzet, Brigitte; Raufaste, Danielle; Garcia, Corinne; Double-Cazanave, Eléonore; Pauly, Maxime; Pascal, Marc; Barbier, Alain; Scatton, Bernard; Maffrand, Jean-Pierre; Le Fur, Gérard

    2004-04-01

    4-chloro-3-[(3R)-(+)-5-chloro-1-(2,4-dimethoxybenzyl)-3-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-N-ethyl-N-(3-pyridylmethyl)benzamide, hydrochloride (SSR126768A), a new potent and selective, orally active oxytocin (OT) receptor antagonist was characterized in several biochemical and pharmacological models. In binding studies, SSR126768A showed nanomolar affinity for rat and human recombinant and native OT receptors (K(i) = 0.44 nM) and exhibited much lower affinity for V(1a), V(1b), and V(2) receptors. In addition, it did not interact with a large number of other receptors, enzymes, and ion channels (1 microM). In autoradiographic experiments performed on at-term human pregnant uterus sections, SSR126768A dose dependently displaced [I(125)]d(CH(2))(5)[Tyr(Me)(2), Thr(4), Orn(8) (125)I-Tyr-NH(2)(9)]VT in situ labeling to OT receptors highly expressed in these tissues. In functional studies, SSR126768A behaved as a full antagonist and potently antagonized OT-induced intracellular Ca(2+) increase (K(i) = 0.50 nM) and prostaglandin release (K(i) = 0.45 nM) in human uterine smooth muscle cells. In rat isolated myometrium, OT-induced uterine contractions were competitively antagonized by SSR126768A (pA(2) = 8.47). Similarly, in human pregnant myometrial strips, SSR126768A inhibited the contractile uterine response to OT. In conscious telemetrated rats, oral administration of SSR126768A (1-10 mg/kg) produced a competitive inhibition of the dose response to OT on uterine contractions up to 24 h at 3 mg/kg p.o.; no tachyphylaxis was observed after 4-day repeated treatment. Finally, SSR126768A (30 mg/kg p.o.) significantly delayed parturition in pregnant rats in labor similar to ritodrine (10 mg/kg p.o.). Thus, SSR126768A is a potent, highly selective, orally active OT receptor antagonist with a long duration of action. This molecule could find therapeutic application as a tocolytic agent for acute and chronic oral management of preterm labor.

  1. Betaxolol, a selective beta(1)-adrenergic receptor antagonist, diminishes anxiety-like behavior during early withdrawal from chronic cocaine administration in rats.

    PubMed

    Rudoy, C A; Van Bockstaele, E J

    2007-06-30

    Anxiety has been indicated as one of the main symptoms of the cocaine withdrawal syndrome in human addicts and severe anxiety during withdrawal may potentially contribute to relapse. As alterations in noradrenergic transmission in limbic areas underlie withdrawal symptomatology for many drugs of abuse, the present study sought to determine the effect of cocaine withdrawal on beta-adrenergic receptor (beta(1) and beta(2)) expression in the amygdala. Male Sprague Dawley rats were administered intraperitoneal (i.p.) injections of cocaine (20 mg/kg) once daily for 14 days. Two days following the last cocaine injection, amygdala brain regions were micro-dissected and processed for Western blot analysis. Results showed that beta(1)-adrenergic receptor, but not beta(2)-adrenergic receptor expression was significantly increased in amygdala extracts of cocaine-withdrawn animals as compared to controls. This finding motivated further studies aimed at determining whether treatment with betaxolol, a highly selective beta(1)-adrenergic receptor antagonist, could ameliorate cocaine withdrawal-induced anxiety. In these studies, betaxolol (5 mg/kg via i.p. injection) was administered at 24 and then 44 h following the final chronic cocaine administration. Anxiety-like behavior was evaluated using the elevated plus maze test approximately 2 h following the last betaxolol injection. Following behavioral testing, betaxolol effects on beta(1)-adrenergic receptor protein expression were examined by Western blotting in amygdala extracts from rats undergoing cocaine withdrawal. Animals treated with betaxolol during cocaine withdrawal exhibited a significant attenuation of anxiety-like behavior characterized by increased time spent in the open arms and increased entries into the open arms compared to animals treated with only saline during cocaine withdrawal. In contrast, betaxolol did not produce anxiolytic-like effects in control animals treated chronically with saline. Furthermore

  2. Novel spirotetracyclic zwitterionic dual H(1)/5-HT(2A) receptor antagonists for the treatment of sleep disorders.

    PubMed

    Gianotti, Massimo; Botta, Maurizio; Brough, Stephen; Carletti, Renzo; Castiglioni, Emiliano; Corti, Corrado; Dal-Cin, Michele; Delle Fratte, Sonia; Korajac, Denana; Lovric, Marija; Merlo, Giancarlo; Mesic, Milan; Pavone, Francesca; Piccoli, Laura; Rast, Slavko; Roscic, Maja; Sava, Anna; Smehil, Mario; Stasi, Luigi; Togninelli, Andrea; Wigglesworth, Mark J

    2010-11-11

    Histamine H(1) and serotonin 5-HT(2A) receptors mediate two different mechanisms involved in sleep regulation: H(1) antagonists are sleep inducers, while 5-HT(2A) antagonists are sleep maintainers. Starting from 9'a, a novel spirotetracyclic compound endowed with good H(1)/5-HT(2A) potency but poor selectivity, very high Cli, and a poor P450 profile, a specific optimization strategy was set up. In particular, we investigated the possibility of introducing appropriate amino acid moieties to optimize the developability profile of the series. Following this zwitterionic approach, we were able to identify several advanced leads (51, 65, and 73) with potent dual H(1)/5-HT(2A) activity and appropriate developability profiles. These compounds exhibited efficacy as hypnotic agents in a rat telemetric sleep model with minimal effective doses in the range 3-10 mg/kg po.

  3. Three-dimensional quantitative structure-activity relationship CoMSIA/CoMFA and LeapFrog studies on novel series of bicyclo [4.1.0] heptanes derivatives as melanin-concentrating hormone receptor R1 antagonists.

    PubMed

    Morales-Bayuelo, Alejandro; Ayazo, Hernan; Vivas-Reyes, Ricardo

    2010-10-01

    Comparative molecular similarity indices analysis (CoMSIA) and comparative molecular field analysis (CoMFA) were performed on a series of bicyclo [4.1.0] heptanes derivatives as melanin-concentrating hormone receptor R1 antagonists (MCHR1 antagonists). Molecular superimposition of antagonists on the template structure was performed by database alignment method. The statistically significant model was established on sixty five molecules, which were validated by a test set of ten molecules. The CoMSIA model yielded the best predictive model with a q(2) = 0.639, non cross-validated R(2) of 0.953, F value of 92.802, bootstrapped R(2) of 0.971, standard error of prediction = 0.402, and standard error of estimate = 0.146 while the CoMFA model yielded a q(2) = 0.680, non cross-validated R(2) of 0.922, F value of 114.351, bootstrapped R(2) of 0.925, standard error of prediction = 0.364, and standard error of estimate = 0.180. CoMFA analysis maps were employed for generating a pseudo cavity for LeapFrog calculation. The contour maps obtained from 3D-QSAR studies were appraised for activity trends for the molecules analyzed. The results show the variability of steric and electrostatic contributions that determine the activity of the MCHR1 antagonist, with these results we proposed new antagonists that may be more potent than previously reported, these novel antagonists were designed from the addition of highly electronegative groups in the substituent di(i-C(3)H(7))N- of the bicycle [4.1.0] heptanes, using the model CoMFA which also was used for the molecular design using the technique LeapFrog. The data generated from the present study will further help to design novel, potent, and selective MCHR1 antagonists. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.

  4. Interleukin-1 and IL-1 receptor antagonist in gingival crevicular fluid.

    PubMed

    Rawlinson, A; Dalati, M H; Rahman, S; Walsh, T F; Fairclough, A L

    2000-10-01

    This study aimed to investigate the cytokine IL-1beta and its receptor antagonist IL-1ra in gingival crevicular fluid (GCF), in patients with adult periodontitis. A total of 40 GCF samples were harvested from 10 subjects with moderate to severe adult periodontitis and 10 healthy controls. Subjects were selected from both genders, with all the upper anterior teeth present, and with no relevant systemic illness, pregnancy or recent medication. All subjects were non-smokers and had not received any periodontal therapy within the preceding 3 months. Deep bleeding sites, deep non-bleeding sites and healthy sites were investigated in relation to upper anterior teeth. Clinical measurements were recorded for each site, after obtaining a GCF sample. IL-1beta and IL-1ra were quantified using new commercially available ELISA kits (Quantikine), and could be detected in all samples. The mean concentration for IL-1beta was 0.11 (SD 0.14) pg/microl for bleeding periodontitis sites, 0.04 (0.05) pg/microl for non-bleeding periodontitis sites, and 0.01 (0.03) pg/microl for healthy sites (p<0.001). In contrast, the mean concentration for IL-1ra was 6.99 (9.78) pg/microl for healthy sites, 0.59 (0.44) pg/microl for non-bleeding periodontitis sites, and 0.44 (0.36) pg/microl for bleeding periodontitis sites (p<0.001, except for comparisons between bleeding and non-bleeding periodontitis sites, p>0.05). For healthy sites, a strong inverse relationship was found between IL-1beta and IL-1ra levels in GCE. The results suggest a strong relationship between the severity of adult periodontitis and the increasing GCF levels of IL-1beta and decreasing levels of IL-1ra.

  5. Differential effects of central injections of D1 and D2 receptor agonists and antagonists on male sexual behavior in Japanese quail.

    PubMed

    Kleitz-Nelson, H K; Cornil, C A; Balthazart, J; Ball, G F

    2010-07-01

    A key brain site in the control of male sexual behavior is the medial pre-optic area (mPOA) where dopamine stimulates both D1 and D2 receptor subtypes. Research completed to date in Japanese quail has only utilized systemic injections and therefore much is unknown about the specific role played by dopamine in the brain and mPOA in particular. The present study investigated the role of D1 and D2 receptors on male sexual behavior by examining how intracerebroventricular injections and microinjections into the mPOA of D1 and D2 agonists and antagonists influenced appetitive and consummatory aspects of sexual behavior in male quail. Experiments 1 and 2 investigated the effects of intracerebroventricular injections at three doses of D1 or D2 agonists and antagonists. The results indicated that D1 receptors facilitated consummatory male sexual behavior, whereas D2 receptors inhibited both appetitive and consummatory behaviors. Experiment 3 examined the effects of the same compounds specifically injected in the mPOA and showed that, in this region, both receptors stimulated male sexual behaviors. Together, these data indicated that the stimulatory action of dopamine in the mPOA may require a combined activation of D1 and D2 receptors. Finally, the regulation of male sexual behavior by centrally infused dopaminergic compounds in a species lacking an intromittent organ suggested that dopamine action on male sexual behavior does not simply reflect the modulation of genital reflexes due to general arousal, but relates to the central control of sexual motivation. Together, these data support the claim that dopamine specifically regulates male sexual behavior.

  6. Differential effects of central injections of D1 and D2 receptor agonists and antagonists on male sexual behavior in Japanese quail

    PubMed Central

    Kleitz-Nelson, H.K.; Cornil, C.A.; Balthazart, J.; Ball, G.F.

    2010-01-01

    A key brain site in the control of male sexual behavior is the medial preoptic area (mPOA) where dopamine stimulates both D1 and D2 receptor subtypes. Research completed to date in Japanese quail has only utilized systemic injections, so much is unknown about the specific role played by dopamine in the brain and mPOA in particular. The present study investigates the role of D1 and D2 receptors on male sexual behavior by examining how intracerebroventricular (ICV) injections and microinjections into the mPOA of D1 and D2 agonists and antagonists influence appetitive and consummatory aspects of sexual behavior in male quail. Experiments 1 and 2 investigate the effects of ICV injections at three doses of D1 or D2 agonists and antagonists. Results indicate that D1 receptors facilitate consummatory male sexual behavior while D2 receptors inhibit both appetitive and consummatory behaviors. Experiment 3 examines the effects of the same compounds specifically injected in the mPOA and shows that in this region, both receptors stimulate male sexual behaviors. Together, these data indicate that the stimulatory action of dopamine in the mPOA may require a combined activation of D1 and D2 receptors. Finally, the regulation of male sexual behavior by centrally infused dopaminergic compounds in a species lacking an intromittent organ suggests that dopamine action on male sexual behavior does not simply reflect the modulation of genital reflexes due to general arousal, but relates to the central control of sexual motivation. Together, these data support the claim that dopamine specifically regulates male sexual behavior. PMID:20597974

  7. The effects of intraperitoneal and intracerebroventricular administration of the GABAB receptor antagonist CGP 35348 on food intake in rats.

    PubMed

    Patel, Sunit M; Ebenezer, Ivor S

    2004-10-25

    In order to test the hypothesis that endogenous gamma-aminobutyric acid (GABA), acting at central GABAB receptors, plays a physiological role in the control of feeding behaviour, it was reasoned that blocking these receptors with a centrally active GABAB receptor antagonist should reduce food intake in hungry rats. In the present study, experiments were carried out to test this possibility using the GABAB receptor antagonist 3-aminopropyl-diethoxy-methyl-phosphinic acid (CGP 35348), which is water-soluble and can penetrate the blood-brain barrier from the systemic circulation. CGP 35348 (50 and 100 mg/kg, i.p.) had no effect on food intake in 22-h fasted rats, but a higher dose (i.e. 500 mg/kg., i.p.) significantly reduced cumulative food consumption. These findings are consistent with previous observations that high systemic doses of CGP 35348 are needed to block central GABAB receptors. However, to eliminate the possibility that the 500 mg/kg dose of CGP 35348 decreased food intake by a peripheral, rather than a central mode of action, further experiments were undertaken where the drug was given directly into the brain by the intracerebroventricular (i.c.v.) route. I.c.v. administration of CGP 35348 (5 and 10 microg) significantly decreased cumulative food intake food intake in rats that had been fasted for 22 h. By contrast, i.c.v. administration of CGP 35348 (10 microg) had no effect on water intake in 16-h water-deprived rats. The results indicate that CGP 35348 reduces food consumption in hungry rats by blocking central GABAB receptors in a behaviourally specific manner. These findings suggest that endogenous GABA acting at central GABAB receptors plays a physiological role in the regulation of feeding behaviour.

  8. Neomycin is a platelet-derived growth factor (PDGF) antagonist that allows discrimination of PDGF alpha- and beta-receptor signals in cells expressing both receptor types.

    PubMed

    Vassbotn, F S; Ostman, A; Siegbahn, A; Holmsen, H; Heldin, C H

    1992-08-05

    The aminoglycoside neomycin has recently been found to affect certain platelet-derived growth factor (PDGF) responses in C3H/10T1/2 C18 fibroblasts. Using porcine aortic endothelial cells transfected with PDGF alpha- or beta-receptors, we explored the possibility that neomycin interferes with the interaction between the different PDGF isoforms and their receptors. We found that neomycin (5 mM) inhibited the binding of 125I-PDGF-BB to the alpha-receptor with only partial effect on the binding of 125I-PDGF-AA; in contrast, the binding of 125I-PDGF-BB to the beta-receptor was not affected by the aminoglycoside. Scatchard analyses showed that neomycin (5 mM) decreased the number of binding sites for PDGF-BB on alpha-receptor-expressing cells by 87%. Together with cross-competition studies with 125I-labeled PDGF homodimers, the effect of neomycin indicates that PDGF-AA and PDGF-BB bind to both common and unique structures on the PDGF alpha-receptor. Neomycin specifically inhibited the autophosphorylation of the alpha-receptor by PDGF-BB, with less effect on the phosphorylation induced by PDGF-AA and no effect on the phosphorylation of the beta-receptor by PDGF-BB. Thus, neomycin is a PDGF isoform- and receptor-specific antagonist that provides a possibility to compare the signal transduction pathways of alpha- and beta-receptors in cells expressing both receptor types. This approach was used to show that activation of PDGF beta-receptors by PDGF-BB mediated a chemotactic response in human fibroblasts, whereas activation of alpha-receptors by the same ligand inhibited chemotaxis.

  9. Chronic production of angiotensin IV in the brain leads to hypertension that is reversible with an angiotensin II AT1 receptor antagonist.

    PubMed

    Lochard, Nadheige; Thibault, Gaétan; Silversides, David W; Touyz, Rhian M; Reudelhuber, Timothy L

    2004-06-11

    Angiotensin IV (Ang IV) is a metabolite of the potent vasoconstrictor angiotensin II (Ang II). Because specific binding sites for this peptide have been reported in numerous tissues including the brain, it has been suggested that a specific Ang IV receptor (AT4) might exist. Bolus injection of Ang IV in brain ventricles has been implicated in learning, memory, and localized vasodilatation. However, the functions of Ang IV in a physiological context are still unknown. In this study, we generated a transgenic (TG) mouse model that chronically releases Ang IV peptide specifically in the brain. TG mice were found to be hypertensive by the tail-cuff method as compared with control littermates. Treatment with the angiotensin-converting enzyme inhibitor captopril had no effect on blood pressure, but surprisingly treatment with the Ang II AT1 receptor antagonist candesartan normalized the blood pressure despite the fact that the levels of Ang IV in the brains of TG mice were only 4-fold elevated over the normal endogenous level of Ang peptides. Calcium mobilization assays performed on cultured CHO cells chronically transfected with the AT1 receptor confirm that low-dose Ang IV can mobilize calcium via the AT1 receptor only in the presence of Ang II, consistent with an allosteric mechanism. These results suggest that chronic elevation of Ang IV in the brain can induce hypertension that can be treated with angiotensin II AT1 receptor antagonists.

  10. Orally active, nonpeptide vasopressin V1 antagonists. A novel series of 1-(1-substituted 4-piperidyl)-3,4-dihdyro-2(1H)-quinolinone.

    PubMed

    Ogawa, H; Yamamura, Y; Miyamoto, H; Kondo, K; Yamashita, H; Nakaya, K; Chihara, T; Mori, T; Tominaga, M; Yabuuchi, Y

    1993-07-09

    A series of compounds has been synthesized and demonstrated to be antagonists of V1 receptors both in vitro and in vivo. These compounds are structurally related to the 1-(4-piperidyl)-2(1H)-quinolinones, including OPC-21268, an orally bioavailable AVP V1 antagonist with high V1 specificity. It has been found that the introduction of an acetamide group on the terminal alkoxy chain of 41-44 leads to an increase in oral activity. Certain of these compounds may have efficacy in the study of AVP V1 receptors.

  11. The effects of stressful stimuli and hypothalamic-pituitary-adrenal axis activation are reversed by the melanin-concentrating hormone 1 receptor antagonist SNAP 94847 in rodents.

    PubMed

    Smith, Daniel G; Hegde, Laxminarayan G; Wolinsky, Toni D; Miller, Silke; Papp, Mariusz; Ping, Xiaoli; Edwards, Tanya; Gerald, Christophe P; Craig, Douglas A

    2009-02-11

    Melanin-concentrating hormone (MCH) is an orexigenic and dipsogenic neuropeptide that has been reported to mediate acute behavioral and neuroendocrine stress-related responses via MCH(1) receptor activation in rodents. The purpose of the present investigation was to use the MCH(1) receptor antagonist SNAP 94847 (N-(3-{1-[4-(3,4-difluoro-phenoxy)-benzyl]-piperidin-4-yl}-4-methyl-phenyl)-isobutyramide) to determine the effects of MCH(1) receptor blockade on MCH-evoked adrenocorticotropic hormone (ACTH) release, chronic mild stress-induced anhedonia, stress-induced hyperthermia and forced swim stress-induced immobility. The appropriate dose range for testing SNAP 94847 was determined by measuring MCH-evoked water drinking. The corresponding occupancy of MCH(1) receptors in rat striatum was also measured across a broad dose range. Orally administered (p.o.) SNAP 94847 (1-10 mg/kg) corresponds to 30-60% occupancy at MCH(1) receptors and significantly blocks water drinking induced by the intracerebroventricular (i.c.v.) injection of MCH. MCH (i.c.v.) significantly elevates plasma levels of ACTH in rats, and SNAP 94847 (2.5 mg/kg, p.o.) blocks MCH-evoked ACTH release. Using the chronic mild stress paradigm, we show that repeated daily exposure to environmental stressors for 5 weeks significantly suppresses sucrose intake in rats, and that SNAP 94847 (1 mg/kg, BID) for 1-5 weeks restores baseline sucrose intake. Moreover, a single administration of SNAP 94847 attenuates stress-induced hyperthermia and the behavioral effects of forced swim stress with minimal effective doses of 2.5 and 30 mg/kg (p.o.), respectively. The regulation of ACTH release and reversal of the effects of chronic and acute stress by SNAP 94847 are suggestive of a role for MCH(1) receptor blockade in the treatment of disorders characterized by high allostatic load.

  12. Attenuated Stress Response to Acute Restraint and Forced Swimming Stress in Arginine Vasopressin 1b Receptor Subtype (Avpr1b) Receptor Knockout Mice and Wild-Type Mice Treated with a Novel Avpr1b Receptor Antagonist

    PubMed Central

    Roper, J A; Craighead, M; O’Carroll, A-M; Lolait, S J

    2010-01-01

    Arginine vasopressin (AVP) synthesised in the parvocellular region of the hypothalamic paraventricular nucleus and released into the pituitary portal vessels acts on the 1b receptor subtype (Avpr1b) present in anterior pituitary corticotrophs to modulate the release of adrenocorticotrophic hormone (ACTH). Corticotrophin-releasing hormone is considered the major drive behind ACTH release; however, its action is augmented synergistically by AVP. To determine the extent of vasopressinergic influence in the hypothalamic-pituitary-adrenal axis response to restraint and forced swimming stress, we compared the stress hormone levels [plasma ACTH in both stressors and corticosterone (CORT) in restraint stress only] following acute stress in mutant Avpr1b knockout (KO) mice compared to their wild-type controls following the administration of a novel Avpr1b antagonist. Restraint and forced swimming stress-induced increases in plasma ACTH were significantly diminished in mice lacking a functional Avpr1b and in wild-type mice that had been pre-treated with Avpr1b antagonist. A corresponding decrease in plasma CORT levels was also observed in acute restraint-stressed knockout male mice, and in Avpr1b-antagonist-treated male wild-type mice. By contrast, plasma CORT levels were not reduced in acutely restraint-stressed female knockout animals, or in female wild-type animals pre-treated with Avpr1b antagonist. These results demonstrate that pharmacological antagonism or inactivation of Avpr1b causes a reduction in the hypothalamic-pituitary-adrenal (HPA) axis response, particularly ACTH, to acute restraint and forced swimming stress, and show that Avpr1b knockout mice constitute a model by which to study the contribution of Avpr1b to the HPA axis response to acute stressors. PMID:20846299

  13. Attenuated stress response to acute restraint and forced swimming stress in arginine vasopressin 1b receptor subtype (Avpr1b) receptor knockout mice and wild-type mice treated with a novel Avpr1b receptor antagonist.

    PubMed

    Roper, J A; Craighead, M; O'Carroll, A-M; Lolait, S J

    2010-11-01

    Arginine vasopressin (AVP) synthesised in the parvocellular region of the hypothalamic paraventricular nucleus and released into the pituitary portal vessels acts on the 1b receptor subtype (Avpr1b) present in anterior pituitary corticotrophs to modulate the release of adrenocorticotrophic hormone (ACTH). Corticotrophin-releasing hormone is considered the major drive behind ACTH release; however, its action is augmented synergistically by AVP. To determine the extent of vasopressinergic influence in the hypothalamic-pituitary-adrenal axis response to restraint and forced swimming stress, we compared the stress hormone levels [plasma ACTH in both stressors and corticosterone (CORT) in restraint stress only] following acute stress in mutant Avpr1b knockout (KO) mice compared to their wild-type controls following the administration of a novel Avpr1b antagonist. Restraint and forced swimming stress-induced increases in plasma ACTH were significantly diminished in mice lacking a functional Avpr1b and in wild-type mice that had been pre-treated with Avpr1b antagonist. A corresponding decrease in plasma CORT levels was also observed in acute restraint-stressed knockout male mice, and in Avpr1b-antagonist-treated male wild-type mice. By contrast, plasma CORT levels were not reduced in acutely restraint-stressed female knockout animals, or in female wild-type animals pre-treated with Avpr1b antagonist. These results demonstrate that pharmacological antagonism or inactivation of Avpr1b causes a reduction in the hypothalamic-pituitary-adrenal (HPA) axis response, particularly ACTH, to acute restraint and forced swimming stress, and show that Avpr1b knockout mice constitute a model by which to study the contribution of Avpr1b to the HPA axis response to acute stressors. © 2010 The Authors. Journal of Neuroendocrinology © 2010 Blackwell Publishing Ltd.

  14. Activation of the α7 nicotinic ACh receptor induces anxiogenic effects in rats which is blocked by a 5-HT1a receptor antagonist

    PubMed Central

    Pandya, Anshul A.; Yakel, Jerrel L.

    2013-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) is highly expressed in different regions of the brain and is associated with cognitive function as well as anxiety. Agonists and positive allosteric modulators (PAMs) of the α7 subtype of nAChRs have been shown to improve cognition. Previously nicotine, which activates both α7 and non-α7 subtypes of nAChRs, has been shown to have an anxiogenic effect in behavioral tests. In this study, we compared the effects of the α7-selective agonist (PNU-282987) and PAM (PNU-120596) in a variety of behavioral tests in Sprague Dawley rats to look at their effects on learning and memory as well as anxiety. We found that neither PNU-282987 nor PNU-120596 improved spatial-learning or episodic memory by themselves. However when cognitive impairment was induced in the rats with scopolamine (1 mg/kg), both PNU-120596 and PNU-282987 were able to reverse this memory impairment and restore it back to normal levels. While PNU-120596 reversed the scopolamine-induced cognitive impairment, it did not have any adverse effect on anxiety. PNU-282987 on the other hand displayed an increase in anxiety-like behavior at a higher dose (10 mg/kg) that was significantly reduced by the serotonin 5-HT1a receptor antagonist WAY-100135. However the α7 receptor antagonist methyllycaconitine was unable to reverse these anxiety-like effects seen with PNU-282987. These results suggest that α7 nAChR PAMs are pharmacologically advantageous over agonists, and should be considered for further development as therapeutic drugs targeting the α7 receptors. PMID:23321689

  15. [Nphe1]-Nociceptin (1-13)-NH2, a nociceptin receptor antagonist, reverses nociceptin-induced spatial memory impairments in the Morris water maze task in rats

    PubMed Central

    Redrobe, J P; Calo, G; Guerrini, R; Regoli, D; Quirion, R

    2000-01-01

    The present study was undertaken to investigate the effects of the novel nociceptin receptor antagonist, [Nphe1]-Nociceptin (1-13)-NH2 (bilateral intrahippocampal injection, 50 nmole rat−1) on purported nociceptin-induced (bilateral intrahippocampal injection, 5 nmole rat−1) deficits in spatial learning in the rat Morris water maze task. In addition, experiments were performed in an ‘open field' to investigate possible peptide-induced changes in exploratory behaviour. Nociceptin significantly impaired the ability of the animal to locate the hidden platform throughout training (P<0.001 versus control group). Pretreatment with [Nphe1]-Nociceptin (1-13)-NH2 significantly blocked nociceptin-induced impairment of spatial learning (P<0.001 versus nociceptin group). A probe trial revealed that vehicle-treated animals spent more time in the quadrant that had previously contained the hidden platform, whereas nociceptin-treated animals did not spend more time in any one quadrant. Learning impairments were not attributable to non-specific deficits in motor performance or change in exploratory behaviour. Taken together, our results reveal that [Nphe1]-Nociceptin (1-13)-NH2 represents an effective and useful in vivo antagonist at the nociceptin receptors involved in learning and memory. PMID:11090110

  16. Effects of the brain-penetrant and selective 5-HT6 receptor antagonist SB-399885 in animal models of anxiety and depression.

    PubMed

    Wesołowska, Anna; Nikiforuk, Agnieszka

    2007-04-01

    The effects of a selective 5-HT(6) receptor antagonist, SB-399885 (N-[3,5-dichloro-2-(methoxy)phenyl]-4-(methoxy)-3-(1-piperazinyl)benzenesulfonamide), were evaluated in behavioural tests sensitive to clinically effective anxiolytic- and antidepressant-compounds using diazepam and imipramine as reference drugs. In the Vogel conflict drinking test in rats, SB-399885 (1-3mg/kg i.p.) caused an anxiolytic-like activity comparable to that of diazepam (2.5-5mg/kg i.p.). An anxiolytic-like effect was also seen in the elevated plus-maze test in rats, where SB-399885 (0.3-3mg/kg i.p.) was slightly weaker than diazepam (2.5-5mg/kg i.p.). In the four-plate test in mice, SB-399885 (3-20mg/kg i.p.) showed an anxiolytic-like effect which was weaker than that produced by diazepam (2.5-5mg/kg i.p.). In the forced swim test in rats, SB-399885 (10mg/kg i.p.) significantly shortened the immobility time and the effect was stronger than that of imipramine (30mg/kg i.p.). In the forced swim test in mice, SB-399885 (20-30mg/kg i.p.) had an anti-immobility action, comparable to imipramine (30mg/kg i.p.) and also in the tail suspension test in mice, SB-399885 (10-30mg/kg i.p.) had an antidepressant-like effect, though was weaker than imipramine (10-20mg/kg i.p.). The tested 5-HT(6) antagonist (3-20mg/kg i.p.) shortened the walking time of rats in the open field test and, at a dose of 30mg/kg i.p. reduced the locomotor activity of mice. SB-399885 (in doses up to 30mg/kg i.p.) did not affect motor coordination in mice and rats tested in the rota-rod test. Such data indicate that the selective 5-HT(6) receptor antagonist SB-399885had specific effects, indicative of this compound's anxiolytic and antidepressant potential.

  17. Interaction of the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) and opioid receptors in spinal cord nociceptive reflexes.

    PubMed

    Ramos-Zepeda, Guillermo; Herrero, Juan F

    2013-08-14

    We previously observed that the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) is a very effective antinociceptive agent on intact but not on spinalized adult rats with inflammation. Since a close connection between opioid and adenosine A1 receptors has been described, we studied a possible relationship between these systems in the spinal cord. CPA-mediated antinociception was challenged by the selective adenosine A1 receptor antagonist 8-cyclopentyl-1, 3-dimethylxanthine (CPT) and by the opioid receptor antagonist naloxone on male adult Wistar rats with carrageenan-induced inflammation. Withdrawal reflexes activated by noxious mechanical and electrical stimulation were recorded using the single motor technique in intact and sham-spinalized animals. CPA was very effective in intact and sham spinalized rats but not in spinalized animals. Full reversal of CPA antinociception was observed with i.v. 1mg/kg of naloxone but not with 20mg/kg of CPT i.v. in responses to noxious mechanical and electrical stimulation. CPT fully prevented CPA from any antinociceptive action whereas naloxone did not modify CPA activity. These results suggest a centrally-mediated action, since CPA depressed the wind-up phenomenon which is derived of the activity of spinal cord neurons. The present study provides strong in vivo evidence of an antinociceptive activity mediated by the adenosine A1 receptor system in the spinal cord, linked to an activation of opioid receptors in adult animals with inflammation. © 2013.

  18. Non-specific actions of the non-peptide tachykinin receptor antagonists, CP-96,345, RP 67580 and SR 48968, on neurotransmission.

    PubMed Central

    Wang, Z. Y.; Tung, S. R.; Strichartz, G. R.; Håkanson, R.

    1994-01-01

    1. Three non-peptide tachykinin receptor antagonists, CP-96,345, RP 67580 and SR 48968, were found to inhibit the electrically-evoked, tachykinin-mediated contractile responses of the rabbit iris sphincter in a concentration-dependent fashion; the pIC50 values were 5.6 +/- 0.01, 5.4 +/- 0.07 and 4.8 +/- 0.03, respectively. 2. These antagonists also inhibited the electrically-evoked, parasympathetic response of the rabbit iris sphincter and the sympathetic response of the guinea-pig vas deferens in a concentration-dependent manner; the pIC50 values were 0.3-1.2 log units lower than those recorded for the tachykinin-mediated responses. 3. Two local anaesthetics, bupivacaine and oxybuprocaine, were also found to inhibit the tachykinin-mediated, cholinergic and sympathetic contractile responses in these tissues in a concentration-dependent manner; the concentration ranges for producing the inhibition were similar to those of the non-peptide tachykinin receptor antagonists. 4. On the sciatic nerves of frogs, the tachykinin receptor antagonists inhibited action potentials in a concentration-dependent manner; the potency of the three drugs was similar to that of bupivacaine. 5. Our results suggest that, in addition to blocking tachykinin receptors, the non-peptide tachykinin receptor antagonists, CP-96,345, RP 67580 and SR 48968, may exert non-specific inhibitory effects on neurotransmission. PMID:8012694

  19. Discovery of potent, selective, orally active benzoxazepine-based Orexin-2 receptor antagonists.

    PubMed

    Fujimoto, Tatsuhiko; Kunitomo, Jun; Tomata, Yoshihide; Nishiyama, Keiji; Nakashima, Masato; Hirozane, Mariko; Yoshikubo, Shin-Ichi; Hirai, Keisuke; Marui, Shogo

    2011-11-01

    During our efforts to identify a series of potent, selective, orally active human Orexin-2 Receptor (OX2R) antagonists, we elucidated structure-activity relationship (SAR) on the 7-position of a benzoxazepine scaffold by utilizing Hammett σ(p) and Hansch-Fujita π value as aromatic substituent constants. The attempts led to the discovery of compound 1m, possessing good in vitro potency with over 100-fold selectivity against OX1R, good metabolic stability in human and rat liver microsome, good oral bioavailability in rats, and in vivo antagonistic activity in rats by oral administration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Macromolecular beta-adrenergic antagonists discriminating between receptor and antibody.

    PubMed Central

    Pitha, J; Zjawiony, J; Lefkowitz, R J; Caron, M G

    1980-01-01

    The beta-adrenergic antagonist, alprenolol, was attached in an irreversible manner to macromolecular dextran via side arms that differed in length. The ability of these macromolecules to bind to the beta-adrenergic receptor of frog erythrocytes and to catecholamine-binding antibodies raised against partially purified receptors was studied. Compared to the parent drug the potency of binding of macromolecular alprenolol to the receptor decreased about 1/10, 1/600, and 1/8000 when the length of the arm separating alprenolol from the dextran moiety was 13, 8, and 4 atoms, respectively. In contrast, the binding potencies of the parent drug and of all its macromolecular derivatives for the antibody were within the same order of magnitude. Thus, conversion of a drug to a macromolecular form may not only sustain its binding activity but may also lead in a higher selectivity. The macromolecular derivatives described here may be suitable probes for investigation of the location and of the molecular properties of the binding sites for beta-adrenergic drugs. PMID:6154947

  1. NMDA receptor antagonists attenuate the proconvulsant effect of juvenile social isolation in male mice.

    PubMed

    Amiri, Shayan; Haj-Mirzaian, Arya; Amini-khoei, Hossein; Momeny, Majid; Shirzadian, Armin; Rahimi-Balaei, Maryam; Zarrinrad, Ghazaleh; Ghazi-Khansari, Mahmoud; Azizi, Romina; Dehpour, Ahmad Reza; Mehr, Shahram Ejtemaei

    2016-03-01

    Experiencing psychosocial stress in early life, such as social isolation stress (SIS), is known to have negative enduring effects on the development of the brain and behavior. In addition to anxiety and depressive-like behaviors, we previously showed that juvenile SIS increases susceptibility to pentylenetetrazole (PTZ)-induced seizures in mice through enhancing the nitrergic system activity in the hippocampus. In this study, we investigated the possible involvement of N-methyl-D-aspartate (NMDA) receptors in proconvulsant effects of juvenile SIS. Applying 4 weeks of SIS to juvenile male mice at postnatal day 21-23, we observed an increased susceptibility to PTZ as well as anxiety and depressive-like behaviors in adult mice. Intraperitoneal (i.p.) administration of NMDA receptor antagonists, MK-801 (0.05 mg/kg) and ketamine (0.5mg/kg), reversed the proconvulsant effects of SIS in Isolated (and not social) housed animals. Co-administration of non-effective doses of nitric oxide synthase (NOS) inhibitors, 7NI (25mg/kg) and L-NAME (10mg/kg), with NMDA receptor antagonists, MK-801 (0.01 mg/kg) and ketamine (0.1mg/kg) attenuated the proconvulsant effects of juvenile SIS only in isolated housed mice. Also, using real time RT-PCR, we showed that hippocampal upregulation of NR2B subunit of NMDA receptor may play a critical role in proconvulsant effects of juvenile SIS by dysregulation of NMDA/NO pathway. In conclusion, results of present study revealed that experiencing SIS during adolescence predisposes the co-occurrence of seizure disorders with psychiatric comorbidities and also, alteration of NMDA receptor structure and function in hippocampus plays a role in proconvulsant effects of juvenile SIS through enhancing the NMDA/NO pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Microbiome-Derived Tryptophan Metabolites and Their Aryl Hydrocarbon Receptor-Dependent Agonist and Antagonist Activities

    PubMed Central

    Jin, Un-Ho; Lee, Syng-Ook; Sridharan, Gautham; Lee, Kyongbum; Davidson, Laurie A.; Jayaraman, Arul; Chapkin, Robert S.; Alaniz, Robert

    2014-01-01

    The tryptophan metabolites indole, indole-3-acetate, and tryptamine were identified in mouse cecal extracts and fecal pellets by mass spectrometry. The aryl hydrocarbon receptor (AHR) agonist and antagonist activities of these microbiota-derived compounds were investigated in CaCo-2 intestinal cells as a model for understanding their interactions with colonic tissue, which is highly aryl hydrocarbon (Ah)–responsive. Activation of Ah-responsive genes demonstrated that tryptamine and indole 3-acetate were AHR agonists, whereas indole was an AHR antagonist that inhibited TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin)–induced CYP1A1 expression. In contrast, the tryptophan metabolites exhibited minimal anti-inflammatory activities, whereas TCDD decreased phorbol ester-induced CXCR4 [chemokine (C-X-C motif) receptor 4] gene expression, and this response was AHR dependent. These results demonstrate that the tryptophan metabolites indole, tryptamine, and indole-3-acetate modulate AHR-mediated responses in CaCo-2 cells, and concentrations of indole that exhibit AHR antagonist activity (100–250 μM) are detected in the intestinal microbiome. PMID:24563545

  3. Blockade of Cocaine or σ Receptor Agonist Self Administration by Subtype-Selective σ Receptor Antagonists.

    PubMed

    Katz, Jonathan L; Hiranita, Takato; Kopajtic, Theresa A; Rice, Kenner C; Mesangeau, Christophe; Narayanan, Sanju; Abdelazeem, Ahmed H; McCurdy, Christopher R

    2016-07-01

    The identification of sigma receptor (σR) subtypes has been based on radioligand binding and, despite progress with σ1R cellular function, less is known about σR subtype functions in vivo. Recent findings that cocaine self administration experience will trigger σR agonist self administration was used in this study to assess the in vivo receptor subtype specificity of the agonists (+)-pentazocine, PRE-084 [2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate hydrochloride], and 1,3-di-o-tolylguanidine (DTG) and several novel putative σR antagonists. Radioligand binding studies determined in vitro σR selectivity of the novel compounds, which were subsequently studied for self administration and antagonism of cocaine, (+)-pentazocine, PRE-084, or DTG self administration. Across the dose ranges studied, none of the novel compounds were self administered, nor did they alter cocaine self administration. All compounds blocked DTG self administration, with a subset also blocking (+)-pentazocine and PRE-084 self administration. The most selective of the compounds in binding σ1Rs blocked cocaine self administration when combined with a dopamine transport inhibitor, either methylphenidate or nomifensine. These drug combinations did not decrease rates of responding maintained by food reinforcement. In contrast, the most selective of the compounds in binding σ2Rs had no effect on cocaine self administration in combination with either dopamine transport inhibitor. Thus, these results identify subtype-specific in vivo antagonists, and the utility of σR agonist substitution for cocaine self administration as an assay capable of distinguishing σR subtype selectivity in vivo. These results further suggest that effectiveness of dual σR antagonism and dopamine transport inhibition in blocking cocaine self administration is specific for σ1Rs and further support this dual targeting approach to development of cocaine antagonists. U.S. Government work not protected by U

  4. Blockade of Cocaine or σ Receptor Agonist Self Administration by Subtype-Selective σ Receptor Antagonists

    PubMed Central

    Hiranita, Takato; Kopajtic, Theresa A.; Rice, Kenner C.; Mesangeau, Christophe; Narayanan, Sanju; Abdelazeem, Ahmed H.; McCurdy, Christopher R.

    2016-01-01

    The identification of sigma receptor (σR) subtypes has been based on radioligand binding and, despite progress with σ1R cellular function, less is known about σR subtype functions in vivo. Recent findings that cocaine self administration experience will trigger σR agonist self administration was used in this study to assess the in vivo receptor subtype specificity of the agonists (+)-pentazocine, PRE-084 [2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate hydrochloride], and 1,3-di-o-tolylguanidine (DTG) and several novel putative σR antagonists. Radioligand binding studies determined in vitro σR selectivity of the novel compounds, which were subsequently studied for self administration and antagonism of cocaine, (+)-pentazocine, PRE-084, or DTG self administration. Across the dose ranges studied, none of the novel compounds were self administered, nor did they alter cocaine self administration. All compounds blocked DTG self administration, with a subset also blocking (+)-pentazocine and PRE-084 self administration. The most selective of the compounds in binding σ1Rs blocked cocaine self administration when combined with a dopamine transport inhibitor, either methylphenidate or nomifensine. These drug combinations did not decrease rates of responding maintained by food reinforcement. In contrast, the most selective of the compounds in binding σ2Rs had no effect on cocaine self administration in combination with either dopamine transport inhibitor. Thus, these results identify subtype-specific in vivo antagonists, and the utility of σR agonist substitution for cocaine self administration as an assay capable of distinguishing σR subtype selectivity in vivo. These results further suggest that effectiveness of dual σR antagonism and dopamine transport inhibition in blocking cocaine self administration is specific for σ1Rs and further support this dual targeting approach to development of cocaine antagonists. PMID:27189970

  5. Antinociception by systemically-administered acetaminophen (paracetamol) involves spinal serotonin 5-HT7 and adenosine A1 receptors, as well as peripheral adenosine A1 receptors.

    PubMed

    Liu, Jean; Reid, Allison R; Sawynok, Jana

    2013-03-01

    Acetaminophen (paracetamol) is a widely used analgesic, but its sites and mechanisms of action remain incompletely understood. Recent studies have separately implicated spinal adenosine A(1) receptors (A(1)Rs) and serotonin 5-HT(7) receptors (5-HT(7)Rs) in the antinociceptive effects of systemically administered acetaminophen. In the present study, we determined whether these two actions are linked by delivering a selective 5-HT(7)R antagonist to the spinal cord of mice and examining nociception using the formalin 2% model. In normal and A(1)R wild type mice, antinociception by systemic (i.p.) acetaminophen 300mg/kg was reduced by intrathecal (i.t.) delivery of the selective 5-HT(7)R antagonist SB269970 3μg. In mice lacking A(1)Rs, i.t. SB269970 did not reverse antinociception by systemic acetaminophen, indicating a link between spinal 5-HT(7)R and A(1)R mechanisms. We also explored potential roles of peripheral A(1)Rs in antinociception by acetaminophen administered both locally and systemically. In normal mice, intraplantar (i.pl.) acetaminophen 200μg produced antinociception in the formalin test, and this was blocked by co-administration of the selective A(1)R antagonist DPCPX 4.5μg. Acetaminophen administered into the contralateral hindpaw had no effect, indicating a local peripheral action. When acetaminophen was administered systemically, its antinociceptive effect was reversed by i.pl. DPCPX in normal mice; this was also observed in A(1)R wild type mice, but not in those lacking A(1)Rs. In summary, we demonstrate a link between spinal 5-HT(7)Rs and A(1)Rs in the spinal cord relevant to antinociception by systemic acetaminophen. Furthermore, we implicate peripheral A(1)Rs in the antinociceptive effects of locally- and systemically-administered acetaminophen. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. A2A Adenosine Receptor Antagonists as Therapeutic Candidates: are they still an interesting challenge?

    PubMed

    Cacciari, Barbara; Federico, Stephanie; Spalluto, Giampiero

    2018-04-22

    In the past decades, many efforts were done to develope ligands for the adenosine receptors, with the purpose to individuate agonists and antagonists affine and selective for each subtypes , named A1, A2A, A2B, and A3. These intense studies allowed a deeper and deeper knowledge of the nature and, moreover, of the pathophysiological roles of all the adenosine receptor subtypes. In particular, the involvment of the A2A adenosine receptor subtype in some physiological mechanisms in the brain, that could be related to important diseases such as the Parkinson's disease, encouraged the research in this field. Particular attention was given to the antagonists endowed with high affinity and selectivity since they could have a real employment in the treatment of Parkinson's disease, and some compounds, such as istradefylline, preladenant and tozadenant, are already studied in clinical trials. Actually, the role of A2A antagonists in Parkinson's disease is becoming contradictory due to contrasting results in the last studies, but, at the same time, new possible employments are emerging for this class of antagonists in cancer pathologies as much interesting to legitimate further efforts in the research of A2A ligands. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Discovery of (1R,2S)-2-{[(2,4-Dimethylpyrimidin-5-yl)oxy]methyl}-2-(3-fluorophenyl)-N-(5-fluoropyridin-2-yl)cyclopropanecarboxamide (E2006): A Potent and Efficacious Oral Orexin Receptor Antagonist.

    PubMed

    Yoshida, Yu; Naoe, Yoshimitsu; Terauchi, Taro; Ozaki, Fumihiro; Doko, Takashi; Takemura, Ayumi; Tanaka, Toshiaki; Sorimachi, Keiichi; Beuckmann, Carsten T; Suzuki, Michiyuki; Ueno, Takashi; Ozaki, Shunsuke; Yonaga, Masahiro

    2015-06-11

    The orexin/hypocretin receptors are a family of G protein-coupled receptors and consist of orexin-1 (OX1) and orexin-2 (OX2) receptor subtypes. Orexin receptors are expressed throughout the central nervous system and are involved in the regulation of the sleep/wake cycle. Because modulation of these receptors constitutes a promising target for novel treatments of disorders associated with the control of sleep and wakefulness, such as insomnia, the development of orexin receptor antagonists has emerged as an important focus in drug discovery research. Here, we report the design, synthesis, characterization, and structure-activity relationships (SARs) of novel orexin receptor antagonists. Various modifications made to the core structure of a previously developed compound (-)-5, the lead molecule, resulted in compounds with improved chemical and pharmacological profiles. The investigation afforded a potential therapeutic agent, (1R,2S)-2-{[(2,4-dimethylpyrimidin-5-yl)oxy]methyl}-2-(3-fluorophenyl)-N-(5-fluoropyridin-2-yl)cyclopropanecarboxamide (E2006), an orally active, potent orexin antagonist. The efficacy was demonstrated in mice in an in vivo study by using sleep parameter measurements.

  8. Mechanism of action of a nanomolar potent, allosteric antagonist of the thyroid-stimulating hormone receptor

    PubMed Central

    van Koppen, Chris J; de Gooyer, Marcel E; Karstens, Willem-Jan; Plate, Ralf; Conti, Paolo GM; van Achterberg, Tanja AE; van Amstel, Monique GA; Brands, Jolanda HGM; Wat, Jesse; Berg, Rob JW; Lane, J Robert D; Miltenburg, Andre MM; Timmers, C Marco

    2012-01-01

    BACKGROUND AND PURPOSE Graves' disease (GD) is an autoimmune disease in which the thyroid is overactive, producing excessive amounts of thyroid hormones, caused by thyroid-stimulating hormone (TSH) receptor-stimulating immunoglobulins (TSIs). Many GD patients also suffer from thyroid eye disease (Graves' ophthalmopathy or GO), as TSIs also activate TSH receptors in orbital tissue. We recently developed low molecular weight (LMW) TSH receptor antagonists as a novel therapeutic strategy for the treatment of GD and GO. Here, we determined the molecular pharmacology of a prototypic, nanomolar potent LMW TSH receptor antagonist, Org 274179-0. EXPERIMENTAL APPROACH Using CHO cells heterogeneously expressing human TSH receptors and rat FRTL-5 cells endogenously expressing rat TSH receptors, we determined the potency and efficacy of Org 274179-0 at antagonizing TSH- and TSI-induced TSH receptor signalling and its cross-reactivity at related follicle-stimulating hormone and luteinizing hormone receptors. We analysed the allosteric mode of interaction of Org 274179-0 and determined whether it is an inverse agonist at five naturally occurring, constitutively active TSH receptor mutants. KEY RESULTS Nanomolar concentrations of Org 274179-0 completely inhibited TSH (and TSI)-mediated TSH receptor activation with little effect on the potency of TSH, in accordance with an allosteric mechanism of action. Conversely, increasing levels of TSH receptor stimulation only marginally reduced the antagonist potency of Org 274179-0. Org 274179-0 fully blocked the increased basal activity of all the constitutively active TSH receptor mutants tested with nanomolar potencies. CONCLUSIONS AND IMPLICATIONS Nanomolar potent TSH receptor antagonists like Org 274179-0 have therapeutic potential for the treatment of GD and GO. PMID:22014107

  9. Can human allergy drug fexofenadine, an antagonist of histamine (H1) receptor, be used to treat dog and cat? Homology modeling, docking and molecular dynamic Simulation of three H1 receptors in complex with fexofenadine.

    PubMed

    Sader, Safaa; Cai, Jun; Muller, Anna C G; Wu, Chun

    2017-08-01

    Fexofenadine, a potent antagonist to human histamine 1 (H 1 ) receptor, is a non-sedative third generation antihistamine that is widely used to treat various human allergic conditions such as allergic rhinitis, conjunctivitis and atopic dermatitis. Encouragingly, it's been successfully used to treat canine atopic dermatitis, this supports the notion that it might have a great potential for treating other canine allergic conditions and other mammal pets such as dog. Regrettably, while there is a myriad of studies conducted on the interactions of antihistamines with human H 1 receptor, the similar studies on non-human pet H 1 are considerably scarce. The published studies using the first and second generation antihistamines drugs have shown that the antihistamine response is varied and unpredictable. Thus, to probe its efficacy on pet, the homology models of dog and cat H 1 receptors were built based on the crystal structure of human H 1 receptor bound to antagonist doxepin (PDB 3RZE) and fexofenadine was subsequently docked to human, dog and cat H 1 receptors. The docked complexes are then subjected to 1000ns molecular dynamics (MD) simulations with explicit membrane. Our calculated MM/GBSA binding energies indicated that fexofenadine binds comparably to the three receptors; and our MD data also showed the binding poses, structural and dynamic features among three receptors are very similar. Therefore, our data supported the application of fexofenadine to the H 1 related allergic conditions of dog and cat. Nonetheless, subtle systemic differences among human, dog and cat H 1 receptors were also identified. Clearly, there is still a space to develop a more selective, potent and safe antihistamine alternatives such as Fexofenadine for dog or cat based on these differences. Our computation approach might provide a fast and economic way to predict if human antihistamine drugs can also be safely and efficaciously administered to animals. Copyright © 2017 Elsevier Inc

  10. Could the 5-HT1B receptor inverse agonism affect learning consolidation?

    PubMed

    Meneses, A

    2001-03-01

    Diverse evidence indicates that, the 5-HT system might play a role in learning and memory, since it occurs in brain areas mediating such processes and 5-HT drugs modulate them. Hence in this work, in order to explore further 5-HT involvement on learning and memory 5-HT1B receptors' role is investigated. Evidence indicates that SB-224289 (a 5-HT1B receptor inverse agonist) post-training injection facilitated learning consolidation in an associative autoshaping learning task, this effect was partially reversed by GR 127935 (a 5-HT1B/1D receptor antagonist), but unaffected by MDL 100907 (a 5-HT2A receptor antagonist) or ketanserin (a 5-HT1D/2A/7 receptor antagonist) at low doses. Moreover, SB-224289 antagonized the learning deficit produced by TFMPP (a 5-HT1A/1B/1D/2A/2C receptor agonist), GR 46611 (a 5-HT1A/1B/1D receptor agonist), mCPP (a 5-HT2A/2C/3/7 receptor agonist/antagonist) or GR 127935 (at low dose). SB-224289 did not alter the 8-OH-DPAT (a 5-HT1A/7 receptor agonist) learning facilitatory effect. SB-224289 eliminated the deficit learning produced by the anticholinergic muscarinic scopolamine or the glutamatergic antagonist dizocilpine. Administration of both, GR 127935 (5mg/kg) plus ketanserin (0.01 mg/kg) did not modify learning consolidation; nevertheless, when ketanserin dose was increased (0.1-1.0mg/kg) and SB-224289 dose was maintained constant, a learning facilitation effect was observed. Notably, SB-224289 at 1.0mg/kg potentiated a subeffective dose of the 5-HT1B/1D receptor agonist/antagonist mixed GR 127935, which facilitated learning consolidation and this effect was abolished by ketanserin at a higher dose. Collectively, the data confirm and extend the earlier findings with GR 127935 and the effects of non-selective 5-HT(1B) receptor agonists. Clearly 5-HT1B agonists induced a learning deficit which can be reversed with SB-224289. Perhaps more importantly, SB-224289 enhances learning consolidation when given alone and can reverse the deficits

  11. TRPV1 and PLC Participate in Histamine H4 Receptor-Induced Itch.

    PubMed

    Jian, Tunyu; Yang, Niuniu; Yang, Yan; Zhu, Chan; Yuan, Xiaolin; Yu, Guang; Wang, Changming; Wang, Zhongli; Shi, Hao; Tang, Min; He, Qian; Lan, Lei; Wu, Guanyi; Tang, Zongxiang

    2016-01-01

    Histamine H4 receptor has been confirmed to play a role in evoking peripheral pruritus. However, the ionic and intracellular signaling mechanism of activation of H4 receptor on the dorsal root ganglion (DRG) neurons is still unknown. By using cell culture and calcium imaging, we studied the underlying mechanism of activation of H4 receptor on the DRG neuron. Immepip dihydrobromide (immepip)-a histamine H4 receptor special agonist under cutaneous injection-obviously induced itch behavior of mice. Immepip-induced scratching behavior could be blocked by TRPV1 antagonist AMG9810 and PLC pathway inhibitor U73122. Application of immepip (8.3-50 μM) could also induce a dose-dependent increase in intracellular Ca(2+) ([Ca(2+)]i) of DRG neurons. We found that 77.8% of the immepip-sensitized DRG neurons respond to the TRPV1 selective agonist capsaicin. U73122 could inhibit immepip-induced Ca(2+) responses. In addition, immepip-induced [Ca(2+)]i increase could be blocked by ruthenium red, capsazepine, and AMG9810; however it could not be blocked by TRPA1 antagonist HC-030031. These results indicate that TRPV1 but not TRPA1 is the important ion channel to induce the DRG neurons' responses in the downstream signaling pathway of histamine H4 receptor and suggest that TRPV1 may be involved in the mechanism of histamine-induced itch response by H4 receptor activation.

  12. Biotransformation of the mineralocorticoid receptor antagonists spironolactone and canrenone by human CYP11B1 and CYP11B2: Characterization of the products and their influence on mineralocorticoid receptor transactivation.

    PubMed

    Schiffer, Lina; Müller, Anne-Rose; Hobler, Anna; Brixius-Anderko, Simone; Zapp, Josef; Hannemann, Frank; Bernhardt, Rita

    2016-10-01

    Spironolactone and its major metabolite canrenone are potent mineralocorticoid receptor antagonists and are, therefore, applied as drugs for the treatment of primary aldosteronism and essential hypertension. We report that both compounds can be converted by the purified adrenocortical cytochromes P450 CYP11B1 and CYP11B2, while no conversion of the selective mineralocorticoid receptor antagonist eplerenone was observed. As their natural function, CYP11B1 and CYP11B2 carry out the final steps in the biosynthesis of gluco- and mineralocorticoids. Dissociation constants for the new exogenous substrates were determined by a spectroscopic binding assay and demonstrated to be comparable to those of the natural substrates, 11-deoxycortisol and 11-deoxycorticosterone. Metabolites were produced at preparative scale with a CYP11B2-dependent Escherichia coli whole-cell system and purified by HPLC. Using NMR spectroscopy, the metabolites of spironolactone were identified as 11β-OH-spironolactone, 18-OH-spironolactone and 19-OH-spironolactone. Canrenone was converted to 11β-OH-canrenone, 18-OH-canrenone as well as to the CYP11B2-specific product 11β,18-diOH-canrenone. Therefore, a contribution of CYP11B1 and CYP11B2 to the biotransformation of drugs should be taken into account and the metabolites should be tested for their potential toxic and pharmacological effects. A mineralocorticoid receptor transactivation assay in antagonist mode revealed 11β-OH-spironolactone as pharmaceutically active metabolite, whereas all other hydroxylation products negate the antagonist properties of spironolactone and canrenone. Thus, human CYP11B1 and CYP11B2 turned out to metabolize steroid-based drugs additionally to the liver-dependent biotransformation of drugs. Compared with the action of the parental drug, changed properties of the metabolites at the target site have been observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Tacr1 gene variation and neurokinin 1 receptor expression is associated with antagonist efficacy in genetically selected alcohol-preferring rats.

    PubMed

    Schank, Jesse R; Tapocik, Jenica D; Barbier, Estelle; Damadzic, Ruslan; Eskay, Robert L; Sun, Hui; Rowe, Kelly E; King, Courtney E; Yao, Mengdi; Flanigan, Meghan E; Solomon, Matthew G; Karlsson, Camilla; Cheng, Kejun; Rice, Kenner C; Heilig, Markus

    2013-04-15

    Genetic deletion or antagonism of the neurokinin 1 receptor (NK1R) decreases alcohol intake, alcohol reward, and stress-induced alcohol relapse in rodents, while TACR1 variation is associated with alcoholism in humans. We used L822429, a specific antagonist with high affinity for the rat NK1R, and examined whether sensitivity to NK1R blockade is altered in alcohol-preferring (P) rats. Operant alcohol self-administration and progressive ratio responding were analyzed in P-rats and their founder Wistar line. We also analyzed Tacr1 expression and binding and sequenced the Tacr1 promoter from both lines. Systemic L822429 decreased alcohol self-administration in P-rats but did not affect the lower rates of alcohol self-administration in Wistar rats. Tacr1 expression was elevated in the prefrontal cortex and the amygdala of P-rats. In central amygdala, elevated Tacr1 expression was accompanied by elevated NK1R binding. Central amygdala (but not prefrontal cortex) infusion of L822429 replicated the systemic antagonist effects on alcohol self-administration in P-rats. All P-rats, but only 18% of their founder Wistar population, were CC homozygous for a-1372G/C single nucleotide polymorphism. In silico analysis indicated that the Tacr1-1372 genotype could modulate binding of the transcription factors GATA-2 and E2F-1. Electromobility shift and luciferase reporter assays suggested that the-1372C allele confers increased transcription factor binding and transcription. Genetic variation at the Tacr1 locus may contribute to elevated rates of alcohol self-administration, while at the same time increasing sensitivity to NK1R antagonist treatment. Published by Elsevier Inc.

  14. Discovery of a novel nicotinic receptor antagonist for the treatment of nicotine addiction: 1-(3-Picolinium)-12-triethylammonium-dodecane dibromide (TMPD).

    PubMed

    Dwoskin, Linda P; Joyce, B Matthew; Zheng, Guangrong; Neugebauer, Nichole M; Manda, Vamshi K; Lockman, Paul; Papke, Roger L; Bardo, Michael T; Crooks, Peter A

    2007-10-15

    Limitations in efficacy and high relapse rates of currently available smoking cessation agents reveal the need for more efficacious pharmacotherapies. One strategy is to develop subtype-selective nicotinic receptor (nAChR) antagonists that inhibit nicotine-evoked dopamine (DA) release, the primary neurotransmitter involved in nicotine reward. Simple alkylation of the pyridino N-atom converts nicotine from a potent agonist into a potent antagonist. The classical antagonists, hexamethonium and decamethonium, differentiate between peripheral nAChR subtypes. Using a similar approach, we interconnected varying quaternary ammonium moieties with a lipophilic linker to provide N,N'-bis-nicotinium analogs, affording a lead compound, N,N'-dodecyl-1,12-diyl-bis-3-picolinium dibromide (bPiDDB), which inhibited nicotine-evoked DA release and decreased nicotine self-administration. The current work describes a novel compound, 1-(3-picolinium)-12-triethylammonium-dodecane dibromide (TMPD), a hybrid of bPiDDB and decamethonium. TMPD completely inhibited (IC(50)=500 nM) nicotine-evoked DA release from superfused rat striatal slices, suggesting that TMPD acts as a nAChR antagonist at more than one subtype. TMPD (1 microM) inhibited the response to acetylcholine at alpha3beta4, alpha4beta4, alpha4beta2, and alpha1beta1varepsilondelta receptors expressed in Xenopus oocytes. TMPD had a 2-fold higher affinity than choline for the blood-brain barrier choline transporter, suggesting brain bioavailability. TMPD did not inhibit hyperactivity in nicotine sensitized rats, but significantly and specifically decreased nicotine self-administration. Together, the results suggest that TMPD may have the ability to reduce the rewarding effect of nicotine with minimal side effects, a pharmacological profile indicative of potential clinical utility for the treatment of tobacco dependence.

  15. Use of chimeras, point mutants, and molecular modeling to map the antagonist-binding site of 4,4',4″,4‴-(carbonylbis-(imino-5,1,3-benzenetriylbis(carbonylimino)))tetrakisbenzene-1,3-disulfonic acid (NF449) at P2X1 receptors for ATP.

    PubMed

    Farmer, Louise K; Schmid, Ralf; Evans, Richard J

    2015-01-16

    P2X receptor subtype-selective antagonists are promising candidates for treatment of a range of pathophysiological conditions. However, in contrast to high resolution structural understanding of agonist action in the receptors, comparatively little is known about the molecular basis of antagonist binding. We have generated chimeras and point mutations in the extracellular ligand-binding loop of the human P2X1 receptor, which is inhibited by NF449, suramin, and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate, with residues from the rat P2X4 receptor, which is insensitive to these antagonists. There was little or no effect on sensitivity to suramin and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate in chimeric P2X1/4 receptors, indicating that a significant number of residues required for binding of these antagonists are present in the P2X4 receptor. Sensitivity to the P2X1 receptor-selective antagonist NF449 was reduced by ∼60- and ∼135-fold in chimeras replacing the cysteine-rich head, and the dorsal fin region below it in the adjacent subunit, respectively. Point mutants identified the importance of four positively charged residues at the base of the cysteine-rich head and two variant residues in the dorsal fin for high affinity NF449 binding. These six residues were used as the starting area for molecular docking. The four best potential NF449-binding poses were then discriminated by correspondence with the mutagenesis data and an additional mutant to validate the binding of one lobe of NF449 within the core conserved ATP-binding pocket and the other lobes coordinated by positive charge on the cysteine-rich head region and residues in the adjacent dorsal fin. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Selectivity and specificity of sphingosine-1-phosphate receptor ligands: caveats and critical thinking in characterizing receptor-mediated effects.

    PubMed

    Salomone, Salvatore; Waeber, Christian

    2011-01-01

    Receptors for sphingosine-1-phosphate (S1P) have been identified only recently. Their medicinal chemistry is therefore still in its infancy, and few selective agonists or antagonists are available. Furthermore, the selectivity of S1P receptor agonists or antagonists is not well established. JTE-013 and BML-241 (also known as CAY10444), used extensively as specific S1P(2) and S1P(3) receptors antagonists respectively, are cases in point. When analyzing S1P-induced vasoconstriction in mouse basilar artery, we observed that JTE-013 inhibited not only the effect of S1P, but also the effect of U46619, endothelin-1 or high KCl; JTE-013 strongly inhibited responses to S1P in S1P(2) receptor knockout mice. Similarly, BML-241 has been shown to inhibit increases in intracellular Ca(2+) concentration via P(2) receptor or α(1A)-adrenoceptor stimulation and α(1A)-adrenoceptor-mediated contraction of rat mesenteric artery, while it did not affect S1P(3)-mediated decrease of forskolin-induced cyclic AMP accumulation. Another putative S1P(1/3) receptor antagonist, VPC23019, does not inhibit S1P(3)-mediated vasoconstriction. With these examples in mind, we discuss caveats about relying on available pharmacological tools to characterize receptor subtypes.

  17. Effects of the NMDA receptor antagonist memantine on the expression and development of acute opiate dependence as assessed by withdrawal-potentiated startle and hyperalgesia.

    PubMed

    Harris, Andrew C; Rothwell, Patrick E; Gewirtz, Jonathan C

    2008-03-01

    While the N-methyl-D: -aspartate (NMDA) glutamate receptor has been strongly implicated in chronic opiate dependence, relatively few studies have examined the effects of NMDA receptor antagonists on withdrawal from acute opiate exposure. The current study examined the effects of memantine, a well-tolerated NMDA receptor antagonist, on acute opiate dependence as assessed by elevations in rodent startle responding (i.e., "withdrawal-potentiated startle") and increased pain sensitivity (i.e., hyperalgesia). Administration of memantine either attenuated (5 mg/kg) or blocked (10 mg/kg) the expression of withdrawal-potentiated startle during naloxone (2.5 mg/kg)-precipitated withdrawal from a single dose of morphine sulfate (10 mg/kg). Pre-treatment with the NMDA receptor antagonist also inhibited the exacerbation of withdrawal-potentiated startle across repeated acute opiate exposures. Memantine blocked the expression of acute dependence, but was less effective in inhibiting its escalation, when hyperalgesia was used as a measure of withdrawal. These doses of memantine did not affect startle responding or nociception in otherwise drug-free animals. Data from additional control groups indicated that the effects of memantine on the expression of withdrawal were not influenced by nonspecific interactions between the NMDA antagonist and either morphine or naloxone. These findings suggest that the NMDA receptor may play a key role in the earliest stages of opiate dependence and provide further evidence that memantine may be useful for the treatment of opiate withdrawal.

  18. Synthesis and biological evaluation of aryl isoxazole derivatives as metabotropic glutamate receptor 1 antagonists: a potential treatment for neuropathic pain.

    PubMed

    Cho, Gyeong Hi; Kim, TaeHun; Son, Woo Seung; Seo, Seon Hee; Min, Sun-Joon; Cho, Yong Seo; Keum, Gyochang; Jeong, Kyu-Sung; Koh, Hun Yeong; Lee, Jiyoun; Pae, Ae Nim

    2015-03-15

    Glutamate is the major excitatory neurotransmitter and known to activate the metabotropic and ionotropic glutamate receptors in the brain. Among these glutamate receptors, metabotropic glutamate receptor 1 (mGluR1) has been implicated in various brain disorders including anxiety, schizophrenia and chronic pain. Several studies demonstrated that the blockade of mGluR1 signaling reduced pain responses in animal models, suggesting that mGluR1 is a promising target for the treatment of neuropathic pain. In this study, we have developed mGluR1 antagonists with an aryl isoxazole scaffold, and identify several compounds that are orally active in vivo. We believe that these compounds can serve as a useful tool for the investigation of the role of mGluR1 and a promising lead for the potential treatment of neuropathic pain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A tachykinin NK1 receptor antagonist, CP-122,721-1, attenuates kainic acid-induced seizure activity.

    PubMed

    Zachrisson, O; Lindefors, N; Brené, S

    1998-10-01

    Substance P (SP) can play an important role in neuronal survival. To analyze the role of SP in excitotoxicity, kainic acid (KA) was administered to rats and in situ hybridization was used to analyze the levels of the SP encoding preprotachykinin-A (PPT-A) mRNA in striatal and hippocampal subregions 1, 4, and 24 h and 7 days after KA. In striatum and piriform cortex, PPT-A mRNA peaked 4 h after KA while in hippocampus, levels peaked after 24 h. KA caused seizures and neuronal toxicity as indicated by a reduction of the number of neurons in the hippocampal CA1 subregion after 7 days. KA was later administered alone or following pretreatment with the tachykinin NK1 receptor antagonist CP-122,721-1 (0.3 mg/kg). The pretreatment decreased seizure activity and a negative correlation was found between seizure activity and survival of CA1 neurons. Conclusively, treatment with CP-122,721-1 has a seizure inhibiting property and may possibly counteract KA-induced nerve cell death in CA1. Copyright 1998 Elsevier Science B.V.

  20. Histamine H1-receptor antagonists against Leishmania (L.) infantum: an in vitro and in vivo evaluation using phosphatidylserine-liposomes.

    PubMed

    Pinto, Erika G; da Costa-Silva, Thais A; Tempone, Andre Gustavo

    2014-09-01

    Considering the limited and toxic therapeutic arsenal available for visceral leishmaniasis (VL), the drug repositioning approach could represent a promising tool to the introduction of alternative therapies. Histamine H1-receptor antagonists are drugs belonging to different therapeutic classes, including antiallergics and anxyolitics. In this work, we described for the first time the activity of H1-antagonists against L. (L.) infantum and their potential effectiveness in an experimental hamster model. The evaluation against promastigotes demonstrated that chlorpheniramine, cinnarizine, hydroxyzine, ketotifen, loratadine, quetiapine and risperidone exerted a leishmanicidal effect against promastigotes, with IC50 values in the range of 13-84μM. The antihistaminic drug cinnarizine demonstrated effectiveness against the intracellular amastigotes, with an IC50 value of 21μM. The mammalian cytotoxicity was investigated in NCTC cells, resulting in IC50 values in the range of 57-229μM. Cinnarizine was in vivo studied as a free formulation and entrapped into phosphatidylserine-liposomes. The free drug was administered for eight consecutive days at 50mg/kg by intraperitoneal route (i.p.) and at 100mg/kg by oral route to L. infantum-infected hamsters, but showed lack of effectiveness in both regimens, as detected by real time PCR. The liposomal formulation was administered by i.p. route at 3mg/kg for eight days and reduced the parasite burden to 54% in liver when compared to untreated group; no improvement was observed in the spleen of infected hamsters. Cinnarizine is the first antihistaminic drug with antileishmanial activity and could be used as scaffold for drug design studies for VL. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Discovery of novel S1P2 antagonists. Part 1: discovery of 1,3-bis(aryloxy)benzene derivatives.

    PubMed

    Kusumi, Kensuke; Shinozaki, Koji; Kanaji, Toshiya; Kurata, Haruto; Naganawa, Atsushi; Otsuki, Kazuhiro; Matsushita, Takeshi; Sekiguchi, Tetsuya; Kakuuchi, Akito; Seko, Takuya

    2015-04-01

    The structure-activity relationships of a novel series of sphingosine-1-phosphate receptor antagonists have been examined in detail. The initial hit compound 1 was modified through synthesis to improve its S1P2 activity. The synthesis of a series of analogs revealed that 1,3-bis(aryloxy)benzene derivatives, as represented by 22, are potent and selective S1P2 antagonists. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Two antagonistic gustatory receptor neurons responding to sweet-salty and bitter taste in Drosophila.

    PubMed

    Hiroi, Makoto; Meunier, Nicolas; Marion-Poll, Frédéric; Tanimura, Teiichi

    2004-12-01

    In Drosophila, gustatory receptor neurons (GRNs) occur within hair-like structures called sensilla. Most taste sensilla house four GRNs, which have been named according to their preferred sensitivity to basic stimuli: water (W cell), sugars (S cell), salt at low concentration (L1 cell), and salt at high concentration (L2 cell). Labellar taste sensilla are classified into three types, l-, s-, and i-type, according to their length and location. Of these, l- and s-type labellar sensilla possess these four cells, but most i-type sensilla house only two GRNs. In i-type sensilla, we demonstrate here that the first GRN responds to sugar and to low concentrations of salt (10-50 mM NaCl). The second GRN detects a range of bitter compounds, among which strychnine is the most potent; and also to salt at high concentrations (over 400 mM NaCl). Neither type of GRN responds to water. The detection of feeding stimulants in i-type sensilla appears to be performed by one GRN with the combined properties of S+L1 cells, while the other GRN detects feeding inhibitors in a similar manner to bitter-sensitive L2 cells on the legs. These sensilla thus house two GRNs having an antagonistic effect on behavior, suggesting that the expression of taste receptors is segregated across them accordingly. copyright (c) 2004 Wiley Periodicals, Inc.

  3. A pharmacokinetic evaluation of five H1 antagonists after an oral and intravenous microdose to human subjects

    PubMed Central

    Madan, Ajay; O'Brien, Zhihong; Wen, Jianyun; O'Brien, Chris; Farber, Robert H; Beaton, Graham; Crowe, Paul; Oosterhuis, Berend; Garner, R Colin; Lappin, Graham; Bozigian, Haig P

    2009-01-01

    AIMS To evaluate the pharmacokinetics (PK) of five H1 receptor antagonists in human volunteers after a single oral and intravenous (i.v.) microdose (0.1 mg). METHODS Five H1 receptor antagonists, namely NBI-1, NBI-2, NBI-3, NBI-4 and diphenhydramine, were administered to human volunteers as a single 0.1-mg oral and i.v. dose. Blood samples were collected up to 48 h, and the parent compound in the plasma extract was quantified by high-performance liquid chromatography and accelerator mass spectroscopy. RESULTS The median clearance (CL), apparent volume of distribution (Vd) and apparent terminal elimination half-life (t1/2) of diphenhydramine after an i.v. microdose were 24.7 l h−1, 302 l and 9.3 h, and the oral Cmax and AUC0–∞ were 0.195 ng ml−1 and 1.52 ng h ml−1, respectively. These data were consistent with previously published diphenhydramine data at 500 times the microdose. The rank order of oral bioavailability of the five compounds was as follows: NBI-2 > NBI-1 > NBI-3 > diphenhydramine > NBI-4, whereas the rank order for CL was NBI-4 > diphenhydramine > NBI-1 > NBI-3 > NBI-2. CONCLUSIONS Human microdosing provided estimates of clinical PK of four structurally related compounds, which were deemed useful for compound selection. PMID:19523012

  4. A pharmacokinetic evaluation of five H(1) antagonists after an oral and intravenous microdose to human subjects.

    PubMed

    Madan, Ajay; O'Brien, Zhihong; Wen, Jianyun; O'Brien, Chris; Farber, Robert H; Beaton, Graham; Crowe, Paul; Oosterhuis, Berend; Garner, R Colin; Lappin, Graham; Bozigian, Haig P

    2009-03-01

    To evaluate the pharmacokinetics (PK) of five H(1) receptor antagonists in human volunteers after a single oral and intravenous (i.v.) microdose (0.1 mg). Five H(1) receptor antagonists, namely NBI-1, NBI-2, NBI-3, NBI-4 and diphenhydramine, were administered to human volunteers as a single 0.1-mg oral and i.v. dose. Blood samples were collected up to 48 h, and the parent compound in the plasma extract was quantified by high-performance liquid chromatography and accelerator mass spectroscopy. The median clearance (CL), apparent volume of distribution (V(d)) and apparent terminal elimination half-life (t(1/2)) of diphenhydramine after an i.v. microdose were 24.7 l h(-1), 302 l and 9.3 h, and the oral C(max) and AUC(0-infinity) were 0.195 ng ml(-1) and 1.52 ng h ml(-1), respectively. These data were consistent with previously published diphenhydramine data at 500 times the microdose. The rank order of oral bioavailability of the five compounds was as follows: NBI-2 > NBI-1 > NBI-3 > diphenhydramine > NBI-4, whereas the rank order for CL was NBI-4 > diphenhydramine > NBI-1 > NBI-3 > NBI-2. Human microdosing provided estimates of clinical PK of four structurally related compounds, which were deemed useful for compound selection.

  5. Protective effects of the angiotensin type 1 receptor antagonist losartan in infection-induced and arthritis-associated alveolar bone loss.

    PubMed

    Queiroz-Junior, C M; Silveira, K D; de Oliveira, C R; Moura, A P; Madeira, M F M; Soriani, F M; Ferreira, A J; Fukada, S Y; Teixeira, M M; Souza, D G; da Silva, T A

    2015-12-01

    The angiotensin type 1 (AT1) receptor has been implicated in the pathogenesis of inflammatory bone disorders. This study aimed to investigate the effect of an AT1 receptor antagonist in infection-induced and arthritis-associated alveolar bone loss in mice. Mice were subjected to Aggregatibacter actinomycetemcomitans oral infection or antigen-induced arthritis and treated daily with 10 mg/kg of the prototype AT1 antagonist, losartan. Treatment was conducted for 30 d in the infectious condition and for 17 d and 11 d in the preventive or therapeutic regimens in the arthritic model, respectively. The mice were then killed, and the maxillae, serum and knee joints were collected for histomorphometric and immunoenzymatic assays. In vitro osteoclast assays were performed using RAW 264.7 cells stimulated with A. actinomycetemcomitans lipopolysacharide (LPS). Arthritis and A. actinomycetemcomitans infection triggered significant alveolar bone loss in mice and increased the levels of myeloperoxidase and of TRAP(+) osteoclasts in periodontal tissues. Losartan abolished such a phenotype, as well as the arthritis joint inflammation. Both arthritis and A. actinomycetemcomitans conditions were associated with the release of tumor necrosis factor alpha (TNF-α), interferon-gamma, interleukin-17 and chemokine (C-X-C motif) ligand 1 and an increased RANKL/osteoprotegerin ratio in periodontal tissues, but such expression decreased after losartan treatment, except for TNF-α. The therapeutic approach was as beneficial as the preventive one. In vitro, losartan prevented LPS-induced osteoclast differentiation and activity. The blockade of AT1 receptor exerts anti-inflammatory and anti-osteoclastic effects, thus protecting periodontal tissues in distinct pathophysiological conditions of alveolar bone loss. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. The utility of ionotropic glutamate receptor antagonists in the treatment of nociception induced by epidural glutamate infusion in rats.

    PubMed

    Osgood, Doreen B; Harrington, William F; Kenney, Elizabeth V; Harrington, J Frederick

    2013-01-01

    The authors have previously demonstrated that human herniated disc material contains high concentrations of free glutamate. In an experimental model, elevated epidural glutamate concentrations in the lumbar spine can cause a focal hyperesthetic state. Rats underwent epidural glutamate infusion in the lumbar spine by a miniosmotic pump over a 72-hour period. Some rats underwent coinfusion with glutamate and ionotropic glutamate antagonists. Nociception was assessed by von Frey fibers and by assessment of glutamate receptor expression in the corresponding dorsal horn of the spinal cord. The kainic acid antagonist, UBP 301, decreased epidural glutamate-based hyperesthesia in a dose dependent manner. Concordant with these findings, there was significant decrease in kainate receptor expression in the dorsal horn. The N-Methyl-4-isoxazoleproionic acid (NMDA) antagonist Norketamine also significantly diminished hyperesthesia and decreased receptor expression in the dorsal horn. Both UBP 301, the kainic acid receptor antagonist and Norketamine, an NMDA receptor antagonist, dampened epidural glutamate-based nociception. Focal epidural injections of Kainate or NMDA receptor antagonists could be effective treatments for disc herniation-based lumbar radiculopathy.

  7. Orexin-1 receptor antagonist in central nucleus of the amygdala attenuates the acquisition of flavor-taste preference in rats.

    PubMed

    Risco, Severiano; Mediavilla, Cristina

    2014-11-01

    Previous studies demonstrated that the intracerebroventricular administration of SB-334867-A, a selective antagonist of orexin OX1R receptors, blocks the acquisition of saccharin-induced conditioned flavor preference (CFP) but not LiCl-induced taste aversion learning (TAL). Orexinergic fibers from the lateral hypothalamus end in the central nucleus of the amygdala (CeA), which expresses orexin OX1R receptors. Taste and sensory inputs also are present in CeA, which may contribute to the development of taste learning. This study analyzed the effect of two doses (1.5 and 6μg/0.5μl) of SB-334867-A administered into the CeA on flavor-taste preference induced by saccharin and on TAL induced by a single administration of LiCl (0.15M, 20ml/kg, i.p.). Outcomes indicate that inactivation of orexinergic receptors in the CeA attenuates flavor-taste preference in a two-bottle test (saccharin vs. water). Intra-amygdalar SB-334867-A does not affect gustatory processing or the preference for the sweet taste of saccharin given that SB-334867-A- and DMSO-treated groups (control animals) increased the intake of the saccharin-associated flavor across training acquisition sessions. Furthermore, SB-334867-A in the CeA does not block TAL acquisition ruling out the possibility that functional inactivation of OX1R receptors interferes with taste processing. Orexin receptors in the CeA appear to intervene in the association of a flavor with orosensory stimuli, e.g., a sweet and pleasant taste, but could be unnecessary when the association is established with visceral stimuli, e.g., lithium chloride. These data suggest that orexinergic projections to the CeA may contribute to the reinforcing signals facilitating the acquisition of taste learning and the change in hedonic evaluation of the taste, which would have important implications for the OX1R-targeted pharmacological treatment of eating disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. New insights into the stereochemical requirements of the bradykinin B2 receptor antagonists binding

    NASA Astrophysics Data System (ADS)

    Lupala, Cecylia S.; Gomez-Gutierrez, Patricia; Perez, Juan J.

    2016-01-01

    Bradykinin (BK) is a member of the kinin family, released in response to inflammation, trauma, burns, shock, allergy and some cardiovascular diseases, provoking vasodilatation and increased vascular permeability among other effects. Their actions are mediated through at least two G-protein coupled receptors, B1 a receptor up-regulated during inflammation episodes or tissue trauma and B2 that is constitutively expressed in a variety of cell types. The goal of the present work is to carry out a structure-activity study of BK B2 antagonism, taking into account the stereochemical features of diverse non-peptide antagonists and the way these features translate into ligand anchoring points to complementary regions of the receptor, through the analysis of the respective ligand-receptor complex. For this purpose an atomistic model of the BK B2 receptor was built by homology modeling and subsequently refined embedded in a lipid bilayer by means of a 600 ns molecular dynamics trajectory. The average structure from the last hundred nanoseconds of the molecular dynamics trajectory was energy minimized and used as model of the receptor for docking studies. For this purpose, a set of compounds with antagonistic profile, covering maximal diversity were selected from the literature. Specifically, the set of compounds include Fasitibant, FR173657, Anatibant, WIN64338, Bradyzide, CHEMBL442294, and JSM10292. Molecules were docked into the BK B2 receptor model and the corresponding complexes analyzed to understand ligand-receptor interactions. The outcome of this study is summarized in a 3D pharmacophore that explains the observed structure-activity results and provides insight into the design of novel molecules with antagonistic profile. To prove the validity of the pharmacophore hypothesized a virtual screening process was also carried out. The pharmacophore was used as query to identify new hits using diverse databases of molecules. The results of this study revealed a set of new

  9. Binding of Losartan to Angiotensin AT1 Receptors Increases Dopamine D1 Receptor Activation

    PubMed Central

    Li, Dong; Scott, Lena; Crambert, Susanne; Zelenin, Sergey; Eklöf, Ann-Christine; Di Ciano, Luis; Ibarra, Fernando

    2012-01-01

    Signaling through both angiotensin AT1 receptors (AT1R) and dopamine D1 receptors (D1R) modulates renal sodium excretion and arterial BP. AT1R and D1R form heterodimers, but whether treatment with AT1R antagonists functionally modifies D1R via allosterism is unknown. In this study, the AT1R antagonist losartan strengthened the interaction between AT1R and D1R and increased expression of D1R on the plasma membrane in vitro. In rat proximal tubule cells that express endogenous AT1R and D1R, losartan increased cAMP generation. Losartan increased cAMP in HEK 293a cells transfected with both AT1R and D1R, but it did not increase cAMP in cells transfected with either receptor alone, suggesting that losartan induces D1R activation. Furthermore, losartan did not increase cAMP in HEK 293a cells expressing AT1R and mutant S397/S398A D1R, which disrupts the physical interaction between AT1R and D1R. In vivo, administration of a D1R antagonist significantly attenuated the antihypertensive effect of losartan in rats with renal hypertension. Taken together, these data imply that losartan might exert its antihypertensive effect both by inhibiting AT1R signaling and by enhancing D1R signaling. PMID:22193384

  10. IL-1 receptor antagonist-mediated therapeutic effect in murine myasthenia gravis is associated with suppressed serum proinflammatory cytokines, C3, and anti-acetylcholine receptor IgG1.

    PubMed

    Yang, Huan; Tüzün, Erdem; Alagappan, Dhivyaa; Yu, Xiang; Scott, Benjamin G; Ischenko, Alexander; Christadoss, Premkumar

    2005-08-01

    In myasthenia gravis (MG), TNF and IL-1beta polymorphisms and high serum levels of these proinflammatory cytokines have been observed. Likewise, TNF and IL-1beta are critical for the activation of acetylcholine receptor (AChR)-specific T and B cells and for the development of experimental autoimmune myasthenia gravis (EAMG) induced by AChR immunization. We tested the therapeutic effect of human recombinant IL-1 receptor antagonist (IL-1ra) in C57BL/6 mice with EAMG. Multiple daily injections of 0.01 mg of IL-1ra administered for 2 wk following two AChR immunizations decreased the incidence and severity of clinical EAMG. Furthermore, IL-1ra treatment of mice with ongoing clinical EAMG reduced the clinical symptoms of disease. The IL-1ra-mediated suppression of clinical disease was associated with suppressed serum IFN-gamma, TNF-alpha, IL-1beta, IL-2, IL-6, C3, and anti-AChR IgG1 without influencing total serum IgG. Therefore, IL-1ra could be used as a nonsteroidal drug for the treatment of MG.

  11. DOR(2)-selective but not DOR(1)-selective antagonist abolishes anxiolytic-like effects of the δ opioid receptor agonist KNT-127.

    PubMed

    Sugiyama, Azusa; Nagase, Hiroshi; Oka, Jun-Ichiro; Yamada, Mitsuhiko; Saitoh, Akiyoshi

    2014-04-01

    Recently, we reported that the δ opioid receptor (DOR) agonist KNT-127 produces anxiolytic-like effects in behaving rats. Here, we report on the roles of DOR subtypes ( DOR(1) and DOR(2)) play in mediating KNT-127-induced anxiolytic-like effects. Pretreatment with the DOR(2)-selective antagonist naltriben (NTB; 0.05mg/kg, s.c.) completely abolished KNT-127 (3.0mg/kg, s.c.)-induced anxiolytic-like effects in rats performing the elevated plus-maze task. By contrast, the DOR(1)-selective antagonist 7-benzylidenenaltrexone (BNTX; 0.5mg/kg, s.c.) produced no effect at a dose that completely blocked the antinociceptive effects of KNT-127. These findings were also supported by results from a light/dark test and open-field test. We clearly demonstrated that the DOR(2)-selective antagonist, but not the DOR(1)-selective antagonist, abolishes the anxiolytic-like effects of the DOR agonist KNT-127, suggesting different roles of these DOR subtypes in anxiety. We propose that DOR(2)-selective agonists would be good candidates for future development of anxiolytic drugs. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  12. Substance P Receptor Antagonist Suppresses Inflammatory Cytokine Expression in Human Disc Cells.

    PubMed

    Kepler, Christopher K; Markova, Dessislava Z; Koerner, John D; Mendelis, Joseph; Chen, Chiu-Ming; Vaccaro, Alexander R; Risbud, Makarand V; Albert, Todd J; Anderson, D Greg

    2015-08-15

    Laboratory study. To evaluate whether blockade of the Substance P (SP) NK1R attenuates its proinflammatory effect on human intervertebral disc cells (IVD), and to evaluate the signaling pathways associated with SP. SP and its receptors are expressed in human IVD cells, and cause upregulation of inflammatory mediators; however, the effects of blocking these receptors have not been studied in human IVD cells. Human annulus fibrosus (AF) and nucleus pulposus (NP) cells were expanded in monolayer, and then suspended in alginate beads. The alginate beads were treated with culture medium first containing a high affinity NK1R antagonist (L-760735) at different concentrations, and then with medium containing both NK1R antagonist and SP at 2 concentrations. Ribonucleic acid was isolated and transcribed into cDNA. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to evaluate expression of interleukin (IL)-1β, IL-6, and IL-8. Western blot analysis was performed to examine levels of the phosphorylated p38 mitogen-activated protein kinase (MAPK), extracellular signal regulated kinase 1/2 (ERK1/2) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB p65). The cells were pretreated with specific inhibitors of p38 (SB203580), ERK1/2 (PD98059), and p65 (SM7368) and then stimulated with SP. We detected expression of NK1R, neurokinin receptor 2 (NK2R), and neurokinin receptor 3 (NK3R) in AF and NP cells. Treatment of disc cells with the NK1R antagonist was able to suppress expression of IL-1β, IL-6, and IL-8 in a dose-dependent manner. SP stimulation increased phosphorylation of p38-MAPK and ERK1/2, but not of NFκB p65. This indicates that p38-MAPK and ERK1/2 control SP-induced cytokine expression independently from NF-kB p65. Inhibition of p38 and ERK1/2 activation reduced SP-induced IL-6 production in human disc cells. NK1R is responsible for the proinflammatory effect of SP on IVD cells and this effect can be blocked by

  13. Adenosine receptor antagonist and augmented vasodilation during hypoxic exercise

    PubMed Central

    Madery, Brandon D.; Pike, Tasha L.; Eisenach, John H.; Dietz, Niki M.; Joyner, Michael J.; Wilkins, Brad W.

    2009-01-01

    We tested the hypothesis that adenosine contributes to augmented skeletal muscle vasodilation during hypoxic exercise. In separate protocols, subjects performed incremental rhythmic forearm exercise (10% and 20% of maximum) during normoxia and normocapnic hypoxia (80% arterial O2 saturation). In protocol 1 (n = 8), subjects received an intra-arterial administration of saline (control) and aminophylline (adenosine receptor antagonist). In protocol 2 (n = 10), subjects received intra-arterial phentolamine (α-adrenoceptor antagonist) and combined phentolamine and aminophylline administration. Forearm vascular conductance (FVC; in ml·min−1·100 mmHg−1) was calculated from forearm blood flow (in ml/min) and blood pressure (in mmHg). In protocol 1, the change in FVC (ΔFVC; change from normoxic baseline) during hypoxic exercise with saline was 172 ± 29 and 314 ± 34 ml·min−1·100 mmHg−1 (10% and 20%, respectively). Aminophylline administration did not affect ΔFVC during hypoxic exercise at 10% (190 ± 29 ml·min−1·100 mmHg−1, P = 0.4) or 20% (287 ± 48 ml·min−1·100 mmHg−1, P = 0.3). In protocol 2, ΔFVC due to hypoxic exercise with phentolamine infusion was 313 ± 30 and 453 ± 41 ml·min−1·100 mmHg−1 (10% and 20% respectively). ΔFVC was similar at 10% (352 ± 39 ml·min−1·100 mmHg−1, P = 0.8) and 20% (528 ± 45 ml·min−1·100 mmHg−1, P = 0.2) hypoxic exercise with combined phentolamine and aminophylline. In contrast, ΔFVC to exogenous adenosine was reduced by aminophylline administration in both protocols (P < 0.05 for both). These observations suggest that adenosine receptor activation is not obligatory for the augmented hyperemia during hypoxic exercise in humans. PMID:19661449

  14. The 5-HT₂C receptor agonist, lorcaserin, and the 5-HT₆ receptor antagonist, SB-742457, promote satiety; a microstructural analysis of feeding behaviour.

    PubMed

    Higgs, Suzanne; Cooper, Alison J; Barnes, Nicholas M

    2016-02-01

    Whilst the FDA-approved anorectic, lorcaserin and various 5-hydroxytryptamine (5-HT)6 receptor antagonists reduce feeding, a direct assessment of their impact upon feeding behaviour is less clear. We therefore examined the action of lorcaserin and the clinical-stage developmental candidate 5-HT6 receptor antagonist, SB-742457, upon microstructural analysis of licking behaviour. Such analysis provides a rich source of information about the mechanisms controlling food intake. The objective of the present study was to gain insight into the influence upon feeding behaviour of the 5-HT2C receptor agonist, lorcaserin and the developmental 5-HT6 receptor antagonist, SB-742457. The impact of lorcaserin and SB-742457 upon licking behaviour of non-deprived rats for a glucose solution was assessed using microstructural analysis. Lorcaserin (0.1-3.0 mg/kg) displayed a dose-dependent ability to reduce glucose consumption via reduction in the number of bouts of licking. A similar action was evident with SB-742457, but only at the lowest dose tested (3.0 mg/kg). The behavioural actions of both lorcaserin and SB-742457 demonstrate they directly promote satiety.

  15. Ionotropic and metabotropic glutamate receptor antagonism attenuates cue-induced cocaine seeking.

    PubMed

    Bäckström, Pia; Hyytiä, Petri

    2006-04-01

    Neuroanatomical and pharmacological evidence implicates glutamate transmission in drug-environment conditioning that partly controls drug seeking and relapse. Glutamate receptors could be targets for pharmacological attenuation of the motivational properties of drug-paired cues and for relapse prevention. The purpose of the present study was therefore to investigate the involvement of ionotropic and metabotropic glutamate receptor subtypes in cue-induced reinstatement of cocaine-seeking behavior. Rats were trained to self-administer cocaine using a second-order schedule of reinforcement (FR4(FR5:S)) under which a compound stimulus (light and tone) associated with cocaine infusions was presented contingently. Following extinction, the effects of the competitive NMDA receptor antagonist CGP 39551 (0, 2.5, 5, 10 mg/kg intraperitoneally (i.p.)), two competitive AMPA/kainate antagonists, CNQX (0, 0.75, 1.5, 3 mg/kg i.p.) and NBQX (0, 1.25, 2.5, 5 mg/kg i.p.), the NMDA/glycine site antagonist L-701,324 (0, 0.63, 1.25, 2.5 mg/kg i.p.), and the mGluR5 antagonist MPEP (0, 1.25, 2.5, 5 mg/kg i.p.) on cue-induced reinstatement of cocaine seeking were examined. The AMPA/kainate receptor antagonists CNQX and NBQX, the NMDA/glycine site antagonist L-701,324, and the mGluR5 antagonist MPEP attenuated significantly cue-induced reinstatement. The NMDA antagonist CGP 39551 failed to affect reinstatement. Additional control experiments indicated that attenuation of cue-induced reinstatement by CNQX, NBQX, L-701,324, and MPEP was not accompanied by significant suppression of spontaneous locomotor activity. These results suggest that conditioned influences on cocaine seeking depend on glutamate transmission. Accordingly, drugs with antagonist properties at various glutamate receptor subtypes could be useful in prevention of relapse induced by conditioned stimuli.

  16. Structure-kinetic relationships--an overlooked parameter in hit-to-lead optimization: a case of cyclopentylamines as chemokine receptor 2 antagonists.

    PubMed

    Vilums, Maris; Zweemer, Annelien J M; Yu, Zhiyi; de Vries, Henk; Hillger, Julia M; Wapenaar, Hannah; Bollen, Ilse A E; Barmare, Farhana; Gross, Raymond; Clemens, Jeremy; Krenitsky, Paul; Brussee, Johannes; Stamos, Dean; Saunders, John; Heitman, Laura H; Ijzerman, Adriaan P

    2013-10-10

    Preclinical models of inflammatory diseases (e.g., neuropathic pain, rheumatoid arthritis, and multiple sclerosis) have pointed to a critical role of the chemokine receptor 2 (CCR2) and chemokine ligand 2 (CCL2). However, one of the biggest problems of high-affinity inhibitors of CCR2 is their lack of efficacy in clinical trials. We report a new approach for the design of high-affinity and long-residence-time CCR2 antagonists. We developed a new competition association assay for CCR2, which allows us to investigate the relation of the structure of the ligand and its receptor residence time [i.e., structure-kinetic relationship (SKR)] next to a traditional structure-affinity relationship (SAR). By applying combined knowledge of SAR and SKR, we were able to re-evaluate the hit-to-lead process of cyclopentylamines as CCR2 antagonists. Affinity-based optimization yielded compound 1 with good binding (Ki = 6.8 nM) but very short residence time (2.4 min). However, when the optimization was also based on residence time, the hit-to-lead process yielded compound 22a, a new high-affinity CCR2 antagonist (3.6 nM), with a residence time of 135 min.

  17. Betaxolol, a selective β1-adrenergic receptor antagonist, diminishes anxiety-like behavior during early withdrawal from chronic cocaine administration in rats

    PubMed Central

    Rudoy, C.A.; Van Bockstaele, E.J.

    2007-01-01

    Background Anxiety has been indicated as one of the main symptoms of the cocaine withdrawal syndrome in human addicts and severe anxiety during withdrawal may potentially contribute to relapse. As alterations in noradrenergic transmission in limbic areas underlie withdrawal symptomatology for many drugs of abuse, the present study sought to determine the effect of cocaine withdrawal on β-adrenergic receptor1 and β2) expression in the amygdala. Methods Male Sprague Dawley rats were administered intraperitoneal (i.p.) injections of cocaine (20 mg/kg) once daily for 14 days. Two days following the last cocaine injection, amygdala brain regions were micro-dissected and processed for Western blot analysis. Results showed that β1–adrenergic receptor, but not β2–adrenergic receptor expression was significantly increased in amygdala extracts of cocaine-withdrawn animals as compared to controls. This finding motivated further studies aimed at determining whether treatment with betaxolol, a highly selective β1–adrenergic receptor antagonist, could ameliorate cocaine withdrawal-induced anxiety. In these studies, betaxolol (5 mg/kg via i.p. injection) was administered at 24 and then 44 hours following the final chronic cocaine administration. Anxiety-like behavior was evaluated using the elevated plus maze test approximately 2 hours following the last betaxolol injection. Following behavioral testing, betaxolol effects on β1-adrenergic receptor protein expression were examined by Western blotting in amygdala extracts from rats undergoing cocaine withdrawal. Results Animals treated with betaxolol during cocaine withdrawal exhibited a significant attenuation of anxiety-like behavior characterized by increased time spent in the open arms and increased entries into the open arms compared to animals treated with only saline during cocaine withdrawal. In contrast, betaxolol did not produce anxiolytic-like effects in control animals treated chronically with saline

  18. Effects of GABA receptor antagonists on thresholds of P23H rat retinal ganglion cells to electrical stimulation of the retina

    NASA Astrophysics Data System (ADS)

    Jensen, Ralph J.; Rizzo, Joseph F., III

    2011-06-01

    An electronic retinal prosthesis may provide useful vision for patients suffering from retinitis pigmentosa (RP). In animal models of RP, the amount of current needed to activate retinal ganglion cells (RGCs) is higher than in normal, healthy retinas. In this study, we sought to reduce the stimulation thresholds of RGCs in a degenerate rat model (P23H-line 1) by blocking GABA receptor mediated inhibition in the retina. We examined the effects of TPMPA, a GABAC receptor antagonist, and SR95531, a GABAA receptor antagonist, on the electrically evoked responses of RGCs to biphasic current pulses delivered to the subretinal surface through a 400 µm diameter electrode. Both TPMPA and SR95531 reduced the stimulation thresholds of ON-center RGCs on average by 15% and 20% respectively. Co-application of the two GABA receptor antagonists had the greatest effect, on average reducing stimulation thresholds by 32%. In addition, co-application of the two GABA receptor antagonists increased the magnitude of the electrically evoked responses on average three-fold. Neither TPMPA nor SR95531, applied alone or in combination, had consistent effects on the stimulation thresholds of OFF-center RGCs. We suggest that the effects of the GABA receptor antagonists on ON-center RGCs may be attributable to blockage of GABA receptors on the axon terminals of ON bipolar cells.

  19. Potent and long-acting corticotropin releasing factor (CRF) receptor 2 selective peptide competitive antagonists.

    PubMed

    Rivier, J; Gulyas, J; Kirby, D; Low, W; Perrin, M H; Kunitake, K; DiGruccio, M; Vaughan, J; Reubi, J C; Waser, B; Koerber, S C; Martinez, V; Wang, L; Taché, Y; Vale, W

    2002-10-10

    We present evidence that members of the corticotropin releasing factor (CRF) family assume distinct structures when interacting with the CRF(1) and CRF(2) receptors. Predictive methods, physicochemical measurements, and structure-activity relationship studies have suggested that CRF, its family members, and competitive antagonists such as astressin [cyclo(30-33)[DPhe(12),Nle(21),Glu(30),Lys(33),Nle(38)]hCRF((12-41))] assume an alpha-helical conformation when interacting with their receptors. We had shown that alpha-helical CRF((9-41)) and sauvagine showed some selectivity for CRF receptors other than that responsible for ACTH secretion(1) and later for CRF2.(2) More recently, we suggested the possibility of a helix-turn-helix motif around a turn encompassing residues 30-33(3) that would confer high affinity for both CRF(1) and CRF(2)(2,4) in agonists and antagonists of all members of the CRF family.(3) On the other hand, the substitutions that conferred ca. 100-fold CRF(2) selectivity to the antagonist antisauvagine-30 [[DPhe(11),His(12)]sauvagine((11-40))] did not confer such property to the corresponding N-terminally extended agonists. We find here that a Glu(32)-Lys(35) side chain to side chain covalent lactam constraint in hCRF and the corresponding Glu(31)-Lys(34) side chain to side chain covalent lactam constraint in sauvagine yield potent ligands that are selective for CRF(2). Additionally, we introduced deletions and substitutions known to increase duration of action to yield antagonists such as cyclo(31-34)[DPhe(11),His(12),C(alpha)MeLeu(13,39),Nle(17),Glu(31),Lys(34)]Ac-sauvagine((8-40)) (astressin(2)-B) with CRF(2) selectivities greater than 100-fold. CRF receptor autoradiography was performed in rat tissue known to express CRF(2) and CRF(1) in order to confirm that astressin(2)-B could indeed bind to established CRF(2) but not CRF(1) receptor-expressing tissues. Extended duration of action of astressin(2)-B vs that of antisauvagine-30 is demonstrated in

  20. SCIL-STROKE (Subcutaneous Interleukin-1 Receptor Antagonist in Ischemic Stroke): A Randomized Controlled Phase 2 Trial.

    PubMed

    Smith, Craig J; Hulme, Sharon; Vail, Andy; Heal, Calvin; Parry-Jones, Adrian R; Scarth, Sylvia; Hopkins, Karen; Hoadley, Margaret; Allan, Stuart M; Rothwell, Nancy J; Hopkins, Stephen J; Tyrrell, Pippa J

    2018-05-01

    The proinflammatory cytokine IL-1 (interleukin-1) has a deleterious role in cerebral ischemia, which is attenuated by IL-1 receptor antagonist (IL-1Ra). IL-1 induces peripheral inflammatory mediators, such as interleukin-6, which are associated with worse prognosis after ischemic stroke. We investigated whether subcutaneous IL-1Ra reduces the peripheral inflammatory response in acute ischemic stroke. SCIL-STROKE (Subcutaneous Interleukin-1 Receptor Antagonist in Ischemic Stroke) was a single-center, double-blind, randomized, placebo-controlled phase 2 trial of subcutaneous IL-1Ra (100 mg administered twice daily for 3 days) in patients presenting within 5 hours of ischemic stroke onset. Randomization was stratified for baseline National Institutes of Health Stroke Scale score and thrombolysis. Measurement of plasma interleukin-6 and other peripheral inflammatory markers was undertaken at 5 time points. The primary outcome was difference in concentration of log(interleukin-6) as area under the curve to day 3. Secondary outcomes included exploratory effect of IL-1Ra on 3-month outcome with the modified Rankin Scale. We recruited 80 patients (mean age, 72 years; median National Institutes of Health Stroke Scale, 12) of whom 73% received intravenous thrombolysis with alteplase. IL-1Ra significantly reduced plasma interleukin-6 ( P <0.001) and plasma C-reactive protein ( P <0.001). IL-1Ra was well tolerated with no safety concerns. Allocation to IL-1Ra was not associated with a favorable outcome on modified Rankin Scale: odds ratio (95% confidence interval)=0.67 (0.29-1.52), P =0.34. Exploratory mediation analysis suggested that IL-1Ra improved clinical outcome by reducing inflammation, but there was a statistically significant, alternative mechanism countering this benefit. IL-1Ra reduced plasma inflammatory markers which are known to be associated with worse clinical outcome in ischemic stroke. Subcutaneous IL-1Ra is safe and well tolerated. Further experimental

  1. Enhanced Chronic Pain Management Utilizing Chemokine Receptor Antagonists

    DTIC Science & Technology

    2016-08-01

    approximately halfway into the solution. All animals were tested at 60, 15 and 0 min before drug injection. For each animal , the first reading was discarded...approval (December 31, 2015), hiring new personnel, conducting baseline testing for procedures not involving animals , testing equipment, developing...treatment; Analgesia; Nociception; Antinociception; Inflammation; Chemokines; Chemokine receptor antagonists; Opioid analgesics; Animal models of pain

  2. Common influences of non-competitive NMDA receptor antagonists on the consolidation and reconsolidation of cocaine-cue memory.

    PubMed

    Alaghband, Yasaman; Marshall, John F

    2013-04-01

    Environmental stimuli or contexts previously associated with rewarding drugs contribute importantly to relapse among addicts, and research has focused on neurobiological processes maintaining those memories. Much research shows contributions of cell surface receptors and intracellular signaling pathways in maintaining associations between rewarding drugs (e.g., cocaine) and concurrent cues/contexts; these memories can be degraded at the time of their retrieval through reconsolidation interference. Much less studied is the consolidation of drug-cue memories during their acquisition. The present experiments use the cocaine-conditioned place preference (CPP) paradigm in rats to directly compare, in a consistent setting, the effects of N-methyl-D-aspartate (NMDA) glutamate receptor antagonists MK-801 and memantine on the consolidation and reconsolidation of cocaine-cue memories. For the consolidation studies, animals were systemically administered MK-801 or memantine immediately following training sessions. To investigate the effects of these NMDA receptor antagonists on the retention of previously established cocaine-cue memories, animals were systemically administered MK-801 or memantine immediately after memory retrieval. Animals given either NMDA receptor antagonist immediately following training sessions did not establish a preference for the cocaine-paired compartment. Post-retrieval administration of either NMDA receptor antagonist attenuated the animals' preference for the cocaine-paired compartment. Furthermore, animals given NMDA receptor antagonists post-retrieval showed a blunted response to cocaine-primed reinstatement. Using two distinct NMDA receptor antagonists in a common setting, these findings demonstrate that NMDA receptor-dependent processes contribute both to the consolidation and reconsolidation of cocaine-cue memories, and they point to the potential utility of treatments that interfere with drug-cue memory reconsolidation.

  3. Angiotensin-II receptor 1 antagonist fetopathy--risk assessment, critical time period and vena cava thrombosis as a possible new feature.

    PubMed

    Oppermann, Marc; Padberg, Stephanie; Kayser, Angela; Weber-Schoendorfer, Corinna; Schaefer, Christof

    2013-03-01

    Angiotensin-II receptor 1 antagonists (AT₁-antagonists) may cause severe and even lethal fetopathy in late pregnancy. However, exposure still occurs in spite of warnings in package leaflets. This study aimed to assess the risk of fetopathy, the sensitive time window, and possible new symptoms in prospective as well as retrospective cases with AT₁-antagonist treatment during the second or third trimester of pregnancy. Patients were enrolled by the Berlin Institute for Clinical Teratology and Drug Risk Assessment in Pregnancy between 1999 and 2011 through risk consultation. Symptoms defined as indicative of AT₁-antagonist fetopathy were: oligo-/anhydramnios, renal insufficiency, lung hypoplasia, joint contractures, skull hypoplasia and fetal/neonatal death. In 5/29 (17%) prospectively enrolled cases with AT₁-antagonist exposure beyond the first trimester oligo-/anhydramnios was diagnosed. Two infants showed additional symptoms of fetopathy. The risk is more than 30% if treatment continues beyond the 20th week of pregnancy. Oligo-/anhydramnios was reversible after AT₁-antagonist withdrawal. Among 16 retrospective case reports, three infants presented with a thrombosis of the inferior vena cava in the vicinity of the renal veins. Four out of 13 live births did not survive. Our survey suggests that the risk increases with duration of AT₁-antagonist treatment into late pregnancy and oligo-/anhydramnios may be reversible after AT₁-antagonist discontinuation. Thrombosis of inferior vena cava may be a new feature of AT₁-antagonist fetopathy. AT₁-antagonist medication during pregnancy constitutes a considerable risk and must be discontinued immediately. In case of indicative diagnostic findings in either the fetus or newborn, previous maternal AT₁-antagonist exposure should be considered. © 2012 The Authors. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  4. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yi; Qin, Ling; Zacarías, Natalia V. Ortiz

    CC chemokine receptor 2 (CCR2) is one of 19 members of the chemokine receptor subfamily of human class A G-protein-coupled receptors. CCR2 is expressed on monocytes, immature dendritic cells, and T-cell subpopulations, and mediates their migration towards endogenous CC chemokine ligands such as CCL2 (ref. 1). CCR2 and its ligands are implicated in numerous inflammatory and neurodegenerative diseases2 including atherosclerosis, multiple sclerosis, asthma, neuropathic pain, and diabetic nephropathy, as well as cancer3. These disease associations have motivated numerous preclinical studies and clinical trials4 (see http://www.clinicaltrials.gov) in search of therapies that target the CCR2–chemokine axis. To aid drug discovery efforts5, heremore » we solve a structure of CCR2 in a ternary complex with an orthosteric (BMS-681 (ref. 6)) and allosteric (CCR2-RA-[R]7) antagonist. BMS-681 inhibits chemokine binding by occupying the orthosteric pocket of the receptor in a previously unseen binding mode. CCR2-RA-[R] binds in a novel, highly druggable pocket that is the most intracellular allosteric site observed in class A G-protein-coupled receptors so far; this site spatially overlaps the G-protein-binding site in homologous receptors. CCR2-RA-[R] inhibits CCR2 non-competitively by blocking activation-associated conformational changes and formation of the G-protein-binding interface. The conformational signature of the conserved microswitch residues observed in double-antagonist-bound CCR2 resembles the most inactive G-protein-coupled receptor structures solved so far. Like other protein–protein interactions, receptor–chemokine complexes are considered challenging therapeutic targets for small molecules, and the present structure suggests diverse pocket epitopes that can be exploited to overcome obstacles in drug design.« less

  5. Accelerated habit formation following amphetamine exposure is reversed by D1, but enhanced by D2, receptor antagonists

    PubMed Central

    Nelson, Andrew J. D.; Killcross, Simon

    2013-01-01

    Repeated exposure to the psychostimulant amphetamine has been shown to disrupt goal-directed instrumental actions and promote the early and abnormal development of goal-insensitive habitual responding (Nelson and Killcross, 2006). To investigate the neuropharmacological specificity of this effect as well as restore goal-directed responding in animals with pre-training amphetamine exposure, animals were treated with the non-selective dopamine antagonist α-flupenthixol, the selective D1 antagonist SCH 23390 or the selective D2 antagonist eticlopride, prior to instrumental training (three sessions). Subsequently, the reinforcer was paired with LiCL-induced gastric-malaise and animals were given a test of goal-sensitivity both in extinction and reacquisition. The effect of these dopaminergic antagonists on the sensitivity of lever press performance to outcome devaluation was assessed in animals with pre-training exposure to amphetamine (Experiments 1A–C) or in non-sensitized animals (Experiment 2). Both α-flupenthixol and SCH23390 reversed accelerated habit formation following amphetamine sensitization. However, eticlopride appeared to enhance this effect and render instrumental performance compulsive as these animals were unable to inhibit responding both in extinction and reacquisition, even though a consumption test confirmed they had acquired an aversion to the reinforcer. These findings demonstrate that amphetamine induced-disruption of goal-directed behavior is mediated by activity at distinct dopamine receptor subtypes and may represent a putative model of the neurochemical processes involved in the loss of voluntary control over behavior. PMID:23720609

  6. Combination decongestion therapy in hospitalized heart failure: loop diuretics, mineralocorticoid receptor antagonists and vasopressin antagonists.

    PubMed

    Vaduganathan, Muthiah; Mentz, Robert J; Greene, Stephen J; Senni, Michele; Sato, Naoki; Nodari, Savina; Butler, Javed; Gheorghiade, Mihai

    2015-01-01

    Congestion is the most common reason for admissions and readmissions for heart failure (HF). The vast majority of hospitalized HF patients appear to respond readily to loop diuretics, but available data suggest that a significant proportion are being discharged with persistent evidence of congestion. Although novel therapies targeting congestion should continue to be developed, currently available agents may be utilized more optimally to facilitate complete decongestion. The combination of loop diuretics, natriuretic doses of mineralocorticoid receptor antagonists and vasopressin antagonists represents a regimen of currently available therapies that affects early and persistent decongestion, while limiting the associated risks of electrolyte disturbances, hemodynamic fluctuations, renal dysfunction and mortality.

  7. The antimalarial drugs quinine, chloroquine and mefloquine are antagonists at 5-HT3 receptors

    PubMed Central

    Thompson, A J; Lochner, M; Lummis, S C R

    2007-01-01

    Background and Purpose: The antimalarial compounds quinine, chloroquine and mefloquine affect the electrophysiological properties of Cys-loop receptors and have structural similarities to 5-HT3 receptor antagonists. They may therefore act at 5-HT3 receptors. Experimental Approach: The effects of quinine, chloroquine and mefloquine on electrophysiological and ligand binding properties of 5-HT3A receptors expressed in HEK 293 cells and Xenopus oocytes were examined. The compounds were also docked into models of the binding site. Key Results: 5-HT3 responses were blocked with IC 50 values of 13.4 μM, 11.8 μM and 9.36 μM for quinine, chloroquine and mefloquine. Schild plots indicated quinine and chloroquine behaved competitively with pA 2 values of 4.92 (K B=12.0 μM) and 4.97 (K B=16.4 μM). Mefloquine displayed weakly voltage-dependent, non-competitive inhibition consistent with channel block. On and off rates for quinine and chloroquine indicated a simple bimolecular reaction scheme. Quinine, chloroquine and mefloquine displaced [3H]granisetron with K i values of 15.0, 24.2 and 35.7 μ M. Docking of quinine into a homology model of the 5-HT3 receptor binding site located the tertiary ammonium between W183 and Y234, and the quinoline ring towards the membrane, stabilised by a hydrogen bond with E129. For chloroquine, the quinoline ring was positioned between W183 and Y234 and the tertiary ammonium stabilised by interactions with F226. Conclusions and Implications: This study shows that quinine and chloroquine competitively inhibit 5-HT3 receptors, while mefloquine inhibits predominantly non-competitively. Both quinine and chloroquine can be docked into a receptor binding site model, consistent with their structural homology to 5-HT3 receptor antagonists. PMID:17502851

  8. The mGlu5 receptor antagonist MPEP activates specific stress-related brain regions and lacks neurotoxic effects of the NMDA receptor antagonist MK-801: significance for the use as anxiolytic/antidepressant drug.

    PubMed

    Inta, Dragos; Filipovic, Dragana; Lima-Ojeda, Juan M; Dormann, Christof; Pfeiffer, Natascha; Gasparini, Fabrizio; Gass, Peter

    2012-04-01

    Glutamatergic agents have been conceptualized as powerful, fast-acting alternatives to monoaminergic-based antidepressants. NMDA receptor antagonists such as ketamine or MK-801 are therapeutically effective, but their clinical use is hampered by psychotomimetic effects, accompanied by neurotoxicity in the retrosplenial and cingulate cortex. Antagonists of metabotropic mGlu5 receptors like MPEP elicit both robust antidepressant and anxiolytic effects; however, the underlying mechanisms are yet unknown. mGlu5 receptors closely interact with NMDA receptors, but whether MPEP induces neurotoxicity similar to NMDA receptor antagonists has not been elucidated. We show here using c-Fos brain mapping that MPEP administration results in a restricted activation of distinct stress-related brain areas, including the bed nucleus of stria terminalis (BNST), central nucleus of the amygdala, and paraventricular nucleus of the hypothalamus (PVNH), in a pattern similar to that induced by classical antidepressants and anxiolytics. Unlike the NMDA antagonist MK-801, MPEP does not injure the adult retrosplenial cortex, in which it fails to induce heat shock protein 70 (Hsp70). Moreover, MPEP does not elicit to the same extent as MK-801 apoptosis in cortical areas at perinatal stages, as revealed by caspase 3 expression. These data identify new cellular targets for the anxiolytic and antidepressant effect of MPEP, indicating also in addition that in contrast to MK-801, it lacks the cortical neurotoxicity associated with psychotomimetic side-effects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Comparative Analysis of Virtual Screening Approaches in the Search for Novel EphA2 Receptor Antagonists.

    PubMed

    Callegari, Donatella; Pala, Daniele; Scalvini, Laura; Tognolini, Massimiliano; Incerti, Matteo; Rivara, Silvia; Mor, Marco; Lodola, Alessio

    2015-09-17

    The EphA2 receptor and its ephrin-A1 ligand form a key cell communication system, which has been found overexpressed in many cancer types and involved in tumor growth. Recent medicinal chemistry efforts have identified bile acid derivatives as low micromolar binders of the EphA2 receptor. However, these compounds suffer from poor physicochemical properties, hampering their use in vivo. The identification of compounds able to disrupt the EphA2-ephrin-A1 complex lacking the bile acid scaffold may lead to new pharmacological tools suitable for in vivo studies. To identify the most promising virtual screening (VS) protocol aimed at finding novel EphA2 antagonists, we investigated the ability of both ligand-based and structure-based approaches to retrieve known EphA2 antagonists from libraries of decoys with similar molecular properties. While ligand-based VSs were conducted using UniPR129 and ephrin-A1 ligand as reference structures, structure-based VSs were performed with Glide, using the X-ray structure of the EphA2 receptor/ephrin-A1 complex. A comparison of enrichment factors showed that ligand-based approaches outperformed the structure-based ones, suggesting ligand-based methods using the G-H loop of ephrin-A1 ligand as template as the most promising protocols to search for novel EphA2 antagonists.

  10. Vorapaxar: The Current Role and Future Directions of a Novel Protease-Activated Receptor Antagonist for Risk Reduction in Atherosclerotic Disease.

    PubMed

    Gryka, Rebecca J; Buckley, Leo F; Anderson, Sarah M

    2017-03-01

    Despite the current standard of care, patients with cardiovascular disease remain at a high risk for recurrent events. Inhibition of thrombin-mediated platelet activation through protease-activated receptor-1 antagonism may provide reductions in atherosclerotic disease beyond those achievable with the current standard of care. Our primary objective is to evaluate the clinical literature regarding the role of vorapaxar (Zontivity™) in the reduction of cardiovascular events in patients with a history of myocardial infarction and peripheral artery disease. In particular, we focus on the potential future directions for protease-activating receptor antagonists in the treatment of a broad range of atherosclerotic diseases. A literature search of PubMed and EBSCO was conducted to identify randomized clinical trials from August 2005 to June 2016 using the search terms: 'vorapaxar', 'SCH 530348', 'protease-activated receptor-1 antagonist', and 'Zontivity™'. Bibliographies were searched and additional resources were obtained. Vorapaxar is a first-in-class, protease-activated receptor-1 antagonist. The Thrombin Receptor Antagonist for Clinical Event Reduction (TRACER) trial did not demonstrate a significant reduction in a broad primary composite endpoint. However, the Thrombin-Receptor Antagonist in Secondary Prevention of Atherothrombotic Ischemic Events (TRA 2°P-TIMI 50) trial examined a more traditional composite endpoint and found a significant benefit with vorapaxar. Vorapaxar significantly increased bleeding compared with standard care. Ongoing trials will help define the role of vorapaxar in patients with peripheral arterial disease, patients with diabetes mellitus, and other important subgroups. The use of multivariate modeling may enable the identification of subgroups with maximal benefit and minimal harm from vorapaxar. Vorapaxar provides clinicians with a novel mechanism of action to further reduce the burden of ischemic heart disease. Identification of

  11. Panicolytic-like effects caused by substantia nigra pars reticulata pretreatment with low doses of endomorphin-1 and high doses of CTOP or the NOP receptors antagonist JTC-801 in male Rattus norvegicus.

    PubMed

    da Silva, Juliana Almeida; Biagioni, Audrey Franceschi; Almada, Rafael Carvalho; de Freitas, Renato Leonardo; Coimbra, Norberto Cysne

    2017-10-01

    Gamma-aminobutyric acid (GABA)ergic neurons of the substantia nigra pars reticulata (SNpr) are connected to the deep layers of the superior colliculus (dlSC). The dlSC, in turn, connect with the SNpr through opioid projections. Nociceptin/orphanin FQ peptide (N/OFQ) is a natural ligand of a Gi protein-coupled nociceptin receptor (ORL1; NOP) that is also found in the SNpr. Our hypothesis is that tectonigral opioid pathways and intranigral orphanin-mediated mechanisms modulate GABAergic nigrotectal connections. Therefore, the aim of this work was to study the role of opioid and NOP receptors in the SNpr during the modulation of defence reactions organised by the dlSC. The SNpr was pretreated with either opioid or NOP receptor agonists and antagonists, followed by dlSC treatment with bicuculline. Blockade of GABA A receptors in the dlSC elicited fear-related defensive behaviour. Pretreatment of the SNpr with naloxone benzoylhydrazone (NalBzoH), a μ-, δ-, and κ 1 -opioid receptor antagonist as well as a NOP receptor antagonist, decreased the aversive effect of bicuculline treatment on the dlSC. Either μ-opioid receptor activation or blockade by SNpr microinjection of endomorphin-1 (EM-1) and CTOP promoted pro-aversive and anti-aversive actions, respectively, that modulated the defensive responses elicited by bicuculline injection into the dlSC. Pretreatment of the SNpr with the selective NOP receptor antagonist JTC801 decreased the aversive effect of bicuculline, and microinjections of the selective NOP receptor agonist NNC 63-0532 promoted the opposite effect. These results demonstrate that opioid pathways and orphanin-mediated mechanisms have a critical role in modulating the activity of nigrotectal GABAergic pathways during the organisation of defensive behaviours.

  12. Design, synthesis and biological evaluation of non-peptide PAR1 thrombin receptor antagonists based on small bifunctional templates: arginine and phenylalanine side chain groups are keys for receptor activity.

    PubMed

    Androutsou, Maria-Eleni; Saifeddine, Mahmoud; Hollenberg, Morley D; Matsoukas, John; Agelis, George

    2010-04-01

    In the present study, we report the synthesis and biological evaluation of a series of new non-peptide PAR(1) mimetic receptor antagonists, based on conformational analysis of the S(42)FLLR(46) tethered ligand (TL) sequence of PAR(1). These compounds incorporate the key pharmacophore groups in the TL sequence, guanidyl, amino and phenyl, which are essential for triggering receptor activity. Compounds 5 and 15 (50-100 microM) inhibited both TFLLR-amide (10 microM) and thrombin-mediated (0.5 and 1 U/ml; 5 and 10 microM) calcium signaling in a cultured human HEK cell assay.

  13. Simultaneous determination of multiple angiotensin type 1 receptor antagonists and its application to high-throughput pharmacokinetic study

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoyan; Sun, Jianguo; Hao, Haiping; Wang, Guangji; Hu, Xiaoling; Lv, Hua; Gu, Shenghua; Wu, Xiaoming; Xu, Jinyi

    2008-05-01

    A rapid and sensitive high performance liquid chromatography-electrospray tandem mass spectrometry (HPLC-ESI-MS/MS) detection was developed for the simultaneous determination of multiple angiotensin type 1 receptor antagonists (AT1RAs) WX472, WX581, 1b and telmisartan in rat plasma for the purpose of high-throughout pharmacokinetic screening. The method was operated under selected reaction monitoring (SRM) mode in the positive ion mode. The analytes and the internal standard (pitavastatin) were extracted from 100 [mu]L rat plasma under acidic conditions by liquid-liquid extraction with ethyl acetate. The analytes and internal standard were baseline separated on a Gemini analytical column (3 [mu]m, 150 mm × 2.0 mm) with the adoption of a gradient elution using acetonitrile and 0.05% aqueous formic acid. The standard curves were linear in the concentration ranges of 4.5-900 ng/mL for WX472, 5-1000 ng/mL for WX581 and 0.5-100 ng/mL for 1b and telmisartan. Intra- and inter-batch precisions (R.S.D.%) were all within 15% and the method assessed a quite good accuracy (R.E.%). Recoveries were found to be >65% for all the compounds and no obvious matrix effects were found. This method has been successfully applied to the high-throughput pharmacokinetic screening study for both cassette dosing and cassette analysis of four compounds to rats. Significant drug-drug interactions were observed after cassette dosing. The study suggested that cassette analysis of pooled samples would be a better choice for the high-throughput pharmacokinetic screening of angiotensin type 1 receptor antagonists.

  14. The cognition-enhancing activity of E1R, a novel positive allosteric modulator of sigma-1 receptors.

    PubMed

    Zvejniece, L; Vavers, E; Svalbe, B; Vilskersts, R; Domracheva, I; Vorona, M; Veinberg, G; Misane, I; Stonans, I; Kalvinsh, I; Dambrova, M

    2014-02-01

    Here, we describe the in vitro and in vivo effects of (4R,5S)-2-(5-methyl-2-oxo-4-phenyl-pyrrolidin-1-yl)-acetamide (E1R), a novel positive allosteric modulator of sigma-1 receptors. E1R was tested for sigma receptor binding activity in a [³H](+)-pentazocine assay, in bradykinin (BK)-induced intracellular Ca²⁺ concentration ([Ca²⁺](i)) assays and in an electrically stimulated rat vas deferens model. E1R's effects on cognitive function were tested using passive avoidance (PA) and Y-maze tests in mice. A selective sigma-1 receptor antagonist (NE-100), was used to study the involvement of the sigma-1 receptor in the effects of E1R. The open-field test was used to detect the effects of E1R on locomotion. Pretreatment with E1R enhanced the selective sigma-1 receptor agonist PRE-084's stimulating effect during a model study employing electrically stimulated rat vasa deferentia and an assay measuring the BK-induced [Ca²⁺](i) increase. Pretreatment with E1R facilitated PA retention in a dose-related manner. Furthermore, E1R alleviated the scopolamine-induced cognitive impairment during the PA and Y-maze tests in mice. The in vivo and in vitro effects of E1R were blocked by treatment with the selective sigma-1 receptor antagonist NE-100. E1R did not affect locomotor activity. E1R is a novel 4,5-disubstituted derivative of piracetam that enhances cognition and demonstrates efficacy against scopolamine-induced cholinergic dysfunction in mice. These effects are attributed to its positive modulatory action on the sigma-1 receptor and this activity may be relevant when developing new drugs for treating cognitive symptoms related to neurodegenerative diseases. © 2013 The British Pharmacological Society.

  15. The cognition-enhancing activity of E1R, a novel positive allosteric modulator of sigma-1 receptors

    PubMed Central

    Zvejniece, L; Vavers, E; Svalbe, B; Vilskersts, R; Domracheva, I; Vorona, M; Veinberg, G; Misane, I; Stonans, I; Kalvinsh, I; Dambrova, M

    2014-01-01

    Background and Purpose Here, we describe the in vitro and in vivo effects of (4R,5S)-2-(5-methyl-2-oxo-4-phenyl-pyrrolidin-1-yl)-acetamide (E1R), a novel positive allosteric modulator of sigma-1 receptors. Experimental Approach E1R was tested for sigma receptor binding activity in a [3H](+)-pentazocine assay, in bradykinin (BK)-induced intracellular Ca2+ concentration ([Ca2+]i) assays and in an electrically stimulated rat vas deferens model. E1R's effects on cognitive function were tested using passive avoidance (PA) and Y-maze tests in mice. A selective sigma-1 receptor antagonist (NE-100), was used to study the involvement of the sigma-1 receptor in the effects of E1R. The open-field test was used to detect the effects of E1R on locomotion. Key Results Pretreatment with E1R enhanced the selective sigma-1 receptor agonist PRE-084's stimulating effect during a model study employing electrically stimulated rat vasa deferentia and an assay measuring the BK-induced [Ca2+]i increase. Pretreatment with E1R facilitated PA retention in a dose-related manner. Furthermore, E1R alleviated the scopolamine-induced cognitive impairment during the PA and Y-maze tests in mice. The in vivo and in vitro effects of E1R were blocked by treatment with the selective sigma-1 receptor antagonist NE-100. E1R did not affect locomotor activity. Conclusion and Implications E1R is a novel 4,5-disubstituted derivative of piracetam that enhances cognition and demonstrates efficacy against scopolamine-induced cholinergic dysfunction in mice. These effects are attributed to its positive modulatory action on the sigma-1 receptor and this activity may be relevant when developing new drugs for treating cognitive symptoms related to neurodegenerative diseases. PMID:24490863

  16. Different Involvement of Type 1, 2, and 3 Ryanodine Receptors in Memory Processes

    ERIC Educational Resources Information Center

    Galeotti, Nicoletta; Quattrone, Alessandro; Vivoli, Elisa; Norcini, Monica; Bartolini, Alessandro; Ghelardini, Carla

    2008-01-01

    The administration of the ryanodine receptor (RyR) agonist 4-Cmc (0.003-9 nmol per mouse intracerebroventricularly [i.c.v.]) ameliorated memory functions, whereas the RyR antagonist ryanodine (0.0001-1 nmol per mouse i.c.v.) induced amnesia in the mouse passive avoidance test. The role of the type 1, 2, and 3 RyR isoforms in memory processes was…

  17. Type-7 metabotropic glutamate receptors negatively regulate α1-adrenergic receptor signalling.

    PubMed

    Iacovelli, Luisa; Di Menna, Luisa; Peterlik, Daniel; Stangl, Christina; Orlando, Rosamaria; Molinaro, Gemma; De Blasi, Antonio; Bruno, Valeria; Battaglia, Giuseppe; Flor, Peter J; Uschold-Schmidt, Nicole; Nicoletti, Ferdinando

    2017-02-01

    We studied the interaction between mGlu7 and α 1 -adrenergic receptors in heterologous expression systems, brain slices, and living animals. L-2-Amino-4-phosphonobutanoate (L-AP4), and l-serine-O-phosphate (L-SOP), which activate group III mGlu receptors, restrained the stimulation of polyphosphoinositide (PI) hydrolysis induced by the α 1 -adrenergic receptor agonist, phenylephrine, in HEK 293 cells co-expressing α 1 -adrenergic and mGlu7 receptors. The inibitory action of L-AP4 was abrogated by (i) the mGlu7 receptor antagonist, XAP044; (ii) the C-terminal portion of type-2 G protein coupled receptor kinase; and (iii) the MAP kinase inhibitors, UO126 and PD98059. This suggests that the functional interaction between mGlu7 and α 1 -adrenergic receptors was mediated by the βγ-subunits of the G i protein and required the activation of the MAP kinase pathway. Remarkably, activation of neither mGlu2 nor mGlu4 receptors reduced α 1 -adrenergic receptor-mediated PI hydrolysis. In mouse cortical slices, both L-AP4 and L-SOP were able to attenuate norepinephrine- and phenylephrine-stimulated PI hydrolysis at concentrations consistent with the activation of mGlu7 receptors. L-AP4 failed to affect norepinephrine-stimulated PI hydrolysis in cortical slices from mGlu7 -/- mice, but retained its inhibitory activity in slices from mGlu4 -/- mice. At behavioural level, i.c.v. injection of phenylephrine produced antidepressant-like effects in the forced swim test. The action of phenylephrine was attenuated by L-SOP, which was inactive per se. Finally, both phenylephrine and L-SOP increased corticosterone levels in mice, but the increase was halved when the two drugs were administered in combination. Our data demonstrate that α 1 -adrenergic and mGlu7 receptors functionally interact and suggest that this interaction might be targeted in the treatment of stress-related disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Oxime Ethers of (E)-11-Isonitrosostrychnine as Highly Potent Glycine Receptor Antagonists.

    PubMed

    Mohsen, Amal M Y; Mandour, Yasmine M; Sarukhanyan, Edita; Breitinger, Ulrike; Villmann, Carmen; Banoub, Maha M; Breitinger, Hans-Georg; Dandekar, Thomas; Holzgrabe, Ulrike; Sotriffer, Christoph; Jensen, Anders A; Zlotos, Darius P

    2016-12-23

    A series of (E)-11-isonitrosostrychnine oxime ethers, 2-aminostrychnine, (strychnine-2-yl)propionamide, 18-oxostrychnine, and N-propylstrychnine bromide were synthesized and evaluated pharmacologically at human α1 and α1β glycine receptors in a functional fluorescence-based and a whole-cell patch-clamp assay and in [ 3 H]strychnine binding studies. 2-Aminostrychnine and the methyl, allyl, and propargyl oxime ethers were the most potent α1 and α1β antagonists in the series, displaying IC 50 values similar to those of strychnine at the two receptors. Docking experiments to the strychnine binding site of the crystal structure of the α3 glycine receptor indicated the same orientation of the strychnine core for all analogues. For the most potent oxime ethers, the ether substituent was accommodated in a lipophilic receptor binding pocket. The findings identify the oxime hydroxy group as a suitable attachment point for linking two strychnine pharmacophores by a polymethylene spacer and are, therefore, important for the design of bivalent ligands targeting glycine receptors.

  19. DA1 receptors modulation in rat isolated trachea.

    PubMed

    Cabezas, Gloria A; Velasco, Manuel

    2010-01-01

    We have previously demonstrated that low dose of inhaled dopamine (0.5-2 microg kg(-1) min(-1)) induces broncodilatacion in patients with acute asthma attack, suggesting that this dopamine effect is mediated by dopaminergic rather than by adrenergic receptors. To understand better these dopamine effect, rat tracheal smooth muscle was used as a model to evaluate the responses of beta2-, alpha1-, alpha2-adrenergic and DA1 and DA2 dopaminergic antagonists. Tracheal rings from male Sprague-Dawley rats (n = 90) were excised and placed in an organ bath containing modified Krebs-Ringer bicarbonate buffer at 37 degrees C, and gassed with O2 (95%) and CO2 (5%). Contractile responses were recorded with an isometric transducer in a polygraph (Letica, Spain). Contraction was induced by accumulative doses of acetylcholine (0.1, 0.3, 1, 3, 10 mM) or by electric field stimulation (10 Hz at 2 milliseconds), and accumulative doses of dopamine were added to the bath. Low concentration (0.1-0.3 mM) elicited a small initial contraction, followed by a marked relaxation. Cholinergic contraction was completely reversed at 6 mM of dopamine. This biphasic dopaminergic response was not blocked by incubation with beta2-adrenergic antagonist propranolol (0.1 microM), alpha1-antagonist, terazosin (0.1 mM), alpha2-antagonist, yohimbine (0.1 mM), or by DA2 antagonist metoclopramide (1-8 mM); DA1 antagonist SCH23390 (0.1 microM) produced a sustained increase of basal tone but did not block initial dopaminergic contraction and partially inhibited bronchodilator effect of dopamine. Dopaminergic relaxation in rat trachea is mediated by DA1 rather than by DA2 receptors; and adrenergic receptors are not involved in such dopamine-induced response. Finally, DA1 antagonist SCH23390 exerts intrinsic contractile activity on airway smooth muscle that deserves further research.

  20. Use of Chimeras, Point Mutants, and Molecular Modeling to Map the Antagonist-binding Site of 4,4′,4″,4‴-(Carbonylbis-(imino-5,1,3-benzenetriylbis(carbonylimino)))tetrakisbenzene-1,3-disulfonic Acid (NF449) at P2X1 Receptors for ATP*

    PubMed Central

    Farmer, Louise K.; Schmid, Ralf; Evans, Richard J.

    2015-01-01

    P2X receptor subtype-selective antagonists are promising candidates for treatment of a range of pathophysiological conditions. However, in contrast to high resolution structural understanding of agonist action in the receptors, comparatively little is known about the molecular basis of antagonist binding. We have generated chimeras and point mutations in the extracellular ligand-binding loop of the human P2X1 receptor, which is inhibited by NF449, suramin, and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate, with residues from the rat P2X4 receptor, which is insensitive to these antagonists. There was little or no effect on sensitivity to suramin and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate in chimeric P2X1/4 receptors, indicating that a significant number of residues required for binding of these antagonists are present in the P2X4 receptor. Sensitivity to the P2X1 receptor-selective antagonist NF449 was reduced by ∼60- and ∼135-fold in chimeras replacing the cysteine-rich head, and the dorsal fin region below it in the adjacent subunit, respectively. Point mutants identified the importance of four positively charged residues at the base of the cysteine-rich head and two variant residues in the dorsal fin for high affinity NF449 binding. These six residues were used as the starting area for molecular docking. The four best potential NF449-binding poses were then discriminated by correspondence with the mutagenesis data and an additional mutant to validate the binding of one lobe of NF449 within the core conserved ATP-binding pocket and the other lobes coordinated by positive charge on the cysteine-rich head region and residues in the adjacent dorsal fin. PMID:25425641

  1. Adenosine A(2A) receptors are necessary and sufficient to trigger memory impairment in adult mice.

    PubMed

    Pagnussat, N; Almeida, A S; Marques, D M; Nunes, F; Chenet, G C; Botton, P H S; Mioranzza, S; Loss, C M; Cunha, R A; Porciúncula, L O

    2015-08-01

    Caffeine (a non-selective adenosine receptor antagonist) prevents memory deficits in aging and Alzheimer's disease, an effect mimicked by adenosine A2 A receptor, but not A1 receptor, antagonists. Hence, we investigated the effects of adenosine receptor agonists and antagonists on memory performance and scopolamine-induced memory impairment in mice. We determined whether A2 A receptors are necessary for the emergence of memory impairments induced by scopolamine and whether A2 A receptor activation triggers memory deficits in naïve mice, using three tests to assess short-term memory, namely the object recognition task, inhibitory avoidance and modified Y-maze. Scopolamine (1.0 mg·kg(-1) , i.p.) impaired short-term memory performance in all three tests and this scopolamine-induced amnesia was prevented by the A2 A receptor antagonist (SCH 58261, 0.1-1.0 mg·kg(-1) , i.p.) and by the A1 receptor antagonist (DPCPX, 0.2-5.0 mg·kg(-1) , i.p.), except in the modified Y-maze where only SCH58261 was effective. Both antagonists were devoid of effects on memory or locomotion in naïve rats. Notably, the activation of A2 A receptors with CGS 21680 (0.1-0.5 mg·kg(-1) , i.p.) before the training session was sufficient to trigger memory impairment in the three tests in naïve mice, and this effect was prevented by SCH 58261 (1.0 mg·kg(-1) , i.p.). Furthermore, i.c.v. administration of CGS 21680 (50 nmol) also impaired recognition memory in the object recognition task. These results show that A2 A receptors are necessary and sufficient to trigger memory impairment and further suggest that A1 receptors might also be selectively engaged to control the cholinergic-driven memory impairment. © 2015 The British Pharmacological Society.

  2. TRPV1 Antagonists and Chronic Pain: Beyond Thermal Perception

    PubMed Central

    Brandt, Michael R.; Beyer, Chad E.; Stahl, Stephen M.

    2012-01-01

    In the last decade, considerable evidence as accumulated to support the development of Transient Receptor Potential Vanilloid 1 (TRPV1) antagonists for the treatment of various chronic pain conditions. Whereas there is a widely accepted rationale for the development of TRPV1 antagonists for the treatment of various inflammatory pain conditions, their development for indications of chronic pain, where conditions of tactical, mechanical and spontaneous pain predominate, is less clear. Preclinical localization and expression studies provide a firm foundation for the use of molecules targeting TRPV1 for conditions of bone pain, osteoarthritis and neuropathic pain. Selective TRPV1 antagonists weakly attenuate tactile and mechanical hypersensivity and are partially effective for behavioral and electrophysiological endpoints that incorporate aspects of spontaneous pain. While initial studies with TRPV1 antagonist in normal human subjects indicate a loss of warm thermal perception, clinical studies assessing allelic variants suggests that TRPV1 may mediate other sensory modalities under certain conditions. The focus of this review is to summarize the current perspectives of TRPV1 for the treatment of conditions beyond those with a primary thermal sensitivity. PMID:24288084

  3. Diuretic effects of KW-3902 (8-(noradamantan-3-yl)-1,3-dipropylxanthine), a novel adenosine A1 receptor antagonist, in conscious dogs.

    PubMed

    Kobayashi, T; Mizumoto, H; Karasawa, A

    1993-12-01

    The diuretic effects of KW-3902 (8-(noradamantan-3-yl)-1,3-dipropylxanthine), a novel adenosine A1 receptor antagonist, were determined and compared with those of trichlormethiazide (TCM) and furosemide in saline-loaded conscious dogs. KW-3902, at doses higher than 0.1 mg/kg (p.o.), produced dose-dependent increases of urine volume and sodium excretion and these effects were statistically significant at doses of 1-100 mg/kg. The increase in potassium excretion was lower than that of sodium, and the ratio of sodium to potassium excretion (Na/K) tended to be elevated. TCM (0.3 mg/kg) and furosemide (3 mg/kg) also induced increases in urine volume and sodium excretion. The diuretic effects of KW-3902 lasted for 4 h after administration, whereas TCM and furosemide caused significant natriuresis for 2 h after administration. Thus, KW-3902 exhibited a longer lasting natriuresis than TCM and furosemide. These results indicate that adenosine A1 receptor blockade by KW-3902 causes consistent diuresis and natriuresis in dogs and suggest that adenosine A1 receptor blockade is a promising approach to diuretic therapy.

  4. Potentiating role of interleukin-1beta (IL-1beta) and IL-1beta type 1 receptors in the medial hypothalamus in defensive rage behavior in the cat.

    PubMed

    Hassanain, M; Bhatt, S; Zalcman, S; Siegel, A

    2005-06-28

    Recently, this laboratory provided evidence that interleukin-1beta (IL-1beta), an immune and brain-derived cytokine, microinjected into the medial hypothalamus, potentiates defensive rage behavior in the cat elicited from the midbrain periaqueductal gray (PAG), and that such effects are blocked by a 5-HT2 receptor antagonist. Since this finding represents the first time that a brain cytokine has been shown to affect defensive rage behavior, the present study replicated and extended these findings by documenting the specific potentiating role played by IL-1beta Type 1 receptor (IL-1RI), and the anatomical relationship between IL-1beta and 5-HT2 receptors in the medial hypothalamus. IL-1beta (10 ng) microinjected into the medial hypothalamus induced two separate phases of facilitation, one at 60 min and another at 180 min, post-injection. In turn, these effects were blocked with pretreatment of the selective IL-1 Type I receptor antagonist (IL-1ra) (10 ng), demonstrating the selectivity of the effects of IL-1beta on medial hypothalamic neurons upon PAG-elicited defensive rage behavior. The next stage of the study utilized immunohistochemical methods to demonstrate that IL-1beta and 5-HT2 receptors were present on the same neurons within regions of the medial hypothalamus where IL-1beta and the IL-1beta receptor antagonists were administered. This provided anatomical evidence suggesting a relationship between IL-1RI and 5-HT2 receptors in the medial hypothalamus that is consistent with the previous pharmacological observations in our laboratory. The overall findings show that activation of IL-1RI in the medial hypothalamus potentiates defensive rage behavior in the cat and that these effects may also be linked to the presence of 5-HT2 receptors on the same groups of neurons in this region of hypothalamus.

  5. Reinstatement of cocaine place-conditioning prevented by the peptide kappa-opioid receptor antagonist arodyn.

    PubMed

    Carey, A N; Borozny, K; Aldrich, J V; McLaughlin, J P

    2007-08-13

    Stress contributes to the reinstatement of cocaine-seeking behavior in abstinent subjects. Kappa-opioid receptor antagonists attenuate the behavioral effects of stress, potentially providing therapeutic value in treating cocaine abuse. Presently, the peptide arodyn produced long-lasting kappa-opioid receptor antagonism, suppressing kappa-opioid receptor agonist-induced antinociception at least 3 days after intracerebroventricular administration of 0.3 nmol. C57Bl/6J mice demonstrated cocaine-conditioned place preference, extinction over 3 weeks, and a subsequent reinstatement of place preference. Arodyn pretreatment suppressed stress-induced, but not cocaine-exposed, reinstatement of cocaine place preference. These results verify that arodyn and other kappa-opioid receptor antagonists may be useful therapeutics for cocaine abuse.

  6. The antidepressant-like effect of 7-fluoro-1,3-diphenylisoquinoline-1-amine in the mouse forced swimming test is mediated by serotonergic and dopaminergic systems.

    PubMed

    Pesarico, Ana Paula; Sampaio, Tuane Bazanella; Stangherlin, Eluza Curte; Mantovani, Anderson C; Zeni, Gilson; Nogueira, Cristina Wayne

    2014-10-03

    The aim of the present study was to investigate the role of monoaminergic system in the antidepressant-like action of 7-fluoro-1,3-diphenylisoquinoline-1-amine (FDPI), a derivative of isoquinoline class, in Swiss mice. The antidepressant-like effect of FDPI was characterized in the modified forced swimming test (FST) and the possible mechanism of action was investigated by using serotonergic, dopaminergic and noradrenergic antagonists. Monoamine oxidase (MAO) activity and [(3)H]serotonin (5-HT) uptake were determined in prefrontal cortices of mice. The results showed that FDPI (1, 10 and 20mg/kg, i.g.) reduced the immobility time and increased the swimming time but did not alter climbing time in the modified FST. These effects were similar to those of paroxetine (8mg/kg, i.p.), a positive control. Pretreatments with p-chlorophenylalanine (100mg/kg, i.p., an inhibitor of 5-HT synthesis), WAY100635 (0.1mg/kg, s.c., 5-HT1A antagonist), ondansetron (1mg/kg, i.p., a 5-HT3 receptor antagonist), haloperidol (0.2mg/kg, i.p., a non-selective D2 receptor antagonist) and SCH23390 (0.05mg/kg, s.c., a D1 receptor antagonist) were effective to block the antidepressant-like effect of FDPI at a dose of 1mg/kg in the FST. Ritanserin (1mg/kg, i.p., a 5-HT2A/2C receptor antagonist), sulpiride (50mg/kg, i.p., a D2 and D3 receptor antagonist), prazosin (1mg/kg, i.p., an α1 receptor antagonist), yohimbine (1mg/kg, i.p., an α2 receptor antagonist) and propranolol (2mg/kg, i.p., a β receptor antagonist) did not modify the effect of FDPI in the FST. FDPI did not change synaptosomal [(3)H]5-HT uptake. At doses of 10 and 20mg/kg FDPI inhibited MAO-A and MAO-B activities. These results suggest that antidepressant-like effect of FDPI is mediated mostly by serotonergic and dopaminergic systems. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Trypsin induces biphasic muscle contraction and relaxation via transient receptor potential vanilloid 1 and neurokinin receptors 1/2 in porcine esophageal body.

    PubMed

    Xiaopeng, Bai; Tanaka, Yoshimasa; Ihara, Eikichi; Hirano, Katsuya; Nakano, Kayoko; Hirano, Mayumi; Oda, Yoshinao; Nakamura, Kazuhiko

    2017-02-15

    Duodenal reflux of fluids containing trypsin relates to refractory gastroesophageal reflux disease (GERD). Esophageal peristalsis and clearance are important factors in GERD pathogenesis. However, the function of trypsin in esophageal body contractility is not fully understood. In this study, effects of trypsin on circular smooth muscle (CSM) and longitudinal smooth muscle (LSM) of the porcine esophageal body were examined. Trypsin elicited a concentration dependent biphasic response, a major contraction and a subsequent relaxation only in CSM. In CSM, contraction occurred at trypsin concentrations of 100nM and relaxation at 1μM. A proteinase-activated receptor (PAR)2 activating peptide, SLIGKV-NH 2 (1mM), induced a monophasic contraction. Those responses were unaffected by tetrodotoxin though abolished by the gap junction uncouplers carbenoxolone and octanol. They were also partially inhibited by a transient receptor potential vanilloid type 1 (TRPV1) antagonist and abolished by combination of neurokinin receptor 1 (NK 1 ) and NK 2 antagonists, but not by an NK 3 antagonist, suggesting a PAR2-TRPV1-substance P pathway in sensory neurons. Substance P (100nM), an agonist for various NK receptors (NK 1 , NK 2 and NK 3 ) with differing affinities, induced significant contraction in CSM, but not in LSM. The contraction was also blocked by the combination of NK 1 and NK 2 antagonists, but not by the NK 3 antagonist. Moreover, substance P-induced contractions were unaffected by the TRPV1 antagonist, but inhibited by a gap junction uncoupler. In conclusion, trypsin induced a biphasic response only in CSM and this was mediated by PAR2, TRPV1 and NK 1/2 . Gap junctions were indispensable in this tachykinin-induced response. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Proinflammatory genotype of interleukin-1 and interleukin-1 receptor antagonist is associated with ESRD in proteinase 3-ANCA vasculitis patients.

    PubMed

    Borgmann, Stefan; Endisch, Georg; Hacker, Ulrich T; Song, Bong-Seok; Fricke, Harald

    2003-05-01

    Small-vessel vasculitides are associated with antineutrophil cytoplasmic antibodies (ANCAs). Cytoplasmic ANCAs are targeted mainly against proteinase 3 (PR3), whereas myeloperoxidase (MPO) is the major antigen of perinuclear ANCAs. These relapsing vasculitides show heterogeneous clinical pictures, and disease severity may vary broadly from mild local organ manifestation to acute organ failure (eg, renal failure). We tested whether two cytokine polymorphisms in the interleukin-1beta (IL-1beta) and IL-1 receptor antagonist (IL-1ra) genes, known to determine cytokine secretion, are associated with clinical manifestations and outcome of ANCA-associated vasculitides. Polymerase chain reaction and restriction fragment length polymorphism analyses were performed to determine polymorphisms in the IL-1beta and IL-1ra genes in 79 patients with PR3-ANCA, 30 patients with MPO-ANCA vasculitis, and 196 healthy controls. The frequency of the so-called proinflammatory genotype, characterized by high secretion of IL-1beta and low secretion of its antagonist IL-1ra, was increased significantly in patients with PR3-ANCA with end-stage renal disease. Patients with a renal manifestation of PR3-ANCA vasculitis have an increased risk for developing end-stage renal disease when carrying the proinflammatory IL-1beta/IL-1ra genotype. Anti-inflammatory therapy specifically antagonizing the proinflammatory effect of IL-1beta may be a promising treatment for patients with Wegener's granulomatosis with renal manifestations.

  9. The necessity and effectiveness of mineralocorticoid receptor antagonist in the treatment of diabetic nephropathy.

    PubMed

    Sato, Atsuhisa

    2015-06-01

    Diabetes mellitus is a major cause of chronic kidney disease (CKD), and diabetic nephropathy is the most common primary disease necessitating dialysis treatment in the world including Japan. Major guidelines for treatment of hypertension in Japan, the United States and Europe recommend the use of angiotensin-converting enzyme inhibitors and angiotensin-receptor blockers, which suppress the renin-angiotensin system (RAS), as the antihypertensive drugs of first choice in patients with coexisting diabetes. However, even with the administration of RAS inhibitors, failure to achieve adequate anti-albuminuric, renoprotective effects and a reduction in cardiovascular events has also been reported. Inadequate blockade of aldosterone may be one of the reasons why long-term administration of RAS inhibitors may not be sufficiently effective in patients with diabetic nephropathy. This review focuses on treatment in diabetic nephropathy and discusses the significance of aldosterone blockade. In pre-nephropathy without overt nephropathy, a mineralocorticoid receptor antagonist can be used to enhance the blood pressure-lowering effects of RAS inhibitors, improve insulin resistance and prevent clinical progression of nephropathy. In CKD categories A2 and A3, the addition of a mineralocorticoid receptor antagonist to an RAS inhibitor can help to maintain 'long-term' antiproteinuric and anti-albuminuric effects. However, in category G3a and higher, sufficient attention must be paid to hyperkalemia. Mineralocorticoid receptor antagonists are not currently recommended as standard treatment in diabetic nephropathy. However, many studies have shown promise of better renoprotective effects if mineralocorticoid receptor antagonists are appropriately used.

  10. Effects of the noncompetitive N-methyl-d-aspartate receptor antagonists ketamine and MK-801 on pain-stimulated and pain-depressed behaviour in rats.

    PubMed

    Hillhouse, T M; Negus, S S

    2016-09-01

    Pain is a significant public health concern, and current pharmacological treatments have problematic side effects and limited effectiveness. N-methyl-d-aspartate (NMDA) glutamate receptor antagonists have emerged as one class of candidate treatments for pain because of the significant contribution of glutamate signalling in nociceptive processing. This study compared effects of the NMDA receptor antagonists ketamine and MK-801 in assays of pain-stimulated and pain-depressed behaviour in rats. The nonsteroidal anti-inflammatory drug ketoprofen was examined for comparison as a positive control. Intraperitoneal injection of dilute acid served as an acute visceral noxious stimulus to stimulate a stretching response or depress intracranial self-stimulation (ICSS) in male Sprague-Dawley rats. Ketamine (1.0-10.0 mg/kg) blocked acid-stimulated stretching but failed to block acid-induced depression of ICSS, whereas MK-801 (0.01-0.1 mg/kg) blocked both acid-stimulated stretching and acid-induced depression of ICSS. These doses of ketamine and MK-801 did not alter control ICSS in the absence of the noxious stimulus; however, higher doses of ketamine (10 mg/kg) and MK-801 (0.32 mg/kg) depressed all behaviour. Ketoprofen (1.0 mg/kg) blocked both acid-induced stimulation of stretching and depression of ICSS without altering control ICSS. These results support further consideration of NMDA receptor antagonists as analgesics; however, some NMDA receptor antagonists are more efficacious at attenuating pain-depressed behaviours. NMDA receptor antagonists produce dissociable effects on pain-depressed behaviour. Provides evidence that pain-depressed behaviours should be considered and evaluated when determining the antinociceptive effects of NMDA receptor antagonists. © 2016 European Pain Federation - EFIC®

  11. Effects of the noncompetitive N-methyl-D-aspartate receptor antagonists ketamine and MK-801 on pain-stimulated and pain-depressed behaviour in rats

    PubMed Central

    Hillhouse, T.M.; Negus, S.S.

    2017-01-01

    Background Pain is a significant public health concern, and current pharmacological treatments have problematic side effects and limited effectiveness. N-methyl-D-aspartate (NMDA) glutamate receptor antagonists have emerged as one class of candidate treatments for pain because of the significant contribution of glutamate signalling in nociceptive processing. Methods This study compared effects of the NMDA receptor antagonists ketamine and MK-801 in assays of pain-stimulated and pain-depressed behaviour in rats. The nonsteroidal anti-inflammatory drug ketoprofen was examined for comparison as a positive control. Intraperitoneal injection of dilute acid served as an acute visceral noxious stimulus to stimulate a stretching response or depress intracranial self-stimulation (ICSS) in male Sprague–Dawley rats. Results Ketamine (1.0–10.0 mg/kg) blocked acid-stimulated stretching but failed to block acid-induced depression of ICSS, whereas MK-801 (0.01–0.1 mg/kg) blocked both acid-stimulated stretching and acid-induced depression of ICSS. These doses of ketamine and MK-801 did not alter control ICSS in the absence of the noxious stimulus; however, higher doses of ketamine (10 mg/kg) and MK-801 (0.32 mg/kg) depressed all behaviour. Ketoprofen (1.0 mg/kg) blocked both acid-induced stimulation of stretching and depression of ICSS without altering control ICSS. Conclusion These results support further consideration of NMDA receptor antagonists as analgesics; however, some NMDA receptor antagonists are more efficacious at attenuating pain-depressed behaviours. What does this study add? NMDA receptor antagonists produce dissociable effects on pain-depressed behaviour. Provides evidence that pain-depressed behaviours should be considered and evaluated when determining the antinociceptive effects of NMDA receptor antagonists. PMID:26914635

  12. SSR240612 [(2R)-2-[((3R)-3-(1,3-benzodioxol-5-yl)-3-[[(6-methoxy-2-naphthyl)sulfonyl]amino]propanoyl)amino]-3-(4-[[2R,6S)-2,6-dimethylpiperidinyl]methyl]phenyl)-N-isopropyl-N-methylpropanamide hydrochloride], a new nonpeptide antagonist of the bradykinin B1 receptor: biochemical and pharmacological characterization.

    PubMed

    Gougat, Jean; Ferrari, Bernard; Sarran, Lionel; Planchenault, Claudine; Poncelet, Martine; Maruani, Jeanne; Alonso, Richard; Cudennec, Annie; Croci, Tiziano; Guagnini, Fabio; Urban-Szabo, Katalin; Martinolle, Jean-Pierre; Soubrié, Philippe; Finance, Olivier; Le Fur, Gérard

    2004-05-01

    The biochemical and pharmacological properties of a novel non-peptide antagonist of the bradykinin (BK) B(1) receptor, SSR240612 [(2R)-2-[((3R)-3-(1,3-benzodioxol-5-yl)-3-[[(6-methoxy-2-naphthyl)sulfonyl]amino]propanoyl)amino]-3-(4-[[2R,6S)-2,6-dimethylpiperidinyl]methyl]phenyl)-N-isopropyl-N-methylpropanamide hydrochloride] were evaluated. SSR240612 inhibited the binding of [(3)H]Lys(0)-des-Arg(9)-BK to the B(1) receptor in human fibroblast MRC5 and to recombinant human B(1) receptor expressed in human embryonic kidney cells with inhibition constants (K(i)) of 0.48 and 0.73 nM, respectively. The compound selectivity for B(1) versus B(2) receptors was in the range of 500- to 1000-fold. SSR240612 inhibited Lys(0)-desAr(9)-BK (10 nM)-induced inositol monophosphate formation in human fibroblast MRC5, with an IC(50) of 1.9 nM. It also antagonized des-Arg(9)-BK-induced contractions of isolated rabbit aorta and mesenteric plexus of rat ileum with a pA(2) of 8.9 and 9.4, respectively. Antagonistic properties of SSR240612 were also demonstrated in vivo. SSR240612 inhibited des-Arg(9)-BK-induced paw edema in mice (3 and 10 mg/kg p.o. and 0.3 and 1 mg/kg i.p.). Moreover, SSR240612 reduced capsaicin-induced ear edema in mice (0.3, 3 and 30 mg/kg p.o.) and tissue destruction and neutrophil accumulation in the rat intestine following splanchnic artery occlusion/reperfusion (0.3 mg/kg i.v.). The compound also inhibited thermal hyperalgesia induced by UV irradiation (1 and 3 mg/kg p.o.) and the late phase of nociceptive response to formalin in rats (10 and 30 mg/kg p.o.). Finally, SSR240612 (20 and 30 mg/kg p.o.) prevented neuropathic thermal pain induced by sciatic nerve constriction in the rat. In conclusion, SSR240612 is a new, potent, and orally active specific non-peptide bradykinin B(1) receptor antagonist.

  13. Effects of the NMDA receptor antagonist, D-CPPene, on sensitization to the operant decrement produced by naloxone in morphine-treated rats.

    PubMed

    Bespalov, A Y; Medvedev, I O; Sukhotina, I A; Zvartau, E E

    2001-04-01

    Sensitization to the rate-decreasing effects of opioid antagonists induced by acute pretreatment with opioid agonists has been suggested to reflect initial changes in opioid systems that underlie physical dependence. Glutamate receptors are implicated in the development and expression of opioid dependence, and antagonists acting at the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors have been shown repeatedly to attenuate the severity of opioid withdrawal. The present study evaluated the ability of a competitive NMDA receptor antagonist, D-CPPene (SDZ EAA 494; 3-(2-carboxypiperazin-4-yl)-1-propenyl-1-phosphonic acid), to affect morphine-induced sensitization to naloxone in rats trained to lever-press on a multiple-trial, fixed-ratio 10 schedule of food reinforcement. D-CPPene (0.3-3 mg/kg) was administered either 4 h or 30 min prior to the test session. Morphine (10 mg/kg) or its vehicle was administered 4 h before naloxone challenge (0.3-3 mg/kg). D-CPPene failed to prevent morphine-induced potentiation of the naloxone-produced decrement in operant performance. Thus, these results suggest that agonist-induced sensitization to behavioral effects of opioid antagonists may be insensitive to NMDA receptor blockade.

  14. Intravesical PAC1 Receptor Antagonist, PACAP(6–38), Reduces Urinary Bladder Frequency and Pelvic Sensitivity in NGF-OE Mice

    PubMed Central

    Girard, Beatrice M.; Malley, Susan E.; Mathews, Morgan M.; May, Victor

    2017-01-01

    Chronic NGF overexpression (OE) in the urothelium, achieved through the use of a highly urothelium-specific uroplakin II promoter, stimulates neuronal sprouting in the urinary bladder, produces increased voiding frequency and non-voiding contractions, and referred somatic sensitivity. Additional NGF-mediated pleiotropic changes might contribute to increased voiding frequency and pelvic hypersensitivity in NGF-OE mice such as neuropeptide/receptor systems including PACAP(Adcyap1) and PAC1 receptor (Adcyap1r1). Given the presence of PAC1-immunoreactive fibers and the expression of PAC1 receptor expression in bladder tissues, and PACAP-facilitated detrusor contraction, whether PACAP/receptor signaling contributes to increased voiding frequency and somatic sensitivity was evaluated in NGF-OE mice. Intravesical administration of the PAC1 receptor antagonist, PACAP(6–38) (300 nM), significantly (p ≤ 0.01) increased intercontraction interval (2.0-fold) and void volume (2.5-fold) in NGF-OE mice. Intravesical instillation of PACAP(6–38) also decreased baseline bladder pressure in NGF-OE mice. PACAP(6–38) had no effects on bladder function in WT mice. Intravesical administration of PACAP(6–38) (300 nM) significantly (p ≤ 0.01) reduced pelvic sensitivity in NGF-OE mice but was without effect in WT mice. PACAP/receptor signaling contributes to the increased voiding frequency and pelvic sensitivity observed in NGF-OE mice. PMID:27146136

  15. Actions of alpha2 adrenoceptor ligands at alpha2A and 5-HT1A receptors: the antagonist, atipamezole, and the agonist, dexmedetomidine, are highly selective for alpha2A adrenoceptors.

    PubMed

    Newman-Tancredi, A; Nicolas, J P; Audinot, V; Gavaudan, S; Verrièle, L; Touzard, M; Chaput, C; Richard, N; Millan, M J

    1998-08-01

    This study examined the activity of chemically diverse alpha2 adrenoceptor ligands at recombinant human (h) and native rat (r) alpha2A adrenoceptors compared with 5-HT1A receptors. First, in competition binding experiments at h alpha2A and h5-HT1A receptors expressed in CHO cells, several compounds, including the antagonists 1-(2-pyrimidinyl)piperazine (1-PP), (+/-)-idazoxan, benalfocin (SKF 86466), yohimbine and RX 821,002, displayed preference for h alpha2A versus h5-HT1A receptors of only 1.4-, 3.6-, 4-, 10- and 11-fold, respectively (based on differences in pKi values). Clonidine, brimonidine (UK 14304), the benzopyrrolidine fluparoxan and the guanidines guanfacine and guanabenz exhibited intermediate selectivity (22- to 31-fold) for h alpha2A receptors. Only the antagonist atipamezole and the agonist dexmedetomidine (DMT) displayed high preference for alpha2 adrenoceptors (1290- and 91-fold, respectively). Second, the compounds were tested for their ability to induce h5-HT1A receptor-mediated G-protein activation, as indicated by the stimulation of [35S]GTPgammaS binding. All except atipamezole and RX 821,002 exhibited agonist activity, with potencies which correlated with their affinity for h5-HT1A receptors. Relative efficacies (Emax values) were 25-35% for guanabenz, guanfacine, WB 4101 and benalfocin, 50-65% for 1-PP, (+/-)-idazoxan and clonidine, and over 70% for fluparoxan, oxymetazoline and yohimbine (relative to 5-HT = 100%). Yohimbine-induced [35S]GTPgammaS binding was inhibited by the selective 5-HT1A receptor antagonist WAY 100,635. In contrast, RX 821,002 was the only ligand which exhibited antagonist activity at h5-HT1A receptors, inhibiting 5-HT-stimulated [35S]GTPgammaS binding. Atipamezole, which exhibited negligeable affinity for 5-HT1A receptors, was inactive. Third, the affinities for r alpha2A differed considerably from the affinities for h alpha2A receptors whereas the affinities for r5-HT1A differed much less from the affinities for h5-HT

  16. CCR5 receptor antagonists: discovery and SAR study of guanylhydrazone derivatives.

    PubMed

    Wei, Robert G; Arnaiz, Damian O; Chou, Yuo-Ling; Davey, Dave; Dunning, Laura; Lee, Wheeseong; Lu, Shou-Fu; Onuffer, James; Ye, Bin; Phillips, Gary

    2007-01-01

    High throughput screening (HTS) led to the identification of the guanylhydrazone of 2-(4-chlorobenzyloxy)-5-bromobenzaldehyde as a CCR5 receptor antagonist. Initial modifications of the guanylhydrazone series indicated that substitution of the benzyl group at the para-position was well tolerated. Substitution at the 5-position of the central phenyl ring was critical for potency. Replacement of the guanylhydrazone group led to the discovery of a novel series of CCR5 antagonists.

  17. Serotonergic 5-HT6 Receptor Antagonists: Heterocyclic Chemistry and Potential Therapeutic Significance.

    PubMed

    Bali, Alka; Singh, Shalu

    2015-01-01

    The serotonin 5-HT(6) receptor (5- HT(6)R) is amongst the recently discovered serotonergic receptors with almost exclusive localization in the brain. Hence, this receptor is fast emerging as a promising target for cognition enhancement in central nervous system (CNS) diseases such as Alzheimer's disease (cognitive function), obesity, schizophrenia and anxiety. The last decade has seen a surge of literature reports on the functional role of this receptor in learning and memory processes and investigations related to the chemistry and pharmacology of 5-HT(6) receptor ligands, especially 5- HT(6) receptor antagonists. Studies show the involvement of multiple neurotransmitter systems in cognitive enhancement by 5-HT(6)R antagonists including cholinergic, glutamatergic, and GABAergic systems. Several of the 5-HT(6)R ligands are indole based agents bearing structural similarity to the endogenous neurotransmitter serotonin. Based on the pharmacophoric models proposed for these agents, drug designing has been carried out incorporating various heterocyclic replacements for the indole nucleus. In this review, we have broadly summarized the medicinal chemistry and current status of this fairly recent class of drugs along with their potential therapeutic applications.

  18. Theranostic Perspectives in Prostate Cancer with the Gastrin-Releasing Peptide Receptor Antagonist NeoBOMB1: Preclinical and First Clinical Results.

    PubMed

    Nock, Berthold A; Kaloudi, Aikaterini; Lymperis, Emmanouil; Giarika, Athina; Kulkarni, Harshad R; Klette, Ingo; Singh, Aviral; Krenning, Eric P; de Jong, Marion; Maina, Theodosia; Baum, Richard P

    2017-01-01

    We recently introduced the potent gastrin-releasing peptide receptor (GRPR) antagonist 68 Ga-SB3 ( 68 Ga-DOTA-p-aminomethylaniline-diglycolic acid-DPhe-Gln-Trp-Ala-Val-Gly-His-Leu-NHEt), showing excellent tumor localizing efficacy in animal models and in patients. By replacement of the C-terminal Leu 13 -Met 14 -NH 2 dipeptide of SB3 by Sta 13 -Leu 14 -NH 2 , the novel GRPR antagonist NeoBOMB1 was generated and labeled with different radiometals for theranostic use. We herein report on the biologic profile of resulting 67/68 Ga-, 111 In-, and 177 Lu-NeoBOMB1 radioligands in GRPR-expressing cells and mouse models. The first evidence of prostate cancer lesion visualization in men using 68 Ga-NeoBOMB1 and PET/CT is also presented. NeoBOMB1 was radiolabeled with 67/68 Ga, 111 In, and 177 Lu according to published protocols. The respective metalated species nat Ga-, nat In-, and nat Lu-NeoBOMB1 were also synthesized and used in competition binding experiments against [ 125 I-Tyr 4 ]BBN in GRPR-positive PC-3 cell membranes. Internalization of 67 Ga-, 111 In-, and 177 Lu-NeoBOMB1 radioligands was studied in PC-3 cells at 37°C, and their metabolic stability in peripheral mouse blood was determined by high-performance liquid chromatography analysis of blood samples. Biodistribution was performed by injecting a 67 Ga-, 111 In-, or 177 Lu-NeoBOMB1 bolus (74, 74, or 370 kBq, respectively, 100 μL, 10 pmol total peptide ± 40 nmol Tyr 4 -BBN: for in vivo GRPR blockade) in severe combined immunodeficiency mice bearing PC-3 xenografts. PET/CT images with 68 Ga-NeoBOMB1 were acquired in prostate cancer patients. NeoBOMB1 and nat Ga-, nat In-, and nat Lu-NeoBOMB1 bound to GRPR with high affinity (half maximal inhibitory concentration, 1-2 nM). 67 Ga-, 111 In-, and 177 Lu-NeoBOMB1 specifically and strongly bound on the cell membrane of PC-3 cells displaying low internalization, as expected for receptor antagonists. They showed excellent metabolic stability in peripheral mouse blood

  19. Evaluation of JNJ-54717793 a Novel Brain Penetrant Selective Orexin 1 Receptor Antagonist in Two Rat Models of Panic Attack Provocation.

    PubMed

    Bonaventure, Pascal; Dugovic, Christine; Shireman, Brock; Preville, Cathy; Yun, Sujin; Lord, Brian; Nepomuceno, Diane; Wennerholm, Michelle; Lovenberg, Timothy; Carruthers, Nicolas; Fitz, Stephanie D; Shekhar, Anantha; Johnson, Philip L

    2017-01-01

    Orexin neurons originating in the perifornical and lateral hypothalamic area are highly reactive to anxiogenic stimuli and have strong projections to anxiety and panic-associated circuitry. Recent studies support a role for the orexin system and in particular the orexin 1 receptor (OX1R) in coordinating an integrative stress response. However, no selective OX1R antagonist has been systematically tested in two preclinical models of using panicogenic stimuli that induce panic attack in the majority of people with panic disorder, namely an acute hypercapnia-panic provocation model and a model involving chronic inhibition of GABA synthesis in the perifornical hypothalamic area followed by intravenous sodium lactate infusion. Here we report on a novel brain penetrant, selective and high affinity OX1R antagonist JNJ-54717793 (1S,2R,4R)-7-([(3-fluoro-2-pyrimidin-2-ylphenyl)carbonyl]- N -[5-(trifluoromethyl)pyrazin-2-yl]-7-azabicyclo[2.2.1]heptan-2-amine). JNJ-54717793 is a high affinity/potent OX1R antagonist and has an excellent selectivity profile including 50 fold versus the OX2R. Ex vivo receptor binding studies demonstrated that after oral administration JNJ-54717793 crossed the blood brain barrier and occupied OX1Rs in the rat brain. While JNJ-54717793 had minimal effect on spontaneous sleep in rats and in wild-type mice, its administration in OX2R knockout mice, selectively promoted rapid eye movement sleep, demonstrating target engagement and specific OX1R blockade. JNJ-54717793 attenuated CO 2 and sodium lactate induced panic-like behaviors and cardiovascular responses without altering baseline locomotor or autonomic activity. These data confirm that selective OX1R antagonism may represent a novel approach of treating anxiety disorders, with no apparent sedative effects.

  20. Evaluation of JNJ-54717793 a Novel Brain Penetrant Selective Orexin 1 Receptor Antagonist in Two Rat Models of Panic Attack Provocation

    PubMed Central

    Bonaventure, Pascal; Dugovic, Christine; Shireman, Brock; Preville, Cathy; Yun, Sujin; Lord, Brian; Nepomuceno, Diane; Wennerholm, Michelle; Lovenberg, Timothy; Carruthers, Nicolas; Fitz, Stephanie D.; Shekhar, Anantha; Johnson, Philip L.

    2017-01-01

    Orexin neurons originating in the perifornical and lateral hypothalamic area are highly reactive to anxiogenic stimuli and have strong projections to anxiety and panic-associated circuitry. Recent studies support a role for the orexin system and in particular the orexin 1 receptor (OX1R) in coordinating an integrative stress response. However, no selective OX1R antagonist has been systematically tested in two preclinical models of using panicogenic stimuli that induce panic attack in the majority of people with panic disorder, namely an acute hypercapnia-panic provocation model and a model involving chronic inhibition of GABA synthesis in the perifornical hypothalamic area followed by intravenous sodium lactate infusion. Here we report on a novel brain penetrant, selective and high affinity OX1R antagonist JNJ-54717793 (1S,2R,4R)-7-([(3-fluoro-2-pyrimidin-2-ylphenyl)carbonyl]-N-[5-(trifluoromethyl)pyrazin-2-yl]-7-azabicyclo[2.2.1]heptan-2-amine). JNJ-54717793 is a high affinity/potent OX1R antagonist and has an excellent selectivity profile including 50 fold versus the OX2R. Ex vivo receptor binding studies demonstrated that after oral administration JNJ-54717793 crossed the blood brain barrier and occupied OX1Rs in the rat brain. While JNJ-54717793 had minimal effect on spontaneous sleep in rats and in wild-type mice, its administration in OX2R knockout mice, selectively promoted rapid eye movement sleep, demonstrating target engagement and specific OX1R blockade. JNJ-54717793 attenuated CO2 and sodium lactate induced panic-like behaviors and cardiovascular responses without altering baseline locomotor or autonomic activity. These data confirm that selective OX1R antagonism may represent a novel approach of treating anxiety disorders, with no apparent sedative effects. PMID:28649201

  1. Novel 5-HT6 receptor antagonists/D2 receptor partial agonists targeting behavioral and psychological symptoms of dementia.

    PubMed

    Kołaczkowski, Marcin; Marcinkowska, Monika; Bucki, Adam; Śniecikowska, Joanna; Pawłowski, Maciej; Kazek, Grzegorz; Siwek, Agata; Jastrzębska-Więsek, Magdalena; Partyka, Anna; Wasik, Anna; Wesołowska, Anna; Mierzejewski, Paweł; Bienkowski, Przemyslaw

    2015-03-06

    We describe a novel class of designed multiple ligands (DMLs) combining serotonin 5-HT6 receptor (5-HT6R) antagonism with dopamine D2 receptor (D2R) partial agonism. Prototype hybrid molecules were designed using docking to receptor homology models. Diverse pharmacophore moieties yielded 3 series of hybrids with varying in vitro properties at 5-HT6R and D2R, and at M1 receptor and hERG channel antitargets. 4-(piperazin-1-yl)-1H-indole derivatives showed highest antagonist potency at 5-HT6R, with 7-butoxy-3,4-dihydroquinolin-2(1H)-one and 2-propoxybenzamide derivatives having promising D2R partial agonism. 2-(3-(4-(1-(phenylsulfonyl)-1H-indol-4-yl)piperazin-1-yl)propoxy)benzamide (47) exhibited nanomolar affinity at both 5-HT6R and D2R and was evaluated in rat models. It displayed potent antidepressant-like and anxiolytic-like activity in the Porsolt and Vogel tests, respectively, more pronounced than that of a reference selective 5-HT6R antagonist or D2R partial agonist. In addition, 47 also showed antidepressant-like activity (Porsolt's test) and anxiolytic-like activity (open field test) in aged (>18-month old) rats. In operant conditioning tests, 47 enhanced responding for sweet reward in the saccharin self-administration test, consistent with anti-anhedonic properties. Further, 47 facilitated extinction of non-reinforced responding for sweet reward, suggesting potential procognitive activity. Taken together, these studies suggest that DMLs combining 5-HT6R antagonism and D2R partial agonism may successfully target affective disorders in patients from different age groups without a risk of cognitive deficits. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. A Quorum-Sensing Antagonist Targets Both Membrane-Bound and Cytoplasmic Receptors And Controls Bacterial Pathogenicity

    PubMed Central

    Swem, Lee R.; Swem, Danielle L.; O’Loughlin, Colleen T.; Gatmaitan, Raleene; Zhao, Bixiao; Ulrich, Scott M.; Bassler, Bonnie L.

    2009-01-01

    Summary Quorum sensing is a process of bacterial communication involving production and detection of secreted molecules called autoinducers. Gram-negative bacteria use acyl-homoserine lactone (AHL) autoinducers, which are detected by one of two receptor types. First, cytoplasmic LuxR-type receptors bind accumulated intracellular AHLs. AHL-LuxR complexes bind DNA and alter gene expression. Second, membrane-bound LuxN-type receptors bind accumulated extracellular AHLs. AHL-LuxN complexes relay information internally by phosphorylation cascades that direct gene-expression changes. Here we show that a small molecule, previously identified as an antagonist of LuxN-type receptors, is also a potent antagonist of the LuxR family, despite differences in receptor structure, localization, AHL specificity, and signaling mechanism. Derivatives were synthesized and optimized for potency, and in each case, we characterized the mode of action of antagonism. The most potent antagonist protects Caenorhabditis elegans from quorum-sensing-mediated killing by Chromobacterium violaceum, validating the notion that targeting quorum sensing has potential for antimicrobial drug development. PMID:19647512

  3. Neuropeptide S attenuates neuropathological, neurochemical and behavioral changes induced by the NMDA receptor antagonist MK-801

    PubMed Central

    Okamura, Naoe; Reinscheid, Rainer K.; Ohgake, Shintaro; Iyo, Masaomi; Hashimoto, Kenji

    2009-01-01

    Neuropeptide S (NPS) and its cognate receptor were reported to mediate anxiolytic-like and arousal effects. NPS receptors are predominantly expressed in the brain, especially in limbic structures, including amygdala, olfactory nucleus, subiculum and retrosplenial cortex. In contrast, the NPS precursor is expressed in only a few brainstem nuclei where it is co-expressed with various excitatory transmitters, including glutamate. The current study investigates interactions of the NPS system with glutamatergic neurotransmission. It has been suggested that dysfunctions in glutamatergic neurotransmission via N-methyl-D-aspartate (NMDA) receptors might be involved in the pathophysiology of schizophrenia since NMDA receptor antagonists, such as MK-801, have been shown to induce psychotic-like behavior in humans and animal models. Also, MK-801 is known to produce histological changes such as cytoplasmic vacuoles in retrosplenial cortex neurons where NPS receptors are highly expressed. In this study we show that NPS is able to alleviate neuropathological, neurochemical and behavioral changes produced by NMDA receptor antagonists. NPS treatment attenuated MK-801-induced vacuolization in the rat retrosplenial cortex in a dose dependent manner that can be blocked by an NPS receptor-selective antagonist. NPS also suppressed MK-801-induced increases of extracellular acetylcholine levels in the retrosplenial cortex. In the prepulse inhibition (PPI) assay, animals pretreated with NPS recovered significantly from MK-801-induced disruption of PPI. Our study suggests that NPS may have protective effects against the neurotoxic and behavioral changes produced by NMDA receptor antagonists and that NPS receptor agonists may elicit antipsychotic effects. PMID:19576911

  4. Further Optimization and Evaluation of Bioavailable, Mixed-Efficacy μ-Opioid Receptor (MOR) Agonists/δ-Opioid Receptor (DOR) Antagonists: Balancing MOR and DOR Affinities.

    PubMed

    Harland, Aubrie A; Yeomans, Larisa; Griggs, Nicholas W; Anand, Jessica P; Pogozheva, Irina D; Jutkiewicz, Emily M; Traynor, John R; Mosberg, Henry I

    2015-11-25

    In a previously described peptidomimetic series, we reported the development of bifunctional μ-opioid receptor (MOR) agonist and δ-opioid receptor (DOR) antagonist ligands with a lead compound that produced antinociception for 1 h after intraperitoneal administration in mice. In this paper, we expand on our original series by presenting two modifications, both of which were designed with the following objectives: (1) probing bioavailability and improving metabolic stability, (2) balancing affinities between MOR and DOR while reducing affinity and efficacy at the κ-opioid receptor (KOR), and (3) improving in vivo efficacy. Here, we establish that, through N-acetylation of our original peptidomimetic series, we are able to improve DOR affinity and increase selectivity relative to KOR while maintaining the desired MOR agonist/DOR antagonist profile. From initial in vivo studies, one compound (14a) was found to produce dose-dependent antinociception after peripheral administration with an improved duration of action of longer than 3 h.

  5. NMDA receptor antagonists extend the sensitive period for imprinting.

    PubMed

    Parsons, C H; Rogers, L J

    2000-03-01

    Filial imprinting in the domestic chick occurs during a sensitive period of development. The exact timing of this period can vary according to the methods used to measure imprinting. Using our imprinting paradigm, we have shown that normal, dark-reared chicks lose the ability to imprint after the second day post-hatching. Further, we reported that chicks treated 10 h after hatching with a mixture of the noncompetitive NMDA receptor antagonist ketamine (55 mg/kg) and the alpha(2)-adrenergic receptor agonist xylazine (6 mg/kg) were able to imprint on day 8 after hatching, whereas controls treated with saline did not imprint. We now show that the effect of the ketamine-xylazine mixture can be mimicked by treating chicks with ketamine alone or with another noncompetitive NMDA receptor antagonist, MK-801 (5 mg/kg). Treating chicks with a single dose of ketamine (55 mg/kg) or with a single dose of xylazine (6 mg/kg) failed to produce the effect on the sensitive period. However, prolonging the action of ketamine by treating chicks with two doses of ketamine (at 10 and 12 h after hatching) did allow imprinting on day 8. In contrast, prolonging the action of xylazine had no effect on the sensitive period for imprinting. Chicks treated with MK-801 were also able to imprint on day 8. Thus, we have evidence that the NMDA receptor system is involved in the mechanisms that control the sensitive period for imprinting.

  6. A high-level prokaryotic expression system: synthesis of human interleukin 1 alpha and its receptor antagonist.

    PubMed

    Birikh, K R; Lebedenko, E N; Boni, I V; Berlin, Y A

    1995-10-27

    Synthetic intronless genes, coding for human interleukin 1 alpha (IL 1 alpha) and interleukin 1 receptor antagonist (IL1ra), have been expressed efficiently in a specially designed prokaryotic vector, pGMCE (a pGEM1 derivative), where the target gene forms the second part of a two-cistron system. The first part of the system is a translation enhancer-containing mini-cistron, whose termination codon overlaps the start codon of the target gene. In the case of the IL1 alpha gene, the high expression level is largely due to the direct efficient translation initiation at the second cistron, whereas with the IL1ra gene in the same system, the proximal translation initiation region (TIR) provides a high level of coupled expression of the target gene. Thus, pGMCE is a potentially versatile vector for direct prokaryotic expression.

  7. Serotonin 2C receptor antagonist improves fear discrimination and subsequent safety signal recall

    PubMed Central

    Foilb, Allison R.; Christianson, John P.

    2015-01-01

    The capacity to discriminate between safety and danger is fundamental for survival, but is disrupted in individuals with posttraumatic stress disorder (PTSD). Acute stressors cause a release of serotonin (5-HT) in the forebrain, which is one mechanism for enhanced fear and anxiety; these effects are mediated by the 5-HT2C receptor. Using a fear discrimination paradigm where a danger signal conditioned stimulus (CS+) coterminates with a mild footshock and a safety signal (CS-) indicates the absence of shock, we demonstrate that danger/safety discrimination and fear inhibition develops over the course of 4 daily conditioning sessions. Systemic administration of the 5-HT2C receptor antagonist SB 242084 (0.25 or 1.0 mg/kg) prior to conditioning reduced behavioral freezing during conditioning, improved learning and subsequent inhibition of fear by the safety signal. Discrimination was apparent in the first recall test, and discrimination during training was evident after 3 days of conditioning versus 5 days in the vehicle treated controls. These results suggest a novel therapeutic use for 5-HT2C receptor antagonists to improve learning under stressful circumstances. Potential anatomical loci for 5-HT2C receptor modulation of fear discrimination learning and cognitive performance enhancement are discussed. PMID:26344640

  8. Sigma-1 receptor and inflammatory pain.

    PubMed

    Gris, Georgia; Cobos, Enrique José; Zamanillo, Daniel; Portillo-Salido, Enrique

    2015-06-01

    The sigma-1 receptor (Sig-1R) is a unique ligand-regulated molecular chaperone that interacts with several protein targets such as G protein-coupled receptors and ion channels to modulate their activity. Sig-1R is located in areas of the central and peripheral nervous system that are key to pain control. Previous preclinical studies have suggested a potential therapeutic use of Sig-1R antagonists for the management of neuropathic pain. Recent studies using pharmacological and genetic tools have explored the role of Sig-1R in inflammatory pain conditions. Mice lacking the Sig-1R have shown different patterns of phenotypic responses to inflammatory injury. Systemic or peripheral administration of several Sig-1R antagonists, including the selective Sig-1R antagonist S1RA, inhibited both mechanical and thermal hypersensitivity in several preclinical models of inflammatory pain. These recent studies are summarized in the present commentary. Central and peripheral pharmacological blockade of Sig-1R could be an effective option to treat inflammatory pain.

  9. Synthesis and serotonergic activity of substituted 2, N-benzylcarboxamido-5-(2-ethyl-1-dioxoimidazolidinyl)-N, N-dimethyltryptamine derivatives: novel antagonists for the vascular 5-HT(1B)-like receptor.

    PubMed

    Moloney, G P; Martin, G R; Mathews, N; Milne, A; Hobbs, H; Dodsworth, S; Sang, P Y; Knight, C; Williams, M; Maxwell, M; Glen, R C

    1999-07-15

    The synthesis and vascular 5-HT(1B)-like receptor activity of a novel series of substituted 2, N-benzylcarboxamido-5-(2-ethyl-1-dioxoimidazolidinyl)-N, N-dimethyltryptamine derivatives are described. Modifications to the 5-ethylene-linked heterocycle and to substituents on the 2-benzylamide side chain have been explored. Several compounds were identified which exhibited affinity at the vascular 5-HT(1B)-like receptor of pK(B) > 7.0, up to 100-fold selectivity over alpha(1)-adrenoceptor affinity and 5-HT(2A) receptor affinity, and which exhibited a favorable pharmacokinetic profile. N-Benzyl-3-[2-(dimethylamino)ethyl]-5-[2-(4,4-dimethyl-2, 5-dioxo-1-imidazolidinyl)ethyl]-1H-indole-2-carboxamide (23) was identified as a highly potent, silent (as judged by the inability of angiotensin II to unmask 5-HT(1B)-like receptor-mediated agonist activity in the rabbit femoral artery), and competitive vascular 5-HT(1B)-like receptor antagonist with a plasma elimination half-life of approximately 4 h in dog plasma and with good oral bioavailability. The selectivity of compounds from this series for the vascular 5-HT(1B)-like receptors over other receptor subtypes is discussed as well as a proposed mode of binding to the receptor pharmacophore. It has been proposed that the aromatic ring of the 2, N-benzylcarboxamide group can occupy an aromatic binding site rather than the indole ring. The resulting conformation allows an amine-binding site to be occupied by the ethylamine nitrogen and a hydrogen-bonding site to be occupied by one of the hydantoin carbonyls. The electronic nature of the 2,N-benzylcarboxamide aromatic group as well as the size of substituents on this aromatic group is crucial for producing potent and selective antagonists. The structural requirement on the 3-ethylamine side chain incorporating the protonatable nitrogen is achieved by the bulky 2, N-benzylcarboxamide group and its close proximity to the 3-side chain.

  10. Discriminative stimulus effects of the imidazoline I2 receptor ligands BU224 and phenyzoline in rats.

    PubMed

    Qiu, Yanyan; Zhang, Yanan; Li, Jun-Xu

    2015-02-15

    Although imidazoline I2 receptor ligands have been used as discriminative stimuli, the role of efficacy of I2 receptor ligands as a critical determinant in drug discrimination has not been explored. This study characterized the discriminative stimulus effects of selective imidazoline I2 receptor ligands BU224 (a low-efficacy I2 receptor ligand) and phenyzoline (a higher efficacy I2 receptor ligand) in rats. Two groups of male Sprague-Dawley rats were trained to discriminate 5.6mg/kg BU224 or 32mg/kg phenyzoline (i.p.) from their vehicle in a two-lever food-reinforced drug discrimination procedure, respectively. All rats acquired the discriminations after an average of 18 (BU224) and 56 (phenyzoline) training sessions, respectively. BU224 and phenyzoline completely substituted for one another symmetrically. Several I2 receptor ligands (tracizoline, CR4056, RS45041, and idazoxan) all occasioned>80% drug-associated lever responding in both discriminations. The I2 receptor ligand 2-BFI and a monoamine oxidase inhibitor harmane occasioned>80% drug-associated lever responding in rats discriminating BU224. Other drugs that occasioned partial or less substitution to BU224 cue included clonidine, methamphetamine, ketamine, morphine, methadone and agmatine. Clonidine, methamphetamine and morphine also only produced partial substitution to phenyzoline cue. Naltrexone, dopamine D2 receptor antagonist haloperidol and serotonin (5-HT)2A receptor antagonist MDL100907 failed to alter the discriminative stimulus effects of BU224 or phenyzoline. Combined, these results are the first to demonstrate that BU224 and phenyzoline can serve as discriminative stimuli and that the low-efficacy I2 receptor ligand BU224 shares similar discriminative stimulus effects with higher-efficacy I2 receptor ligands such as phenyzoline and 2-BFI. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Conditional VHL Gene Deletion Causes Hypoglycemic Death Associated with Disproportionately Increased Glucose Uptake by Hepatocytes through an Upregulated IGF-I Receptor

    PubMed Central

    Kurabayashi, Atsushi; Kakinuma, Yoshihiko; Morita, Taku; Inoue, Keiji; Sato, Takayuki; Furihata, Mutsuo

    2013-01-01

    Our conditional VHL knockout (VHL-KO) mice, having VHL gene deletion induced by tamoxifen, developed severe hypoglycemia associated with disproportionately increased storage of PAS-positive substances in the liver and resulted in the death of these mice. This hypoglycemic state was neither due to impaired insulin secretion nor insulin receptor hypersensitivity. By focusing on insulin-like growth factor I (IGF-I), which has a similar effect on glucose metabolism as the insulin receptor, we demonstrated that IGF-I receptor (IGF-IR) protein expression in the liver was upregulated in VHL-KO mice compared to that in the mice without VHL deletion, as was the expression of glucose transporter (GLUT) 1. The interaction of the receptor for activated C kinase (RACK) 1, which predominantly binds to VHL, was enhanced in VHL-KO livers with IGF-IR, because VHL deletion increased free RACK1 and facilitated the IGF-IR-RACKI interaction. An IGF-IR antagonist retarded hypoglycemic progression and sustained an euglycemic state. These IGF-IR antagonist effects on restoring blood glucose levels also attenuated PAS-positive substance storage in the liver. Because the effect of IGF-I on HIF-1α protein synthesis is mediated by IGF-IR, our results indicated that VHL inactivation accelerated hepatic glucose storage through the upregulation of IGF-IR and GLUT1 and that IGF-IR was a key regulator in VHL-deficient hepatocytes. PMID:23874892

  12. Antagonist profile of ibodutant at the tachykinin NK2 receptor in guinea pig isolated bronchi.

    PubMed

    Santicioli, Paolo; Meini, Stefania; Giuliani, Sandro; Lecci, Alessandro; Maggi, Carlo Alberto

    2013-10-24

    In this study we have characterized the pharmacological profile of the non-peptide tachykinin NK 2 receptor antagonist ibodutant (MEN15596) in guinea pig isolated main bronchi contractility. The antagonist potency of ibodutant was evaluated using the selective NK 2 receptor agonist [βAla 8 ]NKA(4-10)-mediated contractions of guinea pig isolated main bronchi. In this assay ibodutant (30, 100 and 300nM) induced a concentration-dependent rightward shift of the [βAla 8 ]NKA(4-10) concentration-response curves without affecting the maximal contractile effect. The analysis of the results yielded a Schild-plot linear regression with a slope not different from unity (0.95, 95% c.l. 0.65-1.25), thus indicating a surmountable behaviour. The calculated apparent antagonist potency as pK B value was 8.31±0.05. Ibodutant (0.3-100nM), produced a concentration-dependent inhibition of the nonadrenergic-noncholinergic (NANC) contractile response induced by electrical field stimulation (EFS) of intrinsic airway nerves in guinea pig isolated main bronchi. At the highest concentration tested (100nM) ibodutant almost abolished the EFS-induced bronchoconstriction (95±4% inhibition), the calculated IC 50 value was 2.98nM (95% c.l. 1.73-5.16nM). In bronchi from ovalbumin (OVA) sensitized guinea pigs ibodutant (100nM) did not affect the maximal contractile response to OVA, but completely prevented the slowing in the fading of the motor response induced by phosphoramidon pretreatment linked to the endogenous neurokinin A release. Altogether, the present study demonstrate that ibodutant is a potent NK 2 receptor antagonist in guinea pig airways. © 2013 Published by Elsevier B.V.

  13. Pharmacological and pharmacokinetic characterization of 2-piperazine-alpha-isopropyl benzylamine derivatives as melanocortin-4 receptor antagonists.

    PubMed

    Chen, Chen; Tucci, Fabio C; Jiang, Wanlong; Tran, Joe A; Fleck, Beth A; Hoare, Sam R; Wen, Jenny; Chen, Takung; Johns, Michael; Markison, Stacy; Foster, Alan C; Marinkovic, Dragan; Chen, Caroline W; Arellano, Melissa; Harman, John; Saunders, John; Bozigian, Haig; Marks, Daniel

    2008-05-15

    A series of 2-piperazine-alpha-isopropylbenzylamine derivatives were synthesized and characterized as melanocortin-4 receptor (MC4R) antagonists. Attaching an amino acid to benzylamines 7 significantly increased their binding affinity, and the resulting compounds 8-12 bound selectively to MC4R over other melanocortin receptor subtypes and behaved as functional antagonists. These compounds were also studied for their permeability using Caco-2 cell monolayers and metabolic stability in human liver microsomes. Most compounds exhibited low permeability and high efflux ratio possibly due to their high molecular weights. They also showed moderate metabolic stability which might be associated with their moderate to high lipophilicity. Pharmacokinetic properties of these MC4R antagonists, including brain penetration, were studied in mice after oral and intravenous administrations. Two compounds identified to possess high binding affinity and selectivity, 10d and 11d, were studied in a murine cachexia model. After intraperitoneal (ip) administration of 1mg/kg dose, mice treated with 10d had significantly more food intake and weight gain than the control animals, demonstrating efficacy by blocking the MC4 receptor. Similar in vivo effects were also observed when 11d was dosed orally at 20mg/kg. These results provide further evidence that a potent and selective MC4R antagonist has potential in the treatment of cancer cachexia.

  14. Cardiovascular actions of mineralocorticoid receptor antagonists in patients with chronic kidney disease: A systematic review and meta-analysis of randomized trials.

    PubMed

    Ng, Khai P; Arnold, Julia; Sharif, Adnan; Gill, Paramjit; Townend, Jonathan N; Ferro, Charles J

    2015-09-01

    The safety and actions of mineralocorticoid receptor antagonists on surrogate markers of cardiovascular disease as well as major patient level cardiovascular end-points in patients with chronic kidney disease are unclear. MEDLINE, EMBASE, Trip Database, Cochrane Central Register of Controlled Trials, Cochrane Renal Group specialized register, Current Controlled Trials and clinicaltrials.gov were searched for relevant trials. Twenty-nine trials (1581 patients) were included. Overall, mineralocorticoid receptor antagonists lowered both systolic and diastolic blood pressure (-5.24, 95% confidence interval (CI) -8.65, -1.82 mmHg; p=0.003 and -1.96, 95% CI -3.22, -0.69 mmHg; p=0.002 respectively). There were insufficient data to perform a meta-analysis of other cardiovascular effects. However, a systematic review of the studies included suggested a consistent improvement in surrogate markers of cardiovascular disease. Overall, the use of mineralocorticoid receptor antagonists was associated with an increased serum potassium (0.23, 95% CI 0.13, 0.33 mmol/l; p<0.0001) and higher risk ratio (1.76, 95% CI 1.20, 2.57; p=0.001) of hyperkalemia. Data on long-term cardiovascular outcomes and mortality were not available in any of the trials. The long-term effects of mineralocorticoid receptor antagonists on cardiovascular events, mortality and safety need to be established. © The Author(s) 2015.

  15. Antagonism of Human Formyl Peptide Receptor 1 (FPR1) by Chromones and Related Isoflavones

    PubMed Central

    Schepetkin, Igor A.; Kirpotina, Liliya N.; Khlebnikov, Andrei I.; Cheng, Ni; Ye, Richard D.; Quinn, Mark T.

    2014-01-01

    Formyl peptide receptors (FPRs) are G protein-coupled receptors (GPCRs) expressed on a variety of cell types. Because FPRs play an important role in the regulation of inflammatory reactions implicated in disease pathogenesis, FPR antagonists may represent novel therapeutics for modulating innate immunity. Previously, 4H-chromones were reported to be potent and competitive FPR1 antagonists. In the present studies, 96 additional chromone analogs, including related synthetic and natural isoflavones were evaluated for FPR1 antagonist activity. We identified a number of novel competitive FPR1 antagonists that inhibited fMLF-induced intracellular Ca2+ mobilization in FPR1-HL60 cells and effectively competed with WKYMVm-FITC for binding to FPR1 in FPR1-HL60 and FPR1-RBL cells. Compound 10 (6-hexyl-2-methyl-3-(1-methyl-1H-benzimidazol-2-yl)-4-oxo-4H-chromen-7-yl acetate) was found to be the most potent FPR1-specific antagonist, with binding affinity Ki~100 nM. These chromones inhibited Ca2+ flux and chemotaxis in human neutrophils with nanomolar-micromolar IC50 values. In addition, the most potent novel FPR1 antagonists inhibited fMLF-induced phosphorylation of extracellular signal-regulated kinases (ERK1/2) in FPR1-RBL cells. These antagonists were specific for FPR1 and did not inhibit WKYMVM/WKYMVm-induced intracellular Ca2+ mobilization in FPR2-HL60 cells, FPR3-HL60 cells, RBL cells transfected with murine Fpr1, or interleukin 8-induced Ca2+ flux in human neutrophils and RBL cells transfected with CXC chemokine receptor 1 (CXCR1). Moreover, pharmacophore modeling showed that the active chromones had a significantly higher degree of similarity with the pharmacophore template as compared to inactive analogs. Thus, the chromone/isoflavone scaffold represents a relevant backbone for development of novel FPR1 antagonists. PMID:25450672

  16. Molecular modeling of interactions of the non-peptide antagonist YM087 with the human vasopressin V1a, V2 receptors and with oxytocin receptors.

    NASA Astrophysics Data System (ADS)

    Giełdoń, Artur; Kaźmierkiewicz, Rajmund; Ślusarz, Rafał; Ciarkowski, Jerzy

    2001-12-01

    The nonapeptide hormones arginine vasopressin (CYFQNCPRG-NH2, AVP) and oxytocin (CYIQNCPLG-NH2, OT), control many essential functions in mammals. Their main activities include the urine concentration (via stimulation of AVP V2 receptors, V2R, in the kidneys), blood pressure regulation (via stimulation of vascular V1a AVP receptors, V1aR), ACTH control (via stimulation of V1b receptors, V1bR, in the pituitary) and labor and lactation control (via stimulation of OT receptors, OTR, in the uterus and nipples, respectively). All four receptor subtypes belong to the GTP-binding (G) protein-coupled receptor (GPCR) family. This work consists of docking of YM087, a potent non-peptide V1aR and V2R - but not OTR - antagonist, into the receptor models based on relatively new theoretical templates of rhodopsin (RD) and opiate receptors, proposed by Mosberg et al. (Univ. of Michigan, Ann Arbor, USA). It is simultaneously demonstrated that this RD template satisfactorily compares with the first historical GPCR structure of bovine rhodopsin (Palczewski et al., 2000) and that homology-modeling of V2R, V1aR and OTR using opiate receptors as templates is rational, based on relatively high (20-60%) sequence homology among the set of 4 neurophyseal and 4 opiate receptors. YM087 was computer-docked to V1aR, V2R and OTR using the AutoDock (Olson et al., Scripps Research Institute, La Jolla, USA) and subsequently relaxed using restrained simulated annealing and molecular dynamics, as implemented in AMBER program (Kollman et al., University of California, San Francisco, USA). From about 80 diverse configurations, sampled for each of the three ligand/receptor systems, 3 best energy-relaxed complexes were selected for mutual comparisons. Similar docking modes were found for the YM087/V1aR and YM087/V2R complexes, diverse from those of the YM087/OTR complexes, in agreement with the molecular affinity data.

  17. Assembly of high-affinity insulin receptor agonists and antagonists from peptide building blocks

    PubMed Central

    Schäffer, Lauge; Brissette, Renee E.; Spetzler, Jane C.; Pillutla, Renuka C.; Østergaard, Søren; Lennick, Michael; Brandt, Jakob; Fletcher, Paul W.; Danielsen, Gillian M.; Hsiao, Ku-Chuan; Andersen, Asser S.; Dedova, Olga; Ribel, Ulla; Hoeg-Jensen, Thomas; Hansen, Per Hertz; Blume, Arthur J.; Markussen, Jan; Goldstein, Neil I.

    2003-01-01

    Insulin is thought to elicit its effects by crosslinking the two extracellular α-subunits of its receptor, thereby inducing a conformational change in the receptor, which activates the intracellular tyrosine kinase signaling cascade. Previously we identified a series of peptides binding to two discrete hotspots on the insulin receptor. Here we show that covalent linkage of such peptides into homodimers or heterodimers results in insulin agonists or antagonists, depending on how the peptides are linked. An optimized agonist has been shown, both in vitro and in vivo, to have a potency close to that of insulin itself. The ability to construct such peptide derivatives may offer a path for developing agonists or antagonists for treatment of a wide variety of diseases. PMID:12684539

  18. H2O2 attenuates IGF-1R tyrosine phosphorylation and its survival signaling properties in neuronal cells via NR2B containing NMDA receptor.

    PubMed

    Zeng, Zhiwen; Wang, Dejun; Gaur, Uma; Rifang, Liao; Wang, Haitao; Zheng, Wenhua

    2017-09-12

    Impairment of insulin-like growth factor I (IGF-I) signaling plays an important role in the development of neurodegeneration. In the present study, we investigated the effect of H 2 O 2 on the survival signaling of IGF-1 and its underlying mechanisms in human neuronal cells SH-SY5Y. Our results showed that IGF-1 promoted cell survival and stimulated phosphorylation of IGF-1R as well as its downstream targets like AKT and ERK1/2 in these cells. Meanwhile, these effects of IGF-1 were abolished by H 2 O 2 at 200μM concentration which did not cause any significant toxicity to cells itself in our experiments. Moreover, studies using various glutamate receptor subtype antagonists displayed that N-methyl-D -aspartate (NMDA) receptor antagonist dizocilpine maleate (MK-801) blocked the effects of H 2 O 2 , whereas other glutamate receptor subtype antagonists, such as non-NMDA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX), metabolic glutamate receptor antagonists LY341495 and CPCCOEt, had no effect. Further studies revealed that NR2B-containing NMDARs are responsible for these effects as its effects were blocked by pharmacological inhibitor Ro25-698 or specific siRNA for NR2B, but not NR2A. Finally, our data also showed that Ca 2+ influx contributes to the effects of H 2 O 2 . Similar results were obtained in primary cultured cortical neurons. Taken together, the results from the present study suggested that H 2 O 2 attenuated IGF-1R tyrosine phosphorylation and its survival signaling properties via NR2B containing NMDA receptors and Ca 2+ influx in SH-SY5Y cells. Therefore, NMDAR antagonists, especially NR2B-selective ones, combined with IGF-1 may serve as an alternative therapeutic agent for oxidative stress related neurodegenerative disease.

  19. IL-1 receptor antagonist attenuates neonatal lipopolysaccharide-induced long-lasting learning impairment and hippocampal injury in adult rats

    PubMed Central

    Pang, Yi; Bhatt, Abhay J.; Fan, Lir-Wan

    2015-01-01

    We have previously reported that neonatal lipopolysaccharide (LPS) exposure resulted in an increase in interleukin-1β (IL-1β) content, injury to the hippocampus, and cognitive deficits in juvenile male and female rats, as well as female adult rats. The present study aimed to determine whether an antiinflammatory cytokine, interleukin-1 receptor antagonist (IL-1ra), protects against the neonatal LPS exposure-induced inflammatory responses, hippocampal injury, and long-lasting learning deficits in adult rats. LPS (1 mg/kg) or LPS plus IL-1ra (0.1 mg/kg) was injected intracerebrally to Sprague-Dawley male rat pups at postnatal day 5 (P5). Neurobehavioral tests were carried out on P21, P49, and P70, while neuropathological studies were conducted on P71. Our results showed that neonatal LPS exposure resulted in learning deficits in rats at both developmental and adult ages, as demonstrated by a significantly impaired performance in the passive avoidance task (P21, P49, and P70), reduced hippocampal volume, and reduced number of Nissl+ cells in the CA1 region of the middle dorsal hippocampus of P71 rat brain. Those neuropathological and neurobehavioral alterations by LPS exposure were associated with a sustained inflammatory response in the P71 rat hippocampus, indicated by increased number of activated microglia as well as elevated levels of IL-1β. Neonatal administration of IL-1ra significantly attenuated LPS-induced long-lasting learning deficits, hippocampal injury, and sustained inflammatory responses in P71 rats. Our study demonstrates that neonatal LPS exposure leads to a persistent injury to the hippocampus, resulting in long-lasting learning disabilities related to chronic inflammation in rats, and these effects can be attenuated with an IL-1 receptor antagonist. PMID:25665855

  20. Discovery of Dual ETA/ETB Receptor Antagonists from Traditional Chinese Herbs through in Silico and in Vitro Screening

    PubMed Central

    Wang, Xing; Zhang, Yuxin; Liu, Qing; Ai, Zhixin; Zhang, Yanling; Xiang, Yuhong; Qiao, Yanjiang

    2016-01-01

    Endothelin-1 receptors (ETAR and ETBR) act as a pivotal regulator in the biological effects of ET-1 and represent a potential drug target for the treatment of multiple cardiovascular diseases. The purpose of the study is to discover dual ETA/ETB receptor antagonists from traditional Chinese herbs. Ligand- and structure-based virtual screening was performed to screen an in-house database of traditional Chinese herbs, followed by a series of in vitro bioassay evaluation. Aristolochic acid A (AAA) was first confirmed to be a dual ETA/ETB receptor antagonist based intracellular calcium influx assay and impedance-based assay. Dose-response curves showed that AAA can block both ETAR and ETBR with IC50 of 7.91 and 7.40 μM, respectively. Target specificity and cytotoxicity bioassay proved that AAA is a selective dual ETA/ETB receptor antagonist and has no significant cytotoxicity on HEK293/ETAR and HEK293/ETBR cells within 24 h. It is a feasible and effective approach to discover bioactive compounds from traditional Chinese herbs using in silico screening combined with in vitro bioassay evaluation. The structural characteristic of AAA for its activity was especially interpreted, which could provide valuable reference for the further structural modification of AAA. PMID:26999111

  1. Novel Yeast-based Strategy Unveils Antagonist Binding Regions on the Nuclear Xenobiotic Receptor PXR*

    PubMed Central

    Li, Hao; Redinbo, Matthew R.; Venkatesh, Madhukumar; Ekins, Sean; Chaudhry, Anik; Bloch, Nicolin; Negassa, Abdissa; Mukherjee, Paromita; Kalpana, Ganjam; Mani, Sridhar

    2013-01-01

    The pregnane X receptor (PXR) is a master regulator of xenobiotic metabolism, and its activity is critical toward understanding the pathophysiology of several diseases, including inflammation, cancer, and steatosis. Previous studies have demonstrated that ketoconazole binds to ligand-activated PXR and antagonizes receptor control of gene expression. Structure-function as well as computational docking analysis suggested a putative binding region containing critical charge clamp residues Gln-272, and Phe-264 on the AF-2 surface of PXR. To define the antagonist binding surface(s) of PXR, we developed a novel assay to identify key amino acid residues on PXR based on a yeast two-hybrid screen that examined mutant forms of PXR. This screen identified multiple “gain-of-function” mutants that were “resistant” to the PXR antagonist effects of ketoconazole. We then compared our screen results identifying key PXR residues to those predicted by computational methods. Of 15 potential or putative binding residues based on docking, we identified three residues in the yeast screen that were then systematically verified to functionally interact with ketoconazole using mammalian assays. Among the residues confirmed by our study was Ser-208, which is on the opposite side of the protein from the AF-2 region critical for receptor regulation. The identification of new locations for antagonist binding on the surface or buried in PXR indicates novel aspects to the mechanism of receptor antagonism. These results significantly expand our understanding of antagonist binding sites on the surface of PXR and suggest new avenues to regulate this receptor for clinical applications. PMID:23525103

  2. A neurokinin 1 receptor antagonist decreases postoperative peritoneal adhesion formation and increases peritoneal fibrinolytic activity.

    PubMed

    Reed, Karen L; Fruin, A Brent; Gower, Adam C; Stucchi, Arthur F; Leeman, Susan E; Becker, James M

    2004-06-15

    Fibrous adhesions remain a major sequela of abdominal surgery. The proinflammatory peptide substance P (SP), known to participate in inflammatory events, may play a key role in adhesion formation. This hypothesis was tested by using an antagonist, CJ-12,255 (Pfizer), that blocks the binding of SP to the neurokinin 1 receptor (NK-1R). Adhesion formation was surgically induced in the peritoneum of rats receiving daily doses of the NK-1R antagonist (NK-1RA; 5.0 or 10.0 mg/kg per day) or saline. On postoperative day 7, both the low and high doses of NK-1RA significantly (P < 0.05) reduced adhesion formation by 45% and 53%, respectively, compared with controls. Subsequently, the effect of NK-1RA administration on peritoneal fibrinolytic activity was investigated to determine a potential mechanism for SP action in the peritoneum. Samples were collected from nonoperated controls and from animals 24 h postsurgery that were administered either NK-1RA or saline. Fibrinolytic activity in peritoneal fluid was assayed by zymography, and expression of tissue plasminogen activator (tPA) and plasminogen activator inhibitor 1, both regulators of fibrinolytic activity, was assessed in peritoneal tissue and fluid by RT-PCR and bioassay, respectively. NK-1RA administration led to a marked (P < 0.05) increase in tPA mRNA levels in peritoneal tissue compared with nonoperated and saline-administered animals. Likewise, NK-1RA administration significantly (P < 0.05) increased tPA in the peritoneal fluid. These data suggest that activation of the NK-1R promotes peritoneal adhesion formation by limiting fibrinolytic activity in the postoperative peritoneum, thus enabling fibrinous adhesions to persist.

  3. The Use of IL-1 Receptor Antagonist (Anakinra) in Idiopathic Recurrent Pericarditis: A Narrative Review

    PubMed Central

    Baskar, Shankar; Klein, Allan L.; Zeft, Andrew

    2016-01-01

    Recurrent pericarditis is a complication of acute pericarditis in 20–30% of the patients and is usually idiopathic in nature. The underlying pathogenesis of this condition remains unclear, although immune-mediated mechanisms seem likely. A subgroup of these patients with refractory symptoms can be challenging to manage, and multiple immunosuppressive medications have been used without consistent benefit. Anakinra, an interleukin-1 receptor antagonist, has been used in treatment of rheumatoid arthritis and autoinflammatory syndromes. Preliminary evidence suggests that anakinra could be a promising therapy for idiopathic recurrent pericarditis. In this narrative review, we summarize the current understanding of the etiopathogenesis of idiopathic recurrent pericarditis, mechanism of action of anakinra, and the preliminary evidence, supporting the use of anakinra in pericarditis. PMID:26942035

  4. A Selective TSH Receptor Antagonist Inhibits Stimulation of Thyroid Function in Female Mice

    PubMed Central

    Neumann, Susanne; Nir, Eshel A.; Eliseeva, Elena; Huang, Wenwei; Marugan, Juan; Xiao, Jingbo; Dulcey, Andrés E.

    2014-01-01

    Because the TSH receptor (TSHR) plays an important role in the pathogenesis of thyroid disease, a TSHR antagonist could be a novel treatment. We attempted to develop a small molecule, drug-like antagonist of TSHR signaling that is selective and active in vivo. We synthesized NCGC00242364 (ANTAG3) by chemical modification of a previously reported TSHR antagonist. We tested its potency, efficacy, and selectivity in a model cell system in vitro by measuring its activity to inhibit stimulation of cAMP production stimulated by TSH, LH, or FSH. We tested the in vivo activity of ANTAG3 by measuring its effects to lower serum free T4 and thyroid gene expression in female BALB/c mice continuously treated with ANTAG3 for 3 days and given low doses of TRH continuously or stimulated by a single administration of a monoclonal thyroid-stimulating antibody M22. ANTAG3 was selective for TSHR inhibition; half-maximal inhibitory doses were 2.1 μM for TSHR and greater than 30 μM for LH and FSH receptors. In mice treated with TRH, ANTAG3 lowered serum free T4 by 44% and lowered mRNAs for sodium-iodide cotransporter and thyroperoxidase by 75% and 83%, respectively. In mice given M22, ANTAG3 lowered serum free T4 by 38% and lowered mRNAs for sodium-iodide cotransporter and thyroperoxidase by 73% and 40%, respectively. In conclusion, we developed a selective TSHR antagonist that is effective in vivo in mice. This is the first report of a small-molecule TSHR antagonist active in vivo and may lead to a drug to treat Graves' disease. PMID:24169564

  5. A selective TSH receptor antagonist inhibits stimulation of thyroid function in female mice.

    PubMed

    Neumann, Susanne; Nir, Eshel A; Eliseeva, Elena; Huang, Wenwei; Marugan, Juan; Xiao, Jingbo; Dulcey, Andrés E; Gershengorn, Marvin C

    2014-01-01

    Because the TSH receptor (TSHR) plays an important role in the pathogenesis of thyroid disease, a TSHR antagonist could be a novel treatment. We attempted to develop a small molecule, drug-like antagonist of TSHR signaling that is selective and active in vivo. We synthesized NCGC00242364 (ANTAG3) by chemical modification of a previously reported TSHR antagonist. We tested its potency, efficacy, and selectivity in a model cell system in vitro by measuring its activity to inhibit stimulation of cAMP production stimulated by TSH, LH, or FSH. We tested the in vivo activity of ANTAG3 by measuring its effects to lower serum free T4 and thyroid gene expression in female BALB/c mice continuously treated with ANTAG3 for 3 days and given low doses of TRH continuously or stimulated by a single administration of a monoclonal thyroid-stimulating antibody M22. ANTAG3 was selective for TSHR inhibition; half-maximal inhibitory doses were 2.1 μM for TSHR and greater than 30 μM for LH and FSH receptors. In mice treated with TRH, ANTAG3 lowered serum free T4 by 44% and lowered mRNAs for sodium-iodide cotransporter and thyroperoxidase by 75% and 83%, respectively. In mice given M22, ANTAG3 lowered serum free T4 by 38% and lowered mRNAs for sodium-iodide cotransporter and thyroperoxidase by 73% and 40%, respectively. In conclusion, we developed a selective TSHR antagonist that is effective in vivo in mice. This is the first report of a small-molecule TSHR antagonist active in vivo and may lead to a drug to treat Graves' disease.

  6. Contributions of different modes of TRPV1 activation to TRPV1 antagonist-induced hyperthermia.

    PubMed

    Garami, Andras; Shimansky, Yury P; Pakai, Eszter; Oliveira, Daniela L; Gavva, Narender R; Romanovsky, Andrej A

    2010-01-27

    Transient receptor potential vanilloid-1 (TRPV1) antagonists are widely viewed as next-generation pain therapeutics. However, these compounds cause hyperthermia, a serious side effect. TRPV1 antagonists differentially block three modes of TRPV1 activation: by heat, protons, and chemical ligands (e.g., capsaicin). We asked what combination of potencies in these three modes of TRPV1 activation corresponds to the lowest potency of a TRPV1 antagonist to cause hyperthermia. We studied hyperthermic responses of rats, mice, and guinea pigs to eight TRPV1 antagonists with different pharmacological profiles and used mathematical modeling to find a relative contribution of the blockade of each activation mode to the development of hyperthermia. We found that the hyperthermic effect has the highest sensitivity to the extent of TRPV1 blockade in the proton mode (0.43 to 0.65) with no to moderate sensitivity in the capsaicin mode (-0.01 to 0.34) and no sensitivity in the heat mode (0.00 to 0.01). We conclude that hyperthermia-free TRPV1 antagonists do not block TRPV1 activation by protons, even if they are potent blockers of the heat mode, and that decreasing the potency to block the capsaicin mode may further decrease the potency to cause hyperthermia.

  7. Contributions of different modes of TRPV1 activation to TRPV1 antagonist-induced hyperthermia

    PubMed Central

    Garami, Andras; Shimansky, Yury P.; Pakai, Eszter; Oliveira, Daniela L.; Gavva, Narender R.; Romanovsky, Andrej A.

    2010-01-01

    Transient receptor potential vanilloid-1 (TRPV1) antagonists are widely viewed as next-generation pain therapeutics. However, these compounds cause hyperthermia, a serious side effect. TRPV1 antagonists differentially block three modes of TRPV1 activation: by heat, protons, and chemical ligands (e.g., capsaicin). We asked what combination of potencies in these three modes of TRPV1 activation corresponds to the lowest potency of a TRPV1 antagonist to cause hyperthermia. We studied hyperthermic responses of rats, mice, and guinea pigs to eight TRPV1 antagonists with different pharmacological profiles and used mathematical modeling to find a relative contribution of the blockade of each activation mode to the development of hyperthermia. We have found that the hyperthermic effect has the highest sensitivity to the extent of TRPV1 blockade in the proton mode (0.43 to 0.65) with no to moderate sensitivity in the capsaicin mode (-0.01 to 0.34) and no sensitivity in the heat mode (0.00 to 0.01). We conclude that hyperthermia-free TRPV1 antagonists do not block TRPV1 activation by protons, even if they are potent blockers of the heat mode, and that decreasing the potency to block the capsaicin mode may further decrease the potency to cause hyperthermia. PMID:20107070

  8. Improvement of nonsuicidal self-injury following treatment with antipsychotics possessing strong D1 antagonistic activity: evidence from a report of three cases.

    PubMed

    Wollweber, Bastian; Keck, Martin E; Schmidt, Ulrike

    2015-08-01

    There is no drug treatment for nonsuicidal self-injury (NSSI), a highly prevalent and burdensome symptom of several psychiatric diseases like posttraumatic stress disorder (PTSD), personality disorders, and major depression (MD). Here, we present a retrospective series of three patients demonstrating a persistent remission in MD-associated NSSI in response to treatment with antipsychotics possessing marked D1 receptor antagonistic activity. To the best of the authors' knowledge, the case series presented is only the second clinical paper suggesting a role for D1 antagonists in NSSI drug therapy. Together with previously published data from rodent models, the findings suggest a role for D1 antagonists in NSSI drug therapy and hence for the D1 receptor in NSSI pathogenesis. This conclusion is limited by the facts that the patients presented here received polypharmacy and that the D1 receptor antagonistic antipsychotics suggested here as effective 'anti-auto-aggressants' do not address D1 receptors only but multiple neurotransmitter receptors/systems.

  9. Substituted pyrrolidin-2-ones: Centrally acting orexin receptor antagonists promoting sleep. Part 2.

    PubMed

    Sifferlen, Thierry; Boller, Amandine; Chardonneau, Audrey; Cottreel, Emmanuelle; Gatfield, John; Treiber, Alexander; Roch, Catherine; Jenck, Francois; Aissaoui, Hamed; Williams, Jodi T; Brotschi, Christine; Heidmann, Bibia; Siegrist, Romain; Boss, Christoph

    2015-05-01

    Starting from advanced pyrrolidin-2-one lead compounds, this novel series of small-molecule orexin receptor antagonists was further optimized by fine-tuning of the C-3 substitution at the γ-lactam ring. We discuss our design to align in vitro potency with metabolic stability and improved physicochemical/pharmacokinetic properties while avoiding P-glycoprotein-mediated efflux. These investigations led to the identification of the orally active 3-hydroxypyrrolidin-2-one 46, a potent and selective orexin-2 receptor antagonist, that achieved good brain exposure and promoted physiological sleep in rats. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The Affinity of D2-Like Dopamine Receptor Antagonists Determines the Time to Maximal Effect on Cocaine Self-Administration

    PubMed Central

    Tabet, Michael R.; Norman, Mantana K.; Fey, Brittney K.; Tsibulsky, Vladimir L.; Millard, Ronald W.

    2011-01-01

    Differences in the time to maximal effect (Tmax) of a series of dopamine receptor antagonists on the self-administration of cocaine are not consistent with their lipophilicity (octanol-water partition coefficients at pH 7.4) and expected rapid entry into the brain after intravenous injection. It was hypothesized that the Tmax reflects the time required for maximal occupancy of receptors, which would occur as equilibrium was approached. If so, the Tmax should be related to the affinity for the relevant receptor population. This hypothesis was tested using a series of nine antagonists having a 2500-fold range of Ki or Kd values for D2-like dopamine receptors. Rats self-administered cocaine at regular intervals and then were injected intravenously with a dose of antagonist, and the self-administration of cocaine was continued for 6 to 10 h. The level of cocaine at the time of every self-administration (satiety threshold) was calculated throughout the session. The satiety threshold was stable before the injection of antagonist and then increased approximately 3-fold over the baseline value at doses of antagonists selected to produce this approximately equivalent maximal magnitude of effect (maximum increase in the equiactive cocaine concentration, satiety threshold; Cmax). Despite the similar Cmax, the mean Tmax varied between 5 and 157 min across this series of antagonists. Furthermore, there was a strong and significant correlation between the in vivo Tmax values for each antagonist and the affinity for D2-like dopamine receptors measured in vitro. It is concluded that the cocaine self-administration paradigm offers a reliable and predictive bioassay for measuring the affinity of a competitive antagonist for D2-like dopamine receptors. PMID:21606176

  11. Neuronal nicotinic receptor antagonist reduces anxiety-like behavior in mice.

    PubMed

    Roni, Monzurul Amin; Rahman, Shafiqur

    2011-10-31

    Brain cholinergic neurotransmission has been implicated in the modulation of anxiety in humans and evidence suggests that drugs targeting neuronal nicotinic acetylcholine receptor (nAChR) could have potential for the treatment of anxiety. The objective of present study was to examine anxiolytic effects of lobeline (0.04 or 0.1 mg/kg), a nAChR antagonist, in C57BL/6J mice using elevated plus-maze (EPM) and marble-burying test. Lobeline (0.04 mg/kg) significantly increased open arm time on EPM and reduced number of marbles buried. Similarly, mecamylamine (0.3 mg/kg) produced anxiolytic effects, while peripherally acting hexamethonium (0.3 mg/kg) failed to produce any response. These results provide evidence that lobeline has anxiolytic potential and nAChR antagonists may represent a new class of anxiolytics in humans. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer

    PubMed Central

    Bonaventura, Jordi; Navarro, Gemma; Casadó-Anguera, Verònica; Azdad, Karima; Rea, William; Moreno, Estefanía; Brugarolas, Marc; Mallol, Josefa; Canela, Enric I.; Lluís, Carme; Cortés, Antoni; Volkow, Nora D.; Schiffmann, Serge N.; Ferré, Sergi; Casadó, Vicent

    2015-01-01

    Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain. PMID:26100888

  13. Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer.

    PubMed

    Bonaventura, Jordi; Navarro, Gemma; Casadó-Anguera, Verònica; Azdad, Karima; Rea, William; Moreno, Estefanía; Brugarolas, Marc; Mallol, Josefa; Canela, Enric I; Lluís, Carme; Cortés, Antoni; Volkow, Nora D; Schiffmann, Serge N; Ferré, Sergi; Casadó, Vicent

    2015-07-07

    Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain.

  14. Pharmacology of the hypothermic response to 5-HT1A receptor activation in humans.

    PubMed

    Lesch, K P; Poten, B; Söhnle, K; Schulte, H M

    1990-01-01

    The selective 5-HT1A receptor ligand ipsapirone (IPS) caused dose-related hypothermia in humans. The response was attenuated by the nonselective 5-HT1/2 receptor antagonist metergoline and was completely antagonized by the nonselective beta-adrenoceptor antagonist pindolol, which interacts stereoselectively with the 5-HT1A receptor. The selective beta 1-adrenergic antagonist betaxolol had no effect. The findings indicate that IPS-induced hypothermia specifically involves activation of (presynaptic) 5-HT1A receptors. Therefore, the hypothermic response to IPS may provide a convenient in vivo paradigma to assess the function of the presynaptic 5-HT receptor in affective disorders and its involvement in the effects of psychotropic drugs.

  15. [Analgesic effects of ionotropic glutamate receptor antagonists MK-801 and NBQX on collagen-induced arthritis rats].

    PubMed

    Zhu, H; Zhu, R; Deng, Z D; Feng, Y C; Shen, H L

    2016-12-18

    The ionotropic glutamate receptorantagonists include two types: MK-801, antagonist of N-methyl-D-asparticacid (NMDA) receptor, and NBQX, antagonist of non-NMDA receptor.The above-mentioned ionotropic antagonists can block the glutamate and its corresponding receptor binding to produce analgesic effect. The objective of this research was to study two antagonists in analgesic effect on rat behavior,as well as to investigate the down-regulation and up-regulation of cyclooxygenase-2 (COX-2) and Janus-activated kinase (Jak3) in collagen-induced arthritis (CIA) rat serum and tissue fluid after the application of these antagonists, that is, the effect on molecular biology. This study used the ionotropic glutamate receptors as the target and established CIA rat model. Vivo studies were used to observe changes in behavior and molecular biology of the CIA rat.Behavioral assessment includedmechanical allodynia and joint swelling in the CIA rat,where themechanical allodynia was measured using the paw-withdrawal threshold (PWT) with VonFrey filaments according to the "Up-Down" method,and the drainage volume was used to assess joint swelling. Then the blood samples taken from the heart of the rat and the tissue homogenate were collected to detect the down-regulation and up-regulation of COX-2 and Jak3 in the serum and tissue fluid after the antagonists wereused. Using MK-801, NBQX alone or using the combination of these two antagonists,these three methods all could alleviate pain(P<0.01).The analgesic effect lasted more than 24 h.Both antagonists reached the peak of analgesia at the end of 4 hours post-injection. NBQX had stronger analgesic effect than MK-801 (P<0.05).Whether alone or combined use of these two antagonists,could not change the CIA rats' swelling of the joint (P>0.05). MK-801 could decrease the expression of COX-2 (P<0.01).At the same time, NBQX did not have this effect (P>0.05). Using MK-801, NBQX alone or combination of these two antagonists could not affect the

  16. Pharmacologic characterization of the oxytocin receptor in human uterine smooth muscle cells

    PubMed Central

    Tahara, Atsuo; Tsukada, Junko; Tomura, Yuichi; Wada, Koh-ichi; Kusayama, Toshiyuki; Ishii, Noe; Yatsu, Takeyuki; Uchida, Wataru; Tanaka, Akihiro

    2000-01-01

    [3H]-oxytocin was used to characterize the oxytocin receptor found in human uterine smooth muscle cells (USMC). Specific binding of [3H]-oxytocin to USMC plasma membranes was dependent upon time, temperature and membrane protein concentration. Scatchard plot analysis of equilibrium binding data revealed the existence of a single class of high-affinity binding sites with an apparent equilibrium dissociation constant (Kd) of 0.76 nM and a maximum receptor density (Bmax) of 153 fmol mg−1 protein. The Hill coefficient (nH) did not differ significantly from unity, suggesting binding to homogenous, non-interacting receptor populations. Competitive inhibition of [3H]-oxytocin binding showed that oxytocin and vasopressin (AVP) receptor agonists and antagonists displaced [3H]-oxytocin in a concentration-dependent manner. The order of potencies for peptide agonists and antagonists was: oxytocin>[Asu1,6]-oxytocin>AVP= atosiban>d(CH2)5Tyr(Me)AVP>[Thr4,Gly7]-oxytocin>dDAVP, and for nonpeptide antagonists was: L-371257>YM087>SR 49059>OPC-21268>SR 121463A>OPC-31260. Oxytocin significantly induced concentration-dependent increase in intracellular Ca2+ concentration ([Ca2+]i) and hyperplasia in USMC. The oxytocin receptor antagonists, atosiban and L-371257, potently and concentration-dependently inhibited oxytocin-induced [Ca2+]i increase and hyperplasia. In contrast, the V1A receptor selective antagonist, SR 49059, and the V2 receptor selective antagonist, SR 121463A, did not potently inhibit oxytocin-induced [Ca2+]i increase and hyperplasia. The potency order of antagonists in inhibiting oxytocin-induced [Ca2+]i increase and hyperplasia was similar to that observed in radioligand binding assays. In conclusion, these data provide evidence that the high-affinity [3H]-oxytocin binding site found in human USMC is a functional oxytocin receptor coupled to [Ca2+]i increase and cell growth. Thus human USMC may prove to be a valuable tool in further investigation of the

  17. Pharmacologic characterization of the oxytocin receptor in human uterine smooth muscle cells.

    PubMed

    Tahara, A; Tsukada, J; Tomura, Y; Wada, K i; Kusayama, T; Ishii, N; Yatsu, T; Uchida, W; Tanaka, A

    2000-01-01

    [(3)H]-oxytocin was used to characterize the oxytocin receptor found in human uterine smooth muscle cells (USMC). Specific binding of [(3)H]-oxytocin to USMC plasma membranes was dependent upon time, temperature and membrane protein concentration. Scatchard plot analysis of equilibrium binding data revealed the existence of a single class of high-affinity binding sites with an apparent equilibrium dissociation constant (K(d)) of 0.76 nM and a maximum receptor density (B(max)) of 153 fmol mg(-1) protein. The Hill coefficient (n(H)) did not differ significantly from unity, suggesting binding to homogenous, non-interacting receptor populations. Competitive inhibition of [(3)H]-oxytocin binding showed that oxytocin and vasopressin (AVP) receptor agonists and antagonists displaced [(3)H]-oxytocin in a concentration-dependent manner. The order of potencies for peptide agonists and antagonists was: oxytocin>[Asu(1,6)]-oxytocin>AVP= atosiban>d(CH(2))(5)Tyr(Me)AVP>[Thr(4),Gly(7)]-oxytocin>dDAVP, and for nonpeptide antagonists was: L-371257>YM087>SR 49059>OPC-21268>SR 121463A>OPC-31260. Oxytocin significantly induced concentration-dependent increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) and hyperplasia in USMC. The oxytocin receptor antagonists, atosiban and L-371257, potently and concentration-dependently inhibited oxytocin-induced [Ca(2+)](i) increase and hyperplasia. In contrast, the V(1A) receptor selective antagonist, SR 49059, and the V(2) receptor selective antagonist, SR 121463A, did not potently inhibit oxytocin-induced [Ca(2+)](i) increase and hyperplasia. The potency order of antagonists in inhibiting oxytocin-induced [Ca(2+)](i) increase and hyperplasia was similar to that observed in radioligand binding assays. In conclusion, these data provide evidence that the high-affinity [(3)H]-oxytocin binding site found in human USMC is a functional oxytocin receptor coupled to [Ca(2+)](i) increase and cell growth. Thus human USMC may prove to be a valuable

  18. The effect of the sigma-1 receptor selective compound LS-1-137 on the DOI-induced head twitch response in mice.

    PubMed

    Malik, Maninder; Rangel-Barajas, Claudia; Mach, Robert H; Luedtke, Robert R

    2016-09-01

    Several receptor mediated pathways have been shown to modulate the murine head twitch response (HTR). However, the role of sigma receptors in the murine (±)-2,5-dimethoxy-4-iodoamphetamine (DOI)-induced HTR has not been previously investigated. We examined the ability of LS-1-137, a novel sigma-1 vs. sigma-2 receptor selective phenylacetamide, to modulate the DOI-induced HTR in DBA/2J mice. We also assessed the in vivo efficacy of reference sigma-1 receptor antagonists and agonists PRE-084 and PPCC. The effect of the sigma-2 receptor selective antagonist RHM-1-86 was also examined. Rotarod analysis was performed to monitor motor coordination after LS-1-137 administration. Radioligand binding techniques were used to determine the affinity of LS-1-137 at 5-HT2A and 5-HT2C receptors. LS-1-137 and the sigma-1 receptor antagonists haloperidol and BD 1047 were able to attenuate a DOI-induced HTR, indicating that LS-1-137 was acting in vivo as a sigma-1 receptor antagonist. LS-1-137 did not compromise rotarod performance within a dose range capable of attenuating the effects of DOI. Radioligand binding studies indicate that LS-1-137 exhibits low affinity binding at both 5-HT2A and 5-HT2C receptors. Based upon the results from these and our previous studies, LS-1-137 is a neuroprotective agent that attenuates the murine DOI-induced HTR independent of activity at 5-HT2 receptor subtypes, D2-like dopamine receptors, sigma-2 receptors and NMDA receptors. LS-1-137 appears to act as a sigma-1 receptor antagonist to inhibit the DOI-induced HTR. Therefore, the DOI-induced HTR can be used to assess the in vivo efficacy of sigma-1 receptor selective compounds. Copyright © 2016. Published by Elsevier Inc.

  19. Activation of the ζ receptor 1 suppresses NMDA responses in rat retinal ganglion cells.

    PubMed

    Zhang, X-J; Liu, L-L; Jiang, S-X; Zhong, Y-M; Yang, X-L

    2011-03-17

    The sigma receptor 1 (σR1) has been shown to modulate the activity of several voltage- and ligand-gated channels. Using patch-clamp techniques in rat retinal slice preparations, we demonstrated that activation of σR1 by SKF10047 (SKF) or PRE-084 suppressed N-methyl-D-aspartate (NMDA) receptor-mediated current responses from both ON and OFF type ganglion cells (GCs), dose-dependently, and the effect could be blocked by the σR1 antagonist BD1047 or the σR antagonist haloperidol. The suppression by SKF of NMDA currents was abolished with pre-incubation of the G protein inhibitor GDP-β-S or the Gi/o activator mastoparan. We further explored the intracellular signaling pathway responsible for the SKF-induced suppression of NMDA responses. Application of either cAMP/the PKA inhibitor Rp-cAMP or cGMP/the PKG inhibitor KT5823 did not change the SKF-induced effect, suggesting the involvement of neither cAMP/PKA nor cGMP/PKG pathway. In contrast, suppression of NMDA responses by SKF was abolished by internal infusion of the phosphatidylinostiol-specific phospholipase C (PLC) inhibitor U73122, but not by the phosphatidylcholine-PLC inhibitor D609. SKF-induced suppression of NMDA responses was dependent on intracellular Ca2+ concentration ([Ca2+]i), as evidenced by the fact that the effect was abolished when [Ca2+]i was buffered with 10 mM BAPTA. The SKF effect was blocked by xestospongin-C/heparin, IP3 receptor antagonists, but unchanged by ryanodine/caffeine, ryanodine receptor modulators. Furthermore, application of protein kinase C inhibitors Bis IV and Gö6976 eliminated the SKF effect. These results suggest that the suppression of NMDA responses of rat retinal GCs caused by the activation of σR1 may be mediated by a distinct [Ca2+]i-dependent PLC-PKC pathway. This effect of SKF could help ameliorate malfunction of GCs caused by excessive stimulation of NMDA receptors under pathological conditions. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights

  20. New H1/H3 antagonists for treating allergic rhinitis: WO2010094643.

    PubMed

    Norman, Peter

    2011-03-01

    This application claims dual receptor specificity antihistamines, active as H(1) and H(3) antagonists, which additionally have a long duration of action that renders them suitable for once daily administration via inhalation for the treatment of allergic rhinitis. The compounds lack CNS penetration and have a high affinity for both histamine receptors.

  1. Effects of endothelin receptor antagonists on renal hemodynamics in angiotensin II-infused rats on high NaCl intake.

    PubMed

    Saeed, Aso; Dibona, Gerald F; Guron, Gregor

    2012-01-01

    The aim was to investigate effects of selective endothelin (ET) receptor antagonists on renal hemodynamics and dynamic renal blood flow autoregulation (RBFA) in angiotensin II (Ang II)-infused rats on a high NaCl intake. Sprague-Dawley rats received Ang II (250 ng/kg/min, s.c.) and an 8% NaCl diet for 14 days after which renal clearance experiments were performed. After baseline measurements animals were administered either: (a) saline vehicle; (b) ETA receptor antagonist BQ-123 (30 nmol/kg/min); (c) ETB receptor antagonist BQ-788 (30 nmol/kg/min); or (d) BQ-123 + BQ-788, for six consecutive 20-minute clearance periods. BQ-123 reduced arterial pressure (AP) and selectively increased outer medullary perfusion versus vehicle (p<0.05). These effects were attenuated or abolished by combined BQ-123 and BQ-788. BQ-788 reduced renal blood flow and increased renovascular resistance (p<0.05). Ang II-infused rats on high NaCl intake showed abnormalities in dynamic RBFA characterized by an impaired myogenic response that were not significantly affected by ET receptor antagonists. In hypertensive Ang II-infused rats on a high-NaCl intake selective ETA antagonism with BQ-123 reduced AP and specifically increased OM perfusion and these effects were dependent on intact ETB receptor stimulation. Furthermore, ET receptor antagonists did not attenuate abnormalities in dynamic RBFA. Copyright © 2012 S. Karger AG, Basel.

  2. Toxicological Differences Between NMDA Receptor Antagonists and Cholinesterase Inhibitors.

    PubMed

    Shi, Xiaodong; Lin, Xiaotian; Hu, Rui; Sun, Nan; Hao, Jingru; Gao, Can

    2016-08-01

    Cholinesterase inhibitors (ChEIs), represented by donepezil, rivastigmine, and galantamine, used to be the only approved class of drugs for the treatment of Alzheimer's disease. After the approval of memantine by the Food and Drug Administration (FDA), N-methyl-d-aspartic acid (NMDA) receptor antagonists have been recognized by authorities and broadly used in the treatment of Alzheimer's disease. Along with complementary mechanisms of action, NMDA antagonists and ChEIs differ not only in therapeutic effects but also in adverse reactions, which is an important consideration in clinical drug use. And the number of patients using NMDA antagonists and ChEIs concomitantly has increased, making the matter more complicated. Here we used the FDA Adverse Event Reporting System for statistical analysis , in order to compare the adverse events of memantine and ChEIs. In general, the clinical evidence confirmed the safety advantages of memantine over ChEIs, reiterating the precautions of clinical drug use and the future direction of antidementia drug development. © The Author(s) 2016.

  3. Synthesis and SAR studies of novel 2-(6-aminomethylaryl-2-aryl-4-oxo-quinazolin-3(4H)-yl)acetamide vasopressin V1b receptor antagonists.

    PubMed

    Napier, Susan E; Letourneau, Jeffrey J; Ansari, Nasrin; Auld, Douglas S; Baker, James; Best, Stuart; Campbell-Wan, Leigh; Chan, Ray; Craighead, Mark; Desai, Hema; Ho, Koc-Kan; MacSweeney, Cliona; Milne, Rachel; Richard Morphy, J; Neagu, Irina; Ohlmeyer, Michael H J; Pick, Jack; Presland, Jeremy; Riviello, Chris; Zanetakos, Heather A; Zhao, Jiuqiao; Webb, Maria L

    2011-06-15

    Synthesis and structure-activity relationships (SAR) of a novel series of vasopressin V(1b) antagonists are described. 2-(6-Aminomethylaryl-2-aryl-4-oxo-quinazolin-3(4H)-yl)acetamide have been identified with low nanomolar affinity for the V(1b) receptor and good selectivity with respect to related receptors V(1a), V(2) and OT. Optimised compound 16 shows a good pharmacokinetic profile and activity in a mechanistic model of HPA dysfunction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Natural variants of cytotoxic epitopes are T-cell receptor antagonists for antiviral cytotoxic T cells

    NASA Astrophysics Data System (ADS)

    Bertoletti, Antonio; Sette, Alessandro; Chisari, Francis V.; Penna, Amalia; Levrero, Massimo; Carli, Marco De; Fiaccadori, Franco; Ferrari, Carlo

    1994-06-01

    IT has been suggested that mutations within immunodominant cytotoxic T-lymphocyte (CTL) epitopes may be exploited by viruses to evade protective immune responses critical for clearance1-4. Viral escape could originate from passive mechanisms, such as mutations within crucial CTL epitopes, either affecting major histocompatibility complex binding or T-cell antigen receptor (TCR) recognition. Additionally, it has recently been shown that substitutions of TCR contact sites can yield analogue peptides that can still interact with the T-cell receptor but be unable to deliver a full stimulatory signal, thus inducing anergy5 or acting as an antagonist for the TCR6-8. We report here that hepatitis B virus isolates derived from two chronically infected patients display variant epitopes that act as natural TCR antagonists with the capacity to inhibit the CTL response to the wild-type epitope. During natural infection, TCR antagonist mutations of CTL epitopes could contribute to the development of viral persistence, especially if the antiviral CTL response is monospecific or the epitope is strongly immunodominant.

  5. Interleukin 1 receptor antagonist is a member of the interleukin 1 gene family: evolution of a cytokine control mechanism.

    PubMed Central

    Eisenberg, S P; Brewer, M T; Verderber, E; Heimdal, P; Brandhuber, B J; Thompson, R C

    1991-01-01

    Interleukin 1 receptor antagonist (IL-1ra) is a protein that binds to the IL-1 receptor and blocks the binding of both IL-1 alpha and -beta without inducing a signal of its own. Human IL-1ra has some sequence identity to human IL-1 beta, but the evolutionary relationship between these proteins has been unclear. We show that the genes for human, mouse, and rat IL-1ra are similar to the genes for IL-1 alpha and IL-1 beta in intron-exon organization, indicating that gene duplication events were important in the creation of this gene family. Furthermore, an analysis of sequence comparisons and mutation rates for IL-1 alpha, IL-1 beta, and IL-1ra suggests that the duplication giving rise to the IL-1ra gene was an early event in the evolution of the gene family. Comparisons between the mature sequences for IL-1ra, IL-1 alpha, and IL-1 beta suggest that IL-1ra has a beta-stranded structure like to IL-1 alpha and IL-1 beta, consistent with the three proteins being related. The N-terminal sequences of IL-1ra appear to be derived from a region of the genome different than those of IL-1 alpha and IL-1 beta, thus explaining their different modes of biosynthesis and suggesting an explanation for their different biological activities. Images PMID:1828896

  6. Transient receptor potential ankyrin 1 antagonists block the noxious effects of toxic industrial isocyanates and tear gases.

    PubMed

    Bessac, Bret F; Sivula, Michael; von Hehn, Christian A; Caceres, Ana I; Escalera, Jasmine; Jordt, Sven-Eric

    2009-04-01

    The release of methyl isocyanate in Bhopal, India, caused the worst industrial accident in history. Exposures to industrial isocyanates induce lacrimation, pain, airway irritation, and edema. Similar responses are elicited by chemicals used as tear gases. Despite frequent exposures, the biological targets of isocyanates and tear gases in vivo have not been identified, precluding the development of effective countermeasures. We use Ca(2+) imaging and electrophysiology to show that the noxious effects of isocyanates and those of all major tear gas agents are caused by activation of Ca(2+) influx and membrane currents in mustard oil-sensitive sensory neurons. These responses are mediated by transient receptor potential ankyrin 1 (TRPA1), an ion channel serving as a detector for reactive chemicals. In mice, genetic ablation or pharmacological inhibition of TRPA1 dramatically reduces isocyanate- and tear gas-induced nocifensive behavior after both ocular and cutaneous exposures. We conclude that isocyanates and tear gas agents target the same neuronal receptor, TRPA1. Treatment with TRPA1 antagonists may prevent and alleviate chemical irritation of the eyes, skin, and airways and reduce the adverse health effects of exposures to a wide range of toxic noxious chemicals.

  7. Differential Modulation of Ethanol-Induced Sedation and Hypnosis by Metabotropic Glutamate Receptor Antagonists in C57BL/6J Mice

    PubMed Central

    Sharko, Amanda C.; Hodge, Clyde W.

    2008-01-01

    Background Emerging evidence implicates metabotropic glutamate receptor (mGluR) function in the neurobiological effects of ethanol. The recent development of subtype specific mGluR antagonists has made it possible to examine the roles of specific mGluRs in biochemical and behavioral responses to ethanol. The purpose of the present study was to determine if mGluRs modulate the acute sedative-hypnotic properties of ethanol in mice. Methods C57BL / 6J mice were tested for locomotor activity (sedation) and duration of loss of the righting reflex (hypnosis) following acute systemic administration of ethanol alone or in combination with the mGluR5-selective antagonist, 2-methyl-6-(phenylethynyl)pyridine (MPEP), the mGluR1-selective antagonist, 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt), or the mGluR2 / 3-selective antagonist (2S)-2-Amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495)). Results MPEP (10 and 30 mg / kg) significantly enhanced both the sedative and hypnotic effects of ethanol, while LY341495 (10 and 30 mg / kg) significantly reduced the sedative-hypnotic effects of ethanol. CPCCOEt had no effect at any concentration tested. Further loss of righting reflex experiments revealed that LY341495 (30 mg / kg) significantly reduced hypnosis induced by the gamma-aminobutyric acid type A (GABAA) positive modulators, pentobarbital (50 mg / kg) and midazolam (60 mg / kg), and the N-methyl-D-aspartate (NMDA) receptor antagonist, ketamine (150 mg / kg), while MPEP (30 mg / kg) only significantly enhanced the hypnotic properties of ketamine (150 mg / kg). Conclusions These findings suggest that specific subtypes of the metabotropic glutamate receptor differentially modulate the sedative-hypnotic properties of ethanol through separate mechanisms of action, potentially involving GABAA and NMDA receptors. PMID:18070246

  8. Opioid Peptidomimetics: Leads for the Design of Bioavailable Mixed Efficacy Mu Opioid Receptor (MOR) Agonist/Delta Opioid Receptor (DOR) Antagonist Ligands

    PubMed Central

    Mosberg, Henry I.; Yeomans, Larisa; Harland, Aubrie A.; Bender, Aaron M.; Sobczyk-Kojiro, Katarzyna; Anand, Jessica P.; Clark, Mary J.; Jutkiewicz, Emily M.; Traynor, John R.

    2013-01-01

    We have previously described opioid peptidomimetic, 1, employing a tetrahydroquinoline scaffold and modeled on a series of cyclic tetrapeptide opioid agonists. We have recently described modifications to these peptides that confer a mu opioid receptor (MOR) agonist, delta opioid receptor (DOR) antagonist profile, which has been shown to reduce the development of tolerance to the analgesic actions of MOR agonists. Several such bifunctional ligands have been reported, but none has been demonstrated to cross the blood brain barrier. Here we describe the transfer of structural features that evoked MOR agonist/DOR antagonist behavior in the cyclic peptides to the tetrahydroquinoline scaffold and show that the resulting peptidomimetics maintain the desired pharmacological profile. Further, the 4R diastereomer of 1 was fully efficacious and approximately equipotent to morphine in the mouse warm water tail withdrawal assay following intraperitoneal administration and thus a promising lead for the development of opioid analgesics with reduced tolerance. PMID:23419026

  9. Effects of tianeptine on onset time of pentylenetetrazole-induced seizures in mice: possible role of adenosine A1 receptors.

    PubMed

    Uzbay, Tayfun I; Kayir, Hakan; Ceyhan, Mert

    2007-02-01

    Depression is a common psychiatric problem in epileptic patients. Thus, it is important that an antidepressant agent has anticonvulsant activity. This study was organized to investigate the effects of tianeptine, an atypical antidepressant, on pentylenetetrazole (PTZ)-induced seizure in mice. A possible contribution of adenosine receptors was also evaluated. Adult male Swiss-Webster mice (25-35 g) were subjects. PTZ (80 mg/kg, i.p.) was injected to mice 30 min after tianeptine (2.5-80 mg/kg, i.p.) or saline administration. The onset times of 'first myoclonic jerk' (FMJ) and 'generalized clonic seizures' (GCS) were recorded. Duration of 600 s was taken as a cutoff time in calculation of the onset time of the seizures. To evaluate the contribution of adenosine receptors in the effect of tianeptine, a nonspecific adenosine receptor antagonist caffeine, a specific A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), a specific A2A receptor antagonist 8-(3-chlorostyryl) caffeine (CSC) or their vehicles were administered to the mice 15 min before tianeptine (80 mg/kg) or saline treatments. Tianeptine (40 and 80 mg/kg) pretreatment significantly delayed the onset time of FMJ and GCS. Caffeine (10-60 mg/kg, i.p.) dose-dependently blocked the retarding effect of tianeptine (80 mg/kg) on the onset times of FMJ and GCS. DPCPX (20 mg/kg) but not CSC (1-8 mg/kg) blocked the effect of tianeptine (80 mg/kg) on FMJ. Our results suggest that tianeptine delayed the onset time of PTZ-induced seizures via adenosine A1 receptors in mice. Thus, this drug may be a useful choice for epileptic patients with depression.

  10. Hyperglycemia of Diabetic Rats Decreased by a Glucagon Receptor Antagonist

    NASA Astrophysics Data System (ADS)

    Johnson, David G.; Ulichny Goebel, Camy; Hruby, Victor J.; Bregman, Marvin D.; Trivedi, Dev

    1982-02-01

    The glucagon analog [l-Nα-trinitrophenylhistidine, 12-homoarginine]-glucagon (THG) was examined for its ability to lower blood glucose concentrations in rats made diabetic with streptozotocin. In vitro, THG is a potent antagonist of glucagon activation of the hepatic adenylate cyclase assay system. Intravenous bolus injections of THG caused rapid decreases (20 to 35 percent) of short duration in blood glucose. Continuous infusion of low concentrations of the inhibitor led to larger sustained decreases in blood glucose (30 to 65 percent). These studies demonstrate that a glucagon receptor antagonist can substantially reduce blood glucose levels in diabetic animals without addition of exogenous insulin.

  11. Effects of NMDA receptor antagonists on probability discounting depend on the order of probability presentation.

    PubMed

    Yates, Justin R; Breitenstein, Kerry A; Gunkel, Benjamin T; Hughes, Mallory N; Johnson, Anthony B; Rogers, Katherine K; Shape, Sara M

    Risky decision making can be measured using a probability-discounting procedure, in which animals choose between a small, certain reinforcer and a large, uncertain reinforcer. Recent evidence has identified glutamate as a mediator of risky decision making, as blocking the N-methyl-d-aspartate (NMDA) receptor with MK-801 increases preference for a large, uncertain reinforcer. Because the order in which probabilities associated with the large reinforcer can modulate the effects of drugs on choice, the current study determined if NMDA receptor ligands alter probability discounting using ascending and descending schedules. Sixteen rats were trained in a probability-discounting procedure in which the odds against obtaining the large reinforcer increased (n=8) or decreased (n=8) across blocks of trials. Following behavioral training, rats received treatments of the NMDA receptor ligands MK-801 (uncompetitive antagonist; 0, 0.003, 0.01, or 0.03mg/kg), ketamine (uncompetitive antagonist; 0, 1.0, 5.0, or 10.0mg/kg), and ifenprodil (NR2B-selective non-competitive antagonist; 0, 1.0, 3.0, or 10.0mg/kg). Results showed discounting was steeper (indicating increased risk aversion) for rats on an ascending schedule relative to rats on the descending schedule. Furthermore, the effects of MK-801, ketamine, and ifenprodil on discounting were dependent on the schedule used. Specifically, the highest dose of each drug decreased risk taking in rats in the descending schedule, but only MK-801 (0.03mg/kg) increased risk taking in rats on an ascending schedule. These results show that probability presentation order modulates the effects of NMDA receptor ligands on risky decision making. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Expression of IGF-1, IL-27 and IL-35 Receptors in Adjuvant Induced Rheumatoid Arthritis Model.

    PubMed

    Abdi, Elham; Najafipour, Hamid; Joukar, Siyavash; Dabiri, Shahriar; Esmaeli-Mahani, Saeed; Abbasloo, Elham; Houshmandi, Nasrin; Afsharipour, Abbas

    2018-03-01

    IGF-1 and certain other cytokines have been shown to exert inflammatory/anti-inflammatory roles in chronic joint diseases. To assess the effect of IGF-1, IL-27 and IL-35, their interaction and their receptor expression in a rheumatoid arthritis model. Freund's adjuvant-induced chronic joint inflammation was operated on 160 male rats. Animals were divided into histopathology and receptor expression groups, each composed of 10 subgroups including; control, vehicle, IGF-1, IL-27, IL-35, their antagonists, IGF-1+IL-27 antagonist and IGF-1+IL-35 antagonist. After two weeks, vehicle or agonist/antagonists were injected into the joint space every other day until day 28 where joint histopathology was performed. The expression of IGF-1, IL-27 and IL-35 receptors were assessed by western blot analysis. IGF-1 did not show pro- or anti- inflammatory functions; endogenous IL-27 and IL-35, on the other hand, exerted inflammatory effects. IL-27 and IL-35 antagonists exerted the highest anti-inflammatory effects. The total inflammation scores were 0.55 ± 0.06, 4.63 ± 0.40, 3.63 ± 0.60, 2.50 ± 0.38 and 1.63 ± 0.40 regarding control, vehicle, IGF-1 Ant., IL-27 Ant. and IL-35 Ant., respectively. IGF-1 receptor expression was reduced in chronic joint inflammation and all three antagonists augmented the IGF-1 receptor expression. IL-27 and IL-35 receptors were up-regulated by chronic joint inflammation. Overall, the results demonstrated the pro-inflammatory role of endogenous IL-27 and IL-35 along with the over expression of their receptors in chronic joint inflammation. IL-27 and IL-35 antagonists exerted the most anti-inflammatory effects and increased IGF-1 receptor expression. These two antagonists may be potential agents for new treatment strategies in chronic joint inflammatory diseases.

  13. Topical interleukin 1 receptor antagonist for treatment of dry eye disease: a randomized clinical trial.

    PubMed

    Amparo, Francisco; Dastjerdi, Mohammad H; Okanobo, Andre; Ferrari, Giulio; Smaga, Leila; Hamrah, Pedram; Jurkunas, Ula; Schaumberg, Debra A; Dana, Reza

    2013-06-01

    The immunopathogenic mechanisms of dry eye disease (DED), one of the most common ophthalmic conditions, is incompletely understood. Data from this prospective, double-masked, randomized trial demonstrate that targeting interleukin 1 (IL-1) by topical application of an IL-1 antagonist is efficacious in significantly reducing DED-related patient symptoms and corneal epitheliopathy. To evaluate the safety and efficacy of treatment with the topical IL-1 receptor antagonist anakinra (Kineret; Amgen Inc) in patients having DED associated with meibomian gland dysfunction. Prospective phase 1/2, randomized, double-masked, vehicle-controlled clinical trial. Seventy-five patients with refractory DED. Participants were randomized to receive treatment with topical anakinra, 2.5% (n = 30), anakinra, 5% (n = 15), or vehicle (1% carboxymethylcellulose) (n = 30) 3 times daily for 12 weeks. Primary outcomes were corneal fluorescein staining (CFS), complete bilateral CFS clearance, dry eye-related symptoms as measured by the Ocular Surface Disease Index, tear film breakup time, and meibomian gland secretion quality. Topical anakinra was well tolerated compared with vehicle, with no reports of serious adverse reactions attributable to the therapy. After 12 weeks of therapy, participants treated with anakinra, 2.5%, achieved a 46% reduction in their mean CFS score (P = .12 compared with vehicle and P < .001 compared with baseline); participants treated with anakinra, 5%, achieved a 17% reduction in their mean CFS score (P = .88 compared with vehicle and P = .33 compared with baseline); and patients treated with vehicle achieved a 19% reduction in their mean CFS score (P = .11). Complete bilateral CFS clearance was noted in 8 of 28 patients (29%) treated with anakinra, 2.5%, vs in 2 of 29 patients (7%) treated with vehicle (P = .03). By week 12, treatment with anakinra, 2.5%, and treatment with anakinra, 5%, led to significant reductions in symptoms of 30% and 35%, respectively (P

  14. Small intestinal eosinophils regulate Th17 cells by producing IL-1 receptor antagonist.

    PubMed

    Sugawara, Reiko; Lee, Eun-Jung; Jang, Min Seong; Jeun, Eun-Ji; Hong, Chun-Pyo; Kim, Jung-Hwan; Park, Areum; Yun, Chang Ho; Hong, Sung-Wook; Kim, You-Me; Seoh, Ju-Young; Jung, YunJae; Surh, Charles D; Miyasaka, Masayuki; Yang, Bo-Gie; Jang, Myoung Ho

    2016-04-04

    Eosinophils play proinflammatory roles in helminth infections and allergic diseases. Under steady-state conditions, eosinophils are abundantly found in the small intestinal lamina propria, but their physiological function is largely unexplored. In this study, we found that small intestinal eosinophils down-regulate Th17 cells. Th17 cells in the small intestine were markedly increased in the ΔdblGATA-1 mice lacking eosinophils, and an inverse correlation was observed between the number of eosinophils and that of Th17 cells in the small intestine of wild-type mice. In addition, small intestinal eosinophils suppressed the in vitro differentiation of Th17 cells, as well as IL-17 production by small intestinal CD4(+)T cells. Unlike other small intestinal immune cells or circulating eosinophils, we found that small intestinal eosinophils have a unique ability to constitutively secrete high levels of IL-1 receptor antagonist (IL-1Ra), a natural inhibitor of IL-1β. Moreover, small intestinal eosinophils isolated from IL-1Ra-deficient mice failed to suppress Th17 cells. Collectively, our results demonstrate that small intestinal eosinophils play a pivotal role in the maintenance of intestinal homeostasis by regulating Th17 cells via production of IL-1Ra. © 2016 Sugawara et al.

  15. Small intestinal eosinophils regulate Th17 cells by producing IL-1 receptor antagonist

    PubMed Central

    Sugawara, Reiko; Lee, Eun-Jung; Jang, Min Seong; Jeun, Eun-Ji; Hong, Chun-Pyo; Kim, Jung-Hwan; Park, Areum; Yun, Chang Ho; Hong, Sung-Wook; Kim, You-Me; Seoh, Ju-Young; Jung, YunJae; Surh, Charles D.; Miyasaka, Masayuki

    2016-01-01

    Eosinophils play proinflammatory roles in helminth infections and allergic diseases. Under steady-state conditions, eosinophils are abundantly found in the small intestinal lamina propria, but their physiological function is largely unexplored. In this study, we found that small intestinal eosinophils down-regulate Th17 cells. Th17 cells in the small intestine were markedly increased in the ΔdblGATA-1 mice lacking eosinophils, and an inverse correlation was observed between the number of eosinophils and that of Th17 cells in the small intestine of wild-type mice. In addition, small intestinal eosinophils suppressed the in vitro differentiation of Th17 cells, as well as IL-17 production by small intestinal CD4+ T cells. Unlike other small intestinal immune cells or circulating eosinophils, we found that small intestinal eosinophils have a unique ability to constitutively secrete high levels of IL-1 receptor antagonist (IL-1Ra), a natural inhibitor of IL-1β. Moreover, small intestinal eosinophils isolated from IL-1Ra−deficient mice failed to suppress Th17 cells. Collectively, our results demonstrate that small intestinal eosinophils play a pivotal role in the maintenance of intestinal homeostasis by regulating Th17 cells via production of IL-1Ra. PMID:26951334

  16. GW627368X ((N-{2-[4-(4,9-diethoxy-1-oxo-1,3-dihydro-2H-benzo[f]isoindol-2-yl)phenyl]acetyl} benzene sulphonamide): a novel, potent and selective prostanoid EP4 receptor antagonist

    PubMed Central

    Wilson, Richard J; Giblin, Gerard M P; Roomans, Susan; Rhodes, Sharron A; Cartwright, Kerri-Ann; Shield, Vanessa J; Brown, Jason; Wise, Alan; Chowdhury, Jannatara; Pritchard, Sara; Coote, Jim; Noel, Lloyd S; Kenakin, Terry; Burns-Kurtis, Cynthia L; Morrison, Valerie; Gray, David W; Giles, Heather

    2006-01-01

    N-{2-[4-(4,9-diethoxy-1-oxo-1,3-dihydro-2H-benzo[f]isoindol-2-yl)phenyl]acetyl}benzene sulphonamide (GW627368X) is a novel, potent and selective competitive antagonist of prostanoid EP4 receptors with additional human TP receptor affinity. At recombinant human prostanoid EP4 receptors expressed in HEK293 cells, GW627368X produced parallel rightward shifts of PGE2 concentration–effect (E/[A]) curves resulting in an affinity (pKb) estimate of 7.9±0.4 and a Schild slpoe not significantly different from unity. The affinity was independent of the agonist used. In rings of phenylephrine precontracted piglet saphenous vein, GW627368X (30–300 nM) produced parallel rightward displacement of PGE2 E/[A] curves (pKb=9.2±0.2; slope=1). GW627368X appears to bind to human prostanoid TP receptors but not the TP receptors of other species. In human washed platelets, GW627368X (10 μM) produced 100% inhibition of U-46619 (EC100)-induced aggregation (approximate pA2 ∼7.0). However, in rings of rabbit and piglet saphenous vein and of guinea-pig aorta GW627368X (10 μM) did not displace U-46619 E/[A] curves indicating an affinity of <5.0 for rabbit and guinea-pig prostanoid TP receptors. In functional assays GW627368X is devoid of both agonism and antagonist affinity for prostanoid CRTH2, EP2, EP3, IP and FP receptors. At prostanoid EP1 receptors, GW627368X was an antagonist with a pA2 of 6.0, and at prostanoid IP receptors the compound increased the maximum effect of iloprost by 55%. At rabbit prostanoid EP2 receptors the pA2 of GW627368X was <5.0. In competition radioligand bioassays, GW627368X had affinity for human prostanoid EP4 and TP receptors (pKi=7.0±0.2 (n=10) and 6.8 (n=2), respectively). Affinity for all other human prostanoid receptors was <5.3. GW627368X will be a valuable tool to explore the role of the prostanoid EP4 receptor in many physiological and pathological settings. PMID:16604093

  17. Substituted 7-amino-5-thio-thiazolo[4,5-d]pyrimidines as potent and selective antagonists of the fractalkine receptor (CX3CR1).

    PubMed

    Karlström, Sofia; Nordvall, Gunnar; Sohn, Daniel; Hettman, Andreas; Turek, Dominika; Åhlin, Kristofer; Kers, Annika; Claesson, Martina; Slivo, Can; Lo-Alfredsson, Yvonne; Petersson, Carl; Bessidskaia, Galina; Svensson, Per H; Rein, Tobias; Jerning, Eva; Malmberg, Åsa; Ahlgen, Charlotte; Ray, Colin; Vares, Lauri; Ivanov, Vladimir; Johansson, Rolf

    2013-04-25

    We have developed two parallel series, A and B, of CX3CR1 antagonists for the treatment of multiple sclerosis. By modifying the substituents on the 7-amino-5-thio-thiazolo[4,5-d]pyrimidine core structure, we were able to achieve compounds with high selectivity for CX3CR1 over the closely related CXCR2 receptor. The structure-activity relationships showed that a leucinol moiety attached to the core-structure in the 7-position together with α-methyl branched benzyl derivatives in the 5-position displayed promising affinity, and selectivity as well as physicochemical properties, as exemplified by compounds 18a and 24h. We show the preparation of the first potent and selective orally available CX3CR1 antagonists.

  18. Synthesis of water-soluble polyamine derivatives effective as N-methyl-D-aspartate receptor antagonists.

    PubMed

    Masuko, Takashi; Yoshida, Shuhei; Metori, Koichi; Kizawa, Yasuo; Kusama, Tadashi; Miyake, Muneharu

    2010-06-01

    The novel water-soluble N-methyl-D-aspartate (NMDA) receptor antagonists, N-{4-[4-(4-Guanidinobutylamino)butylamino]butyl}-p-toluenesulfonamide trihydrochloride (1a, TsHSPMG), N-{4-[4-(4-Guanidinobutylamino)butylamino]butyl}butane-1-sulfonamide trihydrochloride (1b, BsHSPMG), N-{3-[4-(3-Guanidinopropylamino)butylamino]propyl}-p-toluenesulfonamide trihydrochroride (2a, TsSPMG) and N-{3-[4-(3-Guanidinopropylamino)butylamino]propyl}butane-1-sulfonamide trihydrochroride (2b, BsSPMG), were synthesized, and the effects of these polyamine derivatives on NMDA receptors were studied using voltage-clamp recordings of recombinant NMDA receptors expressed in Xenopus oocytes. Although spermine potentiates 153% and 310% of NMDA (NR1A/NR2B) receptors in the presence of saturated and unsaturated glycine, respectively, all the novel polyamine derivatives, TsHSPMG (1a), BsHSPMG (1b), TsSPMG (2a) and BsSPMG (2b), significantly inhibited NR1A/NR2B receptors in both conditions. The degree of NMDA receptor inhibition by TsHSPMG (1a) and BsHSPMG (1b) was stronger than that by TsSPMG (2a) and BsSPMG (2b).

  19. Retinal plasma extravasation in streptozotocin-diabetic rats mediated by kinin B1 and B2 receptors

    PubMed Central

    Abdouh, M; Talbot, S; Couture, R; Hasséssian, H M

    2008-01-01

    Background and purpose: We investigated whether or not kinin receptors play a role in diabetic blood–retinal barrier breakdown, which is a leading cause of vision loss. Experimental approach: Blood–retinal barrier breakdown was quantified using Evans blue, and expression of kinin B1 receptor mRNA was measured using quantitative reverse transcrition-PCR. Diabetic rats (streptozotocin (STZ), 65 mg kg−1) received a single intraocular injection of bradykinin (BK) or des-Arg9-BK, alone, or in combination with antagonists for B1 (des-Arg10-Hoe140, R-715) and/or B2 (Hoe140) receptors, given intraocularly or intravenously (i.v.). Key results: In control rats, BK (0.1–10 nmol) dose-dependently increased plasma extravasation, which was inhibited by Hoe140 (0.2 nmol), whereas des-Arg9-BK (0.1 and 1 nmol) was without effect. B1 receptor mRNA was markedly increased in retinas of diabetic rats, and this was prevented by N-acetyl-L-cysteine (1 g kg−1 day−1 for 7 days). Plasma extravasation in retinas of STZ-diabetic rats was higher than in controls and enhanced by des-Arg9-BK. Response to des-Arg9-BK was inhibited by intraocular or i.v. injection of B1 receptor antagonists. Diabetes-induced plasma extravasation was inhibited only by a combination of des-Arg10-Hoe140 and Hoe 140 (100 nmol kg−1, i.v. 15 min earlier) or by R-715 (1 μmol kg−1, i.v.) injected daily for 7 days. Conclusions and implications: Kinin B1 receptors are upregulated in retinas of STZ-diabetic rats through a mechanism involving oxidative stress. Both kinin B1 and B2 receptors contribute to increased plasma extravasation in diabetic retinopathy. Chronic inhibition of both kinin receptors, possibly with antioxidant adjuvants, may be a novel therapeutic strategy for diabetic retinopathy. PMID:18311190

  20. Immunopharmacological role of the leukotriene receptor antagonists and inhibitors of leukotrienes generating enzymes in multiple sclerosis.

    PubMed

    Mirshafiey, Abbas; Jadidi-Niaragh, Farhad

    2010-06-01

    Multiple sclerosis (MS) is a chronic inflammatory disease that involves central nervous system, and is generally associated with demyelination and axonal lesion. The effective factors for initiation of the inflammatory responses have not been known precisely so far. Leukotrienes (LTs) are inflammatory mediators with increased levels in the cerebrospinal fluid of MS patients and in experimental models of multiple sclerosis. Inhibition of LT receptors with specific antagonists can decrease inflammatory responses. In this review article we try to clarify the role of LT receptor antagonists and also inhibitors of enzymes which are involved in LTs generating pathway for treating multiple sclerosis as new targets for MS therapy. Moreover, we suggest that blockage of LT receptors by potent specific antagonists and/or agonists can be as a novel useful method in treatment of MS.

  1. VIPhyb, an antagonist of vasoactive intestinal peptide receptor, enhances cellular antiviral immunity in murine cytomegalovirus infected mice.

    PubMed

    Li, Jian-Ming; Darlak, Kasia A; Southerland, Lauren; Hossain, Mohammad S; Jaye, David L; Josephson, Cassandra D; Rosenthal, Hilary; Waller, Edmund K

    2013-01-01

    Vasoactive intestinal peptide (VIP) is a neuropeptide hormone that suppresses Th1-mediated cellular immunity. We previously reported that VIP-knockout (VIP-KO) mice have enhanced cellular immune responses and increased survival following murine cytomegalovirus (mCMV) infection in C57BL/6 mice. In this study, we tested whether treatment with a VIP receptor antagonistic peptide protects C57BL/6 and BALB/c mice from mCMV-infection. One week of daily subcutaneous injections of VIPhyb was non-toxic and did not alter frequencies of immune cell subsets in non-infected mice. VIPhyb administration to mCMV-infected C57BL/6 and BALB/c mice markedly enhanced survival, viral clearance, and reduced liver and lung pathology compared with saline-treated controls. The numbers of effector/memory CD8+ T-cells and mature NK cells were increased in VIPhyb-treated mice compared with PBS-treated groups. Pharmacological blockade of VIP-receptor binding or genetic blockade of VIP-signaling prevented the up-regulation of PD-L1 and PD-1 expression on DC and activated CD8+ T-cells, respectively, in mCMV-infected mice, and enhanced CD80, CD86, and MHC-II expression on conventional and plasmacytoid DC. VIPhyb-treatment increased type-I IFN synthesis, numbers of IFN-γ- and TNF-α-expressing NK cells and T-cells, and the numbers of mCMV-M45 epitope-peptide-MHC-I tetramer CD8+ T-cells following mCMV infection. VIP-treatment lowered the percentage of Treg cells in spleens compared with PBS-treated WT mice following mCMV infection, while significantly decreasing levels of serum VEGF induced by mCMV-infection. The mice in all treated groups exhibited similar levels of anti-mCMV antibody titers. Short-term administration of a VIP-receptor antagonist represents a novel approach to enhance innate and adaptive cellular immunity in a murine model of CMV infection.

  2. Boronic acid-containing CXCR1/2 antagonists: optimization of metabolic stability, in vivo evaluation, and a proposed receptor binding model

    PubMed Central

    Maeda, Dean Y.; Peck, Angela M.; Schuler, Aaron D.; Quinn, Mark T.; Kirpotina, Liliya N.; Wicomb, Winston N.; Auten, Richard L.; Gundla, Rambabu; Zebala, John A.

    2015-01-01

    Blockade of undesired neutrophil migration to sites of inflammation remains an area of substantial pharmaceutical interest. To effect this blockade, a validated therapeutic target is antagonism of the chemokine receptor CXCR2. Herein we report the discovery of 6-(2-boronic acid-5-trifluoromethoxy-benzylsulfanyl)-N-(4-fluoro-phenyl)-nicotinamide 6, an antagonist with activity at both CXCR1 and CXCR2 receptors (IC50 values 31 and 21 nM, respectively). Compound 6 exhibited potent inhibition of neutrophil influx in a rat model of pulmonary inflammation, and is hypothesized to interact with a unique intracellular binding site on CXCR2. Compound 6 (SX-576) is undergoing further investigation as a potential therapy for pulmonary inflammation. PMID:25933594

  3. Sulforaphane is not an effective antagonist of the human pregnane X-receptor in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poulton, Emma Jane; Department of Environmental and Occupational Health Sciences, University of Washington; Levy, Lisa

    2013-01-01

    Sulforaphane (SFN), is an effective in vitro antagonist of ligand activation of the human pregnane and xenobiotic receptor (PXR). PXR mediated CYP3A4 up-regulation is implicated in adverse drug-drug interactions making identification of small molecule antagonists a desirable therapeutic goal. SFN is not an antagonist to mouse or rat PXR in vitro; thus, normal rodent species are not suitable as in vivo models for human response. To evaluate whether SFN can effectively antagonize ligand activation of human PXR in vivo, a three-armed, randomized, crossover trial was conducted with 24 healthy adults. The potent PXR ligand — rifampicin (300 mg/d) was givenmore » alone for 7 days in arm 1, or in daily combination with 450 μmol SFN (Broccoli Sprout extract) in arm 2; SFN was given alone in arm 3. Midazolam as an in vivo phenotype marker of CYP3A was administered before and after each treatment arm. Rifampicin alone decreased midazolam AUC by 70%, indicative of the expected increase in CYP3A4 activity. Co-treatment with SFN did not reduce CYP3A4 induction. Treatment with SFN alone also did not affect CYP3A4 activity in the cohort as a whole, although in the subset with the highest basal CYP3A4 activity there was a statistically significant increase in midazolam AUC (i.e., decrease in CYP3A4 activity). A parallel study in humanized PXR mice yielded similar results. The parallel effects of SFN between humanized PXR mice and human subjects demonstrate the predictive value of humanized mouse models in situations where species differences in ligand-receptor interactions preclude the use of a native mouse model for studying human ligand-receptor pharmacology. -- Highlights: ► The effects of SFN on PXR mediated CYP3A4 induction in humanized PXR mice and humans were examined. ► SFN had no effect on rifampicin mediated CYP3A4 induction in humans or humanized mice. ► SFN had a modest effect on basal CYP3A4 activity among subjects with higher baseline activity.

  4. The Sigma-1 Receptor Antagonist, S1RA, Reduces Stroke Damage, Ameliorates Post-Stroke Neurological Deficits and Suppresses the Overexpression of MMP-9.

    PubMed

    Sánchez-Blázquez, Pilar; Pozo-Rodrigálvarez, Andrea; Merlos, Manuel; Garzón, Javier

    2018-06-01

    The glutamate N-methyl-D-aspartate receptor (NMDAR) plays an essential role in the excitotoxic neural damage that follows ischaemic stroke. Because the sigma-1 receptor1R) can regulate NMDAR transmission, exogenous and putative endogenous regulators of σ1R have been investigated using animal models of ischaemic stroke. As both agonists and antagonists provide some neural protection, the selective involvement of σ1Rs in these effects has been questioned. The availability of S1RA (E-52862/MR309), a highly selective σ1R antagonist, prompted us to explore its therapeutic potential in an animal model of focal cerebral ischaemia. Mice were subjected to right middle cerebral artery occlusion (MCAO), and post-ischaemic infarct volume and neurological deficits were determined across a range of intervals after the stroke-inducing surgery. Intracerebroventricular or intravenous treatment with S1RA significantly reduced the cerebral infarct size and neurological deficits caused by permanent MCAO (pMCAO). Compared with the control/sham-operated mice, the neuroprotective effects of S1RA were observed when delivered up to 5 h prior to surgery and 3 h after ischaemic onset. Interestingly, neither mice with the genetic deletion of σ1R nor wild-type mice that were pre-treated with the σ1R agonist PRE084 showed beneficial effects after S1RA administration with regard to stroke infarction. S1RA-treated mice showed faster behavioural recovery from stroke; this finding complements the significant decreases in matrix metalloproteinase-9 (MMP-9) expression and reactive astrogliosis surrounding the infarcted cortex. Our data indicate that S1RA, via σ1R, holds promising potential for clinical application as a therapeutic agent for ischaemic stroke.

  5. Stimulant effects of adenosine antagonists on operant behavior: differential actions of selective A2A and A1 antagonists

    PubMed Central

    Randall, Patrick A.; Nunes, Eric J.; Janniere, Simone L.; Stopper, Colin M.; Farrar, Andrew M.; Sager, Thomas N.; Baqi, Younis; Hockemeyer, Jörg; Müller, Christa E.

    2012-01-01

    Rationale Adenosine A2A antagonists can reverse many of the behavioral effects of dopamine antagonists, including actions on instrumental behavior. However, little is known about the effects of selective adenosine antagonists on operant behavior when these drugs are administered alone. Objective The present studies were undertaken to investigate the potential for rate-dependent stimulant effects of both selective and nonselective adenosine antagonists. Methods Six drugs were tested: two nonselective adenosine antagonists (caffeine and theophylline), two adenosine A1 antagonists (DPCPX and CPT), and two adenosine A2A antagonists (istradefylline (KW6002) and MSX-3). Two schedules of reinforcement were employed; a fixed interval 240-s (FI-240 sec) schedule was used to generate low baseline rates of responding and a fixed ratio 20 (FR20) schedule generated high rates. Results Caffeine and theophylline produced rate-dependent effects on lever pressing, increasing responding on the FI-240 sec schedule but decreasing responding on the FR20 schedule. The A2A antagonists MSX-3 and istradefylline increased FI-240 sec lever pressing but did not suppress FR20 lever pressing in the dose range tested. In fact, there was a tendency for istradefylline to increase FR20 responding at a moderate dose. A1 antagonists failed to increase lever pressing rate, but DPCPX decreased FR20 responding at higher doses. Conclusions These results suggest that adenosine A2A antagonists enhance operant response rates, but A1 antagonists do not. The involvement of adenosine A2A receptors in regulating aspects of instrumental response output and behavioral activation may have implications for the treatment of effort-related psychiatric dysfunctions, such as psychomotor slowing and anergia in depression. PMID:21347642

  6. Nociceptive vascular reflexes evoked by scorpion venom modulate cardiorespiratory parameters involving vanilloid receptor 1 in anaesthetised rats.

    PubMed

    Singh, Sanjeev K; Deshpande, Shripad B

    2009-02-27

    Involvement of vanilloid and 5-HT(3) receptors in the cardiorespiratory reflexes evoked by intra-arterial (i.a.) injection of Mesobuthus tamulus (BT) venom was examined. In anaesthetised rats, blood pressure, respiratory excursions and ECG were recorded for 60min after the injection of venom in the absence or presence of antagonists. Injection of BT venom (1mg/kg, i.a.) produced alterations in respiratory frequency (RF), blood pressure (BP) and heart rate (HR). The changes in RF were manifested as immediate increase (40%) followed by a decrease (40%) and subsequent sustained increase (60%). In case of BP, the increase began around 40s, peaked at 5min (50%) and remained above the initial level subsequently. The bradycardiac response began around 5min which peaked (50% of the initial) around 25min and remained at that level. Thus, exhibiting immediate-tachypnoeic, intermediate-hypertensive and delayed-bradycardiac responses. Pretreatment with lignocaine, blocked the respiratory responses and attenuated the pressor responses evoked by venom. Pretreatment with capsazepine, vanilloid receptor 1 (VR1) antagonist, antagonized all the three parameters of cardiorespiratory responses evoked by venom. Whereas, ondansetron (5-HT(3) antagonist) attenuated the pressor and bradycardiac responses significantly but not the respiratory responses. These observations indicate that the cardiorespiratory changes induced by intra-arterial injection of venom are carried by afferents in addition to somatic nerves, involving mainly VR1 receptors and partially by 5-HT(3) receptors.

  7. Androgen Receptor Antagonists and Anti-Prostate Cancer Activities of Some Newly Synthesized Substituted Fused Pyrazolo-, Triazolo- and Thiazolo-Pyrimidine Derivatives

    PubMed Central

    Bahashwan, Saleh A.; Fayed, Ahmed A.; Ramadan, Mohamed A.; Amr, Abd El-Galil E.; Al-Harbi, Naif O.

    2014-01-01

    A series of substituted pyrazole, triazole and thiazole derivatives (2–13) were synthesized from 1-(naphtho[1,2-d]thiazol-2-yl)hydrazine as starting material and evaluated as androgen receptor antagonists and anti-prostate cancer agents. The newly synthesized compounds showed potent androgen receptor antagonists and anti-prostate cancer activities with low toxicity (lethal dose 50 (LD50)) comparable to Bicalutamide as reference drug. The structures of newly synthesized compounds were confirmed by IR, 1H-NMR, 13C-NMR, and MS spectral data and elemental analysis. The detailed synthesis, spectroscopic data, LD50 values and pharmacological activities of the synthesized compounds are reported. PMID:25421248

  8. AN IL-1 RECEPTOR ANTAGONIST BLOCKS A MORPHINE-INDUCED ATTENUATION OF LOCOMOTOR RECOVERY AFTER SPINAL CORD INJURY

    PubMed Central

    Hook, Michelle A.; Washburn, Stephanie N.; Moreno, Georgina; Woller, Sarah A.; Puga, Denise; Lee, Kuan H.; Grau, James W.

    2010-01-01

    Morphine is one of the most commonly prescribed medications for the treatment of chronic pain after a spinal cord injury (SCI). Despite widespread use, however, little is known about the secondary consequences of morphine use after SCI. Unfortunately, our previous studies show that administration of a single dose of morphine, in the acute phase of a moderate spinal contusion injury, significantly attenuates locomotor function, reduces weight gain, and produces symptoms of paradoxical pain (Hook et al., 2009). The current study focused on the cellular mechanisms that mediate these effects. Based on data from other models, we hypothesized that pro-inflammatory cytokines might play a role in the morphine-induced attenuation of function. Experiment 1 confirmed that systemic morphine (20 mg/kg) administered one day after a contusion injury significantly increased expression levels of spinal IL-1β 24 hrs later. Experiment 2 extended these findings, demonstrating that a single dose of morphine (90 µg, i.t.) applied directly onto the spinal cord increased expression levels of spinal IL-1β at both 30 min and 24 hrs after administration. Experiment 3 showed that administration of an interleukin-1 receptor antagonist (IL-1ra, i.t.) prior to intrathecal morphine (90 µg), blocked the adverse effects of morphine on locomotor recovery. Further, pre-treatment with 3 µg IL-1ra prevented the increased expression of at-level neuropathic pain symptoms that was observed 28 days later in the group treated with morphine-alone. However, the IL-1ra also had adverse effects that were independent of morphine. Treatment with the IL-1ra alone undermined recovery of locomotor function, potentiated weight loss and significantly increased tissue loss at the injury site. Overall, these data suggest that morphine disrupts a critical balance in concentrations of pro-inflammatory cytokines in the spinal cord, and this undermines recovery of function. PMID:20974246

  9. Effects of glutamate and {alpha}2-noradrenergic receptor antagonists on the development of neurotoxicity produced by chronic rotenone in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, Mesbah; Danysz, Wojciech; Schmidt, Werner Juergen

    2009-10-15

    Systemic inhibition of complex I by rotenone in rats represents a model of Parkinson's disease (PD). The aim of this study was to elucidate whether neramexane (NMDA, nicotinic {alpha}9/{alpha}10 and 5-HT{sub 3} receptor antagonist), idazoxan ({alpha}{sub 2}-adrenoceptor antagonist) or 2-methyl-6-(phenyl-ethyl)-pyrimidine (MPEP, metabotropic glutamate receptor 5 antagonist) prevents rotenone-induced parkinsonian-like behaviours and neurochemical changes in rats. Rotenone (2.5 mg/kg i.p. daily) was administered over 60 days together with saline, neramexane (5 mg/kg i.p., b.i.d.), idazoxan (2.5 mg/kg i.p., b.i.d.) or MPEP (2.5 mg/kg i.p., b.i.d.). The same doses of neramexane, idazoxan and MPEP were administered to rats treated with vehicle insteadmore » of rotenone. Treatment-related effects on parkinsonian-like behaviours, such as hypokinesia/rigidity and locomotor activity, were evaluated. Moreover, concentrations of dopamine, serotonin and their metabolites were measured in rats from each experimental group. Over the 60-day treatment period, the rotenone + saline treated animals developed hypokinesia, expressed as an increase in the bar and grid descent latencies in the catalepsy test, and a decrease in locomotor activity. Neramexane and idazoxan partially prevented the development of catalepsy in rotenone-treated rats. Co-administration of MPEP with rotenone resulted only in a decrease in descent latency in the grid test on day 60. Chronic rotenone treatment reduced concentrations of dopamine and serotonin in the anterior striatum, which was blocked by co-treatment with neramexane or idazoxan but not with MPEP. Only neramexane treatment blocked the rotenone-induced decrease in dopamine levels in the substantia nigra pars compacta. In conclusion, neramexane and idazoxan counteracted to some extent the development of parkinsonian symptoms and neurochemical alterations in the rotenone model of Parkinson's disease.« less

  10. Dopamine D2 Antagonist-Induced Striatal Nur77 Expression Requires Activation of mGlu5 Receptors by Cortical Afferents

    PubMed Central

    Maheux, Jérôme; St-Hilaire, Michel; Voyer, David; Tirotta, Emanuele; Borrelli, Emiliana; Rouillard, Claude; Rompré, Pierre-Paul; Lévesque, Daniel

    2012-01-01

    Dopamine D2 receptor antagonists modulate gene transcription in the striatum. However, the molecular mechanism underlying this effect remains elusive. Here we used the expression of Nur77, a transcription factor of the orphan nuclear receptor family, as readout to explore the role of dopamine, glutamate, and adenosine receptors in the effect of a dopamine D2 antagonist in the striatum. First, we investigated D2 antagonist-induced Nur77 mRNA in D2L receptor knockout mice. Surprisingly, deletion of the D2L receptor isoform did not reduce eticlopride-induced upregulation of Nur77 mRNA levels in the striatum. Next, we tested if an ibotenic acid-induced cortical lesion could block the effect of eticlopride on Nur77 expression. Cortical lesions strongly reduced eticlopride-induced striatal upregulation of Nur77 mRNA. Then, we investigated if glutamatergic neurotransmission could modulate eticlopride-induced Nur77 expression. A combination of a metabotropic glutamate type 5 (mGlu5) and adenosine A2A receptor antagonists abolished eticlopride-induced upregulation of Nur77 mRNA levels in the striatum. Direct modulation of Nur77 expression by striatal glutamate and adenosine receptors was confirmed using corticostriatal organotypic cultures. Taken together, these results indicate that blockade of postsynaptic D2 receptors is not sufficient to trigger striatal transcriptional activity and that interaction with corticostriatal presynaptic D2 receptors and subsequent activation of postsynaptic glutamate and adenosine receptors in the striatum is required. Thus, these results uncover an unappreciated role of presynaptic D2 heteroreceptors and support a prominent role of glutamate in the effect of D2 antagonists. PMID:22912617

  11. A new serotonin 5-HT6 receptor antagonist with procognitive activity - Importance of a halogen bond interaction to stabilize the binding

    NASA Astrophysics Data System (ADS)

    González-Vera, Juan A.; Medina, Rocío A.; Martín-Fontecha, Mar; Gonzalez, Angel; de La Fuente, Tania; Vázquez-Villa, Henar; García-Cárceles, Javier; Botta, Joaquín; McCormick, Peter J.; Benhamú, Bellinda; Pardo, Leonardo; López-Rodríguez, María L.

    2017-01-01

    Serotonin 5-HT6 receptor has been proposed as a promising therapeutic target for cognition enhancement though the development of new antagonists is still needed to validate these molecules as a drug class for the treatment of Alzheimer’s disease and other pathologies associated with memory deficiency. As part of our efforts to target the 5-HT6 receptor, new benzimidazole-based compounds have been designed and synthesized. Site-directed mutagenesis and homology models show the importance of a halogen bond interaction between a chlorine atom of the new class of 5-HT6 receptor antagonists identified herein and a backbone carbonyl group in transmembrane domain 4. In vitro pharmacological characterization of 5-HT6 receptor antagonist 7 indicates high affinity and selectivity over a panel of receptors including 5-HT2B subtype and hERG channel, which suggests no major cardiac issues. Compound 7 exhibited in vivo procognitive activity (1 mg/kg, ip) in the novel object recognition task as a model of memory deficit.

  12. 2-Methylacrylamide as a bioisoster of thiourea group for 1,3-dibenzylthioureido TRPV1 receptor antagonists.

    PubMed

    Park, Seol Rin; Kim, Juhyun; Lee, Sun Young; Park, Young-Ho; Kim, Hee-Doo

    2018-06-15

    In order to replace thiourea group with the more drug-like moiety for 1,3-dibenzylthioureas having TRPV1 antagonist activity, we introduced a set of functional groups between the two aromatic rings based on bioisosteric replacement. The synthesized bioisosteres of 1,3-dibenzylthioureas were tested for their antagonist activities on TRPV1 by 45 Ca 2+ -influx assay using neonatal rat cultured spinal sensory neurons. Among the tested 14 kinds of bioisosters, 2-methylacrylamide group was the best candidate to replace thiourea group. Compound 7c, 2-methylacrylamide analog of ATC-120, showed as potent as ATC-120 in its antagonist activity. In addition, 2-methylacrylamide analog 7e having vinyl moiety showed the most potent activity with 0.022 μM of IC 50 value, indicating that thiourea group of 1,3-dibenzylthioureas could be replaced to 2-methylacrylamide without loss of their potencies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Effects of the histamine H₃ receptor antagonist ABT-239 on cognition and nicotine-induced memory enhancement in mice.

    PubMed

    Kruk, Marta; Miszkiel, Joanna; McCreary, Andrew C; Przegaliński, Edmund; Filip, Małgorzata; Biała, Grażyna

    2012-01-01

    The strong correlation between central histaminergic and cholinergic pathways on cognitive processes has been reported extensively. However, the role of histamine H(3) receptor mechanisms interacting with nicotinic mechanisms has not previously been extensively investigated. The current study was conducted to determine the interactions of nicotinic and histamine H(3) receptor systems with regard to learning and memory function using a modified elevated plus-maze test in mice. In this test, the latency for mice to move from the open arm to the enclosed arm (i.e., transfer latency) was used as an index of memory. We tested whether ABT-239 (4-(2-{2-[(2R)-2-methylpyrrolidinyl]ethyl}-benzofuran-5-yl), an H(3) receptor antagonist/inverse agonist, had influence on two different stages of memory, i.e., memory acquisition and consolidation (administered prior to or immediately after the first trial, respectively) and whether ABT-239 influenced nicotine-induced memory enhancement. Our results revealed that the acute administration of nicotine (0.035 and 0.175 mg/kg), but not of ABT-239 (0.1-3 mg/kg) reduced transfer latency in the acquisition and consolidation phases. In combination studies, concomitant administration of either ABT-239 (1 and 3 mg/kg) and nicotine (0.035 mg/kg), or ABT-239 (0.1 mg/kg) and nicotine (0.0175 mg/kg) further increased nicotine-induced improvement in both memory acquisition and consolidation. The present data confirm an important role for H(3) receptors in regulating nicotine-induced mnemonic effects since inhibition of H(3) receptors augmented nicotine-induced memory enhancement in mice.

  14. In vivo neurochemical evidence that delta1-, delta2- and mu2-opioid receptors, but not mu1-opioid receptors, inhibit acetylcholine efflux in the nucleus accumbens of freely moving rats.

    PubMed

    Kiguchi, Yuri; Aono, Yuri; Watanabe, Yuriko; Yamamoto-Nemoto, Seiko; Shimizu, Kunihiko; Shimizu, Takehiko; Kosuge, Yasuhiro; Waddington, John L; Ishige, Kumiko; Ito, Yoshihisa; Saigusa, Tadashi

    2016-10-15

    Cholinergic neurons in the nucleus accumbens express delta- and mu-opioid receptors that are thought to inhibit neural activity. Delta- and mu-opioid receptors are divided into delta1- and delta2-opioid receptors and mu1- and mu2-opioid receptors, respectively. We analysed the roles of delta- and mu-opioid receptor subtypes in regulating accumbal acetylcholine efflux of freely moving rats using in vivo microdialysis. Other than naloxonazine, given intraperitoneally, delta- and mu-opioid receptor ligands were administered intracerebrally through the dialysis probe. Doses of these compounds indicate total amount (mol) over an infusion time of 30-60min. To monitor basal acetylcholine, a low concentration of physostigmine (50nM) was added to the perfusate. The delta1-opioid receptor agonist DPDPE (3 and 300pmol) and delta2-opioid receptor agonist deltorphin II (3 and 30pmol) decreased accumbal acetylcholine in a dose-related manner. DPDPE (300pmol)- and deltorphin II (3pmol)-induced reductions in acetylcholine were each inhibited by the delta1-opioid receptor antagonist BNTX (0.3pmol) and delta2-opioid receptor antagonist naltriben (15pmol), respectively. The mu-opioid receptor agonists endomorphin-1 and endomorphin-2 (6 and 30nmol) decreased acetylcholine in a dose-related manner. Endomorphin-1- and endomorphin-2 (30nmol)-induced reductions in acetylcholine were prevented by the mu-opioid receptor antagonist CTOP (3nmol). The mu1-opioid receptor antagonist naloxonazine (15mg/kg ip), which inhibits endomorphin-1 (15nmol)-induced accumbal dopamine efflux, did not alter endomorphin-1- or endomorphin-2 (30nmol)-induced reductions in acetylcholine efflux. This study provides in vivo evidence for delta1-, delta2- and mu2-opioid receptors, but not mu1-opioid receptors, that inhibit accumbal cholinergic neural activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Antagonist interaction with the human 5-HT7 receptor mediates the rapid and potent inhibition of non-G-protein-stimulated adenylate cyclase activity: a novel GPCR effect

    PubMed Central

    Klein, MT; Teitler, M

    2011-01-01

    BACKGROUND AND PURPOSE The human 5-hydroxytryptamine7 (h5-HT7) receptor is Gs-coupled and stimulates the production of the intracellular signalling molecule cAMP. Previously, we reported a novel property of the h5-HT7 receptor: pseudo-irreversible antagonists irreversibly inhibit forskolin-stimulated (non-receptor-mediated) cAMP production. Herein, we sought to determine if competitive antagonists also affect forskolin-stimulated activity and if this effect is common among other Gs-coupled receptors. EXPERIMENTAL APPROACH Recombinant cell lines expressing h5-HT7 receptors or other receptors of interest were briefly exposed to antagonists; cAMP production was then stimulated by forskolin and quantified by an immunocompetitive assay. KEY RESULTS In human embryonic kidney 293 cells stably expressing h5-HT7 receptors, all competitive antagonists inhibited nearly 100% of forskolin-stimulated cAMP production. This effect was insensitive to pertussis toxin, that is, not Gi/o-mediated. Potency to inhibit forskolin-stimulated activity strongly correlated with h5-HT7 binding affinity (r2= 0.91), indicating that the antagonists acted through h5-HT7 receptors to inhibit forskolin. Potency and maximal effects of clozapine, a prototypical competitive h5-HT7 antagonist, were unaffected by varying forskolin concentration. Antagonist interaction with h5-HT6, human β1, β2, and β3 adrenoceptors did not inhibit forskolin's activity. CONCLUSIONS AND IMPLICATIONS The inhibition of adenylate cyclase, as measured by forskolin's activity, is an underlying property of antagonist interaction with h5-HT7 receptors; however, this is not a common property of other Gs-coupled receptors. This phenomenon may be involved in the roles played by h5-HT7 receptors in human physiology. Development of h5-HT7 antagonists that do not elicit this effect would aid in the elucidation of its mechanisms and shed light on its possible physiological relevance. PMID:21198551

  16. Ciproxifan, a histamine H{sub 3} receptor antagonist and inverse agonist, presynaptically inhibits glutamate release in rat hippocampus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Cheng-Wei; Lin, Tzu-Yu

    2017-03-15

    Ciproxifan is an H{sub 3} receptor antagonist and inverse agonist with antipsychotic effects in several preclinical models; its effect on glutamate release has been investigated in the rat hippocampus. In a synaptosomal preparation, ciproxifan reduced 4-aminopyridine (4-AP)-evoked Ca{sup 2+}-dependent glutamate release and cytosolic Ca{sup 2+} concentration elevation but did not affect the membrane potential. The inhibitory effect of ciproxifan on 4-AP-evoked glutamate release was prevented by the Gi/Go-protein inhibitor pertussis toxin and Ca{sub v}2.2 (N-type) and Ca{sub v}2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC, but was not affected by the intracellular Ca{sup 2+}-release inhibitors dantrolene and CGP37157. Furthermore, the phospholipase A{submore » 2} (PLA{sub 2}) inhibitor OBAA, prostaglandin E{sub 2} (PGE{sub 2}), PGE2 subtype 2 (EP{sub 2}) receptor antagonist PF04418948, and extracellular signal-regulated kinase (ERK) inhibitor FR180204 eliminated the inhibitory effect of ciproxifan on glutamate release. Ciproxifan reduced the 4-AP-evoked phosphorylation of ERK and synapsin I, a presynaptic target of ERK. The ciproxifan-mediated inhibition of glutamate release was prevented in synaptosomes from synapsin I-deficient mice. Moreover, ciproxifan reduced the frequency of miniature excitatory postsynaptic currents without affecting their amplitude in hippocampal slices. Our data suggest that ciproxifan, acting through the blockade of Gi/Go protein-coupled H{sub 3} receptors present on hippocampal nerve terminals, reduces voltage-dependent Ca{sup 2+} entry by diminishing PLA{sub 2}/PGE{sub 2}/EP{sub 2} receptor pathway, which subsequently suppresses the ERK/synapsin I cascade to decrease the evoked glutamate release. - Highlights: • Ciproxifan presynaptically reduces glutamate release in the hippocampus in vitro. • Decrease in voltage-dependent Ca{sup 2+} influx is involved. • A role for the PLA{sub 2}/PGE{sub 2}/EP{sub 2} pathway in the action of

  17. Serotonin (5-HT3) receptor antagonists for the reduction of symptoms of low anterior resection syndrome

    PubMed Central

    Itagaki, Ryohei; Koda, Keiji; Yamazaki, Masato; Shuto, Kiyohiko; Kosugi, Chihiro; Hirano, Atsushi; Arimitsu, Hidehito; Shiragami, Risa; Yoshimura, Yukino; Suzuki, Masato

    2014-01-01

    Purpose Serotonin (5-hydroxytryptamine [5-HT])3 receptor antagonists are effective for the treatment of diarrhea-predominant irritable bowel syndrome (IBS-D), in which exaggerated intestinal/colonic hypermotility is often observed. Recent studies have suggested that the motility disorder, especially spastic hypermotility, seen in the neorectum following sphincter-preserving operations for rectal cancer may be the basis of the postoperative defecatory malfunction seen in these patients. We investigated the efficacy of 5-HT3 receptor antagonists in patients suffering from severe low anterior resection syndrome. Patients and methods A total of 25 male patients with complaints of uncontrollable urgency or fecal incontinence following sphincter-preserving operations were enrolled in this study. Defecatory status, assessed on the basis of incontinence score (0–20), urgency grade (0–3), and number of toilet visits per day, was evaluated using a questionnaire before and 1 month after the administration of the 5-HT3 antagonist ramosetron. Results All the parameters assessed improved significantly after taking ramosetron for 1 month. The effect was more prominent in cases whose anastomotic line was lower, ie, inside the anal canal. Defecatory function was better in patients who commenced ramosetron therapy within 6 months postoperatively, as compared to those who were not prescribed ramosetron for more than 7 months postoperatively. Conclusion These results suggest that 5-HT3 antagonists are effective for the treatment of low anterior resection syndrome, as in diarrhea-predominant irritable bowel syndrome. The improvement in symptoms is not merely time dependent, but it is related to treatment with 5-HT3 antagonists. PMID:24648748

  18. Secondary metabolites of Cynodon dactylon as an antagonist to angiotensin II type1 receptor: Novel in silico drug targeting approach for diabetic retinopathy

    PubMed Central

    Jananie, R. K.; Priya, V.; Vijayalakshmi, K.

    2012-01-01

    Objectives: To study the ability of the secondary metabolites of Cynodon dactylon to serve as an antagonist to angiotensin II type 1 receptor (AT1); activation of this receptor plays a vital role in diabetic retinopathy (DR). Materials and Methods: In silico methods are mainly harnessed to reduce time, cost and risk associated with drug discovery. Twenty-four compounds were identified as the secondary metabolites of hydroalcoholic extract of C. dactylon using the GCMS technique. These were considered as the ligands or inhibitors that would serve as an antagonist to the AT1. The ACD/Chemsketch tool was used to generate 3D structures of the ligands. A molecular file format converter tool was used to convert the generated data to the PDB format (Protein Data Bank) and was used for docking studies. The AT1 structure was retrieved from the Swissprot data base and PDB and visualized using the Rasmol tool. Domain analysis was carried from the Pfam data base; following this, the active site of the target protein was identified using a Q-site finder tool. The ability of the ligands to bind with the active site of AT1 was studied using the Autodocking tool. The docking results were analyzed using the WebLab viewer tool. Results: Sixteen ligands showed effective binding with the target protein; diazoprogesteron, didodecyl phthalate, and 9,12-octadecadienoyl chloride (z,z) may be considered as compounds that could be used to bind with the active site sequence of AT1. Conclusions: The present study shows that the metabolites of C. dactylon could serve as a natural antagonist to AT1 that could be used to treat diabetic retinopathy. PMID:22368412

  19. PeaTAR1B: Characterization of a Second Type 1 Tyramine Receptor of the American Cockroach, Periplaneta americana

    PubMed Central

    Balfanz, Sabine

    2017-01-01

    The catecholamines norepinephrine and epinephrine regulate important physiological functions in vertebrates. In insects; these neuroactive substances are functionally replaced by the phenolamines octopamine and tyramine. Phenolamines activate specific guanine nucleotide-binding (G) protein-coupled receptors (GPCRs). Type 1 tyramine receptors are better activated by tyramine than by octopamine. In contrast; type 2 tyramine receptors are almost exclusively activated by tyramine. Functionally; activation of type 1 tyramine receptors leads to a decrease in the intracellular concentration of cAMP ([cAMP]i) whereas type 2 tyramine receptors can mediate Ca2+ signals or both Ca2+ signals and effects on [cAMP]i. Here; we report that the American cockroach (Periplaneta americana) expresses a second type 1 tyramine receptor (PeaTAR1B) in addition to PeaTAR1A (previously called PeaTYR1). When heterologously expressed in flpTM cells; activation of PeaTAR1B by tyramine leads to a concentration-dependent decrease in [cAMP]i. Its activity can be blocked by a series of established antagonists. The functional characterization of two type 1 tyramine receptors from P. americana; PeaTAR1A and PeaTAR1B; which respond to tyramine by changing cAMP levels; is a major step towards understanding the actions of tyramine in cockroach physiology and behavior; particularly in comparison to the effects of octopamine. PMID:29084141

  20. PeaTAR1B: Characterization of a Second Type 1 Tyramine Receptor of the American Cockroach, Periplaneta americana.

    PubMed

    Blenau, Wolfgang; Balfanz, Sabine; Baumann, Arnd

    2017-10-30

    The catecholamines norepinephrine and epinephrine regulate important physiological functions in vertebrates. In insects; these neuroactive substances are functionally replaced by the phenolamines octopamine and tyramine. Phenolamines activate specific guanine nucleotide-binding (G) protein-coupled receptors (GPCRs). Type 1 tyramine receptors are better activated by tyramine than by octopamine. In contrast; type 2 tyramine receptors are almost exclusively activated by tyramine. Functionally; activation of type 1 tyramine receptors leads to a decrease in the intracellular concentration of cAMP ([cAMP] i ) whereas type 2 tyramine receptors can mediate Ca 2+ signals or both Ca 2+ signals and effects on [cAMP] i . Here; we report that the American cockroach ( Periplaneta americana ) expresses a second type 1 tyramine receptor (PeaTAR1B) in addition to PeaTAR1A (previously called PeaTYR1). When heterologously expressed in flpTM cells; activation of PeaTAR1B by tyramine leads to a concentration-dependent decrease in [cAMP] i . Its activity can be blocked by a series of established antagonists. The functional characterization of two type 1 tyramine receptors from P. americana ; PeaTAR1A and PeaTAR1B; which respond to tyramine by changing cAMP levels; is a major step towards understanding the actions of tyramine in cockroach physiology and behavior; particularly in comparison to the effects of octopamine.