Sample records for ia inhibitory interneurons

  1. Patterned sensory nerve stimulation enhances the reactivity of spinal Ia inhibitory interneurons.

    PubMed

    Kubota, Shinji; Hirano, Masato; Morishita, Takuya; Uehara, Kazumasa; Funase, Kozo

    2015-03-25

    Patterned sensory nerve stimulation has been shown to induce plastic changes in the reciprocal Ia inhibitory circuit. However, the mechanisms underlying these changes have not yet been elucidated in detail. The aim of the present study was to determine whether the reactivity of Ia inhibitory interneurons could be altered by patterned sensory nerve stimulation. The degree of reciprocal Ia inhibition, the conditioning effects of transcranial magnetic stimulation (TMS) on the soleus (SOL) muscle H-reflex, and the ratio of the maximum H-reflex amplitude versus maximum M-wave (H(max)/M(max)) were examined in 10 healthy individuals. Patterned electrical nerve stimulation was applied to the common peroneal nerve every 1 s (100 Hz-5 train) at the motor threshold intensity of tibialis anterior muscle to induce activity changes in the reciprocal Ia inhibitory circuit. Reciprocal Ia inhibition, the TMS-conditioned H-reflex amplitude, and H(max)/M(max) were recorded before, immediately after, and 15 min after the electrical stimulation. The patterned electrical nerve stimulation significantly increased the degree of reciprocal Ia inhibition and decreased the amplitude of the TMS-conditioned H-reflex in the short-latency inhibition phase, which was presumably mediated by Ia inhibitory interneurons. However, it had no effect on H(max)/M(max). Our results indicated that patterned sensory nerve stimulation could modulate the activity of Ia inhibitory interneurons, and this change may have been caused by the synaptic modification of Ia inhibitory interneuron terminals. These results may lead to a clearer understanding of the spinal cord synaptic plasticity produced by repetitive sensory inputs. Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

  2. Inter-individual variation in reciprocal Ia inhibition is dependent on the descending volleys delivered from corticospinal neurons to Ia interneurons.

    PubMed

    Kubota, Shinji; Uehara, Kazumasa; Morishita, Takuya; Hirano, Masato; Funase, Kozo

    2014-02-01

    We investigated the extent to which the corticospinal inputs delivered to Ia inhibitory interneurons influence the strength of disynaptic reciprocal Ia inhibition. Seventeen healthy subjects participated in this study. The degree of reciprocal Ia inhibition was determined via short-latency (condition-test interval: 1-3ms) suppression of Sol H-reflex by conditioning stimulation of common peroneal nerve. The effect of corticospinal descending inputs on Ia inhibitory interneurons was assessed by evaluating the conditioning effect of transcranial magnetic stimulation (TMS) on the Sol H-reflex. Then, we determined the relationship between the degree of reciprocal Ia inhibition and the conditioning effect of TMS on the Sol H-reflex. We found that the degree of reciprocal Ia inhibition and the extent of change in the amplitude of the TMS-conditioned H-reflex, which was measured from short latency facilitation to inhibition, displayed a strong correlation (r=0.76, p<0.01) in the resting conditions. The extent of reciprocal Ia inhibition is affected by the corticospinal descending inputs delivered to Ia inhibitory interneurons, which might explain the inter-individual variations in reciprocal Ia inhibition. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. POSTNATAL PHENOTYPE AND LOCALIZATION OF SPINAL CORD V1 DERIVED INTERNEURONS

    PubMed Central

    Alvarez, Francisco J.; Jonas, Philip C.; Sapir, Tamar; Hartley, Robert; Berrocal, Maria C.; Geiman, Eric J.; Todd, Andrew J.; Goulding, Martyn

    2010-01-01

    Developmental studies identified four classes (V0, V1, V2, V3) of embryonic interneurons in the ventral spinal cord. Very little however is known about their adult phenotypes. In order to further characterize interneuron cell types in the adult, the location, neurotransmitter phenotype, calcium-buffering protein expression and axon distributions of V1-derived neurons in the mouse spinal cord was determined. In the mature (P20 and older) spinal cord, most V1-derived neurons are located in lateral LVII and in LIX, few in medial LVII and none in LVIII. Approximately 40% express calbindin and/or parvalbumin, while few express calretinin. Of seven groups of ventral interneurons identified according to calcium-buffering protein expression, two groups (1 and 4) correspond with V1-derived neurons. Group 1 are Renshaw cells and intensely express calbindin and coexpress parvalbumin and calretinin. They represent 9% of the V1 population. Group 4 express only parvalbumin and represent 27% of V1-derived neurons. V1-derived group 4 neurons receive contacts from primary sensory afferents and are therefore proprioceptive interneurons and the most ventral neurons in this group receive convergent calbindin-IR Renshaw cell inputs. This subgroup resembles Ia inhibitory interneurons (IaINs) and represents 13% of V1-derived neurons. Adult V1-interneuron axons target LIX and LVII and some enter the deep dorsal horn. V1-axons do not cross the midline. V1 derived axonal varicosities were mostly (>80%) glycinergic and a third were GABAergic. None were glutamatergic or cholinergic. In summary, V1 interneurons develop into ipsilaterally projecting, inhibitory interneurons that include Renshaw cells, Ia inhibitory interneurons and other unidentified proprioceptive interneurons. PMID:16255029

  4. Circuit variability interacts with excitatory-inhibitory diversity of interneurons to regulate network encoding capacity.

    PubMed

    Tsai, Kuo-Ting; Hu, Chin-Kun; Li, Kuan-Wei; Hwang, Wen-Liang; Chou, Ya-Hui

    2018-05-23

    Local interneurons (LNs) in the Drosophila olfactory system exhibit neuronal diversity and variability, yet it is still unknown how these features impact information encoding capacity and reliability in a complex LN network. We employed two strategies to construct a diverse excitatory-inhibitory neural network beginning with a ring network structure and then introduced distinct types of inhibitory interneurons and circuit variability to the simulated network. The continuity of activity within the node ensemble (oscillation pattern) was used as a readout to describe the temporal dynamics of network activity. We found that inhibitory interneurons enhance the encoding capacity by protecting the network from extremely short activation periods when the network wiring complexity is very high. In addition, distinct types of interneurons have differential effects on encoding capacity and reliability. Circuit variability may enhance the encoding reliability, with or without compromising encoding capacity. Therefore, we have described how circuit variability of interneurons may interact with excitatory-inhibitory diversity to enhance the encoding capacity and distinguishability of neural networks. In this work, we evaluate the effects of different types and degrees of connection diversity on a ring model, which may simulate interneuron networks in the Drosophila olfactory system or other biological systems.

  5. Somatostatin-Expressing Inhibitory Interneurons in Cortical Circuits

    PubMed Central

    Yavorska, Iryna; Wehr, Michael

    2016-01-01

    Cortical inhibitory neurons exhibit remarkable diversity in their morphology, connectivity, and synaptic properties. Here, we review the function of somatostatin-expressing (SOM) inhibitory interneurons, focusing largely on sensory cortex. SOM neurons also comprise a number of subpopulations that can be distinguished by their morphology, input and output connectivity, laminar location, firing properties, and expression of molecular markers. Several of these classes of SOM neurons show unique dynamics and characteristics, such as facilitating synapses, specific axonal projections, intralaminar input, and top-down modulation, which suggest possible computational roles. SOM cells can be differentially modulated by behavioral state depending on their class, sensory system, and behavioral paradigm. The functional effects of such modulation have been studied with optogenetic manipulation of SOM cells, which produces effects on learning and memory, task performance, and the integration of cortical activity. Different classes of SOM cells participate in distinct disinhibitory circuits with different inhibitory partners and in different cortical layers. Through these disinhibitory circuits, SOM cells help encode the behavioral relevance of sensory stimuli by regulating the activity of cortical neurons based on subcortical and intracortical modulatory input. Associative learning leads to long-term changes in the strength of connectivity of SOM cells with other neurons, often influencing the strength of inhibitory input they receive. Thus despite their heterogeneity and variability across cortical areas, current evidence shows that SOM neurons perform unique neural computations, forming not only distinct molecular but also functional subclasses of cortical inhibitory interneurons. PMID:27746722

  6. Structural-Functional Properties of Identified Excitatory and Inhibitory Interneurons within Pre-Bötzinger Complex Respiratory Microcircuits

    PubMed Central

    Koizumi, Hidehiko; Koshiya, Naohiro; Chia, Justine X.; Cao, Fang; Nugent, Joseph; Zhang, Ruli

    2013-01-01

    We comparatively analyzed cellular and circuit properties of identified rhythmic excitatory and inhibitory interneurons within respiratory microcircuits of the neonatal rodent pre-Bötzinger complex (pre-BötC), the structure generating inspiratory rhythm in the brainstem. We combined high-resolution structural–functional imaging, molecular assays for neurotransmitter phenotype identification in conjunction with electrophysiological property phenotyping, and morphological reconstruction of interneurons in neonatal rat and mouse slices in vitro. This approach revealed previously undifferentiated structural–functional features that distinguish excitatory and inhibitory interneuronal populations. We identified distinct subpopulations of pre-BötC glutamatergic, glycinergic, GABAergic, and glycine-GABA coexpressing interneurons. Most commissural pre-BötC inspiratory interneurons were glutamatergic, with a substantial subset exhibiting intrinsic oscillatory bursting properties. Commissural excitatory interneurons projected with nearly planar trajectories to the contralateral pre-BötC, many also with axon collaterals to areas containing inspiratory hypoglossal (XII) premotoneurons and motoneurons. Inhibitory neurons as characterized in the present study did not exhibit intrinsic oscillatory bursting properties, but were electrophysiologically distinguished by more pronounced spike frequency adaptation properties. Axons of many inhibitory neurons projected ipsilaterally also to regions containing inspiratory XII premotoneurons and motoneurons, whereas a minority of inhibitory neurons had commissural axonal projections. Dendrites of both excitatory and inhibitory interneurons were arborized asymmetrically, primarily in the coronal plane. The dendritic fields of inhibitory neurons were more spatially compact than those of excitatory interneurons. Our results are consistent with the concepts of a compartmental circuit organization, a bilaterally coupled excitatory

  7. Canonical Organization of Layer 1 Neuron-Led Cortical Inhibitory and Disinhibitory Interneuronal Circuits

    PubMed Central

    Lee, Alice J.; Wang, Guangfu; Jiang, Xiaolong; Johnson, Seraphina M.; Hoang, Elizabeth T.; Lanté, Fabien; Stornetta, Ruth L.; Beenhakker, Mark P.; Shen, Ying; Julius Zhu, J.

    2015-01-01

    Interneurons play a key role in cortical function and dysfunction, yet organization of cortical interneuronal circuitry remains poorly understood. Cortical Layer 1 (L1) contains 2 general GABAergic interneuron groups, namely single bouquet cells (SBCs) and elongated neurogliaform cells (ENGCs). SBCs predominantly make unidirectional inhibitory connections (SBC→) with L2/3 interneurons, whereas ENGCs frequently form reciprocal inhibitory and electric connections (ENGC↔) with L2/3 interneurons. Here, we describe a systematic investigation of the pyramidal neuron targets of L1 neuron-led interneuronal circuits in the rat barrel cortex with simultaneous octuple whole-cell recordings and report a simple organizational scheme of the interneuronal circuits. Both SBCs→ and ENGC ↔ L2/3 interneuronal circuits connect to L2/3 and L5, but not L6, pyramidal neurons. SBC → L2/3 interneuronal circuits primarily inhibit the entire dendritic–somato–axonal axis of a few L2/3 and L5 pyramidal neurons located within the same column. In contrast, ENGC ↔ L2/3 interneuronal circuits generally inhibit the distal apical dendrite of many L2/3 and L5 pyramidal neurons across multiple columns. Finally, L1 interneuron-led circuits target distinct subcellular compartments of L2/3 and L5 pyramidal neurons in a L2/3 interneuron type-dependent manner. These results suggest that L1 neurons form canonical interneuronal circuits to control information processes in both supra- and infragranular cortical layers. PMID:24554728

  8. Extensive respiratory chain defects in inhibitory interneurones in patients with mitochondrial disease

    PubMed Central

    Lax, Nichola Z.; Grady, John; Laude, Alex; Chan, Felix; Hepplewhite, Philippa D.; Gorman, Grainne; Whittaker, Roger G.; Ng, Yi; Cunningham, Mark O.

    2015-01-01

    Aims Mitochondrial disorders are among the most frequently inherited cause of neurological disease and arise due to mutations in mitochondrial or nuclear DNA. Currently, we do not understand the specific involvement of certain brain regions or selective neuronal vulnerability in mitochondrial disease. Recent studies suggest γ‐aminobutyric acid (GABA)‐ergic interneurones are particularly susceptible to respiratory chain dysfunction. In this neuropathological study, we assess the impact of mitochondrial DNA defects on inhibitory interneurones in patients with mitochondrial disease. Methods Histochemical, immunohistochemical and immunofluorescent assays were performed on post‐mortem brain tissue from 10 patients and 10 age‐matched control individuals. We applied a quantitative immunofluorescent method to interrogate complex I and IV protein expression in mitochondria within GABAergic interneurone populations in the frontal, temporal and occipital cortices. We also evaluated the density of inhibitory interneurones in serial sections to determine if cell loss was occurring. Results We observed significant, global reductions in complex I expression within GABAergic interneurones in frontal, temporal and occipital cortices in the majority of patients. While complex IV expression is more variable, there is reduced expression in patients harbouring m.8344A>G point mutations and POLG mutations. In addition to the severe respiratory chain deficiencies observed in remaining interneurones, quantification of GABAergic cell density showed a dramatic reduction in cell density suggesting interneurone loss. Conclusions We propose that the combined loss of interneurones and severe respiratory deficiency in remaining interneurones contributes to impaired neuronal network oscillations and could underlie development of neurological deficits, such as cognitive impairment and epilepsy, in mitochondrial disease. PMID:25786813

  9. Extensive respiratory chain defects in inhibitory interneurones in patients with mitochondrial disease.

    PubMed

    Lax, Nichola Z; Grady, John; Laude, Alex; Chan, Felix; Hepplewhite, Philippa D; Gorman, Grainne; Whittaker, Roger G; Ng, Yi; Cunningham, Mark O; Turnbull, Doug M

    2016-02-01

    Mitochondrial disorders are among the most frequently inherited cause of neurological disease and arise due to mutations in mitochondrial or nuclear DNA. Currently, we do not understand the specific involvement of certain brain regions or selective neuronal vulnerability in mitochondrial disease. Recent studies suggest γ-aminobutyric acid (GABA)-ergic interneurones are particularly susceptible to respiratory chain dysfunction. In this neuropathological study, we assess the impact of mitochondrial DNA defects on inhibitory interneurones in patients with mitochondrial disease. Histochemical, immunohistochemical and immunofluorescent assays were performed on post-mortem brain tissue from 10 patients and 10 age-matched control individuals. We applied a quantitative immunofluorescent method to interrogate complex I and IV protein expression in mitochondria within GABAergic interneurone populations in the frontal, temporal and occipital cortices. We also evaluated the density of inhibitory interneurones in serial sections to determine if cell loss was occurring. We observed significant, global reductions in complex I expression within GABAergic interneurones in frontal, temporal and occipital cortices in the majority of patients. While complex IV expression is more variable, there is reduced expression in patients harbouring m.8344A>G point mutations and POLG mutations. In addition to the severe respiratory chain deficiencies observed in remaining interneurones, quantification of GABAergic cell density showed a dramatic reduction in cell density suggesting interneurone loss. We propose that the combined loss of interneurones and severe respiratory deficiency in remaining interneurones contributes to impaired neuronal network oscillations and could underlie development of neurological deficits, such as cognitive impairment and epilepsy, in mitochondrial disease. © 2015 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of

  10. Global optogenetic activation of inhibitory interneurons during epileptiform activity.

    PubMed

    Ledri, Marco; Madsen, Marita Grønning; Nikitidou, Litsa; Kirik, Deniz; Kokaia, Merab

    2014-02-26

    Optogenetic techniques provide powerful tools for bidirectional control of neuronal activity and investigating alterations occurring in excitability disorders, such as epilepsy. In particular, the possibility to specifically activate by light-determined interneuron populations expressing channelrhodopsin-2 provides an unprecedented opportunity of exploring their contribution to physiological and pathological network activity. There are several subclasses of interneurons in cortical areas with different functional connectivity to the principal neurons (e.g., targeting their perisomatic or dendritic compartments). Therefore, one could optogenetically activate specific or a mixed population of interneurons and dissect their selective or concerted inhibitory action on principal cells. We chose to explore a conceptually novel strategy involving simultaneous activation of mixed populations of interneurons by optogenetics and study their impact on ongoing epileptiform activity in mouse acute hippocampal slices. Here we demonstrate that such approach results in a brief initial action potential discharge in CA3 pyramidal neurons, followed by prolonged suppression of ongoing epileptiform activity during light exposure. Such sequence of events was caused by massive light-induced release of GABA from ChR2-expressing interneurons. The inhibition of epileptiform activity was less pronounced if only parvalbumin- or somatostatin-expressing interneurons were activated by light. Our data suggest that global optogenetic activation of mixed interneuron populations is a more effective approach for development of novel therapeutic strategies for epilepsy, but the initial action potential generation in principal neurons needs to be taken in consideration.

  11. Diverse roles for ionotropic glutamate receptors on inhibitory interneurons in developing and adult brain.

    PubMed

    Akgül, Gülcan; McBain, Chris J

    2016-10-01

    Glutamate receptor-mediated recruitment of GABAergic inhibitory interneurons is a critical determinant of network processing. Early studies observed that many, but not all, interneuron glutamatergic synapses contain AMPA receptors that are GluA2-subunit lacking and Ca(2+) permeable, making them distinct from AMPA receptors at most principal cell synapses. Subsequent studies demonstrated considerable alignment of synaptic AMPA and NMDA receptor subunit composition within specific subtypes of interneurons, suggesting that both receptor expression profiles are developmentally and functionally linked. Indeed glutamate receptor expression profiles are largely predicted by the embryonic origins of cortical interneurons within the medial and caudal ganglionic eminences of the developing telencephalon. Distinct complements of AMPA and NMDA receptors within different interneuron subpopulations contribute to the differential recruitment of functionally divergent interneuron subtypes by common afferent inputs for appropriate feed-forward and feedback inhibitory drive and network entrainment. In contrast, the lesser-studied kainate receptors, which are often present at both pre- and postsynaptic sites, appear to follow an independent developmental expression profile. Loss of specific ionotropic glutamate receptor (iGluR) subunits during interneuron development has dramatic consequences for both cellular and network function, often precipitating circuit inhibition-excitation imbalances and in some cases lethality. Here we briefly review recent findings highlighting the roles of iGluRs in interneuron development. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  12. The Current Status of Somatostatin-Interneurons in Inhibitory Control of Brain Function and Plasticity

    PubMed Central

    2016-01-01

    The mammalian neocortex contains many distinct inhibitory neuronal populations to balance excitatory neurotransmission. A correct excitation/inhibition equilibrium is crucial for normal brain development, functioning, and controlling lifelong cortical plasticity. Knowledge about how the inhibitory network contributes to brain plasticity however remains incomplete. Somatostatin- (SST-) interneurons constitute a large neocortical subpopulation of interneurons, next to parvalbumin- (PV-) and vasoactive intestinal peptide- (VIP-) interneurons. Unlike the extensively studied PV-interneurons, acknowledged as key components in guiding ocular dominance plasticity, the contribution of SST-interneurons is less understood. Nevertheless, SST-interneurons are ideally situated within cortical networks to integrate unimodal or cross-modal sensory information processing and therefore likely to be important mediators of experience-dependent plasticity. The lack of knowledge on SST-interneurons partially relates to the wide variety of distinct subpopulations present in the sensory neocortex. This review informs on those SST-subpopulations hitherto described based on anatomical, molecular, or electrophysiological characteristics and whose functional roles can be attributed based on specific cortical wiring patterns. A possible role for these subpopulations in experience-dependent plasticity will be discussed, emphasizing on learning-induced plasticity and on unimodal and cross-modal plasticity upon sensory loss. This knowledge will ultimately contribute to guide brain plasticity into well-defined directions to restore sensory function and promote lifelong learning. PMID:27403348

  13. Interneuron- and GABAA receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells

    NASA Astrophysics Data System (ADS)

    He, Qionger; Duguid, Ian; Clark, Beverley; Panzanelli, Patrizia; Patel, Bijal; Thomas, Philip; Fritschy, Jean-Marc; Smart, Trevor G.

    2015-07-01

    Inhibitory synaptic plasticity is important for shaping both neuronal excitability and network activity. Here we investigate the input and GABAA receptor subunit specificity of inhibitory synaptic plasticity by studying cerebellar interneuron-Purkinje cell (PC) synapses. Depolarizing PCs initiated a long-lasting increase in GABA-mediated synaptic currents. By stimulating individual interneurons, this plasticity was observed at somatodendritic basket cell synapses, but not at distal dendritic stellate cell synapses. Basket cell synapses predominantly express β2-subunit-containing GABAA receptors; deletion of the β2-subunit ablates this plasticity, demonstrating its reliance on GABAA receptor subunit composition. The increase in synaptic currents is dependent upon an increase in newly synthesized cell surface synaptic GABAA receptors and is abolished by preventing CaMKII phosphorylation of GABAA receptors. Our results reveal a novel GABAA receptor subunit- and input-specific form of inhibitory synaptic plasticity that regulates the temporal firing pattern of the principal output cells of the cerebellum.

  14. Inhibitory interneurons of the human prefrontal cortex display conserved evolution of the phenotype and related genes.

    PubMed

    Sherwood, Chet C; Raghanti, Mary Ann; Stimpson, Cheryl D; Spocter, Muhammad A; Uddin, Monica; Boddy, Amy M; Wildman, Derek E; Bonar, Christopher J; Lewandowski, Albert H; Phillips, Kimberley A; Erwin, Joseph M; Hof, Patrick R

    2010-04-07

    Inhibitory interneurons participate in local processing circuits, playing a central role in executive cognitive functions of the prefrontal cortex. Although humans differ from other primates in a number of cognitive domains, it is not currently known whether the interneuron system has changed in the course of primate evolution leading to our species. In this study, we examined the distribution of different interneuron subtypes in the prefrontal cortex of anthropoid primates as revealed by immunohistochemistry against the calcium-binding proteins calbindin, calretinin and parvalbumin. In addition, we tested whether genes involved in the specification, differentiation and migration of interneurons show evidence of positive selection in the evolution of humans. Our findings demonstrate that cellular distributions of interneuron subtypes in human prefrontal cortex are similar to other anthropoid primates and can be explained by general scaling rules. Furthermore, genes underlying interneuron development are highly conserved at the amino acid level in primate evolution. Taken together, these results suggest that the prefrontal cortex in humans retains a similar inhibitory circuitry to that in closely related primates, even though it performs functional operations that are unique to our species. Thus, it is likely that other significant modifications to the connectivity and molecular biology of the prefrontal cortex were overlaid on this conserved interneuron architecture in the course of human evolution.

  15. Excitatory and inhibitory synaptic connectivity to layer V fast-spiking interneurons in the freeze lesion model of cortical microgyria

    PubMed Central

    Jin, Xiaoming; Jiang, Kewen

    2014-01-01

    A variety of major developmental cortical malformations are closely associated with clinically intractable epilepsy. Pathophysiological aspects of one such disorder, human polymicrogyria, can be modeled by making neocortical freeze lesions (FL) in neonatal rodents, resulting in the formation of microgyri. Previous studies showed enhanced excitatory and inhibitory synaptic transmission and connectivity in cortical layer V pyramidal neurons in the paramicrogyral cortex. In young adult transgenic mice that express green fluorescent protein (GFP) specifically in parvalbumin positive fast-spiking (FS) interneurons, we used laser scanning photostimulation (LSPS) of caged glutamate to map excitatory and inhibitory synaptic connectivity onto FS interneurons in layer V of paramicrogyral cortex in control and FL groups. The proportion of uncaging sites from which excitatory postsynaptic currents (EPSCs) could be evoked (hotspot ratio) increased slightly but significantly in FS cells of the FL vs. control cortex, while the mean amplitude of LSPS-evoked EPSCs at hotspots did not change. In contrast, the hotspot ratio of inhibitory postsynaptic currents (IPSCs) was significantly decreased in FS neurons of the FL cortex. These alterations in synaptic inputs onto FS interneurons may result in an enhanced inhibitory output. We conclude that alterations in synaptic connectivity to cortical layer V FS interneurons do not contribute to hyperexcitability of the FL model. Instead, the enhanced inhibitory output from these neurons may partially offset an earlier demonstrated increase in synaptic excitation of pyramidal cells and thereby maintain a relative balance between excitation and inhibition in the affected cortical circuitry. PMID:24990567

  16. Gating, modulation and subunit composition of voltage-gated K+ channels in dendritic inhibitory interneurones of rat hippocampus

    PubMed Central

    Lien, Cheng-Chang; Martina, Marco; Schultz, Jobst H; Ehmke, Heimo; Jonas, Peter

    2002-01-01

    GABAergic interneurones are diverse in their morphological and functional properties. Perisomatic inhibitory cells show fast spiking during sustained current injection, whereas dendritic inhibitory cells fire action potentials with lower frequency. We examined functional and molecular properties of K+ channels in interneurones with horizontal dendrites in stratum oriens-alveus (OA) of the hippocampal CA1 region, which mainly comprise somatostatin-positive dendritic inhibitory cells. Voltage-gated K+ currents in nucleated patches isolated from OA interneurones consisted of three major components: a fast delayed rectifier K+ current component that was highly sensitive to external 4-aminopyridine (4-AP) and tetraethylammonium (TEA) (half-maximal inhibitory concentrations < 0.1 mm for both blockers), a slow delayed rectifier K+ current component that was sensitive to high concentrations of TEA, but insensitive to 4-AP, and a rapidly inactivating A-type K+ current component that was blocked by high concentrations of 4-AP, but resistant to TEA. The relative contributions of these components to the macroscopic K+ current were estimated as 57 ± 5, 25 ± 6, and 19 ± 2 %, respectively. Dendrotoxin, a selective blocker of Kv1 channels had only minimal effects on K+ currents in nucleated patches. Coapplication of the membrane-permeant cAMP analogue 8-(4-chlorophenylthio)-adenosine 3′:5′-cyclic monophosphate (cpt-cAMP) and the phosphodiesterase blocker isobutyl-methylxanthine (IBMX) resulted in a selective inhibition of the fast delayed rectifier K+ current component. This inhibition was absent in the presence of the protein kinase A (PKA) inhibitor H-89, implying the involvement of PKA-mediated phosphorylation. Single-cell reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed a high abundance of Kv3.2 mRNA in OA interneurones, whereas the expression level of Kv3.1 mRNA was markedly lower. Similarly, RT-PCR analysis showed a high abundance of Kv4.3 m

  17. GABA Signaling Promotes Synapse Elimination and Axon Pruning in Developing Cortical Inhibitory Interneurons

    PubMed Central

    Wu, Xiaoyun; Fu, Yu; Knott, Graham; Lu, Jiangteng; Di Cristo, Graziella

    2012-01-01

    Accumulating evidence indicates that GABA acts beyond inhibitory synaptic transmission and regulates the development of inhibitory synapses in the vertebrate brain, but the underlying cellular mechanism is not well understood. We have combined live imaging of cortical GABAergic axons across time scales from minutes to days with single-cell genetic manipulation of GABA release to examine its role in distinct steps of inhibitory synapse formation in the mouse neocortex. We have shown previously, by genetic knockdown of GABA synthesis in developing interneurons, that GABA signaling promotes the maturation of inhibitory synapses and axons. Here we found that a complete blockade of GABA release in basket interneurons resulted in an opposite effect, a cell-autonomous increase in axon and bouton density with apparently normal synapse structures. These results not only demonstrate that GABA is unnecessary for synapse formation per se but also uncover a novel facet of GABA in regulating synapse elimination and axon pruning. Live imaging revealed that developing GABAergic axons form a large number of transient boutons, but only a subset was stabilized. Release blockade led to significantly increased bouton stability and filopodia density, increased axon branch extension, and decreased branch retraction. Our results suggest that a major component of GABA function in synapse development is transmission-mediated elimination of subsets of nascent contacts. Therefore, GABA may regulate activity-dependent inhibitory synapse formation by coordinately eliminating certain nascent contacts while promoting the maturation of other nascent synapses. PMID:22219294

  18. Hedgehog Promotes Production of Inhibitory Interneurons in Vivo and in Vitro from Pluripotent Stem Cells

    PubMed Central

    Anderson, Nickesha C.; Chen, Christopher Y.; Grabel, Laura

    2016-01-01

    Loss or damage of cortical inhibitory interneurons characterizes a number of neurological disorders. There is therefore a great deal of interest in learning how to generate these neurons from a pluripotent stem cell source so they can be used for cell replacement therapies or for in vitro drug testing. To design a directed differentiation protocol, a number of groups have used the information gained in the last 15 years detailing the conditions that promote interneuron progenitor differentiation in the ventral telencephalon during embryogenesis. The use of Hedgehog peptides and agonists is featured prominently in these approaches. We review here the data documenting a role for Hedgehog in specifying interneurons in both the embryonic brain during development and in vitro during the directed differentiation of pluripotent stem cells. PMID:29615590

  19. Preferential Representation of Past Outcome Information and Future Choice Behavior by Putative Inhibitory Interneurons Rather Than Putative Pyramidal Neurons in the Primate Dorsal Anterior Cingulate Cortex.

    PubMed

    Kawai, Takashi; Yamada, Hiroshi; Sato, Nobuya; Takada, Masahiko; Matsumoto, Masayuki

    2018-05-02

    The dorsal anterior cingulate cortex (dACC) plays crucial roles in monitoring the outcome of a choice and adjusting a subsequent choice behavior based on the outcome information. In the present study, we investigated how different types of dACC neurons, that is, putative pyramidal neurons and putative inhibitory interneurons, contribute to these processes. We analyzed single-unit database obtained from the dACC in monkeys performing a reversal learning task. The monkey was required to adjust choice behavior from past outcome experiences. Depending on their action potential waveforms, the recorded neurons were classified into putative pyramidal neurons and putative inhibitory interneurons. We found that these neurons do not equally contribute to outcome monitoring and behavioral adjustment. Although both neuron types evenly responded to the current outcome, a larger proportion of putative inhibitory interneurons than putative pyramidal neurons stored the information about the past outcome. The putative inhibitory interneurons further represented choice-related signals more frequently, such as whether the monkey would shift the last choice to an alternative at the next choice opportunity. Our findings suggest that putative inhibitory interneurons, which are thought not to project to brain areas outside the dACC, preferentially transmit signals that would adjust choice behavior based on past outcome experiences.

  20. Synaptic reorganization of inhibitory hilar interneuron circuitry after traumatic brain injury in mice

    PubMed Central

    Hunt, Robert F.; Scheff, Stephen W.; Smith, Bret N.

    2011-01-01

    Functional plasticity of synaptic networks in the dentate gyrus has been implicated in the development of posttraumatic epilepsy and in cognitive dysfunction after traumatic brain injury, but little is known about potentially pathogenic changes in inhibitory circuits. We examined synaptic inhibition of dentate granule cells and excitability of surviving GABAergic hilar interneurons 8–13 weeks after cortical contusion brain injury in transgenic mice that express enhanced green fluorescent protein in a subpopulation of inhibitory neurons. Whole-cell voltage-clamp recordings in granule cells revealed a reduction in spontaneous and miniature IPSC frequency after head injury; no concurrent change in paired-pulse ratio was found in granule cells after paired electrical stimulation of the hilus. Despite reduced inhibitory input to granule cells, action potential and EPSC frequencies were increased in hilar GABA neurons from slices ipsilateral to the injury, versus those from control or contralateral slices. Further, increased excitatory synaptic activity was detected in hilar GABA neurons ipsilateral to the injury after glutamate photostimulation of either the granule cell or CA3 pyramidal cell layers. Together, these findings suggest that excitatory drive to surviving hilar GABA neurons is enhanced by convergent input from both pyramidal and granule cells, but synaptic inhibition of granule cells is not fully restored after injury. This rewiring of circuitry regulating hilar inhibitory neurons may reflect an important compensatory mechanism, but it may also contribute to network destabilization by increasing the relative impact of surviving individual interneurons in controlling granule cell excitability in the posttraumatic dentate gyrus. PMID:21543618

  1. Presynaptic control of transmission along the pathway mediating disynaptic reciprocal inhibition in the cat

    PubMed Central

    Enríquez-Denton, M; Nielsen, J; Perreault, M-C; Morita, H; Petersen, N; Hultborn, H

    2000-01-01

    In cat lumbar motoneurones, disynaptic inhibitory postsynaptic potentials (IPSPs) evoked by stimulation of antagonist motor nerves were depressed for at least 150 ms following conditioning stimulation of flexor (1.7-2 times threshold (T)) and ankle extensor (5T) nerves. The aim of the present study was to investigate the possibility that this depression is caused by presynaptic inhibitory mechanisms acting at the terminals of group I afferent fibres projecting to the Ia inhibitory interneurones and/or the terminals of these interneurones to the target motoneurones. Conditioning stimulation of flexor, but not ankle extensor, nerves evoked a depression of the monosynaptic Ia excitatory postsynaptic potentials (EPSPs) recorded intracellularly in Ia inhibitory interneurones. This depression lasted between 200 and 700 ms and was not accompanied by a depression of the monosynaptic EPSPs evoked by stimulation of descending pathways. These results suggest that flexor, but not ankle extensor, group I afferent fibres can modulate sensory transmission at the synapse between Ia afferent fibres and Ia inhibitory interneurones. Conditioning stimulation of flexor muscle nerves, extensor muscle nerves and cutaneous nerves produced a long-lasting increase in excitability of the terminals of the Ia inhibitory interneurones. The increase in the excitability of the terminals was not secondary to an electrotonic spread of synaptic excitation at the soma. Indeed, concomitant with the excitability increase of the terminals there were signs of synaptic inhibition in the soma. The unitary IPSPs induced in target motoneurones following the spike activity of single Ia inhibitory interneurones were depressed by conditioning stimulation of muscle and cutaneous nerves. Since the conditioning stimulation also evoked compound IPSPs in those motoneurones, a firm conclusion as to whether unitary IPSP depression involved presynaptic inhibitory mechanism of the terminals of the interneurones could

  2. A combined electrophysiological and morphological study of neuropeptide Y–expressing inhibitory interneurons in the spinal dorsal horn of the mouse

    PubMed Central

    Iwagaki, Noboru; Ganley, Robert P.; Dickie, Allen C.; Polgár, Erika; Hughes, David I.; Del Rio, Patricia; Revina, Yulia; Watanabe, Masahiko; Todd, Andrew J.; Riddell, John S.

    2015-01-01

    Abstract The spinal dorsal horn contains numerous inhibitory interneurons that control transmission of somatosensory information. Although these cells have important roles in modulating pain, we still have limited information about how they are incorporated into neuronal circuits, and this is partly due to difficulty in assigning them to functional populations. Around 15% of inhibitory interneurons in laminae I-III express neuropeptide Y (NPY), but little is known about this population. We therefore used a combined electrophysiological/morphological approach to investigate these cells in mice that express green fluorescent protein (GFP) under control of the NPY promoter. We show that GFP is largely restricted to NPY-immunoreactive cells, although it is only expressed by a third of those in lamina I-II. Reconstructions of recorded neurons revealed that they were morphologically heterogeneous, but never islet cells. Many NPY-GFP cells (including cells in lamina III) appeared to be innervated by C fibres that lack transient receptor potential vanilloid-1, and consistent with this, we found that some lamina III NPY-immunoreactive cells were activated by mechanical noxious stimuli. Projection neurons in lamina III are densely innervated by NPY-containing axons. Our results suggest that this input originates from a small subset of NPY-expressing interneurons, with the projection cells representing only a minority of their output. Taken together with results of previous studies, our findings indicate that somatodendritic morphology is of limited value in classifying functional populations among inhibitory interneurons in the dorsal horn. Because many NPY-expressing cells respond to noxious stimuli, these are likely to have a role in attenuating pain and limiting its spread. PMID:26882346

  3. Regulation of synapse development by Vgat deletion from ErbB4-positive interneurons.

    PubMed

    Lin, Thiri W; Tan, Zhibing; Barik, Arnab; Yin, Dong-Min; Brudvik, Egil; Wang, Hongsheng; Xiong, Wen-Cheng; Mei, Lin

    2018-02-05

    GABA signaling has been implicated in neural development; however, in vivo genetic evidence is missing because mutant mice lacking GABA activity die prematurely. Here, we studied synapse development by ablating vesicular GABA transporter Vgat in in ErbB4-positive (ErbB4+) interneurons. We show that inhibitory axo-somatic synapses onto pyramidal neurons vary from one cortical layer to another; however, inhibitory synapses on axon initial segments (AISs) were similar across layers. On the other hand, PV-positive (PV+)/ErbB4+ interneurons and PV-only interneurons receive a higher number of inhibitory synapses from PV+ErbB4+ interneurons, compared with ErbB4-only interneurons. Notably, Vgat deletion from ErbB4+ interneurons reduced axo-somatic or axo-axonic synapses from PV+ErbB4+ interneurons onto excitatory neurons. This effect was associated with corresponding changes in neurotransmission. However, the Vgat mutation seemed to have little effect on inhibitory synapses onto PV+ and/or ErbB4+ interneurons. Interestingly, perineuronal nets (PNNs), extracellular matrix structures implicated in maturation, survival, protection and plasticity of PV+ interneurons, were increased in the cortex of ErbB4-Vgat-/- mice. No apparent difference was observed between males and females. These results demonstrate that Vgat of ErbB4+ interneurons is essential for the development of inhibitory synapses onto excitatory neurons and suggest a role of GABA in circuit assembly. SIGNIFICANCE STATEMENT GABA has been implicated in neural development; however, in vivo genetic evidence is missing because mutant mice lacking GABA die prematurely. To this end, we ablated Vgat in ErbB4+ interneurons in an inducible manner. We provide evidence that the formation of inhibitory as well as excitatory synapses onto excitatory neurons requires Vgat in interneurons. In particular, inhibitory axo-somatic and axo-axonic synapses are more vulnerable. Our results suggest a role of GABA in circuit assembly

  4. Parvalbumin-producing cortical interneurons receive inhibitory inputs on proximal portions and cortical excitatory inputs on distal dendrites.

    PubMed

    Kameda, Hiroshi; Hioki, Hiroyuki; Tanaka, Yasuyo H; Tanaka, Takuma; Sohn, Jaerin; Sonomura, Takahiro; Furuta, Takahiro; Fujiyama, Fumino; Kaneko, Takeshi

    2012-03-01

    To examine inputs to parvalbumin (PV)-producing interneurons, we generated transgenic mice expressing somatodendritic membrane-targeted green fluorescent protein specifically in the interneurons, and completely visualized their dendrites and somata. Using immunolabeling for vesicular glutamate transporter (VGluT)1, VGluT2, and vesicular GABA transporter, we found that VGluT1-positive terminals made contacts 4- and 3.1-fold more frequently with PV-producing interneurons than VGluT2-positive and GABAergic terminals, respectively, in the primary somatosensory cortex. Even in layer 4, where VGluT2-positive terminals were most densely distributed, VGluT1-positive inputs to PV-producing interneurons were 2.4-fold more frequent than VGluT2-positive inputs. Furthermore, although GABAergic inputs to PV-producing interneurons were as numerous as VGluT2-positive inputs in most cortical layers, GABAergic inputs clearly preferred the proximal dendrites and somata of the interneurons, indicating that the sites of GABAergic inputs were more optimized than those of VGluT2-positive inputs. Simulation analysis with a PV-producing interneuron model compatible with the present morphological data revealed a plausible reason for this observation, by showing that GABAergic and glutamatergic postsynaptic potentials evoked by inputs to distal dendrites were attenuated to 60 and 87%, respectively, of those evoked by somatic inputs. As VGluT1-positive and VGluT2-positive axon terminals were presumed to be cortical and thalamic glutamatergic inputs, respectively, cortical excitatory inputs to PV-producing interneurons outnumbered the thalamic excitatory and intrinsic inhibitory inputs more than two-fold in any cortical layer. Although thalamic inputs are known to evoke about two-fold larger unitary excitatory postsynaptic potentials than cortical ones, the present results suggest that cortical inputs control PV-producing interneurons at least as strongly as thalamic inputs. © 2012 The

  5. Parvalbumin and neuropeptide Y expressing hippocampal GABA-ergic inhibitory interneuron numbers decline in a model of Gulf War illness.

    PubMed

    Megahed, Tarick; Hattiangady, Bharathi; Shuai, Bing; Shetty, Ashok K

    2014-01-01

    Cognitive dysfunction is amongst the most conspicuous symptoms in Gulf War illness (GWI). Combined exposure to the nerve gas antidote pyridostigmine bromide (PB), pesticides and stress during the Persian Gulf War-1 (PGW-1) are presumed to be among the major causes of GWI. Indeed, our recent studies in rat models have shown that exposure to GWI-related (GWIR) chemicals and mild stress for 4 weeks engenders cognitive impairments accompanied with several detrimental changes in the hippocampus. In this study, we tested whether reduced numbers of hippocampal gamma-amino butyric acid (GABA)-ergic interneurons are among the pathological changes induced by GWIR-chemicals and stress. Animals were exposed to low doses of GWIR-chemicals and mild stress for 4 weeks. Three months after this exposure, subpopulations of GABA-ergic interneurons expressing the calcium binding protein parvalbumin (PV), the neuropeptide Y (NPY) and somatostatin (SS) in the hippocampus were stereologically quantified. Animals exposed to GWIR-chemicals and stress for 4 weeks displayed reduced numbers of PV-expressing GABA-ergic interneurons in the dentate gyrus and NPY-expressing interneurons in the CA1 and CA3 subfields. However, no changes in SS+ interneuron population were observed in the hippocampus. Furthermore, GABA-ergic interneuron deficiency in these animals was associated with greatly diminished hippocampus neurogenesis. Because PV+ and NPY+ interneurons play roles in maintaining normal cognitive function and neurogenesis, and controlling the activity of excitatory neurons in the hippocampus, reduced numbers of these interneurons may be one of the major causes of cognitive dysfunction and reduced neurogenesis observed in GWI. Hence, strategies that improve inhibitory neurotransmission in the hippocampus may prove beneficial for reversing cognitive dysfunction in GWI.

  6. The effect of propofol postconditioning on the expression of K(+)-Cl(-)-co-transporter 2 in GABAergic inhibitory interneurons of acute ischemia/reperfusion injury rats.

    PubMed

    Wang, Hongbai; Liu, Shuying; Wang, Haiyun; Wang, Guolin; Zhu, Ai

    2015-02-09

    It has been shown in our previous study that propofol postconditioning enhanced the activity of phosphatidylinositol-3-kinase (PI3K) and prevented the internalization of GluR2 subunit of α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, thus provided neuroprotection in cerebral ischemia/reperfusion (I/R) injury. Regarding inhibitory system in CNS, K(+)-Cl(-)-co-transporter 2 (KCC2), a Cl(-) extruder, plays a critical role in gamma-aminobutyric acid (GABA) inhibitory effect in mature central neurons. However, the effect of propofol postconditioning on the expression of KCC2 in GABAergic interneurons is unclear. Therefore, in this article we describe the role of KCC2 in GABAergic interneurons in the ipsilateral hippocampal CA1 region of adult rats and the effects of propofol postconditioning on this region. Herein we demonstrate that propofol postconditioning (20mg/kg/h, 2h) improved rats' neurobehavioral abilities, increased the number of survival neurons, and up-regulated neuronal KCC2 expression in glutamic acid decarboxylase 67 (GAD67) expressing GABAergic interneurons in hippocampal CA1 region at 24h after I/R. In contrast, when rats were injected with the KCC2 antagonist, [(dihydroindenyl)oxy] alkanoic acid (DIOA), the neuroprotective effects induced by propofol postconditioning were reversed. Our study indicated that propofol postconditioning increased the expression of KCC2 in inhibitory GABAergic interneurons, thus providing acute neuroprotection to rats who had undergone cerebral I/R injury. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Cortical Interneuron Subtypes Vary in Their Axonal Action Potential Properties

    PubMed Central

    Casale, Amanda E.; Foust, Amanda J.; Bal, Thierry

    2015-01-01

    The role of interneurons in cortical microcircuits is strongly influenced by their passive and active electrical properties. Although different types of interneurons exhibit unique electrophysiological properties recorded at the soma, it is not yet clear whether these differences are also manifested in other neuronal compartments. To address this question, we have used voltage-sensitive dye to image the propagation of action potentials into the fine collaterals of axons and dendrites in two of the largest cortical interneuron subtypes in the mouse: fast-spiking interneurons, which are typically basket or chandelier neurons; and somatostatin containing interneurons, which are typically regular spiking Martinotti cells. We found that fast-spiking and somatostatin-expressing interneurons differed in their electrophysiological characteristics along their entire dendrosomatoaxonal extent. The action potentials generated in the somata and axons, including axon collaterals, of somatostatin-expressing interneurons are significantly broader than those generated in the same compartments of fast-spiking inhibitory interneurons. In addition, action potentials back-propagated into the dendrites of somatostatin-expressing interneurons much more readily than fast-spiking interneurons. Pharmacological investigations suggested that axonal action potential repolarization in both cell types depends critically upon Kv1 channels, whereas the axonal and somatic action potentials of somatostatin-expressing interneurons also depend on BK Ca2+-activated K+ channels. These results indicate that the two broad classes of interneurons studied here have expressly different subcellular physiological properties, allowing them to perform unique computational roles in cortical circuit operations. SIGNIFICANCE STATEMENT Neurons in the cerebral cortex are of two major types: excitatory and inhibitory. The proper balance of excitation and inhibition in the brain is critical for its operation. Neurons

  8. Cortical Interneuron Subtypes Vary in Their Axonal Action Potential Properties.

    PubMed

    Casale, Amanda E; Foust, Amanda J; Bal, Thierry; McCormick, David A

    2015-11-25

    The role of interneurons in cortical microcircuits is strongly influenced by their passive and active electrical properties. Although different types of interneurons exhibit unique electrophysiological properties recorded at the soma, it is not yet clear whether these differences are also manifested in other neuronal compartments. To address this question, we have used voltage-sensitive dye to image the propagation of action potentials into the fine collaterals of axons and dendrites in two of the largest cortical interneuron subtypes in the mouse: fast-spiking interneurons, which are typically basket or chandelier neurons; and somatostatin containing interneurons, which are typically regular spiking Martinotti cells. We found that fast-spiking and somatostatin-expressing interneurons differed in their electrophysiological characteristics along their entire dendrosomatoaxonal extent. The action potentials generated in the somata and axons, including axon collaterals, of somatostatin-expressing interneurons are significantly broader than those generated in the same compartments of fast-spiking inhibitory interneurons. In addition, action potentials back-propagated into the dendrites of somatostatin-expressing interneurons much more readily than fast-spiking interneurons. Pharmacological investigations suggested that axonal action potential repolarization in both cell types depends critically upon Kv1 channels, whereas the axonal and somatic action potentials of somatostatin-expressing interneurons also depend on BK Ca(2+)-activated K(+) channels. These results indicate that the two broad classes of interneurons studied here have expressly different subcellular physiological properties, allowing them to perform unique computational roles in cortical circuit operations. Neurons in the cerebral cortex are of two major types: excitatory and inhibitory. The proper balance of excitation and inhibition in the brain is critical for its operation. Neurons contain three main

  9. Parvalbumin-expressing interneurons can act solo while somatostatin-expressing interneurons act in chorus in most cases on cortical pyramidal cells.

    PubMed

    Safari, Mir-Shahram; Mirnajafi-Zadeh, Javad; Hioki, Hiroyuki; Tsumoto, Tadaharu

    2017-10-06

    Neural circuits in the cerebral cortex consist primarily of excitatory pyramidal (Pyr) cells and inhibitory interneurons. Interneurons are divided into several subtypes, in which the two major groups are those expressing parvalbumin (PV) or somatostatin (SOM). These subtypes of interneurons are reported to play distinct roles in tuning and/or gain of visual response of pyramidal cells in the visual cortex. It remains unclear whether there is any quantitative and functional difference between the PV → Pyr and SOM → Pyr connections. We compared unitary inhibitory postsynaptic currents (uIPSCs) evoked by electrophysiological activation of single presynaptic interneurons with population IPSCs evoked by photo-activation of a mass of interneurons in vivo and in vitro in transgenic mice in which PV or SOM neurons expressed channelrhodopsin-2, and found that at least about 14 PV neurons made strong connections with a postsynaptic Pyr cell while a much larger number of SOM neurons made weak connections. Activation or suppression of single PV neurons modified visual responses of postsynaptic Pyr cells in 6 of 7 pairs whereas that of single SOM neurons showed no significant modification in 8 of 11 pairs, suggesting that PV neurons can act solo whereas most of SOM neurons may act in chorus on Pyr cells.

  10. Coherent ongoing subthreshold state of a cortical neural network regulated by slow- and fast-spiking interneurons.

    PubMed

    Hoshino, Osamu

    2006-12-01

    Although details of cortical interneurons in anatomy and physiology have been well understood, little is known about how they contribute to ongoing spontaneous neuronal activity that could have a great impact on subsequent neuronal information processing. Simulating a cortical neural network model of an early sensory area, we investigated whether and how two distinct types of inhibitory interneurons, or fast-spiking interneurons with narrow axonal arbors and slow-spiking interneurons with wide axonal arbors, have a spatiotemporal influence on the ongoing activity of principal cells and subsequent cognitive information processing. In the model, dynamic cell assemblies, or population activation of principal cells, expressed information about specific sensory features. Within cell assemblies, fast-spiking interneurons give a feedback inhibitory effect on principal cells. Between cell assemblies, slow-spiking interneurons give a lateral inhibitory effect on principal cells. Here, we show that these interneurons keep the network at a subthreshold level for action potential generation under the ongoing state, by which the reaction time of principal cells to sensory stimulation could be accelerated. We suggest that the best timing of inhibition mediated by fast-spiking interneurons and slow-spiking interneurons allows the network to remain near threshold for rapid responses to input.

  11. Excitatory interneurons dominate sensory processing in the spinal substantia gelatinosa of rat

    PubMed Central

    Santos, Sónia F A; Rebelo, Sandra; Derkach, Victor A; Safronov, Boris V

    2007-01-01

    Substantia gelatinosa (SG, lamina II) is a spinal cord region where most unmyelinated primary afferents terminate and the central nociceptive processing begins. It is formed by several distinct groups of interneurons whose functional properties and synaptic connections are poorly understood, in part, because recordings from synaptically coupled pairs of SG neurons are quite challenging due to a very low probability of finding connected cells. Here, we describe an efficient method for identifying synaptically coupled interneurons in rat spinal cord slices and characterizing their excitatory or inhibitory function. Using tight-seal whole-cell recordings and a cell-attached stimulation technique, we routinely tested about 1500 SG interneurons, classifying 102 of them as monosynaptically connected to neurons in lamina I–III. Surprisingly, the vast majority of SG interneurons (n = 87) were excitatory and glutamatergic, while only 15 neurons were inhibitory. According to their intrinsic firing properties, these 102 SG neurons were also classified as tonic (n = 49), adapting (n = 17) or delayed-firing neurons (n = 36). All but two tonic neurons and all adapting neurons were excitatory interneurons. Of 36 delayed-firing neurons, 23 were excitatory and 13 were inhibitory. We conclude that sensory integration in the intrinsic SG neuronal network is dominated by excitatory interneurons. Such organization of neuronal circuitries in the spinal SG can be important for nociceptive encoding. PMID:17331995

  12. A Feedforward Inhibitory Circuit Mediated by CB1-Expressing Fast-Spiking Interneurons in the Nucleus Accumbens.

    PubMed

    Wright, William J; Schlüter, Oliver M; Dong, Yan

    2017-04-01

    The nucleus accumbens (NAc) gates motivated behaviors through the functional output of principle medium spiny neurons (MSNs), whereas dysfunctional output of NAc MSNs contributes to a variety of psychiatric disorders. Fast-spiking interneurons (FSIs) are sparsely distributed throughout the NAc, forming local feedforward inhibitory circuits. It remains elusive how FSI-based feedforward circuits regulate the output of NAc MSNs. Here, we investigated a distinct subpopulation of NAc FSIs that express the cannabinoid receptor type-1 (CB1). Using a combination of paired electrophysiological recordings and pharmacological approaches, we characterized and compared feedforward inhibition of NAc MSNs from CB1 + FSIs and lateral inhibition from recurrent MSN collaterals. We observed that CB1 + FSIs exerted robust inhibitory control over a large percentage of nearby MSNs in contrast to local MSN collaterals that provided only sparse and weak inhibitory input to their neighboring MSNs. Furthermore, CB1 + FSI-mediated feedforward inhibition was preferentially suppressed by endocannabinoid (eCB) signaling, whereas MSN-mediated lateral inhibition was unaffected. Finally, we demonstrated that CB1 + FSI synapses onto MSNs are capable of undergoing experience-dependent long-term depression in a voltage- and eCB-dependent manner. These findings demonstrated that CB1 + FSIs are a major source of local inhibitory control of MSNs and a critical component of the feedforward inhibitory circuits regulating the output of the NAc.

  13. A Feedforward Inhibitory Circuit Mediated by CB1-Expressing Fast-Spiking Interneurons in the Nucleus Accumbens

    PubMed Central

    Wright, William J; Schlüter, Oliver M; Dong, Yan

    2017-01-01

    The nucleus accumbens (NAc) gates motivated behaviors through the functional output of principle medium spiny neurons (MSNs), whereas dysfunctional output of NAc MSNs contributes to a variety of psychiatric disorders. Fast-spiking interneurons (FSIs) are sparsely distributed throughout the NAc, forming local feedforward inhibitory circuits. It remains elusive how FSI-based feedforward circuits regulate the output of NAc MSNs. Here, we investigated a distinct subpopulation of NAc FSIs that express the cannabinoid receptor type-1 (CB1). Using a combination of paired electrophysiological recordings and pharmacological approaches, we characterized and compared feedforward inhibition of NAc MSNs from CB1+ FSIs and lateral inhibition from recurrent MSN collaterals. We observed that CB1+ FSIs exerted robust inhibitory control over a large percentage of nearby MSNs in contrast to local MSN collaterals that provided only sparse and weak inhibitory input to their neighboring MSNs. Furthermore, CB1+ FSI-mediated feedforward inhibition was preferentially suppressed by endocannabinoid (eCB) signaling, whereas MSN-mediated lateral inhibition was unaffected. Finally, we demonstrated that CB1+ FSI synapses onto MSNs are capable of undergoing experience-dependent long-term depression in a voltage- and eCB-dependent manner. These findings demonstrated that CB1+ FSIs are a major source of local inhibitory control of MSNs and a critical component of the feedforward inhibitory circuits regulating the output of the NAc. PMID:27929113

  14. Focal inhibitory interneuron loss and principal cell hyperexcitability in the rat hippocampus after microinjection of a neurotoxic conjugate of saporin and a peptidase-resistant analog of Substance P.

    PubMed

    Martin, J L; Sloviter, R S

    2001-07-23

    Episodes of prolonged seizures or head trauma produce chronic hippocampal network hyperexcitability hypothesized to result primarily from inhibitory interneuron loss or dysfunction. The possibly causal role of inhibitory neuron failure in the development of epileptiform pathophysiology remains unclear because global neurologic injuries produce such a multitude of effects. The recent finding that Substance P receptors (SPRs) are expressed exclusively in the rat hippocampus by inhibitory interneurons provided the rationale for attempting to ablate interneurons selectively by using neurotoxic conjugates of SPR ligands and the ribosome inactivating protein saporin that specifically target Substance P receptor-expressing cells. Whereas intrahippocampal microinjection of a conjugate of native SP and saporin produced significant nonspecific damage at concentrations needed to produce even limited selective loss of SPR-positive cells, a conjugate of saporin and the more potent and peptidase-resistant SP analog [Sar(9), Met(O(2))(11)] Substance P (SSP-saporin) caused negligible nonspecific damage at the injection site, and a virtually complete loss of SPR-like immunoreactivity (LI) up to 1 mm from the injection site. Within the SPR depletion zone, immunoreactivities for most GABA-, parvalbumin-, somatostatin-, and cholecystokinin-immunoreactive cells and fibers were eliminated. The few interneurons detectable within the affected zone were devoid of SPR-LI. The apparent loss of interneurons was selective in that calbindin- and glutamate receptor subunit 2 (GluR2) -positive principal cells survived within the affected zone, as did myelinated fibers and the extrinsic calretinin- and tyrosine hydroxylase--immunoreactive terminals of subcortical afferents. An apparent lack of reactive synaptic reorganization in response to interneuron loss was indicated by zinc transporter-3 (ZnT3)-- and beta-synuclein--LI, as well as by Timm staining, all of which revealed relatively normal

  15. Fast spiking interneuron control of seizure propagation in a cortical slice model of focal epilepsy

    PubMed Central

    Cammarota, Mario; Losi, Gabriele; Chiavegato, Angela; Zonta, Micaela; Carmignoto, Giorgio

    2013-01-01

    In different animal models of focal epilepsy, seizure-like ictal discharge propagation is transiently opposed by feedforward inhibition. The specific cellular source of this signal and the mechanism by which inhibition ultimately becomes ineffective are, however, undefined. We used a brain slice model to study how focal ictal discharges that were repetitively evoked from the same site, and at precise times, propagate across the cortex. We used Ca2+ imaging and simultaneous single/dual cell recordings from pyramidal neurons (PyNs) and different classes of interneurons in rodents, including G42 and GIN transgenic mice expressing the green fluorescence protein in parvalbumin (Pv)-fast spiking (FS) and somatostatin (Som) interneurons, respectively. We found that these two classes of interneurons fired intensively shortly after ictal discharge generation at the focus. The inhibitory barrages that were recorded in PyNs occurred in coincidence with Pv-FS, but not with Som interneuron burst discharges. Furthermore, the strength of inhibitory barrages increased or decreased in parallel with increased or decreased firing in Pv-FS interneurons but not in Som interneurons. A firing impairment of Pv-FS interneurons caused by a membrane depolarization was found to precede ictal discharge onset in neighbouring pyramidal neurons. This event may account for the collapse of local inhibition that allows spatially defined clusters of PyNs to be recruited into propagating ictal discharges. Our study demonstrates that Pv-FS interneurons are a major source of the inhibitory barrages that oppose ictal discharge propagation and raises the possibility that targeting Pv-FS interneurons represents a new therapeutic strategy to prevent the generalization of human focal seizures. PMID:23207591

  16. Novel Fast Adapting Interneurons Mediate Cholinergic-Induced Fast GABAA IPSCs In Striatal Spiny Neurons

    PubMed Central

    Faust, Thomas W.; Assous, Maxime; Shah, Fulva; Tepper, James M.; Koós, Tibor

    2015-01-01

    Previous work suggests that neostriatal cholinergic interneurons control the activity of several classes of GABAergic interneurons through fast nicotinic receptor mediated synaptic inputs. Although indirect evidence has suggested the existence of several classes of interneurons controlled by this mechanism only one such cell type, the neuropeptide-Y expressing neurogliaform neuron, has been identified to date. Here we tested the hypothesis that in addition to the neurogliaform neurons that elicit slow GABAergic inhibitory responses, another interneuron type exists in the striatum that receives strong nicotinic cholinergic input and elicits conventional fast GABAergic synaptic responses in projection neurons. We obtained in vitro slice recordings from double transgenic mice in which Channelrhodopsin-2 was natively expressed in cholinergic neurons and a population of serotonin receptor-3a-Cre expressing GABAergic interneurons were visualized with tdTomato. We show that among the targeted GABAergic interneurons a novel type of interneuron, termed the fast-adapting interneuron, can be identified that is distinct from previously known interneurons based on immunocytochemical and electrophysiological criteria. We show using optogenetic activation of cholinergic inputs that fast-adapting interneurons receive a powerful supra-threshold nicotinic cholinergic input in vitro. Moreover, fast adapting neurons are densely connected to projection neurons and elicit fast, GABAA receptor mediated inhibitory postsynaptic responses. The nicotinic receptor mediated activation of fast-adapting interneurons may constitute an important mechanism through which cholinergic interneurons control the activity of projection neurons and perhaps the plasticity of their synaptic inputs when animals encounter reinforcing or otherwise salient stimuli. PMID:25865337

  17. Differential inputs to striatal cholinergic and parvalbumin interneurons imply functional distinctions

    PubMed Central

    Klug, Jason R; Engelhardt, Max D; Cadman, Cara N; Li, Hao; Smith, Jared B; Ayala, Sarah; Williams, Elora W; Hoffman, Hilary

    2018-01-01

    Striatal cholinergic (ChAT) and parvalbumin (PV) interneurons exert powerful influences on striatal function in health and disease, yet little is known about the organization of their inputs. Here using rabies tracing, electrophysiology and genetic tools, we compare the whole-brain inputs to these two types of striatal interneurons and dissect their functional connectivity in mice. ChAT interneurons receive a substantial cortical input from associative regions of cortex, such as the orbitofrontal cortex. Amongst subcortical inputs, a previously unknown inhibitory thalamic reticular nucleus input to striatal PV interneurons is identified. Additionally, the external segment of the globus pallidus targets striatal ChAT interneurons, which is sufficient to inhibit tonic ChAT interneuron firing. Finally, we describe a novel excitatory pathway from the pedunculopontine nucleus that innervates ChAT interneurons. These results establish the brain-wide direct inputs of two major types of striatal interneurons and allude to distinct roles in regulating striatal activity and controlling behavior. PMID:29714166

  18. Resonant Interneurons Can Increase Robustness of Gamma Oscillations.

    PubMed

    Tikidji-Hamburyan, Ruben A; Martínez, Joan José; White, John A; Canavier, Carmen C

    2015-11-25

    Gamma oscillations are believed to play a critical role in in information processing, encoding, and retrieval. Inhibitory interneuronal network gamma (ING) oscillations may arise from a coupled oscillator mechanism in which individual neurons oscillate or from a population oscillator in which individual neurons fire sparsely and stochastically. All ING mechanisms, including the one proposed herein, rely on alternating waves of inhibition and windows of opportunity for spiking. The coupled oscillator model implemented with Wang-Buzsáki model neurons is not sufficiently robust to heterogeneity in excitatory drive, and therefore intrinsic frequency, to account for in vitro models of ING. Similarly, in a tightly synchronized regime, the stochastic population oscillator model is often characterized by sparse firing, whereas interneurons both in vivo and in vitro do not fire sparsely during gamma, but rather on average every other cycle. We substituted so-called resonator neural models, which exhibit class 2 excitability and postinhibitory rebound (PIR), for the integrators that are typically used. This results in much greater robustness to heterogeneity that actually increases as the average participation in spikes per cycle approximates physiological levels. Moreover, dynamic clamp experiments that show autapse-induced firing in entorhinal cortical interneurons support the idea that PIR can serve as a network gamma mechanism. Furthermore, parvalbumin-positive (PV(+)) cells were much more likely to display both PIR and autapse-induced firing than GAD2(+) cells, supporting the view that PV(+) fast-firing basket cells are more likely to exhibit class 2 excitability than other types of inhibitory interneurons. Gamma oscillations are believed to play a critical role in information processing, encoding, and retrieval. Networks of inhibitory interneurons are thought to be essential for these oscillations. We show that one class of interneurons with an abrupt onset of firing

  19. Cellular and Synaptic Properties of Local Inhibitory Circuits.

    PubMed

    Hull, Court

    2017-05-01

    Inhibitory interneurons play a key role in sculpting the information processed by neural circuits. Despite the wide range of physiologically and morphologically distinct types of interneurons that have been identified, common principles have emerged that have shed light on how synaptic inhibition operates, both mechanistically and functionally, across cell types and circuits. This introduction summarizes how electrophysiological approaches have been used to illuminate these key principles, including basic interneuron circuit motifs, the functional properties of inhibitory synapses, and the main roles for synaptic inhibition in regulating neural circuit function. It also highlights how some key electrophysiological methods and experiments have advanced our understanding of inhibitory synapse function. © 2017 Cold Spring Harbor Laboratory Press.

  20. Emergent gamma synchrony in all-to-all interneuronal networks.

    PubMed

    Ratnadurai-Giridharan, Shivakeshavan; Khargonekar, Pramod P; Talathi, Sachin S

    2015-01-01

    We investigate the emergence of in-phase synchronization in a heterogeneous network of coupled inhibitory interneurons in the presence of spike timing dependent plasticity (STDP). Using a simple network of two mutually coupled interneurons (2-MCI), we first study the effects of STDP on in-phase synchronization. We demonstrate that, with STDP, the 2-MCI network can evolve to either a state of stable 1:1 in-phase synchronization or exhibit multiple regimes of higher order synchronization states. We show that the emergence of synchronization induces a structural asymmetry in the 2-MCI network such that the synapses onto the high frequency firing neurons are potentiated, while those onto the low frequency firing neurons are de-potentiated, resulting in the directed flow of information from low frequency firing neurons to high frequency firing neurons. Finally, we demonstrate that the principal findings from our analysis of the 2-MCI network contribute to the emergence of robust synchronization in the Wang-Buzsaki network (Wang and Buzsáki, 1996) of all-to-all coupled inhibitory interneurons (100-MCI) for a significantly larger range of heterogeneity in the intrinsic firing rate of the neurons in the network. We conclude that STDP of inhibitory synapses provide a viable mechanism for robust neural synchronization.

  1. Emergent gamma synchrony in all-to-all interneuronal networks

    PubMed Central

    Ratnadurai-Giridharan, Shivakeshavan; Khargonekar, Pramod P.; Talathi, Sachin S.

    2015-01-01

    We investigate the emergence of in-phase synchronization in a heterogeneous network of coupled inhibitory interneurons in the presence of spike timing dependent plasticity (STDP). Using a simple network of two mutually coupled interneurons (2-MCI), we first study the effects of STDP on in-phase synchronization. We demonstrate that, with STDP, the 2-MCI network can evolve to either a state of stable 1:1 in-phase synchronization or exhibit multiple regimes of higher order synchronization states. We show that the emergence of synchronization induces a structural asymmetry in the 2-MCI network such that the synapses onto the high frequency firing neurons are potentiated, while those onto the low frequency firing neurons are de-potentiated, resulting in the directed flow of information from low frequency firing neurons to high frequency firing neurons. Finally, we demonstrate that the principal findings from our analysis of the 2-MCI network contribute to the emergence of robust synchronization in the Wang-Buzsaki network (Wang and Buzsáki, 1996) of all-to-all coupled inhibitory interneurons (100-MCI) for a significantly larger range of heterogeneity in the intrinsic firing rate of the neurons in the network. We conclude that STDP of inhibitory synapses provide a viable mechanism for robust neural synchronization. PMID:26528174

  2. Somatostatin-Positive Gamma-Aminobutyric Acid Interneuron Deficits in Depression: Cortical Microcircuit and Therapeutic Perspectives.

    PubMed

    Fee, Corey; Banasr, Mounira; Sibille, Etienne

    2017-10-15

    The functional integration of external and internal signals forms the basis of information processing and is essential for higher cognitive functions. This occurs in finely tuned cortical microcircuits whose functions are balanced at the cellular level by excitatory glutamatergic pyramidal neurons and inhibitory gamma-aminobutyric acidergic (GABAergic) interneurons. The balance of excitation and inhibition, from cellular processes to neural network activity, is characteristically disrupted in multiple neuropsychiatric disorders, including major depressive disorder (MDD), bipolar disorder, anxiety disorders, and schizophrenia. Specifically, nearly 3 decades of research demonstrate a role for reduced inhibitory GABA level and function across disorders. In MDD, recent evidence from human postmortem and animal studies suggests a selective vulnerability of GABAergic interneurons that coexpress the neuropeptide somatostatin (SST). Advances in cell type-specific molecular genetics have now helped to elucidate several important roles for SST interneurons in cortical processing (regulation of pyramidal cell excitatory input) and behavioral control (mood and cognition). Here, we review evidence for altered inhibitory function arising from GABAergic deficits across disorders and specifically in MDD. We then focus on properties of the cortical microcircuit, where SST-positive GABAergic interneuron deficits may disrupt functioning in several ways. Finally, we discuss the putative origins of SST cell deficits, as informed by recent research, and implications for therapeutic approaches. We conclude that deficits in SST interneurons represent a contributing cellular pathology and therefore a promising target for normalizing altered inhibitory function in MDD and other disorders with reduced SST cell and GABA functions. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Temporal lobe cortical pathology and inhibitory GABA interneuron cell loss are associated with seizures in multiple sclerosis

    PubMed Central

    Nicholas, Richard; Magliozzi, Roberta; Campbell, Graham; Mahad, Don; Reynolds, Richard

    2016-01-01

    Background: Seizures are recognised in multiple sclerosis (MS), but their true incidence and the mechanism by which they are associated with MS is unclear. Objective: The objective of this paper is to determine the lifetime frequency of seizures in the United Kingdom MS Tissue Bank (UKMSTB) population and any pathological features associated with seizures. Methods: We evaluated 255 individuals from the UKMSTB. A subset underwent analysis of cortical thickness, grey matter lesion (GML) (type and number) and cortical neuronal numbers (total and GABAergic). Results: A total of 37/255 patients had seizures (14.5% lifetime incidence); in 47% they were associated with concurrent infection. In those with seizures, death and wheelchair use occurred earlier and in 59% seizures developed after 15 years of disease. Seizures were associated with Type 1 GMLs and reduced cortical thickness in the middle temporal gyrus. Localised selective GABAergic interneuron loss in layers IV and VI was related to GMLs but was not explained by the presence of inflammation or by mitochondrial dysfunction within Type I GMLs. Conclusion: We confirm that seizure frequency rises in MS. Type I GMLs in the temporal lobe underlie a loss of inhibitory interneurons in cortical layers IV and VI and these changes could together with concurrent infection enhance susceptibility to seizures. PMID:25921040

  4. Temporal lobe cortical pathology and inhibitory GABA interneuron cell loss are associated with seizures in multiple sclerosis.

    PubMed

    Nicholas, Richard; Magliozzi, Roberta; Campbell, Graham; Mahad, Don; Reynolds, Richard

    2016-01-01

    Seizures are recognised in multiple sclerosis (MS), but their true incidence and the mechanism by which they are associated with MS is unclear. The objective of this paper is to determine the lifetime frequency of seizures in the United Kingdom MS Tissue Bank (UKMSTB) population and any pathological features associated with seizures. We evaluated 255 individuals from the UKMSTB. A subset underwent analysis of cortical thickness, grey matter lesion (GML) (type and number) and cortical neuronal numbers (total and GABAergic). A total of 37/255 patients had seizures (14.5% lifetime incidence); in 47% they were associated with concurrent infection. In those with seizures, death and wheelchair use occurred earlier and in 59% seizures developed after 15 years of disease. Seizures were associated with Type 1 GMLs and reduced cortical thickness in the middle temporal gyrus. Localised selective GABAergic interneuron loss in layers IV and VI was related to GMLs but was not explained by the presence of inflammation or by mitochondrial dysfunction within Type I GMLs. We confirm that seizure frequency rises in MS. Type I GMLs in the temporal lobe underlie a loss of inhibitory interneurons in cortical layers IV and VI and these changes could together with concurrent infection enhance susceptibility to seizures. © The Author(s), 2015.

  5. Excitation-transcription coupling in parvalbumin-positive interneurons employs a novel CaM Kinase-dependent pathway distinct from excitatory neurons

    PubMed Central

    Cohen, Samuel M.; Ma, Huan; Kuchibhotla, Kishore V.; Watson, Brendon O.; Buzsáki, György; Froemke, Robert C.; Tsien, Richard W.

    2016-01-01

    Properly functional CNS circuits depend on inhibitory interneurons that in turn rely upon activity-dependent gene expression for morphological development, connectivity and excitatory-inhibitory coordination. Despite its importance, excitation-transcription coupling in inhibitory interneurons is poorly understood. Here, we report that PV+ interneurons employ a novel CaMK-dependent pathway to trigger CREB phosphorylation and gene expression. As in excitatory neurons, voltage-gated Ca2+ influx through CaV1 channels triggers CaM nuclear translocation via local Ca2+ signaling. However, PV+ interneurons are distinct in that nuclear signaling is mediated by γCaMKI, not γCaMKII. CREB phosphorylation also proceeds with slow, sigmoid kinetics, rate-limited by paucity of CaMKIV, protecting against saturation of phospho-CREB in the face of higher firing rates and bigger Ca2+ transients. Our findings support the generality of CaM shuttling to drive nuclear CaMK activity, and are relevant to disease pathophysiology, insofar as dysfunction of PV+ interneurons and molecules underpinning their excitation-transcription coupling both relate to neuropsychiatric disease. PMID:27041500

  6. Anatomical and Electrophysiological Clustering of Superficial Medial Entorhinal Cortex Interneurons

    PubMed Central

    2017-01-01

    Abstract Local GABAergic interneurons regulate the activity of spatially-modulated principal cells in the medial entorhinal cortex (MEC), mediating stellate-to-stellate connectivity and possibly enabling grid formation via recurrent inhibitory circuitry. Despite the important role interneurons seem to play in the MEC cortical circuit, the combination of low cell counts and functional diversity has made systematic electrophysiological studies of these neurons difficult. For these reasons, there remains a paucity of knowledge on the electrophysiological profiles of superficial MEC interneuron populations. Taking advantage of glutamic acid decarboxylase 2 (GAD2)-IRES-tdTomato and PV-tdTomato transgenic mice, we targeted GABAergic interneurons for whole-cell patch-clamp recordings and characterized their passive membrane features, basic input/output properties and action potential (AP) shape. These electrophysiologically characterized cells were then anatomically reconstructed, with emphasis on axonal projections and pial depth. K-means clustering of interneuron anatomical and electrophysiological data optimally classified a population of 106 interneurons into four distinct clusters. The first cluster is comprised of layer 2- and 3-projecting, slow-firing interneurons. The second cluster is comprised largely of PV+ fast-firing interneurons that project mainly to layers 2 and 3. The third cluster contains layer 1- and 2-projecting interneurons, and the fourth cluster is made up of layer 1-projecting horizontal interneurons. These results, among others, will provide greater understanding of the electrophysiological characteristics of MEC interneurons, help guide future in vivo studies, and may aid in uncovering the mechanism of grid field formation. PMID:29085901

  7. Long-term Reductions in the Population of GABAergic Interneurons in the Mouse Hippocampus following Developmental Ethanol Exposure.

    PubMed

    Bird, Clark W; Taylor, Devin H; Pinkowski, Natalie J; Chavez, G Jill; Valenzuela, C Fernando

    2018-07-15

    Developmental exposure to ethanol leads to a constellation of cognitive and behavioral abnormalities known as Fetal Alcohol Spectrum Disorders (FASDs). Many cell types throughout the central nervous system are negatively impacted by gestational alcohol exposure, including inhibitory, GABAergic interneurons. Little evidence exists, however, describing the long-term impact of fetal alcohol exposure on survival of interneurons within the hippocampal formation, which is critical for learning and memory processes that are impaired in individuals with FASDs. Mice expressing Venus yellow fluorescent protein in inhibitory interneurons were exposed to vaporized ethanol during the third trimester equivalent of human gestation (postnatal days 2-9), and the long-term effects on interneuron numbers were measured using unbiased stereology at P90. In adulthood, interneuron populations were reduced in every hippocampal region examined. Moreover, we found that a single exposure to ethanol at P7 caused robust activation of apoptotic neurodegeneration of interneurons in the hilus, granule cell layer, CA1 and CA3 regions of the hippocampus. These studies demonstrate that developmental ethanol exposure has a long-term impact on hippocampal interneuron survivability, and may provide a mechanism partially explaining deficits in hippocampal function and hippocampus-dependent behaviors in those afflicted with FASDs. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Temporal integration and 1/f power scaling in a circuit model of cerebellar interneurons.

    PubMed

    Maex, Reinoud; Gutkin, Boris

    2017-07-01

    Inhibitory interneurons interconnected via electrical and chemical (GABA A receptor) synapses form extensive circuits in several brain regions. They are thought to be involved in timing and synchronization through fast feedforward control of principal neurons. Theoretical studies have shown, however, that whereas self-inhibition does indeed reduce response duration, lateral inhibition, in contrast, may generate slow response components through a process of gradual disinhibition. Here we simulated a circuit of interneurons (stellate and basket cells) of the molecular layer of the cerebellar cortex and observed circuit time constants that could rise, depending on parameter values, to >1 s. The integration time scaled both with the strength of inhibition, vanishing completely when inhibition was blocked, and with the average connection distance, which determined the balance between lateral and self-inhibition. Electrical synapses could further enhance the integration time by limiting heterogeneity among the interneurons and by introducing a slow capacitive current. The model can explain several observations, such as the slow time course of OFF-beam inhibition, the phase lag of interneurons during vestibular rotation, or the phase lead of Purkinje cells. Interestingly, the interneuron spike trains displayed power that scaled approximately as 1/ f at low frequencies. In conclusion, stellate and basket cells in cerebellar cortex, and interneuron circuits in general, may not only provide fast inhibition to principal cells but also act as temporal integrators that build a very short-term memory. NEW & NOTEWORTHY The most common function attributed to inhibitory interneurons is feedforward control of principal neurons. In many brain regions, however, the interneurons are densely interconnected via both chemical and electrical synapses but the function of this coupling is largely unknown. Based on large-scale simulations of an interneuron circuit of cerebellar cortex, we

  9. An inhibitory gate for state transition in cortex

    PubMed Central

    Zucca, Stefano; D’Urso, Giulia; Pasquale, Valentina; Vecchia, Dania; Pica, Giuseppe; Bovetti, Serena; Moretti, Claudio; Varani, Stefano; Molano-Mazón, Manuel; Chiappalone, Michela; Panzeri, Stefano; Fellin, Tommaso

    2017-01-01

    Large scale transitions between active (up) and silent (down) states during quiet wakefulness or NREM sleep regulate fundamental cortical functions and are known to involve both excitatory and inhibitory cells. However, if and how inhibition regulates these activity transitions is unclear. Using fluorescence-targeted electrophysiological recording and cell-specific optogenetic manipulation in both anesthetized and non-anesthetized mice, we found that two major classes of interneurons, the parvalbumin and the somatostatin positive cells, tightly control both up-to-down and down-to-up state transitions. Inhibitory regulation of state transition was observed under both natural and optogenetically-evoked conditions. Moreover, perturbative optogenetic experiments revealed that the inhibitory control of state transition was interneuron-type specific. Finally, local manipulation of small ensembles of interneurons affected cortical populations millimetres away from the modulated region. Together, these results demonstrate that inhibition potently gates transitions between cortical activity states, and reveal the cellular mechanisms by which local inhibitory microcircuits regulate state transitions at the mesoscale. DOI: http://dx.doi.org/10.7554/eLife.26177.001 PMID:28509666

  10. Direct and Indirect Regulation of Spinal Cord Ia Afferent Terminal Formation by the γ-Protocadherins

    PubMed Central

    Prasad, Tuhina; Weiner, Joshua A.

    2011-01-01

    The Pcdh-γ gene cluster encodes 22 protocadherin adhesion molecules that interact as homophilic multimers and critically regulate synaptogenesis and apoptosis of interneurons in the developing spinal cord. Unlike interneurons, the two primary components of the monosynaptic stretch reflex circuit, dorsal root ganglion sensory neurons and ventral motor neurons (MNs), do not undergo excessive apoptosis in Pcdh-γdel/del null mutants, which die shortly after birth. However, as we show here, mutants exhibit severely disorganized Ia proprioceptive afferent terminals in the ventral horn. In contrast to the fine net-like pattern observed in wild-type mice, central Ia terminals in Pcdh-γ mutants appear clumped, and fill the space between individual MNs; quantitative analysis shows a ~2.5-fold increase in the area of terminals. Concomitant with this, there is a 70% loss of the collaterals that Ia afferents extend to ventral interneurons (vINs), many of which undergo apoptosis in the mutants. The Ia afferent phenotype is ameliorated, though not entirely rescued, when apoptosis is blocked in Pcdh-γ null mice by introduction of a Bax null allele. This indicates that loss of vINs, which act as collateral Ia afferent targets, contributes to the disorganization of terminals on motor pools. Restricted mutation of the Pcdh-γ cluster using conditional mutants and multiple Cre transgenic lines (Wnt1-Cre for sensory neurons; Pax2-Cre for vINs; Hb9-Cre for MNs) also revealed a direct requirement for the γ-Pcdhs in Ia neurons and vINs, but not in MNs themselves. Together, these genetic manipulations indicate that the γ-Pcdhs are required for the formation of the Ia afferent circuit in two ways: First, they control the survival of vINs that act as collateral Ia targets; and second, they provide a homophilic molecular cue between Ia afferents and target vINs. PMID:22275881

  11. Direct and Indirect Regulation of Spinal Cord Ia Afferent Terminal Formation by the γ-Protocadherins.

    PubMed

    Prasad, Tuhina; Weiner, Joshua A

    2011-01-01

    The Pcdh-γ gene cluster encodes 22 protocadherin adhesion molecules that interact as homophilic multimers and critically regulate synaptogenesis and apoptosis of interneurons in the developing spinal cord. Unlike interneurons, the two primary components of the monosynaptic stretch reflex circuit, dorsal root ganglion sensory neurons and ventral motor neurons (MNs), do not undergo excessive apoptosis in Pcdh-γ(del/del) null mutants, which die shortly after birth. However, as we show here, mutants exhibit severely disorganized Ia proprioceptive afferent terminals in the ventral horn. In contrast to the fine net-like pattern observed in wild-type mice, central Ia terminals in Pcdh-γ mutants appear clumped, and fill the space between individual MNs; quantitative analysis shows a ~2.5-fold increase in the area of terminals. Concomitant with this, there is a 70% loss of the collaterals that Ia afferents extend to ventral interneurons (vINs), many of which undergo apoptosis in the mutants. The Ia afferent phenotype is ameliorated, though not entirely rescued, when apoptosis is blocked in Pcdh-γ null mice by introduction of a Bax null allele. This indicates that loss of vINs, which act as collateral Ia afferent targets, contributes to the disorganization of terminals on motor pools. Restricted mutation of the Pcdh-γ cluster using conditional mutants and multiple Cre transgenic lines (Wnt1-Cre for sensory neurons; Pax2-Cre for vINs; Hb9-Cre for MNs) also revealed a direct requirement for the γ-Pcdhs in Ia neurons and vINs, but not in MNs themselves. Together, these genetic manipulations indicate that the γ-Pcdhs are required for the formation of the Ia afferent circuit in two ways: First, they control the survival of vINs that act as collateral Ia targets; and second, they provide a homophilic molecular cue between Ia afferents and target vINs.

  12. Spatial coherence resonance and spatial pattern transition induced by the decrease of inhibitory effect in a neuronal network

    NASA Astrophysics Data System (ADS)

    Tao, Ye; Gu, Huaguang; Ding, Xueli

    2017-10-01

    Spiral waves were observed in the biological experiment on rat brain cortex with the application of carbachol and bicuculline which can block inhibitory coupling from interneurons to pyramidal neurons. To simulate the experimental spiral waves, a two-dimensional neuronal network composed of pyramidal neurons and inhibitory interneurons was built. By decreasing the percentage of active inhibitory interneurons, the random-like spatial patterns change to spiral waves and to random-like spatial patterns or nearly synchronous behaviors. The spiral waves appear at a low percentage of inhibitory interneurons, which matches the experimental condition that inhibitory couplings of the interneurons were blocked. The spiral waves exhibit a higher order or signal-to-noise ratio (SNR) characterized by spatial structure function than both random-like spatial patterns and nearly synchronous behaviors, which shows that changes of the percentage of active inhibitory interneurons can induce spatial coherence resonance-like behaviors. In addition, the relationship between the coherence degree and the spatial structures of the spiral waves is identified. The results not only present a possible and reasonable interpretation to the spiral waves observed in the biological experiment on the brain cortex with disinhibition, but also reveal that the spiral waves exhibit more ordered degree in spatial patterns.

  13. Neurogliaform cortical interneurons derive from cells in the preoptic area

    PubMed Central

    Cadilhac, Christelle; Prados, Julien; Holtmaat, Anthony

    2018-01-01

    Delineating the basic cellular components of cortical inhibitory circuits remains a fundamental issue in order to understand their specific contributions to microcircuit function. It is still unclear how current classifications of cortical interneuron subtypes relate to biological processes such as their developmental specification. Here we identified the developmental trajectory of neurogliaform cells (NGCs), the main effectors of a powerful inhibitory motif recruited by long-range connections. Using in vivo genetic lineage-tracing in mice, we report that NGCs originate from a specific pool of 5-HT3AR-expressing Hmx3+ cells located in the preoptic area (POA). Hmx3-derived 5-HT3AR+ cortical interneurons (INs) expressed the transcription factors PROX1, NR2F2, the marker reelin but not VIP and exhibited the molecular, morphological and electrophysiological profile of NGCs. Overall, these results indicate that NGCs are a distinct class of INs with a unique developmental trajectory and open the possibility to study their specific functional contribution to cortical inhibitory microcircuit motifs. PMID:29557780

  14. Changes in inhibitory CA1 network in dual pathology model of epilepsy.

    PubMed

    Ouardouz, Mohamed; Carmant, Lionel

    2012-01-01

    The combination of two precipitating factors appears to be more and more recognized in patients with temporal lobe epilepsy. Using a two-hit rat model, with a neonatal freeze lesion mimicking a focal cortical malformation combined with hyperthermia-induced seizures mimicking febrile seizures, we have previously reported an increase of inhibition in CA1 pyramidal cells at P20. Here, we investigated the changes affecting excitatory and inhibitory drive onto CA1 interneurons to better define the changes in CA1 inhibitory networks and their paradoxical role in epileptogenesis, using electrophysiological recordings in CA1 hippocampus from rat pups (16-20 d old). We investigated interneurons in CA1 hippocampal area located in stratum oriens (Or) and at the border of strata lacunosum and moleculare (L-M). Our results revealed an increase of the excitatory drive to both types of interneurons with no change in the inhibitory drive. The mechanisms underlying the increase of excitatory synaptic currents (EPSCs) in both types of interneurons are different. In Or interneurons, the amplitude of spontaneous and miniature EPSCs increased, while their frequency was not affected suggesting changes at the post-synaptic level. In L-M interneurons, the frequency of spontaneous EPSCs increases, but the amplitude is not affected. Analyses of miniature EPSCs showed no changes in both their frequency and amplitude. We concluded that L-M interneurons increase in excitatory drive is due to a change in Shaffer collateral axon excitability. The changes described here in CA1 inhibitory network may actually contribute to the epileptogenicity observed in this dual pathology model by increasing pyramidal cell synchronization.

  15. Pyramidal cell-interneuron interactions underlie hippocampal ripple oscillations.

    PubMed

    Stark, Eran; Roux, Lisa; Eichler, Ronny; Senzai, Yuta; Royer, Sebastien; Buzsáki, György

    2014-07-16

    High-frequency ripple oscillations, observed most prominently in the hippocampal CA1 pyramidal layer, are associated with memory consolidation. The cellular and network mechanisms underlying the generation, frequency control, and spatial coherence of the rhythm are poorly understood. Using multisite optogenetic manipulations in freely behaving rodents, we found that depolarization of a small group of nearby pyramidal cells was sufficient to induce high-frequency oscillations, whereas closed-loop silencing of pyramidal cells or activation of parvalbumin- (PV) or somatostatin-immunoreactive interneurons aborted spontaneously occurring ripples. Focal pharmacological blockade of GABAA receptors abolished ripples. Localized PV interneuron activation paced ensemble spiking, and simultaneous induction of high-frequency oscillations at multiple locations resulted in a temporally coherent pattern mediated by phase-locked interneuron spiking. These results constrain competing models of ripple generation and indicate that temporally precise local interactions between excitatory and inhibitory neurons support ripple generation in the intact hippocampus. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Pyramidal Cell-Interneuron Interactions Underlie Hippocampal Ripple Oscillations

    PubMed Central

    Stark, Eran; Roux, Lisa; Eichler, Ronny; Senzai, Yuta; Royer, Sebastien; Buzsáki, György

    2015-01-01

    SUMMARY High-frequency ripple oscillations, observed most prominently in the hippocampal CA1 pyramidal layer, are associated with memory consolidation. The cellular and network mechanisms underlying the generation, frequency control, and spatial coherence of the rhythm are poorly understood. Using multisite optogenetic manipulations in freely behaving rodents, we found that depolarization of a small group of nearby pyramidal cells was sufficient to induce high-frequency oscillations, whereas closed-loop silencing of pyramidal cells or activation of parvalbumin-(PV) or somatostatin-immunoreactive interneurons aborted spontaneously occurring ripples. Focal pharmacological blockade of GABAA receptors abolished ripples. Localized PV inter-neuron activation paced ensemble spiking, and simultaneous induction of high-frequency oscillations at multiple locations resulted in a temporally coherent pattern mediated by phase-locked inter-neuron spiking. These results constrain competing models of ripple generation and indicate that temporally precise local interactions between excitatory and inhibitory neurons support ripple generation in the intact hippocampus. PMID:25033186

  17. Hilar GABAergic Interneuron Activity Controls Spatial Learning and Memory Retrieval

    PubMed Central

    Andrews-Zwilling, Yaisa; Gillespie, Anna K.; Kravitz, Alexxai V.; Nelson, Alexandra B.; Devidze, Nino; Lo, Iris; Yoon, Seo Yeon; Bien-Ly, Nga; Ring, Karen; Zwilling, Daniel; Potter, Gregory B.; Rubenstein, John L. R.; Kreitzer, Anatol C.; Huang, Yadong

    2012-01-01

    Background Although extensive research has demonstrated the importance of excitatory granule neurons in the dentate gyrus of the hippocampus in normal learning and memory and in the pathogenesis of amnesia in Alzheimer's disease (AD), the role of hilar GABAergic inhibitory interneurons, which control the granule neuron activity, remains unclear. Methodology and Principal Findings We explored the function of hilar GABAergic interneurons in spatial learning and memory by inhibiting their activity through Cre-dependent viral expression of enhanced halorhodopsin (eNpHR3.0)—a light-driven chloride pump. Hilar GABAergic interneuron-specific expression of eNpHR3.0 was achieved by bilaterally injecting adeno-associated virus containing a double-floxed inverted open-reading frame encoding eNpHR3.0 into the hilus of the dentate gyrus of mice expressing Cre recombinase under the control of an enhancer specific for GABAergic interneurons. In vitro and in vivo illumination with a yellow laser elicited inhibition of hilar GABAergic interneurons and consequent activation of dentate granule neurons, without affecting pyramidal neurons in the CA3 and CA1 regions of the hippocampus. We found that optogenetic inhibition of hilar GABAergic interneuron activity impaired spatial learning and memory retrieval, without affecting memory retention, as determined in the Morris water maze test. Importantly, optogenetic inhibition of hilar GABAergic interneuron activity did not alter short-term working memory, motor coordination, or exploratory activity. Conclusions and Significance Our findings establish a critical role for hilar GABAergic interneuron activity in controlling spatial learning and memory retrieval and provide evidence for the potential contribution of GABAergic interneuron impairment to the pathogenesis of amnesia in AD. PMID:22792368

  18. Somatic evoked high-frequency magnetic oscillations reflect activity of inhibitory interneurons in the human somatosensory cortex.

    PubMed

    Hashimoto, I; Mashiko, T; Imada, T

    1996-05-01

    High-frequency potential oscillations in the range of 300-900 Hz have recently been shown to concur with the primary response (N20) of the somatosensory cortex in awake humans. However, the physiological mechanisms of the high-frequency oscillations remained undetermined. We addressed the issue by analyzing magnetic fields during wakefulness and sleep over the left hemisphere to right median nerve stimulation with a wide bandpass (0.1-2000 Hz) recording with subsequent high-pass (> 300 Hz) and low-pass (< 300 Hz) filtering. With wide bandpass recordings, high-frequency magnetic oscillations with the main signal energy at 580-780 Hz were superimposed on the N20m during wakefulness. Isofield mapping at each peak of the high-pass filtered and isolated high-frequency oscillations showed a dipolar pattern and the estimated source for these peaks was the primary somatosensory cortex (area 3b) very close to that for the N20m peak. During sleep, the high-frequency oscillations showed dramatic diminution in amplitude while the N20m amplitude exhibited a moderate increment. This reciprocal relation between the high-frequency oscillations and the N20m during a wake-sleep cycle suggests that they represent different generator substrates. We speculate that the high-frequency oscillations represent a localized activity of the GABAergic inhibitory interneurons of layer 4, which have been shown in animal experiments to respond monosynaptically to thalamo-cortical input with a high-frequency (600-900 Hz) burst of short duration spikes. On the other hand, the underlying N20m represents activity of pyramidal neurons which receive monosynaptic excitatory input from the thalamus as well as a feed-forward inhibition from the interneurons.

  19. Inhibitory Gating of Basolateral Amygdala Inputs to the Prefrontal Cortex

    PubMed Central

    McGarry, Laura M.

    2016-01-01

    Interactions between the prefrontal cortex (PFC) and basolateral amygdala (BLA) regulate emotional behaviors. However, a circuit-level understanding of functional connections between these brain regions remains incomplete. The BLA sends prominent glutamatergic projections to the PFC, but the overall influence of these inputs is predominantly inhibitory. Here we combine targeted recordings and optogenetics to examine the synaptic underpinnings of this inhibition in the mouse infralimbic PFC. We find that BLA inputs preferentially target layer 2 corticoamygdala over neighboring corticostriatal neurons. However, these inputs make even stronger connections onto neighboring parvalbumin and somatostatin expressing interneurons. Inhibitory connections from these two populations of interneurons are also much stronger onto corticoamygdala neurons. Consequently, BLA inputs are able to drive robust feedforward inhibition via two parallel interneuron pathways. Moreover, the contributions of these interneurons shift during repetitive activity, due to differences in short-term synaptic dynamics. Thus, parvalbumin interneurons are activated at the start of stimulus trains, whereas somatostatin interneuron activation builds during these trains. Together, these results reveal how the BLA impacts the PFC through a complex interplay of direct excitation and feedforward inhibition. They also highlight the roles of targeted connections onto multiple projection neurons and interneurons in this cortical circuit. Our findings provide a mechanistic understanding for how the BLA can influence the PFC circuit, with important implications for how this circuit participates in the regulation of emotion. SIGNIFICANCE STATEMENT The prefrontal cortex (PFC) and basolateral amygdala (BLA) interact to control emotional behaviors. Here we show that BLA inputs elicit direct excitation and feedforward inhibition of layer 2 projection neurons in infralimbic PFC. BLA inputs are much stronger at

  20. Kv7 potassium channel subunits and M currents in cultured hippocampal interneurons.

    PubMed

    Grigorov, Alexej; Moskalyuk, Anastasia; Kravchenko, Mykola; Veselovsky, Nikolai; Verkhratsky, Alexei; Fedulova, Svetlana

    2014-09-01

    Potassium channels of the Kv7 family that mediate the non-inactivating M current regulate the excitability of many types of neurons in the central nervous system, including some in the hippocampus. We report here that individual interneurons from newborn rat hippocampi in long-term culture strongly express messenger RNA specific for Kv7.2 and Kv7.3 and, to a lesser extent, Kv7.5 channel subunits but not for the Kv7.4 subunit. An M-like current was electrophysiologically identified in two subpopulations of interneurons distinct in their spiking behaviour (regular or fast spiking). The M-channel enhancer retigabine reduced interneuronal excitability by constraining the number of action potentials generated during imposed depolarisations; this effect was inhibited by specific the M-channel blocking drugs. In paired synaptically connected interneuron-target cell recordings, anatomically localised applications of retigabine indicated that M channels were present in both the interneuron soma and its GABA-ergic inhibitory axon. We conclude that M-channel subunits and functional M channels are broadly expressed in hippocampal interneurons and their axons and are potentially capable of strongly regulating their firing properties.

  1. Perineuronal Net Protein Neurocan Inhibits NCAM/EphA3 Repellent Signaling in GABAergic Interneurons.

    PubMed

    Sullivan, Chelsea S; Gotthard, Ingo; Wyatt, Elliott V; Bongu, Srihita; Mohan, Vishwa; Weinberg, Richard J; Maness, Patricia F

    2018-04-18

    Perineuronal nets (PNNs) are implicated in closure of critical periods of synaptic plasticity in the brain, but the molecular mechanisms by which PNNs regulate synapse development are obscure. A receptor complex of NCAM and EphA3 mediates postnatal remodeling of inhibitory perisomatic synapses of GABAergic interneurons onto pyramidal cells in the mouse frontal cortex necessary for excitatory/inhibitory balance. Here it is shown that enzymatic removal of PNN glycosaminoglycan chains decreased the density of GABAergic perisomatic synapses in mouse organotypic cortical slice cultures. Neurocan, a key component of PNNs, was expressed in postnatal frontal cortex in apposition to perisomatic synapses of parvalbumin-positive interneurons. Polysialylated NCAM (PSA-NCAM), which is required for ephrin-dependent synapse remodeling, bound less efficiently to neurocan than mature, non-PSA-NCAM. Neurocan bound the non-polysialylated form of NCAM at the EphA3 binding site within the immunoglobulin-2 domain. Neurocan inhibited NCAM/EphA3 association, membrane clustering of NCAM/EphA3 in cortical interneuron axons, EphA3 kinase activation, and ephrin-A5-induced growth cone collapse. These studies delineate a novel mechanism wherein neurocan inhibits NCAM/EphA3 signaling and axonal repulsion, which may terminate postnatal remodeling of interneuron axons to stabilize perisomatic synapses in vivo.

  2. Identification of Inhibitory Premotor Interneurons Activated at a Late Phase in a Motor Cycle during Drosophila Larval Locomotion

    PubMed Central

    Itakura, Yuki; Kohsaka, Hiroshi; Ohyama, Tomoko; Zlatic, Marta

    2015-01-01

    Rhythmic motor patterns underlying many types of locomotion are thought to be produced by central pattern generators (CPGs). Our knowledge of how CPG networks generate motor patterns in complex nervous systems remains incomplete, despite decades of work in a variety of model organisms. Substrate borne locomotion in Drosophila larvae is driven by waves of muscular contraction that propagate through multiple body segments. We use the motor circuitry underlying crawling in larval Drosophila as a model to try to understand how segmentally coordinated rhythmic motor patterns are generated. Whereas muscles, motoneurons and sensory neurons have been well investigated in this system, far less is known about the identities and function of interneurons. Our recent study identified a class of glutamatergic premotor interneurons, PMSIs (period-positive median segmental interneurons), that regulate the speed of locomotion. Here, we report on the identification of a distinct class of glutamatergic premotor interneurons called Glutamatergic Ventro-Lateral Interneurons (GVLIs). We used calcium imaging to search for interneurons that show rhythmic activity and identified GVLIs as interneurons showing wave-like activity during peristalsis. Paired GVLIs were present in each abdominal segment A1-A7 and locally extended an axon towards a dorsal neuropile region, where they formed GRASP-positive putative synaptic contacts with motoneurons. The interneurons expressed vesicular glutamate transporter (vGluT) and thus likely secrete glutamate, a neurotransmitter known to inhibit motoneurons. These anatomical results suggest that GVLIs are premotor interneurons that locally inhibit motoneurons in the same segment. Consistent with this, optogenetic activation of GVLIs with the red-shifted channelrhodopsin, CsChrimson ceased ongoing peristalsis in crawling larvae. Simultaneous calcium imaging of the activity of GVLIs and motoneurons showed that GVLIs’ wave-like activity lagged behind that of

  3. Identification of Inhibitory Premotor Interneurons Activated at a Late Phase in a Motor Cycle during Drosophila Larval Locomotion.

    PubMed

    Itakura, Yuki; Kohsaka, Hiroshi; Ohyama, Tomoko; Zlatic, Marta; Pulver, Stefan R; Nose, Akinao

    2015-01-01

    Rhythmic motor patterns underlying many types of locomotion are thought to be produced by central pattern generators (CPGs). Our knowledge of how CPG networks generate motor patterns in complex nervous systems remains incomplete, despite decades of work in a variety of model organisms. Substrate borne locomotion in Drosophila larvae is driven by waves of muscular contraction that propagate through multiple body segments. We use the motor circuitry underlying crawling in larval Drosophila as a model to try to understand how segmentally coordinated rhythmic motor patterns are generated. Whereas muscles, motoneurons and sensory neurons have been well investigated in this system, far less is known about the identities and function of interneurons. Our recent study identified a class of glutamatergic premotor interneurons, PMSIs (period-positive median segmental interneurons), that regulate the speed of locomotion. Here, we report on the identification of a distinct class of glutamatergic premotor interneurons called Glutamatergic Ventro-Lateral Interneurons (GVLIs). We used calcium imaging to search for interneurons that show rhythmic activity and identified GVLIs as interneurons showing wave-like activity during peristalsis. Paired GVLIs were present in each abdominal segment A1-A7 and locally extended an axon towards a dorsal neuropile region, where they formed GRASP-positive putative synaptic contacts with motoneurons. The interneurons expressed vesicular glutamate transporter (vGluT) and thus likely secrete glutamate, a neurotransmitter known to inhibit motoneurons. These anatomical results suggest that GVLIs are premotor interneurons that locally inhibit motoneurons in the same segment. Consistent with this, optogenetic activation of GVLIs with the red-shifted channelrhodopsin, CsChrimson ceased ongoing peristalsis in crawling larvae. Simultaneous calcium imaging of the activity of GVLIs and motoneurons showed that GVLIs' wave-like activity lagged behind that of

  4. Olig1 function is required to repress Dlx1/2 and interneuron production in mammalian brain

    PubMed Central

    Silbereis, John C.; Nobuta, Hiroko; Tsai, Hui-Hsin; Heine, Vivi M.; McKinsey, Gabriel L.; Meijer, Dimphna H.; Howard, MacKenzie A.; Petryniak, Magda A.; Potter, Gregory B.; Alberta, John A.; Baraban, Scott C.; Stiles, Charles D.; Rubenstein, John L.R.; Rowitch, David H.

    2014-01-01

    Summary Abnormal GABAergic interneuron density, and imbalance of excitatory versus inhibitory tone, is thought to result in epilepsy, neurodevelopmental disorders and psychiatric disease. Recent studies indicate that interneuron cortical density is determined primarily by the size of the precursor pool in the embryonic telencephalon. However, factors essential to regulate interneuron allocation from telencephalic multipotent precursors are poorly understood. Here we report that Olig1 represses production of GABAergic interneurons throughout the mouse brain. Olig1 deletion in mutant mice results in ectopic expression and upregulation of Dlx1/2 genes in the ventral medial ganglionic eminences and adjacent regions of the septum resulting in a ~30% increase in adult cortical interneuron numbers. We show that Olig1 directly represses the Dlx1/2 I12b intergenic enhancer and that Dlx1/2 functions genetically downstream of Olig1. These findings establish Olig1 as an essential repressor of Dlx1/2 and interneuron production in developing mammalian brain. PMID:24507192

  5. Inhibitory Gating of Basolateral Amygdala Inputs to the Prefrontal Cortex.

    PubMed

    McGarry, Laura M; Carter, Adam G

    2016-09-07

    Interactions between the prefrontal cortex (PFC) and basolateral amygdala (BLA) regulate emotional behaviors. However, a circuit-level understanding of functional connections between these brain regions remains incomplete. The BLA sends prominent glutamatergic projections to the PFC, but the overall influence of these inputs is predominantly inhibitory. Here we combine targeted recordings and optogenetics to examine the synaptic underpinnings of this inhibition in the mouse infralimbic PFC. We find that BLA inputs preferentially target layer 2 corticoamygdala over neighboring corticostriatal neurons. However, these inputs make even stronger connections onto neighboring parvalbumin and somatostatin expressing interneurons. Inhibitory connections from these two populations of interneurons are also much stronger onto corticoamygdala neurons. Consequently, BLA inputs are able to drive robust feedforward inhibition via two parallel interneuron pathways. Moreover, the contributions of these interneurons shift during repetitive activity, due to differences in short-term synaptic dynamics. Thus, parvalbumin interneurons are activated at the start of stimulus trains, whereas somatostatin interneuron activation builds during these trains. Together, these results reveal how the BLA impacts the PFC through a complex interplay of direct excitation and feedforward inhibition. They also highlight the roles of targeted connections onto multiple projection neurons and interneurons in this cortical circuit. Our findings provide a mechanistic understanding for how the BLA can influence the PFC circuit, with important implications for how this circuit participates in the regulation of emotion. The prefrontal cortex (PFC) and basolateral amygdala (BLA) interact to control emotional behaviors. Here we show that BLA inputs elicit direct excitation and feedforward inhibition of layer 2 projection neurons in infralimbic PFC. BLA inputs are much stronger at corticoamygdala neurons compared

  6. Cerebral-buccal pathways in Aplysia californica: synaptic connections, cooperative interneuronal effects and feedback during buccal motor programs.

    PubMed

    Sánchez, J A; Kirk, M D

    2001-12-01

    Ingestion of seaweed by Aplysia is in part mediated by cerebral-buccal interneurons that drive rhythmic motor output from the buccal ganglia and in some cases cerebral-buccal interneurons act as members of the feeding central pattern generator. Here we document cooperative interactions between cerebral-buccal interneuron 2 and cerebral-buccal interneuron 12, characterize synaptic input to cerebral-buccal interneuron 2 and cerebral-buccal interneuron 12 from buccal peripheral nerve 2,3, describe a synaptic connection between cerebral-buccal interneuron 1 and buccal neuron B34, further characterize connections made by cerebral-buccal interneurons 2 and -12 with B34 and B61/62, and describe a novel, inhibitory connection made by cerebral-buccal interneuron 2 with a buccal neuron. When cerebral-buccal interneurons 2 and 12 were driven synchronously at low frequencies, ingestion-like buccal motor programs were elicited, and if either was driven alone, indirect synaptic input was recruited in the other cerebral-buccal interneuron. Stimulation of BN2,3 recruited both ingestion and rejection-like motor programs without firing in cerebral-buccal interneurons 2 or 12. During motor programs elicited by cerebral-buccal interneurons 2 or 12, high-voltage stimulation of BN2,3 inhibited firing in both cerebral-buccal interneurons. Our results suggest that cerebral-buccal interneurons 2 and 12 use cooperative interactions to modulate buccal motor programs, yet firing in cerebral-buccal interneurons 2 or 12 is not necessary for recruiting motor programs by buccal peripheral nerve BN2,3, even in preparations with intact cerebral-buccal pathways.

  7. Cortical GABAergic Interneurons in Cross-Modal Plasticity following Early Blindness

    PubMed Central

    Desgent, Sébastien; Ptito, Maurice

    2012-01-01

    Early loss of a given sensory input in mammals causes anatomical and functional modifications in the brain via a process called cross-modal plasticity. In the past four decades, several animal models have illuminated our understanding of the biological substrates involved in cross-modal plasticity. Progressively, studies are now starting to emphasise on cell-specific mechanisms that may be responsible for this intermodal sensory plasticity. Inhibitory interneurons expressing γ-aminobutyric acid (GABA) play an important role in maintaining the appropriate dynamic range of cortical excitation, in critical periods of developmental plasticity, in receptive field refinement, and in treatment of sensory information reaching the cerebral cortex. The diverse interneuron population is very sensitive to sensory experience during development. GABAergic neurons are therefore well suited to act as a gate for mediating cross-modal plasticity. This paper attempts to highlight the links between early sensory deprivation, cortical GABAergic interneuron alterations, and cross-modal plasticity, discuss its implications, and further provide insights for future research in the field. PMID:22720175

  8. Parvalbumin interneuron mediated feedforward inhibition controls signal output in the deep layers of the perirhinal‐entorhinal cortex

    PubMed Central

    Willems, Janske G. P.; Wadman, Wytse J.

    2018-01-01

    Abstract The perirhinal (PER) and lateral entorhinal (LEC) cortex form an anatomical link between the neocortex and the hippocampus. However, neocortical activity is transmitted through the PER and LEC to the hippocampus with a low probability, suggesting the involvement of the inhibitory network. This study explored the role of interneuron mediated inhibition, activated by electrical stimulation in the agranular insular cortex (AiP), in the deep layers of the PER and LEC. Activated synaptic input by AiP stimulation rarely evoked action potentials in the PER‐LEC deep layer excitatory principal neurons, most probably because the evoked synaptic response consisted of a small excitatory and large inhibitory conductance. Furthermore, parvalbumin positive (PV) interneurons—a subset of interneurons projecting onto the axo‐somatic region of principal neurons—received synaptic input earlier than principal neurons, suggesting recruitment of feedforward inhibition. This synaptic input in PV interneurons evoked varying trains of action potentials, explaining the fast rising, long lasting synaptic inhibition received by deep layer principal neurons. Altogether, the excitatory input from the AiP onto deep layer principal neurons is overruled by strong feedforward inhibition. PV interneurons, with their fast, extensive stimulus‐evoked firing, are able to deliver this fast evoked inhibition in principal neurons. This indicates an essential role for PV interneurons in the gating mechanism of the PER‐LEC network. PMID:29341361

  9. Linking dynamics of the inhibitory network to the input structure

    PubMed Central

    Komarov, Maxim

    2017-01-01

    Networks of inhibitory interneurons are found in many distinct classes of biological systems. Inhibitory interneurons govern the dynamics of principal cells and are likely to be critically involved in the coding of information. In this theoretical study, we describe the dynamics of a generic inhibitory network in terms of low-dimensional, simplified rate models. We study the relationship between the structure of external input applied to the network and the patterns of activity arising in response to that stimulation. We found that even a minimal inhibitory network can generate a great diversity of spatio-temporal patterning including complex bursting regimes with non-trivial ratios of burst firing. Despite the complexity of these dynamics, the network’s response patterns can be predicted from the rankings of the magnitudes of external inputs to the inhibitory neurons. This type of invariant dynamics is robust to noise and stable in densely connected networks with strong inhibitory coupling. Our study predicts that the response dynamics generated by an inhibitory network may provide critical insights about the temporal structure of the sensory input it receives. PMID:27650865

  10. Novel nootropic dipeptide Noopept increases inhibitory synaptic transmission in CA1 pyramidal cells.

    PubMed

    Kondratenko, Rodion V; Derevyagin, Vladimir I; Skrebitsky, Vladimir G

    2010-05-31

    Effects of newly synthesized nootropic and anxiolytic dipeptide Noopept on inhibitory synaptic transmission in hippocampal CA1 pyramidal cells were investigated using patch-clamp technique in whole-cell configuration. Bath application of Noopept (1 microM) significantly increased the frequency of spike-dependant spontaneous IPSCs whereas spike-independent mIPSCs remained unchanged. It was suggested that Noopept mediates its effect due to the activation of inhibitory interneurons terminating on CA1 pyramidal cells. Results of current clamp recording of inhibitory interneurons residing in stratum radiatum confirmed this suggestion. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  11. Vascular-Derived Vegfa Promotes Cortical Interneuron Migration and Proximity to the Vasculature in the Developing Forebrain

    PubMed Central

    Barber, Melissa; Andrews, William D; Memi, Fani; Gardener, Phillip; Ciantar, Daniel; Tata, Mathew; Ruhrberg, Christiana; Parnavelas, John G

    2018-01-01

    Abstract Vascular endothelial growth factor (Vegfa) is essential for promoting the vascularization of the embryonic murine forebrain. In addition, it directly influences neural development, although its role in the forming forebrain is less well elucidated. It was recently suggested that Vegfa may influence the development of GABAergic interneurons, inhibitory cells with crucial signaling roles in cortical neuronal circuits. However, the mechanism by which it affects interneuron development remains unknown. Here we investigated the developmental processes by which Vegfa may influence cortical interneuron development by analyzing transgenic mice that ubiquitously express the Vegfa120 isoform to perturb its signaling gradient. We found that interneurons reach the dorsal cortex at mid phases of corticogenesis despite an aberrant vascular network. Instead, endothelial ablation of Vegfa alters cortical interneuron numbers, their intracortical distribution and spatial proximity to blood vessels. We show for the first time that vascular-secreted guidance factors promote early-migrating interneurons in the intact forebrain in vivo and identify a novel role for vascular-Vegfa in this process. PMID:29901792

  12. Olig1 function is required to repress dlx1/2 and interneuron production in Mammalian brain.

    PubMed

    Silbereis, John C; Nobuta, Hiroko; Tsai, Hui-Hsin; Heine, Vivi M; McKinsey, Gabriel L; Meijer, Dimphna H; Howard, Mackenzie A; Petryniak, Magda A; Potter, Gregory B; Alberta, John A; Baraban, Scott C; Stiles, Charles D; Rubenstein, John L R; Rowitch, David H

    2014-02-05

    Abnormal GABAergic interneuron density, and imbalance of excitatory versus inhibitory tone, is thought to result in epilepsy, neurodevelopmental disorders, and psychiatric disease. Recent studies indicate that interneuron cortical density is determined primarily by the size of the precursor pool in the embryonic telencephalon. However, factors essential for regulating interneuron allocation from telencephalic multipotent precursors are poorly understood. Here we report that Olig1 represses production of GABAergic interneurons throughout the mouse brain. Olig1 deletion in mutant mice results in ectopic expression and upregulation of Dlx1/2 genes in the ventral medial ganglionic eminences and adjacent regions of the septum, resulting in an ∼30% increase in adult cortical interneuron numbers. We show that Olig1 directly represses the Dlx1/2 I12b intergenic enhancer and that Dlx1/2 functions genetically downstream of Olig1. These findings establish Olig1 as an essential repressor of Dlx1/2 and interneuron production in developing mammalian brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Brain Injury-Induced Synaptic Reorganization in Hilar Inhibitory Neurons Is Differentially Suppressed by Rapamycin

    PubMed Central

    2017-01-01

    Abstract Following traumatic brain injury (TBI), treatment with rapamycin suppresses mammalian (mechanistic) target of rapamycin (mTOR) activity and specific components of hippocampal synaptic reorganization associated with altered cortical excitability and seizure susceptibility. Reemergence of seizures after cessation of rapamycin treatment suggests, however, an incomplete suppression of epileptogenesis. Hilar inhibitory interneurons regulate dentate granule cell (DGC) activity, and de novo synaptic input from both DGCs and CA3 pyramidal cells after TBI increases their excitability but effects of rapamycin treatment on the injury-induced plasticity of interneurons is only partially described. Using transgenic mice in which enhanced green fluorescent protein (eGFP) is expressed in the somatostatinergic subset of hilar inhibitory interneurons, we tested the effect of daily systemic rapamycin treatment (3 mg/kg) on the excitability of hilar inhibitory interneurons after controlled cortical impact (CCI)-induced focal brain injury. Rapamycin treatment reduced, but did not normalize, the injury-induced increase in excitability of surviving eGFP+ hilar interneurons. The injury-induced increase in response to selective glutamate photostimulation of DGCs was reduced to normal levels after mTOR inhibition, but the postinjury increase in synaptic excitation arising from CA3 pyramidal cell activity was unaffected by rapamycin treatment. The incomplete suppression of synaptic reorganization in inhibitory circuits after brain injury could contribute to hippocampal hyperexcitability and the eventual reemergence of the epileptogenic process upon cessation of mTOR inhibition. Further, the cell-selective effect of mTOR inhibition on synaptic reorganization after CCI suggests possible mechanisms by which rapamycin treatment modifies epileptogenesis in some models but not others. PMID:29085896

  14. Brain Injury-Induced Synaptic Reorganization in Hilar Inhibitory Neurons Is Differentially Suppressed by Rapamycin.

    PubMed

    Butler, Corwin R; Boychuk, Jeffery A; Smith, Bret N

    2017-01-01

    Following traumatic brain injury (TBI), treatment with rapamycin suppresses mammalian (mechanistic) target of rapamycin (mTOR) activity and specific components of hippocampal synaptic reorganization associated with altered cortical excitability and seizure susceptibility. Reemergence of seizures after cessation of rapamycin treatment suggests, however, an incomplete suppression of epileptogenesis. Hilar inhibitory interneurons regulate dentate granule cell (DGC) activity, and de novo synaptic input from both DGCs and CA3 pyramidal cells after TBI increases their excitability but effects of rapamycin treatment on the injury-induced plasticity of interneurons is only partially described. Using transgenic mice in which enhanced green fluorescent protein (eGFP) is expressed in the somatostatinergic subset of hilar inhibitory interneurons, we tested the effect of daily systemic rapamycin treatment (3 mg/kg) on the excitability of hilar inhibitory interneurons after controlled cortical impact (CCI)-induced focal brain injury. Rapamycin treatment reduced, but did not normalize, the injury-induced increase in excitability of surviving eGFP+ hilar interneurons. The injury-induced increase in response to selective glutamate photostimulation of DGCs was reduced to normal levels after mTOR inhibition, but the postinjury increase in synaptic excitation arising from CA3 pyramidal cell activity was unaffected by rapamycin treatment. The incomplete suppression of synaptic reorganization in inhibitory circuits after brain injury could contribute to hippocampal hyperexcitability and the eventual reemergence of the epileptogenic process upon cessation of mTOR inhibition. Further, the cell-selective effect of mTOR inhibition on synaptic reorganization after CCI suggests possible mechanisms by which rapamycin treatment modifies epileptogenesis in some models but not others.

  15. Interneuronal Mechanism for Tinbergen’s Hierarchical Model of Behavioral Choice

    PubMed Central

    Pirger, Zsolt; Crossley, Michael; László, Zita; Naskar, Souvik; Kemenes, György; O’Shea, Michael; Benjamin, Paul R.; Kemenes, Ildikó

    2014-01-01

    Summary Recent studies of behavioral choice support the notion that the decision to carry out one behavior rather than another depends on the reconfiguration of shared interneuronal networks [1]. We investigated another decision-making strategy, derived from the classical ethological literature [2, 3], which proposes that behavioral choice depends on competition between autonomous networks. According to this model, behavioral choice depends on inhibitory interactions between incompatible hierarchically organized behaviors. We provide evidence for this by investigating the interneuronal mechanisms mediating behavioral choice between two autonomous circuits that underlie whole-body withdrawal [4, 5] and feeding [6] in the pond snail Lymnaea. Whole-body withdrawal is a defensive reflex that is initiated by tactile contact with predators. As predicted by the hierarchical model, tactile stimuli that evoke whole-body withdrawal responses also inhibit ongoing feeding in the presence of feeding stimuli. By recording neurons from the feeding and withdrawal networks, we found no direct synaptic connections between the interneuronal and motoneuronal elements that generate the two behaviors. Instead, we discovered that behavioral choice depends on the interaction between two unique types of interneurons with asymmetrical synaptic connectivity that allows withdrawal to override feeding. One type of interneuron, the Pleuro-Buccal (PlB), is an extrinsic modulatory neuron of the feeding network that completely inhibits feeding when excited by touch-induced monosynaptic input from the second type of interneuron, Pedal-Dorsal12 (PeD12). PeD12 plays a critical role in behavioral choice by providing a synaptic pathway joining the two behavioral networks that underlies the competitive dominance of whole-body withdrawal over feeding. PMID:25155505

  16. A Subtype of Olfactory Bulb Interneurons Is Required for Odor Detection and Discrimination Behaviors.

    PubMed

    Takahashi, Hiroo; Ogawa, Yoichi; Yoshihara, Sei-Ichi; Asahina, Ryo; Kinoshita, Masahito; Kitano, Tatsuro; Kitsuki, Michiko; Tatsumi, Kana; Okuda, Mamiko; Tatsumi, Kouko; Wanaka, Akio; Hirai, Hirokazu; Stern, Peter L; Tsuboi, Akio

    2016-08-03

    Neural circuits that undergo reorganization by newborn interneurons in the olfactory bulb (OB) are necessary for odor detection and discrimination, olfactory memory, and innate olfactory responses, including predator avoidance and sexual behaviors. The OB possesses many interneurons, including various types of granule cells (GCs); however, the contribution that each type of interneuron makes to olfactory behavioral control remains unknown. Here, we investigated the in vivo functional role of oncofetal trophoblast glycoprotein 5T4, a regulator for dendritic arborization of 5T4-expressing GCs (5T4 GCs), the level of which is reduced in the OB of 5T4 knock-out (KO) mice. Electrophysiological recordings with acute OB slices indicated that external tufted cells (ETCs) can be divided into two types, bursting and nonbursting. Optogenetic stimulation of 5T4 GCs revealed their connection to both bursting and nonbursting ETCs, as well as to mitral cells (MCs). Interestingly, nonbursting ETCs received fewer inhibitory inputs from GCs in 5T4 KO mice than from those in wild-type (WT) mice, whereas bursting ETCs and MCs received similar inputs in both mice. Furthermore, 5T4 GCs received significantly fewer excitatory inputs in 5T4 KO mice. Remarkably, in olfactory behavior tests, 5T4 KO mice had higher odor detection thresholds than the WT, as well as defects in odor discrimination learning. Therefore, the loss of 5T4 attenuates inhibitory inputs from 5T4 GCs to nonbursting ETCs and excitatory inputs to 5T4 GCs, contributing to disturbances in olfactory behavior. Our novel findings suggest that, among the various types of OB interneurons, the 5T4 GC subtype is required for odor detection and discrimination behaviors. Neuronal circuits in the brain include glutamatergic principal neurons and GABAergic interneurons. Although the latter is a minority cell type, they are vital for normal brain function because they regulate the activity of principal neurons. If interneuron function

  17. Cracking Down on Inhibition: Selective Removal of GABAergic Interneurons from Hippocampal Networks

    PubMed Central

    Antonucci, Flavia; Alpár, Alán; Kacza, Johannes; Caleo, Matteo; Verderio, Claudia; Giani, Alice; Martens, Henrik; Chaudhry, Farrukh A.; Allegra, Manuela; Grosche, Jens; Michalski, Dominik; Erck, Christian; Hoffmann, Anke; Härtig, Wolfgang

    2012-01-01

    Inhibitory (GABAergic) interneurons entrain assemblies of excitatory principal neurons to orchestrate information processing in the hippocampus. Disrupting the dynamic recruitment as well as the temporally precise activity of interneurons in hippocampal circuitries can manifest in epileptiform seizures, and impact specific behavioral traits. Despite the importance of GABAergic interneurons during information encoding in the brain, experimental tools to selectively manipulate GABAergic neurotransmission are limited. Here, we report the selective elimination of GABAergic interneurons by a ribosome inactivation approach through delivery of saporin-conjugated anti-vesicular GABA transporter antibodies (SAVAs) in vitro as well as in the mouse and rat hippocampus in vivo. We demonstrate the selective loss of GABAergic—but not glutamatergic—synapses, reduced GABA release, and a shift in excitation/inhibition balance in mixed cultures of hippocampal neurons exposed to SAVAs. We also show the focal and indiscriminate loss of calbindin+, calretinin+, parvalbumin/system A transporter 1+, somatostatin+, vesicular glutamate transporter 3 (VGLUT3)/cholecystokinin/CB1 cannabinoid receptor+ and neuropeptide Y+ local-circuit interneurons upon SAVA microlesions to the CA1 subfield of the rodent hippocampus, with interneuron debris phagocytosed by infiltrating microglia. SAVA microlesions did not affect VGLUT1+ excitatory afferents. Yet SAVA-induced rearrangement of the hippocampal circuitry triggered network hyperexcitability associated with the progressive loss of CA1 pyramidal cells and the dispersion of dentate granule cells. Overall, our data identify SAVAs as an effective tool to eliminate GABAergic neurons from neuronal circuits underpinning high-order behaviors and cognition, and whose manipulation can recapitulate pathogenic cascades of epilepsy and other neuropsychiatric illnesses. PMID:22323713

  18. Optimization of interneuron function by direct coupling of cell migration and axonal targeting.

    PubMed

    Lim, Lynette; Pakan, Janelle M P; Selten, Martijn M; Marques-Smith, André; Llorca, Alfredo; Bae, Sung Eun; Rochefort, Nathalie L; Marín, Oscar

    2018-06-18

    Neural circuit assembly relies on the precise synchronization of developmental processes, such as cell migration and axon targeting, but the cell-autonomous mechanisms coordinating these events remain largely unknown. Here we found that different classes of interneurons use distinct routes of migration to reach the embryonic cerebral cortex. Somatostatin-expressing interneurons that migrate through the marginal zone develop into Martinotti cells, one of the most distinctive classes of cortical interneurons. For these cells, migration through the marginal zone is linked to the development of their characteristic layer 1 axonal arborization. Altering the normal migratory route of Martinotti cells by conditional deletion of Mafb-a gene that is preferentially expressed by these cells-cell-autonomously disrupts axonal development and impairs the function of these cells in vivo. Our results suggest that migration and axon targeting programs are coupled to optimize the assembly of inhibitory circuits in the cerebral cortex.

  19. Excitatory Local Interneurons Enhance Tuning of Sensory Information

    PubMed Central

    Assisi, Collins; Stopfer, Mark; Bazhenov, Maxim

    2012-01-01

    Neurons in the insect antennal lobe represent odors as spatiotemporal patterns of activity that unfold over multiple time scales. As these patterns unspool they decrease the overlap between odor representations and thereby increase the ability of the olfactory system to discriminate odors. Using a realistic model of the insect antennal lobe we examined two competing components of this process –lateral excitation from local excitatory interneurons, and slow inhibition from local inhibitory interneurons. We found that lateral excitation amplified differences between representations of similar odors by recruiting projection neurons that did not receive direct input from olfactory receptors. However, this increased sensitivity also amplified noisy variations in input and compromised the ability of the system to respond reliably to multiple presentations of the same odor. Slow inhibition curtailed the spread of projection neuron activity and increased response reliability. These competing influences must be finely balanced in order to decorrelate odor representations. PMID:22807661

  20. Arid1b haploinsufficiency disrupts cortical interneuron development and mouse behavior.

    PubMed

    Jung, Eui-Man; Moffat, Jeffrey Jay; Liu, Jinxu; Dravid, Shashank Manohar; Gurumurthy, Channabasavaiah Basavaraju; Kim, Woo-Yang

    2017-12-01

    Haploinsufficiency of the AT-rich interactive domain 1B (ARID1B) gene causes autism spectrum disorder and intellectual disability; however, the neurobiological basis for this is unknown. Here we generated Arid1b-knockout mice and examined heterozygotes to model human patients. Arid1b-heterozygous mice showed a decreased number of cortical GABAergic interneurons and reduced proliferation of interneuron progenitors in the ganglionic eminence. Arid1b haploinsufficiency also led to an imbalance between excitatory and inhibitory synapses in the cerebral cortex. Furthermore, we found that Arid1b haploinsufficiency suppressed histone H3 lysine 9 acetylation (H3K9ac) overall and particularly reduced H3K9ac of the Pvalb promoter, resulting in decreased transcription. Arid1b-heterozygous mice exhibited abnormal cognitive and social behaviors, which were rescued by treatment with a positive allosteric GABA A receptor modulator. Our results demonstrate a critical role for Arid1b in interneuron development and behavior and provide insight into the pathogenesis of autism spectrum disorder and intellectual disability.

  1. Unit Activity of Hippocampal Interneurons before Spontaneous Seizures in an Animal Model of Temporal Lobe Epilepsy

    PubMed Central

    Toyoda, Izumi; Fujita, Satoshi; Thamattoor, Ajoy K.

    2015-01-01

    Mechanisms of seizure initiation are unclear. To evaluate the possible roles of inhibitory neurons, unit recordings were obtained in the dentate gyrus, CA3, CA1, and subiculum of epileptic pilocarpine-treated rats as they experienced spontaneous seizures. Most interneurons in the dentate gyrus, CA1, and subiculum increased their firing rate before seizures, and did so with significant consistency from seizure to seizure. Identification of CA1 interneuron subtypes based on firing characteristics during theta and sharp waves suggested that a parvalbumin-positive basket cell and putative bistratified cells, but not oriens lacunosum moleculare cells, were activated preictally. Preictal changes occurred much earlier than those described by most previous in vitro studies. Preictal activation of interneurons began earliest (>4 min before seizure onset), increased most, was most prevalent in the subiculum, and was minimal in CA3. Preictal inactivation of interneurons was most common in CA1 (27% of interneurons) and included a putative ivy cell and parvalbumin-positive basket cell. Increased or decreased preictal activity correlated with whether interneurons fired faster or slower, respectively, during theta activity. Theta waves were more likely to occur before seizure onset, and increased preictal firing of subicular interneurons correlated with theta activity. Preictal changes by other hippocampal interneurons were largely independent of theta waves. Within seconds of seizure onset, many interneurons displayed a brief pause in firing and a later, longer drop that was associated with reduced action potential amplitude. These findings suggest that many interneurons inactivate during seizures, most increase their activity preictally, but some fail to do so at the critical time before seizure onset. PMID:25904809

  2. Active action potential propagation but not initiation in thalamic interneuron dendrites

    PubMed Central

    Casale, Amanda E.; McCormick, David A.

    2012-01-01

    Inhibitory interneurons of the dorsal lateral geniculate nucleus of the thalamus modulate the activity of thalamocortical cells in response to excitatory input through the release of inhibitory neurotransmitter from both axons and dendrites. The exact mechanisms by which release can occur from dendrites are, however, not well understood. Recent experiments using calcium imaging have suggested that Na/K based action potentials can evoke calcium transients in dendrites via local active conductances, making the back-propagating action potential a candidate for dendritic neurotransmitter release. In this study, we employed high temporal and spatial resolution voltage-sensitive dye imaging to assess the characteristics of dendritic voltage deflections in response to Na/K action potentials in interneurons of the mouse dorsal lateral geniculate nucleus. We found that trains or single action potentials elicited by somatic current injection or local synaptic stimulation led to action potentials that rapidly and actively back-propagated throughout the entire dendritic arbor and into the fine filiform dendritic appendages known to release GABAergic vesicles. Action potentials always appeared first in the soma or proximal dendrite in response to somatic current injection or local synaptic stimulation, and the rapid back-propagation into the dendritic arbor depended upon voltage-gated sodium and TEA-sensitive potassium channels. Our results indicate that thalamic interneuron dendrites integrate synaptic inputs that initiate action potentials, most likely in the axon initial segment, that then back-propagate with high-fidelity into the dendrites, resulting in a nearly synchronous release of GABA from both axonal and dendritic compartments. PMID:22171033

  3. GABAA receptor-mediated currents in interneurons and pyramidal cells of rat visual cortex

    PubMed Central

    Xiang, Zixiu; Huguenard, John R; Prince, David A

    1998-01-01

    We compared γ-aminobutyric acid (GABA)-mediated responses of identified pyramidal cells and fast spiking interneurons in layer V of visual cortical slices from young rats (P11-14). The frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) was similar in pyramidal cells and interneurons (1.7 vs. 1.9 Hz). For events with 10-90 % rise times less than 0.9 ms, no significant differences were found in mean amplitude (61 vs. 65 pA), mean rise time (0.58 vs. 0.61 ms), or the first time constant of decay (τ1, 6.4 vs. 6.5 ms) between pyramidal cells and interneurons. The second decay time constant (τ2) was significantly longer in interneurons than in pyramidal cells (49 vs. 22 ms). The difference in sIPSC decay kinetics between two cell types also existed in adult rats (P36-42), suggesting the kinetic difference is not due to differential development of GABAA receptors in these cell types. The decay kinetics of monosynaptic evoked IPSCs were also longer in interneurons. As in the case of sIPSCs, the difference was accounted for by the second decay time constant. τ1 and τ2 were, respectively, 13 and 64 ms for interneurons and 12 and 47 ms for pyramidal cells. Cell-attached patch recordings revealed that the mean open time for single Cl− channels in response to 2 μM GABA was significantly longer in interneurons than pyramidal cells (5.0 vs. 2.8 ms). The chord conductance of these channels in interneurons (12 pS) was significantly smaller than in pyramidal cells (15 pS). Single channel currents reversed polarity when the pipette potential was approximately -10 mV for both cell types. These results show that there is a functional diversity of GABAA receptors in electrophysiologically and morphologically identified cortical pyramidal cells and interneurons. This diversity might derive from the different molecular composition of the receptors in these two cell types. PMID:9503333

  4. Interactions between Inhibitory Interneurons and Excitatory Associational Circuitry in Determining Spatio-Temporal Dynamics of Hippocampal Dentate Granule Cells: A Large-Scale Computational Study

    PubMed Central

    Hendrickson, Phillip J.; Yu, Gene J.; Song, Dong; Berger, Theodore W.

    2015-01-01

    This paper reports on findings from a million-cell granule cell model of the rat dentate gyrus that was used to explore the contributions of local interneuronal and associational circuits to network-level activity. The model contains experimentally derived morphological parameters for granule cells, which each contain approximately 200 compartments, and biophysical parameters for granule cells, basket cells, and mossy cells that were based both on electrophysiological data and previously published models. Synaptic input to cells in the model consisted of glutamatergic AMPA-like EPSPs and GABAergic-like IPSPs from excitatory and inhibitory neurons, respectively. The main source of input to the model was from layer II entorhinal cortical neurons. Network connectivity was constrained by the topography of the system, and was derived from axonal transport studies, which provided details about the spatial spread of axonal terminal fields, as well as how subregions of the medial and lateral entorhinal cortices project to subregions of the dentate gyrus. Results of this study show that strong feedback inhibition from the basket cell population can cause high-frequency rhythmicity in granule cells, while the strength of feedforward inhibition serves to scale the total amount of granule cell activity. Results furthermore show that the topography of local interneuronal circuits can have just as strong an impact on the development of spatio-temporal clusters in the granule cell population as the perforant path topography does, both sharpening existing clusters and introducing new ones with a greater spatial extent. Finally, results show that the interactions between the inhibitory and associational loops can cause high frequency oscillations that are modulated by a low-frequency oscillatory signal. These results serve to further illustrate the importance of topographical constraints on a global signal processing feature of a neural network, while also illustrating how rich

  5. Collagen XIX Is Expressed by Interneurons and Contributes to the Formation of Hippocampal Synapses

    PubMed Central

    Su, Jianmin; Gorse, Karen; Ramirez, Francesco; Fox, Michael A.

    2010-01-01

    Extracellular matrix (ECM) molecules contribute to the formation and maintenance of synapses in the mammalian nervous system. We previously discovered a family of nonfibrillar collagens that organize synaptic differentiation at the neuromuscular junction (NMJ). Although many NMJ-organizing cues contribute to central nervous system (CNS) synaptogenesis, whether similar roles for collagens exist at central synapses remained unclear. In the present study we discovered that col19a1, the gene encoding nonfibrillar collagen XIX, is expressed by subsets of hippocampal neurons. Colocalization with the interneuron-specific enzyme glutamate decarboxylase 67 (Gad67), but not other cell-type-specific markers, suggests that hippocampal expression of col19a1 is restricted to interneurons. However, not all hippocampal interneurons express col19a1 mRNA; subsets of neuropeptide Y (NPY)-, somatostatin (Som)-, and calbindin (Calb)-immunoreactive interneurons express col19a1, but those containing parvalbumin (Parv) or calretinin (Calr) do not. To assess whether collagen XIX is required for the normal formation of hippocampal synapses, we examined synaptic morphology and composition in targeted mouse mutants lacking collagen XIX. We show here that subsets of synaptotagmin 2 (Syt2)-containing hippocampal nerve terminals appear malformed in the absence of collagen XIX. The presence of Syt2 in inhibitory hippocampal synapses, the altered distribution of Gad67 in collagen XIX-deficient subiculum, and abnormal levels of gephyrin in collagen XIX-deficient hippocampal extracts all suggest inhibitory synapses are affected by the loss of collagen XIX. Together, these data not only reveal that collagen XIX is expressed by central neurons, but show for the first time that a nonfibrillar collagen is necessary for the formation of hippocampal synapses. PMID:19937713

  6. V1 and v2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion.

    PubMed

    Zhang, Jingming; Lanuza, Guillermo M; Britz, Olivier; Wang, Zhi; Siembab, Valerie C; Zhang, Ying; Velasquez, Tomoko; Alvarez, Francisco J; Frank, Eric; Goulding, Martyn

    2014-04-02

    Reciprocal activation of flexor and extensor muscles constitutes the fundamental mechanism that tetrapod vertebrates use for locomotion and limb-driven reflex behaviors. This aspect of motor coordination is controlled by inhibitory neurons in the spinal cord; however, the identity of the spinal interneurons that serve this function is not known. Here, we show that the production of an alternating flexor-extensor motor rhythm depends on the composite activities of two classes of ventrally located inhibitory neurons, V1 and V2b interneurons (INs). Abrogating V1 and V2b IN-derived neurotransmission in the isolated spinal cord results in a synchronous pattern of L2 flexor-related and L5 extensor-related locomotor activity. Mice lacking V1 and V2b inhibition are unable to articulate their limb joints and display marked deficits in limb-driven reflex movements. Taken together, these findings identify V1- and V2b-derived neurons as the core interneuronal components of the limb central pattern generator (CPG) that coordinate flexor-extensor motor activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. V1 and V2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion

    PubMed Central

    Zhang, Jingming; Lanuza, Guillermo M.; Britz, Olivier; Wang, Zhi; Siembab, Valerie C.; Zhang, Ying; Velasquez, Tomoko; Alvarez, Francisco J.; Frank, Eric; Goulding, Martyn

    2014-01-01

    SUMMARY The reciprocal activation of flexor and extensor muscles constitutes the fundamental mechanism that tetrapod vertebrates use for locomotion and limb-driven reflex behaviors. This aspect of motor coordination is controlled by inhibitory neurons in the spinal cord; however, the identity of the spinal interneurons that serve this function is not known. Here we show that the production of an alternating flexor-extensor motor rhythm depends on the composite activities of two classes of ventrally-located inhibitory neurons, V1 and V2b interneurons (INs). Abrogating V1 and V2b IN-derived neurotransmission in the isolated spinal cord results in a synchronous pattern of L2 flexor-related and L5 extensor-related locomotor activity. Mice lacking V1 and V2b inhibition are unable to articulate their limb joints and display marked deficits in limb-driven reflex movements. Taken together, these findings identify V1- and V2b-derived neurons as the core interneuronal components of the limb central pattern generator (CPG) that coordinate flexor-extensor motor activity. PMID:24698273

  8. Hybrid systems analysis of the control of burst duration by low-voltage-activated calcium current in leech heart interneurons.

    PubMed

    Olypher, Andrey; Cymbalyuk, Gennady; Calabrese, Ronald L

    2006-12-01

    The leech heartbeat CPG is paced by the alternating bursting of pairs of mutually inhibitory heart interneurons that form elemental half-center oscillators. We explore the control of burst duration in heart interneurons using a hybrid system, where a living, pharmacologically isolated, heart interneuron is connected with artificial synapses to a model heart interneuron running in real-time, by focusing on a low-voltage-activated (LVA) calcium current I(CaS). The transition from silence to bursting in this half-center oscillator occurs when the spike frequency of the bursting interneuron declines to a critical level, f(Final), at which the inhibited interneuron escapes owing to a build-up of the hyperpolarization-activated cation current, I(h). We varied I(CaS) inactivation time constant either in the living heart interneuron or in the model heart interneuron. In both cases, varying I(CaS) inactivation time constant did not affect f(Final) of either interneuron, but in the varied interneuron, the time constant of decline of spike frequency during bursts to f(Final) and thus the burst duration varied directly and nearly linearly with I(CaS) inactivation time constant. Bursts of the opposite, nonvaried interneuron did not change. We show also that control of burst duration by I(CaS) inactivation does not require synaptic interaction by reconstituting autonomous bursting in synaptically isolated living interneurons with injected I(CaS). Therefore inactivation of LVA calcium current is critically important for setting burst duration and thus period in a heart interneuron half-center oscillator and is potentially a general intrinsic mechanism for regulating burst duration in neurons.

  9. Molecular and Electrophysiological Characterization of GABAergic Interneurons Expressing the Transcription Factor COUP-TFII in the Adult Human Temporal Cortex

    PubMed Central

    Varga, Csaba; Tamas, Gabor; Barzo, Pal; Olah, Szabolcs; Somogyi, Peter

    2015-01-01

    Transcription factors contribute to the differentiation of cortical neurons, orchestrate specific interneuronal circuits, and define synaptic relationships. We have investigated neurons expressing chicken ovalbumin upstream promoter transcription factor II (COUP-TFII), which plays a role in the migration of GABAergic neurons. Whole-cell, patch-clamp recording in vitro combined with colocalization of molecular cell markers in the adult cortex differentiates distinct interneurons. The majority of strongly COUP-TFII-expressing neurons were in layers I–III. Most calretinin (CR) and/or cholecystokinin- (CCK) and/or reelin-positive interneurons were also COUP-TFII-positive. CR-, CCK-, or reelin-positive neurons formed 80%, 20%, or 17% of COUP-TFII-positive interneurons, respectively. About half of COUP-TFII-/CCK-positive interneurons were CR-positive, a quarter of them reelin-positive, but none expressed both. Interneurons positive for COUP-TFII fired irregular, accommodating and adapting trains of action potentials (APs) and innervated mostly small dendritic shafts and rarely spines or somata. Paired recording showed that a calretinin-/COUP-TFII-positive interneuron elicited inhibitory postsynaptic potentials (IPSPs) in a reciprocally connected pyramidal cell. Calbindin, somatostatin, or parvalbumin-immunoreactive interneurons and most pyramidal cells express no immunohistochemically detectable COUP-TFII. In layers V and VI, some pyramidal cells expressed a low level of COUP-TFII in the nucleus. In conclusion, COUP-TFII is expressed in a diverse subset of GABAergic interneurons predominantly innervating small dendritic shafts originating from both interneurons and pyramidal cells. PMID:25787832

  10. Dendritic A-type potassium channel subunit expression in CA1 hippocampal interneurons.

    PubMed

    Menegola, M; Misonou, H; Vacher, H; Trimmer, J S

    2008-06-26

    Voltage-gated potassium (Kv) channels are important and diverse determinants of neuronal excitability and exhibit specific expression patterns throughout the brain. Among Kv channels, Kv4 channels are major determinants of somatodendritic A-type current and are essential in controlling the amplitude of backpropagating action potentials (BAPs) into neuronal dendrites. BAPs have been well studied in a variety of neurons, and have been recently described in hippocampal and cortical interneurons, a heterogeneous population of GABAergic inhibitory cells that regulate activity of principal cells and neuronal networks. We used well-characterized mouse monoclonal antibodies against the Kv4.3 and potassium channel interacting protein (KChIP) 1 subunits of A-type Kv channels, and antibodies against different interneuron markers in single- and double-label immunohistochemistry experiments to analyze the expression patterns of Kv4.3 and KChIP1 in hippocampal Ammon's horn (CA1) neurons. Immunohistochemistry was performed on 40 mum rat brain sections using nickel-enhanced diaminobenzidine staining or multiple-label immunofluorescence. Our results show that Kv4.3 and KChIP1 component subunits of A-type channels are co-localized in the soma and dendrites of a large number of GABAergic hippocampal interneurons. These subunits co-localize extensively but not completely with markers defining the four major interneuron subpopulations tested (parvalbumin, calbindin, calretinin, and somatostatin). These results suggest that CA1 hippocampal interneurons can be divided in two groups according to the expression of Kv4.3/KChIP1 channel subunits. Antibodies against Kv4.3 and KChIP1 represent an important new tool for identifying a subpopulation of hippocampal interneurons with a unique dendritic A-type channel complement and ability to control BAPs.

  11. Impaired inhibitory control of cortical synchronization in fragile X syndrome.

    PubMed

    Paluszkiewicz, Scott M; Olmos-Serrano, Jose Luis; Corbin, Joshua G; Huntsman, Molly M

    2011-11-01

    Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by severe cognitive impairments, sensory hypersensitivity, and comorbidities with autism and epilepsy. Fmr1 knockout (KO) mouse models of FXS exhibit alterations in excitatory and inhibitory neurotransmission, but it is largely unknown how aberrant function of specific neuronal subtypes contributes to these deficits. In this study we show specific inhibitory circuit dysfunction in layer II/III of somatosensory cortex of Fmr1 KO mice. We demonstrate reduced activation of somatostatin-expressing low-threshold-spiking (LTS) interneurons in response to the group I metabotropic glutamate receptor (mGluR) agonist 3,5-dihydroxyphenylglycine (DHPG) in Fmr1 KO mice, resulting in impaired synaptic inhibition. Paired recordings from pyramidal neurons revealed reductions in synchronized synaptic inhibition and coordinated spike synchrony in response to DHPG, indicating a weakened LTS interneuron network in Fmr1 KO mice. Together, these findings reveal a functional defect in a single subtype of cortical interneuron in Fmr1 KO mice. This defect is linked to altered activity of the cortical network in line with the FXS phenotype.

  12. Involvement of pre- and postsynaptic NMDA receptors at local circuit interneuron connections in rat neocortex

    PubMed Central

    De-May, C.L.; Ali, A.B.

    2013-01-01

    To investigate the involvement of N-Methyl-D-aspartate (NMDA) receptors in local neocortical synaptic transmission, dual whole-cell recordings – combined with biocytin labelling – were obtained from bitufted adapting, multipolar adapting or multipolar non-adapting interneurons and pyramidal cells in layers II–V of rat (postnatal days 17–22) sensorimotor cortex. The voltage dependency of the amplitude of Excitatory postsynaptic potentials (EPSPs) received by the three types of interneuron appeared to coincide with the interneuron subclass; upon depolarisation, EPSPs received by multipolar non-adapting interneurons either decreased in amplitude or appeared insensitive, multipolar adapting interneuron EPSP amplitudes increased or appeared insensitive, whereas bitufted interneuron EPSP amplitudes increased or decreased. Connections were challenged with the NMDA receptor antagonist d-(−)-2-amino-5-phosphonopentanoic acid (d-AP5) (50 μM) revealing NMDA receptors to contribute to EPSPs received by all cell types, this also abolished the non-conventional voltage dependency. Reciprocal connections were frequent between pyramidal cells and multipolar interneurons, and inhibitory postsynaptic potentials (IPSPs) elicited in pyramidal cells by both multipolar adapting and multipolar non-adapting interneurons were sensitive to a significant reduction in amplitude by d-AP5. The involvement of presynaptic NMDA receptors was indicated by coefficient of variation analysis and an increase in the failures of transmission. Furthermore, by loading MK-801 into the pre- or postsynaptic neurons, we observed that a reduction in inhibition requires presynaptic and not postsynaptic NMDA receptors. These results suggest that NMDA receptors possess pre- and postsynaptic roles at selective neocortical synapses that are probably important in governing spike-timing and information flow. PMID:23079623

  13. Nootropic dipeptide noopept enhances inhibitory synaptic transmission in the hippocampus.

    PubMed

    Povarov, I S; Kondratenko, R V; Derevyagin, V I; Ostrovskaya, R U; Skrebitskii, V G

    2015-01-01

    Application of nootropic agent Noopept on hippocampal slices from Wistar rats enhanced the inhibitory component of total current induced by stimulation of Shaffer collaterals in CA1 pyramidal neurons, but did not affect the excitatory component. A direct correlation between the increase in the amplitude of inhibitory current and agent concentration was found. The substance did not affect the release of inhibitory transmitters from terminals in the pyramidal neurons, which indicated changes in GABAergic interneurons.

  14. Decrease of a Current Mediated by Kv1.3 Channels Causes Striatal Cholinergic Interneuron Hyperexcitability in Experimental Parkinsonism.

    PubMed

    Tubert, Cecilia; Taravini, Irene R E; Flores-Barrera, Eden; Sánchez, Gonzalo M; Prost, María Alejandra; Avale, María Elena; Tseng, Kuei Y; Rela, Lorena; Murer, Mario Gustavo

    2016-09-06

    The mechanism underlying a hypercholinergic state in Parkinson's disease (PD) remains uncertain. Here, we show that disruption of the Kv1 channel-mediated function causes hyperexcitability of striatal cholinergic interneurons in a mouse model of PD. Specifically, our data reveal that Kv1 channels containing Kv1.3 subunits contribute significantly to the orphan potassium current known as IsAHP in striatal cholinergic interneurons. Typically, this Kv1 current provides negative feedback to depolarization that limits burst firing and slows the tonic activity of cholinergic interneurons. However, such inhibitory control of cholinergic interneuron excitability by Kv1.3-mediated current is markedly diminished in the parkinsonian striatum, suggesting that targeting Kv1.3 subunits and their regulatory pathways may have therapeutic potential in PD therapy. These studies reveal unexpected roles of Kv1.3 subunit-containing channels in the regulation of firing patterns of striatal cholinergic interneurons, which were thought to be largely dependent on KCa channels. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Normalization for sparse encoding of odors by a wide-field interneuron.

    PubMed

    Papadopoulou, Maria; Cassenaer, Stijn; Nowotny, Thomas; Laurent, Gilles

    2011-05-06

    Sparse coding presents practical advantages for sensory representations and memory storage. In the insect olfactory system, the representation of general odors is dense in the antennal lobes but sparse in the mushroom bodies, only one synapse downstream. In locusts, this transformation relies on the oscillatory structure of antennal lobe output, feed-forward inhibitory circuits, intrinsic properties of mushroom body neurons, and connectivity between antennal lobe and mushroom bodies. Here we show the existence of a normalizing negative-feedback loop within the mushroom body to maintain sparse output over a wide range of input conditions. This loop consists of an identifiable "giant" nonspiking inhibitory interneuron with ubiquitous connectivity and graded release properties.

  16. Anatomical and Electrophysiological Changes in Striatal TH Interneurons after Loss of the Nigrostriatal Dopaminergic Pathway

    PubMed Central

    Ünal, Bengi; Shah, Fulva; Kothari, Janish; Tepper, James M.

    2013-01-01

    Using transgenic mice that express enhanced green fluorescent protein (EGFP) under the control of the tyrosine hydroxylase (TH) promoter, we have previously shown that there are approximately 3000 striatal EGFP-TH interneurons per hemisphere in mice. Here we report that striatal TH-EGFP interneurons exhibit a small, transient but significant increase in number after unilateral destruction of the nigrostriatal dopaminergic pathway. The increase in cell number is accompanied by electrophysiological and morphological changes. The intrinsic electrophysiological properties of EGFP-TH interneurons ipsilateral to 6-OHDA lesion were similar to those originally reported in intact mice except for a significant reduction in the duration of a characteristic depolarization induced plateau potential. There was a significant change in the distribution of the four previously described electrophysiologically distinct subtypes of striatal TH interneurons. There was a concomitant increase in the frequency of both spontaneous excitatory and inhibitory postsynaptic currents, while their amplitudes did not change. Nigrostriatal lesions did not affect somatic size or dendritic length or branching, but resulted in an increase in the density of proximal dendritic spines and spine-like appendages in EGFP-TH interneurons. The changes indicate that electrophysiology properties and morphology of striatal EGFP-TH interneurons depend on endogenous levels of dopamine arising from the nigrostriatal pathway. Furthermore, these changes may serve to help compensate for the changes in activity of spiny projection neurons that occur following loss of the nigrostriatal innervation in experimental or in early idiopathic Parkinson’s disease by increasing feedforward GABAergic inhibition exerted by these interneurons. PMID:24173616

  17. Anatomical and electrophysiological changes in striatal TH interneurons after loss of the nigrostriatal dopaminergic pathway.

    PubMed

    Ünal, Bengi; Shah, Fulva; Kothari, Janish; Tepper, James M

    2015-01-01

    Using transgenic mice that express enhanced green fluorescent protein (EGFP) under the control of the tyrosine hydroxylase (TH) promoter, we have previously shown that there are approximately 3,000 striatal EGFP-TH interneurons per hemisphere in mice. Here, we report that striatal TH-EGFP interneurons exhibit a small, transient but significant increase in number after unilateral destruction of the nigrostriatal dopaminergic pathway. The increase in cell number is accompanied by electrophysiological and morphological changes. The intrinsic electrophysiological properties of EGFP-TH interneurons ipsilateral to 6-OHDA lesion were similar to those originally reported in intact mice except for a significant reduction in the duration of a characteristic depolarization induced plateau potential. There was a significant change in the distribution of the four previously described electrophysiologically distinct subtypes of striatal TH interneurons. There was a concomitant increase in the frequency of both spontaneous excitatory and inhibitory post-synaptic currents, while their amplitudes did not change. Nigrostriatal lesions did not affect somatic size or dendritic length or branching, but resulted in an increase in the density of proximal dendritic spines and spine-like appendages in EGFP-TH interneurons. The changes indicate that electrophysiology properties and morphology of striatal EGFP-TH interneurons depend on endogenous levels of dopamine arising from the nigrostriatal pathway. Furthermore, these changes may serve to help compensate for the changes in activity of spiny projection neurons that occur following loss of the nigrostriatal innervation in experimental or in early idiopathic Parkinson's disease by increasing feedforward GABAergic inhibition exerted by these interneurons.

  18. Selective functional interactions between excitatory and inhibitory cortical neurons and differential contribution to persistent activity of the slow oscillation.

    PubMed

    Tahvildari, Babak; Wölfel, Markus; Duque, Alvaro; McCormick, David A

    2012-08-29

    The neocortex depends upon a relative balance of recurrent excitation and inhibition for its operation. During spontaneous Up states, cortical pyramidal cells receive proportional barrages of excitatory and inhibitory synaptic potentials. Many of these synaptic potentials arise from the activity of nearby neurons, although the identity of these cells is relatively unknown, especially for those underlying the generation of inhibitory synaptic events. To address these fundamental questions, we developed an in vitro submerged slice preparation of the mouse entorhinal cortex that generates robust and regular spontaneous recurrent network activity in the form of the slow oscillation. By performing whole-cell recordings from multiple cell types identified with green fluorescent protein expression and electrophysiological and/or morphological properties, we show that distinct functional subpopulations of neurons exist in the entorhinal cortex, with large variations in contribution to the generation of balanced excitation and inhibition during the slow oscillation. The most active neurons during the slow oscillation are excitatory pyramidal and inhibitory fast spiking interneurons, receiving robust barrages of both excitatory and inhibitory synaptic potentials. Weak action potential activity was observed in stellate excitatory neurons and somatostatin-containing interneurons. In contrast, interneurons containing neuropeptide Y, vasoactive intestinal peptide, or the 5-hydroxytryptamine (serotonin) 3a receptor, were silent. Our data demonstrate remarkable functional specificity in the interactions between different excitatory and inhibitory cortical neuronal subtypes, and suggest that it is the large recurrent interaction between pyramidal neurons and fast spiking interneurons that is responsible for the generation of persistent activity that characterizes the depolarized states of the cortex.

  19. Functional Characterization of a Vesicular Glutamate Transporter in an Interneuron That Makes Excitatory and Inhibitory Synaptic Connections in a Molluscan Neural Circuit

    PubMed Central

    Alexeeva, Vera; Chen, Song-an; Yu, Ke; Due, Michael R.; Tan, Li-nuo; Chen, Ting-ting; Liu, Dan-dan; Cropper, Elizabeth C.; Vilim, Ferdinand S.; Weiss, Klaudiusz R.

    2015-01-01

    Understanding circuit function requires the characterization of component neurons and their neurotransmitters. Previous work on radula protraction in the Aplysia feeding circuit demonstrated that critical neurons initiate feeding via cholinergic excitation. In contrast, it is less clear how retraction is mediated at the interneuronal level. In particular, glutamate involvement was suggested, but was not directly confirmed. Here we study a suspected glutamatergic retraction interneuron, B64. We used the representational difference analysis (RDA) method to successfully clone an Aplysia vesicular glutamate transporter (ApVGLUT) from B64 and from a glutamatergic motor neuron B38. Previously, RDA was used to characterize novel neuropeptides. Here we demonstrate its utility for characterizing other types of molecules. Bioinformatics suggests that ApVGLUT is more closely related to mammalian VGLUTs than to Drosophila and Caenorhabditis elegans VGLUTs. We expressed ApVGLUT in a cell line, and demonstrated that it indeed transports glutamate in an ATP and proton gradient-dependent manner. We mapped the ApVGLUT distribution in the CNS using in situ hybridization and immunocytochemistry. Further, we demonstrated that B64 is ApVGLUT positive, supporting the idea that it is glutamatergic. Although glutamate is primarily an excitatory transmitter in the mammalian CNS, B64 elicits inhibitory PSPs in protraction neurons to terminate protraction and excitatory PSPs in retraction neurons to maintain retraction. Pharmacological data indicated that both types of PSPs are mediated by glutamate. Thus, glutamate mediates the dual function of B64 in Aplysia. More generally, our systematic approaches based on RDA may facilitate analyses of transmitter actions in small circuits with identifiable neurons. PMID:26085636

  20. Synaptic muscarinic response types in hippocampal CA1 interneurons depend on different levels of presynaptic activity and different muscarinic receptor subtypes

    PubMed Central

    Bell, L. Andrew; Bell, Karen A.; McQuiston, A. Rory

    2013-01-01

    Depolarizing, hyperpolarizing and biphasic muscarinic responses have been described in hippocampal inhibitory interneurons, but the receptor subtypes and activity patterns required to synaptically activate muscarinic responses in interneurons have not been completely characterized. Using optogenetics combined with whole cell patch clamp recordings in acute slices, we measured muscarinic responses produced by endogenously released acetylcholine (ACh) from cholinergic medial septum/diagonal bands of Broca inputs in hippocampal CA1. We found that depolarizing responses required more cholinergic terminal stimulation than hyperpolarizing ones. Furthermore, elevating extracellular ACh with the acetylcholinesterase inhibitor physostigmine had a larger effect on depolarizing versus hyperpolarizing responses. Another subpopulation of interneurons responded biphasically, and periodic release of ACh entrained some of these interneurons to rhythmically burst. M4 receptors mediated hyperpolarizing responses by activating inwardly rectifying K+ channels, whereas the depolarizing responses were inhibited by the nonselective muscarinic antagonist atropine but were unaffected by M1, M4 or M5 receptor modulators. In addition, activation of M4 receptors significantly altered biphasic interneuron firing patterns. Anatomically, interneuron soma location appeared predictive of muscarinic response types but response types did not correlate with interneuron morphological subclasses. Together these observations suggest that the hippocampal CA1 interneuron network will be differentially affected by cholinergic input activity levels. Low levels of cholinergic activity will preferentially suppress some interneurons via hyperpolarization and increased activity will recruit other interneurons to depolarize, possibly because of elevated extracellular ACh concentrations. These data provide important information for understanding how cholinergic therapies will affect hippocampal network function

  1. Inhibitory dendrite dynamics as a general feature of the adult cortical microcircuit.

    PubMed

    Chen, Jerry L; Flanders, Genevieve H; Lee, Wei-Chung Allen; Lin, Walter C; Nedivi, Elly

    2011-08-31

    The mammalian neocortex is functionally subdivided into architectonically distinct regions that process various types of information based on their source of afferent input. Yet, the modularity of neocortical organization in terms of cell type and intrinsic circuitry allows afferent drive to continuously reassign cortical map space. New aspects of cortical map plasticity include dynamic turnover of dendritic spines on pyramidal neurons and remodeling of interneuron dendritic arbors. While spine remodeling occurs in multiple cortical regions, it is not yet known whether interneuron dendrite remodeling is common across primary sensory and higher-level cortices. It is also unknown whether, like pyramidal dendrites, inhibitory dendrites respect functional domain boundaries. Given the importance of the inhibitory circuitry to adult cortical plasticity and the reorganization of cortical maps, we sought to address these questions by using two-photon microscopy to monitor interneuron dendritic arbors of thy1-GFP-S transgenic mice expressing GFP in neurons sparsely distributed across the superficial layers of the neocortex. We find that interneuron dendritic branch tip remodeling is a general feature of the adult cortical microcircuit, and that remodeling rates are similar across primary sensory regions of different modalities, but may differ in magnitude between primary sensory versus higher cortical areas. We also show that branch tip remodeling occurs in bursts and respects functional domain boundaries.

  2. Alterations in hippocampal and cortical densities of functionally different interneurons in rat models of absence epilepsy.

    PubMed

    Papp, Péter; Kovács, Zsolt; Szocsics, Péter; Juhász, Gábor; Maglóczky, Zsófia

    2018-05-31

    Recent data from absence epileptic patients and animal models provide evidence for significant impairments of attention, memory, and psychosocial functioning. Here, we outline aspects of the electrophysiological and structural background of these dysfunctions by investigating changes in hippocampal and cortical GABAergic inhibitory interneurons in two genetically absence epileptic rat strains: the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) and the Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. Using simultaneously recorded field potentials from the primary somatosensory cortex (S1 cortex, seizure focus) and the hippocampal hilus, we demonstrated that typical frequencies of spike-wave discharges (SWDs; 7-8 Hz, GAERS; 7-9 Hz, WAG/Rij) and their harmonics appeared and their EEG spectral power markedly increased on recordings not only from the S1 cortex, but also from the hilus in both GAERS and WAG/Rij rats during SWDs. Moreover, we observed an increased synchronization between S1 cortex and hilus at 7-8 Hz (GAERS) and 7-9 Hz (WAG/Rij) and at their harmonics when SWDs occurred in the S1 cortex in both rat strains. In addition, using immunohistochemistry we demonstrated changes in the densities of perisomatic (parvalbumin-immunopositive, PV+) and interneuron-selective (calretinin-immunopositive, CR+) GABAergic inhibitory interneuron somata. Specifically, GAERS and WAG/Rij rats displayed lower densities of PV-immunopositivity in the hippocampal hilus compared to non-epileptic control (NEC) and normal Wistar rats. GAERS and WAG/Rij rats also show a marked reduction in the density of CR + interneurons in the same region in comparison with NEC rats. Data from the S1 cortex reveals bidirectional differences in PV + density, with GAERS displaying a significant increase, whereas WAG/Rij a reduction compared to control rat strains. Our results suggest an enhanced synchronization and functional connections between the hippocampus and S1 cortex as well

  3. Inhibitory interneuron circuits at cortical and spinal levels are associated with individual differences in corticomuscular coherence during isometric voluntary contraction

    PubMed Central

    Matsuya, Ryosuke; Ushiyama, Junichi; Ushiba, Junichi

    2017-01-01

    Corticomuscular coherence (CMC) is an oscillatory synchronization of 15–35 Hz (β-band) between electroencephalogram (EEG) of the sensorimotor cortex and electromyogram of contracting muscles. Although we reported that the magnitude of CMC varies among individuals, the physiological mechanisms underlying this variation are still unclear. Here, we aimed to investigate the associations between CMC and intracortical inhibition (ICI) in the primary motor cortex (M1)/recurrent inhibition (RI) in the spinal cord, which probably affect oscillatory neural activities. Firstly, we quantified ICI from changes in motor-evoked potentials induced by paired-pulse transcranial magnetic stimulation in M1 during tonic isometric voluntary contraction of the first dorsal interosseous. ICI showed a significant, negative correlation with the strength of EEG β-oscillation, but not with the magnitude of CMC across individuals. Next, we quantified RI from changes in H-reflexes induced by paired-pulse electrical nerve stimulation to the posterior tibial nerve during isometric contraction of the soleus muscle. We observed a significant, positive correlation between RI and peak CMC across individuals. These results suggest that the local inhibitory interneuron networks in cortical and spinal levels are associated with the oscillatory activity in corticospinal loop. PMID:28290507

  4. Distinct Physiological Effects of Dopamine D4 Receptors on Prefrontal Cortical Pyramidal Neurons and Fast-Spiking Interneurons

    PubMed Central

    Zhong, Ping; Yan, Zhen

    2016-01-01

    Dopamine D4 receptor (D4R), which is strongly linked to neuropsychiatric disorders, such as attention-deficit hyperactivity disorder and schizophrenia, is highly expressed in pyramidal neurons and GABAergic interneurons in prefrontal cortex (PFC). In this study, we examined the impact of D4R on the excitability of these 2 neuronal populations. We found that D4R activation decreased the frequency of spontaneous action potentials (sAPs) in PFC pyramidal neurons, whereas it induced a transient increase followed by a decrease of sAP frequency in PFC parvalbumin-positive (PV+) interneurons. D4R activation also induced distinct effects in both types of PFC neurons on spontaneous excitatory and inhibitory postsynaptic currents, which drive the generation of sAP. Moreover, dopamine substantially decreased sAP frequency in PFC pyramidal neurons, but markedly increased sAP frequency in PV+ interneurons, and both effects were partially mediated by D4R activation. In the phencyclidine model of schizophrenia, the decreasing effect of D4R on sAP frequency in both types of PFC neurons was attenuated, whereas the increasing effect of D4R on sAP in PV+ interneurons was intact. These results suggest that D4R activation elicits distinct effects on synaptically driven excitability in PFC projection neurons versus fast-spiking interneurons, which are differentially altered in neuropsychiatric disorder-related conditions. PMID:25146372

  5. Sub-inhibitory concentrations of gentamicin triggers the expression of aac(6')Ie-aph(2″)Ia, chaperons and biofilm related genes in Lactobacillus plantarum MCC 3011.

    PubMed

    George, Jaimee; Halami, Prakash Motiram

    2017-10-01

    The study aimed to analyze the effects of sub-inhibitory concentrations of gentamicin on the expressions of high level aminoglycoside resistant (HLAR) bifunctional aac(6')Ie-aph(2″)Ia, biofilm and chaperone genes in Lactobacillus plantarum. The analysis of the biofilm formation in five isolates obtained from chicken sausages indicated their role in exhibiting phenotypic resistance based on the varied MIC values despite carrying the bifunctional gene. The biofilm formation significantly increased when L. plantarum MCC 3011 was grown in sub-inhibitory concentrations of gentamicin (4 μg/ml), kanamycin (8 μg/ml) and streptomycin (2 μg/ml). Thirty day gentamicin selection increased minimum inhibitory concentration (MIC) values from 4 to 64 and 2 to 256 fold for gentamicin and kanamycin, respectively when compared to the parental cultures. Expression studies revealed that constant exposure to gentamicin had induced chaperon [groEL] and the bifunctional gene, aac(6')Ie-aph(2″)Ia upto nine fold. Induction of groEL, groES and lamC genes in gentamicin (4 μg/ml) preincubated MCC 3011 indicated their significant role in aminoglycoside mediated response. Our study indicates that constant exposure to sub inhibitory concentrations of gentamicin allows L. plantarum to adapt against higher doses of aminoglycosides. This highlights the risks and food safety issues associated with the use of aminoglycosides in livestock and consumption of farm oriented fermented food products. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  6. Interneurons in the Honeybee Primary Auditory Center Responding to Waggle Dance-Like Vibration Pulses.

    PubMed

    Ai, Hiroyuki; Kai, Kazuki; Kumaraswamy, Ajayrama; Ikeno, Hidetoshi; Wachtler, Thomas

    2017-11-01

    Female honeybees use the "waggle dance" to communicate the location of nectar sources to their hive mates. Distance information is encoded in the duration of the waggle phase (von Frisch, 1967). During the waggle phase, the dancer produces trains of vibration pulses, which are detected by the follower bees via Johnston's organ located on the antennae. To uncover the neural mechanisms underlying the encoding of distance information in the waggle dance follower, we investigated morphology, physiology, and immunohistochemistry of interneurons arborizing in the primary auditory center of the honeybee ( Apis mellifera ). We identified major interneuron types, named DL-Int-1, DL-Int-2, and bilateral DL-dSEG-LP, that responded with different spiking patterns to vibration pulses applied to the antennae. Experimental and computational analyses suggest that inhibitory connection plays a role in encoding and processing the duration of vibration pulse trains in the primary auditory center of the honeybee. SIGNIFICANCE STATEMENT The waggle dance represents a form of symbolic communication used by honeybees to convey the location of food sources via species-specific sound. The brain mechanisms used to decipher this symbolic information are unknown. We examined interneurons in the honeybee primary auditory center and identified different neuron types with specific properties. The results of our computational analyses suggest that inhibitory connection plays a role in encoding waggle dance signals. Our results are critical for understanding how the honeybee deciphers information from the sound produced by the waggle dance and provide new insights regarding how common neural mechanisms are used by different species to achieve communication. Copyright © 2017 the authors 0270-6474/17/3710624-12$15.00/0.

  7. Age-related influence of vision and proprioception on Ia presynaptic inhibition in soleus muscle during upright stance

    PubMed Central

    Baudry, Stéphane; Duchateau, Jacques

    2012-01-01

    This study investigated the modulation of Ia afferent input in young and elderly adults during quiet upright stance in normal and modified visual and proprioceptive conditions. The surface EMG of leg muscles, recruitment curve of the soleus (SOL) Hoffmann (H) reflex and presynaptic inhibition of Ia afferents from SOL, assessed with the D1 inhibition and single motor unit methods, were recorded when young and elderly adults stood with eyes open or closed on two surfaces (rigid vs. foam) placed over a force platform. The results showed that elderly adults had a longer path length for the centre of pressure and larger antero-posterior body sway across balance conditions (P < 0.05). Muscle EMG activities were greater in elderly compared with young adults (P < 0.05), whereas the Hmax expressed as a percentage of the Hmax was lower (P = 0.048) in elderly (38 ± 16%) than young adults (58 ± 16%). The conditioned H reflex/test H reflex ratio (D1 inhibition method) increased with eye closure and when standing on foam (P < 0.05), with greater increases for elderly adults (P = 0.019). These changes were accompanied by a reduced peak motor unit discharge probability when standing on rigid and foam surfaces (P ≤ 0.001), with a greater effect for elderly adults (P = 0.026). Based on these latter results, the increased conditioned H reflex/test H reflex ratio in similar sensory conditions is likely to reflect occlusion at the level of presynaptic inhibitory interneurones. Together, these findings indicate that elderly adults exhibit greater modulation of Ia presynaptic inhibition than young adults with variation in the sensory conditions during upright standing. PMID:22946095

  8. Contributions of diverse excitatory and inhibitory neurons to recurrent network activity in cerebral cortex.

    PubMed

    Neske, Garrett T; Patrick, Saundra L; Connors, Barry W

    2015-01-21

    The recurrent synaptic architecture of neocortex allows for self-generated network activity. One form of such activity is the Up state, in which neurons transiently receive barrages of excitatory and inhibitory synaptic inputs that depolarize many neurons to spike threshold before returning to a relatively quiescent Down state. The extent to which different cell types participate in Up states is still unclear. Inhibitory interneurons have particularly diverse intrinsic properties and synaptic connections with the local network, suggesting that different interneurons might play different roles in activated network states. We have studied the firing, subthreshold behavior, and synaptic conductances of identified cell types during Up and Down states in layers 5 and 2/3 in mouse barrel cortex in vitro. We recorded from pyramidal cells and interneurons expressing parvalbumin (PV), somatostatin (SOM), vasoactive intestinal peptide (VIP), or neuropeptide Y. PV cells were the most active interneuron subtype during the Up state, yet the other subtypes also received substantial synaptic conductances and often generated spikes. In all cell types except PV cells, the beginning of the Up state was dominated by synaptic inhibition, which decreased thereafter; excitation was more persistent, suggesting that inhibition is not the dominant force in terminating Up states. Compared with barrel cortex, SOM and VIP cells were much less active in entorhinal cortex during Up states. Our results provide a measure of functional connectivity of various neuron types in barrel cortex and suggest differential roles for interneuron types in the generation and control of persistent network activity. Copyright © 2015 the authors 0270-6474/15/351089-17$15.00/0.

  9. Effects of stimulation of phrenic afferents on cervical respiratory interneurones and phrenic motoneurones in cats.

    PubMed Central

    Iscoe, S; Duffin, J

    1996-01-01

    IPSPs were 2.75, 3.20, and 2.3 ms for the I interneurones and 15.9 ms for the E interneurone). No responses with latencies > 30 ms were observed. 6. The diverse responses of cervical respiratory interneurones indicates that they do not mediate the prolonged suppression of ipsilateral phrenic activity elicited by stimulation of phrenic afferents. The suppression may result from activation of normally quiescent inhibitory interneurones or from presynaptic inhibition. PMID:9003565

  10. Experience-Dependent Plasticity in Accessory Olfactory Bulb Interneurons following Male-Male Social Interaction.

    PubMed

    Cansler, Hillary L; Maksimova, Marina A; Meeks, Julian P

    2017-07-26

    Chemosensory information processing in the mouse accessory olfactory system guides the expression of social behavior. After salient chemosensory encounters, the accessory olfactory bulb (AOB) experiences changes in the balance of excitation and inhibition at reciprocal synapses between mitral cells (MCs) and local interneurons. The mechanisms underlying these changes remain controversial. Moreover, it remains unclear whether MC-interneuron plasticity is unique to specific behaviors, such as mating, or whether it is a more general feature of the AOB circuit. Here, we describe targeted electrophysiological studies of AOB inhibitory internal granule cells (IGCs), many of which upregulate the immediate-early gene Arc after male-male social experience. Following the resident-intruder paradigm, Arc -expressing IGCs in acute AOB slices from resident males displayed stronger excitation than nonexpressing neighbors when sensory inputs were stimulated. The increased excitability of Arc -expressing IGCs was not correlated with changes in the strength or number of excitatory synapses with MCs but was instead associated with increased intrinsic excitability and decreased HCN channel-mediated I H currents. Consistent with increased inhibition by IGCs, MCs responded to sensory input stimulation with decreased depolarization and spiking following resident-intruder encounters. These results reveal that nonmating behaviors drive AOB inhibitory plasticity and indicate that increased MC inhibition involves intrinsic excitability changes in Arc -expressing interneurons. SIGNIFICANCE STATEMENT The accessory olfactory bulb (AOB) is a site of experience-dependent plasticity between excitatory mitral cells (MCs) and inhibitory internal granule cells (IGCs), but the physiological mechanisms and behavioral conditions driving this plasticity remain unclear. Here, we report studies of AOB neuronal plasticity following male-male social chemosensory encounters. We show that the plasticity

  11. Experience-Dependent Plasticity in Accessory Olfactory Bulb Interneurons following Male–Male Social Interaction

    PubMed Central

    Maksimova, Marina A.

    2017-01-01

    Chemosensory information processing in the mouse accessory olfactory system guides the expression of social behavior. After salient chemosensory encounters, the accessory olfactory bulb (AOB) experiences changes in the balance of excitation and inhibition at reciprocal synapses between mitral cells (MCs) and local interneurons. The mechanisms underlying these changes remain controversial. Moreover, it remains unclear whether MC–interneuron plasticity is unique to specific behaviors, such as mating, or whether it is a more general feature of the AOB circuit. Here, we describe targeted electrophysiological studies of AOB inhibitory internal granule cells (IGCs), many of which upregulate the immediate-early gene Arc after male–male social experience. Following the resident–intruder paradigm, Arc-expressing IGCs in acute AOB slices from resident males displayed stronger excitation than nonexpressing neighbors when sensory inputs were stimulated. The increased excitability of Arc-expressing IGCs was not correlated with changes in the strength or number of excitatory synapses with MCs but was instead associated with increased intrinsic excitability and decreased HCN channel-mediated IH currents. Consistent with increased inhibition by IGCs, MCs responded to sensory input stimulation with decreased depolarization and spiking following resident–intruder encounters. These results reveal that nonmating behaviors drive AOB inhibitory plasticity and indicate that increased MC inhibition involves intrinsic excitability changes in Arc-expressing interneurons. SIGNIFICANCE STATEMENT The accessory olfactory bulb (AOB) is a site of experience-dependent plasticity between excitatory mitral cells (MCs) and inhibitory internal granule cells (IGCs), but the physiological mechanisms and behavioral conditions driving this plasticity remain unclear. Here, we report studies of AOB neuronal plasticity following male–male social chemosensory encounters. We show that the plasticity

  12. Deciphering the role of CA1 inhibitory circuits in sharp wave-ripple complexes.

    PubMed

    Cutsuridis, Vassilis; Taxidis, Jiannis

    2013-01-01

    Sharp wave-ripples (SWRs) are population oscillatory patterns in hippocampal LFPs during deep sleep and immobility, involved in the replay of memories acquired during wakefulness. SWRs have been extensively studied, but their exact generation mechanism is still unknown. A computational model has suggested that fast perisomatic inhibition may generate the high frequency ripples (~200 Hz). Another model showed how replay of memories can be controlled by various classes of inhibitory interneurons targeting specific parts of pyramidal cells (PC) and firing at particular SWR phases. Optogenetic studies revealed new roles for interneuronal classes and rich dynamic interplays between them, shedding new light in their potential role in SWRs. Here, we integrate these findings in a conceptual model of how dendritic and somatic inhibition may collectively contribute to the SWR generation. We suggest that sharp wave excitation and basket cell (BC) recurrent inhibition synchronises BC spiking in ripple frequencies. This rhythm is imposed on bistratified cells which prevent pyramidal bursting. Axo-axonic and stratum lacunosum/moleculare interneurons are silenced by inhibitory inputs originating in the medial septum. PCs receiving rippling inhibition in both dendritic and perisomatic areas and excitation in their apical dendrites, exhibit sparse ripple phase-locked spiking.

  13. Transmission to interneurons is via slow excitatory synaptic potentials mediated by P2Y(1) receptors during descending inhibition in guinea-pig ileum.

    PubMed

    Thornton, Peter D J; Gwynne, Rachel M; McMillan, Darren J; Bornstein, Joel C

    2013-01-01

    The nature of synaptic transmission at functionally distinct synapses in intestinal reflex pathways has not been fully identified. In this study, we investigated whether transmission between interneurons in the descending inhibitory pathway is mediated by a purine acting at P2Y receptors to produce slow excitatory synaptic potentials (EPSPs). Myenteric neurons from guinea-pig ileum in vitro were impaled with intracellular microelectrodes. Responses to distension 15 mm oral to the recording site, in a separately perfused stimulation chamber and to electrical stimulation of local nerve trunks were recorded. A subset of neurons, previously identified as nitric oxide synthase immunoreactive descending interneurons, responded to both stimuli with slow EPSPs that were reversibly abolished by a high concentration of PPADS (30 μM, P2 receptor antagonist). When added to the central chamber of a three chambered organ bath, PPADS concentration-dependently depressed transmission through that chamber of descending inhibitory reflexes, measured as inhibitory junction potentials in the circular muscle of the anal chamber. Reflexes evoked by distension in the central chamber were unaffected. A similar depression of transmission was seen when the specific P2Y(1) receptor antagonist MRS 2179 (10 μM) was in the central chamber. Blocking either nicotinic receptors (hexamethonium 200 μM) or 5-HT(3) receptors (granisetron 1 μM) together with P2 receptors had no greater effect than blocking P2 receptors alone. Slow EPSPs mediated by P2Y(1) receptors, play a primary role in transmission between descending interneurons of the inhibitory reflexes in the guinea-pig ileum. This is the first demonstration for a primary role of excitatory metabotropic receptors in physiological transmission at a functionally identified synapse.

  14. Expression and distribution of Kv4 potassium channel subunits and potassium channel interacting proteins in subpopulations of interneurons in the basolateral amygdala.

    PubMed

    Dabrowska, J; Rainnie, D G

    2010-12-15

    The Kv4 potassium channel α subunits, Kv4.1, Kv4.2, and Kv4.3, determine some of the fundamental physiological properties of neurons in the CNS. Kv4 subunits are associated with auxiliary β-subunits, such as the potassium channel interacting proteins (KChIP1 - 4), which are thought to regulate the trafficking and gating of native Kv4 potassium channels. Intriguingly, KChIP1 is thought to show cell type-selective expression in GABA-ergic inhibitory interneurons, while other β-subunits (KChIP2-4) are associated with principal glutamatergic neurons. However, nothing is known about the expression of Kv4 family α- and β-subunits in specific interneurons populations in the BLA. Here, we have used immunofluorescence, co-immunoprecipitation, and Western Blotting to determine the relative expression of KChIP1 in the different interneuron subtypes within the BLA, and its co-localization with one or more of the Kv4 α subunits. We show that all three α-subunits of Kv4 potassium channel are found in rat BLA neurons, and that the immunoreactivity of KChIP1 closely resembles that of Kv4.3. Indeed, Kv4.3 showed almost complete co-localization with KChIP1 in the soma and dendrites of a distinct subpopulation of BLA neurons. Dual-immunofluorescence studies revealed this to be in BLA interneurons immunoreactive for parvalbumin, cholecystokin-8, and somatostatin. Finally, co-immunoprecipitation studies showed that KChIP1 was associated with all three Kv4 α subunits. Together our results suggest that KChIP1 is selectively expressed in BLA interneurons where it may function to regulate the activity of A-type potassium channels. Hence, KChIP1 might be considered as a cell type-specific regulator of GABAergic inhibitory circuits in the BLA. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Bioengineered human IAS reconstructs with functional and molecular properties similar to intact IAS

    PubMed Central

    Singh, Jagmohan

    2012-01-01

    Because of its critical importance in rectoanal incontinence, we determined the feasibility to reconstruct internal anal sphincter (IAS) from human IAS smooth muscle cells (SMCs) with functional and molecular attributes similar to the intact sphincter. The reconstructs were developed using SMCs from the circular smooth muscle layer of the human IAS, grown in smooth muscle differentiation media under sterile conditions in Sylgard-coated tissue culture plates with central Sylgard posts. The basal tone in the reconstructs and its changes were recorded following 0 Ca2+, KCl, bethanechol, isoproterenol, protein kinase C (PKC) activator phorbol 12,13-dibutyrate, and Rho kinase (ROCK) and PKC inhibitors Y-27632 and Gö-6850, respectively. Western blot (WB), immunofluorescence (IF), and immunocytochemical (IC) analyses were also performed. The reconstructs developed spontaneous tone (0.68 ± 0.26 mN). Bethanechol (a muscarinic agonist) and K+ depolarization produced contraction, whereas isoproterenol (β-adrenoceptor agonist) and Y-27632 produced a concentration-dependent decrease in the tone. Maximal decrease in basal tone with Y-27632 and Gö-6850 (each 10−5 M) was 80.45 ± 3.29 and 17.76 ± 3.50%, respectively. WB data with the IAS constructs′ SMCs revealed higher levels of RhoA/ROCK, protein kinase C-potentiated inhibitor or inhibitory phosphoprotein for myosin phosphatase (CPI-17), phospho-CPI-17, MYPT1, and 20-kDa myosin light chain vs. rectal smooth muscle. WB, IF, and IC studies of original SMCs and redispersed from the reconstructs for the relative distribution of different signal transduction proteins confirmed the feasibility of reconstruction of IAS with functional properties similar to intact IAS and demonstrated the development of myogenic tone with critical dependence on RhoA/ROCK. We conclude that it is feasible to bioengineer IAS constructs using human IAS SMCs that behave like intact IAS. PMID:22790596

  16. Developmental changes in somatostatin-positive interneurons in a freeze-lesion model of epilepsy.

    PubMed

    Patrick, Saundra L; Connors, Barry W; Landisman, Carole E

    2006-08-01

    Somatostatin-expressing (SS) cells are inhibitory interneurons critical to the regulation of excitability in the cerebral cortex. It has been suggested in several animal models of epilepsy that the activity of these neurons reduces the occurrence and strength of epileptiform activity. The physiological properties of SS cells further support these hypotheses. Freeze lesions of neonatal rats serve as a model of human polymicrogyria, which is often characterized by severe seizures. Here we investigate the effects of neonatal freeze lesions on SS-expressing neurons by measuring their densities in control and lesioned hemispheres at two ages. We found that in late juveniles (P30-P32), SS-expressing neurons were depleted by 20% in areas adjacent to the freeze lesion, but at an earlier developmental age (P14-15), there was no significant loss. Since the deficit in SS-expressing neurons occurs well after the onset of epileptiform activity (P12-P18), we conclude that the death of these interneurons does not initiate hyperexcitability in this model.

  17. Are Striatal Tyrosine Hydroxylase Interneurons Dopaminergic?

    PubMed Central

    Xenias, Harry S.; Ibáñez-Sandoval, Osvaldo; Koós, Tibor

    2015-01-01

    Striatal GABAergic interneurons that express the gene for tyrosine hydroxylase (TH) have been identified previously by several methods. Although generally assumed to be dopaminergic, possibly serving as a compensatory source of dopamine (DA) in Parkinson's disease, this assumption has never been tested directly. In TH–Cre mice whose nigrostriatal pathway had been eliminated unilaterally with 6-hydroxydopamine, we injected a Cre-dependent virus coding for channelrhodopsin-2 and enhanced yellow fluorescent protein unilaterally into the unlesioned midbrain or bilaterally into the striatum. Fast-scan cyclic voltammetry in striatal slices revealed that both optical and electrical stimulation readily elicited DA release in control striata but not from contralateral striata when nigrostriatal neurons were transduced. In contrast, neither optical nor electrical stimulation could elicit striatal DA release in either the control or lesioned striata when the virus was injected directly into the striatum transducing only striatal TH interneurons. This demonstrates that striatal TH interneurons do not release DA. Fluorescence immunocytochemistry in enhanced green fluorescent protein (EGFP)–TH mice revealed colocalization of DA, l-amino acid decarboxylase, the DA transporter, and vesicular monoamine transporter-2 with EGFP in midbrain dopaminergic neurons but not in any of the striatal EGFP–TH interneurons. Optogenetic activation of striatal EGFP–TH interneurons produced strong GABAergic inhibition in all spiny neurons tested. These results indicate that striatal TH interneurons are not dopaminergic but rather are a type of GABAergic interneuron that expresses TH but none of the other enzymes or transporters necessary to operate as dopaminergic neurons and exert widespread GABAergic inhibition onto direct and indirect spiny neurons. PMID:25904808

  18. Single CA3 pyramidal cells trigger sharp waves in vitro by exciting interneurones.

    PubMed

    Bazelot, Michaël; Teleńczuk, Maria T; Miles, Richard

    2016-05-15

    occurring inhibitory field motifs allowed us to identify firing in different interneurones during the spread of SPWs. Propagation away from an initiating pyramidal cell was typically associated with the recruitment of interneurones and field IPSPs that were not activated by the stimulated pyramidal cell. SPW fields initiated by single cells were less variable than spontaneous events, suggesting that more stereotyped neuronal ensembles were activated, although neither the spatial profiles of fields, nor the identities of interneurone firing were identical for initiated events. The effects of single pyramidal cell on network events are thus mediated by different sequences of interneurone firing. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  19. Dichotomous Dynamics in E-I Networks with Strongly and Weakly Intra-connected Inhibitory Neurons

    PubMed Central

    Rich, Scott; Zochowski, Michal; Booth, Victoria

    2017-01-01

    The interconnectivity between excitatory and inhibitory neural networks informs mechanisms by which rhythmic bursts of excitatory activity can be produced in the brain. One such mechanism, Pyramidal Interneuron Network Gamma (PING), relies primarily upon reciprocal connectivity between the excitatory and inhibitory networks, while also including intra-connectivity of inhibitory cells. The causal relationship between excitatory activity and the subsequent burst of inhibitory activity is of paramount importance to the mechanism and has been well studied. However, the role of the intra-connectivity of the inhibitory network, while important for PING, has not been studied in detail, as most analyses of PING simply assume that inhibitory intra-connectivity is strong enough to suppress subsequent firing following the initial inhibitory burst. In this paper we investigate the role that the strength of inhibitory intra-connectivity plays in determining the dynamics of PING-style networks. We show that networks with weak inhibitory intra-connectivity exhibit variations in burst dynamics of both the excitatory and inhibitory cells that are not obtained with strong inhibitory intra-connectivity. Networks with weak inhibitory intra-connectivity exhibit excitatory rhythmic bursts with weak excitatory-to-inhibitory synapses for which classical PING networks would show no rhythmic activity. Additionally, variations in dynamics of these networks as the excitatory-to-inhibitory synaptic weight increases illustrates the important role that consistent pattern formation in the inhibitory cells serves in maintaining organized and periodic excitatory bursts. Finally, motivated by these results and the known diversity of interneurons, we show that a PING-style network with two inhibitory subnetworks, one strongly intra-connected and one weakly intra-connected, exhibits organized and periodic excitatory activity over a larger parameter regime than networks with a homogeneous inhibitory

  20. Extended Interneuronal Network of the Dentate Gyrus.

    PubMed

    Szabo, Gergely G; Du, Xi; Oijala, Mikko; Varga, Csaba; Parent, Jack M; Soltesz, Ivan

    2017-08-08

    Local interneurons control principal cells within individual brain areas, but anecdotal observations indicate that interneuronal axons sometimes extend beyond strict anatomical boundaries. Here, we use the case of the dentate gyrus (DG) to show that boundary-crossing interneurons with cell bodies in CA3 and CA1 constitute a numerically significant and diverse population that relays patterns of activity generated within the CA regions back to granule cells. These results reveal the existence of a sophisticated retrograde GABAergic circuit that fundamentally extends the canonical interneuronal network. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Intermittent Hypoxia Enhances Functional Connectivity of Midcervical Spinal Interneurons

    PubMed Central

    Streeter, Kristi A.; Sunshine, Michael D.; Patel, Shreya; Gonzalez-Rothi, Elisa J.; Reier, Paul J.

    2017-01-01

    Brief, intermittent oxygen reductions [acute intermittent hypoxia (AIH)] evokes spinal plasticity. Models of AIH-induced neuroplasticity have focused on motoneurons; however, most midcervical interneurons (C-INs) also respond to hypoxia. We hypothesized that AIH would alter the functional connectivity between C-INs and induce persistent changes in discharge. Bilateral phrenic nerve activity was recorded in anesthetized and ventilated adult male rats and a multielectrode array was used to record C4/5 spinal discharge before [baseline (BL)], during, and 15 min after three 5 min hypoxic episodes (11% O2, H1–H3). Most C-INs (94%) responded to hypoxia by either increasing or decreasing firing rate. Functional connectivity was examined by cross-correlating C-IN discharge. Correlograms with a peak or trough were taken as evidence for excitatory or inhibitory connectivity between C-IN pairs. A subset of C-IN pairs had increased excitatory cross-correlations during hypoxic episodes (34%) compared with BL (19%; p < 0.0001). Another subset had a similar response following each episode (40%) compared with BL (19%; p < 0.0001). In the latter group, connectivity remained elevated 15 min post-AIH (30%; p = 0.0002). Inhibitory C-IN connectivity increased during H1–H3 (4.5%; p = 0.0160), but was reduced 15 min post-AIH (0.5%; p = 0.0439). Spike-triggered averaging indicated that a subset of C-INs is synaptically coupled to phrenic motoneurons and excitatory inputs to these “pre-phrenic” cells increased during AIH. We conclude that AIH alters connectivity of the midcervical spinal network. To our knowledge, this is the first demonstration that AIH induces plasticity within the propriospinal network. SIGNIFICANCE STATEMENT Acute intermittent hypoxia (AIH) can trigger spinal plasticity associated with sustained increases in respiratory, somatic, and/or autonomic motor output. The impact of AIH on cervical spinal interneuron (C-IN) discharge and connectivity is unknown. Our

  2. Short-term Synaptic Depression in the Feedforward Inhibitory Circuit in the Dorsal Lateral Geniculate Nucleus.

    PubMed

    Augustinaite, Sigita; Heggelund, Paul

    2018-05-24

    Synaptic short-term plasticity (STP) regulates synaptic transmission in an activity-dependent manner and thereby has important roles in the signal processing in the brain. In some synapses, a presynaptic train of action potentials elicits post-synaptic potentials that gradually increase during the train (facilitation), but in other synapses, these potentials gradually decrease (depression). We studied STP in neurons in the visual thalamic relay, the dorsal lateral geniculate nucleus (dLGN). The dLGN contains two types of neurons: excitatory thalamocortical (TC) neurons, which transfer signals from retinal afferents to visual cortex, and local inhibitory interneurons, which form an inhibitory feedforward loop that regulates the thalamocortical signal transmission. The overall STP in the retino-thalamic relay is short-term depression, but the distinct kind and characteristics of the plasticity at the different types of synapses are unknown. We studied STP in the excitatory responses of interneurons to stimulation of retinal afferents, in the inhibitory responses of TC neurons to stimulation of afferents from interneurons, and in the disynaptic inhibitory responses of TC neurons to stimulation of retinal afferents. Moreover, we studied STP at the direct excitatory input to TC neurons from retinal afferents. The STP at all types of the synapses showed short-term depression. This depression can accentuate rapid changes in the stream of signals and thereby promote detectability of significant features in the sensory input. In vision, detection of edges and contours is essential for object perception, and the synaptic short-term depression in the early visual pathway provides important contributions to this detection process. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. High Stimulus-Related Information in Barrel Cortex Inhibitory Interneurons

    PubMed Central

    Reyes-Puerta, Vicente; Kim, Suam; Sun, Jyh-Jang; Imbrosci, Barbara; Kilb, Werner; Luhmann, Heiko J.

    2015-01-01

    The manner in which populations of inhibitory (INH) and excitatory (EXC) neocortical neurons collectively encode stimulus-related information is a fundamental, yet still unresolved question. Here we address this question by simultaneously recording with large-scale multi-electrode arrays (of up to 128 channels) the activity of cell ensembles (of up to 74 neurons) distributed along all layers of 3–4 neighboring cortical columns in the anesthetized adult rat somatosensory barrel cortex in vivo. Using two different whisker stimulus modalities (location and frequency) we show that individual INH neurons – classified as such according to their distinct extracellular spike waveforms – discriminate better between restricted sets of stimuli (≤6 stimulus classes) than EXC neurons in granular and infra-granular layers. We also demonstrate that ensembles of INH cells jointly provide as much information about such stimuli as comparable ensembles containing the ~20% most informative EXC neurons, however presenting less information redundancy – a result which was consistent when applying both theoretical information measurements and linear discriminant analysis classifiers. These results suggest that a consortium of INH neurons dominates the information conveyed to the neocortical network, thereby efficiently processing incoming sensory activity. This conclusion extends our view on the role of the inhibitory system to orchestrate cortical activity. PMID:26098109

  4. GABAergic Local Interneurons Shape Female Fruit Fly Response to Mating Songs.

    PubMed

    Yamada, Daichi; Ishimoto, Hiroshi; Li, Xiaodong; Kohashi, Tsunehiko; Ishikawa, Yuki; Kamikouchi, Azusa

    2018-05-02

    Many animals use acoustic signals to attract a potential mating partner. In fruit flies ( Drosophila melanogaster ), the courtship pulse song has a species-specific interpulse interval (IPI) that activates mating. Although a series of auditory neurons in the fly brain exhibit different tuning patterns to IPIs, it is unclear how the response of each neuron is tuned. Here, we studied the neural circuitry regulating the activity of antennal mechanosensory and motor center (AMMC)-B1 neurons, key secondary auditory neurons in the excitatory neural pathway that relay song information. By performing Ca 2+ imaging in female flies, we found that the IPI selectivity observed in AMMC-B1 neurons differs from that of upstream auditory sensory neurons [Johnston's organ (JO)-B]. Selective knock-down of a GABA A receptor subunit in AMMC-B1 neurons increased their response to short IPIs, suggesting that GABA suppresses AMMC-B1 activity at these IPIs. Connection mapping identified two GABAergic local interneurons that synapse with AMMC-B1 and JO-B. Ca 2+ imaging combined with neuronal silencing revealed that these local interneurons, AMMC-LN and AMMC-B2, shape the response pattern of AMMC-B1 neurons at a 15 ms IPI. Neuronal silencing studies further suggested that both GABAergic local interneurons suppress the behavioral response to artificial pulse songs in flies, particularly those with a 15 ms IPI. Altogether, we identified a circuit containing two GABAergic local interneurons that affects the temporal tuning of AMMC-B1 neurons in the song relay pathway and the behavioral response to the courtship song. Our findings suggest that feedforward inhibitory pathways adjust the behavioral response to courtship pulse songs in female flies. SIGNIFICANCE STATEMENT To understand how the brain detects time intervals between sound elements, we studied the neural pathway that relays species-specific courtship song information in female Drosophila melanogaster We demonstrate that the signal

  5. Behavior-dependent specialization of identified hippocampal interneurons

    PubMed Central

    Lapray, Damien; Lasztoczi, Balint; Lagler, Michael; Viney, Tim James; Katona, Linda; Valenti, Ornella; Hartwich, Katja; Borhegyi, Zsolt; Somogyi, Peter; Klausberger, Thomas

    2012-01-01

    A large variety of GABAergic interneurons control information processing in hippocampal circuits governing the formation of neuronal representations. Whether distinct hippocampal interneuron types contribute differentially to information-processing during behavior is not known. We employed a novel technique for recording and labeling interneurons and pyramidal cells in drug-free, freely-moving rats. Recorded parvalbumin-expressing basket interneurons innervate somata and proximal pyramidal cell dendrites, whereas nitric-oxide-synthase- and neuropeptide-Y-expressing ivy cells provide synaptic and extrasynaptic dendritic modulation. Basket and ivy cells showed distinct spike timing dynamics, firing at different rates and times during theta and ripple oscillations. Basket but not ivy cells changed their firing rates during movement, sleep and quiet wakefulness, suggesting that basket cells coordinate cell assemblies in a behavioral state-contingent manner, whereas persistently-firing ivy cells might control network excitability and homeostasis. Different interneuron types provide GABA to specific subcellular domains at defined times and rates, thus differentially controlling network activity during behavior. PMID:22864613

  6. Locomotor training improves reciprocal and nonreciprocal inhibitory control of soleus motoneurons in human spinal cord injury

    PubMed Central

    Smith, Andrew C.; Mummidisetty, Chaithanya K.

    2015-01-01

    Pathologic reorganization of spinal networks and activity-dependent plasticity are common neuronal adaptations after spinal cord injury (SCI) in humans. In this work, we examined changes of reciprocal Ia and nonreciprocal Ib inhibition after locomotor training in 16 people with chronic SCI. The soleus H-reflex depression following common peroneal nerve (CPN) and medial gastrocnemius (MG) nerve stimulation at short conditioning-test (C-T) intervals was assessed before and after training in the seated position and during stepping. The conditioned H reflexes were normalized to the unconditioned H reflex recorded during seated. During stepping, both H reflexes were normalized to the maximal M wave evoked at each bin of the step cycle. In the seated position, locomotor training replaced reciprocal facilitation with reciprocal inhibition in all subjects, and Ib facilitation was replaced by Ib inhibition in 13 out of 14 subjects. During stepping, reciprocal inhibition was decreased at early stance and increased at midswing in American Spinal Injury Association Impairment Scale C (AIS C) and was decreased at midstance and midswing phases in AIS D after training. Ib inhibition was decreased at early swing and increased at late swing in AIS C and was decreased at early stance phase in AIS D after training. The results of this study support that locomotor training alters postsynaptic actions of Ia and Ib inhibitory interneurons on soleus motoneurons at rest and during stepping and that such changes occur in cases with limited or absent supraspinal inputs. PMID:25609110

  7. Apolipoprotein E4 Causes Age- and Sex-Dependent Impairments of Hilar GABAergic Interneurons and Learning and Memory Deficits in Mice

    PubMed Central

    Leung, Laura; Andrews-Zwilling, Yaisa; Yoon, Seo Yeon; Jain, Sachi; Ring, Karen; Dai, Jessica; Wang, Max Mu; Tong, Leslie; Walker, David; Huang, Yadong

    2012-01-01

    Apolipoprotein (apo) E4 is the major genetic risk factor for Alzheimer's disease (AD). ApoE4 has sex-dependent effects, whereby the risk of developing AD is higher in apoE4-expressing females than males. However, the mechanism underlying the sex difference, in relation to apoE4, is unknown. Previous findings indicate that apoE4 causes age-dependent impairments of hilar GABAergic interneurons in female mice, leading to learning and memory deficits. Here, we investigate whether the detrimental effects of apoE4 on hilar GABAergic interneurons are sex-dependent using apoE knock-in (KI) mice across different ages. We found that in female apoE-KI mice, there was an age-dependent depletion of hilar GABAergic interneurons, whereby GAD67- or somatostatin-positive–but not NPY- or parvalbumin-positive–interneuron loss was exacerbated by apoE4. Loss of these neuronal populations was correlated with the severity of spatial learning deficits at 16 months of age in female apoE4-KI mice; however, this effect was not observed in female apoE3-KI mice. In contrast, we found an increase in the numbers of hilar GABAergic interneurons with advancing age in male apoE-KI mice, regardless of apoE genotype. Moreover, male apoE-KI mice showed a consistent ratio of hilar inhibitory GABAergic interneurons to excitatory mossy cells approximating 1.5 that is independent of apoE genotype and age, whereas female apoE-KI mice exhibited an age-dependent decrease in this ratio, which was exacerbated by apoE4. Interestingly, there are no apoE genotype effects on GABAergic interneurons in the CA1 and CA3 subregions of the hippocampus as well as the entorhinal and auditory cortexes. These findings suggest that the sex-dependent effects of apoE4 on developing AD is in part attributable to inherent sex-based differences in the numbers of hilar GABAergic interneurons, which is further modulated by apoE genotype. PMID:23300939

  8. Postnatal Migration of Cerebellar Interneurons

    PubMed Central

    Galas, Ludovic; Bénard, Magalie; Lebon, Alexis; Komuro, Yutaro; Schapman, Damien; Vaudry, Hubert; Vaudry, David; Komuro, Hitoshi

    2017-01-01

    Due to its continuing development after birth, the cerebellum represents a unique model for studying the postnatal orchestration of interneuron migration. The combination of fluorescent labeling and ex/in vivo imaging revealed a cellular highway network within cerebellar cortical layers (the external granular layer, the molecular layer, the Purkinje cell layer, and the internal granular layer). During the first two postnatal weeks, saltatory movements, transient stop phases, cell-cell interaction/contact, and degradation of the extracellular matrix mark out the route of cerebellar interneurons, notably granule cells and basket/stellate cells, to their final location. In addition, cortical-layer specific regulatory factors such as neuropeptides (pituitary adenylate cyclase-activating polypeptide (PACAP), somatostatin) or proteins (tissue-type plasminogen activator (tPA), insulin growth factor-1 (IGF-1)) have been shown to inhibit or stimulate the migratory process of interneurons. These factors show further complexity because somatostatin, PACAP, or tPA have opposite or no effect on interneuron migration depending on which layer or cell type they act upon. External factors originating from environmental conditions (light stimuli, pollutants), nutrients or drug of abuse (alcohol) also alter normal cell migration, leading to cerebellar disorders. PMID:28587295

  9. GABAergic Projections from the Medial Septum Selectively Inhibit Interneurons in the Medial Entorhinal Cortex

    PubMed Central

    Gonzalez-Sulser, Alfredo; Parthier, Daniel; Candela, Antonio; McClure, Christina; Pastoll, Hugh; Garden, Derek; Sürmeli, Gülşen

    2014-01-01

    The medial septum (MS) is required for theta rhythmic oscillations and grid cell firing in the medial entorhinal cortex (MEC). While GABAergic, glutamatergic, and cholinergic neurons project from the MS to the MEC, their synaptic targets are unknown. To investigate whether MS neurons innervate specific layers and cell types in the MEC, we expressed channelrhodopsin-2 in mouse MS neurons and used patch-clamp recording in brain slices to determine the response to light activation of identified cells in the MEC. Following activation of MS axons, we observed fast monosynaptic GABAergic IPSPs in the majority (>60%) of fast-spiking (FS) and low-threshold-spiking (LTS) interneurons in all layers of the MEC, but in only 1.5% of nonstellate principal cells (NSPCs) and in no stellate cells. We also observed fast glutamatergic responses to MS activation in a minority (<5%) of NSPCs, FS, and LTS interneurons. During stimulation of MS inputs at theta frequency (10 Hz), the amplitude of GABAergic IPSPs was maintained, and spike output from LTS and FS interneurons was entrained at low (25–60 Hz) and high (60–180 Hz) gamma frequencies, respectively. By demonstrating cell type-specific targeting of the GABAergic projection from the MS to the MEC, our results support the idea that the MS controls theta frequency activity in the MEC through coordination of inhibitory circuits. PMID:25505326

  10. Collagen-derived matricryptins promote inhibitory nerve terminal formation in the developing neocortex

    PubMed Central

    Su, Jianmin; Chen, Jiang; Lippold, Kumiko; Monavarfeshani, Aboozar; Carrillo, Gabriela Lizana; Jenkins, Rachel

    2016-01-01

    Inhibitory synapses comprise only ∼20% of the total synapses in the mammalian brain but play essential roles in controlling neuronal activity. In fact, perturbing inhibitory synapses is associated with complex brain disorders, such as schizophrenia and epilepsy. Although many types of inhibitory synapses exist, these disorders have been strongly linked to defects in inhibitory synapses formed by Parvalbumin-expressing interneurons. Here, we discovered a novel role for an unconventional collagen—collagen XIX—in the formation of Parvalbumin+ inhibitory synapses. Loss of this collagen results not only in decreased inhibitory synapse number, but also in the acquisition of schizophrenia-related behaviors. Mechanistically, these studies reveal that a proteolytically released fragment of this collagen, termed a matricryptin, promotes the assembly of inhibitory nerve terminals through integrin receptors. Collectively, these studies not only identify roles for collagen-derived matricryptins in cortical circuit formation, but they also reveal a novel paracrine mechanism that regulates the assembly of these synapses. PMID:26975851

  11. The sox gene Dichaete is expressed in local interneurons and functions in development of the Drosophila adult olfactory circuit.

    PubMed

    Melnattur, Krishna V; Berdnik, Daniela; Rusan, Zeid; Ferreira, Christopher J; Nambu, John R

    2013-02-01

    In insects, the primary sites of integration for olfactory sensory input are the glomeruli in the antennal lobes. Here, axons of olfactory receptor neurons synapse with dendrites of the projection neurons that relay olfactory input to higher brain centers, such as the mushroom bodies and lateral horn. Interactions between olfactory receptor neurons and projection neurons are modulated by excitatory and inhibitory input from a group of local interneurons. While significant insight has been gleaned into the differentiation of olfactory receptor and projection neurons, much less is known about the development and function of the local interneurons. We have found that Dichaete, a conserved Sox HMG box gene, is strongly expressed in a cluster of LAAL cells located adjacent to each antennal lobe in the adult brain. Within these clusters, Dichaete protein expression is detected in both cholinergic and GABAergic local interneurons. In contrast, Dichaete expression is not detected in mature or developing projection neurons, or developing olfactory receptor neurons. Analysis of novel viable Dichaete mutant alleles revealed misrouting of specific projection neuron dendrites and axons, and alterations in glomeruli organization. These results suggest noncell autonomous functions of Dichaete in projection neuron differentiation as well as a potential role for Dichaete-expressing local interneurons in development of the adult olfactory circuitry. Copyright © 2012 Wiley Periodicals, Inc.

  12. Four GABAergic interneurons impose feeding restraint in Drosophila

    PubMed Central

    Pool, Allan-Hermann; Kvello, Pal; Mann, Kevin; Cheung, Samantha K.; Gordon, Michael D.; Wang, Liming; Scott, Kristin

    2014-01-01

    Summary Feeding is dynamically regulated by the palatability of the food source and the physiological needs of the animal. How consumption is controlled by external sensory cues and internal metabolic state remains under intense investigation. Here, we identify four GABAergic interneurons in the Drosophila brain that establish a central feeding threshold which is required to inhibit consumption. Inactivation of these cells results in indiscriminate and excessive intake of all compounds, independent of taste quality or nutritional state. Conversely, acute activation of these neurons suppresses consumption of water and nutrients. The output from these neurons is required to gate activity in motor neurons that control meal initiation and consumption. Thus, our study reveals a new layer of inhibitory control in feeding circuits that is required to suppress a latent state of unrestricted and non-selective consumption. PMID:24991960

  13. Electrical coupling regulates layer 1 interneuron microcircuit formation in the neocortex

    PubMed Central

    Yao, Xing-Hua; Wang, Min; He, Xiang-Nan; He, Fei; Zhang, Shu-Qing; Lu, Wenlian; Qiu, Zi-Long; Yu, Yong-Chun

    2016-01-01

    The coexistence of electrical and chemical synapses among interneurons is essential for interneuron function in the neocortex. However, it remains largely unclear whether electrical coupling between interneurons influences chemical synapse formation and microcircuit assembly during development. Here, we show that electrical and GABAergic chemical connections robustly develop between interneurons in neocortical layer 1 over a similar time course. Electrical coupling promotes action potential generation and synchronous firing between layer 1 interneurons. Furthermore, electrically coupled interneurons exhibit strong GABA-A receptor-mediated synchronous synaptic activity. Disruption of electrical coupling leads to a loss of bidirectional, but not unidirectional, GABAergic connections. Moreover, a reduction in electrical coupling induces an increase in excitatory synaptic inputs to layer 1 interneurons. Together, these findings strongly suggest that electrical coupling between neocortical interneurons plays a critical role in regulating chemical synapse development and precise formation of circuits. PMID:27510304

  14. Role of Somatostatin-Positive Cortical Interneurons in the Generation of Sleep Slow Waves.

    PubMed

    Funk, Chadd M; Peelman, Kayla; Bellesi, Michele; Marshall, William; Cirelli, Chiara; Tononi, Giulio

    2017-09-20

    During non-rapid eye-movement (NREM) sleep, cortical and thalamic neurons oscillate every second or so between ON periods, characterized by membrane depolarization and wake-like tonic firing, and OFF periods, characterized by membrane hyperpolarization and neuronal silence. Cortical slow waves, the hallmark of NREM sleep, reflect near-synchronous OFF periods in cortical neurons. However, the mechanisms triggering such OFF periods are unclear, as there is little evidence for somatic inhibition. We studied cortical inhibitory interneurons that express somatostatin (SOM), because ∼70% of them are Martinotti cells that target diffusely layer I and can block excitatory transmission presynaptically, at glutamatergic terminals, and postsynaptically, at apical dendrites, without inhibiting the soma. In freely moving male mice, we show that SOM+ cells can fire immediately before slow waves and their optogenetic stimulation during ON periods of NREM sleep triggers long OFF periods. Next, we show that chemogenetic activation of SOM+ cells increases slow-wave activity (SWA), slope of individual slow waves, and NREM sleep duration; whereas their chemogenetic inhibition decreases SWA and slow-wave incidence without changing time spent in NREM sleep. By contrast, activation of parvalbumin+ (PV+) cells, the most numerous population of cortical inhibitory neurons, greatly decreases SWA and cortical firing, triggers short OFF periods in NREM sleep, and increases NREM sleep duration. Thus SOM+ cells, but not PV+ cells, are involved in the generation of sleep slow waves. Whether Martinotti cells are solely responsible for this effect, or are complemented by other classes of inhibitory neurons, remains to be investigated. SIGNIFICANCE STATEMENT Cortical slow waves are a defining feature of non-rapid eye-movement (NREM) sleep and are thought to be important for many of its restorative benefits. Yet, the mechanism by which cortical neurons abruptly and synchronously cease firing, the

  15. Distinct learning-induced changes in stimulus selectivity and interactions of GABAergic interneuron classes in visual cortex.

    PubMed

    Khan, Adil G; Poort, Jasper; Chadwick, Angus; Blot, Antonin; Sahani, Maneesh; Mrsic-Flogel, Thomas D; Hofer, Sonja B

    2018-06-01

    How learning enhances neural representations for behaviorally relevant stimuli via activity changes of cortical cell types remains unclear. We simultaneously imaged responses of pyramidal cells (PYR) along with parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal peptide (VIP) inhibitory interneurons in primary visual cortex while mice learned to discriminate visual patterns. Learning increased selectivity for task-relevant stimuli of PYR, PV and SOM subsets but not VIP cells. Strikingly, PV neurons became as selective as PYR cells, and their functional interactions reorganized, leading to the emergence of stimulus-selective PYR-PV ensembles. Conversely, SOM activity became strongly decorrelated from the network, and PYR-SOM coupling before learning predicted selectivity increases in individual PYR cells. Thus, learning differentially shapes the activity and interactions of multiple cell classes: while SOM inhibition may gate selectivity changes, PV interneurons become recruited into stimulus-specific ensembles and provide more selective inhibition as the network becomes better at discriminating behaviorally relevant stimuli.

  16. MACF1 Controls Migration and Positioning of Cortical GABAergic Interneurons in Mice.

    PubMed

    Ka, Minhan; Moffat, Jeffrey J; Kim, Woo-Yang

    2017-12-01

    GABAergic interneurons develop in the ganglionic eminence in the ventral telencephalon and tangentially migrate into the cortical plate during development. However, key molecules controlling interneuron migration remain poorly identified. Here, we show that microtubule-actin cross-linking factor 1 (MACF1) regulates GABAergic interneuron migration and positioning in the developing mouse brain. To investigate the role of MACF1 in developing interneurons, we conditionally deleted the MACF1 gene in mouse interneuron progenitors and their progeny using Dlx5/6-Cre-IRES-EGFP and Nkx2.1-Cre drivers. We found that MACF1 deletion results in a marked reduction and defective positioning of interneurons in the mouse cerebral cortex and hippocampus, suggesting abnormal interneuron migration. Indeed, the speed and mode of interneuron migration were abnormal in the MACF1-mutant brain, compared with controls. Additionally, MACF1-deleted interneurons showed a significant reduction in the length of their leading processes and dendrites in the mouse brain. Finally, loss of MACF1 decreased microtubule stability in cortical interneurons. Our findings suggest that MACF1 plays a critical role in cortical interneuron migration and positioning in the developing mouse brain. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Interplay of intrinsic and synaptic conductances in the generation of high-frequency oscillations in interneuronal networks with irregular spiking.

    PubMed

    Baroni, Fabiano; Burkitt, Anthony N; Grayden, David B

    2014-05-01

    High-frequency oscillations (above 30 Hz) have been observed in sensory and higher-order brain areas, and are believed to constitute a general hallmark of functional neuronal activation. Fast inhibition in interneuronal networks has been suggested as a general mechanism for the generation of high-frequency oscillations. Certain classes of interneurons exhibit subthreshold oscillations, but the effect of this intrinsic neuronal property on the population rhythm is not completely understood. We study the influence of intrinsic damped subthreshold oscillations in the emergence of collective high-frequency oscillations, and elucidate the dynamical mechanisms that underlie this phenomenon. We simulate neuronal networks composed of either Integrate-and-Fire (IF) or Generalized Integrate-and-Fire (GIF) neurons. The IF model displays purely passive subthreshold dynamics, while the GIF model exhibits subthreshold damped oscillations. Individual neurons receive inhibitory synaptic currents mediated by spiking activity in their neighbors as well as noisy synaptic bombardment, and fire irregularly at a lower rate than population frequency. We identify three factors that affect the influence of single-neuron properties on synchronization mediated by inhibition: i) the firing rate response to the noisy background input, ii) the membrane potential distribution, and iii) the shape of Inhibitory Post-Synaptic Potentials (IPSPs). For hyperpolarizing inhibition, the GIF IPSP profile (factor iii)) exhibits post-inhibitory rebound, which induces a coherent spike-mediated depolarization across cells that greatly facilitates synchronous oscillations. This effect dominates the network dynamics, hence GIF networks display stronger oscillations than IF networks. However, the restorative current in the GIF neuron lowers firing rates and narrows the membrane potential distribution (factors i) and ii), respectively), which tend to decrease synchrony. If inhibition is shunting instead of

  18. Interplay of Intrinsic and Synaptic Conductances in the Generation of High-Frequency Oscillations in Interneuronal Networks with Irregular Spiking

    PubMed Central

    Baroni, Fabiano; Burkitt, Anthony N.; Grayden, David B.

    2014-01-01

    High-frequency oscillations (above 30 Hz) have been observed in sensory and higher-order brain areas, and are believed to constitute a general hallmark of functional neuronal activation. Fast inhibition in interneuronal networks has been suggested as a general mechanism for the generation of high-frequency oscillations. Certain classes of interneurons exhibit subthreshold oscillations, but the effect of this intrinsic neuronal property on the population rhythm is not completely understood. We study the influence of intrinsic damped subthreshold oscillations in the emergence of collective high-frequency oscillations, and elucidate the dynamical mechanisms that underlie this phenomenon. We simulate neuronal networks composed of either Integrate-and-Fire (IF) or Generalized Integrate-and-Fire (GIF) neurons. The IF model displays purely passive subthreshold dynamics, while the GIF model exhibits subthreshold damped oscillations. Individual neurons receive inhibitory synaptic currents mediated by spiking activity in their neighbors as well as noisy synaptic bombardment, and fire irregularly at a lower rate than population frequency. We identify three factors that affect the influence of single-neuron properties on synchronization mediated by inhibition: i) the firing rate response to the noisy background input, ii) the membrane potential distribution, and iii) the shape of Inhibitory Post-Synaptic Potentials (IPSPs). For hyperpolarizing inhibition, the GIF IPSP profile (factor iii)) exhibits post-inhibitory rebound, which induces a coherent spike-mediated depolarization across cells that greatly facilitates synchronous oscillations. This effect dominates the network dynamics, hence GIF networks display stronger oscillations than IF networks. However, the restorative current in the GIF neuron lowers firing rates and narrows the membrane potential distribution (factors i) and ii), respectively), which tend to decrease synchrony. If inhibition is shunting instead of

  19. Sleep Impairment and Reduced Interneuron Excitability in a Mouse Model of Dravet Syndrome

    PubMed Central

    Kalume, Franck; Oakley, John C.; Westenbroek, Ruth E.; Gile, Jennifer; de la Iglesia, Horacio O.; Scheuer, Todd; Catterall, William A.

    2015-01-01

    Dravet Syndrome (DS) is caused by heterozygous loss-of-function mutations in voltage-gated sodium channel NaV1.1. Our genetic mouse model of DS recapitulates its severe seizures and premature death. Sleep disturbance is common in DS, but its mechanism is unknown. Electroencephalographic studies revealed abnormal sleep in DS mice, including reduced delta wave power, reduced sleep spindles, increased brief wakes, and numerous interictal spikes in Non-Rapid-Eye-Movement sleep. Theta power was reduced in Rapid-Eye-Movement sleep. Mice with NaV1.1 deleted specifically in forebrain interneurons exhibited similar sleep pathology to DS mice, but without changes in circadian rhythm. Sleep architecture depends on oscillatory activity in the thalamocortical network generated by excitatory neurons in the ventrobasal nucleus (VBN) of the thalamus and inhibitory GABAergic neurons in the reticular nucleus of the thalamus (RNT). Whole-cell NaV current was reduced in GABAergic RNT neurons but not in VBN neurons. Rebound firing of action potentials following hyperpolarization, the signature firing pattern of RNT neurons during sleep, was also reduced. These results demonstrate imbalance of excitatory vs. inhibitory neurons in this circuit. As predicted from this functional impairment, we found substantial deficit in homeostatic rebound of slow wave activity following sleep deprivation. Although sleep disorders in epilepsies have been attributed to anti-epileptic drugs, our results show that sleep disorder in DS mice arises from loss of NaV1.1 channels in forebrain GABAergic interneurons without drug treatment. Impairment of NaV currents and excitability of GABAergic RNT neurons are correlated with impaired sleep quality and homeostasis in these mice. PMID:25766678

  20. Anatomy and physiology of a set of low-frequency vibratory interneurons in a nonhearing ensiferan (Troglophilus neglectus, rhaphidophoridae).

    PubMed

    Stritih, Natasa

    2009-10-20

    Vibratory interneurons were investigated in a primitive nonhearing ensiferan (orthopteran) species (Troglophilus neglectus, Rhaphidophoridae), using intracellular recording and staining technique. The study included 26 morphologically and/or physiologically distinct types of neurons from the prothoracic ganglion responding to vibration of the front legs. Most of these neurons are tuned to frequencies below 400 Hz. The morphology, anatomical position in the ganglion, and physiological responses are described in particular for a set of these low-frequency-tuned elements, including one local neuron, two T-shaped fibers, and five descending neurons, for which no putative homologues are known from the hearing Orthoptera. Their lowest thresholds are between about 0.01 and 0.4 m/second(2) at frequencies of 50-400 Hz, and the shortest latencies between 10 and 16 msec, suggesting that they are first- or second-order interneurons. Six interneurons have dendritic arborizations in the neuropile region that contains projections of tibial organ vibratory receptors, but their sensitivity suggests predominating inputs from vibrational sensilla of another origin. Responses of most neurons are composed of frequency-specific excitatory and inhibitory synaptic potentials, most of the latter being received in the high-frequency range. The function of these neurons in predator detection and intraspecific communication is discussed.

  1. Glycinergic dysfunction in a subpopulation of dorsal horn interneurons in a rat model of neuropathic pain

    PubMed Central

    Imlach, Wendy L.; Bhola, Rebecca F.; Mohammadi, Sarasa A.; Christie, Macdonald J.

    2016-01-01

    The development of neuropathic pain involves persistent changes in signalling within pain pathways. Reduced inhibitory signalling in the spinal cord following nerve-injury has been used to explain sensory signs of neuropathic pain but specific circuits that lose inhibitory input have not been identified. This study shows a specific population of spinal cord interneurons, radial neurons, lose glycinergic inhibitory input in a rat partial sciatic nerve ligation (PNL) model of neuropathic pain. Radial neurons are excitatory neurons located in lamina II of the dorsal horn, and are readily identified by their morphology. The amplitude of electrically-evoked glycinergic inhibitory post-synaptic currents (eIPSCs) was greatly reduced in radial neurons following nerve-injury associated with increased paired-pulse ratio. There was also a reduction in frequency of spontaneous IPSCs (sIPSCs) and miniature IPSCs (mIPSC) in radial neurons without significantly affecting mIPSC amplitude. A subtype selective receptor antagonist and western blots established reversion to expression of the immature glycine receptor subunit GlyRα2 in radial neurons after PNL, consistent with slowed decay times of IPSCs. This study has important implications as it identifies a glycinergic synaptic connection in a specific population of dorsal horn neurons where loss of inhibitory signalling may contribute to signs of neuropathic pain. PMID:27841371

  2. Postnatal development of GABAergic interneurons in the neocortical subplate of mice.

    PubMed

    Qu, G-J; Ma, J; Yu, Y-C; Fu, Y

    2016-05-13

    The subplate (SP) plays important roles in developmental and functional events in the neocortex, such as thalamocortical and corticofugal projection, cortical oscillation generation and corticocortical connectivity. Although accumulated evidence indicates that SP interneurons are crucial for SP function, the molecular composition of SP interneurons as well as their developmental profile and distribution remain largely unclear. In this study, we systematically investigated dynamic development of SP thickness and chemical marker expression in SP interneurons in distinct cortical regions during the first postnatal month. We found that, although the relative area of the SP in the cerebral cortex significantly declined with postnatal development, the absolute thickness did not change markedly. We also found that somatostatin (SOM), the ionotropic serotonin receptor 3A (5HT3AR), and parvalbumin (PV) reliably identify three distinct non-overlapping subpopulations of SP interneurons. The SOM group, which represents ~30% of total SP interneurons, expresses neuronal nitric oxide synthase (nNOS) and calbindin (CB) and colocalizes entirely with neuropeptide Y (NPY). The 5HT3AR group, which accounts for ~60% of the total interneuronal population, expresses calretinin (CR) and GABA-A receptor subunit delta (GABAARδ). The PV group accounts for ~10% of total SP interneurons and coexpressed GABAARδ. Moreover, distinct interneuron subtypes show characteristic temporal and spatial distribution in the SP. nNOS(+) interneurons in the SP increase from the anterior motor cortex to posterior visual cortex, while CR(+) and CB(+) interneurons the opposite. Interestedly, the majority of GABAARδ(+) neurons in SP are non-GABAergic neurons in contrast to other cortical layers. These findings clarify and extend our understanding of SP interneurons in the developing cerebral cortex and will underpin further study of SP function. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights

  3. KChIP1 modulation of Kv4.3-mediated A-type K(+) currents and repetitive firing in hippocampal interneurons.

    PubMed

    Bourdeau, M L; Laplante, I; Laurent, C E; Lacaille, J-C

    2011-03-10

    Neuronal A-type K(+) channels regulate action potential waveform, back-propagation and firing frequency. In hippocampal CA1 interneurons located at the stratum lacunosum-moleculare/radiatum junction (LM/RAD), Kv4.3 mediates A-type K(+) currents and a Kv4 β-subunit of the Kv channel interacting protein (KChIP) family, KChIP1, appears specifically expressed in these cells. However, the functional role of this accessory subunit in A-type K(+) currents and interneuron excitability remains largely unknown. Thus, first we studied KChIP1 and Kv4.3 channel interactions in human embryonic kidney 293 (HEK293) cells and determined that KChIP1 coexpression modulated the biophysical properties of Kv4.3 A-type currents (faster recovery from inactivation, leftward shift of activation curve, faster rise time and slower decay) and this modulation was selectively prevented by KChIP1 short interfering RNA (siRNA) knockdown. Next, we evaluated the effects of KChIP1 down-regulation by siRNA on A-type K(+) currents in LM/RAD interneurons in slice cultures. Recovery from inactivation of A-type K(+) currents was slower after KChIP1 down-regulation but other properties were unchanged. In addition, down-regulation of KChIP1 levels did not affect action potential waveform and firing, but increased firing frequency during suprathreshold depolarizations, indicating that KChIP1 regulates interneuron excitability. The effects of KChIP1 down-regulation were cell-specific since CA1 pyramidal cells that do not express KChIP1 were unaffected. Overall, our findings suggest that KChIP1 interacts with Kv4.3 in LM/RAD interneurons, enabling faster recovery from inactivation of A-type currents and thus promoting stronger inhibitory control of firing during sustained activity. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Paired associative stimulation induces change in presynaptic inhibition of Ia terminals in wrist flexors in humans.

    PubMed

    Lamy, Jean-Charles; Russmann, Heike; Shamim, Ejaz A; Meunier, Sabine; Hallett, Mark

    2010-08-01

    Enhancements in the strength of corticospinal projections to muscles are induced in conscious humans by paired associative stimulation (PAS) to the motor cortex. Although most of the previous studies support the hypothesis that the increase of the amplitude of motor evoked potentials (MEPs) by PAS involves long-term potentiation (LTP)-like mechanism in cortical synapses, changes in spinal excitability after PAS have been reported, suggestive of parallel modifications in both cortical and spinal excitability. In a first series of experiments (experiment 1), we confirmed that both flexor carpi radialis (FCR) MEPs and FCR H reflex recruitment curves are enhanced by PAS. To elucidate the mechanism responsible for this change in the H reflex amplitude, we tested, using the same subjects, the hypothesis that enhanced H reflexes are caused by a down-regulation of the efficacy of mechanisms controlling Ia afferent discharge, including presynaptic Ia inhibition and postactivation depression. To address this question, amounts of both presynaptic Ia inhibition of FCR Ia terminals (D1 and D2 inhibitions methods; experiment 2) and postactivation depression (experiment 3) were determined before and after PAS. Results showed that PAS induces a significant decrease of presynaptic Ia inhibition of FCR terminals, which was concomitant with the facilitation of the H reflex. Postactivation depression was unaffected by PAS. It is argued that enhancement of segmental excitation by PAS relies on a selective effect of PAS on the interneurons controlling presynaptic inhibition of Ia terminals.

  5. Distinct kinetics of inhibitory currents in thalamocortical neurons that arise from dendritic or axonal origin.

    PubMed

    Yang, Sunggu; Govindaiah, Gubbi; Lee, Sang-Hun; Yang, Sungchil; Cox, Charles L

    2017-01-01

    Thalamocortical neurons in the dorsal lateral geniculate nucleus (dLGN) transfer visual information from retina to primary visual cortex. This information is modulated by inhibitory input arising from local interneurons and thalamic reticular nucleus (TRN) neurons, leading to alterations of receptive field properties of thalamocortical neurons. Local GABAergic interneurons provide two distinct synaptic outputs: axonal (F1 terminals) and dendritic (F2 terminals) onto dLGN thalamocortical neurons. By contrast, TRN neurons provide only axonal output (F1 terminals) onto dLGN thalamocortical neurons. It is unclear if GABAA receptor-mediated currents originating from F1 and F2 terminals have different characteristics. In the present study, we examined multiple characteristics (rise time, slope, halfwidth and decay τ) of GABAA receptor-mediated miniature inhibitory postsynaptic synaptic currents (mIPSCs) originating from F1 and F2 terminals. The mIPSCs arising from F2 terminals showed slower kinetics relative to those from F1 terminals. Such differential kinetics of GABAAR-mediated responses could be an important role in temporal coding of visual signals.

  6. Bayesian network classifiers for categorizing cortical GABAergic interneurons.

    PubMed

    Mihaljević, Bojan; Benavides-Piccione, Ruth; Bielza, Concha; DeFelipe, Javier; Larrañaga, Pedro

    2015-04-01

    An accepted classification of GABAergic interneurons of the cerebral cortex is a major goal in neuroscience. A recently proposed taxonomy based on patterns of axonal arborization promises to be a pragmatic method for achieving this goal. It involves characterizing interneurons according to five axonal arborization features, called F1-F5, and classifying them into a set of predefined types, most of which are established in the literature. Unfortunately, there is little consensus among expert neuroscientists regarding the morphological definitions of some of the proposed types. While supervised classifiers were able to categorize the interneurons in accordance with experts' assignments, their accuracy was limited because they were trained with disputed labels. Thus, here we automatically classify interneuron subsets with different label reliability thresholds (i.e., such that every cell's label is backed by at least a certain (threshold) number of experts). We quantify the cells with parameters of axonal and dendritic morphologies and, in order to predict the type, also with axonal features F1-F4 provided by the experts. Using Bayesian network classifiers, we accurately characterize and classify the interneurons and identify useful predictor variables. In particular, we discriminate among reliable examples of common basket, horse-tail, large basket, and Martinotti cells with up to 89.52% accuracy, and single out the number of branches at 180 μm from the soma, the convex hull 2D area, and the axonal features F1-F4 as especially useful predictors for distinguishing among these types. These results open up new possibilities for an objective and pragmatic classification of interneurons.

  7. GABA interneurons mediate the rapid antidepressant-like effects of scopolamine

    PubMed Central

    Wohleb, Eric S.; Wu, Min; Gerhard, Danielle M.; Taylor, Seth R.; Picciotto, Marina R.; Alreja, Meenakshi; Duman, Ronald S.

    2016-01-01

    Major depressive disorder (MDD) is a recurring psychiatric illness that causes substantial health and socioeconomic burdens. Clinical reports have revealed that scopolamine, a nonselective muscarinic acetylcholine receptor antagonist, produces rapid antidepressant effects in individuals with MDD. Preclinical models suggest that these rapid antidepressant effects can be recapitulated with blockade of M1-type muscarinic acetylcholine receptors (M1-AChR); however, the cellular mechanisms underlying activity-dependent synaptic and behavioral responses to scopolamine have not been determined. Here, we demonstrate that the antidepressant-like effects of scopolamine are mediated by GABA interneurons in the medial prefrontal cortex (mPFC). Both GABAergic (GAD67+) interneurons and glutamatergic (CaMKII+) interneurons in the mPFC expressed M1-AChR. In mice, viral-mediated knockdown of M1-AChR specifically in GABAergic neurons, but not glutamatergic neurons, in the mPFC attenuated the antidepressant-like effects of scopolamine. Immunohistology and electrophysiology showed that somatostatin (SST) interneurons in the mPFC express M1-AChR at higher levels than parvalbumin interneurons. Moreover, knockdown of M1-AChR in SST interneurons in the mPFC demonstrated that M1-AChR expression in these neurons is required for the rapid antidepressant-like effects of scopolamine. These data indicate that SST interneurons in the mPFC are a promising pharmacological target for developing rapid-acting antidepressant therapies. PMID:27270172

  8. GABA interneurons mediate the rapid antidepressant-like effects of scopolamine.

    PubMed

    Wohleb, Eric S; Wu, Min; Gerhard, Danielle M; Taylor, Seth R; Picciotto, Marina R; Alreja, Meenakshi; Duman, Ronald S

    2016-07-01

    Major depressive disorder (MDD) is a recurring psychiatric illness that causes substantial health and socioeconomic burdens. Clinical reports have revealed that scopolamine, a nonselective muscarinic acetylcholine receptor antagonist, produces rapid antidepressant effects in individuals with MDD. Preclinical models suggest that these rapid antidepressant effects can be recapitulated with blockade of M1-type muscarinic acetylcholine receptors (M1-AChR); however, the cellular mechanisms underlying activity-dependent synaptic and behavioral responses to scopolamine have not been determined. Here, we demonstrate that the antidepressant-like effects of scopolamine are mediated by GABA interneurons in the medial prefrontal cortex (mPFC). Both GABAergic (GAD67+) interneurons and glutamatergic (CaMKII+) interneurons in the mPFC expressed M1-AChR. In mice, viral-mediated knockdown of M1-AChR specifically in GABAergic neurons, but not glutamatergic neurons, in the mPFC attenuated the antidepressant-like effects of scopolamine. Immunohistology and electrophysiology showed that somatostatin (SST) interneurons in the mPFC express M1-AChR at higher levels than parvalbumin interneurons. Moreover, knockdown of M1-AChR in SST interneurons in the mPFC demonstrated that M1-AChR expression in these neurons is required for the rapid antidepressant-like effects of scopolamine. These data indicate that SST interneurons in the mPFC are a promising pharmacological target for developing rapid-acting antidepressant therapies.

  9. Fear extinction causes target-specific remodeling of perisomatic inhibitory synapses

    PubMed Central

    Trouche, Stéphanie; Sasaki, Jennifer M.; Tu, Tiffany; Reijmers, Leon G.

    2013-01-01

    SUMMARY A more complete understanding of how fear extinction alters neuronal activity and connectivity within fear circuits may aid in the development of strategies to treat human fear disorders. Using a c-fos based transgenic mouse, we found that contextual fear extinction silenced basal amygdala (BA) excitatory neurons that had been previously activated during fear conditioning. We hypothesized that the silencing of BA fear neurons was caused by an action of extinction on BA inhibitory synapses. In support of this hypothesis, we found extinction-induced target-specific remodeling of BA perisomatic inhibitory synapses originating from parvalbumin and cholecystokinin-positive interneurons. Interestingly, the predicted changes in the balance of perisomatic inhibition matched the silent and active states of the target BA fear neurons. These observations suggest that target-specific changes in perisomatic inhibitory synapses represent a mechanism through which experience can sculpt the activation patterns within a neural circuit. PMID:24183705

  10. Multi-dimensional classification of GABAergic interneurons with Bayesian network-modeled label uncertainty.

    PubMed

    Mihaljević, Bojan; Bielza, Concha; Benavides-Piccione, Ruth; DeFelipe, Javier; Larrañaga, Pedro

    2014-01-01

    Interneuron classification is an important and long-debated topic in neuroscience. A recent study provided a data set of digitally reconstructed interneurons classified by 42 leading neuroscientists according to a pragmatic classification scheme composed of five categorical variables, namely, of the interneuron type and four features of axonal morphology. From this data set we now learned a model which can classify interneurons, on the basis of their axonal morphometric parameters, into these five descriptive variables simultaneously. Because of differences in opinion among the neuroscientists, especially regarding neuronal type, for many interneurons we lacked a unique, agreed-upon classification, which we could use to guide model learning. Instead, we guided model learning with a probability distribution over the neuronal type and the axonal features, obtained, for each interneuron, from the neuroscientists' classification choices. We conveniently encoded such probability distributions with Bayesian networks, calling them label Bayesian networks (LBNs), and developed a method to predict them. This method predicts an LBN by forming a probabilistic consensus among the LBNs of the interneurons most similar to the one being classified. We used 18 axonal morphometric parameters as predictor variables, 13 of which we introduce in this paper as quantitative counterparts to the categorical axonal features. We were able to accurately predict interneuronal LBNs. Furthermore, when extracting crisp (i.e., non-probabilistic) predictions from the predicted LBNs, our method outperformed related work on interneuron classification. Our results indicate that our method is adequate for multi-dimensional classification of interneurons with probabilistic labels. Moreover, the introduced morphometric parameters are good predictors of interneuron type and the four features of axonal morphology and thus may serve as objective counterparts to the subjective, categorical axonal features.

  11. Targeted Interneuron Ablation in the Mouse Hippocampus Can Cause Spontaneous Recurrent Seizures

    PubMed Central

    2017-01-01

    Abstract The death of GABAergic interneurons has long been hypothesized to contribute to acquired epilepsy. These experiments tested the hypothesis that focal interneuron lesions cause acute seizures [i.e., status epilepticus (SE)] and/or chronic epilepsy [i.e., persistent spontaneous recurrent seizures (SRSs)]. To selectively ablate interneurons, Gad2-ires-Cre mice were injected unilaterally in the CA1 area of the dorsal hippocampus with an adeno-associated virus containing the diphtheria toxin receptor (DTR). Simultaneously, an electrode, connected to a miniature telemetry device, was positioned at the injection site for chronic recordings of local field potentials (LFPs). Two weeks after virus transfection, intraperitoneal injection of DT consistently caused focal, specific, and extensive ablation of interneurons. Long-term, continuous monitoring revealed that all mice with DT-induced interneuron lesions had SRSs. Seizures lasted tens of seconds and interseizure intervals were several hours (or days); therefore, these interneuron lesions did not induce SE. The SRSs occurred 3-5 d after DT treatment, which is the estimated time required for DT-induced cell death; therefore, induction of SRSs occurred without the latent period typical of acquired epilepsy. In five of six DT-treated mice, SRSs stopped within days, suggesting that the DT-induced interneuron lesions did not usually cause epilepsy. In one mouse, however, SRSs occurred for ≥34 d after interneuron ablation, similar to epilepsy after experimental SE. Sham control mice had no detectable seizures, confirming that the SRSs were due to ablation of interneurons. These data show that selective interneuron ablation consistently caused SRSs but not SE; and, at least under the conditions used here, interneuron lesions rarely led to persistent SRSs (i.e., epilepsy). PMID:28785726

  12. Pauses in cholinergic interneuron firing exert an inhibitory control on striatal output in vivo

    PubMed Central

    Zucca, Stefano; Zucca, Aya; Nakano, Takashi; Aoki, Sho

    2018-01-01

    The cholinergic interneurons (CINs) of the striatum are crucial for normal motor and behavioral functions of the basal ganglia. Striatal CINs exhibit tonic firing punctuated by distinct pauses. Pauses occur in response to motivationally significant events, but their function is unknown. Here we investigated the effects of pauses in CIN firing on spiny projection neurons (SPNs) – the output neurons of the striatum – using in vivo whole cell and juxtacellular recordings in mice. We found that optogenetically-induced pauses in CIN firing inhibited subthreshold membrane potential activity and decreased firing of SPNs. During pauses, SPN membrane potential fluctuations became more hyperpolarized and UP state durations became shorter. In addition, short-term plasticity of corticostriatal inputs was decreased during pauses. Our results indicate that, in vivo, the net effect of the pause in CIN firing on SPNs activity is inhibition and provide a novel mechanism for cholinergic control of striatal output. PMID:29578407

  13. Associative plasticity in intracortical inhibitory circuits in human motor cortex.

    PubMed

    Russmann, Heike; Lamy, Jean-Charles; Shamim, Ejaz A; Meunier, Sabine; Hallett, Mark

    2009-06-01

    Paired associative stimulation (PAS) is a transcranial magnetic stimulation technique inducing Hebbian-like synaptic plasticity in the human motor cortex (M1). PAS is produced by repetitive pairing of a peripheral nerve shock and a transcranial magnetic stimulus (TMS). Its effect is assessed by a change in size of a motor evoked response (MEP). MEP size results from excitatory and inhibitory influences exerted on cortical pyramidal cells, but no robust effects on inhibitory networks have been demonstrated so far. In 38 healthy volunteers, we assessed whether a PAS intervention influences three intracortical inhibitory circuits: short (SICI) and long (LICI) intracortical inhibitions reflecting activity of GABA(A) and GABA(B) interneurons, respectively, and long afferent inhibition (LAI) reflecting activity of somatosensory inputs. After PAS, MEP sizes, LICI and LAI levels were significantly changed while changes of SICI were inconsistent. The changes in LICI and LAI lasted 45 min after PAS. Their direction depended on the delay between the arrival time of the afferent volley at the cortex and the TMS-induced cortical activation during the PAS. PAS influences inhibitory circuits in M1. PAS paradigms can demonstrate Hebbian-like plasticity at selected inhibitory networks as well as excitatory networks.

  14. Contribution of Innate Cortical Mechanisms to the Maturation of Orientation Selectivity in Parvalbumin Interneurons

    PubMed Central

    Figueroa Velez, Dario X.; Ellefsen, Kyle L.; Hathaway, Ethan R.; Carathedathu, Mathew C.

    2017-01-01

    The maturation of cortical parvalbumin-positive (PV) interneurons depends on the interaction of innate and experience-dependent factors. Dark-rearing experiments suggest that visual experience determines when broad orientation selectivity emerges in visual cortical PV interneurons. Here, using neural transplantation and in vivo calcium imaging of mouse visual cortex, we investigated whether innate mechanisms contribute to the maturation of orientation selectivity in PV interneurons. First, we confirmed earlier findings showing that broad orientation selectivity emerges in PV interneurons by 2 weeks after vision onset, ∼35 d after these cells are born. Next, we assessed the functional development of transplanted PV (tPV) interneurons. Surprisingly, 25 d after transplantation (DAT) and >2 weeks after vision onset, we found that tPV interneurons have not developed broad orientation selectivity. By 35 DAT, however, broad orientation selectivity emerges in tPV interneurons. Transplantation does not alter orientation selectivity in host interneurons, suggesting that the maturation of tPV interneurons occurs independently from their endogenous counterparts. Together, these results challenge the notion that the onset of vision solely determines when PV interneurons become broadly tuned. Our results reveal that an innate cortical mechanism contributes to the emergence of broad orientation selectivity in PV interneurons. SIGNIFICANCE STATEMENT Early visual experience and innate developmental programs interact to shape cortical circuits. Visual-deprivation experiments have suggested that the onset of visual experience determines when interneurons mature in the visual cortex. Here we used neuronal transplantation and cellular imaging of visual responses to investigate the maturation of parvalbumin-positive (PV) interneurons. Our results suggest that the emergence of broad orientation selectivity in PV interneurons is innately timed. PMID:28123018

  15. Co-localization of glycine and gaba immunoreactivity in interneurons in Macaca monkey cerebellar cortex.

    PubMed

    Crook, J; Hendrickson, A; Robinson, F R

    2006-09-15

    Previous work demonstrates that the cerebellum uses glycine as a fast inhibitory neurotransmitter [Ottersen OP, Davanger S, Storm-Mathisen J (1987) Glycine-like immunoreactivity in the cerebellum of rat and Senegalese baboon, Papio papio: a comparison with the distribution of GABA-like immunoreactivity and with [3H]glycine and [3H]GABA uptake. Exp Brain Res 66(1):211-221; Ottersen OP, Storm-Mathisen J, Somogyi P (1988) Colocalization of glycine-like and GABA-like immunoreactivities in Golgi cell terminals in the rat cerebellum: a postembedding light and electron microscopic study. Brain Res 450(1-2):342-353; Dieudonne S (1995) Glycinergic synaptic currents in Golgi cells of the rat cerebellum. Proc Natl Acad Sci U S A 92:1441-1445; Dumoulin A, Triller A, Dieudonne S (2001) IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21(16):6045-6057; Dugue GP, Dumoulin A, Triller A, Dieudonne S (2005) Target-dependent use of coreleased inhibitory transmitters at central synapses. J Neurosci 25(28):6490-6498; Zeilhofer HU, Studler B, Arabadzisz D, Schweizer C, Ahmadi S, Layh B, Bosl MR, Fritschy JM (2005) Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice. J Comp Neurol 482(2):123-141]. In the rat cerebellum glycine is not released by itself but is released together with GABA by Lugaro cells onto Golgi cells [Dumoulin A, Triller A, Dieudonne S (2001) IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21(16):6045-6057] and by Golgi cells onto unipolar brush and granule cells [Dugue GP, Dumoulin A, Triller A, Dieudonne S (2005) Target-dependent use of coreleased inhibitory transmitters at central synapses. J Neurosci 25(28):6490-6498]. Here we report, from immunolabeling evidence in Macaca cerebellum, that interneurons in the granular cell layer are glycine+ at a density

  16. Experience-Dependent Rewiring of Specific Inhibitory Connections in Adult Neocortex

    PubMed Central

    Kätzel, Dennis; Miesenböck, Gero

    2014-01-01

    Although neocortical connectivity is remarkably stereotyped, the abundance of some wiring motifs varies greatly between cortical areas. To examine if regional wiring differences represent functional adaptations, we have used optogenetic raster stimulation to map the laminar distribution of GABAergic interneurons providing inhibition to pyramidal cells in layer 2/3 (L2/3) of adult mouse barrel cortex during sensory deprivation and recovery. Whisker trimming caused large, motif-specific changes in inhibitory synaptic connectivity: ascending inhibition from deep layers 4 and 5 was attenuated to 20%–45% of baseline, whereas inhibition from superficial layers remained stable (L2/3) or increased moderately (L1). The principal mechanism of deprivation-induced plasticity was motif-specific changes in inhibitory-to-excitatory connection probabilities; the strengths of extant connections were left unaltered. Whisker regrowth restored the original balance of inhibition from deep and superficial layers. Targeted, reversible modifications of specific inhibitory wiring motifs thus contribute to the adaptive remodeling of cortical circuits. PMID:24586113

  17. Fear extinction causes target-specific remodeling of perisomatic inhibitory synapses.

    PubMed

    Trouche, Stéphanie; Sasaki, Jennifer M; Tu, Tiffany; Reijmers, Leon G

    2013-11-20

    A more complete understanding of how fear extinction alters neuronal activity and connectivity within fear circuits may aid in the development of strategies to treat human fear disorders. Using a c-fos-based transgenic mouse, we found that contextual fear extinction silenced basal amygdala (BA) excitatory neurons that had been previously activated during fear conditioning. We hypothesized that the silencing of BA fear neurons was caused by an action of extinction on BA inhibitory synapses. In support of this hypothesis, we found extinction-induced target-specific remodeling of BA perisomatic inhibitory synapses originating from parvalbumin and cholecystokinin-positive interneurons. Interestingly, the predicted changes in the balance of perisomatic inhibition matched the silent and active states of the target BA fear neurons. These observations suggest that target-specific changes in perisomatic inhibitory synapses represent a mechanism through which experience can sculpt the activation patterns within a neural circuit. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Dorsal CA1 interneurons contribute to acute stress-induced spatial memory deficits.

    PubMed

    Yu, Jing-Ying; Fang, Ping; Wang, Chi; Wang, Xing-Xing; Li, Kun; Gong, Qian; Luo, Ben-Yan; Wang, Xiao-Dong

    2018-06-01

    Exposure to severely stressful experiences disrupts the activity of neuronal circuits and impairs declarative memory. GABAergic interneurons coordinate neuronal network activity, but their involvement in stress-evoked memory loss remains to be elucidated. Here, we provide evidence that interneurons in area CA1 of the dorsal hippocampus partially modulate acute stress-induced memory deficits. In adult male mice, both acute forced swim stress and restraint stress impaired hippocampus-dependent spatial memory and increased the density of c-fos-positive interneurons in the dorsal CA1. Selective activation of dorsal CA1 interneurons by chemogenetics disrupted memory performance in the spatial object recognition task. In comparison, anxiety-related behavior, spatial working memory and novel object recognition memory remained intact when dorsal CA1 interneurons were overactivated. Moreover, chemogenetic activation of dorsal CA1 interneurons suppressed the activity of adjacent pyramidal neurons, whereas a single exposure to forced swim stress but not restraint stress increased the activity of CA1 pyramidal neurons. However, chemogenetic inhibition of dorsal CA1 interneurons led to spatial memory impairments and failed to attenuate acute stress-induced memory loss. These findings suggest that acute stress may overactivate interneurons in the dorsal CA1, which reduces the activity of pyramidal neurons and in turn disrupts long-term memory. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Cholinergic Interneurons Are Differentially Distributed in the Human Striatum

    PubMed Central

    Bernácer, Javier; Prensa, Lucía; Giménez-Amaya, José Manuel

    2007-01-01

    Background The striatum (caudate nucleus, CN, and putamen, Put) is a group of subcortical nuclei involved in planning and executing voluntary movements as well as in cognitive processes. Its neuronal composition includes projection neurons, which connect the striatum with other structures, and interneurons, whose main roles are maintaining the striatal organization and the regulation of the projection neurons. The unique electrophysiological and functional properties of the cholinergic interneurons give them a crucial modulating function on the overall striatal response. Methodology/Principle Findings This study was carried out using stereological methods to examine the volume and density (cells/mm3) of these interneurons, as visualized by choline acetyltransferase (ChAT) immunoreactivity, in the following territories of the CN and Put of nine normal human brains: 1) precommissural head; 2) postcommissural head; 3) body; 4) gyrus and 5) tail of the CN; 6) precommissural and 7) postcommissural Put. The distribution of ChAT interneurons was analyzed with respect to the topographical, functional and chemical territories of the dorsal striatum. The CN was more densely populated by cholinergic neurons than the Put, and their density increased along the anteroposterior axis of the striatum with the CN body having the highest neuronal density. The associative territory of the dorsal striatum was by far the most densely populated. The striosomes of the CN precommissural head and the postcommissural Put contained the greatest number of ChAT-ir interneurons. The intrastriosomal ChAT-ir neurons were abundant on the periphery of the striosomes throughout the striatum. Conclusions/Significance All these data reveal that cholinergic interneurons are differentially distributed in the distinct topographical and functional territories of the human dorsal striatum, as well as in its chemical compartments. This heterogeneity may indicate that the posterior aspects of the CN require a

  20. Post-Training Reversible Disconnection of the Ventral Hippocampal-Basolateral Amygdaloid Circuits Impairs Consolidation of Inhibitory Avoidance Memory in Rats

    ERIC Educational Resources Information Center

    Wang, Gong-Wu; Liu, Jian; Wang, Xiao-Qin

    2017-01-01

    The ventral hippocampus (VH) and the basolateral amygdala (BLA) are both crucial in inhibitory avoidance (IA) memory. However, the exact role of the VH-BLA circuit in IA memory consolidation is unclear. This study investigated the effect of post-training reversible disconnection of the VH-BLA circuit in IA memory consolidation. Male Wistar rats…

  1. Movement Rate Is Encoded and Influenced by Widespread, Coherent Activity of Cerebellar Molecular Layer Interneurons.

    PubMed

    Gaffield, Michael A; Christie, Jason M

    2017-05-03

    Inhibition from molecular layer interneurons (MLIs) is thought to play an important role in cerebellar function by sharpening the precision of Purkinje cell spike output. Yet the coding features of MLIs during behavior are poorly understood. To study MLI activity, we used in vivo Ca 2+ imaging in head-fixed mice during the performance of a rhythmic motor behavior, licking during water consumption. MLIs were robustly active during lick-related movement across a lobule-specific region of the cerebellum showing high temporal correspondence within their population. Average MLI Ca 2+ activity strongly correlated with movement rate but not to the intentional, or unexpected, adjustment of lick position or to sensory feedback that varied with task condition. Chemogenetic suppression of MLI output reduced lick rate and altered tongue movements, indicating that activity of these interneurons not only encodes temporal aspects of movement kinematics but also influences motor outcome pointing to an integral role in online control of rhythmic behavior. SIGNIFICANCE STATEMENT The cerebellum helps fine-tune coordinated motor actions via signaling from projection neurons called Purkinje cells. Molecular layer interneurons (MLIs) provide powerful inhibition onto Purkinje cells, but little is understood about how this inhibitory circuit is engaged during behavior or what type of information is transmitted through these neurons. Our work establishes that MLIs in the lateral cerebellum are broadly activated during movement with calcium activity corresponding to movement rate. We also show that suppression of MLI output slows and disorganizes the precise movement pattern. Therefore, MLIs are an important circuit element in the cerebellum allowing for accurate motor control. Copyright © 2017 the authors 0270-6474/17/374751-15$15.00/0.

  2. The Neural Cell Adhesion Molecule (NCAM) Promotes Clustering and Activation of EphA3 Receptors in GABAergic Interneurons to Induce Ras Homolog Gene Family, Member A (RhoA)/Rho-associated protein kinase (ROCK)-mediated Growth Cone Collapse*

    PubMed Central

    Sullivan, Chelsea S.; Kümper, Maike; Temple, Brenda S.; Maness, Patricia F.

    2016-01-01

    Establishment of a proper balance of excitatory and inhibitory connectivity is achieved during development of cortical networks and adjusted through synaptic plasticity. The neural cell adhesion molecule (NCAM) and the receptor tyrosine kinase EphA3 regulate the perisomatic synapse density of inhibitory GABAergic interneurons in the mouse frontal cortex through ephrin-A5-induced growth cone collapse. In this study, it was demonstrated that binding of NCAM and EphA3 occurred between the NCAM Ig2 domain and EphA3 cysteine-rich domain (CRD). The binding interface was further refined through molecular modeling and mutagenesis and shown to be comprised of complementary charged residues in the NCAM Ig2 domain (Arg-156 and Lys-162) and the EphA3 CRD (Glu-248 and Glu-264). Ephrin-A5 induced co-clustering of surface-bound NCAM and EphA3 in GABAergic cortical interneurons in culture. Receptor clustering was impaired by a charge reversal mutation that disrupted NCAM/EphA3 association, emphasizing the importance of the NCAM/EphA3 binding interface for cluster formation. NCAM enhanced ephrin-A5-induced EphA3 autophosphorylation and activation of RhoA GTPase, indicating a role for NCAM in activating EphA3 signaling through clustering. NCAM-mediated clustering of EphA3 was essential for ephrin-A5-induced growth cone collapse in cortical GABAergic interneurons, and RhoA and a principal effector, Rho-associated protein kinase, mediated the collapse response. This study delineates a mechanism in which NCAM promotes ephrin-A5-dependent clustering of EphA3 through interaction of the NCAM Ig2 domain and the EphA3 CRD, stimulating EphA3 autophosphorylation and RhoA signaling necessary for growth cone repulsion in GABAergic interneurons in vitro, which may extend to remodeling of axonal terminals of interneurons in vivo. PMID:27803162

  3. Cholinergic interneurons in the feeding system of the pond snail Lymnaea stagnalis. II. N1 interneurons make cholinergic synapses with feeding motoneurons.

    PubMed

    Elliott, C J; Kemenes, G

    1992-05-29

    The N1 neurons are a population of interneurons active during the protraction phase of the feeding rhythm. All the N1 neurons are coupled by electrical synapses which persist in a high Mg/low Ca saline which blocks chemical synapses. Individual N1 spikes produce discrete electrotonic postsynaptic potentials (PSPS) in other N1 cells, but the coupling is not strong enough to ensure 1:1 firing. Bursts of N1 spikes generate compound PSPS in the feeding motoneurons. The sign (excitation or inhibition) of the N1 input corresponds with the synaptic barrage recorded during the protraction phase. Discrete PSPS are only resolved in a Hi-Di saline. Their variation in latency and number can be explained by variation in electrotonic propagation within the electrically coupled network of N1 cells. The excitatory postsynaptic potentials (ESPS) in the 1 cell are reduced by 0.5 mM antagonists hexamethonium (HMT), atropine (ATR), curare (d-TC) and by methylxylocholine (MeXCh), all of which block the excitatory cholinergic receptor (Elliott et al. (Phil. Trans. R. Soc. Lond. 336, 157-166 (Preceding paper.) (1992)). The 1 cell EPSPS were transiently blocked by phenyltrimethylammonium (PTMA), which is both an agonist and antagonist at the 1 cell excitatory acetylcholine (ACh) receptor (Elliott et al. 1992). The inhibitory postsynaptic potential (IPSP) in the 3 cell is blocked by bath applications of MeXCh and PTMA, which both abolish the response of the 3 cell to ACh (Elliott et. al. 1992). The effects of the cholinergic antagonists on the response of 4 cluster and 5 cells to N1 stimulation matches their response to ACh (Elliott et al. 1992). It is concluded that the population of N1 cells are multiaction, premotor cholinergic interneurons.

  4. Immunohistochemical analysis of IA-2 family of protein tyrosine phosphatases in rat gastrointestinal endocrine cells.

    PubMed

    Gomi, Hiroshi; Kubota-Murata, Chisato; Yasui, Tadashi; Tsukise, Azuma; Torii, Seiji

    2013-02-01

    Islet-associated protein-2 (IA-2) and IA-2β (also known as phogrin) are unique neuroendocrine-specific protein tyrosine phosphatases (PTPs). The IA-2 family of PTPs was originally identified from insulinoma cells and discovered to be major autoantigens in type 1 diabetes. Despite its expression in the neural and canonical endocrine tissues, data on expression of the IA-2 family of PTPs in gastrointestinal endocrine cells (GECs) are limited. Therefore, we immunohistochemically investigated the expression of the IA-2 family of PTPs in the rat gastrointestinal tract. In the stomach, IA-2 and IA-2β were expressed in GECs that secrete serotonin, somatostatin, and cholecystokinin/gastrin-1. In addition to these hormones, secretin, gastric inhibitory polypeptide (also known as the glucose-dependent insulinotropic peptide), glucagon-like peptide-1, and glucagon, but not ghrelin were coexpressed with IA-2 or IA-2β in duodenal GECs. Pancreatic islet cells that secrete gut hormones expressed the IA-2 family of PTPs. The expression patterns of IA-2 and IA-2β were comparable. These results reveal that the IA-2 family of PTPs is expressed in a cell type-specific manner in rat GECs. The extensive expression of the IA-2 family of PTPs in pancreo-gastrointestinal endocrine cells and in the enteric plexus suggests their systemic contribution to nutritional control through a neuroendocrine signaling network.

  5. Dynamical responses to external stimuli for both cases of excitatory and inhibitory synchronization in a complex neuronal network.

    PubMed

    Kim, Sang-Yoon; Lim, Woochang

    2017-10-01

    For studying how dynamical responses to external stimuli depend on the synaptic-coupling type, we consider two types of excitatory and inhibitory synchronization (i.e., synchronization via synaptic excitation and inhibition) in complex small-world networks of excitatory regular spiking (RS) pyramidal neurons and inhibitory fast spiking (FS) interneurons. For both cases of excitatory and inhibitory synchronization, effects of synaptic couplings on dynamical responses to external time-periodic stimuli S ( t ) (applied to a fraction of neurons) are investigated by varying the driving amplitude A of S ( t ). Stimulated neurons are phase-locked to external stimuli for both cases of excitatory and inhibitory couplings. On the other hand, the stimulation effect on non-stimulated neurons depends on the type of synaptic coupling. The external stimulus S ( t ) makes a constructive effect on excitatory non-stimulated RS neurons (i.e., it causes external phase lockings in the non-stimulated sub-population), while S ( t ) makes a destructive effect on inhibitory non-stimulated FS interneurons (i.e., it breaks up original inhibitory synchronization in the non-stimulated sub-population). As results of these different effects of S ( t ), the type and degree of dynamical response (e.g., synchronization enhancement or suppression), characterized by the dynamical response factor [Formula: see text] (given by the ratio of synchronization degree in the presence and absence of stimulus), are found to vary in a distinctly different way, depending on the synaptic-coupling type. Furthermore, we also measure the matching degree between the dynamics of the two sub-populations of stimulated and non-stimulated neurons in terms of a "cross-correlation" measure [Formula: see text]. With increasing A , based on [Formula: see text], we discuss the cross-correlations between the two sub-populations, affecting the dynamical responses to S ( t ).

  6. Induction of Anti-Hebbian LTP in CA1 Stratum Oriens Interneurons: Interactions between Group I Metabotropic Glutamate Receptors and M1 Muscarinic Receptors

    PubMed Central

    Savary, Etienne; Kullmann, Dimitri M.; Miles, Richard

    2015-01-01

    An anti-Hebbian form of LTP is observed at excitatory synapses made with some hippocampal interneurons. LTP induction is facilitated when postsynaptic interneurons are hyperpolarized, presumably because Ca2+ entry through Ca2+-permeable glutamate receptors is enhanced. The contribution of modulatory transmitters to anti-Hebbian LTP induction remains to be established. Activation of group I metabotropic receptors (mGluRs) is required for anti-Hebbian LTP induction in interneurons with cell bodies in the CA1 stratum oriens. This region receives a strong cholinergic innervation from the septum, and muscarinic acetylcholine receptors (mAChRs) share some signaling pathways and cooperate with mGluRs in the control of neuronal excitability. We therefore examined possible interactions between group I mGluRs and mAChRs in anti-Hebbian LTP at synapses which excite oriens interneurons in rat brain slices. We found that blockade of either group I mGluRs or M1 mAChRs prevented the induction of anti-Hebbian LTP by pairing presynaptic activity with postsynaptic hyperpolarization. Blocking either receptor also suppressed long-term effects of activation of the other G-protein coupled receptor on interneuron membrane potential. However, no crossed blockade was detected for mGluR or mAchR effects on interneuron after-burst potentials or on the frequency of miniature EPSPs. Paired recordings between pyramidal neurons and oriens interneurons were obtained to determine whether LTP could be induced without concurrent stimulation of cholinergic axons. Exogenous activation of mAChRs led to LTP, with changes in EPSP amplitude distributions consistent with a presynaptic locus of expression. LTP, however, required noninvasive presynaptic and postsynaptic recordings. SIGNIFICANCE STATEMENT In the hippocampus, a form of NMDA receptor-independent long-term potentiation (LTP) occurs at excitatory synapses made on some inhibitory neurons. This is preferentially induced when postsynaptic

  7. Distinct Translaminar Glutamatergic Circuits to GABAergic Interneurons in the Neonatal Auditory Cortex.

    PubMed

    Deng, Rongkang; Kao, Joseph P Y; Kanold, Patrick O

    2017-05-09

    GABAergic activity is important in neocortical development and plasticity. Because the maturation of GABAergic interneurons is regulated by neural activity, the source of excitatory inputs to GABAergic interneurons plays a key role in development. We show, by laser-scanning photostimulation, that layer 4 and layer 5 GABAergic interneurons in the auditory cortex in neonatal mice (interneurons showed two spatial patterns of translaminar connection: inputs originating predominantly from supragranular or from supragranular and infragranular layers, including the subplate, which relays early thalamocortical activity. Sensory deprivation altered the development of translaminar inputs. Thus, distinct translaminar circuits to GABAergic interneurons exist throughout development, and the maturation of excitatory synapses is input-specific. Glutamatergic signaling from subplate and intracortical sources likely plays a role in the maturation of GABAergic interneurons. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Cell Type-specific Intrinsic Perithreshold Oscillations in Hippocampal GABAergic Interneurons.

    PubMed

    Kang, Young-Jin; Lewis, Hannah Elisabeth Smashey; Young, Mason William; Govindaiah, Gubbi; Greenfield, Lazar John; Garcia-Rill, Edgar; Lee, Sang-Hun

    2018-04-15

    The hippocampus plays a critical role in learning, memory, and spatial processing through coordinated network activity including theta and gamma oscillations. Recent evidence suggests that hippocampal subregions (e.g., CA1) can generate these oscillations at the network level, at least in part, through GABAergic interneurons. However, it is unclear whether specific GABAergic interneurons generate intrinsic theta and/or gamma oscillations at the single-cell level. Since major types of CA1 interneurons (i.e., parvalbumin-positive basket cells (PVBCs), cannabinoid type 1 receptor-positive basket cells (CB 1 BCs), Schaffer collateral-associated cells (SCAs), neurogliaform cells and ivy cells) are thought to play key roles in network theta and gamma oscillations in the hippocampus, we tested the hypothesis that these cells generate intrinsic perithreshold oscillations at the single-cell level. We performed whole-cell patch-clamp recordings from GABAergic interneurons in the CA1 region of the mouse hippocampus in the presence of synaptic blockers to identify intrinsic perithreshold membrane potential oscillations. The majority of PVBCs (83%), but not the other interneuron subtypes, produced intrinsic perithreshold gamma oscillations if the membrane potential remained above -45 mV. In contrast, CB 1 BCs, SCAs, neurogliaform cells, ivy cells, and the remaining PVBCs (17%) produced intrinsic theta, but not gamma, oscillations. These oscillations were prevented by blockers of persistent sodium current. These data demonstrate that the major types of hippocampal interneurons produce distinct frequency bands of intrinsic perithreshold membrane oscillations. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. SDF1 regulates leading process branching and speed of migrating interneurons

    PubMed Central

    Lysko, Daniel E.; Putt, Mary; Golden, Jeffrey A.

    2011-01-01

    Cell migration is required for normal embryonic development, yet how cells navigate complex paths while integrating multiple guidance cues remains poorly understood. During brain development, interneurons migrate from the ventral ganglionic eminence to the cerebral cortex within several migratory streams. They must exit these streams to invade the cortical plate. While SDF1-signaling is necessary for normal interneuron stream migration, how they switch from tangential stream migration to invade the cortical plate is unknown. Here we demonstrate that SDF1-signaling reduces interneuron branching frequency by reducing cAMP levels via a Gi-signaling pathway using an in vitro mouse explant system, resulting in the maintenance of stream migration. Blocking SDF1-signaling, or increasing branching frequency, results in stream exit and cortical plate invasion in mouse brain slices. These data support a novel model to understand how migrating interneurons switch from tangential migration to invade the cortical plate in which reducing SDF1-signaling increases leading process branching and slows the migration rate, permitting migrating interneurons to sense cortically directed guidance cues. PMID:21289183

  10. Preprodynorphin-expressing neurons constitute a large subgroup of somatostatin-expressing GABAergic interneurons in the mouse neocortex.

    PubMed

    Sohn, Jaerin; Hioki, Hiroyuki; Okamoto, Shinichiro; Kaneko, Takeshi

    2014-05-01

    Dynorphins, leumorphin, and neoendorphins are preprodynorphin (PPD)-derived peptides and ligands for κ-opioid receptors. Using an antibody to PPD C-terminal, we investigated the chemical and molecular characteristics of PPD-expressing neurons in mouse neocortex. PPD-immunopositive neuronal somata were distributed most frequently in layer 5 and less frequently in layers 2-4 and 6 throughout neocortical regions. Combined labeling of immunofluorescence and fluorescent mRNA signals revealed that almost all PPD-immunopositive neurons expressed glutamic acid decarboxylase but not vesicular glutamate transporter, indicating their γ-aminobutyric acid (GABA)ergic characteristics, and that PPD-immunopositive neurons accounted for 15% of GABAergic interneurons in the primary somatosensory area. As GABAergic interneurons were divided into several groups by specific markers, we further examined the chemical characteristics of PPD-expressing neurons by the double immunofluorescence labeling method. More than 95% of PPD-immunopositive neurons were also somatostatin (SOM)-immunopositive in the primary somatosensory, primary motor, orbitofrontal, and primary visual areas, but only 24% were SOM-immunopositive in the medial prefrontal cortex. In the primary somatosensory area, PPD-immunopositive neurons constituted 50%, 79%, 55%, and 17% of SOM-immunopositive neurons in layers 2-3, 4, 5, and 6, respectively. Although SOM-expressing neurons contained calretinin-, neuropeptide Y-, nitric oxide synthase-, and reelin-expressing neurons as subgroups, only reelin immunoreactivity was detected in many PPD-immunopositive neurons. These results indicate that PPD-expressing neurons constitute a large subgroup of SOM-expressing cortical interneurons, and the PPD/SOM-expressing GABAergic neurons might serve not only as inhibitory elements in the local cortical circuit, but also as modulators for cortical neurons expressing κ-opioid and/or SOM receptors. Copyright © 2013 Wiley Periodicals

  11. Comparative pharmacokinetics and bioavailability of escin Ia and isoescin Ia after administration of escin and of pure escin Ia and isoescin Ia in rat.

    PubMed

    Wu, Xiu-Jun; Zhang, Meng-Liang; Cui, Xiang-Yong; Gao, Feng; He, Qun; Li, Xiao-Jiao; Zhang, Ji-Wen; Fawcett, J Paul; Gu, Jing-Kai

    2012-01-06

    Escin Ia and isoescin Ia have been traditionally used clinically as the chief active ingredients of escin, a major triterpene saponin isolated from horse chestnut (Aesculus hippocastanum) seeds for the treatment of chronic venous insufficiency, hemorrhoids, inflammation and edema. To establish a sensitive LC-MS/MS method and investigate the pharmacokinetic properties of escin Ia and isoescin Ia in rats and the pharmacokinetics difference of sodium escinate with pure escin Ia and isoescin Ia. The absolute bioavailability of escin Ia and isoescin Ia and the bidirectional interconversion of them in vivo were also scarcely reported. Wister rats were administrated an intravenous (i.v.) dose (1.7 mg/kg) of sodium escinate (corresponding to 0.5mg/kg of escin Ia and 0.5mg/kg of isoescin Ia, respectively) and an i.v. dose (0.5mg/kg) or oral dose (4mg/kg) of pure escin Ia or isoescin Ia, respectively. At different time points, the concentrations of escin Ia and isoescin Ia in rat plasma were determined by LC-MS/MS method. Main pharmacokinetic parameters including t(1/2), MRT, CL, V(d), AUC and F were estimated by non-compartmental analysis using the TopFit 2.0 software package (Thomae GmbH, Germany) and statistical analysis was performed using the Student's t-test with P<0.05 as the level of significance. After administration of sodium escinate, the t(1/2) and MRT values for both escin Ia and isoescin Ia were larger than corresponding values for the compounds given alone. Absorption of escin Ia and isoescin Ia was very low with F values both <0.25%. Escin Ia and isoescin Ia were found to form the other isomer in vivo with the conversion of escin Ia to isoescin Ia being much extensive than from isoescin Ia to escin Ia. Comparison of the pharmacokinetics of escin Ia and isoescin Ia given alone and together in rat suggest that administration of herbal preparations of escin for clinical use may provide longer duration of action than administration of single isomers. The

  12. Hippocampal CA1 Ripples as Inhibitory Transients

    PubMed Central

    Krishnan, Giri P; Fellous, Jean-Marc; Bazhenov, Maxim

    2016-01-01

    Memories are stored and consolidated as a result of a dialogue between the hippocampus and cortex during sleep. Neurons active during behavior reactivate in both structures during sleep, in conjunction with characteristic brain oscillations that may form the neural substrate of memory consolidation. In the hippocampus, replay occurs within sharp wave-ripples: short bouts of high-frequency activity in area CA1 caused by excitatory activation from area CA3. In this work, we develop a computational model of ripple generation, motivated by in vivo rat data showing that ripples have a broad frequency distribution, exponential inter-arrival times and yet highly non-variable durations. Our study predicts that ripples are not persistent oscillations but result from a transient network behavior, induced by input from CA3, in which the high frequency synchronous firing of perisomatic interneurons does not depend on the time scale of synaptic inhibition. We found that noise-induced loss of synchrony among CA1 interneurons dynamically constrains individual ripple duration. Our study proposes a novel mechanism of hippocampal ripple generation consistent with a broad range of experimental data, and highlights the role of noise in regulating the duration of input-driven oscillatory spiking in an inhibitory network. PMID:27093059

  13. Lack of Cdkl5 Disrupts the Organization of Excitatory and Inhibitory Synapses and Parvalbumin Interneurons in the Primary Visual Cortex.

    PubMed

    Pizzo, Riccardo; Gurgone, Antonia; Castroflorio, Enrico; Amendola, Elena; Gross, Cornelius; Sassoè-Pognetto, Marco; Giustetto, Maurizio

    2016-01-01

    Cyclin-dependent kinase-like 5 (CDKL5) mutations are found in severe neurodevelopmental disorders, including the Hanefeld variant of Rett syndrome (RTT; CDKL5 disorder). CDKL5 loss-of-function murine models recapitulate pathological signs of the human disease, such as visual attention deficits and reduced visual acuity. Here we investigated the cellular and synaptic substrates of visual defects by studying the organization of the primary visual cortex (V1) of Cdkl5 -/y mice. We found a severe reduction of c-Fos expression in V1 of Cdkl5 -/y mutants, suggesting circuit hypoactivity. Glutamatergic presynaptic structures were increased, but postsynaptic PSD-95 and Homer were significantly downregulated in CDKL5 mutants. Interneurons expressing parvalbumin, but not other types of interneuron, had a higher density in mutant V1, and were hyperconnected with pyramidal neurons. Finally, the developmental trajectory of pavalbumin-containing cells was also affected in Cdkl5 -/y mice, as revealed by fainter appearance perineuronal nets at the closure of the critical period (CP). The present data reveal an overall disruption of V1 cellular and synaptic organization that may cause a shift in the excitation/inhibition balance likely to underlie the visual deficits characteristic of CDKL5 disorder. Moreover, ablation of CDKL5 is likely to tamper with the mechanisms underlying experience-dependent refinement of cortical circuits during the CP of development.

  14. Lack of Cdkl5 Disrupts the Organization of Excitatory and Inhibitory Synapses and Parvalbumin Interneurons in the Primary Visual Cortex

    PubMed Central

    Pizzo, Riccardo; Gurgone, Antonia; Castroflorio, Enrico; Amendola, Elena; Gross, Cornelius; Sassoè-Pognetto, Marco; Giustetto, Maurizio

    2016-01-01

    Cyclin-dependent kinase-like 5 (CDKL5) mutations are found in severe neurodevelopmental disorders, including the Hanefeld variant of Rett syndrome (RTT; CDKL5 disorder). CDKL5 loss-of-function murine models recapitulate pathological signs of the human disease, such as visual attention deficits and reduced visual acuity. Here we investigated the cellular and synaptic substrates of visual defects by studying the organization of the primary visual cortex (V1) of Cdkl5−/y mice. We found a severe reduction of c-Fos expression in V1 of Cdkl5−/y mutants, suggesting circuit hypoactivity. Glutamatergic presynaptic structures were increased, but postsynaptic PSD-95 and Homer were significantly downregulated in CDKL5 mutants. Interneurons expressing parvalbumin, but not other types of interneuron, had a higher density in mutant V1, and were hyperconnected with pyramidal neurons. Finally, the developmental trajectory of pavalbumin-containing cells was also affected in Cdkl5−/y mice, as revealed by fainter appearance perineuronal nets at the closure of the critical period (CP). The present data reveal an overall disruption of V1 cellular and synaptic organization that may cause a shift in the excitation/inhibition balance likely to underlie the visual deficits characteristic of CDKL5 disorder. Moreover, ablation of CDKL5 is likely to tamper with the mechanisms underlying experience-dependent refinement of cortical circuits during the CP of development. PMID:27965538

  15. Intracerebroventricular kainic acid administration to neonatal rats alters interneuron development in the hippocampus.

    PubMed

    Dong, Hongxin; Csernansky, Cynthia A; Chu, Yunxiang; Csernansky, John G

    2003-10-10

    The effects of neonatal exposure to excitotoxins on the development of interneurons have not been well characterized, but may be relevant to the pathogenesis of neuropsychiatric disorders. In this study, the excitotoxin, kainic acid (KA) was administered to rats at postnatal day 7 (P7) by intracerebroventricular (i.c.v.) infusion. At P14, P25, P40 and P60, Nissl staining and immunohistochemical studies with the interneuron markers, glutamic acid decarboxylase (GAD-67), calbindin-D28k (CB) and parvalbumin (PV) were performed in the hippocampus. In control animals, the total number of interneurons, as well as the number of interneurons stained with GAD-67, CB and PV, was nearly constant from P14 through P60. In KA-treated rats, Nissl staining, GAD-67 staining, and CB staining revealed a progressive decline in the overall number of interneurons in the CA1 and CA3 subfields from P14 to P60. In contrast, PV staining in KA-treated rats showed initial decreases in the number of interneurons in the CA1 and CA3 subfields at P14 followed by increases that approached control levels by P60. These results suggest that, in general, early exposure to the excitotoxin KA decreases the number of hippocampal interneurons, but has a more variable effect on the specific population of interneurons labeled by PV. The functional impact of these changes may be relevant to the pathogenesis of neuropsychiatric disorders, such as schizophrenia.

  16. Migrating Interneurons Secrete Fractalkine to Promote Oligodendrocyte Formation in the Developing Mammalian Brain.

    PubMed

    Voronova, Anastassia; Yuzwa, Scott A; Wang, Beatrix S; Zahr, Siraj; Syal, Charvi; Wang, Jing; Kaplan, David R; Miller, Freda D

    2017-05-03

    During development, newborn interneurons migrate throughout the embryonic brain. Here, we provide evidence that these interneurons act in a paracrine fashion to regulate developmental oligodendrocyte formation. Specifically, we show that medial ganglionic eminence (MGE) interneurons secrete factors that promote genesis of oligodendrocytes from glially biased cortical precursors in culture. Moreover, when MGE interneurons are genetically ablated in vivo prior to their migration, this causes a deficit in cortical oligodendrogenesis. Modeling of the interneuron-precursor paracrine interaction using transcriptome data identifies the cytokine fractalkine as responsible for the pro-oligodendrocyte effect in culture. This paracrine interaction is important in vivo, since knockdown of the fractalkine receptor CX3CR1 in embryonic cortical precursors, or constitutive knockout of CX3CR1, causes decreased numbers of oligodendrocyte progenitor cells (OPCs) and oligodendrocytes in the postnatal cortex. Thus, in addition to their role in regulating neuronal excitability, interneurons act in a paracrine fashion to promote the developmental genesis of oligodendrocytes. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Hilar Interneuron Vulnerability Distinguishes Aged Rats With Memory Impairment

    PubMed Central

    Spiegel, Amy M.; Koh, Ming Teng; Vogt, Nicholas M.; Rapp, Peter R.; Gallagher, Michela

    2016-01-01

    Hippocampal interneuron populations are reportedly vulnerable to normal aging. The relationship between interneuron network integrity and age-related memory impairment, however, has not been tested directly. That question was addressed in the present study using a well-characterized model in which outbred, aged, male Long-Evans rats exhibit a spectrum of individual differences in hippocampal-dependent memory. Selected interneuron populations in the hippocampus were visualized for stereological quantification with a panel of immunocytochemical markers, including glutamic acid decarboxylase-67 (GAD67), somatostatin, and neuropeptide Y. The overall pattern of results was that, although the numbers of GAD67- and somatostatin-positive interneurons declined with age across multiple fields of the hippocampus, alterations specifically related to the cognitive outcome of aging were observed exclusively in the hilus of the dentate gyrus. Because the total number of NeuN-immunoreactive hilar neurons was unaffected, the decline observed with other markers likely reflects a loss of target protein rather than neuron death. In support of that interpretation, treatment with the atypical antiepileptic levetiracetam at a low dose shown previously to improve behavioral performance fully restored hilar SOM expression in aged, memory-impaired rats. Age-related decreases in GAD67- and somatostatin-immunoreactive neuron number beyond the hilus were regionally selective and spared the CA1 field of the hippocampus entirely. Together these findings confirm the vulnerability of hippocampal interneurons to normal aging and highlight that the integrity of a specific subpopulation in the hilus is coupled with age-related memory impairment. PMID:23749483

  18. Dynamic interneuron-principal cell interplay leads to a specific pattern of in vitro ictogenesis.

    PubMed

    Lévesque, Maxime; Chen, Li-Yuan; Hamidi, Shabnam; Avoli, Massimo

    2018-07-01

    Ictal discharges induced by 4-aminopyridine in the in vitro rodent entorhinal cortex present with either low-voltage fast or sudden onset patterns. The role of interneurons in initiating low-voltage fast onset ictal discharges is well established but the processes leading to sudden onset ictal discharges remain unclear. We analysed here the participation of interneurons (n = 75) and principal cells (n = 13) in the sudden onset pattern by employing in vitro tetrode wire recordings in the entorhinal cortex of brain slices from Sprague-Dawley rats. Ictal discharges emerged from a background of frequently occurring interictal spikes that were associated to a specific interneuron/principal cell interplay. High rates of interneuron firing occurred 12 ms before interictal spike onset while principal cells fired later during low interneuron firing. In contrast, the onset of sudden ictal discharges was characterized by increased firing from principal cells 627 ms before ictal onset whereas interneurons increased their firing rates 161 ms before ictal onset. Our data show that sudden onset ictogenesis is associated with frequently occurring interictal spikes resting on the interplay between interneurons and principal cells while ictal discharges stem from enhanced principal cell firing leading to increased interneuron activity. These findings indicate that specific patterns of interactions between interneurons and principal cells shape interictal and ictal discharges with sudden onset in the rodent entorhinal cortex. We propose that specific neuronal interactions lead to the generation of distinct onset patterns in focal epileptic disorders. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Role of cytochrome P450 IA2 in acetanilide 4-hydroxylation as determined with cDNA expression and monoclonal antibodies.

    PubMed

    Liu, G; Gelboin, H V; Myers, M J

    1991-02-01

    The role of P450 IA2 in the hydroxylation of acetanilide was examined using an inhibitory monoclonal antibody (MAb) 1-7-1 and vaccinia cDNA expression producing murine P450 IA1 (mIA1), murine P450 IA2 (mIA2), or human P450 IA2 (hIA2). Acetanilide hydroxylase (AcOH) activity was measured using an HPLC method with more than 500-fold greater sensitivity than previously described procedures. This method, which does not require the use of radioactive acetanilide, was achieved by optimizing both the gradient system and the amount of enzyme needed to achieve detection by uv light. MAb 1-7-1 inhibits up to 80% of the AcOH activity in both rat liver microsomes and cDNA expressed mouse and human P450 IA2. MAb 1-7-1, which recognizes both P450 IA1 and P450 IA2, completely inhibits the aryl hydrocarbon hydroxylase (AHH) activity of cDNA expressed in IA1. The inhibition of only 80% of the AHH activity present in MC liver microsomes by MAb 1-7-1 suggests that additional P450 forms are contributing to the overall AHH activity present in methylcholanthrene (MC)-liver microsomes as MAb 1-7-1 almost completely inhibits the AHH activity of expressed mIA1. Maximal inhibition of IA2 by 1-7-1 results in an 80% decrease in acetanilide hydroxylase activity in both liver microsomes and expressed mouse and human IA2. The capacity of MAb 1-7-1 to produce identical levels of inhibition of acetanilide hydroxylase activity in rat MC microsomes (80%) and in expressed mouse (81%) and human P450 IA2 (80%) strongly suggests that P450 IA2 is the major and perhaps the only enzyme responsible for the metabolism of acetanilide. These results demonstrate the complementary utility of monoclonal antibodies and cDNA expression for defining the contribution of specific P450 enzymes to the metabolism of a given substrate. This complementary approach allows for a more precise determination of the inhibitory capacity of MAb with respect to the metabolic capacity of the target P450.

  20. Dissecting local circuits in vivo: integrated optogenetic and electrophysiology approaches for exploring inhibitory regulation of cortical activity.

    PubMed

    Cardin, Jessica A

    2012-01-01

    Local cortical circuit activity in vivo comprises a complex and flexible series of interactions between excitatory and inhibitory neurons. Our understanding of the functional interactions between these different neural populations has been limited by the difficulty of identifying and selectively manipulating the diverse and sparsely represented inhibitory interneuron classes in the intact brain. The integration of recently developed optical tools with traditional electrophysiological techniques provides a powerful window into the role of inhibition in regulating the activity of excitatory neurons. In particular, optogenetic targeting of specific cell classes reveals the distinct impacts of local inhibitory populations on other neurons in the surrounding local network. In addition to providing the ability to activate or suppress spiking in target cells, optogenetic activation identifies extracellularly recorded neurons by class, even when naturally occurring spike rates are extremely low. However, there are several important limitations on the use of these tools and the interpretation of resulting data. The purpose of this article is to outline the uses and limitations of optogenetic tools, along with current methods for achieving cell type-specific expression, and to highlight the advantages of an experimental approach combining optogenetics and electrophysiology to explore the role of inhibition in active networks. To illustrate the efficacy of these combined approaches, I present data comparing targeted manipulations of cortical fast-spiking, parvalbumin-expressing and low threshold-spiking, somatostatin-expressing interneurons in vivo. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Different correlation patterns of cholinergic and GABAergic interneurons with striatal projection neurons

    PubMed Central

    Adler, Avital; Katabi, Shiran; Finkes, Inna; Prut, Yifat; Bergman, Hagai

    2013-01-01

    The striatum is populated by a single projection neuron group, the medium spiny neurons (MSNs), and several groups of interneurons. Two of the electrophysiologically well-characterized striatal interneuron groups are the tonically active neurons (TANs), which are presumably cholinergic interneurons, and the fast spiking interneurons (FSIs), presumably parvalbumin (PV) expressing GABAergic interneurons. To better understand striatal processing it is thus crucial to define the functional relationship between MSNs and these interneurons in the awake and behaving animal. We used multiple electrodes and standard physiological methods to simultaneously record MSN spiking activity and the activity of TANs or FSIs from monkeys engaged in a classical conditioning paradigm. All three cell populations were highly responsive to the behavioral task. However, they displayed different average response profiles and a different degree of response synchronization (signal correlation). TANs displayed the most transient and synchronized response, MSNs the most diverse and sustained response and FSIs were in between on both parameters. We did not find evidence for direct monosynaptic connectivity between the MSNs and either the TANs or the FSIs. However, while the cross correlation histograms of TAN to MSN pairs were flat, those of FSI to MSN displayed positive asymmetrical broad peaks. The FSI-MSN correlogram profile implies that the spikes of MSNs follow those of FSIs and both are driven by a common, most likely cortical, input. Thus, the two populations of striatal interneurons are probably driven by different afferents and play complementary functional roles in the physiology of the striatal microcircuit. PMID:24027501

  2. Characterization of focal cortical dysplasia with balloon cells by layer-specific markers: Evidence for differential vulnerability of interneurons.

    PubMed

    Nakagawa, Julia M; Donkels, Catharina; Fauser, Susanne; Schulze-Bonhage, Andreas; Prinz, Marco; Zentner, Josef; Haas, Carola A

    2017-04-01

    laminar arrangement are maintained despite the severe disturbance of cytoarchitecture. Moreover, it showed that Parvalbumin-positive, inhibitory interneurons are highly vulnerable in contrast to other interneuron subtypes, possibly related to the epileptic condition. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  3. Cortical interneuron dysfunction in epilepsy associated with autism spectrum disorders.

    PubMed

    Jacob, John

    2016-02-01

    Autism and epilepsy are two associated disorders that are highly prevalent, share common developmental origins, and demonstrate substantial heritability. In this review, cross-disciplinary data in a rapidly evolving field that bridges neurology and psychiatry are synthesized to identify shared biologic mechanisms. The relationship between these debilitating, lifelong conditions is examined at the clinical, genetic, and neurophysiologic levels in humans and in animal models. Scopus and PubMed searches were used to identify relevant literature. Clinical observations have prompted speculation about the interdependence of autism and epilepsy, but causal relationships have proved difficult to determine. Despite their heritability, the genetic basis of autism spectrum disorder (ASD) and epilepsy has remained largely elusive until the advent of next-generation sequencing. This approach has revealed that mutations that are either causal or confer an increased disease risk are found in numerous different genes, any one of which accounts for only a small percentage of cases. Conversely, even cases with identical clinical phenotypes can be genetically heterogeneous. Candidate gene identification has facilitated the development of mouse genetic models, which in parallel with human studies have implicated shared brain regions and circuits that mediate disease expression. Diverse genetic causes of ASD and epilepsy converge on cortical interneuron circuits as one important mediator of both disorders. Cortical interneurons are among the most diverse cell types in the brain and their unique chemical and electrical coupling exert a powerful inhibitory influence on excitatory neurons via the release of the neurotransmitter, γ-aminobutyric acid (GABA). These multifaceted approaches have validated theories derived from the field of developmental neurobiology, which propose that the neurologic and neuropsychiatric manifestations are caused by an altered ratio of excitation to

  4. Auditory cortex interneuron development requires cadherins operating hair-cell mechanoelectrical transduction.

    PubMed

    Libé-Philippot, Baptiste; Michel, Vincent; Boutet de Monvel, Jacques; Le Gal, Sébastien; Dupont, Typhaine; Avan, Paul; Métin, Christine; Michalski, Nicolas; Petit, Christine

    2017-07-25

    Many genetic forms of congenital deafness affect the sound reception antenna of cochlear sensory cells, the hair bundle. The resulting sensory deprivation jeopardizes auditory cortex (AC) maturation. Early prosthetic intervention should revive this process. Nevertheless, this view assumes that no intrinsic AC deficits coexist with the cochlear ones, a possibility as yet unexplored. We show here that many GABAergic interneurons, from their generation in the medial ganglionic eminence up to their settlement in the AC, express two cadherin-related (cdhr) proteins, cdhr23 and cdhr15, that form the hair bundle tip links gating the mechanoelectrical transduction channels. Mutant mice lacking either protein showed a major decrease in the number of parvalbumin interneurons specifically in the AC, and displayed audiogenic reflex seizures. Cdhr15 - and Cdhr23 -expressing interneuron precursors in Cdhr23 -/- and Cdhr15 -/- mouse embryos, respectively, failed to enter the embryonic cortex and were scattered throughout the subpallium, consistent with the cell polarity abnormalities we observed in vitro. In the absence of adhesion G protein-coupled receptor V1 (adgrv1), another hair bundle link protein, the entry of Cdhr23 - and Cdhr15 -expressing interneuron precursors into the embryonic cortex was also impaired. Our results demonstrate that a population of newborn interneurons is endowed with specific cdhr proteins necessary for these cells to reach the developing AC. We suggest that an "early adhesion code" targets populations of interneuron precursors to restricted neocortical regions belonging to the same functional area. These findings open up new perspectives for auditory rehabilitation and cortical therapies in patients.

  5. Modulation of inhibitory activity markers by intermittent theta-burst stimulation in rat cortex is NMDA-receptor dependent.

    PubMed

    Labedi, Adnan; Benali, Alia; Mix, Annika; Neubacher, Ute; Funke, Klaus

    2014-01-01

    Intermittent theta-burst stimulation (iTBS) applied via transcranial magnetic stimulation has been shown to increase cortical excitability in humans. In the rat brain it strongly reduced the number of neurons expressing the 67-kD isoform of the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD67) and those expressing the calcium-binding proteins parvalbumin (PV) and calbindin (CB), specific markers of fast-spiking (FS) and non-FS inhibitory interneurons, respectively, an indication of modified cortical inhibition. Since iTBS effects in humans have been shown to be NMDA receptor sensitive, we wondered whether the iTBS-induced changes in the molecular phenotype of interneurons may be also sensitive to glutamatergic synaptic transmission mediated by NMDA receptors. In a sham-controlled fashion, five iTBS-blocks of 600 stimuli were applied to rats either lightly anesthetized by only urethane or by an additional low (subnarcotic) or high dose of the NMDA receptor antagonist ketamine before immunohistochemical analysis. iTBS reduced the number of neurons expressing GAD67, PV and CB. Except for CB, a low dose of ketamine partially prevented these effects while a higher dose almost completely abolished the iTBS effects. Our findings indicate that iTBS modulates the molecular, and likely also the electric, activity of cortical inhibitory interneurons and that the modulation of FS-type but less that of non-FS-type neurons is mediated by NMDA receptors. A combination of iTBS with pharmacological interventions affecting distinct receptor subtypes may thus offer options to enhance its selectivity in modulating the activity of distinct cell types and preventing others from being modulated. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Crosstalk between intracellular and extracellular signals regulating interneuron production, migration and integration into the cortex.

    PubMed

    Peyre, Elise; Silva, Carla G; Nguyen, Laurent

    2015-01-01

    During embryogenesis, cortical interneurons are generated by ventral progenitors located in the ganglionic eminences of the telencephalon. They travel along multiple tangential paths to populate the cortical wall. As they reach this structure they undergo intracortical dispersion to settle in their final destination. At the cellular level, migrating interneurons are highly polarized cells that extend and retract processes using dynamic remodeling of microtubule and actin cytoskeleton. Different levels of molecular regulation contribute to interneuron migration. These include: (1) Extrinsic guidance cues distributed along migratory streams that are sensed and integrated by migrating interneurons; (2) Intrinsic genetic programs driven by specific transcription factors that grant specification and set the timing of migration for different subtypes of interneurons; (3) Adhesion molecules and cytoskeletal elements/regulators that transduce molecular signalings into coherent movement. These levels of molecular regulation must be properly integrated by interneurons to allow their migration in the cortex. The aim of this review is to summarize our current knowledge of the interplay between microenvironmental signals and cell autonomous programs that drive cortical interneuron porduction, tangential migration, and intergration in the developing cerebral cortex.

  7. [Origin of cortical interneurons: basic concepts and clinical implications].

    PubMed

    Marín, O

    Introduction and development. GABAergic interneurons play a prominent role in the function of the cerebral cortex, since they allow the synchronization of pyramidal neurons and greatly influence their differentiation and maturation during development. Until recently it has been thought that cortical interneurons and pyramidal neurons originate from progenitor cells located in the dorsal region of the telencephalon, the pallium. Recent studies, however, have demonstrated that a large number of cortical GABAergic neurons arise from progenitors located in the subpallium the region of the telencephalon that gives rise to the basal ganglia, and that they arise in the cerebral cortex after a long tangential migration. Aims. In this review I have summarized our current knowledge of the factors that control the specification of cortical interneurons, as well as the mechanisms that direct their migration to the cortex.

  8. Causal Evidence for the Role of Specific GABAergic Interneuron Types in Entorhinal Recruitment of Dentate Granule Cells

    PubMed Central

    Lee, Cheng-Ta; Kao, Min-Hua; Hou, Wen-Hsien; Wei, Yu-Ting; Chen, Chin-Lin; Lien, Cheng-Chang

    2016-01-01

    The dentate gyrus (DG) is the primary gate of the hippocampus and controls information flow from the cortex to the hippocampus proper. To maintain normal function, granule cells (GCs), the principal neurons in the DG, receive fine-tuned inhibition from local-circuit GABAergic inhibitory interneurons (INs). Abnormalities of GABAergic circuits in the DG are associated with several brain disorders, including epilepsy, autism, schizophrenia, and Alzheimer disease. Therefore, understanding the network mechanisms of inhibitory control of GCs is of functional and pathophysiological importance. GABAergic inhibitory INs are heterogeneous, but it is unclear how individual subtypes contribute to GC activity. Using cell-type-specific optogenetic perturbation, we investigated whether and how two major IN populations defined by parvalbumin (PV) and somatostatin (SST) expression, regulate GC input transformations. We showed that PV-expressing (PV+) INs, and not SST-expressing (SST+) INs, primarily suppress GC responses to single cortical stimulation. In addition, these two IN classes differentially regulate GC responses to θ and γ frequency inputs from the cortex. Notably, PV+ INs specifically control the onset of the spike series, whereas SST+ INs preferentially regulate the later spikes in the series. Together, PV+ and SST+ GABAergic INs engage differentially in GC input-output transformations in response to various activity patterns. PMID:27830729

  9. Parvalbumin-expressing interneurons coordinate hippocampal network dynamics required for memory consolidation

    NASA Astrophysics Data System (ADS)

    Ognjanovski, Nicolette; Schaeffer, Samantha; Wu, Jiaxing; Mofakham, Sima; Maruyama, Daniel; Zochowski, Michal; Aton, Sara J.

    2017-04-01

    Activity in hippocampal area CA1 is essential for consolidating episodic memories, but it is unclear how CA1 activity patterns drive memory formation. We find that in the hours following single-trial contextual fear conditioning (CFC), fast-spiking interneurons (which typically express parvalbumin (PV)) show greater firing coherence with CA1 network oscillations. Post-CFC inhibition of PV+ interneurons blocks fear memory consolidation. This effect is associated with loss of two network changes associated with normal consolidation: (1) augmented sleep-associated delta (0.5-4 Hz), theta (4-12 Hz) and ripple (150-250 Hz) oscillations; and (2) stabilization of CA1 neurons' functional connectivity patterns. Rhythmic activation of PV+ interneurons increases CA1 network coherence and leads to a sustained increase in the strength and stability of functional connections between neurons. Our results suggest that immediately following learning, PV+ interneurons drive CA1 oscillations and reactivation of CA1 ensembles, which directly promotes network plasticity and long-term memory formation.

  10. Serotonin regulates voltage-dependent currents in type Ie(A) and Ii interneurons of Hermissenda

    PubMed Central

    Jin, Nan Ge

    2011-01-01

    Serotonin (5-HT) has both direct and modulatory actions on central neurons contributing to behavioral arousal and cellular-synaptic plasticity in diverse species. In Hermissenda, 5-HT produces changes in intrinsic excitability of different types of identified interneurons in the circumesophageal nervous system. Using whole cell patch-clamp techniques we have examined membrane conductance changes produced by 5-HT that contribute to intrinsic excitability in two identified classes of interneurons, types Ii and IeA. Whole cell currents were examined before and after 5-HT application to the isolated nervous system. A 4-aminopyridine-sensitive transient outward K+ current [IK(A)], a tetraethylammonium-sensitive delayed rectifier K+ current [IK(V)], an inward rectifier K+ current [IK(IR)], and a hyperpolarization-activated current (Ih) were characterized. 5-HT decreased the amplitude of IK(A) and IK(V) in both type Ii and IeA interneurons. However, differences in 5-HT's effects on the activation-inactivation kinetics were observed in different types of interneurons. 5-HT produced a depolarizing shift in the activation curve of IK(V) and a hyperpolarizing shift in the inactivation curve of IK(A) in type Ii interneurons. In contrast, 5-HT produced a depolarizing shift in the activation curve and a hyperpolarizing shift in the inactivation curve of both IK(V) and IK(A) in type IeA interneurons. In addition, 5-HT decreased the amplitude of IK(IR) in type Ii interneurons and increased the amplitude of Ih in type IeA interneurons. These results indicate that 5-HT-dependent changes in IK(A), IK(V), IK(IR), and Ih contribute to multiple mechanisms that synergistically support modulation of increased intrinsic excitability associated with different functional classes of identified type I interneurons. PMID:21813747

  11. The spatial extent of excitatory and inhibitory zones in the receptive field of superficial layer hypercomplex cells

    PubMed Central

    Sillito, A. M.

    1977-01-01

    1. An investigation has been made of the extent of inhibitory and excitatory components in the receptive field of superficial layer hypercomplex cells in the cat's striate cortex and the relation of the components to the length preference exhibited by these cells. 2. Maximal responses were produced by an optimal length stimulus moving through a restricted region of the receptive field. The length of this receptive field region was less than the total length of the excitatory zone as mapped with a very short slit. Slits of similar length to the excitatory zone produced a smaller response than an optimal length slit. 3. An increase of slit length so that it passed over receptive field regions either side of the excitatory zone resulted in an elimination of the response. When background discharge levels were increased by the iontophoretic application of D, L-homocysteic acid slits of this length were observed to produce a suppression of the resting discharge as they passed over the receptive field. They did not modify the resting discharge level when it was induced by the iontophoretic application of the GABA antagonist bicuculline. This data is taken to indicate that long slits activate a powerful post-synaptic inhibitory input to the cell. 4. Maximal inhibitory effects were only observed if the testing slit passed over the receptive field centre. That is slits with a gap positioned midway along their length so as to exclude the optimal excitatory response region surprisingly tended to produce excitatory effects rather than the expected inhibitory effects. It appears that simultaneous stimulation of the receptive field centre is a precondition for the inhibitory effect of stimulation of regions either side of the excitatory zone to be activated. 5. It is suggested that the interneurones mediating the inhibitory input to the superficial layer hypercomplex cells are driven both by cells in adjacent hypercolumns with receptive fields spatially displaced to either side

  12. Dynamic, cell type-specific roles for GABAergic interneurons in a mouse model of optogenetically inducible seizures

    PubMed Central

    Khoshkhoo, Sattar; Vogt, Daniel; Sohal, Vikaas S.

    2016-01-01

    SUMMARY GABAergic interneurons play critical roles in seizures, but it remains unknown whether these vary across interneuron subtypes or evolve during a seizure. This uncertainty stems from the unpredictable timing of seizures in most models, which limits neuronal imaging or manipulations around the seizure onset. Here, we describe a mouse model for optogenetic seizure induction. Combining this with calcium imaging, we find that seizure onset rapidly recruits parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal peptitde (VIP)-expressing interneurons, whereas excitatory neurons are recruited several seconds later. Optogenetically inhibiting VIP interneurons consistently increased seizure threshold and reduced seizure duration. Inhibiting PV+ and SOM+ interneurons had mixed effects on seizure initiation, but consistently reduced seizure duration. Thus, while their roles may evolve during seizures, PV+ and SOM+ interneurons ultimately help maintain ongoing seizures. These results show how an optogenetically-induced seizure model can be leveraged to pinpoint a new target for seizure control: VIP interneurons. PMID:28041880

  13. Maternal Immune Activation Leads to Selective Functional Deficits in Offspring Parvalbumin Interneurons

    PubMed Central

    Canetta, Sarah; Bolkan, Scott; Padilla-Coreano, Nancy; Song, LouJin; Sahn, Ryan; Harrison, Neil; Gordon, Joshua A.; Brown, Alan; Kellendonk, Christoph

    2015-01-01

    Summary Abnormalities in prefrontal GABAergic transmission, particularly in fast-spiking interneurons that express parvalbumin (PV), are hypothesized to contribute to the pathophysiology of multiple psychiatric disorders including schizophrenia, bipolar disorder, anxiety disorders and depression. While primarily histological abnormalities have been observed in patients and in animal models of psychiatric disease, evidence for abnormalities in functional neurotransmission at the level of specific interneuron populations has been lacking in animal models and is difficult to establish in human patients. Using an animal model of a psychiatric disease risk factor, prenatal maternal immune activation (MIA), we found reduced functional GABAergic transmission in the medial prefrontal cortex (mPFC) of adult MIA offspring. Decreased transmission was selective for interneurons expressing PV, and was not observed in calretinin-expressing neurons. This deficit in PV function in MIA offspring was associated with increased anxiety-like behavior and impairments in attentional set shifting, but did not affect working memory. Furthermore, cell-type specific optogenetic inhibition of mPFC PV interneurons was sufficient to impair attentional set shifting and enhance anxiety levels. Finally, we found that in vivo mPFC gamma oscillations, which are supported by PV interneuron function, were linearly correlated with the degree of anxiety displayed in adult mice, and that this correlation was disrupted in MIA offspring. These results demonstrate a selective functional vulnerability of PV interneurons to maternal immune activation, leading to affective and cognitive symptoms that have high relevance for schizophrenia and other psychiatric disorders. PMID:26830140

  14. New insights into the classification and nomenclature of cortical GABAergic interneurons.

    PubMed

    DeFelipe, Javier; López-Cruz, Pedro L; Benavides-Piccione, Ruth; Bielza, Concha; Larrañaga, Pedro; Anderson, Stewart; Burkhalter, Andreas; Cauli, Bruno; Fairén, Alfonso; Feldmeyer, Dirk; Fishell, Gord; Fitzpatrick, David; Freund, Tamás F; González-Burgos, Guillermo; Hestrin, Shaul; Hill, Sean; Hof, Patrick R; Huang, Josh; Jones, Edward G; Kawaguchi, Yasuo; Kisvárday, Zoltán; Kubota, Yoshiyuki; Lewis, David A; Marín, Oscar; Markram, Henry; McBain, Chris J; Meyer, Hanno S; Monyer, Hannah; Nelson, Sacha B; Rockland, Kathleen; Rossier, Jean; Rubenstein, John L R; Rudy, Bernardo; Scanziani, Massimo; Shepherd, Gordon M; Sherwood, Chet C; Staiger, Jochen F; Tamás, Gábor; Thomson, Alex; Wang, Yun; Yuste, Rafael; Ascoli, Giorgio A

    2013-03-01

    A systematic classification and accepted nomenclature of neuron types is much needed but is currently lacking. This article describes a possible taxonomical solution for classifying GABAergic interneurons of the cerebral cortex based on a novel, web-based interactive system that allows experts to classify neurons with pre-determined criteria. Using Bayesian analysis and clustering algorithms on the resulting data, we investigated the suitability of several anatomical terms and neuron names for cortical GABAergic interneurons. Moreover, we show that supervised classification models could automatically categorize interneurons in agreement with experts' assignments. These results demonstrate a practical and objective approach to the naming, characterization and classification of neurons based on community consensus.

  15. Crosstalk between intracellular and extracellular signals regulating interneuron production, migration and integration into the cortex

    PubMed Central

    Peyre, Elise; Silva, Carla G.; Nguyen, Laurent

    2015-01-01

    During embryogenesis, cortical interneurons are generated by ventral progenitors located in the ganglionic eminences of the telencephalon. They travel along multiple tangential paths to populate the cortical wall. As they reach this structure they undergo intracortical dispersion to settle in their final destination. At the cellular level, migrating interneurons are highly polarized cells that extend and retract processes using dynamic remodeling of microtubule and actin cytoskeleton. Different levels of molecular regulation contribute to interneuron migration. These include: (1) Extrinsic guidance cues distributed along migratory streams that are sensed and integrated by migrating interneurons; (2) Intrinsic genetic programs driven by specific transcription factors that grant specification and set the timing of migration for different subtypes of interneurons; (3) Adhesion molecules and cytoskeletal elements/regulators that transduce molecular signalings into coherent movement. These levels of molecular regulation must be properly integrated by interneurons to allow their migration in the cortex. The aim of this review is to summarize our current knowledge of the interplay between microenvironmental signals and cell autonomous programs that drive cortical interneuron porduction, tangential migration, and intergration in the developing cerebral cortex. PMID:25926769

  16. GABAergic interneurons: The orchestra or the conductor in fear learning and memory?

    PubMed

    Lucas, Elizabeth K; Clem, Roger L

    2017-12-02

    Fear conditioning is a form of associative learning that is fundamental to survival and involves potentiation of activity in excitatory projection neurons (PNs). Current models stipulate that the mechanisms underlying this process involve plasticity of PN synapses, which exhibit strengthening in response to fear conditioning. However, excitatory PNs are extensively modulated by a diverse array of GABAergic interneurons whose contributions to acquisition, storage, and expression of fear memory remain poorly understood. Here we review emerging evidence that genetically-defined interneurons play important subtype-specific roles in processing of fear-related stimuli and that these dynamics shape PN firing through both inhibition and disinhibition. Furthermore, interneurons exhibit structural, molecular, and electrophysiological evidence of fear learning-induced synaptic plasticity. These studies warrant discarding the notion of interneurons as passive bystanders in long-term memory. Copyright © 2017. Published by Elsevier Inc.

  17. Hyperpolarization-activated cation channels in fast-spiking interneurons of rat hippocampus

    PubMed Central

    Aponte, Yexica; Lien, Cheng-Chang; Reisinger, Ellen; Jonas, Peter

    2006-01-01

    Hyperpolarization-activated channels (Ih or HCN channels) are widely expressed in principal neurons in the central nervous system. However, Ih in inhibitory GABAergic interneurons is less well characterized. We examined the functional properties of Ih in fast-spiking basket cells (BCs) of the dentate gyrus, using hippocampal slices from 17- to 21-day-old rats. Bath application of the Ih channel blocker ZD 7288 at a concentration of 30 μm induced a hyperpolarization of 5.7 ± 1.5 mV, an increase in input resistance and a correlated increase in apparent membrane time constant. ZD 7288 blocked a hyperpolarization-activated current in a concentration-dependent manner (IC50, 1.4 μm). The effects of ZD 7288 were mimicked by external Cs+. The reversal potential of Ih was −27.4 mV, corresponding to a Na+ to K+ permeability ratio (PNa/PK) of 0.36. The midpoint potential of the activation curve of Ih was −83.9 mV, and the activation time constant at −120 mV was 190 ms. Single-cell expression analysis using reverse transcription followed by quantitative polymerase chain reaction revealed that BCs coexpress HCN1 and HCN2 subunit mRNA, suggesting the formation of heteromeric HCN1/2 channels. ZD 7288 increased the current threshold for evoking antidromic action potentials by extracellular stimulation, consistent with the expression of Ih in BC axons. Finally, ZD 7288 decreased the frequency of miniature inhibitory postsynaptic currents (mIPSCs) in hippocampal granule cells, the main target cells of BCs, to 70 ± 4% of the control value. In contrast, the amplitude of mIPSCs was unchanged, consistent with the presence of Ih in inhibitory terminals. In conclusion, our results suggest that Ih channels are expressed in the somatodendritic region, axon and presynaptic elements of fast-spiking BCs in the hippocampus. PMID:16690716

  18. Acetylcholine-dependent upregulation of TASK-1 channels in thalamic interneurons by a smooth muscle-like signalling pathway.

    PubMed

    Leist, Michael; Rinné, Susanne; Datunashvili, Maia; Aissaoui, Ania; Pape, Hans-Christian; Decher, Niels; Meuth, Sven G; Budde, Thomas

    2017-09-01

    The ascending brainstem transmitter acetylcholine depolarizes thalamocortical relay neurons while it induces hyperpolarization in local circuit inhibitory interneurons. Sustained K + currents are modulated in thalamic neurons to control their activity modes; for the interneurons the molecular nature of the underlying ion channels is as yet unknown. Activation of TASK-1 K + channels results in hyperpolarization of interneurons and suppression of their action potential firing. The modulation cascade involves a non-receptor tyrosine kinase, c-Src. The present study identifies a novel pathway for the activation of TASK-1 channels in CNS neurons that resembles cholinergic signalling and TASK-1 current modulation during hypoxia in smooth muscle cells. The dorsal part of the lateral geniculate nucleus (dLGN) is the main thalamic site for state-dependent transmission of visual information. Non-retinal inputs from the ascending arousal system and inhibition provided by γ-aminobutyric acid (GABA)ergic local circuit interneurons (INs) control neuronal activity within the dLGN. In particular, acetylcholine (ACh) depolarizes thalamocortical relay neurons by inhibiting two-pore domain potassium (K 2P ) channels. Conversely, ACh also hyperpolarizes INs via an as-yet-unknown mechanism. By using whole cell patch-clamp recordings in brain slices and appropriate pharmacological tools we here report that stimulation of type 2 muscarinic ACh receptors induces IN hyperpolarization by recruiting the G-protein βγ subunit (Gβγ), class-1A phosphatidylinositol-4,5-bisphosphate 3-kinase, and cellular and sarcoma (c-Src) tyrosine kinase, leading to activation of two-pore domain weakly inwardly rectifying K + channel (TWIK)-related acid-sensitive K + (TASK)-1 channels. The latter was confirmed by the use of TASK-1-deficient mice. Furthermore inhibition of phospholipase Cβ as well as an increase in the intracellular level of phosphatidylinositol-3,4,5-trisphosphate facilitated the

  19. DREADD in parvalbumin interneurons of the dentate gyrus modulates anxiety, social interaction and memory extinction.

    PubMed

    Zou, D; Chen, L; Deng, D; Jiang, D; Dong, F; McSweeney, C; Zhou, Y; Liu, L; Chen, G; Wu, Y; Mao, Y

    2016-01-01

    Parvalbumin (PV)-positive interneurons in the hippocampus play a critical role in animal memory, such as spatial working memory. However, how PV-positive interneurons in the subregions of the hippocampus affect animal behaviors remains poorly defined. Here, we achieved specific and reversible activation of PV-positive interneurons using designer receptors exclusively activated by designer drugs (DREADD) technology. Inducible DREADD expression was demonstrated in vitro in cultured neurons, in which co-transfection of the hM3D-Gq-mCherry vector with a Cre plasmid resulted in a cellular response to hM3Dq ligand clozapine-N-oxide (CNO) stimulation. In addition, the dentate gyrus (DG) of PV-Cre mice received bilateral injection of control lentivirus or lentivirus expressing double floxed hM3D-Gq-mCherry. Selective activation of PV-positive interneurons in the DG did not affect locomotor activity or depression-related behavior in mice. Interestingly, stimulation of PV-positive interneurons induced an anxiolytic effect. Activation of PVpositive interneurons appears to impair social interaction to novelty, but has no effect on social motivation. However, this defect is likely due to the anxiolytic effect as the exploratory behavior of mice expressing hM3DGq is significantly increased. Mice expressing hM3D-Gq did not affect novel object recognition. Activation of PV-positive interneurons in the DG maintains intact cued and contextual fear memory but facilitates fear extinction. Collectively, our results demonstrated that proper control of PV interneurons activity in the DG is critical for regulation of the anxiety, social interaction and fear extinction. These results improve our fundamental understanding of the physiological role of PV-positive interneurons in the hippocampus.

  20. Renshaw cell interneuron specialization is controlled by a temporally restricted transcription factor program

    PubMed Central

    Stam, Floor J.; Hendricks, Timothy J.; Zhang, Jingming; Geiman, Eric J.; Francius, Cedric; Labosky, Patricia A.; Clotman, Frederic; Goulding, Martyn

    2012-01-01

    The spinal cord contains a diverse array of physiologically distinct interneuron cell types that subserve specialized roles in somatosensory perception and motor control. The mechanisms that generate these specialized interneuronal cell types from multipotential spinal progenitors are not known. In this study, we describe a temporally regulated transcriptional program that controls the differentiation of Renshaw cells (RCs), an anatomically and functionally discrete spinal interneuron subtype. We show that the selective activation of the Onecut transcription factors Oc1 and Oc2 during the first wave of V1 interneuron neurogenesis is a key step in the RC differentiation program. The development of RCs is additionally dependent on the forkhead transcription factor Foxd3, which is more broadly expressed in postmitotic V1 interneurons. Our demonstration that RCs are born, and activate Oc1 and Oc2 expression, in a narrow temporal window leads us to posit that neuronal diversity in the developing spinal cord is established by the composite actions of early spatial and temporal determinants. PMID:22115757

  1. Maternal immune activation leads to selective functional deficits in offspring parvalbumin interneurons.

    PubMed

    Canetta, S; Bolkan, S; Padilla-Coreano, N; Song, L J; Sahn, R; Harrison, N L; Gordon, J A; Brown, A; Kellendonk, C

    2016-07-01

    Abnormalities in prefrontal gamma aminobutyric acid (GABA)ergic transmission, particularly in fast-spiking interneurons that express parvalbumin (PV), are hypothesized to contribute to the pathophysiology of multiple psychiatric disorders, including schizophrenia, bipolar disorder, anxiety disorders and depression. While primarily histological abnormalities have been observed in patients and in animal models of psychiatric disease, evidence for abnormalities in functional neurotransmission at the level of specific interneuron populations has been lacking in animal models and is difficult to establish in human patients. Using an animal model of a psychiatric disease risk factor, prenatal maternal immune activation (MIA), we found reduced functional GABAergic transmission in the medial prefrontal cortex (mPFC) of adult MIA offspring. Decreased transmission was selective for interneurons expressing PV, resulted from a decrease in release probability and was not observed in calretinin-expressing neurons. This deficit in PV function in MIA offspring was associated with increased anxiety-like behavior and impairments in attentional set shifting, but did not affect working memory. Furthermore, cell-type specific optogenetic inhibition of mPFC PV interneurons was sufficient to impair attentional set shifting and enhance anxiety levels. Finally, we found that in vivo mPFC gamma oscillations, which are supported by PV interneuron function, were linearly correlated with the degree of anxiety displayed in adult mice, and that this correlation was disrupted in MIA offspring. These results demonstrate a selective functional vulnerability of PV interneurons to MIA, leading to affective and cognitive symptoms that have high relevance for schizophrenia and other psychiatric disorders.

  2. New insights into the classification and nomenclature of cortical GABAergic interneurons

    PubMed Central

    DeFelipe, Javier; López-Cruz, Pedro L.; Benavides-Piccione, Ruth; Bielza, Concha; Larrañaga, Pedro; Anderson, Stewart; Burkhalter, Andreas; Cauli, Bruno; Fairén, Alfonso; Feldmeyer, Dirk; Fishell, Gord; Fitzpatrick, David; Freund, Tamás F.; González-Burgos, Guillermo; Hestrin, Shaul; Hill, Sean; Hof, Patrick R.; Huang, Josh; Jones, Edward G.; Kawaguchi, Yasuo; Kisvárday, Zoltán; Kubota, Yoshiyuki; Lewis, David A.; Marín, Oscar; Markram, Henry; McBain, Chris J.; Meyer, Hanno S.; Monyer, Hannah; Nelson, Sacha B.; Rockland, Kathleen; Rossier, Jean; Rubenstein, John L. R.; Rudy, Bernardo; Scanziani, Massimo; Shepherd, Gordon M.; Sherwood, Chet C.; Staiger, Jochen F.; Tamás, Gábor; Thomson, Alex; Wang, Yun; Yuste, Rafael; Ascoli, Giorgio A.

    2013-01-01

    A systematic classification and accepted nomenclature of neuron types is much needed but is currently lacking. This article describes a possible taxonomical solution for classifying GABAergic interneurons of the cerebral cortex based on a novel, web-based interactive system that allows experts to classify neurons with pre-determined criteria. Using Bayesian analysis and clustering algorithms on the resulting data, we investigated the suitability of several anatomical terms and neuron names for cortical GABAergic interneurons. Moreover, we show that supervised classification models could automatically categorize interneurons in agreement with experts’ assignments. These results demonstrate a practical and objective approach to the naming, characterization and classification of neurons based on community consensus. PMID:23385869

  3. Transcriptional and electrophysiological maturation of neocortical fastspiking GABAergic interneurons

    PubMed Central

    Okaty, Benjamin W; Miller, Mark N; Sugino, Ken; Hempel, Chris M; Nelson, Sacha B

    2009-01-01

    Fast-spiking (FS) interneurons are important elements of neocortical circuitry that constitute the primary source of synaptic inhibition in adult cortex and impart temporal organization on ongoing cortical activity. The highly specialized intrinsic membrane and firing properties that allow cortical FS interneurons to perform these functions are due to equally specialized gene expression, which is ultimately coordinated by cell-type-specific transcriptional regulation. While embryonic transcriptional events govern the initial steps of cell-type specification in most cortical interneurons, including FS cells, the electrophysiological properties that distinguish adult cortical cell types emerge relatively late in postnatal development, and the transcriptional events that drive this maturational process are not known. To address this, we used mouse whole-genome microarrays and whole-cell patch clamp to characterize the transcriptional and electrophysiological maturation of cortical FS interneurons between postnatal day 7 (P7) and P40. We found that the intrinsic and synaptic physiology of FS cells undergoes profound regulation over the first four postnatal weeks, and that these changes are correlated with largely monotonic but bidirectional transcriptional regulation of thousands of genes belonging to multiple functional classes. Using our microarray screen as a guide, we discovered that upregulation of 2-pore K+ leak channels between P10 and P25 contributes to one of the major differences between the intrinsic membrane properties of immature and adult FS cells, and found a number of other candidate genes that likely confer cell-type specificity on mature FS cells. PMID:19474331

  4. Targeted ablation of cholinergic interneurons in the dorsolateral striatum produces behavioral manifestations of Tourette syndrome

    PubMed Central

    Xu, Meiyu; Kobets, Andrew; Du, Jung-Chieh; Lennington, Jessica; Li, Lina; Banasr, Mounira; Duman, Ronald S.; Vaccarino, Flora M.; DiLeone, Ralph J.; Pittenger, Christopher

    2015-01-01

    Gilles de la Tourette syndrome (TS) is characterized by tics, which are transiently worsened by stress, acute administration of dopaminergic drugs, and by subtle deficits in motor coordination and sensorimotor gating. It represents the most severe end of a spectrum of tic disorders that, in aggregate, affect ∼5% of the population. Available treatments are frequently inadequate, and the pathophysiology is poorly understood. Postmortem studies have revealed a reduction in specific striatal interneurons, including the large cholinergic interneurons, in severe disease. We tested the hypothesis that this deficit is sufficient to produce aspects of the phenomenology of TS, using a strategy for targeted, specific cell ablation in mice. We achieved ∼50% ablation of the cholinergic interneurons of the striatum, recapitulating the deficit observed in patients postmortem, without any effect on GABAergic markers or on parvalbumin-expressing fast-spiking interneurons. Interneuron ablation in the dorsolateral striatum (DLS), corresponding roughly to the human putamen, led to tic-like stereotypies after either acute stress or d-amphetamine challenge; ablation in the dorsomedial striatum, in contrast, did not. DLS interneuron ablation also led to a deficit in coordination on the rotorod, but not to any abnormalities in prepulse inhibition, a measure of sensorimotor gating. These results support the causal sufficiency of cholinergic interneuron deficits in the DLS to produce some, but not all, of the characteristic symptoms of TS. PMID:25561540

  5. The paired domain-containing nuclear factor pax[b] is expressed in specific commissural interneurons in zebrafish embryos.

    PubMed

    Mikkola, I; Fjose, A; Kuwada, J Y; Wilson, S; Guddal, P H; Krauss, S

    1992-10-01

    The zebrafish paired box (Pax) genes are expressed in the early neural tube and are thought to be transcription factors that regulate the differentiation of cells in the central nervous system (CNS). The protein product of one of these Pax genes, pax[b], is detectable as a nuclear antigen in all the regions of the embryo that transcribe the gene including the posterior midbrain, the nephritic primordium, the Wolffian duct, the optic stalk, and, in specific neurons, in the hindbrain and spinal cord. The timing and pattern of axonal outgrowth by the early pax[b]-positive neurons suggest that they are the commissural secondary ascending (CoSA) interneurons in the spinal cord; the primary commissural interneurons (MiD2c and MiD3c) in hindbrain rhombomeres mi2 and mi3; and a previously unclassified set of commissural interneurons that we termed the commissural caudalrhombomere ascending (CoCaA) interneurons in the caudal hindbrain. In contrast, the Mauthner interneurons do not express pax[b] early in development. Shortly after the appearance of the first pax[b]-positive interneurons, additional nuclei adjacent to the first pax[b]-positive interneurons become pax[b] positive. This pattern of expression suggests that the pax[b] protein may be involved in determining the identity of specific commissural interneurons.

  6. Presynaptic miniature GABAergic currents in developing interneurons.

    PubMed

    Trigo, Federico F; Bouhours, Brice; Rostaing, Philippe; Papageorgiou, George; Corrie, John E T; Triller, Antoine; Ogden, David; Marty, Alain

    2010-04-29

    Miniature synaptic currents have long been known to represent random transmitter release under resting conditions, but much remains to be learned about their nature and function in central synapses. In this work, we describe a new class of miniature currents ("preminis") that arise by the autocrine activation of axonal receptors following random vesicular release. Preminis are prominent in gabaergic synapses made by cerebellar interneurons during the development of the molecular layer. Unlike ordinary miniature postsynaptic currents in the same cells, premini frequencies are strongly enhanced by subthreshold depolarization, suggesting that the membrane depolarization they produce belongs to a feedback loop regulating neurotransmitter release. Thus, preminis could guide the formation of the interneuron network by enhancing neurotransmitter release at recently formed synaptic contacts. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Distinct interneuron types express m2 muscarinic receptor immunoreactivity on their dendrites or axon terminals in the hippocampus.

    PubMed

    Hájos, N; Papp, E C; Acsády, L; Levey, A I; Freund, T F

    1998-01-01

    hippocampal formation. Only calretinin and somatostatin showed an appreciable degree of co-localization with m2 (20% and 15%, respectively). Using retrograde tracing, some of the m2-positive cells in stratum oriens were shown to project to the medial septum, accouting for 38% of all projection neurons. The present results demonstrate that there is a differential distribution of m2 receptor immunoreactivity on the axonal vs the somadendritic membranes of distinct interneuron types and suggest that acetylcholine via m2 receptors may reduce GABA release presynaptically from the terminals of perisomatic inhibitory cells, while it may act to increase the activity of another class of interneuron, which innervates the dendritic region of pyramidal cells.

  8. Calcium currents and graded synaptic transmission between heart interneurons of the leech.

    PubMed

    Angstadt, J D; Calabrese, R L

    1991-03-01

    Synaptic transmission between reciprocally inhibitory heart interneurons (HN cells) of the medicinal leech was examined in the absence of Na-mediated action potentials. Under voltage clamp, depolarizing steps from a holding potential of -60 mV elicited 2 kinetically distinct components of inward current in the presynaptic HN cell: an early transient current that inactivates within 200 msec and a persistent current that only partially decays over several seconds. Both currents begin to activate near -60 mV. Steady-state inactivation occurs over the voltage range between -70 and -45 mV and is completely removed by 1-2-sec hyperpolarizing voltage steps to -80 mV. The inward currents are carried by Ca2+, Ba2+, or Sr2+ ions, but not by Co2+, Mn2+, or Ni2+. These same inward currents underlie the burst-generating plateau potentials previously described in HN cells (Arbas and Calabrese, 1987a,b). With a presynaptic holding potential of -60 mV, the threshold for transmitter release is near -45 mV. Postsynaptic currents in the contralateral HN cell have a reversal potential near -60 mV. The largest postsynaptic currents (300-400 pA) exhibit an initial peak response that is followed by a more slowly decaying component. The persistent component of Ca2+ current in the presynaptic neuron is strongly correlated with the prolonged component of the postsynaptic current, while the transient presynaptic Ca2+ current appears to correspond to the early peak of postsynaptic current. These data are consistent with the hypothesis that voltage-dependent calcium currents contribute to the oscillatory capability of reciprocally inhibitory HN cells by (1) generating the plateau potential that drives the burst of action potentials and (2) underlying the release of inhibitory transmitter onto the contralateral cell.

  9. Zebrafish CiA interneurons are late-born primary neurons.

    PubMed

    Yeo, Sang-Yeob

    2009-12-11

    Pax2 is a neural-related transcription factor downstream of Notch signaling and is expressed in the developing spinal cord of zebrafish, including in CiA interneurons. However, the characteristics of pax2-positive neurons are largely unknown. The goal of this study was to characterize Pax2-positive neurons by examining their expression in embryos in which Notch function had been knocked down by mutation or injection of a morpholino or mRNA. I found that Pax2-positive CiA interneurons were late-differentiating primary neurons. pax2.1 was expressed in CoPA commissural neurons and CiA interneurons at 26 hpf. The number of pax2.1-positive cells increased in mind bomb mutant embryos or embryos injected with Su(H)1-MO, but not in cells injected with Xenopus Delta or Delta(stu) mRNA. These observations imply that Notch signaling plays a role in regulating the number of CiA neurons by preventing uncommitted precursors from acquiring a neuronal fate during vertebrate development.

  10. Differential gene expression in migratory streams of cortical interneurons

    PubMed Central

    Antypa, Mary; Faux, Clare; Eichele, Gregor; Parnavelas, John G; Andrews, William D

    2011-01-01

    Cortical interneurons originate in the ganglionic eminences of the subpallium and migrate into the cortex in well-defined tangential streams. At the start of corticogenesis, two streams of migrating neurons are evident: a superficial one at the level of the preplate (PPL), and a deeper one at the level of the intermediate zone (IZ). Currently, little is known about the signalling mechanisms that regulate interneuron migration, and almost nothing is known about the molecules that may be involved in their choice of migratory stream. Here, we performed a microarray analysis, comparing the changes in gene expression between cells migrating in the PPL and those migrating in the IZ at embryonic day 13.5. This analysis identified genes, many of them novel, that were upregulated in one of the two streams. Moreover, polymerase chain reaction, in situ hybridization experiments and immunohistochemistry showed the expression of these genes in interneurons migrating within the PPL or IZ, suggesting that they play a role in their migration and choice of stream. PMID:22103416

  11. Amnesia of Inhibitory Avoidance by Scopolamine Is Overcome by Previous Openfield Exposure

    ERIC Educational Resources Information Center

    Colettis, Natalia C.; Snitcofsky, Marina; Kornisiuk, Edgar E.; Gonzalez, Emilio N.; Quillfeldt, Jorge A.; Jerusalinsky, Diana A.

    2014-01-01

    The muscarinic cholinergic receptor (MAChR) blockade with scopolamine either extended or restricted to the hippocampus, before or after training in inhibitory avoidance (IA) caused anterograde or retrograde amnesia, respectively, in the rat, because there was no long-term memory (LTM) expression. Adult Wistar rats previously exposed to one or two…

  12. SDF1 Reduces Interneuron Leading Process Branching through Dual Regulation of Actin and Microtubules

    PubMed Central

    Lysko, Daniel E.; Putt, Mary

    2014-01-01

    Normal cerebral cortical function requires a highly ordered balance between projection neurons and interneurons. During development these two neuronal populations migrate from distinct progenitor zones to form the cerebral cortex, with interneurons originating in the more distant ganglionic eminences. Moreover, deficits in interneurons have been linked to a variety of neurodevelopmental disorders underscoring the importance of understanding interneuron development and function. We, and others, have identified SDF1 signaling as one important modulator of interneuron migration speed and leading process branching behavior in mice, although how SDF1 signaling impacts these behaviors remains unknown. We previously found SDF1 inhibited leading process branching while increasing the rate of migration. We have now mechanistically linked SDF1 modulation of leading process branching behavior to a dual regulation of both actin and microtubule organization. We find SDF1 consolidates actin at the leading process tip by de-repressing calpain protease and increasing proteolysis of branched-actin-supporting cortactin. Additionally, SDF1 stabilizes the microtubule array in the leading process through activation of the microtubule-associated protein doublecortin (DCX). DCX stabilizes the microtubule array by bundling microtubules within the leading process, reducing branching. These data provide mechanistic insight into the regulation of interneuron leading process dynamics during neuronal migration in mice and provides insight into how cortactin and DCX, a known human neuronal migration disorder gene, participate in this process. PMID:24695713

  13. MGE-derived nNOS+ interneurons promote fear acquisition in nNOS-/- mice.

    PubMed

    Zhang, Lin; Yuan, Hong-Jin; Cao, Bo; Kong, Cheng-Cheng; Yuan, Fang; Li, Jun; Ni, Huan-Yu; Wu, Hai-Yin; Chang, Lei; Liu, Yan; Luo, Chun-Xia

    2017-12-02

    Neuronal nitric oxide synthase (nNOS) 1 , mainly responsible for NO release in central nervous system (CNS) 2 , plays a significant role in multiple physiological functions. However, the function of nNOS + interneurons in fear learning has not been much explored. Here we focused on the medial ganglionic eminences (MGE) 3 -derived nNOS + interneurons in fear learning. To determine the origin of nNOS + interneurons, we cultured neurons in vitro from MGE, cortex, lateral ganglionic eminence (LGE) 4 , caudal ganglionic eminences (CGE) 5 and preoptic area (POA) 6 . The results showed that MGE contained the most abundant precursors of nNOS + interneurons. Moreover, donor cells from E12.5 embryos demonstrated the highest positive rate of nNOS + interneurons compared with other embryonic periods (E11.5, E12, E13, E13.5 and E14). Additionally, these cells from E12.5 embryos showed long axonal and abundant dendritic arbors after 10 days culture, indicating the capability to disperse and integrate in host neural circuits after transplantation. To investigate the role of MGE-derived nNOS + interneurons in fear learning, donor MGE cells were transplanted into dentate gyrus (DG) 7 of nNOS knock-out (nNOS -/- ) or wild-type mice. Results showed that the transplantation of MGE cells promoted the acquisition of nNOS -/- but not the wild-type mice, suggesting the importance of nNOS + neurons in fear acquisition. Moreover, we transplanted MGE cells from nNOS -/- mice or wild-type mice into DG of the nNOS -/- mice and found that only MGE cells from wild-type mice but not the nNOS -/- mice rescued the deficit in acquisition of the nNOS -/- mice, further confirming the positive role of nNOS + neurons in fear learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Differential binding of antibodies in PANDAS patients to cholinergic interneurons in the striatum.

    PubMed

    Frick, Luciana R; Rapanelli, Maximiliano; Jindachomthong, Kantiya; Grant, Paul; Leckman, James F; Swedo, Susan; Williams, Kyle; Pittenger, Christopher

    2018-03-01

    Pediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcus, or PANDAS, is a syndrome of acute childhood onset of obsessive-compulsive disorder and other neuropsychiatric symptoms in the aftermath of an infection with Group A beta-hemolytic Streptococcus (GABHS). Its pathophysiology remains unclear. PANDAS has been proposed to result from cross-reactivity of antibodies raised against GABHS with brain antigens, but the targets of these antibodies are unclear and may be heterogeneous. We developed an in vivo assay in mice to characterize the cellular targets of antibodies in serum from individuals with PANDAS. We focus on striatal interneurons, which have been implicated in the pathogenesis of tic disorders. Sera from children with well-characterized PANDAS (n = 5) from a previously described clinical trial (NCT01281969), and matched controls, were infused into the striatum of mice; antibody binding to interneurons was characterized using immunofluorescence and confocal microscopy. Antibodies from children with PANDAS bound to ∼80% of cholinergic interneurons, significantly higher than the <50% binding seen with matched healthy controls. There was no elevated binding to two different populations of GABAergic interneurons (PV and nNOS-positive), confirming the specificity of this phenomenon. Elevated binding to cholinergic interneurons resolved in parallel with symptom improvement after treatment with intravenous immunoglobulin. Antibody-mediated dysregulation of striatal cholinergic interneurons may be a locus of pathology in PANDAS. Future clarification of the functional consequences of this specific binding may identify new opportunities for intervention in children with this condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons

    PubMed Central

    Young, Allison; Petros, Timothy; Karayannis, Theofanis; McKenzie Chang, Melissa; Lavado, Alfonso; Iwano, Tomohiko; Nakajima, Miho; Taniguchi, Hiroki; Huang, Z. Josh; Heintz, Nathaniel; Oliver, Guillermo; Matsuzaki, Fumio; Machold, Robert P.

    2015-01-01

    Neurogliaform (RELN+) and bipolar (VIP+) GABAergic interneurons of the mammalian cerebral cortex provide critical inhibition locally within the superficial layers. While these subtypes are known to originate from the embryonic caudal ganglionic eminence (CGE), the specific genetic programs that direct their positioning, maturation, and integration into the cortical network have not been elucidated. Here, we report that in mice expression of the transcription factor Prox1 is selectively maintained in postmitotic CGE-derived cortical interneuron precursors and that loss of Prox1 impairs the integration of these cells into superficial layers. Moreover, Prox1 differentially regulates the postnatal maturation of each specific subtype originating from the CGE (RELN, Calb2/VIP, and VIP). Interestingly, Prox1 promotes the maturation of CGE-derived interneuron subtypes through intrinsic differentiation programs that operate in tandem with extrinsically driven neuronal activity-dependent pathways. Thus Prox1 represents the first identified transcription factor specifically required for the embryonic and postnatal acquisition of CGE-derived cortical interneuron properties. SIGNIFICANCE STATEMENT Despite the recognition that 30% of GABAergic cortical interneurons originate from the caudal ganglionic eminence (CGE), to date, a specific transcriptional program that selectively regulates the development of these populations has not yet been identified. Moreover, while CGE-derived interneurons display unique patterns of tangential and radial migration and preferentially populate the superficial layers of the cortex, identification of a molecular program that controls these events is lacking. Here, we demonstrate that the homeodomain transcription factor Prox1 is expressed in postmitotic CGE-derived cortical interneuron precursors and is maintained into adulthood. We found that Prox1 function is differentially required during both embryonic and postnatal stages of development to

  16. Prelimbic cortex extracellular signal-regulated kinase 1/2 activation is required for memory retrieval of long-term inhibitory avoidance.

    PubMed

    Luo, Fei; Zheng, Jian; Sun, Xuan; Deng, Wei-Ke; Li, Bao Ming; Liu, Fang

    2017-04-15

    Neural mechanism underlying memory retrieval has been extensively studied in the hippocampus and amygdala. However, little is known about the role of medial prefrontal cortex in long-term memory retrieval. We evaluate this issue in one-trial step-through inhibitory avoidance (IA) paradigm. Our results showed that, 1) inactivation of mPFC by local infusion of GABA A -receptor agonist muscimol caused severe deficits in retrieval of 1-day and 7-day but had no effects on 2-h inhibitory avoidance memory; 2) the protein level of phosphorylated-ERK1/2 in mPFC were significantly increased following retrieval of 1-day and 7-day IA memory, so did the numbers of phosphorylated-ERK (pERK) and phosphorylated-CREB (pCREB) labeled neurons; 3) intra-mPFC infusion of ERK kinase inhibitor PD98095 significantly reduced phosphorylated ERK1/2 levels and phosphorylated-ERK1/2 and phosphorylated-CREB labeled cells, and severely impaired retrieval of 7-day IA memory when the drugs were administrated 30min prior to test. The present study provides evidence that retrieval of long-lasting memory for inhibitory avoidance requires mPFC and involves the ERK-CREB signaling cascade. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Cell Type-Specific Expression of Corticotropin-Releasing Hormone-Binding Protein in GABAergic Interneurons in the Prefrontal Cortex

    PubMed Central

    Ketchesin, Kyle D.; Huang, Nicholas S.; Seasholtz, Audrey F.

    2017-01-01

    Corticotropin-releasing hormone-binding protein (CRH-BP) is a secreted glycoprotein that binds CRH with very high affinity to modulate CRH receptor activity. CRH-BP is widely expressed throughout the brain, with particularly high expression in regions such as the amygdala, hippocampus, ventral tegmental area and prefrontal cortex (PFC). Recent studies suggest a role for CRH-BP in stress-related psychiatric disorders and addiction, with the PFC being a potential site of interest. However, the molecular phenotype of CRH-BP-expressing cells in this region has not been well-characterized. In the current study, we sought to determine the cell type-specific expression of CRH-BP in the PFC to begin to define the neural circuits in which this key regulator is acting. To characterize the expression of CRH-BP in excitatory and/or inhibitory neurons, we utilized dual in situ hybridization to examine the cellular colocalization of CRH-BP mRNA with vesicular glutamate transporter (VGLUT) or glutamic acid decarboxylase (GAD) mRNA in different subregions of the PFC. We show that CRH-BP is expressed predominantly in GABAergic interneurons of the PFC, as revealed by the high degree of colocalization (>85%) between CRH-BP and GAD. To further characterize the expression of CRH-BP in this heterogenous group of inhibitory neurons, we examined the colocalization of CRH-BP with various molecular markers of GABAergic interneurons, including parvalbumin (PV), somatostatin (SST), vasoactive intestinal peptide (VIP) and cholecystokinin (CCK). We demonstrate that CRH-BP is colocalized predominantly with SST in the PFC, with lower levels of colocalization in PV- and CCK-expressing neurons. Our results provide a more comprehensive characterization of the cell type-specific expression of CRH-BP and begin to define its potential role within circuits of the PFC. These results will serve as the basis for future in vivo studies to manipulate CRH-BP in a cell type-specific manner to better understand

  18. Inhibitory input from slowly adapting lung stretch receptors to retrotrapezoid nucleus chemoreceptors

    PubMed Central

    Moreira, Thiago S; Takakura, Ana C; Colombari, Eduardo; West, Gavin H; Guyenet, Patrice G

    2007-01-01

    The retrotrapezoid nucleus (RTN) contains CO2-activated interneurons with properties consistent with central respiratory chemoreceptors. These neurons are glutamatergic and express the transcription factor Phox2b. Here we tested whether RTN neurons receive an input from slowly adapting pulmonary stretch receptors (SARs) in halothane-anaesthetized ventilated rats. In vagotomized rats, RTN neurons were inhibited to a variable extent by stimulating myelinated vagal afferents using the lowest intensity needed to inhibit the phrenic nerve discharge (PND). In rats with intact vagus nerves, RTN neurons were inhibited, also to a variable extent, by increasing positive end-expiratory pressure (PEEP; 2–6 cmH2O). The cells most sensitive to PEEP were inhibited during each lung inflation at rest and were instantly activated by stopping ventilation. Muscimol (GABA-A agonist) injection in or next to the solitary tract at area postrema level desynchronized PND from ventilation, eliminated the lung inflation-synchronous inhibition of RTN neurons and their steady inhibition by PEEP but did not change their CO2 sensitivity. Muscimol injection into the rostral ventral respiratory group eliminated PND but did not change RTN neuron response to either lung inflation, PEEP increases, vagal stimulation or CO2. Generalized glutamate receptor blockade with intracerebroventricular (i.c.v.) kynurenate eliminated PND and the response of RTN neurons to lung inflation but did not change their CO2 sensitivity. PEEP-sensitive RTN neurons expressed Phox2b. In conclusion, RTN chemoreceptors receive an inhibitory input from myelinated lung stretch receptors, presumably SARs. The lung input to RTN may be di-synaptic with inhibitory pump cells as sole interneurons. PMID:17255166

  19. Classifying GABAergic interneurons with semi-supervised projected model-based clustering.

    PubMed

    Mihaljević, Bojan; Benavides-Piccione, Ruth; Guerra, Luis; DeFelipe, Javier; Larrañaga, Pedro; Bielza, Concha

    2015-09-01

    A recently introduced pragmatic scheme promises to be a useful catalog of interneuron names. We sought to automatically classify digitally reconstructed interneuronal morphologies according to this scheme. Simultaneously, we sought to discover possible subtypes of these types that might emerge during automatic classification (clustering). We also investigated which morphometric properties were most relevant for this classification. A set of 118 digitally reconstructed interneuronal morphologies classified into the common basket (CB), horse-tail (HT), large basket (LB), and Martinotti (MA) interneuron types by 42 of the world's leading neuroscientists, quantified by five simple morphometric properties of the axon and four of the dendrites. We labeled each neuron with the type most commonly assigned to it by the experts. We then removed this class information for each type separately, and applied semi-supervised clustering to those cells (keeping the others' cluster membership fixed), to assess separation from other types and look for the formation of new groups (subtypes). We performed this same experiment unlabeling the cells of two types at a time, and of half the cells of a single type at a time. The clustering model is a finite mixture of Gaussians which we adapted for the estimation of local (per-cluster) feature relevance. We performed the described experiments on three different subsets of the data, formed according to how many experts agreed on type membership: at least 18 experts (the full data set), at least 21 (73 neurons), and at least 26 (47 neurons). Interneurons with more reliable type labels were classified more accurately. We classified HT cells with 100% accuracy, MA cells with 73% accuracy, and CB and LB cells with 56% and 58% accuracy, respectively. We identified three subtypes of the MA type, one subtype of CB and LB types each, and no subtypes of HT (it was a single, homogeneous type). We got maximum (adapted) Silhouette width and ARI values of

  20. Differential regulation of microtubule severing by APC underlies distinct patterns of projection neuron and interneuron migration

    PubMed Central

    Eom, Tae-Yeon; Stanco, Amelia; Guo, Jiami; Wilkins, Gary; Deslauriers, Danielle; Yan, Jessica; Monckton, Chase; Blair, Josh; Oon, Eesim; Perez, Abby; Salas, Eduardo; Oh, Adrianna; Ghukasyan, Vladimir; Snider, William D.; Rubenstein, John L. R.; Anton, E. S.

    2014-01-01

    Coordinated migration of distinct classes of neurons to appropriate positions leads to the formation of functional neuronal circuitry in the cerebral cortex. Two major classes of cortical neurons, interneurons and projection neurons, utilize distinctly different modes (radial vs. tangential) and routes of migration to arrive at their final positions in the cerebral cortex. Here, we show that adenomatous polyposis coli (APC) modulates microtubule (MT) severing in interneurons to facilitate tangential mode of interneuron migration, but not the glial-guided, radial migration of projection neurons. APC regulates the stability and activity of the MT severing protein p60-katanin in interneurons to promote the rapid remodeling of neuronal processes necessary for interneuron migration. These findings reveal how severing and restructuring of MTs facilitate distinct modes of neuronal migration necessary for laminar organization of neurons in the developing cerebral cortex. PMID:25535916

  1. Impairments in Motor Neurons, Interneurons and Astrocytes Contribute to Hyperexcitability in ALS: Underlying Mechanisms and Paths to Therapy.

    PubMed

    Do-Ha, Dzung; Buskila, Yossi; Ooi, Lezanne

    2018-02-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterised by the loss of motor neurons leading to progressive paralysis and death. Using transcranial magnetic stimulation (TMS) and nerve excitability tests, several clinical studies have identified that cortical and peripheral hyperexcitability are among the earliest pathologies observed in ALS patients. The changes in the electrophysiological properties of motor neurons have been identified in both sporadic and familial ALS patients, despite the diverse etiology of the disease. The mechanisms behind the change in neuronal signalling are not well understood, though current findings implicate intrinsic changes in motor neurons and dysfunction of cells critical in regulating motor neuronal excitability, such as astrocytes and interneurons. Alterations in ion channel expression and/or function in motor neurons has been associated with changes in cortical and peripheral nerve excitability. In addition to these intrinsic changes in motor neurons, inhibitory signalling through GABAergic interneurons is also impaired in ALS, likely contributing to increased neuronal excitability. Astrocytes have also recently been implicated in increasing neuronal excitability in ALS by failing to adequately regulate glutamate levels and extracellular K + concentration at the synaptic cleft. As hyperexcitability is a common and early feature of ALS, it offers a therapeutic and diagnostic target. Thus, understanding the underlying pathways and mechanisms leading to hyperexcitability in ALS offers crucial insight for future development of ALS treatments.

  2. Isolation and characterization of α-conotoxin LsIA with potent activity at nicotinic acetylcholine receptors.

    PubMed

    Inserra, Marco C; Kompella, Shiva N; Vetter, Irina; Brust, Andreas; Daly, Norelle L; Cuny, Hartmut; Craik, David J; Alewood, Paul F; Adams, David J; Lewis, Richard J

    2013-09-15

    A new α-conotoxin LsIA was isolated from the crude venom of Conus limpusi using assay-guided RP-HPLC fractionation. Synthetic LsIA was a potent antagonist of α3β2, α3α5β2 and α7 nAChRs, with half-maximal inhibitory concentrations of 10, 31 and 10 nM, respectively. The structure of LsIA determined by NMR spectroscopy comprised a characteristic disulfide bond-stabilized α-helical structure and disordered N-terminal region. Potency reductions of up to 9-fold were observed for N-terminally truncated analogues of LsIA at α7 and α3β2 nAChRs, whereas C-terminal carboxylation enhanced potency 3-fold at α3β2 nAChRs but reduced potency 3-fold at α7 nAChRs. This study gives further insight into α-conotoxin pharmacology and the molecular basis of nAChR selectivity, highlighting the influence of N-terminal residues and C-terminal amidation on conotoxin pharmacology. Copyright © 2013. Published by Elsevier Inc.

  3. Aging-associated oxidative stress leads to decrease in IAS tone via RhoA/ROCK downregulation.

    PubMed

    Singh, Jagmohan; Kumar, Sumit; Krishna, Chadalavada Vijay; Rattan, Satish

    2014-06-01

    Internal anal sphincter (IAS) tone plays an important role in rectoanal incontinence (RI). IAS tone may be compromised during aging, leading to RI in certain patients. We examined the influence of oxidative stress in the aging-associated decrease in IAS tone (AADI). Using adult (4-6 mo old) and aging (24-30 mo old) rats, we determined the effect of oxidative stress on IAS tone and the regulatory RhoA/ROCK signal transduction cascade. We determined the effect of the oxidative stress inducer LY83583, which produces superoxide anions (O2 (·-)), on basal and stimulated IAS tone before and after treatment of intact smooth muscle strips and smooth muscle cells with the O2 (·-) scavenger SOD. Our data showed that AADI was associated with a decrease in RhoA/ROCK expression at the transcriptional and translational levels. Oxidative stress with a LY83583-mediated decrease in IAS tone and relaxation of IAS smooth muscle cells was associated with a decrease in RhoA/ROCK signal transduction, which was reversible by SOD. In addition, LY83583 caused a significant decrease in IAS contraction produced by the RhoA activator and a known RhoA/ROCK agonist, U46619, that was also reversible by SOD. The inhibitory effects of LY83583 and the ROCK inhibitor Y27632 on the U46619-induced increase in IAS tone were similar. We conclude that an increase in oxidative stress plays an important role in AADI in the elderly and may be one of the underlying mechanisms of RI in certain aging patients. Copyright © 2014 the American Physiological Society.

  4. Aging-associated oxidative stress leads to decrease in IAS tone via RhoA/ROCK downregulation

    PubMed Central

    Singh, Jagmohan; Kumar, Sumit; Krishna, Chadalavada Vijay

    2014-01-01

    Internal anal sphincter (IAS) tone plays an important role in rectoanal incontinence (RI). IAS tone may be compromised during aging, leading to RI in certain patients. We examined the influence of oxidative stress in the aging-associated decrease in IAS tone (AADI). Using adult (4–6 mo old) and aging (24–30 mo old) rats, we determined the effect of oxidative stress on IAS tone and the regulatory RhoA/ROCK signal transduction cascade. We determined the effect of the oxidative stress inducer LY83583, which produces superoxide anions (O2·−), on basal and stimulated IAS tone before and after treatment of intact smooth muscle strips and smooth muscle cells with the O2·− scavenger SOD. Our data showed that AADI was associated with a decrease in RhoA/ROCK expression at the transcriptional and translational levels. Oxidative stress with a LY83583-mediated decrease in IAS tone and relaxation of IAS smooth muscle cells was associated with a decrease in RhoA/ROCK signal transduction, which was reversible by SOD. In addition, LY83583 caused a significant decrease in IAS contraction produced by the RhoA activator and a known RhoA/ROCK agonist, U46619, that was also reversible by SOD. The inhibitory effects of LY83583 and the ROCK inhibitor Y27632 on the U46619-induced increase in IAS tone were similar. We conclude that an increase in oxidative stress plays an important role in AADI in the elderly and may be one of the underlying mechanisms of RI in certain aging patients. PMID:24742984

  5. Impaired fast-spiking interneuron function in a genetic mouse model of depression

    PubMed Central

    Sauer, Jonas-Frederic; Strüber, Michael; Bartos, Marlene

    2015-01-01

    Rhythmic neuronal activity provides a frame for information coding by co-active cell assemblies. Abnormal brain rhythms are considered as potential pathophysiological mechanisms causing mental disease, but the underlying network defects are largely unknown. We find that mice expressing truncated Disrupted-in-Schizophrenia 1 (Disc1), which mirror a high-prevalence genotype for human psychiatric illness, show depression-related behavior. Theta and low-gamma synchrony in the prelimbic cortex (PrlC) is impaired in Disc1 mice and inversely correlated with the extent of behavioural despair. While weak theta activity is driven by the hippocampus, disturbance of low-gamma oscillations is caused by local defects of parvalbumin (PV)-expressing fast-spiking interneurons (FS-INs). The number of FS-INs is reduced, they receive fewer excitatory inputs, and form fewer release sites on targets. Computational analysis indicates that weak excitatory input and inhibitory output of FS-INs may lead to impaired gamma oscillations. Our data link network defects with a gene mutation underlying depression in humans. DOI: http://dx.doi.org/10.7554/eLife.04979.001 PMID:25735038

  6. Amelioration of oxidative stress-induced phenotype loss of parvalbumin interneurons might contribute to the beneficial effects of environmental enrichment in a rat model of post-traumatic stress disorder.

    PubMed

    Sun, Xiao R; Zhang, Hui; Zhao, Hong T; Ji, Mu H; Li, Hui H; Wu, Jing; Li, Kuan Y; Yang, Jian J

    2016-10-01

    Post-traumatic stress disorder (PTSD) is a common psychiatric disease following exposure to a severe traumatic event or physiological stress, which is characterized by anxiety- and depression-like behaviors and cognitive impairment. However, the underlying mechanisms remain elusive. Parvalbumin (PV) interneurons that are susceptible to oxidative stress are a subset of inhibitory GABAergic neurons regulating the excitability of pyramidal neurons, while dysfunction of PV interneurons is casually linked to many mental disorders including PTSD. We therefore hypothesized that environmental enrichment (EE), a method of enhanced cognitive, sensory and motor stimulation, can reverse the behavioral impairments by normalizing PV interneurons in a rat model of PTSD induced by inescapable foot shocks (IFS). Behavioral changes were determined by the open field, elevated plus maze, fear conditioning, and Morris water maze tests. The levels of nicotinamide adenosine dinucleotide phosphate (NADPH) oxidase 2 (NOX2), NOX4, PV, glutamic acid decarboxylase 67 (GAD-67), and 8-hydroxy-2-deoxyguanosine (8-OH-dG) in the hippocampus and prefrontal cortex were determined. Our results showed that in this PTSD model, rats displayed the anxiety-like behavior, enhanced fear learning behavior, and hippocampus- dependent spatial memory deficit, which were accompanied by the up-regulation of NOX2, 8-OH-dG, and down-regulation of PV and GAD-67. Notably, EE reversed all these abnormalities. These results suggest that restoration of PV interneurons by inhibiting oxidative stress in the hippocampus and prefrontal cortex might represent a mechanism through which EE reverses the behavioral impairments in a rat model of PTSD induced by IFS. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Cdk5 Phosphorylation of ErbB4 is Required for Tangential Migration of Cortical Interneurons

    PubMed Central

    Rakić, Sonja; Kanatani, Shigeaki; Hunt, David; Faux, Clare; Cariboni, Anna; Chiara, Francesca; Khan, Shabana; Wansbury, Olivia; Howard, Beatrice; Nakajima, Kazunori; Nikolić, Margareta; Parnavelas, John G.

    2015-01-01

    Interneuron dysfunction in humans is often associated with neurological and psychiatric disorders, such as epilepsy, schizophrenia, and autism. Some of these disorders are believed to emerge during brain formation, at the time of interneuron specification, migration, and synapse formation. Here, using a mouse model and a host of histological and molecular biological techniques, we report that the signaling molecule cyclin-dependent kinase 5 (Cdk5), and its activator p35, control the tangential migration of interneurons toward and within the cerebral cortex by modulating the critical neurodevelopmental signaling pathway, ErbB4/phosphatidylinositol 3-kinase, that has been repeatedly linked to schizophrenia. This finding identifies Cdk5 as a crucial signaling factor in cortical interneuron development in mammals. PMID:24142862

  8. Deletion of CTNNB1 in inhibitory circuitry contributes to autism-associated behavioral defects.

    PubMed

    Dong, Fengping; Jiang, Joanna; McSweeney, Colleen; Zou, Donghua; Liu, Long; Mao, Yingwei

    2016-07-01

    Mutations in β-catenin (CTNNB1) have been implicated in cancer and mental disorders. Recently, loss-of-function mutations of CTNNB1 were linked to intellectual disability (ID), and rare mutations were identified in patients with autism spectrum disorder (ASD). As a key regulator of the canonical Wnt pathway, CTNNB1 plays an essential role in neurodevelopment. However, the function of CTNNB1 in specific neuronal subtypes is unclear. To understand how CTNNB1 deficiency contributes to ASD, we generated CTNNB1 conditional knockout (cKO) mice in parvalbumin interneurons. The cKO mice had increased anxiety, but had no overall change in motor function. Interestingly, CTNNB1 cKO in PV-interneurons significantly impaired object recognition and social interactions and elevated repetitive behaviors, which mimic the core symptoms of patients with ASD. Surprisingly, deleting CTNNB1 in parvalbumin-interneurons enhanced spatial memory. To determine the effect of CTNNB1 KO in overall neuronal activity, we found that c-Fos was significantly reduced in the cortex, but not in the dentate gyrus and the amygdala. Our findings revealed a cell type-specific role of CTNNB1 gene in regulation of cognitive and autistic-like behaviors. Thus, this study has important implications for development of therapies for ASDs carrying the CTNNB1 mutation or other ASDs that are associated with mutations in the Wnt pathway. In addition, our study contributes to a broader understanding of the regulation of the inhibitory circuitry. © The Author 2016. Published by Oxford University Press.

  9. Major amyloid-β-degrading enzymes, endothelin-converting enzyme-2 and neprilysin, are expressed by distinct populations of GABAergic interneurons in hippocampus and neocortex.

    PubMed

    Pacheco-Quinto, Javier; Eckman, Christopher B; Eckman, Elizabeth A

    2016-12-01

    Impaired clearance of amyloid-β peptide (Aβ) has been postulated to significantly contribute to the amyloid accumulation typical of Alzheimer's disease. Among the enzymes known to degrade Aβ in vivo are endothelin-converting enzyme (ECE)-1, ECE-2, and neprilysin (NEP), and evidence suggests that they regulate independent pools of Aβ that may be functionally significant. To better understand the differential regulation of Aβ concentration by its physiological degrading enzymes, we characterized the cell and region-specific expression pattern of ECE-1, ECE-2, and NEP by in situ hybridization and immunohistochemistry in brain areas relevant to Alzheimer's disease. In contrast to the broader distribution of ECE-1, ECE-2 and NEP were found enriched in GABAergic neurons. ECE-2 was majorly expressed by somatostatin-expressing interneurons and was active in isolated synaptosomes. NEP messenger RNA was found mainly in parvalbumin-expressing interneurons, with NEP protein localized to perisomatic parvalbuminergic synapses. The identification of somatostatinergic and parvalbuminergic synapses as hubs for Aβ degradation is consistent with the possibility that Aβ may have a physiological function related to the regulation of inhibitory signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Impaired discrimination learning in interneuronal NMDAR-GluN2B mutant mice.

    PubMed

    Brigman, Jonathan L; Daut, Rachel A; Saksida, Lisa; Bussey, Timothy J; Nakazawa, Kazu; Holmes, Andrew

    2015-06-17

    Previous studies have established a role for N-methyl-D-aspartate receptor (NMDAR) containing the GluN2B subunit in efficient learning behavior on a variety of tasks. Recent findings have suggested that NMDAR on GABAergic interneurons may underlie the modulation of striatal function necessary to balance efficient action with cortical excitatory input. Here we investigated how loss of GluN2B-containing NMDAR on GABAergic interneurons altered corticostriatal-mediated associative learning. Mutant mice (floxed-GluN2B×Ppp1r2-Cre) were generated to produce loss of GluN2B on forebrain interneurons and phenotyped on a touchscreen-based pairwise visual learning paradigm. We found that the mutants showed normal performance during Pavlovian and instrumental pretraining, but were significantly impaired on a discrimination learning task. Detailed analysis of the microstructure of discrimination performance revealed reduced win→stay behavior in the mutants. These results further support the role of NMDAR, and GluN2B in particular, on modulation of striatal function necessary for efficient choice behavior and suggest that NMDAR on interneurons may play a critical role in associative learning.

  11. Gamma rhythms link prefrontal interneuron dysfunction with cognitive inflexibility in Dlx5/6+/− mice

    PubMed Central

    Cho, Kathleen K.A.; Hoch, Renee; Lee, Anthony T.; Patel, Tosha; Rubenstein, John L.R.; Sohal, Vikaas S.

    2015-01-01

    SUMMARY Abnormalities in GABAergic interneurons, particularly fast-spiking interneurons (FSINs) that generate gamma (γ; ~30-120 Hz) oscillations, are hypothesized to disrupt prefrontal cortex (PFC)-dependent cognition in schizophrenia. Although γ rhythms are abnormal in schizophrenia, it remains unclear whether they directly influence cognition. Mechanisms underlying schizophrenia's typical post-adolescent onset also remain elusive. We addressed these issues using mice heterozygous for Dlx5/6, which regulate GABAergic interneuron development. In Dlx5/6+/− mice, FSINs become abnormal following adolescence, coinciding with the onset of cognitive inflexibility and deficient task-evoked γ oscillations. Inhibiting PFC interneurons in control mice reproduced these deficits, whereas stimulating them at γ-frequencies restored cognitive flexibility in adult Dlx5/6+/− mice. These pro-cognitive effects were frequency-specific and persistent. These findings elucidate a mechanism whereby abnormal FSIN development may contribute to the post-adolescent onset of schizophrenia endophenotypes. Furthermore, they demonstrate a causal, potentially therapeutic, role for PFC interneuron-driven gamma oscillations in cognitive domains at the core of schizophrenia. PMID:25754826

  12. Cultured networks of excitatory projection neurons and inhibitory interneurons for studying human cortical neurotoxicity

    PubMed Central

    Xu, Jin-Chong; Fan, Jing; Wang, Xueqing; Eacker, Stephen M.; Kam, Tae-In; Chen, Li; Yin, Xiling; Zhu, Juehua; Chi, Zhikai; Jiang, Haisong; Chen, Rong; Dawson, Ted M.; Dawson, Valina L.

    2017-01-01

    Translating neuroprotective treatments from discovery in cell and animal models to the clinic has proven challenging. To reduce the gap between basic studies of neurotoxicity and neuroprotection and clinically relevant therapies, we developed a human cortical neuron culture system from human embryonic stem cells (ESCs) or inducible pluripotent stem cells (iPSCs) that generated both excitatory and inhibitory neuronal networks resembling the composition of the human cortex. This methodology used timed administration of retinoic acid (RA) to FOXG1 neural precursor cells leading to differentiation of neuronal populations representative of the six cortical layers with both excitatory and inhibitory neuronal networks that were functional and homeostatically stable. In human cortical neuron cultures, excitotoxicity or ischemia due to oxygen and glucose deprivation led to cell death that was dependent on N-methyl-D-aspartate (NMDA) receptors, nitric oxide (NO), and the poly (ADP-ribose) polymerase (PARP)-dependent cell death, a cell death pathway designated parthanatos to separate it from apoptosis, necroptosis and other forms of cell death. Neuronal cell death was attenuated by PARP inhibitors that are currently in clinical trials for cancer treatment. This culture system provides a new platform for the study of human cortical neurotoxicity and suggests that PARP inhibitors may be useful for ameliorating excitotoxic and ischemic cell death in human neurons. PMID:27053772

  13. Spinal microcircuits comprising dI3 interneurons are necessary for motor functional recovery following spinal cord transection

    PubMed Central

    Bui, Tuan V; Stifani, Nicolas; Akay, Turgay; Brownstone, Robert M

    2016-01-01

    The spinal cord has the capacity to coordinate motor activities such as locomotion. Following spinal transection, functional activity can be regained, to a degree, following motor training. To identify microcircuits involved in this recovery, we studied a population of mouse spinal interneurons known to receive direct afferent inputs and project to intermediate and ventral regions of the spinal cord. We demonstrate that while dI3 interneurons are not necessary for normal locomotor activity, locomotor circuits rhythmically inhibit them and dI3 interneurons can activate these circuits. Removing dI3 interneurons from spinal microcircuits by eliminating their synaptic transmission left locomotion more or less unchanged, but abolished functional recovery, indicating that dI3 interneurons are a necessary cellular substrate for motor system plasticity following transection. We suggest that dI3 interneurons compare inputs from locomotor circuits with sensory afferent inputs to compute sensory prediction errors that then modify locomotor circuits to effect motor recovery. DOI: http://dx.doi.org/10.7554/eLife.21715.001 PMID:27977000

  14. Selective Reduction of AMPA Currents onto Hippocampal Interneurons Impairs Network Oscillatory Activity

    PubMed Central

    Le Magueresse, Corentin; Monyer, Hannah

    2012-01-01

    Reduction of excitatory currents onto GABAergic interneurons in the forebrain results in impaired spatial working memory and altered oscillatory network patterns in the hippocampus. Whether this phenotype is caused by an alteration in hippocampal interneurons is not known because most studies employed genetic manipulations affecting several brain regions. Here we performed viral injections in genetically modified mice to ablate the GluA4 subunit of the AMPA receptor in the hippocampus (GluA4HC−/− mice), thereby selectively reducing AMPA receptor-mediated currents onto a subgroup of hippocampal interneurons expressing GluA4. This regionally selective manipulation led to a strong spatial working memory deficit while leaving reference memory unaffected. Ripples (125–250 Hz) in the CA1 region of GluA4HC−/− mice had larger amplitude, slower frequency and reduced rate of occurrence. These changes were associated with an increased firing rate of pyramidal cells during ripples. The spatial selectivity of hippocampal pyramidal cells was comparable to that of controls in many respects when assessed during open field exploration and zigzag maze running. However, GluA4 ablation caused altered modulation of firing rate by theta oscillations in both interneurons and pyramidal cells. Moreover, the correlation between the theta firing phase of pyramidal cells and position was weaker in GluA4HC−/− mice. These results establish the involvement of AMPA receptor-mediated currents onto hippocampal interneurons for ripples and theta oscillations, and highlight potential cellular and network alterations that could account for the altered working memory performance. PMID:22675480

  15. Terminal Field and Firing Selectivity of Cholecystokinin-Expressing Interneurons in the Hippocampal CA3 Area

    PubMed Central

    Lasztóczi, Bálint; Tukker, John J.; Somogyi, Peter; Klausberger, Thomas

    2015-01-01

    Hippocampal oscillations reflect coordinated neuronal activity on many timescales. Distinct types of GABAergic interneuron participate in the coordination of pyramidal cells over different oscillatory cycle phases. In the CA3 area, which generates sharp waves and gamma oscillations, the contribution of identified GABAergic neurons remains to be defined. We have examined the firing of a family of cholecystokinin-expressing interneurons during network oscillations in urethane-anesthetized rats and compared them with firing of CA3 pyramidal cells. The position of the terminals of individual visualized interneurons was highly diverse, selective, and often spatially coaligned with either the entorhinal or the associational inputs to area CA3. The spike timing in relation to theta and gamma oscillations and sharp waves was correlated with the innervated pyramidal cell domain. Basket and dendritic-layer-innervating interneurons receive entorhinal and associational inputs and preferentially fire on the ascending theta phase, when pyramidal cell assemblies emerge. Perforant-path-associated cells, driven by recurrent collaterals of pyramidal cells fire on theta troughs, when established pyramidal cell assemblies are most active. In the CA3 area, slow and fast gamma oscillations occurred on opposite theta oscillation phases. Perforant-path-associated and some COUP-TFII-positive interneurons are strongly coupled to both fast and slow gamma oscillations, but basket and dendritic-layer-innervating cells are weakly coupled to fast gamma oscillations only. During sharp waves, different interneuron types are activated, inhibited, or remain unaffected. We suggest that specialization in pyramidal cell domain and glutamatergic input-specific operations, reflected in the position of GABAergic terminals, is the evolutionary drive underlying the diversity of cholecystokinin-expressing interneurons. PMID:22159120

  16. Spatiotemporal alterations of cortical network activity by selective loss of NOS-expressing interneurons.

    PubMed

    Shlosberg, Dan; Buskila, Yossi; Abu-Ghanem, Yasmin; Amitai, Yael

    2012-01-01

    Deciphering the role of GABAergic neurons in large neuronal networks such as the neocortex forms a particularly complex task as they comprise a highly diverse population. The neuronal isoform of the enzyme nitric oxide synthase (nNOS) is expressed in the neocortex by specific subsets of GABAergic neurons. These neurons can be identified in live brain slices by the nitric oxide (NO) fluorescent indicator diaminofluorescein-2 diacetate (DAF-2DA). However, this indicator was found to be highly toxic to the stained neurons. We used this feature to induce acute phototoxic damage to NO-producing neurons in cortical slices, and measured subsequent alterations in parameters of cellular and network activity. Neocortical slices were briefly incubated in DAF-2DA and then illuminated through the 4× objective. Histochemistry for NADPH-diaphorase (NADPH-d), a marker for nNOS activity, revealed elimination of staining in the illuminated areas following treatment. Whole cell recordings from several neuronal types before, during, and after illumination confirmed the selective damage to non-fast-spiking (FS) interneurons. Treated slices displayed mild disinhibition. The reversal potential of compound synaptic events on pyramidal neurons became more positive, and their decay time constant was elongated, substantiating the removal of an inhibitory conductance. The horizontal decay of local field potentials (LFPs) was significantly reduced at distances of 300-400 μm from the stimulation, but not when inhibition was non-selectively weakened with the GABA(A) blocker picrotoxin. Finally, whereas the depression of LFPs along short trains of 40 Hz stimuli was linearly reduced with distance or initial amplitude in control slices, this ordered relationship was disrupted in DAF-treated slices. These results reveal that NO-producing interneurons in the neocortex convey lateral inhibition to neighboring columns, and shape the spatiotemporal dynamics of the network's activity.

  17. Seizures as imbalanced up states: excitatory and inhibitory conductances during seizure-like events

    PubMed Central

    Cressman, John R.; Schiff, Steven J.

    2013-01-01

    Precisely timed and dynamically balanced excitatory (E) and inhibitory (I) conductances underlie the basis of neural network activity. Normal E/I balance is often shifted in epilepsy, resulting in neuronal network hyperexcitability and recurrent seizures. However, dynamics of the actual excitatory and inhibitory synaptic conductances (ge and gi, respectively) during seizures remain unknown. To study the dynamics of E and I network balance, we calculated ge and gi during the initiation, body, and termination of seizure-like events (SLEs) in the rat hippocampus in vitro. Repetitive emergent SLEs in 4-aminopyridine (100 μM) and reduced extracellular magnesium (0.6 mM) were recorded in the identified CA1 pyramidal cells (PC) and oriens-lacunosum moleculare (O-LM) interneurons. Calculated ge/gi ratio dynamics showed that the initiation stage of the SLEs was dominated by inhibition in the PCs and was more balanced in the O-LM cells. During the body of the SLEs, the balance shifted toward excitation, with ge and gi peaking in both cell types at nearly the same time. In the termination phase, PCs were again dominated by inhibition, whereas O-LM cells experienced persistent excitatory synaptic barrage. In this way, increased excitability of interneurons may play roles in both seizure initiation (Žiburkus J, Cressman JR, Barreto E, Schiff SJ. J Neurophysiol 95: 3948–3954, 2006) and in their termination. Overall, SLE stages can be characterized in PC and O-LM cells by dynamically distinct changes in the balance of ge and gi, where a temporal sequence of imbalance shifts with the changing firing patterns of the cellular subtypes comprising the hyperexcitable microcircuits. PMID:23221405

  18. Even-Skipped(+) Interneurons Are Core Components of a Sensorimotor Circuit that Maintains Left-Right Symmetric Muscle Contraction Amplitude.

    PubMed

    Heckscher, Ellie S; Zarin, Aref Arzan; Faumont, Serge; Clark, Matthew Q; Manning, Laurina; Fushiki, Akira; Schneider-Mizell, Casey M; Fetter, Richard D; Truman, James W; Zwart, Maarten F; Landgraf, Matthias; Cardona, Albert; Lockery, Shawn R; Doe, Chris Q

    2015-10-21

    Bilaterally symmetric motor patterns--those in which left-right pairs of muscles contract synchronously and with equal amplitude (such as breathing, smiling, whisking, and locomotion)--are widespread throughout the animal kingdom. Yet, surprisingly little is known about the underlying neural circuits. We performed a thermogenetic screen to identify neurons required for bilaterally symmetric locomotion in Drosophila larvae and identified the evolutionarily conserved Even-skipped(+) interneurons (Eve/Evx). Activation or ablation of Eve(+) interneurons disrupted bilaterally symmetric muscle contraction amplitude, without affecting the timing of motor output. Eve(+) interneurons are not rhythmically active and thus function independently of the locomotor CPG. GCaMP6 calcium imaging of Eve(+) interneurons in freely moving larvae showed left-right asymmetric activation that correlated with larval behavior. TEM reconstruction of Eve(+) interneuron inputs and outputs showed that the Eve(+) interneurons are at the core of a sensorimotor circuit capable of detecting and modifying body wall muscle contraction. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Even-skipped+ interneurons are core components of a sensorimotor circuit that maintains left-right symmetric muscle contraction amplitude

    PubMed Central

    Heckscher, Ellie S.; Zarin, Aref Arzan; Faumont, Serge; Clark, Matthew Q.; Manning, Laurina; Fushiki, Akira; Schneider-Mizel, Casey M.; Fetter, Richard D.; Truman, James W.; Zwart, Maarten F.; Landgraf, Matthias; Cardona, Albert; Lockery, Shawn R.; Doe, Chris Q.

    2015-01-01

    Summary Bilaterally symmetric motor patterns—those in which left-right pairs of muscles contract synchronously and with equal amplitude (such as breathing, smiling, whisking, locomotion)—are widespread throughout the animal kingdom. Yet surprisingly little is known about the underlying neural circuits. We performed a thermogenetic screen to identify neurons required for bilaterally symmetric locomotion in Drosophila larvae, and identified the evolutionarily-conserved Even-skipped+ interneurons (Eve/Evx). Activation or ablation of Eve+ interneurons disrupted bilaterally symmetric muscle contraction amplitude, without affecting the timing of motor output. Eve+ interneurons are not rhythmically active, and thus function independently of the locomotor CPG. GCaMP6 calcium imaging of Eve+ interneurons in freely-moving larvae showed left-right asymmetric activation that correlated with larval behavior. TEM reconstruction of Eve+ interneuron inputs and outputs showed that the Eve+ interneurons are at the core of a sensorimotor circuit capable of detecting and modifying body wall muscle contraction. PMID:26439528

  20. A prenatal interruption of DISC1 function in the brain exhibits a lasting impact on adult behaviors, brain metabolism, and interneuron development.

    PubMed

    Deng, Dazhi; Jian, Chongdong; Lei, Ling; Zhou, Yijing; McSweeney, Colleen; Dong, Fengping; Shen, Yilun; Zou, Donghua; Wang, Yonggang; Wu, Yuan; Zhang, Limin; Mao, Yingwei

    2017-10-17

    Mental illnesses like schizophrenia (SCZ) and major depression disorder (MDD) are devastating brain disorders. The SCZ risk gene, disrupted in schizophrenia 1 ( DISC1 ), has been associated with neuropsychiatric conditions. However, little is known regarding the long-lasting impacts on brain metabolism and behavioral outcomes from genetic insults on fetal NPCs during early life. We have established a new mouse model that specifically interrupts DISC1 functions in NPCs in vivo by a dominant-negative DISC1 (DN-DISC1) with a precise temporal and spatial regulation. Interestingly, prenatal interruption of mouse Disc1 function in NPCs leads to abnormal depression-like deficit in adult mice. Here we took a novel unbiased metabonomics approach to identify brain-specific metabolites that are significantly changed in DN-DISC1 mice. Surprisingly, the inhibitory neurotransmitter, GABA, is augmented. Consistently, parvalbumin (PV) interneurons are increased in the cingulate cortex, retrosplenial granular cortex, and motor cortex. Interestingly, somatostatin (SST) positive and neuropeptide Y (NPY) interneurons are decreased in some brain regions, suggesting that DN-DISC1 expression affects the localization of interneuron subtypes. To further explore the cellular mechanisms that cause this change, DN-DISC1 suppresses proliferation and promotes the cell cycle exit of progenitors in the medial ganglionic eminence (MGE), whereas it stimulates ectopic proliferation of neighboring cells through cell non-autonomous effect. Mechanistically, it modulates GSK3 activity and interrupts Dlx2 activity in the Wnt activation. In sum, our results provide evidence that specific genetic insults on NSCs at a short period of time could lead to prolonged changes of brain metabolism and development, eventually behavioral defects.

  1. Post-training reversible disconnection of the ventral hippocampal-basolateral amygdaloid circuits impairs consolidation of inhibitory avoidance memory in rats.

    PubMed

    Wang, Gong-Wu; Liu, Jian; Wang, Xiao-Qin

    2017-11-01

    The ventral hippocampus (VH) and the basolateral amygdala (BLA) are both crucial in inhibitory avoidance (IA) memory. However, the exact role of the VH-BLA circuit in IA memory consolidation is unclear. This study investigated the effect of post-training reversible disconnection of the VH-BLA circuit in IA memory consolidation. Male Wistar rats with implanted guide cannulae were trained with a one-trial IA task, then received immediate intracerebral injections of muscimol or saline, and were tested 24 h later. Muscimol injection into the bilateral BLA, or the unilateral VH and contralateral BLA, but not the unilateral VH and ipsilateral BLA, significantly decreased the retention latencies (versus saline treatment). The results suggest that the VH-BLA circuit could be an important circuit to modulate consolidation of IA memory in rats. © 2017 Wang et al.; Published by Cold Spring Harbor Laboratory Press.

  2. Regulation of Brain-Derived Neurotrophic Factor Exocytosis and Gamma-Aminobutyric Acidergic Interneuron Synapse by the Schizophrenia Susceptibility Gene Dysbindin-1.

    PubMed

    Yuan, Qiang; Yang, Feng; Xiao, Yixin; Tan, Shawn; Husain, Nilofer; Ren, Ming; Hu, Zhonghua; Martinowich, Keri; Ng, Julia S; Kim, Paul J; Han, Weiping; Nagata, Koh-Ichi; Weinberger, Daniel R; Je, H Shawn

    2016-08-15

    Genetic variations in dystrobrevin binding protein 1 (DTNBP1 or dysbindin-1) have been implicated as risk factors in the pathogenesis of schizophrenia. The encoded protein dysbindin-1 functions in the regulation of synaptic activity and synapse development. Intriguingly, a loss of function mutation in Dtnbp1 in mice disrupted both glutamatergic and gamma-aminobutyric acidergic transmission in the cerebral cortex; pyramidal neurons displayed enhanced excitability due to reductions in inhibitory synaptic inputs. However, the mechanism by which reduced dysbindin-1 activity causes inhibitory synaptic deficits remains unknown. We investigated the role of dysbindin-1 in the exocytosis of brain-derived neurotrophic factor (BDNF) from cortical excitatory neurons, organotypic brain slices, and acute slices from dysbindin-1 mutant mice and determined how this change in BDNF exocytosis transsynaptically affected the number of inhibitory synapses formed on excitatory neurons via whole-cell recordings, immunohistochemistry, and live-cell imaging using total internal reflection fluorescence microscopy. A decrease in dysbindin-1 reduces the exocytosis of BDNF from cortical excitatory neurons, and this reduction in BDNF exocytosis transsynaptically resulted in reduced inhibitory synapse numbers formed on excitatory neurons. Furthermore, application of exogenous BDNF rescued the inhibitory synaptic deficits caused by the reduced dysbindin-1 level in both cultured cortical neurons and slice cultures. Taken together, our results demonstrate that these two genes linked to risk for schizophrenia (BDNF and dysbindin-1) function together to regulate interneuron development and cortical network activity. This evidence supports the investigation of the association between dysbindin-1 and BDNF in humans with schizophrenia. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. ChIA-PET2: a versatile and flexible pipeline for ChIA-PET data analysis

    PubMed Central

    Li, Guipeng; Chen, Yang; Snyder, Michael P.; Zhang, Michael Q.

    2017-01-01

    ChIA-PET2 is a versatile and flexible pipeline for analyzing different types of ChIA-PET data from raw sequencing reads to chromatin loops. ChIA-PET2 integrates all steps required for ChIA-PET data analysis, including linker trimming, read alignment, duplicate removal, peak calling and chromatin loop calling. It supports different kinds of ChIA-PET data generated from different ChIA-PET protocols and also provides quality controls for different steps of ChIA-PET analysis. In addition, ChIA-PET2 can use phased genotype data to call allele-specific chromatin interactions. We applied ChIA-PET2 to different ChIA-PET datasets, demonstrating its significantly improved performance as well as its ability to easily process ChIA-PET raw data. ChIA-PET2 is available at https://github.com/GuipengLi/ChIA-PET2. PMID:27625391

  4. Molecular and electrophysiological characterization of GFP-expressing CA1 interneurons in GAD65-GFP mice.

    PubMed

    Wierenga, Corette J; Müllner, Fiona E; Rinke, Ilka; Keck, Tara; Stein, Valentin; Bonhoeffer, Tobias

    2010-12-31

    The use of transgenic mice in which subtypes of neurons are labeled with a fluorescent protein has greatly facilitated modern neuroscience research. GAD65-GFP mice, which have GABAergic interneurons labeled with GFP, are widely used in many research laboratories, although the properties of the labeled cells have not been studied in detail. Here we investigate these cells in the hippocampal area CA1 and show that they constitute ∼20% of interneurons in this area. The majority of them expresses either reelin (70±2%) or vasoactive intestinal peptide (VIP; 15±2%), while expression of parvalbumin and somatostatin is virtually absent. This strongly suggests they originate from the caudal, and not the medial, ganglionic eminence. GFP-labeled interneurons can be subdivided according to the (partially overlapping) expression of neuropeptide Y (42±3%), cholecystokinin (25±3%), calbindin (20±2%) or calretinin (20±2%). Most of these subtypes (with the exception of calretinin-expressing interneurons) target the dendrites of CA1 pyramidal cells. GFP-labeled interneurons mostly show delayed onset of firing around threshold, and regular firing with moderate frequency adaptation at more depolarized potentials.

  5. Spatiotemporal dynamics of rhythmic spinal interneurons measured with two-photon calcium imaging and coherence analysis.

    PubMed

    Kwan, Alex C; Dietz, Shelby B; Zhong, Guisheng; Harris-Warrick, Ronald M; Webb, Watt W

    2010-12-01

    In rhythmic neural circuits, a neuron often fires action potentials with a constant phase to the rhythm, a timing relationship that can be functionally significant. To characterize these phase preferences in a large-scale, cell type-specific manner, we adapted multitaper coherence analysis for two-photon calcium imaging. Analysis of simulated data showed that coherence is a simple and robust measure of rhythmicity for calcium imaging data. When applied to the neonatal mouse hindlimb spinal locomotor network, the phase relationships between peak activity of >1,000 ventral spinal interneurons and motor output were characterized. Most interneurons showed rhythmic activity that was coherent and in phase with the ipsilateral motor output during fictive locomotion. The phase distributions of two genetically identified classes of interneurons were distinct from the ensemble population and from each other. There was no obvious spatial clustering of interneurons with similar phase preferences. Together, these results suggest that cell type, not neighboring neuron activity, is a better indicator of an interneuron's response during fictive locomotion. The ability to measure the phase preferences of many neurons with cell type and spatial information should be widely applicable for studying other rhythmic neural circuits.

  6. Cercal sensory system and giant interneurons in Gryllodes sigillatus.

    PubMed

    Kanou, Masamichi; Nawae, Miyuki; Kuroishi, Hiroyuki

    2006-04-01

    The external morphologies of two cricket species, Gryllodes sigillatus and Gryllus bimaculatus, were investigated. Despite its small body length, G. sigillatus possessed longer cerci and longer cercal filiform hairs than G. bimaculatus. The estimated number of filiform hairs on a cercus was also larger in G. sigillatus than in G. bimaculatus. Wind-sensitive interneurons receiving sensory inputs from cercal filiform hairs and running in the ventral nerve cord (VNC) were investigated in G. sigillatus both morphologically and physiologically. By intracellular staining, these interneurons were proved to be morphologically homologous with previously identified giant interneurons (GIs 8-1, 9-1, 9-2, 9-3, 10-2, and 10-3) in G. bimaculatus and Acheta domesticus. In G. sigillatus, the intensity-response relationship (I-R curve) for each GI was investigated using a unidirectional air current stimulus. The stimulus was applied from 12 different directions, and an I-R curve was obtained for each stimulus direction. Each GI showed a characteristic I-R curve depending on stimulus direction. The directionality curve expressed in terms of threshold velocity showed that each GI had a distinctive directional characteristic. The functional properties of GIs in G. sigillatus, such as I-R curve, threshold velocity, and directional characteristics, were compared with those of homologous GIs in G. bimaculatus in Discussion.

  7. ROS and trehalose regulate sclerotial development in Rhizoctonia solani AG-1 IA.

    PubMed

    Wang, Chenjiaozi; Pi, Lei; Jiang, Shaofeng; Yang, Mei; Shu, Canwei; Zhou, Erxun

    2018-05-01

    Rhizoctonia solani AG-1 IA is the causal agent of rice sheath blight (RSB) and causes severe economic losses in rice-growing regions around the world. The sclerotia play an important role in the disease cycle of RSB. In this study, we report the effects of reactive oxygen species (ROS) and trehalose on the sclerotial development of R. solani AG-1 IA. Correlation was found between the level of ROS in R. solani AG-1 IA and sclerotial development. Moreover, we have shown the change of ROS-related enzymatic activities and oxidative burst occurs at the sclerotial initial stage. Six genes related to the ROS scavenging system were quantified in different sclerotial development stages by using quantitative RT-PCR technique, thereby confirming differential gene expression. Fluorescence microscopy analysis of ROS content in mycelia revealed that ROS were predominantly produced at the hyphal branches during the sclerotial initial stage. Furthermore, exogenous trehalose had a significant inhibitory effect on the activities of ROS-related enzymes and oxidative burst and led to a reduction in sclerotial dry weight. Taken together, the findings suggest that ROS has a promoting effect on the development of sclerotia, whereas trehalose serves as an inhibiting factor to sclerotial development in R. solani AG-1 IA. Copyright © 2018 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  8. Complementary interactions between command-like interneurons that function to activate and specify motor programs.

    PubMed

    Wu, Jin-Sheng; Wang, Nan; Siniscalchi, Michael J; Perkins, Matthew H; Zheng, Yu-Tong; Yu, Wei; Chen, Song-an; Jia, Ruo-nan; Gu, Jia-Wei; Qian, Yi-Qing; Ye, Yang; Vilim, Ferdinand S; Cropper, Elizabeth C; Weiss, Klaudiusz R; Jing, Jian

    2014-05-07

    Motor activity is often initiated by a population of command-like interneurons. Command-like interneurons that reliably drive programs have received the most attention, so little is known about how less reliable command-like interneurons may contribute to program generation. We study two electrically coupled interneurons, cerebral-buccal interneuron-2 (CBI-2) and CBI-11, which activate feeding motor programs in the mollusk Aplysia californica. Earlier work indicated that, in rested preparations, CBI-2, a powerful activator of programs, can trigger ingestive and egestive programs. CBI-2 reliably generated ingestive patterns only when it was repeatedly stimulated. The ability of CBI-2 to trigger motor activity has been attributed to the two program-promoting peptides it contains, FCAP and CP2. Here, we show that CBI-11 differs from CBI-2 in that it contains FCAP but not CP2. Furthermore, it is weak in its ability to drive programs. On its own, CBI-11 is therefore less effective as a program activator. When it is successful, however, CBI-11 is an effective specifier of motor activity; that is, it drives mostly ingestive programs. Importantly, we found that CBI-2 and CBI-11 complement each other's actions. First, prestimulation of CBI-2 enhanced the ability of CBI-11 to drive programs. This effect appears to be partly mediated by CP2. Second, coactivation of CBI-11 with CBI-2 makes CBI-2 programs immediately ingestive. This effect may be mediated by specific actions that CBI-11 exerts on pattern-generating interneurons. Therefore, different classes of command-like neurons in a motor network may make distinct, but potentially complementary, contributions as either activators or specifiers of motor activity.

  9. Complementary Interactions between Command-Like Interneurons that Function to Activate and Specify Motor Programs

    PubMed Central

    Wu, Jin-Sheng; Wang, Nan; Siniscalchi, Michael J.; Perkins, Matthew H.; Zheng, Yu-Tong; Yu, Wei; Chen, Song-an; Jia, Ruo-nan; Gu, Jia-Wei; Qian, Yi-Qing; Ye, Yang; Vilim, Ferdinand S.; Cropper, Elizabeth C.; Weiss, Klaudiusz R.

    2014-01-01

    Motor activity is often initiated by a population of command-like interneurons. Command-like interneurons that reliably drive programs have received the most attention, so little is known about how less reliable command-like interneurons may contribute to program generation. We study two electrically coupled interneurons, cerebral-buccal interneuron-2 (CBI-2) and CBI-11, which activate feeding motor programs in the mollusk Aplysia californica. Earlier work indicated that, in rested preparations, CBI-2, a powerful activator of programs, can trigger ingestive and egestive programs. CBI-2 reliably generated ingestive patterns only when it was repeatedly stimulated. The ability of CBI-2 to trigger motor activity has been attributed to the two program-promoting peptides it contains, FCAP and CP2. Here, we show that CBI-11 differs from CBI-2 in that it contains FCAP but not CP2. Furthermore, it is weak in its ability to drive programs. On its own, CBI-11 is therefore less effective as a program activator. When it is successful, however, CBI-11 is an effective specifier of motor activity; that is, it drives mostly ingestive programs. Importantly, we found that CBI-2 and CBI-11 complement each other's actions. First, prestimulation of CBI-2 enhanced the ability of CBI-11 to drive programs. This effect appears to be partly mediated by CP2. Second, coactivation of CBI-11 with CBI-2 makes CBI-2 programs immediately ingestive. This effect may be mediated by specific actions that CBI-11 exerts on pattern-generating interneurons. Therefore, different classes of command-like neurons in a motor network may make distinct, but potentially complementary, contributions as either activators or specifiers of motor activity. PMID:24806677

  10. Stimulus selectivity and response latency in putative inhibitory and excitatory neurons of the primate inferior temporal cortex

    PubMed Central

    Mruczek, Ryan E. B.

    2012-01-01

    The cerebral cortex is composed of many distinct classes of neurons. Numerous studies have demonstrated corresponding differences in neuronal properties across cell types, but these comparisons have largely been limited to conditions outside of awake, behaving animals. Thus the functional role of the various cell types is not well understood. Here, we investigate differences in the functional properties of two widespread and broad classes of cells in inferior temporal cortex of macaque monkeys: inhibitory interneurons and excitatory projection cells. Cells were classified as putative inhibitory or putative excitatory neurons on the basis of their extracellular waveform characteristics (e.g., spike duration). Consistent with previous intracellular recordings in cortical slices, putative inhibitory neurons had higher spontaneous firing rates and higher stimulus-evoked firing rates than putative excitatory neurons. Additionally, putative excitatory neurons were more susceptible to spike waveform adaptation following very short interspike intervals. Finally, we compared two functional properties of each neuron's stimulus-evoked response: stimulus selectivity and response latency. First, putative excitatory neurons showed stronger stimulus selectivity compared with putative inhibitory neurons. Second, putative inhibitory neurons had shorter response latencies compared with putative excitatory neurons. Selectivity differences were maintained and latency differences were enhanced during a visual search task emulating more natural viewing conditions. Our results suggest that short-latency inhibitory responses are likely to sculpt visual processing in excitatory neurons, yielding a sparser visual representation. PMID:22933717

  11. Disruption of Fgf13 causes synaptic excitatory-inhibitory imbalance and genetic epilepsy and febrile seizures plus.

    PubMed

    Puranam, Ram S; He, Xiao Ping; Yao, Lijun; Le, Tri; Jang, Wonjo; Rehder, Catherine W; Lewis, Darrell V; McNamara, James O

    2015-06-10

    We identified a family in which a translocation between chromosomes X and 14 was associated with cognitive impairment and a complex genetic disorder termed "Genetic Epilepsy and Febrile Seizures Plus" (GEFS(+)). We demonstrate that the breakpoint on the X chromosome disrupted a gene that encodes an auxiliary protein of voltage-gated Na(+) channels, fibroblast growth factor 13 (Fgf13). Female mice in which one Fgf13 allele was deleted exhibited hyperthermia-induced seizures and epilepsy. Anatomic studies revealed expression of Fgf13 mRNA in both excitatory and inhibitory neurons of hippocampus. Electrophysiological recordings revealed decreased inhibitory and increased excitatory synaptic inputs in hippocampal neurons of Fgf13 mutants. We speculate that reduced expression of Fgf13 impairs excitability of inhibitory interneurons, resulting in enhanced excitability within local circuits of hippocampus and the clinical phenotype of epilepsy. These findings reveal a novel cause of this syndrome and underscore the powerful role of FGF13 in control of neuronal excitability. Copyright © 2015 the authors 0270-6474/15/358866-16$15.00/0.

  12. Genetic Reduction of Matrix Metalloproteinase-9 Promotes Formation of Perineuronal Nets Around Parvalbumin-Expressing Interneurons and Normalizes Auditory Cortex Responses in Developing Fmr1 Knock-Out Mice.

    PubMed

    Wen, Teresa H; Afroz, Sonia; Reinhard, Sarah M; Palacios, Arnold R; Tapia, Kendal; Binder, Devin K; Razak, Khaleel A; Ethell, Iryna M

    2017-10-13

    Abnormal sensory responses associated with Fragile X Syndrome (FXS) and autism spectrum disorders include hypersensitivity and impaired habituation to repeated stimuli. Similar sensory deficits are also observed in adult Fmr1 knock-out (KO) mice and are reversed by genetic deletion of Matrix Metalloproteinase-9 (MMP-9) through yet unknown mechanisms. Here we present new evidence that impaired development of parvalbumin (PV)-expressing inhibitory interneurons may underlie hyper-responsiveness in auditory cortex of Fmr1 KO mice via MMP-9-dependent regulation of perineuronal nets (PNNs). First, we found that PV cell development and PNN formation around GABAergic interneurons were impaired in developing auditory cortex of Fmr1 KO mice. Second, MMP-9 levels were elevated in P12-P18 auditory cortex of Fmr1 KO mice and genetic reduction of MMP-9 to WT levels restored the formation of PNNs around PV cells. Third, in vivo single-unit recordings from auditory cortex neurons showed enhanced spontaneous and sound-driven responses in developing Fmr1 KO mice, which were normalized following genetic reduction of MMP-9. These findings indicate that elevated MMP-9 levels contribute to the development of sensory hypersensitivity by influencing formation of PNNs around PV interneurons suggesting MMP-9 as a new therapeutic target to reduce sensory deficits in FXS and potentially other autism spectrum disorders. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Inhibition of striatal cholinergic interneuron activity by the Kv7 opener retigabine and the nonsteroidal anti-inflammatory drug diclofenac.

    PubMed

    Paz, Rodrigo Manuel; Tubert, Cecilia; Stahl, Agostina; Díaz, Analía López; Etchenique, Roberto; Murer, Mario Gustavo; Rela, Lorena

    2018-05-11

    Striatal cholinergic interneurons provide modulation to striatal circuits involved in voluntary motor control and goal-directed behaviors through their autonomous tonic discharge and their firing "pause" responses to novel and rewarding environmental events. Striatal cholinergic interneuron hyperactivity was linked to the motor deficits associated with Parkinson's disease and the adverse effects of chronic antiparkinsonian therapy like l-DOPA-induced dyskinesia. Here we addressed whether Kv7 channels, which provide negative feedback to excitation in other neuron types, are involved in the control of striatal cholinergic interneuron tonic activity and response to excitatory inputs. We found that autonomous firing of striatal cholinergic interneurons is not regulated by Kv7 channels. In contrast, Kv7 channels limit the summation of excitatory postsynaptic potentials in cholinergic interneurons through a postsynaptic mechanism. Striatal cholinergic interneurons have a high reserve of Kv7 channels, as their opening using pharmacological tools completely silenced the tonic firing and markedly reduced their intrinsic excitability. A strong inhibition of striatal cholinergic interneurons was also observed in response to the anti-inflammatory drugs diclofenac and meclofenamic acid, however, this effect was independent of Kv7 channels. These data bring attention to new potential molecular targets and pharmacological tools to control striatal cholinergic interneuron activity in pathological conditions where they are believed to be hyperactive, including Parkinson's disease. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Excitatory Effects of Parvalbumin-Expressing Interneurons Maintain Hippocampal Epileptiform Activity via Synchronous Afterdischarges

    PubMed Central

    Ellender, Tommas J.; Raimondo, Joseph V.; Irkle, Agnese; Lamsa, Karri P.

    2014-01-01

    Epileptic seizures are characterized by periods of hypersynchronous, hyperexcitability within brain networks. Most seizures involve two stages: an initial tonic phase, followed by a longer clonic phase that is characterized by rhythmic bouts of synchronized network activity called afterdischarges (ADs). Here we investigate the cellular and network mechanisms underlying hippocampal ADs in an effort to understand how they maintain seizure activity. Using in vitro hippocampal slice models from rats and mice, we performed electrophysiological recordings from CA3 pyramidal neurons to monitor network activity and changes in GABAergic signaling during epileptiform activity. First, we show that the highest synchrony occurs during clonic ADs, consistent with the idea that specific circuit dynamics underlie this phase of the epileptiform activity. We then show that ADs require intact GABAergic synaptic transmission, which becomes excitatory as a result of a transient collapse in the chloride (Cl−) reversal potential. The depolarizing effects of GABA are strongest at the soma of pyramidal neurons, which implicates somatic-targeting interneurons in AD activity. To test this, we used optogenetic techniques to selectively control the activity of somatic-targeting parvalbumin-expressing (PV+) interneurons. Channelrhodopsin-2-mediated activation of PV+ interneurons during the clonic phase generated excitatory GABAergic responses in pyramidal neurons, which were sufficient to elicit and entrain synchronous AD activity across the network. Finally, archaerhodopsin-mediated selective silencing of PV+ interneurons reduced the occurrence of ADs during the clonic phase. Therefore, we propose that activity-dependent Cl− accumulation subverts the actions of PV+ interneurons to perpetuate rather than terminate pathological network hyperexcitability during the clonic phase of seizures. PMID:25392490

  15. Computational Model of a Positive BDNF Feedback Loop in Hippocampal Neurons Following Inhibitory Avoidance Training

    ERIC Educational Resources Information Center

    Zhang, Yili; Smolen, Paul; Alberini, Cristina M.; Baxter, Douglas A.; Byrne, John H.

    2016-01-01

    Inhibitory avoidance (IA) training in rodents initiates a molecular cascade within hippocampal neurons. This cascade contributes to the transition of short- to long-term memory (i.e., consolidation). Here, a differential equation-based model was developed to describe a positive feedback loop within this molecular cascade. The feedback loop begins…

  16. Post-Inhibitory Rebound Spikes in Rat Medial Entorhinal Layer II/III Principal Cells: In Vivo, In Vitro, and Computational Modeling Characterization

    PubMed Central

    Ferrante, Michele; Shay, Christopher F.; Tsuno, Yusuke; William Chapman, G.; Hasselmo, Michael E.

    2017-01-01

    Abstract Medial entorhinal cortex Layer-II stellate cells (mEC-LII-SCs) primarily interact via inhibitory interneurons. This suggests the presence of alternative mechanisms other than excitatory synaptic inputs for triggering action potentials (APs) in stellate cells during spatial navigation. Our intracellular recordings show that the hyperpolarization-activated cation current (Ih) allows post-inhibitory-rebound spikes (PIRS) in mEC-LII-SCs. In vivo, strong inhibitory-post-synaptic potentials immediately preceded most APs shortening their delay and enhancing excitability. In vitro experiments showed that inhibition initiated spikes more effectively than excitation and that more dorsal mEC-LII-SCs produced faster and more synchronous spikes. In contrast, PIRS in Layer-II/III pyramidal cells were harder to evoke, voltage-independent, and slower in dorsal mEC. In computational simulations, mEC-LII-SCs morphology and Ih homeostatically regulated the dorso-ventral differences in PIRS timing and most dendrites generated PIRS with a narrow range of stimulus amplitudes. These results suggest inhibitory inputs could mediate the emergence of grid cell firing in a neuronal network. PMID:26965902

  17. Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit

    PubMed Central

    Bezaire, Marianne J; Raikov, Ivan; Burk, Kelly; Vyas, Dhrumil; Soltesz, Ivan

    2016-01-01

    The hippocampal theta rhythm plays important roles in information processing; however, the mechanisms of its generation are not well understood. We developed a data-driven, supercomputer-based, full-scale (1:1) model of the rodent CA1 area and studied its interneurons during theta oscillations. Theta rhythm with phase-locked gamma oscillations and phase-preferential discharges of distinct interneuronal types spontaneously emerged from the isolated CA1 circuit without rhythmic inputs. Perturbation experiments identified parvalbumin-expressing interneurons and neurogliaform cells, as well as interneuronal diversity itself, as important factors in theta generation. These simulations reveal new insights into the spatiotemporal organization of the CA1 circuit during theta oscillations. DOI: http://dx.doi.org/10.7554/eLife.18566.001 PMID:28009257

  18. Rare ginsenoside Ia synthesized from F1 by cloning and overexpression of the UDP-glycosyltransferase gene from Bacillus subtilis: synthesis, characterization, and in vitro melanogenesis inhibition activity in BL6B16 cells.

    PubMed

    Wang, Dan-Dan; Jin, Yan; Wang, Chao; Kim, Yeon-Ju; Perez, Zuly Elizabeth Jimenez; Baek, Nam In; Mathiyalagan, Ramya; Markus, Josua; Yang, Deok-Chun

    2018-01-01

    Ginsenoside F1 has been described to possess skin-whitening effects on humans. We aimed to synthesize a new ginsenoside derivative from F1 and investigate its cytotoxicity and melanogenesis inhibitory activity in B16BL6 cells using recombinant glycosyltransferase enzyme. Glycosylation has the advantage of synthesizing rare chemical compounds from common compounds with great ease. UDP-glycosyltransferase (BSGT1) gene from Bacillus subtilis was selected for cloning. The recombinant glycosyltransferase enzyme was purified, characterized, and utilized to enzymatically transform F1 into its derivative. The new product was characterized by NMR techniques and evaluated by MTT, melanin count, and tyrosinase inhibition assay. The new derivative was identified as (20 S )-3 β ,6 α ,12 β ,20-tetrahydroxydammar-24-ene-20- O - β -D-glucopyranosyl-3- O - β -D-glucopyranoside (ginsenoside Ia), which possesses an additional glucose linked into the C-3 position of substrate F1. Ia had been previously reported; however, no in vitro biological activity was further examined. This study focused on the mass production of arduous ginsenoside Ia from accessible F1 and its inhibitory effect of melanogenesis in B16BL6 cells. Ia showed greater inhibition of melanin and tyrosinase at 100 μmol/L than F1 and arbutin. These results suggested that Ia decreased cellular melanin synthesis in B16BL6 cells through downregulation of tyrosinase activity. To our knowledge, this is the first study to report on the mass production of rare ginsenoside Ia from F1 using recombinant UDP-glycosyltransferase isolated from B. subtillis and its superior melanogenesis inhibitory activity in B16BL6 cells as compared to its precursor. In brief, ginsenoside Ia can be applied for further study in cosmetics.

  19. Expression of β1- and β2-adrenoceptors in different subtypes of interneurons in the medial prefrontal cortex of mice.

    PubMed

    Liu, Y; Liang, X; Ren, W-W; Li, B-M

    2014-01-17

    Noradrenaline acting via β-adrenoceptors (β-ARs) in the CNS plays an important role in learning/memory and cognitive functions. β-ARs have been shown to be expressed in cortical pyramidal and subcortical principal cells. However, little is known about β-AR expression in different subtypes of GABAergic neurons. Here, we report that both β1- and β2-ARs are expressed in a majority of GABAergic interneurons in the medial prefrontal cortex of mice, including parvalbumin (PV)-, calretinin (CR)-, calbindin D-28k (CB)-, somatostatin (SST)- and Reelin-immunoreactive (ir) interneurons. Relative to PV-, CB-, SST- and Reelin-ir interneurons, CR-ir interneurons are less likely to express β1- and β2-ARs. SST-ir interneurons are more likely to express β2-AR compared with the other subtypes of interneurons. The present results are of significance for understanding the role of β-ARs in prefrontal cortical functions. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Perinatal phencyclidine administration decreases the density of cortical interneurons and increases the expression of neuregulin-1.

    PubMed

    Radonjić, Nevena V; Jakovcevski, Igor; Bumbaširević, Vladimir; Petronijević, Nataša D

    2013-06-01

    Perinatal phencyclidine (PCP) administration in rat blocks the N-methyl D-aspartate receptor (NMDAR) and causes symptoms reminiscent of schizophrenia in human. A growing body of evidence suggests that alterations in γ-aminobutyric acid (GABA) interneuron neurotransmission may be associated with schizophrenia. Neuregulin-1 (NRG-1) is a trophic factor important for neurodevelopment, synaptic plasticity, and wiring of GABA circuits. The aim of this study was to determine the long-term effects of perinatal PCP administration on the projection and local circuit neurons and NRG-1 expression in the cortex and hippocampus. Rats were treated on postnatal day 2 (P2), P6, P9, and P12 with either PCP (10 mg/kg) or saline. Morphological studies and determination of NRG-1 expression were performed at P70. We demonstrate reduced densities of principal neurons in the CA3 and dentate gyrus (DG) subregions of the hippocampus and a reduction of major interneuronal populations in all cortical and hippocampal regions studied in PCP-treated rats compared with controls. For the first time, we show the reduced density of reelin- and somatostatin-positive cells in the cortex and hippocampus of animals perinatally treated with PCP. Furthermore, an increase in the numbers of perisomatic inhibitory terminals around the principal cells was observed in the motor cortex and DG. We also show that perinatal PCP administration leads to an increased NRG-1 expression in the cortex and hippocampus. Taken together, our findings demonstrate that perinatal PCP administration increases NRG-1 expression and reduces the number of projecting and local circuit neurons, revealing complex consequences of NMDAR blockade.

  1. Role of ionotropic glutamate receptors in LTP in rat hippocampal CA1 oriens-lacunosum moleculare interneurons

    PubMed Central

    Oren, Iris; Nissen, Wiebke; Kullmann, Dimitri M.; Somogyi, Peter; Lamsa, Karri P.

    2009-01-01

    Some interneurons of the hippocampus exhibit NMDA receptor-independent long-term potentiation (LTP) that is induced by presynaptic glutamate release when the postsynaptic membrane potential is hyperpolarized. This ‘anti-Hebbian’ form of LTP is prevented by postsynaptic depolarization or by blocking AMPA and kainate receptors. Although both AMPA and kainate receptors are expressed in hippocampal interneurons, their relative roles in anti-Hebbian LTP are not known. Because interneuron diversity potentially conceals simple rules underlying different forms of plasticity, we focus on glutamatergic synapses onto a subset of interneurons with dendrites in stratum oriens and a main ascending axon that projects to stratum lacunosum-moleculare, the O-LM cells. We show that anti-Hebbian LTP in O-LM interneurons has consistent induction and expression properties, and is prevented by selective inhibition of AMPA receptors. The majority of the ionotropic glutamatergic synaptic current in these cells is mediated by inwardly rectifying Ca2+ -permeable AMPA receptors. Although GluR5-containing kainate receptors contribute to synaptic currents at high stimulus frequency, they are not required for LTP induction. Glutamatergic synapses on O-LM cells thus behave in a homogeneous manner, and exhibit LTP dependent on Ca2+-permeable AMPA receptors. PMID:19176803

  2. Molecules and mechanisms involved in the generation and migration of cortical interneurons

    PubMed Central

    Hernández-Miranda, Luis R; Parnavelas, John G; Chiara, Francesca

    2010-01-01

    The GABA (γ-aminobutyric acid)-containing interneurons of the neocortex are largely derived from the ganglionic eminences in the subpallium. Numerous studies have previously defined the migratory paths travelled by these neurons from their origins to their destinations in the cortex. We review here results of studies that have identified many of the genes expressed in the subpallium that are involved in the specification of the subtypes of cortical interneurons, and the numerous transcription factors, motogenic factors and guidance molecules that are involved in their migration. PMID:20360946

  3. Evolution of a new sense for wind in flying phasmids? Afferents and interneurons

    NASA Astrophysics Data System (ADS)

    Hustert, Reinhold; Klug, Rebecca

    2009-12-01

    The evolution of winged stick insects (phasmids) from secondarily wingless ancestors was proposed in recent studies. We explored the cuticle of flying phasmids for wind sensors that could be involved in their flight control, comparable to those known for locusts. Surprisingly, wind-sensitive hairs (wsH) occur on the palps of mouthparts and on the antennae of the winged phasmid Sipyloidea sipylus which can fly in tethered position only when air currents blow over the mouthparts. The present study describes the morphology and major functional properties of these “new” wsH with soft and bulging hair bases which are different from the beaker-like hair bases of the wsH on the cerci of phasmids and the wsH described in other insects. The most sensitive wsH of antennae and palps respond with phasic-tonic afferents to air currents exceeding 0.2 ms-1. The fields of wsH on one side of the animal respond mainly to ventral, lateral, and frontal wind on the ipsilateral side of the head. Afferent inputs from the wsH converge but also diverge to a group of specific interneurons at their branches in the suboesophageal ganglion and can send their integrated input from wsH fields of the palps and antennae to the thoracic central nervous system. Response types of individual wsH-interneurons are either phasic or phasic-tonic to air puffs or constant air currents and also, the receptive fields of individual interneurons differ. We conclude that the “new” wsH system and its interneurons mainly serve to maintain flight activity in airborne phasmids and also, the “new” wsH must have emerged together with the integrating interneurons during the evolution from wingless to the recent winged forms of phasmids.

  4. The Role of Endocannabinoid Signaling in Cortical Inhibitory Neuron Dysfunction in Schizophrenia

    PubMed Central

    Volk, David W.; Lewis, David A.

    2015-01-01

    Cannabis use has been reported to increase the risk of developing schizophrenia and to worsen symptoms of the illness. Both of these outcomes might be attributable to the disruption by cannabis of the endogenous cannabinoid system's spatiotemporal regulation of the inhibitory circuitry in the prefrontal cortex that is essential for core cognitive processes, such as working memory, which are impaired in schizophrenia. In the healthy brain, the endocannabinoid 2-arachidonylglycerol (2-AG) is 1) synthesized by diacylglycerol lipase in pyramidal neurons; 2) travels retrogradely to nearby inhibitory axon terminals that express the primary cannabinoid receptor CB1R; 3) binds to CB1R which inhibits GABA release from the cholecystokinin-containing population of interneurons; and 4) is metabolized by either monoglyceride lipase, which is located in the inhibitory axon terminal, or by α-β-hydrolase domain 6, which is co-localized presynaptically with diacylglycerol lipase. Investigations of the endogenous cannabinoid system in the prefrontal cortex of subjects with schizophrenia have found evidence of higher metabolism of 2-AG, as well as both greater CB1R receptor binding and lower levels of CB1R mRNA and protein. Current views on the potential pathogenesis of these alterations, including disturbances in the development of the endogenous cannabinoid system, are discussed. In addition, how interactions between these alterations in the endocannabinoid system and those in other inhibitory neurons in the prefrontal cortex in subjects with schizophrenia might increase the liability to adverse outcomes with cannabis use is considered. PMID:26210060

  5. Amnesia of inhibitory avoidance by scopolamine is overcome by previous open-field exposure

    PubMed Central

    Colettis, Natalia C.; Snitcofsky, Marina; Kornisiuk, Edgar E.; Gonzalez, Emilio N.; Quillfeldt, Jorge A.

    2014-01-01

    The muscarinic cholinergic receptor (MAChR) blockade with scopolamine either extended or restricted to the hippocampus, before or after training in inhibitory avoidance (IA) caused anterograde or retrograde amnesia, respectively, in the rat, because there was no long-term memory (LTM) expression. Adult Wistar rats previously exposed to one or two open-field (OF) sessions of 3 min each (habituated), behaved as control animals after a weak though over-threshold training in IA. However, after OF exposure, IA LTM was formed and expressed in spite of an extensive or restricted to the hippocampus MAChR blockade. It was reported that during and after OF exposure and reexposure there was an increase in both hippocampal and cortical ACh release that would contribute to “prime the substrate,” e.g., by lowering the synaptic threshold for plasticity, leading to LTM consolidation. In the frame of the “synaptic tagging and capture” hypothesis, plasticity-related proteins synthesized during/after the previous OF could facilitate synaptic plasticity for IA in the same structure. However, IA anterograde amnesia by hippocampal protein synthesis inhibition with anisomycin was also prevented by two OF exposures, strongly suggesting that there would be alternative interpretations for the role of protein synthesis in memory formation and that another structure could also be involved in this “OF effect.” PMID:25322799

  6. Adult Olfactory Bulb Interneuron Phenotypes Identified by Targeting Embryonic and Postnatal Neural Progenitors

    PubMed Central

    Figueres-Oñate, Maria; López-Mascaraque, Laura

    2016-01-01

    Neurons are generated during embryonic development and in adulthood, although adult neurogenesis is restricted to two main brain regions, the hippocampus and olfactory bulb. The subventricular zone (SVZ) of the lateral ventricles generates neural stem/progenitor cells that continually provide the olfactory bulb (OB) with new granule or periglomerular neurons, cells that arrive from the SVZ via the rostral migratory stream. The continued neurogenesis and the adequate integration of these newly generated interneurons is essential to maintain homeostasis in the olfactory bulb, where the differentiation of these cells into specific neural cell types is strongly influenced by temporal cues. Therefore, identifying the critical features that control the generation of adult OB interneurons at either pre- or post-natal stages is important to understand the dynamic contribution of neural stem cells. Here, we used in utero and neonatal SVZ electroporation along with a transposase-mediated stable integration plasmid, in order to track interneurons and glial lineages in the OB. These plasmids are valuable tools to study the development of OB interneurons from embryonic and post-natal SVZ progenitors. Accordingly, we examined the location and identity of the adult progeny of embryonic and post-natally transfected progenitors by examining neurochemical markers in the adult OB. These data reveal the different cell types in the olfactory bulb that are generated in function of age and different electroporation conditions. PMID:27242400

  7. Functional characterization of dI6 interneurons in the neonatal mouse spinal cord.

    PubMed

    Dyck, Jason; Lanuza, Guillermo M; Gosgnach, Simon

    2012-06-01

    Our understanding of the neural control of locomotion has been greatly enhanced by the ability to identify and manipulate genetically defined populations of interneurons that comprise the locomotor central pattern generator (CPG). To date, the dI6 interneurons are one of the few populations that settle in the ventral region of the postnatal spinal cord that have not been investigated. In the present study, we utilized a novel transgenic mouse line to electrophysiologically characterize dI6 interneurons located close to the central canal and study their function during fictive locomotion. The majority of dI6 cells investigated were found to be rhythmically active during fictive locomotion and could be divided into two electrophysiologically distinct populations of interneurons. The first population fired rhythmic trains of action potentials that were loosely coupled to ventral root output and contained several intrinsic membrane properties of rhythm-generating neurons, raising the possibility that these cells may be involved in the generation of rhythmic activity in the locomotor CPG. The second population fired rhythmic trains of action potentials that were tightly coupled to ventral root output and lacked intrinsic oscillatory mechanisms, indicating that these neurons may be driven by a rhythm-generating network. Together these results indicate that dI6 neurons comprise an important component of the locomotor CPG that participate in multiple facets of motor behavior.

  8. Functional characterization of dI6 interneurons in the neonatal mouse spinal cord

    PubMed Central

    Dyck, Jason; Lanuza, Guillermo M.

    2012-01-01

    Our understanding of the neural control of locomotion has been greatly enhanced by the ability to identify and manipulate genetically defined populations of interneurons that comprise the locomotor central pattern generator (CPG). To date, the dI6 interneurons are one of the few populations that settle in the ventral region of the postnatal spinal cord that have not been investigated. In the present study, we utilized a novel transgenic mouse line to electrophysiologically characterize dI6 interneurons located close to the central canal and study their function during fictive locomotion. The majority of dI6 cells investigated were found to be rhythmically active during fictive locomotion and could be divided into two electrophysiologically distinct populations of interneurons. The first population fired rhythmic trains of action potentials that were loosely coupled to ventral root output and contained several intrinsic membrane properties of rhythm-generating neurons, raising the possibility that these cells may be involved in the generation of rhythmic activity in the locomotor CPG. The second population fired rhythmic trains of action potentials that were tightly coupled to ventral root output and lacked intrinsic oscillatory mechanisms, indicating that these neurons may be driven by a rhythm-generating network. Together these results indicate that dI6 neurons comprise an important component of the locomotor CPG that participate in multiple facets of motor behavior. PMID:22442567

  9. The hybrid modulatory/pattern generating N1L interneuron in the buccal feeding system of Lymnaea is cholinergic.

    PubMed

    Vehovszky, A; Elliott, C J

    1995-01-01

    This study examines neurotransmission between identified buccal interneurons in the feeding system of the snail Lymnaea stagnalis. We compare the pharmacology of the individual synaptic connections from a hybrid modulatory/pattern generating interneuron (N1L) to a pattern generating interneuron (N1M) with that from a modulatory interneuron (SO) to the same follower cell (N1M). The pharmacological properties of the N1L to N1M and the SO to N1M connections closely resemble each other. Both interneurons produce fast cholinergic EPSPs as judged by the blocking effects of cholinergic antagonists hexamethonium, d-tubocurarine and the cholinergic neurotoxin AF-64A. A slower, more complex but non-cholinergic component of the synaptic response is also present after stimulating either the presynaptic N1L or SO interneurons. This second component of the postsynaptic response is not dopaminergic, on the basis of its persistence in the presence of dopaminergic antagonists ergometrine and fluphenazine and the dopaminergic neurotoxin MPP+. We conclude that, although there has been an evolutionary divergence in function, the modulatory SO and the hybrid modulatory/pattern generating N1L are pharmacologically similar. Neither of them contributes directly to dopaminergic modulation of the feeding activity. These neurons also resemble the N1M protraction phase pattern generating neurons which are cholinergic (Elliott and Kemenes, 1992).

  10. Expression characteristics of BMP2, BMPR-IA and Noggin in different stages of hair follicle in yak skin.

    PubMed

    Song, Liang-Li; Cui, Yan; Yu, Si-Jiu; Liu, Peng-Gang; Liu, Jun; Yang, Xue; He, Jun-Feng; Zhang, Qian

    2018-05-01

    Bone morphogenetic protein 2 (BMP2), BMP receptor-IA (BMPR-IA), and the BMP2 antagonist Noggin are important proteins involved in regulating the hair follicle (HF) cycle in skin. In order to explore the expression profiles of BMP2, BMPR-IA, and Noggin in the HF cycle of yak skin, we collected adult yak skin in the telogen, proanagen, and midanagen phases of HFs and evaluated gene and protein expression by real-time quantitative polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemistry. qRT-PCR and western blotting results showed that BMP2 and BMPR-IA expression levels were highest in the telogen of HFs and higher than that of Noggin in the same phase. The expression of Noggin was significantly higher in proanagen and midanagen phases of HFs than in the telogen phase, with the highest expression observed in the proanagen phase. Moreover, the expression of Noggin in the proanagen phase was significantly higher than those of BMP2 and BMPR-IA during the same phase. Immunohistochemistry results showed that BMP2, BMPR-IA, and Noggin were expressed in the skin epidermis, sweat glands, sebaceous glands, HF outer root sheath, and hair matrix. In summary, the characteristic expression profiles of BMP2, BMPR-IA, and Noggin suggested that BMP2 and BMPR-IA had inhibitory effects on the growth of HFs in yaks, whereas Noggin promoted the growth of yak HFs, mainly by affecting skin epithelial cell activity. These results provide a basis for further studies of HF development and cycle transition in yak skin. Copyright © 2017. Published by Elsevier Inc.

  11. Type Ia Supernova Cosmology

    NASA Astrophysics Data System (ADS)

    Leibundgut, B.; Sullivan, M.

    2018-03-01

    The primary agent for Type Ia supernova cosmology is the uniformity of their appearance. We present the current status, achievements and uncertainties. The Hubble constant and the expansion history of the universe are key measurements provided by Type Ia supernovae. They were also instrumental in showing time dilation, which is a direct observational signature of expansion. Connections to explosion physics are made in the context of potential improvements of the quality of Type Ia supernovae as distance indicators. The coming years will see large efforts to use Type Ia supernovae to characterise dark energy.

  12. Differentiation of V2a interneurons from human pluripotent stem cells

    PubMed Central

    Butts, Jessica C.; McCreedy, Dylan A.; Martinez-Vargas, Jorge Alexis; Mendoza-Camacho, Frederico N.; Hookway, Tracy A.; Gifford, Casey A.; Taneja, Praveen; Noble-Haeusslein, Linda; McDevitt, Todd C.

    2017-01-01

    The spinal cord consists of multiple neuronal cell types that are critical to motor control and arise from distinct progenitor domains in the developing neural tube. Excitatory V2a interneurons in particular are an integral component of central pattern generators that control respiration and locomotion; however, the lack of a robust source of human V2a interneurons limits the ability to molecularly profile these cells and examine their therapeutic potential to treat spinal cord injury (SCI). Here, we report the directed differentiation of CHX10+ V2a interneurons from human pluripotent stem cells (hPSCs). Signaling pathways (retinoic acid, sonic hedgehog, and Notch) that pattern the neural tube were sequentially perturbed to identify an optimized combination of small molecules that yielded ∼25% CHX10+ cells in four hPSC lines. Differentiated cultures expressed much higher levels of V2a phenotypic markers (CHX10 and SOX14) than other neural lineage markers. Over time, CHX10+ cells expressed neuronal markers [neurofilament, NeuN, and vesicular glutamate transporter 2 (VGlut2)], and cultures exhibited increased action potential frequency. Single-cell RNAseq analysis confirmed CHX10+ cells within the differentiated population, which consisted primarily of neurons with some glial and neural progenitor cells. At 2 wk after transplantation into the spinal cord of mice, hPSC-derived V2a cultures survived at the site of injection, coexpressed NeuN and VGlut2, extended neurites >5 mm, and formed putative synapses with host neurons. These results provide a description of V2a interneurons differentiated from hPSCs that may be used to model central nervous system development and serve as a potential cell therapy for SCI. PMID:28438991

  13. Parvalbumin Interneurons of Central Amygdala Regulate the Negative Affective States and the Expression of Corticotrophin-Releasing Hormone During Morphine Withdrawal

    PubMed Central

    Wang, Li; Shen, Minjie; Jiang, Changyou

    2016-01-01

    Background: The central nucleus of the amygdala (CeA) is a crucial component of the neuronal circuitry mediating aversive emotion. Its role in the negative affective states during drug withdrawal includes changes in opioidergic, GABAergic, and corticotropin-releasing factor neurotransmission. However, the modulation of the neurobiological interconnectivity in the CeA and its effects in the negative reinforcement of drug dependents are poorly understood. Method: We performed electrophysiological recordings to assess the membrane excitability of parvalbumin (PV)+ interneurons in the CeA during chronic morphine withdrawal. We tested the morphine withdrawal–induced negative affective states, such as the aversive (assessed by conditioned place aversion), anxiety (assessed by elevated plus maze), and anhedonic-like (assessed by saccharin preference test) behaviors, as well as the mRNA level of corticotropin-releasing hormone (CRH) via optogenetic inhibition or activation of PV+ interneurons in the CeA. Result: Chronic morphine withdrawal increased the firing rate of CeA PV+ interneurons. Optogenetic inhibition of the activity of CeA PV+ interneurons attenuated the morphine withdrawal–induced negative affective states, such as the aversive, anxiety, and anhedonic-like behaviors, while direct activation of CeA PV+ interneurons could trigger those negative affective-like behaviors. Optogenetic inhibition of the CeA PV+ interneurons during the morphine withdrawal significantly attenuated the elevated CRH mRNA level in the CeA. Conclusion: The activity of PV+ interneurons in the CeA was up-regulated during chronic morphine withdrawal. The activation of PV+ interneurons during morphine withdrawal was crucial for the induction of the negative emotion and the up-regulation of CRH mRNA levels in the CeA. PMID:27385383

  14. Type IA Supernovae

    NASA Technical Reports Server (NTRS)

    Wheeler, J. Craig

    1992-01-01

    Spectral calculations show that a model based on the thermonuclear explosion of a degenerate carbon/oxygen white dwarf provides excellent agreement with observations of Type Ia supernovae. Identification of suitable evolutionary progenitors remains a severe problem. General problems with estimation of supernova rates are outlined and the origin of Type Ia supernovae from double degenerate systems are discussed in the context of new rates of explosion per H band luminosity, the lack of observed candidates, and the likely presence of H in the vicinity of some SN Ia events. Re-examination of the problems of triggering Type Ia by accretion of hydrogen from a companion shows that there may be an avenue involving cataclysmic variables, especially if extreme hibernation occurs. Novae may channel accreting white dwarfs to a unique locus in accretion rate/mass space. Systems that undergo secular evolution to higher mass transfer rates could lead to just the conditions necessary for a Type Ia explosion. Tests involving fluorescence or absorption in a surrounding circumstellar medium and the detection of hydrogen stripped from a companion, which should appear at low velocity inside the white dwarf ejecta, are suggested. Possible observational confirmation of the former is described.

  15. Dlx1&2-Dependent Expression of Zfhx1b (Sip1, Zeb2) Regulates the Fate Switch Between Cortical and Striatal Interneurons

    PubMed Central

    McKinsey, Gabriel L.; Lindtner, Susan; Trzcinski, Brett; Visel, Axel; Pennacchio, Len A.; Huylebroeck, Danny; Higashi, Yujiro; Rubenstein, John L. R.

    2013-01-01

    Summary Mammalian pallial (cortical and hippocampal) and striatal interneurons are both generated in the embryonic subpallium, including the medial ganglionic eminence (MGE). Herein we demonstrate that the Zfhx1b (Sip1, Zeb2) zinc finger homeobox gene is required in the MGE, directly downstream of Dlx1&2, to generate cortical interneurons that express Cxcr7, MafB and cMaf. In its absence, Nkx2-1 expression is not repressed, and cells that ordinarily would become cortical interneurons appear to transform towards a subtype of GABAeric striatal interneurons. These results show that Zfhx1b is required to generate cortical interneurons, and suggest a mechanism for the epilepsy observed in humans with Zfhx1b mutations (Mowat-Wilson syndrome). PMID:23312518

  16. Expression of gastrin-releasing peptide by excitatory interneurons in the mouse superficial dorsal horn.

    PubMed

    Gutierrez-Mecinas, Maria; Watanabe, Masahiko; Todd, Andrew J

    2014-12-11

    Gastrin-releasing peptide (GRP) and its receptor have been shown to play an important role in the sensation of itch. However, although GRP immunoreactivity has been detected in the spinal dorsal horn, there is debate about whether this originates from primary afferents or local excitatory interneurons. We therefore examined the relation of GRP immunoreactivity to that seen with antibodies that label primary afferent or excitatory interneuron terminals. We tested the specificity of the GRP antibody by preincubating with peptides with which it could potentially cross-react. We also examined tissue from a mouse line in which enhanced green fluorescent protein (EGFP) is expressed under control of the GRP promoter. GRP immunoreactivity was seen in both primary afferent and non-primary glutamatergic axon terminals in the superficial dorsal horn. However, immunostaining was blocked by pre-incubation of the antibody with substance P, which is present at high levels in many nociceptive primary afferents. EGFP+ cells in the GRP-EGFP mouse did not express Pax2, and their axons contained the vesicular glutamate transporter 2 (VGLUT2), indicating that they are excitatory interneurons. In most cases, their axons were also GRP-immunoreactive. Multiple-labelling immunocytochemical studies indicated that these cells did not express either of the preprotachykinin peptides, and that they generally lacked protein kinase Cγ, which is expressed by a subset of the excitatory interneurons in this region. These results show that GRP is expressed by a distinct population of excitatory interneurons in laminae I-II that are likely to be involved in the itch pathway. They also suggest that the GRP immunoreactivity seen in primary afferents in previous studies may have resulted from cross-reaction of the GRP antibody with substance P or the closely related peptide neurokinin A.

  17. 75 FR 16067 - Designation for the Champaign, IL; Emmett, MI; Davenport, IA; Enid, OK; Keokuk, IA; Marshall, MI...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... the Champaign, IL; Emmett, MI; Davenport, IA; Enid, OK; Keokuk, IA; Marshall, MI; and Omaha, NE Areas... Iowa Davenport, IA (563-322-7149). 4/1/2010 3/31/2013 Additional Locations: Dubuque, IA; Muscatine, IA...: Catoosa, OK. Keokuk Keokuk, IA (319-524-6482). 4/1/2010 3/31/2013 Additional Location: Havana, IL...

  18. Defined types of cortical interneurone structure space and spike timing in the hippocampus

    PubMed Central

    Somogyi, Peter; Klausberger, Thomas

    2005-01-01

    The cerebral cortex encodes, stores and combines information about the internal and external environment in rhythmic activity of multiple frequency ranges. Neurones of the cortex can be defined, recognized and compared on the comprehensive application of the following measures: (i) brain area- and cell domain-specific distribution of input and output synapses, (ii) expression of molecules involved in cell signalling, (iii) membrane and synaptic properties reflecting the expression of membrane proteins, (iv) temporal structure of firing in vivo, resulting from (i)–(iii). Spatial and temporal measures of neurones in the network reflect an indivisible unity of evolutionary design, i.e. neurones do not have separate structure or function. The blueprint of this design is most easily accessible in the CA1 area of the hippocampus, where a relatively uniform population of pyramidal cells and their inputs follow an instantly recognizable laminated pattern and act within stereotyped network activity patterns. Reviewing the cell types and their spatio-temporal interactions, we suggest that CA1 pyramidal cells are supported by at least 16 distinct types of GABAergic neurone. During a given behaviour-contingent network oscillation, interneurones of a given type exhibit similar firing patterns. During different network oscillations representing two distinct brain states, interneurones of the same class show different firing patterns modulating their postsynaptic target-domain in a brain-state-dependent manner. These results suggest roles for specific interneurone types in structuring the activity of pyramidal cells via their respective target domains, and accurately timing and synchronizing pyramidal cell discharge, rather than providing generalized inhibition. Finally, interneurones belonging to different classes may fire preferentially at distinct time points during a given oscillation. As different interneurones innervate distinct domains of the pyramidal cells, the

  19. Amelioration of improper differentiation of somatostatin-positive interneurons by triiodothyronine in a growth-retarded hypothyroid mouse strain.

    PubMed

    Uchida, Katsuya; Taguchi, Yusuke; Sato, Chika; Miyazaki, Hidetaka; Kobayashi, Kenichi; Kobayashi, Tetsuya; Itoi, Keiichi

    2014-01-24

    Thyroid hormone (TH) plays an important role in brain development, and TH deficiency during pregnancy or early postnatal periods leads to neurological disorders such as cretinism. Hypothyroidism reduces the number of parvalbumin (PV)-positive interneurons in the neocortex and hippocampus. Here we used a mouse strain (growth-retarded; grt) that shows growth retardation and hypothyroidism to examine whether somatostatin (Sst)-positive interneurons that are generated from the same pool of neural progenitor cells as PV-positive cells are also altered by TH deficiency. The number of PV-positive interneurons was significantly decreased in the neocortex and hippocampus of grt mice as compared with normal control mice. In contrast to the decrease in the number of PV neurons, the number of Sst-positive interneurons in grt mice was increased in the stratum oriens of the hippocampus and the hilus of the dentate gyrus, although their number was unchanged in the neocortex. These changes were reversed by triiodothyronine administration from postnatal day (PD) 0 to 20. TH supplementation that was initiated after PD21 did not, however, affect the number of PV- or Sst-positive cells. These results suggest that during the first three postnatal weeks, TH may be critical for the generation of subpopulations of interneurons. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  20. Long-term plasticity in identified hippocampal GABAergic interneurons in the CA1 area in vivo.

    PubMed

    Lau, Petrina Yau-Pok; Katona, Linda; Saghy, Peter; Newton, Kathryn; Somogyi, Peter; Lamsa, Karri P

    2017-05-01

    Long-term plasticity is well documented in synapses between glutamatergic principal cells in the cortex both in vitro and in vivo. Long-term potentiation (LTP) and -depression (LTD) have also been reported in glutamatergic connections to hippocampal GABAergic interneurons expressing parvalbumin (PV+) or nitric oxide synthase (NOS+) in brain slices, but plasticity in these cells has not been tested in vivo. We investigated synaptically-evoked suprathreshold excitation of identified hippocampal neurons in the CA1 area of urethane-anaesthetized rats. Neurons were recorded extracellularly with glass microelectrodes, and labelled with neurobiotin for anatomical analyses. Single-shock electrical stimulation of afferents from the contralateral CA1 elicited postsynaptic action potentials with monosynaptic features showing short delay (9.95 ± 0.41 ms) and small jitter in 13 neurons through the commissural pathway. Theta-burst stimulation (TBS) generated LTP of the synaptically-evoked spike probability in pyramidal cells, and in a bistratified cell and two unidentified fast-spiking interneurons. On the contrary, PV+ basket cells and NOS+ ivy cells exhibited either LTD or LTP. An identified axo-axonic cell failed to show long-term change in its response to stimulation. Discharge of the cells did not explain whether LTP or LTD was generated. For the fast-spiking interneurons, as a group, no correlation was found between plasticity and local field potential oscillations (1-3 or 3-6 Hz components) recorded immediately prior to TBS. The results demonstrate activity-induced long-term plasticity in synaptic excitation of hippocampal PV+ and NOS+ interneurons in vivo. Physiological and pathological activity patterns in vivo may generate similar plasticity in these interneurons.

  1. Striatal fast-spiking interneurons selectively modulate circuit output and are required for habitual behavior

    PubMed Central

    O'Hare, Justin K; Li, Haofang; Kim, Namsoo; Gaidis, Erin; Ade, Kristen; Beck, Jeff; Yin, Henry

    2017-01-01

    Habit formation is a behavioral adaptation that automates routine actions. Habitual behavior correlates with broad reconfigurations of dorsolateral striatal (DLS) circuit properties that increase gain and shift pathway timing. The mechanism(s) for these circuit adaptations are unknown and could be responsible for habitual behavior. Here we find that a single class of interneuron, fast-spiking interneurons (FSIs), modulates all of these habit-predictive properties. Consistent with a role in habits, FSIs are more excitable in habitual mice compared to goal-directed and acute chemogenetic inhibition of FSIs in DLS prevents the expression of habitual lever pressing. In vivo recordings further reveal a previously unappreciated selective modulation of SPNs based on their firing patterns; FSIs inhibit most SPNs but paradoxically promote the activity of a subset displaying high fractions of gamma-frequency spiking. These results establish a microcircuit mechanism for habits and provide a new example of how interneurons mediate experience-dependent behavior. PMID:28871960

  2. Subunit-dependent postsynaptic expression of kainate receptors on hippocampal interneurons in area CA1

    PubMed Central

    Wondolowski, Joyce; Frerking, Matthew

    2009-01-01

    Kainate receptors (KARs) contribute to postsynaptic excitation in only a select subset of neurons. To define the parameters that specify the postsynaptic expression of KARs, we examined the contribution of KARs to EPSCs on hippocampal interneurons in area CA1. Interneurons in stratum radiatum/lacunosum-moleculare (SR/SLM) express KARs both with and without the GluR5 subunit, but KAR-mediated EPSCs are generated mainly, if not entirely, by GluR5-containing KARs. Extrasynaptic glutamate spillover profoundly recruits AMPARs with little effect on KARs, indicating that KARs are targeted at the synapse more precisely than AMPARs. However, spontaneous EPSCs with a conventional AMPAR component did not have a resolvable contribution of KARs, suggesting that the KARs that contribute to the evoked EPSCs are at a distinct set of synapses. GluR5-containing KARs on interneurons in stratum oriens do not contribute substantially to the EPSC. We conclude that KARs are localized to synapses by cell type-, synapse-, and subunit-selective mechanisms. PMID:19144856

  3. Physical exercise prevents stress-induced activation of granule neurons and enhances local inhibitory mechanisms in the dentate gyrus.

    PubMed

    Schoenfeld, Timothy J; Rada, Pedro; Pieruzzini, Pedro R; Hsueh, Brian; Gould, Elizabeth

    2013-05-01

    Physical exercise is known to reduce anxiety. The ventral hippocampus has been linked to anxiety regulation but the effects of running on this subregion of the hippocampus have been incompletely explored. Here, we investigated the effects of cold water stress on the hippocampus of sedentary and runner mice and found that while stress increases expression of the protein products of the immediate early genes c-fos and arc in new and mature granule neurons in sedentary mice, it has no such effect in runners. We further showed that running enhances local inhibitory mechanisms in the hippocampus, including increases in stress-induced activation of hippocampal interneurons, expression of vesicular GABA transporter (vGAT), and extracellular GABA release during cold water swim stress. Finally, blocking GABAA receptors in the ventral hippocampus, but not the dorsal hippocampus, with the antagonist bicuculline, reverses the anxiolytic effect of running. Together, these results suggest that running improves anxiety regulation by engaging local inhibitory mechanisms in the ventral hippocampus.

  4. Influence of HLA-DR and -DQ alleles on autoantibody recognition of distinct epitopes within the juxtamembrane domain of the IA-2 autoantigen in type 1 diabetes.

    PubMed

    Richardson, Carolyn C; McLaughlin, Kerry A; Morgan, Diana; Feltbower, Richard G; Christie, Michael R

    2016-02-01

    Insulinoma-associated protein 2 (IA-2) is a major target of autoimmunity in type 1 diabetes. When first detected, IA-2-autoantibodies commonly bind epitopes in the juxtamembrane (JM) domain of IA-2 and antibody responses subsequently spread to the tyrosine phosphatase domain. Definition of structures of epitopes in the JM domain, and genetic requirements for autoimmunity to these epitopes, is important for our understanding of initiation and progression of autoimmunity. The aims of this study were to investigate the contribution of individual amino acids in the IA-2 JM domain to antibody binding to these epitopes and the role of HLA genotypes in determining epitope specificity. Regions of the JM domain recognised by autoantibodies were identified by peptide competition and inhibitory effects of alanine substitutions of residues within the JM region. Antibody binding was determined by radioligand binding assays using sera from patients genotyped for HLA-DRB1 and -DQB1 alleles. Patients were categorised into two distinct groups of JM antibody reactivity according to peptide inhibition. Inhibition by substitutions of individual amino acids within the JM domain differed between patients, indicating heterogeneity in epitope recognition. Cluster analysis defined six groups of residues having similar inhibitory effects on antibody binding, with three clusters showing differences in patients affected or unaffected by peptide. One cluster demonstrated significant differences in antibody binding between HLA-DRB1*04 and HLA-DRB1*07 patients and within DRB1*04 individuals; antibody recognition of a second cluster depended on expression of HLA-DQB1*0302. The results identify amino acids contributing to distinct epitopes on IA-2, with both HLA-DR and HLA-DQ alleles influencing epitope specificity.

  5. Classes and continua of hippocampal CA1 inhibitory neurons revealed by single-cell transcriptomics.

    PubMed

    Harris, Kenneth D; Hochgerner, Hannah; Skene, Nathan G; Magno, Lorenza; Katona, Linda; Bengtsson Gonzales, Carolina; Somogyi, Peter; Kessaris, Nicoletta; Linnarsson, Sten; Hjerling-Leffler, Jens

    2018-06-18

    Understanding any brain circuit will require a categorization of its constituent neurons. In hippocampal area CA1, at least 23 classes of GABAergic neuron have been proposed to date. However, this list may be incomplete; additionally, it is unclear whether discrete classes are sufficient to describe the diversity of cortical inhibitory neurons or whether continuous modes of variability are also required. We studied the transcriptomes of 3,663 CA1 inhibitory cells, revealing 10 major GABAergic groups that divided into 49 fine-scale clusters. All previously described and several novel cell classes were identified, with three previously described classes unexpectedly found to be identical. A division into discrete classes, however, was not sufficient to describe the diversity of these cells, as continuous variation also occurred between and within classes. Latent factor analysis revealed that a single continuous variable could predict the expression levels of several genes, which correlated similarly with it across multiple cell types. Analysis of the genes correlating with this variable suggested it reflects a range from metabolically highly active faster-spiking cells that proximally target pyramidal cells to slower-spiking cells targeting distal dendrites or interneurons. These results elucidate the complexity of inhibitory neurons in one of the simplest cortical structures and show that characterizing these cells requires continuous modes of variation as well as discrete cell classes.

  6. Identification of Parvalbumin Interneurons as Cellular Substrate of Fear Memory Persistence.

    PubMed

    Çaliskan, Gürsel; Müller, Iris; Semtner, Marcus; Winkelmann, Aline; Raza, Ahsan S; Hollnagel, Jan O; Rösler, Anton; Heinemann, Uwe; Stork, Oliver; Meier, Jochen C

    2016-05-01

    Parvalbumin-positive (PV) basket cells provide perisomatic inhibition in the cortex and hippocampus and control generation of memory-related network activity patterns, such as sharp wave ripples (SPW-R). Deterioration of this class of fast-spiking interneurons has been observed in neuropsychiatric disorders and evidence from animal models suggests their involvement in the acquisition and extinction of fear memories. Here, we used mice with neuron type-targeted expression of the presynaptic gain-of-function glycine receptor RNA variant GlyR α3L(185L)to genetically enhance the network activity of PV interneurons. These mice showed reduced extinction of contextual fear memory but normal auditory cued fear memory. They furthermore displayed increase of SPW-R activity in area CA3 and CA1 and facilitated propagation of this particular network activity pattern, as determined in ventral hippocampal slice preparations. Individual freezing levels during extinction and SPW-R propagation were correlated across genotypes. The same was true for parvalbumin immunoreactivity in the ventral hippocampus, which was generally augmented in the GlyR mutant mice and correlated with individual freezing levels. Together, these results identify PV interneurons as critical cellular substrate of fear memory persistence and associated SPW-R activity in the hippocampus. Our findings may be relevant for the identification and characterization of physiological correlates for posttraumatic stress and anxiety disorders. © The Author 2016. Published by Oxford University Press.

  7. Identification of Parvalbumin Interneurons as Cellular Substrate of Fear Memory Persistence

    PubMed Central

    Çalışkan, Gürsel; Müller, Iris; Semtner, Marcus; Winkelmann, Aline; Raza, Ahsan S.; Hollnagel, Jan O.; Rösler, Anton; Heinemann, Uwe; Stork, Oliver; Meier, Jochen C.

    2016-01-01

    Parvalbumin-positive (PV) basket cells provide perisomatic inhibition in the cortex and hippocampus and control generation of memory-related network activity patterns, such as sharp wave ripples (SPW-R). Deterioration of this class of fast-spiking interneurons has been observed in neuropsychiatric disorders and evidence from animal models suggests their involvement in the acquisition and extinction of fear memories. Here, we used mice with neuron type-targeted expression of the presynaptic gain-of-function glycine receptor RNA variant GlyR α3L185L to genetically enhance the network activity of PV interneurons. These mice showed reduced extinction of contextual fear memory but normal auditory cued fear memory. They furthermore displayed increase of SPW-R activity in area CA3 and CA1 and facilitated propagation of this particular network activity pattern, as determined in ventral hippocampal slice preparations. Individual freezing levels during extinction and SPW-R propagation were correlated across genotypes. The same was true for parvalbumin immunoreactivity in the ventral hippocampus, which was generally augmented in the GlyR mutant mice and correlated with individual freezing levels. Together, these results identify PV interneurons as critical cellular substrate of fear memory persistence and associated SPW-R activity in the hippocampus. Our findings may be relevant for the identification and characterization of physiological correlates for posttraumatic stress and anxiety disorders. PMID:26908632

  8. Probing phase- and frequency-dependent characteristics of cortical interneurons using combined transcranial alternating current stimulation and transcranial magnetic stimulation.

    PubMed

    Hussain, Sara J; Thirugnanasambandam, Nivethida

    2017-06-01

    Paired-pulse transcranial magnetic stimulation (TMS) and peripheral stimulation combined with TMS can be used to study cortical interneuronal circuitry. By combining these procedures with concurrent transcranial alternating current stimulation (tACS), Guerra and colleagues recently showed that different cortical interneuronal populations are differentially modulated by the phase and frequency of tACS-imposed oscillations (Guerra A, Pogosyan A, Nowak M, Tan H, Ferreri F, Di Lazzaro V, Brown P. Cerebral Cortex 26: 3977-2990, 2016). This work suggests that different cortical interneuronal populations can be characterized by their phase and frequency dependency. Here we discuss how combining TMS and tACS can reveal the frequency at which cortical interneuronal populations oscillate, the neuronal origins of behaviorally relevant cortical oscillations, and how entraining cortical oscillations could potentially treat brain disorders. Copyright © 2017 the American Physiological Society.

  9. Monosynaptic EPSPs elicited by single interneurones and spindle afferents in trigeminal motoneurones of anaesthetized rats.

    PubMed Central

    Grimwood, P D; Appenteng, K; Curtis, J C

    1992-01-01

    1. Our aim has been to quantify the monosynaptic connections of trigeminal interneurones and spindle afferents onto jaw-elevator motoneurones as a step towards identifying common features in organization of monosynaptic inputs onto motoneurones. We have used the intracellular variant of the spike-triggered averaging method to examine the connections of single identified trigeminal interneurones and jaw-elevator muscle spindle afferents onto single jaw-elevator motoneurones. The interneurones examined lay in the region immediately caudal to the trigeminal motor nucleus. The experiments were performed on rats anaesthetized with pentobarbitone, paralysed and artificially ventilated. 2. Ten EPSPs and eight IPSPs were obtained from examining the connections of seventeen interneurones to thirty-six motoneurones, suggesting a functional connectivity of 50% for individual interneurones onto elevator motoneurones. Fourteen EPSPs were obtained from examining the connections of thirteen spindle afferents onto twenty-seven motoneurones, giving a functional connectivity of 52% for individual spindle afferents onto elevator motoneurones. The amplitudes of the EPSPs elicited by interneurones ranged from 7-48 microV (mean = 17, S.D. = 12.5, n = 10) and from 7 to 289 microV (mean = 64, S.D. = 76.0, n = 14) for the spindle-mediated EPSPs; the difference in the two means was not significant (P = 0.07). 3. However, the amplitude of averaged responses obtained by signal averaging methods are dependent on the assumption that the postsynaptic response occurs following every impulse in the presynaptic neurone. We therefore estimated the percentage of sweeps which contained EPSPs triggered by the presynaptic neurone under study. In essence the method used consisted of visual inspection of the individual sweeps comprising an average in order to assess the occurrence of EPSPs within six separate time windows, each of duration +/- 0.3 ms. Five windows were placed at randomly selected times on

  10. Membrane Resonance Enables Stable and Robust Gamma Oscillations

    PubMed Central

    Moca, Vasile V.; Nikolić, Danko; Singer, Wolf; Mureşan, Raul C.

    2014-01-01

    Neuronal mechanisms underlying beta/gamma oscillations (20–80 Hz) are not completely understood. Here, we show that in vivo beta/gamma oscillations in the cat visual cortex sometimes exhibit remarkably stable frequency even when inputs fluctuate dramatically. Enhanced frequency stability is associated with stronger oscillations measured in individual units and larger power in the local field potential. Simulations of neuronal circuitry demonstrate that membrane properties of inhibitory interneurons strongly determine the characteristics of emergent oscillations. Exploration of networks containing either integrator or resonator inhibitory interneurons revealed that: (i) Resonance, as opposed to integration, promotes robust oscillations with large power and stable frequency via a mechanism called RING (Resonance INduced Gamma); resonance favors synchronization by reducing phase delays between interneurons and imposes bounds on oscillation cycle duration; (ii) Stability of frequency and robustness of the oscillation also depend on the relative timing of excitatory and inhibitory volleys within the oscillation cycle; (iii) RING can reproduce characteristics of both Pyramidal INterneuron Gamma (PING) and INterneuron Gamma (ING), transcending such classifications; (iv) In RING, robust gamma oscillations are promoted by slow but are impaired by fast inputs. Results suggest that interneuronal membrane resonance can be an important ingredient for generation of robust gamma oscillations having stable frequency. PMID:23042733

  11. Large variability in synaptic N-methyl-D-aspartate receptor density on interneurons and a comparison with pyramidal-cell spines in the rat hippocampus.

    PubMed

    Nyíri, G; Stephenson, F A; Freund, T F; Somogyi, P

    2003-01-01

    Pyramidal cells receive input from several types of GABA-releasing interneurons and innervate them reciprocally. Glutamatergic activation of interneurons involves both alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) type glutamate receptors expressed in type I synapses, mostly on their dendritic shafts. On average, the synaptic AMPA receptor content is several times higher on interneurons than in the spines of pyramidal cells. To compare the NMDA receptor content of synapses, we used a quantitative postembedding immunogold technique on serial electron microscopic sections, and analysed the synapses on interneuron dendrites and pyramidal cell spines in the CA1 area. Because all NMDA receptors contain the obligatory NR1 subunit, receptor localisation was carried out using antibodies recognising all splice variants of the NR1 subunit. Four populations of synapse were examined: i). on spines of pyramidal cells in stratum (str.) radiatum and str. oriens; ii). on parvalbumin-positive interneuronal dendritic shafts in str. radiatum; iii). on randomly found dendritic shafts in str. oriens and iv). on somatostatin-positive interneuronal dendritic shafts and somata in str. oriens. On average, the size of the synapses on spines was about half of those on interneurons. The four populations of synapse significantly differed in labelling for the NR1 subunit. The median density of NR1 subunit labelling was highest on pyramidal cell spines. It was lowest in the synapses on parvalbumin-positive dendrites in str. radiatum, where more than half of these synapses were immunonegative. In str. oriens, synapses on interneurons had a high variability of receptor content; some dendrites were similar to those in str. radiatum, including the proximal synapses of somatostatin-positive cells, whereas others had immunoreactivity for the NR1 subunit similar to or higher than synapses on pyramidal cell spines. These results show that synaptic NMDA

  12. Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates.

    PubMed

    Vida, Imre; Bartos, Marlene; Jonas, Peter

    2006-01-05

    Networks of GABAergic neurons are key elements in the generation of gamma oscillations in the brain. Computational studies suggested that the emergence of coherent oscillations requires hyperpolarizing inhibition. Here, we show that GABA(A) receptor-mediated inhibition in mature interneurons of the hippocampal dentate gyrus is shunting rather than hyperpolarizing. Unexpectedly, when shunting inhibition is incorporated into a structured interneuron network model with fast and strong synapses, coherent oscillations emerge. In comparison to hyperpolarizing inhibition, networks with shunting inhibition show several advantages. First, oscillations are generated with smaller tonic excitatory drive. Second, network frequencies are tuned to the gamma band. Finally, robustness against heterogeneity in the excitatory drive is markedly improved. In single interneurons, shunting inhibition shortens the interspike interval for low levels of drive but prolongs it for high levels, leading to homogenization of neuronal firing rates. Thus, shunting inhibition may confer increased robustness to gamma oscillations in the brain.

  13. Dendritic and Axonal Wiring Optimization of Cortical GABAergic Interneurons.

    PubMed

    Anton-Sanchez, Laura; Bielza, Concha; Benavides-Piccione, Ruth; DeFelipe, Javier; Larrañaga, Pedro

    2016-10-01

    The way in which a neuronal tree expands plays an important role in its functional and computational characteristics. We aimed to study the existence of an optimal neuronal design for different types of cortical GABAergic neurons. To do this, we hypothesized that both the axonal and dendritic trees of individual neurons optimize brain connectivity in terms of wiring length. We took the branching points of real three-dimensional neuronal reconstructions of the axonal and dendritic trees of different types of cortical interneurons and searched for the minimal wiring arborization structure that respects the branching points. We compared the minimal wiring arborization with real axonal and dendritic trees. We tested this optimization problem using a new approach based on graph theory and evolutionary computation techniques. We concluded that neuronal wiring is near-optimal in most of the tested neurons, although the wiring length of dendritic trees is generally nearer to the optimum. Therefore, wiring economy is related to the way in which neuronal arborizations grow irrespective of the marked differences in the morphology of the examined interneurons.

  14. A spiking network model of cerebellar Purkinje cells and molecular layer interneurons exhibiting irregular firing

    PubMed Central

    Lennon, William; Hecht-Nielsen, Robert; Yamazaki, Tadashi

    2014-01-01

    While the anatomy of the cerebellar microcircuit is well-studied, how it implements cerebellar function is not understood. A number of models have been proposed to describe this mechanism but few emphasize the role of the vast network Purkinje cells (PKJs) form with the molecular layer interneurons (MLIs)—the stellate and basket cells. We propose a model of the MLI-PKJ network composed of simple spiking neurons incorporating the major anatomical and physiological features. In computer simulations, the model reproduces the irregular firing patterns observed in PKJs and MLIs in vitro and a shift toward faster, more regular firing patterns when inhibitory synaptic currents are blocked. In the model, the time between PKJ spikes is shown to be proportional to the amount of feedforward inhibition from an MLI on average. The two key elements of the model are: (1) spontaneously active PKJs and MLIs due to an endogenous depolarizing current, and (2) adherence to known anatomical connectivity along a parasagittal strip of cerebellar cortex. We propose this model to extend previous spiking network models of the cerebellum and for further computational investigation into the role of irregular firing and MLIs in cerebellar learning and function. PMID:25520646

  15. IA channels: diverse regulatory mechanisms.

    PubMed

    Carrasquillo, Yarimar; Nerbonne, Jeanne M

    2014-04-01

    In many peripheral and central neurons, A-type K(+) currents, IA, have been identified and shown to be key determinants in shaping action potential waveforms and repetitive firing properties, as well as in the regulation of synaptic transmission and synaptic plasticity. The functional properties and physiological roles of native neuronal IA, however, have been shown to be quite diverse in different types of neurons. Accumulating evidence suggests that this functional diversity is generated by multiple mechanisms, including the expression and subcellular distributions of IA channels encoded by different voltage-gated K(+) (Kv) channel pore-forming (α) subunits, interactions of Kv α subunits with cytosolic and/or transmembrane accessory subunits and regulatory proteins and post-translational modifications of channel subunits. Several recent reports further suggest that local protein translation in the dendrites of neurons and interactions between IA channels with other types of voltage-gated ion channels further expands the functional diversity of native neuronal IA channels. Here, we review the diverse molecular mechanisms that have been shown or proposed to underlie the functional diversity of native neuronal IA channels.

  16. Cell Type-Specific Circuit Mapping Reveals the Presynaptic Connectivity of Developing Cortical Circuits

    PubMed Central

    Cocas, Laura A.; Fernandez, Gloria; Barch, Mariya; Doll, Jason; Zamora Diaz, Ivan

    2016-01-01

    The mammalian cerebral cortex is a dense network composed of local, subcortical, and intercortical synaptic connections. As a result, mapping cell type-specific neuronal connectivity in the cerebral cortex in vivo has long been a challenge for neurobiologists. In particular, the development of excitatory and inhibitory interneuron presynaptic input has been hard to capture. We set out to analyze the development of this connectivity in the first postnatal month using a murine model. First, we surveyed the connectivity of one of the earliest populations of neurons in the brain, the Cajal-Retzius (CR) cells in the neocortex, which are known to be critical for cortical layer formation and are hypothesized to be important in the establishment of early cortical networks. We found that CR cells receive inputs from deeper-layer excitatory neurons and inhibitory interneurons in the first postnatal week. We also found that both excitatory pyramidal neurons and inhibitory interneurons received broad inputs in the first postnatal week, including inputs from CR cells. Expanding our analysis into the more mature brain, we assessed the inputs onto inhibitory interneurons and excitatory projection neurons, labeling neuronal progenitors with Cre drivers to study discrete populations of neurons in older cortex, and found that excitatory cortical and subcortical inputs are refined by the fourth week of development, whereas local inhibitory inputs increase during this postnatal period. Cell type-specific circuit mapping is specific, reliable, and effective, and can be used on molecularly defined subtypes to determine connectivity in the cortex. SIGNIFICANCE STATEMENT Mapping cortical connectivity in the developing mammalian brain has been an intractable problem, in part because it has not been possible to analyze connectivity with cell subtype precision. Our study systematically targets the presynaptic connections of discrete neuronal subtypes in both the mature and developing

  17. VAV-1 acts in a single interneuron to inhibit motor circuit activity in Caenorhabditis elegans.

    PubMed

    Fry, Amanda L; Laboy, Jocelyn T; Norman, Kenneth R

    2014-11-21

    The complex molecular and cellular mechanisms underlying neuronal control of animal movement are not well understood. Locomotion of Caenorhabditis elegans is mediated by a neuronal circuit that produces coordinated sinusoidal movement. Here we utilize this simple, yet elegant, behaviour to show that VAV-1, a conserved guanine nucleotide exchange factor for Rho-family GTPases, negatively regulates motor circuit activity and the rate of locomotion. While vav-1 is expressed in a small subset of neurons, we find that VAV-1 function is required in a single interneuron, ALA, to regulate motor neuron circuit activity. Furthermore, we show by genetic and optogenetic manipulation of ALA that VAV-1 is required for the excitation and activation of this neuron. We find that ALA signalling inhibits command interneuron activity by abrogating excitatory signalling in the command interneurons, which is responsible for promoting motor neuron circuit activity. Together, our data describe a novel neuromodulatory role for VAV-1-dependent signalling in the regulation of motor circuit activity and locomotion.

  18. The Caenorhabditis elegans interneuron ALA is (also) a high-threshold mechanosensor

    PubMed Central

    2013-01-01

    Background To survive dynamic environments, it is essential for all animals to appropriately modulate their behavior in response to various stimulus intensities. For instance, the nematode Caenorhabditis elegans suppresses the rate of egg-laying in response to intense mechanical stimuli, in a manner dependent on the mechanosensory neurons FLP and PVD. We have found that the unilaterally placed single interneuron ALA acted as a high-threshold mechanosensor, and that it was required for this protective behavioral response. Results ALA was required for the inhibition of egg-laying in response to a strong (picking-like) mechanical stimulus, characteristic of routine handling of the animals. Moreover, ALA did not respond physiologically to less intense touch stimuli, but exhibited distinct physiological responses to anterior and posterior picking-like touch, suggesting that it could distinguish between spatially separated stimuli. These responses required neither neurotransmitter nor neuropeptide release from potential upstream neurons. In contrast, the long, bilaterally symmetric processes of ALA itself were required for producing its physiological responses; when they were severed, responses to stimuli administered between the cut and the cell body were unaffected, while responses to stimuli administered posterior to the cut were abolished. Conclusion C. elegans neurons are typically classified into three major groups: sensory neurons with specialized sensory dendrites, interneurons, and motoneurons with neuromuscular junctions. Our findings suggest that ALA can autonomously sense intense touch and is thus a dual-function neuron, i.e., an interneuron as well as a novel high-threshold mechanosensor. PMID:24341457

  19. The Caenorhabditis elegans interneuron ALA is (also) a high-threshold mechanosensor.

    PubMed

    Sanders, Jarred; Nagy, Stanislav; Fetterman, Graham; Wright, Charles; Treinin, Millet; Biron, David

    2013-12-17

    To survive dynamic environments, it is essential for all animals to appropriately modulate their behavior in response to various stimulus intensities. For instance, the nematode Caenorhabditis elegans suppresses the rate of egg-laying in response to intense mechanical stimuli, in a manner dependent on the mechanosensory neurons FLP and PVD. We have found that the unilaterally placed single interneuron ALA acted as a high-threshold mechanosensor, and that it was required for this protective behavioral response. ALA was required for the inhibition of egg-laying in response to a strong (picking-like) mechanical stimulus, characteristic of routine handling of the animals. Moreover, ALA did not respond physiologically to less intense touch stimuli, but exhibited distinct physiological responses to anterior and posterior picking-like touch, suggesting that it could distinguish between spatially separated stimuli. These responses required neither neurotransmitter nor neuropeptide release from potential upstream neurons. In contrast, the long, bilaterally symmetric processes of ALA itself were required for producing its physiological responses; when they were severed, responses to stimuli administered between the cut and the cell body were unaffected, while responses to stimuli administered posterior to the cut were abolished. C. elegans neurons are typically classified into three major groups: sensory neurons with specialized sensory dendrites, interneurons, and motoneurons with neuromuscular junctions. Our findings suggest that ALA can autonomously sense intense touch and is thus a dual-function neuron, i.e., an interneuron as well as a novel high-threshold mechanosensor.

  20. A supercritical density of fast Na+ channels ensures rapid propagation of action potentials in GABAergic interneuron axons

    PubMed Central

    Hu, Hua; Jonas, Peter

    2014-01-01

    Fast-spiking, parvalbumin-expressing GABAergic interneurons/basket cells (BCs) play a key role in feedforward and feedback inhibition, gamma oscillations, and complex information processing. For these functions, fast propagation of action potentials (APs) from the soma to the presynaptic terminals is important. However, the functional properties of interneuron axons remain elusive. Here, we examined interneuron axons by confocally targeted subcellular patch-clamp recording in rat hippocampal slices. APs were initiated in the proximal axon ~20 μm from the soma, and propagated to the distal axon with high reliability and speed. Subcellular mapping revealed a stepwise increase of Na+ conductance density from the soma to the proximal axon, followed by a further gradual increase in the distal axon. Active cable modeling and experiments with partial channel block indicated that low axonal Na+ conductance density was sufficient for reliability, but high Na+ density was necessary for both speed of propagation and fast-spiking AP phenotype. Our results suggest that a supercritical density of Na+ channels compensates for the morphological properties of interneuron axons (small segmental diameter, extensive branching, and high bouton density), ensuring fast AP propagation and high-frequency repetitive firing. PMID:24657965

  1. Inhibitory Interneurons That Express GFP in the PrP-GFP Mouse Spinal Cord Are Morphologically Heterogeneous, Innervated by Several Classes of Primary Afferent and Include Lamina I Projection Neurons among Their Postsynaptic Targets

    PubMed Central

    Ganley, Robert P.; Iwagaki, Noboru; del Rio, Patricia; Baseer, Najma; Dickie, Allen C.; Boyle, Kieran A.; Polgár, Erika; Watanabe, Masahiko; Abraira, Victoria E; Zimmerman, Amanda

    2015-01-01

    The superficial dorsal horn of the spinal cord contains numerous inhibitory interneurons, which regulate the transmission of information perceived as touch, pain, or itch. Despite the importance of these cells, our understanding of their roles in the neuronal circuitry is limited by the difficulty in identifying functional populations. One group that has been identified and characterized consists of cells in the mouse that express green fluorescent protein (GFP) under control of the prion protein (PrP) promoter. Previous reports suggested that PrP-GFP cells belonged to a single morphological class (central cells), received inputs exclusively from unmyelinated primary afferents, and had axons that remained in lamina II. However, we recently reported that the PrP-GFP cells expressed neuronal nitric oxide synthase (nNOS) and/or galanin, and it has been shown that nNOS-expressing cells are more diverse in their morphology and synaptic connections. We therefore used a combined electrophysiological, pharmacological, and anatomical approach to reexamine the PrP-GFP cells. We provide evidence that they are morphologically diverse (corresponding to “unclassified” cells) and receive synaptic input from a variety of primary afferents, with convergence onto individual cells. We also show that their axons project into adjacent laminae and that they target putative projection neurons in lamina I. This indicates that the neuronal circuitry involving PrP-GFP cells is more complex than previously recognized, and suggests that they are likely to have several distinct roles in regulating the flow of somatosensory information through the dorsal horn. PMID:25972186

  2. Dark Matter Ignition of Type Ia Supernovae.

    PubMed

    Bramante, Joseph

    2015-10-02

    Recent studies of low redshift type Ia supernovae (SN Ia) indicate that half explode from less than Chandrasekhar mass white dwarfs, implying ignition must proceed from something besides the canonical criticality of Chandrasekhar mass SN Ia progenitors. We show that 1-100 PeV mass asymmetric dark matter, with imminently detectable nucleon scattering interactions, can accumulate to the point of self-gravitation in a white dwarf and collapse, shedding gravitational potential energy by scattering off nuclei, thereby heating the white dwarf and igniting the flame front that precedes SN Ia. We combine data on SN Ia masses with data on the ages of SN Ia-adjacent stars. This combination reveals a 2.8σ inverse correlation between SN Ia masses and ignition ages, which could result from increased capture of dark matter in 1.4 vs 1.1 solar mass white dwarfs. Future studies of SN Ia in galactic centers will provide additional tests of dark-matter-induced type Ia ignition. Remarkably, both bosonic and fermionic SN Ia-igniting dark matter also resolve the missing pulsar problem by forming black holes in ≳10  Myr old pulsars at the center of the Milky Way.

  3. Rhythmically Active Enkephalin-Expressing GABAergic Cells in the CA1 Area of the Hippocampus Project to the Subiculum and Preferentially Innervate Interneurons

    PubMed Central

    Fuentealba, Pablo; Tomioka, Ryohei; Dalezios, Yannis; Márton, László F.; Studer, Michele; Rockland, Kathleen; Klausberger, Thomas; Somogyi, Peter

    2015-01-01

    Enkephalins (ENKs) are endogenous opioids that regulate synaptic excitability of GABAergic networks in the cerebral cortex. Using retrograde tracer injections in the subiculum, we identified a hippocampal population of ENK-expressing projection neurons. In situ hybridization for GAD shows that ENK-expressing cells are a small GABAergic subpopulation. Furthermore, by extracellular recording and juxtacellular labeling in vivo, we identified an ENK-expressing cell in stratum radiatum of the CA1 area by its complete axodendritic arborization and characteristic spike timing during network oscillations. The somatodendritic membrane was immunopositive for mGluR1α, and there was both a rich local axon in CA1 and subicular-projecting branches. The boutons showed cell-type- and layer-specific innervation, i.e., interneurons were the main targets in the alveus, both interneurons and pyramidal cell dendrites were innervated in the other layers, and interneurons were exclusive targets in the subiculum. Parvalbumin-, but not somatostatin-, calbindin-, or cholecystokinin-expressing interneurons were preferred synaptic targets. During network activity, the juxtacellularly labeled ENK-expressing cell was phase modulated throughout theta oscillations, but silenced during sharp-wave/ripple episodes. After these episodes the interneuron exhibited rebound activity of high-frequency spike bursts, presumably causing peptide release. The ENK-expressing interneurons innervating parvalbumin-positive interneurons might contribute to the organization of the sharp-wave/ripple episodes by decreased firing during and rebound activity after the ripple episodes, as well as to the coordination of activity between the CA1 and subicular areas during network oscillations. PMID:18829959

  4. Enhanced GABAergic Inputs Contribute to Functional Alterations of Cholinergic Interneurons in the R6/2 Mouse Model of Huntington's Disease.

    PubMed

    Holley, Sandra M; Joshi, Prasad R; Parievsky, Anna; Galvan, Laurie; Chen, Jane Y; Fisher, Yvette E; Huynh, My N; Cepeda, Carlos; Levine, Michael S

    2015-01-01

    In Huntington's disease (HD), a hereditary neurodegenerative disorder, striatal medium-sized spiny neurons undergo degenerative changes. In contrast, large cholinergic interneurons (LCIs) are relatively spared. However, their ability to release acetylcholine (ACh) is impaired. The present experiments examined morphological and electrophysiological properties of LCIs in the R6/2 mouse model of HD. R6/2 mice show a severe, rapidly progressing phenotype. Immunocytochemical analysis of choline acetyltransferase-positive striatal neurons showed that, although the total number of cells was not changed, somatic areas were significantly smaller in symptomatic R6/2 mice compared to wildtype (WT) littermates, For electrophysiology, brain slices were obtained from presymptomatic (3-4 weeks) and symptomatic (>8 weeks) R6/2 mice and their WT littermates. Striatal LCIs were identified by somatic size and spontaneous action potential firing in the cell-attached mode. Passive and active membrane properties of LCIs were similar in presymptomatic R6/2 and WT mice. In contrast, LCIs from symptomatic R6/2 animals displayed smaller membrane capacitance and higher input resistance, consistent with reduced somatic size. In addition, more LCIs from symptomatic mice displayed irregular firing patterns and bursts of action potentials. They also displayed a higher frequency of spontaneous GABAergic inhibitory postsynaptic currents (IPSCs) and larger amplitude of electrically evoked IPSCs. Selective optogenetic stimulation of somatostatin- but not parvalbumin-containing interneurons also evoked larger amplitude IPSCs in LCIs from R6/2 mice. In contrast, glutamatergic spontaneous or evoked postsynaptic currents were not affected. Morphological and electrophysiological alterations, in conjunction with the presence of mutant huntingtin in LCIs, could explain impaired ACh release in HD mouse models.

  5. Accumbal Cholinergic Interneurons Differentially Influence Motivation Related to Satiety Signaling.

    PubMed

    Aitta-Aho, Teemu; Phillips, Benjamin U; Pappa, Elpiniki; Hay, Y Audrey; Harnischfeger, Fiona; Heath, Christopher J; Saksida, Lisa M; Bussey, Tim J; Apergis-Schoute, John

    2017-01-01

    Satiety, rather than all or none, can instead be viewed as a cumulative decrease in the drive to eat that develops over the course of a meal. The nucleus accumbens (NAc) is known to play a critical role in this type of value reappraisal, but the underlying circuits that influence such processes are unclear. Although NAc cholinergic interneurons (CINs) comprise only a small proportion of NAc neurons, their local impact on reward-based processes provides a candidate cell population for investigating the neural underpinnings of satiety. The present research therefore aimed to determine the role of NAc-CINs in motivation for food reinforcers in relation to satiety signaling. Through bidirectional control of CIN activity in mice, we show that when motivated by food restriction, increasing CIN activity led to a reduction in palatable food consumption while reducing CIN excitability enhanced food intake. These activity-dependent changes developed only late in the session and were unlikely to be driven by the innate reinforcer strength, suggesting that CIN modulation was instead impacting the cumulative change in motivation underlying satiety signaling. We propose that on a circuit level, an overall increase in inhibitory tone onto NAc output neurons played a role in the behavioral results, as activating NAc-CINs led to an inhibition of medium spiny neurons that was dependent on nicotinic receptor activation. Our results reveal an important role for NAc-CINs in controlling motivation for food intake and additionally provide a circuit-level framework for investigating the endogenous cholinergic circuits that signal satiety.

  6. Schaffer Collateral Inputs to CA1 Excitatory and Inhibitory Neurons Follow Different Connectivity Rules.

    PubMed

    Kwon, Osung; Feng, Linqing; Druckmann, Shaul; Kim, Jinhyun

    2018-05-30

    Neural circuits, governed by a complex interplay between excitatory and inhibitory neurons, are the substrate for information processing, and the organization of synaptic connectivity in neural network is an important determinant of circuit function. Here, we analyzed the fine structure of connectivity in hippocampal CA1 excitatory and inhibitory neurons innervated by Schaffer collaterals (SCs) using mGRASP in male mice. Our previous study revealed spatially structured synaptic connectivity between CA3 and CA1 pyramidal cells (PCs). Surprisingly, parvalbumin-positive interneurons (PVs) showed a significantly more random pattern spatial structure. Notably, application of Peters' rule for synapse prediction by random overlap between axons and dendrites enhanced structured connectivity in PCs, but, by contrast, made the connectivity pattern in PVs more random. In addition, PCs in a deep sublayer of striatum pyramidale appeared more highly structured than PCs in superficial layers, and little or no sublayer specificity was found in PVs. Our results show that CA1 excitatory PCs and inhibitory PVs innervated by the same SC inputs follow different connectivity rules. The different organizations of fine scale structured connectivity in hippocampal excitatory and inhibitory neurons provide important insights into the development and functions of neural networks. SIGNIFICANCE STATEMENT Understanding how neural circuits generate behavior is one of the central goals of neuroscience. An important component of this endeavor is the mapping of fine-scale connection patterns that underlie, and help us infer, signal processing in the brain. Here, using our recently developed synapse detection technology (mGRASP and neuTube), we provide detailed profiles of synaptic connectivity in excitatory (CA1 pyramidal) and inhibitory (CA1 parvalbumin-positive) neurons innervated by the same presynaptic inputs (CA3 Schaffer collaterals). Our results reveal that these two types of CA1 neurons

  7. Responses of Withdrawal Interneurons to Serotonin Applications in Naïve and Learned Snails Are Different

    PubMed Central

    Bogodvid, Tatiana K.; Andrianov, Vyatcheslav V.; Deryabina, Irina B.; Muranova, Lyudmila N.; Silantyeva, Dinara I.; Vinarskaya, Aliya; Balaban, Pavel M.; Gainutdinov, Khalil L.

    2017-01-01

    Long-term changes in membrane potential after associative training were described previously in identified premotor interneurons for withdrawal of the terrestrial snail Helix. Serotonin was shown to be a major transmitter involved in triggering the long-term changes in mollusks. In the present study we compared the changes in electrophysiological characteristics of identifiable premotor interneurons for withdrawal in response to bath applications of serotonin (5-HT) or serotonin precursor 5-hydroxytryptophan (5-HTP) in preparations from naïve, neurotoxin-injected or associatively trained snails. It was found that 5-HT or 5-HTP applications caused a significant decrease of membrane potential in premotor interneurons of naïve snails, associatively trained snails and snails with impaired serotonergic system by injection of a selective neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) 1 week before the experiments. Applications of 5-HT or 5-HTP did not cause significant changes in the action potential (AP) threshold potential of these neurons in naïve snails. Conversely, applications of 5-HT or 5-HTP to the premotor interneurons of previously trained or 5,7-DHT-injected snails caused a significant increase in the firing threshold potential in spite of a depolarizing shift of the resting membrane potential. Results demonstrate that responsiveness of premotor interneurons to extracellularly applied 5-HT or 5-HTP changes for days after the associative training or serotonin depletion. Similarity of the effects in trained and 5,7-DHT-injected animals may be due to massive release of serotonin elicited by 5,7-DHT injection. Our results suggest that serotonin release due to aversive conditionining or elicited by the neurotoxin administration triggers similar changes in resting membrane potential and AP threshold in response to bath applications of 5-HT or its precursor 5-HTP. PMID:29311833

  8. Unitary IPSPs evoked by interneurons at the stratum radiatum-stratum lacunosum-moleculare border in the CA1 area of the rat hippocampus in vitro

    PubMed Central

    Vida, Imre; Halasy, Katalin; Szinyei, Csaba; Somogyi, Peter; Buhl, Eberhard H

    1998-01-01

    Hippocampal non-principal neurons at the stratum radiatum-stratum lacunosum-moleculare border (R-LM interneurons) of the CA1 area may constitute several cell classes and have been implicated in the generation of GABAergic unitary IPSPs. Using biocytin-filled electrodes we recorded R-LM interneurons intracellularly in vitro and determined their postsynaptic effects in concomitantly recorded pyramidal cells. Light microscopic analysis revealed four populations of R-LM interneurons with distinct axons: (1) basket cells (n= 4) with axons predominantly ramifying in the pyramidal cell layer; (2) Schaffer collateral/commissural pathway-associated interneurons (n= 10) stratifying in stratum radiatum and, to a lesser extent, stratum oriens; (3) perforant pathway-associated interneurons (n= 6) innervating the perforant path termination zone in stratum lacunosum-moleculare of the CA1 area as well as equivalent portions of the dentate gyrus and subiculum; and (4) neurogliaform interneurons (n= 2) characterized by their dense, compact axonal and dendritic arbour. Random electron microscopic sampling of synaptic targets revealed a preponderance of pyramidal neurons as postsynaptic elements. Basket cells had a synaptic target preference for somata and proximal dendrites, whereas the remainder of R-LM interneurons innervated dendritic shafts and spines. The axon of dendrite-targeting cells formed up to six putative contacts with individual postsynaptic pyramidal cells. Anatomically recovered R-LM interneurons (n= 22) had a mean resting membrane potential of -56.7 ± 3.6 mV, a membrane time constant of 12.9 ± 7.7 ms and an input resistance of 86.4 ± 29.2 MΩ. Depolarizing current pulses generally elicited overshooting action potentials (70.8 ± 6.9 mV) which had a mean duration, when measured at half-amplitude, of 0.7 ± 0.1 ms. In response to prolonged (> 200 ms) depolarizing current pulses all R-LM interneurons displayed (a varying degree of) spike frequency adaptation. Basket

  9. Apolipoprotein E4 causes age- and Tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice.

    PubMed

    Andrews-Zwilling, Yaisa; Bien-Ly, Nga; Xu, Qin; Li, Gang; Bernardo, Aubrey; Yoon, Seo Yeon; Zwilling, Daniel; Yan, Tonya Xue; Chen, Ligong; Huang, Yadong

    2010-10-13

    Apolipoprotein E4 (apoE4) is the major genetic risk factor for Alzheimer's disease. However, the underlying mechanisms are unclear. We found that female apoE4 knock-in (KI) mice had an age-dependent decrease in hilar GABAergic interneurons that correlated with the extent of learning and memory deficits, as determined in the Morris water maze, in aged mice. Treating apoE4-KI mice with daily peritoneal injections of the GABA(A) receptor potentiator pentobarbital at 20 mg/kg for 4 weeks rescued the learning and memory deficits. In neurotoxic apoE4 fragment transgenic mice, hilar GABAergic interneuron loss was even more pronounced and also correlated with the extent of learning and memory deficits. Neurodegeneration and tauopathy occurred earliest in hilar interneurons in apoE4 fragment transgenic mice; eliminating endogenous Tau prevented hilar GABAergic interneuron loss and the learning and memory deficits. The GABA(A) receptor antagonist picrotoxin abolished this rescue, while pentobarbital rescued learning deficits in the presence of endogenous Tau. Thus, apoE4 causes age- and Tau-dependent impairment of hilar GABAergic interneurons, leading to learning and memory deficits in mice. Consequently, reducing Tau and enhancing GABA signaling are potential strategies to treat or prevent apoE4-related Alzheimer's disease.

  10. Continuous attractor network models of grid cell firing based on excitatory–inhibitory interactions

    PubMed Central

    Shipston‐Sharman, Oliver; Solanka, Lukas

    2016-01-01

    Abstract Neurons in the medial entorhinal cortex encode location through spatial firing fields that have a grid‐like organisation. The challenge of identifying mechanisms for grid firing has been addressed through experimental and theoretical investigations of medial entorhinal circuits. Here, we discuss evidence for continuous attractor network models that account for grid firing by synaptic interactions between excitatory and inhibitory cells. These models assume that grid‐like firing patterns are the result of computation of location from velocity inputs, with additional spatial input required to oppose drift in the attractor state. We focus on properties of continuous attractor networks that are revealed by explicitly considering excitatory and inhibitory neurons, their connectivity and their membrane potential dynamics. Models at this level of detail can account for theta‐nested gamma oscillations as well as grid firing, predict spatial firing of interneurons as well as excitatory cells, show how gamma oscillations can be modulated independently from spatial computations, reveal critical roles for neuronal noise, and demonstrate that only a subset of excitatory cells in a network need have grid‐like firing fields. Evaluating experimental data against predictions from detailed network models will be important for establishing the mechanisms mediating grid firing. PMID:27870120

  11. Voronoi-based spatial analysis reveals selective interneuron changes in the cortex of FALS mice.

    PubMed

    Minciacchi, Diego; Kassa, Roman M; Del Tongo, Claudia; Mariotti, Raffaella; Bentivoglio, Marina

    2009-01-01

    The neurodegenerative disease amyotrophic lateral sclerosis affects lower motoneurons and corticospinal cells. Mice expressing human mutant superoxide dismutase (SOD)1 provide widely investigated models of the familial form of disease, but information on cortical changes in these mice is still limited. We here analyzed the spatial organization of interneurons characterized by parvalbumin immunoreactivity in the motor, somatosensory, and visual cortical areas of SOD1(G93A) mice. Cell number and sociological spatial behavior were assessed by digital charts of cell location in cortical samples, cell counts, and generation of two-dimensional Voronoi diagrams. In end-stage SOD1-mutant mice, an increase of parvalbumin-containing cortical interneurons was found in the motor and somatosensory areas (about 35% and 20%, respectively) with respect to wild-type littermates. Changes in cell spatial distribution, as documented by Voronoi-derived coefficients of variation, indicated increased tendency of parvalbumin cells to aggregate into clusters in the same areas of the SOD1-mutant cortex. Counts and coefficients of variation of parvalbumin cells in the visual cortex gave instead similar results in SOD1-mutant and wild-type mice. Analyses of motor and somatosensory areas in presymptomatic SOD1-mutant mice provided findings very similar to those obtained at end-stage, indicating early changes of interneurons in these cortical areas during the pathology. Altogether the data reveal in the SOD1-mutant mouse cortex an altered architectonic pattern of interneurons, which selectively affects areas involved in motor control. The findings, which can be interpreted as pathogenic factors or early disease-related adaptations, point to changes in the cortical regulation and modulation of the motor circuit during motoneuron disease.

  12. Prenatal stress delays inhibitory neuron progenitor migration in the developing neocortex

    PubMed Central

    Stevens, Hanna E.; Su, Tina; Yanagawa, Yuchio; Vaccarino, Flora M.

    2012-01-01

    Summary Prenatal stress has been widely demonstrated to have links with behavioral problems in clinical populations and animal models, however, few investigations have examined the immediate developmental events that are affected by prenatal stress. Here, we utilize GAD67GFP transgenic mice in which GABAergic progenitors express green fluorescent protein (GFP) to examine the impact of prenatal stress on the development of these precursors to inhibitory neurons. Pregnant female mice were exposed to restraint stress three times daily from embryonic day 12 (E12) onwards. Their offspring demonstrated changes in the distribution of GFP-positive (GFP+) GABAergic progenitors in the telencephalon as early as E13 and persisting until postnatal day 0. Changes in distribution reflected alterations in tangential migration and radial integration of GFP+ cells into the developing cortical plate. Fate mapping of GAD67GFP+progenitors with bromodeoxyuridine injected at E13 demonstrated a significant increase of these cells at P0 in anterior white matter. An overall decrease in GAD67GFP+ progenitors at P0 in medial frontal cortex could not be attributed to a reduction in cell proliferation. Significant changes in dlx2, nkx2.1 and their downstream target erbb4, transcription factors which regulate interneuron migration, were found within the prenatally-stressed developing forebrain, while no differences were seen in mash1, a determinant of interneuron fate, bdnf, a maturation factor for GABAergic cells or fgf2, an early growth/differentiation factor. These results demonstrate that early disruption in GABAergic progenitor migration caused by prenatal stress may be responsible for neuronal defects in disorders with GABAergic abnormalities like schizophrenia. PMID:22910687

  13. Evx1 and Evx2 specify excitatory neurotransmitter fates and suppress inhibitory fates through a Pax2-independent mechanism.

    PubMed

    Juárez-Morales, José L; Schulte, Claus J; Pezoa, Sofia A; Vallejo, Grace K; Hilinski, William C; England, Samantha J; de Jager, Sarah; Lewis, Katharine E

    2016-02-19

    For neurons to function correctly in neuronal circuitry they must utilize appropriate neurotransmitters. However, even though neurotransmitter specificity is one of the most important and defining properties of a neuron we still do not fully understand how neurotransmitter fates are specified during development. Most neuronal properties are determined by the transcription factors that neurons express as they start to differentiate. While we know a few transcription factors that specify the neurotransmitter fates of particular neurons, there are still many spinal neurons for which the transcription factors specifying this critical phenotype are unknown. Strikingly, all of the transcription factors that have been identified so far as specifying inhibitory fates in the spinal cord act through Pax2. Even Tlx1 and Tlx3, which specify the excitatory fates of dI3 and dI5 spinal neurons work at least in part by down-regulating Pax2. In this paper we use single and double mutant zebrafish embryos to identify the spinal cord functions of Evx1 and Evx2. We demonstrate that Evx1 and Evx2 are expressed by spinal cord V0v cells and we show that these cells develop into excitatory (glutamatergic) Commissural Ascending (CoSA) interneurons. In the absence of both Evx1 and Evx2, V0v cells still form and develop a CoSA morphology. However, they lose their excitatory fate and instead express markers of a glycinergic fate. Interestingly, they do not express Pax2, suggesting that they are acquiring their inhibitory fate through a novel Pax2-independent mechanism. Evx1 and Evx2 are required, partially redundantly, for spinal cord V0v cells to become excitatory (glutamatergic) interneurons. These results significantly increase our understanding of the mechanisms of neuronal specification and the genetic networks involved in these processes.

  14. Modified LaRC(TM)-IA Polyimides

    NASA Technical Reports Server (NTRS)

    St. Clair, Terry L.; Chang, Alice C.; Hou, Tan H.; Working, Dennis C.

    1994-01-01

    Modified versions of thermoplastic polyimide LaRC(TM)-IA incorporate various amounts of additional, rigid moieties into backbones of LaRC(TM)-IA molecules. Modified versions more resistant to solvents and exhibit higher glass-transition temperatures, yet retain melt-flow processability of unmodified LaRC(TM)-IA.

  15. Sleep and Movement Differentiates Actions of Two Types of Somatostatin-Expressing GABAergic Interneuron in Rat Hippocampus

    PubMed Central

    Katona, Linda; Lapray, Damien; Viney, Tim J.; Oulhaj, Abderrahim; Borhegyi, Zsolt; Micklem, Benjamin R.; Klausberger, Thomas; Somogyi, Peter

    2014-01-01

    Summary Neuropeptides acting on pre- and postsynaptic receptors are coreleased with GABA by interneurons including bistratified and O-LM cells, both expressing somatostatin but innervating segregated dendritic domains of pyramidal cells. Neuropeptide release requires high-frequency action potentials, but the firing patterns of most peptide/GABA-releasing interneurons during behavior are unknown. We show that behavioral and network states differentiate the activities of bistratified and O-LM cells in freely moving rats. Bistratified cells fire at higher rates during sleep than O-LM cells and, unlike O-LM cells, strongly increase spiking during sharp wave-associated ripples (SWRs). In contrast, O-LM interneurons decrease firing during sleep relative to awake states and are mostly inhibited during SWRs. During movement, both cell types fire cooperatively at the troughs of theta oscillations but with different frequencies. Somatostatin and GABA are differentially released to distinct dendritic zones of CA1 pyramidal cells during sleep and wakefulness to coordinate segregated glutamatergic inputs from entorhinal cortex and CA3. PMID:24794095

  16. The dense core vesicle protein IA-2, but not IA-2β, is required for active avoidance learning.

    PubMed

    Carmona, G N; Nishimura, T; Schindler, C W; Panlilio, L V; Notkins, A L

    2014-06-06

    The islet-antigens IA-2 and IA-2β are major autoantigens in type-1 diabetes and transmembrane proteins in dense core vesicles (DCV). Recently we showed that deletion of both IA-2 and IA-2β alters the secretion of hormones and neurotransmitters and impairs behavior and learning. The present study was designed to evaluate the contribution to learning of each of these genes by using single knockout (SKO) and double knockout (DKO) mice in an active avoidance test. After 5 days of training, wild-type (WT) mice showed 60-70% active avoidance responses, whereas the DKO mice showed only 10-15% active avoidance responses. The degree of active avoidance responses in the IA-2 SKO mice was similar to that of the DKO mice, but in contrast, the IA-2β SKO mice behaved like WT mice showing 60-70% active avoidance responses. Molecular studies revealed a marked decrease in the phosphorylation of the cAMP response element-binding protein (CREB) and Ca(2+)/calmodulin-dependent protein kinase II (CAMKII) in the striatum and hippocampus of the IA-2 SKO and DKO mice, but not in the IA-2β SKO mice. To evaluate the role of CREB and CAMKII in the SKO and DKO mice, GBR-12909, which selectively blocks the dopamine uptake transporter and increases CREB and CAMKII phosphorylation, was administered. GBR-12909 restored the phosphorylation of CREB and CAMKII and increased active avoidance learning in the DKO and IA-2 SKO to near the normal levels found in the WT and IA-2β SKO mice. We conclude that in the absence of the DCV protein IA-2, active avoidance learning is impaired. Published by Elsevier Ltd.

  17. Molecular layer interneurons of the cerebellum: developmental and morphological aspects.

    PubMed

    Sotelo, Constantino

    2015-10-01

    During the past 25 years, our knowledge on the development of basket and stellate cells (molecular layer interneurons [MLIs]) has completely changed, not only regarding their origin from the ventricular zone, corresponding to the primitive cerebellar neuroepithelium, instead of the external granular layer, but above all by providing an almost complete account of the genetic regulations (transcription factors and other genes) involved in their differentiation and synaptogenesis. Moreover, it has been shown that MLIs' precursors (dividing neuroblasts) and not young postmitotic neurons, as in other germinal neuroepithelia, leave the germinative zone and migrate all along a complex and lengthy path throughout the presumptive cerebellar white matter, which provides suitable niches exerting epigenetic influences on their ultimate neuronal identities. Recent studies carried out on the anatomical-functional properties of adult MLIs emphasize the importance of these interneurons in regulating PC inhibition, and point out the crucial role played by electrical synaptic transmission between MLIs as well as ephaptic interactions between them and Purkinje cells at the pinceaux level, in the regulation of this inhibition.

  18. Ia diastolic dysfunction: an echocardiographic grade.

    PubMed

    Pandit, Anil; Mookadam, Farouk; Hakim, Fayaz A; Mulroy, Eoin; Saadiq, Rayya; Doherty, Mairead; Cha, Stephen; Seward, James; Wilansky, Susan

    2015-01-01

    To demonstrate that a distinct group of patients with Grade Ia diastolic dysfunction who do not conform to present ASE/ESE diastolic grading exists. Echocardiographic and demographic data of the Grade Ia diastolic dysfunction were extracted and compared with that of Grades I and II in 515 patients. The mean of age of the cohort was 75 ± 9 years and body mass index did not differ significantly between the 3 groups (P = 0.45). Measurements of left atrial volume index (28.58 ± 7 mL/m(2) in I, 33 ± 10 mL/m(2) in Ia, and 39 ± 12 mL/m(2) in II P < 0.001), isovolumic relaxation time (IVRT) (100 ± 17 msec in I, 103 ± 21 msec in Ia, and 79 ± 15 msec in II P < 0.001), deceleration time (248 ± 52 msec in I, 263 ± 58 msec in Ia, and 217 ± 57 msec in II P < 0.001), medial E/e' (10 ± 3 in I, 18 ± 5.00 in Ia, and 22 ± 8 in II), and lateral E/e' (8 ± 3 in I, 15 ± 6 in Ia, and 18 ± 9 in II P < 0.001) were significantly different in grade Ia compared with I and II. These findings remained significant even after adjusting for age, gender, diabetes, and smoking. Patients with echocardiographic characteristics of relaxation abnormality (E/A ratio of <0.8) and elevated filling pressures (septal E/e' ≥15, lateral E/e' ≥12, average E/e' ≥13) should be graded as a separate Grade Ia group. © 2014, Wiley Periodicals, Inc.

  19. Analysis of SRM model nozzle calibration test data in support of IA12B, IA12C and IA36 space shuttle launch vehicle aerodynamics tests

    NASA Technical Reports Server (NTRS)

    Baker, L. R., Jr.; Tevepaugh, J. A.; Penny, M. M.

    1973-01-01

    Variations of nozzle performance characteristics of the model nozzles used in the Space Shuttle IA12B, IA12C, IA36 power-on launch vehicle test series are shown by comparison between experimental and analytical data. The experimental data are nozzle wall pressure distributions and schlieren photographs of the exhaust plume shapes. The exhaust plume shapes were simulated experimentally with cold flow while the analytical data were generated using a method-of-characteristics solution. Exhaust plume boundaries, boundary shockwave locations and nozzle wall pressure measurements calculated analytically agree favorably with the experimental data from the IA12C and IA36 test series. For the IA12B test series condensation was suspected in the exhaust plumes at the higher pressure ratios required to simulate the prototype plume shapes. Nozzle calibration tests for the series were conducted at pressure ratios where condensation either did not occur or if present did not produce a noticeable effect on the plume shapes. However, at the pressure ratios required in the power-on launch vehicle tests condensation probably occurs and could significantly affect the exhaust plume shapes.

  20. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex

    PubMed Central

    2010-01-01

    Neuroscience produces a vast amount of data from an enormous diversity of neurons. A neuronal classification system is essential to organize such data and the knowledge that is derived from them. Classification depends on the unequivocal identification of the features that distinguish one type of neuron from another. The problems inherent in this are particularly acute when studying cortical interneurons. To tackle this, we convened a representative group of researchers to agree on a set of terms to describe the anatomical, physiological and molecular features of GABAergic interneurons of the cerebral cortex. The resulting terminology might provide a stepping stone towards a future classification of these complex and heterogeneous cells. Consistent adoption will be important for the success of such an initiative, and we also encourage the active involvement of the broader scientific community in the dynamic evolution of this project. PMID:18568015

  1. Constraining cosmological parameter with SN Ia

    NASA Astrophysics Data System (ADS)

    Indra Putri, A. N.; Wulandari, H. R. Tri

    2016-11-01

    A type I supemovae (SN Ia) is an exploding white dwarf, whose mass exceeds Chandrasekar limit (1.44 solar mass). If a white dwarf is in a binary system, it may accrete matter from the companion, resulting in an excess mass that cannot be balanced by the pressure of degenerated electrons in the core. SNe Ia are highly luminous objects, that they are visible from very high distances. After some corrections (stretch (s), colour (c), K-corrections, etc.), the variations in the light curves of SNe Ia can be suppressed to be no more than 10%. Their high luminosity and almost uniform intrinsic brightness at the peak light, i.e. MB ∼ -19, make SNe Ia ideal standard candle. Because of their visibility from large distances, SNe Ia can be employed as a cosmological measuring tool. It was analysis of SNe Ia data that indicated for the first time, that the universe is not only expanding, but also accelerating. This work analyzed a compilation of SNe Ia data to determine several cosmological parameters (H0, Ωm, Ωa, and w). It can be concluded from the analysis, that our universe is a flat, dark energy dominated universe, and that the cosmological constant A is a suitable candidate for dark energy.

  2. Antipsychotics promote GABAergic interneuron genesis in the adult rat brain: Role of heat-shock protein production.

    PubMed

    Kaneta, Hiroo; Ukai, Wataru; Tsujino, Hanako; Furuse, Kengo; Kigawa, Yoshiyasu; Tayama, Masaya; Ishii, Takao; Hashimoto, Eri; Kawanishi, Chiaki

    2017-09-01

    Current antipsychotics reduce positive symptoms and reverse negative symptoms in conjunction with cognitive behavioral issues with the goal of restoring impaired occupational and social functioning. However, limited information is available on their influence on gliogenesis or their neurogenic properties in adult schizophrenia brains, particularly on GABAergic interneuron production. In the present study, we used young adult subventricular zone (SVZ)-derived progenitor cells expressing proteoglycan NG2 cultures to examine the oligodendrocyte and GABAergic interneuron genesis effects of several kinds of antipsychotics on changes in differentiation function induced by exposure to the NMDA receptor antagonist MK-801. We herein demonstrated that antipsychotics promoted or restored changes in the oligodendrocyte/GABAergic interneuron differentiation functions of NG2(+) cells induced by the exposure to MK-801, which was considered to be one of the drug-induced schizophrenia model. We also demonstrated that antipsychotics restored heat-shock protein (HSP) production in NG2(+) cells with differentiation impairment. The antipsychotics olanzapine, aripiprazole, and blonanserin, but not haloperidol increased HSP90 levels, which were reduced by the exposure to MK-801. Our results showed that antipsychotics, particularly those recently synthesized, exerted similar GABAergic interneuron genesis effects on NG2(+) neuronal/glial progenitor cells in the adult rat brain by increasing cellular HSP production, and also suggest that HSP90 may play a crucial role in the pathophysiology of schizophrenia and is a key target for next drug development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. DEVELOPMENTAL HYPOTHYROIDISM REDUCES PARVALBUMIN EXPRESSION IN GABAERGIC NEURONS OF CORTEX AND HIPPOCAMPUS: IMMUNOHISTOCHEMICAL FINDINGS AND FUNCTIONAL CORRELATES.

    EPA Science Inventory

    GABAergic interneurons comprise the bulk of local inhibitory neuronal circuitry in cortex and hippocampus and a subpopulation of these interneurons contain the calcium binding protein, parvalbumin (PV). A previous report indicated that severe hypothyroidism reduced PV immunoreact...

  4. Development and evaluation of a simple and effective RT-qPCR inhibitory assay for detection of the efficacy of compounds towards HIV reverse transcriptase.

    PubMed

    Marino-Merlo, Francesca; Frezza, Caterina; Papaianni, Emanuela; Valletta, Elena; Mastino, Antonio; Macchi, Beatrice

    2017-11-01

    Assessing the actual efficacy of compounds to directly inhibit HIV reverse transcriptase (RT) activity is a main goal in preclinical antiretroviral studies. Our previous studies demonstrated that the effects of inhibitor compounds towards HIV-RT could be efficiently assessed through a simple cell-free assay based on conventional reverse transcription PCR. In the present study, we describe a modified variant of our assay, termed RT real-time quantitative PCR inhibitory assay (RT-qPCR-IA), in which the ability of compounds to restrict the complementary DNA (cDNA) generation by HIV-RT using a specific RNA template is performed by the real-time technique, in order to improve both accuracy and sensitivity of the method. As specific RNA template, RNA extracted from stable transfectants ectopically expressing the herpes simplex virus 1 glycoprotein D gene was utilized. HIV-RT, of both commercial or house-made viral lysate origin, was employed for the assay. To assess the reliability of RT-qPCR-IA, we performed a comparative, quantitative analysis of the dose-dependent effect exerted by known nucleotide and non-nucleotide reverse-transcriptase inhibitors, using the SYBR Green dye chemistry as detection system. The results obtained with RT-qPCR-IA were compared to that obtained using a one-step PicoGreen technology-based commercial kit. The outcome of our study indicates that the development of the novel RT-qPCR-IA will provide rapid and accurate evaluation of the inhibitory efficacy of compounds towards HIV-RT activity. This evaluation could be very useful for large-scale screening of potential new anti-HIV drugs.

  5. GABA FUNCTION IS ALTERED FOLLOWING DEVELOPMENTAL HYPOTHYROIDISM: NEUROANATOMICAL AND NEUROPHYSIOLOGICAL EVIDENCE.

    EPA Science Inventory

    Thyroid hormone deficiency during development produces changes in the structure of neurons and glial cells and alters synaptic function in the hippocampus. GABAergic interneurons comprise the bulk of local inhibitory neuronal circuitry and a subpopulation of these interneurons ...

  6. The progenitors of supernovae Type Ia

    NASA Astrophysics Data System (ADS)

    Toonen, Silvia

    2014-09-01

    Despite the significance of Type Ia supernovae (SNeIa) in many fields in astrophysics, SNeIa lack a theoretical explanation. SNeIa are generally thought to be thermonuclear explosions of carbon/oxygen (CO) white dwarfs (WDs). The canonical scenarios involve white dwarfs reaching the Chandrasekhar mass, either by accretion from a non-degenerate companion (single-degenerate channel, SD) or by a merger of two CO WDs (double-degenerate channel, DD). The study of SNeIa progenitors is a very active field of research for binary population synthesis (BPS) studies. The strength of the BPS approach is to study the effect of uncertainties in binary evolution on the macroscopic properties of a binary population, in order to constrain binary evolutionary processes. I will discuss the expected SNeIa rate from the BPS approach and the uncertainties in their progenitor evolution, and compare with current observations. I will also discuss the results of the POPCORN project in which four BPS codes were compared to better understand the differences in the predicted SNeIa rate of the SD channel. The goal of this project is to investigate whether differences in the simulated populations are due to numerical effects or whether they can be explained by differences in the input physics. I will show which assumptions in BPS codes affect the results most and hence should be studied in more detail.

  7. Serotonin inhibits low-threshold spike interneurons in the striatum

    PubMed Central

    Cains, Sarah; Blomeley, Craig P; Bracci, Enrico

    2012-01-01

    Low-threshold spike interneurons (LTSIs) are important elements of the striatal architecture and the only known source of nitric oxide in this nucleus, but their rarity has so far prevented systematic studies. Here, we used transgenic mice in which green fluorescent protein is expressed under control of the neuropeptide Y (NPY) promoter and striatal NPY-expressing LTSIs can be easily identified, to investigate the effects of serotonin on these neurons. In sharp contrast with its excitatory action on other striatal interneurons, serotonin (30 μm) strongly inhibited LTSIs, reducing or abolishing their spontaneous firing activity and causing membrane hyperpolarisations. These hyperpolarisations persisted in the presence of tetrodotoxin, were mimicked by 5-HT2C receptor agonists and reversed by 5-HT2C antagonists. Voltage-clamp slow-ramp experiments showed that serotonin caused a strong increase in an outward current activated by depolarisations that was blocked by the specific M current blocker XE 991. In current-clamp experiments, XE 991 per se caused membrane depolarisations in LTSIs and subsequent application of serotonin (in the presence of XE 991) failed to affect these neurons. We concluded that serotonin strongly inhibits striatal LTSIs acting through postsynaptic 5-HT2C receptors and increasing an M type current. PMID:22495583

  8. Search for Type Ia supernova NUV-optical subclasses

    NASA Astrophysics Data System (ADS)

    Cinabro, David; Scolnic, Daniel; Kessler, Richard; Li, Ashley; Miller, Jake

    2017-04-01

    In response to a recently reported observation of evidence for two classes of Type Ia supernovae (SNe Ia) distinguished by their brightness in the rest-frame near-ultraviolet (NUV), we search for the phenomenon in publicly available light-curve data. We use the SNANA supernova analysis package to simulate SN Ia light curves in the Sloan Digital Sky Survey (SDSS) Supernova Search and the Supernova Legacy Survey (SNLS) with a model of two distinct ultraviolet classes of SNe Ia and a conventional model with a single broad distribution of SN-Ia ultraviolet brightnesses. We compare simulated distributions of rest-frame colours with these two models to those observed in 158 SNe Ia in the SDSS and SNLS data. The SNLS sample of 99 SNe Ia is in clearly better agreement with a model with one class of SN Ia light curves and shows no evidence for distinct NUV sub-classes. The SDSS sample of 59 SNe Ia with poorer colour resolution does not distinguish between the two models.

  9. Type Ia supernovae, standardizable candles, and gravity

    NASA Astrophysics Data System (ADS)

    Wright, Bill S.; Li, Baojiu

    2018-04-01

    Type Ia supernovae (SNe Ia) are generally accepted to act as standardizable candles, and their use in cosmology led to the first confirmation of the as yet unexplained accelerated cosmic expansion. Many of the theoretical models to explain the cosmic acceleration assume modifications to Einsteinian general relativity which accelerate the expansion, but the question of whether such modifications also affect the ability of SNe Ia to be standardizable candles has rarely been addressed. This paper is an attempt to answer this question. For this we adopt a semianalytical model to calculate SNe Ia light curves in non-standard gravity. We use this model to show that the average rescaled intrinsic peak luminosity—a quantity that is assumed to be constant with redshift in standard analyses of Type Ia supernova (SN Ia) cosmology data—depends on the strength of gravity in the supernova's local environment because the latter determines the Chandrasekhar mass—the mass of the SN Ia's white dwarf progenitor right before the explosion. This means that SNe Ia are no longer standardizable candles in scenarios where the strength of gravity evolves over time, and therefore the cosmology implied by the existing SN Ia data will be different when analysed in the context of such models. As an example, we show that the observational SN Ia cosmology data can be fitted with both a model where (ΩM,ΩΛ)=(0.62 ,0.38 ) and Newton's constant G varies as G (z )=G0(1 +z )-1/4 and the standard model where (ΩM,ΩΛ)=(0.3 ,0.7 ) and G is constant, when the Universe is assumed to be flat.

  10. Increased Cortical Inhibition in Autism-Linked Neuroligin-3R451C Mice Is Due in Part to Loss of Endocannabinoid Signaling.

    PubMed

    Speed, Haley E; Masiulis, Irene; Gibson, Jay R; Powell, Craig M

    2015-01-01

    A single, maternally inherited, X-linked point mutation leading to an arginine to cysteine substitution at amino acid 451 (R451C) of Neuroligin 3 (NLGN3R451C) is a likely cause of autism in two brothers. Knockin mice expressing the Nlgn3R451C mutation in place of wild-type Nlgn3 demonstrate increased inhibitory synaptic strength in somatosensory cortex, resulting in an excitatory/inhibitory (E/I) imbalance that is potentially relevant for autism-associated behavioral deficits characteristic of these mice. We have replicated the increase in evoked inhibitory postsynaptic currents (eIPSCs) onto layer II/III cortical pyramidal neurons. We also find that increased frequency of spontaneous mIPSCs in Nlgn3R451C mice occurs in the absence of action potential-driven transmission. This suggests the E/I imbalance is due to changes at the synapse level, as opposed to the network level. Next, we use paired whole-cell recordings in an attempt to identify specific interneuron subtypes affected by the Nlgn3R451C mutation. Curiously, we observe no change in the amplitude of cell-to-cell, unitary IPSCs (uIPSCs) from parvalbumin-positive (PV) or somatostatin-positive (SOM) interneurons onto pyramidal neurons. We also observe no change in the number or density of PV and SOM interneurons in LII/III of somatosensory cortex. This effectively rules out a role for these particular interneurons in the increased inhibitory synaptic transmission, pointing to perhaps alternative interneuron subtypes. Lastly, impaired endocannabinoid signaling has been implicated in hippocampal synaptic dysfunction in Nlgn3R451C mice, but has not been investigated at cortical synapses. We find that bath application of the CB1 antagonist, AM 251 in WT mice eliminates the Nlgn3R451C increase in eIPSC amplitude and mIPSC frequency, indicating that increased inhibitory transmission in mutant mice is due, at least in part, to a loss of endocannabinoid signaling through CB1 receptors likely acting at interneurons

  11. Increased Cortical Inhibition in Autism-Linked Neuroligin-3R451C Mice Is Due in Part to Loss of Endocannabinoid Signaling

    PubMed Central

    Speed, Haley E.; Masiulis, Irene; Gibson, Jay R.; Powell, Craig M.

    2015-01-01

    A single, maternally inherited, X-linked point mutation leading to an arginine to cysteine substitution at amino acid 451 (R451C) of Neuroligin 3 (NLGN3R451C) is a likely cause of autism in two brothers. Knockin mice expressing the Nlgn3R451C mutation in place of wild-type Nlgn3 demonstrate increased inhibitory synaptic strength in somatosensory cortex, resulting in an excitatory/inhibitory (E/I) imbalance that is potentially relevant for autism-associated behavioral deficits characteristic of these mice. We have replicated the increase in evoked inhibitory postsynaptic currents (eIPSCs) onto layer II/III cortical pyramidal neurons. We also find that increased frequency of spontaneous mIPSCs in Nlgn3R451C mice occurs in the absence of action potential-driven transmission. This suggests the E/I imbalance is due to changes at the synapse level, as opposed to the network level. Next, we use paired whole-cell recordings in an attempt to identify specific interneuron subtypes affected by the Nlgn3R451C mutation. Curiously, we observe no change in the amplitude of cell-to-cell, unitary IPSCs (uIPSCs) from parvalbumin-positive (PV) or somatostatin-positive (SOM) interneurons onto pyramidal neurons. We also observe no change in the number or density of PV and SOM interneurons in LII/III of somatosensory cortex. This effectively rules out a role for these particular interneurons in the increased inhibitory synaptic transmission, pointing to perhaps alternative interneuron subtypes. Lastly, impaired endocannabinoid signaling has been implicated in hippocampal synaptic dysfunction in Nlgn3R451C mice, but has not been investigated at cortical synapses. We find that bath application of the CB1 antagonist, AM 251 in WT mice eliminates the Nlgn3R451C increase in eIPSC amplitude and mIPSC frequency, indicating that increased inhibitory transmission in mutant mice is due, at least in part, to a loss of endocannabinoid signaling through CB1 receptors likely acting at interneurons

  12. A different class of Ia supernovae?

    NASA Astrophysics Data System (ADS)

    Horesh, Assaf; Hancock, Paul; Kulkarni, S. R.; Strom, Allison; Gal-Yam, Avishay; Patat, Ferdinando; Goobar, Ariel; Sullivan, Mark; Sternberg, Assaf; Maguire, Kate; Cao, Yi

    2014-04-01

    Type Ia supernovae (SNe Ia) have become well known due to their use as distance estimators for cosmology, yet the nature of their progenitor systems is a matter of hot debate. The two main models are single-degenerate systems (SD) where a white dwarf accretes material from a main sequence or giant companion, and a double-degenerate (DD) merger of two white dwarf stars. Several recent publications have placed stringent upper limits on predicted signatures of SD systems, suggesting some individual events are more likely to be DD explosions. At the same time, other papers show direct evidence for circumstellar material (CSM) around other SNe Ia, favoring SD origins for these explosions. The emerging picture is of a non-uniform population of SNe Ia, arising from a mix of both the SD and DD channels. Here, we propose a focused radio program targeted only at rare nearby SNe Ia that show signatures of CSM (likely SD origin) in their optical spectra. The detection of even one such CSM-rich SN Ia event would be a breakthrough discovery. We provide estimates showing that such detection is possible, and motivate this focused approach over previous "blind" large programs.

  13. [Peptidergic modulation of the hippocampus synaptic activity].

    PubMed

    Skrebitskiĭ, V G; Kondratenko, R V; Povarov, I S; Dereviagin, V I

    2011-11-01

    Effects of two newly synthesized nootropic and anxiolytic dipeptides: Noopept and Selank on inhibitory synaptic transmission in hippocampal CA1 pyramidal cells were investigated using patch-clamp technique in whole-cell configuration. Bath application of Noopept (1 microM) or Selank (2 microM) significantly increased the frequency of spike-dependent spontaneous m1PSCs, whereas spike-independent mlPSCs remained unchanged. It was suggested that both peptides mediated their effect sue to activation of inhibitory interneurons terminating on CA1 pyramidal cells. Results of current clamp recording of inhibitory interneurons residing in stratum radiatum confirmed this suggestion, at least for Noonent.

  14. Oscillatory Synchronous Inhibition in the Basolateral Amygdala and its Primary Dependence on NR2A-containing NMDA Receptors.

    PubMed

    Aroniadou-Anderjaska, Vassiliki; Pidoplichko, Volodymyr I; Figueiredo, Taiza H; Braga, Maria F M

    2018-03-01

    Synchronous, rhythmic firing of GABAergic interneurons is a fundamental mechanism underlying the generation of brain oscillations, and evidence suggests that NMDA receptors (NMDARs) play a key role in oscillatory activity by regulating the activity of interneurons. Consistent with this, derangement of brain rhythms in certain neuropsychiatric disorders, notably schizophrenia and autism, is associated with NMDAR hypofunction and loss of inhibitory interneurons. In the basolateral amygdala (BLA)-dysfunction of which is involved in a host of neuropsychiatric diseases-, principal neurons display spontaneous, rhythmic "bursts" of inhibitory activity, which could potentially be involved in the orchestration of oscillations in the BLA network; here, we investigated the role of NMDARs in these inhibitory oscillations. Rhythmic bursts of spontaneous IPSCs (0.5 Hz average burst frequency) recorded from rat BLA principal cells were blocked or significantly suppressed by D-AP5, and could be driven by NMDAR activation alone. BLA interneurons generated spontaneous bursts of suprathreshold EPSCs at a similar frequency, which were also blocked or reduced by D-AP5. PEAQX (GluN2A-NMDAR antagonist; 0.4 μM) or Ro-25-6981 (GluN2B-NMDAR antagonist; 5 μM) suppressed the IPSC and EPSC bursts; suppression by PEAQX was significantly greater than that by Ro-25-6981. Immunohistochemical labeling revealed the presence of both GluN2A- and GluN2B-NMDARs on GABAergic BLA interneurons, while, functionally, GluN2A-NMDARs have the dominant role, as suggested by a greater reduction of NMDA-evoked currents by PEAQX versus Ro-25-6981. Entrainment of BLA principal neurons in an oscillatory generation of inhibitory activity depends primarily on activation of GluN2A-NMDARs, and interneuronal GluN2A-NMDARs may play a significant role. Published by Elsevier Ltd.

  15. A Computational Model of How Cholinergic Interneurons Protect Striatal-Dependent Learning

    ERIC Educational Resources Information Center

    Ashby, F. Gregory; Crossley, Matthew J.

    2011-01-01

    An essential component of skill acquisition is learning the environmental conditions in which that skill is relevant. This article proposes and tests a neurobiologically detailed theory of how such learning is mediated. The theory assumes that a key component of this learning is provided by the cholinergic interneurons in the striatum known as…

  16. Synchronous inhibitory potentials precede seizure-like events in acute models of focal limbic seizures.

    PubMed

    Uva, Laura; Breschi, Gian Luca; Gnatkovsky, Vadym; Taverna, Stefano; de Curtis, Marco

    2015-02-18

    Interictal spikes in models of focal seizures and epilepsies are sustained by the synchronous activation of glutamatergic and GABAergic networks. The nature of population spikes associated with seizure initiation (pre-ictal spikes; PSs) is still undetermined. We analyzed the networks involved in the generation of both interictal and PSs in acute models of limbic cortex ictogenesis induced by pharmacological manipulations. Simultaneous extracellular and intracellular recordings from both principal cells and interneurons were performed in the medial entorhinal cortex of the in vitro isolated guinea pig brain during focal interictal and ictal discharges induced in the limbic network by intracortical and brief arterial infusions of either bicuculline methiodide (BMI) or 4-aminopyridine (4AP). Local application of BMI in the entorhinal cortex did not induce seizure-like events (SLEs), but did generate periodic interictal spikes sensitive to the glutamatergic non-NMDA receptor antagonist DNQX. Unlike local applications, arterial perfusion of either BMI or 4AP induced focal limbic SLEs. PSs just ahead of SLE were associated with hyperpolarizing potentials coupled with a complete blockade of firing in principal cells and burst discharges in putative interneurons. Interictal population spikes recorded from principal neurons between two SLEs correlated with a depolarizing potential. We demonstrate in two models of acute limbic SLE that PS events are different from interictal spikes and are sustained by synchronous activation of inhibitory networks. Our findings support a prominent role of synchronous network inhibition in the initiation of a focal seizure. Copyright © 2015 the authors 0270-6474/15/353048-08$15.00/0.

  17. Dizocilpine (MK-801) induces distinct changes of N-methyl-D-aspartic acid receptor subunits in parvalbumin-containing interneurons in young adult rat prefrontal cortex.

    PubMed

    Xi, Dong; Zhang, Wentong; Wang, Huai-Xing; Stradtman, George G; Gao, Wen-Jun

    2009-11-01

    N-methyl-D-aspartic acid receptor (NMDAR) hypofunction has long been implicated in schizophrenia and NMDARs on gamma-aminobutyric acid (GABA)ergic interneurons are proposed to play an essential role in the pathogenesis. However, controversial results have been reported regarding the regulation of NMDAR expression, and direct evidence of how NMDAR antagonists act on specific subpopulations of prefrontal interneurons is missing. We investigated the effects of the NMDAR antagonist dizocilpine (MK-801) on the expression of NMDAR subtypes in the identified interneurons in young adult rat prefrontal cortex (PFC) by using laser microdissection and real-time polymerase chain reaction, combined with Western blotting and immunofluorescent staining. We found that MK-801 induced distinct changes of NMDAR subunits in the parvalbumin-immunoreactive (PV-ir) interneurons vs. pyramidal neurons in the PFC circuitry. The messenger RNA (mRNA) expression of all NMDAR subtypes, including NR1 and NR2A to 2D, exhibited inverted-U dose-dependent changes in response to MK-801 treatment in the PFC. In contrast, subunit mRNAs of NMDARs in PV-ir interneurons were significantly down-regulated at low doses, unaltered at medium doses, and significantly decreased again at high doses, suggesting a biphasic dose response to MK-801. The differential effects of MK-801 in mRNA expression of NMDAR subunits were consistent with the protein expression of NR2A and NR2B subunits revealed with Western blotting and double immunofluorescent staining. These results suggest that PV-containing interneurons in the PFC exhibit a distinct responsiveness to NMDAR antagonism and that NMDA antagonist can differentially and dose-dependently regulate the functions of pyramidal neurons and GABAergic interneurons in the prefrontal cortical circuitry.

  18. Berkeley Supernova Ia Program - I. Observations, data reduction and spectroscopic sample of 582 low-redshift Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Silverman, Jeffrey M.; Foley, Ryan J.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Barth, Aaron J.; Chornock, Ryan; Griffith, Christopher V.; Kong, Jason J.; Lee, Nicholas; Leonard, Douglas C.; Matheson, Thomas; Miller, Emily G.; Steele, Thea N.; Barris, Brian J.; Bloom, Joshua S.; Cobb, Bethany E.; Coil, Alison L.; Desroches, Louis-Benoit; Gates, Elinor L.; Ho, Luis C.; Jha, Saurabh W.; Kandrashoff, Michael T.; Li, Weidong; Mandel, Kaisey S.; Modjaz, Maryam; Moore, Matthew R.; Mostardi, Robin E.; Papenkova, Marina S.; Park, Sung; Perley, Daniel A.; Poznanski, Dovi; Reuter, Cassie A.; Scala, James; Serduke, Franklin J. D.; Shields, Joseph C.; Swift, Brandon J.; Tonry, John L.; Van Dyk, Schuyler D.; Wang, Xiaofeng; Wong, Diane S.

    2012-09-01

    In this first paper in a series, we present 1298 low-redshift (z ≲ 0.2) optical spectra of 582 Type Ia supernovae (SNe Ia) observed from 1989 to 2008 as part of the Berkeley Supernova Ia Program (BSNIP). 584 spectra of 199 SNe Ia have well-calibrated light curves with measured distance moduli, and many of the spectra have been corrected for host-galaxy contamination. Most of the data were obtained using the Kast double spectrograph mounted on the Shane 3 m telescope at Lick Observatory and have a typical wavelength range of 3300-10 400 Å, roughly twice as wide as spectra from most previously published data sets. We present our observing and reduction procedures, and we describe the resulting SN Database, which will be an online, public, searchable data base containing all of our fully reduced spectra and companion photometry. In addition, we discuss our spectral classification scheme (using the SuperNova IDentification code, SNID; Blondin & Tonry), utilizing our newly constructed set of SNID spectral templates. These templates allow us to accurately classify our entire data set, and by doing so we are able to reclassify a handful of objects as bona fide SNe Ia and a few other objects as members of some of the peculiar SN Ia subtypes. In fact, our data set includes spectra of nearly 90 spectroscopically peculiar SNe Ia. We also present spectroscopic host-galaxy redshifts of some SNe Ia where these values were previously unknown. The sheer size of the BSNIP data set and the consistency of our observation and reduction methods make this sample unique among all other published SN Ia data sets and complementary in many ways to the large, low-redshift SN Ia spectra presented by Matheson et al. and Blondin et al. In other BSNIP papers in this series, we use these data to examine the relationships between spectroscopic characteristics and various observables such as photometric and host-galaxy properties.

  19. Type Ia supernovae as standard candles

    NASA Technical Reports Server (NTRS)

    Branch, David; Miller, Douglas L.

    1993-01-01

    The distribution of absolute blue magnitudes among Type Ia supernovae (SNs Ia) is studied. Supernovae were used with well determined apparent magnitudes at maximum light and parent galaxies with relative distances determined by the Tully-Fisher or Dn - sigma techniques. The mean absolute blue magnitude is given and the observational dispersion is only sigma(MB) 0.36, comparable to the expected combined errors in distance, apparent magnitude, and extinction. The mean (B-V) color at maximum light is 0.03 +/- 0.04, with a dispersion sigma(B-V) = 0.20. The Cepheid-based distance to IC 4182, the parent galaxy of the normal and unextinguished Type Ia SN 1937C, leads to a Hubble constant of H(0) + 51 +/- 12 km/s Mpc. The existence of a few SNs Ia that appear to have been reddened and dimmed by dust in their parent galaxies does not seriously compromise the use of SNs Ia as distance indicators.

  20. Mechanisms of inhibition within the telencephalon: "where the wild things are".

    PubMed

    Fishell, Gord; Rudy, Bernardo

    2011-01-01

    In this review, we first provide a historical perspective of inhibitory signaling from the discovery of inhibition through to our present understanding of the diversity and mechanisms by which GABAergic interneuron populations function in different parts of the telencephalon. This is followed by a summary of the mechanisms of inhibition in the CNS. With this as a starting point, we provide an overview describing the variations in the subtypes and origins of inhibitory interneurons within the pallial and subpallial divisions of the telencephalon, with a focus on the hippocampus, somatosensory, paleo/piriform cortex, striatum, and various amygdala nuclei. Strikingly, we observe that marked variations exist in the origin and numerical balance between GABAergic interneurons and the principal cell populations in distinct regions of the telencephalon. Finally we speculate regarding the attractiveness and challenges of establishing a unifying nomenclature to describe inhibitory neuron diversity throughout the telencephalon.

  1. Cholinergic Interneurons Underlie Spontaneous Dopamine Release in Nucleus Accumbens

    PubMed Central

    2017-01-01

    The release of dopamine from terminals in the NAc is regulated by a number of factors, including voltage-gated ion channels, D2-autoreceptors, and nAChRs. Cholinergic interneurons (CINs) drive dopamine release through activation of nAChRs on dopamine terminals. Using cyclic voltammetry in mouse brain slices, nAChR-dependent spontaneous dopamine transients and the mechanisms underlying the origin were examined in the NAc. Spontaneous events were infrequent (0.3 per minute), but the rate and amplitude were increased after blocking Kv channels with 4-aminopyridine. Although the firing frequency of CINs was increased by blocking glutamate reuptake with TBOA and the Sk blocker apamin, only 4-aminopyridine increased the frequency of dopamine transients. In contrast, inhibition of CIN firing with the μ/δ selective opioid [Met5]enkephalin (1 μm) decreased spontaneous dopamine transients. Cocaine increased the rate and amplitude of dopamine transients, suggesting that the activity of the dopamine transporter limits the detection of these events. In the presence of cocaine, the rate of spontaneous dopamine transients was further increased after blocking D2-autoreceptors. Blockade of muscarinic receptors had no effect on evoked dopamine release, suggesting that feedback inhibition of acetylcholine release was not involved. Thus, although spontaneous dopamine transients are reliant on nAChRs, the frequency was not strictly governed by the activity of CINs. The increase in frequency of spontaneous dopamine transients induced by cocaine was not due to an increase in cholinergic tone and is likely a product of an increase in detection resulting from decreased dopamine reuptake. SIGNIFICANCE STATEMENT The actions of dopamine in the NAc are thought to be responsible for endogenous reward and the reinforcing properties of drugs of abuse, such as psychostimulants. The present work examines the mechanisms underlying nAChR-induced spontaneous dopamine release. This study

  2. Reduced Glutamate Decarboxylase 65 Protein Within Primary Auditory Cortex Inhibitory Boutons in Schizophrenia

    PubMed Central

    Moyer, Caitlin E.; Delevich, Kristen M.; Fish, Kenneth N.; Asafu-Adjei, Josephine K.; Sampson, Allan R.; Dorph-Petersen, Karl-Anton; Lewis, David A.; Sweet, Robert A.

    2012-01-01

    Background Schizophrenia is associated with perceptual and physiological auditory processing impairments that may result from primary auditory cortex excitatory and inhibitory circuit pathology. High-frequency oscillations are important for auditory function and are often reported to be disrupted in schizophrenia. These oscillations may, in part, depend on upregulation of gamma-aminobutyric acid synthesis by glutamate decarboxylase 65 (GAD65) in response to high interneuron firing rates. It is not known whether levels of GAD65 protein or GAD65-expressing boutons are altered in schizophrenia. Methods We studied two cohorts of subjects with schizophrenia and matched control subjects, comprising 27 pairs of subjects. Relative fluorescence intensity, density, volume, and number of GAD65-immunoreactive boutons in primary auditory cortex were measured using quantitative confocal microscopy and stereologic sampling methods. Bouton fluorescence intensities were used to compare the relative expression of GAD65 protein within boutons between diagnostic groups. Additionally, we assessed the correlation between previously measured dendritic spine densities and GAD65-immunoreactive bouton fluorescence intensities. Results GAD65-immunoreactive bouton fluorescence intensity was reduced by 40% in subjects with schizophrenia and was correlated with previously measured reduced spine density. The reduction was greater in subjects who were not living independently at time of death. In contrast, GAD65-immunoreactive bouton density and number were not altered in deep layer 3 of primary auditory cortex of subjects with schizophrenia. Conclusions Decreased expression of GAD65 protein within inhibitory boutons could contribute to auditory impairments in schizophrenia. The correlated reductions in dendritic spines and GAD65 protein suggest a relationship between inhibitory and excitatory synapse pathology in primary auditory cortex. PMID:22624794

  3. Coordination of locomotor and cardiorespiratory networks of Lymnaea stagnalis by a pair of identified interneurones.

    PubMed

    Syed, N I; Winlow, W

    1991-07-01

    1. The morphology and electrophysiology of a newly identified bilateral pair of interneurones in the central nervous system of the pulmonate pond snail Lymnaea stagnalis is described. 2. These interneurones, identified as left and right pedal dorsal 11 (L/RPeD11), are electrically coupled to each other as well as to a large number of foot and body wall motoneurones, forming a fast-acting neural network which coordinates the activities of foot and body wall muscles. 3. The left and right sides of the body wall of Lymnaea are innervated by left and right cerebral A cluster neurones. Although these motoneurones have only ipsilateral projections, they are indirectly electrically coupled to their contralateral homologues via their connections with L/RPeD11. Similarly, the activities of left and right pedal G cluster neurones, which are known to be involved in locomotion, are also coordinated by L/RPeD11. 4. Selective ablation of both neurones PeD11 results in the loss of coordination between the bilateral cerebral A clusters. 5. Interneurones L/RPeD11 are multifunctional. In addition to coordinating motoneuronal activity, they make chemical excitatory connections with heart motoneurones. They also synapse upon respiratory motoneurones, hyperpolarizing those involved in pneumostome opening (expiration) and depolarizing those involved in pneumostome closure (inspiration). 6. An identified respiratory interneurone involved in pneumostome closure (visceral dorsal 4) inhibits L/RPeD11 together with all their electrically coupled follower cells. 7. Both L/RPeD11 have strong excitatory effects on another pair of electrically coupled neurones, visceral dorsal 1 and right parietal dorsal 2, which have previously been shown to be sensitive to changes in the partial pressure of environmental oxygen (PO2). 8. Although L/RPeD11 participate in whole-body withdrawal responses, electrical stimulation applied directly to these neurones was not sufficient to induce this behaviour.

  4. Slow synaptic transmission mediated by TRPV1 channels in CA3 interneurons of the hippocampus.

    PubMed

    Eguchi, Noriomi; Hishimoto, Akitoyo; Sora, Ichiro; Mori, Masahiro

    2016-03-11

    Metabotropic glutamate receptors (mGluRs) modulate various neuronal functions in the central nervous system. Many studies reported that mGluRs have linkages to neuronal disorders such as schizophrenia and autism related disorders, indicating that mGluRs are involved in critical functions of the neuronal circuits. To study this possibility further, we recorded mGluR-induced synaptic responses in the interneurons of the CA3 stratum radiatum using rat hippocampal organotypic slice cultures. Electrical stimulation in the CA3 pyramidal cell layer evoked a slow inward current in the interneurons at a holding potential of -70mV in the presence of antagonists for AMPA/kainate receptors, NMDA receptors, GABAA receptors and GABAB receptors. The slow inward current was blocked in the absence of extracellular calcium, suggesting that this was a synaptic response. The slow excitatory postsynaptic current (EPSC) reversed near 0mV, reflecting an increase in a non-selective cationic conductance. The slow EPSC is mediated by group I mGluRs, as it was blocked by AP3, a group I mGluR antagonist. Neither a calcium chelator BAPTA nor a phospholipase C (PLC) inhibitor U73122 affected the slow EPSC. La(3+), a general TRP channel blocker or capsazepine, a selective TRPV1 channel antagonist significantly suppressed the slow EPSC. DHPG, a selective group I mGluRs agonist induced an inward current, which was suppressed by capsazepine. These results indicate that in the interneurons of the hippocampal CA3 stratum radiatum group I mGluRs activate TRPV1 channels independently of PLC and intracellular Ca(2+), resulting in the slow EPSC in the interneurons. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Mass-accreting white dwarfs and type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Wang, Bo

    2018-05-01

    Type Ia supernovae (SNe Ia) play a prominent role in understanding the evolution of the Universe. They are thought to be thermonuclear explosions of mass-accreting carbon-oxygen white dwarfs (CO WDs) in binaries, although the mass donors of the accreting WDs are still not well determined. In this article, I review recent studies on mass-accreting WDs, including H- and He-accreting WDs. I also review currently most studied progenitor models of SNe Ia, i.e., the single-degenerate model (including the WD+MS channel, the WD+RG channel and the WD+He star channel), the double-degenerate model (including the violent merger scenario) and the sub-Chandrasekhar mass model. Recent progress on these progenitor models is discussed, including the initial parameter space for producing SNe Ia, the binary evolutionary paths to SNe Ia, the progenitor candidates for SNe Ia, the possible surviving companion stars of SNe Ia, some observational constraints, etc. Some other potential progenitor models of SNe Ia are also summarized, including the hybrid CONe WD model, the core-degenerate model, the double WD collision model, the spin-up/spin-down model and the model of WDs near black holes. To date, it seems that two or more progenitor models are needed to explain the observed diversity among SNe Ia.

  6. The Evolution of the Type Ia Supernova Luminosity Function

    NASA Astrophysics Data System (ADS)

    Shen, Ken J.; Toonen, Silvia; Graur, Or

    2017-12-01

    Type Ia supernovae (SNe Ia) exhibit a wide diversity of peak luminosities and light curve shapes: the faintest SNe Ia are 10 times less luminous and evolve more rapidly than the brightest SNe Ia. Their differing characteristics also extend to their stellar age distributions, with fainter SNe Ia preferentially occurring in old stellar populations and vice versa. In this Letter, we quantify this SN Ia luminosity–stellar age connection using data from the Lick Observatory Supernova Search (LOSS). Our binary population synthesis calculations agree qualitatively with the observed trend in the > 1 {Gyr} old populations probed by LOSS if the majority of SNe Ia arise from prompt detonations of sub-Chandrasekhar-mass white dwarfs (WDs) in double WD systems. Under appropriate assumptions, we show that double WD systems with less massive primaries, which yield fainter SNe Ia, interact and explode at older ages than those with more massive primaries. We find that prompt detonations in double WD systems are capable of reproducing the observed evolution of the SN Ia luminosity function, a constraint that any SN Ia progenitor scenario must confront.

  7. Enhancement of Inhibitory Avoidance and Conditioned Taste Aversion Memory with Insular Cortex Infusions of 8-Br-cAMP: Involvement of the Basolateral Amygdala

    ERIC Educational Resources Information Center

    Miranda, Maria I.; McGaugh, James L.

    2004-01-01

    There is considerable evidence that in rats, the insular cortex (IC) and amygdala are involved in the learning and memory of aversively motivated tasks. The present experiments examined the effects of 8-Br-cAMP, an analog of cAMP, and oxotremorine, a muscarinic agonist, infused into the IC after inhibitory avoidance (IA) training and during the…

  8. Graphene Oxide Dysregulates Neuroligin/NLG-1-Mediated Molecular Signaling in Interneurons in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Chen, He; Li, Huirong; Wang, Dayong

    2017-01-01

    Graphene oxide (GO) can be potentially used in many medical and industrial fields. Using assay system of Caenorhabditis elegans, we identified the NLG-1/Neuroligin-mediated neuronal signaling dysregulated by GO exposure. In nematodes, GO exposure significantly decreased the expression of NLG-1, a postsynaptic cell adhesion protein. Loss-of-function mutation of nlg-1 gene resulted in a susceptible property of nematodes to GO toxicity. Rescue experiments suggested that NLG-1 could act in AIY interneurons to regulate the response to GO exposure. In the AIY interneurons, PKC-1, a serine/threonine protein kinase C (PKC) protein, was identified as the downstream target for NLG-1 in the regulation of response to GO exposure. LIN-45, a Raf protein in ERK signaling pathway, was further identified as the downstream target for PKC-1 in the regulation of response to GO exposure. Therefore, GO may dysregulate NLG-1-mediated molecular signaling in the interneurons, and a neuronal signaling cascade of NLG-1-PKC-1-LIN-45 was raised to be required for the control of response to GO exposure. More importantly, intestinal RNAi knockdown of daf-16 gene encoding a FOXO transcriptional factor in insulin signaling pathway suppressed the resistant property of nematodes overexpressing NLG-1 to GO toxicity, suggesting the possible link between neuronal NLG-1 signaling and intestinal insulin signaling in the regulation of response to GO exposure.

  9. Short-Term Exposure to Enriched Environment in Adult Rats Restores MK-801-Induced Cognitive Deficits and GABAergic Interneuron Immunoreactivity Loss.

    PubMed

    Murueta-Goyena, Ane; Ortuzar, Naiara; Gargiulo, Pascual Ángel; Lafuente, José Vicente; Bengoetxea, Harkaitz

    2018-01-01

    Perinatal injections of N-methyl-D-aspartate (NMDA) receptor antagonist in rodents emulate some cognitive impairments and neurochemical alterations, such as decreased GABAergic (gamma aminobutyric acid) interneuron immunoreactivity, also found in schizophrenia. These features are pervasive, and developing neuroprotective or neurorestorative strategies is of special interest. In this work, we aimed to investigate if a short exposure to enriched environment (EE) in early adulthood (P55-P73) was an effective strategy to improve cognitive dysfunction and to restore interneuron expression in medial prefrontal cortex (mPFC) and hippocampus (HPC). For that purpose, we administered MK-801 intraperitoneally to Long Evans rats from postnatal days 10 to 20. Twenty-four hours after the last injection, MK-801 produced a transient decrease in spontaneous motor activity and exploration, but those abnormalities were absent at P24 and P55. The open field test on P73 manifested that EE reduced anxiety-like behavior. In addition, MK-801-treated rats showed cognitive impairment in novel object recognition test that was reversed by EE. We quantified different interneuron populations based on their calcium-binding protein expression (parvalbumin, calretinin, and calbindin), glutamic acid decarboxylase 67, and neuronal nuclei-positive cells by means of unbiased stereology and found that EE enhanced interneuron immunoreactivity up to normal values in MK-801-treated rats. Our results demonstrate that a timely intervention with EE is a powerful tool to reverse long-lasting changes in cognition and neurochemical markers of interneurons in an animal model of schizophrenia.

  10. Cloud Infrastructure & Applications - CloudIA

    NASA Astrophysics Data System (ADS)

    Sulistio, Anthony; Reich, Christoph; Doelitzscher, Frank

    The idea behind Cloud Computing is to deliver Infrastructure-as-a-Services and Software-as-a-Service over the Internet on an easy pay-per-use business model. To harness the potentials of Cloud Computing for e-Learning and research purposes, and to small- and medium-sized enterprises, the Hochschule Furtwangen University establishes a new project, called Cloud Infrastructure & Applications (CloudIA). The CloudIA project is a market-oriented cloud infrastructure that leverages different virtualization technologies, by supporting Service-Level Agreements for various service offerings. This paper describes the CloudIA project in details and mentions our early experiences in building a private cloud using an existing infrastructure.

  11. A Reorganized GABAergic Circuit in a Model of Epilepsy: Evidence from Optogenetic Labeling and Stimulation of Somatostatin Interneurons

    PubMed Central

    Peng, Zechun; Zhang, Nianhui; Wei, Weizheng; Huang, Christine S.; Cetina, Yliana; Otis, Thomas S.

    2013-01-01

    Axonal sprouting of excitatory neurons is frequently observed in temporal lobe epilepsy, but the extent to which inhibitory interneurons undergo similar axonal reorganization remains unclear. The goal of this study was to determine whether somatostatin (SOM)-expressing neurons in stratum (s.) oriens of the hippocampus exhibit axonal sprouting beyond their normal territory and innervate granule cells of the dentate gyrus in a pilocarpine model of epilepsy. To obtain selective labeling of SOM-expressing neurons in s. oriens, a Cre recombinase-dependent construct for channelrhodopsin2 fused to enhanced yellow fluorescent protein (ChR2-eYFP) was virally delivered to this region in SOM-Cre mice. In control mice, labeled axons were restricted primarily to s. lacunosum-moleculare. However, in pilocarpine-treated animals, a rich plexus of ChR2-eYFP-labeled fibers and boutons extended into the dentate molecular layer. Electron microscopy with immunogold labeling demonstrated labeled axon terminals that formed symmetric synapses on dendritic profiles in this region, consistent with innervation of granule cells. Patterned illumination of ChR2-labeled fibers in s. lacunosum-moleculare of CA1 and the dentate molecular layer elicited GABAergic inhibitory responses in dentate granule cells in pilocarpine-treated mice but not in controls. Similar optical stimulation in the dentate hilus evoked no significant responses in granule cells of either group of mice. These findings indicate that under pathological conditions, SOM/GABAergic neurons can undergo substantial axonal reorganization beyond their normal territory and establish aberrant synaptic connections. Such reorganized circuitry could contribute to functional deficits in inhibition in epilepsy, despite the presence of numerous GABAergic terminals in the region. PMID:24005292

  12. Identification of EhTIF-IA: The putative E. histolytica orthologue of the human ribosomal RNA transcription initiation factor-IA.

    PubMed

    Srivastava, Ankita; Bhattacharya, Alok; Bhattacharya, Sudha; Jhingan, Gagan Deep

    2016-03-01

    Initiation of rDNA transcription requires the assembly of a specific multi-protein complex at the rDNA promoter containing the RNA Pol I with auxiliary factors. One of these factors is known as Rrn3P in yeast and Transcription Initiation Factor IA (TIF-IA) in mammals. Rrn3p/TIF-IA serves as a bridge between RNA Pol I and the pre-initiation complex at the promoter. It is phosphorylated at multiple sites and is involved in regulation of rDNA transcription in a growth-dependent manner. In the early branching parasitic protist Entamoeba histolytica, the rRNA genes are present exclusively on circular extra chromosomal plasmids. The protein factors involved in regulation of rDNA transcription in E. histolytica are not known. We have identified the E. histolytica equivalent of TIF-1A (EhTIF-IA) by homology search within the database and was further cloned and expressed. Immuno-localization studies showed that EhTIF-IA co-localized partially with fibrillarin in the peripherally localized nucleolus. EhTIF-IA was shown to interact with the RNA Pol I-specific subunit RPA12 both in vivo and in vitro. Mass spectroscopy data identified RNA Pol I-specific subunits and other nucleolar proteins to be the interacting partners of EhTIF-IA. Our study demonstrates for the first time a conserved putative RNA Pol I transcription factor TIF-IA in E. histolytica.

  13. Physiological and morphological characterization of local interneurons in the Drosophila antennal lobe.

    PubMed

    Seki, Yoichi; Rybak, Jürgen; Wicher, Dieter; Sachse, Silke; Hansson, Bill S

    2010-08-01

    The Drosophila antennal lobe (AL) has become an excellent model for studying early olfactory processing mechanisms. Local interneurons (LNs) connect a large number of glomeruli and are ideally positioned to increase computational capabilities of odor information processing in the AL. Although the neural circuit of the Drosophila AL has been intensively studied at both the input and the output level, the internal circuit is not yet well understood. An unambiguous characterization of LNs is essential to remedy this lack of knowledge. We used whole cell patch-clamp recordings and characterized four classes of LNs in detail using electrophysiological and morphological properties at the single neuron level. Each class of LN displayed unique characteristics in intrinsic electrophysiological properties, showing differences in firing patterns, degree of spike adaptation, and amplitude of spike afterhyperpolarization. Notably, one class of LNs had characteristic burst firing properties, whereas the others were tonically active. Morphologically, neurons from three classes innervated almost all glomeruli, while LNs from one class innervated a specific subpopulation of glomeruli. Three-dimensional reconstruction analyses revealed general characteristics of LN morphology and further differences in dendritic density and distribution within specific glomeruli between the different classes of LNs. Additionally, we found that LNs labeled by a specific enhancer trap line (GAL4-Krasavietz), which had previously been reported as cholinergic LNs, were mostly GABAergic. The current study provides a systematic characterization of olfactory LNs in Drosophila and demonstrates that a variety of inhibitory LNs, characterized by class-specific electrophysiological and morphological properties, construct the neural circuit of the AL.

  14. Parvalbumin interneurons constrain the size of the lateral amygdala engram.

    PubMed

    Morrison, Dano J; Rashid, Asim J; Yiu, Adelaide P; Yan, Chen; Frankland, Paul W; Josselyn, Sheena A

    2016-11-01

    Memories are thought to be represented by discrete physiological changes in the brain, collectively referred to as an engram, that allow patterns of activity present during learning to be reactivated in the future. During the formation of a conditioned fear memory, a subset of principal (excitatory) neurons in the lateral amygdala (LA) are allocated to a neuronal ensemble that encodes an association between an initially neutral stimulus and a threatening aversive stimulus. Previous experimental and computational work suggests that this subset consists of only a small proportion of all LA neurons, and that this proportion remains constant across different memories. Here we examine the mechanisms that contribute to the stability of the size of the LA component of an engram supporting a fear memory. Visualizing expression of the activity-dependent gene Arc following memory retrieval to identify neurons allocated to an engram, we first show that the overall size of the LA engram remains constant across conditions of different memory strength. That is, the strength of a memory was not correlated with the number of LA neurons allocated to the engram supporting that memory. We then examine potential mechanisms constraining the size of the LA engram by expressing inhibitory DREADDS (designer receptors exclusively activated by designer drugs) in parvalbumin-positive (PV + ) interneurons of the amygdala. We find that silencing PV + neurons during conditioning increases the size of the engram, especially in the dorsal subnucleus of the LA. These results confirm predictions from modeling studies regarding the role of inhibition in shaping the size of neuronal memory ensembles and provide additional support for the idea that neurons in the LA are sparsely allocated to the engram based on relative neuronal excitability. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Genetic dissection of GABAergic neural circuits in mouse neocortex

    PubMed Central

    Taniguchi, Hiroki

    2014-01-01

    Diverse and flexible cortical functions rely on the ability of neural circuits to perform multiple types of neuronal computations. GABAergic inhibitory interneurons significantly contribute to this task by regulating the balance of activity, synaptic integration, spiking, synchrony, and oscillation in a neural ensemble. GABAergic interneurons display a high degree of cellular diversity in morphology, physiology, connectivity, and gene expression. A considerable number of subtypes of GABAergic interneurons diversify modes of cortical inhibition, enabling various types of information processing in the cortex. Thus, comprehensively understanding fate specification, circuit assembly, and physiological function of GABAergic interneurons is a key to elucidate the principles of cortical wiring and function. Recent advances in genetically encoded molecular tools have made a breakthrough to systematically study cortical circuitry at the molecular, cellular, circuit, and whole animal levels. However, the biggest obstacle to fully applying the power of these to analysis of GABAergic circuits was that there were no efficient and reliable methods to express them in subtypes of GABAergic interneurons. Here, I first summarize cortical interneuron diversity and current understanding of mechanisms, by which distinct classes of GABAergic interneurons are generated. I then review recent development in genetically encoded molecular tools for neural circuit research, and genetic targeting of GABAergic interneuron subtypes, particularly focusing on our recent effort to develop and characterize Cre/CreER knockin lines. Finally, I highlight recent success in genetic targeting of chandelier cells, the most unique and distinct GABAergic interneuron subtype, and discuss what kind of questions need to be addressed to understand development and function of cortical inhibitory circuits. PMID:24478631

  16. Enhancement of Inhibitory Avoidance and Conditioned Taste Aversion Memory With Insular Cortex Infusions of 8-Br-cAMP: Involvement of the Basolateral Amygdala

    PubMed Central

    Miranda, María I.; McGaugh, James L.

    2004-01-01

    There is considerable evidence that in rats, the insular cortex (IC) and amygdala are involved in the learning and memory of aversively motivated tasks. The present experiments examined the effects of 8-Br-cAMP, an analog of cAMP, and oxotremorine, a muscarinic agonist, infused into the IC after inhibitory avoidance (IA) training and during the acquisition/consolidation of conditioned taste aversion (CTA). Posttraining infusion into the IC of 0.3 μg oxotremorine and 1.25 μg 8-Br-cAMP enhanced IA retention. Infusions of 8-Br-cAMP, but not oxotremorine, into the IC enhanced taste aversion. The experiments also examined whether noradrenergic activity in the basolateral amygdala (BLA) is critical in enabling the enhancement of CTA and IA memory induced by drug infusions administered into the IC. For both CTA and IA, ipsilateral infusions of β-adrenergic antagonist propranolol administered into the BLA blocked the retention-enhancing effect of 8-Br-cAMP or oxotremorine infused into the IC. These results indicate that the IC is involved in the consolidation of memory for both IA and CTA, and this effect requires intact noradrenergic activity into the BLA. These findings provide additional evidence that the BLA interacts with other brain regions, including sensory cortex, in modulating memory consolidation. PMID:15169861

  17. Histamine H3 Receptors Decrease Dopamine Release in the Ventral Striatum by Reducing the Activity of Striatal Cholinergic Interneurons.

    PubMed

    Varaschin, Rafael Koerich; Osterstock, Guillaume; Ducrot, Charles; Leino, Sakari; Bourque, Marie-Josée; Prado, Marco A M; Prado, Vania Ferreira; Salminen, Outi; Rannanpää Née Nuutinen, Saara; Trudeau, Louis-Eric

    2018-04-15

    Histamine H 3 receptors are widely distributed G i -coupled receptors whose activation reduces neuronal activity and inhibits release of numerous neurotransmitters. Although these receptors are abundantly expressed in the striatum, their modulatory role on activity-dependent dopamine release is not well understood. Here, we observed that histamine H 3 receptor activation indirectly diminishes dopamine overflow in the ventral striatum by reducing cholinergic interneuron activity. Acute brain slices from C57BL/6 or channelrhodopsin-2-transfected DAT-cre mice were obtained, and dopamine transients evoked either electrically or optogenetically were measured by fast-scan cyclic voltammetry. The H 3 agonist α-methylhistamine significantly reduced electrically- evoked dopamine overflow, an effect blocked by the nicotinic acetylcholine receptor antagonist dihydro-β-erythroidine, suggesting involvement of cholinergic interneurons. None of the drug treatments targeting H 3 receptors affected optogenetically evoked dopamine overflow, indicating that direct H 3 -modulation of dopaminergic axons is unlikely. Next, we used qPCR and confirmed the expression of histamine H 3 receptor mRNA in cholinergic interneurons, both in ventral and dorsal striatum. Activation of H 3 receptors by α-methylhistamine reduced spontaneous firing of cholinergic interneurons in the ventral, but not in the dorsal striatum. Resting membrane potential and number of spontaneous action potentials in ventral-striatal cholinergic interneurons were significantly reduced by α-methylhistamine. Acetylcholine release from isolated striatal synaptosomes, however, was not altered by α-methylhistamine. Together, these results indicate that histamine H 3 receptors are important modulators of dopamine release, specifically in the ventral striatum, and that they do so by decreasing the firing rate of cholinergic neurons and, consequently, reducing cholinergic tone on dopaminergic axons. Copyright © 2018 IBRO

  18. Cell-type specific circuit connectivity of hippocampal CA1 revealed through Cre-dependent rabies tracing

    PubMed Central

    Sun, Yanjun; Nguyen, Amanda; Nguyen, Joseph; Le, Luc; Saur, Dieter; Choi, Jiwon; Callaway, Edward M.; Xu, Xiangmin

    2014-01-01

    Summary We applied a new Cre-dependent, genetically modified rabies-based tracing system to map direct synaptic connections to CA1 excitatory and inhibitory neuron types in mouse hippocampus. We found common inputs to excitatory and inhibitory CA1 neurons from CA3, CA2, entorhinal cortex and the medial septum (MS), and unexpectedly also from the subiculum. Excitatory CA1 neurons receive inputs from both cholinergic and GABAergic MS neurons while inhibitory CA1 neurons receive a great majority of input from GABAergic MS neurons; both cell types also receive weaker input from glutamatergic MS neurons. Comparisons of inputs to CA1 PV+ interneurons versus SOM+ interneurons showed similar strengths of input from the subiculum, but PV+ interneurons receive much stronger input than SOM+ neurons from CA3, entorhinal cortex and MS. Differential input from CA3 to specific CA1 cell types was also demonstrated functionally using laser scanning photostimulation and whole cell recordings. PMID:24656815

  19. Bidirectional Regulation of Innate and Learned Behaviors That Rely on Frequency Discrimination by Cortical Inhibitory Neurons

    PubMed Central

    Aizenberg, Mark; Mwilambwe-Tshilobo, Laetitia; Briguglio, John J.; Natan, Ryan G.; Geffen, Maria N.

    2015-01-01

    The ability to discriminate tones of different frequencies is fundamentally important for everyday hearing. While neurons in the primary auditory cortex (AC) respond differentially to tones of different frequencies, whether and how AC regulates auditory behaviors that rely on frequency discrimination remains poorly understood. Here, we find that the level of activity of inhibitory neurons in AC controls frequency specificity in innate and learned auditory behaviors that rely on frequency discrimination. Photoactivation of parvalbumin-positive interneurons (PVs) improved the ability of the mouse to detect a shift in tone frequency, whereas photosuppression of PVs impaired the performance. Furthermore, photosuppression of PVs during discriminative auditory fear conditioning increased generalization of conditioned response across tone frequencies, whereas PV photoactivation preserved normal specificity of learning. The observed changes in behavioral performance were correlated with bidirectional changes in the magnitude of tone-evoked responses, consistent with predictions of a model of a coupled excitatory-inhibitory cortical network. Direct photoactivation of excitatory neurons, which did not change tone-evoked response magnitude, did not affect behavioral performance in either task. Our results identify a new function for inhibition in the auditory cortex, demonstrating that it can improve or impair acuity of innate and learned auditory behaviors that rely on frequency discrimination. PMID:26629746

  20. Near-infrared SN Ia Cosmology

    NASA Astrophysics Data System (ADS)

    Avelino, Arturo; Kirshner, Robert; Mandel, Kaisey; Challis, Peter; Friedman, Andrew; RAISIN Team

    2018-01-01

    Observations of SN Ia in the near infrared (NIR) are a promising way to construct an accurate cosmic expansion history to constrain the properties of dark energy. SN Ia are more nearly standard candles in NIR than in optical bands, while dust absorption is less of a problem at NIR wavelengths. This allows us to investigate the dark energy properties in a way that is less sensitive to systematic errors due to the variations in the intrinsic brightness of SN Ia or the properties of dust in their host galaxies. In this talk, I present preliminary results from our RAISIN 1 (HST GO-13046) and RAISIN 2 (HST GO-14216) programs with the Hubble Space Telescope, where we have constructed a Hubble diagram combining optical + NIR photometric data using a sample of low and high redshift SN Ia. I will discuss our current results, challenges, and the advantage of using optical + NIR data to derive accurate cosmic distances and improve knowledge of the dark energy equation of state. This research is supported by NSF grants AST-156854 and AST-1211196.

  1. A 3-synapse positive feedback loop regulates the excitability of an interneuron critical for sensitization in the leech.

    PubMed

    Crisp, Kevin M; Muller, Kenneth J

    2006-03-29

    Sensitization of reflexive shortening in the leech has been linked to serotonin (5-HT)-induced changes in the excitability of a single interneuron, the S cell. This neuron is necessary for sensitization and complete dishabituation of reflexive shortening, during which it contributes to the sensory-motor reflex. The S cell does not contain 5-HT, which is released primarily from the Retzius (R) cells, whose firing enhances S-cell excitability. Here, we show that the S cell excites the R cells, mainly via a fast disynaptic pathway in which the first synapse is the electrical junction between the S cell and the coupling interneurons, and the second synapse is a glutamatergic synapse of the coupling interneurons onto the R cells. The S cell-triggered excitatory postsynaptic potential in the R cell diminishes and nearly disappears in elevated concentrations of divalent cations because the coupling interneurons become inexcitable under these conditions. Serotonin released from the R cells feeds back on the S cell and increases its excitability by activating a 5-HT7-like receptor; 5-methoxytryptamine (5-MeOT; 10 microM) mimics the effects of 5-HT on S cell excitability, and effects of both 5-HT and 5-MeOT are blocked by pimozide (10 microM) and SB-269970 [(R)-3-(2-(2-(4-methylpiperidin-1-yl)-ethyl)pyrrolidine-1-sulfonyl)phenol] (5 microM). This feedback loop may be critical for the full expression of sensitization of reflexive shortening.

  2. A 3-SYNAPSE POSITIVE FEEDBACK LOOP REGULATES THE EXCITABILITY OF AN INTERNEURON CRITICAL FOR SENSITIZATION IN THE LEECH

    PubMed Central

    Crisp, Kevin M.; Muller, Kenneth J.

    2007-01-01

    Sensitization of reflexive shortening in the leech has been linked to serotonin (5-HT)-induced changes in the excitability of a single interneuron, the S cell. This neuron is necessary for sensitization and complete dishabituation of reflexive shortening, during which it contributes to the sensory-motor reflex. The S cell does not contain 5-HT, which is released primarily from the Retzius (R) cells, whose firing enhances S-cell excitability. Here we show that the S cell excites the R cells, mainly via a fast disynaptic pathway in which the first synapse is the electrical junction between the S cell and the coupling interneurons, and the second synapse is a glutamatergic synapse of the coupling interneurons onto the R cells. The S cell-triggered excitatory postsynaptic potential in the R cell diminishes and nearly disappears in elevated concentrations of divalent cations because the coupling interneurons become inexcitable under these conditions. Serotonin released from the R cells feeds back upon the S cell and increases its excitability by activating a 5-HT7-like receptor; 5-methoxytryptamine (5-MeOT; 10 μM) mimics the effects of 5-HT on S cell excitability, and effects of both 5-HT and 5-MeOT are blocked by pimozide (10 μM) and SB-269970 (5 μM). This feedback loop may be critical for the full expression of sensitization of reflexive shortening. PMID:16571760

  3. Specific imbalance of excitatory/inhibitory signaling establishes seizure onset pattern in temporal lobe epilepsy

    PubMed Central

    de Curtis, Marco; Gnatkovsky, Vadym; Gotman, Jean; Köhling, Rüdiger; Lévesque, Maxime; Manseau, Frédéric; Shiri, Zahra; Williams, Sylvain

    2016-01-01

    Low-voltage fast (LVF) and hypersynchronous (HYP) patterns are the seizure-onset patterns most frequently observed in intracranial EEG recordings from mesial temporal lobe epilepsy (MTLE) patients. Both patterns also occur in models of MTLE in vivo and in vitro, and these studies have highlighted the predominant involvement of distinct neuronal network/neurotransmitter receptor signaling in each of them. First, LVF-onset seizures in epileptic rodents can originate from several limbic structures, frequently spread, and are associated with high-frequency oscillations in the ripple band (80–200 Hz), whereas HYP onset seizures initiate in the hippocampus and tend to remain focal with predominant fast ripples (250–500 Hz). Second, in vitro intracellular recordings from principal cells in limbic areas indicate that pharmacologically induced seizure-like discharges with LVF onset are initiated by a synchronous inhibitory event or by a hyperpolarizing inhibitory postsynaptic potential barrage; in contrast, HYP onset is associated with a progressive impairment of inhibition and concomitant unrestrained enhancement of excitation. Finally, in vitro optogenetic experiments show that, under comparable experimental conditions (i.e., 4-aminopyridine application), the initiation of LVF- or HYP-onset seizures depends on the preponderant involvement of interneuronal or principal cell networks, respectively. Overall, these data may provide insight to delineate better therapeutic targets in the treatment of patients presenting with MTLE and, perhaps, with other epileptic disorders as well. PMID:27075542

  4. Interaction of cellular and network mechanisms for efficient pheromone coding in moths.

    PubMed

    Belmabrouk, Hana; Nowotny, Thomas; Rospars, Jean-Pierre; Martinez, Dominique

    2011-12-06

    Sensory systems, both in the living and in machines, have to be optimized with respect to their environmental conditions. The pheromone subsystem of the olfactory system of moths is a particularly well-defined example in which rapid variations of odor content in turbulent plumes require fast, concentration-invariant neural representations. It is not clear how cellular and network mechanisms in the moth antennal lobe contribute to coding efficiency. Using computational modeling, we show that intrinsic potassium currents (I(A) and I(SK)) in projection neurons may combine with extrinsic inhibition from local interneurons to implement a dual latency code for both pheromone identity and intensity. The mean latency reflects stimulus intensity, whereas latency differences carry concentration-invariant information about stimulus identity. In accordance with physiological results, the projection neurons exhibit a multiphasic response of inhibition-excitation-inhibition. Together with synaptic inhibition, intrinsic currents I(A) and I(SK) account for the first and second inhibitory phases and contribute to a rapid encoding of pheromone information. The first inhibition plays the role of a reset to limit variability in the time to first spike. The second inhibition prevents responses of excessive duration to allow tracking of intermittent stimuli.

  5. THE SPECTROSCOPIC DIVERSITY OF TYPE Ia SUPERNOVAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blondin, S.; Matheson, T.; Kirshner, R. P.

    2012-05-15

    We present 2603 spectra of 462 nearby Type Ia supernovae (SNe Ia), including 2065 previously unpublished spectra, obtained during 1993-2008 through the Center for Astrophysics Supernova Program. There are on average eight spectra for each of the 313 SNe Ia with at least two spectra. Most of the spectra were obtained with the FAST spectrograph at the Fred Lawrence Whipple Observatory 1.5 m telescope and reduced in a consistent manner, making this data set well suited for studies of SN Ia spectroscopic diversity. Using additional data from the literature, we study the spectroscopic and photometric properties of SNe Ia asmore » a function of spectroscopic class using the classification schemes of Branch et al. and Wang et al. The width-luminosity relation appears to be steeper for SNe Ia with broader lines, although the result is not statistically significant with the present sample. Based on the evolution of the characteristic Si II {lambda}6355 line, we propose improved methods for measuring velocity gradients, revealing a larger range than previously suspected, from {approx}0 to {approx}400 km s{sup -1} day{sup -1} considering the instantaneous velocity decline rate at maximum light. We find a weaker and less significant correlation between Si II velocity and intrinsic B - V color at maximum light than reported by Foley et al., owing to a more comprehensive treatment of uncertainties and host galaxy dust. We study the extent of nuclear burning and the presence of unburnt carbon in the outermost layers of the ejecta and report new detections of C II {lambda}6580 in 23 early-time SN Ia spectra. The frequency of C II detections is not higher in SNe Ia with bluer colors or narrower light curves, in conflict with the recent results of Thomas et al. Based on nebular spectra of 27 SNe Ia, we find no relation between the FWHM of the iron emission feature at {approx}4700 A and {Delta}m{sub 15}(B) after removing the two low-luminosity SN 1986G and SN 1991bg, suggesting

  6. Relationship between the mechanisms of gamma rhythm generation and the magnitude of the macroscopic phase response function in a population of excitatory and inhibitory modified quadratic integrate-and-fire neurons

    NASA Astrophysics Data System (ADS)

    Akao, Akihiko; Ogawa, Yutaro; Jimbo, Yasuhiko; Ermentrout, G. Bard; Kotani, Kiyoshi

    2018-01-01

    Gamma oscillations are thought to play an important role in brain function. Interneuron gamma (ING) and pyramidal interneuron gamma (PING) mechanisms have been proposed as generation mechanisms for these oscillations. However, the relation between the generation mechanisms and the dynamical properties of the gamma oscillation are still unclear. Among the dynamical properties of the gamma oscillation, the phase response function (PRF) is important because it encodes the response of the oscillation to inputs. Recently, the PRF for an inhibitory population of modified theta neurons that generate an ING rhythm was computed by the adjoint method applied to the associated Fokker-Planck equation (FPE) for the model. The modified theta model incorporates conductance-based synapses as well as the voltage and current dynamics. Here, we extended this previous work by creating an excitatory-inhibitory (E-I) network using the modified theta model and described the population dynamics with the corresponding FPE. We conducted a bifurcation analysis of the FPE to find parameter regions which generate gamma oscillations. In order to label the oscillatory parameter regions by their generation mechanisms, we defined ING- and PING-type gamma oscillation in a mathematically plausible way based on the driver of the inhibitory population. We labeled the oscillatory parameter regions by these generation mechanisms and derived PRFs via the adjoint method on the FPE in order to investigate the differences in the responses of each type of oscillation to inputs. PRFs for PING and ING mechanisms are derived and compared. We found the amplitude of the PRF for the excitatory population is larger in the PING case than in the ING case. Finally, the E-I population of the modified theta neuron enabled us to analyze the PRFs of PING-type gamma oscillation and the entrainment ability of E and I populations. We found a parameter region in which PRFs of E and I are both purely positive in the case of

  7. Intrinsic Cellular Properties and Connectivity Density Determine Variable Clustering Patterns in Randomly Connected Inhibitory Neural Networks

    PubMed Central

    Rich, Scott; Booth, Victoria; Zochowski, Michal

    2016-01-01

    The plethora of inhibitory interneurons in the hippocampus and cortex play a pivotal role in generating rhythmic activity by clustering and synchronizing cell firing. Results of our simulations demonstrate that both the intrinsic cellular properties of neurons and the degree of network connectivity affect the characteristics of clustered dynamics exhibited in randomly connected, heterogeneous inhibitory networks. We quantify intrinsic cellular properties by the neuron's current-frequency relation (IF curve) and Phase Response Curve (PRC), a measure of how perturbations given at various phases of a neurons firing cycle affect subsequent spike timing. We analyze network bursting properties of networks of neurons with Type I or Type II properties in both excitability and PRC profile; Type I PRCs strictly show phase advances and IF curves that exhibit frequencies arbitrarily close to zero at firing threshold while Type II PRCs display both phase advances and delays and IF curves that have a non-zero frequency at threshold. Type II neurons whose properties arise with or without an M-type adaptation current are considered. We analyze network dynamics under different levels of cellular heterogeneity and as intrinsic cellular firing frequency and the time scale of decay of synaptic inhibition are varied. Many of the dynamics exhibited by these networks diverge from the predictions of the interneuron network gamma (ING) mechanism, as well as from results in all-to-all connected networks. Our results show that randomly connected networks of Type I neurons synchronize into a single cluster of active neurons while networks of Type II neurons organize into two mutually exclusive clusters segregated by the cells' intrinsic firing frequencies. Networks of Type II neurons containing the adaptation current behave similarly to networks of either Type I or Type II neurons depending on network parameters; however, the adaptation current creates differences in the cluster dynamics

  8. Gap junctions between interneurons are required for normal spatial coding in the hippocampus and short-term spatial memory

    PubMed Central

    Allen, Kevin; Fuchs, Elke C.; Jaschonek, Hannah; Bannerman, David M.; Monyer, Hannah

    2011-01-01

    Gap junctions containing connexin-36 (Cx36) electrically couple interneurons in many brain regions and synchronize their activity. We used Cx36 knockout mice (Cx36−/−) to study the importance of electrical coupling between interneurons for spatial coding in the hippocampus and for different forms of hippocampus-dependent spatial memory. Recordings in behaving mice revealed that the spatial selectivity of hippocampal pyramidal neurons was reduced and less stable in Cx36−/− mice. Altered network activity was reflected in slower theta oscillations in the mutants. Temporal coding, assessed by determining the presence and characteristics of theta phase precession, had different dynamics in Cx36−/− mice compared to controls. At the behavioral level, Cx36−/− mice displayed impaired short-term spatial memory but normal spatial reference memory. These results highlight the functional role of electrically coupled interneurons for spatial coding and cognition. Moreover, they suggest that the precise spatial selectivity of place cells is not essential for normal performance on spatial tasks assessing associative long-term memory. PMID:21525295

  9. Depression of Excitatory Synapses onto Parvalbumin Interneurons in the Medial Prefrontal Cortex in Susceptibility to Stress

    PubMed Central

    Delevich, Kristen

    2015-01-01

    In response to extreme stress, individuals either show resilience or succumb to despair. The prefrontal cortex (PFC) is required for coping with stress, and PFC dysfunction has been implicated in stress-related mental disorders, including depression. Nevertheless, the mechanisms by which the PFC participates in stress responses remain unclear. Here, we investigate the role of parvalbumin (PV) interneurons in the medial PFC (mPFC) in shaping behavioral responses to stress induced by the learned helplessness procedure, in which animals are subjected to an unpredictable and inescapable stressor. PV interneurons in the mPFC were probed and manipulated in knock-in mice expressing the Cre recombinase under the endogenous parvalbumin promoter. Notably, we found that excitatory synaptic transmission onto these neurons was decreased in mice showing helplessness, a behavioral state that is thought to resemble features of human depression. Furthermore, selective suppression of PV interneurons in the mPFC using hM4Di, a DREADD (designer receptor exclusively activated by designer drug), promoted helplessness, indicating that activation of these neurons during stress promotes the establishment of resilient behavior. Our results reveal a cellular mechanism of mPFC dysfunction that may contribute to the emergence of maladaptive behavioral responses in the face of adverse life events. PMID:25698754

  10. Pharmacokinetics of escin Ia in rats after intravenous administration.

    PubMed

    Wu, Xiu-Jun; Cui, Xiang-Yong; Tian, Lian-tian; Gao, Feng; Guan, Xin; Gu, Jing-Kai

    2014-10-28

    Escin, a natural mixture of triterpene saponins, is commonly utilized for the treatment of chronic venous insufficiency, hemorrhoids, inflammation and edema. Escin Ia is the chief active ingredient in escin and plays key role in mediating its pharmacological effects. Adequate pharmacokinetic data are essential for proper application of escin agent in clinical practice. However, pharmacokinetic properties of escin Ia are still poorly understood and this conflicts with the growing use of escin agent over the years. The goal of this study is to investigate the pharmacokinetic behavior of escin Ia in rats after low, medium and high-dose intravenous administration. Wistar rats were divided into 3 groups (n=6 per group) and escin Ia was administered via the caudal vein at doses of 0.5, 1.0 and 2.0 mg/kg, respectively. Subsequently, the concentrations of escin Ia and its metabolite isoescin Ia, a positional isomer of escin Ia, in rats׳ plasma were measured by an established liquid chromatography tandem mass spectrometry (LC-MS/MS) method at various time points following the administration of the drug. Main pharmacokinetic parameters were calculated by non-compartmental analysis using the TopFit 2.0 software package (Thomae GmbH, Germany). After intravenous administration, the Cmax and AUC of escin Ia increased in a dose-proportional manner at the dose of 0.5 mg/kg and 1.0 mg/kg, while increased in a more than dose-proportional manner at the doses of 1.0 mg/kg and 2.0 mg/kg. The t₁/₂ was significantly longer with increased intravenous doses, while other parameters such as CL and Vd also exhibit disagreement among three doses. Taken together, our data showed dose-dependent pharmacokinetic profile of escin Ia in rats after intravenous administration at the doses of 0.5-2.0 mg/kg. After intravenous administration, escin Ia was rapidly and extensively converted to isoescin Ia. The results suggested dose-dependent pharmacokinetics of escin Ia at the doses of 0.5-2.0 mg

  11. On the progenitors of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Mazzali, Paolo

    2018-03-01

    We review all the models proposed for the progenitor systems of Type Ia supernovae and discuss the strengths and weaknesses of each scenario when confronted with observations. We show that all scenarios encounter at least a few serious difficulties, if taken to represent a comprehensive model for the progenitors of all Type Ia supernovae (SNe Ia). Consequently, we tentatively conclude that there is probably more than one channel leading SNe Ia. While the single-degenerate scenario (in which a single white dwarf accretes mass from a normal stellar companion) has been studied in some detail, the other scenarios will need a similar level of scrutiny before any firm conclusions can be drawn.

  12. Mapping Calcium Rich Ejecta in Two Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Fesen, Robert

    2016-10-01

    Type Ia supernovae (SNe Ia) are thermonuclear explosions of white dwarfs (WDs) in close binary systems with either a non-degenerate or WD companion. SN Ia explosion computations are quite challenging, involving a complex interplay of turbulent hydrodynamics, nuclear burning, conduction, radiative transfer in iron-group rich material and possibly magnetic fields leading to significant uncertainties. Several key questions about expansion asymmetries and the overall characteristics of SNe Ia could be resolved if one could obtain direct observations of the internal kinematics and elemental distributions of young SN Ia remnants.We propose to use WFC3/UVIS to obtain images of the normal Type Ia supernova remnant 0519-69.0 and the overluminous Type Ia supernova remnant 0509-67.5 in the LMC. The Ca II on-band F390M filter and off-band F336W and FQ422M filters will be used to determine the spatial extent and density distributions of the Ca-rich ejecta via resonance line absorption. Differences in the observed on and off band Ca II fluxes for LMC stars located behind these young 400 - 600 yr old remnants will yield calcium column density estimates for multiple lines-of-sight within these remnants. These results will be compared to the calcium distribution seen in SN 1885, a subluminous SN Ia in M31, already imaged by HST.The resulting calcium density distribution maps for both a normal and overluminous SN Ia events will provide powerful insights regarding the structure and kinematics of calcium-rich ejecta in three different type Ia subclass events, and unique empirical data with which to test current SN Ia explosion models.

  13. Visual experience and subsequent sleep induce sequential plastic changes in putative inhibitory and excitatory cortical neurons

    PubMed Central

    Aton, Sara J.; Broussard, Christopher; Dumoulin, Michelle; Seibt, Julie; Watson, Adam; Coleman, Tammi; Frank, Marcos G.

    2013-01-01

    Ocular dominance plasticity in the developing primary visual cortex is initiated by monocular deprivation (MD) and consolidated during subsequent sleep. To clarify how visual experience and sleep affect neuronal activity and plasticity, we continuously recorded extragranular visual cortex fast-spiking (FS) interneurons and putative principal (i.e., excitatory) neurons in freely behaving cats across periods of waking MD and post-MD sleep. Consistent with previous reports in mice, MD induces two related changes in FS interneurons: a response shift in favor of the closed eye and depression of firing. Spike-timing–dependent depression of open-eye–biased principal neuron inputs to FS interneurons may mediate these effects. During post-MD nonrapid eye movement sleep, principal neuron firing increases and becomes more phase-locked to slow wave and spindle oscillations. Ocular dominance (OD) shifts in favor of open-eye stimulation—evident only after post-MD sleep—are proportional to MD-induced changes in FS interneuron activity and to subsequent sleep-associated changes in principal neuron activity. OD shifts are greatest in principal neurons that fire 40–300 ms after neighboring FS interneurons during post-MD slow waves. Based on these data, we propose that MD-induced changes in FS interneurons play an instructive role in ocular dominance plasticity, causing disinhibition among open-eye–biased principal neurons, which drive plasticity throughout the visual cortex during subsequent sleep. PMID:23300282

  14. How did the chicken cross the road? With her striatal cholinergic interneurons, of course

    PubMed Central

    Schoenbaum, Geoffrey; Stalnaker, Thomas A; Niv, Yael

    2013-01-01

    Recognizing when the world changes is fundamental for normal learning. Here, Bradfield and colleagues show that cholinergic interneurons in dorsomedial striatum are critical to the process whereby new states of the world are appropriately registered and retrieved during associative learning. PMID:23849192

  15. Permanent central synaptic disconnection of proprioceptors after nerve injury and regeneration. I. Loss of VGLUT1/IA synapses on motoneurons

    PubMed Central

    Titus-Mitchell, Haley E.; Bullinger, Katie L.; Kraszpulski, Michal; Nardelli, Paul; Cope, Timothy C.

    2011-01-01

    Motor and sensory proprioceptive axons reinnervate muscles after peripheral nerve transections followed by microsurgical reattachment; nevertheless, motor coordination remains abnormal and stretch reflexes absent. We analyzed the possibility that permanent losses of central IA afferent synapses, as a consequence of peripheral nerve injury, are responsible for this deficit. VGLUT1 was used as a marker of proprioceptive synapses on rat motoneurons. After nerve injuries synapses are stripped from motoneurons, but while other excitatory and inhibitory inputs eventually recover, VGLUT1 synapses are permanently lost on the cell body (75–95% synaptic losses) and on the proximal 100 μm of dendrite (50% loss). Lost VGLUT1 synapses did not recover, even many months after muscle reinnervation. Interestingly, VGLUT1 density in more distal dendrites did not change. To investigate whether losses are due to VGLUT1 downregulation in injured IA afferents or to complete synaptic disassembly and regression of IA ventral projections, we studied the central trajectories and synaptic varicosities of axon collaterals from control and regenerated afferents with IA-like responses to stretch that were intracellularly filled with neurobiotin. VGLUT1 was present in all synaptic varicosities, identified with the synaptic marker SV2, of control and regenerated afferents. However, regenerated afferents lacked axon collaterals and synapses in lamina IX. In conjunction with the companion electrophysiological study [Bullinger KL, Nardelli P, Pinter MJ, Alvarez FJ, Cope TC. J Neurophysiol (August 10, 2011). doi:10.1152/jn.01097.2010], we conclude that peripheral nerve injuries cause a permanent retraction of IA afferent synaptic varicosities from lamina IX and disconnection with motoneurons that is not recovered after peripheral regeneration and reinnervation of muscle by sensory and motor axons. PMID:21832035

  16. A Hubble Diagram of Distant Type IA Supernovae

    NASA Astrophysics Data System (ADS)

    Hamuy, M.; Phillips, M. M.; Suntzeff, N. B.; Aviles, R.; Maza, J.

    1993-12-01

    Due to their extreme luminosities at maximum light, type Ia supernovae (SNe Ia) have long been considered among the most attractive cosmological standard candles. Although nearly all work to date has been devoted to attempts to use these objects to determine the local rate of expansion of the universe (Ho), SNe Ia also provide one of the few direct techniques for measuring the deceleration parameter qo. However, in a recent study of nine well-observed events based largely on data obtained at CTIO, Phillips (1993, ApJ, 413, L105) found clear evidence for a significant intrinsic dispersion in SNe Ia absolute magnitudes amounting to ~ 0.8 mag in B, ~ 0.7 mag in V, and ~ 0.5 mag in I. Such a range in peak luminosity could introduce a subtantial Malmquist bias into searches for distant (z <= 0.3) SNe Ia which, if uncorrected, could lead to an erroneous value of qo. In this paper we present the Hubble diagram for 13 SNe Ia discovered and observed in the course of the Calan/Tololo Supernova Survey. This sample, which covers the redshift range 0.01 <= z <= 0.1, provides unequivocal evidence for an intrinsic spread in the peak luminosities of type Ia events. The data also confirm Phillips' conclusion that the maximum-light luminosity is strongly correlated with the initial decline rate of the B light curve. Interestingly, the most luminous SNe in our sample all occurred in spiral galaxies, which is true for Phillips' sample of nearby SNe Ia as well. This is opposite to what one would expect if dust extinction were important. These findings are consistent with recent speculations that the progenitors of SNe Ia are white dwarfs covering a range of masses, and also suggest that the brightest events may be found in galaxies which are still actively forming stars. The implications for the use of SNe Ia to measure qo are briefly discussed. This research has been supported by Grant 92/0312 from Fondo Nacional de Ciencias y Tecnología (FONDECYT-Chile).

  17. Near-Infrared Spectra of Type Ia Supernovae

    NASA Technical Reports Server (NTRS)

    Marion, G. H.; Hoeflich, P.; Vacca, W. D.; Wheeler, J. C.

    2003-01-01

    We report near-infrared (NIR) spectroscopic observations of 12 'branch-normal' Type Ia supernovae (SNe Ia) that cover the wavelength region from 0.8 to 2.5 microns. Our sample more than doubles the number of SNe Ia with published NIR spectra within 3 weeks of maximum light. The epochs of observation range from 13 days before maximum light to 18 days after maximum light. A detailed model for a Type Ia supernovae is used to identify spectral features. The Doppler shifts of lines are measured to obtain the velocity and thus the radial distribution of elements. The NIR is an extremely useful tool to probe the chemical structure in the layers of SNe Ia ejecta. This wavelength region is optimal for examining certain products of the SNe Ia explosion that may be blended or obscured in other spectral regions. We identify spectral features from Mg II, Ca II, Si II, Fe II, Co II, Ni II, and possibly Mn II. We find no indications for hydrogen, helium, or carbon in the spectra. The spectral features reveal important clues about the physical characteristics of SNe Ia. We use the features to derive upper limits for the amount of unburned matter, to identify the transition regions from explosive carbon to oxygen burning and from partial to complete silicon burning, and to estimate the level of mixing during and after the explosion. Elements synthesized in the outer layers during the explosion appear to remain in distinct layers. That provides strong evidence for the presence of a detonation phase during the explosion as it occurs in delayed detonation or merger models. Mg II velocities are found to exceed 11,000 - 15,000 km/s, depending on the individual SNe Ia. That result suggests that burning during the explosion reaches the outermost layers of the progenitor and limits the amount of unburned material to less than 10% of the mass of the progenitor. Small residuals of unburned material are predicted by delayed detonation models but are inconsistent with pure deflagration or

  18. HOW TO FIND GRAVITATIONALLY LENSED TYPE Ia SUPERNOVAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, Daniel A.; Nugent, Peter E.

    2017-01-01

    Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts ( z ≳ 2), probe potential SN Ia evolution, and deliver high-precision constraints on H {sub 0}, w , and Ω{sub m} via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovaemore » that appear to be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts’ photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. Active galactic nuclei, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse SNe will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that the Large Synoptic Survey Telescope can discover up to 500 multiply imaged SNe Ia using this technique in a 10 year z -band search, more than an order of magnitude improvement over previous estimates. We also predict that the Zwicky Transient Facility should find up to 10 multiply imaged SNe Ia using this technique in a 3 year R -band search—despite the fact that this survey will not resolve a single system.« less

  19. How to Find Gravitationally Lensed Type Ia supernovae

    DOE PAGES

    Goldstein, Daniel A.; Nugent, Peter E.

    2016-12-29

    Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts (z ≳ 2), probe potential SN Ia evolution, and deliver high-precision constraints on H 0, w, and Ω m via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear tomore » be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts' photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. Active galactic nuclei, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse SNe will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that the Large Synoptic Survey Telescope can discover up to 500 multiply imaged SNe Ia using this technique in a 10 year z-band search, more than an order of magnitude improvement over previous estimates. Finally, we also predict that the Zwicky Transient Facility should find up to 10 multiply imaged SNe Ia using this technique in a 3 year R-band search - despite the fact that this survey will not resolve a single system.« less

  20. Type Ia Supernova Light Curve Inference: Hierarchical Models for Nearby SN Ia in the Optical and Near Infrared

    NASA Astrophysics Data System (ADS)

    Mandel, Kaisey; Kirshner, R. P.; Narayan, G.; Wood-Vasey, W. M.; Friedman, A. S.; Hicken, M.

    2010-01-01

    I have constructed a comprehensive statistical model for Type Ia supernova light curves spanning optical through near infrared data simultaneously. The near infrared light curves are found to be excellent standard candles (sigma(MH) = 0.11 +/- 0.03 mag) that are less vulnerable to systematic error from dust extinction, a major confounding factor for cosmological studies. A hierarchical statistical framework incorporates coherently multiple sources of randomness and uncertainty, including photometric error, intrinsic supernova light curve variations and correlations, dust extinction and reddening, peculiar velocity dispersion and distances, for probabilistic inference with Type Ia SN light curves. Inferences are drawn from the full probability density over individual supernovae and the SN Ia and dust populations, conditioned on a dataset of SN Ia light curves and redshifts. To compute probabilistic inferences with hierarchical models, I have developed BayeSN, a Markov Chain Monte Carlo algorithm based on Gibbs sampling. This code explores and samples the global probability density of parameters describing individual supernovae and the population. I have applied this hierarchical model to optical and near infrared data of over 100 nearby Type Ia SN from PAIRITEL, the CfA3 sample, and the literature. Using this statistical model, I find that SN with optical and NIR data have a smaller residual scatter in the Hubble diagram than SN with only optical data. The continued study of Type Ia SN in the near infrared will be important for improving their utility as precise and accurate cosmological distance indicators.

  1. Two classes of fast-declining Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Dhawan, Suhail; Leibundgut, B.; Spyromilio, J.; Blondin, S.

    2017-06-01

    We aim to characterise a sample of fast-declining Type Ia supernovae (SN Ia) using their bolometric and near-infrared (NIR) properties. Based on these properties, we find that fast-declining SN Ia separate into two categories based on their bolometric and NIR properties. The peak bolometric luminosity (Lmax), the phase of the first maximum relative to the optical, the NIR peak luminosity, and the occurrence of a second maximum in the NIR distinguish a group of very faint SN Ia. Fast-declining supernovae show a large range of peak bolometric luminosities (Lmax differing by up to a factor of 8). All fast-declining SN Ia with Lmax < 0.3× 1043 erg s-1 are spectroscopically classified as 91bg-like and show only a single NIR peak. SNe with Lmax > 0.5× 1043 erg s-1 appear to smoothly connect to normal SN Ia. The total ejecta mass (Mej) values for SNe with enough late time data are ≲1 M⊙, indicating a sub-Chandrasekhar mass progenitor for these SNe.

  2. Host galaxies of type ia supernovae from the nearby supernova factory

    NASA Astrophysics Data System (ADS)

    Childress, Michael Joseph

    Type Ia Supernovae (SNe Ia) are excellent distance indicators, yet the full details of the underlying physical mechanism giving rise to these dramatic stellar deaths remain unclear. As large samples of cosmological SNe Ia continue to be collected, the scatter in brightnesses of these events is equally affected by systematic errors as statistical. Thus we need to understand the physics of SNe Ia better, and in particular we must know more about the progenitors of these SNe so that we can derive better estimates for their true intrinsic brightnesses. The host galaxies of SNe Ia provide important indirect clues as to the nature of SN Ia progenitors. In this Thesis we utilize the host galaxies of SNe Ia discovered by the Nearby Supernova Factory (SNfactory) to pursue several key investigations into the nature of SN Ia progenitors and their effects on SN Ia brightnesses. We first examine the host galaxy of SN 2007if, an important member of the subclass of SNe Ia whose extreme brightnesses indicate a progenitor that exceeded the canonical Chandrasekhar-mass value presumed for normal SNe Ia, and show that the host galaxy of this SN is composed of very young stars and has extremely low metallicity, providing important constraints on progenitor scenarios for this SN. We then utilize the full sample of SNfactory host galaxy masses (measured from photometry) and metallicities (derived from optical spectroscopy) to examine several global properties of SN Ia progenitors: (i) we show that SN Ia hosts show tight agreement with the normal galaxy mass-metallicity relation; (ii) comparing the observed distribution of SN Ia host galaxy masses to a theoretical model that couples galaxy physics to the SN Ia delay time distribution (DTD), we show the power of the SN Ia host mass distribution in constraining the SN Ia DTD; and (iii) we show that the lack of ultra-low metallicities in the SNfactory SN Ia host sample gives provisional support for the theorized low-metallicity inhibition of

  3. 49 CFR 238.315 - Class IA brake test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Class IA brake test. 238.315 Section 238.315... Requirements for Tier I Passenger Equipment § 238.315 Class IA brake test. (a) Except as provided in paragraph (b) of this section, either a Class I or a Class IA brake test shall be performed: (1) Prior to the...

  4. Social context differentially modulates activity of two interneuron populations in an avian basal ganglia nucleus

    PubMed Central

    2016-01-01

    Basal ganglia circuits are critical for the modulation of motor performance across behavioral states. In zebra finches, a cortical-basal ganglia circuit dedicated to singing is necessary for males to adjust their song performance and transition between spontaneous singing, when they are alone (“undirected” song), and a performance state, when they sing to a female (“female-directed” song). However, we know little about the role of different basal ganglia cell types in this behavioral transition or the degree to which behavioral context modulates the activity of different neuron classes. To investigate whether interneurons in the songbird basal ganglia encode information about behavioral state, I recorded from two interneuron types, fast-spiking interneurons (FSI) and external pallidal (GPe) neurons, in the songbird basal ganglia nucleus area X during both female-directed and undirected singing. Both cell types exhibited higher firing rates, more frequent bursting, and greater trial-by-trial variability in firing when male zebra finches produced undirected songs compared with when they produced female-directed songs. However, the magnitude and direction of changes to the firing rate, bursting, and variability of spiking between when birds sat silently and when they sang undirected and female-directed song varied between FSI and GPe neurons. These data indicate that social modulation of activity important for eliciting changes in behavioral state is present in multiple cell types within area X and suggests that social interactions may adjust circuit dynamics during singing at multiple points within the circuit. PMID:27628208

  5. GABAergic contributions to gating, timing, and phase precession of hippocampal neuronal activity during theta oscillations.

    PubMed

    Cutsuridis, Vassilis; Hasselmo, Michael

    2012-07-01

    Successful spatial exploration requires gating, storage, and retrieval of spatial memories in the correct order. The hippocampus is known to play an important role in the temporal organization of spatial information. Temporally ordered spatial memories are encoded and retrieved by the firing rate and phase of hippocampal pyramidal cells and inhibitory interneurons with respect to ongoing network theta oscillations paced by intra- and extrahippocampal areas. Much is known about the anatomical, physiological, and molecular characteristics as well as the connectivity and synaptic properties of various cell types in the hippocampal microcircuits, but how these detailed properties of individual neurons give rise to temporal organization of spatial memories remains unclear. We present a model of the hippocampal CA1 microcircuit based on observed biophysical properties of pyramidal cells and six types of inhibitory interneurons: axo-axonic, basket, bistratistified, neurogliaform, ivy, and oriens lacunosum-moleculare cells. The model simulates a virtual rat running on a linear track. Excitatory transient inputs come from the entorhinal cortex (EC) and the CA3 Schaffer collaterals and impinge on both the pyramidal cells and inhibitory interneurons, whereas inhibitory inputs from the medial septum impinge only on the inhibitory interneurons. Dopamine operates as a gate-keeper modulating the spatial memory flow to the PC distal dendrites in a frequency-dependent manner. A mechanism for spike-timing-dependent plasticity in distal and proximal PC dendrites consisting of three calcium detectors, which responds to the instantaneous calcium level and its time course in the dendrite, is used to model the plasticity effects. The model simulates the timing of firing of different hippocampal cell types relative to theta oscillations, and proposes functional roles for the different classes of the hippocampal and septal inhibitory interneurons in the correct ordering of spatial memories

  6. Depression of excitatory synapses onto parvalbumin interneurons in the medial prefrontal cortex in susceptibility to stress.

    PubMed

    Perova, Zinaida; Delevich, Kristen; Li, Bo

    2015-02-18

    In response to extreme stress, individuals either show resilience or succumb to despair. The prefrontal cortex (PFC) is required for coping with stress, and PFC dysfunction has been implicated in stress-related mental disorders, including depression. Nevertheless, the mechanisms by which the PFC participates in stress responses remain unclear. Here, we investigate the role of parvalbumin (PV) interneurons in the medial PFC (mPFC) in shaping behavioral responses to stress induced by the learned helplessness procedure, in which animals are subjected to an unpredictable and inescapable stressor. PV interneurons in the mPFC were probed and manipulated in knock-in mice expressing the Cre recombinase under the endogenous parvalbumin promoter. Notably, we found that excitatory synaptic transmission onto these neurons was decreased in mice showing helplessness, a behavioral state that is thought to resemble features of human depression. Furthermore, selective suppression of PV interneurons in the mPFC using hM4Di, a DREADD (designer receptor exclusively activated by designer drug), promoted helplessness, indicating that activation of these neurons during stress promotes the establishment of resilient behavior. Our results reveal a cellular mechanism of mPFC dysfunction that may contribute to the emergence of maladaptive behavioral responses in the face of adverse life events. Copyright © 2015 the authors 0270-6474/15/353201-06$15.00/0.

  7. The number of striatal cholinergic interneurons expressing calretinin is increased in parkinsonian monkeys.

    PubMed

    Petryszyn, Sarah; Di Paolo, Thérèse; Parent, André; Parent, Martin

    2016-11-01

    The most abundant interneurons in the primate striatum are those expressing the calcium-binding protein calretinin (CR). The present immunohistochemical study provides detailed assessments of their morphological traits, number, and topographical distribution in normal monkeys (Macaca fascicularis) and in monkeys rendered parkinsonian (PD) by MPTP intoxication. In primates, the CR+ striatal interneurons comprise small (8-12μm), medium (12-20μm) and large-sized (20-45μm) neurons, each with distinctive morphologies. The small CR+ neurons were 2-3 times more abundant than the medium-sized CR+ neurons, which were 20-40 times more numerous than the large CR+ neurons. In normal and PD monkeys, the density of small and medium-sized CR+ neurons was twice as high in the caudate nucleus than in the putamen, whereas the inverse occurred for the large CR+ neurons. Double immunostaining experiments revealed that only the large-sized CR+ neurons expressed choline acetyltransferase (ChAT). The number of large CR+ neurons was found to increase markedly (4-12 times) along the entire anteroposterior extent of both the caudate nucleus and putamen of PD monkeys compared to controls. Comparison of the number of large CR-/ChAT+ and CR+/ChAT+ neurons together with experiments involving the use of bromo-deoxyuridine (BrdU) as a marker of newly generated cells showed that it is the expression of CR by the large ChAT+ striatal interneurons, and not their absolute number, that is increased in the dopamine-depleted striatum. These findings reveal the modulatory role of dopamine in the phenotypic expression of the large cholinergic striatal neurons, which are known to play a crucial role in PD pathophysiology. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Prolonged withdrawal from cocaine self-administration affects prefrontal cortex- and basolateral amygdala-nucleus accumbens core circuits but not accumbens GABAergic local interneurons.

    PubMed

    Purgianto, Anthony; Weinfeld, Michael E; Wolf, Marina E

    2017-11-01

    Withdrawal from extended-access cocaine self-administration leads to progressive intensification ('incubation') of cocaine craving. After prolonged withdrawal (1-2 months), when craving is high, expression of incubation depends on strengthening of excitatory inputs to medium spiny neurons (MSN) of the nucleus accumbens (NAc). These excitatory inputs interact with the intra-NAc GABAergic 'microcircuit', composed of MSN axon collaterals and GABAergic interneurons. Here, we investigated whether the increased glutamatergic neurotransmission observed after prolonged withdrawal is accompanied by altered GABAergic neurotransmission, focusing on NAc core. Rats self-administered cocaine or saline (6 hours/day) and then underwent >40 days of withdrawal. First, we investigated parvalbumin positive (PV+) interneurons, GABAergic fast-spiking interneurons that regulate MSN activity. Immunohistochemical studies revealed no significant change in PV signal intensity or the number of PV+ cells in cocaine rats versus saline controls. We then screened PV and other interneuron markers using immunoblotting. We detected no changes in levels of PV, calretinin, calbindin or neuronal nitric oxide synthase. Because expression of these markers is activity dependent, our results suggest no marked changes in interneuron activity. Finally, we utilized local field potential recording, which can detect GABA-mediated alterations at the circuit level, to investigate potential changes in two circuits implicated in cocaine craving: prelimbic prefrontal cortex to NAc core and basolateral amygdala to NAc core. We detected differential adaptations in these circuits, some of which may involve GABA. Overall, our results suggest that alterations in GABA transmission may accompany incubation of cocaine craving, but they are circuit specific and less pronounced than alterations in glutamate transmission. © 2016 Society for the Study of Addiction.

  9. A Model-independent Photometric Redshift Estimator for Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Wang, Yun

    2007-01-01

    The use of Type Ia supernovae (SNe Ia) as cosmological standard candles is fundamental in modern observational cosmology. In this Letter, we derive a simple empirical photometric redshift estimator for SNe Ia using a training set of SNe Ia with multiband (griz) light curves and spectroscopic redshifts obtained by the Supernova Legacy Survey (SNLS). This estimator is analytical and model-independent it does not use spectral templates. We use all the available SNe Ia from SNLS with near-maximum photometry in griz (a total of 40 SNe Ia) to train and test our photometric redshift estimator. The difference between the estimated redshifts zphot and the spectroscopic redshifts zspec, (zphot-zspec)/(1+zspec), has rms dispersions of 0.031 for 20 SNe Ia used in the training set, and 0.050 for 20 SNe Ia not used in the training set. The dispersion is of the same order of magnitude as the flux uncertainties at peak brightness for the SNe Ia. There are no outliers. This photometric redshift estimator should significantly enhance the ability of observers to accurately target high-redshift SNe Ia for spectroscopy in ongoing surveys. It will also dramatically boost the cosmological impact of very large future supernova surveys, such as those planned for the Advanced Liquid-mirror Probe for Astrophysics, Cosmology, and Asteroids (ALPACA) and the Large Synoptic Survey Telescope (LSST).

  10. LaRC(TM)-IA Copolyimides

    NASA Technical Reports Server (NTRS)

    St. Clair, Terry L.; Chang, Alice C.

    1995-01-01

    Copolyimides modified versions of LaRC(TM)-IA thermoplastic polyimide formulated by incorporating moieties of 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and, alternatively, isophthaloyldiphthalic anhydride (IDPA) into LaRC(TM)-IA polymer backbones. Exhibit higher glass-transition temperatures and retain greater fractions of lower-temperature shear moduli at higher temperatures. Copolyimides spun into fibers or used as adhesives, molding powders, or matrix resins in many applications, especially in fabrication of strong, lightweight structural components of aircraft.

  11. Loss of Either Rac1 or Rac3 GTPase Differentially Affects the Behavior of Mutant Mice and the Development of Functional GABAergic Networks

    PubMed Central

    Pennucci, Roberta; Talpo, Francesca; Astro, Veronica; Montinaro, Valentina; Morè, Lorenzo; Cursi, Marco; Castoldi, Valerio; Chiaretti, Sara; Bianchi, Veronica; Marenna, Silvia; Cambiaghi, Marco; Tonoli, Diletta; Leocani, Letizia; Biella, Gerardo; D'Adamo, Patrizia; de Curtis, Ivan

    2016-01-01

    Rac GTPases regulate the development of cortical/hippocampal GABAergic interneurons by affecting the early development and migration of GABAergic precursors. We have addressed the function of Rac1 and Rac3 proteins during the late maturation of hippocampal interneurons. We observed specific phenotypic differences between conditional Rac1 and full Rac3 knockout mice. Rac1 deletion caused greater generalized hyperactivity and cognitive impairment compared with Rac3 deletion. This phenotype matched with a more evident functional impairment of the inhibitory circuits in Rac1 mutants, showing higher excitability and reduced spontaneous inhibitory currents in the CA hippocampal pyramidal neurons. Morphological analysis confirmed a differential modification of the inhibitory circuits: deletion of either Rac caused a similar reduction of parvalbumin-positive inhibitory terminals in the pyramidal layer. Intriguingly, cannabinoid receptor-1-positive terminals were strongly increased only in the CA1 of Rac1-depleted mice. This increase may underlie the stronger electrophysiological defects in this mutant. Accordingly, incubation with an antagonist for cannabinoid receptors partially rescued the reduction of spontaneous inhibitory currents in the pyramidal cells of Rac1 mutants. Our results show that Rac1 and Rac3 have independent roles in the formation of GABAergic circuits, as highlighted by the differential effects of their deletion on the late maturation of specific populations of interneurons. PMID:26582364

  12. Impact of cercal air currents on singing motor pattern generation in the cricket (Gryllus bimaculatus DeGeer)

    PubMed Central

    2015-01-01

    The cercal system of crickets detects low-frequency air currents produced by approaching predators and self-generated air currents during singing, which may provide sensory feedback to the singing motor network. We analyzed the effect of cercal stimulation on singing motor pattern generation to reveal the response of a singing interneuron to predator-like signals and to elucidate the possible role of self-generated air currents during singing. In fictive singing males, we recorded an interneuron of the singing network while applying air currents to the cerci; additionally, we analyzed the effect of abolishing the cercal system in freely singing males. In fictively singing crickets, the effect of short air stimuli is either to terminate prematurely or to lengthen the interchirp interval, depending on their phase in the chirp cycle. Within our stimulation paradigm, air stimuli of different velocities and durations always elicited an inhibitory postsynaptic potential in the singing interneuron. Current injection in the singing interneuron elicited singing motor activity, even during the air current-evoked inhibitory input from the cercal pathway. The disruptive effects of air stimuli on the fictive singing pattern and the inhibitory response of the singing interneuron point toward the cercal system being involved in initiating avoidance responses in singing crickets, according to the established role of cerci in a predator escape pathway. After abolishing the activity of the cercal system, the timing of natural singing activity was not significantly altered. Our study provides no evidence that self-generated cercal sensory activity has a feedback function for singing motor pattern generation. PMID:26334014

  13. Manganese in Dwarf Galaxies as a Probe of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    De Los Reyes, Mithi; Kirby, Evan N.

    2018-06-01

    Despite the importance of thermonuclear or Type Ia supernovae (SNe) as standard candles in astrophysics, the physical mechanisms behind Type Ia SNe are still poorly constrained. Theoretically, the nucleosynthetic yields from Type Ia SNe can distinguish among different models of Type Ia explosions. For example, neutron-rich elements such as manganese (Mn) are sensitive probes of the physics of Type Ia SNe because their abundances are correlated to the density of the progenitor white dwarf. Since dwarf galaxies' chemical evolution is dominated by Type Ia SNe at late times, Type Ia nucleosynthetic yields can be indirectly inferred from stellar abundances in dwarf galaxies. However, previous measurements of Mn in dwarf galaxies are too incomplete to draw definitive conclusions on the Type Ia explosion mechanism. In this work, we therefore use medium-resolution stellar spectroscopy from Keck/DEIMOS to measure Mn abundances in red giants in several Milky Way satellite galaxies. We report average Type Ia Mn yields computed from these abundances, and we discuss the implications for Type Ia supernova physics.

  14. Nonspiking local interneurons in insect leg motor control. I. Common layout and species-specific response properties of femur-tibia joint control pathways in stick insect and locust.

    PubMed

    Büschges, A; Wolf, H

    1995-05-01

    1. Locusts (Locusta migratoria) and stick insects (Carausius morosus) exhibit different strategies for predator avoidance. Locusts rely primarily on walking and jumping to evade predators, whereas stick insects become cataleptic, catalepsy forming a major component of the twig mimesis exhibited by this species. The neuronal networks that control postural leg movements in locusts and stick insects are tuned differently to their specific behavioral tasks. An important prerequisite for the production of catalepsy in the stick insect is the marked velocity dependency of the control network, which appears to be generated at the level of nonspiking local interneurons. We examined interneuronal pathways in the network controlling the femur-tibia joint of the locust middle leg and compared its properties with those described for the stick insect middle leg. It was our aim to identify possible neural correlates of the species-specific behavior with regard to postural leg motor control. 2. We obtained evidence that the neuronal networks that control the femur-tibia joints in the two species consist of morphologically and physiologically similar--and thus probably homologous--interneurons. Qualitatively, these interneurons receive the same input from the femoral chordotonal organ receptors and they drive the same pools of leg motoneurons in both species. 3. Pathways that contribute to the control of the femur-tibia joint include interneurons that support both "resisting" and "assisting" responses with respect to the motoneuron activity that is actually elicited during reflex movements. Signal processing via parallel, antagonistic pathways therefore appears to be a common principle in insect leg motor control. 4. Differences between the two insect species were found with regard to the processing of velocity information provided by the femoral chordotonal organ. Interneuronal pathways are sensitive to stimulus velocity in both species. However, in the locust there is no marked

  15. Ambra1 Shapes Hippocampal Inhibition/Excitation Balance: Role in Neurodevelopmental Disorders.

    PubMed

    Nobili, Annalisa; Krashia, Paraskevi; Cordella, Alberto; La Barbera, Livia; Dell'Acqua, Maria Concetta; Caruso, Angela; Pignataro, Annabella; Marino, Ramona; Sciarra, Francesca; Biamonte, Filippo; Scattoni, Maria Luisa; Ammassari-Teule, Martine; Cecconi, Francesco; Berretta, Nicola; Keller, Flavio; Mercuri, Nicola Biagio; D'Amelio, Marcello

    2018-02-27

    Imbalances between excitatory and inhibitory synaptic transmission cause brain network dysfunction and are central to the pathogenesis of neurodevelopmental disorders. Parvalbumin interneurons are highly implicated in this imbalance. Here, we probed the social behavior and hippocampal function of mice carrying a haploinsufficiency for Ambra1, a pro-autophagic gene crucial for brain development. We show that heterozygous Ambra1 mice (Ambra +/- ) are characterized by loss of hippocampal parvalbumin interneurons, decreases in the inhibition/excitation ratio, and altered social behaviors that are solely restricted to the female gender. Loss of parvalbumin interneurons in Ambra1 +/- females is further linked to reductions of the inhibitory drive onto principal neurons and alterations in network oscillatory activity, CA1 synaptic plasticity, and pyramidal neuron spine density. Parvalbumin interneuron loss is underlined by increased apoptosis during the embryonic development of progenitor neurons in the medial ganglionic eminence. Together, these findings identify an Ambra1-dependent mechanism that drives inhibition/excitation imbalance in the hippocampus, contributing to abnormal brain activity reminiscent of neurodevelopmental disorders.

  16. Changes in the estimated time course of the motoneuron afterhyperpolarization induced by tendon vibration.

    PubMed

    MacDonell, Christopher W; Ivanova, Tanya D; Garland, S Jayne

    2010-12-01

    Group Ia afferents are activated vigorously with high-frequency tendon vibration and provide excitatory input to the agonist muscle and inhibitory input to the antagonist muscle group via inhibitory interneurons. The purpose of this experiment was to determine whether the afterhyperpolarization (AHP) time course in humans is altered in response to tendon vibration. The AHP time course is estimated using the interval death rate (IDR) analysis, a transform of the motor unit action potential train. Single motor units from tibialis anterior (TA) were recorded as subjects held low force dorsiflexor contractions for 600 s with and without vibration. The vibratory stimulus was superimposed on the low force contraction either to the tendon of the TA or the antagonist Achilles tendon. During TA tendon vibration, the time course of the AHP, as expressed by its time constant (τ), decreased from 35.5 ms in the previbration control condition to 31.3 ms during the vibration (P = 0.003) and returned to 36.3 ms after the vibration was removed (P = 0.002). The AHP τ during vibration of the antagonist Achilles tendon (38.6 ms) was greater than the previbration control condition (33.6 ms; P = 0.001). It is speculated that the reduction in AHP time constant with TA vibration may have resulted alone or in combination with a modulation of motoneuron gain, an alteration of persistent inward currents and/or the restructuring of synaptic noise. A decrease in firing probability, possibly reflecting Ia reciprocal inhibition, may have been responsible for the larger AHP time constant.

  17. Spectral Sequences of Type Ia Supernovae. I. Connecting Normal and Subluminous SNe Ia and the Presence of Unburned Carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heringer, E.; Kerkwijk, M. H. van; Sim, S. A.

    2017-09-01

    Type Ia supernovae (SNe Ia) are generally agreed to arise from thermonuclear explosions of carbon–oxygen white dwarfs. The actual path to explosion, however, remains elusive, with numerous plausible parent systems and explosion mechanisms suggested. Observationally, SNe Ia have multiple subclasses, distinguished by their light curves and spectra. This raises the question of whether these indicate that multiple mechanisms occur in nature or that explosions have a large but continuous range of physical properties. We revisit the idea that normal and 91bg-like SNe can be understood as part of a spectral sequence in which changes in temperature dominate. Specifically, we findmore » that a single ejecta structure is sufficient to provide reasonable fits of both the normal SN Ia SN 2011fe and the 91bg-like SN 2005bl, provided that the luminosity and thus temperature of the ejecta are adjusted appropriately. This suggests that the outer layers of the ejecta are similar, thus providing some support for a common explosion mechanism. Our spectral sequence also helps to shed light on the conditions under which carbon can be detected in premaximum SN Ia spectra—we find that emission from iron can “fill in” the carbon trough in cool SNe Ia. This may indicate that the outer layers of the ejecta of events in which carbon is detected are relatively metal-poor compared to events in which carbon is not detected.« less

  18. Computational Modeling of Distinct Neocortical Oscillations Driven by Cell-Type Selective Optogenetic Drive: Separable Resonant Circuits Controlled by Low-Threshold Spiking and Fast-Spiking Interneurons

    PubMed Central

    Vierling-Claassen, Dorea; Cardin, Jessica A.; Moore, Christopher I.; Jones, Stephanie R.

    2010-01-01

    Selective optogenetic drive of fast-spiking (FS) interneurons (INs) leads to enhanced local field potential (LFP) power across the traditional “gamma” frequency band (20–80 Hz; Cardin et al., 2009). In contrast, drive to regular-spiking (RS) pyramidal cells enhances power at lower frequencies, with a peak at 8 Hz. The first result is consistent with previous computational studies emphasizing the role of FS and the time constant of GABAA synaptic inhibition in gamma rhythmicity. However, the same theoretical models do not typically predict low-frequency LFP enhancement with RS drive. To develop hypotheses as to how the same network can support these contrasting behaviors, we constructed a biophysically principled network model of primary somatosensory neocortex containing FS, RS, and low-threshold spiking (LTS) INs. Cells were modeled with detailed cell anatomy and physiology, multiple dendritic compartments, and included active somatic and dendritic ionic currents. Consistent with prior studies, the model demonstrated gamma resonance during FS drive, dependent on the time constant of GABAA inhibition induced by synchronous FS activity. Lower-frequency enhancement during RS drive was replicated only on inclusion of an inhibitory LTS population, whose activation was critically dependent on RS synchrony and evoked longer-lasting inhibition. Our results predict that differential recruitment of FS and LTS inhibitory populations is essential to the observed cortical dynamics and may provide a means for amplifying the natural expression of distinct oscillations in normal cortical processing. PMID:21152338

  19. Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition.

    PubMed

    Rivero, O; Selten, M M; Sich, S; Popp, S; Bacmeister, L; Amendola, E; Negwer, M; Schubert, D; Proft, F; Kiser, D; Schmitt, A G; Gross, C; Kolk, S M; Strekalova, T; van den Hove, D; Resink, T J; Nadif Kasri, N; Lesch, K P

    2015-10-13

    Cadherin-13 (CDH13), a unique glycosylphosphatidylinositol-anchored member of the cadherin family of cell adhesion molecules, has been identified as a risk gene for attention-deficit/hyperactivity disorder (ADHD) and various comorbid neurodevelopmental and psychiatric conditions, including depression, substance abuse, autism spectrum disorder and violent behavior, while the mechanism whereby CDH13 dysfunction influences pathogenesis of neuropsychiatric disorders remains elusive. Here we explored the potential role of CDH13 in the inhibitory modulation of brain activity by investigating synaptic function of GABAergic interneurons. Cellular and subcellular distribution of CDH13 was analyzed in the murine hippocampus and a mouse model with a targeted inactivation of Cdh13 was generated to evaluate how CDH13 modulates synaptic activity of hippocampal interneurons and behavioral domains related to psychopathologic (endo)phenotypes. We show that CDH13 expression in the cornu ammonis (CA) region of the hippocampus is confined to distinct classes of interneurons. Specifically, CDH13 is expressed by numerous parvalbumin and somatostatin-expressing interneurons located in the stratum oriens, where it localizes to both the soma and the presynaptic compartment. Cdh13(-/-) mice show an increase in basal inhibitory, but not excitatory, synaptic transmission in CA1 pyramidal neurons. Associated with these alterations in hippocampal function, Cdh13(-/-) mice display deficits in learning and memory. Taken together, our results indicate that CDH13 is a negative regulator of inhibitory synapses in the hippocampus, and provide insights into how CDH13 dysfunction may contribute to the excitatory/inhibitory imbalance observed in neurodevelopmental disorders, such as ADHD and autism.

  20. Role of phosphoinositide 3-kinase IA (PI3K-IA) activation in cardioprotection induced by ouabain preconditioning.

    PubMed

    Duan, Qiming; Madan, Namrata D; Wu, Jian; Kalisz, Jennifer; Doshi, Krunal Y; Haldar, Saptarsi M; Liu, Lijun; Pierre, Sandrine V

    2015-03-01

    Acute myocardial infarction, the clinical manifestation of ischemia-reperfusion (IR) injury, is a leading cause of death worldwide. Like ischemic preconditioning (IPC) induced by brief episodes of ischemia and reperfusion, ouabain preconditioning (OPC) mediated by Na/K-ATPase signaling protects the heart against IR injury. Class I PI3K activation is required for IPC, but its role in OPC has not been investigated. While PI3K-IB is critical to IPC, studies have suggested that ouabain signaling is PI3K-IA-specific. Hence, a pharmacological approach was used to test the hypothesis that OPC and IPC rely on distinct PI3K-I isoforms. In Langendorff-perfused mouse hearts, OPC was initiated by 4 min of ouabain 10 μM and IPC was triggered by 4 cycles of 5 min ischemia and reperfusion prior to 40 min of global ischemia and 30 min of reperfusion. Without affecting PI3K-IB, ouabain doubled PI3K-IA activity and Akt phosphorylation at Ser(473). IPC and OPC significantly preserved cardiac contractile function and tissue viability as evidenced by left ventricular developed pressure and end-diastolic pressure recovery, reduced lactate dehydrogenase release, and decreased infarct size. OPC protection was blunted by the PI3K-IA inhibitor PI-103, but not by the PI3K-IB inhibitor AS-604850. In contrast, IPC-mediated protection was not affected by PI-103 but was blocked by AS-604850, suggesting that PI3K-IA activation is required for OPC while PI3K-IB activation is needed for IPC. Mechanistically, PI3K-IA activity is required for ouabain-induced Akt activation but not PKCε translocation. However, in contrast to PKCε translocation which is critical to protection, Akt activity was not required for OPC. Further studies shall reveal the identity of the downstream targets of this new PI3K IA-dependent branch of OPC. These findings may be of clinical relevance in patients at risk for myocardial infarction with underlying diseases and/or medication that could differentially affect the

  1. Spinal Interneurons and Forelimb Plasticity after Incomplete Cervical Spinal Cord Injury in Adult Rats

    PubMed Central

    Rombola, Angela M.; Rousseau, Celeste A.; Mercier, Lynne M.; Fitzpatrick, Garrett M.; Reier, Paul J.; Fuller, David D.; Lane, Michael A.

    2015-01-01

    Abstract Cervical spinal cord injury (cSCI) disrupts bulbospinal projections to motoneurons controlling the upper limbs, resulting in significant functional impairments. Ongoing clinical and experimental research has revealed several lines of evidence for functional neuroplasticity and recovery of upper extremity function after SCI. The underlying neural substrates, however, have not been thoroughly characterized. The goals of the present study were to map the intraspinal motor circuitry associated with a defined upper extremity muscle, and evaluate chronic changes in the distribution of this circuit following incomplete cSCI. Injured animals received a high cervical (C2) lateral hemisection (Hx), which compromises supraspinal input to ipsilateral spinal motoneurons controlling the upper extremities (forelimb) in the adult rat. A battery of behavioral tests was used to characterize the time course and extent of forelimb motor recovery over a 16 week period post-injury. A retrograde transneuronal tracer – pseudorabies virus – was used to define the motor and pre-motor circuitry controlling the extensor carpi radialis longus (ECRL) muscle in spinal intact and injured animals. In the spinal intact rat, labeling was observed unilaterally within the ECRL motoneuron pool and within spinal interneurons bilaterally distributed within the dorsal horn and intermediate gray matter. No changes in labeling were observed 16 weeks post-injury, despite a moderate degree of recovery of forelimb motor function. These results suggest that recovery of the forelimb function assessed following C2Hx injury does not involve recruitment of new interneurons into the ipsilateral ECRL motor pathway. However, the functional significance of these existing interneurons to motor recovery requires further exploration. PMID:25625912

  2. Losing the sugar coating: potential impact of perineuronal net abnormalities on interneurons in schizophrenia.

    PubMed

    Berretta, Sabina; Pantazopoulos, Harry; Markota, Matej; Brown, Christopher; Batzianouli, Eleni T

    2015-09-01

    Perineuronal nets (PNNs) were shown to be markedly altered in subjects with schizophrenia. In particular, decreases of PNNs have been detected in the amygdala, entorhinal cortex and prefrontal cortex. The formation of these specialized extracellular matrix (ECM) aggregates during postnatal development, their functions, and association with distinct populations of GABAergic interneurons, bear great relevance to the pathophysiology of schizophrenia. PNNs gradually mature in an experience-dependent manner during late stages of postnatal development, overlapping with the prodromal period/age of onset of schizophrenia. Throughout adulthood, PNNs regulate neuronal properties, including synaptic remodeling, cell membrane compartmentalization and subsequent regulation of glutamate receptors and calcium channels, and susceptibility to oxidative stress. With the present paper, we discuss evidence for PNN abnormalities in schizophrenia, the potential functional impact of such abnormalities on inhibitory circuits and, in turn, cognitive and emotion processing. We integrate these considerations with results from recent genetic studies showing genetic susceptibility for schizophrenia associated with genes encoding for PNN components, matrix-regulating molecules and immune system factors. Notably, the composition of PNNs is regulated dynamically in response to factors such as fear, reward, stress, and immune response. This regulation occurs through families of matrix metalloproteinases that cleave ECM components, altering their functions and affecting plasticity. Several metalloproteinases have been proposed as vulnerability factors for schizophrenia. We speculate that the physiological process of PNN remodeling may be disrupted in schizophrenia as a result of interactions between matrix remodeling processes and immune system dysregulation. In turn, these mechanisms may contribute to the dysfunction of GABAergic neurons. Copyright © 2015. Published by Elsevier B.V.

  3. Impaired action potential initiation in GABAergic interneurons causes hyperexcitable networks in an epileptic mouse model carrying a human Na(V)1.1 mutation.

    PubMed

    Hedrich, Ulrike B S; Liautard, Camille; Kirschenbaum, Daniel; Pofahl, Martin; Lavigne, Jennifer; Liu, Yuanyuan; Theiss, Stephan; Slotta, Johannes; Escayg, Andrew; Dihné, Marcel; Beck, Heinz; Mantegazza, Massimo; Lerche, Holger

    2014-11-05

    Mutations in SCN1A and other ion channel genes can cause different epileptic phenotypes, but the precise mechanisms underlying the development of hyperexcitable networks are largely unknown. Here, we present a multisystem analysis of an SCN1A mouse model carrying the NaV1.1-R1648H mutation, which causes febrile seizures and epilepsy in humans. We found a ubiquitous hypoexcitability of interneurons in thalamus, cortex, and hippocampus, without detectable changes in excitatory neurons. Interestingly, somatic Na(+) channels in interneurons and persistent Na(+) currents were not significantly changed. Instead, the key mechanism of interneuron dysfunction was a deficit of action potential initiation at the axon initial segment that was identified by analyzing action potential firing. This deficit increased with the duration of firing periods, suggesting that increased slow inactivation, as recorded for recombinant mutated channels, could play an important role. The deficit in interneuron firing caused reduced action potential-driven inhibition of excitatory neurons as revealed by less frequent spontaneous but not miniature IPSCs. Multiple approaches indicated increased spontaneous thalamocortical and hippocampal network activity in mutant mice, as follows: (1) more synchronous and higher-frequency firing was recorded in primary neuronal cultures plated on multielectrode arrays; (2) thalamocortical slices examined by field potential recordings revealed spontaneous activities and pathological high-frequency oscillations; and (3) multineuron Ca(2+) imaging in hippocampal slices showed increased spontaneous neuronal activity. Thus, an interneuron-specific generalized defect in action potential initiation causes multisystem disinhibition and network hyperexcitability, which can well explain the occurrence of seizures in the studied mouse model and in patients carrying this mutation. Copyright © 2014 the authors 0270-6474/14/3414874-16$15.00/0.

  4. Activity-dependent switch of GABAergic inhibition into glutamatergic excitation in astrocyte-neuron networks.

    PubMed

    Perea, Gertrudis; Gómez, Ricardo; Mederos, Sara; Covelo, Ana; Ballesteros, Jesús J; Schlosser, Laura; Hernández-Vivanco, Alicia; Martín-Fernández, Mario; Quintana, Ruth; Rayan, Abdelrahman; Díez, Adolfo; Fuenzalida, Marco; Agarwal, Amit; Bergles, Dwight E; Bettler, Bernhard; Manahan-Vaughan, Denise; Martín, Eduardo D; Kirchhoff, Frank; Araque, Alfonso

    2016-12-24

    Interneurons are critical for proper neural network function and can activate Ca 2+ signaling in astrocytes. However, the impact of the interneuron-astrocyte signaling into neuronal network operation remains unknown. Using the simplest hippocampal Astrocyte-Neuron network, i.e., GABAergic interneuron, pyramidal neuron, single CA3-CA1 glutamatergic synapse, and astrocytes, we found that interneuron-astrocyte signaling dynamically affected excitatory neurotransmission in an activity- and time-dependent manner, and determined the sign (inhibition vs potentiation) of the GABA-mediated effects. While synaptic inhibition was mediated by GABA A receptors, potentiation involved astrocyte GABA B receptors, astrocytic glutamate release, and presynaptic metabotropic glutamate receptors. Using conditional astrocyte-specific GABA B receptor ( Gabbr1 ) knockout mice, we confirmed the glial source of the interneuron-induced potentiation, and demonstrated the involvement of astrocytes in hippocampal theta and gamma oscillations in vivo. Therefore, astrocytes decode interneuron activity and transform inhibitory into excitatory signals, contributing to the emergence of novel network properties resulting from the interneuron-astrocyte interplay.

  5. Muscimol increases acetylcholine release by directly stimulating adult striatal cholinergic interneurons.

    PubMed

    Login, I S; Pal, S N; Adams, D T; Gold, P E

    1998-01-01

    Because GabaA ligands increase acetylcholine (ACh) release from adult striatal slices, we hypothesized that activation of GabaA receptors on striatal cholinergic interneurons directly stimulates ACh secretion. Fractional [3H]ACh release was recorded during perifusion of acutely dissociated, [3H]choline-labeled, adult male rat striata. The GabaA agonist, muscimol, immediately stimulated release maximally approximately 300% with EC50 = approximately 1 microM. This action was enhanced by the allosteric GabaA receptor modulators, diazepam and secobarbital, and inhibited by the GabaA antagonist, bicuculline, by ligands for D2 or muscarinic cholinergic receptors or by low calcium buffer, tetrodotoxin or vesamicol. Membrane depolarization inversely regulated muscimol-stimulated secretion. Release of endogenous and newly synthesized ACh was stimulated in parallel by muscimol without changing choline release. Muscimol pretreatment inhibited release evoked by K+ depolarization or by receptor-mediated stimulation with glutamate. Thus, GabaA receptors on adult striatal cholinergic interneurons directly stimulate voltage- and calcium-dependent exocytosis of ACh stored in vesamicol-sensitive synaptic vesicles. The action depends on the state of membrane polarization and apparently depolarizes the membrane in turn. This functional assay demonstrates that excitatory GabaA actions are not limited to neonatal tissues. GabaA-stimulated ACh release may be prevented in situ by normal tonic dopaminergic and muscarinic input to cholinergic neurons.

  6. Pregnancies in Glycogen Storage Disease Type Ia

    PubMed Central

    Martens, Daniëlle HJ; Rake, Jan Peter; Schwarz, Martin; Ullrich, Kurt; Weinstein, David A; Merkel, Martin; Sauer, Pieter JJ; Smit, G Peter A

    2013-01-01

    Objective Reports on pregnancies in women with GSD-Ia are scarce. Due to improved life expectancy, pregnancy is becoming an important issue. We describe 15 pregnancies focusing on dietary treatment, biochemical parameters and GSD-Ia complications. Study Design Carbohydrate requirements (mg/kg/min), triglyceride and uric acid levels, liver ultrasonography and creatinine clearance were investigated before, during and after pregnancy. Data of the newborns were obtained from the records. Results In the first trimester, a significant increase in carbohydrate requirements was observed (p=0,007). Most patients had acceptable triglyceride and uric acid levels during pregnancy. No increase in size/number of adenomas was seen. In 3/4 patients, a decrease in GFR was observed after pregnancy. In three pregnancies, lactic acidosis developed during delivery with severe multi-organ failure in one. All but one of the children are healthy and show good psychomotor development. Conclusion Successful pregnancies are possible in GSD-Ia patients, although specific GSD-Ia related risks are present. PMID:18241814

  7. He-accreting carbon-oxygen white dwarfs and Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Podsiadlowski, Philipp; Han, Zhanwen

    2017-12-01

    He accretion on to carbon-oxygen white dwarfs (CO WDs) plays a fundamental role when studying the formation of Type Ia supernovae (SNe Ia). Employing the MESA stellar evolution code, we calculated the long-term evolution of He-accreting CO WDs. Previous studies usually supposed that a WD can grow in mass to the Chandrasekhar limit in the stable He burning region and finally produce an SN Ia. However, in this study, we find that off-centre carbon ignition occurs in the stable He burning region if the accretion rate is above a critical value (∼2.05 × 10-6 M⊙ yr-1), resulting in accretion-induced collapse rather than an SN Ia. If the accretion rate is below the critical value, explosive carbon ignition will eventually happen in the centre producing an SN Ia. Taking into account the possibility of off-centre carbon ignition, we have re-determined the initial parameter space that produces SNe Ia in the He star donor channel, one of the promising channels to produce SNe Ia in young populations. Since this parameter space is smaller than was found in the previous study of Wang et al. (2009), the SN Ia rates are also correspondingly smaller. We also determined the chemical abundance profile of the He-accreting WDs at the moment of explosive carbon ignition, which can be used as initial input for SN Ia explosion models.

  8. Low-z Type Ia Supernova Calibration

    NASA Astrophysics Data System (ADS)

    Hamuy, Mario

    The discovery of acceleration and dark energy in 1998 arguably constitutes one of the most revolutionary discoveries in astrophysics in recent years. This paradigm shift was possible thanks to one of the most traditional cosmological tests: the redshift-distance relation between galaxies. This discovery was based on a differential measurement of the expansion rate of the universe: the current one provided by nearby (low-z) type Ia supernovae and the one in the past measured from distant (high-z) supernovae. This paper focuses on the first part of this journey: the calibration of the type Ia supernova luminosities and the local expansion rate of the universe, which was made possible thanks to the introduction of digital CCD (charge-coupled device) digital photometry. The new technology permitted us in the early 1990s to convert supernovae as precise tools to measure extragalactic distances through two key surveys: (1) the "Tololo Supernova Program" which made possible the critical discovery of the "peak luminosity-decline rate" relation for type Ia supernovae, the key underlying idea today behind precise cosmology from supernovae, and (2) the Calán/Tololo project which provided the low - z type Ia supernova sample for the discovery of acceleration.

  9. 75 FR 23581 - Amendment of Class E Airspace; Emmetsburg, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ...-1153; Airspace Docket No. 09-ACE-13] Amendment of Class E Airspace; Emmetsburg, IA AGENCY: Federal... Emmetsburg, IA, adding additional controlled airspace to accommodate Area Navigation (RNAV) Standard Instrument Approach Procedures (SIAPs) at Emmetsburg Municipal Airport, Emmetsburg, IA. The FAA is taking...

  10. 77 FR 4459 - Amendment of Class E Airspace; Greenfield, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ...-0846; Airspace Docket No. 11-ACE-18] Amendment of Class E Airspace; Greenfield, IA AGENCY: Federal... Greenfield, IA. Decommissioning of the Greenfield non-directional beacon (NDB) at Greenfield Municipal... rulemaking to amend Class E airspace for Greenfield, IA, reconfiguring controlled airspace at Greenfield...

  11. Hepatocyte growth factor (HGF) modulates GABAergic inhibition and seizure susceptibility

    PubMed Central

    Bae, Mihyun H.; Bissonette, Gregory B.; Mars, Wendy M.; Michalopoulos, George K.; Achim, Cristian L.; Depireux, Didier A.; Powell, Elizabeth M.

    2009-01-01

    Disrupted ontogeny of forebrain inhibitory interneurons leads to neurological disorders, including epilepsy. Adult mice lacking the urokinase plasminogen activator receptor (Plaur) have decreased numbers of neocortical GABAergic interneurons and spontaneous seizures, attributed to a reduction of hepatocyte growth factor/scatter factor (HGF/SF). We report that by increasing endogenous HGF/SF concentration in the postnatal Plaur null mouse brain maintains the interneuron populations in the adult, reverses the seizure behavior and stabilizes the spontaneous electroencephalogram activity. The perinatal intervention provides a pathway to reverse potential birth defects and ameliorate seizures in the adult. PMID:19853606

  12. THE BIRTH RATE OF SNe Ia FROM HYBRID CONe WHITE DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Xiangcun; Podsiadlowski, Philipp, E-mail: xiangcunmeng@ynao.ac.cn

    Considering the uncertainties of the C-burning rate (CBR) and the treatment of convective boundaries, Chen et al. found that there is a regime where it is possible to form hybrid CONe white dwarfs (WDs), i.e., ONe WDs with carbon-rich cores. As these hybrid WDs can be as massive as 1.30 M {sub ☉}, not much mass needs to be accreted for these objects to reach the Chandrasekhar limit and to explode as Type Ia supernovae (SNe Ia). We have investigated their contribution to the overall SN Ia birth rate and found that such SNe Ia tend to be relatively youngmore » with typical time delays between 0.1 and 1 Gyr, where some may be as young as 30 Myr. SNe Ia from hybrid CONe WDs may contribute several percent to all SNe Ia, depending on the common-envelope ejection efficiency and the CBR. We suggest that these SNe Ia may produce part of the 2002cx-like SN Ia class.« less

  13. 75 FR 23580 - Amendment of Class E Airspace; Mapleton, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ...-1155; Airspace Docket No. 09-ACE-14] Amendment of Class E Airspace; Mapleton, IA AGENCY: Federal... Mapleton, IA, adding additional controlled airspace to accommodate Area Navigation (RNAV) Standard Instrument Approach Procedures (SIAPs) at James G. Whiting Memorial Field Airport, Mapleton, IA. The FAA is...

  14. Thalamocortical Projection Neuron and Interneuron Numbers in the Visual Thalamic Nuclei of the Adult C57BL/6 Mouse.

    PubMed

    Evangelio, Marian; García-Amado, María; Clascá, Francisco

    2018-01-01

    A key parameter to constrain predictive, bottom-up circuit models of a given brain domain is the number and position of the neuronal populations involved. These include not only the neurons whose bodies reside within the domain, but also the neurons in distant regions that innervate the domain. The mouse visual cortex receives its main subcortical input from the dorsal lateral geniculate nucleus (dLGN) and the lateral posterior (LP) complex of the thalamus. The latter consists of three different nuclei: lateral posterior lateral (LPL), lateral posterior medial rostral (LPMR), and lateral posterior medial caudal (LPMC), each exhibiting specific patterns of connections with the various visual cortical areas. Here, we have determined the number of thalamocortical projection neurons and interneurons in the LP complex and dLGN of the adult C57BL/6 male mouse. We combined Nissl staining and histochemical and immunolabeling methods for consistently delineating nuclei borders, and applied unbiased stereological cell counting methods. Thalamic interneurons were identified using GABA immunolabeling. The C57BL/6 dLGN contains ∼21,200 neurons, while LP complex contains ∼31,000 total neurons. The dLGN and LP are the only nuclei of the mouse dorsal thalamus containing substantial numbers GABA-immunoreactive interneurons. These interneurons, however, are scarcer than previously estimated; they are 5.6% of dLGN neurons and just 1.9% of the LP neurons. It can be thus inferred that the dLGN contains ∼20,000 and the LP complex ∼30,400 thalamocortical projection neurons (∼12,000 in LPL, 15,200 in LPMR, and 4,200 in LPMC). The present dataset is relevant for constraining models of mouse visual thalamocortical circuits, as well as for quantitative comparisons between genetically modified mouse strains, or across species.

  15. Thalamocortical Projection Neuron and Interneuron Numbers in the Visual Thalamic Nuclei of the Adult C57BL/6 Mouse

    PubMed Central

    Evangelio, Marian; García-Amado, María; Clascá, Francisco

    2018-01-01

    A key parameter to constrain predictive, bottom-up circuit models of a given brain domain is the number and position of the neuronal populations involved. These include not only the neurons whose bodies reside within the domain, but also the neurons in distant regions that innervate the domain. The mouse visual cortex receives its main subcortical input from the dorsal lateral geniculate nucleus (dLGN) and the lateral posterior (LP) complex of the thalamus. The latter consists of three different nuclei: lateral posterior lateral (LPL), lateral posterior medial rostral (LPMR), and lateral posterior medial caudal (LPMC), each exhibiting specific patterns of connections with the various visual cortical areas. Here, we have determined the number of thalamocortical projection neurons and interneurons in the LP complex and dLGN of the adult C57BL/6 male mouse. We combined Nissl staining and histochemical and immunolabeling methods for consistently delineating nuclei borders, and applied unbiased stereological cell counting methods. Thalamic interneurons were identified using GABA immunolabeling. The C57BL/6 dLGN contains ∼21,200 neurons, while LP complex contains ∼31,000 total neurons. The dLGN and LP are the only nuclei of the mouse dorsal thalamus containing substantial numbers GABA-immunoreactive interneurons. These interneurons, however, are scarcer than previously estimated; they are 5.6% of dLGN neurons and just 1.9% of the LP neurons. It can be thus inferred that the dLGN contains ∼20,000 and the LP complex ∼30,400 thalamocortical projection neurons (∼12,000 in LPL, 15,200 in LPMR, and 4,200 in LPMC). The present dataset is relevant for constraining models of mouse visual thalamocortical circuits, as well as for quantitative comparisons between genetically modified mouse strains, or across species. PMID:29706872

  16. The Influence of Host Galaxies in Type Ia Supernova Cosmology

    NASA Astrophysics Data System (ADS)

    Uddin, Syed A.; Mould, Jeremy; Lidman, Chris; Ruhlmann-Kleider, Vanina; Zhang, Bonnie R.

    2017-10-01

    We use a sample of 1338 spectroscopically confirmed and photometrically classified Type Ia supernovae (SNe Ia) sourced from Carnegie Supernova Project, Center for Astrophysics Supernova Survey, Sloan Digital Sky Survey-II, and SuperNova Legacy Survey SN samples to examine the relationships between SNe Ia and the galaxies that host them. Our results provide confirmation with improved statistical significance that SNe Ia, after standardization, are on average more luminous in massive hosts (significance >5σ), and decline more rapidly in massive hosts (significance >9σ) and in hosts with low specific star formation rates (significance >8σ). We study the variation of these relationships with redshift and detect no evolution. We split SNe Ia into pairs of subsets that are based on the properties of the hosts and fit cosmological models to each subset. Including both systematic and statistical uncertainties, we do not find any significant shift in the best-fit cosmological parameters between the subsets. Among different SN Ia subsets, we find that SNe Ia in hosts with high specific star formation rates have the least intrinsic scatter (σ int = 0.08 ± 0.01) in luminosity after standardization.

  17. WD+RG systems as the progenitors of type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Han, Zhan-Wen

    2010-03-01

    Type Ia supernovae (SNe Ia) play an important role in the study of cosmic evolution, especially in cosmology. There are several progenitor models for SNe Ia proposed in the past years. By considering the effect of accretion disk instability on the evolution of white dwarf (WD) binaries, we performed detailed binary evolution calculations for the WD + red-giant (RG) channel of SNe Ia, in which a carbon-oxygen WD accretes material from a RG star to increase its mass to the Chandrasekhar mass limit. According to these calculations, we mapped out the initial and final parameters for SNe Ia in the orbital period-secondary mass (log Pi - Mi2) plane for various WD masses for this channel. We discussed the influence of the variation of the duty cycle value on the regions for producing SNe Ia. Similar to previous studies, this work also indicates that the long-period dwarf novae offer possible ways for producing SNe Ia. Meanwhile, we find that the surviving companion stars from this channel have a low mass after the SN explosion, which may provide a means for the formation of the population of single low-mass WDs (<0.45 Modot).

  18. The Influence of Host Galaxies in Type Ia Supernova Cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uddin, Syed A.; Mould, Jeremy; Lidman, Chris

    We use a sample of 1338 spectroscopically confirmed and photometrically classified Type Ia supernovae (SNe Ia) sourced from Carnegie Supernova Project, Center for Astrophysics Supernova Survey, Sloan Digital Sky Survey-II, and SuperNova Legacy Survey SN samples to examine the relationships between SNe Ia and the galaxies that host them. Our results provide confirmation with improved statistical significance that SNe Ia, after standardization, are on average more luminous in massive hosts (significance >5 σ ), and decline more rapidly in massive hosts (significance >9 σ ) and in hosts with low specific star formation rates (significance >8 σ ). We studymore » the variation of these relationships with redshift and detect no evolution. We split SNe Ia into pairs of subsets that are based on the properties of the hosts and fit cosmological models to each subset. Including both systematic and statistical uncertainties, we do not find any significant shift in the best-fit cosmological parameters between the subsets. Among different SN Ia subsets, we find that SNe Ia in hosts with high specific star formation rates have the least intrinsic scatter ( σ {sub int} = 0.08 ± 0.01) in luminosity after standardization.« less

  19. 77 FR 68682 - Amendment of Class E Airspace; Guthrie, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ...-1436; Airspace Docket No. 11-ACE-29] Amendment of Class E Airspace; Guthrie, IA AGENCY: Federal... Guthrie, IA. Decommissioning of the Guthrie Center non-directional radio beacon (NDB) at Guthrie County... proposed rulemaking (NPRM) to amend Class E airspace for the Guthrie, IA, area, creating additional...

  20. 75 FR 37292 - Amendment of Class E Airspace; Cherokee, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ...-0085; Airspace Docket No. 10-ACE-1] Amendment of Class E Airspace; Cherokee, IA AGENCY: Federal... Cherokee, IA. Decommissioning of the Pilot Rock non-directional beacon (NDB) at Cherokee County Regional Airport, Cherokee, IA has made this action necessary to enhance the safety and management of Instrument...

  1. 78 FR 76053 - Amendment of Class E Airspace; Chariton, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-16

    ...-0255; Airspace Docket No. 13-ACE-4] Amendment of Class E Airspace; Chariton, IA AGENCY: Federal... Chariton, IA. Decommissioning of the Chariton non-directional beacon (NDB) at Chariton Municipal Airport... Register a notice of proposed rulemaking (NPRM) to amend Class E airspace for the Chariton, IA, area...

  2. IA-2 autoantibody affinity in children at risk for type 1 diabetes.

    PubMed

    Krause, Stephanie; Chmiel, Ruth; Bonifacio, Ezio; Scholz, Marlon; Powell, Michael; Furmaniak, Jadwiga; Rees Smith, Bernard; Ziegler, Anette-G; Achenbach, Peter

    2012-12-01

    Autoantibodies to insulinoma-associated protein 2 (IA-2A) are associated with increased risk for type 1 diabetes. Here we examined IA-2A affinity and epitope specificity to assess heterogeneity in response intensity in relation to pathogenesis and diabetes risk in 50 children who were prospectively followed from birth. At first IA-2A appearance, affinity ranged from 10(7) to 10(11)L/mol and was high (>1.0×10(9)L/mol) in 41 (82%) children. IA-2A affinity was not associated with epitope specificity or HLA class II haplotype. On follow-up, affinity increased or remained high, and IA-2A were commonly against epitopes within the protein tyrosine phosphatase-like IA-2 domain and the homologue protein IA-2β. IA-2A were preceded or accompanied by other islet autoantibodies in 49 (98%) children, of which 34 progressed to diabetes. IA-2A affinity did not stratify diabetes risk. In conclusion, the IA-2A response in children is intense with rapid maturation against immunogenic epitopes and a strong association with diabetes development. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. [Effects of transections and electrical coagulations in the medulla oblongata upon the activities in the respiratory muscles of the crucian carp (author's transl)].

    PubMed

    Fukuda, H

    1975-06-01

    The following conclusions may be drawn from the results in this work. The respiratory cycles are formed by the neuronal machinery in the reticular formation under the posterior part of the vagal motor nucleus. The motor neurones or the neuronal networks composing the motor nucleus of the respiratory muscles tonically discharge the action potentials, when the neurones or the networks are released from the inhibitory influences of the interneurones connecting the neuronal machinery to the motor neurones. Furthermore, the interneurones probably generate the tonic discharges after removing the inhibitory influences of the other interneurones or the neuronal machinery on them. A reflex mouth closing is elicited by a mechanical stimulus applying on the upper lip. The motor neurones of the m. adductor mandibulae are activated via only one synapse in the reflex. The reflex action potentials recorded from the motor nerve reduce in amplitude at the resting phase of the nerve in the respiratory cycles. These results suggest that the respiratory motor neurones are by nature spontaneous generators of the tonic action potentials and, in the time of the normal breathing, the tonic activity is interrupted by an inhibitory influence of the neuronal machinery generating the respiratory cycles.

  4. The Type Ia Supernova Rate and Delay-Time Distribution

    NASA Astrophysics Data System (ADS)

    Graur, Or

    2013-11-01

    The nature of the progenitor stellar systems of thermonuclear, or Type Ia, supernovae (SNe Ia) remains unknown. Unlike core-collapse (CC) SNe, which have been successfully linked, at least partially, to various types of massive stars, the progenitors of SNe Ia are to date undetected in pre-explosion images and the nature of these progenitors can only be probed using indirect methods. In this thesis, I present three SN surveys aimed at measuring the rates at which SNe Ia explode at different times throughout the Universe's history and in different types of galaxies. I use these rates to re-construct the SN Ia delay-time distribution (DTD), a function that connects between the star-formation history (SFH) of a specific stellar environment and its SN Ia rate, and I use it to constrain different progenitor models. In Chapter 1, I provide a brief introduction of the field. This is followed, in Chapter 2, by a description of the Subaru Deep Field (SDF) SN Survey. Over a period of three years between 2005-2008, the SDF was observed on four independent epochs with Suprime-Cam on the Subaru 8.2-m telescope, with two nights of exposure per epoch, in the R, i', and z' bands. In this survey, I discover 150 SNe out to redshift z ~ 2, including 27 SNe Ia in the range 1.0 < z < 1.5 and 10 in the range 1.5 < z < 2.0. The SN Ia rate measurements from this sample are consistent with those derived from the Hubble Space Telescope (HST) GOODS sample, but the overall uncertainty of the 1.5 < z < 2.0 measurement is a factor of 2 smaller, of 35-50%. Based on this sample, we find that the SN Ia rate evolution levels off at 1.0 < z < 2.0, but shows no sign of declining. Combining our SN Ia rate measurements and those from the literature, and comparing to a wide range of possible SFHs, the best-fitting DTD is a power law of the form Psi(t) ~ t^beta, with index beta = -1.1 ± 0.1 (statistical) ± 0.17 (systematic). By combining the contribution from CC SNe, based on the wide range of SFHs

  5. Phase precession through acceleration of local theta rhythm: a biophysical model for the interaction between place cells and local inhibitory neurons.

    PubMed

    Castro, Luísa; Aguiar, Paulo

    2012-08-01

    Phase precession is one of the most well known examples within the temporal coding hypothesis. Here we present a biophysical spiking model for phase precession in hippocampal CA1 which focuses on the interaction between place cells and local inhibitory interneurons. The model's functional block is composed of a place cell (PC) connected with a local inhibitory cell (IC) which is modulated by the population theta rhythm. Both cells receive excitatory inputs from the entorhinal cortex (EC). These inputs are both theta modulated and space modulated. The dynamics of the two neuron types are described by integrate-and-fire models with conductance synapses, and the EC inputs are described using non-homogeneous Poisson processes. Phase precession in our model is caused by increased drive to specific PC/IC pairs when the animal is in their place field. The excitation increases the IC's firing rate, and this modulates the PC's firing rate such that both cells precess relative to theta. Our model implies that phase coding in place cells may not be independent from rate coding. The absence of restrictive connectivity constraints in this model predicts the generation of phase precession in any network with similar architecture and subject to a clocking rhythm, independently of the involvement in spatial tasks.

  6. Encoding of Tactile Stimuli by Mechanoreceptors and Interneurons of the Medicinal Leech

    PubMed Central

    Kretzberg, Jutta; Pirschel, Friederice; Fathiazar, Elham; Hilgen, Gerrit

    2016-01-01

    For many animals processing of tactile information is a crucial task in behavioral contexts like exploration, foraging, and stimulus avoidance. The leech, having infrequent access to food, developed an energy efficient reaction to tactile stimuli, avoiding unnecessary muscle movements: The local bend behavior moves only a small part of the body wall away from an object touching the skin, while the rest of the animal remains stationary. Amazingly, the precision of this localized behavioral response is similar to the spatial discrimination threshold of the human fingertip, although the leech skin is innervated by an order of magnitude fewer mechanoreceptors and each midbody ganglion contains only 400 individually identified neurons in total. Prior studies suggested that this behavior is controlled by a three-layered feed-forward network, consisting of four mechanoreceptors (P cells), approximately 20 interneurons and 10 individually characterized motor neurons, all of which encode tactile stimulus location by overlapping, symmetrical tuning curves. Additionally, encoding of mechanical force was attributed to three types of mechanoreceptors reacting to distinct intensity ranges: T cells for touch, P cells for pressure, and N cells for strong, noxious skin stimulation. In this study, we provide evidences that tactile stimulus encoding in the leech is more complex than previously thought. Combined electrophysiological, anatomical, and voltage sensitive dye approaches indicate that P and T cells both play a major role in tactile information processing resulting in local bending. Our results indicate that tactile encoding neither relies on distinct force intensity ranges of different cell types, nor location encoding is restricted to spike count tuning. Instead, we propose that P and T cells form a mixed type population, which simultaneously employs temporal response features and spike counts for multiplexed encoding of touch location and force intensity. This hypothesis

  7. 78 FR 18800 - Amendment of Class E Airspace; Decorah, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ...-1433; Airspace Docket No. 11-ACE-26] Amendment of Class E Airspace; Decorah, IA AGENCY: Federal... Decorah, IA. Decommissioning of the Decorah non-directional beacon (NDB) at Decorah Municipal Airport has... Register a notice of proposed rulemaking (NPRM) to amend Class E airspace for the Decorah, IA, area...

  8. 76 FR 75447 - Amendment of Class E Airspace; Centerville, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-02

    ...-0830; Airspace Docket No. 11-ACE-16] Amendment of Class E Airspace; Centerville, IA AGENCY: Federal... Centerville, IA. Decommissioning of the Centerville non-directional beacon (NDB) and cancellation of the NDB... Federal Register a notice of proposed rulemaking to amend Class E airspace for the Centerville, IA, area...

  9. 77 FR 66069 - Amendment of Class E Airspace; Perry, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-01

    ...-1435; Airspace Docket No. 11-ACE-28] Amendment of Class E Airspace; Perry, IA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at Perry, IA... proposed rulemaking (NPRM) to amend Class E airspace for the Perry, IA, area, creating additional...

  10. 77 FR 42427 - Amendment of Class E Airspace; Grinnell, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-19

    ...-1430; Airspace Docket No. 11-ACE-23] Amendment of Class E Airspace; Grinnell, IA AGENCY: Federal... Class E airspace at Grinnell Regional Airport, Grinnell, IA, by removing reference to the Grinnell NDB... Regional Airport, Grinnell, IA, and amends the geographic coordinates of the airport to coincide with the...

  11. 76 FR 73501 - Amendment of Class E Airspace; Carroll, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ...-0845; Airspace Docket No. 11-ACE-19] Amendment of Class E Airspace; Carroll, IA AGENCY: Federal... Carroll, IA. Decommissioning of the Carroll non-directional beacon (NDB) at Arthur N. Neu Airport, Carroll, IA, has made this action necessary to enhance the safety and management of Instrument Flight Rule...

  12. 77 FR 66067 - Amendment of Class E Airspace; Boone, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-01

    ...-1432; Airspace Docket No. 11-ACE-25] Amendment of Class E Airspace; Boone, IA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at Boone, IA... proposed rulemaking (NPRM) to amend Class E airspace for the Boone, IA, area, creating additional...

  13. Non-Local Thermodynamic Equilibrium Spectrum Synthesis of Type IA Supernovae

    NASA Astrophysics Data System (ADS)

    Nugent, Peter Edward

    1997-09-01

    Type Ia supernovae (SNe Ia) are valuable distance indicators for cosmology and the elements they eject are are important for nucleosynthesis. They appear to be thermonuclear disruptions of carbon-oxygen white dwarfs that accrete from companion stars until they approach the Chandrasekbar mass, and there is a suspicion that the propagation of the nuclear burning front involves a transition from a deflagration to a detonation. Detailed modeling of the atmospheres and spectra of SNe Ia is needed to advance our understanding of SNe Ia. Comparison of synthetic and observed spectra provides information on the temperature, density, velocity, and composition of the ejected matter and thus constrain hydrodynamical models. In addition, the expanding photosphere method yields distances to individual events that are independent of distances based on the decay of 56Ni in SNe Ia and of Cepheid variable stars in the parent galaxies. This thesis is broken down into 4 major sections, each highlighting a different way with which to use spectrum synthesis to analyze SNe Ia. Chapters 2 and 3 look at normal SNe Ia and their potential use as distance indicators using SEAM. Chapter 4 examines spectral correlations with luminosity in SNe Ia and provides a plausible explanation for these correlations via spectrum synthesis. In Chapter 5 the spectra of various hydrodynamical models are calculated in an effort to answer the question of which current progenitor/explosion model is the most plausible for a SN Ia. Finally, we look at the importance of NLTE calculations and line identifications in Chapter 6. Also included are two appendices which contain more technical information concerning γ-ray deposition and the thermalization parameter.

  14. Control of Inhibition by the Direct Action of Cannabinoids on GABAA Receptors.

    PubMed

    Golovko, Tatiana; Min, Rogier; Lozovaya, Natalia; Falconer, Caroline; Yatsenko, Natalia; Tsintsadze, Timur; Tsintsadze, Vera; Ledent, Catherine; Harvey, Robert J; Belelli, Delia; Lambert, Jeremy J; Rozov, Andrei; Burnashev, Nail

    2015-09-01

    Cannabinoids are known to regulate inhibitory synaptic transmission via activation of presynaptic G protein-coupled cannabinoid CB1 receptors (CB1Rs). Additionally, recent studies suggest that cannabinoids can also directly interact with recombinant GABAA receptors (GABAARs), potentiating currents activated by micromolar concentrations of γ-aminobutyric acid (GABA). However, the impact of this direct interaction on GABAergic inhibition in central nervous system is unknown. Here we report that currents mediated by recombinant GABAARs activated by high (synaptic) concentrations of GABA as well as GABAergic inhibitory postsynaptic currents (IPSCs) at neocortical fast spiking (FS) interneuron to pyramidal neuron synapses are suppressed by exogenous and endogenous cannabinoids in a CB1R-independent manner. This IPSC suppression may account for disruption of inhibitory control of pyramidal neurons by FS interneurons. At FS interneuron to pyramidal neuron synapses, endocannabinoids induce synaptic low-pass filtering of GABAAR-mediated currents evoked by high-frequency stimulation. The CB1R-independent suppression of inhibition is synapse specific. It does not occur in CB1R containing hippocampal cholecystokinin-positive interneuron to pyramidal neuron synapses. Furthermore, in contrast to synaptic receptors, the activity of extrasynaptic GABAARs in neocortical pyramidal neurons is enhanced by cannabinoids in a CB1R-independent manner. Thus, cannabinoids directly interact differentially with synaptic and extrasynaptic GABAARs, providing a potent novel context-dependent mechanism for regulation of inhibition. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Nearby Type Ia Supernova Follow-up at the Thacher Observatory

    NASA Astrophysics Data System (ADS)

    Swift, Jonathan; O'Neill, Katie; Kilpatrick, Charles; Foley, Ryan

    2018-06-01

    Type Ia supernovae (SN Ia) provide an effective way to study the expansion of the universe through analyses of their photometry and spectroscopy. The interpretation of high-redshift SN Ia is dependent on accurate characterization of nearby, low-redshift targets. To help build up samples of nearby SN Ia, the Thacher Observatory has begun a photometric follow-up program in 4 photometric bands. Here we present the observations and analysis of multi-band photometry for several recent supernovae as well as FLOYDS spectra from the Las Cumbres Observatory.

  16. The progenitors of Type Ia supernovae with long delay times

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Li, Xiang-Dong; Han, Zhan-Wen

    2010-02-01

    The nature of the progenitors of Type Ia supernovae (SNe Ia) is still unclear. In this paper, by considering the effect of the instability of accretion disc on the evolution of white dwarf (WD) binaries, we performed binary evolution calculations for about 2400 close WD binaries, in which a carbon-oxygen WD accretes material from a main-sequence (MS) star or a slightly evolved subgiant star (WD + MS channel), or a red-giant star (WD + RG channel) to increase its mass to the Chandrasekhar (Ch) mass limit. According to these calculations, we mapped out the initial parameters for SNe Ia in the orbital period-secondary mass (logPi - Mi2) plane for various WD masses for these two channels, respectively. We confirm that WDs in the WD + MS channel with a mass as low as 0.61Msolar can accrete efficiently and reach the Ch limit, while the lowest WD mass for the WD + RG channel is 1.0Msolar. We have implemented these results in a binary population synthesis study to obtain the SN Ia birthrates and the evolution of SN Ia birthrates with time for both a constant star formation rate and a single starburst. We find that the Galactic SN Ia birthrate from the WD + MS channel is ~1.8 × 10-3yr-1 according to our standard model, which is higher than the previous results. However, similar to the previous studies, the birthrate from the WD + RG channel is still low (~3 × 10-5yr-1). We also find that about one-third of SNe Ia from the WD + MS channel and all SNe Ia from the WD + RG channel can contribute to the old populations (>~1Gyr) of SN Ia progenitors.

  17. The cosmic gamma-ray background from Type Ia supernovae

    NASA Technical Reports Server (NTRS)

    The, Lih-Sin; Leising, Mark D.; Clayton, Donald D.

    1993-01-01

    We present an improved calculation of the cumulative gamma-ray spectrum of Type Ia supernovae during the history of the universe. We follow Clayton & Ward (1975) in using a few Friedmann models and two simple histories of the average galaxian nucleosynthesis rate, but we improve their calculation by modeling the gamma-ray scattering in detailed numerical models of SN Ia's. The results confirm that near 1 MeV the SN Ia background may dominate, and that it is potentially observable, with high scientific importance. A very accurate measurement of the cosmic background spectrum between 0.1 and 1.0 MeV may reveal the turn-on time and the evolution of the rate of Type Ia supernova nucleosynthesis in the universe.

  18. Striatal cholinergic interneurons and D2 receptor-expressing GABAergic medium spiny neurons regulate tardive dyskinesia.

    PubMed

    Bordia, Tanuja; Zhang, Danhui; Perez, Xiomara A; Quik, Maryka

    2016-12-01

    Tardive dyskinesia (TD) is a drug-induced movement disorder that arises with antipsychotics. These drugs are the mainstay of treatment for schizophrenia and bipolar disorder, and are also prescribed for major depression, autism, attention deficit hyperactivity, obsessive compulsive and post-traumatic stress disorder. There is thus a need for therapies to reduce TD. The present studies and our previous work show that nicotine administration decreases haloperidol-induced vacuous chewing movements (VCMs) in rodent TD models, suggesting a role for the nicotinic cholinergic system. Extensive studies also show that D2 dopamine receptors are critical to TD. However, the precise involvement of striatal cholinergic interneurons and D2 medium spiny neurons (MSNs) in TD is uncertain. To elucidate their role, we used optogenetics with a focus on the striatum because of its close links to TD. Optical stimulation of striatal cholinergic interneurons using cholineacetyltransferase (ChAT)-Cre mice expressing channelrhodopsin2-eYFP decreased haloperidol-induced VCMs (~50%), with no effect in control-eYFP mice. Activation of striatal D2 MSNs using Adora2a-Cre mice expressing channelrhodopsin2-eYFP also diminished antipsychotic-induced VCMs, with no change in control-eYFP mice. In both ChAT-Cre and Adora2a-Cre mice, stimulation or mecamylamine alone similarly decreased VCMs with no further decline with combined treatment, suggesting nAChRs are involved. Striatal D2 MSN activation in haloperidol-treated Adora2a-Cre mice increased c-Fos + D2 MSNs and decreased c-Fos + non-D2 MSNs, suggesting a role for c-Fos. These studies provide the first evidence that optogenetic stimulation of striatal cholinergic interneurons and GABAergic MSNs modulates VCMs, and thus possibly TD. Moreover, they suggest nicotinic receptor drugs may reduce antipsychotic-induced TD. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Striatal cholinergic interneurons and D2 receptor-expressing GABAergic medium spiny neurons regulate tardive dyskinesia

    PubMed Central

    Bordia, Tanuja; Zhang, Danhui; Perez, Xiomara A.; Quik, Maryka

    2016-01-01

    Tardive dyskinesia (TD) is a drug-induced movement disorder that arises with antipsychotics. These drugs are the mainstay of treatment for schizophrenia and bipolar disorder, and are also prescribed for major depression, autism, attention deficit hyperactivity, obsessive compulsive and post-traumatic stress disorder. There is thus a need for therapies to reduce TD. The present studies and our previous work show that nicotine administration decreases haloperidol-induced vacuous chewing movements (VCMs) in rodent TD models, suggesting a role for the nicotinic cholinergic system. Extensive studies also show that D2 dopamine receptors are critical to TD. However, the precise involvement of striatal cholinergic interneurons and D2 medium spiny neurons (MSNs) in TD is uncertain. To elucidate their role, we used optogenetics with a focus on the striatum because of its close links to TD. Optical stimulation of striatal cholinergic interneurons using cholineacetyltransferase (ChAT)-Cre mice expressing channelrhodopsin2-eYFP decreased haloperidol-induced VCMs (~50%), with no effect in control-eYFP mice. Activation of striatal D2 MSNs using Adora2a-Cre mice expressing channelrhodopsin2-eYFP also diminished antipsychotic-induced VCMs, with no change in control-eYFP mice. In both ChAT-Cre and Adora2a-Cre mice, stimulation or mecamylamine alone similarly decreased VCMs with no further decline with combined treatment, suggesting nAChRs are involved. Striatal D2 MSN activation in haloperidol-treated Adora2a-Cre mice increased c-Fos+ D2 MSNs and decreased c-Fos+ non-D2 MSNs, suggesting a role for c-Fos. These studies provide the first evidence that optogenetic stimulation of striatal cholinergic interneurons and GABAergic MSNs modulates VCMs, and thus possibly TD. Moreover, they suggest nicotinic receptor drugs may reduce antipsychotic-induced TD. PMID:27658674

  20. Anti-Hebbian long-term potentiation in the hippocampal feedback inhibitory circuit.

    PubMed

    Lamsa, Karri P; Heeroma, Joost H; Somogyi, Peter; Rusakov, Dmitri A; Kullmann, Dimitri M

    2007-03-02

    Long-term potentiation (LTP), which approximates Hebb's postulate of associative learning, typically requires depolarization-dependent glutamate receptors of the NMDA (N-methyl-D-aspartate) subtype. However, in some neurons, LTP depends instead on calcium-permeable AMPA-type receptors. This is paradoxical because intracellular polyamines block such receptors during depolarization. We report that LTP at synapses on hippocampal interneurons mediating feedback inhibition is "anti-Hebbian":Itis induced by presynaptic activity but prevented by postsynaptic depolarization. Anti-Hebbian LTP may occur in interneurons that are silent during periods of intense pyramidal cell firing, such as sharp waves, and lead to their altered activation during theta activity.

  1. Activity-dependent switch of GABAergic inhibition into glutamatergic excitation in astrocyte-neuron networks

    PubMed Central

    Perea, Gertrudis; Gómez, Ricardo; Mederos, Sara; Covelo, Ana; Ballesteros, Jesús J; Schlosser, Laura; Hernández-Vivanco, Alicia; Martín-Fernández, Mario; Quintana, Ruth; Rayan, Abdelrahman; Díez, Adolfo; Fuenzalida, Marco; Agarwal, Amit; Bergles, Dwight E; Bettler, Bernhard; Manahan-Vaughan, Denise; Martín, Eduardo D; Kirchhoff, Frank; Araque, Alfonso

    2016-01-01

    Interneurons are critical for proper neural network function and can activate Ca2+ signaling in astrocytes. However, the impact of the interneuron-astrocyte signaling into neuronal network operation remains unknown. Using the simplest hippocampal Astrocyte-Neuron network, i.e., GABAergic interneuron, pyramidal neuron, single CA3-CA1 glutamatergic synapse, and astrocytes, we found that interneuron-astrocyte signaling dynamically affected excitatory neurotransmission in an activity- and time-dependent manner, and determined the sign (inhibition vs potentiation) of the GABA-mediated effects. While synaptic inhibition was mediated by GABAA receptors, potentiation involved astrocyte GABAB receptors, astrocytic glutamate release, and presynaptic metabotropic glutamate receptors. Using conditional astrocyte-specific GABAB receptor (Gabbr1) knockout mice, we confirmed the glial source of the interneuron-induced potentiation, and demonstrated the involvement of astrocytes in hippocampal theta and gamma oscillations in vivo. Therefore, astrocytes decode interneuron activity and transform inhibitory into excitatory signals, contributing to the emergence of novel network properties resulting from the interneuron-astrocyte interplay. DOI: http://dx.doi.org/10.7554/eLife.20362.001 PMID:28012274

  2. Dendritic excitation–inhibition balance shapes cerebellar output during motor behaviour

    PubMed Central

    Jelitai, Marta; Puggioni, Paolo; Ishikawa, Taro; Rinaldi, Arianna; Duguid, Ian

    2016-01-01

    Feedforward excitatory and inhibitory circuits regulate cerebellar output, but how these circuits interact to shape the somatodendritic excitability of Purkinje cells during motor behaviour remains unresolved. Here we perform dendritic and somatic patch-clamp recordings in vivo combined with optogenetic silencing of interneurons to investigate how dendritic excitation and inhibition generates bidirectional (that is, increased or decreased) Purkinje cell output during self-paced locomotion. We find that granule cells generate a sustained depolarization of Purkinje cell dendrites during movement, which is counterbalanced by variable levels of feedforward inhibition from local interneurons. Subtle differences in the dendritic excitation–inhibition balance generate robust, bidirectional changes in simple spike (SSp) output. Disrupting this balance by selectively silencing molecular layer interneurons results in unidirectional firing rate changes, increased SSp regularity and disrupted locomotor behaviour. Our findings provide a mechanistic understanding of how feedforward excitatory and inhibitory circuits shape Purkinje cell output during motor behaviour. PMID:27976716

  3. Coup-TF1 and Coup-TF2 control subtype and laminar identity of MGE-derived neocortical interneurons.

    PubMed

    Hu, Jia Sheng; Vogt, Daniel; Lindtner, Susan; Sandberg, Magnus; Silberberg, Shanni N; Rubenstein, John L R

    2017-08-01

    Distinct cortical interneuron (CIN) subtypes have unique circuit functions; dysfunction in specific subtypes is implicated in neuropsychiatric disorders. Somatostatin- and parvalbumin-expressing (SST + and PV + ) interneurons are the two major subtypes generated by medial ganglionic eminence (MGE) progenitors. Spatial and temporal mechanisms governing their cell-fate specification and differential integration into cortical layers are largely unknown. We provide evidence that Coup-TF1 and Coup-TF2 ( Nr2f1 and Nr2f2 ) transcription factor expression in an arc-shaped progenitor domain within the MGE promotes time-dependent survival of this neuroepithelium and the time-dependent specification of layer V SST + CINs. Coup-TF1 and Coup-TF2 autonomously repress PV + fate in MGE progenitors, in part through directly driving Sox6 expression. These results have identified, in mouse, a transcriptional pathway that controls SST-PV fate. © 2017. Published by The Company of Biologists Ltd.

  4. 78 FR 47237 - Proposed Amendment of Class E Airspace; Chariton, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ...-0255; Airspace Docket No. 13-ACE-4] Proposed Amendment of Class E Airspace; Chariton, IA AGENCY... action proposes to amend Class E airspace at Chariton, IA. Decommissioning of the Chariton non... for standard instrument approach procedures at Chariton Municipal Airport, Chariton, IA. Airspace...

  5. Grouping normal type Ia supernovae by UV to optical color differences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milne, Peter A.; Brown, Peter J.; Roming, Peter W. A.

    2013-12-10

    Observations of many Type Ia supernovae (SNe Ia) for multiple epochs per object with the Swift Ultraviolet Optical Telescope instrument have revealed that there exists order to the differences in the UV-optical colors of optically normal supernovae (SNe). We examine UV-optical color curves for 23 SNe Ia, dividing the SNe into four groups, and find that roughly one-third of 'NUV-blue' SNe Ia have bluer UV-optical colors than the larger 'NUV-red' group. Two minor groups are recognized, 'MUV-blue' and 'irregular' SNe Ia. While we conclude that the latter group is a subset of the NUV-red group, containing the SNe with themore » broadest optical peaks, we conclude that the 'MUV-blue' group is a distinct group. Separating into the groups and accounting for the time evolution of the UV-optical colors lowers the scatter in two NUV-optical colors (e.g., u – v and uvw1 – v) to the level of the scatter in b – v. This finding is promising for extending the cosmological utilization of SNe Ia into the NUV. We generate spectrophotometry of 33 SNe Ia and determine the correct grouping for each. We argue that there is a fundamental spectral difference in the 2900-3500 Å wavelength range, a region suggested to be dominated by absorption from iron-peak elements. The NUV-blue SNe Ia feature less absorption than the NUV-red SNe Ia. We show that all NUV-blue SNe Ia in this sample also show evidence of unburned carbon in optical spectra, whereas only one NUV-red SN Ia features that absorption line. Every NUV-blue event also exhibits a low gradient of the Si II λ6355 absorption feature. Many NUV-red events also exhibit a low gradient, perhaps suggestive that NUV-blue events are a subset of the larger low-velocity gradient group.« less

  6. Polarization-Sensitive Interneurons in the Optic Lobe of the Desert Ant Cataglyphis bicolor

    NASA Astrophysics Data System (ADS)

    Labhart, Thomas

    Desert ants, Cataglyphis bicolor (Hymenoptera), navigate by using compass information provided by skylight polarization. In this study, electrophysiological recordings were made from polarization-sensitive interneurons (POL-neurons) in the optic lobe of Cataglyphis. The POL-neurons exhibit a characteristic polarization opponency. They receive monochromatic input from the UV receptors of the specialized dorsal rim area of the compound eye. Both polarization opponency and monochromacy are features also found in the POL-neurons of crickets (Orthoptera).

  7. How noise affects the synchronization properties of recurrent networks of inhibitory neurons.

    PubMed

    Brunel, Nicolas; Hansel, David

    2006-05-01

    GABAergic interneurons play a major role in the emergence of various types of synchronous oscillatory patterns of activity in the central nervous system. Motivated by these experimental facts, modeling studies have investigated mechanisms for the emergence of coherent activity in networks of inhibitory neurons. However, most of these studies have focused either when the noise in the network is absent or weak or in the opposite situation when it is strong. Hence, a full picture of how noise affects the dynamics of such systems is still lacking. The aim of this letter is to provide a more comprehensive understanding of the mechanisms by which the asynchronous states in large, fully connected networks of inhibitory neurons are destabilized as a function of the noise level. Three types of single neuron models are considered: the leaky integrate-and-fire (LIF) model, the exponential integrate-and-fire (EIF), model and conductance-based models involving sodium and potassium Hodgkin-Huxley (HH) currents. We show that in all models, the instabilities of the asynchronous state can be classified in two classes. The first one consists of clustering instabilities, which exist in a restricted range of noise. These instabilities lead to synchronous patterns in which the population of neurons is broken into clusters of synchronously firing neurons. The irregularity of the firing patterns of the neurons is weak. The second class of instabilities, termed oscillatory firing rate instabilities, exists at any value of noise. They lead to cluster state at low noise. As the noise is increased, the instability occurs at larger coupling, and the pattern of firing that emerges becomes more irregular. In the regime of high noise and strong coupling, these instabilities lead to stochastic oscillations in which neurons fire in an approximately Poisson way with a common instantaneous probability of firing that oscillates in time.

  8. The subcellular distribution of T-type Ca2+ channels in interneurons of the lateral geniculate nucleus.

    PubMed

    Allken, Vaneeda; Chepkoech, Joy-Loi; Einevoll, Gaute T; Halnes, Geir

    2014-01-01

    Inhibitory interneurons (INs) in the lateral geniculate nucleus (LGN) provide both axonal and dendritic GABA output to thalamocortical relay cells (TCs). Distal parts of the IN dendrites often enter into complex arrangements known as triadic synapses, where the IN dendrite plays a dual role as postsynaptic to retinal input and presynaptic to TC dendrites. Dendritic GABA release can be triggered by retinal input, in a highly localized process that is functionally isolated from the soma, but can also be triggered by somatically elicited Ca(2+)-spikes and possibly by backpropagating action potentials. Ca(2+)-spikes in INs are predominantly mediated by T-type Ca(2+)-channels (T-channels). Due to the complex nature of the dendritic signalling, the function of the IN is likely to depend critically on how T-channels are distributed over the somatodendritic membrane (T-distribution). To study the relationship between the T-distribution and several IN response properties, we here run a series of simulations where we vary the T-distribution in a multicompartmental IN model with a realistic morphology. We find that the somatic response to somatic current injection is facilitated by a high T-channel density in the soma-region. Conversely, a high T-channel density in the distal dendritic region is found to facilitate dendritic signalling in both the outward direction (increases the response in distal dendrites to somatic input) and the inward direction (the soma responds stronger to distal synaptic input). The real T-distribution is likely to reflect a compromise between several neural functions, involving somatic response patterns and dendritic signalling.

  9. The Subcellular Distribution of T-Type Ca2+ Channels in Interneurons of the Lateral Geniculate Nucleus

    PubMed Central

    Allken, Vaneeda; Chepkoech, Joy-Loi; Einevoll, Gaute T.; Halnes, Geir

    2014-01-01

    Inhibitory interneurons (INs) in the lateral geniculate nucleus (LGN) provide both axonal and dendritic GABA output to thalamocortical relay cells (TCs). Distal parts of the IN dendrites often enter into complex arrangements known as triadic synapses, where the IN dendrite plays a dual role as postsynaptic to retinal input and presynaptic to TC dendrites. Dendritic GABA release can be triggered by retinal input, in a highly localized process that is functionally isolated from the soma, but can also be triggered by somatically elicited Ca2+-spikes and possibly by backpropagating action potentials. Ca2+-spikes in INs are predominantly mediated by T-type Ca2+-channels (T-channels). Due to the complex nature of the dendritic signalling, the function of the IN is likely to depend critically on how T-channels are distributed over the somatodendritic membrane (T-distribution). To study the relationship between the T-distribution and several IN response properties, we here run a series of simulations where we vary the T-distribution in a multicompartmental IN model with a realistic morphology. We find that the somatic response to somatic current injection is facilitated by a high T-channel density in the soma-region. Conversely, a high T-channel density in the distal dendritic region is found to facilitate dendritic signalling in both the outward direction (increases the response in distal dendrites to somatic input) and the inward direction (the soma responds stronger to distal synaptic input). The real T-distribution is likely to reflect a compromise between several neural functions, involving somatic response patterns and dendritic signalling. PMID:25268996

  10. MDMA-induced loss of parvalbumin interneurons within the dentate gyrus is mediated by 5HT2A and NMDA receptors

    PubMed Central

    Collins, Stuart A.; Gudelsky, Gary A.; Yamamoto, Bryan K.

    2015-01-01

    MDMA is a widely abused psychostimulant which causes a rapid and robust release of the monoaminergic neurotransmitters dopamine and serotonin. Recently, it was shown that MDMA increases extracellular glutamate concentrations in the dorsal hippocampus, which is dependent on serotonin release and 5HT2A/2C receptor activation. The increased extracellular glutamate concentration coincides with a loss of parvalbumin-immunoreactive (PV-IR) interneurons of the dentate gyrus region. Given the known susceptibility of PV interneurons to excitotoxicity, we examined whether MDMA-induced increases in extracellular glutamate in the dentate gyrus are necessary for the loss of PV cells in rats. Extracellular glutamate concentrations increased in the dentate gyrus during systemic and local administration of MDMA. Administration of the NMDA receptor antagonist, MK-801, during systemic injections of MDMA, prevented the loss of PV-IR interneurons seen 10 days after MDMA exposure. Local administration of MDL100907, a selective 5HT2A receptor antagonist, prevented the increases in glutamate caused by reverse dialysis of MDMA directly into the dentate gyrus and prevented the reduction of PV-IR. These findings provide evidence that MDMA causes decreases in PV within the dentate gyrus through a 5HT2A receptor-mediated increase in glutamate and subsequent NMDA receptor activation. PMID:25936514

  11. 77 FR 71362 - Proposed Amendment of Class E Airspace; Decorah, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-30

    ...-1433; Airspace Docket No. 11-ACE-26] Proposed Amendment of Class E Airspace; Decorah, IA AGENCY... action proposes to amend Class E airspace at Decorah, IA. Decommissioning of the Decorah non-directional... instrument approach procedures at Decorah Municipal Airport, Decorah, IA. Airspace reconfiguration is...

  12. 76 FR 53358 - Proposed Amendment of Class E Airspace; Centerville, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ...-0830; Airspace Docket No. 11-ACE-16] Proposed Amendment of Class E Airspace; Centerville, IA AGENCY... action proposes to amend Class E airspace at Centerville, IA. Decommissioning of the Centerville non... Centerville Municipal Airport, Centerville, IA. Decommissioning of the Centerville NDB and cancellation of the...

  13. Delayed Maturation of Fast-Spiking Interneurons Is Rectified by Activation of the TrkB Receptor in the Mouse Model of Fragile X Syndrome.

    PubMed

    Nomura, Toshihiro; Musial, Timothy F; Marshall, John J; Zhu, Yiwen; Remmers, Christine L; Xu, Jian; Nicholson, Daniel A; Contractor, Anis

    2017-11-22

    Fragile X syndrome (FXS) is a neurodevelopmental disorder that is a leading cause of inherited intellectual disability, and the most common known cause of autism spectrum disorder. FXS is broadly characterized by sensory hypersensitivity and several developmental alterations in synaptic and circuit function have been uncovered in the sensory cortex of the mouse model of FXS ( Fmr1 KO). GABA-mediated neurotransmission and fast-spiking (FS) GABAergic interneurons are central to cortical circuit development in the neonate. Here we demonstrate that there is a delay in the maturation of the intrinsic properties of FS interneurons in the sensory cortex, and a deficit in the formation of excitatory synaptic inputs on to these neurons in neonatal Fmr1 KO mice. Both these delays in neuronal and synaptic maturation were rectified by chronic administration of a TrkB receptor agonist. These results demonstrate that the maturation of the GABAergic circuit in the sensory cortex is altered during a critical developmental period due in part to a perturbation in BDNF-TrkB signaling, and could contribute to the alterations in cortical development underlying the sensory pathophysiology of FXS. SIGNIFICANCE STATEMENT Fragile X (FXS) individuals have a range of sensory related phenotypes, and there is growing evidence of alterations in neuronal circuits in the sensory cortex of the mouse model of FXS ( Fmr1 KO). GABAergic interneurons are central to the correct formation of circuits during cortical critical periods. Here we demonstrate a delay in the maturation of the properties and synaptic connectivity of interneurons in Fmr1 KO mice during a critical period of cortical development. The delays both in cellular and synaptic maturation were rectified by administration of a TrkB receptor agonist, suggesting reduced BDNF-TrkB signaling as a contributing factor. These results provide evidence that the function of fast-spiking interneurons is disrupted due to a deficiency in neurotrophin

  14. Delayed Maturation of Fast-Spiking Interneurons Is Rectified by Activation of the TrkB Receptor in the Mouse Model of Fragile X Syndrome

    PubMed Central

    Nomura, Toshihiro; Zhu, Yiwen; Remmers, Christine L.; Xu, Jian; Nicholson, Daniel A.

    2017-01-01

    Fragile X syndrome (FXS) is a neurodevelopmental disorder that is a leading cause of inherited intellectual disability, and the most common known cause of autism spectrum disorder. FXS is broadly characterized by sensory hypersensitivity and several developmental alterations in synaptic and circuit function have been uncovered in the sensory cortex of the mouse model of FXS (Fmr1 KO). GABA-mediated neurotransmission and fast-spiking (FS) GABAergic interneurons are central to cortical circuit development in the neonate. Here we demonstrate that there is a delay in the maturation of the intrinsic properties of FS interneurons in the sensory cortex, and a deficit in the formation of excitatory synaptic inputs on to these neurons in neonatal Fmr1 KO mice. Both these delays in neuronal and synaptic maturation were rectified by chronic administration of a TrkB receptor agonist. These results demonstrate that the maturation of the GABAergic circuit in the sensory cortex is altered during a critical developmental period due in part to a perturbation in BDNF-TrkB signaling, and could contribute to the alterations in cortical development underlying the sensory pathophysiology of FXS. SIGNIFICANCE STATEMENT Fragile X (FXS) individuals have a range of sensory related phenotypes, and there is growing evidence of alterations in neuronal circuits in the sensory cortex of the mouse model of FXS (Fmr1 KO). GABAergic interneurons are central to the correct formation of circuits during cortical critical periods. Here we demonstrate a delay in the maturation of the properties and synaptic connectivity of interneurons in Fmr1 KO mice during a critical period of cortical development. The delays both in cellular and synaptic maturation were rectified by administration of a TrkB receptor agonist, suggesting reduced BDNF-TrkB signaling as a contributing factor. These results provide evidence that the function of fast-spiking interneurons is disrupted due to a deficiency in neurotrophin

  15. Swift X-Ray Upper Limits on Type Ia Supernova Environments

    NASA Technical Reports Server (NTRS)

    Russell, B. R.; Immler, S.

    2012-01-01

    We have considered 53 Type Ia supernovae (SNe Ia) observed by the Swift X-Ray Telescope. None of the SNe Ia are individually detected at any time or in stacked images. Using these data and assuming that the SNe Ia are a homogeneous class of objects, we have calculated upper limits to the X-ray luminosity (0.2-10 keV) and mass-loss rate of L(sub 0.2-10) < 1.7 X 10(exp 38) erg/s and M(dot) < l.l X 10(exp -6) solar M/ yr x (V(sub w))/(10 km/s), respectively. The results exclude massive or evolved stars as the companion objects in SN Ia progenitor systems, but allow the possibility of main sequence or small stars, along with double degenerate systems consisting of two white dwarfs, consistent with results obtained at other wavelengths (e.g., UV, radio) in other studies.

  16. Comparison of recent SnIa datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, J.C. Bueno; Perivolaropoulos, L.; Nesseris, S., E-mail: jbueno@cc.uoi.gr, E-mail: nesseris@nbi.ku.dk, E-mail: leandros@uoi.gr

    2009-11-01

    We rank the six latest Type Ia supernova (SnIa) datasets (Constitution (C), Union (U), ESSENCE (Davis) (E), Gold06 (G), SNLS 1yr (S) and SDSS-II (D)) in the context of the Chevalier-Polarski-Linder (CPL) parametrization w(a) = w{sub 0}+w{sub 1}(1−a), according to their Figure of Merit (FoM), their consistency with the cosmological constant (ΛCDM), their consistency with standard rulers (Cosmic Microwave Background (CMB) and Baryon Acoustic Oscillations (BAO)) and their mutual consistency. We find a significant improvement of the FoM (defined as the inverse area of the 95.4% parameter contour) with the number of SnIa of these datasets ((C) highest FoM, (U),more » (G), (D), (E), (S) lowest FoM). Standard rulers (CMB+BAO) have a better FoM by about a factor of 3, compared to the highest FoM SnIa dataset (C). We also find that the ranking sequence based on consistency with ΛCDM is identical with the corresponding ranking based on consistency with standard rulers ((S) most consistent, (D), (C), (E), (U), (G) least consistent). The ranking sequence of the datasets however changes when we consider the consistency with an expansion history corresponding to evolving dark energy (w{sub 0},w{sub 1}) = (−1.4,2) crossing the phantom divide line w = −1 (it is practically reversed to (G), (U), (E), (S), (D), (C)). The SALT2 and MLCS2k2 fitters are also compared and some peculiar features of the SDSS-II dataset when standardized with the MLCS2k2 fitter are pointed out. Finally, we construct a statistic to estimate the internal consistency of a collection of SnIa datasets. We find that even though there is good consistency among most samples taken from the above datasets, this consistency decreases significantly when the Gold06 (G) dataset is included in the sample.« less

  17. [Intern(euron)al affairs : The role of specific neocortical interneuron classes in the interaction between acetylcholine and GABAergic anesthetics].

    PubMed

    Liebig, L; Grasshoff, C; Hentschke, H

    2016-08-01

    Acetylcholine is a neuromodulator which is released throughout the central nervous system and plays an essential role in consciousness and cognitive processes including attention and learning. Due to its 'activating' effect on the neuronal and behavioral level its interaction with anesthetics has long been of interest to anesthesiologists. It is widely held that a reduction of the release of acetylcholine by general anesthetics constitutes part of the anesthetic effect. This notion is backed by numerous human and animal studies, but is also in seeming contradiction to findings that acetylcholine activates specific classes of inhibitory neurons: if acetylcholine excites elements within the neuronal network responsible for the release of the inhibitory neurotransmitter γ-aminobutyric acid (GABA), its withdrawal should diminish, not enhance, the effect of anesthetics.Focusing on cortical circuits, we present an overview of recent advances in cellular neurophysiology, particularly the interactions between inhibitory neuron classes, which provide insights on the interaction between acetylcholine and GABA.

  18. 76 FR 53356 - Proposed Amendment of Class E Airspace; Greenfield, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ...-0846; Airspace Docket No. 11-ACE-18] Proposed Amendment of Class E Airspace; Greenfield, IA AGENCY... action proposes to amend Class E airspace at Greenfield, IA. Decommissioning of the Greenfield non-directional beacon (NDB) at Greenfield Municipal Airport, Greenfield, IA, has made this action necessary for...

  19. 76 FR 53360 - Proposed Establishment of Class E Airspace; Stuart, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ...-0831; Airspace Docket No. 11-ACE-17] Proposed Establishment of Class E Airspace; Stuart, IA AGENCY... action proposes to establish Class E airspace at Stuart, IA. Controlled airspace is necessary to... surface for new standard instrument approach procedures at the City of Stuart Helistop, Stuart, IA...

  20. 78 FR 48840 - Proposed Amendment of Class E Airspace; Hampton, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ...-0585; Airspace Docket No. 13-ACE-7] Proposed Amendment of Class E Airspace; Hampton, IA AGENCY: Federal... proposes to amend Class E airspace at Hampton, IA. Decommissioning of the Hampton non-directional beacon... for standard instrument approach procedures at Hampton Municipal Airport, Hampton, IA. A segment would...

  1. Cervical Cancer Stage IA

    MedlinePlus

    ... of the cervix and vagina. An inset shows cancer in the cervix that is up to 5 mm deep, but ... microscope is found in the tissues of the cervix. In stage IA1, the cancer is not more than 3 millimeters deep and ...

  2. 75 FR 6592 - Proposed Amendment of Class E Airspace; Emmetsburg, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ...-1153; Airspace Docket No. 09-ACE-13] Proposed Amendment of Class E Airspace; Emmetsburg, IA AGENCY... action proposes to amend Class E airspace at Emmetsburg, IA. Additional controlled airspace is necessary..., Emmetsburg, IA. The FAA is taking this action to enhance the safety and management of Instrument Flight Rules...

  3. 75 FR 13668 - Amendment of Class E Airspace; Cedar Rapids, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ...-0916; Airspace Docket No. 09-ACE-12] Amendment of Class E Airspace; Cedar Rapids, IA AGENCY: Federal... Cedar Rapids, IA, to accommodate Area Navigation (RNAV) Standard Instrument Approach Procedures (SIAPs) at The Eastern Iowa Airport, Cedar Rapids, IA. The FAA is taking this action to enhance the safety...

  4. 76 FR 5472 - Establishment of Class E Airspace; New Hampton, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-01

    ...-1035; Airspace Docket No. 10-ACE-12] Establishment of Class E Airspace; New Hampton, IA AGENCY: Federal... at New Hampton, IA, to accommodate new Area Navigation (RNAV) Standard Instrument Approach Procedures (SIAP) at Mercy Medical Center Heliport, New Hampton, IA. The FAA is taking this action to enhance the...

  5. 77 FR 45987 - Proposed Amendment of Class E Airspace; Guthrie, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ...-1436; Airspace Docket No. 11-ACE-29] Proposed Amendment of Class E Airspace; Guthrie, IA AGENCY... action proposes to amend Class E airspace at Guthrie, IA. Decommissioning of the Guthrie Center non-directional radio beacon (NDB) at Guthrie County Regional Airport, Guthrie, IA, has made this action necessary...

  6. 77 FR 68683 - Amendment of Class E Airspace; Forest City, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ...-0654; Airspace Docket No. 12-ACE-3] Amendment of Class E Airspace; Forest City, IA AGENCY: Federal... Forest City, IA. Additional controlled airspace is necessary to accommodate new Area Navigation (RNAV... Federal Register a notice of proposed rulemaking (NPRM) to amend Class E airspace for the Forest City, IA...

  7. An Analysis of Department of Defense Instruction 8500.2 'Information Assurance (IA) Implementation.'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Philip LaRoche

    2012-01-01

    The Department of Defense (DoD) provides its standard for information assurance in its Instruction 8500.2, dated February 6, 2003. This Instruction lists 157 'IA Controls' for nine 'baseline IA levels.' Aside from distinguishing IA Controls that call for elevated levels of 'robustness' and grouping the IA Controls into eight 'subject areas' 8500.2 does not examine the nature of this set of controls, determining, for example, which controls do not vary in robustness, how this set of controls compares with other such sets, or even which controls are required for all nine baseline IA levels. This report analyzes (1) the IAmore » Controls, (2) the subject areas, and (3) the Baseline IA levels. For example, this report notes that there are only 109 core IA Controls (which this report refers to as 'ICGs'), that 43 of these core IA Controls apply without variation to all nine baseline IA levels and that an additional 31 apply with variations. This report maps the IA Controls of 8500.2 to the controls in NIST 800-53 and ITGI's CoBIT. The result of this analysis and mapping, as shown in this report, serves as a companion to 8500.2. (An electronic spreadsheet accompanies this report.)« less

  8. The ‘grey’ assessment practice of IA screening: Prevalence, influence and applied rationale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bidstrup, Morten, E-mail: Bidstrup@plan.aau.dk

    Research focusing on the practices surrounding screening in Impact Assessment (IA) is limited. Yet, it has been found that development proposals sometimes are adjusted through an informal dialog with IA practitioners prior to or during screening. Such practice is often referred to as ‘grey IA’ in Denmark. This article explores the prevalence, influence and applied rationale of grey IA. Through a questionnaire, data was collected from 121 IA practitioners working within the fields of environmental impact assessment and strategic environmental assessment. It was found that grey IA is a common practice, which influences the outcomes of formal screening procedures throughmore » consideration of impacts on neighbours and spatial zones of protection. Grey IA is to some extent motivated by the opportunity to save the resources required for full-scale IA, but an additional ‘green’ rationale also exists. Grey IA may influence the effectiveness of IA systems, but further research is needed before any conclusions can be made. - Highlights: • Screening procedures may function as an informal, ‘grey’ assessment. • Grey assessment is common and influences formal screening outcomes. • Grey assessment is motivated by an opportunity to cut IA costs. • Yet, an environmental, ‘green’ rationale for grey assessment also exists.« less

  9. 75 FR 6595 - Proposed Amendment of Class E Airspace; Mapleton, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ...-1155; Airspace Docket No. 09-ACE-14] Proposed Amendment of Class E Airspace; Mapleton, IA AGENCY... action proposes to amend Class E airspace at Mapleton, IA. Additional controlled airspace is necessary to..., Mapleton, IA. The FAA is taking this action to enhance the safety and management of Instrument Flight Rules...

  10. 76 FR 53353 - Proposed Amendment of Class E Airspace; Carroll, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ...-0845; Airspace Docket No. 11-ACE-19] Proposed Amendment of Class E Airspace; Carroll, IA AGENCY... action proposes to amend Class E airspace at Carroll, IA. Decommissioning of the Carroll non-directional beacon (NDB) at Arthur N. Neu Airport, Carroll, IA, has made this action necessary for the safety and...

  11. 78 FR 18798 - Amendment of Class E Airspace; West Union, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ...-1434; Airspace Docket No. 11-ACE-27] Amendment of Class E Airspace; West Union, IA AGENCY: Federal... West Union, IA. Decommissioning of the West Union non-directional beacon (NDB) at George L. Scott... Federal Register a notice of proposed rulemaking (NPRM) to amend Class E airspace for the West Union, IA...

  12. Responses of cricket cercal interneurons to realistic naturalistic stimuli in the field

    PubMed Central

    Dupuy, Fabienne; Steinmann, Thomas; Pierre, Dominique; Christidès, Jean-Philippe; Cummins, Graham; Lazzari, Claudio; Miller, John; Casas, Jérôme

    2012-01-01

    SUMMARY The ability of the insect cercal system to detect approaching predators has been studied extensively in the laboratory and in the field. Some previous studies have assessed the extent to which sensory noise affects the operational characteristics of the cercal system, but these studies have only been carried out in laboratory settings using white noise stimuli of unrealistic nature. Using a piston mimicking the natural airflow of an approaching predator, we recorded the neural activity through the abdominal connectives from the terminal abdominal ganglion of freely moving wood crickets (Nemobius sylvestris) in a semi-field situation. A cluster analysis of spike amplitudes revealed six clusters, or ‘units’, corresponding to six different subsets of cercal interneurons. No spontaneous activity was recorded for the units of larger amplitude, reinforcing the idea they correspond to the largest giant interneurons. Many of the cercal units are already activated by background noise, sometimes only weakly, and the approach of a predator is signaled by an increase in their activity, in particular for the larger-amplitude units. A scaling law predicts that the cumulative number of spikes is a function of the velocity of the flow perceived at the rear of the cricket, including a multiplicative factor that increases linearly with piston velocity. We discuss the implications of this finding in terms of how the cricket might infer the imminence and nature of a predatory attack. PMID:22723476

  13. Singing modulates parvalbumin interneurons throughout songbird forebrain vocal control circuitry

    PubMed Central

    Zengin-Toktas, Yildiz

    2017-01-01

    Across species, the performance of vocal signals can be modulated by the social environment. Zebra finches, for example, adjust their song performance when singing to females (‘female-directed’ or FD song) compared to when singing in isolation (‘undirected’ or UD song). These changes are salient, as females prefer the FD song over the UD song. Despite the importance of these performance changes, the neural mechanisms underlying this social modulation remain poorly understood. Previous work in finches has established that expression of the immediate early gene EGR1 is increased during singing and modulated by social context within the vocal control circuitry. Here, we examined whether particular neural subpopulations within those vocal control regions exhibit similar modulations of EGR1 expression. We compared EGR1 expression in neurons expressing parvalbumin (PV), a calcium buffer that modulates network plasticity and homeostasis, among males that performed FD song, males that produced UD song, or males that did not sing. We found that, overall, singing but not social context significantly affected EGR1 expression in PV neurons throughout the vocal control nuclei. We observed differences in EGR1 expression between two classes of PV interneurons in the basal ganglia nucleus Area X. Additionally, we found that singing altered the amount of PV expression in neurons in HVC and Area X and that distinct PV interneuron types in Area X exhibited different patterns of modulation by singing. These data indicate that throughout the vocal control circuitry the singing-related regulation of EGR1 expression in PV neurons may be less influenced by social context than in other neuron types and raise the possibility of cell-type specific differences in plasticity and calcium buffering. PMID:28235074

  14. Tbr2 Deficiency in Mitral and Tufted Cells Disrupts Excitatory–Inhibitory Balance of Neural Circuitry in the Mouse Olfactory Bulb

    PubMed Central

    Mizuguchi, Rumiko; Naritsuka, Hiromi; Mori, Kensaku; Mao, Chai-An; Klein, William H.; Yoshihara, Yoshihiro

    2013-01-01

    The olfactory bulb (OB) is the first relay station in the brain where odor information from the olfactory epithelium is integrated, processed through its intrinsic neural circuitry, and conveyed to higher olfactory centers. Compared with profound mechanistic insights into olfactory axon wiring from the nose to the OB, little is known about the molecular mechanisms underlying the formation of functional neural circuitry among various types of neurons inside the OB. T-box transcription factor Tbr2 is expressed in various types of glutamatergic excitatory neurons in the brain including the OB projection neurons, mitral and tufted cells. Here we generated conditional knockout mice in which the Tbr2 gene is inactivated specifically in mitral and tufted cells from late embryonic stages. Tbr2 deficiency caused cell-autonomous changes in molecular expression including a compensatory increase of another T-box member, Tbr1, and a concomitant shift of vesicular glutamate transporter (VGluT) subtypes from VGluT1 to VGluT2. Tbr2-deficient mitral and tufted cells also exhibited anatomical abnormalities in their dendritic morphology and projection patterns. Additionally, several non-cell-autonomous phenotypes were observed in parvalbumin-, calbindin-, and 5T4-positive GABAergic interneurons. Furthermore, the number of dendrodendritic reciprocal synapses between mitral/tufted cells and GABAergic interneurons was significantly reduced. Upon stimulation with odorants, larger numbers of mitral and tufted cells were activated in Tbr2 conditional knockout mice. These results suggest that Tbr2 is required for not only the proper differentiation of mitral and tufted cells, but also for the establishment of functional neuronal circuitry in the OB and maintenance of excitatory–inhibitory balance crucial for odor information processing. PMID:22745484

  15. Tbr2 deficiency in mitral and tufted cells disrupts excitatory-inhibitory balance of neural circuitry in the mouse olfactory bulb.

    PubMed

    Mizuguchi, Rumiko; Naritsuka, Hiromi; Mori, Kensaku; Mao, Chai-An; Klein, William H; Yoshihara, Yoshihiro

    2012-06-27

    The olfactory bulb (OB) is the first relay station in the brain where odor information from the olfactory epithelium is integrated, processed through its intrinsic neural circuitry, and conveyed to higher olfactory centers. Compared with profound mechanistic insights into olfactory axon wiring from the nose to the OB, little is known about the molecular mechanisms underlying the formation of functional neural circuitry among various types of neurons inside the OB. T-box transcription factor Tbr2 is expressed in various types of glutamatergic excitatory neurons in the brain including the OB projection neurons, mitral and tufted cells. Here we generated conditional knockout mice in which the Tbr2 gene is inactivated specifically in mitral and tufted cells from late embryonic stages. Tbr2 deficiency caused cell-autonomous changes in molecular expression including a compensatory increase of another T-box member, Tbr1, and a concomitant shift of vesicular glutamate transporter (VGluT) subtypes from VGluT1 to VGluT2. Tbr2-deficient mitral and tufted cells also exhibited anatomical abnormalities in their dendritic morphology and projection patterns. Additionally, several non-cell-autonomous phenotypes were observed in parvalbumin-, calbindin-, and 5T4-positive GABAergic interneurons. Furthermore, the number of dendrodendritic reciprocal synapses between mitral/tufted cells and GABAergic interneurons was significantly reduced. Upon stimulation with odorants, larger numbers of mitral and tufted cells were activated in Tbr2 conditional knockout mice. These results suggest that Tbr2 is required for not only the proper differentiation of mitral and tufted cells, but also for the establishment of functional neuronal circuitry in the OB and maintenance of excitatory-inhibitory balance crucial for odor information processing.

  16. Explaining the progenitors of peculiar type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Das, Upasana; Mukhopadhyay, Banibrata

    2015-01-01

    Type Ia supernovae (SneIa) are believed to be triggered in white dwarfs having mass close to the Chandrasekhar limit of 1.44 M⊙. However, observations of several peculiar, highly under- and over-luminous SNeIa argue for exploding masses widely different from this limit. The over-luminous SNeIa, e.g. SN 2003fg, SN 2006gz, SN 2007if, SN 2009dc, seem to invoke super-Chandrasekhar white dwarf progenitors, having mass 2.1-2.8 M⊙. While, the under-luminous SNeIa, e.g. SN 1991bg, SN 1997cn, SN 1998de, SN 1999by, seem to favor sub-Chandrasekhar explosion scenarios. In order to explain the existence of super-Chandrasekhar white dwarfs, we have exploited the enormous potential of magnetic fields, which can affect the structure and properties of the underlying white dwarf in a variety of ways. We have progressed from a simplistic to more rigorous and self-consistent models in the following sequence - spherically symmetric Newtonian model with a constant central magnetic field; spherically symmetric general relativistic model with varying magnetic field and finally, a model including self-consistent departure from spherical symmetry obtained from general relativistic magnetohydrodynamic (GRMHD) simulations. Here we particularly present the results of the GRMHD simulations, whereby we have constructed equilibrium models of strongly magnetized, static, white dwarfs. Interestingly, we find that significantly super-Chandrasekhar white dwarfs are obtained for many possible field configurations, namely, poloidal, toroidal and mixed. Further, due to the inclusion of deformation in the white dwarf structure caused by a strong magnetic field, super-Chandrasekhar white dwarfs are obtained for relatively lower magnetic field strengths compared to that in the simplistic model. Finally, driven by the aim to establish a unification theory of under- and over-luminous SNeIa, we have shown that a modification of Einstein's theory of gravity leads to both significantly sub- and super

  17. Co-regulation of intragenic microRNA miR-153 and its host gene Ia-2 β: identification of miR-153 target genes with functions related to IA-2β in pancreas and brain.

    PubMed

    Mandemakers, W; Abuhatzira, L; Xu, H; Caromile, L A; Hébert, S S; Snellinx, A; Morais, V A; Matta, S; Cai, T; Notkins, A L; De Strooper, B

    2013-07-01

    We analysed the genomic organisation of miR-153, a microRNA embedded in genes that encode two of the major type 1 diabetes autoantigens, islet-associated protein (IA)-2 and IA-2β. We also identified miR-153 target genes that correlated with IA-2β localisation and function. A bioinformatics approach was used to identify miR-153's genomic organisation. To analyse the co-regulation of miR-153 and IA-2β, quantitative PCR analysis of miR-153 and Ia-2β (also known as Ptprn2) was performed after a glucose stimulation assay in MIN6B cells and isolated murine pancreatic islets, and also in wild-type Ia-2 (also known as Ptprn), Ia-2β single knockout and Ia-2/Ia-2β double knockout mouse brain and pancreatic islets. Bioinformatics identification of miR-153 target genes and validation via luciferase reporter assays, western blotting and quantitative PCR were also carried out. Two copies of miR-153, miR-153-1 and miR-153-2, are localised in intron 19 of Ia-2 and Ia-2β, respectively. In rodents, only miR-153-2 is conserved. We demonstrated that expression of miR-153-2 and Ia-2β in rodents is partially co-regulated as demonstrated by a strong reduction of miR-153 expression levels in Ia-2β knockout and Ia-2/Ia-2β double knockout mice. miR-153 levels were unaffected in Ia-2 knockout mice. In addition, glucose stimulation, which increases Ia-2 and Ia-2β expression, also significantly increased expression of miR-153. Several predicted targets of miR-153 were reduced after glucose stimulation in vitro, correlating with the increase in miR-153 levels. This study suggests the involvement of miR-153, IA-2β and miR-153 target genes in a regulatory network, which is potentially relevant to insulin and neurotransmitter release.

  18. 75 FR 26709 - Clarke County Water Supply Project, Clarke County, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... Project, Clarke County, IA AGENCY: Natural Resources Conservation Service. ACTION: Notice of intent to... Conservationist for Planning, 210 Walnut Street, Room 693, Des Moines, IA 50309-2180, telephone: 515-284- 4769... available at the Iowa NRCS Web site at http://www.ia.nrcs.usda.gov . A map of the Clarke County Water Supply...

  19. Spillover-mediated feedforward-inhibition functionally segregates interneuron activity

    PubMed Central

    Coddington, Luke T.; Rudolph, Stephanie; Lune, Patrick Vande; Overstreet-Wadiche, Linda; Wadiche, Jacques I.

    2013-01-01

    Summary Neurotransmitter spillover represents a form of neural transmission not restricted to morphologically defined synaptic connections. Communication between climbing fibers (CFs) and molecular layer interneurons (MLIs) in the cerebellum is mediated exclusively by glutamate spillover. Here, we show how CF stimulation functionally segregates MLIs based on their location relative to glutamate release. Excitation of MLIs that reside within the domain of spillover diffusion coordinates inhibition of MLIs outside the diffusion limit. CF excitation of MLIs is dependent on extrasynaptic NMDA receptors that enhance the spatial and temporal spread of CF signaling. Activity mediated by functionally segregated MLIs converges onto neighboring Purkinje cells (PCs) to generate a long-lasting biphasic change in inhibition. These data demonstrate how glutamate release from single CFs modulates excitability of neighboring PCs, thus expanding the influence of CFs on cerebellar cortical activity in a manner not predicted by anatomical connectivity. PMID:23707614

  20. Complex impairment of IA muscle proprioceptors following traumatic or neurotoxic injury.

    PubMed

    Vincent, Jacob A; Nardelli, Paul; Gabriel, Hanna M; Deardorff, Adam S; Cope, Timothy C

    2015-08-01

    The health of primary sensory afferents supplying muscle has to be a first consideration in assessing deficits in proprioception and related motor functions. Here we discuss the role of a particular proprioceptor, the IA muscle spindle proprioceptor in causing movement disorders in response to either regeneration of a sectioned peripheral nerve or damage from neurotoxic chemotherapy. For each condition, there is a single preferred and widely repeated explanation for disability of movements associated with proprioceptive function. We present a mix of published and preliminary findings from our laboratory, largely from in vivo electrophysiological study of treated rats to demonstrate newly discovered IA afferent defects that seem likely to make important contributions to movement disorders. First, we argue that reconnection of regenerated IA afferents with inappropriate targets, although often repeated as the reason for lost stretch-reflex contraction, is not a complete explanation. We present evidence that despite successful recovery of stretch-evoked sensory signaling, peripherally regenerated IA afferents retract synapses made with motoneurons in the spinal cord. Second, we point to evidence that movement disability suffered by human subjects months after discontinuation of oxaliplatin (OX) chemotherapy for some is not accompanied by peripheral neuropathy, which is the acknowledged primary cause of disability. Our studies of OX-treated rats suggest a novel additional explanation in showing the loss of sustained repetitive firing of IA afferents during static muscle stretch. Newly extended investigation reproduces this effect in normal rats with drugs that block Na(+) channels apparently involved in encoding static IA afferent firing. Overall, these findings highlight multiplicity in IA afferent deficits that must be taken into account in understanding proprioceptive disability, and that present new avenues and possible advantages for developing effective

  1. The Implementation of IAS 16 and IAS 41 at Andrew Peller Limited

    ERIC Educational Resources Information Center

    Lapointe-Antunes, Pascale; Moore, James

    2013-01-01

    This case asks students to play the role of Doug Grodeckie, Manager of Financial Reporting at Andrew Peller Limited (APL). Doug was asked to prepare a report analyzing Andrew Peller Limited's current tangible long-lived assets disclosures and making recommendations on how best to comply with International Accounting Standard (IAS) 16 Property,…

  2. Distinct cortical and sub-cortical neurogenic domains for GABAergic interneuron precursor transcription factors NKX2.1, OLIG2 and COUP-TFII in early fetal human telencephalon.

    PubMed

    Alzu'bi, Ayman; Lindsay, Susan; Kerwin, Janet; Looi, Shi Jie; Khalil, Fareha; Clowry, Gavin J

    2017-07-01

    The extent of similarities and differences between cortical GABAergic interneuron generation in rodent and primate telencephalon remains contentious. We examined expression of three interneuron precursor transcription factors, alongside other markers, using immunohistochemistry on 8-12 post-conceptional weeks (PCW) human telencephalon sections. NKX2.1, OLIG2, and COUP-TFII expression occupied distinct (although overlapping) neurogenic domains which extended into the cortex and revealed three CGE compartments: lateral, medial, and ventral. NKX2.1 expression was very largely confined to the MGE, medial CGE, and ventral septum confirming that, at this developmental stage, interneuron generation from NKX2.1+ precursors closely resembles the process observed in rodents. OLIG2 immunoreactivity was observed in GABAergic cells of the proliferative zones of the MGE and septum, but not necessarily co-expressed with NKX2.1, and OLIG2 expression was also extensively seen in the LGE, CGE, and cortex. At 8 PCW, OLIG2+ cells were only present in the medial and anterior cortical wall suggesting a migratory pathway for interneuron precursors via the septum into the medial cortex. By 12 PCW, OLIG2+ cells were present throughout the cortex and many were actively dividing but without co-expressing cortical progenitor markers. Dividing COUP-TFII+ progenitor cells were localized to ventral CGE as previously described but were also numerous in adjacent ventral cortex; in both the cases, COUP-TFII was co-expressed with PAX6 in proliferative zones and TBR1 or calretinin in post-mitotic cortical neurons. Thus COUP-TFII+ progenitors gave rise to pyramidal cells, but also interneurons which not only migrated posteriorly into the cortex from ventral CGE but also anteriorly via the LGE.

  3. Methamphetamine induces striatal neurokinin-1 receptor endocytosis primarily in somatostatin/NPY/NOS interneurons and the role of dopamine receptors in mice.

    PubMed

    Wang, Jing; Angulo, Jesus A

    2011-04-01

    Methamphetamine (METH) is a psychostimulant that induces long-term deficits of dopamine terminal markers and apoptotic cell death in the striatum. Our laboratory demonstrated that pharmacological blockade of the neurokinin-1 receptor attenuated the METH-induced damage to the striatal dopamine terminals and the apoptotic cell death of some striatal neurons. Here, we used histological methods to assess the effect of METH on neurokinin-1 receptor trafficking in the striatum as an indirect index of signaling by the neuropeptide substance P (natural ligand for this receptor). Male mice received a single injection of METH (30 mg/kg, i.p.) and were sacrificed 30 min later. Immunohistofluorescence confocal microscopy confirmed that the neurokinin-1 receptor is located on cholinergic and somatostatin interneurons of the striatum. METH induced the trafficking of the neurokinin-1 receptor from the membrane into cytoplasmic endosomes primarily in the somatostatin/NPY/NOS interneurons, and this phenomenon was attenuated by antagonists of the dopamine D1 (SCH-23390), D2 (raclopride), or neurokinin-1 (WIN-51,708) receptors. These data demonstrate that METH induces the trafficking of the striatal neurokinin-1 receptors principally in the somatostatin/NPY/NOS interneurons and that this phenomenon is dependent on the activity of dopamine D1 and D2 receptors. Copyright © 2010 Wiley-Liss, Inc.

  4. Decreased number of interneurons and increased seizures in neuropilin 2 deficient mice: Implications for autism and epilepsy

    PubMed Central

    Gant, John C.; Thibault, Oliver; Blalock, Eric M.; Yang, Jun; Bachstetter, Adam; Kotick, James; Schauwecker, Paula E.; Hauser, Kurt F.; Smith, George M.; Mervis, Ron; Li, YanFang; Barnes, Gregory N.

    2010-01-01

    Summary Purpose Clinically, perturbations in the semaphorin signaling system have been associated with autism and epilepsy. The semaphorins have been implicated in guidance, migration, differentiation, and synaptic plasticity of neurons. The semaphorin 3F (Sema3F) ligand and its receptor, neuropilin 2 (NPN2) are highly expressed within limbic areas. NPN2 signaling may intimately direct the apposition of presynaptic and postsynaptic locations, facilitating the development and maturity of hippocampal synaptic function. To further understand the role of NPN2 signaling in central nevous system (CNS) plasticity, structural and functional alterations were assessed in NPN2 deficient mice. Methods In NPN2 deficient mice, we measured seizure susceptibility after kainic acid or pentylenetetrazol, neuronal excitability and synaptic throughput in slice preparations, principal and interneuron cell counts with immunocytochemical protocols, synaptosomal protein levels with immunoblots, and dendritic morphology with Golgi-staining. Results NPN2 deficient mice had shorter seizure latencies, increased vulnerability to seizure-related death, were more likely to develop spontaneous recurrent seizure activity after chemical challenge, and had an increased slope on input/output curves. Principal cell counts were unchanged, but GABA, parvalbumin, and neuropeptide Y interneuron cell counts were significantly reduced. Synaptosomal NPN2 protein levels and total number of GABAergic synapses were decreased in a gene dose-dependent fashion. CA1 pyramidal cells showed reduced dendritic length and complexity, as well as an increased number of dendritic spines. Discussion These data suggest the novel hypothesis that the Sema 3F signaling system's role in appropriate placement of subsets of hippocampal interneurons has critical downstream consequences for hippocampal function, resulting in a more seizure susceptible phenotype. PMID:18657176

  5. Calretinin and parvalbumin immunoreactive interneurons in the retrosplenial cortex of the rat brain: Qualitative and quantitative analyses.

    PubMed

    Salaj, Martin; Druga, Rastislav; Cerman, Jiří; Kubová, Hana; Barinka, Filip

    2015-11-19

    The retrosplenial cortex (RSC) is a mesocortical region broadly involved with memory and navigation. It shares many characteristics with the perirhinal cortex (PRC), both of which appear to be significantly involved in the spreading of epileptic activity. We hypothesized that RSC possesses an interneuronal composition similar to that of PRC. To prove the hypothesis we studied the general pattern of calretinin (CR) and parvalbumin (PV) immunoreactivity in the RSC of the rat brain, its optical density as well as the morphological features and density of CR- and PV-immunoreactive (CR+ and PV+) interneurons. We also analyzed the overall neuronal density on Nissl-stained sections in RSC. Finally, we compared our results with our earlier analysis of PRC (Barinka et al., 2012). Compared to PRC, RSC was observed to have a higher intensity of PV staining and lower intensity of CR staining of neuropil. Vertically-oriented bipolar neurons were the most common morphological type among CR+ neurons. The staining pattern did not allow for a similarly detailed analysis of somatodendritic morphology of PV+ neurons. RSC possessed lower absolute (i.e., neurons/mm(3)) and relative (i.e., percentage of the overall neuronal population) densities of CR+ neurons and similar absolute and lower relative densities of PV+ neurons relative to PRC. CR: PV neuronal ratio in RSC (1:2 in area 29 and 1:2.2 in area 30) differed from PRC (1:1.2 in area 35 and 1:1.7 in area 36). In conclusion, RSC, although similar in many aspects to PRC, differs strikingly in the interneuronal composition relative to PRC. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. The Mediodorsal Thalamus Drives Feedforward Inhibition in the Anterior Cingulate Cortex via Parvalbumin Interneurons

    PubMed Central

    Delevich, Kristen; Tucciarone, Jason; Huang, Z. Josh

    2015-01-01

    Although the medial prefrontal cortex (mPFC) is classically defined by its reciprocal connections with the mediodorsal thalamic nucleus (MD), the nature of information transfer between MD and mPFC is poorly understood. In sensory thalamocortical pathways, thalamic recruitment of feedforward inhibition mediated by fast-spiking, putative parvalbumin-expressing (PV) interneurons is a key feature that enables cortical neurons to represent sensory stimuli with high temporal fidelity. Whether a similar circuit mechanism is in place for the projection from the MD (a higher-order thalamic nucleus that does not receive direct input from the periphery) to the mPFC is unknown. Here we show in mice that inputs from the MD drive disynaptic feedforward inhibition in the dorsal anterior cingulate cortex (dACC) subregion of the mPFC. In particular, we demonstrate that axons arising from MD neurons directly synapse onto and excite PV interneurons that in turn mediate feedforward inhibition of pyramidal neurons in layer 3 of the dACC. This feedforward inhibition in the dACC limits the time window during which pyramidal neurons integrate excitatory synaptic inputs and fire action potentials, but in a manner that allows for greater flexibility than in sensory cortex. These findings provide a foundation for understanding the role of MD-PFC circuit function in cognition. PMID:25855185

  7. Immunoadsorption (IAS) as a rescue therapy in SLE: considerations on safety and efficacy.

    PubMed

    Stummvoll, Georg H; Aringer, Martin; Jansen, Martin; Smolen, Josef S; Derfler, Kurt; Graninger, Winfried B

    2004-11-30

    In SLE, extracorporeal procedures aiming at reduction of immunoglobulin (Ig) and immune complexes (IC) are used as a rescue therapy. Plasma exchange (PE) has not been proven overall effective in SLE, and long-term treatment in particular has been associated with severe bacterial and viral infections. Immunoadsorption (IAS), in contrast, selectively removes Ig and IC and may thus be safer. We therefore investigated the rate of infections in SLE patients who were undergoing long-term IAS. 16 SLE patients were treated with > or = 10 courses of IAS, and nine patients with highly active disease received pulse cyclophosphamide (IVCP) therapy in parallel. We retrospectively analysed the records of all these patients for the occurrence of infections. Patients receiving IAS therapy plus IVCP were compared with 25 patients with similarly active disease treated with standard IVCP therapy within the same observation period. Patients receiving IAS without additional IVCP were compared with patients with similarly moderate disease activity receiving neither IAS nor IVCP. No potentially life-threatening viral infection occurred in IAS-treated patients and episodes of herpes zoster were equally distributed. No severe infection was observed during IAS without concomittant cyclophosphamide. As expected, more patients with highly active disease receiving IVCP experienced infections than those with less active disease (16 of 34 [47%] vs. 2 of 22 [9%], p < 0.04). On comparing the two groups with highly active disease, infections were similar (IAS+IVCP: 3 of 9 patients [33%], IVCP only: 5 of 25 [20%]), but one patient receiving IAS+IVCP died of septicaemia. Disease activity significantly decreased in both groups treated with IAS. IAS has an acceptable safety profile with regard to severe infections and appears safe with regard to severe viral disease. Highly active disease and IVCP therapy increase the risk of severe infections in SLE.

  8. MDMA-induced loss of parvalbumin interneurons within the dentate gyrus is mediated by 5HT2A and NMDA receptors.

    PubMed

    Collins, Stuart A; Gudelsky, Gary A; Yamamoto, Bryan K

    2015-08-15

    MDMA is a widely abused psychostimulant which causes a rapid and robust release of the monoaminergic neurotransmitters dopamine and serotonin. Recently, it was shown that MDMA increases extracellular glutamate concentrations in the dorsal hippocampus, which is dependent on serotonin release and 5HT2A/2C receptor activation. The increased extracellular glutamate concentration coincides with a loss of parvalbumin-immunoreactive (PV-IR) interneurons of the dentate gyrus region. Given the known susceptibility of PV interneurons to excitotoxicity, we examined whether MDMA-induced increases in extracellular glutamate in the dentate gyrus are necessary for the loss of PV cells in rats. Extracellular glutamate concentrations increased in the dentate gyrus during systemic and local administration of MDMA. Administration of the NMDA receptor antagonist, MK-801, during systemic injections of MDMA, prevented the loss of PV-IR interneurons seen 10 days after MDMA exposure. Local administration of MDL100907, a selective 5HT2A receptor antagonist, prevented the increases in glutamate caused by reverse dialysis of MDMA directly into the dentate gyrus and prevented the reduction of PV-IR. These findings provide evidence that MDMA causes decreases in PV within the dentate gyrus through a 5HT2A receptor-mediated increase in glutamate and subsequent NMDA receptor activation. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. A Significantly off-center 56Ni Distribution for the Low-Luminosity Type Ia Supernova SN 2016brx from the 100IAS survey

    NASA Astrophysics Data System (ADS)

    Dong, Subo; Katz, Boaz; Kollmeier, Juna A.; Kushnir, Doron; Elias-Rosa, N.; Bose, Subhash; Morrell, Nidia; Prieto, J. L.; Chen, Ping; Kochanek, C. S.; Brandt, G. M.; Holoien, T. W.-S.; Gal-Yam, Avishay; Morales-Garoffolo, Antonia; Parker, Stuart; Phillips, M. M.; Piro, Anthony L.; Shappee, B. J.; Simon, Joshua D.; Stanek, K. Z.

    2018-06-01

    We present nebular-phase spectra of the Type Ia supernova (SN Ia) 2016brx, a member of the 1991bg-like subclass that lies at the faint end of the SN Ia luminosity function. Nebular spectra are available for only three other 1991bg-like SNe, and their Co line centers are all within ≲ 500 km/s of each other. In contrast, the nebular Co line center of SN 2016brx is blue-shifted by >1500 km/s compared to them and by ≈1200 km/s compared to the rest frame. This is a significant shift relative to the narrow nebular line velocity dispersion of ≲ 2000 km/s of these SNe. The large range of nebular line shifts implies that the 56Ni in the ejecta of SN 1991bg-like events is off-center by ˜1000 km/s rather than universally centrally confined as previously suggested. With the addition of SN 2016brx, the Co nebular line shapes of 1991bg-like objects appear to connect with the brighter SNe Ia that show double-peaked profiles, hinting at a continuous distribution of line profiles among SNe Ia. One class of models to produce both off-center and bi-modal 56Ni distributions is collisions of white dwarfs with unequal and equal masses.

  10. Type Ia supernova rate studies from the SDSS-II Supernova Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dilday, Benjamin

    2008-08-01

    The author presents new measurements of the type Ia SN rate from the SDSS-II Supernova Survey. The SDSS-II Supernova Survey was carried out during the Fall months (Sept.-Nov.) of 2005-2007 and discovered ~ 500 spectroscopically confirmed SNe Ia with densely sampled (once every ~ 4 days), multi-color light curves. Additionally, the SDSS-II Supernova Survey has discovered several hundred SNe Ia candidates with well-measured light curves, but without spectroscopic confirmation of type. This total, achieved in 9 months of observing, represents ~ 15-20% of the total SNe Ia discovered worldwide since 1885. The author describes some technical details of the SNmore » Survey observations and SN search algorithms that contributed to the extremely high-yield of discovered SNe and that are important as context for the SDSS-II Supernova Survey SN Ia rate measurements.« less

  11. Loss of Interneuron-Derived Collagen XIX Leads to a Reduction in Perineuronal Nets in the Mammalian Telencephalon.

    PubMed

    Su, Jianmin; Cole, James; Fox, Michael A

    2017-02-01

    Perineuronal nets (PNNs) are lattice-like supramolecular assemblies of extracellular glycoproteins that surround subsets of neuronal cell bodies in the mammalian telencephalon. PNNs emerge at the end of the critical period of brain development, limit neuronal plasticity in the adult brain, and are lost in a variety of complex brain disorders diseases, including schizophrenia. The link between PNNs and schizophrenia led us to question whether neuronally expressed extracellular matrix (ECM) molecules associated with schizophrenia contribute to the assembly of these specialized supramolecular ECM assemblies. We focused on collagen XIX-a minor, nonfibrillar collagen expressed by subsets of telencephalic interneurons. Genetic alterations in the region encoding collagen XIX have been associated with familial schizophrenia, and loss of this collagen in mice results in altered inhibitory synapses, seizures, and the acquisition of schizophrenia-related behaviors. Here, we demonstrate that loss of collagen XIX also results in a reduction of telencephalic PNNs. Loss of PNNs was accompanied with reduced levels of aggrecan (Acan), a major component of PNNs. Despite reduced levels of PNN constituents in collagen XIX-deficient mice ( col19a1 - / - ), we failed to detect reduced expression of genes encoding these ECM molecules. Instead, we discovered a widespread upregulation of extracellular proteases capable of cleaving Acan and other PNN constituents in col19a1 - / - brains. Taken together, these results suggest a mechanism by which the loss of collagen XIX speeds PNN degradation and they identify a novel mechanism by which the loss of collagen XIX may contribute to complex brain disorders.

  12. Cholinergic interneurons in the feeding system of the pond snail Lymnaea stagnalis. III. Pharmacological dissection of the feeding rhythm.

    PubMed

    Elliott, C J

    1992-05-29

    The feeding activity of the pond snail Lymnaea stagnalis was stimulated by depolarization of a modulatory interneuron (SO) or of a N1 pattern-generating interneuron. The cholinergic antagonists phenyltrimethylammonium (PTMA), methylxylocholine (MeXCh), hexamethonium (HMT) and atropine (ATR) were applied at 0.5 mM in the bath and their effects on the rhythmic feeding pattern were monitored. Each of the antagonists slowed or blocked the feeding rhythm. The block was due to interference in the pattern generating network, not to disturbance of modulatory inputs. The experimental results favour a model in which the alternation of protraction (N1) and retraction (N2) phases occurs by recurrent inhibition. The results would be more difficult to explain on the reciprocal inhibition model. When all the N1 output was blocked, the N1 neurons fired rhythmic bursts endogenously.

  13. Molecular profiling identifies prognostic markers of stage IA lung adenocarcinoma.

    PubMed

    Zhang, Jie; Shao, Jinchen; Zhu, Lei; Zhao, Ruiying; Xing, Jie; Wang, Jun; Guo, Xiaohui; Tu, Shichun; Han, Baohui; Yu, Keke

    2017-09-26

    We previously showed that different pathologic subtypes were associated with different prognostic values in patients with stage IA lung adenocarcinoma (AC). We hypothesize that differential gene expression profiles of different subtypes may be valuable factors for prognosis in stage IA lung adenocarcinoma. We performed microarray gene expression profiling on tumor tissues micro-dissected from patients with acinar and solid predominant subtypes of stage IA lung adenocarcinoma. These patients had undergone a lobectomy and mediastinal lymph node dissection at the Shanghai Chest Hospital, Shanghai, China in 2012. No patient had preoperative treatment. We performed the Gene Set Enrichment Analysis (GSEA) analysis to look for gene expression signatures associated with tumor subtypes. The histologic subtypes of all patients were classified according to the 2015 WHO lung Adenocarcinoma classification. We found that patients with the solid predominant subtype are enriched for genes involved in RNA polymerase activity as well as inactivation of the p53 pathway. Further, we identified a list of genes that may serve as prognostic markers for stage IA lung adenocarcinoma. Validation in the TCGA database shows that these genes are correlated with survival, suggesting that they are novel prognostic factors for stage IA lung adenocarcinoma. In conclusion, we have uncovered novel prognostic factors for stage IA lung adenocarcinoma using gene expression profiling in combination with histopathology subtyping.

  14. Cognitive Deficits in Calsyntenin-2-deficient Mice Associated with Reduced GABAergic Transmission

    PubMed Central

    Lipina, Tatiana V; Prasad, Tuhina; Yokomaku, Daisaku; Luo, Lin; Connor, Steven A; Kawabe, Hiroshi; Wang, Yu Tian; Brose, Nils; Roder, John C; Craig, Ann Marie

    2016-01-01

    Calsyntenin-2 has an evolutionarily conserved role in cognition. In a human genome-wide screen, the CLSTN2 locus was associated with verbal episodic memory, and expression of human calsyntenin-2 rescues the associative learning defect in orthologous Caenorhabditis elegans mutants. Other calsyntenins promote synapse development, calsyntenin-1 selectively of excitatory synapses and calsyntenin-3 of excitatory and inhibitory synapses. We found that targeted deletion of calsyntenin-2 in mice results in a selective reduction in functional inhibitory synapses. Reduced inhibitory transmission was associated with a selective reduction of parvalbumin interneurons in hippocampus and cortex. Clstn2−/− mice showed normal behavior in elevated plus maze, forced swim test, and novel object recognition assays. However, Clstn2−/− mice were hyperactive in the open field and showed deficits in spatial learning and memory in the Morris water maze and Barnes maze. These results confirm a function for calsyntenin-2 in cognitive performance and indicate an underlying mechanism that involves parvalbumin interneurons and aberrant inhibitory transmission. PMID:26171716

  15. On the relative frequencies of spectroscopically normal and peculiar type Ia supernovae

    NASA Technical Reports Server (NTRS)

    Branch, David; Fisher, Adam; Nugent, Peter

    1993-01-01

    After defining what we mean by spectroscopically 'normal' and 'peculiar' Type Ia supernove, we report the results of an attempt to subclassify 84 SNe Ia either as normal or as like one of the recent, peculiar SNe Ia: 1991T, 1991bg, or 1986G. Only SNe 1957A and 1960H are found to have been certifiably abnormal, with SN 1957A; appearing to have been like SN 1991bg, and SN 1960H having been like SN 1991bg or SN 1988G; SNe 1971I and 1980I are under suspicion of having been like SN 1986G, and SN 1988G of having been like SN 1991T. Of the SNe Ia we have been able to classify either as normal or as peculiar, 89% (or 83%, counting those under suspicion as peculiar) are normal. Our main conclusion is that the observational sample of SNe Ia is strongly peaked at 'spectroscopically normal.' We further conclude that when arranged in the photometric sequence of Phillips (1993) SNe Ia also form a spectroscopic sequence, and that peculiar SNe Ia are over-represented in the Phillips sample.

  16. The double-degenerate model for the progenitors of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Liu, D.; Wang, B.; Han, Z.

    2018-02-01

    The double-degenerate (DD) model, involving the merging of massive double carbon-oxygen white dwarfs (CO WDs) driven by gravitational wave radiation, is one of the classical pathways for the formation of Type Ia supernovae (SNe Ia). Recently, it has been proposed that the WD+He subgiant channel has a significant contribution to the production of massive double WDs, in which the primary WD accumulates mass by accreting He-rich matter from an He subgiant. We evolved about 1800 CO WD+He star systems and obtained a large and dense grid for producing SNe Ia through the DD model. We then performed a series of binary population synthesis simulations for the DD model, in which the WD+He subgiant channel is calculated by interpolations in the SN Ia production grid. According to our standard model, the Galactic birth rate of SNe Ia is about 2.4 × 10- 3 yr- 1 for the WD+He subgiant channel of the DD model; the total birth rate is about 3.7 × 10- 3 yr- 1 for all channels, reproducing that of observations. Previous theoretical models still have deficit with the observed SNe Ia with delay times < 1 Gyr and > 8 Gyr. After considering the WD+He subgiant channel, we found that the delay time distributions are comparable with the observed results. Additionally, some recent studies proposed that the violent WD mergers are more likely to produce SNe Ia based on the DD model. We estimated that the violent mergers through the DD model may contribute to at most 16 per cent of all SNe Ia.

  17. Polarisation Spectral Synthesis For Type Ia Supernova Explosion Models

    NASA Astrophysics Data System (ADS)

    Bulla, Mattia

    2017-02-01

    Despite their relevance across a broad range of astrophysical research topics, Type Ia supernova explosions are still poorly understood and answers to the questions of when, why and how these events are triggered remain unclear. In this respect, polarisation offers a unique opportunity to discriminate between the variety of possible scenarios. The observational evidence that Type Ia supernovae are associated with rather low polarisation signals (smaller than a few per cent) places strong constraints for models and calls for modest asphericities in the progenitor system and/or explosion mechanism.The goal of this thesis is to assess the validity of contemporary Type Ia supernova explosion models by testing whether their predicted polarisation signatures can account for the small signals usually observed. To this end, we have implemented and tested an innovative Monte Carlo scheme in the radiative transfer code artis. Compared to previous Monte Carlo approaches, this technique produces synthetic observables (light curves, flux and polarisation spectra) with a substantial reduction in the Monte Carlo noise and therefore in the required computing time. This improvement is particularly crucial for our study as we aim to extract very weak polarisation signals, comparable to those detected in Type Ia supernovae. We have also demonstrated the applicability of this method to other classes of supernovae via a preliminary study of the first spectropolarimetry observations of superluminous supernovae.Using this scheme, we have calculated synthetic spectropolarimetry for three multi-dimensional explosion models recently proposed as promising candidates to explain Type Ia supernovae. Our findings highlight the power of spectropolarimetry in testing and discriminating between different scenarios. While all the three models predict light curves and flux spectra that are similar to each others and reproduce those observed in Type Ia supernovae comparably well, polarisation does

  18. Coordinate High-Frequency Pattern of Stimulation and Calcium Levels Control the Induction of LTP in Striatal Cholinergic Interneurons

    ERIC Educational Resources Information Center

    Bonsi, Paola; De Persis, Cristiano; Calabresi, Paolo; Bernardi, Giorgio; Pisani, Antonio

    2004-01-01

    Current evidence appoints a central role to cholinergic interneurons in modulating striatal function. Recently, a long-term potentiation (LTP) of synaptic transmission has been reported to occur in these neurons. The relationship between the pattern of cortico/thalamostriatal fibers stimulation, the consequent changes in the intracellular calcium…

  19. 77 FR 49399 - Proposed Amendment of Class E Airspace; Forest City, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ...-0654; Airspace Docket No. 12-ACE-3] Proposed Amendment of Class E Airspace; Forest City, IA AGENCY... action proposes to amend Class E airspace at Forest City, IA. Additional controlled airspace is necessary... accommodate new standard instrument approach procedures at Forest City Municipal Airport, Forest City, IA. The...

  20. 77 FR 71361 - Proposed Amendment of Class E Airspace; West Union, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-30

    ...-1434; Airspace Docket No. 11-ACE-27] Proposed Amendment of Class E Airspace; West Union, IA AGENCY... action proposes to amend Class E airspace at West Union, IA. Decommissioning of the West Union non... instrument approach procedures at George L. Scott Municipal Airport, West Union, IA. Airspace reconfiguration...